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Abstract 

Many program evolution tasks involve source code that is not modularized as a single unit. 
Furthermore, the source code relevant to a change task often implements different concerns, or 
high-level concepts that a developer must consider. Finding and understanding concerns scattered 
in source code is a difficult task that accounts for a large proportion of the effort of performing 
program evolution. One possibility to mitigate this problem is to produce textual documentation 
that describes scattered concerns. However, this approach is impractical because it is costly, and 
because, as a program evolves, the documentation becomes inconsistent with the source code. 

The thesis of this dissertation is that a description of concerns, representing program structures 
and linked to source code, that can be produced cost-effectively during program investigation ac­
tivities, can help developers perform software evolution tasks more systematically, and on different 
versions of a system. 

To validate the claims of this thesis, we have developed a model for a structure, called concern 
graph, that describes concerns in source code in terms of relations between program elements. 
The model also defines precisely the notion of inconsistency between a concern graph and the 
corresponding source code, so that it is possible to automatically detect and repair inconsistencies 
between a description of source code and an actual code base. 

To experiment with concern graphs, we have developed a tool, called FEAT, that allows devel­
opers to iteratively build concern graphs when investigating source code, to view the code related 
to a concern, and to perform analyses on a concern representation. Using FEAT, we have evalu­
ated the cost and usefulness of concern graphs in a series of case studies involving the evolution 
of five systems of different size and style. The results show that concern graphs are inexpensive 
to create during program investigation, can help developers perform program evolution tasks more 
systematically, and are robust enough to represent concerns in different versions of a system. 
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Chapter 1 

Introduction 

Useful programs keep changing. This simple observation, proposed as a law of program evolution 
dynamics by Belady and Lehman more than 25 years ago [12], is still true today. Although much has 
changed in the way we design and build programs, the need to repair, adapt, and enhance production 
software is still a reality for software development organizations [64, 124]. The process of affecting 
modifications to a software system, often called the maintenance process [128], can vary between, 
and even within, organizations. Although many models have been proposed to structure the process 
of software maintenance [16, 79, 80, 117, 153], these models can typically be summarized by the 
three steps originally described by Boehm: understand the existing software, modify the existing 
software, and revalidate the modified software [14, 15]. Thus, before performing a modification to a 
software system, developers must explore the system's source code to find and understand the subset 
relevant to the change task. The large size of most production software, and the usual pressures 
on development and maintenance time-frames, render the program exploration activity a serious 
challenge for developers [17]. These factors make it unrealistic to expect developers to master 
the complete details of a system's design and implementation prior to undertaking a modification. 
Rather, a developer must efficiently discover a sufficient amount of the structure and behavior of 
a program relevant to a modification. The discovery of this structure and behavior is a difficult 
task. Besides the basic difficulty of understanding source code [13, 152], developers must usually 
consider conceptually-related subsets of the structure and behavior of a program addressing specific 
concerns. In this dissertation, we use the term "concern" to refer to any consideration a developer 
or team of developers might have about the implementation of a program. For example, in a file 
server application based on the File Transfer Protocol (or FTP server), one possible concern is the 
requirement to log every file transfer command issued by the client programs. The source code 
corresponding to this concern might consist of calls to functions such as log (String), and the 
implementation of these functions. 

Unfortunately, it is often the case that the program code corresponding to a concern is not 
well encapsulated, and ends up being scattered across many modules [69]. For example, in the 
FTP server application described above, the logging code might be scattered throughout the im­
plementation of all of the modules implementing file transfer commands. Scattered concerns pose 
an additional challenge to developers, who must reason about which pieces of code interact with 
which other ones to implement a concern, and about how different concerns interact with each other. 
The incomplete understanding of a scattered concern prior to a software modification can lead to 
incorrect or inefficient program modifications [74] or a modification not respecting an existing de-
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sign [101]. The difficulty of locating and understanding scattered concerns is the first problem 
motivating the work described in this dissertation. This problem can be stated as follows. 

Concern Location and Understanding Problem: It is difficult for developers to locate and under­
stand the code implementing a concern when this code is not encapsulated within a single module. 

Given the difficulty of locating and understanding the implementation of concerns relevant to 
a change task, it is desirable to capture, even partially, knowledge about the implementation of a 
concern. A representation of the knowledge about the implementation of a concern can help devel­
opers perform modification tasks by supporting a more systematic investigation of the source code 
oriented along the lines of concerns, avoiding potentially erratic, "hit-and-miss" code investigation 
behavior. Additionally, preserving knowledge about the implementation of concerns allows other 
developers working on tasks involving the same concerns to capitalize on previous effort spent on 
similar modification tasks. The need to document scattered concerns to support software evolution 
was previously identified by Soloway et al. [73, 127]. Unfortunately, traditional documentation 
such as that proposed by Soloway suffers from the two principal drawbacks of any software doc­
umentation: it is costly to produce and difficult to maintain consistent with the source code. This 
observation identifies the second problem this dissertation will address, the problem of concern 
documentation. 

Concern Documentation Problem: It is difficult for developers to cost-effectively document con­
cerns in source code and to keep the documentation consistent. 

Because of this last problem, concerns are practically never documented, and developers tack­
ling a software change task must usually start their investigation from scratch. 

One way to address both of the problems described above is to integrate the production of 
documentation for concern code with the activity of locating and understanding the implementation 
of concerns, and by producing a concern description robust enough to be reusable with different 
versions of a code base. The thesis of this dissertation is that a representation for concerns in 
source code that can support the task of locating and understanding concern code, and that can 
represent concerns in more than one version of a program, can help developers evolve programs 
more systematically. 

Thesis: A description of concerns, representing program structures and linked to source code, 
that can be produced cost-effectively during program investigation activities, can help developers 
perform software evolution tasks more systematically, and on different versions of a system. 

In Section 1.1 we describe in more detail the concept of implementation concerns. This section 
is followed by a case study of program evolution involving scattered concerns (Section 1.2). The 
case study will serve as a running example motivating the work described in the dissertation. In 
Section 1.3, we provide a brief overview of tools and techniques that can partially address the 
problem of concern code location and understanding. In section 1.4, we introduce the representation 
we propose to address both of the problems identified previously. Finally, Section 1.5 is an overview 
of the dissertation. 

2 



(a) Scattering (b) Tangling 

Figure 1.1: Concern scattering and tangling. 

1.1 Concerns 

The idea of considering separate concerns in the implementation of software originates from Dijk-
stra [33, 34] and Parnas [99]. From these early works on system design and structured programming, 
the term "concern" has emerged as a general and flexible notion, intended to include anything a de­
veloper might want to consider as a conceptual unit in a program. Examples include the implemen­
tation of data stores, algorithms, the need for synchronization, and user interface considerations. 
Ideally, as a result of the design of a program, concerns should be neatly encapsulated within a 
module. For example, in a C [66] program requiring the sorting of integer arrays, the "sorting" 
concern can be encapsulated in a sort function. This way, the details of the sorting algorithm, 
such as whether a quick sort or bubble sort implementation is used, are confined to the sort func­
tion [122]: modification of the implementation of the sorting algorithm will not require updating 
the callers of the sort function. Unfortunately, in practice, the concerns a developer must consider 
during program evolution are not always well separated, and their implementation is often found to 
be scattered through different modules, and, at the same time, tangled within one module [134].1 

Figure 1.1 illustrates schematically the scattering and tangling of concerns. The illustrations use the 
SeeSoft program view [37], where white rectangles represent the source code for a module (e.g., 
a C file or a Java [48] class). In the representation of concern scattering (a), gray rectangles indi­
cate source code relevant to a concern. This source code is scattered across multiple modules. In 
the representation of tangling (b), we show a single module. The module comprises two concerns, 
shown by the boxes in the two different shades of gray. These two concerns also have overlap­
ping code, represented by the area in black. In other words, tangling involves the presence of code 
implementing different concerns within a module. 

'Alternatively, one may say that the concerns crosscut the basic program decomposition [69]. 



The scattering and tangling of concerns in source code is the consequence of four principal 
causes: inadequate design, the fundamental limitations of programming languages, emergence dur­
ing program evolution, and code decay. 

Inadequate Design Sometimes, scattered concerns result from a failure on the part of the initial 
developers of a system to create modules hiding implementation details associated with a con­
cern [99]. The lack of concern separation results in a system that displays signs of scattering and 
tangling. For example, consider the partial C program of Figure 1.2. Line 2 is the prototype of a 
function sorting an array of integers. This function takes as its third parameter a value for the size 
of a buffer used in the sorting of the array. Although the flexibility afforded by the buf f er .s ize 
parameter might help to improve the memory consumption of the function, it has negative conse­
quences for the evolvability of the system. Because details of the sort function implementation are 
exposed to client code (e.g., lines 78 and 490), a developer asked to improve the sorting algorithm 
will need to consider this client code as part of the sorting concern. A more evolvable design would 
have hidden the use of a buffer during sorting within the sort function. 

1 : /* Sort function */ 
2 : i n t [ ] sort( i n t [ ] a, in t n, i n t bu f f e r _ s i z e ); 

78 : sorted_array = sort( current_array, 200, 600 ); 

490: sorted_codes = sort( codes, 250, BUFFER_SIZE ); 

Figure 1.2: Sorting program 

In brief, even though guidelines exist to prevent unnecessary coupling between modules, de­
sign is a human activity and as such is prone to errors and oversights that result in scattered concerns. 

Programming Language Limitations In some cases, competing design and implementation goals 
make it impossible to separate every concern with only the basic constructs of a programming lan­
guage. This situation has been called the "tyranny of the dominant decomposition" [134]: a base 
decomposition of principal concerns is imposed on the system by the designer and the programming 
language, while secondary concerns must remain scattered. Sometimes, it is possible to mitigate 
the inflexibility of the dominant modular decomposition through the use of special-purpose design 
strategies, such as design patterns [46]. For example, the Visitor design pattern [46] is a solution to 
the problem of separating structure from behavior in hierarchical object collections. Although de­
sign patterns can help address a small set of well-identified problems, they do not provide a solution 
for the majority of idiosyncratic modular decomposition problems. Extensions to popular program­
ming languages have been proposed to help re-modularize scattered concerns into separate modules. 
These extensions usually come under the banner of advanced separation of concern mechanisms. 
Examples for the Java language include AspectJ [67, 68], and the Hyperspaces approach [97, 134] 
as embodied in the Hyper/J tool [96]. As we discuss in the rest of this section, there exists causes for 
concern scattering and tangling besides programming language limitations. While advanced sepa­
ration of concern mechanisms can provide additional flexibility in separating some concerns, which 
can lead to less scattering, they cannot address all of the possible causes of concern scattering and 
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tangling. As a result, programs built with advanced separations of concerns mechanisms can also 
suffer from the presence of scattered concerns [83, 85]. 

Emergence Another-cause for the scattering and tangling of concern code is the emergence of 
concerns. Emerging concerns are concerns that did not exist at one stage of the development of a 
system, but that do need to be considered as a unit for the purpose of an evolution task. In other 
words, emerging concerns result from unforeseen changes. Although some flexibility for accom­
modating emerging concerns can be achieved through the use of design for change paradigms [100] 
and design patterns [46], not all changes can be foreseen. Furthermore, designing for change in­
evitably involves an increase in code size and design complexity which can be difficult to justify at 
development time. For this reason, some organizations are moving towards development practices, 
such as extreme programming [11], where design for change is avoided and replaced by periodical 
refactorings [43] of the design and implementation of a system to accommodate emerging concerns. 
In this latter case, the refactoring of a system is itself a program evolution task, usually requiring 
the consideration of scattered concerns. 

Code Decay The last cause for the presence of scattered concerns in source code that we discuss is 
code decay. This phenomenon can be described with Lehman and Belady's second law of program 
evolution dynamics, the Law of increasing entropy. 

The entropy of a system (its un-structuredness) increases with time, unless specific 
work is executed to maintain or reduce it [71: p. 169] 

Strictly speaking, as digital media, programs are not altered by the sole effect of time. The real cause 
for the decay of programs is repeated maintenance [36]. The difficulty of locating and understanding 
the code relevant to a change, the absence of design documentation, the lack of adequate techniques 
for determining the impact of a modification [18], and time pressure all contribute to software modi­
fications being performed by developers lacking a complete understanding of the implementation of 
the relevant concerns. As a result of such "ignorant surgery" [101], design constraints are violated 
and additional coupling between modules is introduced, often resulting in a further scattering and 
tangling of concerns in source code. 

1.2 An Example of Program Evolution Involving Scattered Concerns 

We illustrate the problem of locating, understanding, and documenting concerns during program 
evolution with an example of feature enhancement in a medium-size open-source project. The 
system we use for this example is the jEdit text editor.2 The jEdit application is written in Java and 
consists of approximately 65 000 non-comment, non-blank lines of source code, distributed over 
301 classes in 20 packages. jEdit allows users to view and edit text files (called buffers), perform 
regular expression searches, etc. Figure 1.3 show the main window of jEdit. Among its many 
features, jEdit saves open file buffers automatically. Our example focuses on this autosave feature. 
In version 4.6-pre6, any changed and unsaved (or dirty) file buffer is saved in a special backup file at 
regular intervals (e.g., every 30 seconds). This frequency can be set by the user through an Options 
page brought up with a menu command in the application's menu bar (see Figure 1.4). If jEdit 

2Version 4.6-pre6, http://www.jedit.org. 
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I7f d i t - e x a . n p l e . t x t l I M M M i i 
File Edit Search Markers Folding View Utilities Macros Pluglns Help 

O example.M (C:ttemp\) 

This i s an example text f i l e . 

1,30 All (text,none,Cp1 252)- - - WJ 

Figure 1.3: The main window of the jEdit application 

crashes with unsaved buffers, the next time it is executed, it will attempt to recover the unsaved 
files from the autosave backups. A user can disable the autosave feature by specifying the autosave 
frequency as zero. However, this option is undocumented, and can only be discovered by inspecting 
the source code. 

Let us assume the following modification request for the jEdit program is assigned to a devel­
oper. 

The application should be modified so that users can explicitly disable the autosave 
feature. The modified version should meet the following requirements. 

1. jEdit shall have a check box labeled "Enable Autosave" above the autosave fre­
quency field in the Loading and Saving pane of the global options. This check 
box shall control whether the autosave feature is enabled or not. 

2. The state of the autosave feature shall persist between different executions of the 
tool. 

3. When the autosave feature is disabled, all autosave backup files for existing buffers 
shall be immediately deleted from disk. 

4. When the autosave feature is enabled, all dirty buffers shall be saved within the 
specified autosave frequency. 

5. When the autosave feature is disabled, the tool shall not attempt to recover from 
an autosave backup, if for some reason an autosave backup is present. In this case 
the autosave backup shall be left as is. 
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Appearance 
Text Area 
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Editing 
Mode-Specific 
Abbreviations 
Shortcuts 
Docking 
Context Menu 
Tool Bar 
Status Bar 
Printing 
Proxy Servers 

e- File system Browser 
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JEdit: Loading & Saving 

Autosave frequency (sees): [30 

Max number of backups: 

: Backup directory: 

• Backup filename prefix: 

Backup filename suffix: 

Default line separator: 

Default character encoding 

DOSMIindows (irtn) 

Cp1252 

E Restore previously open files on startup 

• ... even if file names were specified on the command line 

• Client instances open flies In new view 

B Save marker positions 

IEi Two-stage save (safer but resets file owner on Unix) 

• Backup on every save 

lis Hide final end of line (if any) 

OK Cancel Apply 

Figure 1.4: The options window of the jEdit application 

Executing this modification request requires understanding different, scattered, implementation con­
cerns. At first glance, without investigating the code, we can already identify potential concerns, 
such as the implementation of widgets on the options pane, the timing of the autosave event, the 
management of the buffer state (dirty or not), and the implementation of the autosave recovery 
operation. 

p u b l i c v oid _ i n i t ( ) 
{ 

/* A utosave i n t e r v a l */ 
au t o s a v e = new J T e x t F i e l d ( j E d i t . g e t P r o p e r t y ( " a u t o s a v e " ) ) ; 
addComponent(j E d i t . g e t P r o p e r t y ( " o p t i o n s . l o a d s a v e . a u t o s a v e " ) , a u t o s a v e ) ; 

} 
public void _ s a v e ( ) 
{ 

E d i t . s e t P r o p e r t y ( " a u t o s a v e " , a u t o s a v e . g e t T e x t ( ) ) ; 

} 

Figure 1.5: Partial code in the file LoadSaveOptionPane. Java 

Let us first look at some of the code managing the options pane, as shown in Figure 1.5. The 
code partially shows two methods of the class LoadSaveOptionPane: . i n i t () and .save (). 
Looking at this code, a developer can easily determine that the _in.it () method is responsible 
for creating the text field used for the input of the autosave frequency. Examining the rest of the 
method (not shown here), it would be possible to establish that all the code for creating the widgets 
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for the option pane is located in the . in i t () method. The W I D G E T C R E A T I O N concern is thus 
modularized, and the addition of a check box controlling the autosave feature requires the addition 
of code only to the _init () method. Now let us look at the -save (), method. Clearly, the method 
saves the state of a widget somewhere. Let us call this concern S A V I N G WIDGET STATE . In our 
scenario, it is necessary to understand this concern because changing the state of the check box 
controlling the autosave feature must take immediate effect. It is thus necessary to answer several 
questions: 

• When is the .save () method called()? 

• Where do properties get saved? 

• How is the system notified that some properties have changed? 

• How is the state of a property accessed? 

These are all questions that cannot be answered by simply examining the code of the -save () 
method. The S A V I N G WIDGET STATE concern is thus scattered. Attempting to answer the first ques­
tion by eliciting the call sites for the .save () method reveals that it is called at a single point, within 
method save () of class AbstractOptionPane, the superclass of LoadSaveOptionPane. The 
definition of the save () method is shown in Figure 1.6.. 

public void save() 
{ 

i f ( in i t ia l ized) 
_save(); 

} 

Figure 1.6: Method AbstractOptionPane. save () 

Far from elucidating the circumstances in which the -save () is called, the identification of the 
call site reveals additional complexity for S A V I N G WIDGET STATE . First, one now must determine 
the circumstances in which the save () method of class AbstractOptionPane is called, and the 
circumstances in which the in i t ia l ized field is true. Since LoadSaveOptionPane is a subclass 
of AbstractOptionPane, additional investigation might also be required to determine whether 
methods of LoadSaveOptionPane can affect the state of the in i t ia l ized field. Taking an 
additional step in the investigation of SAVING WIDGET STATE, we show the source code of method 
OptionGroup. save (), the method calling AbstractOptionPane. save () (Figure 1.7). In this 
case we see that the call to the save method (line 12) is embedded in some structure traversal code. 

Further investigation would show that detecting when the .save () method is called requires 
eliciting relationships between at least nine methods and one field in six different classes. Reason­
ing about all these interactions at once is impeded by the effects of both scattering and tangling. 
Because the concern is scattered, using an integrated development environment, the developer must 
understand and reason about the implementation of the concern by cycling through multiple edi­
tor windows, each providing only a fragment of the information required to understand the concern. 
Because the implementation of the concern is tangled, each piece of code implementing the concern 
is cluttered with details not pertaining to the concern, such as structure traversal or error handling 
code (as exemplified in Figure 1.7). 
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1 public v oid save() 
2 { 
3 
/ 

Enumeration enum = members.elements(); 

5 while (enum.hasMoreElements()) 
6 { 
7 Object elem = enum.nextElement(); 
8 t r y 
9 { 
10 i f (elem instanceof OptionPane) 
11 { 
12 ( (OptionPane)elem).save() ; 
13 } 
14 else i f (elem instanceof OptionGroup) 
15 { 
16 ((OptionGroup)elem).save(); 
17 } 
1 3 } 
19 catch(Throwable t) 
20 { 
21 Log.log(Log.ERROR, elem, 
22 "Error saving option pane"); 
23 Log.log(Log.ERROR, elem, t ) ; 
24 } 
25 } 
26 } 

Figure 1.7: Method OptionGroup. save () 

Going back to the four questions posed about the implementation of S A V I N G WIDGET STATE, 
we observe that three of them relate to the management of a collection of property objects. This 
raises the additional question of whether properties are used only to store the state of the widgets, 
or are used as a form of global variables to store properties of jEdit. In the latter case, it would be 
important to gather a minimum understanding of how properties work to ensure that any modifi­
cation involving properties management respects the existing design. As such, it might be useful 
to consider global properties management as a separate concern interacting with S A V I N G WIDGET 
STATE. The presence of properties management code within S A V I N G WIDGET STATE illustrates 
the important point that concerns do not exist in isolation. Concerns are integrated in an existing 
code base, they interact with other concerns, and the boundaries between different concerns and 
between a concern and the base code is not clearly defined. Reasoning about fuzzy boundaries for 
concerns adds an additional dimension to the difficulty of dealing with scattered concerns. In fact, 
studies have show that interacting concerns are often construed as major obstacles during program 
evolution tasks [8]. 

To summarize, a program evolution task such as the enhancement of the autosave feature 
in jEdit requires considering different concerns, such as saving the information contained in user 
interface widgets, and managing global properties of the application. Although concerns can often 
be simple and obvious concepts at an abstract level, their implementation is often scattered and 
tangled, making it difficult to fully understand their structure and behavior at once. Additionally, 
the boundaries of concerns are not clearly defined, and concerns often interact with other concerns, 
making it difficult to focus on a single concern at the time. 
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1.3 Existing Support for Scattered Concerns 

Many program understanding and reverse engineering approaches have been developed to help a de­
veloper discover the code related to a maintenance task. In this section we present a brief overview 
of the different types of approaches currently available to developers. Chapter 7 provides a more 
comprehensive survey of techniques that can help developers find and manage the code implement­
ing scattered concerns. 

Searching and cross-referencing Lexical searching tools, such as grep [2], and cross-reference 
databases, such as the C Information Abstractor [25], can help a developer identify points in the 
code relevant to a concern, and, in the case of cross-reference databases, the relationships between 
the different points identified. Regular expression searches and cross-reference queries have also 
been integrated in software development environments [47, 93, 94, 119]. However, the basic search­
ing and cross-referencing facilities of integrated environments follow a discover-and-discard model 
that provides little or no help for managing, understanding, and preserving the information discov­
ered. At best, query results will be kept in a history list, allowing developers to revisit the results of 
searches. We argue that such minimalistic features cannot properly help developers document con­
cerns in large, evolving code bases because they do not help the developer localize and synthesize 
the information related to the concern of interest [7]. Additionally, basic search mechanisms do not 
provide a means to document concerns across versions of a system. In brief, basic search features 
are not intended to, and do not, address the concern documentation problem. 

Program Slicing Program slicing denotes a type of analysis intended to identify the parts of a 
program that may affect the values computed at some point of interest [138]. Slicing was originally 
defined as a static analysis technique [146], but many variants have since been proposed, including 
variants relying on dynamic information. Slicing and similar techniques can be used in maintenance 
activities to help find and manage the code related to a specific statement [45]. From the perspective 
of finding and understanding concerns, a major limitation of slicing is that only one type of concern 
can be identified: code related through a control- and data-flow criterion. Another drawback of 
slicing is that it does not discriminate between interesting and boilerplate code that would typically 
be ignored by developers (e.g., calls to a low-level library). 

Reverse engineering and design recovery Reverse engineering [26] tools provide developers 
with views of the different elements in a program (e.g., classes, methods), and of the relations 
between them (e.g., Rigi [81]). Such tools can be construed as a visual representation of cross-
reference tools. As such, they do not address the concern documentation problem. 

Revision history A developer wishing to determine which subsets of the source code were af­
fected by previous modifications can rely on data from a version control system such as RCS [137], 
SCCS [116], or CVS [22]. Although source code identified in this fashion can help point to inter­
esting concerns, it often represents an incomplete picture of a concern. For instance, concerns that 
a developer needs to understand typically involve much more source code and program interactions 
than the code that was actually changed [8]. 
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Dynamic analysis Other approaches to finding code relevant to one or more concerns use in­
formation about a program's execution. For example, using the Software Reconnaissance tech­
nique [149, 150], a developer determines the code implementing a feature by comparing a trace of 
the execution of a program in which a certain feature was activated to one where the feature was 
not activated. Software Reconnaissance and other dynamic analysis approaches like it, however, 
depend on an available suite of quality test cases. More importantly, the features expressible at the 
user level may not necessarily correspond to concerns a developer wishes to investigate. Often, 
developers must investigate code overlapping different features to understand enough of the system 
to respect existing design. 

Concern analysis Finally, specialized program navigation and analysis tools have been proposed 
that to address the problem of scattered concerns. For example, conceptual Modules [7] allow a de­
veloper to form logical modules composed of scattered lines of code, and support an investigation of 
the control- and data-flow relationships between the different logical units. The Aspect Browser [50] 
allows users to find and assess concerns based on which lines of code match user-specified regular 
expressions. Most of these tool address a very specific issue relating to scattered concerns, be it 
discovery and visualization (AspectBrowser), or analysis (Conceptual Modules). None of the ap­
proaches proposed focus on documenting concern representations as a general, long-term artifact 
for program evolution. 

1.4 Concern Graphs 

To help developers locate, analyze, understand, and document scattered concerns during multiple 
evolution tasks on a program, we propose an approach that relies on a representation of concerns 
in source code as a principal artifact. We call our concern representation a concern graph. Simply 
put, a concern graph is a description of a subset of a program relevant to one or more concerns. 
However, a concern graph representation differs from an actual program in two important ways: 

1. it mitigates tangling by abstracting the implementation details of the implementation of a 
concern, and 

2. it mitigates scattering by making explicit the relationships between the different, scattered, 
pieces of code implementing a concern. 

Let us illustrate these properties with the example of Section 1.2. Figure 1.7 shows the code of 
method save () of class OptionGroup. The subset of this method relevant to the S A V I N G WID­
GET STATE concern is the call to method save () of class AbstractOptionPane (line 12). The 
statement corresponding to this fact is reproduced here: 

((OptionPane)elem).save(); 

Although simple, this statement contains information that is extraneous to our concern investigation. 
Specifically, in our case, it is not necessary to know that the save () method is called on the object 
stored in the elem variable. Moreover, we do not need to know that a down cast is required for this 
call to correctly type-check. The mere presence of this method call contributes to our understanding 
of the concern, and additional details resulting from the tangling of the call with the traversal of 
an enumeration is mere cluttering. Recognizing this problem, our intent for the concern graph 
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representation is to do away with the useless details, and store only the essential information, that 
OptionGroup. save () calls AbstractOptionPane. save (). 

The second difference between a concern graph and the source code is that a concern graph 
documents explicitly the relationships between the different elements of a concern. Returning to our 
example, we see that the method call statement shown above does not tell us where the implemen­
tation of the save method exists. Although the down cast to OptionPane tells us that is will be 
found in a class implementing or extending OptionPane, cross-reference searches are required to 
obtain this information. In contrast, a concern graph stores this information explicitly. To complete 
our example, the information stored in a concern graph for the statement above includes: 

OptionPane.save() CALLS AbstractOptionPane.save() 

Of course, a concern graph is not limited to a single interaction between two elements (e.g., classes, 
methods, fields, variables, constants, etc.), but can comprise many different interactions, together 
forming a graph of relationships corresponding to the implementation of a concern. For example, 
Figure 1.8 shows the graph corresponding to the information about jEdit elicited in Section 1.2. 

OptionGroup 

AbstractOptionPane 

init() saveQ 

initialized 

LoadSaveOptionPane _save() 

calls 
-r> extends 
•-*• accesses 
••>• declares 

Figure 1.8: Partial concern graph for S A V I N G W I D G E T STATE 

In the figure, nodes represent elements declared in jEdit (three methods, one field, and three 
classes), and edges represent the relationships between the elements. The graph provides a single 
and abstract view of the implementation of (part of) the S A V I N G W I D G E T STATE concern, enabling 

a developer to reason about only the code of interest. 
A concern graph must be based on a program model that can be extracted automatically from 

either the source code or an intermediate representation of a program. As a result, a developer is able 
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Saving widget state 

OptionGroup 

AbstractOptionPane 

init() save() 

initialized 

LoadSaveOptionPane _save() 

Managing properties 

jEdit setProperty(...) 

defaultProps props 

Figure 1.9: Partial concern graph for S A V I N G WIDGET STATE and M A N A G I N G PROPERTIES 

to manipulate and navigate a concern representation at a more abstract level than the source code 
without investing any effort to create the abstract representation. Automatically providing the part 
of a program model related to an element allows a concern graph to be augmented incrementally 
from related elements in the code base, potentially to include more than one concern. For example, 
we can augment the graph of Figure 1.8 to include some of the elements related to the management 
of properties (shown in Figure 1.9). The concern graph allows us to investigate the interactions 
between the two concerns. Of course, S A V I N G WIDGET STATE and M A N A G I N G PROPERTIES can 

also be specified as two different concern graphs, and merged at a later stage. 

Finally, since concern graphs are intended to represent the source code relevant to a concern, 
there should exist an unambiguous mapping between the abstract representation and the source 
code. In other words, it should not be possible to specify information as part of a concern graph that 
cannot be automatically and unambiguously associated with source code. Inspection of the graphs 
in Figures 1.8 and 1.9 demonstrates that all of the structures present in the graph can be mapped 
back to the original code in jEdit: the nodes correspond to the declarations of classes, methods, and 
fields, and the edges correspond to more specific, sub-method information, such as method calls. 

To summarize, the approach we propose to address the problems of concern location and un­
derstanding and the problem of concern documentation relies on an abstract representation of con-
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cerns in source code called a concern graph. A concern graph describes the structural links between 
different program elements potentially relevant to a concern, and supports a direct mapping to the 
corresponding source code. 

1.5 Overview of the Dissertation 
In the remainder of this dissertation, we present the details of the concern graph approach, demon­
strate how eliciting and focusing on different concerns can help a developer perform software evo­
lution tasks more systematically, and demonstrate how the information gathered about the imple­
mentation of concerns can be reused with different versions of a system. 

In Chapter 2, we present a mathematical model for the definition of concern graphs on a pro­
gram. This model is general and language-independent, and supports the definition of concerns by 
combining minimal descriptions, called fragments, into structures of increasing complexity. The 
concern graph model is also designed to support the detection and repair of inconsistencies between 
a concern graph and a program, making concern descriptions tolerant to the evolution of the cor­
responding source code. The description of the concern graph model, and of the mechanism we 
designed to detect and repair inconsistencies between a concern graph and the source code, form 
the first two contributions of this dissertation. 

To evaluate the practical value of representing concerns in source code, we instantiated our 
concern graph model for the Java language. In Chapter 3, we provide the details of the concrete 
concern graph model we produced for use with Java programs, and we discuss the issues of usability 
and scalability related to our concrete model for Java. The presentation of the Java model and the 
accompanying discussion constitutes the third contribution of this dissertation. In Chapter 3, we also 
describe the tool we implemented to support the use of concern graphs with Java programs. This 
tool, and the discussion of the challenges we addressed regarding its design and implementation, 
form the fourth contribution of this dissertation. 

Based on the tool support for concern graphs described in Chapter 3 we conducted five case 
studies to validate the thesis of this dissertation. In Chapter 4, we describe each case study to show 
that concern graphs can help developers perform evolution tasks more systematically, are inexpen­
sive to create, and are robust enough to be used on different versions of a system. The description 
of the design of the five case studies, and the discussion of the problems we have encountered, and 
of the steps we have taken to address them, constitutes the fifth contribution of our work. 

The basic concern graph approach, as introduced in this chapter, relies on developers manu­
ally building concern graphs during program investigation activities. However, one way to further 
reduce the cost of producing concern descriptions is through automation techniques. In Chapter 5, 
we show how we can lower even further the cost of producing concern graphs by describing an 
algorithm for automatically inferring concern descriptions from the program investigation activities 
of a developer. The algorithm presented in Chapter 5 is the sixth contribution of this dissertation. 

In Chapter 6, we describe the main issues that arose during the development and investigation 
of the concern graph approach, summarize our views on the potential impact of concern graphs on 
the process of software evolution, and present a plan for future research involving concern graphs. 

In Chapter 7, we put our research in perspective and highlight its novelty by providing an 
overview of the related work. Finally, in Chapter 8, we conclude and summarize the contributions 
of the work described in this dissertation. 
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Chapter 2 

The Concern Graph Model 

Generally speaking, a concern is any consideration a developer or team of developers might have 

about the implementation of a subset of a program. A concern graph is an artifact intended to 

describe the source code that might be relevant to a concern. A concern graph is thus associated 

with a program. To explicitly state what can and cannot be expressed about a program in a concern 

graph, and the type of reasoning and analyses that developers can perform on concern graphs, we 

define a formal model of concern graphs. 

2.1 Design Goals 
The concern graph model is designed to meet several goals: to be language independent, flexible, 

precise, simple, robust, and tolerant to inconsistencies. 

The first requirement is for the concern graph model to be language independent. The con­

cept of an implementation concern is by no means limited to a particular programming language. 

Although mapping a concern to source code must inevitably involve the consideration of program­

ming language syntax and semantics at some level, we wanted the general structure representing 

concerns to be language independent, to enable any reasoning performed at the level of the model 

to be applicable to concerns for code in any language. 

The requirement for flexibility relates to the type of information that can be expressed about 

a program. For example, to capture concerns about the hierarchical organization of modules in 

a program, it is necessary only to capture information about the interactions between high-level 

declarations, such as classes or data structures. To capture concerns about general control-flow of 

an imperative program, it is necessary to represent interactions (calls) between methods or functions. 

