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A b s t r a c t 

In recent years, researchers in the A l domain have used Bayesian belief networks to build 

models of expert opinion. Though computationally expensive deterministic algorithms have been de­

vised, it has been shown that exact probabilistic inference in belief networks, especially multiply con­

nected ones, is intractable. In view of this, various approximation methods based on stochastic simu­

lation appeared in an attempt to perform efficient approximate inference in large and richly intercon­

nected models. However, due to convergence problems, approximation in dynamic probabilistic net­

works has seemed unpromising. Reversing arcs into evidence nodes can improve convergence per­

formance in simulation, but the resulting exponential increase in network complexity and, in particu­

lar, the size of the conditional probability tables (CPTs) can often render this evidence reversal 

method computationally inefficient. 

In this thesis, we describe a structured simulation algorithm that uses the evidence reversal 

technique based on a tree-structured representation for CPTs. Most real systems exhibit a large 

amount of local structure. The tree can reduce network complexity by exploiting this structure to keep 

CPTs in a compact way even after arcs have been reversed. The tree also has a major impact on im­

proving computational efficiency by capturing context-specific independence during simulation. Ex­

perimental results show that in general our structured evidence reversal algorithm improves conver­

gence performance significantly while being both spatially and computationally much more efficient 

than its unstructured counterpart. 
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1 . I n t r o d u c t i o n 

A central issue in A l has been to devise algorithms for an agent to make decisions under situations in 

the real world. In view of the presence of uncertainty in the decision process, a probabilistic reason­

ing approach has evolved to represent uncertainty in reasoning systems. 

1.1 Probabilistic Reasoning and Belief Networks 

The main advantage of probabilistic reasoning over traditional logical reasoning is in allowing the 

agent to reach rational decisions even when there is not enough information to prove that any action 

will "work" with certainty. Furthermore, the probabilistic approach has a clear theoretical basis com­

bined with a theory of rational decision-making, an operational definition, a language for expressing 

uncertain dependence, and an ability to integrate diagnostic and predictive reasoning [HENR88]. The 

most promising current candidates for a coherent probabilistic representation appear to be the 

(Bayesian) belief network [PEAR88] and the closely related influence diagram [SHAC86]. In this 

thesis, we will use the belief network (BN) as a form of uncertainty representation. The interested 

reader may refer to Section 2.2.1 for an introduction to BNs. 

1.2 Stochastic Simulation and Dynamic Probabilistic Networks 

The basic task for any probabilistic inference system is to compute the posterior probability distribu­

tion for a set of query variables, given exact values for some evidence variables. In general, an 

agent gets values for evidence variables from its percepts (or from other reasoning), and asks about the 

1 



Chapter 1. Introduction 2 

possible values of other variables so that it can decide what action to take [RUN095]. In order to an­

swer such queries in a BN, various algorithms have been proposed and employed in practice. These 

inference algorithms, classified into three categories, either give an exact solution or an approximation 

of such. Since exact inference in BNs is known to be NP-hard [COOP90], for very large networks, 

and especially for dynamic probabilistic networks (DPNs), approximation using stochastic simula­

tion (SS) is currently the method of choice. In Section 2.3 we will study the class of SS algorithms 

including Logic Sampling [HENR88], Markov Simulation [PEAR87], and Likelihood Weighting 

[SHPE90]. In Chapter 3 we will examine the application of SS in DPNs. 

1.3 Problems and Solutions 

In view of the dynamic nature of decision processes we would like to use SS in DPNs so that queries 

can be answered in a timely fashion. In so doing we would also like to solve the following problems 

that are brought forth. 

1.3.1 Accuracy 

The nature of simulation implies there is always an "error", or a deviation between simulation and the 

true behavior of the real-world process being simulated. While the DPN, being an extension of the 

BN, captures on the one hand the temporal aspect of real-world processes, it also magnifies the inher­

ent errors of SS in BNs on the other, since "errors" in one time slice will be propagated to the follow­

ing time slice and accumulated. Sequential error propagation will result in a significant deviation 

from the actual behavior of the process. We are interested in reducing this error to a minimum, thus 
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bringing simulation "back on track". We will put our focus on the Evidence Reversal (ER) algorithm 

[KAKR95] in Section 3.2. 

1.3.2 Compactness 

Associated with each node in a B N or DPN is a conditional probability table (CPT). In standard SS 

algorithms, a CPT is encoded using a tabular representation. This simple representation fails to cap­

ture qualitative regularities in a CPT. In particular, there are independencies that hold only when spe­

cific values are assigned to certain variables. We are interested in capturing this kind of context-based 

irrelevance and the advantages of so doing. In Chapter 4 we will focus on one particular qualitative 

representation scheme — tree-structured CPTs [BFGK96]. 

1.3.3 Efficiency 

In order to perform probabilistic inference in BNs and DPNs, SS methods sample the values of vari­

ables concerned. (Which variables are actually concerned, or relevant, will be discussed in Sections 

5.1 and 5.2.) This requires the assignment of values to variables according to their probability distri­

butions. As we would like to make inference in BNs and DPNs as efficient as possible, for any query 

we would like any SS method concerned to produce as accurate an answer using as few variable as­

signments, or instantiations, as possible. In Chapter 5 we propose several ways to achieve this goal. 

1.4 Overview 

Chapter 2 covers the background knowledge for BNs and inference in BNs, and surveys several infer­

ence algorithms that have major significance. Readers familiar with BNs may proceed directly to 
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Chapter 3, which focuses on DPNs and gives in detail the ER algorithm and the related Arc Reversal 

(AR) algorithm [SHAC86]. Chapter 4 introduces the Structured Arc Reversal (SAR) algorithm, de­

tailing the construction of a CPT using a tree representation and the application of A R under such a 

representation. In Chapter 5 we present several techniques that, when combined with our Structured 

Evidence Reversal (SER) algorithm, will increase the efficiency of simulation and inference in DPNs. 

Chapter 6 features details of experiments conducted to examine the benefits that the tree-structured 

representation can bring to simulation and inference in DPNs. Conclusions and future work are pre­

sented in Chapter 7. 



2 . B a c k g r o u n d K n o w l e d g e 

The real world is complex and dynamic in nature. In order to model changes in the world, we can per­

ceive the world as a state space where each state represents a possible situation or configuration of the 

world. Every state has a degree of usefulness, or utility, to an agent. In different states, the agent has 

to make different decisions on what actions to perform to maximize the expected utility. In view of 

this, substantial research has been conducted in the A l planning domain. 

2.1 Uncertainty 

In the past, planning research has been unrealistic in that complete knowledge of both states and ac­

tions have been assumed. The realization that problems are often associated with uncertain initial 

conditions and action effects leads to growing interest in uncertain or probabilistic reasoning. 

2.1.1 Types of Uncertainty 

Uncertainty means that many of the simplifications that are possible with deductive inference are no 

longer valid. Below are three kinds of uncertainty described in [CHEU95]. 

Uncertainty of Action Effects 

Given a state, we would like to choose the action that will maximize the expected utility. However, 

there may be chances that the effect of a certain action is not what is actually wanted or predicted. 

This can be described by a matrix of transition probabilities — probabilities associated with the pos-

5 
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sible transitions between states after a given action. In the machine-maintenance example in 

[SMS073], if the alternative (i.e., action) "manufacture" is chosen, then the transition matrix for the 

machine is 

"0.81 0.18 0.0l" 
0 0.9 0.1 . 

. 0 0 1 

Given there is a 0.1 probability that any of the two internal components will break down during the 

manufacture of a product, this matrix represents all the transition probabilities under the action 

"manufacture" for a machine that begins the production cycle with zero, one, or two internal compo­

nents that have failed and ends up in one of these states after the cycle. 

Partial Observability 

As mentioned before, an agent receives information about evidence variables through its percepts. 

These percepts, however, are not perfect in that they may not give complete, or even correct, informa­

tion for the agent to determine the state in which it is. For example, an agent may have to decide 

whether to bring an umbrella by observing the weather, but its sensor may have a failure chance of 0.2 

on rainy days. Thus, with a probability of 0.2 it may think it is sunny when it is actually raining. This 

partial observability is well captured in the partially observable Markov decision process 

(POMDP) [SMS073] where the maximum extent of uncertainty is taken into account during the deci­

sion process. 
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Exogenous Events 

In systems where process-oriented problems [BOPU95][BOUT95][CHEU95] typically arise, a third 

source of uncertainty comes from the existence of exogenous events. They occur from time to time, 

changing the state of a system in certain ways independent of the agent's actions. An important class 

of such events is the class of user commands such as "coffee requests". (A user request can be thought 

of to cause facts like "there is an outstanding request to do X" to become true.) Often, these events are 

represented by evidence variables an agent has to observe to choose the next action, and usually these 

variables are not completely observable. 

2.1.2 Basic Probability Notation 

Since an agent almost never has access to the whole truth about its environment, the agent's knowledge 

can at best provide only a degree of belief in relevant propositions. The main tool for dealing with 

degrees of belief will be probability theory, which assigns a numerical degree of belief between 0 and 

1 to propositions. 

Prior Probability 

We use the notation P(A) for the unconditional or prior probability that the proposition A is true. 

For example, 

P(A) = 0.9 

means that without any other information, the agent will assign a probability of 0.9 to the event of A 

being true. 
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A proposition is usually represented by an equality involving so-called random variables 

[PEAR88]. Each random variable X, has a domain Q, of possible values it may assume. For example, 

P{Xx=x{) = 0.7 

tells us the prior probability of X\ having the value xu for some xx e Q.u is 0.7. We shall hereafter use 

the short notation P(xt) for the probabilities = xi), xt e Q, for some random variable Xh and we will 

write P(xj) for the probabilities P(Xj = xj), xj e Q.j for some set of variables Xj. In the latter case, Xj is 

a configuration [PEAR88] of Xj, and Qy is the cross product space of the domains of all variables in Xj. 

Conditional Probability 

In the presence of other information (evidence), prior probabilities are no longer applicable. Instead, 

we use conditional or posterior probabilities, with the notation P(A I E), meaning "the probability of A 

given all we know is B." For example, 

P(xi I x2) = 0.6 

means that given only that X2 has a value x2, the probability of Xi having the value is 0.6. 

Probability Distribution 

When we talk about the probabilities of all the possible values of a random variable X„ we use the no­

tation P(X,) to denote X,'s probability distribution — a vector of values for the probabilities of each 

state of Xt. For example, 

P(X,) = <0.5,0.3,0.1,0.1 > 
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tells us the probabilities of each of the four states of Xx. We may also write P(X a, ...,X,„) to denote the 

probabilities of all combinations of the values of a set of random variables, getting a value for each 

element in the cross-product space Q ( 1 x . . . x Q,„. In the case where il = 1 and in = n, we have a joint 

probability distribution (or "joint" for short) which completely specifies an agent's probability as­

signments to all propositions in the domain. From the joint we can compute any probabilistic state­

ment in the domain by expressing the statement as a disjunction of elementary events1 and adding up 

their probabilities. For example, if we have a domain comprising two random variables X and Y, and 

the joint for the domain can be represented by the table 

Y —>Y 
X 0.04 0.06 
-nX 0.01 0.89 

then P(X) can be computed by P( X, Y) + P( X,-,Y) = 0.04 + 0.06 = 0.1. In general, the probability of 

any variable Xt having a certain value x, can be computed by 

/>(*,) = ! > ( * „ * > , ) , 

where w, ranges over the possible states of all variables except Xt. 

While the joint contains all information we need about the domain, it is in general not practical 

n 
to define all the entries for the joint over n variables. Representations that address this prob-

1=1 

lem will be discussed in the next section. Hereafter we will focus on discrete variables, but it should 

A n elementary event [ P E A R 8 8 ] is a conjunction i n which every atomic proposition appears once. 
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be noted that continuous variables can be described using representations such as Gaussian conditional 

densities [PEAR88]. 

Conditional Independence 

Conditional independence is crucial to making probabilistic systems work effectively. It is therefore 

beneficial to state its formal definition below [PEAR88]. 

Definition 2.1: Conditional Independence 

Let XN be a finite set of variables with discrete values. Let P (•) be a joint probability function over 

the variables in XN, and let Xi, Xj, and XK be any three subsets in XN. XI and Xj are said to be condi­

tionally independent given XK if 

P{xi | Xj, XK) = P(X/\ XK) whenever P(xj, XK) > 0 

forallx/G Q/, xj& Qj, andAXre QK-

m 

Intuitively, what the definition says is that given three sets of variables Xh Xj, and XK, if P(X/1 

Xy_ XK) = P(X/1 XK), then we say Xj and Xj are conditionally independent given XK. We will use the 

notation I(X,,XK,Xj)P, or simply I{XhXK,Xj), to denote the conditional independence of X[ and Xj given 

XK; thus, 

I(X,,Xk,XJ)P iff P(Xi I xj, xk) = P(xi I xk) 

for all values x-t, xj, and xk such that P(xj, xk) > 0.2 

2 The notation /(X, Z, Y)P renders the probability distribution P a dependency model, i.e., a rule that determines a subset / of 
triplets (X, Z, Y) for which the assertion "X is independent of Y given Z" is true. 
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2.1.3 Bayes's Rule 

We would often like to compute unknown probabilities from known ones, especially when we have 

conditional probabilities based on causal relationships and want to derive a diagnosis. (See Section 

2.2.2 for the nature of probabilistic inferences.) For example, when reversing the arc (Section 3.3) 

between two arbitrary nodes / and j in a B N (Section 2.2.1), we have to compute P(X, I Xy) from F(Xj I 

Xi), P(JQ and P(A}). Bayes's rule is employed for this purpose. 

