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ABSTRACT

This thesis presents a survey of multimedia appliﬁation development and a case study of
an implementation of a multimedia application. The stepé of multimedia application
.devélopment ére describéd inc.luding the planning of the application development, '
content aéquisition and storage, and content delivery. The survey would be useful for
multimedia developers and interactive media designers iﬁterested in gaining a broad

knowledge of multimedia application design.

The case study presented is of a networked multimedia playback application and it
‘illustrates' the application development steps in the context of the application. The goals -
of'the project were to provide lsynchronized video playback over a network while -
leveraging existing technology in order to support eXtensibility, porta.bilit}}, and

~interoperability. '
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~ INTRODUCTION

The ability to bring together various types of data - static or dynamic, visual or aﬁditory -
and render them for a user in a useful manner is one definition of the term multimedia.
Multimedia has also been described as “Vériety + Integrétion” [Williams91]. Multimedia
intégrates separate data'types into a cohesive framework. The inciividual data types as

well as the relationships between the data types are managed within this framework.

- Ona dailsl basis the corﬁputer user is involved in performing many different tasks. These
tasks may be as basic as writing electronic mail (é-mail), or-as complex as editing and
assembliﬁg a segment of digitized video. It is common to refer to the objects
manipulated in these tasks as documents. In a word prbcessing task, the set of words and
formatting commands the user enters is éalled a document. In a video editor, segments of

| video and Aaudio, their spatial and temporal layout, and the commands which merge the

data can also be thought of as a document - a multimedia document.

A word processing document with an embedded image is a multimedia document in its
simplest form. But in common usage, multimedia documents must include at least one
additional media type (other than text and static images). This will normally be audio or

video.

A computer program which assists in the completion of a task can be termed an
application. A multimedia application, such as a digital video editor, assists the video

editing process by merging video and audio segmehts. By supplying capabilities such as



digital video effects, these applications can surpass the manual abilities of the user. In

general, multimedia applications create, edit and store multimedia documents.

The display of a video segment or the pléyback éf an audio segment can be described as
fhe delivery of the data. This delivéry norfnally occurs fro;n a storage resource, such as a
mégnetié disk drive, fo a display dev,i.ce, such as é computer rﬁonitor. For examble, a

| _{/ideo can be played frbfn a hard disk drive through the system bus to the video monitor.
Altemétively, the video can be playgd from a CD-ROM mounted in a remote computer

over a wide-area network (WAN) to a video monitor.

Multimedia applications are‘desi'gned to exploit existing networks and storage re_soufces.
Future plans for faster and Wider-bandwidth networks and rapidly igcre‘asing quantities of
.'stor.age resources should be taken into considerétioﬁ. But multimedia apblications need
to be.useful» in thé present day, npt ﬁ.Ve years from now.i As new resources surface in the
marketplace, appiications wiil begi_n fo take advantage of them. However, the majority of
computer applications must still run on computers, networks, and storage fesources that
" were designed seveArval yéars_ ago. This is why vbuilding scaleability and adapﬁvé delivery

) ‘techniques into multimedia applications today will lengthen their useful lifetime.

The process of creating a multimedia application can be subdivided into three steps:

e Planning the Application Development
o Content Acquisition and Storage -
e Content Delivery ‘_




Application design encompasses both user interface design and system design. These
two areas must be addressed together in order to provide a consistent, useful and
successful application. The complete process of planning a multimedia application is

analyzed in Chapter 1: Planning the Application Development.

Once the concept for the application has been finalized, the creator must decidé what
multimedia data will be used by the applicatioh. This multimedia data is commonly
terméd content. Content is generally acduired fr»om‘a source such as a video camera or a
microphone. The process; of acquiring chtent ffom various sources and ;[heir associated

storage formats is described in Chapter 2: Content Acquisition and Storage.

Once content is acquired and stored, the application creator must decide how the data will
be delivered to the user. Also, the creator must decide how and on what platforms the
content willlbe used. These issues plus inter-media synchronization and networking are

discussed in Chapter 3: Content Delivery;

~ As an example of delivering network-based content, Chapter 4: Case Study illustrates the
creatid.h of a video playback application which supports the delivery of video data to '

inter-networked coniputers.



1: PLANNING THE APPLICATION D_EVELOPMENT

Before beginning any task, one must decide what ié to be éccomplished,' and what the end
product should be. In this’w.a)'/, the process of creatiﬁg multimedia applications is no

- different from any other tasls. The creator .beéins by creating a desigh for thé application.
‘The first éﬁempts will likeiy’be crudé “back of the en;/el(;pe” designs. But as the desigh »
process p'roceeds they will bééome mére well-dgﬁned and specific. ‘In.addi't'ion, asetof
specifications is created for most applicétions. These specifications will be the “recipet

~ book” which thé abplicatiqnb’s devgloprhent will follow. Each application will have
different specifications, and different applicatioﬁ creators will design_speciﬁc.ations
différently. The degree of d-etail in. the specifications will depend on the type of

_ application being created and on the time allotted for its completion.

- Before generating specifications, it is common to generate prototypes of the final
application. A few exampleé of prototyping methods are étorybgards, authored

' prototypes, and visual programming. Storyboards can be hahd-dréWn of compﬁter-
generated visual ﬁpreséntatiéris of an application’s user interface and program flow. An
aﬁthored prototype Will normally provicie a detailed example ofa 'ﬁ'ser interface but will
only support a limited amount of prograrriming logic, if any. The nexf step past an
éuthored prototype would be to use a visual programming. tool suchv és Microsoft Visual
Basic or Borland Delphi. This type of tool allows the creatof to layout an example of the
user interface, but also include a subset of the. p‘fo'gramming logic for usability testing and

demonstration purposes. Prototypes allow the application creator to brainstorm and




Vélidatc various design principles with a minimum of development effort. Some tools
even allow visually programméd prototypes to be leveraged towards the final application

by translating it into a low-level programming language such as C or C++..

1.1 User Interface Design

For applications which.incorporate user interaction, the design of the user interface is of
primary importance. It will affect the user’s efficiency, as well as his satisfaction with

and understanding of the abplication.

User interface design is a well-researched area, and as a result there are many opinions on
) uée__r interface requirements. For example, if has been suggested that all interaction must
be done via a simple device With intuitive operation and requiring little manipulation
[Rosenberg92]. Devices such as touch screens are commonly used for inexperienced
users because of their uncomplicated design. Typically, input devices such as mice and
keyboards ére not used when the application is aimed at inexperi.enced users, because
tﬁese types of input devices requirv'ena substantial learning curve before efficient use is

possible.

Intuitive operation is imf)o,rtant for the inexperienced user because the best applipations
do ﬁot require instruction manuals or training. if,the; user can understand an application
within seconds rather than minufes or hours, its ﬁéefulness is greatly enhanced.
‘Similarly, applications which use simple manipulation methods do not Trequire as much
fraining as applications which have complex manipulation' methods. iUsing a rﬁouse to
double-cliék an icon, in a Windows-]con-Mouse-Pointer (WIMP) intérface, requires more

5
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dexterity and skill than simply using one’s finger to push a button on a touch screen (see

Figure 1).

{3 Microsoft Dfficed5

7y

Microsoft Microsoft Microsoft Microsoft Microsoft

Binder Excel Office Shortcut  PowerPoint Word
Bar

Figure 1: Example of icon-based user interface

This icon-based interface shows a Microsoft Windows 95 Explorer window containing
five icons. The icons act as shortcuts to software applications and launch the referenced

application when double-clicked.

It has been stated that application interfaces must present simple choices that do not
require navigation [Rosenberg92]. An interface should present options to the user in such
a way that, given the visible information, a decision can be made by the user. An
example of this is an information kiosk with a touch screen, in which all available options

are visible to the user at once on a single screen.

One interface technique which does not follow this guideline is the hierarchical menu

structure (see Figure 2). With hierarchical menus, an option that a user desires will be




hidden from view until its parent option is selected. Some training is needed to inform -
the user as to how to view the hiddeﬁ optiohs and how to choose the desired option. This
is thé navigation requirement. In hierarchical menus, an option is normally choéen with a
single-click at each level of the hierarchy. This interface technique is useful when many
oi)tions must be provided to the user, but it has the drawback of being more complex than

a “one finger” approach.




Figure 2: Example of hierarchical menu user interface

This hierarchical menu interface contains multiple sub-menus each of which contain a set
of icons. The icons act as shortcuts to software applications and launch the referenced
application when single-clicked. By selecting the Programs item from the Start menu,
and then selecting Microsoft Office95, the same five applications from Figure 1 are

accessible. By highlighting Microsoft Word in this sub-menu and clicking on the item




with the mouse, the application is launched. This type of menu interface allows access to

many more applications in a smaller screen space than in an icon-based interface.

For inexi)erienced users, it is often a difficult task to navigate through the interface to find
~ the desired option, so it follows that users will often make unintended selections. A well-

- designed application interface can help by limiting the user’s chance of making incorrect

selections:[Rosenberg92]. For example, an interface can help users recover from

‘mistakes by allowing them to undo mistaken selections. The application creator can

" focus the user’s attention by only displaying durfently aQailable options. The interface

can also aid the user in making the correct choice by not littering the scre_e'n with useless.

information.

Other user interface featqfes that aid the user are real-time feedback, favorites, history -
lists and navigation context. As the user is 'névigating the interféce, it helps to have real-
tirﬁe feedbaék of available options, help text, or shortcuts the user can take the next time
to complelte the same ;[ask rﬁore quickly. Favorites (a’.k.a. bookmarks) are references to
locations in an abplicafién which the user can éave. Th-is allows the user to quickly return
to the same location in thé application. A history list enumerates the previous locations

the user has navigated to and allows him to return directly to a previously visited

. location. Similarly, navigation context provides the user with information about where in

the application he is located, with respect to an overall'application hierarchy or structure.




1.2 System Design

When designing an application; the application creator has to look beyond the user

interface. The creator must consider the underlying technologies which will be used to
deliver the media to the user, as well as the techholdgy to deliver differént media types.
The various ﬁiedia types are discussed in Chapter 2."C0nteﬁtAcquisition and Storage,

and delivery mechanisms are discussed in Chapter 3: Content Delivery.

In addition, one must consider the time vs. space trade-off when comparing the available
delivery bandwidth to the available storage space. The delivery bandwidth may be
supplied by a computer’s system bus, an Ethernet .LAN,. an analog telephone line, a high-
speed network connectioﬁ such ‘a's ATM (Asynchronous Transfer Mode), or a WAN such
as the Internet. The storage space may consist of primary, secondary or tertiary storage.
The storage is catégorized by ifs relative éccess time. Primary storage is a computer’s
résident randém‘access memory (RAM). Secondary storage may be a computer’s
maénetic hard disk drive or removable opticél disk drive. Tertiéry storage is normally a

slower device, such as an 8-mm magnetic tape drive.

When désigning a multimedia application, secufity issues may be important if the

~ application needs to protéct its storage resources [Smith92]. When'the.storage resources
~are connectéd to Aa network, security is‘ always an impoﬁant concérn. Password

protection, encryption, and physical s;:paration from outside networks are solutions which -
strengthen system security. Another concefn is the difference between publishing

security and viewing security. Limiting the users who can publish (write) data to your
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storage resources and limiting the users who can view (read) the data on your storage

resources are two different problems.

Two other goals are hardware independence and scaleability. Scaleability can lengthen
the useful lifetime of ah application. Building ad-hoc squti‘ons to problems, and building
an application tightly bound to a partjcular hardware platform are scenarios an application
creator should avoid. An intermediate ad-hoc solution might solveva problem but will not
provide for scaieability or hardware/software evolution. Similarly, »building a

hardware-dependent application might severely limit the lifetime of the application

[Williams91].

An example of the latter mistake took place around 1991 when several multimedia
appliéations were built which felied on the Intel/IBM ActiOhMedia II video capture and
blayback card. These applicgtions relied on the hardware support for digital video which
this card supplied. The ActionMedia II card had the capabilities of digitizing analog

audio and video then playing back digitized video in real time. The card provided very

| high quality digital video but it cost more thén US$1,500. As aresult of its high price,

~ sales of the capture card and of its complementary applications were poor.

Beginning around the same time, with the release of Apple QuickTime and Microsoft
Video for Windows, software-only digital video.became a very pépular option. Users
could play digital video at acceptable speeds without purchasing an expensive piece of

hardware, because the playback was done solely by the CPU bf the user’s computer.

11



Applications wﬁich were dependent on the ActionMedia II card for digital video support
could not adapt to use softWare-oﬁly digital video. Users _wanted applications that could
sﬁpport both modes of playing back digital video (in software and in hardware) and the
dwindling sales of these complemeﬁtéry application's reﬂecfed the usefé_’ reactions. Soon
new applications were designed explicitlvy to take advantage of the new software-only
digital, video téchnology while still supporting the pre-existing hardwaré. ‘Sales of these

applications grew dramatically as a result.

1.3 Types of Applications

Multimedia applications can be creation tools, presentation tools, or editing tools.
Examples of these classes of applications are multimedia authoring, multimedia

conferencing, multimedia document browsing, and video annotation (see Table 1).

Description

Application
Authoring

Used to build end-user applications from a set of
multimedia data. .

Conferencing , Used for one-to-one, one-to-many or

' many-to-many communications using real-time

, audio or video data transmission. '
Document browsing | Used to view pre-published multimedia content
over a network.

Video annotation Used for the real-time annotation of video data

| and for the detailed analysis of the collected
data. '

Table 1: Classes of multimedia applications

In the following sections, for a variety of applications, we analyze the user interface, the
" types of multimedia data used, the hetworking and storage resources used, and the

manner in which the multimedia data is delivered to the user.

12




1.3.1 Multimedia Authoring
One of the most common uses of multimedia is in the creation of authored applications.
Examples of these applications are information kiosks, consumer entertainment software,

and educational courseware.  These authored applications are termed titles.

A title is built from é set of mﬁltimedia data using a multimedia az;thoring.application. A

“typical rriultifnedia authoring application‘ allows the title creator to display multimedia
data, to. accept user input, and to creatg navigation paths for }_the user. Examples of
mﬁltimedi? authoring applications are_Macromedia Directh and AimTeéh chnAuthof.

A user vieWs a title by movi‘ﬁg from one visual display to another, a process commonly

“called ln‘avigdt.ion. Mogt authoring applications allow the creation of titles in which the
user can randor;lly mdv'e between Visﬁal displays, also célled hyperlink navigation.
Highlighted words, buttons, and areas within iﬁlages are used as hyperlinks in titles.

When a user clicks on a hyperlink, the title navigates to another location within the title.

'A com'mOI; type\of authored application is courseware, which is customized software for
a particular instructional or research domain [Drapeau91]. It can include Computer-

. Ba&ed Trdihing and Computer-Adaptivé Traiﬁing. The computer version of the Graduate
Record Eanm‘(GRE) is an example of CdmputerFAdaptive Tréining courseware
[EducationalQS]. As th¢ user completes the .que_stions in the examination, the courseware
generatéé a user model which providés an extrapolated ﬁﬁal examination écore. The

courseware chooses the upcoming questions based on the user model in order to tailor the

13



examination to the user’s ability. Thus it is designed to generate a valid final score from

a smaller number of questions than the written test .

There also exivsts ,another type of authorihg application which allows only a linear
navigation of the title. Linear navigation permits one-dimensional navigation of a title,
so the uéer can only move f_orward or baCkward in the title as with a slide shoW_. These
gppli‘cations are typically called multimedia Rresentation applications. Microsoft

- PowerPoint and -Aidus Persuasion are exampiés of this fype of application. Titles made

with multimedia presentation applications are known as presentations.

A feature ‘normally not found in multimedia »presentation applications is the processing of .V

user ihput. Presentations usualiy contai;i no interactive elements other than what is used
“for linear"naviga’tion. Other types of titles can process user input for various tasks: an

informatior’x kiosk rﬁay accept a user’s choice of which stored musical selectiqn to play, a

courseware title may accept a user’s answer to a questioﬁ posed by.the title, or a

consumer entértainmént title may accept a user’s input for determiriipg which virtual

world the user would like to explore next.

Multirriedia authoring applications also allow the jncorpofation of programmatié logic
into the title. This allows the titlé to perform calculatioﬁs and maké decisions during the
¢XeCution of the title. The multimedia aut'ho,ring application will usUaliy support some
form of programmiﬁg lénguage. This fnay b.e a probrietal;y script-based language, such as
Ma;:romedia Director Lingo, or a common programming lahguage, such as Microsoft

Visual Basic. At most, multimedia presentation applications will give the user an ‘if-

14



. then-goto’ type of logical capability. The logical capabilities of multimedia authoring

applications greatly exceed the limited logical capabilities found in multimedia

presentation applications.

Each individual.visual display can be thought of as the temporal partitioﬁing of the
application. These displays are commonly called slides,ﬁames, or scenes. Most
multimediaA presentation applications use the term slide, while some multimedia
autﬁoring applications use the term scene. The collection of slides, frames, or scenes in a

multimedia application can be termed a movie, title, or presentation.

An alternate form of temporal partitioning is based on the segment, which is a temporal

element which contains some semantic significance. A chunk is a segment of arbitrary

~length. The smallest addressable unit which represents continuous action in time and

space is termed the shot. The shot consists of one or more frames generated and recorded
contiguously: A sequence is a collection of Shots which contain temporal, spatial, and
perceptual continuity and form a natural unit [Davenport91]. It should be noted that these

terms are drawn from cinematic techniques: cinématography, directing, and editing.

A multimedia authoring application usually incorporates several components: media

manager, media editors, title editor, and title viewer. The media manager provides a
repositc;ry for the multimedia data used by the title. This can be thought of as a database
which stores the audio, video, and image dafa the title creator uses while aﬁthoring the
title. Media editors are used for.editing and preparing the multimedia data. The title

editor is used for editing the spatial and temporal layout of each scene. This involves

15



placing the multimedia data withid the scene as well as providing the ability to

| tnan‘ipulate the mdltiple scenes in the titlev. The title viewer provides the ability to view a
finished title, but not to edit it. This component is ‘shipped with the title in cases where
the title creator does /n.ot want the user to be able to change or alter the title. In some
multimedia authoring applications, the title can be optimized for playback speed and

storage size. But, after optimization, the title will lose the capabilities for further editing.

