
Integrating Simulation and Animation Software
Systems through a Generic Computational Engine

by

Robert James Walker

B.Sc, University of British Columbia, 1992

B.Sc.(Hon.), University of British Columbia, 1994

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

T H E REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE STUDIES

(Department of Computer Science)

We accept this thesis as conforming
to the required standard

The University of British Columbia
July 1996

© Robert James Walker, 1996

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree- that the Library shall make it

freely available for reference arid study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed withbut my written

permission.

Department of Coi^VuTER SciFA/Cg'

The University of British Columbia
Vancouver, Canada

Date QcTOdBR II . I ^ L -

DE-6 (2/88)

Abstract

There continue to be a proliferation of simulation/animation software packages.

These packages typically are not designed to communicate in a general fashion with

others, or if they do, often require tight restrictions on the conceptual designs of

their partners typically in terms of temporal management. Attempting to combine

and coordinate such disparate packages leads to the requirement of a system for

the manipulation, configuration, and synchronization of communication between

them. The form of such a communication system is naturally described in terms

of a graph; thus, the need for a means to utilize some sort of graph or network

as a computational engine arises. A particular formulation of coloured Petri nets

(CPNs) is seen to be an effective vehicle to this end; in addition, a system built

out of CPNs has the ability to be directly analyzed, since that is what CPNs were

originally devised for. This work demonstrates an efficient implementation method

which also leads to additional, desirable features such as permitting a hierarchical

construction language.

ii

Contents

Abstract ii

Contents iii

List of Figures vii

Acknowledgements x

1 Introduction 1

1.1 Perceiving the Need for Integration 1

1.2 Attempting Integration 3

1.3 Defining the Parameters for Integration 4

1.4 Design Goals 7

1.5 Related Work 9

2 Animation and Simulation Coordination System 14

2.1 Overview 14

2.2 Control Graph Components 15

2.2.1 Control Flow Operators 17

2.2.2 Synchronization Operators 19

iii

2.2.3 Memory Operators 19

2.2.4 Computational Elements 20

2.2.5 Stewards 21

2.3 Graph Evaluation 24

2.3.1 Deferral 24

2.3.2 Forecasting 25

2.3.3 Commitment 25

2.3.4 Graph Evaluation Summary 25

2.4 Satisfaction of Design Goals 27

3 Coloured Petri Nets 29

3.1 History 29

3.2 Description 33

3.3 Analysis 36

3.4 Satisfaction of Design Goals 41

4 Constructing ASCS via CPNs 44

4.1 Primitive Nodes 44

4.2 Control Graph Components 47

4.2.1 Channels 47

4.2.2 Control Flow Operators 50

4.2.3 Synchronization Operators 53

4.2.4 Memory Operators 54

4.2.5 Computational Elements 55

4.2.6 Stewards 58

4.3 An Example Subgraph 58

iv

5 A Format for Implementation 63

5.1 Inhibitor Arcs 64

5.2 Test Arcs and Guards 66

5.3 Enablement 66

5.3.1 An Enablement Bookkeeping Method 67

' 5.3.2 Single-processor System 69

5.3.3 Multi-processor, Non-distributed System 73

5.3.4 Distributed System 75

5.4 Prioritizing Transitions 77

5.5 CPN Refinements Utilized in This Work 79

5.6 Related Work 80

6 Implementation Details 82

6.1 Transitions 82

6.2 Places 83

6.3 Connections 85

6.3.1 Constructing CPNs 85

6.3.2 Deconstructing CPNs 87

6.3.3 Non-static Connectivity 88

6.4 Graph Evaluation 89

7 Conclusion 92

7.1 Summary 92

7.2 Future Work 96

Bibliography 97

v

Appendix A Formal Definitions 105

A . l Notation 105

A.2 Definitions 106

Appendix B Theorems 117

vi

List of Figures

2.1 Symbols used in the ASCS node diagrams 17

2.2 An ASCS gate node 17

2.3 An ASCS conditional node 18

2.4 An ASCS splitter node 18

2.5 An ASCS OR-junction node 19

2.6 An ASCS AND-junction node 20

2.7 An ASCS latch node 20

2.8 An ASCS constant node 21

2.9 ASCS unary and binary mathematical operator nodes 21

2.10 An ASCS linear interpolator node 22

2.11 An ASCS agent steward 22

2.12 An ASCS dof steward . 23

3.1 A simple place-transition net (a.k.a. Petri net) 30

3.2 The place-transition net of Figure 3.1 after the enabled transition has

fired 30

3.3 An example of a generalized Petri net 32

3.4 A coloured Petri net 34

vii

3.5 The reachability tree for the marked CPN of Figure 3.4 37

3.6 A marked generalized Petri net equivalent to the marked CPN in

Figure 3.4, page 34 38

4.1 Symbols used in ASCS/CPN diagrams 45

4.2 An example of an ASCS/CPN diagram 46

4.3 Primitive ASCS nodes: a transition node on the left, and a place

node on the right 47

4.4 An ASCS/CPN channel 48

4.5 An ASCS/CPN equivalent to an ASCS overwriting channel 49

4.6 An ASCS/CPN gate node 50

4.7 An ASCS/CPN conditional node 51

4.8 An ASCS/CPN splitter node 52

4.9 An ASCS/CPN OR-junction node 52

4.10 An ASCS/CPN AND-junction node 53

4.11 An ASCS/CPN latch node 54

4.12 An ASCS/CPN constant node 55

4.13 An ASCS/CPN unary operator node 56

4.14 An ASCS/CPN binary operator node 56

4.15 An ASCS/CPN linear interpolator node 57

4.16 An ASCS subgraph to perform a primitive left-edge quadrature. . . 59

4.17 An ASCS/CPN equivalent to the ASCS subgraph in Figure 4.16. . . 60

4.18 An ASCS/CPN equivalent to the special ASCS splitter node used in

the example subgraph 61

5.1 An example of equivalent CPNs with and without inhibitor arcs. . . 65

viii

5.2 The construction of a bridge across a network gap 76

5.3 Prioritized transitions 77

5.4 Equivalence of CPNs with and without priorities 78

ix

Acknowledgements

I would like to thank the following people:

• my supervisor Dave Forsey, for his continuing struggles to help me in the midst

of his own problems;

• my colleagues, for their knowledge, assistance, and willingness to share; in

particular: Jason Harrison, Chris Healey, Paul Lalonde, Marcelo Walter, and

Sidi Yu;

• my parents Meryle and Harry Walker, for their patience and understanding;

• my friends Shelley Knowles and Gordon Chua, for kicking me in the butt when

appropriate;

• my readers Dinesh Pai and Jason Harrison;

• and Alain Fournier and Kelly Booth, for their inspiration: I think I begin to

see a point to it all.

ROBERT JAMES WALKER

The University of British Columbia

July 1996

x

Chapter 1

Introduction

Time to use the handyman's secret weapon:

' ... duct tape.

— Red Green

1.1 Perceiving the Need for Integration

Today, simulation and animation packages1, both commercial and research-oriented,

exist in an ever-increasing array of sophistication. With this sophistication often

comes increasing specialization; software is designed to solve specific problems, or

to utilize specific techniques. Such design is often "short-sighted": it is intended to

address only specific, narrowly-focussed goals. For example, physics-based, numer

ical simulation agents rarely have ray-tracers built into them, and some very good

modelling agents have poor animation features.

This fact is not delineated to cast aspersions at the designers of such agents;

the software is often already so complicated that requiring consideration of every
1We shall henceforth refer to such packages as agents.

1

possible future extension would render the process of their construction beyond the

means of even the largest of software manufacturers. Nor is this fact intended to

claim that such designers are lacking in their vision; the future is opaque, and often

the best one can do is to be prepared for change.

Keyframing, editing, sequencing and previewing are common tools within

computer animation systems. Gradually, such systems are being extended with

features from the realm of simulation: forward and inverse kinematics, procedural

models, dynamics, and constraints, among others. However, developers of agents

must concentrate on particular aspects of their field, rather than do everything, due

to the constraints of time and expertise — it is sufficiently difficult to satisfy such

constraints in a single, specialized area. Delineation of such an area, however, need

not be standard in any way, so an animator may require features which cross these

boundaries.

Animations often utilize features "at the cutting edge" of technological ad

vancement, and as such, cannot be delayed until these new technologies are directly

incorporated into existing or new agents. Such incorporation into a single agent

will most likely be performed by some means of connecting the existing packages,

especially given the software engineering principle of code re-use; the interface be

tween them will merely be unseen by the external world. The task of integration

must address the problems associated with the differences between the animation

and simulation agents: differing notions of time, overlapping control of degrees of

freedom, and different models of behaviour.

We note that some agents are beginning to permit the inclusion of third-

party software via "plug-ins". These are generally linked into the existing system

via dynamically shared objects (DSOs). However, such an interface provides little

2

or nothing in the way of coordinating abilities. DSOs are merely the raw material

for integration; the finished tools still need to be built from them.

1.2 Attempting Integration

So an animator/simulator must make a choice when constructing an animation/sim

ulation:

1. select amongst all the available agents,

2. attempt some unholy Frankenstein's monster of a patch job, or

3. do a proper, well-programmed interface between them.

Simply selecting among available agents is sometimes the only practical

choice; selection is based upon the features and capabilities of the agents, and the

one which supports the greatest number of needed and desired features is the one

chosen. However, this will generally cause the sacrifice of some features one would

like to use from some other agent — otherwise, there would be no need for further

research or commercial software development.

Slapping systems together higgledy-piggledy on a small-scale is sometimes

acceptable, as long as the level of interaction is low or straightforward, and the

animation does not change a great deal. Otherwise, it can be dangerously unpre

dictable as any ad hoc job generally is. Also, it will be unlikely to be reusable, even

if the animator manages to keep the parameters of her animation constant enough

through the period of development not to bring the system to its shaky knees.

3

1.3 Defining the Parameters for Integration

The way in which to design a good interface largely depends upon the level of

integration required, and the extensibility to software agents other than the partic

ular ones under consideration for a specific task. There are three coarse levels of

interaction possible between software agents:

1. independent post-production,

2. dependent post-production, and

3. co-production.

Independent post-production is a process in which each agent generates a

separate image or portion thereof, and the results are simply composited; each

agent does not communicate in any fashion with its counterparts, and so, each

sub-image is independent from the others. Clearly, only the simplest of animation

schemes can benefit from such a situation, such as overlaying moving objects on a

static background where the animated objects and still background were generated

separately.

Dependent post-production allows the lowest level agents to generate their

animations, and then higher-level agents to create and then composite their anima

tions based upon those at the lower level. This will generally require image process

ing techniques from the realm of artificial intelligence to be successful, which is a

computationally expensive and difficult route to take. Computer-augmented reality

(CAR) uses this process in which the low-level agent is a camera, and the higher-level

agents attempt to insert computer-generated images into the scene which interact

with the objects from the real world. For example, inserting a computer-generated

4

search-light into a real scene and having the light illuminate the objects there in a

manner consistent with their three-dimensional form and physical properties would

require dependent post-production.

It makes much more sense to transfer the model to be animated from one

agent to another, rather than essentially reconstructing an approximation at each

step. Such co-production could be performed in a pipelined manner, but this will

only permit a strict hierarchy of reactionary behaviour of the objects within the

animation. For example, consider two objects a and b to be animated respectively

by two agents A and B with the construction of A's model occurring before that

of B. If a and b are to collide then a cannot react to the collision in any way; this

could be a problem if a is a feather and b is a rock.

Rather than this strictly pipelined meta-model for animation, transferring

the models back and forth in a non-strictly pipelined fashion may be preferable as

being more powerful. This could be done explicitly: allow one agent to alter the

model to its satisfaction, then transfer the entire entity to the other, etc. Alter

natively, allowing some sort of asynchronous access to the model could reduce the

unnecessary overhead of transferring and translating the complete model. Coordi

nation techniques would be needed to facilitate the transfer of information, and the

control over this information, between agents. For example, consider two "objects"

a and b to be animated respectively by two agents A and B. Let a be a collection of

particles and b be an object which reacts non-linearly to collisions with these parti

cles — specifically, small numbers of particle collisions do not affect it in any way,

but larger numbers alter its behaviour significantly. Some agents could potentially

be unable to re-calculate portions of the model, so our meta-model must be flexible

enough to cope with such problems. Furthermore, conflict resolution must be avail-

5

able for situations in which different agents attempt to alter the same portions of

a model: this may introduce cyclical behaviours which can only be accommodated

by a non-pipelined meta-model. Of course, halting within such a meta-model is not

guaranteed.

In any but the most static of environments, we argue that the non-strict

pipelining form of co-production is the only solution powerful enough to cope with all

possible complicated interactions that could arise between multiple agents. An en

vironment designed to handle these coordination tasks could easily deal with the

much simpler scenarios outlined in previous paragraphs as well.

The problem now becomes that of identifying the features which need to be

translated, coordinated, and communicated. At the lowest and most general level,

it is clear that any system could potentially require a fully Turing-equivalent com

munication interface since any arbitrary software might be of use to an animator

at some point. All is not lost, however; usually, such extreme flexibility will not

be required, as systems will operate using a relatively small set of paradigms. The

trick is to provide a simple means for coordinating common schemes while permit

ting some, possibly more complicated, way to coordinate and create the occasional,

bizarre application.