Finally, to capture concerns about the flow of data during the execution of a program, it is necessary 

to include local variables in the model. Technically, any information about a program that can 

be produced statically (by a compiler or specialized analyzer) is available to describe part of a 

program. Examples include the basic declarative structure of a program, but also control- and 

data-flow information as represented by the program dependence graph (a program representation 

used in compiler optimization [40]), or the system dependence graph (used in software engineering 

applications such as testing [57]). We wanted a model flexible enough to be customizable for 

different levels of granularity of program information. 

Our third requirement for a concern graph model is for it to be precise. Here, by precision, we 

mean that there should exist a non-ambiguous mapping between any structure present in a concern 

representation and the corresponding source code. 
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As much as possible, we wanted to ensure that the concern graph model remained simple 
and intuitive. In this way, developers working with a concern graph can determine the interactions 
between the different pieces of source code it represents without having to perform complicated 
calculations or logic reasoning. 

The last two requirements, robustness and tolerance to inconsistencies, relate to the capability 
of concern graphs to represent concerns in evolving source code. Since a concern graph is essen­
tially a representation of a subset of a code base, changes to this code base are bound to affect 
the representation. The requirement for robustness states that a concern graph should remain valid 
through minor code modifications. As such, it should not be dependent on non-essential and brittle 
aspects of the source code, such as line numbers or indentation. Also, major source code modifi­
cations affecting the code represented by a concern graph should not invalidate the concern graph. 
Rather, it should be possible to detect any inconsistencies between a concern graph and its associ­
ated code base and to use the consistent part of a concern graph, while preserving the inconsistent 
information to help repair the inconsistencies. 

2.2 Formal Representation 

We define concern graphs formally as a mathematical model based on relational algebra. Ap­
pendix A presents the notation and important relational operations we use in the definition of the 
model. 

2.2.1 Programs 

Concern graphs must be able to represent a subset of a program that relates to a concern a developer 
has about the implementation of the program. As a result, the definition of a concern graph must 
be linked to an underlying program model that specifies which information about a program can 
be captured by a concern graph. This section deals with the modeling of programs. It forms the 
groundwork on which the concern graph model is built. 

Our model of a program relies on the notion of a named relation. Named relations allow us to 
directly attach a meaning to a mathematical relation. 

Definition 1 (Named Relation) A named relation Rn = (n,R) consists of a name n associated 
with a binary relation R. 

We model a program as a set of elements declared in the program, and a set of named relations 
between these elements. 

Definition 2 (Program Model) A program model (E,N) consists of a set of program elements 
E = {ei,C2, em} and a set of named relations over E, N — {Rni, Rn2> •••> ^n*}-

This definition states that anything that can be known about a program in our model must be ex­
pressed in terms of relations between elements. The generality of this definition allows the program 
model to apply to any representation of program code that can be expressed as a set of relations 
between elements. It applies equally to executable, intermediate, or source code. It applies to stand­
alone programs as well as libraries. Finally, it applies to complete and correct programs as well as 
incomplete or incorrect programs. 
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For convenience in presentation, we provide a shorthand to represent the set of all relation 
names in a program model. 

Definition 3 (Names Set) Let N = {Rni, Rn2Rnk} be a set of named relations. We define the 
set of all relation names in N as 

names(JV) = {n\3R : {n,R) £ N}. 

This definition of a program model is equivalent to the definition of a labeled directed graph 
(E, names(N), A), with E a set of nodes, names(./V) a set of labels, and A C E x names(Ar) x E 
a set of triples representing the labeled edges [102]. The name "concern graph" is thus intended to 
capture the idea of a graph of elements (nodes) and named relations (labeled edges) representing 
the subset of a program model addressing a concern. 

Given a concrete program P in some programming language, a model of this program is ob­
tained by applying a language-specific mapping function M to the program. A model of program 
P according to mapping function M is represented by PM- Different mapping functions can be 
defined for a single programming language. 

Definition 4 (Mapping Function) Let PM — {E, N) be a program model. The mapping function 
M consists of: 

• A criterion defining which elements declared in program P should be listed in E. 

• A set of relation names supported by the model. 

• The definition of an analysis function a(n, P) taking as parameters a relation name n and 
a program P, and returning a named relation Rn C E x E representing the relationships 
between elements ofP (meeting the mapping criterion), according to the semantics ofn. 

Because mapping functions are a means to obtain a program model from a concrete program, and do 
not support any reasoning about concern graphs, they will not be further formalized. All the formal 
reasoning for concern graphs involves modeled programs. In this dissertation, mapping functions 
are specified in a box, listing from top to bottom: 

• the name of the mapping function, 

• the criterion for inclusion of an element x of program P into E (the set of elements modeled), 

• the set names(Ar) of supported relation names, and 

• the definition of the analysis function a(n, P). 

By convention, analysis functions will be defined here using first-order logic. In practice, other 
notations can be used. As mentioned above, the definition of mapping functions is only an accessory 
issue which does not influence the characteristics of the concern graph model. 

For example, Figure 2.1 presents a minimal mapping function for the C language modeling a 
program only as its call graph. The boolean functions used in the definition of the analysis function 
are normally defined in terms of the language specifications. For the purpose of the simple examples 
in this chapter, we assume that the behavior of the functions can be inferred from their name. Rela­
tion names in a model are set in italics to distinguish them from the names of boolean functions over 
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Mapping Function C l 
E = {x | IsAFunction(x)} 
names(Ar) = {Calls, CalledBy} 
a(Calls,P) = {(x,y)|Calls(:r,y)} 
a(CalledBy,P) = q(Calls,P) T 

Figure 2.1: Mapping function C l 

a program; boolean functions remain in normal type (see Appendix A for the complete notational 
conventions). 

The mapping function C l states that the only information available about a program in the 
model is the program's call graph, represented by the relations Calls and CalledBy (the transpose 
of the Calls relation). At this point it might seem superfluous to specify CalledBy as a relation in 
the mapping function since this relation represents redundant information, which can be obtained 
by a simple operation on the Calls relation. However, there exists an important semantic distinction 
between the two relations that can provide additional expressiveness in describing concerns. This 
issue is discussed in further details in Section 2.2.2. 

The application of a mapping function M to a program P yields a program model Pu- The 
application process consists in extracting the concrete set of program elements Ep and named re­
lations Np.x The elicitation is performed by applying the selection criterion to all the elements 
declared in P, and by applying the analysis function to P for all relation names specified in the 
mapping function. In practice, this step is performed via standard static analyses, such as pars­
ing [35], type-checking [3], control- or data-flow analysis [84, 91], and exception flow analy­
sis [27, 111, 114, 120, 125]. 

We illustrate the process of producing a program model with an example of a simple Java pro­
gram. In Java, in addition to methods and fields, classes can also declare other classes (called inner 
classes). These inner classes can extend any class visible in the scope of their declaration, creating 
intricate dependencies between different classes. In this example, we define a mapping function 
for the Java language capable of only representing the declaration and specialization relationships 
between classes. Figure 2.2 specifies this mapping function. 

Mapping Function J l 
E = {x | IsAClass(z)} 
names (A7') = {Declares, Extends, SuperclassOf, SubclassOf} 
a(Declares, P) = {(x,y) | Declares(x,y)} 
a(Extends,P) — {(x,y) | Extends(x,y)} 
a(SubclassOf, P) = a(Extends, P)+ 

a(SuperclassOf, P) = a(SubclassOf, P)T 

Figure 2.2: Mapping function Jl 

'Variables names for elements in a concrete program model resulting from the application of a mapping 
function to a program will be indexed with the name of the program. For abstract entities independent from 
a specific program model, the index is omitted. 
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This mapping function specifies that the only declarations considered in a modeled program 
are the classes declared in the program: interfaces, fields, methods, local variables, and other dec­
larations are not modeled. Furthermore, the only relationships between classes documented by 
this model are whether a class declares another class (Declares), whether a class extends another 
class directly (Extends) or transitively (SuperclassOf), or whether a class is transitively extended 
by another class (SubclassOf). Like the mapping C l of Figure 2.1, the mapping Jl illustrates how 
relations can be defined in terms of other relations to add expressiveness to the model. In this case 
the use of the transpose and non-reflexive transitive closure operations support the definition of the 
SubclassOf relation. This example also illustrates an additional point: there are no constraints (such 
as symmetry) on the set of relations specified in a mapping function. This set can be customized to 
include only relations that offer a useful means of representing a program to users of the model. As 
such, we have purposefully excluded the transpose of the Extends relation as part of the model. If 
this relation had been deemed to be necessary to describe concerns, it could have easily been added 
to the model. 

Let us now apply this mapping function to the program PI of Figure 2.3. This application 
yields the model of Figure 2.4. Program models are presented with a structure similar to mapping 
functions, but with a double line under the model name. 

p u b l i c c l a s s A 
{ 

i n t aField; 
c l a s s B {} 

} 

c l a s s C extends A 
{ 

v o i d aMethod(){}; 
c l a s s D extends A {} 
c l a s s E extends D {} 

} 

Figure 2.3: Program PI 

Model P I J I " 

EP1 = {A,B,C,D,E} 
DeclaresP1 = {(A, B), (C, D), (C, E)} 
Extends PI = {(C, A), (D, A), (E, D)} 
SubclassOf P 1 = {(C,A),(D,A),(E,D),(E,A)} 
SuperclassOf P l = {(A,C), (A,D), (D,E), (A, E)} 

Figure 2.4: Model P I J I 

This application results in the elements {A,B,C,D,E} being considered.2 Even though the 
program declares other elements, such as field A.aField and method c.aMethod(), these are 

2In Java, classes that do not declare to extend any class extend the class j ava. lang. Ob j ect by default. 
For this reason, the Object class should be part of Epi and the relations in A r

P 1 . We have left this detail 
out of our example for simplicity. 
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not included because they do not match the type specification for elements of E according to the 
mapping function J l . Likewise, only pertinent relations between elements of E-p\ are produced as 
a result of the application. 

2.2.2 Fragments 

With the conceptual foundations for modeling programs in place, we can now address the definition 
of a concern representation. Simply put, a concern graph is a description of a subset of a program 
model. Concern graphs are defined as a collection of small building blocks called fragments, which 
can be assembled to form concern descriptions of increasing complexity. A fragment describes 
a relationship between two sets of elements in a program model. It is the smallest unit of concern 
graph description. A fragment fp is always defined on a program model PM- A fragment consists of 
an intent part and a program subset part. The intent of a fragment captures a high-level description 
of what one wishes to capture about a program (e.g., "all the subclasses of class c"). The program 
subset part captures the actual subset of the program corresponding to the intent (e.g., "classes A 
and B"). 

To define the intent of a fragment, we use a domain set, a relation name, and a range set.3 For 
example, to specify a fragment representing a function call from function a to function b, we would 
specify {a} as the domain, Calls as the relation name, and {b} as the range. 

To.describe the program subset part of a fragment, we need to define a projection operator on 
the objects defining the intent of a fragment and a program model. 

Definition 5 (Projection Operator) Let PM = (Ep, Np) be a program model, Domp C Ep and 
Ranp C Ep be two subsets of Ep, and np G names(Arp) the name element of a named relation 
Rn,p in Np. 

pvo)(Domp,np, Ranp, PM) — Domp < Rp > Ranp. 

In other words, the projection operator takes the intent of a fragment (a domain, relation name, and 
range) and a program model, and produces the relation corresponding to the intent. The distinction 
between the intent and program subset part of a fragment is important when one considers the 
evolution of programs. A fragment describing code for a program version PI might still apply 
to a program version P2. The presence of the projection in the fragment supports answering this 
question precisely. The algorithms described in Section 2.3.2 detail how inconsistencies between a 
fragment and a program model can be detected and reconciled through the use of the projection. 

We now have all of the tools required to formally define a fragment. 

Definition 6 (Fragment) Let PM = (Ep,Np) be a program model. Let Domp C Ep be a 
domain defined on P, Ranp C Ep a range defined on P, and np € names(A^p). We define a 
fragment as fp = (Domp, np, Ranp, Projp), where Projp = proj(Domp, np, Ranp, PM)- We 
say that fp is defined on PM-

Given these definitions, we see that specifying a fragment consists in specifying a domain and range 
sets and a relation name, and applying the projection operator on a program model. The resulting 

3The domain and range of a fragment are set variables, and are not to be confused with the relational 
operators defined in Appendix A. 
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fragment describes a subset of the program model. An important consideration when specifying 
fragments is the specification of the domain and range sets. Technically, for a program model 
PM — (Ep, Np), any specification resulting in a set S C Ep constitutes a valid domain (or range). 
In particular, we recognize three types of domain/range specifications: 

• A non-empty set of elements (e.g., Dom = {A}, Ran — {A, C,D}). 

• The universal domain (or range), represented by the set Ep. Specifying Ep as the domain or 
range of a fragment will result in the projection including all elements in the domain of the 
specified relation. 

• A subset specified as the range of a fragment projection. For example, to specify a do­
main as all of the members of class A in a program model P M , we would specify Domp = 
ran(proj ({A}, Declares, Ep, PM)))-

This flexibility in fragment specification affords us the capability to capture cohesive groups of 
relations as one fragment, and allows us to capture the semantic relationships between the relations 
as the intent of the fragment. 

We illustrate different possibilities for fragment specification through a series of examples 
based on the mapping function J2 for the Java language (Figure 2.5). 

Mapping Function J2 
E = {x\ IsAType(x) V IsAMethod(z)} 
names (A7') = {I, Declares, Calls, CalledBy} 
a(Declares, P) = {(x,y) \ Declares(x,y)} 
a(Calls,P) = {(x,y) | CallsStatic(a:,y)} 
a(CalledBy,P) = a(Calls,P)T 

Figure 2.5: Mapping function J2 

The J2 mapping only considers types (classes and interfaces), and methods. The relationships 
modeled are restricted to the identity relation (I), the declarative structure of the program, and 
static method calls. As will be illustrated below, the identity relation serves the special purpose of 
allowing the definition of fragments corresponding to a single program element. 

Based on mapping function J2, we can specify fragments of program P2 (Figure 2.6). The 
model for program P2 is shown in Figure 2.7.4 

To describe a single program element as a fragment, we use the identity relation 1. In the 
examples, fragments are named with a phrase describing their intent. 

Class A 

~{A},T,{A},{(A,A)})" 

We can also describe a single method call as a fragment: 

c calls b 

({c}, Calls, {b},{(c,b)}) 

4The notation has been simplified by omitting the parentheses in method signatures. 
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p u b l i c c l a s s A 
{ 

p u b l i c s t a t i c v o i d b(){}; 
p u b l i c s t a t i c v o i d c(){ c ( ) ; b ( ) ; D.f();} 

} 

c l a s s D 
{ 

p u b l i c s t a t i c v o i d e() { f ( ) ; } 
p u b l i c s t a t i c v o i d £() {} 

} 

Figure 2.6: Program P2 

Model P 2 J 2 

EP2 = {A,b,c,D,e,f} 
IP2 = {(A, A), (b,b), (c, c), (D, D), (e, e), (f, f)} 
DeclaresP2 = {(A,b), (A, c), (D, e), (D, f)} 
CallsP2 = {(c,b),(c,c),(c,f),(e,f)} 
CalledByP2 = {(b, c), (c, c), (f, c), (f, e)} 

Figure 2.7: Model P2 J 2 

Fragments containing a single element in the domain and a single element in the range are called 
primitive fragments. If the relation represented by the primitive fragment actually exists in the 
model, the fragment projection is a set comprising a single pair formed by the single element in the 
domain and range. If the relation does not exist in the program model, the fragment projection is 
represented by the empty relation O. As a last example of primitive fragment, we can capture the 
fact that class D declares method f: 

D declares f 
({D}, Declares, {f}, {(D,f)})" 

Obviously, primitive fragments do not exercise the full expressive power of the fragment structure. 
We can describe slightly more elaborate interactions using the universal range. For example, to 
capture all members of class A, we specify: 

Members of A 

~({A>, Declares, EP2, {(A,b), (A, c)}) 

If we apply the range operator to the projection of this fragment, we see that it correctly produces 
all the members of class A: 

ran({(A,b),(A,c)}) = {b,c}. 

We can also use the universal range to capture all the callers of f. 

Callers of f 
({i},CalledBy,EP2,{(f,c),(f,e)}) 
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Even though relation CalledBy is simply the transpose of relation Calls, there is additional value in 
specifying CalledBy as part of a model, because it allows the use of the meaning of the relation to 
describe fragments. Without the CalledBy relation, it would be difficult to intuitively represent the 
intent to capture all of the calls to method f in a single fragment. 

Finally, it is possible to specify even more extensive fragments through the specification of a 
domain through a fragment. For example, to capture all calls by methods of class A, we can specify 

Calls by methods of A 

(ran(proj(({A}, Declares, EP2, P2j2))), Calls, EP2, {(c,b), (c, c), (c, f)}) 

Obtaining the range of this last fragment's projection, we get: 

ran({(c, b), (c, c), (c, f)}) = {b, c, f}. 

The last operation we define on fragments is the participants operation. For any fragment, it pro­
duces a set of elements involved in the fragment. 

Definition 7 (Participants) Let fp = (Dom, n, Ran, Proj) be a fragment. 

participants(/p) = dom(Proj) U ran(Proj) 

2.2.3 Concerns 

With fragments, it is possible to express different interactions between program elements. By ac­
cumulating fragments, we can capture an increasingly large subset of a program model. However, 
a flat structure consisting of a list of fragments does not allow us to capture different and poten­
tially related concerns. Often, when investigating source code, developers must reason about the 
code implementing concerns that are related because they are involved in a same task; other times, 
developers must consider the code implementing concerns that are related through a specialization 
relationship, where one concern addresses a specific subset of a more general concern. It is thus 
desirable to define a means of organizing fragments. 

To address this requirement, our model includes a way to classify fragments into potentially 
overlapping sets. To do this, we define the notion of concern representation (or simply, concern) 
recursively, as a set of fragments and a set of subconcerns. 

Definition 8 (Concern) Let PM be a program model. A concern Cp = (Fp, Sp) defined on PM 
is a tuple comprising a set of fragments Fp = { / i , f2, fn} and a set of concerns defined on P M , 
Sp = {si,s2,...,sm}. 

The only constraint on the composition of fragments into a concern representation is that all of the 
fragments be defined on the same program model PM- We then say that a concern is defined on 
PM- Either or both of F or S can be the empty set. A fragment in F can also be in any subconcern 
s G S. Fragments and concerns are composed into other concerns based on the requirements of 
a user of the representation. A root concern, not included in any parent concern, represents the 
broadest abstraction for a particular concern. It is called a concern graph. 

23 



The participants of a concern are defined as any element participating in a fragment within the 
concern. 

Definition 9 (Concern Participants) Let C — (F, S) be a concern, where F = { / i , f2,...,fn} is 
a set of fragments and S — {s\, s2, • sm} a set of concerns. The participants ofC are defined as: 

As an example of the organization of fragments into concerns, let us return to the example 
of program P2 (Figure 2.6). Say we are interested in investigating the uses of classes A and D. 
We first define a concern graph G based on the model P2j2 (Figure 2.7). Then we define two 
subconcerns, Uses of A and Uses of D. We thus have G = (0, {Uses of A, Uses of D}), where 
both subconcerns are currently empty. To complete the concern graph description we add fragments 
describing all calls to methods of class A to Uses of A, and all calls to methods of class D to Uses 
of D, respectively. We now have: 

Uses of A = ((ran(proj(({A}, Declares, EP2,P2J2))), CalledBy, EP2, {(b, c), (c, c)}), 0) 

Uses of D = ((ran(proj(({D), Declares, EP2, P2J2))), CalledBy, EP2, {(f, c), (f, e)}), 0) 

The participants of subconcem Uses of A are thus the methods b and c, and the participants of 
subconcern Uses of D are the methods c, e and f. As expected, the set of participants for concern 
graph G is the union of both sets: {b, c, e, f }. 

2.3 Analyses 

This section describes different operations and analyses that can be performed on concern represen­
tations. 

2.3.1 Concern Analysis 

Given the flexibility afforded in the composition of fragments into concerns, two concern repre­
sentations can potentially overlap or be related. Given two concern representations defined on a 
common program model, we define their common participants as any program element participat­
ing in both concerns. 

Definition 10 (Common Participants) Let Cp and Dp be two concerns defined on a program 
model P M , the set of common participants is defined as: 

Even if two concerns have no element in common, they can still interact. We define the inter­
action between two concerns, defined on a common program model P M , as the set of all modeled 
relations between an element in one concern and an element in the other concern. 

n m 

common (Cp, Dp) = participants (Cp) fl participants(TJ)p) 
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Definition 11 (Concern Interaction) Let Cp and Dp be two concerns defined on a program model 
PM = (Ep, Np). The interaction between Cp and Dp is defined as: 

interaction(Cp, Dp) = {(x, n, y, {(x, y)}) \ x G participants(Cp) A 

y G participants (Dp) A 

3(n,R)GNP:(x,y)eR} 

In other words, the interaction between two concerns is a set of primitive fragments represent­
ing the relations between the participants of one concern and the participants of the other concern. 

The interactions between participants can also be defined for a single concern, enabling us 
to establish a closure of interactions between the participants of a concern. Specifically, given a 
concern C, the operation interaction(C, C) produces a set of primitive fragments representing all 
the interactions between participants of C. 

2.3.2 Inconsistency Management 

Since concern graphs are defined on a specific program model, any change to the program impacting 
the model may render a concern graph inconsistent with the new program model corresponding to 
the changed source code. Such inconsistencies can be formally defined through a boolean function 
IsInconsistent(:r, PM) where PM is a program model and x a set of elements, a fragment, or a 
concern. 

Definition 12 (Element set Inconsistency) Let P ± M = (Epi,Npi) and P2M — (Ep2, Np2) be 
the models corresponding to two versions of a program produced with the same mapping function 
M. Letx C Epi. 

IsInconsistent(x, P2M) = x % Ep2 

Definition 13 (Fragment Inconsistency) Let PIM = (Ep\,Np\) and P2M = (Ep2,Np2) be 
the models corresponding to two versions of a program produced with the same mapping function 
M. Let jpi = (Dompi,npi, Ranpi, Proj P1) be a fragment defined on PI. 

IsInconsistent(/pi, P2M) = Islnconsistent(£)ompi, P2M) V 

IsInconsistent(/?anpi, P2M) V 

P r o j P 1 ^ proj(Domp1,npi,Ranp1,P2M). 

In other words, a fragment is inconsistent with a program model if either of its domain or range 
is inconsistent, or if its projection does not match the equivalent projection on the new program 
model. This support for detection of inconsistencies is the main justification for the existence of 
projections. Fragment projections store only the minimal subset of a program model required to 
check for inconsistencies with a different model. 

Given the above definitions, we can define the inconsistency operator for concerns. 

Definition 14 (Concern Inconsistency) Let PIM = (Ep\, Np\) and P2M = (Ep2,Np2) be the 
models corresponding to two versions of a program produced with the same mapping function M. 
Let Cp\ = (Fpi, Spi) be a concern defined on PIM-

IsInconsistent(Cpi, P2M) = 3 / G Fpi | IsInconsistent(/, P2M) V 

3s G Spi | IsInconsistent(s, P2M)-
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Finally, it is possible to define, at the level of the concern graph model, the conditions in which an 
inconsistency between a fragment and a model can be automatically repaired, and the semantics of 
the repair operation. This way, we can ensure a common behavior for inconsistency repair across 
programming languages and tools supporting the concern graph model. A repairable fragment is 
defined as a fragment for which both the domain and the range are consistent (i.e., the fragment 
is only inconsistent in terms of its projection in the new program model). The repair operation is 
modeled as a function taking as parameters a repairable program fragment defined on a model and 
inconsistent with a second model, and the second model. The operation returns a fragment with the 
same intent as the original, but that is consistent with the second program model. 

Definition 15 (Fragment Repair Operator) Let PIM = (Epi,NPx) and P2M = ( E P 2 , N p 2 ) 
be the models corresponding to two versions of a program produced with the same mapping function 
M. Let fpi = (Dom pi , npi, Ran p\, ProjP1) be a fragment defined on PI M such that: 

IsInconsistent(/pi, P2M) A 

-iIsInconsistent(Z?ompi, P2M) A 

->IsInconsistent(i2anpi, P2M) 

We have 

repair(/pi,P2 M ) = (DomP1, nPi, RanP1, pro)(DomP1, nPX, RanP1, P2M))-

In informal terms, the repair function simply replaces the inconsistent projection of a fragment with 
a new projection consistent with the second program model. The practical implications of the in­
consistency management support intrinsic to concern graphs are described in detail in Section 3.2.2. 

2.4 Summary 

In the light of the complete definition of our concern graph model, we now briefly revisit and discuss 
the design goals presented in Section 2.1. 

Language independence In our model, concern graphs are defined on a program model that 
abstracts the details of specific programming languages. Concern graphs can thus be defined for 
programs in any language that can be modeled as a set of elements and a set of relations on these 
elements. Although a complete survey of the applicability of our model to different programming 
languages is outside the scope of this dissertation, we expect that most imperative languages, and 
possibly many others, can meet this simple criterion. 

Flexibility All the features of our model (e.g., fragment definition, interaction analysis, inconsis­
tency detection) are based solely on the basic definition of a program model P = (E,N). It is 
thus possible, through the definition of a mapping function, to include arbitrarily complex relations 
between elements as part of the model. The level of information that can be recorded by a concern 
graph is thus under the control of users of the model. 
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Precision The goal of precision implied that there should exist a non-ambiguous mapping between 
any structure present in a concern representation and the corresponding source code. In our model, 
the relations in a program model are obtained through analysis functions a(n, P) defined by the 
mapping function used to instantiate the model for a language. Assuming the availability of such 
functions implies the existence of a corresponding function capable of mapping a relation back to 
the corresponding source code. 

Simplicity The mechanism by which we compose fragments into a concern graph is limited to 
the simple inclusion operation. The use of logic operators, such as the negation operator, is not sup­
ported by the model. Given a concern and a fragment, the only reasoning required from developers 
is to determine whether the fragment should be included or excluded from the concern. 

Robustness As in the case of language independence, the goal of robustness is achieved by the 
use of an abstract program model to describe concerns. Because fragments record relations between 
program elements, as opposed to concrete references to a source code artifact (e.g., lines of code), 
minor changes to a program, such as re-ordering function definitions in a file, leaves the program 
model unchanged, and as such does not impact descriptions based on this model. 

Tolerance to Inconsistencies Tolerance to inconsistencies is explicitly supported by our model. 
Section 2.3.2 describes the mechanism by which we can detect and repair inconsistencies between 
a concern graph and a program model. 
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Chapter 3 

Tool Support for Concern Graphs 

In the previous chapter we presented a general model for capturing descriptions of scattered concern 
code as artifacts called concern graphs. To use concern graphs effectively developers must be able 
to interactively specify, view, analyze, and manage concern representations for large programs. 
Providing support for these tasks requires the extraction of a model from a concrete program. In 
turn, the automatic extraction of a program model requires a definition of a mapping function that 
can produce models that are both useful, usable, and scalable. 

To experiment with concern graphs, we developed support for using concern graphs with 
Java programs. Based on a combination of experience, experimentation, and the work of other 
researchers, we designed a mapping function that produces models which allow developers to de­
scribe a variety of concerns in source code. In Section 3.1 we present the mapping function we have 
designed and discuss and justify our choices in elaborating this mapping function. Then, in Sec­
tion 3.2, we describe a tool we have developed to support concern graphs according to our mapping 
function for Java. 

3.1 General Mapping Function for Java 

A mapping function specifies how to produce a program model on which concern graphs can be 
specified (see Chapter 2). Many different mapping functions can be defined for a programming 
language, each one presenting a tradeoff between, on one hand, the expressiveness of a model to 
represent details of a program, and on the other, simplicity, usability, and scalability. The mapping 
function we have designed to support concern graphs for Java is intended to be both scalable and 
capable of representing a wide range of concerns. This mapping function, named Java Standard, is 
presented in Figure 3.1. The detailed definition of the boolean functions involved in the mapping 
function are presented in Appendix B. 

The program elements captured by the Java Standard mapping function are limited to classes, 
interfaces, fields, and methods. Local (intra-method) elements, such as method parameters and 
local variables, are not captured in models produced by the mapping function. We decided not to 
consider intra-method elements for two main reasons. First, we wanted to establish a practical bound 
to the size and complexity of models required to define concern graphs, so that the approach would 
remain usable and scalable. Second, intra-method program elements are not considered because we 
are mostly interested in capturing scattered concerns, that is, concerns presenting interactions not 
limited to a module. 
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Mapping Function Java Standard 
E = {x IsAClass(:r) A IsAnlnterface A IsAField(x)A 

IsAMethod(x)} 
names (N) = {Accesses, AccessedBy, Calls, CalledBy, Checks, 

Creates, Declares, Extends Class, ClassExtendedBy, 
Extendslnterface, InterfaceExtendedBy, 
HasParameterType, HasReturnType,!, Implements, 
ImplementedBy, Of Type, Overrides, OverridenBy, 
TransitivelyExtends, TransitivelyExtendedBy, 
Transitivelylmplements, TransitivelylmplementedBy} 

a(Accesses, P) = {(x,y) | Accesses(a;,2/)} 
a(AccessedBy, P) = a(Accesses, P)T 

a(Calls,P) = {(x,y) | Calls(x,y)} 
a(CalledBy,P) = a{Calls,P)T 

a(Checks, P) = {(x,y) | Checks(x,y)} 
a(Creates, P) {(x,y) | Creates(x, y)} 

a(Declares, P) = {{x,y) | Declares(x, y)} 
a(Extends Class, P) {{x,y) | ExtendsClass(x, y)} 

a( ClassExtendedBy, P) = a(Extends Class, P)T 

a(ExtendsInterface, P) = {(x,y) | Extendslnterface(a;, y)} 
a(InterfaceExtendedBy, P) = a(ExtendsInterfaces, P)T 

a(HasParameterType, P) = {(x,y) | HasParamterType(x,y)} 
a(H~asRetumType, P) — {(x,y) | HasReturnType(x,y)} 

a(I, P) — {(x,y) | x = y} 
a(Implements, P) = {(x,y) Implements(x,y)} 

a(ImplementedBy, P) = a(Implements, P)T 

a(OfType,P) = {(x,y)\OfType(x,y)} 
a(Overrides, P) = {(x,y) | Overrides (a;, y)} 

a(OverridenBy, P) = a(Overrides, P)T 

a( Transitiv ely Extends, P) = a(ExtendsClass, P)+ 

o( TransitivelyExtendedBy, P) = a( TransitivelyExtends, P)T 

a( Transitivelylmplements, P) = (a(ExtendsClass, P)* o a(Implements, P ) )U 
(a(ExtendsClass, P)* o a(Implements, P)o 
a(Extends!nterface, P)+) 

Figure 3.1: The mapping function Java Standard 

The first reason, to limit the model size, comes from the realization that the more expressive 
a program model is, the higher the computational and memory cost to produce it, and the higher 
the human effort required to use it. From the perspective of memory cost, detailed program models 
inevitably comprise more nodes and edges than more abstract ones. The inclusion of local variables 
and detailed control- and data-flow relations into a program model, such as the program dependence 
graph [40], can seriously impact the scalability of the representation. For example, in their work 
on chopping (a variant of slicing), Jackson and Rollins noted this problem with the dependence 
graphs required to manage intra-module relations: "Graphs of even the smallest chops tend to be 
huge" [62: p. 9]. Producing precise and fine-grained program models also incurs a non-significant 
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cost in terms of computational time [118]. Finally, with an increase in the variety of program 
element types supported by a model comes a significant increase in the number of potential relation 
types between elements that a developer must consider (e.g., data-dependence, control-domination). 

The second argument for not considering intra-method elements is that in most cases they are 
not needed to model scattered concerns, and the cost of their inclusion in the model is, as such, 
unwarranted. Specifically, since elements such as local variables cannot be referenced by elements 
outside the method, they are not useful for describing a concern scattered in multiple methods. As 
the designers of the C Information Abstractor tool have noted, "Details of interactions between local 
objects are ignored because they are only interesting in a small context" [25: p. 326]. We followed 
a similar philosophy in elaborating the design of our mapping function. 

We categorize the 22 relations supported by the mapping function as either structural or be­
havioral. Structural relations represent static, declarative relations between elements in a program. 
Roughly speaking, static relations are the type of relations that would be documented in a U M L 
static structure diagram [51]. As explained in Section 2.2.2, the identity relation (X) is an artificial 
relation used to include individual elements in a concern graph. The Declares relation expresses the 
basic declarative structure of a program. This relation can be used to specify fragments representing 
classes or interfaces with all their members. Additional relations exposing the declarative structure 
of a program are the HasParameterType, HasReturnType, and OfType relations. These relations 
expose, respectively, the parameter types of a method, the return type of a method, and the type of 
a field. The transpose of relations exposing the declarative structure of a program are not included 
in the mapping function because we could not foresee any use of these relations. The relations 
ExtendsClass, Extendslnterface, and Implements (and their respective transpose) expose the basic 
class hierarchy of a program. Because of the coarse granularity of such relations, we included a 
transitive version of the Extends and Implements relations. This way, it is possible to specify an 
inheritance or implementation relation between two classes (and/or interfaces) even if the classes 
are not in direct relation with each other. Finally, the Overrides relation and its transpose expose 
whether a method is substitutable for another one at run-time. 