We can derive Bayes's rule from the product rule: 

P(AAB) = P(A\B)P(B), ( 2 ] ) 

where A and B are propositions and A is the logical-AND operator. It stems from the fact that for A 

and B to be true, we need B to be true, and then A to be true given B. From ( 2.1 ) we have 

P(A A B) . - - , 
P(A\B) = — - , (2-2) 

P(B) 

which is just the definition of conditional probabilities in terms of unconditional probabilities. By 

interchanging the variables in the proposition in ( 2.2) and applying the product rule, we get 

P(B\ A)P(A) , - 3 . 
P(A\B) = — ,—^-L. (2.3) 

P(B) 

This equation is known as Bayes's rule. We can also use the P notation for probability distributions 

over random variables Xt and Xy. 
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P X , I X , P X , . 2.4 
P(X,. IX,) = — . 

^ ' >' P(X.) 

If we have some background evidence in addition to B, we will have to use a more general 

version of Bayes's rule. By replacing B with BAE in ( 2.2) we can derive the following: 

P(AABAE) P(BAAAE) P(B\AAE)P{AAE) 
P(A\BAE) = — - = — - = — — 

P(BAE) P(BAE) P(BAE) 

P(B\ A A E)P(A\ E)P(E) P(B\ A A E)P(A\ E) 

P(B\E)P(E) ~ P(B\E) 

Using the P notation for random variables X, and Xj and the set of evidence variables XE, we have 

P(X, IX. ,X £ )P(X. IX, ) 
V ' 1 E > P(X. IX £ ) 

2.2 Probabilistic Reasoning Systems 

Although the joint probability distribution can answer any question about the domain, it becomes in­

tractably large as the number of variables grows. In view of this, a number of inference algorithms 

have been proposed to make probabilistic inference efficient in many practical situations. The under­

lying inference mechanism centers around the BN, a data structure used to represent the direct de­

pendence between variables and to give a concise specification of the joint probability distribution. In 

the following section, we describe the B N based on the literature in [PEAR88]. 
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2.2.1 Belief Network 

A B N is a directed acyclic graph (DAG) 3 , G = (N,A), consisting of a set of nodes N and a set of di­

rected arcs A . Each node i in N represents a variable X, in the system. X, may be binary or multi­

valued. A directed arc exists between i and j for each node j that has a direct causal influence on 

node i. The strengths of these influences are quantified by conditional probabilities stored in the CPT, 

or link matrix, of /; the link matrix P(X, I XC(,)) describes the conditional distribution of X, given differ­

ent configurations of XC(,> the set of variables perceived to be direct causes of X,. 

Dependence Semantics 

The semantics of a B N postulates a clear correspondence between the topology of a D A G and the de­

pendence relationships it portrays. This correspondence is based on a separability criterion called d-

separation. 

Definition 2.2: ^-separation 

If X, Y, and Z are three disjoint subsets of nodes in a DAG D, then Z is said to ^/-separate X from Y, 

denoted < X \ Z\ Y>D, if there is no path between a node in X and a node in Y along which the 

following two conditions hold: 

1. Every node with both path arrows leading in is in Z or has a descendent in Z, and 

2. Every other node is outside Z. 

3 A DAG is a graph that contains directed arcs but no uni-directional cycles. This implies the total number of arcs in a DAG 
cannot exceed n{n-\)!2, where n is the number of nodes in the graph. 
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Figure 2.1: A multiply connected network 

A path satisfying the above conditions is said to be active; otherwise, it is said to be blocked by Z. 

[RUN095] puts this definition in a more direct way: a set of nodes Z ci-separates two sets of nodes X 

and Y if every undirected path4 from a node in X to a node in Y is blocked given Z. A path is blocked 

given a set of nodes Z if there is a node i on the path for which one of three conditions hold: 

1 . i is in Z and i has one arrow on the path leading in and one leading out. 

2 . / is in Z and i has both path arrows leading out. 

3 . Neither i nor any of its descendents is in Z, and both path arrows lead in to /. 

Taking the example in [PEAR88], we can see in Figure 2.1 that X = {2} and Y= {3} are J-separated 

by Z = {1}; the path 2 <— 1 —> 3 is blocked by 1 e Z, and the path 2 —> 4 <— 3 is blocked because 4 and 

4 An undirected path is a path through the network that ignores the direction of the arrows. 
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all its descendents are outside Z. X and Y are not ti-separated by Z' = {1, 5}, however, because the 

path 2 —> 4 <r- 3 is rendered active: learning the value of node 5 makes nodes 2 and 3 dependent. 

Together with the above definition, the following two definitions help define a B N from a de­

pendence perspective. 

Definition 2.3:1-map 

A DAG D is said to be an /-map of a dependency model M if every ci-separation condition displayed 

in D corresponds to a valid conditional independence relationship in M , i.e., if for every three dis­

joint sets of nodes X, Y, and Z we have 

<x \ z\ v>D^i(x,z, y)m. 

A D A G is a minimal /-map of M if none of its arrows can be deleted without destroying its /-

mapness. 

• 

Definition 2.4: Bayesian Network 

Given a probability distribution P on a set of variables XN, a DAG D - (N, A) is called a Bayesian 

Network of P iff D is a minimal /-map of P. 

• 

Given the above definitions, we see that all conditional independencies portrayed in a B N (by 

way of d-separation) are valid in the underlying distribution P and no two independencies therein are 

redundant. 
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Joint Representation 

The usefulness of the BN, and indeed any inference network, rests on the assumption that knowledge 

is decomposable and can be represented by a relatively sparse graph, where each variable is directly 

influenced by only a few other variables [HENR88]. If a topological ordering of nodes is maintained, 

the B N serves as a correct decomposed representation of the joint for the domain. This can be shown 

by first considering a generic entry in the joint and rewriting it using the definition of conditional 

probability: 

By successively reducing each conjunctive probability to a conditional probability and a smaller con­

junction, we obtain 

/ >(x ],..., Xn ) — P(xn I X n _ | , . . . , Xj ) / 3 ( X n _ ] , . . . , Xj) . 

P(xl,..., xn) = P(xn I x„_ , , . . . , x, )P(xn_, I xn_2,..., X, )• • • P(x21 x, )P(x,) 
n 

= I l / > ( * i l * « - l . " - » * l ) 
1=1 

Given the conditional independencies encoded in the BN, we observe that 

P(x,.lx._1,...,x1) = P(x . lx C ( 0 ) , 

provided that C(i) c {1,2, ...,/-!} for all i 6 N. As a result, we have 

n 
P(x, 1' •••^n) = YlP(xi\xC(i)), (2.6) 
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provided that C(i) cz {1, 2, . . . , i-1} for all i e N. This shows that a B N represents each entry in the 

joint by the product of the appropriate elements of the CPTs in the network given a topological node 

ordering (which can easily be satisfied by labeling the nodes in any order that is consistent with the 

partial order implicit in the graph structure). 

In essence, the CPT provides a decomposed representation of the joint, thus making the B N 

more compact than the full joint especially in locally structured systems [RUN095], where each 

variable is directly influenced by at most k others, for some constant k « n. Assuming a variable has 

at most q values, the amount of information needed to specify the CPT for a node will be at most qk 

numbers, so the complete network can be specified by nqk numbers. The joint, on the other hand, 

contains q" numbers. 

2.2.2 Inference in Belief Networks 

There are two major types of inference we would like to perform. Predictive or causal inference in­

volves reasoning from evidence about root nodes down through the network in the direction of the arcs 

to the leaf nodes, e.g., from a disease to its symptoms. Diagnostic inference involves reasoning in the 

reverse direction, e.g., from observations of symptoms to diseases. A coherent probabilistic inference 

scheme can support both predictive and diagnostic inference and combinations of the two, according 

to what evidence is available and what hypotheses are of interest [HENR88]. While such algorithms 

do exist for singly connected networks (e.g., Pearl's polytree algorithm), our main concern is how we 

can make accurate and efficient inference in multiply connected networks. A multiply connected 
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graph is one in which two nodes are connected by more than one path. Figure 2.1 is an example of 

such a graph, where the parents of node 4 share a common ancestor (node 1). 

There are three classes of algorithms for evaluating multiply connected networks [PEAR88]: 

• Clustering 

• Conditioning 

• Stochastic simulation 

The first two yield exact solutions by transforming the network while the third gives an approximation 

of the exact solution by generating a large number of sample models consistent with the network dis­

tribution. Since exact inference in belief networks is known to be NP-hard (and so is approximate in­

ference), for very large networks, the appropriate choice of evaluation algorithm would be approxima­

tion using SS. The next section will cover several SS algorithms of significance. 

2.3 Stochastic Simulation Methods 

Currently there are quite a number of belief network inference algorithms that belong to this category. 

In this sampling-based simulation approach, conditional probabilities and other statistics are estimated 

by recording the fraction of times that events occur in a random series of sample instantiations of the 

network where each variable is assigned a particular deterministic value. The size of the sample set 

governs the accuracy of simulation: the more samples (or "scenarios" [HENR88]) we have, the more 

accurate the approximation. 
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2.3.1 Approaches 

[HENR90] classifies these algorithms into two major sub-categories: 

• forward propagation 

• Markov simulation 

The major difference between the two approaches lies in the way the nodes are updated. The first 

method sequentially updates all variables in each simulation run according to some topological order­

ing of the nodes in the network. The instantiation of a variable then depends on the current instantia­

tions of its parents. The second method, however, performs in each simulation cycle only local nu­

merical computations for a variable; variables are updated in a random order in successive cycles and, 

in each cycle, depend on the instantiations of neighboring node variables in the previous cycle. Figure 

2.2 shows a diagrammatic classification of various simulation algorithms. 

Forward Propagation 

In the forward propagation (or forward simulation) approach, each instantiation is created by follow­

ing the influence arrows in the network starting from the root nodes. In other words, the sequence of 

instantiations follows a particular topological node order consistent with the graph structure. In this 

way, we can make sure all nodes are instantiated before any other nodes dependent on them. This 

criterion in turn ensures that the process of sampling will continue until all nodes in the network are 

instantiated. 
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Monte Carlo or 
Stochastic simulation 

Arc reversal and 
node elimination 

Shacter, 1986, 1988 

Evidential 
Integration 

Forward propagation 
(Incidence calculus: 

Bundy, 1985) 

Probabilistic logic 
sampling 

Henrion, 1986 

Markov simulation 
(Gibbs sampling) 

Stochastic simulation 
Pearl, 1987 

Likelihood 
weighting 

Likelihood weighting 
with Markov blanket 

scoring 

Fung & Chang, 1989 Shacter & Peot, 1989 

Stochastic simulation for DPNs 
Kanazawa, Koller, Russell, 1995 

Figure 2.2: Monte Carlo simulation approaches to inference in BNs. (Adapted from [HENR90]) 
Italics refer to articles examined in detail in this thesis. 

Essentially we completely sweep through the network in each simulation run, instantiating all 

nodes from top to bottom according to their specified priors (if they are source nodes) or conditional 

probabilities (if otherwise). The sampled values of the nodes are then recorded. After a specified 

number of runs, diagnostic inference is performed by estimating the probability of a hypothesis as the 

fraction of simulations that lead to the observed set of evidence. In Section 2.3.2, we will examine the 
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simplest yet most fundamental forward propagation scheme — Henrion's probabilistic logic sampling 

[HENR88] — on which many later algorithms are based. 

Markov Simulation 

In Markov simulation (originally developed by Pearl [PEAR87]; see Section 2.3.2), propagation is in 

either direction along arcs, generally in a random sequence, and is localized within the Markov blanket 

of each variable. The Markov blanket consists of the variable's parents, children, and children's par­

ents, and it shields the variable from the rest of the network. In each simulation cycle, a variable is 

chosen at random and its conditional distribution given all its Markov neighbors is first computed. 

(This means the instantiation of a variable is influenced by the previous instantiations of its neigh­

bors.) The distribution is then sampled and the variable instantiated accordingly. As simulation con­

tinues, the probability of each node can be estimated on demand as the fraction of simulation cycles 

for which it is true. 

2.3.2 Algorithms 

We will examine some of the more influential SS algorithms below. The notations used are defined in 

Table 2.1. Probability notations follow those in Section 2.1.2 with short forms as in equation ( 2.6 ). 

For example, P(xj\\xJ2) is the short form for P{Xj\=xn\ XJ2-xJ2), for some 71,72 cz N. 

Logic Sampling [HENR88] 

Table 2.2 gives additional definitions with respect to arbitrary propositions A and B. Since the algo­

rithm assumes the use of binary variables, the logic sample L(X,=1) automatically records both the 
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Table 2.1: Global definitions 

Symbol 1 Definition Description 
N = {1, •••,"} set of all n nodes in the system, for some n e N 
E c N set of evidence nodes 

C(0 CZ N set of conditional predecessors of node i for some i e N 

s(0 N set of direct successors of node i for some i e N 
Xi variable associated with node i for some i e N 

set of possible values X, may assume, for some / e N 
Xi G an instantiation of X„ for some i e N 
Xj = (Xji, X/„) set of variables associated with / for some J = fj'l, .. .,jn} c N 

= Q/l x ... x Q , „ cross-product space of J for some J = (j'l, . . . , jn} e N 
Xj e an instantiation of Xj, for some 7 c N 

Table 2.2: Definitions for Logic Sampling 

Symbol / Definition Description 
J1, if x is true in scenario k 

Lk{B) = j o , otherwise 
truth of B in scenario5 k for some k e [1, m], m G 
N 

Lk(B\A) = (Lk(A) => Lk{B)) truth of B conditioned on A in scenario k for 
some&e [l,m], me N 

L(B) = [L\(B), Lm(B)] logic sample6 of 73 over all m scenarios for some 
me N 

truth and falsehood of X, over all scenarios. For convenience, here we will use x, to represent the truth 

of variable X,; thus L(x,) denotes the logic sample of the proposition X, = 1. 