It now becomes necessary to determine the kind of information which will

need to be communicated. Since this work is taking place specifically in the context

of animation and simulation, we are able to narrow the focus somewhat. The frame

times of an animation are those when object properties need to be fully determined

within the integrated models; likewise, in a simulation context, time is the means

of synchronization. The specific data required to perform this is difficult to define

in general terms, so a coordination environment must operate by coordinating time,

6

and support the means for more general data exchange. Of course, there is nothing

to say that the parameter of coordination need be time per se, although this is

the usual case; in fact, there may be situations in which multiple parameters of

coordination are required. Thus, the integration environment will need to possess

some of the properties of parametric databases2, at least as viewed externally: agents

will have to request certain data at specific values for the parameter or parameters,

and the environment will have to coordinate its resources in such a way as to provide

this information.

1.4 Design Goals

Implementation of the data sharing and temporal coordination features discussed

in §1.3 could be accomplished in a number of different ways; to distinguish a rea

sonable approach, the specific goals are as follows.

1. Inclusion of Pre-existing Software Packages

Since this entire work centres upon the concepts of re-using existing packages

without resorting to re-implementation, an environment which allows and even

encourages integration of pre-existing software will be required.

2. Highly Interconnected Communication

No simple model such as properly nested parallel/serial processes will be suf

ficient to deal with the potentially high-level of interconnection that will be

encountered. A true graph-like structure of high degree will be required.
2 A parametric database is the generalization of temporal databases and spatial databases. Tem

poral databases are ones in which all data has recorded for it a time over which it is valid; data in
spatial databases have two or three parameters recorded marking the area or volume over which
they are valid. Thus, a parametric database has n parameters determining the valid range for each
datum.

7

3. Hierarchical Construction Scheme

At its lowest level, the environment must be fully Turing-equivalent in its com

putational power; however, the application programmer should not be forcibly

subjected to such a low-level system when dealing with a standard paradigm3.

Thus, some sort of environment which may be treated in a hierarchical fashion

would be ideal.

4. Distributed Computing

Since modern computation is rapidly approaching the stage where distributed

computation will be common-place, the environment should be compatible

with it, and better, be able to take advantage of it to increase the speed of its

computations.

5. Extensibility

Since no one can predict the exact needs which will be encountered in the

future, the environment must be extensible.

6. Strong Typing

Data communication should be such that the environment can always depend

upon what kind of data resides at a particular memory location, preferably

without resorting to run-time type-checking.

7. Efficiency The implementation must be reasonably efficient such that the fin

ished product may be utilized as an actual computational control tool, rather

than as a mere formalism.
3such as those described in §1.3

8

8. Analyzability

It would be nice if the properties of a particular interconnected group of sys

tems could be determined.

1.5 Related Work

There have been many attempts at providing a fully integrated, monolithic envi

ronment to provide the resources for integrating animation and simulation. They

have all suffered from the monolithic approach's basic flaw: extending the environ

ments to integrate more agents is only possible in a tightly controlled framework

which would require re-implementing existing software systems. Only some of the

following examples were specifically designed to address the problems of integrating

existing simulation and animation agents; the rest were included here because of

their similarities to environments which were so designed, in case one were tempted

to utilize or modify them for such an integration environment.

Fiume et al. [fium87] defined a temporal scripting language intended for

"object-oriented" animation. Such objects can be viewed today as independent, but

inter-communicating processes. Their motivations included the wish to specify the

coordination of objects, real-time constraints, and concurrency. It is not intended

for the integration of existing agents, and would not readily permit this.

The HIRES simulation language [fish88] allows a simulation to be constructed

in a multilevel fashion where each level can be viewed via a different process ab

straction. This permits the construction of a "library" of different representations

of the same process, which would take the form of a network. It also is not intended

for the integration of existing agents.

9

ConMan [haeb88] is a high-level visual language used to construct complex

applications by interconnecting simple modules. These modules are predefined in a

toolkit fashion, though, and external agents cannot be added. Van Overveld [over93]

also had allowed a building block approach, although it was specifically designed for

goal-directed motion rather than an integrated environment.

The Clockworks [gett90] is an early attempt at a complete, monolithic en

vironment for a wide variety of modelling, animation, and simulation. Although

extensible, it does not allow the direct integration of existing software agents.

Chmilar et al. [chmi91] also developed a semi-monolithic kernel for an in

tegrated environment. Although it is much more extensible and utilizes a design

philosophy not unlike that of this work, the kernel approach is still quite restrictive

in as much as they have assumed a specific set of process abstractions.

Zeleznik et al. [zele91] also constructed a object-based system, replete with

concern about simultaneous interaction problems; however, they make no mention

of difficulties in coordination due to differing notions of time among their objects,

or general process abstraction.

The HIDRA architecture [kazm93] was based upon the concepts of auton

omous, distributed objects, a centralized manager, and a separation of interaction

detection and resolution based upon that object autonomy. HIDRA deals with time

strictly on a clock cycle basis, and it does not deal well with concurrent data access

requirements and deadlock.

There have been many discrete event simulation environments proposed

which in some way utilized or foreshadowed the needs of integrating existing agents

in a network type of environment. The discrete event paradigm is not well-suited

for continuous or updatable processes, however.

10

The Tangram Animation System [roze91b] utilizes discrete-event simulation

built upon a queueing network and Markov chain simulations to permit animation

to be used as a simulation analysis tool. Rozenblat and Muntz wanted "to create a

flexible and extensible platform, where different applications and solution techniques

can coexist and be used synergistically." Among their design criteria were: gener

ality, minimal modification to existing simulation code, and support of hierarchical

modelling. Their system is still relatively rigid, not easily dealing with continuous

or conflicting processes.

Other examples include SPEEDES [stei92, stei94], and Ents [mcgr94].

Tanir and Sevinc [tani94] cited the need for a standardized simulation envi

ronment as an alternative to the "over 200 different languages or environments, each

presenting its own conceptual approach to simulating a given problem" published

in the last 30 years. They went on to define a reference model for such a system;

however, it is a notoriously discrete-event environment.

Various systems have concentrated on pursuing integration based upon spec

ifying a temporal management paradigm.

Kalra and Barr [kalr92] recognized the need for a systematic treatment of

time. They proposed a formalism termed event units whereby objects maintain

their properties until potentially discontinuous and asynchronous changes occur.

But their total framework requires knowledge of the entire system as a system of

equations, thus, it does not deal well with a de-centralized knowledge base. Also,

when events occur simultaneously, the system behaviour is not completely specified.

Kiihn and Miiller [kiihn93] allow true integration of independent, pre-imple-

mented agents, but they consider the local times to be synchronized in a hierarchical

way. Time advances as clock ticks propagate through the hierarchy, but this does

11

not permit non-linear or asynchronous temporal behaviour, nor are non-hierarchical

systems dealt with.

ASCS [lalo96]4 is an attempt to fully integrate and synchronize all models of

temporal management via a network-based control and dataflow system. Its chief

drawback is its lack of an underlying theoretical foundation which would better

permit testing and proving of its properties. This work was done to provide precisely

such a foundation.

RASP [lee94] is an attempt at providing an extensible set of interacting

tools, specialized for robotics and simulation, communicating via a non-static graph.

It manages multiple notions of time. It does not permit the inclusion of pre-

implemented software packages; it also possesses neither a hierarchical construction

scheme, nor strong typing, although these properties could likely be added. What

could not be added directly is analyzability.

Constraint nets [zhan94] were introduced to address problems arising in

robotics: systems which consist of continuous, discrete, and event-driven compo

nents. Constraint nets were later developed as a general semantic model for such

"hybrid" systems, permitting an analyzable framework with hierarchical modelling

capabilities, and a rigorous formal programming semantics [zhan95]. The properties

of constraint nets are not as well-studied as those of Petri nets at present; it is not

clear whether this model is capable of allowing all the features proscribed in §1.4,

specifically, inclusion of pre-existing software packages, and efficient implementation,

"formerly SPAM palo94]

12

Summary

The needs of the modern animator/simulator are voracious: the latest research from

highly disparate areas of study in computer science are often required to maintain

the necessary level of excellence. Software manufacturers are incapable of providing

a complete repertoire and maintaining it at the pace of advancement; therefore, they

concentrate on specific areas. In order to provide the full functionality which should

be available, integration of the specialized packages into a single, intercommunicat

ing whole must be performed. Such attempts have been made in the past in the

form of monolithic units which require re-implementation of existing code, rigidly

structured coordination engines which do not permit the inclusion of software using

different paradigms, or non-coordinating interfaces which simply combine existing

software systems without truly aiding in their intercommunication.

13

Chapter 2

Animation and Simulation

Coordination System

The Animation and Simulation Coordination System1 (ASCS) [lalo96] is an ab

stract programming interface (API) which was designed to cope with the issues and

problems introduced in Chapter 1. All it lacked was a simple, analyzable means

of implementation which would allow it to be readily extended, and a theoretical

foundation upon which its properties could be proven. To this end, a description of

ASCS is in order.

2.1 Overview

ASCS is designed not so much to determine the system state at specific time steps,

but rather the change in states between steps. It coordinates agents that operate

based on incompatible models of time by internally utilizing an interval representa

tion of time [snyd92]. ASCS thereby explicitly represents the intervals over which

'formerly known as the Simulation Platform for Animating Motion (SPAM) [lalo94]

14

the state of the system alters.

Agents interact by altering particular degrees of freedom (dofs). It is the

responsibility of ASCS to determine when an agent should either be allowed or be

required to set the value of a particular dof, and to resolve any conflicts which arise

from multiple simultaneous2 attempts to control the value of a dof. The interface

to an agent from the representation of a dof by ASCS is called an actuator.

We note that the most general form of integration possible would still be rep-

resentable by a graph-like structure; therefore, ASCS constructs a graphical model,

called the control graph, with actuators as specific nodes. The control graph is

evaluated to update the state of the system through each time interval.

A typical situation which ASCS needs to cope with is as follows. We have

two agents A and B; A performs its calculations at fixed time steps s + As, s + 2As,

s + 3As, etc. and B performs its calculations at an adaptive step size s + 0.6As,

s + 1.2As, s + 1.201As, etc. Now A requires the data produced by B to perform

its calculations, but B is unwilling to calculate its data until after A and may want

to go back and re-calculate some of its old values depending on the progression of

its own successive calculations. ASCS must decide when to force B to perform its

calculations, how to interpolate and/or extrapolate JB'S data to accommodate the

times when A requires it, and when to tell B that its values are to be finalized and

not changed further.

2.2 Control Graph Components

The control graph consists of a collection of nodes of various, pre-defined or user-

defined types. These may be grouped in a hierarchical fashion to form re-usable

2 i n terms of the final animation, not the computation thereof

15

subgraphs; such subgraphs are typically referred to as simulation engines although

they may essentially be treated as additional user-defined (macro)nodes.

Nodes are interconnected by fixed, typed, unidirectional communication links

called channels. Channels attach to nodes at locations called binding sites. Bind

ing sites themselves will also be typed and have a direction associated with them

(input or output) as well as possessing a property called maximal cardinality (MC).

A channel may be attached to a node at a particular binding site only if their di

rections and types match, and if the number of channels already attached there is

strictly less than the MC of that site. This allows the attachment of multiple chan

nels at a binding site when no ordering of the set of channels is necessary. An MC

of 1 is to be assumed unless some other value is explicitly mentioned.

When a set of nodes are grouped into a simulation engine, unbound binding

sites and selected binding sites which are below their MC are essentially exported

to the external view. These then become binding sites on the new simulation engine

"node".

The question of the existence of a complete set of primitive nodes is an

important one. It will be addressed in following chapters. Existing nodes include

operators for manipulating the time interval associated with a datum, comparison,

logic, control flow, and synchronization. Some basic types are described in the

following subsections.

Figure 2.1 illustrates the meanings of the symbols used in the diagrams which

follow. The semicircles represent binding sites, while the half-boxes represent the

edges of two nodes. An input binding site is represented by a filled semicircle on the

inside of a node boundary, while an output binding site is represented by an unfilled

semicircle on the outside of a node boundary. The bold T represents the types of the

16

name
1 A

12 f\ nom

Figure 2.1: Symbols used in the ASCS node diagrams.

binding sites (note that they match); the numbers represent the maximal cardinality

(MC) associated with each binding site. Either or both of these symbols may be

unshown for any given node if no ambiguity is present, or in the case of abstraction.

An identifying name unique within a node may also be associated with a binding

site. Channels may also carry labels suggestive of the quantities which flow along

them. Values contained within circles inside the nodes represent variables internal

to the node.

2.2.1 Control Flow Operators

(Clip{ [t,t*), [a,b) },d) IINIL

Figure 2.2: An ASCS gate node.

A gate (Figure 2.2) clips an input time interval [£, t*) against the interval

17

specified at its initialization [a, b). If the interval is clipped to nothing, then no data

flows through the gate for that input (NIL), otherwise, the clipped interval tags the

input data d and is output.

(ftt*), d)

ifTest([t,t*),d)== 1
then ([t,t*), d)

else NIL

yes no ifTest([t,t*),d) = 0
then ([t,t*), d)
else NIL

Figure 2.3: An ASCS conditional node.