Behavioral relations represent code within a method. The Accesses relation.and its transpose 
represent code reading or writing to a field. The Calls relation and its transpose represent method 
calls. The Creates relation represents the creation of a new object using the keyword new, and the 
Checks relation represents a downcast or the comparison of the run-time type of an object with a 
certain type. The transpose of the Checks and Creates relations are not included in the mapping 
function because it is not clear how useful fragments defined using these relations would be in 
specifying concerns. Using the behavioral relations above, it is possible to specify a subset of a 
method as part of a concern. For example, Figure 3.2 shows the code of a method that resets the 
state of an object. To capture all of the code dealing with accessing object state, we can use the 
Calls relation, such as in the fragment 

r e s e t S t a t e C a l l s g e t F l a g ( i n t ) } 

'For the examples in this section, we use a simplified representation for fragments, and we omit the fully-
qualified names of Java elements that would normally be present. For the complete description of fragments 
structures, see Section 2.2.2. 
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This fragment captures the method calls to g e t F l a g () on lines 3-6. To capture the code dealing 
with the state of the AUTO SAVE _D I RT Y flag, we can use the Accesses relation, such as in the fragment 

r e s e t S t a t e ( ) Accesses AUTOSAVEJD IRTY. 

This fragment captures code on lines 3 and 9. 

1: 

2 : 
3 : 

4: 

5 : 

6: 

7 : 

8: 

9 : 

10 

public void resetState() 
{ 

i£( !getFlag(AUTOSAVE_DIRTY ) 
| | ! getFlag ( D I R T Y ) 

j j g e t F l a g ( L O A D I N G ) 

j j getFlag(10)) 
return; 

setFlag ( A T J T 0 S A V E _ D I R T Y , false) ; 
} 

Figure 3.2: Method OptionGroup. save () 

One of the characteristics of models produced with the Java Standard mapping function is that 
they do not support the distinction between different contexts in source code corresponding to a 
behavioral relation. For example, in the method of Figure 3.2, it is not possible to include the call to 
g e t F l a g (int ) on line 6 as part of a concern, while excluding the other calls to g e t F l a g ( i n t ) . 
Context sensitivity of this form would require a more detailed program model [140]. As we will 
explain in Chapter 4, context-insensitivity has been a reasonable choice because when a call to a 
non-library method contributes to the implementation of a concern, most of the calls to that method 
are usually part of the concern as well. In situations where this has not been the case, the small 
number of false positives have not caused problems with the task. 

Finally, the mapping function does not support exception handling. Exception handling in­
troduces a particular type of control-flow that can be difficult to abstract [27, 111, 114, 125]. For 
the purpose of experimenting with concern graphs and validating the thesis, we chose to leave ex­
ception handling aside. Although this prevents users of the approach to specify concerns related to 
error handling, there exists many other possible types of concerns. 

3.2 The Feature Analysis and Exploration Tool 

To support the task of finding the source code implementing concerns of interest to a developer, and 
of representing those concerns with concern graphs, we built the Feature Exploration and Analysis 
Tool (FEAT). FEAT supports three main functions. 

1. Model Extraction It extracts a model of a program based on the mapping function Java 
Standard described in Section 3.1, and provides a user of the tool access to the model. 

2. Concern Construction It allows a user to build and modify concern representations by spec­
ifying fragments on the model extracted from a program. It supports the saving of a concern 
representation to permanent storage, and the loading of a concern representation in the tool. 

3. Analysis It supports the analysis of the interactions between different concerns. It also sup­
ports the detection and repair of inconsistencies between a concern graph and a program. 
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To integrate building, viewing, and modifying concern graphs with the activities of code in­
vestigation and modification, we have implemented the FEAT tool as a plug-in for the Eclipse 
Platform [93]. Eclipse is an integrated development environment for Java with an architecture that 
supports the addition of modules (called plug-ins) that add to the development environment's func­
tionality. With the FEAT plug-in installed in Eclipse, developers can use the integrated development 
environment as usual, to browse and modify source code, perform searches, etc. However, if a user 
desires to create a concern representation, the functionality provided by the FEAT plug-in is acti­
vated, providing the three functions described above. 

3.2.1 Usage Model 

When investigating and modifying source code during a program evolution task, a developer typ­
ically starts using the features of the FEAT plug-in when a concern of interest is identified. In 
general, for a developer working on a non-familiar code base, the use of the FEAT tool proceeds as 
follows: 

1. Broad investigation outside FEAT A developer performs broad searches in an attempt to 
discover an area of the code related to the modification task. For example, a developer asked 
to implement an enhancement to the autosave feature of the jEdit application described in 
Section 1.2 might perform a lexical search for the keyword "autosave" on all the source code 
files. This type of general investigation does not focus on any particular concern and is usually 
performed using the basic features of the Eclipse platform, and without help from the FEAT 
plug-in. 

2. Identification of a concern When trying to understand the code related to a modification task, 
a developer realizes that the code related to the modification implements one or more concerns 
that need to be considered [8]. For example, while preparing for the autosave enhancement 
task, a developer might come across the PROPERTIES MANAGEMENT concern. At this point, 
the FEAT tool can be used to capture the implementation of the concern. 

3. Creating a concern graph Using a menu in the user interface, a developer creates a concern 
graph associated with a code base (also called a project in Eclipse). Creating a concern graph 
initializes the FEAT tool and extracts the program model for the code base. 

4. Seeding the concern graph When a new concern graph is created, it is originally empty 
(i.e., it describes no source code). Elements (classes, methods, or fields) from the code base 
must be moved to the concern graph. This process is called seeding the concern graph. For 
example in the case of the autosave task, a method relevant to MANAGING PROPERTIES, 
j E d i t . setProperty (String, String) can be added to the concern. 

5. Building the concern graph Once a concern graph is seeded, queries are performed on 
the elements in the concern graph, to elicit the relations between elements in the concern 
and the rest of the code base. For example, a FEAT query can reveal all the callers of the 
j E d i t . setProperty (String, string) method. Query results that are relevant to the 
concern are added to the concern representation in FEAT. 
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6. Analyzing the concern graph If necessary, a concern graph can be divided into different 
sub-concerns. While building a concern graph, a developer can then add elements and rela­
tions specifically to the sub-concern under investigation. Returning to the example of the au­
tosave task, the concern graph for the task can be subdivided into a SAVING WIDGET STATE 
concern and a PROPERTIES MANAGEMENT concern. When a concern comprises different 
sub-concerns, it is possible to analyze the interactions between elements in the different sub-
concerns. 

7. Saving the concern graph When the concern graph captures enough of the implementation 
of the concerns of interest, it can be saved to disk. 

The steps above represent a simplified process. In practice, many variations can take place. For 
example, instead of creating a new concern graph, a developer can load an existing concern graph 
produced as part of a prior task. Additionally, investigation and concern graph construction activities 
within the FEAT tool can be interleaved with basic Eclipse searches and code modifications. The 
next section describes in more detail how users interact with the FEAT tool. 

3.2.2 User Interface 

The description of the user interface of the FEAT plug-in (version 2.3.0) focuses on how a user inter­
acts with the FEAT tool when performing four principal tasks: viewing a concern graph, exploring 
the code and building a concern graph, comparing concerns, and managing the inconsistencies be­
tween a concern graph and the source code.2 Although the four tasks are separated for the purpose 
of their description, they would, in practice, be overlapping. To set the context for the tool, we first 
describe the Eclipse platform. 

Eclipse 

In Eclipse, functionality is provided at two different levels: the workbench level, and the view level. 
The workbench is the main application window (Figure 3.3). The workbench is the interface to a 
collection of resources, called the workspace. Resources in the workspace correspond to files or di­
rectories on a system. For example, Java source code files are typical Eclipse resources. Within the 
workspace, resources are organized into different projects. The workbench is the user interface that 
provides general-purpose functionality, such as opening and closing resources, performing searches, 
etc. Within the workbench, more specialized functionality is provided through different views. A 
view is a user interface window that displays some data and that provides operations on this data. 
For example, in Figure 3.3, the window on the left is a view called the Package Explorer. It presents 
a hierarchical view of the different packages in a Java project, of the Java source code files in each 
package, and of the elements (classes and class members) declared in each file. The Package Ex­
plorer also supports operations on the elements visible in the view, such as cross-reference searches 
on an element. Each view has a separate tool bar that provides operations specific to the data in the 
view. For example, the tool bar for the Package Explorer allows a user to filter out certain types of 
elements from the view. Editors are a special type of view that allow users to modify resources. A 

2Readers interested in the details of the FEAT user interface can consult the manual distributed with the 
FEAT tool [109]. 
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collection of views addressing a specific purpose is called a Perspective. In Figure 3.3, the active 
perspective is the Java perspective. The Java perspective includes views supporting Java develop­
ment, and an editor area. Users can switch between different perspectives using the vertical tool 
bar on the left of the workbench window. Switching perspectives does not affect the state of the 
resources in the workspace. 
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Figure 3.3: The Eclipse platform 

Viewing a Concern Graph 

A user views an existing concern graph by switching to the FEAT Perspective. The FEAT Perspec­
tive is a collection of views showing a concern graph in decreasing levels of abstraction (Figure 3.4). 

The Concern Graph View (area 1) shows the hierarchy of concerns for a concern graph (see 
Section 2.2.3). From this view, users can create new child concerns, delete existing concerns, and 
move concerns in the hierarchy. Figure 3.5 shows a concern hierarchy for the task of enhancing 
the autosave feature in the jEdit application (see Section 1.2). This hierarchy consists of a top-level 
concern (or concern graph) named AUTOSAVE, and two sub-concerns, SAVING WIDGET STATE and 
PROPERTIES MANAGEMENT. Selecting any concern in the Concern Graph View displays all of the 
participants for the concern (see Definition 9). The concern selected in the Concern Graph View is 
called the active concern. The participants for the active concern are displayed in the Participants 
View (area 2). 
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Figure 3.4: The FEAT Perspective. Area 1 holds the Concern Graph View. Area 2 holds the 
Participants, Interactions, and Inconsistencies Views. Area 3 holds the Projection and Relations 
Views. Area 4 holds the Java Editor. 
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Figure 3.5: The Concern Graph View 

In the Participants View, participants for a concern are displayed as a set of trees, with partici­
pant classes at the root of the trees; participant members are displayed as children of their declaring 
class. For example, Figure 3.6 shows the participants for the sub-concern S A V I N G WIDGET STATE. 

The participants include elements in the classes AbstractOptionPane, LoadSaveOptionPane, 
OptionGroup, and OptionsDialog. The nodes for the first two classes are expanded, reveal­
ing their members who participate in the concern: methods save () and -save (), respectively. 
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Double-clicking on any participant shows its declaration in a Java editor (area 4). Selecting a par­
ticipant shows all of the relations between this participant and any other participant in the active 
concern (area 3). This display of the relations between participants in of a concern corresponds to 
the intra-concern analysis described in Section 2.3.1. 

B Participants - Saving widget state X X 

B 0 AbstractOptionPane 

El- 0 LoadSaveOptionPane 
• _save() 

E0"0 OptionGroup 
0 OptionsDialog 

Participants Interactions i Inconsistencies 

Figure 3.6: The Participants View 

The relations for a participant selected in the Participants View are displayed in the Relations 
View (area 3). For example, Figure 3.7 shows the relations for participant OptionGroup. save (). 
The icon to the left of a relation indicates whether a relation is part of a fragment explicitly added 
by a user (as described below), or whether it was identified through intra-concem analysis. A 
blue dot identifies a relation explicitly added by a user. A blue dot with a white T inscribed in 
it identifies the transpose of a relation comprised in a fragment explicitly added to a concern. 
A question mark identifies a relation that was not added to a concern graph by a user, but that 
was discovered through intra-concem analysis. Relations identified through intra-concem analysis 
are displayed but are not part of a concern. However, a user can add these relations to a con­
cern. In this case, the question mark becomes a blue dot, indicating an explicit relation. Finally, 
clicking on any relation shows the source code corresponding to the relation. For example, click­
ing on the relation called by OptionGroup. Dialog, ok (boolean) will bring up the code of 
OptionsDialog. ok (boolean) in the editor area and highlight the call to OptionGroup. save () 

Exploring the Code and Building a Concern Graph 

To help a developer investigate the source code for a project, the FEAT plug-in supports a set 
of queries on the classes, methods, and fields declared in the project associated with a concern 
graph. The FEAT queries support the investigation of all of the relations specified in the mapping 
function Java Standard. A query in FEAT corresponds to a fragment that has a universal range (see 
Section 2.2.2). For example, a query to determine all of the callers of a method m () is modeled as 
the fragment 

m() CalledBy ALL.3 

3In this chapter, we use the keyword "ALL" to represent the universal range E in a program model. 
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Figure 3.7: The Relations View 

A user performs a FEAT query by right-clicking on a Java element in any FEAT view, and choosing a 
relation in a pop-up menu. In the pop-up menu, queries are organized in two groups: fan-in queries 
and fan-out queries. The criterion for distinguishing fan-in from fan-out queries is based on the 
predicate "knows-about". Fan-in queries return elements that know about the queried element. Fan-
out queries return elements that the queried element knows about. For example, fan-out queries for 
a method include the relation Calls, while fan-in queries include its transpose, the relation CalledBy. 

Figure 3.8 shows a query about to be performed on element LoadSaveOptionPane. save () in 
the Participants View. The figure shows that a pop-up menu has been invoked on the element, and 
the menu item calling has been selected from the menu group Fan-out. This query corresponds 
to the fragment 
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Figure 3.8: A FEAT query 
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Internally, FEAT queries are built and managed as fragments: performing a query consists of 
applying the projection operator defined in Section 2.2.2 on the database stored by the plug-in. The 
results of a query correspond to the projection of the fragment that represents the query. Query re­
sults are displayed in the Projection View. The Projection View is the main view used to investigate 
the code in FEAT. It is shown in the same area (area 3) as the Relations View in the FEAT Perspec­
tive: selecting a tab at the bottom of the area allows a user to switch between views. Figure 3.9 
shows the results of the query of Figure 3.8 as presented in the Projection View. Query results are 
displayed in a tree representing the projection of a fragment. The elements in the tree above the re­
lation node represent the domain of the projection. The elements below the relation node represent 
the range of the projection. In our example the .save () method calls six methods in four different 
classes. Double-clicking on any element in the Projection View displays its declaration in an editor. 
Selecting an element displays the source code for only the relation. For example, selecting method 
getSelectedltem () will display the line in the .save () method where getSelectedltem () 
is called. From within the Projection View, it is also possible to add elements and relations to a 
concern graph. To add a single element to the active concern, a user can right-click on any ele­
ment in the view and select Add element to concern. This action will result in the addition 
of a single element to the active concern; the element is expressed as a primitive fragment using 
the identity relation. To add a query result and the corresponding relation to the active concern, a 
user can select any range element (i.e., below the relation node in the tree), right-click and select 
Add relation to concern. This action will add to the active concern a primitive fragment 
consisting of the element queried (as the domain), the relation queried, and the element selected in 
the Projection View (as the range). For example, in the case of Figure 3.9, if a user right-clicks on 
getSelectedltem () and selects Add relation to concern, the fragment 

LoadSaveOptionPane. .save () Calls JComboBox.getSelectedltem() 

will be added to the active concern. Whenever a fragment is added to the active concern, the 
Participants View is updated to show the new participants. In some case, the entire results of a 
query will be relevant to a concern. In this case, it is possible to add the entire query result to the 
active concern though a menu in the tool bar of the Projection View. In this case, the fragment that 
is added to the active concern consists of the element queried (as the domain), the relation queried, 
the universal range, and the projection corresponding to the query. Finally, the Projection View 
preserves all of the queries performed in a history list. Users can recall the results of any previous 
query by selecting from a list at the top of the view. 

Comparing Concerns 

When a concern graph is subdivided into different sub-concerns, it is possible to analyze two con­
cerns in the hierarchy to determine their interactions (see Section 2.3.1). To determine the inter­
actions between two concerns, a developer selects the concerns in the Concern Graph View, right-
clicks, and selects Compare from a pop-up menu. The results of the analysis appear in a view called 
the Interactions View, which overlaps with the Participants View. For example, a comparison of the 
concerns S A V I N G W I D G E T S T A T E and PROPERTIES M A N A G E M E N T discussed above results in the 
Interactions View as depicted in Figure 3.10. 
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Figure 3.10: The Interactions and Relations Views 

The Interactions View shows the participants of the two selected concerns side by side. Par­
ticipants common to both concerns are annotated with a red diamond. Participants in one concern 
that are directly related to any participant in the other concern through a relation supported by 
the model are annotated with a yellow diamond. For example, from Figure 3.10, we can tell that 
class LoadSaveOptionPane is common to both concerns because it is annotated with a red di­
amond. We can also determine that method save () of class AbstractOptionPane in SAVING 
WIDGET STATE is related to a participant in PROPERTIES MANAGEMENT. In the Interactions View, 
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selecting a participant shows all of the relations between the selected participant and any partici­
pant in the other concern. This display contrasts with the selection of a participant in the Partici­
pants View, which shows the relations between the participants of a single concern. For example, 
in Figure 3.10, selecting AbstractOptionPane. save () reveals that the method calls method 
LoadSaveOptionPane. .save () in concern P r o p e r t i e s management. Using the interaction 

analysis feature of FEAT, a developer can quickly focus on the areas of interactions between two 
concerns without having to investigate all of the concern code. 

Managing Inconsistencies 

The FEAT tool is tolerant of inconsistencies between a concern graph and the source code. When 
a concern graph is loaded into FEAT, and any time the source code changes, FEAT performs 
an inconsistency check for each fragment. Checking for inconsistencies consists of applying the 
Islnconsistent function defined in Section 2.3.2 (Definition 13) to each fragment. Even in the case 
where inconsistencies are detected, the FEAT tool functions as usual: participants in consistent con­
cerns are displayed and can be queried and analyzed. However, the participants and relations for 
any inconsistent fragment are not displayed in the Participants View and the Relations View. To 
indicate that inconsistencies were detected, any concern containing one or more inconsistent frag­
ment is annotated with a red icon in the Concern Graph View. Additionally, it is possible to view, 
query, and repair inconsistent fragments in the Inconsistency View. To display the Inconsistency 
View, a developer right-clicks on any inconsistent concern in the Concern Graph View and selects 
I n c o n s i s t e n c i e s from a pop-up menu. Figure 3.11 shows the Inconsistency View listing three 
different inconsistencies. Inconsistencies are identified by the name of the inconsistent fragment. 
FEAT recognizes three different types of inconsistencies: 

• Primitive Inconsistency The relation captured by a primitive fragment does not exist in the 
source code. Specifically, a primitive inconsistency is detected when the Islnconsistent func­
tion applied to a primitive fragment returns true because any clause in Definition 13 is true. 
These types of inconsistencies are not automatically repairable. 

• Inconsistent Domain Inconsistency The domain of the fragment is inconsistent. Specif­
ically, an inconsistent domain inconsistency is detected when the Islnconsistent function 
returns true because the domain set is inconsistent (See Definition 13, Section 2.3.2). These 
types of inconsistencies are not automatically repairable. 

• Projection Mismatch Inconsistency The projection of the fragment does not match the cur­
rent source code. Specifically, a projection mismatch inconsistency is detected when the 
Islnconsistent function returns true because the third clause in Definition 13 is true but the 
two other clauses are false. These types of inconsistencies are automatically repairable (see 
Definition 15, Section 2.3.2). 

In the Inconsistency View, the three different types of inconsistencies are distinguished by the 
icon on the left of the inconsistent fragment's name. Primitive inconsistencies are identified with 
a red X (e.g., the third inconsistency in the list at the top of the view in Figure 3.11). Inconsistent 
domain inconsistencies are identified with a red X and two right arrows (e.g., second inconsistency). 
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Projection mismatch inconsistencies are identified with a red X superimposed on a right and a left 
arrow (e.g., first inconsistency). Clicking on any fragment name in the inconsistency list displays 
the inconsistent fragment in a tree structure in the lower part of the view. The inconsistent fragment 
is presented in a style similar the one used in the Projection View. Any element in the inconsistent 
fragment which exists in the source code can be displayed in an editor or queried as in the Partici­
pants View or the Projection View. This display allows users to investigate the relations between an 
element in an inconsistent fragment and the rest of the code base. As a result of such queries, a user 
may decide to add to the concern description based on information in the inconsistent fragment. El­
ements in the lower part of the Inconsistency View are annotated with an icon denoting whether the 
element does not exist, whether the corresponding relation exists in the code but not in the concern 
graph, or exists in the concern graph but not in the code. For example, Figure 3.11 displays the 
fragment 

OptionGroup.save() CalledBy ALL 

with the method ok (boolean) of class OptionsDialog annotated with a "+" icon. This icon 
indicates that the call from OptionsDialog. ok (boolean) is documented in the concern graph 
but does not exist in the current version of the source code. 
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Figure 3.11: The Inconsistency View 

The Inconsistency View also allows a user to make an inconsistent concern graph consistent 
with the source code. Right-clicking on any fragment in the list of inconsistent fragments will 
bring up a pop-up menu with the item Repair. Repairing a repairable fragment will synchronize 
the fragment with the source code according to the algorithm of Section 2.3.2. For example, the 
fragment selected in Figure 3.11 is inconsistent due to a projection mismatch, and as such can 
be automatically repaired. Repairing a non-repairable fragment will remove the fragment from 
the concern graph. A button in the tool bar of the Inconsistency View allows a user to repair all 
fragments at once. This way, a concern graph can be made consistent with the source code in a 
single step. 
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3.2.3 Implementation 

The architecture of the FEAT tool comprises three components: the model, the analyzer, and the 
user interface. Figure 3.12 illustrates the dependencies between the three components. 

Figure 3.12: The architecture of the FEAT tool 

Model 

The model component supports the run-time representation of a concern graph, enabling support for 
loading a concern graph from permanent storage and saving a concern to permanent storage, and for 
tolerating inconsistencies between a concern graph and the source code. The model component is 
independent from the user interface or the analyzer, allowing it to be used to present concern graphs 
in different interfaces, and to allow third-party developers or researchers to use concerns graphs 
independently of the FEAT tool. The model component stores a concern graph in a structure similar 
to its theoretical structure. The model supports saving a concern graph to permanent storage by 
providing functionalities to export a concern graph to an X M L document format [21]. The model 
also provides parsing functionality to load a concern graph from its X M L representation. Finally, 
the model component is made tolerant to inconsistencies through a mechanism of pollution markers 
inspired by the work of Balzer [6]. With pollution markers, inconsistent fragments can be marked 
in the model. Other components that use the model can then query a fragment object to determine 
whether it is consistent or not, and take appropriate action. 

Analyzer 

The responsibility of the analyzer component is to produce a model for a program based on the 
mapping function Java Standard, to support queries on this model, and to support mapping primitive 
fragments to the corresponding source code. The analyzer component is designed to optimize the 
speed of FEAT queries, at the cost of an initial model extraction time. 

The analyzer implemented in version 2.3.0 of the FEAT tool produces a model of a program 
by executing a single pass through the abstract syntax tree (AST) of every Java file in the project 
associated with a concern graph. The AST for Java files is provided as part of the Eclipse Platform. 
When scanning the AST of Java source files, the analyzer searches for instances of the relations 
supported by the mapping function. When a relation between two elements is identified, the analyzer 
stores both the relation and its transpose in an in-memory database. 

To avoid performing a second analysis pass, certain relations are not stored in the model 
database and are instead computed on-the-fly at query time. In particular, to elicit the complete 
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range of Calls relations, the analyzer must determine all of the potential bindings for a static signa­
ture at virtual method call sites. The current algorithm used to determine potential run-time method 
bindings is the standard class hierarchy analysis algorithm [32]. Simply put, class-hierarchy analy­
sis finds potential bindings for a method call by considering all of the methods overriding the static 
method signature at a call site. This algorithm tends to be over-conservative. A more precise algo­
rithm, Rapid Type Analysis [5], could be used to determine potential method bindings. Rapid type 
analysis can easily be implemented in FEAT at the cost of a small time and space penalty. Further 
experience with the FEAT tool should determine whether these penalties are warranted. 

The relations detected by the analyzer are stored in a database consisting of a hash table. The 
keys in the hash table are global identifiers for Java elements in the model. The value associated with 
a key in the hash table is a list of structures comprising a relation name, a range element, and the 
source code location corresponding to the relation. This structure supports performing a projection 
operation in a time that, in practice, is only output-sensitive. Since FEAT queries correspond to 
fragment projections, the execution time for FEAT queries is negligible (less than one second). 
Likewise, because source code locations corresponding to a relation are stored in the database, 
viewing the source code for a relation does not incur any perceptible delay. 

The static analysis required to extract the model of a program, and the size of the database 
produced, both impose practical limits on the size of the programs analysable by FEAT. To allow 
FEAT to work on large programs, it was necessary to introduce a mechanism for users to control 
the scope of the analysis. We have addressed this issue by defining a concern graph over a set of 
Java packages. When creating a new concern graph for a project, a user can select from a list of 
all of the source packages for a project just those packages that should be included in the program 
model database. Elements declared in packages left out of the analysis can still be viewed and used 
in FEAT, but their source code is not analyzed. This flexibility allows users to remove basic libraries 
and other elements that they know are not involved in the concerns they are analyzing, reducing the 
storage and computation load on the tool. 

Because the analyzer performs a single pass through the source code, the time required for 
model extraction increases linearly with the size of the source code analyzed. Similarly, because 
there is an approximately constant ratio of model relations per line of code, the space required to 
store the model also increases linearly with the size of the source code analyzed. We illustrate 
the time and space cost related to model extraction in the FEAT tool by presenting measurements 
obtained by loading an increasing number of packages from the jEdit application. Figure 3.13 
presents the load times.4 In the figure, the horizontal axis shows the number of lines of code (LOC) 
included for analysis.5 The vertical axis shows the corresponding elapsed time for an initial (i.e., 
un-cached) model extraction (in seconds). Although model extraction times are subject to many 
imponderables, such as the effects of multi-threading or virtual memory, loading times follow a 
marked linear progression, with an origin close to zero and slope of just under l.ls/kLOC. After an 
initial model extraction, times for new extractions can be expected to decrease due to the effect of 
memory caching. For example, we took five samples of the model extraction time for the complete 
code of jEdit after an initial load. The average time was 57.5s, with a 7% maximum variation. 

4A11 times were measured using Eclipse 2.1 on a Windows XP 2002 PC with a 1.8GHz Intel Celeron 
processor and 512MB of RAM. 

5A11 LOC numbers correspond to non-comment, non-blank lines of Java source code. 
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Contrasted to the 70.8s measured for the initial extraction, the cached extraction presents a 19% 
reduction in time. 

Figure 3.13: Model extraction time 

Because it is notoriously difficult to measure the memory consumption of Java programs di­
rectly, we describe the size of the model in terms of number of relations. The number of relations 
is an accurate indication of the size of the model because the size of any relation object is constant: 
the size of the database is thus determined by the number of relations stored. Figure 3.14 shows the 
number of relations stored in the model, as a function of lines of source code analyzed. Again, we 
observe a linear progression, with the origin close to zero, and a slope of about 1.75 relations/LOC. 

Figure 3.14: Model database size 

Finally, to mitigate the cost of model extraction, the FEAT tool updates the model incremen­
tally after an initial extraction. In other words, after an initial extraction, every time a source file is 
changed, FEAT analyzes the changes and updates only the affected relations in the model database. 
This technique avoids costly periodic re-extractions of the model. 
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User Interface 

The responsibility of the user interface component is to support the functionalities described in Sec­
tion 3.2.2. The FEAT user interface is implemented by contributing functionality to the Eclipse 
platform through the Eclipse extension point mechanism and Application Programming Interface 
(API) [93]. Two of the main design issues related to the user interface component are the visualiza­
tion of concerns, and the support for different fragment types. 

There exists a duality in the concern graph representation. On one hand, concern graphs are 
a graph structure of program elements and the relations between them. On the other hand, concern 
graphs are a recursively-defined hierarchy of concerns and fragments. The graph representation 
may be better for some tasks, such as analyzing the interactions between two concerns, while the 
fragment representation is better suited to other tasks, such as moving fragments from one concern 
to another. We have chosen to present the former (graph) representation to users, and hide the details 
of the composition of fragments into concerns (except in the Inconsistency View). Hiding fragment 
composition has the advantage of eliminating the need for users to reason about the complexity 
of assembling fragments. With the current user interface, the concept of fragments is completely 
hidden (except in the Inconsistency View). One of the consequences of this choice is that only 
minimal support is available for tasks that directly involve fragments. For example, it is not possible 
to move a fragment from one concern to another. We have thus traded flexibility for simplicity in the 
interface. However, exposing the graph structure of concern graphs to users represents a challenge. 
Displaying graphs visually has always been fraught with problems of scalability, readability, and 
layout. For this reason, we have chosen to display concern graphs as a collection of participants and 
relations. This representation has the additional advantage of being close to the views provided in 
existing integrated development environments. 

Finally, we felt that supporting all of the types of fragments described in Chapter 2 would 
overly complicate the FEAT tool and impose an unreasonable cognitive load on users. For this rea­
son, we have focused on supporting only the two most useful fragment types: primitive fragments, 
and fragments with a primitive domain and a universal range. Fragments having another fragment 
as domain were originally supported, but have been removed from the interface to simplify incon­
sistency management. Further research should help establish the cost-benefit tradeoff related to the 
use of complex fragments structures in the definition of concern graphs. 
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Chapter 4 

Validation 

The thesis of this dissertation can be decomposed into three claims. A first claim is that a concern 
graph can help developers perform software evolution tasks more systematically. We will refer to 
this claim as the usefulness claim for concern graphs. A second claim is that a concern graph can be 
produced cost-effectively during program investigation activities. This claim will be referred to as 
the low-cost claim. Finally, the third claim is that a concern graph can be used to support software 
evolution on different versions of a system. This will be referred to as the robustness claim. 

To validate these claims, we have performed a series of five case studies of program evolution 
using concern graphs. Each case study was designed to investigate specific research questions, 
focusing on one of the claims above. We refer to each case study with the name of the software 
system evolved as part of the study. In an initial study, we performed a change task on a small 
system called AVID to evaluate how useful the concern graph idea was in practice. The AVID study 
focused on evaluating the usefulness claim. In a second study, we asked a small group of developers 
to use FEAT to investigate the code for a static analysis tool called Jex in the context of a change 
task, and to build a concern representation for the code related to the change. The Jex study focused 
on validating the low-cost claim, and evaluating whether developers not familiar with the concern 
graph theory could create a concern graph effectively. To investigate issues of scalability related to 
the technology for supporting concern graphs, and strengthen our low-cost claim, we performed a 
third case study involving the analysis of a large network provisioning system developed by Redback 
Networks Canada. The fourth case study involved developers performing a complete change task 
on the jEdit application described in Section 1.2. In this study, our main focus was the behavior of 
developers using FEAT during a change task. Results from the jEdit study provide evidence that 
using concern graphs helps developers perform a change task systematically. Finally, to validate the 
claim that the concern graph structure is robust enough to capture a concern in different versions 
of a system, we studied how a concern graph defined on one version of the ArgoUML application 
could be used on a later version of the same system. The first three case studies were performed 
using an earlier prototype of the FEAT tool [112], while the jEdit and ArgoUML case studies were 
performed using FEAT version 2.3.0 (the version described in Chapter 3). Table 4.1 summarizes 
the claim each study focused on, and Table 4.2 summarizes the characteristics of each study. In 
Table 4.2, the first two columns list the name of the system evolved as part of each study and its 
size in lines of code.1 The third column ("External Participants") states whether the study involved 

'in this dissertation, unless otherwise stated, all line of code (LOC) figures represent lines of true source 
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Table 4.1: Claims addressed by the different studies 
Study/Thesis claim 1. Usefulness 2. Cost 3. Robustness 

1. AVID * 
2. Jex • 
3. Redback • 
4. jEdit * 
5. ArgoUML • 

Ta b l e 4.2: Characteristics of the different studies 
Study System size (LOC) External Participants Replication 

1. AVID > 12 500 No No 
2. Jex > 57 000 Yes Yes 
3. Redback » 100000 No No 
4. jEdit > 64500 Yes Yes 
5. ArgoUML > 92000 No No 

participants not directly related to the development of the concern graph approach. Finally, the 
fourth column ("Replication") states whether more than one case of the evolution of the system was 
investigated as part of the study. 

In the rest of this chapter, we describe and justify our research methods (Section 4.1), and then 
describe each case study, with the questions it addresses and the results we have obtained. Finally, 
in Section 4.7, we synthesize the results and discuss the overall validity of the studies. 

4.1 Methodology 

We have chosen the case study as our validation technique because it is the research method best 
suited to the explanation of a phenomenon that involves a large number of factors over which only 
a limited amount of control is available [103, 154]. Program evolution is such a phenomenon, in­
volving developers with diverse backgrounds, large systems, and non-trivial change tasks. In our 
case, the number and variety of factors affecting the progress and results of realistic evolution tasks 
preclude a controlled approach. To name only a few examples, the success of a non-trivial evolution 
task can be influenced by the skill and ability of a developer, the proficiency of a developer with 
specific techniques such as debugging, the motivation of a developer to succeed in the task, the 
time of day when the task is performed, the number of pauses taken, the presence or absence of 
environmental distractions, etc. As a consequence, in our evaluation of the concern graph approach 
to software evolution, we were more interested in obtaining detailed data that could explain qual­
itatively why our claims were valid or invalid, as opposed to seeking the explanation for causality 
through statistical inference. 