This scheme uses an uninstantiated belief network as a scenario (or possible world) generator 

which, in each scenario k, assigns random values to all system variables. Starting with priors specified 

5 The term "scenario" can be related to the more commonly used term "sample" that reflects one of the many possible worlds 
in the domain. In Henrion's context, a scenario is a set of truth values for those propositions concerned. 

6 Note the difference between the sample and the logic sample. The former contains the multi-valued states of all variables 
in one simulation run; the latter contains the binary states (truth or falsehood) of one proposition over all runs. 
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for all source variables and conditional distributions for all others, a random number generator is used 

to generate a sample truth value L^(x,) for each source variable X, and a conditional truth value 

Lic(xj\xc(j)) for all XCQ) e &C(j), f ° r each non-source variable Xj. Then by following the arrows from 

the source nodes, the truth of each variable is obtained using the following logical operation: 

repeats itself m times, after which a logic sample L(x,) is obtained for each variable Xt. Belief distri­

butions are then calculated by averaging the frequency of events over those cases in which the evi­

dence variables agree with the data observed. The algorithm is as shown in Algorithm 2.1. 

After logic samples are obtained, we can estimate the prior probability of any simple or com­

pound event x by the truth fraction of its logic sample: 

In other words, T[L(x)] is the proportion of scenarios in which x is true. 

We can also estimate the conditional probability of any event x conditioned on any set of ob­

served evidence y by 

(2.7) 

where v is the logical OR operator v defined over some finite set N. 7 The simulation process then 

7 This is the deterministic counterpart of the probabilistic chain rule: P(Xj ) = 2~< P(xj' xc(j) ^^xC(j)) 
xC{j)eac(j) 
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Algorithm 2.1: Logic Sampling 

/ * We s t a r t w i t h a b e l i e f n e t w o r k w i t h P(Xt) s p e c i f i e d V r o o t v a r i a b l e s Xi & 
P I Xc(j)) s p e c i f i e d V n o n - r o o t v a r i a b l e s Xr */ 

procedure Logic_Sampling( priors, CPTs ) 

/ * R e p e a t m t i m e s t o o b t a i n HxL) f o r e a c h v a r i a b l e Xi */ 

for k = 1 to m 
for each X, e {root variables} 

/ * Use a random-number g e n e r a t o r t o " f l i p t h e c o i n " * / 

Produce Lk(xi) according to P(X,); 

/ * Sweep t h r u t h e n e t w o r k f o l l o w i n g t h e a r r o w s f r o m t h e r o o t n o d e s t o g e t a 
t r u t h v a l u e f o r e a c h n o n - r o o t v a r i a b l e Xt. */ 

for each Xj e {non-root variables} 
Lk(xj) = 0; 

for each xC(j) e Ocy) 
Produce Lk(xj I xc(j)) according to F(Xj I xcq)); 
Lk(xj) = Lk{xj) v Lk{xj I xC(j)) A Lk(xC(j)); 

Lk(x)ALk(y) 

P(x\y) = 
P(x, y) _ T[L(x A y)] _ T[L(x) A L(y)] 

P(y) T[L(y)] T[L(y)] £ 

An obvious advantage of logic sampling is that logic samples can be efficiently represented 

using bitstrings. Al l operations (i.e., equation ( 2.7 )) to compute logic samples for derived variables 

and compound events then involve simple Boolean operations on these bitstrings. Moreover, for a 

given level of precision, the complexity 0(mn) is linear in the number of nodes, irrespective of the 

degree of connectedness of the graph. Since all the sample instantiations are independent, it is also 

possible to estimate the precision of probability estimates as a function of the sample size using stan-
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dard statistical methods: the standard deviation 0" in probability estimates is inversely proportional to 

[HENR88]. As the required precision increases, however, we experience a quadratic increase in m 

( ° c l/o 2), and hence complexity. 

The main problem, however, arises when probability estimates are desired given some ob­

served evidence. In logic sampling there is no way to account in advance for evidence known to have 

occurred until the corresponding variables are sampled. If the sampled values conflict with the ob­

served evidence, then the sample has to be discarded. For rare combinations of evidence, this may 

result in an excess number of simulation runs. In fact, the complexity of logic sampling is exponential 

in the number of observed evidence variables [HENR88][HENR90]. Despite its drawbacks in the 

complexity aspect, logic sampling is of importance in its concept of sample generation which leads to 

many later algorithms. 

Stochastic Simulation [PEAR87] 

In view of the negligence of evidence in logic sampling, Pearl devised a two-phase Markov simulation 

algorithm which emphasizes local numerical computation and clamps the evidence variables to the 

values observed. It first computes the conditional distribution for some variable X given the states of 

all its neighboring variables. Then it samples the distribution computed in the first step and instanti­

ates X to the value selected by the sampling. The cycle then repeats itself by sequentially scanning 

through all the variables in the system. The algorithm is described in pseudo-code in Algorithm 2.2. 

A variable superscripted by an asterisk (*) represents a given value of the variable; when a variable is 

topped by a caret (A), it means the current sampled value of the variable. 
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Algorithm 2.2: Pearl 

I* G i v e n : P(X,) V r o o t v a r i a b l e s X , , P (X, | X c l J ) , ) V n o n - r o o t v a r i a b l e s X}, Xc = x\ 
f o r some x\e ii, */ 

procedure Pearl( priors, CPTs, x*E ) 
Instantiate Xe to x*E; 

/ * I n i t i a l i n s t a n t i a t i o n by f o r w a r d s i m u l a t i o n * / 

for each ie N \ E 
/ * R e s e t a r r a y s f o r u s e w/ p r o b a b i l i t y e s t i m a t i o n * / 

for each x, e Q, 
SUmi(xi)= P(x / lx c ( ( . )); / * o r P U J i f X c l i ) = 0 * / 

count, = 1; 
/ * Sweep t h r u t h e n e t u s i n g a r andom-number g e n e r a t o r t o 

" f l i p t h e c o i n " * / 

Instantiate X,- according to PCX",) or P(X, I Xc(,)); 

for ever 
Choose some i e N \ E; 
for each x, G Q, 

/ * Compute pfXj) u s i n g M a r k o v b l a n k e t * / 

P(xt I x m i ) ) = P(x. I x m ) II p O , 1 *CU)) '» 
;'sS(i) 

sumi(xi) = sumi(xi) + P (x , l x M ( l ) ) ; 

Normalize P(X. Ix m ] ) so that X^(XI*AA(,-))= 15 

countj = counti + 1; 
Flip the coin for X, using P(X,. I xm[i]); 
if (query) / * E s t i m a t e P (xJx' E ) f o r some q e N , x, e £ \ * / 

Input x g ; 
/? = sumq{xq) I countq; 
Output p; 

The advantage of Markov simulation is that the algorithm can be implemented as a network of 

parallel processors simulating the happening of concurrent events. In general, however, if the network 



Chapter 2. Background Knowledge 27 

contains conditional probabilities close to 0 or 1, convergence will be very slow [SHPE90] [HENR90]. 

Moreover, since successive cycles in Markov simulation are not independent, the simulation can get 

trapped in particular states or sets of states [HENR90]. 

Another limitation is that we can only estimate the conditional probabilities for single vari­

ables but not the joint probabilities of sets of variables. In the algorithm we have already used as 

many as accumulators (i.e., the array sum) to refine P(xi\x*E) for all x, e Q„ i e N. Yet this 

only accounts for the conditional probabilities for each value of each variable considered separately. 

It is infeasible, however, to account for the joint probabilities of J for all J cz N using time and space 

proportional to ^ # Q y where k = ^ n C r is the number of possible subsets in N. 
7=1 r=l 

Likelihood Weighting [SHPE90]8 

Shacter and Peot extended logic sampling by assigning weights, or scores, to the samples generated. 

Instead of discarding samples that conflict with the observed evidence, each sample is weighted by the 

joint likelihood of the observations conditioned on their unobserved predecessors. Table 2.3 intro­

duces some new definitions. 

Essentially we are assigning a score, Z, to any given sample sk selected from the joint distribu­

tion of X N . The score is equal to the original probability of sk divided by the probability of selecting sk, 

i.e., generating sk by likelihood weighting. Thus, 

[FUCH90] proposed the same algorithm, which they called "evidence weighting". 
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Table 2.3: Definitions for Likelihood Weighting 

Symbol / Definition Description 

$k = [ %\) • • • > Xn ] the k-th sample 

Zk e <K score of the k-th sample 
Z(Xi=Xi) e Si cumulative score over those samples in which Xj=xi, for some i 

e N, xi e Qi 

P'sAxl) 
Z k P(selecting^lx;) f l ^ W ~ 

ie £ 

The algorithm, which they called Basic, is shown in Algorithm 2.3. 

If we have a set of query variables XQ and we want to find out the conditional probability for 

Xq - xq for some xQ e £lQ, Q e N, we can make an estimation by normalizing Z(Xq - xq): 

P(xq\x*e)s* 
Z(X0 — x0) 

1: 
k=l 

(2.8) 

This step can also be incorporated into the Basic algorithm in a similar fashion as Markov simulation 

so that simulation can be interrupted at any time to return the best quality answer thus far. 

Just like Markov simulation, likelihood weighting (LW) is suitable for parallel processing ar­

chitectures. It also avoids the problem with logic sampling where samples inconsistent with the evi­

dence are discarded. Unlike Markov simulation, however, likelihood weighting can also account for 

the joint probabilities of sets of variables rather than just the conditional probabilities for single vari­

ables. We can simply compare xQ with the values of the variables in XQ over all samples, calling for 
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Algorithm 2.3: Basic 

I* G i v e n : P I X , ) V r o o t v a r i a b l e s Xt, P ( X j X C U ) ) V n o n - r o o t v a r i a b l e s X]t XB = x\ 
f o r some x ' B 6 CiE * / 

procedure Basic( priors, CPTs, x*E ) 

Instantiate Xe to x*E; 
for k = 1 to ra 

/ * sweep t h r o u g h by f o r w a r d s i m u l a t i o n * / 

for each i e N \ E 
Flip the coin for Xi according to P(X,-) or P(X, I XQ,)); 
Add x(. to 5̂ ; 

/ * Compute t h e s c o r e f o r t h e k-th s a m p l e * / 

Zk =llp(**'*<:<.•))'. 

only m#<2 comparisons. For example, if we want to estimate P(X2=true, X?=true I X5 = true) in Figure 

2.1, assuming all variables are binary, then we can go through each sample (with X5 clamped to true) 

and compare the values of X2 and X 3 with the query. If the values match in sample k, then we add Zk to 

Z(X2=true, Xj=true); otherwise, the next sample is considered. Assuming there are m = 1000 samples, 

we only need 1000 x 2 = 2000 comparisons in total. 

There are cases where likelihood weighting performs quite poorly. When the likelihood prod­

uct (score) varies greatly among samples most of the samples are effectively ignored, and therefore 

additional samples must be taken. [SHPE90] suggested we can reverse the arcs into those evidence 

nodes most responsible for the variation in likelihood to remedy the situation. [SHAC86] gave a de­

tailed theoretical derivation for inference with arc reversals. We will examine its application in DPNs 

in the next chapter. 



3. Temporal Processes 

While a B N is an attractive approach for representing uncertain expert knowledge in a coherent prob­

abilistic form, it has seldom been focused on the temporal aspect of real-world processes. In order to 

capture this dynamic nature, we use a data structure called the dynamic probabilistic network9 

(DPN). 

3.1 Dynamic Probabilistic Network 

The DPN can be thought of as a chain of BNs joined by temporal links (Figure 3.1). Each unit of the 

chain is a time slice representing a snapshot of the evolving temporal process. If we have n time 

slices, we will have n BNs chained together, in a way such that nodes in time slice t are connected 

only to nodes in time slice t + 1 and other nodes in slice t. In other words, the history of the process 

can be ignored; or more precisely, information at time t summarizes all relevant features of the world. 

This property is called the Markov property. For temporal projection (i.e., prediction from the state 

at some time into the future), this property allows us to focus on only two time slices at a time, moving 

the "window of focus" in one-slice increments. 

9 The idea first appeared in [DEKA89] and was reiterated in [KAKR95]. It was called dynamic belief network (DBN) in 
[RUN095]. 

30 
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STATE EVOLUTION MODEL 
/ 

4 

SENSOR MODEL 

Figure 3.1: Generic structure of a DPN (adapted from [KAKR95]). In an actual network, there may 
be many state and sensor variables in each time slice. 

3.2 Evidence Reversal 

Standard simulation algorithms such as those in Section 2.3.2 often give fast, accurate approximations 

to posterior probabilities in belief networks, and are the methods of choice for very large networks. 

However, when we come to temporal processes, these algorithms sometimes perform very poorly. In 

essence, the simulation trials diverge further and further from reality as the process is observed over 

time. In the case of logic sampling, because it discards trials whenever a variable instantiation con­

flicts with observed evidence, it is likely to be ineffective in DPN-based tasks where evidence is ob­

served throughout the temporal sequence.10 As for likelihood weighting, a straightforward application 

generates simulations that simply ignore the observed evidence and therefore become increasingly ir­

relevant. This is especially true in systems where the state evolution model is weak (i.e., more or less 

random). Although uncertainty in observation may be very low, the samples are nonetheless evolved 

according to the state evolution model. A weak model (which is typical in systems where autonomous 

1 0 On the contrary, logic sampling is very effective for projection because no evidence is observed in future slices. 
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Figure 3.2: Schematic diagram of evidence reversal transformation for DPNs: A is the state evolu­
tion model; B is the sensor model; C and D are the new CPTs we have to compute. (Adapted from 
[KAKR95]) 

agents are monitored) means the sample distribution will get more random over time, unrelated to the 

observed evidence. As a result, the weighting process will assign extremely low weights to (or even 

discard) almost all the samples. Only a very small number of samples closest to the true state will ob­

tain relatively high scores and thus dominate the estimated distribution. The effective number of 

samples therefore diminishes rapidly over time, resulting in large estimation errors. 