Conditionals (Figure 2.3) calculate a decision function3, which is specified

at their instantiation, on their input to determine which of their outputs should be

written to. The input value is written to the appropriate output channel.

advance'W

interval n /" X S "N WW
V

Figure 2.4: An ASCS splitter node.

A splitter (Figure 2.4) subdivides its input time interval, received at the

3Test: T IME x DATA B O O L E A N

18

binding site interval, into n equal sub-intervals, where n is the value received at the

binding site n, and releases them in forward order every time it receives a request for

the next interval at the advance binding site. The internal variables Int and N are

NIL both initially and whenever the splitter outputs the last of the sub-intervals;

the splitter blocks until Int and N become non-NIL: this occurs when values are

received over the appropriate binding sites. Note also that new values arriving at

interval and n are ignored until the complete set of sub-intervals is output.

An OR-junction (Figure 2.5) permits multiple input channels to be combined

into a single output channel.

2.2.2 Synchronization Operators

An AND-junction (Figure 2.6) blocks its input at the input binding site until

it also receives a triggering signal from the trigger binding site.

2.2.3 Memory Operators

A latch (Figure 2.7) stores the first value which enters it in its internal

variable Val. It then copies Val to its output every time it receives any input,

Figure 2.5: An ASCS OR-junction node.

19

input trigger

Figure 2.6: An ASCS AND-junction node.

([t,t*),d)

Figure 2.7: An ASCS latch node.

including the initial time when the datum was stored.

A constant (Figure 2.8) is like an initialized latch: it releases a copy of its

data, which it received at its instantiation, whenever it receives an input.

2.2.4 Computational Elements

Unary and binary operators (Figure 2.9) compute mathematical functions

on their input, and pass the results to their output. The internal variable Func is a

function initialized at instantiation.

Linear interpolators (Figure 2.10) calculate a value at some time v between

20

Figure 2.8: An ASCS constant node.

([«•) . d) ([t,t*),d) ([u,u*),e)

^7

([t,t*), Func(d)) (undefined, Func(d, e))

Figure 2.9: ASCS unary and binary mathematical operator nodes.

two other times t and u with specified values d and e. These specified values and

their associated times are input to the node at the binding sites first and second

along with the time that the third value is required at between. The interpolated

value is passed through the output.

2.2.5 Stewards

Stewards are the real workhorses of ASCS — the rest of the control graph merely aids

in their operation. Stewards may be divided into two classes for convenience: agent

stewards and dof stewards. Agent stewards encapsulate the controlling behaviour

21

([« •) , d) ([u,u*), e) ([v,v*),f)

first second between

"̂ 7

([v,v*), d — - + e —-) u -1 u - t

Figure 2.10: An ASCS linear interpolator node.

surrounding direct interaction with agents via their actuators, and dof stewards

control the graph aspects of dofs and access to the agent stewards.

<
readl

— £ _ L _

read2

Actuator write

extemall external!

v T

V

V I V
Figure 2.11: An ASCS agent steward.

Figure 2.11 illustrates a typical, but simple, agent steward; there are a pair

of binding sites for each action: one for the request, and one for the response.

Specifically, agent stewards are responsible for the following actions:

requests to actuators to read particular data,

22

• requests to actuators to write particular data, and

• accesses by the agent to data contained in other portions of the graph required

to fulfill other requests.

The example agent steward has two binding site pairs for read requests: separate

sites are necessary so one can control to which part of the graph a response will go.

Multiple binding site pairs are thus also required for writing, and for the agent's

external requests.

commit traverse sinkl

dump agent-steward

v i v
Figure 2.12: An ASCS dof steward.

Dof stewards are responsible for:

requests to access the value of a dof at a specific time,

requests to set the value of a dof at a specific time,

managing committed data, i.e., times at which the dof's value becomes fixed,

requests to dump out large portions of the dof database,

23

• conflict resolution when separate portions of the control graph attempt to set

the value of the dof at the same time,

• time traversal requests and commands,

• forecasting the value of a dof for which the system is not complete agreed, and

• accessing the agent when forced to do so.

An example of a dof steward is illustrated in Figure 2.12. Conflict resolution is

an implicit mechanism within the steward; forecasts4 are controlled by the graph

evaluation mechanism, and as such, are also implicit. Commits may be explicit,

graph-based events, or implicit as well.

2.3 Graph Evaluation

An ASCS simulation is calculated by passing a time interval to the control graph.

The control graph must be evaluated in such a way as to advance the state of the

dofs being modelled from their initial values at the start of the interval to their

calculated final values at the end of the interval. This may require the calculation

of intermediate values, and further, it may require such calculation to be performed

cyclically, or in some convergent way — the details are inherent in the form taken

by the graph.

2.3.1 Deferral

In some situations, an agent may be unwilling to determine the value of the dofs it

controls based upon data it requires to perform the calculations when that data is
4Forecasts and forced commits will be discussed in §2.3.

24

very scanty. In this situation, it may defer to allow some other agent to act, possibly

filling-in some of the missing information. Double deferral arises in forecasting

(§2.3.2).

2.3.2 Forecasting

A forecast is performed when a steward contains incomplete information for a given

time, which it requires to be sure of the value of its dof at that time. Such an

attempted forecast is performed only when all the enabled actuators have deferred,

and so the system deadlock needs to be broken. An agent may not be able to

perform a forecast, in which case it defers again, becoming doubly-deferred.

2.3.3 Commitment

A commit is necessary when various parts of the control graph are unable or unwill

ing to fully settle on the value of dofs at specific times. The stewards are forced to

estimate or down-right guess as to these values so that computation may continue.

Once the value of a dof has been committed to for a specific time, it may not be

altered thereafter at that time; this is so because other computations may depend

upon this dof having a stable value at a particular time. Commitment can also be

explicitly forced if the behaviour of a particular graph requires it.

2.3.4 Graph Evaluation Summary

Requests for data from agents are given low priority so as to minimize the amount

of communication required between ASCS and agents; such requests are only sent

when evaluation of the graph cannot proceed without fulfilling at least one such

request. Deferrals (§2.3.1), and forecasts (§2.3.2) are required to facilitate this low

25

priority scheme: agent stewards may have to communicate with their agent to fulfill

certain requests for data, so they are permitted to either defer such requests or make

a "guess" as to the value. However, at some point, the agents will have to actually

do some work, and hence commits (§2.3.3) may be forced.

The complete evaluation algorithm is as follows.

A S C S CONTROL GRAPH EVALUATION ALGORITHM

(0) START: The control graph receives an interval.

(1) Send initialization requests to all stewards.

(2) Send advancement requests to all stewards.

(3) WHILE any nodes are enabled, DO:

(3.0) WHILE there are non-actuator nodes enabled, DO:

(3.0.0) Activate a non-actuator node.

(3.1) WHILE there are actuator nodes enabled AND no non-actuator nodes are

enabled, DO:

(3.1.0) Activate an actuator node.

(3.1.1) IF the activation was unsuccessful, THEN:

(3.1.1.0) Make the actuator node deferred.

(3.1.2) ELSE:

(3.1.2.0) Make any deferred actuator nodes undeferred.

(3.1.2.1) Make any doubly-deferred actuator nodes undeferred.

(3.2) WHILE there are deferred actuator nodes, DO:

26

(3.2.0) Request a forecast of a deferred actuator node.

(3.2.1) IF the forecast was unsuccessful, THEN:

(3.2.1.0) Make the deferred actuator node doubly-deferred.

(3.2.2) ELSE:

(3.2.2.0) Make any doubly-deferred actuator nodes undeferred.

(3.3) IF there are doubly-deferred actuator nodes, THEN:

(3.3.0) Force an explicit commit.

(3.3.1) Make any doubly-deferred actuator nodes undeferred.

(4) END: Force an explicit commit to the end of the input time interval.

2.4 Satisfaction of Design Goals

ASCS as specified herein and in [lalo96] does not satisfy all the design goals of §1.4.

It fulfills the following goals:

1. pre-existing software packages are to be linked into the environment;

2. highly interconnected communication is possible since ASCS is explicitly a

graph, unconstrained in its topology; and

3. simulation engines are a weak form of hierarchical construction.

The rest of the goals (distributed computing, extensibility, strong typing,

efficiency, and analyzability) are all dependent upon the means of implementation.

27

Summary

ASCS is a graph-based system to perform coordination of pre-existing software

packages. It is the best approach to date to solving this problem, but it requires a

means of implementation which is Turing-complete and analyzable.

28

Chapter 3

Coloured Petri Nets

Coloured Petri nets are, traditionally, a formal system modelling method with an

alytical tools. This work will demonstrate the efficacy of utilizing them in a non-

traditional way: as the underlying workhorse to an integrated simulation/animation

environment.

3.1 History

Ordinary Petri nets1 were first introduced by Carl Adam Petri in his doctoral thesis

[petr62], as a formal method of describing computer systems. But the ease with

which these structures permitted the description of formerly difficult properties,

and the analysis of these properties, led to the use of Petri nets as true modelling

tools.

A Petri net (see Figure 3.1) is essentially a bipartite, directed graph; the

bipartite sets are called places and transitions, and are interconnected by directed

arcs. The other fundamental entity present in Petri nets are called tokens, which

ia.k.a. place-transition nets

29

directed arcs

Figure 3.1: A simple place-transition net (a.k.a. Petri net),

reside within the places of a net; they can represent units of resources, for example.

Figure 3.2: The place-transition net of Figure 3.1 after the enabled transition has
fired.

When tokens are distributed amongst the places in a Petri net in some partic

ular fashion, the distribution is referred to as a marking and the Petri net becomes

marked. A marked net may generate a new marking, and hence a new marked net,

according to its structure and current marking. If a marked net is generated by

its immediate predecessor, the marking is termed immediately reachable from the

marking of that predecessor; if a marked net is generated at the end of a succession

of such generations from an initial marked net, its marking is termed reachable from

30

the marking of the initial marked net. A marked net generates a new marked net by

playing the token game. A transition takes a single token along each of its incoming

directed arcs from the place2 attached to the arc's other end, and puts a single token

along each of its output directed arcs to the place3 attached to the arc's other end;

this operation is described as the firing of the transition4 (see Figure 3.2). A tran

sition may not fire until it is enabled, that is, there is a token at each of its input

places.

The question of which transition should fire when more than one is enabled

is very significant; variations upon the basic model try such things as prioritiz

ing transitions, or actually modelling the time required to fire transitions (timed

Petri nets [ramc74, sifa77, holl85, mura89]). Petri's original model would cause

one to follow all the possibilities because systems were being modelled to see what

states they could attain, rather than probably would attain — a sort of quan

tum mechanical superposition. Other variants have taken the other, probabilistic

approach and attempted to assign probabilities to the arcs (stochastic Petri nets

[natk80, moll81, ajmo84, ajmo87, ajmo89]).

In Petri's original work, places could only hold a single token, so transitions

would be disabled if any of their output places already contained a token; thus, it

only made sense to allow a single directed arc from a particular place to a particular

transition, and a single directed arc from a particular transition to a particular place.

Later work generalized this so that places could contain multiple tokens, and thus,

multiple arcs between the same net vertices would be appropriate (see Figure 3.3);

the two forms are equivalent [hack74]. Further variations allowed for specific token
2 an input place to the transition
3 an output place to the transition
4 Note that the firing of a transition is an atomic operation — all of the input and output places

simultaneously gain or lose tokens, as appropriate.

31

capacities to be defined for each place.

Figure 3.3: An example of a generalized Petri net.

Agerwala [ager73] demonstrated that a fundamental extension to Petri nets,

namely inhibitor arcs, cause them to become Turing-equivalent (see Figure 3.3).

These may be thought of analogously to a logical NOT operator: an inhibitor arc

disables the transition it is connected to unless the place it is connected to is devoid

of tokens.

As work continued, refining the various net domains, a significant problem

developed: techniques were being developed in ever more specialized sub-domains

which were not easily translatable to all of the others. Hence, progress was slow. As

a result, predicate-transition nets were developed [genr81, genr86], but they them

selves had analytical problems, specifically, it was difficult to interpret their invari

ants (see §3.3). Finally, coloured Petri nets were developed which incorporated the

predicate-transition net work [jens81, jens83, jens92].

Coloured Petri nets (CPNs) are different from Petri nets in that tokens are

coloured, that is to say, they are identified with a particular element of some given

set, termed a colour set. For example, a token could possess the colour "1", which

is an element of the colour set N C I . The formal definition of coloured Petri nets

32

used in this work will differ slightly from those in the above references, due to the

requirements of using them as a computational engine; the details and justifications

will be described in Chapter 5.

It is important to note that all the various domains treat tokens identically,

and interchangeably; even CPNs treat two tokens of the same colour as identical.

Thus, it is not possible to specify which token will be taken from a place during

the firing of a transition. Also, all of the higher-level domains which incorporate

inhibitor arcs are Turing-equivalent since the higher-level domains may be expressed

as generalized Petri nets. These facts will be of significance when a means of imple

mentation for CPNs is discussed in following chapters.

3.2 Description

A brief overview of some of the grossest features of Petri nets in general have been

described in §3.1; more detail, notation and examples specific to CPNs will be

discussed here.

Consider Figure 3.4. Ellipses represent places, and rectangles represent tran

sitions; line thicknesses have no special meaning other than to draw ones attention

to particular features or relationships. Both places and transitions are labelled for

identification.