The type of scientific generalization supported by case study research is called analytic gener­
alization. Analytic generalization generalizes a phenomenon "to theoretical propositions and not to 
populations or universes" [154: p.10]. In other words, using the method of analytic generalization, 
"a previously developed theory is used as a template with which to compare the empirical results of 

code, excluding scripts, resource files, comments, and blank lines. 
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the case study." [154: p.31]. The analysis of the case studies, as described in the following sections, 
will thus follow a pattern supporting this analytic generalization. After a brief overview of the study, 
we formally state the research question the study was intended to answer. For each research ques­
tion, we then present the theoretical proposition underlying the hypothesis [70]. We then describe 
the study setting and its results. Then, in each case, we summarize the results in the form of the 
answer we elicited for each research question. Finally, in each case, we discuss the most important 
factors affecting the validity of the study. We discuss how the results generalize and the overall 
validity of the studies in Section 4.7. 

4.2 AVID Study 

In the first case study, the author of this dissertation took the role of a maintenance programmer to 
perform a modification to AVID, a Java visualization software system developed at the University of 
British Columbia [143]. AVID comprises 12 853 non-comment, non-blank lines of code organized 
in 177 classes and 16 packages. The participant for this case study had no previous exposure to the 
code of AVID. 2 

4.2.1 Theory 

The goal of the AVID study was mostly exploratory, to assess the practical benefits of using concern 
graphs. The research questions motivating the AVID case study were the following: 

1. Can concern graphs adequately capture the code relevant to a change task? 

2. How does a concern graph help in performing a software modification? 

Our initial theory for these questions was that: 

1. Concern graphs can adequately capture the code relevant to a change task because they cap­
ture structural information needed to make the change, and disregard details that are not 
essential. 

2. A concern graph supports a software modification task by providing an uncluttered view of 
the program elements related to a change task and of the relations between them, so that a 
developer can easily reason about the change. 

The version of the FEAT tool used to perform this and the next two studies is a stand-alone Java 
application that supports a different concern graph model and a smaller set of features [112]. For 
the purpose of describing this study, it suffices to mention that the FEAT tool used supports creating 
a single concern (as opposed to a hierarchy of concerns), supports mostly behavioral queries (see 
Section 3.1), and does not tolerate inconsistencies. The usage model for the tool used in the study 
is thus slightly different than the one described in Section 3.2.1 in that users have to first create a 
concern graph and then modify the code. 

2The participant was involved in the AVID project as a user of the technology. 
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4.2.2 Study Design 

The study consisted in performing a complete change task for AVID using the FEAT tool. The data 
collected during the study consists of the modified version of the AVID code, the concern graph 
produced during the study, and a log of the actions performed in the tool during the study. 

The task To visualize the execution of Java programs, the AVID system requires, among other 
inputs, a file containing summarized information about the events generated during the execution 
of a Java program [144]. This summary file is generated by a summarizing program. The AVID 
summarization program takes as input an event trace file and produces a summary file that contains 
information such as the number of calls and the number of objects allocated or deallocated up to 
a certain point in the trace file, as determined by some user-defined checkpoint frequency. The 
summary files also contain information about the age of objects at allocation and deallocation time. 

The object age information is voluminous, and experience with the AVID visualizer showed 
that this information was not always used. Being able to generate and read summary files that did 
not include this object age information was thus a desirable change for AVID, and we chose it for 
our first case study. 

Finding the concern code In performing this task, the subject used FEAT to discover the concern 
code that was to be modified, and to save a representation of this code as a memory aid when later 
performing the change. 

The discovery process that was carried out by the subject can be divided into four slightly 
overlapping phases. A preparatory phase consisted of understanding the application domain and of 
seeding the concern. This phase did not involve concern graphs or FEAT. A second phase consisted 
of discovering the part of the code where the writing to the summary files was triggered. A third 
phase involved understanding and describing the reading and writing mechanism for summary files. 
A fourth phase consisted of the discovery of a finer implementation detail based on the concern 
graph that was created, while making the change. 

To understand the application domain, the subject spoke briefly with an original developer of 
the system. This developer explained, at an abstract level, the functioning of the visualizer and the 
use of summary files. This discussion did not involve viewing source code or explicitly mentioning 
actual data structures. The only exception is that the original developer mentioned the entry point 
to the summarizing program, class PrimarySummarization. This class was used as a seed to the 
concern and thus, when the subject started using FEAT, the concern graph consisted solely of this 
class name. 

In the second phase, the subject looked for the major program elements involved in reading and 
writing to the summary files as a means of gaining an understanding of the format of the files. Using 
FEAT, loaded with the single entry-point class PrimarySummarization, the subject expanded the 
class and added the main method to the concern description. A fan-out query on the main method 
revealed all of the elements used by main. These elements consisted of objects being created, 
and one call to method summarize of class EventSummarizer. This element was added to the 
concern graph because it was the only non-library method call. The subject then analyzed the 
summarize method more closely, using both the result of FEAT's fan-out query and the source 
code viewer. From this information, the subject determined that the only points that could involve 
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writing to the summary file were through calls to Info .write, Summary .write, and two store 
methods. The subject added these elements to the concern graph. Figure 4.1 shows the concern 
graph at this point. To produce this concern graph, the subject needed only to find and select the 
main, summarize, write, and store methods. Furthermore, it was only necessary to view the 
source code of method summarize. 

In the next phase, the subject discovered the details of the reading and writing protocol for sum­
mary files. Specifically, the subject explored the outgoing edges in the program model of the meth­
ods discovered in the previous phase to determine what elements actually performed the reading and 
writing operations, and then explored the incoming edges to analyze the context in which these op­
erations were performed. This phase was more iterative than the first, and included viewing source 
code through the automatic highlighting feature of FEAT, and exploring dependencies through the 
query capabilities of FEAT. Using this process, the subject discovered that the code pertaining to the 
reading and writing of summary files was located in the methods add, read, and write of classes 
Info, Summary, Categorylnfo, CategorySummary, and CategoryManager, and a handful of 
helper methods in the same classes. Once the complete mechanism was discovered, it was possible 
to determine, by looking at the corresponding source code, that only a subset of the methods iden­
tified deal with the reading and writing of object age information. Only these methods were added 
to the concern graph. 

The second and third phases required approximately 90 minutes to complete. The concern 
graph produced included 3 fields and 18 methods scattered across 7 classes. 

PrimarySummarization EventSummarizer declares 
| ^ calls 

main(...) »- summarize^..) 

Figure 4.1: Finding the important parts 

Making the change To implement the change, the participant visited the source file corresponding 
to each class in the concern graph once and implemented the changes needed to that class. Of the 
18 methods present in the concern graph, 12 had to be modified to implement the required change. 
Of the remaining six methods, four had object age-related code that did not need to be changed 
due to specific implementation details. The two other methods were left in the concern graph as 
structural "bridges" between different parts of the code. For example, method summarize (see 
Figure 4.1) was left in the concern graph as a pointer to the read and w r i t e methods, even if no 
code in summarize actually had to be changed. These methods could have been omitted, as they 
can be obtained easily with FEAT queries. 
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To test the change, the modified summarization program was used to generate new summary 
files both with and without the object age information, and these files were used in visualizing event 
traces. This allowed the subject to discover that one of the assumptions made about the behavior 
of the concern was wrong. This assumption was that the first read operation on a summary file 
would be done through the method read of class Info. Execution of the program revealed that the 
first read operation was in fact performed through the read method of class Summary. To remedy 
this situation, the subject used the concern graph in a final phase, to find the site of the first read 
operation to the summary file. The subject iteratively performed fan-in queries, investigating the 
resulting call sites with the code browser until the context of the calls was determined. 

In subsequent testing, the subject successfully used AVID to visualize event traces using the 
new format of summary files. Making the change and testing it required approximately 150 minutes. 

4.2.3 Results 

We draw five observations about concern graphs based on the use of FEAT for this change task. The 
observations are presented from the point of view of the case study subject, an experienced software 
developer. 

Observation 1 The granularity of the concern graph was sufficient to describe a concern for the 
purpose of the software change task. 

The subject did not need to consult any other documentation prior to implementing the change. 
The general behavior of the code learned as part of creating the concern graph was still fresh in 
memory, and the behavior that was not understood at the time of performing the change could be 
discovered in minimal time through queries. The concern graph also pointed to the target source 
code with sufficient accuracy. 

Observation 2 Most of the source code viewed while finding a concern was relevant to the concern. 

An explanation for this observation is that the details of code not related to the concern under 
investigation were usually discarded at the level of the concern graph model. 

Observation 3 The number of false positives was low. 

In the context of this case study, a false positive is a code element included in the concern 
graph that did not implement the object age feature. In this case study, only two out of the 19 
methods identified in the concern graph were not directly related to the concern. We posit that this 
low false positive rate is a result of the queries returning elements that are structurally dependent, 
as compared to text searching tools that can return unrelated items. In this study, the false positives 
that did occur were methods implementing parts of the object age concern that were not directly 
impacted by the change. 

Observation 4 The number of false negatives was low. 

The subject made a single pass through the source files to implement the change. Only one 
method had to be added to the concern graph while performing the change. Our explanation for 
this observation is that most of the concern code interacts structurally, so the cross-referencing 
capabilities of FEAT allowed the subject to identify the extent of the concern. 
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Observation 5 The program model was not useful in helping to understand highly algorithmic 
code. 

The subject determined the reading and writing protocol for summary files by reading the 
source code and the comments of a few specific files. The concern graph was not helpful in under­
standing this behavior because it did not capture information about the behavior of the concern. 

The findings of this study can be summarized in two propositions corresponding to the two 
research questions. 

1. The concern graph provided an adequate representation of the code relevant to the change. 
Elements not captured by the concern graph did not need to be rediscovered for the developer 
to complete the task. 

2. The concern graph provided good support for documenting the list of methods that needed 
to be changed. It also provided a quick means to perform additional investigation. It did not 
provide good support for investigating algorithmic code. 

4.2.4 Validity 

The internal validity3 of the AVID study is threatened by potential investigator bias, and by the fact 
that only one evolution task was considered. 

Because the subject in the AVID study was the inventor of the concern graph approach, the 
results can be expected to reflect a better than average use of the tool. Furthermore, the subject had 
a vested interest in the success of the study which might have influenced his behavior during the 
study. To mitigate the potential investigator bias in the analysis of the results, the observations were 
derived from an analysis of the raw data collected during the study, as opposed to the experience of 
the subject during the task. 

The second threat to the validity of the study is that because only one change task was con­
sidered, the results might be accidental due to the nature of the task. In this situation, a small, very 
focused task would have had the potential of only involving source code that is easily represented 
through concern graph. To mitigate this risk, we chose instead a task that involved many different 
types of interactions, scattered in more than 18 methods. 

4.3 Jex Study 

We performed a second case study to investigate the low-cost claim. Specifically, we were interested 
in evaluating whether developers unfamiliar with concern graphs and FEAT would be able to build 
a concern graph for the code related to a change without difficulties or extensive effort. 

3The test of internal validity for a study questions whether the results truly represent "a causal rela­
tionship, whereby certain conditions are shown to lead to other conditions, as distinguished from spurious 
relationships." [154: p.33] 
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4.3.1 Theory 

The research question guiding the design of the Jex study can be stated as follows: 

Can developers budd concern graphs effectively whUe investigating source code in preparation for 
a software evolution task? 

The theory underlying this question is that concern graphs can be built effectively during pro­
gram investigation activities because they are built from the results of queries usually performed 
when investigating source code. 

4.3.2 Study Design 

In this case study, a subject was asked to identify the code contributing to a specified concern in the 
context of a program change task. We replicated the study three times with three different subjects. 
In each case, the subject was not asked to perform the change. The target for this task was the Jex 
system version 1.1 [110, 111]. Jex is a static analysis tool that produces a view of the exception 
flow in a Java program. Jex is written in Java and consists of 57 152 non-comment, non-blank lines 
of code organized in 542 classes and 18 packages. 

The subjects were asked to identify the code in Jex that handles Java anonymous classes. The 
context for identifying this code was to change Jex to support a version of the Java language that 
did not include anonymous classes. 

Using FEAT, a concern graph for this concern was produced by the developer of Jex (the author 
of this dissertation). The elements in this concern graph span 8 classes in 3 different packages. A 
subset of this concern graph, consisting of one class and one method, was provided as a seed (or 
starting point) to the subjects of the case study. 

The three subjects in this study had diverse backgrounds: one was a senior undergraduate 
student who had worked in two different companies as part of a co-operative work program, one was 
a graduate student with previous work experience as a software developer, and one was a developer 
for a telecommunications company. All of the subjects had some experience with Java, although 
only one was actively involved in development work with Java at the time of the case study. The 
subjects had no previous exposure to either the source code of Jex or the FEAT tool. 

Prior to performing the task, the subjects completed a 30-minute training session with the 
FEAT tool, during which they had assistance from the developer of FEAT. The subjects were then 
asked to produce a description of the anonymous class handling concern that was as complete and as 
precise as possible. The subjects were instructed to perform the task using only FEAT. In particular, 
code viewing was to be done only through FEAT's code highlighting function. 

The subjects were asked to report the time required to perform the task, their final concern 
graph, a usage log automatically generated by FEAT, and their confidence in the quality of the result, 
in terms of estimated percentage of the concern code they had missed. Two additional subjects were 
involved in prototyping the study. Our experiences with these subjects caused us to adjust the 
content of the training session to ensure the subjects understood how to use FEAT. The results of 
the prototype subjects are not included in the results reported. 

53 



4.3.3 Results 

We analyzed two types of data from the study: the completeness of the concern graph produced 
(quantitative), and the usage patterns of the subjects (qualitative). We also took into account the 
time taken by each subject to perform the study. We used the completeness data to verify that the 
subjects had followed the instructions carefully, and investigated the concern prescribed. We used 
the usage patterns and time taken to validate the low-cost claim. 

For the analysis of the completeness, we used the concern graph produced by the author of Jex 
as a benchmark. Class and method.elements in the concern graphs produced by the version of FEAT 
used in this study can be marked with a special all-of marker if it is deemed by the FEAT user that 
all of the code for the element is relevant to the concern. One of the 8 classes in the benchmark 
concern graph was marked as all-of. Of the remaining 7 classes, the concern graph includes 1 field 
and 15 methods: 6 methods are labeled all-of; 12 code elements, such as the use of a field, are 
specified as part of the concern in the remaining 9 methods. Figure 4.2 shows a view of this concern 
graph. The first level of indentation represents classes. The second level of indentation represents 
class members, and the third level of indentation represents the uses of class members in method 
bodies. 

class J e x F i l e 
a l l - o f method isAnonymous 

class Workspace 
a l l - o f method getExceptionFromAnonymousClasses 

a l l - o f class AnonymousJexFile 
class JexLoader 

a l l - o f method getExceptionsFrortiAnonymousClasses 
a l l - o f method getTypes 

class JexPath 
method main 

c a l l s JexPath.getAnonymousJexFiles 
a l l - o f method getAnonymousJexFiles 

class J e x F i l e C o l l e c t i o n 
method dump 

c a l l s JexFile.isAnonymous 
method writeJexFiles 

checks AnonymousJexFile 
class J e x V i s i t o r 
method addExternalNonVirtualCallExceptions 

c a l l s JexFile.isAnonymous 
method addVirtualCallKxceptions 

c a l l s JexVisitor.addAnonymousVirtualCallExceptions 
a l l - o f method addAnonymousVirtualCallExceptions 

class TypeDeclarationCollectorVisitor 
f i e l d aNextAnonymous 
method visitNewObjectExpression 

writes TypeDeclarationCollectorVisitor.aNextAnonymous 
method v i s i t C l a s s D e c l a r a t i o n 

creates AnonymousJexFile 
c a l l s AnonymousJexFile.<init> 
reads TypeDeclarationCollectorVisitor.aNextAnonymous 
writes TypeDeclarationCollectorVisitor.aNextAnonymous 

method <init> 
writes TypeDeclarationCollectorVisitor.aNextAnonymous 

method visitTypeDeclarationStatement 
reads TypeDeclarationCollectorVisitor.aNextAnonymous 

Figure 4.2: The anonymous class handling concern in Jex 
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Table 4.3: Concern completeness results 
Subject 1 2 3 

Classes found (8) 7 6 8 
Field found (1) 1 0 0 
Methods found (15) 13 7 11 
Code elements found (12) 11 3 7 
False positives 2 0 0 

Table 4.3 shows how many of these elements were identified by the study subjects. Subject 1 
found almost all of the concern code in the benchmark, corroborating Observation 4 from the AVID 
study. The elements missed by this subject were the result of minor inconsistencies in building the 
concern graph. For example, the participant included the call to method J e x F i l e . i s Anonymous 
in method J e x V i s i t o r . a d d E x t e r n a l N o n V i r t u a l C a l l E x c e p t i o n s , but failed to include the 
declaration of method i s Anonymous itself in the concern graph. This situation could be avoided 
automatically if FEAT included the targets of edges in the concern graph.4 Subjects 2 and 3 missed 
a higher number of elements. The majority of their false negatives resulted from a failure to see 
that one field, aNextAnonymous of class T y p e D e c l a r a t i o n C o l l e c t o r V i s i t o r , was involved 
in implementing the concern. This field was found by the expert and Subject 1. The expert found 
the field because, in the source code, the field was referenced close to the call to the creation of an 
AnonymousJexFile object in method v i s i t C l a s s D e c l a r a t i o n . Reference to this field was 
also visible in the results of a fan-out query. Once field aNextAnonymous is discovered, a fan-in 
query on the field returns five out of the seven elements of class T y p e D e c l a r a t i o n C o l l e c t o r -
V i s i t o r related to the concern. 

The number of false positives in the concern graphs produced by the subjects was low. Of 
the three subjects, only one produced a concern graph with false positives: this graph had two 
false positives which were clients of the functionality described by the concern rather than elements 
of the concern. This data corroborates Observation 3 from study one. In general, we found the 
completeness data indicative that the subjects had focused on the right functionality (as opposed to 
navigating arbitrary structures during the experiment). This increases the validity of the results. 

The subjects each produced a concern graph in less than 50 minutes. We find the quantitative 
results of this case study encouraging because the subjects, who all had minimal training with the 
concept of concern graphs and the FEAT tool, were able to narrow down, in a short amount of time, 
an unfamiliar code base of 57 kLOC to a concern graph that captured many of the pertinent parts of 
the concern. 

To validate the low-cost claim, we also analyzed the usage logs collected from the use of FEAT 
by the subjects. These logs show that approximately 80% of the source code viewed while finding a 
concern was relevant to the concern (Observation 2). This measure is approximate because viewing 
an element opens the entire source file. As a result, it is possible to view different elements in 
the same file. Nevertheless, we interpret this measure as indicative that the subject did not rely on 
intense code-reading strategies to understand the source code, and instead could rely on the queries 
provided by FEAT. 

4Version 2.3.0 of FEAT now does this automatically. 
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We also found, however, that, as in the first case study, the subjects in this study were unable to 
use the concern graph to capture system behavior. Moreover, they were unable to use the approach to 
represent subtle aspects of the structure (Observation 5). For example, even though both subjects 2 
and 3 viewed code related to method JexLoader. getTypes, neither of these subjects incorporated 
this method in their concern graph. The getTypes method belonged in the concern graph because 
it was a private method performing specific services for loading anonymous Jex files. To discover 
this information, subjects had to observe that the caller of the method was part of the concern, and 
that there was no other caller of the method. 

To summarize the results, we found that the three developers involved in the study managed 
to create a concern graph capturing most of the code relevant to the change task using the structural 
queries supported by the FEAT tool. We find this result in support of our theory. 

4.3.4 Validity 

For the Jex study, the principal threat to the overall validity is a threat to its construct validity.5 To 
ensure that the data correctly reflects the low cost of building concern graphs, we triangulated [20] 
three different data sources: the time taken by each subject, the final concern graph produced, and 
the log of the actions performed by each subject. The concern graph produced by each subject 
helped us establish that the subject's actions during the study corresponded to the task. The time 
taken and the analysis of the code investigated by the subjects helped us determine how much 
time was spent investigating irrelevant code. Redundancy in the interpretation of each data source 
contributes to increase our confidence in the construct validity of the study. 

4.4 Redback Study 

To evaluate whether the technology supporting concern graphs scales, we applied FEAT to NSC 
release 2.1, a large network provisioning code base developed by Redback Networks Canada, Inc. 

4.4.1 Theory 

The research question of interest for the Redback study was simply whether the concern graph 
approach scales. Our claim, associated with the general low-cost claim, is that the concern graph 
approach does scale. We theorize that the approach scales because it is based on a program model 
that captures the essential elements and relations of a program, as opposed to all of the details of the 
source code. 

4.4.2 Study Design 

This study consisted in producing a program model of a large industrial code base with the FEAT 
tool, to use FEAT to capture existing scattered concerns in the code base, and observing and docu­
menting any issues associated with the scalability of the approach. 

5The test of construct validity questions whether the operational measures used correctly reflect the con­
cept studied. 
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We applied the FEAT tool to the code of the Redback Canada NSC code base. The NSC code 
base comprises 233 packages and 1489 classes. It depends on approximately 9 MB of third-party 
libraries. 

4.4.3 Results 

The approach taken in the FEAT tool is to load the entire program model into memory. This ap­
proach allows users to quickly perform dependency analyses on any parts of a program, and to 
dynamically reconfigure the environment used to evaluate the queries. 

In the case of the NSC code base, it was not possible to load all of the application classes and 
their dependent classes into the memory available on the analysis machine.6 The very large size of 
the NSC code base made it necessary to find a way to selectively restrict the in-memory model of 
the program. We accomplished this restriction by modifying FEAT to fully load only a user-defined 
set of classes. Other classes were loaded as stubs that included some information about the class and 
its members but that did not include the entire bytecode necessary to derive behavioral relations. A 
consequence of this tradeoff is that any class loaded as a stub could not be queried for dependencies 
to a program element, except if these dependencies could be detected without the bytecode (e.g., 
field types, method parameter types). In practice, this approach does not influence the results of the 
queries if the classes loaded as stubs do not transitively depend on the application classes of interest, 
which is generally the case with library code and low-level application code. Loading some classes 
as stubs does not influence the completeness of the class-hierarchy analysis that is performed to 
determine the potential targets to virtual calls because this analysis requires only method signatures. 

To verify that FEAT was operating correctly given these optimizations, we used it to identify 
the code corresponding to a port to a new error handling framework that had been added in a previ­
ous version of NSC. By differencing the code in the versions recorded before and after the change, 
we were able to determine that the code we identified using FEAT corresponded to the change. 

To summarize the results, for the concern graph approach to scale to very large programs, it is 
necessary to restrict the program model. As a result of this study, we have included a mechanism to 
restrict a program model loaded in FEAT to classes declared in a set of packages specified by a user 
of the tool. 

4.4.4 Validity 

The research question for the Redback study was technical. There are no significant threat to the 
validity of the results. 

4.5 jEdit Study 

To strengthen the validation of the usefulness claim established in the AVID case study, we per­
formed a replicated case study of a complete evolution task in jEdit. The change task we used for 
this case study is the task we have been using as a running example through this dissertation (see 
Section 1.2). 

6The machine used had 256MB of memory. 
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4.5.1 Theory 

The jEdit case study focused of validating the claim that concern graphs can help developers perform 
software evolution tasks more systematically. As such, our investigation is aimed at answering the 
following research questions. 

1. How do developers use concerns graphs during program evolution? 

2. Why is the behavior of developers using concern graphs more (or less) systematic? 

The theory underlying these research questions relies on two main hypotheses, which we designate 
as the precise investigation and precise information capture hypotheses. 

1. Precise investigation: By investigating source code following structural relations, and focus­
ing on one concern, developers spend less effort investigating irrelevant information. 

2. Precise capture When investigating source code, developers use concern graphs as an ab­
straction to preserve essential knowledge about the different elements in the source code in­
volved in a change, and of the relations between the different elements. Such activities lead to 
more effective program modifications because the information captured is directly linked to 
source code, so that code relevant to a change does not have to be re-discovered by navigating 
through non-relevant source code. 

4.5.2 Study Design 

The basic design for the jEdit study was to monitor the activities of different subjects performing 
a complete program evolution task with or without the FEAT tool. Specifically, we replicated the 
investigation with two subjects using FEAT and two subjects not using FEAT (the control group). 
We chose the jEdit system for this study because it is large enough to preclude a systematic under­
standing of the entire code base by the subjects during the time alloted, and because a large system 
allows us to study a change task that is representative of change tasks in industrial settings. In the 
rest of this section, we describe the task the subjects had to perform, the process of a replication of 
the program evolution task, and how the subjects were selected for the study. 

The Task The target system for the task was the jEdit text editor (version 4.6-pre6).7 jEdit is 
written in Java and the version we used consists of 64 994 non-comment, non-blank lines of source 
code, distributed over 301 classes in 20 packages. Among other features, jEdit saves open file 
buffers automatically. Our case focuses on this autosave feature. An overview of this task was 
presented in Section 1.2. We provide the complete details of the experimental setup here. 

In version 4.6-pre6, any changed and unsaved (or dirty) file buffer is saved in a special backup 
file at regular intervals (e.g., every 30 seconds). This frequency can be set by the user through an 
Options page accessed through a menu command in the application's menu bar. If jEdit crashes 
with unsaved buffers, the next time it is executed, it will attempt to recover the unsaved files from 
the autosave backups. A user can disable the autosave feature by specifying the autosave frequency 
as zero. This option is undocumented, and can only be discovered by inspecting the source code. 

7http://www.jedit.org. 
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The task consisted of the following modification request. 

Modify the application so that the users can explicitly disable the autosave feature. The modi­
fied version should meet the following requirements. 

1. jEdit shall have a check box labeled "Enable Autosave" above the autosave frequency field 
in the Loading and Saving pane of the global options. This check box shall control whether 
the autosave feature is enabled or not. 

2. The state of the autosave feature shall persist between different executions of the tool. 

3. When the autosave feature is disabled, all autosave backup files for existing buffers shall be 
immediately deleted from disk. 

4 . When the autosave feature is enabled, all dirty buffers shall be saved within the specified 
autosave frequency. 

5. When the autosave feature is disabled, the tool shall not attempt to recover from an autosave 
backup, if for some reason an autosave backup is present. In this case the autosave backup 
should be left as is. 

Understanding the complete set of functionality related to the change task involves reasoning 
about the use of approximately five fields and 27 methods scattered in 10 classes. The change, as 
initially performed by the author of this dissertation in preparation for the study, amounted to about 
65 lines scattered in six classes. 

Study Phases The study was divided into four or five phases, depending on whether a subject used 
FEAT (FEAT group) or not (control group). To minimize potential investigator bias, each phase was 
described entirely through written instructions. In any phase, the subject could ask questions, but 
we established guidelines restricting answers from the investigator to clarifications of the written 
material. 

Eclipse Training Phase To investigate the code and to perform the change, subjects were to use 
the Eclipse Platform.8 Eclipse is an open-source integrated development environment for Java. It 
is a state-of-the-art environment, supporting sophisticated search and cross-reference features, an 
integrated debugger, a syntax-highlighting editor, etc. Because subjects did not have to be familiar 
with the Eclipse platform as a development tool, we first had the subjects complete a tutorial on 
how to use the principal features of Eclipse required for the study: code browsing and editing, and 
performing searches and cross-references. This phase was limited to 30 minutes. Subjects already 
familiar with Eclipse were asked to read through the tutorial, but could end the training period at 
their discretion. Before continuing on to the next phase, the subjects had to pass a simple proficiency 
test, in which the investigator asked them to perform various tasks covered in the tutorial. 

8http.7/www.eclipse.org. 
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F E A T Training Phase A subject assigned to the FEAT group was required to complete a training 
tutorial on the FEAT tool. The training tutorial instructed the subject on how to use the tool effec­
tively by focusing on one concern at a time during program investigation. The training tutorial also 
covered most of the features of the tool. 

After completing the tutorial, the subject was asked to experiment freely with the tool. The 
complete training phase for the FEAT tool was limited to one and a half hour. Before continuing 
on to the next phase, the subject had to pass a proficiency test, in which the investigator asked the 
subject to perform various tasks covered in the tutorial. 

Program Investigation Phase After all training, a subject was asked to read some preparatory 
material about the change to perform. This material included excerpts from the jEdit user manual 
describing file buffers and the autosave feature, instructions on how to launch jEdit and test the au­
tosave feature, the change requirements listed in section 4.5.2, and a set of eight test cases covering 
the basic requirements. The written material for the phase also included two pointers to the code, 
intended to simulate expert knowledge available about the change task. These pointers consisted 
of the classes Autosave and LoadSaveOptionPane, the classes dealing with the autosave timer 
and the option pane where the autosave save frequency was set, respectively. A subject assigned to 
the FEAT group was given these same pointers in the form of two pre-loaded concerns in the FEAT 
tool, each concern containing one class. 

A subject was then given one hour to investigate the code pertaining to the change in prepara­
tion to the actual task. A subject was to investigate the code using the search and cross-references 
features of Eclipse (for the control group), or the queries of the FEAT tool (for the FEAT group). 
A subject was allowed to take notes in a text file. A subject was also allowed to execute the jEdit 
program, but not to change any code, even temporarily, nor to use the debugger. We set these re­
strictions to reduce the influence of debugging skills in Eclipse on the results. We also wanted to 
avoid use of print statements as a form of program understanding. 

During the program investigation phase, we recorded all of the activities of the subjects using 
the Camtesia screen recording program9 operating at 5 frames/seconds and a resolution of 1280 x 
1024 pixels. 

Program Change Phase In this phase, a subject was instructed to implement the requirements as 
well as possible. A subject was given two hours to implement the change. Use of the debugger was 
again disallowed. This phase was also recorded using the Camtesia screen capture program. At the 
end of the phase (or the two-hour period), an investigator ran through the test cases and recorded the 
number of test cases that succeeded. The test cases used by the investigator were exactly the same 
as the one provided to the subject. 

Interview Phase After the study, subjects were interviewed for 10 to 20 minutes about their expe­
rience. Questions asked by the investigator addressed the strategy they used to plan and execute the 
change, detailed technical questions about how some functionality was discovered and understood, 
and more general questions about the use of notes, and about the major problems they faced. Ad­
ditionally, subjects in the FEAT group were asked how different features of the FEAT tool helped 

9http://www.techsmi th.com. 
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or hindered them in completing their task. The interviews were recorded using the Camtesia screen 
capture software with an audio input stream, so that the comments of the subjects could be synchro­
nized to code that the subjects identified on the screen. 

Subject Selection Subjects for this study were recruited through a mailing list for the Depart­
ment of Computer Science at the University of British Columbia, and through personal contacts. 
Subjects were required to have Java programming experience, and experience with the maintenance 
of medium-to-large systems. Subjects were paid for their time at an hourly rate of 20 CND$. As 
part of the study data, each subject was asked to state whether he/she had previous experience with 
Eclipse, and to estimate his/hers programming experience, in terms of number of full-time months 
of programming experience (in any programming language), and number of months of Java pro­
gramming experience (with proportional equivalence factors for part-time). The study presented in 
this section is a refinement over a larger previous study [115], which indicated problems with the 
usability of the FEAT tool. The problems identified have been corrected prior to undertaking the 
investigations reported here. Chapter 6 discusses the evolution of the user interface to the FEAT 
tool in more detail. 

4.5.3 Results 

The data collected as part of the jEdit study includes the experience of the subjects involved in the 
study, the time taken to perform the task, the final version of jEdit after the evolution task, screen 
capture movies of the change investigation and change execution phase for each subject, and the 
interviews. After collection, each source of data was processed for analysis. To reflect the inaccu­
racy of the self-reported experience metric for each subject, the number of months of programming 
experience reported was converted to two broad categories: high, or low, with different intervals for 
general experience and Java programming experience. The measure of the time taken to execute 
the change was discarded as invalid for the purpose of our analysis because the subjects were not 
asked explicitly to optimize the time taken to perform the task. For this reason, we do not report the 
time measures here as it would mislead the interpretation of the results. The code produced by the 
subjects as part of the task was inspected for correctness and general quality. The solution for each 
subject was deemed of high quality if it respected the existing design and implementation decisions 
implicit in the code of jEdit. The screen capture movies were transcribed into a series of actions 
performed by the subjects. Transcripts are discussed in more detail below. Finally, each interview 
was transcribed and analyzed for consistency with the actual actions of each subject. This analysis 
revealed serious inconsistencies between what the subjects thought they did (as reported in the in­
terview), and what they actually did (as evidenced by the screen capture movies). For this reason, 
we have also discarded the interviews because we judged them to be an unreliable source of data. 