Some multirrtedia authoring applications dictate a mapagerial approach to development.
They provide a single method of managing multiple forms of media, which gives the
benefits of a common user interface add ease of use, but limits the flexibility and power
of mandging any one media type. Because of this‘-common approach to authoring, these
applications often dnly support a limited set of media. In addition, this managerial
approach will usually be linked to a single style of authoring and will not give the option

of authoring in other styles [Drapeau91].

Some other key issues for a multimedia authoring application are exténsibility,
portability, and interoperability [Drapeau91]. Extensibility is as important for the
progres.sive development of the applications as it is for its adjustment to changing
software and hardware platforms. A component-based ai)proach is optimal for logically
separating the hardware- and sdftwate-dependent portions of the application and allowing
the application programmer to redesign and/dr, rewrite out-of-date portiotls of the

application. .

16



In the current computer industry, portability is an important issue fo; multimedia
authoring epplicaticns. The ability to author a single title and, without any recoding,
view the title on inultiple software and hardware platforms is a major selling point.
Porting a title to other platforms takes time away from refining the application design end

its content. Also the title loses any platform-specific capabilities by being designed to the

lowest common denominator.

In networked applications, ihteroperability can be acquired by deﬁning strict protocols by
which multiple machines will communicate. The definition of standard protocols allows
multiple machines with differing hardware and software platforms to interoperate and .

cooperative. Examples of this are multimedia conferencing (T.120 and RTP); the World

- Wide Web (HTTP and HTML), and Internet electronic mail (MIME, SMTP, and POP3)

and news delivery (NNTP).

1.3.2 Multimedia Conferencing

As the available bandwidth between network-connected sites grows, the use of
multimedie conferencing has expanded. It began as early as 1988 with the Etherphone
system [Terry88]. Multimedia conferencing can be as simple as Internet Voice Chat
which transmits pre-recorded audio:segr‘nents between a pair cf participants using
Windows-bésed computers [Ahrens94], or as complex as CU-SeeMe which supports
multi-party video ane eudio conferencing between both Macintosh and Windows-based
computers [Cogger94] (see F_igure 3). Other similar applications are SGI InPerson and

Microsoft NetMeeting.

17



Many multimedia conferencing applications are built upon the TCP/IP networking
protocol, which is the lingua franca of the Internet. Other applications support network
connections using physical links such as POTS (“Plain Old Telephone Service™), ISDN

(Integrated Service Digital Network), Ethernet cable, or optical fiber.

|*<Jaime Smith C.>: Oviedo, Flotida
|*=Wildone=: Nice picture italianali

| |*=<Jaime Smith C.=: Still trying to get this...
| |*<Jaime Smith C.»: Strider...

Figure 3: CU-SeeMe conferencing application which renders compressed video and

audio streams and out-of-band text “chat” messages.

Key factors in the movement of multimedia data, especially when it is used for
multimedia conferencing, are the asynchronous exchange of the data, real-time
constraints on the movement, and the fact that the communication system must provide
for the timely transmission of the data [Ahuja92]. The pipelining effect of asynchronous
data exchange is key to the timely transmission of multimedia data. Newer advances in
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multimedia data transmission bypasS the send/receive/acknowledgment cycle of the

TCP/IP protocol by not requiring the acknowledgment of sent multimedia data packets.

In this situation, alternate provisions are made for the reliable transmission of the data

and packet retransmission that TCP/IP would typically provide. More discussion of these

techniques occurs in Chdpier 3: Content Delivery.

~ Three features of most multimedia conferencing systems are the user interface, call

-control, and m‘ul.ti-po{ivnt communications [Ahuja92]. Every application generally will

have a user interface and call control, by which the user can specify the endpoint of the. -
conference. Some applications support point-to-poirit communications, which is
analogous to a private phone call, while others support multi-point communications,

which is analogous to a conference phone call.

Multimedia conferencing systems can be-used in éonjunctio_n with other network-aware.
applications, such as word processing applications.. If the word processing application
possesses concurrent multi-user capabilities, it can be used with a'multi-poirit video

(and/or audio) conferencing application for cooperative document authoring [Baecker92].

1.3.3 Multimedia Document Browsing

As a result of the explosion of activity on the Internet, there recently has been a

corresponding_explbsion in both the supply and demand of multimedia documents. The

World Wide Web (WWW) is a global publishihg system which uses the resources of
inter-networked computers on the Internet. Users can create their dwn*multiinedia
documents (Web pages) for publishing. These documents can be published on a Web
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server - %1 computer which is directly connected to the Internet and which supports HTTP
(HyperText Transfer Protocol). A Web bquser is used to access_Web pages published
on remote corhputers. The World Wide Web Initiative, based at CERN (European
Particle Physics Laboratory) in Geneva, Switzerland, waé begun in 1990 and is

responsible for the protocols that make up the Web [Lemay95].

Web pages support textual information, images, and other media types by the use of
viewers. Viewers are applications whose sole purpose is to display multimedia data.
Viewers commonly exist for displaying video and sound data. Textual information must

be formatted using HTML (HyperText Markup Language, which is derived from SGML)).

Images are typically in GIF (Graphics Interchange Format) or JPEG (Joint Photographic

~ Experts Group) format. Other media types, such as MPEG (Motion Picture Experts

Group) or Apple QuickTime format video, can be downloaded and viewed on the user’s

local machine if an appropriate software pIayer is present.

A Web page can be authored by inserting the HTML codes by hand into an ASCII
docﬁment, or by using a HTML editor to format the page in a WYSIWYG (“what you see
is what you get”) fashion. Several WYSIWYG HTML editors are currently available

such as Microsoft Internet Assistant for Word and SoftQﬁad HoTMetal..

Images can be inserted directly into a Web page (inline images) By specifying a dynamic

link to the image file. The Web Browser is responsible for displaying these inline

| images. Audio and video files can also be inserted, but these data types will use an

'external viewer to render the data. Links to another location in the current Web page, to
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another Web page on the current machine, or to another Web page on a remote machine
can be specified in the HTML document. These links are all dynamic links - i.e. a
reference to the location of the required file is embedded in the Web page itself, not the

actual data from the file.

osoft' * A © O ?

W N Sawen bR ¥ Fapaomi

anUARY

o™= Welcome to Microsoft

' Susppont ‘{@fﬁw worldwide leader in software for PCs,

& For bevenpees oty =3 Microsoft Announces $econd Quarter Results
Microsolt announces Snancial results for Oclober

through Decembser. the second quarder of the
company’s fscal year. Informealion includes the
eammgs press refease, financial tables, and add®onal

Fronage, he crfically acclaimed Web publishing tool,
will complemend the intermed o¥erings from M«:msots
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Figure 4: Microsoft Internet Explorer WWW browser showing inline images,

formatted text, and hyperlinks embedded in the HTML page

Web pages can be browsed on Microsoft Windows, Apple Macintosh or various UNIX
platforms with Microsoft Internet Explorer (see Figure 4), Netscape Communications
Netscape Navigator, NCSA (National Center for Supercomputer Applications) Mosaic,
Lynx, or other freely available public domain browsers. These applications provide
methods for navigating the hyperspace created by Web pages and their hyperlinks.

Common features are: history lists, so the user can see past links; configurable viewers,
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so the user can add viewers for othér data types at a later time; and bvookfnarks,‘so the

user can easily return to an interesting page in future.

1.3.4 Video Annotation

One multimedia application that is_dgsigned to assist users is the video énnotation system.
A video annotatioﬂ systeﬁ1 provides for real-time énnotation of video data and for the
detailed analysis of the collected déta [Hafrison92]. The basic functions of a video
annotation systeﬁi,include the recording of events such as rﬁouse and keypress logging,
symbolic annotation of multimedia daté (video snapshots, sound b.ites),. spatial viewing of
temporal events, synchronization of streams of different media, and the reordering of
Vid?O segments. Spatial viewiné-qf temporal events refers to the on-screen display of
mﬁltiple video snapshots usiﬁé téchniques such as video icons. Corﬁmercial digital video

editors provide several of the desired features of a video annotation system [Mackay89].

" The user interface of the system must allow for continuous visual attention in order to
provide consistent analysis. The use of non-speech auditory and visual feedback
enhances the analysis pr(')‘cess. The user interface should also give control over the source

media by direct manipulation. Often this is done using a virtual VCthype control

[Harrison92].




2. CONTENT ACQUISITION AND STORAGE

All multimedia applications have at 1¢ast one feature in common: the ability to display
one or mdre multimedia data types. This image, éudio, or video data is called content. A
multimedia presen;[ation appli‘cation can integrate content such as bitmapped images,
formatted text, a MIDI (Musical Instrument Digi..t;ll Interfacej audio stream, or live vidéo
streams. A multimedia conferencing application, for example, supports only networked

audio and video streams as content.

'Co_ntent can be seﬁar_ated into static or dynamic't_nedia types, and into digital or analog_
média types. Dynamic data change's over t'ime‘(i.e.‘ the ﬁotgs played by é MIDI audio
stream change over time), while static data remains constz;lnt (i.e. an image which does |
not ‘change during a multimedia presentation). D?’gital media is maintained in a digital -
form and the data can be accessed and stored by devices suqh as a computer file system.
Ana?og data(can,only be a‘-ccessed énd stored by énAanalog storaige device such as a VCR

or an audio cassette recorder.

Media types .can be -cpnverted frbrh élnalog to digital by a procqbss called digitizing. Video
can be acéuircd from an apélog vidéo éource, such as a \-/ideo camera, and stored in a
digital format, such és MPEG. It is also I;ossible to convert digital media to analog. A
digital audio file can be played by a computer’élsdund card and output'_through an analog

cable to speakers.
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2.1 Finding Content
There are many ways to find content for a multimedia application. For examples of

sources for image, audio, and video content, see Table 2. -

Format  Mediatype  Source

Analog | Image Computer-controlled 35 mm slide carousel
Audio Live audio

| CD-Audio

Video | Live video

Video tape
LaserDisc

Digital | Image Stock footage
Image capture
Scanning

Digital photography
Kodak PhotoCD
Audio . Stock footage

' Audio capture
CD-Audio

MIDI audio

. Live MIDI audio
Video - | Stock footage
Video capture

Table 2: Sources of image, audio and video data in analog and digitiﬂ formats

An analdg media source provides-the Visﬁal or auditory efféct of multimedia without

" ‘requiring digital storage space on thé user’s ma;:hine. There-‘ is'still a storage reqﬁirement
however, since the user’s machine must suppoft some form of.analog- stofage‘. Video
LasetDisc technology and magnétic video tape are analog video sourcés. Thé analog
video-outplit can be directed into the ﬁs’er’s computer by using a video overlay board.
Video overlay boards mix an external analog vvideo signal with the video stream from a

* computer’s video display board.



Any existing technology that plays audio through an analbg cable, such as a radio
" receiver or‘a record player, is an analog audio source. In) multimedia applications, the
microphone and the compact disc are two of the mést common analog sources. The
microphone is useful for capturing the user’s speech or émbient sounds. The compact
disc is a digital technology but ié most commonly used as an analog source. This is
because the digital audio data is converted to analog data at the time the corhpact disc is
pigyed.‘ IA compact disc player will normally send thé analog audio data through the séme

cable as a radio receiver or record player.

. Digital images are the most common form of digital mul‘%ifnedia data. Digitized irﬁages
are easily accessible from inine services or caﬁ be purchased in bulk on CD-ROM or
floppy disk. i"hese prepackagéd collections of digitized images or other digital media are
called stock footage. Anothér term for stock footage is clip art. Multimedia application
developers commohly need access to artwork for use in their titles. Stock footage is an

efficient way for them to gain access to a wide range of media at a low cost.

Other ways of acquiring ‘digitval image data are image capture, image scanning, and digital
pho_t_ogréphy. Image capture entails ﬁsing an image capture or video capture card to
digitize an incoming analog video signal. This analog signal will often come from a
video camcorder or other video caméra. The capture card will allow a user to digitize
specific frames from the video stream and save them to the user’s disk drive for later use
in a multimedia application. An image scanner can be used for digitizing static artwork

or photographs. The artwork is laid face-down on the glass surface of the scanner and,
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J
utilizing a method similar to Xerox machines, the image is progressively digitized and

stored to the user’s.disk drive. Digital photography removes a step from the imagé
scanning method of acquiring digital image data. .In a single step, the digital camera can

photograph a scene and store the digital image data to a device in the camera itself. The

“digitized images can later be copied to the user’s disk drive.

A recent technique of acquiring digital image data is the Kodak PhotoCD. With this
method, the user can take thtographs with existing film-based cameras and send the film

to a PhotoCD film processing center. The PhotoCD center prdcesses the film into the

- desired print or slide format, and simultaneously digitizes the pictures into a proprietary
* PhotoCD format. The digital PhotoCD images are stored onto a CD-ROM which is

- feturned to-the user with the photographs. For a relatively low cost, a user can have high-

quality digital images generated without the expense of buying an image scanner or

image capture card.

Next to digital imageé, digital audio is the most common form of multimedia content.
Sound cards for computérs that can record and playback digital audio are commonplace
and affordable. Most persopal computers come With digital audio support standard.
Digital audio can be found in similar locations as digitai images - online and in clip
média collections. Also, a computer’s sound card can digitize audio’ from various
sources. ‘Common sources Which can be connectea by an analog audio‘cable are

microphones, radio receivers, and magnetic tapé players. Another form of digital audio is

MIDI. MIDI audio consists of the actual musical note data as created by MIDI-capable
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musical instruments such as synthesizers or digital guitars. This MIDI audio data can be
stored in digital form on a computer’s hard drive or can be input live as the MIDI-capable

instrument is played.

Compact discs store apdio data in a digital fovrmat.and tyﬁically they are played as analog
audio through audio‘ si)eakers. Itis pvossible to coby the data in native digital form from a
CD-Audio disc to a digital storage dev.ice, but this is not comxﬁonly done. However, this -
technique can be useful for preserving the original audio quality when making a copy of
the audio data. Otherwise, the analog version of the played CD-Audio disc §vou1d have to

be re-digitized by a sound capture card.

The popularity of digital video is blossoming. As hardware development strives to keep
up with the technical requirements, it will.j probaiaiy get even more popular. Clip media
and stock footage collections are also good sources ’fcir‘digital vi'deo. The stock f60tage
houses that used to provide stock ﬁlrh footage are coﬁverting their collections into digital
formats. Thisisa gréat sgurc‘e of video for the multimedia gpplication creator. An
application creator can also capture his own video usi;lg a video capture pard. These
cards are siﬁilar to their audio-only couhterparté in that they take an anaiog source and
digitize it for storage on a cbfﬁputer’s hard drive. .The available video capture cards
affordable by the éverage consﬁmer can only digitiie partial TV-resolution (320x240) at
30 frames/sec, but high-end professional cards can digitize ﬁill TV-resolution_(640x480) |

video at 60 fields/sec.
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Standard NTSC television signals are “interldced, meaning that each video frame is

divided into two separate fields of alternating scanlineé. The resulting fields are
displayed sequentially, such that what was originally a 30 frames/sec refresh becomes 60

fields/sec at half the vertical pixel addressability [Séott96].

V

It muét be noted that the éapabilities of the applica»tionI creator’s computer platform will
détermine whether or not real-fime capture of an analog video signal is possible. The
storage device must be able tb handle the incoming data rate from the capture device. For
example, a captured video stream of 320x240 pixels at 24 bits/pixel and 30 frames/sec

will generaté 6.9 Mbits/sec of data; The latest EIDE (Enhanced Integrated Drive

Electronics) and SCSI (Small Compufer Systém Interface) hard drives can write incoming

‘data to disk at this rate, but older IDE (Integrated Drive Electronics) hard drives can not.

2.2 Preparing Content

Once the application creator has selected a set of content for a multimedia application, he

will need to prepare it before use. Images can be cropped, scaled, filtered,

- color-corrected, or even cut and pasted with other images to make new composite images.

Audio can be filtered to remove background noise, have effects added (reverb, echo, etc.), -

and be cut and pasted with other audio segments to make new composite audio segments.

Video is essentially a sequence of images, so it follows that each frame of video can be

cropped, scaled, filtered, color corrected, or cut and pasted with other frames of video (or

.other images). In addition to image-based operations, fnultiple-ffarhe effects can be
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applied to video. When image processing operations like sharpening or warping are

appiied-, the parameters of the effect can change with time..

Once the selected content has been prepared, it typically will be converted into a
compressed 'digital format for storage. The next section describes methods for digitizin’g
and compressing image, audio and video content and lists digital storage formats for each

content type.

2.3 Storing Content
Once th¢ content fo\r‘ a multimedia applicatio;l has been acqu}red and prepared, the
application creator must decide on the storage format which best fits the application.
Most content used by multimedia applications will be digitaﬂ. Two common egceptions
are CD-Audio and live vid_éo, but otherwise all content will need to be stored in a digital
. format. As was‘discussed in the beginning of this chapter, contént can be acqﬁired from
an an'alog'or‘ -a digital source. Anélog sources need to be digitized before they can be
stored in a digital format. As'show'n‘ in Table 3; the space reQuiréd for storing'various
, types of content in a digital4format differs greatly. A common way to reducé the storage
space reqﬁiremeht is by compressing tl.leA raw .digital» data. The proper 'compression
technique to Be used varies widely‘ depending on the type of content. All storage space

reQuirements listed in Table 3 are for uncompressed data.
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o Content type Description Storage

space
Encoded text . screen size: 768x512 pixels, 12 kB
character size: 8x8 pixels, :
o . 2 bytes/character :
Vector graphics | screen size: 768x512 pixels, 2.8kB
o | 1 byte/line .
Bitmapped images | screen size: 768x512 pixels, 384 kB
' - | character size: 8x8 pixels, ‘
o 256 colors/pixel - |
-] Digitized speech sample rate: 8§ kHz, - 8 kB/sec
| . 8 bits/sample . S
Digitized audio - | sample rate: 22 kHz, .- | 88kB/sec
| 16 bits/sample
Digitized video sample rate: 10 MHz, - 30 MB/sec
’ ' frame rate: 25 frames/second , '
- 24 bits/sample

' . Table 3: SiOrage demands of unéompressed digital media typés [Williams91]

231 Image

‘Images are two-dimensional digital representations of a three-dimensional world. The

images are broken up into discrete elements called pixels (picture elements). The image
is-a two-dimensional matrix of pixels, where each pixel contains some quantity of color

data. This quantity of color data is called the bit depth, becéuse it uses a fixed number of

- bits to represent the color information at that picture location. The bit depth will not

' ‘chan'ge over the two-dimensional space of the picture. The dimensions of the matrix are

called the width and height of ‘th’e‘image [FoIey90]. The color information in images
normally fits into the RGB (red-green-blue) color space, but images can also use the YUV

(lumihance-chréminance)‘or CMYK (cyan-’magenta—yellow-black) color spaces.