Special colour sets are defined in a corner of the diagram, and standard ones

are predefined, e.g., N, <Q>, and R; every place also has its colour set specified.

The quantities of tokens at each place are specified by the circled numbers

next to the places — lack of such a number indicates no tokens currently mark that

33

Figure 3.4: A CPN diagrammed in Jensen's style.

34

place. The expressions next to the circled quantities, such as:

l'(e,0) + l'(/,l), (3.1)

represent the actual tokens present at the place; the number represents the number

of tokens at the place with that specific colour. So in Equation 3.1, there is one

token of colour (e, 0) and one token of colour (/, 1); each is an element of the colour

set P which itself is the Cartesian product of the finite set {e, /} with N.

Arcs have a formal expression associated with them; the colour of tokens

which then pass along an input arc of a transition may be referenced in expressions

attached to the output arcs of a transition. Thus, in Figure 3.4, Pi is marked with

one token of colour (e,0) and one token of colour (/, 0), R is marked with three

tokens of colour r and S is marked with two tokens of colour s. T i is enabled since:

• PI contains a token which conforms to the arc expression (p, i) where p (E P

and i G N,

• R contains two tokens conforming to the arc expression 2'r, and

• S contains a token conforming to the arc expression s.

Arc expressions are good formal statements of the transformations performed

upon tokens across a particular transition when it fires, and are also easily displayed

in diagrams; however, we will find it more convenient to use an alternative formula

tion for our purposes: transition transforms. A transition transform describes the

process of firing a particular transition as being the computation of a function of the

transition's input tokens; the output tokens become the image of the input tokens

under this transformation. The efficacy of selecting the transition transform concept

over that of arc expressions will be seen when we demonstrate that CPNs satisfy

35

our design goals for an integration environment, in §3.4. Guards are expressions

affecting the behaviour of transitions; they are denoted in square brackets next to

the transition they affect. A transition is enabled only if it meets both the standard

requirements for enablement and its guard expressions evaluate to TRUE.

The marking of Figure 3.4 may be denoted as:

PI : l'(e,0) + l'(/ , l),

M0 = I R : 3'r,

S : 2's

The reachability tree may be displayed to a limited extent as in Figure 3.5; note that

markings M'Q and MQ are almost the same as MQ except that the second member of

the token tuples for place PI tend to increase, that is, they behave somewhat like

counters. Thus, the basic behaviour of this marked CPN is fully illustrated by the

given reachability tree.

Jensen does not utilize inhibitor arcs in his standard formulation. Figure 5.1

demonstrates how to emulate an inhibitor arc in a CPN for a particular sub-net.

Figure 3.6 depicts a marked generalized Petri net which is equivalent to the

marked CPN of Figure 3.4. A general method of translation has been proven and

is illustrated by Jensen [jens92].

3.3 Analysis

Traditionally, the only reason Petri nets were deemed useful was that they could be

analyzed to determine particular properties. Analysis has been the central focus of

the model since not long after it was first conceived. Any implementation of Petri

nets, whether as a modelling tool or as a computational engine, should either take

direct advantage of these analytical tools or permit another, higher software level,

36

PI : l'(e,0) + l'(/ , l),
Mo = { R : 3'r,

S : 2's

Mi =

M 0 =

P I : l'(e,0),
R: l'r,
S : l's,

P3: l'(/,l)

T 3 ;

P I : l'(e,0) + l'(/,2),
R : 3'r,
S : 2's

M 2 = {

\ T 1

f P I :
R : l'r,
S: l's,

t P2: l'(e,0)

T 2 ;

M 2 = <
f P I : l'(/ , l),

S: l's,
[P3: l'(e,0)

T 3 |

M 0 '=<
f PI : l'(e,l) + l'(/ , l),

R : 3'r,
S : 2's

Figure 3.5: The reachability tree for the marked CPN of Figure 3.4.

37

Figure 3.6: A marked generalized Petri net equivalent to the marked CPN in Fig
ure 3.4, page 34.

38

such as an editor or modeller (e.g., [bill88]), to do so . This work will take the latter

approach. Additional details of analyzing Petri nets will not be covered here; the

interested reader is directed to Kurt Jensen's books on CPNs [jens92, jens95].

However, an overview of some of the concepts is in order. There are spe

cific properties that are of interest to modellers which are the focus of attempts at

analysis.

Boundedness A net which never has more than k tokens at any place at a time is

called k-bounded, and a net which is 1-bounded is termed safe. Obviously, all

ordinary Petri nets are safe, since no place may contain more than one token

at a time by definition.

Conservativeness A net in which places always possess the same number of tokens

before and after every firing is conservative; this is important in systems in

which tokens represent resources.

Deadness and liveness A transition is dead in a marking if there exists no reach

able marking for which it is enabled; it is potentially firable if such a marking

does exist, and is live if it is potentially firable in all reachable markings. The

entire net is said to be live with respect to a particular marking if it is possible

to fire any transition in the net.

Deadlock If there exists a reachable marking from the initial marking such that

no transitions are enabled, the net is said to be deadlock.

Mutual exclusion In some systems, no two processes should have concurrent ac

cess to the same resources.

Reachability It may be necessary to know all reachable markings in the net.

39

Reversibility If, for every reachable marking M from the initial marking Mo, Mo

is also reachable from M , we say that the net is reversible, i.e., the initial state

can always be recovered.

The standard techniques used to determine some of these properties include

analysis of the reachability tree and invariant analysis. Construction of the reach

ability tree is straightforward, as immediately reachable markings branch out from

the initial state. Since Petri nets can and often do represent an infinite number

of states, there are two tricks for reducing the tree to a finite set of markings: if

a marking is repeated, the branch is terminated; growing cycles where an infinite

number of tokens accumulate at a place are also removable, see [pete77] for example.

Of course, these two tricks are often insufficient to maintain a manageable set of

states, especially in higher-level nets, and much work has gone into reducing the

size of the set, such as modular analysis where the pieces of a net are analyzed and

the properties of the whole are deduced from the parts [jens92, chri92].

Invariant analysis seeks to find equations which are satisfied by all reachable

markings, in the case of CPNs, and sets of places whose number of tokens are invari

ant for all reachable markings, in the case of generalized Petri nets. In generalized

(or ordinary) Petri nets, place invariants are determined by a linear algebraic means

on the incidence matrix of the net. This matrix, A, is defined as A = [o,-j] where

atj = afj — a~-. af- is the number of arcs from transition j to place i and a~- is the

number of arcs from place i to transition j. Then solutions to the system A • y = 05

such that they cannot be additively obtained from other solutions are called invari

ants. If each place is in an invariant and the net starts with a bounded marking,

the net is bounded, for example.
5where y; € {0,1} for ordinary nets, and y <E N for generalized nets

40

Invariant analysis comes in two forms for CPNs and some other high-level

nets: that of place invariants and that of transition invariants. The use and calcu

lation of these are described by Jensen [jens92].

3.4 Satisfaction of Design Goals

Pre-existing software packages can be accommodated in our conception of the CPN

meta-model as the transition transforms without requiring any re-implementation.

The internal computation of the transition transforms may be isolated from analyz

ing the rest of the behaviour of the net.

CPNs, being a graph-like structure, obviously are well-accommodating to

any highly non-planar interconnectivity scheme for communication.

One might realize that ordinary (or generalized) Petri nets suffer from one

feature which makes them impractical as anything other than a formalism: their

component structures are so primitive that a truly huge net would need to be con

structed for all but the simplest of functionality. Regardless of whether an "efficient"

method could be found to implement them as a computational engine, programmers

would have difficulty with constructing and managing huge collections of nodes and

their interconnections, thereby violating software engineering principles. A hierar

chical structure, in which small subnets could be constructed for simple operations,

then larger subnets could be constructed from these, and so on, would still be fea

sible; however, the ordinary (or generalized) Petri net formulation would not allow

simple inclusion of existing software packages, which would then need to be re-

implemented in terms of Petri nets. CPNs do not suffer from this deficiency: a

transition transform may be arbitrarily complex6 — and this is where and how this
6reminiscent of macrotransitions of pee-87]

41

work proposes to integrate the existing systems.

CPNs do not inherently require nor deny the ability to compute in a dis

tributed fashion, thus, the possibility of distributed computing will be an implemen

tation-level task. Petri nets in general were investigated because of their abilities

to deal easily with the problems of concurrency and conflict [ramc74] which arise

both in the context of distributed computing [vaut87] and of integrating simulation

and animation software systems. Also, it has been recognized that "Petri nets are

particularly valuable when state and control information are distributed throughout

the system" [desr89].

The implementation will also be required to permit a hierarchical construc

tion scheme for building-up increasingly complex and refined subnets. Theoretical

approaches to analyzing and treatment of hierarchical CPNs have already been

investigated [jens92, chri92, buch93]. Such a hierarchical construction scheme, in

combination with the integratability of existing packages, allow CPNs to be highly

extensible.

Strong typing and efficiency are purely implementation-level tasks for CPNs.

Later chapters will deal with these issues.

A knowledgeable reader might question the efficacy of utilizing the CPN

model as a basis for ASCS in light of the existence of the interval timed coloured

Petri net (ITCPN) model [aals93]. One must realize, however, that ITCPNs are

a specialized model for the behaviour of the net itself, and not of its transition

transforms; this work is not concerned with the behaviour of the net except as it

affects the goals outlined in §1.4.

Lakos has recently introduced a fully object-oriented version of CPNs as ob

ject Petri nets (OPNs) [lako95]. OPNs do capture the flavour of the implementation

42

outlined in this work, perhaps better than CPNs do. These need investigation to

see if the implementation requires modification to take advantage of any features

unique to OPNs, and if the OPN model itself could be further refined as was done

herein to CPNs.

Summary

Coloured Petri nets are a formalism used to describe complicated, concurrent and

intercommunicating systems in a graphical fashion. They are heavily studied, and

many analytical tools for them have been developed. They explicitly satisfy many

of the design goals for an integration environment, and as such provide a strong

basis for the construction of ASCS.

43

Chapter 4

Constructing ASCS via CPNs

We have demonstrated that coloured Petri nets fulfill many of our design goals for an

integration environment even without a specific format for implementation. CPNs

are relatively lacking in specialized support for the task we require: a meta-model

for an integration environment. ASCS does provide this support, however; thus, we

need the means for describing ASCS control graphs as CPNs.

4.1 Primitive Nodes

As explained in §3.1, CPNs are Turing-complete. Furthermore, they possess only

two classes of nodes: places and transitions. Any instance of either class may have 0

or more inputs and outputs, each with an arbitrary colour. The behaviour of a node

with many inputs and/or outputs in general cannot be simulated by a succession

of nodes of lower degree, or by a set of parallel nodes. Thus, there are an infinite

number of primitive nodes, each with a differing in- or out-degree. But the situation

is even worse, since each of these types is further differentiated on the basis of the

colour set of each input or output, and colour sets may be collection classes.

44

Fortunately, the specification of any particular type of node is not recursive,

so as long as we can construct a specific type on demand, we do not need to be

concerned about infinities. In fact, there is some programming language support for

such parameterized classes.1

9 y

(a) (b) (c) (d)

(e) (0 (g)

(h) (i)

0) 00 (1) (m)

Figure 4.1: Symbols used in ASCS/CPN diagrams.

Now, to allow the conversion of ASCS graph descriptions to CPN descrip

tions, and vice versa, we must specify CPN primitive nodes in terms of ASCS nodes,
1 Templates in C++, for example.

45

complete with binding sites. Figure 4.1 shows the basic symbols which will be used

in ASCS/CPN diagrams: (a) - (d) represent binding sites — two binding sites may

bind only if they are of the same colour class, different shape, and same fill pattern;

(a) is a place output binding site; (b) is a transition input binding site; (c) is a

transition output binding site; (d) is a place input binding site; (e) represents the

boundary of a node; (f) will contain an internal variable for a node2; (g) is a token;

(h) and (i) represent the transition and place primitives, respectively; (j) - (m) are

inhibitor binding sites and test binding sites, to be discussed in later chapters.

\ 7

I . i

o

Figure 4.2: An example of an ASCS/CPN diagram. The lower diagram is a com
pound node constructed as shown in the higher one; note the self-binding of the
internal node.

2 Internal variables are only present in ASCS nodes which are not fully expanded as coloured
Petri sub-nets.

46

B

T{}

D

Figure 4.3: Primitive ASCS nodes: a transition node on the left, and a place node
on the right.

ASCS nodes will be represented as a dotted boundary in which are embedded

binding sites; these binding sites will be connected, internal to the ASCS node, to

CPN nodes via arcs (see Figure 4.2). These arcs represent half of the directed arc

which would be present in the corresponding CPN diagram if the binding site were

bound to another binding site. Intra-node arcs represent complete directed arcs.

Note that directed arcs cross the ASCS node boundaries only at binding sites. The

primitive ASCS nodes (see Figure 4.3) will simply encapsulate the primitive CPN

nodes.

4.2 Control Graph Components

4.2.1 Channels

Figure 4.4 illustrates the ASCS/CPN equivalent to an ASCS channel. Note

that place P2 is instantiated with a token — a token of the colour set QUEUE,

which is a collection class parameterized by the Cartesian product TIMExDATA.