To analyze each case, we have thus focused on the resulting source code and the screen capture 
movies (and corresponding transcripts) as our main source of data. To ensure that we were compar­
ing subjects of relatively equal ability, we have used the modified version of the jEdit source code 
to validate that each subject had succeeded in the task. Once this assertion was verified, we used 
the screen capture movies and transcripts to investigate how the subjects behaved around two types 
of activities: information discovery, and information use. Information discovery relates to how 
developers find important information about the implementation of a concern in source code, and 
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how they capture this information. Information use relates to how developers retrieve information 
previously discovered, and use it to carry out a program evolution task. According to our theory of 
precise investigation, investigating the code based on the Java Standard program model (supported 
by FEAT) in the context of a concern should help developers focus on the code relevant to a concern 
and avoid the perusal of irrelevant information. According to the precise capture theory, concern 
graphs should help developers capture information closely related and relevant to the change task, 
and access this information without having to peruse non-relevant information. To elicit data sup­
porting or invalidating our two theories, our approach was to select a piece of information about the 
implementation of jEdit that was critical to the implementation of different requirements (indepen­
dently of the strategy chosen), and to analyze how the subjects discovered and used the information. 
This analysis revealed that subjects using FEAT used a more streamlined approach to discovering 
and capturing information about the implementation of a concern, thus supporting both the precise 
capture and precise discovery theories, and validating the usefulness claim. In the rest of this sec­
tion, we present the detailed analysis of the behavior of the four subjects which form the basis of the 
validation of the usefulness claim. We first describe and justify the benchmark information we chose 
to study, then describe the characteristics of the four subjects and the quality of their modification. 
Finally, we present the qualitative analysis of the subjects' behavior during the study. 

Benchmark As the target of our detailed qualitative analysis of subject behavior, we have chosen 
the investigation and implementation of requirement 5 in the modification request presented to the 
subjects (see Section 4.5.2). The correct implementation of requirement 5 by a subject requires, at 
the very least, the discovery and understanding of a call between methods load (View, boolean) 
and recoverAutosave (View) of class Buffer. Method load (View, boolean) loads a file 
buffer in memory. If an autosave file for the buffer is detected, it calls method recoverAuto­
save (View) to perform the recovery. The implementation of the requirement involves testing 
whether the autosave property is enabled, and by-passing the call to recoverAutosave (View) if 
autosave is disabled. 

In the context of our analysis, this simple implementation concern presents several desirable 
characteristics: 

• The call to recoverAutosave (View) is not located near any code dealing with other issues 
of the autosave concern. As such, the likelihood of the call being discovered by chance is 
small; it requires a conscious effort. 

• As opposed to other requirements, the call to recoverAutosave (View) is not directly 
related to any member of the two classes given as a seed to the subjects. As such, the infor­
mation cannot be discovered through a simple query on the initial clues. 

• In contrast to the other requirements, requirement 5 involves finding a single and precise point 
in the program. There exists no ambiguity about whether or not the developers have found 
the right information. 

For these reasons, the behavior of subjects investigating and implementing requirement 5 is 
likely to be representative of the behavior of the subjects in a real setting. 
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Subjects In the rest of this section, the FEAT subjects are referred to as F l and F2, and the control 
subjects as C l and C2. 

The four subjects are all experienced programmers. Table 4.4 provides a relative evaluation 
of each subject's characteristics (provided by the subjects using a strict guideline). Data in the 
Eclipse column indicates the level of proficiency with the Eclipse development environment. A 
high value indicates that the subject had used Eclipse for real development tasks, whereas a value 
of low indicates that the subject either has either never used Eclipse, or has only tried it. The 
experience column indicates the overall programming experience of each subject. A value of low 
indicates between three and five years of full-time programming experience (or equivalent); a value 
of high indicates more than five year of experience. The Java column indicates the experience of 
each subject with the Java language. A value of low indicates less than one year, while a value of 
high indicates between two and three years of experience. When recruiting subjects for the FEAT 
group, we looked specifically for subjects with a low level of Java programming experience, so that 
any relatively better performance may not be correlated with experience with coding in Java. 

Table 4.4: Subject Characteristics 
Subject Eclipse Experience Java 
C l Low High High 
C2 Low Low High 
F l High High Low 
F2 High Low Low 

Solution Quality The modification implemented by all four subjects analyzed passed all of the 
test cases provided to the subjects. Additional inspection of the source code produced by each 
subject ensured that the solutions were correct and respected the existing design of jEdit. The 
solutions differed only in minor and subjective implementation decisions. It is important to note that 
developer behavior, not implementation quality, is the dependent variable in our analysis; quality 
is dependent on too many factors to be evaluated directly. As such, we consider that a relatively 
homogeneous quality of solutions between our subjects, instead of confusing the results, adds to the 
validity of the study by ensuring the adequacy of skills of the subjects in the study. 

Behavior For each subject, we describe how the call between methods Buffer, load (View, 
boolean) and Buff er. recoverAutosave () was discovered and used. All of the descriptions 
are based on the screen capture movies collected during the study. The transcripts of the movies 
relevant to this analysis are presented in Appendix C. In the descriptions below, the numbers in 
parentheses refer to the time of the action in the transcript. The letter I indicates a time in the 
investigation phase, whereas E indicates a times in the execution phase. 

Subject C l Subject C l traversed the relevant methods three times before recording the informa­
tion as relevant. In a first pass (1-0:39:59), the subject viewed method recoverAutosave while 
browsing the general structure of the Buffer class. This discovery was accidental; the subject did 
not explicitly record the information, and immediately moved on to the investigation of other meth­
ods. In a second pass, the subject viewed both methods of interest while scanning all the accessors 
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of the Buffer, autosave field (1-0:45:59). Again, the methods were traversed while the subject 
was investigating a different concern, and the subject moved on without explicitly recording the in­
formation. In a third pass, the subject was explicitly investigating the code relevant to requirement 
5. This fact was validated by a comment to this effect written by the subject in a textual notes files at 
1-0:53:08. At this juncture, the subject decided to scan the jEdit class to find information relevant 
to requirement 5. Then, the subject saw the method recoverAutosave in a view showing the 
results of a previous query. At this point this is completely accidental; the method would not have 
been shown if a different search had been performed last. Nevertheless, the subject seemed to rec­
ognize the method as relevant and attempts to record the information in the notes files. Recording 
this information took two attempts because the subject did not remember the name of the method 
properly. This difficulty in recording the information illustrates the need for a representation of 
concerns code that is directly linked to the code elements. 

During the execution phase, the subject viewed the notes (E-0:56:30), presumably to view 
what should be changed to implement requirement 5. The subject then recalled the Buffer class 
in the editor. Not finding the recoverAutosave method, the subject then browsed the Buffer 
class in the Package Explorer, selecting the recoverAutosave method (after making a mistake by 
selecting the wrong method). 

These observations show that the investigation is not precise because the subject found the 
recoverAutosave accidentally three times before recording it in a free-form text file. Information 
capture was also not precise as the subject made typographical errors while recording the name of 
the method, requiring multiple window switches. We also observe that information capture was 
not precise because the subject needed to browse the Buffer class to find the recoverAutosave 
method, in this case also making a mistake by selecting the wrong element. 

Subject C2 Subject C2's discovery of the benchmark information was also characterized by many 
serendipitous encounters prior to the explicit investigation of the information. Specifically, the sub­
ject first viewed recoverAutosave while scanning the methods of class Buffer (1-0:19:08). The 
method load (View) was found through a lexical search on the keyword "delete", in an investi­
gation unrelated with requirement 5 (1-0:24:47). Method recoverAutosave was accessed again 
while scanning the methods of Buffer at 1-0:42:12, and for no obvious reason since this action is 
followed by a separate thread of investigation in jEdit. At 1-0:43:53, after many traversals of the 
two benchmark methods, the link between recoverAutosave and load was finally discovered 
explicitly through a structural query. At this point, the modified the notes to capture the information 
"Buffer.load". After more browsing, the subject again modified the notes to include the information 
"Buffer.recoverAutosave". After a series of unrelated actions, all the callers of method load were 
systematically investigated. 

During the execution phase, the subject viewed the notes (presumably to retrieve the name of 
the methods related to the implementation of requirement 5), and then browsed the Buffer class to 
access the load and recoverAutosave methods. After a few spurious file switches, the subject re­
turned to Buffer, java and implemented requirement 5 in method recoverAutosave. The sub­
ject then performed a cross-reference query from the editor to identify the caller of recoverAutosave 
(method load), and moved on. 

Subject C2's discovery and capture of the benchmark information was far from streamlined 
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and precise. The benchmark methods were examined multiple times before the link between them, 
and their relevance to requirement 5, was identified and recorded explicitly. In particular, method 
l o a d and method recoverAutosave were recorded in the subject's notes in two separate events, 
separated by code browsing. The use of the information was more direct than for C l , with the 
subject accessing the l o a d method immediately after consulting the notes. However, because the 
information was not linked directly to the source code, accessing the l o a d method required brows­
ing irrelevant information in the Package Explorer. 

Subject F l Subject F l discovered method l o a d while systematically investigating all of the 
methods called by openFile, the method in charge of opening a file in the jEdit editor (1-0:41:38). 
The subject then obtained all of the methods called by l o a d through a FEAT query. The results of 
the query included the call to method recoverAutosave. Upon discovery of this call, the subject 
immediately created a new concern named BUFFER RECOVERY, and added the method call between 
l o a d and recoverAutosave to the concern. The subject then investigated the callers and callees 
of recoverAutosave, and then moved on to some other investigation. 

Shortly after (1-0:50:20), the subject accessed BUFFER RECOVERY, viewed the information in 
the concern, and proceeded to investigate all of the callers of recoverAutosave and load, before 
investigating a different part of the code. 

After the investigation phase, the information contained in the subject's BUFFER RECOVERY 
concern consisted of the two benchmark methods and of the call between them. In the execu­
tion phase, the subject used this information in three cases. In the first case (E-0:22:50), method 
l o a d was viewed but no action is taken, and the subject moved on to other parts of the code. In 
the second case (E-0:25:09), the subject selected the concern, viewed, alternatively, methods l o a d 
and recoverAutosave (presumably to decide where to implement the modification), and then 
performed the modification in recoverAutosave. The modification performed at this point con­
tained a bug; a not operator was missing in a conditional statement. 

After some testing revealed the bug, the subject came back to fix the code (E-1:51:08) by 
accessing the concern and viewing recoverAutosave. 

The data from subject F l supports the theory of precise discovery. Using FEAT, the subject 
discovered a benchmark method while systematically traversing a section of the control flow rele­
vant to loading file buffers. At this point the method was immediately identified as relevant, and 
added to the concern. The case of subject F l also shows how concern graph supported the precise 
capture of the code relevant to the concern. Subject F l needed to access the benchmark methods 
twice, once to implement the change, and a second time to fix a bug. In each case the location in the 
code was accessed directly through the concern description, avoiding the browsing and traversal of 
irrelevant code. 

Subject F2 Subject F2 discovered method recoverAutosave while systematically investigating 
all of the accessors of field B u f f e r . a u t o s a v e F i l e (1-0:23:56). When the recoverAutosave 
method was found, the subject queried FEAT for all of its callers. This revealed method load, which 
the subject investigated. The call between the two benchmark methods was then immediately added 
to the concern graph, in a concern named RECOVER FROM BACKUP. The information was recalled 
at one point in the investigation phase (1-0:50:38). 
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In the execution phase, the subject selected RECOVER FROM BACKUP and accessed and in­
vestigated the two benchmark methods. The two benchmark methods were the only methods con­
sidered during this episode. After investigating the information in RECOVER FROM BACKUP, the 
subject performed the change by modifying the l o a d method, and then moved on to a different part 
of the task. 

The data from subject F2 also supports the theory of precise discovery, because the subject 
found the recovery method while systematically investigating the accessors of a field related to the 
autosave functionality. Precise capture was also attained, as the subject captured only the relation 
between l o a d and recoverAutosave in a concern named RECOVER FROM BACKUP, and used 
only this information when making the change. 

Interpretation We now return to the two research questions listed in Section 4.5.1. The first 
research question for the jEdit study was to determine how developers use concerns graphs dur­
ing program evolution. The data from our case study shows that subjects F l and F2 used concern 
graphs (as embodied in the FEAT tool) as planned. First, they used queries over the program model 
provided by FEAT to systematically investigate one concern at the time. Second, they recorded pre­
cisely the information relevant to the implementation of the autosave recovery in a distinct concern, 
and used only that information when actually implementing the change. 

The second research goal was to determine whether the behavior of developers using concern 
graphs was more (or less) systematic. Evaluating this research question requires contrasting the 
behavior of the subjects using FEAT to the one of the control subjects. First, our analysis shows 
that the investigation performed by the users of FEAT was more precise. Both FEAT subjects 
found one of the benchmark methods while investigating structural relations to elements relevant to 
the implementation of the autosave feature; in contrast, both of the control subjects found one of 
the benchmark methods serendipitously, while browsing the members of the B u f f e r class. This 
observation supports the theory of precise investigation. Second, the information discovered as part 
of the investigation was recorded more effectively by the FEAT subjects. The screen capture movies 
show the control subjects recording information about the task by writing the name of elements in 
a textual file, a process requiring multiple view switches, and, in the case of C l , the correction of 
an error. During the execution phase, all four subjects found it useful to access the information 
they had recorded about the interactions between the benchmark methods to find the location in the 
code where to implement the change. Again, the movies for the FEAT subjects show a streamlined 
process when accessing the captured information, with the subjects selecting the relevant concern 
in the Concern Graph view, and accessing one of the benchmark methods. On the other hand, 
subjects in the control group needed to view their notes, then browse many unrelated elements in 
the Package Explorer to find the benchmark methods. In one case, the subject ended up selecting 
the wrong element. This observation supports the theory of precise capture. 

4.5.4 Validity 

To limit the threats to the construct validity of the study, our analysis relies on the basic transcripts, 
and sometimes directly on the actual screen capture movies. This way, minimal divergence is intro­
duced between measures of the subject's behavior and their actual behavior. 
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The internal validity of our study is threatened by the possibility that the success level and 
the behavior of a subject is determined by a different, competing factor, such as prior knowledge, 
proficiency with the development environment, or investigator bias during the study. To reduce this 
possibility we took steps to ensure that no subject had prior knowledge of jEdit, we asked subjects 
not to communicate the details of the study to others, we provided basic training with Eclipse to 
each subject, we precluded the use of powerful features of Eclipse (such as the debugger), and we 
scripted the entire study, limiting the role of the investigator to answering questions. There is always 
the possibility of investigator bias in the answers to the subjects' questions. To limit this effect we 
established guidelines at the start of the study for the investigator to use in answering questions: the 
investigator was to answer questions only about the features of the tools covered in the tutorial, and 
was not to provide any comment about the task. 

Finally, the internal validity of the results of the study are also threatened by our selection of 
a specific requirement for detailed analysis. To mitigate the influence of this decision on the result, 
we picked the requirement of which we considered the analysis to be the least likely to be influenced 
by the experimental procedures (see the Benchmark paragraph of Section 4.5.3 for details). 

4.6 ArgoUML Study 

To validate the robustness claim for concern graphs, we performed a study of the evolution of a 
large system on which concern graphs were defined. As the target application for this study, we 
chose ArgoUML, a tool for producing diagrams in the Unified Modeling Language [104,107, 108]. 
ArgoUML is developed in Java and consists of between 92 and lOOkLOC, depending on the version 
considered. The code base, revision history, and bug database of ArgoUML are publicly available. 

4.6.1 Theory 

The questions we investigated in the ArgoUML study is whether a concern graph can represent the 
implementation of a concern in two different versions of a system. 

Our theory underlying this research question is that a concern graph can represent concerns in 
different version of a system because: 

1. The fragment structure representing the implementation of concerns in source code captures 
an abstraction of the interaction between program elements, as opposed to syntactic details 
of the source code. As such, the concern graph structure is tolerant to minor changes in the 
source code. 

2. The concern graph structure supports the detection of inconsistencies with a code base. In­
consistent fragments can be repaired to reflect the new version of the code base, or used as a 
starting point to investigate the discrepancies between a concern graph and the source code. 

4.6.2 Study Design 

The study consisted in the author of this dissertation creating a concern graph capturing the code 
relevant to the correction of a bug identified for version 0.11.4 of the system, and then loading the 
concern graph on version 0.13.4 of the system. The data collected during the study consists of the 
concern graph corresponding to the bug report chosen as a case. 
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The case The case we focus on in this study is the evolution of the code base to address bug 1209 
in the ArgoUML bug database. This bug was identified is version 0.11.3 but was not addressed until 
version 0.13.1. The bug, as stated in the bug report, is as follows: 

Why can you only add comments/notes on class/state/activity diagrams? According to 
the uml spec you must be able to add them to all model elements so you must be able 
to add comments to all diagrams too. 

This bug report refers to the possibility of attaching a notes (or comments) box to different 
objects in UML diagrams. In version 0.11.4 of ArgoUML, it is only possible to attach notes to 
objects in class, state, or activity diagrams. For other diagrams, such as interaction diagrams, it is 
not possible to add notes objects. Fixing this bug thus requires modifying the code of ArgoUML 
to support adding notes to all diagram types. Figure 4.3 shows the window of version 0.11.4 of the 
ArgoUML tool. The figure shows a simple class diagram, with one of the classes annotated with a 
notes object. The rightmost icon in the application's tool bar is used to add notes to objects in the 
diagram. For any diagram type except class, state, or activity diagrams, this button is not visible, 
and the function is unavailable to users. 

v3) ArgoUML - Untitled 
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Figure 4.3: The ArgoUML application 
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Table 4.5: Concern graph for the ArgoUML study 
Concern Classes Description 

ADDING NOTES 26 The root concern (concern graph) for the task. 
CREATE NOTE IN MODEL 5 The code to add a note object to the internal U M L 

model. 
NOTE CREATION 9 The widget code supporting the creation of a 

new note object. 
ADD ACTION TO TOOLBAR 5 Sub-concern of NOTE CREATION. Code to add the 

notes button to the toolbar. 
DIAGRAM HIERARCHY 9 Classes implementing the different U M L diagrams. 
CREATE NOTE IN U I 9 Code to display the notes object on the diagram. 

4.6.3 Results 

Without first looking at the code of version 0.13.4, the subject (the author of this dissertation) 
created a concern graph capturing the code which seemed relevant to the evolution task in a concern 
graph. The resulting concern graph, named ADDING NOTES, comprised five sub-concerns and 
41 fragments, totaling three fields, 33 methods, and 26 classes (including eight library classes), 
scattered in 16 different packages. Table 4.5 summarizes the five sub-concerns. The table displays, 
for each concern, the name of the concern, the number of classes involved in its implementation, 
and a short description of the concern. The ADDING NOTES concern graph was created by the 
subject of the study by performing queries in the FEAT tool. 

After creating the concern graph on version 0.11.4, the concern graph was loaded on version 
0.13.4. Version 0.13.4 implements a great number of changes, including the fix to bug 1209. It is 
approximately 8kLOC larger than version 0.11.4. To measure how much of the code of ArgoUML 
relevant to our concern had actually changed between versions 0.11.4 and version 0.13.4, we ap­
plied the code comparison feature of Eclipse on the two versions. The code comparison feature of 
Eclipse compares two files using an algorithm similar to the UNIX d i f f utility [59], returning the 
differences between unmatched subsequences. Table 4.6 reports the differences between versions 
0.11.4 and 0.13.4 for all 18 source (i.e., non-library) classes involved in the concern. For each class 
(first column), the table lists the number of unmatched sequences between the two version of the 
source code for the class (second column), the total number of lines in unmatched sequence for 
version 0.13.4) (third column), the total size of the file in version 0.13.4 (fourth column), and the 
ratio of the third to the fourth columns (in percentage). 

These figures illustrate the amount of change between the two versions. All the classes consid­
ered as part of the concern except one (FigEdgeNote) changed. Furthermore, most of the changes 
involved multiple modifications, with half of the classes presenting modifications spanning more 
than 50% of the lines of code in the class. Given the purely lexical comparison performed by 
the compare feature of Eclipse, these figures should be understood as representing a pessimistic 
quantification of the amount of change between the two versions. Nevertheless, the analysis of the 
differences shows that almost all of the classes in the concern graph were touched. As such, this 
case represents a good test for the robustness of concern graphs. 

Upon loading ADDING NOTES on version 0.13.4, seven fragments were detected as inconsis­
tent (out of 41). Six of the inconsistencies were in ADD ACTION TO TOOLBAR and one was in 

69 



Table 4.6: Differences between classes of versions 0.11.4 and 0.13.4 of ArgoUML 
Class Changes Change Size Total Size % Change 

AbstractUMLFactory 5 19 77 25 
CoreFactory 85 1570 1820 86 
ArgoDiagram 12 48 166 29 
ProjectBrowser 105 593 789 75 
UMLActivityDiagram 15 50 219 23 
U M L CollaborationDiagram 27 188 259 73 
UMLDeploymentDiagram 30 162 214 76 
UMLSequenceDiagram 40 156 224 70 
UMLStateDiagram 37 179 261 69 
FigClass 153 956 1149 83 
FigComment 60 214 488 44 
FigEdgeNote 0 0 105 0 
Figlnterface 112 646 789 82 
UMLClassDiagram 32 131 197 67 
UMLDiagram 13' 166 283 59 
FigUseCase 163 284 1394 20 
UMLUseCaseDiagram 40 127 327 39 
ActionAddNote 6 10 235 2 

N O T E C R E A T I O N . All of the other concerns remained consistent in the new version of ArgoUML. 
We now discuss each inconsistency, how we repaired it, and the information we could determine 
from the inconsistent fragment. 

The first inconsistent fragment we considered is the primitive fragment: 

UMLActivityDiagram.initToolBar() call ing ToolBar.add(Action) 

Selecting this inconsistency in the Inconsistency View revealed that method initToolBar () of 
class UMLActivityDiagram did not exist. We then queried FEAT for all the callers of ToolBar. -
add (Action), to see whether the method had been renamed. Instead, the query revealed that 
ToolBar. add (Action) was called by method initToolBar () of class UMLDiagram. In other 
words, the caller was replaced by a method of the same name in a different class. We then queried 
FEAT for the subclasses of UMLDiagram, which revealed, among others, the class declaring the ini­
tial caller of ToolBar. add (Action), class UMLActivityDiagram. Hence, with two queries us­
ing the inconsistency as a starting point, we established that, in version 0.13.4, method initToolBar () 
had been moved from class UMLActivityDiagram to its superclass, class UMLDiagram. To repair 
this inconsistency, we replaced the inconsistent fragment by the call to ToolBar. add (Action) 
from UMLDiagram. initToolBar (). 

The next five inconsistencies we considered were the fragments: 

UMLClassDiagram.initToolBar() call ing ToolBar.add(Action) 
UMLStateDiagram.initToolBar() call ing ToolBar.add(Action) 

UMLActivityDiagram.initToolBar() accessing Diagram._toolBar) 
Diagram. _toolBar accessed by UMLClassDiagram.initToolBar() 
Diagram. .toolBar accessed by UMLStateDiagram.initToolBar() 
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These five inconsistencies were also caused by the move of method initToolBar () to the 
superclass. The five inconsistencies were found and repaired in a way identical to the first one. 

The last inconsistency was a fragment with a universal range: 

ActionAddNote.SINGLETON accessed by ALL 

Displaying this inconsistent fragment in the inconsistency view revealed that the inconsistency 
was caused by two separate changes. Figure 4.4 shows the fragment above as it appears in the 
fragment viewer of the FEAT Inconsistency View. 

E 0 iAc^AddNote! 3-••• SINGLETON 
accessed by 

0 ActionAddNote 
\k 0 FigClass 
s- 0 Figlnterface 
i - 0 FigUseCase 

$• 0 UMLActivityDiagram 
M initToolBar() 
<6 initToolBar(JToolBar) 

$- 0 UMLClassDiagram 
m initToolBar() 

1 initToolBar(JToolBar) 
i 0 UMLDeploymentDiagram 

; a initToolBar(JToolBar) 
0 UMLSequenceDiagram 

! tJ initToolBar(JToolBar) 

L|-0 UMLStateDiagram 
£:• initToolBar() 
ta initToolBar(JToolBar) 

0 UMLUseCaseDiagram 
j tt initToolBar(JToolBar) 

Participants | Interactions j Inconsistencies | 

Figure 4.4: Representation of the inconsistent fragment ActionAddNote. S I N G L E T O N 

accessed by ALL in the fragment viewer of the FEAT Inconsistency View 

1. In three classes (UMLActivityDiagram, UMLClassDiagram, and UMLStateDiagram), 
the concern graph recorded that the S I N G L E T O N field was accessed by method initToolBar () 
of each respective class, which did not exist (represented by the red "X" icon). Also, for each 
of these cases, the concern graph did not include an actual access to the field by method 
initToolBar (JToolBar) (represented by a minus icon). Clearly, this inconsistency was 
caused by the modification of the initToolBar () method to include a parameter in its 
signature. 
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2. In three other classes (UMLDeploymentDiagram, UMLSequenceDiagram, and UMLUse-
CaseDiagram), the concern graph was missing an access to field SINGLETON in method 
initToolBar (JToolBar) (represented by a minus icon). Clearly, this inconsistency re­
sulted from fixing the bug to support the creation of notes objects in all of the diagrams 
supported by the tool. 

To fix this last inconsistency, we used the automatic repair feature of FEAT, which synchro­
nizes the concern graph with the code according to the algorithm of Section 2.3.2. 

To complete this case study, we show an example of a fragment which remained consistent 
in the face of extensive change to a method. In the concern graph, sub-concern CREATE NOTE IN 
MODEL contained the fragment: 

AbstractUmlModelFactory.initialize(Object) call ing 
MBase.addMElementListener(MElementListener) 

The source code for method AbstractUmlModelFactory. in i t ia l i ze (Object) in ver­
sion 0.11.4 is shown in Figure 4.5. In this version of the method, the source code mapping to the 
fragment is the statement on line 6. 

The source code for the same method method in version 0.13.4 is shown in Figure 4.6. In this 
version of the method, the source code mapping to the fragment corresponds to the statements on 
lines 12 and 13. As this example shows, capturing the essence of a concern in terms of structural 
dependencies allows us to preserve the intent of a concern in the face of changing source code. In 
this example the intent is the call to addMElementListener. This intent is captured in the concern 
graph and can be mapped to the corresponding source in two different versions, even though the 
corresponding code was modified from a single method call to two calls that take two different 
objects as parameters. 

Returning to our research question for this case study, the results of loading a concern graph 
created in version 0.11.4 of ArgoUML into a different version, 0.13.4, showed that the concern 
graph was robust in the face of change. Specifically, although almost all of the classes involved in the 
concern changed extensively, most concerns in the concern graph remained completely consistent. 
Inconsistencies stemming from a refactoring of a method, and from the modification of the bug, 
were corrected easily. Additionally, this case study has shown that the FEAT queries on inconsistent 
fragments were useful in identifying a refactoring in the code. 

4.6 .4 Validity 

The main threats to the validity of the ArgoUML study are investigator bias in choosing the concern 
to create, and the creation of the concern graph. To mitigate these factors, we used a modification of 
ArgoUML related to an actual bug as a case, as opposed to investigating an arbitrary concern in the 
code base. Second, the concern to investigate was selected before any investigation of the source 
code was performed. It was thus not possible for the investigator to select a concern that would have 
a good chance of evolving well. Additionally, the source code for the concern in version 0.13.4 was 
not examined until the concern graph on version 0.11.4 was completed. As such, it was impossible 
for the investigator to know in advance how stable the concern graph would be. Construct validity 
is not an issue in this study since no surrogate measure is used. 
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1: protected v o i d i n i t i a l i z e ( O b j e c t o) 
2: { 
3: lo g g e r . d e b u g ( " i n i t i a l i z e ) " + o + " ) " ) ; 
4: i f ( o instanceof MBase ) 
5: { 
6: ((MBase)o).addMElementListener(UmlModelListener.getlnstance()); 
7: i f ( ( (MBase) o) .getUUIDO == n u l l ) 
8: { 
9: ((MBase)o).setUUID(UUIDManager.SINGLETON. getNewUUID()); 
10: } 
11: } 
12: } 

Figure 4.5: Method AbstractUmlModelFactory. i n i t i a l i z e (Object) in ArgoUML ver­
sion 0.11.4 

1: protected v o i d i n i t i a l i z e ( O b j e c t o) 
2: { 
3: logger.debug("initialize ( " + o + " ) " ) ; 
4 : i f ( o instanceof MBase ) 
5: { 
6: i f f ((MBase)o).getUUIDf) == n u l l ) 
7= { 
8: ((MBase)o).setUUID(UUIDManager.SINGLETON.getNewUUID()); 
9: ' } 
10: // next two objects are the ONLY two objects that need to l i s t e n 
11: / / t o a l l modelevents. 
12: ((MBase)o).addMElementListener(UmlModelEventPump.getPump()); 
13: ((MBase)o).addMElementListener(UmlModelListener.getlnstance()); 
14: Set couples = UmlModelEventPump.getPump(). 
15 : getlnterestedListeners(o.getClass() ) ; 
16: Iterator i t = couples.iterator(); 
17: while ( it.hasNextO ) 
18: { 
19: UmlModelEventPump.ListenerEventName couple = 
20: (UmlModelEventPump.ListenerEventName)it.next(); 
21: UmlModelEventPump.getPump(). 
22: removeModelEventListener(couple.getListener(), 
23: (MBase)o, couple.getEventName()); 
24: UmlModelEventPump.getPump(). 
25: addModelEventListener(couple.getListener(), 
26: (MBase) o, couple .getEventName 0) ; 
27: } 
28: } 
29: } 

Figure 4.6: Method AbstractUmlModelFactory. i n i t i a l i z e (Object) in ArgoUML ver­
sion 0.13.4 

4.7 Summary 

In this chapter, we have described five case studies conducted to evaluate the three important claims 
of our research hypothesis: that concern graphs can help developers performing change tasks, that 
concern graphs are inexpensive to create, and that concern graphs are robust enough to describe a 
concern in more than one version of a system. The studies we performed to validate these claims 
were all based on the evolution of existing systems that range in size from 12.5 to over lOOkLOC. 
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Table 4.7: Overlap between studies and claims 
Study/Thesis claim 1. Usefulness 2. Cost 3. Robustness 

1. AVID -
2. Jex - • 
3.Redback - • 
4. jEdit -
5. ArgoUML - - * 

Each of the case studies focused on validating a specific claim. As part of the AVID and jEdit 
studies, we investigated the behavior of developers performing a complete change task with (and 
without) the support of concern graphs, and showed that concern graphs helped in program mod­
ification tasks by supporting a more precise investigation of the code, and by supporting a precise 
capture of the information related to the change. As part of the Jex study, by investigating how 
developers with a minimal training with FEAT produced a concern graph describing the code rele­
vant to a change task, we showed that concern graphs could be created without difficulties during 
program investigation activities. As part of the Redback study, we determined that the concern 
graph approach could scale given reasonable trade-offs in the construction of the underlying pro­
gram model. Finally, through the investigation of the evolution of the ArgoUML system, we showed 
how a concern graph was robust enough to describe concern code in two versions of a system, even 
though the later version had been subjected to extensive modifications. 

Taken separately, each study presents an incomplete picture of the use of concern graphs. In 
each case, we have made concessions to the necessities of practical empirical investigation involving 
a prototypical tool. In choosing to validate our approach using multiple case studies, our goal was 
not only to give structure to the validation, but also to gain experience with the use of concern 
graphs in different circumstances. Although each study focused primarily on a single claim, the 
data collected often corroborates and strenghtens claims that were the focus of another study. For 
example, although the primary focus of tthe jEdit study was the usefulness claim, the data collected 
showed that subjects using FEAT did not expend any significant effort building a concern graph. 
This observation contributes to the validation of the low-cost claim. Thus, although the discussion in 
this chapter was organized along the lines of specific questions, the validation of the concern graph 
approach should be construed as repeated experiences with the approach in different circumstances, 
and with different developers performing different tasks on different systems. The overlap in data 
validating the different claims, the lack of obvious contradictions between studies, and the variety of 
systems and tasks studied contributes to the generalizability of our results in similar circumstances. 
Table 4.7 recapitulates the focus of each study (represented with the symbol *), and shows claims 
for which there exist some secondary validation not explicitly addressed by the study (represented 
with the symbol —). 

Finally, conducting the case studies also allowed us to make many observations and to raise 
many questions that did not fall within the strict framework of the validation. Important issues ob­
served during the studies or explicitly raised by the study subjects were recorded, and are discussed 
in Chapter 6. 
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Chapter 5 

Automating Concern Graph Creation 

Using the tool support for concerns graphs described in Chapter 3, developers must make conscious 
and planned decisions about what to include and reject from a concern graph. Although we have 
shown, in Chapter 4, that this activity requires only a minimal, level of effort from developers, it 
can present difficulties in the case of inexperienced or improperly trained developers, or in the case 
of developers facing intense time pressures. To reduce the cost of producing concern graphs, we 
have developed a technique to automatically infer basic concern graphs from program investigation 
activities [113]. 

The concern inferencing technique we developed extracts a user-specified number of elements 
from all of the elements considered during a program investigation. It then groups those elements 
into clusters representing potential concerns. To document concerns stemming from a program 
investigation task, a developer presented with the results of our technique has only to invalidate 
useless clusters, and to name and save useful ones. 

The algorithm is based on the parts of the source code a developer investigated during a pro­
gram investigation session, and on how the developer moved between different pieces of source 
code during the session. The algorithm requires as input a program investigation transcript obtained 
by recording, in sequence, every change in the source code visible to a developer, and the cause for 
the change (e.g., selecting an element in a code browser, viewing the result of a search, etc.). The 
inference algorithm takes into account a variety of factors, namely, the order of program elements 
in the sequence, the way elements were accessed, and whether there exists in the code structural 
relationships between the elements examined. For a specified number of program elements which 
can be set arbitrarily, the algorithm produces a set of clusters that constitute candidate concerns. 