- - Common bit depths. are 1 Bit (bilevel)_, 8 bit (greyscale or palettized), and 24 bit (true

color). One-bit imagesh‘represent two colors (nQrmally black and white). Eight-bit
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images can represent 256 colors, where the 256 colors are shades of grey or indices into a
color palette. By using a color palette, images can store a reference to 24 bits of color
information in only 8 bits of data. Twenty-four-bit images can represent 16,777,216

colors.

Digital image content can be stored in numerous folrméts. Each format contains various
~ information about the image in addition to the image data itself. Theé_e formats are
standardized so that an image cr.e»ated by one applicatioh can be read and displayed by
any other application which supports the same format. Some of the most common
formats are GIF, TIFF (Tagged Image File Format), and JPEG. Each of these formats
stores the image data in a different way. Table 4 provide's an overview of many of the

common image formats.

Name Bit depths Compression types

supported supported

BMP Microsoft Corporation 1,4,8,24 ‘| none, RLE4, RLES
GIF CompuServe Information 1,2,4,8 LZW
Systems . A
JPEG | Joint Photographic Experts | 8, 24 none, JPEG -
Group , ' .
PCX ZSoft Corporation 1,4,8,24 RLE o
TGA Truevision Corporation 8,16,24,32 - | none, RLE
TIFF Aldus Corporation (1 1,4,8,24 | none, LZW, RLE,
~ Macintosh PackBits,
CCITT 1D,
CCITT group 3 and 4

Table 4: Coim-p.ressed digital image storage formats [Media91] [Murray95]

Three of the most common compression techniques are RLE (Run-Length Encoding),

LZW (Lempél-Ziv Welch), and JPEG. Run-length encoding takes advantage of
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redundancy acro.ss scanlines of an image. Repéated pixels are replaced by a repeat count
and the fépeated pixel value [Foley90]. RLE compression is most efﬁci_ent on “artificial”
ima'gés, rather than “real-world” images. 'Real-world images exhibit more randomness
and a,wi.der variation in pixel values. A frame of cartoon animation which uses solid

colors is most appropriate for RLE.

LZW uses én entropy reduction technique known as string ehcoding. String encoding is
a process which éééigns codes to groups of data items repeated in the data stream. LZW
isa stsless, adap-ti\}e compression algorithm that works Well_ with various types of
images. A lossless compression algorithm means that no@e of the original iniag'e data is
“lost in the compression p‘roce_ss‘. Paiettized and bilevel images typically exhibit high
_ compression ratios (10: 1),vwhile true color and greyscale images generally.get only

minimal compression (3:1) [Media91].

JPEG encoding is designed for compressing fuli—color_:or greyscale images of real-world
scenes. It wsrks well for photoéraphs, bu; does not lwork well for line dréwings or
cartoons. It is a Jossy form of compression, which means that some of the original image
data 1s lost.in the corﬁpression process. The degree of lossyness éan be varied by
adjusting cvompres_sion’ parémeters. JPEG stores 24 bits per pixel of color infomation,
but can generaily achieve a compressic;n factor between 10:1 and 2:0:1 without a loss of
visuéﬂ limag‘e quality. A co;ﬁpression factor between 30:1 and 50:1 is possible with small

to moderate quality loss [Lane95].
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232 Audio

Digital audio data represents a time-sampled version of an analog audio waveform. The

analog waveform is sampled in order to produce a sequencé of values which correspond

to the amplitude of the waveform at precise points in time. The stream of digitally

encoded amplitude data is generated by an analog-to-digital (A/D) converter. Multiple

channels of audio waveforms can then Be mhltiplexed into a single.data stream. For

playback the stréam of digitally encoded audio data is decoded to recover thé amplitude
, infgrmation at each sample point. An ahalog wave_fo'rin is reconstructed from this

amplitude information by a digital-to-analog (D/A) converter [Pohlmann89].

There are many techniques availéble to.e'ncode analog audio signals digitally. They vary
widely in terms of required bandwidth, signal-to-noise fatio and accuracy. Techniques
exist such as Pulse Amplitude Modulation (PAM), Pulse Position Modulation (PPM), and
Pulse Width Modulation (PWM). These techniques usie variations in pulse ampli;tude,

' time position and width, respectively, to represent the analog signal’s sémple value.
Another technique, Pulse Number Modulation (PNM), is similar to Pulse Code
Modulqtion (i’-CM), but PNM generates a string of pulses whére the pulse count
répresents the aﬁplitude, while PCM encodes the pulse chgi_n in order to greatly reduce
the bandwidth required to store the data. PCM is a \?ery common form of digital

encoding and is used in the CD-Audio standard format [Pohlmann§9].

Adaptive Delta Pulse Code Modulation (ADPCM) builds on the strengths of PCM by

adding excellent data compression. ADPCM is a differential encoding system, which
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- means that only the diffé_rences between successive sampléé are stored. 'By encoding only
the differences between séuﬁples, a high level of data compression is achieyed. ‘In this
technique, a fast sampling rate ig important so the differentibal encoding cqﬁ closely track
N fhe analog signal. Simple Delta Modulation techniques usé a 1-bit correction code to
predict whéthcr the signal will rise or fall at the next safnplg' point. ADPCMexpands on
this technique by using a 4-bit:0'r 8-bit code to represen‘; correction informatio’n. "This
allows for. 16 or 256 levéls' of correction information to bé eﬁcoded.' Mofe cOntrol over
the correction inforrna;[ion results in greater accuracy in ;e_n.c‘oding fhe analog waivefonﬁ

[Pohlmann89].

Two audio encoding teghniqpes that are cbmmonly used for speech encoding are p-Law
E aﬂd A-ng., In PCM encoding, the amplitude levels are quevmtized. at uniform intervals.-
But for sérrie signals, such as speech, it is preferablé to héve quaritiiatiqn ievels for' high-
amplitude Signals spaced far apart and iow-amblitude signals spaced closer together.
Q-Law and A-Law encodiné s&stems both usé a logarithmic encoding system to provide
these characterisfics. Although very similar, these two encoding systems use different
ldgarithrﬁ.-based equétions for their eﬁcoding'. Asa benchhqark, an 8-:b'i't irﬁplemgntation
of p-Law encoding can a&hieve a small signal to ﬂoisc (S/R) ratio and dyr;‘amic range |

equivalent to that of a 12-bit PCM encoding system [Pohlmann89].

" Table 5 shows the data rate for various encoding methods at different sample rates. ‘The
“data comes from the Sound Recorder application which ships with the Microsoft

Windo_ws‘ 95 operating system.
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Diffe;ent computer platforms have different standards for storing digital audio data. On
| the Microsoft Windows platform applications use the WAV format. On the Macintosh

the AIFF format is used, and on UNIX platforms the AU format is common. The WAV
| and AIFF formats can store PCM, ADPCM; u-Law and A-Law encoded audio data, but

the AU format stores p-Law da;a only [van Rossum94].

Encoding method  Bits per  Samplerate = Mono data Stereo data

sample rate rate

A-Law; p-Law 8.000 kHz 7 kb/sec 15 kb/sec
‘ | 11.025kHz|  10kb/sec 21 kb/sec
22.050 kHz 21 kb/sec 43 kb/sec
44.100 kHz 43 kb/sec 86 kb/sec
ADPCM - 4 bits 8.000 kHz 3 kb/sec | 7 kb/sec
11.025 kHz 5 kb/sec 10 kb/sec
22.050 kHz 10 kb/sec 21 kb/sec
. 44100 kHz | 21 kb/sec 43 kb/sec
{PCM . . | 8bits 8.000 kHz 7 kb/sec 15 kb/sec

' 11.025 kHz 10 kb/sec 21 kb/sec
22.050 kHz 21 kb/sec 43 kb/sec
1 44.100 kHz 43 kb/sec 86 kb/sec
16 bits 8.000 kHz 15 kb/sec 31 kb/sec
11.025kHz | . 21 kb/sec 43 kb/sec
22.050 kHz 43 kb/sec 86 kb/sec
44.100kHz | - 86 kb/sec 172 kb/sec

Table 5: Compressed digital audio storage requirements [Microsoft95]

A common storage medium for digital audio daté is the compact disc. Compact discs
store a 16-bit stereo PCM signal'which ié sampled at 44.1 kHz. This format is commonly
calleq €D-Audio. An alternative form of compact discs is palled Compact
bi;c-fnteractive (CD-I). This format can store audio a.p.divideo information, és well as

computer data (text or binary). The audio data can be stored in one of five modes,
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- depending on the fidelity required and the storage space available [Pohlmann89] (see

Table 6).
Audio mode | Encoding format
CD-Audio 16-bit PCM, 44.100 kHz, stereo

| Hi-Fi (level A) 4 bit ADPCM, 44.100 kHz, stereo (LP quality)
Mid-Fi (level B) | 4 bit ADPCM, 44.100 kHz, mono (FM quality)
Speech (level C) - | 4 bit ADPCM, 22.050 kHz, mono (AM quality).
Text-to-speech - | phonetic coding (synthesized speech quality)

Table 6: CD-I audio modes [Pohlmann89] [Luther89]

2.3.3 Video

Digital video is encoded in a similar manner to digital audio. An analog video waveform -
is time-sampled to produce a digitally encoded representation of the original waveform.

. Video waveforms may contain one or more signals, depending on the video format.

~ Broadcast video waveforms consist of two signals: luminance and chrominance.
Luminance is the brightness of the signal, which represents a gradient from black to

white. Chrominancé is the color part of the signal, which represents the hue' and
saturation. The original black-and-white rf;ethod of television broadcast transmitted the
luminance signal only. When color television was invented, the chrominance signal was

piggybacked on top of the luminance signal [Rubin91].

The Y/C format transmits the luminance and chrominance in two separate video signals. |
The RGB analog format separately transmits the red, green, and blue components
[Luther89]. The RGB color information can be converted into other equivalent color

spaces, such as YUV or YIQ, which are vtransmitted'ih three separate video signals.
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The RGé, YUV, and YIQ foﬁnats are called compon_ent video signals because they
* transmit three separate vide_o sighals. The Y/C format is called a pseudq-componént
video signal becéuse fwo of the corriponent signals (U and V) are combiﬁed into one
signal (C). Another video signal format is the composite video signal. In this format, all

three componentA video Signals are mixed intb one signal. This format is used in the
NTSC, PAL, and SECAM broadcast video standards that are used throughout the world

[Rubin91] [Focal69].

As iﬁreviously described for audio, videé signals are also digitized using an A/D

| convéﬁer- The output sample \v'allues from the digi_tizing process are.converted into color
values.. At each sample poiﬁt, or pi.xel,. the color value can be eﬁcoded using a varying
number of bits per pixel. This provides a method ‘of varying the accuracy of the color-
reproduction of the original analog uvideo signal.” In other words, rﬁore bits per pixel

provide a more accurate representation of the source video signal.

Digital and analog video signals are frequently stored on magnetic tape. Table 7 shows a
listing. of common video signal formats with their corresponding storage formats. Each
storage format is listed with itsbcommonly known product name and the type and width of

the tape used.
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Video signal format Storage format
Component | D1 (19mm digital)
BetaSP (1/2" analog)
' MII (1/2" analog)
‘ Betacam (1/2” analog)
Pseudo-component | S-VHS (1/2” analog)
Hi-8 (8mm analog)
Composite D2 (19mm digital)
D3 (19mm digital)
1” type C (1" analog)
‘ ‘ ; 3/4" U-matic (3/4" analog)
: 3/4" SP (3/4" analog)

_ o 8mm (8mm analog)
| ' ' VHS (1/2" analog)

Table 7: Video signal formats with corresponding storage formats [Rubin91]

In order for an application creator to use digital video, it must be stored in a form
appropriate to be displayed on the application;s computer platform. Most computer
platforms have their own standard format for digital video files. On the Microsoft
Windows platform, the standard is called Audio- Video Interleaved (AVI), and on the
Macintosh platform, the standard is called QuickTime. Each of these standal_‘ds can
contain various types of video data: different bit dépths, resolutions, and compression
types. File format and compression type are not necessarily linked. There exists an

" MPEG ﬁlé t;ormét which only holds MPEG cbmpressed dafa, ‘but AVI and QﬁickTime

formats can also contain MPEG compressed data.

The storage requirements of digitized video are more rigorous than any other data types.
For example, the storage space required for digitized NTSC format video is 45 Mb/sec.
CCIR 601 format video requires 216 Mb/sec, CIF format reqilires 36 Mb/sec, and QCIF

format requires 9 Mb/sec. Standard NTSC format video uses a resolution of 525
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horizontal lines and 360 piiels per line. CCIR 601 format uses 720 horizontal lines and
480 or 576 pixels per line (depending on NTSC or PAL format). Primarily utilized for
video telephony, the CIF and QCIF formats use resolutions of 360x288 and 180x144,

- respectively [Fdx89].

Because of the extreme storage requirementg of uncompressed data, data compression is
used tq.reducé the data rates. The inherenf rédundancy preseﬁt in video streams meéns
that two méthods of compression can be used. Intraframe compression cén be applied to
reduce the spatial redundanéy within a éinglg frame of Videq, ‘and interﬁqme compression

can be applied to reduce the temporal redundancy between frames of video.

Iﬁtraframe compression encompasses th¢ prgprocessing steps of filtering the imagé data,
color spacé conversion (typiéally RGB to YUV), ciigitiziﬁg, gnd scvaling.' In addition,
trangfomations, quantization, and encoding are applied.' ‘Filterin.g th¢ image data

: reméves high-frequency noise and averages the image pixels to achieve more spatial
redundancy. This step does not provide any direct compréééio'n but prepares the data for |
the later éteps in the chpressipn process. -The RGB to YUV color space conversibn
provides a ILS 1 cofnpreééion ratio. Men the"video is digitized, the U and V channels of
the colér information are sﬁbsaimbled ata 2:1 ratio. After the video is ciigitized, it can be
sqaled fo the outpui resolution. For example, a320x240 resolution'Outpu; from a
640x480 video stream provides a 4:1 compfession ratio. The scgﬂed and digitiszed video
frames are transformed intq different spatiéi‘l ;epresentations? depending an the

compression algorithm used. The transformed data is quantized such that the video data
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uses a‘smaller number of bits per pixel of 0016‘r infprmation. This quantization can

provide ub toa3:1 éorﬁpression ratiq; Tﬁe'ﬁriél step iﬁ intraframe compression is to
L:‘_ompact the quantized video data by using a encoding scheme éuch as RLE, Hﬁffman
coding'(also cglled variable-length or entropy cédirig), or arithmetic coding. This last

“coding step provides a 1.5:1 compression ratio [Doyle91].

In typical video streams, the content of succcssi{/e video frames does not change

considerably, and as a result interframe compression can supply a generous compression _
ra}io. Three types of interframe compression exist: predictive coding, motion estimation,
and picturé interpolation. Interframe compression can provide a 5:1 compression ratio, in

addition to the more than 50:1 compression ratio delivered by intraframe compression.

Cémpressed video streams can be described as constant-rate encoded or. variable-rate
enéoded. Constapt-rate encoding schemes aécept variable sized video frames but output
consfaht sized compressed frames, while maintaining constant perceptual picture quality..v
~ Constant-rate encoding is typically used V\;hen the compressed streani is being output into
a fixed-rate communicatiohs channel. VariaBle-raté encoding schemes accept variable
sized video frames and output variable sized pompressed frames, while maintaining‘

constant picture quality [Fogg96].

Some of the most common video data compression standards are MPEG, CCITT H.261,
and the DVI (Digital Video Interactive) technology with its RTV (Réal-Time Video) and -
PLV (Production Level Video) compression algorithms. The implementation ofa

compression algorithm is termed a codec (compressor-decompressor). Currently, these
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-compression schemes are only feasible in real-time with hardware support. The compute-
intensive nature of these compression algorithms overwhelms most computer systems.

Only with custom hardware do these schemes become worthwhile.

‘The MPEG standard consisfs of three related standards: MPEG- Vidéo, MPEG-Audio, and

| MPEG-System. MPEG-Vidéo pro;/ides a standérd for compression ofk digital video
signals with a resultihg data rate of about 1._5> Mb/sec. MPEG-Audio provides a standard
for compression of digital audio signals ét 64, 128, and 192 kb/sec per channel. MPEG-
_'System defscribes the synchronization aﬁd multiplexing of multipleA compressed aﬁdio and
video bitstreams. Some of the features of the MPEG standard are randomv access to video

frames, fast-forward and reverse searches, reverse playback, audio/video synchronization,

and editability [LeGall91].

‘The .MPEG—I s;andard s'peéiﬁes a 640x480 video resolution at 1.5 Mb/sec, while the more
rééent MPEG-II format specifies a 704x480 re_solution at ra‘;es up to 10 Mb/se_c. The
MfEG-H standard is aimed at interactive television, while MPEG-I is suited more for
CD-ROM distribution. Using MPEG-I, up to 72 minﬁtes bf VHS-quality (30 frarﬁes/sec,

640x480 resolution) video can be stored on a singie CD-ROM.

. The MPEG-Video corﬁpression algorithm uses block-b;ased motion compensation for the
reduction 0f temporal redundancy. Predictive and interpolative coding methods are used,
followed by Varidble-Leng;h Code (VLC) compression. It als§ uses a Discrete .Cosine
T ran_-sformation' (DCT) based corﬁpression technique for the reduction of spaﬁal f ’

redundancy [LeGall91].
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- Motion corripensation uses prediction and bi-directional interpolation to provide

compression. Prediction exploits the temporal redundancy of video signals. This means
that each frafne can be fepresenped as some fransformation of a previously encoded frame.
Bi-directional interpolatipn resﬁlts in the reproduction of é full temporal resolution stream
frorﬁ a partial temporal resolution stream (1/2>or 1/3 of frame rate). The motion is

represented by one or two motion vectors per 16x16 pixel block (macroblock). Pixel

~blocks are matched with blocks in previous and future pictures. If a closely maféhing

block is found, the motion of the macroblock is encoded into a motion vector. Asused in .