In general, forward simulation methods will ignore the actual observations made when de­

termining the sample state trajectory and future observations. In Figure 3.1 this is due to the fact that 

the causal direction of influences does not permit our observations (percepts) to bias the state samples. 

As a remedy, [KAKR95] adopted Shacter's suggestion and added an arc reversal (AR) step to likeli­

hood weighting for use with DPNs. However, instead of reversing all the arcs into the evidence over 

time, we simply reverse the arcs within slice t, so that the evidence at t and the state at t - 1 become the 

parents of the state at time t (Figure 3.2)." This is possible because each sample, once it has instanti-

1 1 The idea is based on the evidential integration method proposed in [FUCH90]. In evidential integration only the arcs be­
tween the evidence and its parents are reversed (in non-temporal BNs), thus "partially" integrating the evidence into the 
network. 
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ated variables in time slice f - l , d-separates all preceding time slices from the state at time f. After 

AR, the current evidence becomes a parent of the current state; therefore, it can influence the process 

of extending the samples to the state variables at f. Consequently, the sample population can be re­

positioned closer to reality according to the observed evidence. In Chapter 6 we will show in an ex­

perimental case how convergence may be improved by reversing arcs into evidence. 

Algorithm 3.1 shows the evidence reversal algorithm (which is modified from the likelihood 

weighting algorithm). Where necessary we have added time arguments ranging from 0 to T, for some 

T e N. If we want to know P(xQ(t)\x*E(t)) for some xe(f) e Q.Q, t e [0,7], we can apply equation ( 

2.8 ) to time slice f. Note that we assume XE remains constant over time, i.e., the set of evidence vari­

ables is fixed. This is in general the case for decision-theoretic agents since they base their actions on 

the same set of observable events over time (i.e., their perceptual inputs). If the opposite is true, how­

ever, then the arc reversal step (marked with / * ( 1 ) * /) has to be placed inside the loop (at the 

place marked / * ( 2 ) * / ) . This means for each time slice we have to reverse arcs into the evi­

dence variables in that time slice, thus making the simulation process much slower. 

From the pseudocode we see [KAKR95] laid out their algorithm in such a way that m partial 

samples are generated and recorded in one slice followed by another m partial samples in another 

slice. While this can be made to work (though there is insufficient detail in [KAKR95]), it is not clear 

what advantages this approach offers. On the contrary, a considerable amount of work has to be done 

to book-keep each sample since the temporal process is repeatedly sampled in its entirety. In Section 

5.1 we will present the evidence reversal algorithm in a query-directed approach that will alleviate this 

problem. 
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Algorithm 3.1: Likelihood weighting with evidence reversal (adapted from [KAKR95]) 

/* Given: CPTs V variables; we assume the CPTs to remain constant over time */ 
/* Modified from BASIC */ 
procedure LIKELIHOOD_WEIGHTING{ CPTs) 

/* Time slice 0 * / 

Obtain x* (0); 
Instantiate XE to x*E(0); 
/*(!)*/ 

Reverse arcs into E; 

for k = 1 to m 
Sweep through the net, flipping the coin for each variable; 
Add xN (0) to Sk, 

I* Compute the score for the k-th sample at time 0 * / 

w*=nm(0)i*c(,)(°)); 
Zk(0) = wk; 

/* Time slices 1 to T */ 
for t = 1 to T 

Obtain xE(t); 
Instantiate XE to x*E(t); 

/ * ( 2 ) * / 

for k = 1 to m 
Sweep through the net, flipping the coin for each variable; 
Add (t) to Sk', 

/* Compute the score for the k-th sample at time t */ 

wt = 11 (̂01^0(0); 
; < E £ 

Zk(t) = Zk(t-l) + wk; 
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Figure 3.3: Reversing an arc between arbitrary nodes i and j . (Adapted from [SHAC86]) 

3.3 Arc Reversal 

The arc reversal step is critical in that it uses the current evidence to bring the simulation closer to 

reality. [SHAC86] proved that for all i,j e N, arc (/, j) can be replaced by arc (j, i) if there is one and 

only one arc (/', j) between nodes i and j. After the reversal, both nodes inherit each other's parents. 

More formally, 

C™(j) = Cold(/)uCold(j)\{/} ( 3 1 ) 

c „ e w ( . ) = c „ e w 0 . ) u { y } 

Figure 3.3 is a pictorial representation of the arc reversal step. Besides the parents, the CPTs 

for i and j are modified as follows: 
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P(x J .lx c o M ( , ))P(x,.lx c 0 | J ( , )) ( 3 J ) 

for all Xj G Q.,jc-e Q . , x n e w e Q. ̂  . Putting this into our DPN, we are essentially using A and 

B to compute C and then D in Figure 3.2. Equation ( 3.2 ) lets us compute each entry in C while D is 

computed by equation ( 3.3 ), which is just the Bayesian inversion formula, or Bayes's rule. (The de­

nominator can be seen as a normalizing constant if we substitute the first equation into the second.) 

To be more specific, let Xs', Xs, and XE be State(t-\), State(f) and Percept(t) respectively. Then we 

have, for each entry of C, 

P(xE\x's)= ^P(xE\xs)P(xs\x's), 

and, for each entry of D, 

/ N . P(xE^XS)P(xS^XS) P(xs\xE,xs) = ^ - | - j r • 

The A R process is then complete. 

A major drawback of AR is the increase in size of CPTs, proportional to the size of the cross-

product space of the domains of both nodes' parents. This is a direct consequence of equation ( 3.1 ), 

where the parent set of each node becomes the union of both parent sets. Although in our discussion 

above we only showed one state variable Xs and one percept XE, the expansion of D is trivial. In gen­

eral, more than one state variable may be present, and there may be an n-to-1 interdependency between 
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the two time slices (i.e., a variable in time t may depend on more than one variable in time t - 1). 

Similarly, more than one percept may exist and may depend on one or more state variables. In such 

cases, a series of A R steps has to be taken to make the percept depend only on variables in t - 1. Nev­

ertheless, the above simplified illustration suffices to show the evidence reversal algorithm takes into 

account the observed evidence rather than ignoring it. 



4. Compact Representation 

In a BN, CPTs have often been represented in a "plain" fashion using arrays. For example, the four 

CPTs in Figure 3.2 would be represented as two-dimensional arrays. This representation, though sim­

ple in nature, is not compact in that it requires an entry for every state of the system. A system is 

usually reasonably locally structured (Section 2.2.1) so that many states have the same probability val­

ues and thus can be compressed. Furthermore, a structured representation allows irrelevant distinc­

tions to be ignored, as we shall see in the following section. 

4.1 Tree-Structured CPTs 

The tree-structured representation was first introduced in [BODG95]. The use of such representation 

for CPTs allows the capture of independence of variable assignments.12 It can identify relevant dis­

tinctions in the belief space encoded in the CPT of a node. As a result, values associated with a col­

lection of states may be represented once. Figure 4.1 shows a simple binary tree-structured CPT for a 

variable A. (For binary variables, our convention is to use left-arrows for "true" and right-arrows for 

"false".) Each branch determines a partial assignment to the parents of the "owner" variable of the 

tree (i.e., A in this case) with some parents not mentioned; for example, the left subtree of B is trav­

ersed when B is true, without considering C. Each leaf denotes the probability distribution of the vari­

able given conditions consistent with that branch.13 So in the figure, the rightmost leaf corresponds to 

1 2 Other representations such as the use of rules representing conditional probability distributions also capture such independ­
ence [POOL93]. 

1 3 We only show the probability values for the variable being true because the probability of falsehood can always be com­
puted by one minus the truth probability. This representation with assumed last values will be discussed in Section 5.4. 

38 
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•' B 

(A)' 0.5 C 

\ 0.4 0.1 

Figure 4.1: A simple tree-structured CPT 

the probability distribution of A given B and C are both false. Normally, if we use a plain CPT repre­

sentation, we will have to enlist all 2 2 CPT entries. The tree-structured CPT, however, allows us to 

capture the independence of A on C when B is determined to be true. Thus, only one value, P(a\ b), is 

needed to represent both P{a\b,c) and P(a\b,c). As a result only three values in total need be speci­

fied, spatially enhancing the system. 

In [BOG096], the tree-structured representation is extended by the inclusion of persistence 

subgraphs. This feature is especially useful in reasoning about actions where persistence relations of­

ten arise. Figure 4.2a shows a tree-structured CPT with persistence subgraphs represented by broken 

arcs and marked nodes, generated automatically if unspecified by the user. From the figure we can 

observe that these subgraphs can actually be compressed into one. This leads to the graph representa­

tion of the CPT as shown in Figure 4.2b. The "else" branch corresponds to all values of C other than 

c\. 

Although the graph representation is more compact, we would adopt the tree structure in this 

thesis as performing A R using graphs is more complicated. In Section 5.2 we will see how the tree-

structured representation can help in identifying relevant variables to speed up simulation. 
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1.0* 0.0* '• 1.0* 0.0* 

(a) Decision Tree (b) Decision Graph 

Figure 4.2: Compact representation of CPT of A 

4.2 Structured Arc Reversal 

Obviously, the tree structure is capable of representing regularities in the interdependence among vari­

ables in the system. Since regularities may prove useful computationally, we would like to employ the 

tree structure in our simulation process. In Sections 3.2 and 3.3 we have seen how A R can be used to 

bring simulation "back on track" under plain CPT representation. For large CPTs, however, working 

with trees may be more efficient in the A R process. This requires some special thoughts, though: 

while we would like the A R steps to increase the accuracy of simulation, we also want to preserve the 

tree structures the CPTs had before the reversal so that after AR, regularities can be retained to gain 

certain computational efficiency. In the following sections we present the operations that will be used 

along with the structured arc reversal (SAR) algorithm. To avoid confusion, we use the terms "t-

nodes" and "t-arcs" to represent nodes and arcs in a tree (as opposed to nodes and arcs in a BN) 

[BFGK96]. We will first give an example to illustrate. 
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B A 

0.7 0.2 0.5 B 
IAI 

0.4 0.1 

Figure 4.3: An example system 

4.2.1 Example 

The SAR algorithm is perhaps best demonstrated with an example. Figure 4.3 shows a 2-slice DPN 

encoding an example system with four system variables (A through D) and one observation (evidence) 

variable (O). For simplicity, we write the names of the variables directly on the corresponding nodes 

and show only the CPTs for A and O, assuming B, C, and D have arbitrary distributions. Figure 4.4 

and Figure 4.5 demonstrate how we reverse the arc between A and O (i.e., nodes i and j in Section 3.3). 

Construction ofO's CPT 

In Figure 4.4, we construct a new CPT for variable O as follows: 
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Figure 4.4: Construction of new CPT for node ) (variable O) 
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1 . First we search the old CPT of O for a subtree T with a root node labeled A (diagram (a)), 

since Twil l be the only part of the CPT for O that changes; all other parts of the tree remain 

the same because they do not depend on A and thus will not be affected by AR. In the search 

process we record all t-nodes and t-arcs traversed in a path (enclosed by a dotted line) starting 

from the root for use in the next step. 

2 . In diagram (b), we duplicate the CPT of A and carry out tree reduction to the copy using in­

formation stored in the path above. Intuitively, tree reduction is a process that removes redun­

dant t-nodes in the tree, especially when we are appending a tree to another. The path then 

serves as an index of t-nodes that are already present in the original tree. In our case, O inher­

its the parents of A on reversal, so we have to append the CPT of A to that of O to make O de­

pend on the parents of A. By carrying out tree reduction we remove t-nodes considered redun­

dant in the appending process. The path, tree reduction, and the appending of trees will be 

elaborated in more detail in the next section. 

3 . Then we use the probabilistic chain rule to merge the child subtrees of T with the reduced copy 

(diagram (c)). In essence, we are removing the t-node A from the tree (which corresponds to 

deleting the arc from A to O in the network) and adjusting the probability distributions of A's 

children according to equation ( 3.2 ). The application of the chain rule in trees will be dis­

cussed in the next section. 

4 . The final tree is shown in diagram (d) where T has been saved and then replaced by T*, the re­

sult from step 3 above. T is saved for later use, when we have to refer to values in the old CPT 

of O to update the CPT of A. T* is then marked "altered" to indicate an altered portion of the 



Chapter 4. Compact Representation 44 

old CPT of O. (In general, there will be more than one T, and hence T*.) This will help reduce 

computational efforts when we apply Bayes's rule later. 

A Note: Reduction in Dependency Complexity 

At this point we are able to see that the new CPT for O does not depend on D. This would not have 

been true if we had used Shacter's algorithm [SHAC86], which states that both nodes inherit each 

other's parents. This reduction in dependency complexity actually occurred when we reduced the 

"appending" tree (diagram (b)) by pruning the branch containing the label D. Another place where 

dependency complexity may be reduced is in diagram (d), when we performed the tree merge. If we 

have deterministic values, say, P(a\ 7?) = 1, then when we perform the merge by the chain rule, a zero 

(instead of 0.7) will be multiplied to the subtree labeled B, thus removing fi's influence when C and A' 

are both false. If the label is not B but some variable other than A', B, and C, then the influence of that 

variable can be totally removed from the CPT. 

Although reduction in dependency complexity is not a necessary consequence of tree reduc­

tion14, it is still a major saving in time and space when there is a possibility of making fewer steps in 

tree traversals, especially during simulation in large networks containing hundreds of nodes and tens of 

thousands of interdependencies. 