We applied our algorithm to data obtained from two different evolution tasks. Each task was 
replicated with different developers. We found, not surprisingly, that results varied between de­
velopers and tasks. However, in all cases, we were able to obtain concerns describing interactions 
relevant to the change task out of hundreds of elements examined during the investigation. 

The algorithm presented here serves as a basic proof of concept of the feasibility of automating 
the building of concern graph descriptions. The algorithm was developed heuristically by experi­
menting with the use of a structure, called a navigation graph [115], that describes the paths taken 
by developers as they investigate the source code of a program. We expect that additional work on 
the development of algorithms to automate concern graph construction could produce even more 
precise results. In Section 6.7.1, we discuss in more details our plans for future research on this 
subject. 
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In the rest of this chapter, we describe the format of the investigation transcripts we use as 
the input to our algorithm (Section 5.1), we describe our inference algorithm (Section 5.2), and we 
report on the concerns obtained by running our algorithm on data obtained from two evolution tasks, 
and discuss the influence of various factors on the results (Section 5.3). 

5.1 Investigation Transcripts 

The inference of concerns from program investigation activities requires a transcript of the opera­
tions performed by a developer. Informally, a transcript records all of the source code visible to a 
developer during a program investigation session, and the sequence in which different areas of the 
code are viewed. In discussing the areas of source code under consideration by a developer, our 
unit of granularity is method declarations and, in some cases, field declarations. Other elements 
normally present in source code, such as class declarations and comments, are not considered. We 
chose this approach because the concern graphs inferred by our algorithm are expressed only in 
terms of class members. 

For our purpose, we formally define a program investigation transcript as an ordered set of 
investigation events E = { e i , e „ } . An event corresponds to a change in the set of method dec­
larations visible to a developer. We define a method declaration as visible if it is completely or 
partially visible in the active editor window of a software development environment. If multiple 
editor windows are visible, then only the one with the focus of the windowing system is consid­
ered visible. Because, in many cases, all field declarations can appear at once to a developer, we 
did not consider it useful to include field declarations as a part of the transcript, except in special 
circumstances described below. 

An event e consists of a tuple (D, c, X). The set D lists identifiers for all of the method 
declarations (and certain field declarations) visible immediately after the event. The element c is a 
category value describing what caused the event. It can take the following values: 

• B: the content of the active editor changed as the result of selecting an element in a code 
browser. 

• C: the content of the active editor changed as the result of following a cross-reference between 
two elements. 

• R: an editor window was recalled from an existing buffer of visible windows, such as a history 
list or tabbed pane. 

• L : the content of the active window changed as the result of scrolling up and down in a file. 

• K : the content of the active window changed as the result of a keyword search. 

The last tuple element, X, is an ordered set of elements representing extra information about 
the event. For browser events (B), X contains a single identifier representing the declaration that 
was accessed through the browser. For example, if a developer selects method M2 from a browser 
window and reveals co-located methods M l and M3 in addition to M2, then the event would be 
transcribed as ({Ml, M2, M3}, B, {M2}). For a cross-reference event (C), X — {xi, x2} con­
tains the identifiers of both the domain (x\) and the range (x2) of the cross-reference. For a keyword 
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event (K) , X contains an identifier representing the declaration in which the keyword was found. 
For all other events, X = 0. For browser, cross-reference, and keyword events, if the set X contains 
a field declaration, then this declaration is included in the set D. Otherwise, fields declarations are 
ignored. 

During the investigation of a program, a new event e is created every time the set D of visible 
elements changes. Figure 5.1 shows an example of a segment of investigation transcript. The first 
line shows an event corresponding to method B137 being revealed as the result of a keyword search. 
The next event corresponds to methods F29, F30, and F31 being revealed as a result of accessing 
method F30 through a cross-reference from B137 (F29 and F31 are also visible because they are co-
located with F30). Method B137 is then recalled from a previous view. Then field B24 is displayed 
through a browser access (with co-located method B167). Finally, the file is scrolled to reveal B168 
and hide B24. 

B137 K B137 
F29,F30,F31 C B137,F30 
B.137 R 
B24,B167 B B24 
B167,B168 L 

Figure 5.1: Example investigation transcript 

5.2 Inference Algorithm 

Given a program investigation transcript, our aim is to automatically extract potential concern 
graphs. The concern graphs produced by our algorithm consist in a single concern containing a list 
of program elements specified as primitive fragments using the identity relation (see Section 2.2.2). 
In other words, the concern graphs produced by our inference algorithms are lists of program ele­
ments. For simplicity, in the rest of this chapter, when it is clear from the context whether we are 
referring to a user-level concern or a concern graph, we shall use the term concern interchangeably. 
We propose an algorithm that can generate concern (graphs) based on a calculation of how related 
different elements were during a program investigation session. Our concern inference algorithm 
is divided in three phases. A first phase assigns, to each element in the set D of every event, a 
probability that this element was actually examined by the developer. A second phase calculates a 
metric of correlation for every pair of elements in the transcript. The third phase generates a set of 
concerns based on the correlation metric calculated in the second phase. 

5.2.1 Calculating Probabilities 

As we mentioned in Section 5.1, to each event e± corresponds a set Di of method (or field) decla­
rations visible to the developer. However, at any point of the investigation, the developer was not 
necessarily examining each one of the declarations in the corresponding set Dj. To account for 
the fact that, at each event, the developer is probably focusing on only one or two of the visible 
declarations, we assign a probability to every element dij of the set Di of every event. 
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1: for all &i = { D i , ct, X { } G E do 
2: for all dj,j G Dj do 
3: <- 1 
4: if (cj = B V Ci — K ) A d i t j = xit\ then 
5: Wij <— i ^ i j + a 

6: else if c; = C A djj = Xj,2 then 
7: rujj <— tOij + a 
8: end if 
9: if Cj+i = C A d i j = x i + i t i then 

10: Wi,j <— tfjj + a 
11: end if 
12: end for 
13: end for 

Figure 5.2: Calculating probabilities 

We determine the probability of an element being examined by first assigning a weight Wij to 
each element. The weight for an element is based on the category of event (c) and the additional 
information X . Certain conditions, as expressed in the algorithm of Figure 5.2, increase the weight 
of an element by a confidence parameter a. 

Informally, the weight of an element in an event is increased if the element is the same as the 
element in the extra information set ( X ) in a browser or keyword event (lines 4-5), or if the element 
is the same as the range element of a cross-reference event (lines 6-7). Additionally, the weight of 
an element is increased if it is the domain of a following cross-reference event (lines 9-10). 

Once all the weights are calculated, we can determine corresponding probabilities. 

P(di,j) = En 
k=l W i M 

For example, using a — 5, the probabilities for the second event in figure 5.1 are: p(F29) = 
0.125, p(F30) = | = 0.75,p(F31) = \ = 0.125. 

5.2.2 Calculating the Correlation Metric 

Our algorithm infers concerns by analyzing the correlation between different pairs of elements 
potentially examined by a developer. The intuition behind this idea is that if a developer focuses on 
a pair of elements, then there is a possibility that the relations between the two elements in the pair 
bears an important significance to the task. Thus, the underlying principle of our concern inference 
algorithm is to determine how strongly different pairs of elements are related in the context of the 
program investigation. To do so, the algorithm takes the set of all elements present in the transcript, 
analyses every possible combination of two elements, and assigns a correlation metric to each pair. 
The correlation metric is based on an analysis of how close two elements are in the investigation 
sequence, the category of event for each element, and whether the elements are directly related in the 
program (for example, through a method call). The analysis also takes into account the probabilities 
calculated for each element. 
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The correlation algorithm is configured through nine parameters, Po, Pi, Pi, PB, PC, PR, PL, 
PK, PS, a n a one function on the program investigated, related(x,y). The first three parameters 
weight the importance of two elements being displayed consecutively (Po), or being separated by 
only one (Pi), or two (P2) elements. The next five parameters are factors weighting the importance 
of different event categories on the investigation. For example, an element revealed as the result of 
scrolling (L) might not be as significant as an element revealed through a cross-reference (C). The 
parameterization allows flexibility in determining this importance. The last parameter, Ps, factors 
in the importance that two elements be actually related in the program. This is determined by the 
function related(x, y), which returns true if there is a direct structural link between x and y in the 
program. For two elements (field or method) x and y, related returns true if 

• x calls y (or vice-versa), 

• x accesses (field) y, or 

• x implements or overrides y (or vice-versa). 

The algorithm we use to generate the correlation metric mij between two elements is presented 
in Figure 5.3. 

This algorithm first determines the list of all elements revealed during the program investiga­
tion (line 1). For every unordered pair of elements (lines 2-3), it proceeds through all the events 
(line 4). First, an initial value of the correlation metric is determined: If one element of the pair is 
present in an event and the other element of the pair is present in the following event, then the cor­
relation metric is assigned the value Po multiplied by the probability of each element (lines 6-10). 
Otherwise, the metric is zero. Second, the metric is adjusted to take into account the category of 
the next event (lines 11-12). Finally, the metric is adjusted to take into account whether the two 
elements in the pair are structurally related (lines 22-24). These three steps are then repeated for 
a comparison of events separated by one event (using the parameter Pi), and then by two events 
(using P2). 

5.2.3 Generating Concerns 

Once all the pairs have an associated correlation metric, we can generate concerns. The concern 
generation phase of the algorithm is parameterized in terms of the approximate number of elements 
desired in all of the concerns reported by the algorithm (rf). To generate concerns for a number 
of elements 77, we list pairs of elements generated in the previous phase in decreasing value of m 
until the number of different elements in all of the pairs is equal to 77 (or 77 + 1). Finally, we group 
the elements into clusters by taking the transitive closure of every relation represented by a pair in 
the set of selected pairs. For example, let us assume that for a certain transcript, parameters, and 
related function, n = 5 yields the following pairs: [A,B][B,C][D,E]. In this case, the algorithm 
would produce two concerns: [A,B,C], and [D,E]. Once a list of concerns graphs is produced, 
a developer can choose which ones represent the implementation of actual and useful concerns 
considered during the program investigation, and name and save the useful concern graphs for later 
use. 
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1: LetD* = {di,...,dn} = U £ i A 
2: for i — 1 to n do 
3: for j = i + 1 to n do 
4: for all ek = (ck, Dk, Xk) G E do 
5: mjj <— 0 
6: if di£ DkA ditj G £> f c+i then 
7: mjj = p(efe, d») • p(efc+i, djj) • B0 

8: else if dj A dij € Dfc then 
9: rriij = p(ek+i,di) • p(ek,di:j) • 30 

10: end if 
11: if ck+i = C then 
12: m-ij — m-ij • 8C 

13: else if ck+\ — R then 
14: rmtj = m-ij • BR 

15: else if ck+\ = L then 
16: mij = m-ij • BL 

17: else if ck+i = K then 
18: mitj = • 0K 
19: else if ck+\ = S then 
20: mjj = mij • /3s 
21: end if 
22: if related(di, d\j) then 
23: rriij = • Bs 

24: end if 
25: {Repeat with k and k + 2, using /3i.} 
26: {Repeat with A; and fc + 3, using/32-} 
27: end for 
28: end for 
29: end for 

Figure 5.3: Calculating correlation metrics 

5.3 Empirical Evaluation 

We have investigated the usefulness and accuracy of our algorithm using data from two replicated 
studies of program evolution. In both studies, developers were asked to investigate a program in 
the context of an evolution task using the Eclipse platform, an integrated development environment 
for Java [93]. For each study, we have analyzed a transcript of the program investigation and have 
produced a list of concerns with different configurations of the algorithm parameters. This sec­
tion describes the state of our implementation of the support for concern inference, describes the 
different parameter configurations we have tried, briefly describes the studies from which we have 
collected the data, and discusses the results of our investigation. 

5.3.1 Implementation Status 
To obtain the results described in this chapter, we generated the program investigation transcripts 
manually, based on a movie of the the screen recorded during the studies using screen capturing 
software at full resolution. Although this approach is suitable for the evaluation of the algorithm, 
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Table 5.1: Configuration parameter values 
C . ft ft ft PB Pc PR ft PK ft 
1 3 2 1 1.3 1.5 1.1 0.1 1.4 1.5 
2 3 0 0 1.3 1.5 1.1 0.1 1.4 1.5 
3 3 2 1 1.3 1.5 1.1 0.1 1.4 1.0 
4 3 2 1 1.5 2.0 0.5 0.0 1.5 2.0 
5 3 2 1 1.3 1.3 1.0 0.3 1.3 1.2 

use of our approach will require this step to be automated. It should be possible to automate the 
production of investigation transcripts with appropriate instrumentation of the Eclipse platform. We 
implemented the concern inference algorithm in Java. To provide the related function, we created 
databases of relations for each case using the bytecode analyses of the FEAT tool (version 2.1.8). 

5.3.2 Configurations 

Based on a combination of intuition and experimentation, we have designed five parameter config­
urations for the concern inference algorithm intended to emphasize different styles of investigation. 
In general, we found that the algorithm was fairly stable. All parameters require a minimum vari­
ation in the order of 10 _ 1 (and often in the order of 10°) to affect a change to the result. The 
configurations we considered are the following (see Table 5.1 for the corresponding parameter val­
ues): 

1. Basic A configuration based on our intuition of what should be clues to important elements 
in the program navigation. Essentially, linear progression based on closeness in the event 
sequence, more weight on structural, browser, and keyword events, and less on recall and 
local. 

2. Neighbors A configuration only taking into account events directly succeeding each other. 
That is, with parameters ft = 0, and ft = 0. 

3. No Structure A configuration only taking into account actions of the developer, ignoring 
underlying structure (i.e., ft = 1). 

4. Structure A configuration putting emphasis on transitions motivated by structural hints. 

5. Guesses A configuration putting relatively more weight on guessing and browsing. 

5.3.3 Studies 

The first set of data is taken from the jEdit case study described in Section 4.5. As a brief overview, 
subjects taking part in the study were asked to enhance a feature of jEdit pertaining to the automatic 
backup of unsaved buffers. Before making the change, the subjects were asked to investigate the 
code of jEdit for one hour and to take notes as necessary. During this time they were not allowed 
to modify the code or run the debugger. The subjects were also provided with clues consisting of 
two classes relevant to the change. After the program investigation phase, the subjects were asked to 
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implement the change. From this study we use data from three of the subjects: C l and C2 (described 
in Section 4.5), and an additional subject from an additional replication [115], referred to as C3. All 
of these subjects were part of the control group of the study, and performed the change task without 
the help of the FEAT tool. By studying how each subject performed the change, we could determine 
four important pieces of information about the source code that needed to be considered during the 
task: 

• Recovery: A method call performed to recover from an auto-save backup file. 

• Timer interval: A method call to change the interval of the auto-save timer. 

• Auto-saving: A method call to save a file buffer in response to an auto-save timer event. 

• Buffer management: The accesses to a field representing the auto-save backup file. 

To evaluate the results of our algorithm on a different task, we performed another program 
investigation study. In this second study, we asked two developers to investigate how they would 
improve a weakness in the implementation of jHotDraw1, a Java drawing application consisting 
of approximately 14600 non-comment, non-blank lines of code distributed in 11 packages. The 
change posited in this study regarded an incompatibility between commands issued through a menu 
in the graphical user interface and the actual commands supported by a figure on the drawing canvas. 
In this study, the subjects were asked to investigate the code of jHotDraw for 45 minutes to plan 
how they would execute the change. As opposed to the jEdit study, the subjects were not given 
any initial hint, and were allowed to modify the program to insert print statements. They were not 
allowed to use the debugger, and were not required to perform the change. 

By studying the code of jHotDraw, examining the code investigated by the subjects, and inter­
viewing the subjects, we determined two important pieces of information about the source code that 
were relevant to the change: 

• Command menus: A set of methods and classes to build the menus and associate command 
to each menu item. 

• Figure listeners: The event-handling system required to detect when the selection of a figure 
has changed. 

In both studies, we recorded all of the activities of the subjects using the Camtesia screen 
recording program2 operating at 5 frames/seconds and a resolution of 1280 x 1024 pixels. The 
resulting movies contained enough information to allows us to produce transcripts as described in 
Section 5.1. 

5.3.4 Results 

Table 5.2 describes the size of the transcripts produced by 60 minutes of investigation (subjects 
C l , C2, and C3) and 45 minutes of investigation (subjects Jl and J2). The second column lists the 
number of investigation events, and the third column lists the number of different program elements 
visible to a developer during the investigation. 

'Version 5.3, http://www.jhotdraw.org. 
2http://www.techsmi th.com. 
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Table 5.2: Characteristics of transcripts 
Subject Nb. Events Nb. Elements 

C l 123 71 
C2 175 102 
C3 204 105 
Jl 260 200 
J2 142 152 

Table 5.3: Results for Subject C l 
Id Concern 1 2 3 4 5 
1 A,B X X X X 
2 A,B,C X 
3 D,E X X X 
4 D,E,M X 
5 D,E,M,P,Q,R X 
6 F,G X 
7 F,G,H X X 
8 F,G,H,K X 
9 F,G,H,K,L X 
10 U X X X X 
11 K,L X 
12 M,N X X X 
13 K,0 X 

Using a = 5 as our confidence parameter, weapplied each of the configurations described in 
Table 5.1 to each transcript, requesting in each case the concerns for 12 elements (i.e., w = 12). 
For each subject, we present the results in a table. The first column of the table represents an 
identifier for each concern. The second column presents the different concerns as sets of elements.3 

The remaining columns list the five configurations: an X indicates that the concern denoted by 
the row was produced for that configuration. For each subject, alternative descriptions of a single 
user-level concern are grouped together and separated by double lines. To simplify the presentation 
of the results, we have converted our element codes into sequential letters (for each study, a code 
represents the same element between subjects). For each subject, we discuss the results based on 
three evaluation criteria: variability in the number of concerns, variability in the number of elements 
identified, and relevance of the concerns. We give a general comparison of the data between subjects 
in Section 5.3.5. 

For subject C l (Table 5.3) applying the five configurations produced 13 different concerns 
involving 18 different elements. Within the 13 concerns generated, three of the important pieces 
of information described in section 5.3.3 were identified: recovery (D,E, in concerns 3,4,5), timer 
interval (G,H, in concerns 7,8,9), and auto-saving (I,J, in concern 10). Other elements are, to 
varying degrees, less relevant and would probably not be worth saving as a concern graph. The 
important relations were identified by most of the configurations. The most successful configuration 

3Because the algorithm selects pairs of elements, as opposed to single elements, some parameter config­
urations resulted in 13 elements being identified. 
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Table 5.4; Results for Subject C2 
Id Concern 1 2 3 4 5 
1 D,E,M,N,P,R,S,T X X 
2 D,E,M,N,P,R,S,T,V X 
3 D,E,M,N,R,S,T X 
4 D,E,M,P,R,S,T,V X 
5 G,H X X X X X 
6 F,U X X X X 
7 K,W,X X 

Table 5.5: Results for Subject C3 
Id Concern 1 2 3 4 5 
1 U.Q.Y X X 
2 IJ,K,M,W)X)Y,CC X 
3 IJ,M,Q,Y,BB X 
4 IJ,M,Y,CC X 
5 K,X X X 
6 K,W,X X 
7 F,AA X X 
8 F,Z,AA X 
9 F,Z,AA,DD X 
10 G,H X X X X X 
11 M,BB X X 

in this case was 1 (basic), closely followed by 3 (no structure). This means the subject naturally 
navigated along the structure, so that existing relations did not need to be factored in. 

For subject C2 (Table 5.4) the five configurations produced more homogeneous results than 
C l : 7 different concerns involving 16 different elements. Moreover, concerns 1 to 4 are essentially 
the same concern, with a variation of one or two elements. This concern represents the interaction 
buffer management. Variations on this concern capture how an auto-save backup file is deleted 
and the various situations in which it is deleted. It is a useful concern, which integrates the inter­
action recovery (D,E). Of the four concerns (1-4), concern 1 is the most accurate. It is present in 
configurations 1 (basic) and 3 (no structure). Other concerns generated for this subject include the 
important interaction timer interval (G,H, concern 5, present in all five configurations). Concern 6 
is spurious, and concern 7 represents the three methods of the class provided as a starting point for 
the task. In the case of subject C2, the most useful configurations are 1 (basic) and 3 (no structure), 
as in the case of C l . 

For subject C3 (Table 5.5) the five configurations produced 11 different concerns involving 15 
different elements. Concerns 1 to 4 capture the interaction auto-saving (I,J). Concerns 5 and 6 list 
some of the methods of a class used as a hint. Concern 10, identified in all configurations, is exactly 
the interaction timer interval (G,H). All the other concerns are not useful. Given this assessment, 
configurations 1 (basic), and 2 (neighbors) yield the results that would be most likely to be useful, 
although the distinction is not as sharp as in the case of C l and C2. 

In the case of the jHotDraw study, for subject Jl (Table 5.6) the five configurations produced 
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Table 5.6: Results for Subject Jl 
Id Concern 1 2 3 4 5 
1 A,B,C X X X X X 
2 D,E X X 
3 D,E,F,G X 
4 D,E,F,G,0 X 
5 D,E,F,G,P,Q X 
6 F,G X 
7 F,G,M X 
8 H,I X X 
9 H,I,J X 
10 J,K X X 
11 J,K,L X X 
12 M,N X X 

Table 5.7: Results for Subject J2 
Id Concern 1 2 3 4 5 
1 R,S,T)U,V,W,X,Y,Z X 
2 R,S,T,U,V,W>Z,FF,HH X 
3 R,S,T,U,W,X,Y,Z,DD,EE)FF)GG X 
4 R>S,T,U,W,X,Z)FF,II X 
5 R,T,U,V,W,Y,Z,FEHH X 
6 AA,BB,CC X X X 

12 different concerns involving 17 different elements. Concern 1 is a subset of the interactions 
relevant to the concept command menu identified in Section 5.3.3. Concerns 2 to 7 include different 
elements related to the construction of the application's menu bar, with the most accurate being 
concern 5. The other concerns cannot be considered helpful information. In this case, configuration 
5 (guesses) yields the most useful concerns. 

Finally, for subject J2 (Table 5.7) the concern inference algorithm produced six different con­
cerns involving 13 different elements. Concerns 1 to 5 are essentially small variations on one major 
set of elements, which mostly represents interactions implementing the concern figure listeners. 
Concerns 1 and 4 are equally accurate, with six relevant elements out of nine. These correspond to 
configurations 1 (basic) and 4 (structure). Concern 6 can be considered spurious. 

5.3.5 Observations 

Besides helping us assess the feasibility of inferring concerns automatically from program investi­
gation activities, this study allowed us to make several observations. We discuss these observations 
and how we plan to move forward on this research. 

Successful configurations 

In most cases (Cl, C2, C3, and J2), configuration 1 (basic) yielded the most useful results. This fol­
lows our intuition that transitions between elements in the source code based on browser selection, 
cross-references, and keyword searches are more important than transitions uncovering elements 
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by scrolling or recalling previous views. In two cases (Cl and C2), configuration 3 (no structure) 
also yielded good results. Configuration 3 adds no additional weight to a sequence of investigation 
involving two elements directly related in the code. One possible explanation for the fact that this 
configuration was successful for C l and C2 is that both of these subjects were very organized in 
their program investigation, investigating elements that were related in the first place [115]. In the 
case of J l , configuration 5 (guesses) was the most successful. This agrees with the behavior of J l , 
who mostly read source code by browsing up and down the declaration of classes matching general 
regular expressions. The case of Jl was the least successful application of our algorithm. 

Effects of scrolling 

Given the nature of the transcripts we use, scrolling a file while investigating code has a drastic 
effect on the number of events generated. When scrolling, the set of elements visible in an editor 
window can change as often as multiple times per second. If an element is visible in many of such 
events, there is a risk that this element will be selected as relevant on the basis that it is involved in 
many transitions. Our algorithm deals with this situations in two ways. First, an element revealed 
through browsing does not have a high associated probability (see Section 5.2.1). Second, the effect 
of browsing can be mitigated through a low value of Pi. For example, with Pi = 0.1 and PB = 1.0, 
an element would have to be present in 10 local events before becoming more important than an 
element revealed a single time through a browser access. 

Transcript boundaries 

The setting of the jFfotDraw study had a few differences with the jEdit study. An important one is 
that subjects in the jHotDraw study were not given any hints about where to start investigating the 
code. This resulted in a much broader search for both subjects. This observation is reinforced by 
the fact that no elements identified in the concerns for Jl overlapped with the ones identified for 
J2. In contrast, the concerns generated for subjects C l , C2, and C3 were much more focused, and 
useful, than the ones generated for Jl and J2. These observations seem to indicate that not all of the 
span of a program investigation session should be used to infer concerns. This raises the important 
question of when should a program investigation transcript begin and end. Ideally, a developer 
should be able to deactivate transcript recording when performing broad searches, or while "being 
stuck", and reactivate the recording when performing more productive investigation. The resulting, 
more focused, transcripts should yield more accurate concerns. 

False positives 

As expected, every application of the algorithm resulted in some false positives (or spurious con­
cerns) being generated. This is expected given the nature of the data analyzed. However, anecdo-
tally, we have found that for n = 12, the number of concerns is low; examining and rejecting false 
positives in this case is not effort-consuming. Although we do not know if this result will generalize, 
we do not expect the effort to be significant enough to detract users from using the technique given 
the potential benefits. 
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5.4 Summary 

In this chapter, we have described a technique to infer concerns based on the program investigation 
activities of developers. Our technique integrates elements of static analysis, but its originality lies 
in its focus on analyzing the source code a developer examines when investigating a program. Our 
technique can be parameterized to account for different styles of program investigation. 

The evaluation of the technique was based on data obtained from five subjects performing two 
different tasks. We showed that, in every case, at least one relevant concern was identified. Since the 
amount of information to be generated by our concern inference algorithm is parameterizable, the 
number of false positives (or spurious concerns) can be adjusted. In our case, we used the algorithm 
to infer concerns involving 12 program elements. This number resulted in a very manageable level 
of information. We also observed that the success of the concern inference algorithm seems to be 
tied to the organization of the program investigation activities: Broad and disorganized searches pro­
duced vague and incomplete concerns, while more focused program investigation typically yielded 
a high proportion of useful and precise concerns. This situation can be addressed by not recording 
the program investigation activities during broad investigation. 

Using our technique, which can be fully automated, it is possible to easily and rapidly generate 
descriptions for different concerns developers investigate in source code. These concern graphs 
can then be used as supporting documentation during program evolution tasks, as a basis to plan 
refactorings [43, 95], and potentially to help port a system to an aspect-oriented language [69]. 
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Chapter 6 

Discussion 

In this chapter, we describe the main issues that arose during the development and investigation of 
the concern graph approach, we summarize our views on the potential impact of concern graphs on 
the process of software maintenance, and we present a plan for future research involving concern 
graphs. 

6.1 The Development and Evaluation of the FEAT Tool 

The technology supporting concerns graphs was developed in multiple phases over approximately 
two years. The first prototype of FEAT was developed as a stand-alone Java application [112]. It was 
released for public download with a University of British Columbia End-User License Agreement 
as version 1.9.1 in December 2001. This first prototype differed primarily from the tool described 
in Chapter 3 in five ways. 

• The graphical user interface consisted in only two types of windows: an abstract view of the 
code, comprising participants and relations in a concern graph, and a code viewer capable of 
highlighting the code corresponding to a relation. Executing a query produced a new window 
containing the results of the query. 

• It was not possible to create more than one concern. 

• It was not possible to add multiple elements or relations at once in a concern. 

• The program analyses supported by the tool relied on bytecode analysis, which required load­
ing each Java class file in a program into main memory. 

• The tool did not tolerate inconsistencies between a concern graph and the source code. 

We used this version to carry out the first three case studies described in Chapter 4. Informal 
evaluation of the tool was also performed by users in the Software Practices Laboratory at the 
University of British Columbia, by students enrolled in a graduate-level software engineering course 
in the Department of Computer Science at the University of British Columbia, by researchers at 
IBM's T.J Watson Research Center, and by inventors of different concern-finding tools [82]. These 
early experiences produced a wealth of feedback supporting the improvement of the approach. In 
particular, the initial evaluation of FEAT showed that: 
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• Support for defining more than one concern was desirable; 

• Support for specifying the entire results of a query as part of a concern was desirable; 

• The creation of new windows to display results was confusing to users. 

These and many other observations motivated a complete review of not only the tool, but also 
the concern graph model. Following the experiences with the first FEAT prototype, we evolved the 
concern graph model described in [112] into the model described in Chapter 2. This new model 
addresses the most important issues noted in the initial investigation phase. Specifically, it allows 
the definition of multiple concerns in one view, it allows the addition of nested query results to a 
concern graph as a single unit, and it tolerates inconsistencies between a concern graph and a model. 
To leverage from the many benefits of integrating the tool in a state-of-the-art software development 
environment, support for the new model was completely re-implemented as a plug-in for the Eclipse 
platform. The first version of this plug-in (2.1.4) was released for public download in December 
2002. This early version supported most of the features described in Chapter 3, except that it did not 
tolerate inconsistencies between a concern graph and the source code. It also still relied on bytecode 
analysis to produce the program model. 

To test whether the FEAT Eclipse plug-in provided the necessary support for concern graphs, 
we conducted a preliminary study of program evolution with eight programmers, four of which were 
required to use the FEAT tool, and four of which were required to perform the evolution task using 
only the features of the Eclipse platform. This study is described in detail in a separate report [115]. 
The preliminary jEdit study uncovered two important issues with the new implementation of the 
FEAT tool. First, the more sophisticated graphical user interface required additional training for de­
velopers to benefit from the tool. The issue of training in FEAT is discussed in detail in Section 6.2. 
Second, the tight integration of FEAT in the development life-cycle, including support for alterna­
tively building a concern graph and modifying the code, was essential. We thus further improved 
the FEAT tool and its documentation to address these problems. This development resulted version 
2.2.1, released in April 2003. The version of FEAT described in Chapter 3 only implements minor 
improvements to version 2.2.1. With all of the critical issues addressed, we replicated the original 
study with two additional developers using FEAT. This last evaluation is described in Section 4.5. 
Because the issues with the original study were limited to the use of the FEAT tool, we did not 
replicate the study with additional control participants. Instead, we used the two most successful 
control participants in the original study to contrast with the FEAT participants in the final phase of 
the study. 

6.2 Training and the Use of FEAT 

Our experience evaluating the FEAT tool with many different users has helped us identify the im­
portant factors that influence its effectiveness. Chief among these factors is the level of proficiency 
achieved by users of the tool. Achieving a good level of proficiency requires proper training. We 
have observed that the effectiveness of the training provided to FEAT users is influenced by three 
overlapping factors: prior exposure to the concept of separation of concerns, experience with pro­
gram analysis and cross-reference queries, and experience with the use of software development 
environments. To address these issues, we have ensured that our training material covered these 

89 



three areas. In particular, the step-by-step tutorial provided to the subjects in the jEdit study com­
prised: 

1. An introductory section motivating, with examples, the need for proper modularization and 
the concepts of separation of concerns; 

2. A section describing how to perform queries and a list of the semantics of all the queries 
supported by FEAT; 

3. Instructions on how to use the basic features of Eclipse, such as performing searches and 
using a code browser. 

After experimenting with a FEAT training session of 60 minutes, we determined that this 
amount of time was insufficient, and increased the training time to 90 minutes for the two final 
replications of the jEdit study. After this amount of training, both of the FEAT subjects involved 
in the jEdit study were able to use the tool properly. A time of 90 minutes thus constitutes a good 
indication of the minimum effort required to use the FEAT tool effectively. 

6.3 Capturing System Behavior with Concern Graphs 

When analyzing the results of the AVID and jEdit studies, we observed that the code relevant to a 
concern sometimes included complex program behavior. For example, to modify the AVID system, 
the developer needed to consider a constraint on the order of calls to a method. As an other example, 
when modifying the jEdit system, the developers needed to understand code managing the state of 
a buffer. The subject in the AVID study (Section 4.2), and most of the subjects who took part in 
replications of the jEdit study (Section 4.5), failed to properly understand some complex behavior of 
the system. The program model extracted by FEAT does not support the investigation and capture 
of this kind of behavioral information. This observation raises two important questions. First, can 
concern graphs provide any help for complex cases? Second, should more support be provided? 
In answer to the first question, the case studies have shown that concern graphs are helpful to de­
velopers because they provide a means to store a list of program elements that can act as anchors 
and provide context when investigating complex code. In other words, although concern graphs 
cannot explicitly capture complex interactions, they can point to the places where such interactions 
occur, and, through concern names, provide some information about the context in which they oc­
cur. Evidence of this type of support is found in both the AVID and jEdit studies. For example, in 
the jEdit study, both subjects, having realized that some part of a concern was not well understood, 
used the concern graph to return precisely to the point where further investigation was required. 
Concern graphs thus provide some minimal support for understanding complex code. There remain 
the question of whether additional support should be available. At first glance, we can identify 
three potential ways to provide additional support for fine-grained program investigation and cap­
ture: changes to the model to add ordering information, use of a finer-grained model, and support 
for attaching free-form comments to elements in a concern graph. All these options have important 
associated costs. First, changes to the model to accommodate ordering, or a finer-grained model, 
both imply a larger database to store the model, slower analyses, and additional user-interface sup­
port to deal with the increased flexibility. Free-form comments suffer from the problem of decay, 
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as they are difficult to maintain consistent with the source code. Additional research is required 
to determine whether any of these approaches present a more favorable trade-off between cost and 
usefulness than the current version of the concern graph approach. 