JPEG image compression, MPEG uses a DCT compression technique for the reduction of
spatial redundancy. The DCT is a fast algorithm and results in good visual quality while

providing the desired spatial compression [LeGall91].

- MPEG-Video compression results in three types of encoded video frames: intrapictures

(f-ﬁames), predicted pictures (P-j?dmes), and bi-directionally predicted bictures
(B-ﬁ‘dmes). I-frames provide reference péints for random access, while only supplying
mod¢rate comp_reSsion. P-frélmes are coded with refereﬁcé to past I-frames or P-frames,
and are used as reference frameé for predicted pictures. B-frames provide the highest
amount of comp:essionland require past and future reference frames for prediction. B-

frames are not used as reference 'fram‘es for other predicted frames [LevGall9'1].

The Motion-JPEG (M-JPEG) format uses intraframe compression, in the form of JPEG

compression, for each frame in a video sequence. Every frame is a reference frame in this
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_ format. Because of this, M-JPEG is 'éommonly used in non-linear video editing since

every frame can be used as an starting, or ending point for edits.

The H.261 video coding algorithm provides a compression solution at rates of px64
kb/sec (p = 1_, 2, ..., 30). These rates cover the ISDN channel capacity. This al'gorithm is
designed for video-phone and video-conferencing applications for which a real-time
algorithm with minimum delay is a requirement. For values of p =1 or 2, this algorithm
can su'ﬁport desktop face-to-face visual communication (video-i)hone), and for values of p

> 6, true video-conferencing is possible [Liou91].

;H.261 supporté the CIF and QCIF video 'Ir'esolutiions. At 15 framés/sec, the algorithm
provides a compressed data rate of 320 kb/sec for CIF resolution video, and 64 kb/sec for
. QCIF resolution video. The compressed data rate of CIF resolution video at 30

frames/sec is 1.472 Mb/sec and at 10 frames/sec is 64 kb/sec [Liou91].

Both interframe and intraframe encoding are used by the H.261 algorithm. It uses a

. hybrid of DCT .and DPCM (Delta Pulse Code Modulation) coding 'schemes with motion
estimation. Each frame is split into a luminance channel anci two chrominance channels
and each of these channels is split into 8x8 pixel macroBlockS. The motion estimation is
done by comparin.g-every‘lumi-nance rﬁacréblock iﬁ the current. picture with the nearest
luminance macroblécks in the previous picture. | .If the difference between any
macroblocks in the current and previous picture is greater than a predefined threshold, the
difference is processed aﬂd stored with the calculated motion vector information
[Liou91].
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Intel’s DVI_technology supports both symmet}ic and asymmetric compressioh schemes.
Ina symrﬂetric compression scheme, thé time to compress and ‘de.compresAs- a video
segmept are éfmilar. 'While with an asymfnetri;: cdmpreséiori scvheme,‘ the time .to
compress a video segment is considerably greater thén the timé'to decompress thé video
segmént. Asymmeﬁric compression schemes~typi(;ally do notéupport real-time
compression. The compression will take place gff-line after tile video stream has been

digitized.

PLV is-an asymmetric compression scheme whicﬁ requires the analog source video to be
sent to a central digitizing and compreés.ion facility which useé_parallel supercompufers
for compressing the video. The resﬁltiflg vided can be played back in real;time on ahy '
. DVI-caﬁéble computer system. PLV supplies a much higher video quaiity'than its
simil_ar, although symmetfic, compression scheme; RTV.‘ IV{TV'can play back and 4

‘compress video in real-time with hardware suppdrt [Luther89].

With PLV cofnpressidn, the analog source video is played at a full frame rate to minimize
frame storage requirements and possible quality loss. The video is digi_tizéd, filtered and
color s;clmpled before being stored digitally. This preprocessed video requires about 2
Mbytes/sec of storage space. In non-real time, the preprocessed data is compressed
franié-by-frame on a parallel processing transputer-based computer.' In 1989,

' compréssion took about 3 seconds per frame, or 90 minutes of cémpression time for Oné

minute of digitized video. The PLV 'compréssed video uses a picture interpolation
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method where the difference between successive frames (delta frames) is compressed

relative to reference frames [Luthef89].

RTV compression provides a method by which an application developer can compress his

own source video in real-time without the delay Or expense of PLV compression. RTV

can compress video frames to the same size as PLV compression, but sacrifices picture

quality for speed. RTV compression is done with a lower resolution and frame rate, and

with a simplified video compression algorithm. This compression scheme does allow the

* user to adjust the balance befween picture quality and compression ratio [Luther89].

There are-also many software-only vidéb codecs available. These cdmpress video data
after it has been digitizéd by a video capture device. Some can. process the incoming
Vid¢0 data in real-time and others requife the data to be pre-stéred in a raw digital format
on the user’s coméufer. Some of these compression s_chemgs can also make use of
available compresvsioﬁ hardware to provide‘;better results. Table 8 describes a ;election of

the available software-only video codécs.
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Name

Captain Crunch

Developer

MediaVision

Type

Platform

PC

Maximum -
frame rate

320x240 @ 30 fps

Cinepak SuperMac VQ Mac, PC 320x240 @ 15 fps
DVI-RTV Intel vQ PC 245x240 @ 15 fps
DVI-PLV Intel VQ- PC - 640x480 @ 30 fps
| Indeo Intel VQ Mac, PC 320x240 @ 15 fps
Motion-JPEG | N/A DCT Mac, PC 640x480 @ 60 fps
MotiVE MediaVision vQ PC 160x120 @ 12 fps
MPEG-1 N/A DCT PC 320x240 @ 15 fps
MPEG-2 N/A DCT PC 704x480 @ 60 fps
H.261 (px64) N/A DCT Mac, PC 352x288 @ 15 fps
Pro-Frac T™MM Fractal PC (DOS) 320x240 @ 30 fps
SoftVideo ™M RLE PC 640x480 @ 15 fps
Ultimotion IBM N/A PC (0S/2) 320x240 @ 30 fps
Video ‘| Apple - VQ Mac 160x120 @ 15 fps
VideoCube ImMIX/Aware Wavelet | Proprietary 640x480 @ 60 fps

Table 8: Software-only video compression élgorithms [Doyle93]

Two of the most often used software-only codecs are Intel Indeo and SuperMac Cinepak.

The Indeo compression scheme uses color subsampling, pixel differencing, vector

quantization, and run-length encoding. The codec is scaleable by providing higher frame

rates, but uses a fixed video resolution (160x120 or 320x240). Indeo is supported by

‘Apple QuickTime and Microsoft Video for Windows, and it provides a data rate between

90 and 300 kB/sec. It can also use the Intel 1750 processor for hardware-assisted

decompressidn when the Intel/IBM ActionMedia II board is employed. With the

- ActionMedia II board or the Intel Smart Video Recorder, this codec can be used to

‘capture and compress in real-time [Perey94].

SuperMac’s Cinepak codec uses a vector quantization (VQ)-based algdrithm to provide

data rates similar to that of the Indeo codec. It supports video resolutions of 160x120 or
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320x240 at 24 bits/pixel, while delivering a data rate between 90 arid 300 KBlsec. When
used with Créative Labé Video Spigot board, video can be captured and compressed in |
real-time. This is a highly Aasymmetric algdrithm. In other ‘W.ords,-if this algorithm is
executed without hardWare support, fhe cémpressidn time w111 greatly exceed the
decompression and playba.él; tirﬁe. As With Indeo, Cinépak is found in Apple Quickiime

and Microsoft Video for Windows [Perey94].

Two other interest‘ing software-only codecs are Iterated Systems/TMM Softvideo and
MediaVision Captain Crunch. Softvideo'is a fractalfbased compression schemevwh.ich
provides é ;cgleable wiﬁdow size (from 320x200 to 800x600) at data rates ranging from
30 to 120 kE/se_c. :The asymmetric nature of Softvideo exceeds all other codecs, requiring

15 hours of compression time for every 1 minute of source video.

Captain Crunch provides high-quality compressed video at low data rates by using a
‘combination of DWT (Discrete Wavelet Transformation), tree-based encoder, vector
quantization, and a Huffman encoder. It is a nearly symmetrical compression scheme

that supports scaleable frame rate, window size and bit depth.

Various hérdware e*ists for assisting video cbmr;ression. ‘The individual steps of the
compression algorithms, such as motion estimation, quantizihg, and DCT calculation,
'ha\./e silicon-based equivalents. The SGS-Thomson STI13220 is a motion estimation
processor, and the IMS Al21 is an 8x8 i)ixél block DCTAprocessor [Kim91]. For JPEG
image compfeséion, C-Cube Microsystems has the CL550 and CL560 éhips available.

The CL550 contains a DCT/inverse-DCT processor, quantizer, and VLC encoder. It
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supports JPEG images at a 640x240 resolution, and interpolates vertically to provide a
640x480 resolution. The CL560 chip provides Motion-JPEG video compfession ata
640x480 resolution. For MPEG compression, C-Cube has the CL450 which supports

MPEG-I standard video COmpreséion [Brown93].

The intel/IBM ActionMedia II boélrd and the Intel Sﬁart Video :Recorder»both use the
Intel i750 chip set for video compression and playback. The i750 chip set contains a -
pixel processor and separate disp’lay pfocessor.. The 82750PB pixel processor supports
compréssion, decbmpression and VLC .décoding, while the 82750DB dispiay processor is
responsible for timing signeils and YUV to RGB conversion. The chips work in an 8 bit
YUYV color space where the chrominanc:é is subsampled at 1/2 or 1/4 the luminance
resolution in both the U and V direct-i(.)n.s. The i750 chip set isv programmable and can be
programmed to decode JPEG images and compressed motion video. JPEG images at a

640x480 resolution can be decodéd in less than one second [Harney91].
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3. CONTENT DELIVERY

When a multimedia application réquésts the playback of video or audio data, the reqhest
is satisfied by the a}pplica;[ion’s host computer plétfo@. The operating system of the
computer manages the‘transfer of data from the source to the display destin}ation. The
source of the data can be on the local machine or on a renflote machine cohnectéd bya
networl;. The destination of the data is generally the video display and/or the audio
playback device on the local machine. The action of transferring the data involves the .
CPU of the destination machine, ’Fhe storage device (i.e. magnetic disk or CD-ROM) at
the data source, and possibly the network intérconnection devices at both the source and -

destination.

The media that is delivered from the source machine to the destinati§n machine can be -
either static or dynamic. Static media, such as text or images,ihave no time element,
while dynamic media, such as audio or video, do possess a time element. -Normally static
media is delivered in one éontiguous chunk, but it is also possible to progressively render
static media. Progressive rendering of images means that over time thé image is
displziyed in several ;‘f)rogressions.” The im’age is stored aé multiple resolutions of
increasing quality.: These resolutions are incremental such that the later resolutions build
on the ‘earl‘ier resoluﬁons to produce an image of iﬁcreasing quality as with interlaced GIF

and progressive JPEG fmages.

The individual chunks of dynamic media data are not normally .rendered progressively.

‘The granularity of video playback is fypically limited to the video frame. . Some video
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decompression schemes use a sub-frame granularity where pixel blocks of the frame are

decompressed independently and composited into the video frame.

Another factor iﬁ dglivering media is the deiivery 'mode.:-« real-time or non-real-time. The
're_al-time delivery of a video segment means that the user begins watching the video aé
soon as it is sent from the source. Audio can be played back in a similar manner.
Examples of real-time delivery are video confergncing (CU-SeeMe). [Cpgger94], or
nethrkéd audio playback (RealAudio Player) [Progréssive95]. In non-real-time delivery
’ mode, ilOWever, the media is fully deli\./ered to the destination before it is played back.
An eXample of this is an audio file embedded iq an e-mail message. The e-mail message
must be fully delivered before the audio file can be separated from the original message

and plaYed back.

Th.e delivery of media is an asynchrohéus exchange of data between the source and
destination machines. There are normélly two parallel flows of information involved in
media delivery: the 'data flow and the coptrol‘ flow. The data flow is a single duplex
channel over which thé media déta travels, while .the control ﬁow 1sa full-duj)lex
communication channel over which the source and destination 'sites negotiate the

. charactefistics of the transmission of thg data‘., In real-time delivery mode, such as with
multimedia conferencing5 there are real-time constraints which the data flow must meet.
If a video frame cén not arrive at the specified time, the constraints will not be met and

some delivery parameters must be adjusted. Possible parameters for adjustment are the
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frame rate of the video stream, the visual quality of the video stream, and the buffering

ability of the source and destination sites [Ahuja92] [Uppaluru92].

3.1 Using Multimedia Daté Delivery in Appli;:ations

Differem applications use different methods of data delivery. For example, multimedia
authoring applications and vided-conferencing applications use muitimedia. data in
distinctly different ways. A rhultimedia authoring application will play back audio and
video data from a storage device to the video displdy and aud-i0> playback devices. A
video-cbnferencing épplication génerates compressed video data at the source and
transfers the data over a network to the destination site. At the destination site, the
compréssed data is immediately decompressed and played back, or it can be archived toa
local storage device. The decompression is normally done by custom hardware but new
algorithm-s; and faster computer précessors allow it to be done iﬁ software. Most audio
playback devices have decompression hardware, and video deéompression hardware is

“becoming a common feature on video display devices.

A multimédia application must make several design choices: whether to have single or
multiple data deliver}.ll channels, delivery over a network or direct from disk, data used in
a design or runtime modé, and data delivered in a continuous mode or as individual
chunks‘. Whether to synchronize between various media data elements is another choice

which must be made.

A single application can open multiple concurrent data channels, for example audio data
streaming from a CD-Audio device, video data streaming from a magnetic storage device,
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and textual data streaming off the Internet. A typical multimedia application will use

multiple concurrent data channels to assemble the multimedia presentation.

* Multimedia authoﬁng and presentation applications commonly have a design mode and a
rﬁntime mode.. The data aécess metho'ds between these two bmodes can ciiffer greatly. At
‘ design-time, da;[a is normally» accessed in a random:access method while the application
developer seafchés for the proper segment of r'nulti_rhedia data. He may choose to edit or
- pre-process the data at this time. At run-time, the same seléction of multimedia data

would normally be accessed in a séquential manner and be played back from start to

finish.

, The chunks of information accessed by an application can be termed pfesentation objects
or P—objects. These P-objects can be classified according to their siéé, media
cogjpdsition, and links to other P-objects. For optimal networked data delivery, the
application must provide the network with information thgt indicétes the P-object’s

current bandwidth allocation demands and its dependence on time [Loeb92].

P-objects can be‘thought of as the individual media elements of the multimedia
documents whiéh fnultimed_ia applications create, edit, and display: Each P-object has its
own unique display characteristics (size, bandwidth demands, etc.) and the multimedia
application must take these characteristics iﬁto consideration for the optimal display of

the P-object.-

Similarly, by using a techniqué called application-level framing, an application can

specify its own transmission units (i.e. packet size) which can be termed application data
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units or ADUs. In networked data delivery simulations, it has b_éeh shown that a
significant source_'of delays is a fixed packet size, which is not optimal for the various

data types within an application [Loeb92].

- The amount of text to be delivered may vary with the size of the video display device. In
addition, the packet size of a video stream will be determined by the size of a compressed

videb frame, and bitmapped‘image's may be delivered a scanline at a time.

For interactivc multimedia applications, the non-sequential access of media data defeats
typical caching and pre-fetching mechanisms. One solution is to have the application -

diétate the data delivery demands in accordance with the data access method.

A multimedia applicatiori can specify that a selection of media data will be used only
once-or that it will be used repeatedly to provide hints to the caching mechanism. It can

also specify that the data will be used either sequentially or randomly in order to provide

a hint to the pre-fetching mechanism (see Tabie 9).

-{ Normal ‘unknown page access order,
' caches needed pages upon access
Random pages are likely to be accessed in random order,
caches minimum amount of pages
Sequential pages are likely to be accessed once and in order,

caches maximum amount of pages
Pre-fetching
Normal | read pages on demand
‘Will need read pages in immediately
Do not need | free pages immediately

‘Table 9: Types of application data delivery advisement [Loeb92]
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)
VIt is preferable tc.pre-fetch data when the data delivery channel is lightly loaded.
]éasically, this is an.example of overlappicg the datai deljyery with any appliCation-level
delays. The time during which an applicaﬁon is loading can be used for pre-fetch'ing‘ data
that is expected to be used., Fcr an authored fitle wﬁich uses linear ﬁavigation, data for
sucsequent sectiocs of the title can be.pre-fetched because it is likely the data will be

needed at a later time.

Other heuristics can elso beapplied to optimize the pre-fetching operation. At design-
time, the ‘u_ser will most likeiy be cycling through \;arioﬁe pieces of media data trying to
find the approbriate one, editiﬁg and p?e-p?ocessing the data, aﬁd linking. it into a
mtilﬁmedia document. The data access method wiil likely be raﬁdom, therefore no pre-
fetching should be used and only the minimal set of accessed data should be cached as
there will be a limited locality of reference. The data also mely be accessed in both reéd

.and write modes while editing.

At rﬁn;time,' tﬁe multirrllediardocument is already linked to the data and can berp‘re-fetche.d
- if d.esired. In most cases, the datg will be read seqpentially and should be cached as such.
Depending on the type of navigation avai.lable', o_fher.iinked media data may be pre-
fetched to optimize the latency for starting playbzick; Also, the data will most likely ce ,

accessed in read mode only, since no run-time editing will occur.

3.2 Platform Issues

Many multimedia applications are designed to deliver multimedia data, but not every

application needs to access the low-level delivery mechanisms directly. For.this reason,
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system-level support for multimedia data delivery is found in maﬁy operating systemé or

in multimedia extensions placed on top of operating systems.

3.2.1 Apple QuickTime

The Apple Macintosh operating system uses QuickTime multimedia exfensions for

- multimedia support. QuickTime manages the delivery of Varioué classes of mult_imedia
data: digital audio and video, MIDI audid, or SMPTE timecodes. The basic data object in
| QuickTime is the “movie” and it consists of one or more “tracks.” Each track contains

references to chunks of raw data, called “media” [Hoffert92]._

QuickTime consists of the Movie Manager, the Image Compression Manager (ICM), and
"the Component Managér; The Movie Manager is responsible for the synchronizétion of
the media data aﬁd delivery of the data from the storage devicé. The ICM manages thé
various compressidn algorithms and is used to compress and decompress media data.