A channel constructed as shown would have an arbitrary capacity: the channel

47

Figure 4.4: An ASCS/CPN channel.

would block its input only if the queue had a maximum capacity, and would block

its output only if the queue were empty; this is guaranteed by the guards. The

actual capacity of the channel could be controlled by the particular form of queue

used: a static queue could have a fixed capacity, while a dynamic queue's capacity

would be solely dependent on the availability of dynamic memory.

The channel's operation begins when an ASCS node writes data across the

input binding site to place PI. If the QUEUE token at P2 is not "Full", the

transition T l may fire, thereby enqueueing the input token identified as td into the

queue q and returning the result to P2.

The second half of the channel operates symmetrically: as long as the queue

at P2 is not "Empty", transition T2 may fire, thereby dequeueing a token of the

colour set TIMExDATA to be placed in place P3, and returning the remainder of

the queue to P2. Another ASCS node connected to the output binding site may

then extract the token from P3.

It should be noted that in the standard formulation of CPNs, there is no

48

reason to suppose that the tokens will be removed from the channel in the same

order in which they entered, because tokens could "pile up" in both PI and P3,

and these tokens could then be removed in any arbitrary order; the structure of a

channel would need significant alteration in such a situation if we wished to maintain

first-in first-out ordering, most likely involving the use of inhibitor arcs. However,

this situation is eliminated if places can contain only a single token at a time. And

this is the formulation of CPNs which will be suggested in later chapters, albeit for

the purposes of easier implementation.

Figure 4.5: An ASCS/CPN equivalent to an ASCS overwriting channel.

An alternative to a queueing channel is an overwriting channel — one that

replaces the currently held value with the newly input value. Figure 4.5 illustrates

the ASCS/CPN equivalent of just such a channel. If there is no currently held

value, transition T3 will simply store the input value; if there is a currently held

value, transition T2 will overwrite the currently held value. If the output place for

transition T4 is unmarked and place P2 holds a token, T4 will simply transfer that

token to its output.

TIMExDATA

1 T l

td

49

4.2.2 Control Flow Operators

TIME x DATA

TIME x DATA
TIC

if Clip(t ,u) !=NIL
then (Clip(t, u), d)
else NIL

TIME x DATA

Figure 4.6: An ASCS/CPN gate node.

Figure 4.6 illustrates the ASCS/CPN equivalent to an ASCS gate. Note that

place PI is initialized with a token upon the instantiation of the node: this contains

the interval to which clipping will take place.

Whenever the place connected to the input binding site is marked, transi

tion T l may fire, thereby removing that token as (£, d) and the token from PI as

(u,e). T l will then clip t to u: only the portion of t which is contained within u

will remain. If no such remainder exists, nothing will be written across the output

binding site; otherwise, the clipped interval combined with d will be so written.

Regardless, (u, e) is returned to PI.

An ASCS conditional node is really a class of nodes: this class is param

eterized by the decision function which the node computes. Figure 4.7 shows its

ASCS/CPN equivalent as reflecting this fact. The decision function Func is initial

ized when the node is instantiated.

When the place connected to the input binding site is marked with a token

50

TIMExDATA

(t , d)

if Func(t, d) / \ if !F"nc(t, d)
then (t, d) / \ then (t, d)
else NIL I else NIL

TIMExDATA true false TIMExDATA

Figure 4.7: An ASCS/CPN conditional node.

as (t, d), transition T l may fire. The decision function is then computed on the

token. If the result is TRUE, the token is written across the true output binding

site, otherwise it id written across the false output binding site.

Many different types of ASCS splitter nodes are possible3; the particular one

whose equivalent is shown in Figure 4.8 divides its input time interval into n equal

sub-intervals. The places PI and P2 are intially unmarked.

When PI is unmarked and the place connected across the interval input

binding site is marked, the token (t, d) at this place is written to PI by the firing of

transition T l . Likewise, when P2 is unmarked and the place connected across the

n input binding site is marked, the token (t, n) at this place is written to P2 by the

firing of transition T2.

When P i , P2 and the place connected across the advance input binding site

are marked, transition T3 may fire. If the time interval t received from PI is \pi,t0),

T3 will write the time interval [ti,ti + ^2^i) to the place connected to the output

3 e.g., one in which the step size is not fixed

51

interval k. A TIME x DATA

advance

TIMExDATA « k A TIMEXDATA

Figure 4.8: An ASCS/CPN splitter node.

binding site, in combination with the data value d received across the advance input

binding site. In addition, T3 will also write tokens back to places PI and P2 if and

only if n is greater than 1. If n is equal to 1, then the subdivision of the input

interval has been completed, and no tokens are written to PI or P2, to allow for the

next time interval and value for n to be input. But if n > 1, [ti + to~*', t0) is written

to PI, and n — 1 is written to P2.

TIMExDATA

unbounded

• T l

unbounded

TIMExDATA

Figure 4.9: An ASCS/CPN OR-junction node.

52

Figure 4.9 illustrates the ASCS/CPN equivalent of an ASCS OR-junction.

It is simply facilitated by making the maximal cardinality of the input binding

site unbounded. Thus, any number of places may connect to it, and the firing of

transition T l will arbitrarily select the token to be written across the output binding

site from one of the marked places, if such a place exists.

4.2.3 Synchronization Operators

Currently, the only explicit synchronization operator defined by ASCS is the AND-

junction, whose ASCS/CPN equivalent is displayed in Figure 4.10.

Transition T l may fire when the places connected across the input binding

sites are both marked. Then it simply copies the token td from the input input

binding site to the output binding site, discarding the token from the trigger input

binding site.

TIMEx xDATA

Figure 4.10: An ASCS/CPN AND-junction node.

53

4.2.4 Memory Operators

TIME x DATA

TIMExDATA

Figure 4.11: An ASCS/CPN latch node.

The ASCS/CPN equivalent of an ASCS latch node, as illustrated in Figure 4.11,

is relatively complicated due to the fact that it requires two distinct execution

threads: one for initialization, and one for post-initialization. All its places are

initially unmarked.

When the place connected across the input binding site becomes marked,

transition T l may fire; this would result in place PI becoming marked. Now if

place P2 were unmarked, only transition T3 would be enabled and so, the input

token td would be stored at both P2 and P3; then transition T4 could fire, writing

this token through the output binding site. However, if place P2 were marked, only

transition T2 would be enabled; thus, the input token td would be discarded in

favour of a copy of the stored token s which would be output via P3 and T4.

54

It should be noted that an alternate formulation of latch, and a potentially

more useful one, would allow the internal storage to be reset. This would require a

separate input binding site for the storage data to pass through, but would be quite

similar internally to the presented latch formulation.

TIMExDATA

Figure 4.12: An ASCS/CPN constant node.

Figure 4.12 illustrates the ASCS/CPN equivalent of an ASCS constant node.

The place PI is initialized with its token upon the instantiation of the node.

Whenever the place connected across the input binding site is marked, the

transition T l is enabled; its firing causes the token s stored at PI to be copied to

the place connected across the output binding site, and returned to PI. The input

token td is discarded.

4.2.5 Computational Elements

Figures 4.13 and 4.14 illustrate the ASCS/CPN equivalents of ASCS unary math

ematical operator and binary mathematical operator nodes respectively. These are

each a class of nodes parameterized by the particular mathematical function Func

55

they compute.

TIMExDATA

(t ,d)

' I T l

(t, Func(d))

TIMExDATA

Figure 4.13: An ASCS/CPN unary operator node.

TIME x DATA

second

(s, Func(d, e))

K^y) TIMExDATA

Figure 4.14: An ASCS/CPN binary operator node.

In the unary operator, transition T l is enabled when the place connected

across the input binding site is marked by the token (t, d). When T l fires, it writes

the computed Func(d) to the place connected to the output binding site, in con

junction with the input time interval t.

56

The binary operator is similar except that its transition T l requires both

of its input places to be marked before it is enabled, and it writes its computed

Func(d, e) to its output place. Furthermore, so as not to bias the node in favour of

one of its inputs, the output time interval is undefined in the given formulation.

TIMExDATA

Figure 4.15: An ASCS/CPN linear interpolator node.

The operation of the ASCS/CPN equivalent of an ASCS linear interpolator

node, illustrated in Figure 4.15, is straightforward, and indeed, could be imple

mented via more primitive operations.

The tokens ([t, t*),d) and ([u, u*), e) arriving over the first and second input

binding sites respectively have their values interpolated to determine a data value

at time v, obtained via the between input binding site. The interpolated value of

dU=iL _|_ ea=l i s written over the output binding site along with the time interval

57

4.2.6 Stewards

Stewards are a widely varying class of node; all the details are difficult to lay out

without a precise framework for the implementation, which we have not discussed

as yet.

The deferral mechanism of ASCS may also cause problems to implement

with a CPN — not because a CPN is incapable of simulating it 4, but because the

process may become prohibitively expensive. One of the nice features which our

implementation design for CPNs will exploit is the usually local nature of changes

in a CPN: when a transition fires, only the markings of the places to which it is

connected will change. However, support of deferral will require near-global changes.

When an actuator decides not to defer, all currently deferred actuators become

undeferred, so the graph needs to control the state of all actuators in a centralized

manner. In the next chapter, the concept of a register place will be introduced to

decrease the cost of this feature. The actual usage of register places in deferral will

be discussed in Chapter 6.

4.3 An Example Subgraph

Figure 4.16 illustrates an ASCS subgraph to perform a primitive left-edge

quadrature, and Figure 4.17 shows its ASCS/CPN equivalent5. The interval over

which to perform the quadrature will enter the subgraph via the input input binding

site, requests for data values at particular times will exit the subgraph at the request

output binding site, the responses to these requests will return to the subgraph via
4 CPNs are Turing-complete, after all
5 Some of the binding sites have been duplicated rather than attempt to show binding sites with

binding cardinality > 1.

58

response

Figure 4.16: An ASCS subgraph to perform a primitive left-edge quadrature.

the response input binding site, and the final calculated quadrature will exit the

subgraph at the finished output binding site.

This formulation requires the specification of two additional types of ASCS

nodes: a new form of splitter, and a time-tag node. The former is just like a tradi

tional splitter save that when the entire interval has been subdivided, all additional

advance signals cause the original interval is output via its done output binding site.

A time-tag node conjoins a given time interval and data value and writes them its

output binding site.

The subgraph operates as follows:

• an input time interval (and data value) arrive at the OR-junctionO node;

• this value is copied, and written to the constantO, constantl, OR-junction2,

and splitter nodes;

• both constant nodes then output their values: the constantO node outputs a

59

OR-junctionO

,8:r.:S
jjji constantO C " ^ c h a n n e l B ^ l

OR-juncUoni • •
channel | ^ |

a
constantl

channel;

1

OR-junction2

add

; o/w ;
• channel

8

mm
splitter

AND-junction

DD;;

::S:
channel;

I
_ channel' time-tag

Figure 4.17: An ASCS/CPN equivalent to the ASCS subgraph in Figure 4.16.

0, the constantl node outputs some predetermined n > 0;

• the OR-junctionl node passes the 0 from the constantO node to the add node;

• the OR-junction2 node passes td from the OR-junctionO node to the advance

input binding site of the splitter node;

• the splitter node sends out the first sub-interval via the request output binding

site;

• the request value arrives at the response input binding site of the add node;

• the add node sums the value received from the OR-junctionl node, which

contains the running sum, and the new value received externally;

• this sum is then used both to trigger the next sub-interval request, and as the

next input as the running sum via the OR-junctionl node;

60

Figure 4.18: An ASCS/CPN equivalent to the special ASCS splitter node used in
the example subgraph.

• when the summation is complete, the splitter node releases the original interval

via its done output channel; this triggers the AND-junction node to release

the completed summation6;

• and finally, the time-tag node attaches the original input interval to the sum.

Figure 4.18 illustrates the ASCS/CPN equivalent to the special ASCS split

ter node used in the quadrature subgraph. Its basic operation is identical to the

ASCS/CPN splitter node illustrated in Figure 4.8 on page 52. The chief difference

is in its behaviour with regards to the advance input binding site when the inter-
6This requires that the channel between the add node and the AND-junction node be overwriting

rather than queueing; otherwise, the output value will be the first sum calculated by the add node!

61

val has been fully sub-divided: at this stage, transition T3 writes the time interval

initially received at the interval input binding site to place P5. When the next

token is received across the advance input binding site, instead of writing the next

sub-interval, the original interval is written out via the done output binding site by

transition T5.

Summary

ASCS may be simulated by CPNs. The problem of accommodating the deferral

mechanism of ASCS remains to be discussed.

A significant phenomenon occurs as one attempts to model a system with

an abstract interface in ASCS/CPN. At first, one may attempt to use primitive

nodes to build up a macro-node to perform some task. Such collections of nodes

can be relatively expensive to evaluate compared to other formulations such as

machine code. Eventually, the abstraction may be great enough that cost savings

can come about by replacing the internal mechanics of a high-level node with some

specialized code, written in the language of choice. The ultimate expression of this

is the principle of code re-use and large system-integration which is pivotal to this

work.

62

Chapter 5

A Format for Implementation

CPNs in and of themselves satisfy many of our design goals for supporting an integra

tion environment such as ASCS 1; the rest require specific implementation support:

• distributed computing,

• a hierarchical construction scheme,

• strong typing, and

• efficiency.