Construction ofA's CPT 

We go on to update the CPT of A in-place in Figure 4.5. 

1 4 For example, if we swap the two branches of T°U so that the D branch is traversed when A' = false, then on reduction 
(diagram (b)) the D branch will remain, and we will not be able to remove D's influence on O. 
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Figure 4.5: Construction of new CPT for node i (variable A) 
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1 . We first duplicate the new CPT of O and reduce the copy with respect to each path from root 

to leaf in A's CPT (diagram (a)). This is to remove the t-nodes considered redundant when we 

append the new CPT of O to each leaf of the C P T of A. Since there are three leaves in A's 

CPT, we have three reduced CPTs of O in the diagram. 

2 . Then we search the reduced copies for subtrees marked "altered" and find that only the third 

one contains altered parts (T* in diagram (b)). T* is inherited from the computation of O's new 

CPT. It represents the part of the tree that will be extended by the application of Bayes's rule 

in the next step. The first two reduced copies are discarded, leaving the corresponding leaves 

in A's CPT unchanged, because the absence of altered parts means the terms P(x Ix ) and 

P(Xj\xcM(j)) in Bayes's rule equal and hence cancel out each other. We will come to more 

details in Section 4.2.3. 

3 . In diagram (c), since the left branch of C is not in T*, the distribution at the right branch of A ' 

(< 0.3, 0.7 >) is propagated there. T*, on the other hand, is extended by one level at each leaf 

with the insertion of a new tree rooted at O. The distributions at the new leaves are computed 

using Bayes's rule. Note the correspondence between the shaded entries in the diagram: the 

darkest shade refers to entries in the subtree T in Figure 4.4, the lightest shade refers to entries 

in A's CPT, and the medium shade refers to entries in T*. The underlined numbers represent 

assumed last values (Section 5.4) while those in parentheses show the computations that 

would have taken place if we had not used the assumed-last-value representation for probabil­

ity distributions. 
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0.7 0.2 0.43 0.22 

Figure 4.6: Network after reversing the arc between A and O 

4 . The final tree is shown in diagram (d) where the rightmost leaf of A's CPT has been replaced 

by the result in step 3 above. 

The network now becomes as shown in Figure 4.6, where the effect of reduction in dependency com­

plexity is shown by the missing arc between D and O. 

4.2.2 Procedure 

Having seen our previous example, we are ready to examine the SAR algorithm in more detail. Let Tt 

and Tj denote the CPTs of arbitrary nodes i and j in G, a given BN. Then Algorithm 4.1 will reverse ( 

i, j) into (j, i) correctly while preserving the tree-structure of both 7, and 7}. 

For each node j corresponding to an evidence variable, we reverse the arc between j and each 

of its parents in C(j). In each such reversal, we build a new CPT for j and update the CPT of i in place. 

The operations involved are explained below. 
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Algorithm 4.1: SAR 
/* SAR: reverse arcs i n t o evidence; each node i i n graph G has ass o c i a t e d with i t a tr e e -
s t r u c t u r e d CPT, TL * I 

void SAR( Graph G, Evidence E) 
{ 

Tree newTj, T, T , Tp; 
Path p; 

for (each j e E) 
for ( each i e C(j)) { 

newTj = Tf, 

/* B u i l d new CPT for j * I 

for ( each subtree T of newTj with root( T)== i) { 
Tp = treduce( T, path( newTj, T)); 
T = tchain( T,Tp); 
save T and replace with T ; 
mark T as altered; 

} 

/* B u i l d new CPT f o r i * I 

for (each leaf / of T,•) { 
Tp = treduce( newTj, path{ T, I)); 
T = tbayes{ Tj, T, Tp ); 
replace / with T ; 

} 

Tj = newTf, 
update C(j); 

Tree Reduction (treduce) 

In the SAR algorithm, the basic operation is the appending of a tree Tx to another tree T2, i.e., the re­

placing of a leaf of T2 with Tx. Though conceptually straightforward, this operation may make the re-
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suiting tree have duplicate node labels. Therefore, a decision tree reduction algorithm has to be car­

ried out to delete redundant nodes. Theoretically, the reduction can be done either before or after the 

appending, but since we have to perform arithmetic operations on trees (as we shall see below), it 

would be desirable to carry out the reduction early to reduce computational effort. (For example, we 

reduced the CPT of A in Figure 4.4b so that only the leaf node with distribution <0.3, 0.7> need be 

considered when we applied the chain rule in Figure 4.4c.) In view of this, whenever appending of 

trees is required, we choose to reduce the "appending" tree (TO before appending it to the "appended" 

tree (T2). 

As we have seen in the example in the previous section, a tree is reduced with respect to a path 

(of another tree). The path is an ordered list of label-value pairs. Each pair consists of a t-node label 

and a number specifying which child subtree to traverse next. Formally, a path is defined as follows: 

Definition 4.1: Path 

Let label( u) denote the node label of some t-node u. Let The a decision tree and path( T, u) be a 

path of T from root to a certain t-node u in T. Then, 

path( T, u) = (labeh, value], labek, valuei,labeln, value„), 

where labeh is the label of the /-th t-node traversed starting from the root of T, 

valuei is the value with which the t-arc between label, and labels is labeled, 

labeh = label( T ), and 

label„+\ - label( u). 



Chapter 4. Compact Representation 50 

In essence, the path records t-nodes that should be pruned during tree reduction, the process of which 

can be described by the following definition of a reduced tree15: 

Definition 4.2: Reduced Tree 

Let p be a path of some decision tree V. Let chilaX i, T ) denote the 7-th child of an arbitrary tree T. 

Further let The a decision tree with root Kand immediate subtrees Tx, Tm where 7} = childij, T). 

Then the reduced tree T( p) is defined recursively as follows: 

Put in words, the reduced tree Tip) is a version of the tree T such that every path in T that is 

"inconsistent" with p is removed. 

With these definitions in mind, decision tree reduction is straightforward. The reduction al­

gorithm is shown in Algorithm 4.2. 

Chain Rule (tchain) 

Recall in our example that O takes the role of variable Xj while A, Xt. In the following discussions we 

will use the more general terms X, and Xj to represent A and O respectively. 

[BFGK96] described how a reduced decision tree can be produced under a certain context of variable assignments. This is 
applicable in our SAR algorithm if increased computational efficiency is not a major concern. Since we would like to 
prune away all redundant t-nodes before applying arithmetic operations on trees, we modified the idea to be used with re­
spect to paths instead of contexts. 

R with subtrees Tj(p) for all j e [l,m], if label(R) is not in p 

Tj{p), where j = value n if label(R) = labeli is in p 
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Algorithm 4.2: Tree Reduction 
/ * R e d u c e a t r e e T w i t h r e s p e c t t o a p a t h p . T h e r e s u l t i s r e t u r n e d a s newT. */ 

Tree treduce( Tree T, Path p ) 
{ 

Tree newT; 
/ * D e t e r m i n e i f t h e r o o t l a b e l o f T e x i s t s o n p . * / 

if (label( T) == labelj for some labelj e p ) 
newT= treduce( child( valuei, T),p); 

else { 
label( newT) = label( T); 

/ * R e d u c e e a c h c h i l d o f T. */ 

for (i = 0; i < #children( T); /++ ) 
chila\ i, newT) = treduce( chila\ i, T),p); 

} 

return newT; 
} 

After we have found a subtree T with root node labeled i in 7}, the CPT of j, and obtained Tt( 

p) where T is the CPT of / and p = path{ 7}, T), we apply the tree version of the probabilistic chain 

rule to T and T)( p ): we replace each leaf / of T( p ) with the tree produced by "chaining" T with the 

distribution at /. Referring to Figure 4.4c, we see that this requires multiplying each value in the dis­

tribution at / with the corresponding child subtree of Tand then "summing up the products". The 

products are probabilities given values of X,. Thus, summing up the products means summing up the 

terms P(X,\x t, X M . ) for all x, e Q,-. The multiplication step is straightforward because we only 

have to scale each leaf of the tree by the probability value specified. The summation step, however, is 

more complicated. If one of the addends is a scalar number, then we just add it to every leaf of the 

other (tree) addend, in much the same way as we perform scaling. If, however, both addends are trees, 
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Figure 4.7: Breakdown of tree chaining 

(d) 

then we have to append, with possible reduction, one tree to every leaf of the other. For example, if T 

was a binary full tree, then the sequence of chaining would become as shown in Figure 4.7, where tree 

reduction is required in diagram (c). 

In any case, the correspondence between the normal chain rule and its tree version, 

Jt .e f i 
(4.1) 

can be readily observed: the term on the left corresponds to T, the first term in the summation corre­

sponds to T, and the last term represents each probability value in 7,( p). By successively applying the 

tree chain rule to each subtree T found, a new CPT for j can be constructed. 
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Bayes's Rule (loaves) 

In the construction of a new CPT for /, we apply Bayes's rule to update each leaf / of Tt using T°ld, I, 

and Tjnew( p ), where p - path{ Tit I). (Here we superscript 7} by "old" and "new" to denote the CPT of 

j before and after AR, respectively. This is not necessary for Tt because we are updating Tt in place.) 

Due to the complexity of the updating process, we choose to present the idea using an algorithmic way 

as follows: 

Traverse T"ew( p ) post-orderly. For each node k thus traversed, if k has been marked 

"altered", i.e., if the subtree rooted at k is part of the subtree T in Tjew, 

1 . for each leaf/of k, replace/with a 2-level, n-leaf tree T with root( T') = j and n = #Qy. 

The distributions at the leaves of T' are determined by the P version of Bayes's rule, i.e., 

psv \ v ^ J ' V M ^ ^ ' V , , ) ) (4.2) 
1 ' c » ( 0 j P(X.\X ) 

where P(X IX M ) is retrieved from the subtree T saved along with k, 

P(X,IX ld ) is the distribution at /, and 

P ( X y I X c „ e w o ) ) is the distribution at/. 

2 . else if & is a leaf, replace the distribution at k with the distribution at /. 

3 . else if no child of k is altered, replace the subtree rooted at k with the distribution at /. 
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Basically, the entries in Tj are computed as in the normal Bayes's rule. However, since we 

would like to retain the CPTs' compactness after AR, we have to take special measures to prevent the 

original tree from being fully expanded. We have found that the distribution at / remains unchanged if 

there is no altered part in T"ew( p ) (Figure 4.5b), and that the unaltered portion of T"ew( p ) does not 

grow but merely inherits the distribution at / (Figure 4.5c). As we have mentioned before, this is due 

to the canceling out of the terms P ( X I X l d ) and P(XIX ) in equation ( 4.2 ), making the two 
' C \J) J C \J) 

sides equal. Therefore, we need only expand the altered part of 7\ n w( p ) by applying Bayes's rule. 

The expansion is done in step 2 above, where T"m( p) is extended by one level with the distribution at 

the new leaves computed by Bayes's rule (Figure 4.5c). Now X/s influence is introduced into the tree 

and the result can be appended to T, at /. When all leaves of Tt are adjusted as above, the construction 

of a new CPT for i is complete. This corresponds to the addition of an arc from node j to node i in the 

network. 

Remarks 

Note that we have to update the parent set of j in each A R cycle. This is because during A R new arcs 

may be introduced into node j. If these arcs come from nodes in time t, then they in turn have to be 

reversed. For example, D was originally not a parent of O before A R in Figure 4.3. If we switched the 

two branches of A's CPT, then after reversing the arc between A and O, O would depend on D and 

there would be an arc from D to O in Figure 4.6. Since D is in time t, the new arc would have to be 

reversed also. Therefore, it is necessary to keep track of the parent set of O throughout the A R proc­

ess. 
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4.2.3 Analysis 

Regarding the SAR algorithm developed in the last section, we have made some observations and 

analysis of its operation. 

Constructing Tj 

In the construction of a new CPT for node j, we examined how the chain rule is applied in a "tree" 

context. We note that all parts of T°ld other than T remain the same (Figure 4.4), whether structurally 

or with respect to both structure and values. The two cases are described as follows: 

• If there is a path from root to leave not containing i, then both the structure of the internal 

nodes on the path and the distribution at the leaf will not change, since the path does not de­

pend on i, and thus will not be affected by the reversal. 

• For all other paths, the portion from the root down to but not including / remains the same (i.e., 

the structure of that portion will not change). The subtrees below i are merged according to 

the method described, and it is easy to see that the distribution at each of the leaves is in fact a 

vector of sums of products as implied by equation (4.1 ), the tree version of the chain rule. 

We also observe that when appending a tree to another we have a choice over which one is the 

"appending" tree and which one the "appended" tree. If we carefully consider the sizes (number of t-

nodes) of the trees to be merged, the merge can be done more efficiently. 

Consider two binary full trees Tm and Tn with the former having m leaves and the latter n. 

Then Tm has 2m-1 nodes while T„ has 2n-\. Assume m is greater than n. There are two cases: 
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1 . If we append Tm to Tn, then we have to append 2m-1 nodes from Tm to each of the n leaves of 

T„, requiring a total of n(2m-\) = 2mn-n copies. 

2. If we append Tn to Tm, then we have to append 2n-l nodes from Tn to each of the m leaves of 

Tm, requiring a total of m(2n-l) = 2mn-m copies. 

Since m> n, case 2 requires fewer copies than case 1. Hence, we conclude that we should append a 

smaller tree to a larger one. This conclusion is, nevertheless, more theoretical than practical since it 

takes 0( n ) time to determine the size of an n-node tree (unless the size is stored with each tree). A l ­

though the time spent in determining the initial tree sizes of CPTs can be absorbed as overhead cost by 

the system set-up phase when CPTs are built (through console or file input), the presence of tree re­

ductions and appending keeps these sizes varying with time. As a result, just determining which tree 

should be the "appended" tree costs even more than the saving in copying it will bring. Therefore, in 

practice we will ignore the tree sizes and choose an arbitrary appending order. 