The Component Manager provides a hardware abstraction layer to determine hardware

_ resource availabilijty. | QuickTime is not tied to any specific ‘ﬁardware devices and is
extensible as neW hardware and new 'compression‘algorit'hms bécome available

[Wayner91].

" 3.2.2 Intel Audio Video Kernel

Intel’s Audio-Video Kernel (AVK)'provides multimedia services to IBM OS/2 and
" Microsoft Windows operating systems [Dénovan9l]. It is tied closely to the Intel/IBM
- ActionMedia II video capture and display device, and uses a real-time kernel to manage

the multimedia data delivery. The AVK uses a production studio model with separate
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managers for analog device control, visual display, digital audio and video playback, and
digifal effects and mixing. The image aata flow pipeline, for example, loads compressed
data input from a storage device into a compressed data buffer, decompresses the data
into a separate decompressed data buffer, and renders the decompressed data to thé

screen. Each step in the pipeline is managed by a separate real-time task [Donovan91].

3.2.3 UC Berkeley Comet

~ Comet, from the University of California at Berkeley, is a multi-user multimedia toolkit

which provides an abstraction to hardware and network resources, and provides an
architecture to connect media data sources to sinks in a dataflow-style graph

[Anderson91b). Comet is an object-oriented toolkit which abstracts devices, storage

» devices, mixers, and the network interconnections. The Comet objects support a protocol

by which data types and resources are negotiated before connection. Comet runs on
UNIX workstations with X-Windows and a connection to an ACME continuous media

server (see [Anderson91]). Multiple processes are used to manage the delivery of media

~ data from source to sink and to filter the data during transmission (i.e. audio and video

mixing) [Anderson91b].

3.3 Synchronization Issues

Synchronization has been defined as the “ordering of processes and their coordinated
access to shared resources.” Each process can manage an individual data stream or a set
of data streams. It is possible to define a global synchronization system which imposes :

synchronization on multiple data streams across multiple processes. This synchronization
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system can exist in the local or distributed environment, i.e. it can manage media on one

computer or media distributed across many interconnected computers [Steinmetz90].

When a multimedia application begins to use multiple streams of media data, the problem
- of synchronization arises. There are several solutions to this problem which have been
implemented, but the solutions are usually application-specific. Synchronization can be

handled in the operating system or in an application-specific manner.

When developing a multimedia document, the'.muitimedia objects must be assembled
both in space and in time. This can be termed spatial composition and temporal
composition. Ternporal composition can be continuous or syh_thetic. With cnntinuons
synchronization, absolute synchronization exists only at the beginning and end of data
stream plgyback. The source and destination of a data stream will differ in

synchronization during playback.

Synthe’;ic synchronization employs a coarse synéhronization té'chnique with object-level
granularity. Data streams can be started or ended based on user interaction, application -
execution or tefmination; or pr-'e‘-deﬁned relationships. Objects can have sequential or
parallel time rélationships. When these multimedia nbjects are presentéd, the synthetic
relationship; minimum and maximum delay, and the desired performance constraints can

be taken into consideration for optimal playback performance-[Little90].

A coarse-grain synchronization technique would define the interconnection of objects ina
multimedia document, while a fine-grain technique would illustrate the binding of objects

'to a reference timeline for playback timing [Little90a].
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Complex temporal relationships can be created between multimedia objects. Some

examples of object relationships can be seen in Table 10.

Relationship Description

Pabefore Pb [+ Pa ‘]<delay>[ Pb ]
Pa meets Pb ~ |[ Pa ][ Pb ]
Pa overlaps Pb [ Pa ]
<delay>[ Pb ]
Pa during Pb <delay>[ Pa ] .
: | - Pb ]
Pa starts Pb [ Pa ] o
| [ P ]
| Pa finishes Pb <delay> [ Pa ]
L [ Pb ]
Paequals Pb - [ Pa 1
‘ | _|r Pb ]

Table 10: Examples qf tefnporal object relationships [Little90a]
3.3.1 Continuous Synchron_izétipn
The ACME (Abst?actions for Continuous Media) server provides netwopk-transparent
access to hardware devices, manages multiple concurrent data streams, and allows clients
to specify synchionizatioh‘reqﬂuirement‘s while'pro‘viding mechanisms to enforce them.
- Each-client application can request mulﬁple data streams (rOpes) which consist of
fndividuél per;device streahis (sirdnds). These strands are multiplexed into ropes and are
trané_mitted over the client-server network conﬂection. The ACME system uses a logicdl,
tz:me_s'ys'tem (LTS) for synlvchronization' support. An LTS can have a variable unit of time .

and can be either device driven or connection driven [Anderson93].

The system canuse a skip—pause LTS, which ékips_ or pauses the transmission depending

on transmission latency. Another alternative is the low-delay LTS, which acts to
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minimize the transmiésion delay on its streams. A multimedia doguihent browser would
use a skip_—péuse LTS to manage the syncflronization of multiple da;ca streams

| [AndersQn9'lj. The LTé would Be driven from a single devicé, norﬁially the audio
playback device, so that all data streams (such as Qideo apd text captioning) would be
éynchronizéél to the audio stream. An audio conferencing sysien‘l' wéuld use a low-delay

LTS to support low end-to-end delay between clients. The LTS would be driven by the

network connection.

An LTS has three modes of operation - startup, normal, and starvatién/overrun. During
'_[hé stal;{up period, the LTS w_aits fof tﬁc device and connection bﬁffers to fill up.bef()r‘e
pfbceeéling. In normal operation, the .LTS handles rate mismatches and manages the
intréstream synchronization. When buffer starvation or ovérmn occurs, the LTS may

temporarily stop to let the device or connection catch up [Anderson9l].

When the LTS must wait for a device ‘or connection to cat;:h up, a dla.lta stream may stop
- playback. .N'orma'lly‘.when this happens no rhedié' data is shown or heard since playback
has céased: A technique called restricted blocking can be used to'proi/idé some
continuity when playback is delayed. For example, video streams can- leave the last A
frame visible during delays in playback rathe-r than showing no .video signal at all

‘ [Steinmetz90].

3.3.2 Synthetic Synchronization
'Explicit synchronization control can be applied by the use of scripts. Scripts can be
created to define the set of data streams, the sequence of data units (samples, frames, etc.)
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that will be played, and the time at which the streams will begin and end. In this case, the
script playback engine itself would use an LTS for synchronization which will be driven

by the master data stream, as specified in the script [Rowe92].

Script-based synchroniz’ation is specified by the ab_plication developer and deﬁne,sb the
: relatiOnship betweep the media data in the applicatiqn. For multimedia preséntations, the
presentation'timing is dependent o'n the availability of required media data, laténcy of
playback, and tﬁe playback algorithm. A scheduling policy may also be puf in place to -
describe which playback deadlines to meet and which playback tasks to defer ér drop

[Staehli93].

In addition to script-based synchronization, an application can support event-based
synchronization. An example of this is the display of subtitles triggered by video

playback events (i.e. playback of a specific frame) [Blair91].

Synchrénization protocols can be used to manage the synchroﬁized data d¢1ivery 6f
multimedia objects with inter-object relationships. An application synchronization
protocol (ASP) Aor network synchronization protocol (NSP) may be utilized. An NSP

. allows the playback of: complex multimedia presentations from distributed sources to a

single site, while an ASP manages the playback to and from a single site [Little91].

An example of a synchronization protocol consists of these steps. First, the temporal
relationships between objects in the presentation are retrieved. Next, the relationships are
evaluated and a playback schedule which incorporates the differihg playback

| requirements of the objects is created. Then, the overall playback schedule is determined



in coordination with an NSP. Finally, the synchronous data transfer of the presentation

occurs [Little91].

3.4 Networking Issues

A common concern of multimedia developers involves delivering media data .ov.er a
network. Networked video may be used in businesses for user training and support, sales
videos, or employee information. Advertising agencies frequently use archives of
television commercials [Tobagi92]. The storage resource and delivery mechanism of
video data is termed the video server. Througfl the use of a video server, numerous

streams of video data can be served concurrently with random access capability.

Video servers must maintain a continuous high data rate with real-time processing
requirements. | Qne type of video server may use a session manager to service multiple
clients. Each session can be described by two' concﬁrrent client/server streams, or
channels: command and data. The c&nmand channel is used for a bi-directional protocol
for managing the data transfer rate. The server monitors the client’s Buffering ability and

can adjust its data transfer rate accordingly by notifications sent on the command channel

[Uppaluru92].

The command channel can be implemented by a reliable stream-based protocol (e.g.
TCP/IP). The data channel can be implemented by a stream-based protocol or a packet-
based protocol (e.g. UDP/IP). Reiiable stream-based protocols will retry lost packets
during data transmission. The latency for packet retransmission is not acceptable for

continuous media data transfer. As a result, specialized packet-based protocols have been
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invented. In these protocols, no acknowledgment or retransmission techniques are

employed.. Data packet loss is acceptable and must be dealt with by the éppljcation;

Both static and dynamic media types can be delivered (;vér ra network.  The network may
bea LbcalTArea Network or a Widé-Area Network, such as -the Internet. The mode of
delivery may be réal_-ﬁm_e, where the user watéhes the data stream as it is delivered, or

‘ non-real-tirﬁe, where the data stream is archived at the user’s site and watched later
[Blackketter92]. Real-time delivery over WANs is where most synchronizatién problems

occur because of the inherent delays in data transmission.

Network types vary widely in delivery bit-ratés (see Table 11), but delays in network

routing as a result of network load can diminish the data rates drastically.

Interface Type Bit-rate
POTS o ' 0.3 - 56 kb/sec
DS-O (used by telephone companies) 56 kb/sec
ISDN ' 64 - 144 kb/sec

‘| LocalTalk ' _ , 230 kb/sec
T-1 ' , . 1.5 Mb/sec
Ethernet ' 10 Mb/sec
T-3 45 Mb/sec

- | Fast Ethernet ~ {100 Mb/sec
FDDI (Fiber Distributed Data Interface) | 100 - 200 Mb/sec
SONET (Synchronous Optical Network) | N x 51.84 Mb/sec

Table 11: Network interface types and corresponding bit-rates [Liebhold91]

Clients can use the video data in applications, but may need custom networking protocols
~ for streaming data delivery [Tobagi92]. These protocols can provide a scaleable data
transfer rate by responding‘to the network load and application requirements. The data

streams may be scaled temporally or spatially to maintain acceptable rates. Temporal
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scaleability dynamically varies the frame rate of the video »stream, while spaﬁal
scaleability provides the ability to reconstruct a frame from partial information

| [Uppaluru92].

A data stream is transmitted from a source to a déstinatidjn site and will contain a
seciuénce of fnedia objects - video, audio, and so on. -Thé cu_rreﬁt logical time of the
source or destination of the data stream is termed the pre&eniation time [Little90]. The
preséntation time niay be described in ;/.arious units of tim¢ (samples, frames, et’cltja. For
example, the so;lrcé of the data stream‘may have transmitted frame 105, but the °
desti_r;étion has only received frame 101. A loss of synchréniiatioh means that the

presentation times at the source and destination of the data stream are different.

The i‘nSténtaneoﬁs difference of presentation times is termed jiitér. The average delay
over the duration of the data stream playbaék is termed skew‘. The set of performance
parameters f_or data stream playb’ack i inéluding skew and jitter - can be termed cjuality of
service (QoS). Object presentation can be constrained by the QoS specification, which

| couldvafféct the playback ;iata rate‘s', buffe_ring parame?ters, énd network transmission

policy [Little90].

Data with a real-time delivery requirement that is transmitted in a single direction can’
incur large end-to-end delays from data delivery to arrival. However, the arrival times of
data packets and jitter need to be constrained. Bi-directional real-time data delivery

requireé constraints both on jitter and total round-trip delay. As a solution, ATM
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networks control delay and jitter by using fixed-size data péckéts. This minimizes buffer

 sizes, and eases routing delays during data trahémission [Hdpper90]..

34.1 Continu(‘).us Media Player

The Continuous Media Playér (CMPlayer) from UC Berkeley supports a continuous
me@ia support library and _portable user.inte‘rface. CMPlayér takes as input a script
describing‘va ;epies of audio or video étreams, and the start‘énd end frame of each stream.

Each script has a logical time system (LTS) for driving synchronization [Rowe92].

CMPlayer is composed of one or fnofe CMSourcés and a CMServer. Each CMSource
resides on a \./ideo file server and sends continﬁoué media déta»in packets over a UDP
netwppk cdnnection. The CMServer is an event-driven process which ménages a time-
ordered playback- queue fop synciupnizing the playback of Qudio and video packets. It
receives ‘packets fromCMSQurces, assembles the CM data from -the packets, and queues
thé data for playback. Control information is Sept between: the CMSource and fhe
CMServer over a TCP ne_:twork connection. CMServer requests retransmissions if a

packet is lost, and deals with out-of-order data [Rowe92] [RoWe94a]. '

" The CMSource sends data to the CMServer af the appropriate tifnez >and the data is
rparked Awith a Valid time interval’ for display. Bpt both the CMSour'ceband CMServer can
~ skip or drop .f.rames to méintain synchronization with the LTS-. A timer event notifies the
CMSource to send a f‘rame‘. It then deéides which frame to send and calculates the start

and end times for.‘display. If the CMServer decides a frame cén be decoded and
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displayed before its logical time, the frame is put on a queue of display requests. If not,

the CMServer drops the frame [Rowe94a]. |

The CM ‘network protocol uses an a&apfive feedback algorithm to match packet flow to
available resaurces. "CMServer uses a penalty method to maintain a constant playback
rate. Frames that are queued but not played, multiple missed frames, and frames lost in
the network increase the penalty. This penalty is sent to the CMSource which is
transmitting the stream. Every 300 msec, the playback frame rate is calculated based on

the current frame rate, the penalty, and the frame rate c_bnstraints on the stream [Rowe92].

3.4.2 Rate-based Flow Control Protocol

' _Researchérs at Lancaster University (UK) have proposed a system which uses a relaxed
rate-based flow control protocol. .This protocol doés. not suéport retransmissions when

A transferring real-time data. The system is composed of two source processes - writer and
send - and two destination processes - receive and reader. The writer process gathers
media samples into the required buffer size, also called tﬁe burst size. When the buffers
have been filled, the send process fragments the buffer into network packets and adds the
appropriate packet headers. Upon packet receipt at the destination, the receive process
strips the header information and fills data buffers. The reader process passes the filled

buffers to the media playback engine [Shepherd91].

As the first step in the flow-control protocol, the source and destination must agree on the
burst size. Next, they must agree on a suitable burst interval which allows the receiver to

~ consume and process a negotiated full burst in that interval. When a burst is consumed
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and processed by the destination, it informs the source of its current buffering
capabilities. The source uses this information to decide whether to send the next burst or

block at the next burst interval. By increasing or decreasing the burst size, this protocol

" allows delay jitter to be smoothed out. Synchronization is therefore proVidé_d at the

buffer level not the packet level [Shepherd91].

3.4.3 Multimedia Virtual Circuit

An alternative delivery mechanism developed at Boston University is the Multimedia
Virtual Circuit (MVC). An MVC contains multiple channels of synchronized media

which are multiplexed onto a single virtual circuit (VC) with variable bandwidth. Packet

" order is guaranteed by the VC, and there is no connection overhead once the VC is

established. The client applicationxre'quests the number of channels and the QoS per
channel, but channels can be added to the MV C during transmission. An MVC only

supplies point-to-point connections [Little90].

3.4.4 Continuous Media Transport Service and Protocol

In order to provide better service for continuous media applications, researchers at ucC
Berkeley have developed the Continuous Media Transport Service (CMTS) and -

Continuous Media Transport Protocol (CMTP). CMTS is designed primarily for CM

~ clients, but can coexist with message-oriented clients. It provides a better traffic model

for characterizing CM traffic and for specifying performance requirements. CMTS

_ defines an abstraction of logical stréams, provides CM-specific error handling, and

eliminates the need for the client’s acknowledgment of each data transmission

[Wolfinger91].
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CMTP is responsible for unidirectional communication between CMTS processes at the
senderva_nd receiver. Real-time applications ¢annot wait for retransmissions of data and
will handle lost packets, but in cases of serious error, the connection can be torn down

and reestablished with a new stream [Wolfinger91].

The conversation between sender and receiver consists of a sequence of logical streams
with intervals of silence between the streams. The sending client must notify its CMTS
at the beginning and end of -each logical stream. The sending client and its CMTS share a
circular buffer. The sending cli}ent must pléée all outgoing packets in the shared buffer
before the end of ;[he transmissib,n period. This buffer may be prefilled by the client by a
predetermined number of bytes (called slack). The traffic and performance parameters of
the stream can be rédeﬁned at the start of each logical stréarﬁ, but only a deprease in data

rate is allowed [Wolﬁnger9l]. ,

The CMTS at the sender and receiver coordinate to transfer aH buffered data packets for
each transmission period. The receiving CMTS must inform its client df the beginning of
a new logical stream. The receiving client and its CMTS also share a circular buffer.
Similar tb the sending process, the receiving CMTS must place incoming packets into the
shared buffer before the beginning of the playback peridd in which they will be needed.
The receiving client is responsible for remoying these packets from't_‘he shared buffer
before thé eﬁd of that period, But can fall behind by tﬁe sléck number of bytes. The
receiving buffers are relativély large to smdoth out the fluctuations in the arrival of datab

packets caused by delay jitter [Wolfinger91].
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3.4.5 AudioFile

Digital Equipment Corporation has developed Aud{oF ile, a network-transparent system
for distribufed audio _applications. AudioFile alldws multiple simultaneous clients,
supports a variety of audio harawdré, supports multiple audio-data types and sample rates,
and permits transparent aécess ‘t'hr'ough thé network. It can be uséd for applications such
as audio recording and playbat:k, ansWering machines, voice mail, telephone control, and

speech synthesis and recognition '[Lévergood93].

AudioFile operates on bld‘ci(‘s of audio data rather than streams. It does not provide a
complete synchroﬁization profocol? but doés sﬁpply low-level tiﬁing information.
AudioFile clients manage end-té-end delay and multiple synchronization clocks. The
AudioFile server cqnsists of device independent audio (DIA), device dependent audio
(DDA), and opérating s?ste_m components. The DiA component uses a control loop
which waits for client connections and open devices. Client requests are processéd by a
dispatcher. The DDA cofnﬁbnent manages the play and record buffers for each device
while'audio: dévice I/Q is pe_r_foi’mec_l by: reading and‘-writi'r'lg‘shared memory buffers

[Levergood93].