6.4 The Importance of a Good Seed 

Throughout this dissertation, in the description of the concern graph approach, we have assumed that 
a developer knows a relevant program location from where investigation can start. Based on such a 
starting point, or seed, a developer can investigate related elements in the source code and build a 
concern graph. Because concern graphs are designed to support a very focused investigation of the 
source code, the approach is not intended to assist with the broad type of investigation related to the 
identification of a seed. As described in Section 3.2.1, the identification of a seed is a separate phase 
of a program maintenance task, performed outside of the FEAT tool. There exists a variety of ways 
a developer can obtain a seed for the investigation of the code pertaining to a maintenance task. One 
can rely on other developers. This is the approach was have used in the AVID study (Section 4.2), 
and have simulated in the jEdit study (Section 4.5). Other possibilities include broad lexical searches 
for relevant keywords in all the source files, and specialized feature detection techniques (described 
in section 7.1.3). 

During the evaluation of our technique for automatically inferring concern code from program 
investigation activities (Chapter 5), we observed that developers unfamiliar with a code base per­
formed much more focused and effective program investigation if a good seed had been provided. 
This observation has two important consequences for potential adopters of the concern graph ap­
proach. First, one should only attempt to build a concern graph once a relevant seed has been 
identified; failing to do so may result in effort wasted documenting irrelevant information. Second, 
and more importantly, a database of concern graphs can provide an alternative source of poten­
tial seeds for other program evolution tasks. By perusing the concerns other developers have built 
for tasks similar to a task at hand, a developer can potentially discover a good seed. Section 6.6 
discusses in more detail the improvements concern graphs can provide to the maintenance process. 

6.5 Concern Interaction Analysis 

One of the characteristics of the general concern graph model is the support for analyzing the inter­
actions between two concerns. Given two concern definitions, concern interaction analysis produces 
a list of common participants between the concerns, and a list of relations between the participants 
of one concern and the participant of the other concern (see Section 2.3.1). We implemented sup­
port for concern interaction analysis in the FEAT tool in the form of the compare feature (see 
Section 3.2.2). In devising and implementing support for concern interaction analysis, our goal 
was to increase the usefulness of concern graphs by providing a means for developers to analyze 
whether and how two concerns interact without having to peruse the entire concern descriptions 
and perform the analysis mentally. We evaluated the contribution of the concern interaction anal­
ysis to the usefulness of the concern graph approach as part of the jEdit study. In this study, the 
training documentation for users of FEAT included detailed information about how to use concern 
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interaction analysis, examples for subjects to practice using the feature, and instructions detailing 
the situations when concern interaction analysis could be useful. In spite of these provisions, none 
of the six subjects who performed the evolution task on jEdit with FEAT used concern interaction 
analysis in more than a cursory and exploratory way. Based on interview data, we established that 
the subjects had not used interaction analysis because it had not been deemed useful. Specifically, 
having just built a concern graph, the information captured by the concern graph was still fresh in 
the subjects' memory, and the concern interaction analysis was not seen as providing significant 
help for the task. The usefulness of the concern interaction analysis thus remains an open question. 
Our hypothesis is that, although it does not seem to be useful for developers initially investigating 
a concern, it might help other developers accessing the concern at a later stage. Further research 
should help us evaluate the usefulness of concern interaction analysis in different contexts. 

6.6 The Influence of Concern Graphs on the Evolution Process 

Having described how concern graphs can help developers perform software evolution tasks, we 
can now comment on the influence of the use of concern graphs on the software evolution process. 
As mentioned in the introduction, the process of modifying a software system can be separated 
into three phases: understanding the existing software, modifying the existing software, and re­
validating the modified software. Using concern graphs to help in the evolution of a system does not 
change this fundamental decomposition, nor does it add additional steps to the process. However, 
more emphasis in put on the first phase, in the hope of achieving considerable benefits in the second. 

Traditionally, during software evolution activities, more emphasis is put on the coding phase, 
to the detriment of program investigation. Nevertheless, it is our belief that a complete and thorough 
investigation of the implementation concerns involved in a change task significantly and positively 
influences the quality of a change. Indeed, the risks of performing software modification without 
fully understanding the implications of the change are well known [101]. Why, then, do developers 
immediately engage in source code modifications following a simple and desultory investigation? 
A potential justification for this practice it the perception, both by individuals and organizations, 
that some of the time spent investigating source code is wasted, while time spent coding translates 
into direct progress. Of course, nothing is further from the truth, as sloppy or incorrect program 
changes can often lead to disastrous consequences. Nevertheless, as long as the value of detailed 
analysis is not clearly and unequivocally demonstrated, the temptation will always exist to begin 
a software change with a limited understanding of the code. Our goal, with concern graphs, is to 
reduce the cost of program investigation by supporting a more systematic and focused process, and 
at the same time provide more value out of program investigation by supporting the creation of 
concern descriptions that can be used to support the software modification phase. It is our hope that, 
by providing a means of lessening the cost and augmenting the value of the initial analysis phase of 
program evolution, more developers will realize the importance of this activity. 

Finally, by describing code relevant to a change, concern graphs have the potential to provide 
support in the third phase of software evolution: revalidation of the modified software. The inves­
tigation of this possibility is outside the scope of this dissertation. However, our work on concern 
graphs has already attracted the attention of researchers working on software testing [129]. 
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6.7 Future Work 

In the previous sections we have discussed different issues our past research on concern graphs has 
raised, and possible ways additional investigation can help us further our understanding of the im­
pact of the concern graph approach, and of the way we can improve its effectiveness. Additionally, 
the work described in this dissertation has stimulated original research directions. In this section, 
we briefly discuss four new areas for future research involving concern graphs: automation of con­
cern graph construction, research on concern databases, experimentation with pattern-based code 
investigation, and concern graph-based code refactoring. 

6.7.1 Automatic Concern Graph Construction 
From the onset, the idea of automatically creating concern graphs has shown promise. In Chapter 5, 
we presented a preliminary investigation of a technique for automatically creating concerns from 
program investigation activities. This technique can be customized for different styles of program 
investigation using a series of parameters. We envision the complete integration of the technique 
into a development environment that would allow users to choose between different parameter con­
figurations before generating concerns. This will require research into the optimization of certain 
configurations for certain investigation styles. Alternatively, it might be possible to add a phase 
to the technique to automatically detect the best configuration based on general characteristics of 
the program investigation as can be determined by a cursory examination of the transcript. Finally, 
we plan to integrate the resulting concerns into the FEAT tool. This tight integration with FEAT 
will allow users to immediately see the structural relations between the different elements in the 
concerns produced by the algorithm and to modify and complete the representations identified by 
the algorithm. The complete and integrated approach should render the documentation of concerns 
seamless in the program evolution work flow. 

We are also investigating an approach for automatic concern graph creation based on an anal­
ysis of the differences between two versions of the code base. Using this technique, a developer 
can take a snapshot of the program model of a project at the beginning of a change task, perform 
modifications to the source code, and then produce a concern graph representing the elements and 
relations present in the last version of the code that were not present in the first version. This tech­
nique has been implemented and integrated in the FEAT tool by a co-op student in the Software 
Practices Laboratory at the University of British Columbia. Compared to the technique described 
above, which requires monitoring program investigation activities, the code differencing technique 
can be applied to produce concerns using any version of the code available in a system's revision 
history. The concerns produced by this lasts technique, however, are typically less complete and 
descriptive than the ones created based on human input. An additional possibility for further re­
search in this area is to experiment with a combination of the two approaches to automatic concern 
construction. 

6.7.2 Concern Databases 
One of the underlying goals of the concern graph representation is to allow organizations to accumu­
late, through repeated evolution tasks, a collections of concern descriptions for a system. Effective 
use of such databases will require tools and techniques to help developers find concern graphs of 
potential interest. We have collected a series of concern graphs during the development of the FEAT 
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tool. Once a sufficient number is available, it will be possible to begin the proper investigation of the 
problems surrounding the querying of concern databases. This investigation should, in turn, allow 
us to evaluate how useful developers find concern graphs created by other developers for a different 
task. 

6.7.3 Pattern-based Code Investigation 

A concern graph represents a network of interactions between concrete elements defined in a pro­
gram. By treating one or more of the participants in a concern graph as a variable, we obtain a 
template of interactions. For example, let us assume that a concern graph c captures the interactions 
ml () c a l l s m2()andm2() accesses f l . The concern graph c thus captures two interactions 
between three program elements: two methods and one field. If we consider method m2 to be a 
variable x instead of a concrete program element, we obtain the template concern c(x), where x can 
take the value of any method in the program that is both called by ml and that accesses f 1. Such 
templates can then be used to perform multi-predicate searches in a code base, to provide additional 
help during program investigation. We are planning to investigate possible mechanisms for speci­
fying templates based on concern graphs, to investigate how to use these templates as the basis for 
searches, and to evaluate the usefulness of the results produced in the context of prgram evolution 
tasks. 

6.7.4 Concern Graph-based Code Refactoring 

In certain cases, scattered concerns can prove to be a constant burden on developers during repeated 
program evolution tasks. In such cases, it might be warranted to refactor the code base to explicitly 
modularize the offending concerns. Refactoring usually involves the modification of source code 
through a series of stereotypical changes that can be semi-automated [43]. For example, one typical 
refactoring consists in moving a method definition to its super-class. The Eclipse platform pro­
vides automated support for simple refactorings. One interesting use of concern graph is to specify 
source code that should be the target of such refactoring, and to provide support for automating 
the refactoring process. To account for scattered concerns, source code can be refactored either by 
modifying the system in its native programming language, but also by porting the system to a lan­
guage supporting an advance separation of concerns mechanism (see Section 1.1). In both cases, a 
concern graph can form a basis for the semi-automatic refactoring process. We are currently investi­
gating how concern graphs can provide support for refactoring concerns into aspects in the Aspect! 
language [68]. 
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Chapter 7 

Related Work 

In this chapter, we discuss work related to the concern graph approach. We categorize related work 
into three groups: approaches proposed to help developers find source code relevant to a concern 
or change task (Section 7.1), approaches aimed at documenting and analyzing concerns in source 
code (Section 7.2), and approaches aimed at detecting and managing inconsistencies in software 
engineering artifacts (Section 7.3). 

7.1 Concern Code Location 

Many program understanding and reverse engineering tools and techniques have been proposed to 
help a developer discover the code related to a program evolution task. The different code location 
techniques described in the literature rely on a variety of information, such as the static structure 
of programs, program execution traces, and software documentation. In this section, we present an 
overview of the main types of code location techniques: use of cross-referencing tools, program 
slicing, feature location approaches, and code clustering techniques. Although all these techniques 
can help with the concern location problem, none of them supports the documentation of concerns. 

7.1.1 Cross-referencing Tools 

Cross-referencing tools, such as code browsers and program databases, allow developers to perform 
queries that elicit the relations between different program elements that may potentially be scattered 
in source code. The main purpose of cross-referencing tools is to provide developers with informa­
tion that cannot be obtained easily through source code inspection. For example, one typical query 
supported by cross-referencing tools is the determination of the callers of a function or method. 

Cross-referencing support has been an important part of some programming language environ­
ments. As early as 1981, the Interlisp programming environment included Masterscope [136], an 
interactive program supporting cross-referencing queries that provided developers with information 
such as the callers of a function or the accessors of variables. Similar functionality was integrated 
in environments for other languages, such as Smalltalk [47], and Trellis/Owl [94]. These languages 
and environments benefited from an early and integrated support for cross-reference queries partly 
because a program database formed an intrinsic component of their architecture. 

Support for cross-referencing in more mainstream languages usually takes the form of separate, 
stand-alone tools. The C Information Abstractor (CIA) [25] is a program database supporting cross-
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reference queries for C programs [66]. The information used by CIA is collected through an analysis 
of the original source files. Tools have also been developed for C++ [132] programs, which present 
additional challenges to developers trying to understand scattered concerns, such as inheritance and 
dynamic binding. For example, the XREF/XREFDB system of Lejter et al. [72] allows developers 
to perform queries on a database of relations for a C++ program through the interface of the Emacs 
text editor [130]. 

Tools have also been developed to view structural program information collected in program 
databases. Ciao [24] is a graph-based navigator created to help developers view the relations pro­
duced by CIA. Rigi [81,131] shows the relationships between different program elements in a graph 
representation. 

Finally, recent environments have been developed for the Java language that support cross-
reference querying. For example, the Eclipse platform [93] discussed earlier in this dissertation 
supports cross-reference queries. The JQuery tool of Janzen and De Voider [63], developed as an 
Eclipse plug-in, allows a developer to form specialized browsers to navigate code, and to perform 
queries in these browsers while retaining navigation context. 

Although cross-referencing tools allow developers to find information that is potentially useful 
in identifying the source code relevant to a change, the context for collecting the information is 
limited. Specifically, the tools mentioned above do not support accumulating arbitrary results of 
queries in a network of program elements. In the cases where some context-sensitivity is provided, 
such as the browsers of JQuery, it is only in the form of a sequential history of queries; choosing 
a non-contiguous subset is not possible. As a result, when using these tools, a developer must 
manually build a list of program elements pertaining to a concern and manage the context in which 
these elements are used and queried. In brief, although cross-reference tools can help address the 
concern location problem, their support for program evolution tasks involving scattered concerns is 
limited by their lack of support for concern documentation. 

7.1.2 Program Slicing 

Program slicing denotes a type of analysis intended to identify the parts of a program that may affect 
the values computed at some point of interest [138]. Slicing was originally defined by Mark Weiser 
as a static analysis technique [146], but dynamic variants have since been developed. Slicing can 
be formulated as a graph reachability problem [98] on a program representation called the Program 
Dependence Graph (PDG) [40]. A PDG is a graph representing a combination of control- and 
data-flow dependences between statements in a program. Slicing can be used for many software 
engineering tasks such as parallelization, debugging [78, 145], or reverse engineering [10]. For 
maintenance activities, slicing can be used to help determine the impact of changes [45]. Visual 
techniques have also been developed to help in this process [44, 60]. 

Many variants of slicing have been proposed to deal with technical issues such as the slicing 
of programs with procedures [58], or of object-oriented programs [75, 139]. In particular, Jackson 
and Rollins have proposed chopping [62], a generalization of slicing based on a different program 
dependence graph supporting both a modular treatment of procedures, and a fine-grained slicing 
taking into account the influence of individual variables (as opposed to statements). Chopping has 
been shown to produce more accurate results than traditional slicing based on the PDG. 

Although they are conceptually appealing techniques, static slicing and its variants suffer from 
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many practical limitations. First, computing slices can be expensive [146]; pragmatic considerations 
may require lower-precision data-flow analyses [76, 140], resulting in coarser, more conservative 
results. Furthermore, trade-offs related to the analysis of programs with pointers lead to additional 
conservativeness [56]. Finally, because a statement is often transitively dependent on many other 
statements, slices are often very large [62, 146]. This problem is only exacerbated by more conser­
vative analyses. 

Dynamic slicing [1, 52] is another variant of slicing that takes into account program execution 
trace information. Specifically, dynamic analysis only considers program dependences that occur 
in a specific execution of the program. As such, the input to dynamic slicing tools must include a 
representation of the execution of a program based on a specific input. 

For the purpose of helping developers find code relevant to a concern, one major limitation of 
slicing is that only one type of concern can be identified: code related through a control- and data­
flow criterion. As such, slicing cannot be used to automatically infer the code relevant to a concern. 
For example, code relevant to a concern but unrelated in the program, such as code exchanging 
data through a file, may not be identified by slicing. Finding this code requires human intervention. 
Another drawback of slicing is that it does not discriminate between interesting and boilerplate 
code. For this reason also, slicing cannot be used to automatically infer concerns, since a slice is 
bounded by a graph reachability criterion, as opposed to a human-centric evaluation of relevance. 
In brief, the results produced by slicing will not always correspond to the code relevant to concerns 
a developer has when changing a program. Even if slicing can be used to help a developer reason 
about the impact of a statement on the behavior of a program, at some point, the developer will need 
to investigate source code manually (or semi-automatically), to focus on specific areas of interest. 
Concern graphs have been designed to support this latter activity. 

7.1.3 Feature Location Techniques 

Different techniques have been proposed to help developers identify parts of the source code that 
implement user-level features. 

The Software Reconnaissance technique developed by Wilde et al. identifies features in source 
code based on a analysis of the execution of a program [150, 149]. Software Reconnaissance deter­
mines the code implementing a feature by comparing a trace of the execution of a program in which 
a certain feature was activated to one where the feature was not activated. Given a feature / and test 
cases that exercise and do not exercise / , the analysis produces four sets of components: 

• Common components: the set of components exercised in all test cases; 

• Components potentially involved withf: the set of components that are executed in at least 
one test case that exhibits / ; 

• Components indispensably involved in f: the set of components exercised in all of the test 
cases exhibiting / ; 

• Components uniquely involved inf: the set of components that are exercised in some test case 
exhibiting / and excluding any component exercised in any test case that do not exhibit / . 
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The technique does not explicitly define the notion of component, and as such different defi­
nitions can be used (e.g., functions, statements). However, based on their experience, the inventors 
of the technique have found that the most useful definition of component is that of the control-flow 
arc [150]. Experience with the technique on industrial systems ranging between 10 and 28 kLOC of 
C and C++ code showed that, although the technique could not always find all or even some of the 
source code implementing a feature, the set of components uniquely involved in / usually provided 
a good starting point for developers to investigate the source code [148]. A tool, TraceGraph, was 
developed to support the visualization of the difference between execution traces, to help identify 
and locate the code implementing specific features [77]. 

Wong et al. proposed an approach that is also based on the analysis of the difference between 
program execution traces [151]. The approach of Wong et al. provides results similar to the Software 
Reconnaissance technique, but, in addition, presents results at different levels of granularity (e.g., 
files, lines of code, blocks). 

A third approach to feature location based on dynamic analysis was developed by Eisenbarth 
et al. [38, 39]. Eisenbarth et al. produce the mapping between components and test cases using 
mathematical concept analysis (a partial ordering and clustering technique [126]). In addition to 
producing a basic mapping between components and test cases, the approach of Eisenbarth et al. 
involves the refinement of the feature-to-code mapping through inspection by a developer of a static 
dependency graph of the program analyzed. This step helps achieve a more precise and complete 
description of the code implementing a feature, at the cost of additional effort for developers using 
the technique. 

Software Reconnaissance and the respective approaches proposed by Wong, Eisenbarth, and 
their colleagues, like any dynamic analysis approach, depend on the availability and quality of test 
cases for an executable system. In contrast, the construction of concern graphs is based on source 
code, and can be applied to incomplete or incorrect code. As these approaches based on dynamic 
analysis have achieved some success in identifying good starting points for program investigation, 
they can be considered complementary to the use of concern graphs to support program evolution 
tasks. 

A semi-automatic technique for feature location based on static analysis has been proposed 
by Chen and Rajlich [23]. Using this technique, a developer navigates a system dependency graph 
computed through a static analysis of the source code of a program. The graph produced is a model 
of a program not unlike the model we use for concern graphs. It details relations between globally-
defined elements (e.g., functions and global variables in a C program). The technique involves a 
systematic, computer-assisted search through the dependency graph to find elements related to a 
feature. This approach is limited in that it does not allow users to find concern elements that are 
related through a non-concern element, since the technique dictates that the search must stop on a 
path once a unrelated element is reached. In a recent study [147], Wilde et al. have compared the 
dependency graph method of Chen and Rajlich to the Software Reconnaissance method on legacy 
Fortran code. The results showed that, although both methods were successful in identifying code 
relevant to a feature, Software Reconnaissance was better suited to large and infrequently changed 
programs, and the dependency graph method was better suited to programs that require a deep 
investigation by developers. 

Finally, Antoniol et al. have proposed an approach to determine a set of components poten-
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daily affected by a maintenance tasks using a probabilistic analysis of the text of the maintenance 
request [4]. This approach, however, produces results only at the granularity of high-level compo­
nent (classes), and could not be used to produce concern graphs. 

There are two important distinctions between the work discussed above and the concern graph 
approach. The first lies in the nature of the concerns analyzed. All the approaches above focus 
on identifying the code relevant to features that can be expressed at the user level. These form a 
proper subset of the concerns a developer might wish or need to investigate. Often, developers must 
investigate code overlapping different features to understand enough of the system to respect the 
existing design. Because it is independent of the execution of specific features, the concern graph 
approach is flexible enough to capture any subset of a program as a concern. A second important 
difference is that the approaches discussed in this section focus primarily on finding the source code 
implementing a feature, whereas the primary goal of a concern graph is to document this information 
in a robust fashion. 

7.1.4 Clustering Techniques 

Some design recovery techniques have been proposed to identify code that would constitute a candi­
date for refactoring into a module or object. These approaches are typically based on the analysis of 
relations between different program elements, such as "x uses y", and determine cohesive program 
subsets using various clustering algorithms. For example, de Oca and Carver propose an approach 
to identify data cohesive subsystems in COBOL programs using data mining techniques [31]. van 
Deursen and Kuipers report on the use of both cluster and concept analysis to identify potential 
objects in non-object-oriented code [142]. Siff and Reps [123], and Tonella [141] both propose 
approaches to module identification in legacy systems based on concept analysis.. In practice, the 
results of applying these techniques correspond to scattered concerns. However, the resulting con­
cerns are not task-specific: developers cannot infer concerns related to a specific feature or im­
plementation concept. In contrast, our approach to finding source code relevant to concerns, both 
with and without automation, factors in the focus of the developers during program investigation, 
allowing the capture of concerns that are of immediate interest to program developers. 

7.2 Concern Documentation 

Scattered concerns are a fundamental issue in software development, and many approaches have 
been proposed that involve the explicit description and documentation of concerns to aid in various 
software engineering tasks. Mechanisms for describing concerns have been proposed for tasks at 
different stages of the software development process (e.g., requirement specification [105], and 
design [30]). Descriptions of concerns also span the full spectrum of levels of abstraction, with 
some approaches supporting the definition of concern corresponding to features at the architectural 
level, and the generation of code to implement these concerns [9] in the context of software product 
lines [49]. Not all of these approach address the problem of finding and documenting concerns 
in source code. In this section, we discuss the approaches specifically addressing the problem of 
describing concerns at the implementation level. 
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7.2.1 Textual Documentation 
Early empirical evidence that scattered concerns pose problems to programmers was collected by 
Soloway, Letovsky, et al. during different studies of professional programmers [74, 127]. In one 
study, conducted at NASA's Jet Propulsion Laboratory, Soloway et al. observed that the program­
mers who did not implement a correct modification to a small system "failed to understand the 
casual interactions inherent in one of the key delocalized plans." [127: p. 1262]. To address the dif­
ficulty of performing maintenance on code involving delocalized plans (or, in other words, scattered 
concerns), the researchers propose that programmers produce explicit documentation detailing de-
localized plans in programs. Their initial approach is a form of paper documentation where source 
code is presented in parallel with pointers linking the code to other relevant sections of a program, 
and detailing the rationale for different design and implementation decisions. The authors also 
mention the possibility of computer-assisted documentation, but do not elaborate. Although the 
idea of Soloway et al. is based on sound empirical observations, their proposed solution has several 
limitations. First and foremost, no evaluation of its cost-effectiveness is performed, and we can 
surmise that the real cost of pre-emptively documenting scattered concerns is high. Furthermore, 
this cost may not always be warranted as some scattered concerns may never be revisited. Finally, 
textual documentation in plain language suffers from the problem of decay: in order to remain con­
sistent, it must be updated in parallel with the code. This introduces the possibility of misleading 
discrepancies between the code and the documentation creeping in as a program goes through many 
modifications. Compounding this problem are the facts that human-produced documentation can be 
wrong, and that there is no way to automatically detect inconsistencies between plain-language doc­
umentation and source code. For these reasons, the documentation technique proposed by Soloway 
et al. is not practical. The concern graph approach proposed in this dissertation shares the goal of 
documenting scattered concerns, but addresses most of the limitations of a manual approach. In 
particular, using concern graphs, concern documentation, can be produced at a minimal cost, and 
inconsistencies between the documentation and source code can be automatically detected and re­
paired. The trade-off for these advantages is a lack of support for documenting design rationale in 
concern graphs that is possible in free-form documentation. 

7.2.2 Conceptual Modules 
A different approach to documenting scattered concerns is the idea of conceptual modules [7]. The 
intent of the conceptual modules approach is to allow a developer to query a program both in terms 
of the existing and of a desired structure. In practice, a conceptual module captures segments of 
a program as a list of lines of source code. The approach is supported by a tool that can produce 
information such as input, output, and local variables for a conceptual module, the definitions and 
uses of variables in a conceptual module, calls made to and by code in the module, and relationship 
information between conceptual modules. The goals of the concern graph and conceptual module 
approaches are different; the goal of conceptual modules is to allows precise queries on source code, 
whereas the goal of concern graphs is to capture knowledge about the implementation of a concern 
in source code. This divergence in point of view translates into a practical differences: conceptual 
modules do not abstract the essential structure of a concern. As a consequence, conceptual modules 
can only exist on one version of a system, and cannot be used to described knowledge about the 
implementation of a concern through a program's life-cycle. 

100 



7.2.3 Concern Visualization Tools 

Concerns can also be described in terms of subsets of the program text matching different queries. 
The Aspect Browser is a tool developed to help developers find concerns using lexical searches 
of the program text [50]. Concerns found in this fashion can be stored and viewed at different 
times to support program evolution tasks. Aspect Browser uses the Seesoft [37] concept and a map 
metaphor to graphically represent the location of code implementing concerns in the context of the 
entire code base. The Aspect Mining Tool (AMT) [54] is conceptually similar to Aspect Browser, 
but supports additional queries based on types. The Aspect Browser and A M T can be used both 
for finding and documenting concerns. However, because they only support the specification of 
concerns based on lexical matches to regular expressions and use of types, their expressive power is 
limited. Additionally, these tools do not support the detection and repair of inconsistencies between 
a concern and a code base. Finally, the text-oriented approach also limits the tools' ability to capture 
relationships between scattered program elements explicitly. 

7.2.4 Virtual Files 

Descriptions of scattered concerns can also be captured as virtual files. In software development 
environments, the idea of virtual files is to present various segments of source code and other system 
documentation relevant to a task as a single unit. For example, the Desert Environment [106] 
explicitly supports the concept of virtual files. In Desert, a developer can load a virtual file consisting 
of fragments of other source files, and edit the virtual file. The system provides the logic for saving 
the fragments after they are edited. The system also provides support to build fragment files from 
a list of fragment names. The Stellation system [28, 29] is a fine-grained software configuration 
management system that supports method-level storage management. Using a concept similar to 
Desert, Stellation is intended to supports the concept of virtual source files using a typed aggregation 
mechanism that supports the collection of different program elements and other artifacts (such as test 
cases) in a single unit for the purpose of configuration management. Besides explicit specification, 
the proposal for Stellation includes the possibility of specifying aggregates in terms of query results. 

Virtual files can provide a means of documenting scattered code that implements a concern. 
However, these mechanisms do not address the concern location problem, and virtual files must be 
composed by a developer who already knows about the location of the code implementing a concern. 
The mechanisms proposed for Desert and Stellation also do not include support for tolerating and 
managing inconsistencies between a virtual file and the source code. In particular, the proposal for 
Stellation does not detail how externalized virtual files relying on queries can be re-generated in the 
presence of inconsistencies. 

7.2.5 Advanced Separation of Concerns Mechanisms 

Finally, concerns can be captured explicitly by changing the source code to factor the code rele­
vant to a concern into a special module. This functionality is supported by advanced separation 
of concerns mechanisms. Section 1.1 presents an overview of such mechanisms, and of the issues 
they address. Changing the source to explicitly modularize scattered concerns is a very different 
approach than the use of concern graphs. First, the cost and associated risks of re-modularizing a 
program in an separate language are much higher, and as such the change might not be warranted 
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in all cases. Second, advanced separations of concerns mechanism are not flexible enough to sup­
port the encapsulation of all the potential concerns emerging during program evolution. In contrast, 
concern graphs provide an inexpensive way to describe concerns in programs without requiring any 
change to the code. 

7.3 Inconsistency Management 

There exists a large body of work in computer science addressing the problem of managing the 
consistency between different pieces of information. In this section, we provide an overview of 
the significant work in the area of software engineering, and discuss the relevance of our work on 
concern graphs. 

One expression of the need for inconsistency management came with the apparition of soft­
ware development environments (e.g., Centaur [19], Arcadia [65, 135]). Such tools require the 
management of consistency between different artifacts related to a program (e.g., textual views of 
the source code, abstract syntax trees, and control-flow graphs). To help address this problem, 
frameworks have been proposed that explicitly account for consistency management [53, 86, 133]. 

An important development in the research on consistency management was the realization 
that enforcing total consistency might not always be possible or even desirable [41]. This idea 
was originally proposed by Balzer [6] based on research on data management. Balzer proposes to 
temporarily tolerate certain inconsistencies, by marking inconsistent data using "pollution markers". 
We have retained this approach to implement inconsistency management for concern graphs. 

Research on inconsistency management has also been done to support requirement specifica­
tions [55, 92]. In the area of design, Finkelstein et al. studied the issues related to inconsistency 
handling in situations where potentially overlapping elements of design (design fragments) can be 
specified by different developers having different perspectives [42]. However, work on inconsis­
tency checking with viewpoints has remained of a mostly theoretical nature [90]. 

Lastly, with the advent of development systems distributed over the Internet, new problems 
have appeared related to the management of the consistency of distributed, heterogeneous data. 
Systems have been proposed to address this new problem. For example, xlinkit, a lightweight 
framework for consistency checking [87, 88, 89, 90], supports the incremental detection and repair 
of inconsistencies in a web of heterogeneous, distributed software engineering documents. 

Most of the published research on consistency management has focused on developing frame­
works supporting a holistic and unified view of inconsistency management. This strategy has the 
advantage of providing sound solutions that apply in a variety of situations involving a variety of 
data. For example, the rules supported by the xlinkit environment mentioned above support checks 
to the documents both within and across development stages. An important tradeoff of this general 
approach is that additional effort must be spent implementing the framework for a desired situa­
tion: consistency rules have to be written and tested, and developers have to be trained to use them. 
Additionally, by supporting a solution to a general problem, frameworks cannot leverage from the 
semantics of specific inconsistencies to provide additional help to developers. 

In our effort to minimize the cost of using concern graphs, we have instead developed a spe­
cialized approach to consistency management. The mechanism we developed for concern graphs 
has a simple model that can detect a single type of inconsistency: mismatches between a fragment 
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projection and a model of the source code. Our mechanism also involves a small and fixed number 
of consistency rules that do not need to be updated by users of concern graphs. Indeed, by defining 
our notion of inconsistency at the level of the general program model for concern graphs, we en­
sure that management of inconsistencies is independent of any concrete program model instantiated. 
Finally, and perhaps most importantly, having a dedicated inconsistency management mechanism 
allowed us to provide tool support for managing specific consistency rules. As we found (see Sec­
tion 4.6), dedicated tool support for inconsistency management is a powerful feature that supports 
not only detecting and repairing inconsistencies, but also reasoning about their cause with the help 
of visualization and queries. In brief, the contribution of our approach in the area of inconsistency 
management is the demonstration that a specialized mechanism can provide support for reasoning 
about inconsistencies that goes beyond simple detection and repair. For example, as we have shown 
in Section 4.6, the support we have implemented for detecting and visually representing inconsistent 
fragments in FEAT allowed us to determine the indirect cause of an inconsistency, and to manually 
repair the inconsistency to account for this cause. 
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Chapter 8 

Conclusions 

Evolving programs can be a difficult task, especially when it requires a developer to locate and 
understand scattered concerns—considerations a developer might have about the implementation of 
a program which are not implemented in a single location in the code. 

The motivation for the work described in this dissertation is to help developers locate and un­
derstand scattered concerns, and to document the code relevant to these concerns so that knowledge 
about their implementation needs not be repeatedly re-acquired. To achieve this goal, we propose, 
during program investigation activities, to produce descriptions of the code implementing a concern. 
Capturing concern representations can thus support both the investigation at hand, and later tasks 
involving the same concerns. 

As such, the thesis of this dissertation has been that a description of concerns, representing 
program structures and linked to source, that can be produced cost-effectively during program in­
vestigation activities, can help developers perform software evolution tasks more systematically, 
and on different versions of a system. 

To investigate the claims expressed in this thesis statement, we developed the concept of con­
cern graphs, a model for describing concerns in source code based on relations between elements 
defined in a program. The concern graph model is general, and can be instantiated to capture differ­
ent types of relations between different types of elements in different programming languages. The 
model also defines precisely the notion of inconsistency between a concern graph and the corre­
sponding source code. To experiment with concern graphs, we have developed a tool, called FEAT, 
that allows developers to iteratively build concern descriptions as the source is investigated, to view 
the code related to a concern, and to perform analyses on the concern representation. We have also 
developed an algorithm to automatically generate concern graphs based on a transcript of program 
investigation activities. Using FEAT, we have evaluated the cost and usefulness of concern graphs 
in a series of case studies involving the evolution of five different systems of different size and style. 
The results show that concern graphs are inexpensive to create during program investigation, can 
help developers perform program evolution tasks more systematically, and are robust enough to be 
used with different versions of a system. 