Constructing T ; 

In the construction of a new CPT for node i, we can see if T* and 7V"W are disjoint, then everything on 

p = path( Ti, I) remains the same (Figure 4.5). In particular, the distribution at /, i.e., P(Xt\x M ) for 

the x M observed at /, remains unchanged. This is justified because T* and p) are disjoint 
L. \l) J 

implies the latter is entirely contained in T°ld', and if we were to apply Bayes's rule (equation ( 4.2 )), 

then at every leaf node * of T.ew( p ) we would have P ( X ; l x c „ e W 0 ) ) = P (X J l x c 0 l d o ) ) for the xCCW(j) 

observed at k; corresponding individual values in these two distributions would cancel out each other, 
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leaving P(X,lx ) = P(Xt\x M ) for the x ld observed at /. Since we are considering the k's 

with respect to the same /, all k's now have the same distribution and are compressed into one node. 

As a result, we have not changed anything with respect to /. 

For the non-T* portion of T"ew( p ), a similar argument applies. The difference is that it ap­

plies not to the whole tree but only part of it, and thus node collapsing does not propagate to the root 

level. The T* portion, on the other hand, is extended by one level with the appending of a 7" at each 

leaf of T"ew( p ). This is necessary to bring the influence of O into the tree, and is the case where the 

corresponding entries of the first multiplication term and the denominator in the equation do not cancel 

out. 

Reversal Order 

In our example in Section 4.2.1 we chose to reverse the arc between A and O first. In general, how­

ever, there is no fixed rule in reversal order. For example, given the same system our actual implemen­

tation of SAR will reverse the arc between C and O first (see Case 3 in Section 6.2) based on a "first 

come first serve" basis: it reverses the arc between the first evidence node (in some topological order) 

and the first parent in time t encountered in its CPT. As it traverses the CPT down to the leaves, the 

arcs between the node and the parents encountered (if they are in time r) are successively reversed. 

The next evidence node is then considered, and the process continues until all evidence nodes have 

been considered. 

The difference in reversal order will lead to different resulting CPTs, and thus different net­

work structures after AR. As a general rule, the sooner a node has its arc into the evidence node re-
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versed, the later it will be in topological order in the resulting network. The reason can be traced out 

as follows: the first reversal will make the first node depend on all (ignoring tree reduction) parents of 

the evidence. The arcs introduced will then remain unchanged during the rest of the AR process. In 

the reversal with the second node, the evidence node will have one parent (the first node) fewer than 

before. So the second node will depend on all parents of the evidence except the first node after AR. 

This makes the second node come before (or at least in the same position as) the first in topological 

order. In a similar way, the third node comes before the second, and so on. As a result, when the 

whole AR process has finished, the first node will be placed last in topological order, preceded by the 

second node, then the third node, and so on. The evidence node will eventually become the first in 

topological order since no incoming arc from nodes in time t remains, achieving our ultimate goal of 

making the evidence influence other nodes in time t. As an example, we can see in Figure 6.5 that C is 

placed last in topological order (with three incoming arcs from nodes in time r), preceded by A (three 

arcs), then B (one arc), then D (no arc), and then O (no arc). If we reverse the arc between A and O 

first, then A will be the last in topological order (with four arcs in Figure 4.6), and the rest of the node 

ordering can be inferred from the reversal sequence with the remaining nodes in the aforementioned 

fashion. 

Although different networks may arise from different AR orders, we do not anticipate any 

major impact imposed by this phenomenon on simulation. The different networks are merely different 

representations of the same underlying system. We have not established mathematical proofs of the 

correctness of these representations, but we believe that assuming the existence of a "truly random" 

number generator the degree of accuracy in probabilistic inference will be the same across representa­

tions. 



5. Efficient Inference 

With our SAR algorithm established, we can incorporate it into Algorithm 3.1 and carry out simula­

tion using this structured ER (SER) algorithm. However, as practical BNs usually involve hundreds of 

nodes, performing probabilistic inference in such networks, especially dynamic ones, could be quite a 

cumbersome task without techniques to improve inference efficiency. We attempt to speed up infer­

ence by the following methods. 

5.1 Query-directed Approach 

Traditional simulation algorithms are straightforward in that they sequentially "flip the coin" for every 

variable in the system and then compute any posterior probabilities concerned. All variables have to 

be sampled even though some (probably many) of them may actually not be referenced at all. In the 

example shown in Figure 2.1, X2, X 3, and X 4 will never be sampled if we only want to know P( X\ I x2, 

xi ), assuming the variables are binary, since nothing influences X\. We only need to clamp X2 and X 3 

to their given values and make coin flips for Xi. 

If we use a query-directed approach, however, we may be able to save on computation (the 

number of "flips"). In this approach, simulation starts only after a query has been given, and proceeds 

according to the given information. In particular, only those variables relevant to the query are sam­

pled (see next section). In other words, variables that will not affect the query result are ignored. As 

most systems are locally structured this greatly reduces the number of random numbers generated 
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Algorithm 5.1: Structured evidence reversal 

I* S E R : e v i d e n c e r e v e r s a l u s i n g a t r e e - s t r u c t u r e d C P T r e p r e s e n t a t i o n * / 
/ * G i v e n : a g r a p h G w h i c h i s a B N ; we a s s u m e t h e C P T s i n G t o r e m a i n c o n s t a n t o v e r t i m e * / 

void SER( Graph G ) 
{ 

/ * O b t a i n e v i d e n c e a n d q u e r y * / 

Input E, x*E; 
Input Q, xQ\ 

I* R e v e r s e a r c s i n t o e v i d e n c e u s i n g t h e SAR a l g o r i t h m * / 

SAR( G, E); 

for ( k = 0; k < m; k++ ) { 
/ * I n i t i a l i z e s c o r e f o r s a m p l e k */ 

Zk= 1; 

for (t = 0; t <= T\ t++ ) { 
Instantiate XE to x*E(t); 
Sweep through the net, flipping the coin for each variable; 

/ * U p d a t e s c o r e f o r s a m p l e k */ 

Z t = Z»n^.-(0lWf)); 
} 

} 
} 

during simulation, thus increasing computational efficiency. Algorithm 5.1 shows our SER algorithm 

using a query-directed approach. 

5.2 Relevant Variables 

The notion of relevant variables can be understood at two levels. In the last section we examined this 

notion based on a network level of view, which is adequate when a plain CPT representation is used 

with the network. When we come to the tree-structured representation, however, a more appropriate 
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view on relevance will be at the CP7Tevel. In the following sections we will examine these levels in 

turn. 

5.2.1 The Network Level 

Relevance viewed at the network level means the extraction of variables relevant to a query based on 

the network structure. The following definition helps clarify this. For simplicity's sake, we have left 

out the time dimension, but it is conceptually straightforward to understand the definition in the time 

domain. 

Definition 5.1: Relevant Variables (Network Level) 

Let V„et( Q, E ) be the set of nodes relevant to the posterior probability P ( XQ \ xE ) at the network 

level, for some XQ e Q.Q, £?C N, given some xE e Qf, £ c N . Then, for all le N, le Vmt( Q, E ) iff 

1. le Q,or 

2. le C(y') for some Je Qyj E, or 

3. le C( k) for some ke V„eA Q, E ). 

• 

This is a recursive definition that accounts for all ancestors of Q and E together with Q itself. The 

first two conditions can be treated as the base case while the third the recursive step. We do not in­

clude the condition i e E because E is given and need not be "flipped".16 

1 6 In logic sampling E has to be flipped also. Nevertheless, our description will centre around LW, where E is given and need 
not be flipped. 
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In LW, this set of nodes, i.e., Vnet( Q, E), corresponds to all variables that need be considered 

(and no others) regarding a particular query P( XQ \X*E). This is because to obtain xQ we have to in­

stantiate XQ. Since XQ is conditioned on its parents, before instantiating XQ we have to instantiate XC(o 

for all i e Q, and to do so we in turn have to instantiate XCij) for all j e C(i), which requires the instan­

tiation of Xc(k) for all k e C(j), and so on and so forth until we have at some point instantiated the set 

of "first generation" ancestors that are not conditioned on any other variable. Hence, Vnet( Q, E) must 

at least contain Q and the ancestors of each node in Q. This is expressed in a recursive way by condi­

tions 1 and 3 and half of condition 2 in the above definition. 

We also have to account for E in a similar fashion because to compute P( xQ \x*E) we have to 

score the samples based on P{x*E\xCE) where CE = [JC(i). This requires the instantiation of XCE 
ieE 

and, in turn, its ancestors. So we see that Vne,( Q, E) should include also the ancestors of each node in 

E, and the other half of condition 2 above completes our definition. 

The set of nodes V„el( Q, E) helps us focus on only those variables relevant to the query, with­

out wasting computational effort to instantiate irrelevant variables as in traditional simulation methods 

like logic sampling and LW. This reduction in computational complexity is especially significant 

when XN, the set of all variables in the system, is large. When applied in DPNs, the extraction of rele­

vant variables may have an even more conspicuous effect in saving the number of flips as Q and E 

tend to spread out over time so that not all query and evidence nodes need be considered in all time 

slices. It is conjectured that the number of relevant variables per slice in a DPN is smaller than in a 

non-temporal BN where all query and evidence nodes are located in the same time slice. 
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0.4 0.1 

Figure 5.1: Example net­
work 

5.2.2 The C P T Level 

Though it may be less complicated to analyze relevant variables at the network level, it may not be the 

most restrictive way possible. In Figure 4.1, for example, if we have instantiated B to the value true 

(or, b), then C will become irrelevant. More specifically, if the entire network is as shown in Figure 

5.1, and we have the query P( a I b ), then in the instantiation of A we can directly retrieve the distri­

bution <0.5, 0.5> from the CPT of A and flip the coin accordingly. The right subtree of the root, cor­

responding to b, need not be considered at all. As a result, C is rendered irrelevant in this context. 

Furthermore, this irrelevance of C makes Cs parents E and F irrelevant also, since A does not depend 

on E or F. So we actually only need to flip for A (B is given). With our definition of relevance in the 

previous section, however, we will have to flip for C, E, and F because they are the ancestors of A, no 

matter to what value B is instantiated. In other words, this context-specific independence [BFGK96] 

cannot be recognized by the above definition. To do so we have to analyze relevant variables at the 
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CPT level (assuming the use of a tree structure), as the following definition will show. Again, we 

have omitted the time dimension for simplicity. 

Definition 5.2: Relevant Variables (CPTLevel) 

Let labeK T) be the root label of tree T, xt be the sampled value of X,-, and 7} denote the CPT of node i 

for some /e N. Let VCPA Q, E ) be the set of nodes relevant to the posterior probability P( XQ \ x*E ) 

at the CPT level, for some XQ e QQ, Q CZN, given some x*E e Q.s, £ c N. Define r( T ) such that for 

any arbitrary tree T, 

J label(T), if Thas more than one node 
r(T) (null), otherwise 

Further, for some Wcz N, let S( W) be a set such that for all ke N, ke S( W) iff 

1. k= ti Tj ) for some ye W, or 

2. k-ii T, ) for some ye Si W), or 

3. k= ri chifd(xr(Tj), 7})) for some ye S( W). 

Then, 

VcMQ,E) = Q uS(Q uE). 

m 

This recursive definition captures the set of relevant variables in a dynamic fashion, as op­

posed to the definition of relevance at the network level where the set of relevant variables is statically 

determined before simulation starts, when the network structure is already available. At the CPT 

level, relevant variables are determined "on the fly" as simulation proceeds and variables are sampled. 
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This dynamic nature is encoded in the third condition for membership in S: the sampled value xr(T) 

will be available only after X r ( r ) has been instantiated. Furthermore, in different simulation runs 

xr(J) may be different, resulting in different sets of relevant variables from simulation to simulation. 

In the following paragraphs we will give the intuition behind this definition and how its dynamic 

property helps us to minimize the set of relevant variables chosen. 

In order to obtain xQ, we have to instantiate XQ, so just like Vne,( Q, E), VCpi{ Q, E) must at 

least contain Q so that we can determine whether the query is satisfied in a sample for proper scoring. 

Since XQ is conditioned on XC(i) for all i e Q, we start to find out which node belongs to C(i) by look­

ing at the root of Tt. This is reflected in the first condition for membership in S. Naturally, we will 

then try to traverse the whole tree in some order to find out all parents of i, but this is essentially what 

we were doing in the search for relevant variables at the network level. Considering that a variable 

can be instantiated to only one value at any point of time, a wiser way would be not to traverse the 

whole tree but wait till Xj, where j = r( Tt), has been instantiated and select the appropriate branch to 

traverse. This requires that Xaj) be instantiated beforehand. Thus we proceed to the root of Tj to 

search for the parents of j. This is reflected in the second condition for membership in 5. (Note that 

condition 1 has already made S(Q) contain r( 7,) for all i e Q.) Using the same argument, we then 

proceed to the root of Tk where k - r( Tj), and so on and so forth until we have reached a T„ where r( 

T0) = i . for some o e N. At this point, since X„ is not conditioned on any other variable, we can in­

stantiate X0 and begin to "bounce back" the recursion. For simplicity, assume we reached Ta from Tk, 

i.e., r(Tk) = o. Because X0 is now instantiated to x0, we can select the corresponding subtree, namely 
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child(x0, Tk), of Tk to continue our search for relevant variables. This is described by condition 3 in 

the definition, where we proceed to look at r(child(x0, Tk)) and search for relevant variables using 

conditions 2 and 3 recursively. After a path from root to leaf is established in Tk (i.e., all relevant par­

ents of k in the current context are instantiated), we can retrieve the distribution for k at the leaf and 

instantiate XK accordingly. Recursion then bounces back to 7}, where we select child( xk, 7}) to con­

tinue the search. The process goes on until we have the whole set of XQ instantiated, at which point 

the set S(Q) is complete. 