CPNs as defined by Jensen [jens92] support all the basic features common

to many variants plus guards2; additional features include:

• inhibitor arcs [chri93]3;

• test arcs, which are an "alternative" to guards [chri93]4;

'see §§1.4, 2.4, and 3.4
2described in §3.2
inhibitor arcs will be discussed in §5.1.
4Test arcs and guards will be discussed in §5.2.

63

• prioritizing the transitions, to decide ties in enablement [ajmo87]5; and

• place capacities [chri93].

Also, there are three possible situations we can take into account in imple

menting an ASCS/CPN environment:

1. a single-processor system,

2. a multi-processor, non-distributed system, and

3. a distributed system.

Each will be described as to its effects on efficiency and behaviour of an ASCS/CPN

environment.

5.1 Inhibitor Arcs

As previously described in §3.1, inhibitor arcs are analogous to a logical NOT

operation: the transition to which an inhibitor arc is connected is enabled only if

the place to which that arc is connected is unmarked.

As Figure 5.1 demonstrates, explicit support of inhibitor arcs is not necessary

in the CPN domain; however, this diagram also illustrates the fact that, should

inhibitor arcs not be supported, simulating them can add greatly to the complexity of

the structure of the net. Basically, for a place which needs to inhibit any transitions,

a second place is needed which acts as the indicator for "my partner is empty" — for

example, it could store a count of the number of tokens in that place in a multi-token

CPN domain. Thus, any transition which is connected to that place must also be

connected to the second place. In a CPN domain with unitary place capacities, the
5Prioritization will be discussed in detail in §5.4.

64

] T5

] T5

Figure 5.1: An example of equivalent CPNs with and without inhibitor arcs.

simulation could be implemented such that when a token is written to one of these

places, it is removed from the other. Increasing structural complexity is of concern

because:

1. net evaluation cost may depend upon the size of the net,

2. it is more likely to lead to errors in design, and

3. it will increase the cost of analyzing the net.

Thus, if inhibitor arcs may be supported cheaply, they should be.

65

5.2 Test Arcs and Guards

Test arcs are decision functions which act upon a single place in determining whether

or not a transition is enabled. However, not all functions may be computed as logical

ANDs, so either multi-arcs6 or guards are required. A guard may be implemented

as a set of test arcs and a single associated decision function. One simple task a

guard easily handles which is beyond the capabilities of simple test arcs alone is

deciding if the tokens in two places are equal. Heretofore, the term test arc will be

used as specifying an input to a guard.

The consequences of supporting guards in an implementation will be shown

to be significant in the following sections.

5.3 Enablement

The only dynamic factor within a net which determines its operation is the firing

of transitions7. Since firing is controlled chiefly by the enablement of a transition,

the means by which enablement is controlled and/or determined will be one of the

greatest factors in determining the efficiency of any implementation of CPNs.

An implementation of Petri nets may be compiled or interpreted, sequential

or concurrent, centralized or distributed, and synchronous or asynchronous [briz94].

We will look at simplified categorization in terms of number and distribution of

processors.

Also, we must choose between having the implementation being place-driven,

in which a particular place is selected, and one of its transitions is selected to fire,

or transition-driven, in which places are passive. A place cannot be characterized
6 arcs which sweep across multiple places
7Non-static connectivity will be discussed in §6.3.3.

66

by its enabled transitions as easily as the transitions themselves could be [briz94];

it will be shown in §5.3.1 that place-driven schemes will not permit the use of the

enablement bookkeeping method to be discussed there.

5.3.1 An Enablement Bookkeeping Method

Consider there being an integer variable associated with each transition in a CPN

called its enablement. When this variable attains the value 0, it indicates that the

transition is enabled; otherwise, it is disabled. We require a means to update these

values for all the transitions in a marked net every time a transition fires.

All the places in a CPN can be partitioned, relative to a particular transition,

into one of five categories8:

• an input-only place,

• an output-only place,

• an input-output place,

• an inhibiting place, or

• an unconnected place.

A transition is enabled if all its input places and input-output places are

marked, and all its output places and inhibiting places are unmarked, otherwise it is

disabled. Thus, the enablement of a transition alters only when the marking of one

of its associated places changes. Then if 1 is added to the enablement for each place

which is not in the proper state to enable that transition, the enablement becomes

a useful computational measure.
8 We have demonstrated this in Theorem 8 in Appendix B.

67

After a transition fires, each place which goes from being unmarked to being

marked subtracts 1 from the enablement of each of its associated transitions for

which it is

• an output-only place, or

• an inhibiting place

and adds 1 to the enablement of each of its associated transitions for which it is

• an input-only place, or

• an input-output place.

Unconnected places and places which either remain unmarked or remain marked do

not have their enablements altered. The operation of a place going from marked to

unmarked is the opposite to this.

If guards are to have their operation rolled into this bookkeeping scheme,

everything stated above remains true with some additions. Each guard is marked

as enabling or disabling according to the previous test performed via that guard.

For every transition testing a place whose marking changes, a place which becomes

marked, or a place which becomes unmarked, the test for that guard is repeated.

Let an enabling decision be denoted as 1, and a disabling decision be denoted as 0.

Then the associated transition has added to its enablement the new state of the

guard minus the previous state of the guard, and the guard's state is updated.

The updates can be performed in constant time, so the only expense is the cost of

computing the decision function itself.

Now, as long as the enablements (and guard states) were initialized correctly

for the initial marking, transitions will be enabled if and only if their enablement

variables contain the value 0.

68

Linear enabling functions (LEFs) [briz94] are a similar concept, but our

model was developed independently. This work takes advantage of the special for

mulation of CPNs used herein to greatly reduce the number of classes needed by

LEFs. Also, LEFs classify transitions whereas this enablement bookkeeping method

classifies places relative to each transition.

5.3.2 Single-processor System

A multi-threaded system is a waste of resources in a single-processor setup, since

more overhead in terms of memory and computing time will be required, without

increasing the net amount of computation.9

There are three ways in which enablement could be determined: on-the-fly,

via lazy evaluation, and via continuous update.

On-the-Fly

In this scheme, after the initial marking is set or a new marking is computed, a

scan would need to be made by the scheduler throughout the net for an enabled

transition to fire. This scan would consist of locating a transition, checking each of

its input and output places for their marking, and possibly performing tests upon

the tokens it finds there. Such a procedure would require that the scheduler have

access to a list of the transitions, which would ensure that each was visited and only

visited once, and that each transition possess a list of its input places and another

of its output places. Every time a transition were eliminated as being disabled the

next could be found in constant time.
9 Of course, this fact would likely be secondary to time constraints in a real-time system, but

this is beyond the scope of this work.

69

Another possibility is to allow the scheduler direct access to only one tran

sition, and force it to follow arcs to find the next transition. So let us start at

transition T l which is disabled; the scheduler marks it as disabled and begins to

check its neighbours. Let us assume that it scans first the input places and then the

output places of that transition; for each of these places, the scheduler scans first

the input transitions, and then the output transitions. Unless the graph connec

tivity is of very low degree, the same transitions will tend to be visited repeatedly,

two pointers will have to be dereferenced to locate the next transition, every transi

tion will need a 1-bit flag to indicate whether it has been visited, and every one of

these transitions will have to be visited again to turn the flag off. Alternatively, the

scheduler could keep an ordered record of which transitions had been visited, but

insertion of this information would take fi(logw) operations, and searching it would

require O(logu) operations on average, where v is the number of transitions already

visited. A third alternative for the follow-the-graph approach would be to maintain

a counter for each transition to indicate if it had been visited. When each search

begins, the global counter would be incremented. As each transition is encountered,

its local counter would be compared to the global one; if it were equal it would be

assumed that the transition had already been visited on this search. Otherwise, the

transition's counter would be set to the value of the global counter to indicate that

it had been visited. But this will simply reduce the number of required scans per

search from two to one, rather than altering the complexity. Thus, maintaining a list

of transitions would be more efficient, in terms of time, over the double-pass graph

search and, in terms of both time and space, over the search-and-record method.

The best-case scenario is one in which the first transition encountered is

enabled, thus rendering further search unnecessary. Furthermore, this transition

70

should have a minimal number of places connected to it, and be linked to none via

test arcs. Assuming that checking for the presence of a token could be accomplished

in constant time, this would also require constant time.

Now, let each of the t transitions in the net be connected to each of the

p places, and also let each be linked to every place by a test arc. Assume that

every transition were actually disabled, but that this is due solely to the decision

computed by the final test arc checked for each transition. Furthermore, assume

that the computation of a guard's decision requires c operations for each of its test

arcs. Then the worst case will require tp + tpc time.

Assume that a transition is connected to dj places on average, that the

average number of test arcs incident upon a transition is a, that one would need to

test a percent of the transitions on average to find one that was enabled, and that

7 percent of the test arcs needed to be tested on average. Then the average case

would require atdj + atjac + ac operations, which is in 0(tp + tpc).

Lazy Evaluation

There are two approaches to this scheme, each treating test arcs differently; however,

each treats enablement in terms of connected places identically.

The idea takes advantage of the fact that the change in enablement from

a marking to an immediately reachable marking is fairly local — only the input

and output places of the fired transition have their markings altered, and thus,

the enablement of only the transitions which are either connected to these places

or which test these places change. So given that there is some way to keep track

of whether such a change alters the enablement of a transition without having to

71

recheck all of the unchanged places10, it may be possible to reap a computational

benefit.

Such a scheme is possible and the cost of updating the net's bookkeeping

after firing a transition is djdp on average, where dj is the average number of places

connected to a transition, and dp is the average number of transitions connected to

a place. Then if a* percent of the transitions needed to be tested, the total cost of

firing would be a*t+dTdp+a*tyac+ac operations, which is in 0(t+tp+tpc). If test

arc enablement were rolled into the bookkeeping scheme, updating the bookkeeping

would cost dxdp+dTapc, where ap is the average number of test arcs connected to a

place. Then the total cost would be a*t+dTdp+dTdpc, which is in 0(t+tp+tpc). In

an "average net", connectivity will be fairly low since they are designed by humans11,

and the more interconnected they are, the harder they would be to design; the

number of enabled transitions could vary from many to few. Also, few test arcs are

likely in an average net. Thus, rolling test arc enablement into the bookkeeping is

likely to be more efficient although there is no way to prove this.

Once again, the best case is where the first transition encountered is enabled,

and that it has only one directed arc, and no test arcs associated with it. Then the

cost of determining a firable transition is constant. The cost of the bookkeeping

would also be constant12 if, for example, the transitions were all connected linearly.

Thus, the total cost would be constant.

The worst case remains that described under the on-the-fly scheme: updating

will cost tp so the total cost becomes 2tp + tpc which is still in O (tp + tpc).

1 0Such a method is outlined in §5.3.1.
1 1 Humans will tend to design simple components and build them up to perform a complicated

operation, even though a much denser C P N might perform the same operation. ASCS will also
build somewhat redundancy-filled CPNs since humans will be designing all the components for use.

1 2 This is shown in §5.3.1.

72

Continuous Update

This scheme is identical to lazy evaluation in terms of the bookkeeping. The differ

ence lies in the fact that no scanning is required; instead, two queues of transitions

will be maintained: one with enabled transitions, the other with disabled transi

tions. A doubly-linked queue will be required, however, as items from the middle

of the queue must be removable. Enqueueing, dequeueing, and "de-splicing" are all

0(1) operations.

Therefore, all we have is the cost of the bookkeeping to consider, so the

average cost will be d^dp + djapc, the best case cost will be constant, and the

worst case cost is tp + tpc.

5.3.3 Multi-processor, Non-distributed System

The simplest way to utilize a multi-processor system would be to use a single proces

sor to determine enablement and scheduling transitions, and use the other processors

only to parallelize the computation of the transition transforms. This is likely to

be very efficient if the transition transforms themselves are very expensive and are

parallelizable, since more than one transition could presumably be fired at a time.

A more likely scenario is to permit parallelization of separate transition trans

form computations; this requires a significantly different approach from that of a

single-processor system (§5.3.2). Consider an analogy between a CPN and a multi

process operating system: transitions are processes, while places are shared memory.

Thus, we will require a means to ensure mutually-exclusive shared memory access,

and a scheduler for the allocation of processors to enabled transitions. Furthermore,

an additional enfolding of the enablement bookkeeping system, this time with the

mutual exclusion mechanism, would be ideal if it is possible as it should reduce

73

costs. Such an enfolding is eminently possible if mutual exclusion were implemented

with semaphores [dijk65] given that they involve incrementing and decrementing a

counter, which is essentially all that is involved in the enablement bookkeeping.

Now, the scheduler could act as a centralized controller, as in the single-

processor system, with the transitions acting as passive elements, or the transitions

themselves could be self-coordinating. The latter would essentially be an operating

system unto itself.

A potential problem arises in the area of deadlock due to two or more tran

sitions, each with access to part of their connected places, waiting for the other

transitions to surrender the remainder. This indicates a need for acquiring and

freeing place locks in a complete block. An algorithm such as that of Ricart and

Agrawala [rica81, rayn88] could be used. In this algorithm, a transition13 which

wishes to fire must obtain exclusive access to each of its input and output places.