In addition to demonstrating the validity of the thesis statement, the research described in this 
dissertation makes six contributions to the field of software engineering. 

First, we provide a general model for describing concerns in source code. As a consequence 
of the generality of the model, the analyses and tool support required to support concern graphs in 
different languages can, to a large extent, be reused. 
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Second, we provide a specific instantiation of the model for the Java language, and a discussion 
of the issues of usability and scalability related to the use of this specific model. Other researchers 
can rely on this knowledge to extend or adapt our model to suit different purposes. 

Third, we provide a usable tool capable of supporting the concern graph approach for Java pro­
grams. Researchers and developers can download our tool freely to conduct research on separations 
of concerns and modularity, and to integrate the use of concern graphs in industrial settings. 

Fourth, we describe an algorithm that can automatically infer concerns from a transcript of 
the program investigation of a developer. This algorithm serves as a proof of concept that such a 
technique is possible, and that it can produce documentation for scattered concerns at a minimal 
cost. 

Fifth, we provide an in-depth description of the design of five empirical studies of program 
evolution, of the issues and problems we have encountered, and of the steps we have taken to 
address them. This knowledge can be useful to researchers wishing to develop similar studies of 
programmers performing software evolution tasks. 

Finally, we demonstrate a specialized mechanism for the management of inconsistencies be­
tween a description of source code and an actual code base that can provide support for reasoning 
about the indirect cause of an inconsistency, in addition to the simple detection and repair of incon­
sistencies. 

In conclusion, although our approach is still at an early stage, the idea of using concern graphs 
to support program evolution tasks shows promise, and we envision its eventual deployment in an 
industrial setting. 
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Appendix A 

Relational Algebra 

This appendix presents the notation and definitions of relational algebra used in the presentation of 
the formalisms. The notation and the definition of most relational operators are taken from Schmidt 
and Strohlein [121]. Additional operator definitions are obtained from the presentation of Ince [61]. 
In this section it is assumed the reader is familiar with the basic concepts of set theory. 

A.1 Notational Conventions 

In this dissertation, the following notational conventions are used: 

• Variables and label names are set in italics (e.g., the set S, the element e, the relation Calls). 

• The names of entities found in source code and in windows of graphical user interfaces are 
set in c o u r i e r type (e.g., class A, method l o g (), menu F i l e | Save As). 

• The names of mathematical functions are set in normal type (e.g., the range function, ran()). 

The following additional conventions are used when referring to entities in Java programs. 

• The name of classes are in lower-case letters, with the first letter of each word capitalized 
(e.g., ChangeListener). 

• Then name of class members (fields and methods) begin with a lower-case letter, with the first 
letter of each following word capitalized (e.g., f i r s t l t e m ) . 

A.2 Definitions 

Definition A.l (Homogeneous Relation) Let V be a set. A homogeneous relation R on V is a 
subset of the Cartesian product V xV. Elements x, y £- V are said to be in relation Rif(x,y) G R. 

Relations will usually be named, and defined either exhaustively by listing the corresponding 
set of pairs, or through a comprehensive specification (e.g., GreaterThan = {(x, y)\x > y}. When 
the underlying set V a relation is defined over is not specified by the context, it will be indicated as 
a subscript of the relation name (e.g., Ry). 

Three special relations need to be considered: the empty relation, the identity relation, and the 
universal relation. 
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The empty relation denotes the absence of a relation between any elements of a set. It is 
represented with the symbol O. 
Definition A.2 (Empty Relation) Let V be a set. Oy = {}. 

The identity relation J puts every element in relation with itself. 
Definition A.3 (Identity Relation) Let V be a set. ly = {(x, y) C V x V | x = y}. 

Finally, the universal relation U puts every element of a set in relation with every other element. 
Definition A.4 (Universal Relation) Let V be a set. Uy — V x V. 

We following definitions provide useful operators on relations. 
Definition A.5 (Transpose) Let RCVxVbea relation. We define the transpose ofR, RT, as 

RT = {(x,y)eVxV\(y,x)GR}. 

Definition A.6 (Composition) Let R,S C.V xV be relations. Their composition R o S C V x V 
is given by 

Ro S = {(x,z) GV XV | 3 y &V : (x,y) e R A (y,z)€S}. 

Definition A.7 (Domain) Let RCV xV. The domain ofR is the set 

dom(R) = {x e V | (x, y) G R} 

Definition A.8 (Range) Let RCV xV. The range ofR is the set 

rMR) = {y£V\(x,y)£R} 

Definition A.9 (nth Iterate) The nth iterate of a relation, Rn, is its nth composition with itself. 

R° = 1, Rn = R o R71-1 

Definition A.10 (Reflexive Transitive Closure) the reflexive transitive closure R* of a relation R 
is the union of all its iterates 

R* = R°UR1l)R2[J ...Rn. 

Definition A.ll (Non-reflexive Transitive Closure) The non-reflexive transitive closure R+ of a 
relation R is the union of all its iterates except R° 

R+ = R1 U R2 U R3 U ...Rn. 

Definition A.12 (Domain Restriction) The domain restriction operator < restricts the domain of a 
relation. It has two operands: the first operand is a set S; the second operand is a relation R. The 
result of the domain restriction operator is the subset of R which only contains pairs whose first 
element is contained in S: 

S<R = {(x,y)eR\xeS} 

We can also restrict the range of a relation. 
Definition A.13 (Range Restriction) Let S be a set and Rbe a relation. 

R>S = {(x,y) eR\yeS} 
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Appendix B 

Relations in Java Programs 

This appendix defines the boolean functions on elements of a Java program used in Figure 3.1. 
The definitions are based on the Java Language Specifications [48]. In the rest of this appendix, 
references to the Java language specifications we be denoted by a simple subsection reference. 

IsAClass(x) The function returns true if x represents a class declaration (§8.1). 

IsAnlnterface(x) The function returns true if x represents an interface declaration (§9.1). 

IsAField(x) The function returns true if x represents a field declaration. Fields can be declared 
within a class declaration (§8.3), or as constants in an interface declaration (§9.3). 

IsAMethod(x) The function returns true if x represents any declarative entity containing exe­
cutable code or that can be dispatched to executable code. This definition thus encompasses meth­
ods declarations (§8.4), including abstract (§9.4,§8.4.3.1) and static (§8.4.3.2) method declarations, 
constructor declarations (§8.8), and instance (§8.6) and static (§8.7) initializer blocks. Although not 
explicitly represented in Java programs, default constructors (§8.8.7) can also be represented in a 
program model, and are considered to be methods. Instance field initialization code (§8.3.2.1) is 
considered to be included in each constructor for the class declaring the field (including the default 
constructor if applicable). Class field initialization code (§8.3.2.2) is considered to be part of the 
static initializer block for the class. A default static initializer block can be defined for this purpose 
if necessary. 

Accesses(x,y) The function returns true if x is a concrete (non-abstract) method, y is a field, and 
x contains a field access expression (§15.11) referring to field y. 

Calls(x,y) The function returns true if x is a concrete (non-abstract) method, y a concrete or 
abstract method (defined in a class or interface), and x contains a method invocation expression 
(§15.12) such that: 

1. y is the compile-time method determined by the algorithms of (§15.12.1-§ 15.12.3), or 

2. y is a valid runtime binding for the compile-time method determined above. 
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In other words, Calls(x,y) puts in relation a method and both the static method binding and all the 
potential dynamic bindings for the static binding. Determining which potential dynamic bindings 
are applicable is dependent on a specific implementation the static analysis algorithm for extracting 
the model, such as Class Hierarchy Analysis [32], or Rapid Type Analysis [5]. 

Checks(x,y) The function returns true if x is a concrete (non-abstract) method, y is a non-primitive 
type (class or interface), and x contains code containing a cast expression (§15.16) naming type y, 
or an instanceof operation (§15.20.2) naming type y. 

Creates(x,y) The function returns true if £ is a concrete (non-abstract) method, y is a class type, 
and x contains a class instance creation expression (§15.9) naming type y. 

Declares(x,y) The function returns true if y is declared directly within the declaration of x. The 
following relations are possible: 

• A type (class or interface) can declare fields (§8.3,§9.3) or methods (§8.4,§9.4); 

• A type (class or interface) can declare another type (member class §8.5, or member interface 
§9.5). 

• A concrete (non-abstract) method can declare a class (local class, §14.3, or anonymous class, 
§15.9.5). 

ExtendsCIass(x,y) The function returns true if x and y are both class types, and x is declared to 
extend y (i.e., directly extends y, §8.1.3). 

Extendslnterface(x,y) The function returns true if x and y are both interface types, and x is 
declared extend y (i.e., directly extends y, §9.1.2). 

HasParameterType(x,y) The function returns true if x is a method (abstract or concrete), y is a 
non-primitive type, and y is contained in the list of parameters of x (§8.4.1). 

HasReturnType(x,y) The function returns true if x is a non-constructor, non-initializer method 
(abstract or concrete), y is a non-primitive, non-void type, and y is the return type of x (§8.4). 

Implements(x,y) The function returns true if a; is a class type, y an interface type, and x declares 
to implement y (i.e., directly implements y, §8.1.4). 

OfType(x,y) The function returns true if x is a field, y a non-primitive type (class or interface), 
and x is declared to be of type y (§8.3,§9.3). 

Overrides(x,y) The function returns true if x is a concrete method, y is a method (concrete or 
abstract), and x overrides y (§8.4.6.1). 
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Appendix C 

Transcripts for the jEdit Case Study 

This appendix contains the partial transcripts of the jEdit case study relevant to the investigation and 
implementation of requirement 5 of the modification request (see Section 4.5.2). The transcripts 
list the actions performed by each subject for all of the episodes involving the discovery or use 
of information related to the methods B u f f e r , l o a d (View, boolean) and B u f f e r . recover­
Autosave (View). 

A transcript consists of a list of user actions. An action is a record consisting of four fields. In 
the transcript, an action appears as a line, with each field presented in a separate column. The first 
field contains the time of the action, in terms of elapsed seconds since the beginning of the study 
phase (investigation or execution). The second field contain the Eclipse view in which the event was 
triggered. Table C l lists the possible values for this field. 

The third field in a transcript action describes the action performed by the subject. Table C.2 
lists the possible values for this field. Finally, the fourth field for an action lists the target of the 
action. 

The sections of the transcripts presented in this appendix list all actions for which the target 
is either method B u f f e r . l o a d ( . . . ) or method B u f f e r . recoverAutosave ( . . . ) . ! , and the 
five actions preceding or following a relevant action. In the transcripts, actions for which the target 
includes either of the relevant methods are set in boldface. 

'For a more concrete presentation, we have replaced the list of parameter types in method signatures by 
the symbol 

Table C l : View codes 
Code Description 
Concerns 
Editor 
Explorer 
Participants 
Projection 
Relations 
Result 
Tasks 
Viewer 
Workbench 

The FEAT Concern Graph View. 
A text editor or the editor area of a perspective. 
The Eclipse Package Explorer View. 
The FEAT Participants View. 
The FEAT Projection View. 
The FEAT Relations View. 
A view listing Eclipse search results. 
An Eclipse View listing a set of tasks (e.g., syntax errors). 
An HTML Browser (e.g., Internet Explorer). 
The Eclipse workbench toolbar or menus. 
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Table C.2: Action codes 
Code Description 
Add Add an element to a concern. 
Browse Peruse the declarative structure of a class or source code. 
Change Modify an element. 
Execute Execute (i.e., run) an application). 
New Create a new element. 
Query Perform a structural (i.e., cross-reference) query. 
Recall Make visible an element previously accessed. 
Search Perform a lexical (i.e., keyword) search. 
Select Select an element in a view, when this actions has a side effect. 
View Access the source code for an element. 

C.1 Subject C1 

Investigation 

0 38 55 E x p l o r e r Browse B u f f e r 
0 38 59 E x p l o r e r View B u f f e r . s a v e (...) 
0 39 01 E x p l o r e r View B u f f e r . s a v e (...) 
0 39 04 E d i t o r Browse B u f f e r . J a v a 
0 39 54 E x p l o r e r Browse B u f f e r 
0 39 59 Explorer View Buffer.recoverAutosave(...) 
0 40 35 E x p l o r e r Browse B u f f e r 
0 40 45 E x p l o r e r View B u f f e r . a u t o s a v e ( ) 
0 41 14 E x p l o r e r Browse B u f f e r 
0 41 18 E x p l o r e r View B u f f e r . s a v e A s ( . . . ) 
0 41 20 E x p l o r e r View B u f f e r . s a v e (...) 

0 45 00 R e s u l t View B u f f e r . a u t o s a v e F i l e r e f e r e n c e d by B u f f e r . c l o s e ( ) 
0 45 10 E d i t o r Change Notes (not r e l e v a n t ) 
0 45 35 R e s u l t View B u f f e r . a u t o s a v e F i l e r e f e r e n c e d by B u f f e r . f i n i s h S a v i n g ( . . . 
0 45 38 R e s u l t View B u f f e r . a u t o s a v e F i l e r e f e r e n c e d by B u f f e r . g e t A u t o s a v e F i l e ( 
0 45 43 R e s u l t View B u f f e r . a u t o s a v e F i l e r e f e r e n c e d by B u f f e r . s e t P a t h ( . . . ) 
0:45 59 Result View Buffer.autosaveFile referenced by Buffer.recoverAutosave( 
0:46 05 Result View Buffer.autosaveFile referenced by Buffer.load(...) 
0 46 06 R e s u l t View B u f f e r . a u t o s a v e F i l e r e f e r e n c e d by B u f f e r . f i n i s h S a v i n g ( . . . 
0 46 14 R e s u l t View B u f f e r . a u t o s a v e F i l e r e f e r e n c e d by B u f f e r . c l o s e ( ) 
0 46 20 R e s u l t View B u f f e r . a u t o s a v e F i l e r e f e r e n c e d by B u f f e r . a u t o s a v e ( ) 
0 46 23 R e s u l t View B u f f e r . a u t o s a v e F i l e r e f e r e n c e d by B u f f e r . f i n i s h S a v i n g ( . . . 
0 46 27 E d i t o r Browse B u f f e r . J a v a 

0 48 41 E x p l o r e r View j E d i t . p r o p e r t i e s C h a n g e d ( ) 
0 49 08 E d i t o r Change Notes (not r e l e v a n t ) 
0 50 14 E d i t o r Change Notes (not r e l e v a n t ) 
0 53 08 E d i t o r Change Notes ( r e l e v a n t ) 
0 53 21 E x p l o r e r Browse j E d i t 
0 53 33 Result View Buffer.autosaveFile referenced by Buffer.recoverAutosave( 
0 53 44 E d i t o r Change Notes ( r e c o v e r A u t o s a v e , wrong name) 
0 53 58 E d i t o r Change Notes ( r e c o v e r A u t o s a v e , c o r r e c t s t h e name) 
0 54 07 E d i t o r Browse j E d i t 
0 54 20 E d i t o r Change Notes ( i m p l e m e n t a t i o n s t r a t e g y f o r R5) 
0 55 53 Edi t o r Query- Buffer.recoverAutosave(...) referenced by 
0 55 56 Result View Buffer.recoverAutosave!...) referenced by Buffer.load(... 
0 57 14 E d i t o r R e c a l l Autosave.Java 
0 57 53 E d i t o r View Notes 
0 58 15 E d i t o r Change Notes (not r e l e v a n t ) 
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Execution 

0:56:13 Workbench Execute 
0:56:30 Editor View 
0:56:48 Editor Recall 
0:56:54 Explorer Browse 
0:56:59 Explorer View 
0:57:00 Explorer View 
0:57:05 Explorer Change 
0:57:34 Workbench Execute 
1:00:33 Editor Recall 
1:00:42 Editor Change 

j E d i t 
Notes (R5). 
Buffer.Java 
Buffer 
Buffer. removeAHMarkers () 
Buffer;recoverAutosave(...) 
Buffer.recoverAutosave(...) 
j E d i t 
j Edi t . j ava 
jEdit.propertiesChanged() 

C.2 Subject C2 

Investigation 

0 16 16 Editor Change Notes (not relevant) 
0 16 30 Editor Recall Autosave.j ava 
0 17 33 Editor Browse Autosave.j ava 
0 17 57 Editor View Buffer.autosave() 
0 18 40 Explorer Browse Buffer 
0 19 08 Explorer view Buffer.recoverAutosave(...) 
0 19 29 Explorer Browse Buffer 
0 19 32 Editor View Notes 
0 19 42 Editor Recall Autosave.j ava 
0 19 44 Editor Recall Buffer.Java 
0 20 13 Editor Change Notes (requirement 3) 

0 23 51 Editor View File . d e l e t e ( ) 
0 23 56 Editor Recall Buffer.Java 
0 24 02 Explorer View Buffer.autosave 
0 24 21 Editor Seach ''delete'' in Buffer.Java 
0 24 40 Editor Search "autosaveFile.delete" i n Buffer 
0 24 47 Editor Browse Buffer.load(...) 
0 25 12 Editor View File . d e l e t e ( ) 
0 25 18 Editor Recall Buffer.Java 
0 25 28 Editor Query Fil e . d e l e t e ( ) referenced by 
0 26 05 Editor Search "autosaveFile.delete" i n Buffer 
0 26 25 Editor Browse Buffer.Java 
0 26 51 Edi t o r Browse Buffer.load(...) 
0 26 59 Editor View Notes 
0 27 54 Editor Recall Autosave.Java 
0 28 04 Editor Recall LoadSaveOpt ionPane. j ava 
0 28 08 Editor Browse LoadSaveOptionPane.Java 
0 28 28 Editor Recall Autosave.j ava 

0 41 50 Editor Recall Buffer.Java 
0 41 53 Explorer Browse j E d i t 
0 42 00 Explorer View jEdit.openFile(...) 
0 42 04 Editor Recall Buffer.Java 
0 42 09 Explorer Browse Buffer.Java 
0 42 12 Explorer View Buffer.recoverAutosave)...) 
0 42 34 Editor Recall jEdit.Java 
0 42 37 Editor Browse jEdit.Java 
0 42 50 Explorer Browse j E d i t 
0 42 53 Explorer View jEdit.propertiesChanged() 
0 43 03 Explorer Browse j E d i t 
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0 43 03 Explorer Browse j E d i t 
0 43 15 Explorer View jEdit.propertiesChanged() 
0 43 21 Explorer Recall Buffer .Java 
0 43 28 Editor Browse Buffer .Java 
0 43 30 Explorer Browse Buffer 
0 43 35 Explorer View Buffer.recoverAutosave!...) 
0 43 50 Edi t o r Query Buffer.recoverAutosave!...) referenced by 
0 43 53 Results View Buffer.recoverAutosave!...) referenced by Buffer.load!•..) 
0 44 44 Editor View Notes 
0 44 51 Editor Recall Buffer .Java 
0 44 55 Editor Recall Notes 
0:44 58 Edi t o r Change Notes: (adds " b u f f e r . l o a d ! ) " ) 
0 45 04 Editor Recall Buffer .Java 
0 45 07 Editor Browse Buffer .Java 
0 45 15 Explorer Browse Buffer 
0 45 17 Editor Recall Notes 
0:45 20 Edi t o r Change Notes ladds Buffer.recoverAutosave!)) 
0 45 58 Editor Recall Buffer .Java 
0 46 01 Explorer Browse Buffer 
0 46 18 Explorer View Buffer .save (...) 
0 46 20 Explorer View Buffer .saveAs(...) 
0 46 21 Explorer View Buffer .save (...) 

0 49 33 Result View Buffer .finishSaving(...) references "delete" 
0 49 37 Editor Browse Buffer .Java 
0 50 15 Explorer Browse Buffer 
0 50 22 Explorer View Buffer autosaveFile 
0 50 25 Result View Buffer finishSaving(... ) references "delete" 
0 50 50 Result View Buffer •load!...) references "delete" 
0 51 12 Editor Recall Notes 

•load!...) references "delete" 

0 51 18 Editor Recall Buffer j ava 
0 51 22 Editor Recall Notes 
0 51 26 Editor Change Notes adds reload to R5) 
0 51 28 Editor Recall Buffer Java 
0 51 37 Editor Query Buffer.load!...) referenced by 
0 51:46 Result View Buffer.load!...) referenced by Buffer.checkHodTime(...) 
0 51 57 Result View Buffer.load!...) referenced by Buffer.reload!...) 
0 52 05 Result View Buffer.load!...) referenced by jEdit.openFile!...) 
0 52 09 Result View Buffer.load!...) referenced by jEdit.openTemporary!...) 
0 52 13 Result View Buffer load!...) referenced by jEdit.reloadAHBuf fers(...) 
0 52 18 Explorer Browse Buffer 
0 52 32 Explorer View Buffer.load!...) 
0 52 54 Editor Recall Notes 
0 53 02 Editor Change Notes add info for R5) 
0 53 10 Editor Recall Buffer Java 
0 53 21 Editor Recall Notes 
0 53 43 Editor Recall Buffer Java 

Execution 

0:17:32 Editor Recall j E d i t . j a v a 
0:17:42 Editor Change jEdit.propertiesChanged() 
0:19:07 Editor Recall Notes 
0:19:22 Explorer Browse j E d i t 
0:19:30 Explorer Browse Buffer 
0:19:43 Explorer View Buffer.load!...) 
0:19:52 Editor View Buffer.recoverAutosave(...) 
0:19:58 Editor Change Buffer.recoverAutosave!...) 
0:20:01 Editor Recall LoadSaveOptionPane.Java 
0:20:07 Editor Recall j E d i t . j a v a 
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0 20 12 Editor Recall Buffer.Java 
0 20 14 Edi t o r Change Buffer.recoverAutosave)...) 
0 20 46 Edi t o r Query- Buffer.recoverAutosave!...) referenced 
0 20 56 Editor Recall Notes 
0 21 05 Editor Change Notes (relevant) 
0 22 04 Editor Recall Buffer.Java 
0 22 12 Editor Browse Buffer.Java 
0 22 16 Explorer Browse Buffer 
0 22 32 Explorer View Buffer.recoverAutosave(...) 
0 22 37 Edi t o r Browse Buffer.recoverAutosave!...) 
0 22 39 Editor Change Buffer.Java 
0 23 29 Editor Search 1'autosavefile' ' in Buffer. Java 
0 23 39 Editor Browse Buffer.Java 
0 23 40 Editor Search 1 1 a u t o s a v e f i l e ' ' in Buffer. Java 
0 23 49 Editor Browse Buffer.Java 

C.3 Subject F1 
Investigation 

0 41 12 Projection View jEdit.openFile(...) accessing BufferUpdate.CREATED 
0 41 17 Projection View jEdit.openFile(...) accessing jE d i t . b u f f e r L i s t L o c k 
0 41 18 Projection View jEdit.openFile(...) accessing jEdit.saveCaret 
0 41 26 Proj ection Query jEdit.openFile(...) c a l l i n g 
0 41 31 Projection View jEdit.openFile(...) c a l l i n g BufferUpdate.$<$init$>$(...) 
0 41 38 Projection View jEdit.openFile(...) c a l l i n g Buffer.load(...) 
0 41:41 Projection View Buffer.load(...) 
0 41 52 Edi t o r Browse Buffer.load(...) 
0:42 18 Projection Query Buffer.load(...) c a l l i n g 
0:42 23 Projection View Buffer.load(...) c a l l i n g Buffer.recoverAutosave(...) 
0 42 40 Concerns New Buffer recovery 
0 42 50 Concerns Select Buffer recovery 
0:42 52 Projection Add Buffer.load(...) c a l l i n g Buffer.recoverAutosave!...) 
0:42 57 Projection Query Buffer.recoverAutosave(...) c a l l e d by 
0 43 00 Projection View Buffer.recoverAutosave(...) c a l l e d by Buffer.load(...) 
0 43 10 Projection Query Buffer.recoverAutosave(...) c a l l i n g 
0 43 13 Projection View Buffer.recoverAutosave(...) c a l l i n g Buffer$4.$<$init$>$() 
0 43 26 Editor Browse Buffer.Java 
0 44 02 Proj ection Query Buffer declaring 
0 44 12 Projection View Buffer.addBufferChangeListener(...) 
0 44 22 Editor Browse Buffer.Java 
0 44 32 Editor View Buffer.addMarker(...) 

0 49 43 Projection View Buffer.setDirty(...) c a l l e d by Buffer$l.run() 
0 49 49 Projection View Buffer.setDirty(...) c a l l e d by BufferOptions.ok() 
0 50 03 Projection Recall a l l of Buffer 
0 50 08 Projection Browse a l l of Buffer 
0 50 20 Concerns Select Buffer recovery 
0 50 21 Participants Select Buffer.recoverAutosave(...) 
0 50 25 Participants Query Buffer.recoverAutosave(...) c a l l e d by 
0 50 30 Projection View Buffer.recoverAutosave(...) c a l l e d by Buffer.load(...) 
0 50 41 Edi t o r Browse Buffer.load(...) 
0 51 16 Participants Select Buffer.recoverAutosave)...) 
0 51 19 Relations View Buffer.recoverAutosave(...) c a l l e d by Buffer.load(...) 
0 52 01 Participants View Buffer.recoverAutosave!...) 
0 52 14 Relations View Buffer.recoverAutosave(...) c a l l e d by Buffer.load(...) 
0-52 29 Edi t o r Browse Buffer.load(...) 
0: 52 34 Participants Query Buffer.load(...) c a l l e d by 
0: 52 40 Projection View Buffer.load(...) c a l l e d by Buffer.checkModTime (...) 
0 52 50 Editor Browse Buffer.checkModTime(...) 
0: 52 55 Projection View Buffer.load(...) c a l l e d by Buffer.finishSaving(...) 
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0 52 59 Projaction View 
0 53 11 Projection View 
0 53 15 Editor Brows 
0 53:46 Projection View 
0 53 53 Projection View 
0 54 04 Participants View 
0 54 53 Edi t o r Brows 
0 55 14 Participants Query 
0 55 18 Projection Query 
0 55 24 Projection View 
0 55 32 Projection View 
0 55 37 Projection View 

Buffer.load(...) c a l l e d by Buffer.reload(...) 
Buffer. load(...) c a l l e d by jEdit.reloadAHBuffers(...) 
j Edit.reloadAllBuffers(...) 
Buffer.load(...) c a l l e d by jEdit.openTemporary!...) 
Buffer.load(...) c a l l e d by jEdit.openFile(...) 
Buffer.load(...) 
Buffer.load(...) 
Buffer declaring 
Buffer.autosaveFile accessed by 
Buffer.autosaveFile accessed by Buffer.close() 
Buffer.autosaveFile accessed by Buffer.finishSaving(...) 
Buffer.autosaveFile accessed by Buffer.getAutosaveFile() 

Execution 

0 :21 57 Participants View LoadSaveOptionPane . -save() 
0 :22 03 Viewer View Instructions 
0 :22 11 Editor Recall jedit-gui .props 
0 :22 17 Editor Change jedit.gui.props 
0 :22 50 Concerns Select Buffer' recovery 
0 :22 53 Participants Select Buffer.recoverAutosave(...) 
0 :22 57 Participants view Buffer.load(...) 
0 :23 25 Editor Browse Buffer.load(...) 
0 :23 58 Participants Query Buffer declaring 
0 :24 03 Projection Browse Buffer declaring 
0 :24 18 Tasks Select Syntax error in Buffer.Java 
0 :24 29 Editor Search 1 1LoadAu'' 
0 :24 35 Editor Search 1 'delete!) ' ' 
0 :24 54 Editor Browse Buffer.Java 
0 :25 05 Tasks Select Syntax error i n Buffer.Java 
0 :25 09 Editor Change Buffer.Java 
0 :25 19 Participants Select Buffer.recoverAutosave!...) 
0 :25 24 Participants View Buffer.recoverAutosave!...) 
0:25 30 Participants Select Buffer.load!...) 
0 :25 32 Relations View Buffer.load!...) c a l l i n g Buffer.recoverAutosave(... 
0 :26 05 Participants Select Buffer.recoverAutosave!...) 
0 :26 13 Participants View Buffer.recoverAutosave!...) 
0 :26 17 Edi t o r Change Buffer.recoverAutosave!...) 
0 :27 50 Concerns Select Buffer autosaving 
0 •27 53 Participants View Autosave.actionPerformedl...) 
0 :28 00 Concerns Select Option settings 
0 :28 04 Concerns Select Buffer autosaving 
0 28 10 Editor Browse Autosave.Java 

1 47 31 Editor Browse Autosave.Java 
1 47 41 Editor Change Autosave.Java 
1 48 51 Editor Browse Autosave.Java 
1 50 09 Workbench Execute j E d i t 
1 51 08 Concerns Select Buffer recovery 
1:51 09 Participants Select Buffer.recoverAutosave!...) 
1 :51 23 Edi t o r Change Buffer.recoverAutosave!...) ( f i x bug) 
1 52 05 Workbench Execute j E d i t 
1 52 51 Editor Recall jedit.props 
1 52 53 Editor Search ' 'autosave'' 
1 52 54 Editor Change jedit.props 
1 53 08 Workbench Execute j E d i t 
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C.4 Subject F2 

Investigation 
0 22 48 Projection Add Buffer.getAutosaveFile() 
0 23 07 Projection Browse Buffer 
0 23 19 Projection Query- Buffer.autosaveFile accessed by 
0 23 23 Projection View Buffer.autosaveFile accessed by Buffer.close() 
0 23 32 Projection View Buffer.autosaveFile accessed by Buffer.finishSaving( 
0 23 56 Projection View Buffer.autosaveFile accessed by Buffer.recoverAutosave(. .) 
0 24 18 Projection Add Buffer.autosaveFile accessed by Buffer.recoverAutosave(. .) 
0 24 38 Projection Query Buffer.recoverAutosave(...) c a l l e d by 
0 24:42 Projection View Buffer.recoverAutosave(...) c a l l e d by Buffer.load(.. ) 
0 24 54 Projection Add Buffer.recoverAutosave(...) c a l l e d by Buffer.load(.. ) 
0 24 59 Editor Browse Buffer.load(...) 
0 25 38 Editor Browse Buffer 
0:25 44 Projection View Buffer.load(...) 
0 25 55 Participants Select Buffer.recoverAutosave!...) 
0 25 58 Participants view Buffer.load!...) 
0 26 01 Relations View Buffer.load!...) c a l l i n g Buffer.recoverAutosave!...) 
0 26 11 Concerns Select Clean up backup f i l e s 
0 26 12 Concerns Select Recover from backup 
0 26 12 Concerns Select Make backup f i l e s 
0 26 15 Viewer View Instructions 
0 26 36 Participants Select Buffer.autosave() 

0 49 00 Participants Select Autosave.actionPerformed(...) 
0 49 03 Participants View Autosave.actionPerformed(...) 
0 49 55 Editor Browse Autosave.j ava 
0 50 31 Concerns Select Recover from backup 
0 50 35 Participants Select Buffer.autosaveFile 
0 50:38 Participants Select Buffer.load!...) 
0 50:42 Participants Select Buffer.recoverAutosave!...) 
0 50 48 Participants View Buffer.recoverAutosave!...) 
0 51 13 Participants Query Buffer.recoverAutosave!...) c a l l e d by 
0 51 17 Projection View Buffer.recoverAutosave!...) c a l l e d by Buffer.load!.. .) 
0 53 02 Editor Browse Buffer.Java 
0 53 32 Concerns Select Clean up backup f i l e s 
0 53 36 Participants Select jEdit.getBuffers() 
0 53 50 Participants Select Autosave.actionPerformed(...) 
0 53 52 Participants View Autosave.actionPerformed(...) 

Execution 

0 13 12 Participants Select 
0 13 13 Participants View 
0 13 20 Editor Recall 
0 13 23 Editor Change 
0 15 17 Concerns Select 
0 15 19 Participants Select 
0 15 23 Participants View 
0 15 32 Participants View 
0 15 36 Edi t o r Browse 
0 16 50 Participants Select 
0 16 51 Participants View 
0 17 01 Participants View 
0 17 06 Edi t o r Browse 
0 18 30 Editor Change 
0 19 45 Editor Search 
0 20 09 Participants View 

Autosave.actionPerformed(...) 
Autosave.actionPerformed(...) 
j Edit.propertiesChanged() 
jEdit.propertiesChanged() 
Recover from backup 
Buffer.recoverAutosave(...) 
Buffer.recoverAutosave(...) 
Buffer.load(...) 
Buffer.load(...) 
Buffer.recoverAutosave(...) 
Buffer.recoverAutosave(...) 
Buffer.load(...) 
Buffer.load(...) 
Buffer.load!...) 
modTime 
Buffer.load(...) 
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0:20:20 Ed i t o r Browse 
0:20:49 Ed i t o r Change 
0:21:40 Participants View 
0:21:43 Ed i t o r Change 
0:22:04 Concerns Select 
0:22:14 Viewer View 
0:22:57 Workbench Execute 
0:26:09 Concerns Select 
0:26:11 Participants Select 

Buffer.load(...) 
Buffer.load(...) 
Buffer.load(...) 
Buffer.load(...) 
Make backup files 
Instructions 
j E d i t 
Make backup files 
Buffer.autosave() 
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