For E, we follow the same sequence to build S(E) progressively, starting at r( T,) for all i e E 

until a path is formed from root to leaf in Tt. We can then compute the score of the sample according 

to the distribution at the leaf and the given evidence. 

After S(Q) and S(E) have been completely specified, our task in determining VCpj{ Q, E) has 

virtually finished. The only thing left is to prove S(Q) u S(E) = S(Q u E), but this is trivial if we hold 

on to our definition of S and the definition of the union operation in basic set theory. 

Summing up, the difference between relevance at the network level and that at the CPT level 

lies in the dynamic nature of the latter. To determine VCpi{ Q, E), we dynamically order variables to 

be sampled depending on previous sampled values of ancestral nodes so that there is one and only one 

path from root to leaf traversed in each CPT. Any node not on the path is ignored, and it is this prop­

erty that makes VCP1{ Q,E)cz Vnel( Q,E). 
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5.3 Satisfiable Queries 

Another saving we can make is to stop sampling query variables whenever any value contradictory to 

the given query is sampled. This is justified because if any part of a query is not satisfied, then a score 

of zero will be assigned to the whole query. Therefore, there is no point in sampling further query 

variables once it has been determined that the sample does not satisfy the given query. 

More formally, given some set of query values x e e Q e for some Q cz N, if at any point during 

simulation a value xt, for some i e Q, is sampled such that x(. ^ JC„ then no sampling will be done for 

all j G Q' u S( Q') where Q' is the set of unsampled query nodes. Simulation proceeds for all k e S( 

E') where E' is the set of evidence nodes not taken into account, and the score for the query, Z(XQ = 

XQ), equals zero. 

This is yet another example of dynamically selecting nodes for sampling. It helps further re­

stricting the set of relevant nodes chosen. Note that this technique is applicable only if a conjunctive 

query is posed. For disjunctive queries, we have to modify the technique in such a way that the sam­

pling of query variables is stopped whenever a value x(., for some i e Q, is sampled such that x. = x,-, 

because the satisfaction of a disjunctive component means the whole query is satisfied. Our imple­

mentation assumes the use of conjunctive queries, but in either case, provided it is not a combination 

of both, the more complicated the query, the more we can save through this technique. 
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5.4 Assumed Last Values 

By observing that all probability values in a distribution add up to one, we can omit the last value 

when representing a distribution. The last value can always be found by one minus the sum of the 

previous values, which is just one arithmetic operation if we use a cumulative distribution representa­

tion. (For example, <0.1, 0.2, 0.3, ...> is represented as <0.1, 0.3, 0.6, ...>.) This is especially useful 

when computationally demanding operations such as arc reversals have to be performed: we can re­

duce all operations devoted to computing the last entry of any distribution to just one subtraction. We 

have already seen an example of how computations are saved in Figure 4.5c, where the values and the 

multiplication in parenthesis represent assumed values and the operation saved.17 

Another probability representation scheme would be one which relaxes the constraint that the probabilities in a distribution 
add up to one. We can then use the unnormalized numbers as probability ratios. Although it can let us avoid normaliza­
tion, this scheme still requires arithmetic operations, which can become computationally intensive when tree components 
are present, to compute each entry in the distribution. In other words, the arithmetic operations devoted to computing the 
last entry cannot be saved as in the assumed-last-value representation. 



6. Implementation and Results 

As we have seen in previous chapters, LW does not use observed evidence directly to constrain the 

generation of the sample. This leads to poor accuracy in the simulation of DPNs. On the other hand, 

ER takes into account the observed evidence by reversing arcs that go into evidence variables. Thus, 

answers to queries are really based on the given evidence, resulting in more accurate simulation. 

We have also seen that the usual "plain" CPT representation (using arrays) requires the speci­

fication of probability values for all combinations of values of a node's parents. The tree-structured 

representation, however, not only helps reduce the number of CPT entries required but also saves on 

the number of "coin flips" (random number generation) to a large extent in practical systems. 

In order to confirm the aforementioned ideas, we implemented the "plain" version and the tree 

version of both the LW and the ER algorithms. A series of experiments was then carried out on a 486-

DX66 machine. Hereafter we will use the abbreviations ER, LW, SER, and SLW to refer respectively 

to plain ER, plain LW, structured ER, and structured LW. 

6.1 Experiments 

The aim of our experiments is to show that: 

• ER helps speed up convergence of answers to queries, as compared to LW; 
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Table 6.1: Simulation performance under different settings 

Plain Tree 
Measurement LW ER LW ER 
#distributions 
avg #flips 
avg time 

1,2, 4,5 1,3 2 3,4,5 

• the tree-structured CPT representation can reduce the number of flips during simulation, thus 

increasing computational efficiency; 

• the tree-structured CPT representation can reduce the number of CPT entries by discarding ir­

relevant distinctions that would be present in a "plain" representation. 

Accordingly, we arranged our experiments in different settings as shown in Table 6.1. The small 

numbers refer to the cases described below. For each case, we compared simulation performance un­

der two of the settings using a sample size of 1000. (For example, in Case One we compared the per­

formance of LW and ER, as shown by the two small "ones" in the "LW" and "ER" columns under 

"Plain" in the table.) Analysis was then made, assuming the existence of an unbiased, or "truly ran­

dom" number generator that accurately produces states of the network according to their true prob­

abilities, contingent on the given evidence. 

In the first row of the table, we measured the number of probability distributions required. 

For the plain representation, we obtained the number by summing up the total number of rows in all 

CPTs in the system. For the tree representation, the number was computed by counting the number of 

leaf nodes in all the CPTs. (For example, the table for variable O in Figure 6.3a contains four distri-
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butions while the tree for O in Figure 6.3b has three.) In the ER and SER settings, this number reflects 

the number of distributions generated after AR had been performed. 

In the second row, the average number of flips over all samples was recorded. This shows the 

average number of random numbers generated in a sample and corresponds to the set of relevant vari­

ables (Section 5.2) actually simulated. Again, in the ER and SER settings, the number was recorded 

after AR had been performed. 

In the last row we recorded the execution time averaged over all samples. We included this 

test because we observe that most languages are developed with arrays (rather than trees) as a central 

component; if we perform our simulation using a tree-structured representation, we might incur more 

runtime overhead than when using arrays. By examining the average execution time we can see 

whether the structured representation (or AR) has any influence on execution speed, and if so, to what 

extent it might be. 

In each of the five cases below, we ran the simulation 100 times using a query-directed ap­

proach. For cases 1, 4, and 5 we analyzed convergence performance based on the variance of the 

probability values obtained across all runs and plotted variance against the number of samples in 

graphs. The variance computed is based on the total population, i.e., 

Variance 

where x, is the probability value computed for the query variable during the i-th run, and 

n is the total number of runs. 
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Convergence is reached when the variance falls below an epsilon value computed by 

Epsilon =10 2Llog(3c)J 

where x — — 

6.2 Results and Analysis 

Case 1 

For the network shown in Figure 6.1a, we made 100 simulation runs using the LW and ER algorithms 

to find the posterior probability 

P(A(0) = AQO) = A(20) = A(30) = A(40) = A(50) = a, I O(0) = O(10) = O(20) = O(30) = 0(40) = 0(50) = o,). 

(Underlined entries represent "assumed" values, i.e., the ones that can be computed by subtracting cor­

responding cumulative probabilities from one.) Performance results are shown in Table 6.2. We see 

that in general ER doubled all the measurements we made as compared to LW. The increase in the 

number of distributions (and thus CPT entries) can be projected from our discussion in Section 3.3. In 

this case, the CPT of A increased from three rows to nine rows because after AR O becomes a parent 

of A and the value set of O has a cardinality of three. The average number of flips per sample also 

nearly doubled because A is now influenced by one more variable, namely O; for time slices where no 
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(a) Before AR 

A ' 
0 

A ' Ol 0 2 0 3 

ai .39 .305 .305 
a 2 

.305 .39 .305 
a 3 .305 .305 39 

A 
A ' O ai a 2 a 3 

ai Ol 9231 .0385 .0384 
0 2 .0656 XS52 .0492 
0 3 .0656 .0492 i .$852 

a 2 Ol .8852 .0656 .0492 
0 2 .0385 .9231 .0384 
0 3 .0492 .0656 .8852 
Ol .8852 .0492 .0656 
0 2 .0492 .8852 .0656 
0 3 .0385 .0385 .9230 

(b) After AR 

Figure 6.1: Network — Case 1 

evidence value was given, we had to make two flips instead of one to obtain the value of A. In turn, 

this resulted in a nearly 100% increase in the average execution time per sample. 

As for convergence, we plotted in Figure 6.2 the variance of the probability values obtained 

versus the number of samples. An epsilon value of 0.01 was used. As shown, simulation using ER 
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Table 6.2: Performance — Case 1 

Measurement LW ER 
#distributions 
avg #flips 
avg time 

6 
51 

8.4e-4 

12 
96 

1.53e-3 

converged very early, at a sample size of about 50 (variance ~ 6e-3). Using LW, however, simulation 

did not converge even using 1000 samples (variance = 0.08). This shows that convergence is at least 

20 times faster in the ER case where AR played a major role in bringing simulation back on track.18 

The network used is a DPN where the state evolution model is weak, as can be seen from the 

CPT of variable A where states evolve quite randomly. Variable O can be thought of as a sensor of A. 

Although this sensor has an error of only 0.1 in tracking the current state of A, LW ignored this evi­

dence and let the system proceed according to its weak state evolution model, disagreeing with the 

evidence most of the time. In each run, therefore, the weighting process assigned extremely low 

weights to almost all the samples. On the other hand, a very small number of samples closest to the 

true state were assigned relatively high scores. These samples imposed a disproportionately large in­

fluence on the sample score distribution and dominated in the calculation of the posterior in concern. 

Most of the samples were therefore effectively ignored, resulting in large estimation errors. For this 

example, the score of a sample varies from0.056= 1.6e-8 (when all six A's have either a2 or a3 as val­

ues) to 0.96 = 0.53 (when all six A's have the value a{). Since these scores fluctuate by factors of as 

large as 107, the probability computed in one run might be very different from that in another. The 

In [FUCH90], simulation results showed that by reversing arcs into evidence nodes convergence was at least 100 times 
faster than without evidential integration (the non-temporal counterpart of ER). 
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Figure 6.2: Convergence behavior— Case 1 

resulting variance is so great that the posterior obtained cannot be considered as accurate. Unless 

significantly more samples are taken, LW fails in producing a reliable answer when systems with a 

weak state evolution model are simulated. 

ER helps bring simulation closer to reality by using the observed evidence to influence state 

variables. Figure 6.1b shows the network structure and the CPTs after AR. Now sample scores do not 

vary to a great extent: assuming random initial states, the score of a sample varies from 1/3 x 0.3055 = 

8.8e-4 to 1/3 x 0.395 = 0.003 after arcs have been reversed (including time slice 0). Moreover, vari­

able A now has a chance of about 0.9 of having the value at given O = ou as shown by the highlighted 

entries in the figure. As a result, not only is the degree of accuracy increased by the reduction in vari-
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(a) Plain CPT (b) Tree-structured CPT 

Figure 6.3: Network — Case 2 

ance of the scores obtained but the "degree of realness" of simulation is also enhanced by the genera­

tion of more samples close to the true state of A given values of O. 

Case 2 

We compared the performance of LW and SLW using the networks shown in Figure 6.3. (We have 

left out the CPT for D because D will never be sampled given our query below.) Performance results 

are shown in Table 6.3. 

First, we managed to save one probability distribution by using the tree-structured representa­

tion. (Note the compression of the two shaded entries into one.) Then we started simulation using the 

query P(C(5) = 710(5) = J), assuming both variables are binary. The average number of flips per 

sample using SLW is only two-third that using LW. This is mainly due to two places where flips were 

saved. The first is the saving of flips for variable D; since it is not the ancestor of C or O, it is not a 
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Table 6.3: Performance — Case 2 

Measurement LW SLW 
#distributions 
avg #flips 
avg time19 

10 
12 

8.18e-4 

9 
8.174 

7.27e-4 

relevant variable and was not sampled at all in the simulation. The second saving lies in the CPT of 

O. We notice that once C is true, there is no need to flip for B. So, for this query, we can generate all 

values of C(0) to C(5) and then, if C(5) is true, generate 0(5) and these are all the variables we need. 

6(0) to B(5) will only be generated if C(5) is false. Thus we see that if a variable depends on the pre­

vious value of itself, and the variable need not be generated in a certain time slice t, then in all slices 

up to and including t no sampling for the variable is necessary. When traced from time t (i.e., five in 

this case) back to time zero, this chain of savings can increase computational efficiency significantly. 

Moreover, since a variable may depend on more than one variable in the previous time slice, a saving 

in time t will mean several chains of savings from time t back to time 0. 

In Figure 6.4 we show an excerpt from the execution results of SLW. The blank entries corre­

spond to the B(t)'s skipped during simulation. As can be seen, as many as 50% of the total number of 

relevant variables (perceived at the network level) were skipped for most samples. For the case where 

a plain CPT representation was used, however, no such savings could be made. This explains why the 

average execution time per sample is longer using LW than using SLW, and proves that our worry that 

using a tree-structured representation may slow down execution is not necessary. 