Messages are sent off to all the other transitions in the net, and access to a set of

places is eventually granted. They showed that, if there were t transitions in a net,

t messages would need to be sent to obtain access. The total cost of locating a

transition for firing would then be mt + d,Tdp +drape, if readying, sending and pro

cessing a message required time m, assuming the continuous update method were

utilized.

If each transition were given knowledge of local graph connectivity, the Ricart

and Agrawala approach might benefit since only those transitions which shared the

places with a firable transition would have to be communicated with to obtain

exclusive access.

This was only a cursory examination of the available literature on multi-
1 3 Actually, the algorithm refers to processes, but we can easily see the analogy between transitions

and processes — in fact, transitions could be implemented as processes.

74

threaded approaches. There may be other, better methods which are known, or the

CPN realm might permit some new, special methods.

5.3.4 Distributed System

In a truly distributed system, the cost of message passing quickly surpasses much of

the local computational costs, so efficient distributed algorithms need to minimize

the number of messages.

A CPN could be divided into sections with each running on an independent

system. The centralized controller approach is easily implemented in this fashion.

If the continuous update scheme were in place, an additional cost would be incurred

of [mq-\- m*(l — q)]dxdp where q is the percentage of the transitions located on the

local system and m* is the cost of readying, sending, and receiving a message across

the network.

Alternatively, the scheduler itself could be divided as well as the net. Sep

arate sections of the net would no longer have any knowledge of each other. Arcs

which bridge the network would require some form of proxying of their associated

place to both sides of the network gap. Refer to Figure 5.2. The dashed line rep

resents the machine boundaries; place PI is connected across the network. On the

right, PI* is effectively the proxy of PI while the dotted arcs between the unnamed

transitions are network connections. The implementation in the figure would still re

quire some form of mutual exclusion in place since computation on either side of the

network would be in parallel. The lazy evaluation approach holds greater promise

here; it is reminiscent of the approach of Chiola and Ferscha [chio93] towards ex

ploiting the structure of the net for efficiency in a distributed implementation.

A completely different approach would be to subvert an election method such

75

76

as the bully algorithm [silb93], or a ring-based election algorithm such as that of

Chang and Roberts [chan79, tane92]. The former requires t2 messages, while the

latter requires 3i — 1 messages. However, these methods would only allow a single

transition to fire at a time, which is very wasteful of the large numbers of processors

available.

The Ricart and Agrawala approach of the previous section was actually de

veloped for distributed mutual exclusion14, so it would seem a good candidate,

particularly the local connectivity variant. Of course, there is also the possibility of

migrating processes, but such topics are beyond the scope of this work.

Distributable nets were introduced by Hopkins [hopk91] to simulate a dis

tributed implementation of a non-distributed system. Although potentially useful

to this work as a starting point, a basic assumption made by Hopkins is that a

transition's output places do not affect its enablement; thus, the model studied does

not support inhibitor arcs, and as such is not Turing-complete.

5.4 Prioritizing Transitions

P P

T l T2 0 T l T2

Figure 5.3: Prioritized transitions

In the diagram on the left of Figure 5.3, the selection of either transition T l

or T2 to fire is arbitrary. With the addition of priorities in the diagram on the right,
1 4 Recall that mutual exclusion is required so that multiple transitions do not simultaneously

access the same place.

77

T l has explicit priority to fire.

Figure 5.4: Equivalence of CPNs with and without priorities

As illustrated in Figure 5.4, prioritizing transitions is not strictly necessary;

however, it can simplify the construction of CPNs which possess a lot of explicit

sequencing. In the diagram on the left, T l has priority to fire over T2. PR1 and

PR2 are used to control the movement of a priority token; when T l fires, it either

outputs to P2 or it returns the token to PI and passes the priority token on to PR2.

Many transitions could be connected to the priority places in this fashion just as

many transitions could have the same priorities. Local sequencing of transitions can

always be controlled in this fashion. It should be noted that if only local sequencing

is required, construction of CPNs without prioritized transitions is not so difficult.

In the continuous update scheme, prioritization is straightforward: instead

of two queues, 2n queues are used to model n different priority levels. Each queue

is checked in sequence until an enabled transition is found, which of course adds

slightly to costs. Insertion of a transition is still of constant cost, but extraction will

require some percentage of t on average since each queue needs to be checked for

78

occupancy — the precise average depends upon the net.

Alternatively, a priority queue could be used. If such is implemented with a

binary heap, the cost of insertion then rises to 0(lgn), and extraction becomes the

same (which may be an increase or a decrease) [corm90].

Mergeable heaps will have additional, useful properties if priorities are to be

supported, as will become evident in §6.3.1. Fibonacci heaps [fred87] and relaxed

heaps [dris88] permit insertion in constant amortized time and extraction in O(lgn)

amortized (not amortized for relaxed heaps) time; relaxed heaps also have some

advantages over Fibonacci heaps in parallel algorithms.

However, direct support of prioritization will incur an extra cost regardless of

the method of implementation. And as will be seen in §6.3.2, utilization of mergeable

heaps does not permit cheap de-construction of nets. Thus, prioritization should be

avoided to eliminate these extra costs, whenever possible.

5.5 CPN Refinements Utilized in This Work

In this work, the following features will be supported:

• each place may hold either zero or one token;

• inhibitor arcs;

• guards, described as a set of test arcs plus a decision function;

• transition transforms, as opposed to arc expressions; and

• transitions have priorities, in an optional extended formulation.

79

Only single directed arcs, in each direction, and single inhibitor arcs are per

mitted between the same place and transition, since more would be redundant15

and would potentially increase costs. Only either directed arcs or inhibitor arcs are

permitted to connect a particular place and transition, since having both is redun

dant16. Between a place and a transition, no more than one test arc is permitted

due since a decision function should need to detect the value of the token just the

once. Place capacities are limited to a single token for three reasons:

1. multiple tokens at a place may be mimicked by having a collection class as the

colour set of that place,

2. this greatly simplifies the operation of firing, and

3. this does not impose a particular means of selecting among tokens when op

tions are available — this is left up to the transition transform, reminiscent of

a reduced instruction set chip (RISC) approach.

5.6 Related Work

There have been many papers published concerning the implementation of Petri

nets, in a single-processor system [vale86, colo87], a multi-processor non-distributed

system [taub88, hein89, biitl90], and a distributed system [brun86, colo87, bald88,

sibe93, brun95]. Various implementations of CPNs exist [vale91, jens92, bana93], as

do many tools for the use of Petri nets [feld93].

All are concerned with simulating the behaviour of a (coloured) Petri net,

rather than using the Petri net formulation as a workhorse. Although these im-
15This is proven by Theorems 2, 3, and 4 in Appendix B.
16as shown by Theorem 8 in Appendix B

80

plementations are often efficient, they strive to maintain such awkward features as

arc expressions. Arc expressions do not easily permit the insertion of pre-existing

software in the same way that transition transforms do — the pre-existing software

would need to be translated into a set of arc expressions, which is difficult and

counter-productive. The black box approach of transition transforms allows us to

achieve our goals much more readily.

There have even been Petri net implementations specifically designed for

simulation such as the Devnet [evan93] and the environment of Bastide and Palanque

[bast95]. But these are strictly discrete event systems, and the problems with using

discrete event systems as an integration environment were outlined in §1.5.

Summary

An efficient and unique means of utilizing the coloured Petri net formalism as a

framework for the implementation of an integration environment has been found.

The key to this implementation is the efficient detection and selection of enabled

transitions; a method for updating this information rapidly has been devised. Mov

ing the environment to a distributed version requires more study, but presents no

direct obstacles.

81

Chapter 6

Implementation Details

It can clearly be seen

by the most casual observer...

— Far too many

Now that a theoretical means for implementation has been established, the

details thereof need to be explained. The continuous update scheme for a single-

processor system will be the basis for this specification. Also, although implementing

CPNs does not require the use of a particular language, we used C++ to develop the

concepts, and so the terminology used herein is influenced by that found in C++.

6.1 Transitions

To permit strong typing of transitions, they should be implemented in some fashion

as a class parameterized by the colour sets of their individual input and output

arcs. Transitions are characterized by the numbers and types of input and output

types, and therefore, by their individual transition transforms. The trouble, then, is

to create a parameterized class for transitions when such have variable numbers of

82

parameterizing classes. The solution is to create an abstract base class for transitions

and provide polymorphic methods to perform the proper operations for the derived

transition classes.

What properties of transitions may be abstracted to such a base class?

1. All transitions are either enabled or disabled: methods are required to change

this property from the base class.

2. The enablement of a transition will change when the tokens possessed by

its attached places change: a method is required to potentially change the

enablement of each of the transitions.

3. All transitions fire when they are enabled, and the scheduler selects them to

fire: a method is required to fire the transition without knowledge by the

scheduler of the transition's type parameterizations.

The solution to the latter is simple enough: the base class has a "fire" method

which takes no arguments and has no body which is then overridden by the derived

classes. Each derived class then worries about calling its particular type of transition

transform appropriately.

The tokens from each input place will be read, the transform will be calcu

lated, and the tokens will be written to the appropriate output places. Transitions

will not need to worry about their enablement: the acts of reading and writing will

implicitly re-calculate this information.

6.2 Places

Places will be responsible for re-calculation of the enablement of their associated

transitions. This means that a place must be aware of the transitions to which it is

83

connected as well as the capacity in which it is connected to them. Thus, it must

maintain four disjoint sets of transitions to which it is attached; two would actually

suffice1, but this would make incremental connections within a net more difficult

(see §6.3.1).

When a place is read from or written to, it must follow the algorithm for

enablement bookkeeping as outlined in §5.3.1. Since the token written to an input-

output place is not necessarily the same colour as the one read from that place,

It is possible that a savings could be made for input-output places; rather than

automatically updating the enablements of its transitions as soon as its token has

been read, a searchable list could be set up containing these places. If the place was

then written to by the same transition, a test could be performed to determine if the

token had changed colour — if not, no enablement updates need be done. However,

the cost of the overhead for such an elaborate scheme is likely to far outweigh the

cost of two enablement updates, although it would depend on the connectivity of

the place versus the number of input-output places for a particular transition.

A special kind of place may be useful in the efficient operation of a CPN

engine, specifically, instead of utilizing ordinary places with very high connectivity

which tend to crop up when one tries to model the deferral mechanism of ASCS.

We define a register place to be a place which is effectively connected to all the

transitions of a subnet. It is always marked, and is assumed to always be enabling

to these transitions, so no explicit changes to their enablement factors are required,

'one for output-only and inhibiting, the other for input-only and input-output

84

6.3 Connections

6.3.1 Constructing CPNs

For a full hierarchical construction scheme, a paradigm using an opaque interface

which allows subnets to be treated in the same fashion as individual transitions and

places will be required.

To implement this, a somewhat different view of nets will also be needed:

the concept of binding sites from chemistry and biology will be used. The internal

structure of a net will be opaque externally; all that other, non-friend classes will

be able to see is that certain types of connections to other nets are permissible,

and that only certain places may (or must) be initialized with tokens prior to net

evaluation. Consider that places may only connect with transitions: a place may be

thought of as a net with two binding sites, one for input and one for output, each

of which can connect to an arbitrary number of transitions.

Binding sites will have the following properties:

• maximal cardinality,

• vertex type,

• arc type, and

• colour set.

Maximal cardinality indicates the number of other sites which may be bound here,

a positive integer or unlimited. Vertex type will be either place or transition. Arc

type will be one of the following:

• input,

85

• output,

• inhibiting, or

• testing.

And only binding sites with arc types input, output and testing will have differen-

tiable colour sets, while all inhibiting types will have a single, unique colour set.

There will also be marking initialization sites: only these places may have their

markings initialized externally.

Two sites may bind if they have opposite vertex types, identical arc types,

identical colour sets, and the number of other sites already bound to each is less

than their respective maximal cardinalities.

Each subnet class will recursively tell its components how to connect down

to the primitive transition and place nets. The names of the binding sites, and

their properties such as maximal cardinality may be altered to suit the needs of the

particular subnet. Each subnet is a CPN (or an agent whose interface to the rest of

the graph is indistinguishable from a CPN) in and of itself: they should always be

able to be evaluated.

At first glance, these arc types would seem to be at variance with the equiva

lence classes of places relative to a given transition. But it will be the responsibility

of the primitive classes to ensure that the restrictions as outlined in §5.5 are re

spected, and that any place which becomes both an input and an output place for

a transition is identified and classified as such.

After connecting their components appropriately, two bound subnets must

merge their respective queues of enabled and disabled transitions. If prioritization

is supported, this is where mergeable heaps become most useful. After a subnet

86

has been fully connected to other parts of the completed net, the particular subnet

may not be required any longer; thus, it should be possible to free some of the

memory associated with the subnet while leaving the components intact and con

nected. Pointers will accomplish this, of course. Also, transition enablements must

be updated whenever a new link is forged.

6.3.2 Deconstructing CPNs

One might also wish to remove a subnet from a CPN — single transitions or places

would be easy enough, but large chunks are more problematic. A CPN will possess a

set of queues for its enabled and disabled transitions; presumably when two subnets

are merged, these queues will also be merged, thus the identities of the vertices

unique to the subnet will be lost. Furthermore, this in no way records the identities

of the places associated with the subnet. Therefore, separate sets of pointers to

transitions and places will need to be maintained for all extant subnets.