The AudioFile profocol is modeled after the X-Windows protocol and uses a transport
protocol which is feliable and does not réorder or duplicate data. The reliable protocol’
(TCP) was found to be sufficient as t‘he‘ delay caused by the retransmission 6f lost packets
was small compared to the bufferiﬁg. - Teleconferencing applications over iﬁtercontinental

TCP links suffered poor performance, and the researchers decided TCP was the wrong
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protocol for loW—delay applications which neéd guarantees on bandWidth and latency and

. can accept lost packets [Levergood93].

3.4.6 Etherphone

The Etherphone multimedia conféréncing system was developed by ;eséafchers at Xerox

PARC. The Phoenix subsystem manages audio conferencing and supports multiple

simultaneous conversations in various configurations: one-to-many, many-to-one, and
many-to-many. Also, Phoenix supports best-effort conferencing, in which the

conversation participants use a media format supported by every. participant [Vin91].

Phoenix uses a multicast packet protocol for audio transmission. The audio transmission
protocol exhibits a small end-to-end delay (< 50 ms). Data transmission alternates “talk
spurts,” or segments of continuous speech, with silence. Each audio packet consists of up

fd 160 p-Law encoded bytes, which is equivalent to 20 ms of audio at 8000 bytes/sec. At

" most, 50 packets/sec are transmitted per conference participant. An energy value is

computed for each packet. If this value is below a predetermined energy threshold, the
packet is considered silent and is not transmitted. To smooth the transition from speech
to silence and from silence to spéech, low volume packets are transmitted at the end of*

the preceding talk spurt and at the start of the following talk ,spurt_[Vin9I]. For this to be

" possible, the audio transmission must buffer enough data to be able to calculate the silent

portions of the stream. Otherwise, the silent packets at the transition points could not be

replaced with low volume packets since they would already have been sent.




3.4.7 X-MOVIE

Researchers at the University of Manhlﬁeim have producéd a system for transmitﬁng and
displaying digital moviéé‘called X-MOVIE. X-MCVIE consists of the Movie Server, the
Movie Client, and the X-Client. The Moyie Sgrver maintains a directory of movies

' available fér pléyback. Also, it accepts playback requests from, and delivers the movie
over thve‘network to, the Movie Client using an application-level pfotocol named Movie
T ransmission Protocol (MTP). The Movie Client extends the stanciard X-Windows
System X-Server to provide digital mo'vié pléyback. Similarly, the X-Client exfends the

standard X-Client to provide this same functionality [Lamparter91].

The Movie Server brovvides services to the Movie Client such as Play, Stop, Step
Forward/Step Backward, Show Picture n, and Slower/Faster. When 'using the MTP
préfocol, all data packets from the Movie Client fo thev Movie Server and all control
packefs from the‘M.ovie Server to the Movie Client are acknowledged. All movie data
packets sent from the Movie Server to the Movie Client are unacknowledged in order to
provide a continﬁous.déta.ﬂow. When run over TCP/IP, the data rate from Movie Server
to Movi_e Client was found to be about 150 kb/sec, but when run over UDP/IP, the data |
rate jumped to approximately 2 Mb/sec with 10% packet loss. TCP was found to be a
poor transport protocol for real-time data because of the flow control and packet

retransmission protocol mechanisms [Lamparter91].
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4. CASE STUDY

The thesis project that was undertaken illustrated an example of networked playback of
video and audio strearﬁs ina client/ser;/er environment_. The software applicatibn that
was developed can act as both client and server. The application can serve multiplé
concuirent video and audio étreams, and also can render multiple incoining video and -
audio streams. The server plays the audio and video streams off a local storage device .
~such as a hard dri\}é or CD-ROM. It accesses pre-compressed video and audio files and
transmits éach indi.vidual video frame (or buffers of audio samples) over the network.

. The compressed video data is decompressed on the client and rendered to the local
display device. The compressed audio data is sent to the audio device (e.g. sound card)

where it is decompressed and played.

A LTS-based synchronization engine was used in cvonjunction with an adaptive rate
control algorithm. Real-Time Protocol (RTP) was used to provide real-time quality of
service (QoS) information to fhe media server., The application can support the
synchronization of multiple independent data strearhs. The adaptive rate control
algorithm uses the QoS information which is sent from the client back to the server in
ordér to oi)timize th;: syn‘chronizati‘on of the daté streams. The server data rate is altered

dynamically to provide the highest data rate without sacrificing packet loss.

The goals of the project were to provide synchronized video playback over a network
while leveraging existing technology in order to support extensibility, portability, and

interoperability. The application was therefore designed to take advantage of increasing
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network bandwidth, advances in data compression, as well as advanced‘operating' system |

support.

Other possiole uses for the applioation are in a multimedia document browser, such as for
the World Wide Web, or in a multimedia conferencing application; The server part of the
application could be used in coojunction with a Web servef to provide for stfeaming
continuous media over’ the Internet. Alternately, the apolication could‘oe enhaoced to

support ‘l'iv'e audio and/or video capture in order to support live multimedia conferencing.

4.1 Rolated Works |

" The LTS-based synchronization engine was derived from the ACME server developed at
the University of California at Berkeley [Aoderson9l] [Anderson93]. The adaptive rate
control. algorithm was based on .the peoalty..method used in CMPlayer [Rowo92], while
the RTP protocol implementation was derived from the XorOX PARC Netvideo

application [Frederick93].

These software applications developed as a result of research projects at other universities
were used as the groundwork for this project, and the choice was made to start this
research pfoj ect from where the other projects left off. This allowed the code that was

written for this application to be unique and limited the duplication of preexisting code.

4.2 Design Rationale
As stated, above, a primary goal of the project was to leverage existing techxiology. in
order to support extensibility, portability, and interoperability. Extensibility was

pro'vided by allowing the application to work with a variety of software codecs.
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Depending on the bandwidth available to the client-server network link, a different codec

| may be used to optimize the quality of the compressed audio and video.

Under Microsoft Windows, the operating system support for video playback and capture

is known as Video For Windows (VFW). VFW abstracts the specifics of the video

.compression and decompression élgorithms which are used. To play back a frame of

compressed video, the frame 4is handed to the VFW subsystém along with a bitmap
header data structure which describes the video frame dimensions, bit depth, and

compression algorithm. By using the compression algorithm item from the bitmap

_ header, VFW dynamically loads the code necessary to decompress the video frame. The
decompressor is called to decompress the video fréme, after which the decompressed

| frame is rendered to the display device.

One limitation of using VFW is that the standard codecs (e.g. Intel Indeo, Radius
Cinepak) only support the compression and decor.ﬁpression of full video ffames, not sub-
frames as in some video conferencing épplications (e. g: CU-SeeMe). The CU-SeeMe
compression algorithm encodes sub-frames aloﬁg with their (x, »y)‘ position within the full
frafne. This allows each full video frame to be built u'pvfrom many sub-frames and
rﬁini_mizeé the effect of a lost network packet (which would contain a sub-frame rather

than a full frame).

If the video compression algorithm selected uses interframe compression, and a reference

frame of the video stream is dropped during its network transmission, the rendering of the

video stream can contain undesirable visual results. The intermediate frames of the video
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segment will not have a reference frame to use for decompression. To get around this

problem, the video stream should be compressed without interframe compression when

transmitting the stream over a network (when using a non-guaranteed network protocol).

The operating system support for audio playback and capture is provided by the Windows
Multimedia subsystem.(WinMM). Similarly to video decompression, buffers of audio
data are handed to the audio device along with an audio header data structure. The header

contains the audio compression algorithm, the sample rate, and the number of channels

“(e.g. mono or stereo) in the audio buffers. This application uses a fixed frame rate of 15

-fps so that the each audio. buffer éontains 67 msec worth of audio data. -

To provide portability; many standard application programming interfaces (APIs) were
used in the development of this software application. System-level APIs for the user

interface (MFC: Microsoft Foundation Classes), multithreading (Win32), multimedia .

services (VEW and WinMM), and network coﬁnections ('WinSock.' Windows Sockets

~ Services) were provided by the operating system. By writing to these abstract APIs, the _

application can run on an}; ﬁardware platform where these APIs are supported. Both the |

~ Windows 95 and Windows NT opefatihg systems support the Win32 system APIs. Third

parties have developcd Win32 emulation libraries on various Unix i‘mple'fr_léntations.‘ In
addition, gpplications written using MFC for théir user interface éuppoft can sjrﬁply be
recbfnpiled to work under the Macintosh operating system. Micro_soft‘ also provides a
Win32 software layer for the Apple Macintosh which allows ;a subset of tfle Win32 APIs

to exist on Macintosh computers. .
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Most of the related applications (including ACME and Netvide-o) were run on the Unix
platform; By wriﬁng to the high-level Win32 API, this software application is less
dependent on fhe underlying hérdware and, therefore, can transpareﬁtly make use of
advances in audio and video codecs, multiproce'ssdr support, and new display devices.
Using the Win32 APIs and MFC for development éreatly decreased the impleﬁentation

time and made the application more extensible and portable. ,

The networking protocol selected for this project was RTP. It is a non-guaranteed

protocol which has support for the real-time transmittal of data. The RTP headers contain-

_timestamp information which allows the receiver of the data to know immediately

whether a packet has been lost (or, at least, received out of order). RTCP (Real-time
Control Protocol) is used for media source management. This protocol is used to signal
the beginning and ending of data streams and to send QoS information back to the sender

of the data.

As.was seen in many other netwqu;:d video playback systems, a non-guaranteed protocol
will exhibif much higher data thfqughput than a guararﬁeed bfotocdl (such as TCP). Thé
X-MOVIE system found TCP to be a poor transport proto'col for real-time data becaﬁse
of the flow control and packet retransmission protocol mechanisms. Also, the non- -
guaranteed protocol showed more than a factor of ten improvement in data throughput
[Lamparter91]. A non-guaranteed protocol will be.susceptible to noticeable packet loss .
(upwards of 10%) 'during dafa transmiss_ion' and the receiver of the data rﬁust be able to

handle the data loss without difficulty.
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- The ACME sgwer used TCI; for data transmission and RPC for control information.
Because of the documented inadeqﬁacies of TCP as a continuous media transport
protocbl, in this project these .protocols were replaced with RTP for dafa transmission and
RTCP for control information. Also, since RTP is an open protocol standard, the Win32

client application can interopérate with any other network server that adheres to the RTP

: prOtocol-. Thé only limitation is that the client must be able to decompress and render the

encoded data transmitted by the server. The RTP protocol header includes a tag for the '.

- format of the data stream which is being transmitted. If the client can not understand the A

~ data format being sent to it, it will ignore the connection with thé server.

In this project, an adaptive rate control algorithm was used on the server side to alter the
transmitted data rate. This algorAi.thm used theI_QoS information sent from the client back
to the server to adjust the rate at which data was transmitted. If too many frames were
lost during trénsmission due to inadequate buffering or other reasons, the server would
slow its transmission rate. The algorithm also can sense aisurplus_ in bandwidth
availability and will increase the transmission rate if no frames are‘bei.ng lost. The

algorithm'uéed is based on the CMPlayer application [Rowe92].

4.3 Implementation

The software application was written in C++‘. using Microsoft Visual C++ 4.2 and tested

-on a Gateway 2000 133 MHz Pentium' desk‘iop computer and an HP Omnibook 5000CTS

120 MHz Pentium laptop cofnputer both running the Microsoft Windows 95 operating

system. The user interface was built on the MFC class library. For system services,
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including multithreading and synchronization (events, critical sections, etc.), the Win32.
API was used. Video for Windows was used for video decompression and image
rendering. WinMM was used for audio decorhptession and playback. WinSock was used

for socket creation and data transmittal and receipt.

C++ code from the ACME and Netvideo applications were reused for this application.
The implementation of the logical, physical, and compound logical devices and the .
logical tirhe systéms were reused from ACME. The forrﬁatting and decoding of the RTP

and RTCP headers were reused from Netvideo.

The application can be broken down into the user interface, the networking protocol, and

 the synchronization engine (the logical, physical, and compound logical devices, and the

logical time systems).

4.3.1 User Interface

The user interface is subdivided into three sections: the client view, the client inforrhation
view, and the server information view (see Figure 5). If the application is acting as a
client for media playback, the first two views will be used. If the application is écting as

the server for media playback, the third view will be used. The application can function

. simultaneously as a client and server and in that case all views will be utilized. In this

case study, the streams of audio or video data sent from the server to a client are called

media servers. The streams of audio or video data received by the client from one or

more media servers are called media sources.
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Client Information View

Server Information View

Client View

Ready . L NOM -

Figure 5: Application window showing client information view, server information

view, and client view areas

The client view is used to display the video streams received from the media servers.
Audio streams are sent to the audio device (i.e. sound card) as they are received. The
client information view displays information about and current statistics for each media
source (audio or video) (see Figure 6). For each media source, this information includes
the filename of the media source, the name of the machine sending the data, and the name
and location of the user sending the data. (The name and location are configurable on the
server.) Also, the current data rate (in kilobits per second), packet rate (in packets per

second), and average bytes per packet are displayed. For video streams, the number of
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frames received is displayed, and for audio streams, the number of samples received is

displayed.

kirkm@kirkm-home Kirk Marple Microsoft Corpc

Figure 6: Client information view showing information about current media sources

The server information view displays information about and current statistics for each

“media server (audio or video) (see Figure 7). For each media server, this information

includes the filename of the media server. For video streams, it aiso includes the number
of f‘rames‘ in the original media file, the height and wicith of the Video frames, thé original
frame rate, and the name of the video compreésion algorithm. In addition, for "audio
streams, it includes the number of samples in the original media file, the number of
samples pef second, the number of bits per sample, the number of channels, and the name
of the audio compression algorithm. For both audio and video servers,Athe number of
data packets loét during transmission to the client, the current period_, the current data

rate, and the number of frames (or samples) sent is also displayed.

293 frames . 320x240

22 pkis lost 66 mseclframe
s 'PCM T

Current statistics 25 pkis lost? 67 msecibuffer

15.00 fps V41
115 frames senl
16 bits/sample (

"1B462%5 samples|

Figure 7: Server information view showing information about current media servers

In order to quickly access the functionality of the application, the most common

commands are presented in the application’s toolbar (see Figure 8). The toolbar buttons
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are grayed out when not accessible in the current application context. Their visible state
will change as various application states change. From left to right, the available toolbar

commands are:

Connect to client
Disconnect from client

Add media file

Delete media file

Change server playback rate
Play

Pause

Restart

Stop

Figure 8: Application toolbar with buttons for common commands

The complete set of available commands is available through the application’s

hierarchical menu structure (see Table 12).
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l Menu Item Description .

File .
Connect to client... Brings up dialog to select client machine
, address to set up connection
Disconnect from client Disconnects from currently connected
client :
: Exit Exits application’
View
Toolbar Toggles Toolbar on/off
Status Bar ‘Toggles Status Bar on/off
Server .
Play Starts playback
Pause Pauses playback
Restart Restarts paused playback
Stop Stops playback
Change Server Info... Brings up dialog to enter new server
information ‘
Change Playback Rate... Brings up dialog to enter new output
C playback rate
Use Rate Control Turns adaptive rate control algorithm on
' and off '
Use Low Delay LTS Toggles between using Skip/Pause LTS
and Low Delay LTS
Log- Toggles media server logging on/off
Media o ,
" Add Media File... Brings up dialog to add media file to be
‘ played '
Delete Media File Deletes media file selected in the Server
' : Information View
Change Media File Info... Brings up dialog to enter new text
description for media file selected in the
‘ Server Information View
Add Video Streams Toggles adding video streams from AV1
, files on/off '
Add Audio Streams Toggles adding audio streams from AVI
. files on/off
Log Toggles media source logging on/off -
Help ,
About... Displays copyright information about
application

Table 12: Application hierarchical ménu with complete set of available commands

4.3.2 Networking Protocol

The RTP and RTCP networking protocols define a set of headers which make up an RTP

packet. There is a standard RTP header, which is always found at the beginning of an
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RTP packet,.ahd various RTP Option headers which are appended to the standard RTP

header. -

typedef struct {
' . UINT rh_vers:2;
UINT rh_chanid:6;
' UINT rh opts:1;
UINT rh sync:1;
UINT rh content:6;
USHORT rh seq; '
ULONG rh_ts;
} rtphdr; ‘

Figure 9: Standard RTP header |
figure 9 éhOWS fhe_ standérd I:(TP hea;der. rh_fefs is ’thei RTP-version ID (which equals 1
' in tﬁis implemenfation). rh_éhanid is the pilahﬁel ID fot the data packet which can be
~used to differentiate mulﬁple convefsations between clienf and ‘server. rh_opts is a flag
Bit to signal wheth‘e,r' optioﬁal head_er.s“exist after the standard RTP header. rh_syncisa
ﬂag-bit which sigﬁals_ ’t’l‘le‘ erid of a series of w(;ne.‘ or more subfb;ckefs which are sent with
the‘,k"sar.nei seéuence number; A(In this impl’eme-ntati‘on, the fh_sync bit is always set since
complete video f{ame and audio buffers are chtaihed in each RTP data packet.) This
flag .Clarll belised-vx;héri,, .'decom}‘);)Asir;gv larﬂgrev packets into sn;aller sub-packets which are
more 1ikély to not .bf‘: dropped during data trari'smiséipn. : This is a primary area for future
wc;rk with: thié .proj.ect. When’high quality video codeCé are used, packets COntainipg
.vide'o data can get .ratile£ large (e.g. greatef than 16 kB). As a result, thcse paékets,havé a

higher probability of being lost in the network.

rh_conteht defines the type of data found in the RTP packet. In this implementation, this

_value will be cither RTPCONT_AVI (with value of 32) for video data or
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RTPCONT_WAVE (with value of 33) for audio data. rh_seq identifies a packet within a
data stream. This number is incremented after each packet is sent. Each packet is
timestamped with a monotonically increasing 32-bit value in Network Time Protocol

~ (NTP) format. This value is stored in the rh_ts entry.