Since we turned on the "verbose" option in this experiment in order to produce excerpts from execution results, these val­
ues are actually greater than they should be when the verbose option is off. Nonetheless, as our comparison between LW 
and SLW is local to this experiment only, this increase in value does not matter in a relative sense. 
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Run 1 : 
V a r i a b l e 

ZI sample ) Z ( q u e r y ) ZI sample ) Z ( q u e r y ) 
Round CIO) C ( l ) C (2 ) C (3 ) C(4 ) C<5)* BIO) B I D B(2) BI3) B(4) BI5) 

1 T T T T T T 0 7000 0 7000 
2 T T T T T F T T T T T T 0 6000 0 0000 
3 F F F F T T 0 7000 0 7000 
4 F F F F F T 0 7000 0 7000 
5 T T T T T T 0 7000 0 7000 
6 T T T T T T 0 7000 0 7000 
7 F F F F T T 0 7000 0 7000 
8 T T T T T T 0 7000 0 7000 
9 F F F F F F T F T T T T 0 6000 0 0000 

10 T T T T T T 0 7000 0 7000 
11 F F F F F T 0 7000 0 7000 
12 F T T T F F T T T T T T 0 6000 0 0000 
13 F F F F T T 0 7000 0 7000 
14 T F F F F F T T T T T T 0 6000 0 0000 
15 T T T T T T 0 7000 0 7000 
16 F F F F T T 0 7000 0 7000 
17 F F F F F T 0 7000 0 7000 
18 F F F T T T 0 7000 0 7000 
19 T T T T T T 0 7000 0 7000 
20 T T T T T T 0 7000 0 7000 
21 T T T F F F F F T T F T 0 6000 0 0000 
22 T T T T F F F F F T T T 0 6000 0 0000 
23 T T T T T T 0 7000 0 7000 
24 T T T T T T 0 7000 0 7000 
25 T T T T T T 0 7000 0 7000 

Figure 6.4: Excerpt from execution results of SLW— Case 2 

We do not examine convergence behavior in this experiment because the difference in CPT 

representations does not affect convergence and there will be no difference between LW and SLW in 

this aspect. 

Case 3 

Using the system shown in Figure 4.3, we carried out simulation with both the ER and the SER algo­

rithms. Since our implementation reverses arcs on a "first come first serve" basis, it chose to reverse 

the arc between variables O and C first because C is the parent of O first encountered. The resulting 

system is as shown in Figure 6.5. The query posed was P(C(5) = 71(9(5) = 7). Performance results 

are shown in Table 6.4. Again, we do not investigate convergence behavior for this case for the 

aforementioned reason. 
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A ' 

0.619 0.3684 0.5568 0.4512 

Figure 6.5: Network after SAR — Case 3 

As expected, the plain ER algorithm led to full CPTs (with 62 rows in total) after AR while 

our SER algorithm managed to shrink the CPTs to contain merely 23 leaves. (Note that the CPT of D 

remained unchanged: it retained its original random distribution because the influence of D on O that 

would have been introduced during AR between O and A was removed in SAR (Section 4.2.1).) For 

large networks, this reduction in space complexity (even with internal nodes counted) is an invaluable 

asset. SER also generated a much lower average number of flips of 15.87 per sample20, reflecting the 

ability of the tree-structured representation to capture variable independence (or, more precisely, con­

text-specific independence (CSI) [BFGK96]) during simulation. An excerpt from the execution results 

2 0 The total number of relevant variables perceived in the network level was 24 after SAR. This is slightly different from that 
(27) in ER due to the difference in the orders of arcs reversed. Our ER implementation also reverses arcs on an FCFS ba­
sis, but since the order of parent specification for a node does not matter in a plain CPT representation, we chose to specify 
the parents of a node in alphabetical order for consistency. Thus, variable A was encountered first in ER while SER first 
came across variable C. As a result, two different network structures were produced. 
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Table 6.4: Performance -— Case 3 

Measurement ER SER 
#distributions 
avg #flips 
avg time21 

62 
27 

1.55e-3 

23 
15.87 

1.55e-3 

of SER is shown in Figure 6.6. As many as 10 variables could be skipped before the requested poste­

rior was computed in each sample, though the average execution time per sample was not reduced due 

to the overhead in AR and the relatively small size of the system. For a larger, more practical net­

work, it is expected this AR overhead will have a much smaller impact on execution time. 

We also observe in the figure that variable D in time slice 5 never entered into consideration 

during simulation, as shown by the blank column under the underlined heading "D(5)" near the right 

end of the figure. The reason can be found by examining the set of variables relevant to the posed 

query. Starting (in time 5) at the root of the CPT of variable C we encounter A' (Figure 6.5), which 

means A(4) must be flipped before other parents of C(5). If A(4) turns out to be true, then C(5) only 

depends on B(5). From the CPT of B we know that variable B does not depend on D. Therefore, if 

A(4) is true, then D(5) will never be considered. On the other hand, if A(4) is false, then the next flip 

has to go for A(5). Referring to the CPT of A, given that A' is false, D is skipped. The remaining par­

ents are B and O, neither of which depends on D. So, if A(4) is false, D(5) will also not be flipped. 

Hence, we conclude that C(5) in no circumstance depends on 7J>(5), explaining why the column in con­

cern is blank. 

2 1 We again turned on the verbose option in this experiment to obtain excerpts from execution results. 
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0(0} D(0] AIO) Oil) BID AIL] 0(21 DI2) BIZ) A (21 0(3) DI3) B(3) A (3) 0(4) DM I BUI A (4) D(5) BI5) A15) CISC 
impla) Z(i]uaiy) 

5375 
4GZ5 
4750 
5250 
4625 
5375 
4750 
5250 
5250 
4625 
5250 
4625 
5250 
5375 
5250 
4750 
4750 
4625 
4750 
5250 
5250 
5250 

5375 
4750 
4625 
4625 
5250 
5375 

4750 
4750 
5250 
5Z50 
5375 
4625 
4750 

5250 
4750 
5250 
4625 
4625 

4750 
5250 
4625 
5375 

5250 
4625 
5250 

4750 
1625 
4750 
5250 
5250 
5250 

5375 
4750 
4625 
4625 
5250 

5250 
5250 
4750 
5250 
4625 
0000 

Figure 6.6: Excerpt from execution results of SER — Case 3 

In this experiment (and the previous one) we can see the tree structure lends itself nicely to 

performing simulation in DPNs. Despite the relatively small size of our networks, the savings in the 

number of flips were tremendous. To a large extent it is this ability to capture CSI and the resulting 

efficiency enhancement that motivates the use of a tree-structured CPT representation, especially 

when hundreds of variables are present in practical systems. 
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0.7241 0.5385 0.1111 0.0526 

(a) Before SAR (b) After SAR 

Figure 6.7: Network — Case 4 

Case 4 

Though AR and the tree-structured representation are useful, there are cases where neither of these 

techniques can help. One such system is shown in Figure 6.7a. We ran L W 2 2 and SER using this 

system with the query 

P(5(0) = 5(2) = 5(4) = 5(6) = 5(8) = 5(10) = 710(0) = 0(2) = 0(4) = 0(6) = 0(8) = O(10) = 7). 

The tree structure did not buy us anything before AR, since all CPTs were full trees. It did not 

make CPTs more compact after AR either (Figure 6.7b). In Table 6.5 we see that SER apparently 

managed to save some flips (0.96 out of 16). This saving, however, was due to the incorporation of 

our technique where sampling of query variables is stopped on insatisfiability of any component of the 

query23 (Section 5.3). In other words, the tree structure had no contribution to the saving of flips in 

this experiment. 

2 2 We show only the tree version of the CPTs for convenience. The plain version can be obtained in a straightforward man­
ner. 

2 3 Query variables will still be sampled if they are relevant to the given evidence. 
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Table 6.5: Performance — Case 4 

Measurement LW SER 
#distributions 
avg #flips 
avg time 

4 
11 

1.82e-4 

6 
15.04 

2.73e-4 

In Figure 6.8, we can see AR did not speed up convergence significantly in this case because 

the sample score before AR was already quite stable (0.9 versus 0.8) across samples and only a little 

more stable (0.87 versus 0.81) after AR. In addition, ten time slices is not sufficient, given the 

strength of the state evolution model, to allow simulation to diverge "too far" from reality. Therefore, 

simulation using either of the algorithms converged to an epsilon of le-4 at about the same number of 

samples. (In fact, SER needed even more samples (670) than LW (420) in this case.) The average 

execution time per sample also increased after SAR due to the increase in the number of arcs and thus 

the average number of flips. So, in this case, instead of going into all the troubles to reverse the arcs, 

we would prefer using the non-AR version. Nonetheless, systems similar to this one are not common 

in practice. Real systems are usually much larger so that a larger extent of local structures can be ex­

ploited. At the same time, the errors of the sensors are normally much smaller (e.g., P(0 = T\B = F) 

« 0.8) so that the effect of AR is much more conspicuous. 



Chapter 6. Implementation and Results 84 

Figure 6.8: Convergence behavior— Case 4 

Case 5 

In an attempt to explore the effects of SAR on probabilistic inference in a larger network, we doubled 

the size of the network in Case 3 and compared the performance of LW and SER. Figure 6.9 shows 

the network used in the experiment. As before, variable A depends on its previous value. All other 

variables, i.e., B - E, O, W- Z, only depend on variables within the current time slice. Source variables 

(B - D, W- Z) are assumed to have random distributions and their CPTs are not shown. 

After posing the query 

P(L\0) = D(10) = D(20) = £>(30) = D(40) = D(50) = F\ O(0) = O(10) = 0(20) = 0(30) = 0(40) = 0(50) = F) 
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0.95 0.05 B A 

0.7 0.2 0.5 B 

0.4 0.1 

Figure 6.9: Network — Case 5 

we ran both the LW and the SER algorithms 100 times. The epsilon used was le-4, since the posterior 

probability was of the order 0.01. Performance results are shown in Table 6.6. 

From the table we notice that SER more than doubled the number of probability distributions 

in the resulting system after SAR. This can be explained by the vast number of parents of both the 
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Table 6.6: Performance — Case 5 

Measurement LW SER 
#distributions 
avg #flips 
avg time 

75 
144 

0.0031 

192 
363.1 

0.00979 

evidence variable O and the state variable E in the original network (where both variables had 5 par­

ents). Since there was a directed arc from E to O, this arc had to be reversed, which means O had to 

inherit all five of £"s parents. This in turn called for further reversal of arcs between O and the par­

ents of E. Adding to the AR of O's own parents, these AR sequences produced an intermingled result­

ing network where the number of parents increased substantially for all variables except O. As a re­

sult, the CPTs for these state variables expanded. 

We also observe in the table that the average number of flips per sample is considerably 

greater in SER than in LW. This is a direct consequence of the increase in CPT size. Although this is 

a 1.5-fold increase, the tree structure already helps reduce this number (as well as the size of CPTs) to 

a minimum by ignoring irrelevant variables — in a by-experiment we conducted, we had 366 distribu­

tions in total and 500 flips per sample on average when the unenhanced ER algorithm was used. 

The average execution time per sample of SER is three times that of LW. This may seem un­

promising at first sight, but given SER converged at 170 samples while LW still did not converge at 

1000 samples (Figure 6.10), SER still beats LW in terms of accuracy and total execution time. The 

only way for LW to decrease its variance in the computed posterior seems to be at least a 5-fold in­

crease in the sample size, demanding significant increase in total execution time. 
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Figure 6.10: Convergence behavior— Case 5 



7. Conclusion and Extensions 

In this thesis we investigated the problem of divergence from reality when LW is used to perform 

probabilistic inference in DPNs [KAKR95]. An experiment was conducted to demonstrate the unde­

sirable effect of a straightforward application of LW where it generated simulations that ignored the 

observed evidence and therefore became increasingly irrelevant. Posterior probability values thus ob­

tained induced great variance across runs and virtually did not converge even at a sample size of one 

thousand. 

As a remedy, we modified the ER algorithm in [KAKR95], which employs the AR algorithm 

in [SHAC86], with an intention to guide simulation back on track. Experimental results show that ER 

was indeed capable of bringing simulation closer to reality, providing accurate computed values that 

converged quickly. However, the additional space and time complexity required by AR were substan­

tial. 

In view of these problems, we devised the SER algorithm using a tree-structured CPT repre­

sentation [BODG95]. SER avoids the problem of divergence from reality by using SAR, which was 

presented in detail in Chapter 4, to keep simulation on track while reducing the size of CPTs with a 

compact representation. We also used a query-directed approach and presented the techniques of rele­

vant variable extraction and satisfiable query sampling to speed up probabilistic inference. A series of 

experiments was conducted to test our SER algorithm incorporated with the aforementioned tech­

niques. With the exception of an ad-hoc counterexample, results show that the SER algorithm outper-

88 



Chapter 7. Conclusion and Extensions 89 

formed both LW and ER in all our experimental cases in terms of rate of convergence as well as com­

pactness of CPT representation. 

From the performance of SER in our experiments, it is postulated that SER will be found 

practical in applications involving complex models with highly interdependent variables. We would 

like to see SER being applied to specific problem structures, especially in a partially observable envi­

ronment where decisions have to be made based on some set of computed posterior probability values. 

As for refinement of the algorithm and its implementation, there is room for exploration in 

how determinism can be exploited effectively in performing SAR. We have seen that the presence of 

deterministic values in a tree-structured CPT may help remove the influence of some of the parents of 

the node in concern during SAR. The ability to detect and exploit determinism can certainly increase 

both computational and spatial efficiencies. 

Another challenge lies in the development of a graphical user interface to visualize the simu­

lation process. A visual simulator of this kind was implemented in [CHEU95] where policies can be 

visually simulated. A reward structure was also built in for policy evaluation purposes. It is yet un­

known whether the SER algorithm can find its place in this area where causal inference (or projection) 

rather than diagnostic inference plays a major role. 
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