After the standard RTP header can come one or more RTP option headers. Each of these

wilI‘ begin with the basic RTP option header seen in Figure 10.

typedef struct {
UINT roh fin:1;
UINT roh type:7;
UCHAR roh optlen;
.} rtpopthdr; §

Figure 10: Basic RTP option header

| 'This header contains a flag bit, roh fin, to signal whether this is the last .o.ption header in
the _packet; an .option typé enumefator, roh_type; and the length of this option header,

: roh_op_ﬂén. Each RTP optign header will have the same first three fields of the bésic
option heéder but will append extra fields for specific functionality. This allows the
incoming data packet at the client to be parsed by casting an opaque byte packet pointer

_ into an rtpopthdr pointer, looking at the roh_type and roh_optlén ﬁelds, figuring out the =

~ actual option headey type, and then recasting the backet pointer to a specific option header

structure pointer.
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typedef struct {

' UINT rsh fin:1;
UINT rsh type:7;
UCHAR rsh _optlen;
USHORT rsh id;

} rtpssrchdr;

- Figure 11: RTP synchronization source header

In a data stream being sent from a server to a client, the synchronization source option
header (see Figure 11) will follow the standardbRTP header in the RTP packet. This
header édds the rsh_id field to the basic RTP option‘hea(.ler. This ID is used to
differentiate multiple streams beiﬁg sent from the same server. In practice, a unique -
value is used for each synchronized data stream on the server. The first time a client sees
a spéciﬁcv source ID, it will créate a media source data hahdler and attach it to the iﬁput
logical device (LDEV) for the appropriate content type (depending on the rk_content

field of the RTP header).

When the server finishes sending the data stream to the client, it sends an RTP packet '
containing a bye header for the appropriate data stream (see Figure 12). The rtbh_id field
contains the source ID of the stream which has been completed. Upon receipt of this
header, the client removes the media source from the input LDEV for the appropriate

content type.

typedef struct
UINT rtbh fin:1;
UINT rtbh type:7;.
UCHAR rtbh _optlen;
USHORT rtbh id;

} rtcpbyehdr;

Figure 12: RTCP bye header
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After the synchronizatiqn source header will come the source description header (see
Figure 13). Ona peri'od‘ic basis (in this'implémentation, -eizery five seconds) during data
transmission, the ﬁledia server yvill append several source des_crjption headers to the RTP
" packet.. rtsh._'id is the sourcé ID of the current étream sent bsf the rﬂedia server. The
rtsh_subtype.'ﬁ_eld will be one ‘of the rtp_sdesc_t enumerators: C(;mputer address, port,
~ computer name, e-mail address, client user name, cliént usér locafioﬁ, and a client-

customizable text description (typically the filename of the media file being ’sent).

typedef enum {
© RTPSDESC_ADDR

RTPSDESC_PORT =
RTPSDESC_CNAME
RTPSDESC_EMAIL
RTPSDESC_NAME = 6,
RTPSDESC_LOC =
RTPSDESC_TXT = 16,
RTPSDESC_PRIV = 255,

} rtp sdesc t; '

]

1]
N
mo -~ S

-

I
[e0]

typedef struct {

_UINT rtsh fin:1;
UINT rtsh_type:7;
UCHAR rtsh optlen;
USHORT rtsh_id;
UCHAR rtsh_subtype; -

} rtepsdeschdr;

Figure 13: RTCP source descripﬁon header

Finaliy, any’ application data headers are appended to the RTP packet (see Figure 14).

These option headers will contain the actual meciia data being sent .frdm the sefver and

. any media-specific headers that are needed to setup the output devices. rah_id holds the

source ID .of the data stréam being played. The .rah_suvl')typ-e' ﬁel_d Will' contain an
enumerator which'defines what type of data‘is contained in the header. rah name

contains a unique 32-bit value which defines the application being used to send the media
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data streams. Finally; rah;datalen holds the length (in bytes) of the application data

- which is found immediately after this field in the RTP packet.

Vldeo streams will send two apphcatlon headers one contammg an AVISTREAMINFO
header (RTPAPP STREAMHEADER) and one contammg a BITMAPINFOHEADER
(RTPAPP__BMIHEADER), when the‘ media server is 1nstant1ated. The‘se are Wmdows—
speciﬁc multimediavheaders whic'h tell the ou‘ccut video physical device (PDEV) the
criginal frame rate of the video file and the size; resoldﬁo'n,. and compfession ‘fofmat of
the video franies. When playback begins on the sel:ver, an a_pplication header containing
| the actual bitmép data ch the frame will be se'rit (RTPAPP_B_ITMAPDATA).

2
typedef enum { - .
RTPAPP BMIHEADER = 0,
RTPAPP_BI TMAPDATA
RTPAPP _ STREAMHEADER
RTPAPP AUDIOINFO
RTPAPP AUDIODATA

} rtp_app_t;

typedef struct {
.UINT rah fin:1;
UINT rah type:7;
UCHAR rah optlen;
USHORT rah id;
USHORT rah_ subtype;
. ULONG rah-name;
UINT rah_datalen;

} rtpapphdr; -

Figui'e 14: R_’I“P-'app:licat‘ion‘ data header

Un_f_il now, we’{fe been discussing RTP packets'which. are Aser.it from the server to the
“client. One speciﬁc type of packet is sent from the client back to the server. - This packet
~ contains an RTP quality of service header (see Figure 15).- On a'periodic basic (in this

implementation, once a second), the media source accumulates QoS statistics, fills in the
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Qo.S header and sends the RTP packet back to the client. The rtqh_id field contains the
source ID .of the daté stream to which the client QoS data is referencing. The next eight
fields contain the numbef of éxp_ected and received packets (since the.last QoS'packet
was sent), and the minimﬁm, average, and maximum latency of packet receipt (during the
entire delivery of the data stream). The latenéy values are stored in ;wo separate fields.
The final eight fields store the port and IP address of the server from which the data

packets had been received.

typedef struct {
UINT rtgh fin:1;
UINT rtgh type:7;

" UCHAR rtgh optlen;
USHORT rtgh id;
ULONG rtqh_exppkt;
ULONG rtgh_rcvpkt;
USHORT rtgh minsec;
USHORT rtgh minfra;

- USHORT rtgh maxsec;
USHORT rtgh maxfra;
USHORT rtgh_avgsec;
USHORT rtgh avgfra;
UCHAR rtgh_subtype;
UCHAR rtgh sublen;
USHORT rtgh port;
UCHAR rtgh_subtype2;
UCHAR rtgh_sublen2;
UCHAR rtgh x3; // unused
UCHAR rtgh_addrtype;
ULONG rtgh_addr;

} rtcpgoshdr;

Figure 15: RTCP QbS header

4.3.3 Synchronization Engine
- The Synchronization engine consists of a set of devices - physical, logical, and compound
logical - which are managed by logical time systems. The PDEVs encapsulate the actual

multimedia devices on the client’s machine. PDEVs can be designated as input or output
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devices. Input PDEVs manage the playback of received media data; output PDEVs
manage the network transmission of media data. Output PDEVSs can transmit media data

from file storage or by direct capture. -

. In this implementation, there are both input and output PDEVS whiéh abstract both the
video di‘splay and audié playback devicés. The output PDEVs, in this case, transmit
stored media data directly from the file sysfém. In-a future implementation, output

., PDEVSA could be created for transmitting dafa captu»red- in real-time from a microphone or

video camera.

Each 'ivnstance of a PDEV contains a thréad Which ménages the timi'n.g of the playback or
: tfansmittal of the media data. PDEVS also contain a lisf of LTSs which are “driven” by
the device. The PDEV thread sits in an event loop untﬂ it receives an “exit” event, at
which time the loop is exited.and tﬁe thread is 'destroyed. The event loop of the thread is
executed at regular intervals. The péribd of the PDEV is the inferval time (in
- milliseconds) of each pass through the loop. The device rate (in cycles/second) of the

PDEV is calculated as the inverse of the PDEV period.

| LDEVs.are abstractions of physical devices. Multiple LDEVs can be bound to a single
PDEV of the same type, but in this implementation, there is a one-to-one mapping

between LDEVs and PDEVss. Upon créatioﬁ,- LDE.Vs are associated with a compound
logical >de1.)ice (CLDEV), and a PDEV. The LDEV -i‘s added to ailist of LDEVs held by

) both the CLDEV and the PDEV. Since there is a one-to-one mapping between LDEV's
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and PDEVs, the PDEV’s LDEV list will always contain just one entry. A list of LDEVs

is used because future implementations might make use of the extra functionality.

Input LDEVs manag"e:a list of rhedia sources. As new sources are received and currentl _
sources are terminated (through RTCP packets), the list will expand and shrink. Output
LDEVs manage a list of media servers. The user will add and remove media sefvers
through the user interface.

’

On creation of a media server, the content type that the media server will handle is fixed.

After creation, the media server is instructed to load a media file. The media server will

_read the appropriate headers of the audio or video file and initialize itself to prepare for

transmitting data packets. It is here where the original period of an output PDEV is set.

(In this implementation, all media servers for a specific content type are managed by a

single output PDEV and the /ast media server to be loaded defines the period of the

PDEV.)

There can be input and output CLDEVs. In this application, there is one of each. Each
CLDEV manages the network connection to a set of clients (output), or‘a set of servers
(input). Socket creétion and destruction is done by the CLDEV. The CLDEYV is also
used by the LDEVs to send packefs to the socket. The CLDEV contains a network I/O
thread which ;its in an event loop and bloc;,ks Waiting either for an “exit” event or a
network packet. If thebthread gets an exit event, the loop is exited and the thread is

destroyed.
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Ifa ﬁetwork packet is received ;md the CLDEV is an input CLbEV, the RTP option

ﬁeaders are parsed to see if a new.media source has.been received or an active rﬁedié |
sro_ur‘ce} @s being terminated (e. g; a synchronization source header or bye header is ’ _ 1
receiVed, respective“ly). -S.ynchronization»source binf'o'rmation RTP packeis thatl are

received are parsed to extract the media server name, location,v and é-mail fields. If an

RTP application data header is receivcd, the header is handed to the current media source.

if it contains an RTPAPP_ BMIHEADER or RTPAPP_STREAMHEADER header. If so,
the video source makes a local éopy of the received header. If the application data header
contains an RTPAPP_BITMAPDATA header, the bitmap data found after the header is

copied into a pre-allocated buffer and pushed onto a queue for use during playback.

If the current media source handles audid data, the application data header is parsed to see

" if it contains an RTPAPP_AUDIOINFO header. If so, the audio source makes a local

copy of the received header. If the application data header éontéins‘an

RTPAPP_AUDIODATA h'ezider,_ the audio data found after the header is copied into an

If the current media source handles video data, the application data header is parsed to see
|
|
|

allocated buffer and pushed onto a queue for use during playback. .

- After each network packet is received, the current media sourcé updates its QoS statistics

and, at regular intervals (in this implementation, every second), it formats and sends QoS

packets to the media server which is sending.data to the current media source. -
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If a network packet is received and the CLDEV is ém output CLDEYV, then only QoS
packefs are parsed. The current media server (known from the QoS header) is called to

respond to the QoS statistics.

The media server implements a rate control algorithm which dynamically changes £he
output PDEV period (for the appropriate media type). This algorithm can be disabled by
unchecking the Se?ver/ Us?_z Rate ébntré? menu item (e.g. the Use"Rdie' Control menu item
in the Ser{)er menu). A penalty value.is used to determine the change to the PDEV
period. The rate control penaity is iniﬁalized to 0, and is increménted by 10 if one or
more packets were lost during the current QoS inte;val (in this implementation, évery .
second). If is incremented by another 10 if one 6r moré packets were lést dtiring the
previous QoS interval. If no packets were lost in botﬁ the current and previous period,
the pehalty is decremented by 10. The value of the penalty is threshélded to 0, on the low

~end, and 100, on the high end.

The new PDEV period (m_period) is calculated from tﬁe pénalty value (m_penalty), the
averagé framé rate (avgfps), and the opﬁmal frame rate (optfps) using the calculation in
F igu}re» 16. The'average frame rate is calculated from the average packet delay that is
returned in the QoS header, and the optir‘nal’fram'e rate is calculated from the original

PDEV period (set when the media server is initialized).

double pen ratio = ((double)m_penaltj/ / 100.0);

double complement pen ratio = 1.0 - pen ratio;

m_fps = optfps * complement__pén_ratio + avgfps * pen ratio;
m_period = (m_fps) ? (1.0 / m_fps) : 0.0;

Figure 16: Rate control calculation
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| Logical time systems manage the synchrorlliz.ation of the LDEVs held by each CLDEV,
On‘ creation, an LTS is associated with a PDEV. This PDEV is termed the master PDEV
of the LTS. There are tWo types of LTS: low-delay and skip-pause. In this
implementation, f[he input LDEVs are rﬁanaged by a low-delay LTS and, depending én

. the state Qf the Server/Use Low Delay LTS menu item, the output LDEVs are managed by
eithcr a lov;/-delay or skip-pause LTS. (See [Anderson91] for a complete description of

low-delay and skip-pause LTSs.)

Each LTS keeps its own current logical time. For output LTSs, this time is incremented
each time a media server sends a data packet, and for input LTSs, the time is incremented

each time a data packet is received by a media source.

During each loop of a i’DEV thread, each LTS will éttempt to maintain synchronization
of the LDEVs associated with the CLDEV to whi;:h the LTS is Bound. At each time
interval, the LTS will inform the PDEV associated with each LDEV to either play or skip
_ the current frafne. The low-delay and skip-pause LTSs each exhibit different algorithms

for playing or skipping frames (Sée [Anderson91]).

When a PDEYV is told to play or skip a frame, it tells its associated LDEV to play or skip
“that frame. When input LDEVs are told to play a fréme, they step through their list of
media sources and each video source is told to draw the next video frame. The video

source will remove a bitmap data buffer from its queue (if one is available) and will use

the VFW function DrawDibDraw() to decompress and render the bitmap to the display.




_'AOutput LDEVs step through their list of media servers and tell each one to play a frame.
Bofh audio and video servers will call the VFW funétiim‘i 4 VIStreamReadO to read the
next video frame 6r set of audiQ samples, respectively. Then, the media data will be
packaged in an RTP packet and ;transmi'tted to the client using the socket held by the
‘asso.ciated CLDEV. When media servers are told td skip a fr‘amcf,vt.hey advance their

media file pointers to the next frame (or audio 'sample), but do not transmit any data.

4.4 Appli'c‘ation Walkthrough
We will now present a typical usage scenario of the application. This will involve the
. synchronized playback of two streams of continuous media (one audio stream and one

video stream) using RTP over a UDP network connection.
The steps in the scenario:

Start the application

Connect to client

Change server information (optional)
'Add audio and/or video media file(s)
Change media file information (optional)
Set server playback rate (optional)
Start playback

Suspend playback (optional)

Resume playback (optional)

Stop playback

Disconnect from client

Close the application

When starting up the application, the input devices are created (see Table 13).
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video PDEV audio PDEV

L

video LDEV audio LDEV
(RTPCONT_AVI) \ /(RTPCONT_WAVE)

CLDEV

Low-delay LTS

Figure 17: Data flow between physical, logical, and compound logical input devices

and logical time system

Separate input PDEVs are created for audio and video stream playback. A low-delay
LTS and an input CLDEV are created next. The LTS is bound to the input CLDEV.
Separate LDEVs for AVI video and WAVE audio content are created and are bound to
the input CLDEV. A network I/O thread for the input CLDEYV is initiated and then the
LTS is started. The input CLDEV thread will now block until it receives packets from

the server.

Setu p connection to cl

Figure 18: Dialog box used for setting up connection with client

Next, the user must select a client to which the server will be connected. By pressing the

Connect to client toolbar button or by selecting the File/Connect to client... menu item,
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' the “Setup connection to client” dialog is opened (see Figure 17). The user can type inr
the machine name or IP address of the desired client. A textual machine name will be
: 'cohver;ed~to an [P address By calling the WinSock function gethostbyname. 1f the user -

selects OK on this dialog, the output devices will be cfeated (see Table 14).

~‘ video PDEV . ‘ audio PDEV
video LDEV. ' audio LDEV
(RTPCONT_AVI) \ : /‘ (RTPCONT_WAVE)
4 | 2B
CLDEV

Low-delay LTS -or-
Skip/Pause LTS

Figure 19: Data flow between physical, logical, and compound logical output devices

and logical time system

~Separate output PDEVs are ‘createdlfor éud_io and video stream tranémission. Depending
on the tbggied state of the Server/Use Low Delay LTS menu item, either a low-delay or

- skip/pause ‘LT‘S will be created. An output VC‘LDE\‘/ is created and tile LTS is. bound to it.
Separaté LDEVs for AVI Vidéo and WAVE audio content are created and ére bound to

the output CLDEV. Next, a network I/0O thread for the outpvut CLDEV is initiated. The

output CLDEV thréad blocks until it reqeives packets from the client. (These packets

will contain QoS information about the streams being transmitted.)

N
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After the user has connected to a client, the toolbar state is updated to reflect accessible
functionality (see Figure 18). Notice that the Disconnect from client button becomes
enabled while the Connect to client button becomes disabled. This provides for a context
sensitive UI which allows the user to only access commands which apply to the current

application state.

mee
Help

Ready

Figure 20: Appliéation window shown after connecting to client localhost

When media data packets are sent to a client using RTP, information about the user is
periodically sent with it. Once the user has connected to a client, this set of information
can be edited. By selecting the Server/Change Server Info... menu item, the “Server

Information” dialog is opened (see Figure 19). This dialog allows the user to change the
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user name, e-mail address, and location information which will be sent along with the

media data packets. Changing this information is optional.

Figure 21: Dialog box used for editing server information

The next step in the application is to select one or more media files to be delivered to the
client. Pressing the Add media file toolbar button or selecting the Media/Add media file...
menu item will bring up the “Open multimedia file” dialog (see Figure 20). From this
dialog, the user can choose either an AVI file (with .avi extension) or a Wave file (with
.wav extension). AVI files normally contain a video stream and (optionally) an audio

stream. Wave files contain just an audio stream.

If an AVI file is chosen, and if the Media/Add Video Streams menu item is toggled on, an
instance of the CAVIVideoServer class is created and added to the output video LDEV.

If an AVI file is chosen, and if the Media/Add Audio Streams menu item is toggled on, an
instance of the CWaveAudioServer class is created and added to the output audio LDEV.
If a Wave file is chosen, an instance of the CWaveAudioServer class is created and added

to the output audio LDEV.
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The filename of the media file chosen is passed as a parameter to the Load method on the
CAVIVideoServer and CWaveAudioServer classes. On invocation, this method attempts
to read the headers of the desired stream in the media file. If the desired stream does not

exist or some other error occurs, the server instance will not be added to the LDEV.

Open multimedia file

Look in:

File name: |Gvict oo

Files oftype:  [All multimedia files = Cancel

Figure 22: Dialog box used for selecting which media file to play

After the media file is added, the server information view on the server machine and the
client information view on the client machine will be updated to show the new media
server and media source, respectively (see Figure 21). If the client machine and the
server machine are the same, both views are updated in the same application (as in Figure
21). Notice that the name and location information that can be edited in the “Server
Information” dialog are present in the client information view for each media source. In
the first row and second column of the client information view, the text kirkm@kirkm-
home, which is the logged-in user and machine name of the server, is automatically

generated from the network state of the server machine.
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Multiple media files containing audio or video streams can be added to the server to be
delivered to the client. In this scenario, we will show a single file containing two streams

added to the server.

% loc 27.0.0.1:1848] -

Eile View Server Media Hel
JlslmEl ] lvlele] . 4 __
Gvicl.avi (video) kirkm@kirkm-home Microsoft Corporation
Current statistics: 0.00 kbps 0.00 pktsisec 0 frames recv
Gvicl,avi (audio) kirkm@kirkm-home Kirk Marple Microsoft Corporation
Current statistics: 0.00 kbps 0.00 pkislsec 0 bytesipkt 0 samples recv

Gvicl.avi (video) ~ 293frames 320x240 15.00 fps Va1

Timeeng

Current statistics: 0 pkts lost 66 mseciframe 15.00 fps 0 frames sent
Gvicl.avi (audio) 430702 samples PCM 22050 samplesisec 16 bitsisample (stereo)
Current statistics: 0 pkis lost 67 msecibuffer 14.93 buffersisec 0 samples sent

Ready , . NOe -

Figure 23: Application window shown after an AVI file is added to server list

Once a media file has been added, the text description for each media server can be edited
by the user. This description is part of the RTP protocol (as is user name, location, etc.)
and will be sent along with the media data packets. The default value for this text
description (in this implementation) is the filename of the media file concatenated with
either “ (audio)” or * (video)” depending on if the media server delivers an audio or video

stream.
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The user can edit this information by clicking on a media server in the server information
view and selecting the Media/Change Media File Info... menu item. This brings up the
“Media File Information” dialog (see Figure 22). If the user edits the text and selects OK,
the text description for the selected media server is updated. The next time the server
sends that information (as part of the RTP protocol), the client information view on the

client machine will reflect that change.

Media File Information

Comment [k

Figure 24: Dialog box used for editing media file information

After one or more video streams have been chosen for playback, the user can optionally
edit the rate at which the video frames from all video servers will be delivered. Note: this
is one major limitation of the current implementation. All video streams added to the
server will be delivered at the same frame rate because they are all driven from the same
PDEV. Currently, this frame rate is set to the frame rate of the /ast video stream added,

unless overridden by the user.

Selecting the Server/Change Playback Rate... menu item brings up the “Server Rate”
dialog (see Figure 23). This dialog shows the current playback rate (in frames per
second) of the output video PDEV. If the user edits this value and presses OK, the frame

rate and period of the output video PDEV will be updated.
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Audio servers contain a fixed frame rate (15 fps). This means that each second of audio
data is broken up into 15 equal-size packets and sent to the client. This frame rate is an
arbitrary value and was chosen to provide an optimal packet size. The Server/Change
Playback Rate... menu item is not accessible when an audio server is selected in the

server information view.

 Frames Per Second: 7

Figure 25: Dialog box used for editing server frame rate

To begin playback of all media servers, the user can press the Play button on the toolbar
or select the Server/Play menu item. To pause or restart the playback, there are
corresponding Pause and Restart buttons on the toolbar, in addition to Server/Pause and

Server/Restart menu items.

After the Play command is invoked, and if the output devices are using a skip/pause LTS,
the master PDEV of the LTS must be set. If any audio servers have been added, the
master PDEV of the output LTS is set to the output audio LDEV. If no audio servers
were added, the master PDEV is set to the output video LDEV. In either case, the output
LTS is next started. Playback will begin on the client application as soon as data is

received (see Figure 24).
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If the Pause command is selected, the output LTS is suspended, and similarly, if the

Restart command is selected, the output LTS is resumed.

kirkm@kirkm-home

538.52 kbps
Gvicl,avi (audio) kirkm@kirkm-home
Current statistics: 449.24 kb

293 frames

22 pkts lost
Gvicl.avi (audio) 430702 samples
Current statistics: 25 pkis lost

8.46 pktsisec

pkisisec

320x240
66 mseciframe
PCM

67 msecibuffer -

Kirk Marple
7959 bytesipkt
Kirk Marple
6012 bytesipkt

15.00 fps
15.00 fps
22050 samplesisec

_ 14.93 hlﬁerslsec

Microsoft Corporation
92 frames recv
Microsoft Corporation

146223 samples recv

V41

115 frames sent

16 bitsisample (stereo}
184625 samples sent

Figure 26: Application window shown during server playback

To stop playback of the media devices, the user can press the Stop button on the toolbar

or select the Server/Stop menu item. After the command is invoked, the media servers

for both the output audio LDEV and the output video LDEV are stopped (see Figure 25).

This involves sending the RTPOPT BYE packet to the client for each media server.

Following that, the output LTS is stopped.
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% localhost [127.0.0.1:1848] - Timeeng

Eile View Server Media He

jﬁim,&‘ Fliii!h]}ﬁ

Gvicl.avi (video) 293 frames 320x240 15.00 fps V41
Current statistics: 39 pkts lost 66 mseciframe 15.00 fps 260 frames sent
Gvicl.avi (audio) 430702 samples PCM 22050 samplestsec 16 bitsisample (stereo)

Current statistics: 44 pkts lost : 67 msecibuffer 14.93 buffersisec 430702 samples sent

Figure 27: Application window shown after server playback has been stopped

To disconnect from the client, the user presses the Disconnect from client button on the
toolbar or selects the File/Disconnect from client menu item. Invoking this command
will stop the playback of the media servers (if it had not been stopped already), terminates

the network 1/0 thread of the output CLDEV, and then deletes all output devices.

Closing the application disconnects from the client (if this had not been done already),
stops the input LTS, terminates the network I/O thread of the input CLDEV, and then

deletes all input devices.
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4.5 <‘Conclu_si-cA)n

In'this iinplementa‘[.io.n, a server can.transmit multiple streams of video and audio data to

- a single client. In addition, a client can receive multiple video and audio streams from
"each of multipl¢ servers. However, because of a desién decision, a server cannot transmit

to multiple clients.

Each of the server’s video streams are transmitted at the same data rate. The client can
receive video streams from multiple servers, but it will play them all back at a single
frame rate. Audio streams are transmitted and played at a fixed frame rate (15

packets/second).

For future research, it would be useful to reorganize the code so that the server can
fransm_it to multiple clients. It would also be useful to encapsulate the video source code
so that each video source could have.a separate data rate. Both of these tasks would

require a different model for the device hierarchy.

In thé current implémehtation, the server portio.n of the application has a dynamic list of

" media streafns.to be played and a single thread ‘whi(‘:h drives the data transmission.
Transrﬁitting n'l'ultiple video streams each to a different client would require én individual
thread for each output video stream in order to provide accurate timing. Rather than
having the server ﬂléintéin a dYnamic list of output streams, it would make sense to have
a dynamic ‘_list of sewers.each of whi_ch. would maintain a single output stream. This

would give full control over the data transmission rate to each of the streams. |




- Similarly, in the current,impiementation, the client uses a single thread to decompress and
rehdér’ video data to the display device'. To support the rendering of mu_ltiplé video
streams, each at a different data rate, the app.licatior‘l’ would require a different

| | configuration of devices. One possibility would be to have multiple video devices each
of v.\lhich' would manage the rendering to the"displeiy device of the Video data ;lt the proper
time. A single network input threéd wb‘uld sufﬁce to receive all video packets: These

packets would then be.passed off to the correspondihg video source for playback.

' The main problem that beéamg apparent with this i_rﬁplementation was the loss of RTP
data packets. The RTP protocol uses UDP which is a.ﬁéﬁ-guare;nteéd f)rotocol. It is well
: known that transmitting packets over a UDP socket will incur lost packets. | In this case,

| packefs are being lost even when they are transmitted ‘to localhost (the same machine on
which the server is funnihg). Packets also are being lost when they are transmitted to
anothefmachine across an I;Zthernet LAN, whicfl should bc_e capable of data rates as high

. as 1.5 Mbps.

"I;he packet loss when transmittihg- to‘localhost is most likely a fesult of either sending
large UDP packets or thread scheduling. It has been noted in testing of the application
that packets over 16 kB in sfze will be regularly dropped. Even thbugh the Buffer size on
tile sending and receiving sockets was set to 64 kB, somerpacket's"ér'e sent but never

_ receiveci. Unfortunately, But consistent with th.e‘ UDP semantics, no errors are returned to
' the gbplication when these packeté are dropped éo we can not know fqr Surg if this was | |

the cause.
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Anofher pessible cause for the packet loss is thread scheduling. The applicatien spawns
seVen threads dering_its exeeutiqn. One is the user interface thread,,two are for CLDEV
input and output network /O, two are for the audio input and output PDEVs, and two are
for the video input and output PDEVs. The PDEV threads are each executing a tight loop
With a short period (about 66 msec). This most likely degrades the tﬁread scheduling |
performance. Also, on the Windows 95 operating,system? the use of teo many threads is
commonly known to degrade application pefformance. Because of differences in kernel
thread support, the Windows N”f operating sys‘teni should probably not ,exhibit tﬁese

limitations, but this hypothesis was not tested.

The cause for lost packets between machines on an Ethernet LAN is probably because the
RTP packets are greater in size that the Maximum Transmission Unit (MTU) of the
network. In general, UDP packets sent across the Internet must'eonform to a 512 byte

MTU. In this-application, the average packet size is normally around 8192 bytes.

The RTP protocol does contein a provision for breakirig up these large packets. The sync
bit in the standard RTP header is used to signal the last subpacket in a series of

subpaekets which make up a larger comple;[e paeket. In a future implementation, it would
be useful to implement the decomposiAtio'n of large packets into severel sﬁbpackets. If this

application were to be used to transmit media streams over the Internet, this feature

would be a requirement.

In response to lost packets, the server data rate is altered dynamically to provide the

highest data rate without sacrificing packet loss. This rate control algorithm has been
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shown (in the CMPlayer application [Rowe92]) to provide a higher average data rate than

the “best effort” approach of trying to transmit data packets at a constant rate.

One limitation that was found with the rate control algorithm was that it did not take the
quantity of lost packets into account when calculating the penalty. One alternative that
was tested was to scale the penalty value by the ratio of lost packets to expected packets.

This seemed to give a more valid penalty value with different levels of packet loss.

After some testing, the penalty method for the rate control algorithm still did not reflect

the current packet loss very accurately. Another algorithm was tried which calculated the

penalty ratio as a weighted average of the current lost packet ratio and the lost packet

ratio at the last QoS notification. The current ratio was Qveighte‘d 75% and the previous
ratio was weighted 25%. This new pénal’gy ratio was used in the existing equation which
linearly ‘interpolated a new frame raté betWeén the optimél frame rate and ;the average
frame rate. This method seeméd moré adaptive e;nd more indicative of the acfual packet -
loss. It is possible to directly calculate the new frame rate from the current packet loss
ratio aﬂd the optimal frame rate, but the linear interpélation was added in order to smooth

out the frame rate changes and to limit the jitter of packet transmission times.

This new algorithm still was not perfect and did not seem to lower the frame rate enough
because the lower bound was always the average frame rate. Reducing the lower bounds
of the interpolation (heuristically or statistically) would most likely provide a more

accurate result and allow the frame rate variance to better reflect the actual data rate. In
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future research, statistical analysis should be done to compare the performance of

different rate control algorithms.

One side effect of using UDP packets is the possible loss of RTCP ‘packetswhich signal
the sfart and end.of media streams. For example, if an RTCP bye packet was lost in the
“ network, the receiving client would never r'ealize that the stream had ended and would
think that the data transreission had just been stalled. Other applications use TCP for the
session control because of the guaranteed delivery of transmitted peckets. This is one
velid solution to the 4problem. As was mentioned earlier, if we were to use TCP for all
.data transmission, performance would be degraded by the delay caused by the

retransmission of lost packets.

Another solution to this problem weuld be to return an ecknowled‘gment packet to the
- server when a client is creating or destroying a video source. The server would not allow
data transmission to proceed until it had received the acknowledgment packet. If the
server does not receive the acknowledgment packet in a prescribed amount of time, it will
resend the RTCP packet. If this happens, the client may see an RTCP pa_cket for an
already opened or closed video source. The client will ignore this duplicate packet,
conclude that the acknowledgmeht packet had been lost durihg transmission, and will

resend the acknowledgmenf packet to the server.

The loss of data packets can cause a discontinuity in media stream playback which can
appear as jumpiness in a video stream or as stuttering in an audio stream. For video

streams, if a keyframe is lost, the stream will exhibit a greater loss in visual quality than if
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an intermediate frame is lost. For audio streams, the application uses a fixed frame rate
of 15 fps, so each audio packet lost in transmission will cause a 67 msec gap in audio

_ playback.

Video streams that use sub-frame encodi'ng-of video frames will éxhibit less discontinuity
in the p]ayback than streams which use full frame encoding. If a data packet containing a
sub-framg'is loét, énly a small area (i.e. 8x8 pixel) 6f the frame would be lost. Some
parts of thev video frame will be up‘-'to-date: v{/'hﬂe of[her sub-frames .Will_ lag behind.

Typically, this is sufficient for video conferencing applications.

Some applications will tyﬁically send only sub-frames which have changed siﬁce the last
fuil frame. These sub-frames describe the most active areas of thé full frame. The areas |
of the frame which have not changed recently can be calléd stétic. sub-ffar’nes. Static sub-
frarﬁes are éenfc on a regular, but _infreéuent, basis. Because of thié,' ’th_ere will be a larger
ratio of active sub-frames to étaﬁc sub-frames which are transmitted. Considef the
situation where there are'9 active sub-fraﬁies for every 1 static sub-frame, and there is a

. constant rafe of 1 out of every 10 frames lost in the network. The active areas of the
frame will be up.-to-date (from receiving 8 sub-frames) while the static areas may rarely,

~ if ever, get refreshed (from receiving 0 ‘sub-frames).'

~ For audio streams, one possible optimization would be to interlace the samples in every
two audio buffers such that, if one of the pair of packets were lost, the other packet can be
" de-interlaced to generate two packets with every other sample being valid. This results in

~ shorter gaps between valid audio data and, if the cdmpression algorithm supports it, the

109




N -

-valid samples in the two paékets can be interpblate'd to generate the missing sampl'es.'

Simpler compression algorithms, such as PCM or A-Law, support this tYpe of

interpolation because the data must be decompressed and intérpolated before playback.

Another problem that occurred with audio streams is when enoﬁgh packets were loét, the

number of buffered samples of audio can drop to zero. This causes stuttering of the audio
stream because there is a race condition between packets of samples being received and
packets of samples being played. In order to overcome this problem, if the number of

au_dié packets lost is greater than one half of the number of ‘packets normally sent per

- second (an arbitréry threshold), the audio playback-is paused until enough samples are

buffered. Once ehough samples are buffered, the audio playback is resumed. In jjractice,

this works well and provides smoother playback at the cost of longer. periods of silence

after severe packet loss, but with the benefit of fewer discontinuities in the audio

playback..

Most of the related applicatidns (including ACME and Netvideo) run on the Unix
platform. By writing to the high-level Win32 API, our software application is less
dependent on the underlying hardware and, therefore, can transparently make use of

advances in video and audio codecs, multiprocessor support, and new display devices.

Using the Win32 APIs and MFC for development greatly déqreased the implementation

" time and made the application more extensible and portable.

This project was begun two years ago and there have been many changes in the computer

industry since that time. However many, if not all, of the original design decisions are
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still valid. The application has been able to make the transiﬁon to the newer 32-bit
oi)erating systelﬁs, such as Microsoft Windows NT 4.0, without change. In addition as
more efficient video codecs become available, the application is able to make use of
content compressed with a new codec without any changes to the software. The Internet

has now become commonly used for networked data delivery. With only the minor

packet fragmentation changes noted earlier, the application should be able to transmit and

receive media data over the Internet.

This softwar¢ application has-been tested in a multi-machine environment on a LAN.
Further testing with a larger number of machines over a larger LAN or a WAN is
certainly required before generalizing the performance statistics. Nevertheless, the
experiepce reported in this chapter suggests that the goals of exténsibility, portability and

interoperability have been achieved to a large degree by this deSign.
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GLOSSARY

ADPCM: Adaptive Delta Pulse Code Modulatlon
ADU: Application Data Unit

ASP: Application Synchronization Protocol
ATM: Asynchronous Transfer Mode

CD-I: Compact Disc-Interactive

CLDEV: Compound Logical Device
codec: compressor-decompressor

DCT: Discrete Cosine Transformation
DVI: Digital Video Interactive

DWT: Discrete Wavelet Transformation
EIDE: Enhanced Integrated Drive Electronics
GIF: Graphics Interchange Format -
HTML: HyperText Markup Language
HTTP: HyperText Transfer Protocol

ISDN: Integrated Service Digital Network
JPEG: Joint Photographic Experts Group
LDEV: Logical Device

LTS: Logical Time System

MIDI: Musical Instrument Digital Interface
MPEG: Motion Picture Experts Group
MTP: Movie Transmission Protocol

MTU: Maximum Transmission Unit

MVC: Multimedia Virtual Circuit
NSP: Network Synchronization Protocol
NTP: Network Time Protocol

PAM: Pulse Amplitude Modulation
PDEV: Physical Device

PLV: Production Level Video

PNM: Pulse Number Modulation .

PPM: Pulse Position Modulation

PWM: Pulse Width Modulation

QoS: Quality of Service

RTCP: Real-Time Control Protocol

RTP: Real-Time Protocol

' RTV: Real-Time Video

SCSI: Small Computer System Interface
TIFF: Tagged Image File Format

~ VC: Virtual Circuit -

VLC: Variable-Length Coding

VQ: Vector Quantization
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