When a subnet is to be removed from a CPN, its set of pointers is inspected

and the corresponding transitions and places are removed from the queues; this can

be quite expensive if prioritization is supported.

However, such a form of removal will not maintain the various arcs within

the subnet while removing the links to the other portions of the CPN. This is not a

problem if the subnet is being discarded, but if it is to be moved to another position

in the net, or to another net2, these arcs will be needed. Three basic approaches are

then possible:

1. destroy all arcs connected to any vertex being removed and recreate the ones
2 It is not clear under what such circumstances such a transfer operation would occur, but it

would seem more desirable to move a pre-existing component than building an identical one up
from scratch.

87

internal to the subnet,

2. check each arc to see if it is internal to the subnet by explicitly searching

through the sets of internal vertices maintained by the subnet for each arc's

other endpoint, or

3. also maintain a set of arcs.

Scheme 1 promises to be inefficient. Scheme 2 would require each subnet's

internal sets to be searchable, which would mean that the operation of linking two

binding sites together would get more expensive as subnets increase in size. Scheme 3

has potential, but would basically require that all arcs be true data structures; this

would allow a set of pointers to the appropriate ones to be maintained. These

questions are only really of significance when non-static connectivity is supported;

further study of this topic is required.

6.3.3 Non-static Connectivity

The question of adding vertices, removing them, and changing the arcs between

them while a net is undergoing evaluation is an interesting one. Self-modifying nets

have been studied in the context of non-coloured Petri nets [valk78], but it is unclear

what affect this would have on the analytical properties of CPNs.

In terms of simply evaluating a CPN, it is eminently doable: the system

would simply need to ensure that, after firing a transition, each of its transitions were

still fully connected before firing the next transition. This could be accomplished

by maintaining a variable which records broken connections which is incremented

when a connection is broken and decremented when one is established.

88

1
6.4 Graph Evaluation

Graph evaluation will be performed by selecting an enabled transition: if priorities

are supported, this transition will have the highest priority, i.e., least delay. Utiliza

tion of multiple queues or priority heaps will ensure that an enabled transition will

always be selected if such exists. The simplest approach to selecting amongst the

enabled transitions is simply to have a first-in first-out system — this has the added

advantage of ensuring that starvation of an enabled transition will never occur.

However, support of a feature such as deferral in ASCS is not so easily accom

plished by this approach. Deferral, and "undeferral" by the system, would require

that all of the transitions representing these dof access features in the stewards

would need to be connected to central, "controlling" places. Whenever one of these

nodes finally fired, all the others would have to have their enablements changed, and

moved from one queue to another, etc. This is potentially very expensive. An alter

native method is to take advantage of register places (see §6.2) in combination with

a different selection method: allowing a selected transition to defer (by being moved

to the back of the queue, or bottom of the heap). This could lead to deadlock since

every enabled transition could continually defer3, but this could be explicitly dealt

with by not permitting more than x deferrals. This is the approach outlined in the

following algorithm.

DEFERRING-CPN EVALUATION ALGORITHM

(0) START: Places have their initial markings installed.

(1) Calculate transition enablements.
3This is not deadlock in the classical sense, perhaps, but it is effectively the same since each

transition is waiting for another to do something.

89

(2) Initialize the state of each transition as UNDEFERRED.

(3) Initialize the internal time of each transition to 0.

(4) Insert transitions into appropriate queues or heaps.

(5) Initialize the register place TIME to an initial time of 1.

(6) WHILE any transitions are enabled, DO:

(6.0) Select an enabled transition from the head of the queue.

(6.1) IF the internal time of the transition IS-LESS-THAN TIME, THEN:
(6.1.0) Set the internal time of the transition to TIME.
(6.1.1) Set the transition's state to UNDEFERRED.

(6.2) IF the transition defers, THEN:
(6.2.0) IF the transition's state is DOUBLY-DEFERRED, THEN:

(6.2.0.0) Force the transition to evaluate anyway.

(6.2.0.1) Increment TIME.
(6.2.1) ELSE-IF the transition's state is DEFERRED, THEN:

(6.2.1.0) Set the transition's state to DOUBLY-DEFERRED.
(6.2.2) ELSE-IF the transition's state is UNDEFERRED, THEN:

(6.2.2.0) Set the transition's state to DEFERRED.
(6.2.2.1) Copy TIME to the transition's internal time.

(6.3) ELSE:
(6.3.0) Increment TIME.

90

(7) END: Cleanup.

The question of whether this is truly more efficient than requiring imple

mentation of this algorithm directly by the graph remains open, especially when

taken in the context of distributed systems. Of course, the efficacy of the deferral

mechanism above any possible alternatives must itself be better demonstrated.

Summary

Techniques for implementing CPNs in general and some specific ones for the context

of ASCS have been presented. The latter require further development especially

considering their extension to the distributed purview. Better study and proof of

the properties of ASCS may now take place given this means for formal definition.

91

Chapter 7

Conclusion

A specification for a generic computational engine has been presented. This engine

has been shown to be of particular interest in the area of integrating simulation and

animation software in a way hard to achieve at present. The means for implementing

and analyzing coloured Petri nets as this computational engine are available, and

the former have been given herein.

7.1 Summary

Throughout this work, various problems were shown to exist, leading us from the

need for integration to the implementation of ASCS as a CPN environment. The

following is a summary of these assertions and their justifications in this progression

of concepts from initial problem to final solution.

Assertion 1 Software manufacturers must specialize in the areas which their prod

ucts concentrate upon, if they are to remain at the forefront of innovative research.

92

Justification The pace of research is exponential. Without specialization in a

particular research software package will become so unwieldy as to quickly

become unmodifiable and unmaintainable. •

Assertion 2 Designing a software package for modification can only partially ac

commodate future changes.

Justification The direction of research is unclear in the long-term. One would

need clairvoyance to predict future advances — and to allow for their inclusion in a

particular model. •

Assertion 3 Animators/simulators require products at the forefront of research.

Justification If there were no need for these new products, there would be no

need for further research. Although some of this is simply the novelty factor, the

fact remains that this is the situation. •

Assertion 4 An animator/simulator may require any arbitrary software package

at some point: this is Turing-completeness.

Justification This is a straightforward extension of Assertion 3. •

Assertion 5 Combining the use of several of the specialized packages is the best

way to take full advantage of the best features of each.

Justification If one package does not have all the bells and whistles required,

but the combination of several individual packages does cover the spectrum, then

integration is needed. •

Assertion 6 All but the simplest forms of interaction will require a true, concurrent

sharing of models. In turn this necessitates conflict resolution between the disparate

93

packages as well as a scheme for coordinating their computations.

Justification If the form of coordination were so trivial, some manufacturer would

have already provided it. For example, even within a large, single package like Sof

timage, it is impossible to concurrently control the affect of two or more operations

on a model; the internal workings of Softimage will choose in what serial order the

operations will occur. •

Assertion 7 Time makes for a good parameter for coordination.

Justification Since we are attempting to make an animation or simulation —

something which is inherently parameterized by time — time is obviously common

ground for communication and thus coordination. •

Assertion 8 Differing notions of time among different packages requires a special

approach so as to accommodate all without temporal aliasing or any bias against a

particular model.

Justification This is explained in Chapter 2. Fixed versus adaptive step size

and continuous versus discrete events do not fit well together, hence ASCS uses an

interval representation of time. •

Assertion 9 The most general form of interconnection among a set of objects can

be described as a graph.

Justification Any two of the objects can be unconnected, connected in one direc

tion, or connected in both directions regardless of the other objects in the environ

ment: all of these can be represented by a graph. •

Assertion 10 ASCS provides a sufficient environment for integration.

94

Justification ASCS is fully extensible. It is hierarchical, thereby providing sim

ple macros for the most common of operations, while permitting the construction

of unusual features from primitive functions. It provides a scheme for interaction,

coordination, communication, and conflict resolution which is independent of a par

ticular scheme for modelling time. •

Assertion 11 Coloured Petri nets are an effective engine for generic computation.

Justification Transition transforms can accommodate an arbitrary piece of soft

ware, thereby allowing maximal code reuse with minimal extension. The graphical

nature of CPNs allows for the most highly interconnected forms of communication

that are required. Hierarchical construction allows data hiding of large, common

macros, while providing Turing-complete functionality and extensibility. Parallel

and distributed computation may be supported by CPNs as well. Furthermore, the

properties of a system constructed from CPNs could be directly analyzed. •

Assertion 12 Coloured Petri nets can be implemented in an efficient manner.

Justification Determination of enabled transitions is the main factor in the speed

of evaluating a CPN; an efficient means of accounting for this has been shown. This

requires 0(dxdp + drape) operations on average to update all the enablements in

a CPN after a transition fires, for a single processor environment. •

Assertion 13 ASCS can be effectively implemented with coloured Petri nets.

Justification Coloured Petri nets meet all the criteria strictly required for ASCS

plus a few more. The specific form of the implementation will be partially dependent

upon the final form taken by ASCS: this is analogous to optimization, however. •

95

7.2 Future Work

Further work needs to be performed in the area of a distributed implementation of

coloured Petri nets, specifically in terms of a thorough treatment of the possibilities

and an analysis of the efficiency of each. Failing this, experimental study should be

pursued along these lines.

The effects of self-modification to the analysis of CPNs needs study, as does

a good tool for the analysis of the implementation of this work. Removal of subnets

remains a significant problem in the context of self-modification.

Object Petri nets (OPNs) [lako95] need investigation to see if the implemen

tation requires modification to take advantage of any features unique to OPNs, and

if the OPN model itself could be further refined as was done herein to CPNs.

The realm of multi-processor and distributed systems needs to be studied fur

ther; although the enablement bookkeeping method and continuous update scheme

were shown to be effective and efficient in a single-processor environment, the same

is unlikely to be true elsewhere. Distributable nets [hopk91] also need to be more

closely scrutinized for their use here.

Constraint nets [zhan94] require some serious further study. It is possible that

ultimately the goals of an ASCS-like environment can be comprehensively subsumed

by a constraint-net-based system. At present, however, it must be remembered

that Petri nets have undergone long-term and rigorous scrutiny; the tools for their

analysis and usage are already in place. Constraint nets may not be sufficiently

powerful in the range of problems which they may model, they may not permit

the inclusion of pre-existing software packages without re-implementing them, and

efficient implementation of their programming semantics is still to be seen. Perhaps

what will emerge in the end will be some child of both domains.

96

Bibliography

[aals93] W. M. P. van der Aalst. "Interval timed coloured Petri nets and their
analysis". In Ajmone Marsan [ajmo93], pp. 453-472.

[ager73] T. Agerwala and M. Flynn. "Comments on Capabilities, Limitations and
'Correctness' of Petri Nets". Proceedings of the 1st Annual Symposium on
Computer Architecture, Vol. 1, pp. 81-86, 1973.

[ajmo84] M. Ajmone Marsan, G. Balbo, and G. Conte. "A class of generalized
stochastic Petri nets for the performance analysis of multiprocessor sys
tems". ACM Transactions on Computer Systems, Vol. 2, No. 1, pp. 93-
122, May 1984.

[ajmo87] M. Ajmone Marsan, G. Balbo, G. Chiola, and G. Conte. "Generalized
stochastic Petri nets revisited: random switches and priorities". Proceed
ings of the 1st International Workshop on Petri Nets and Performance

Models, August 1987.

[ajmo89] Marco Ajmone Marsan. "Stochastic Petri nets: an elementary introduc
tion". In Rozenberg [roze89], pp. 1-29.

[ajmo93] Marco Ajmone Marsan, editor. Application and Theory of Petri Nets 1993
(Proceedings of the 14th International Conference), Vol. 691 of Lecture
Notes in Computer Science. Springer-Verlag, Berlin, Germany, 1993.

[bald88] M. Baldassari and G. Bruno. "PROTOB: Object-oriented graphical mod
elling and programming based on Prot nets". In Rozenberg [roze88], pp.
333-342.

[bafia93] J. A. Baiiares, P. R. Muro-Medrano, and J. L. Villarroel. "Taking advan
tages of temporal redundancy in high level Petri nets implementations".
In Ajmone Marsan [ajmo93], pp. 32-48.

97

[bast95] Remi Bastide and Philippe Palanque. "A Petri net based environment for
the design of event-driven interfaces". In De Michelis and Diaz [de m95],
pp. 66-83.

[bill88] J. Billington, G. Wheeler, and M. Wilbur-Ham. "Protean: A high-level
Petri net tool for the specification and verification of communication pro
tocols". IEEE Transactions on Software Engineering, Vol. 14, pp. 301-
316, 1988.

[briz94] J. L. Briz and J. M. Colom. "Implementation of weighted place/transition
nets based on linear enabling functions". Application and Theory of Petri
Nets 1994 (Proceedings of the 15th International Conference), Vol. 815 of
Lecture Notes in Computer Science, pp. 99-118. Springer-Verlag, Berlin,
Germany, 1994.

[brun86] G. Bruno and G. Marchetto. "Process-translatable Petri nets for the rapid
prototyping of process control systems". IEEE Transactions on Software
Engineering, Vol. 12, No. 2, pp. 346-357, February 1986.

[brun95] G. Bruno, A. Castella, R. Agarwal, and M. P. Pescarmona. "CAB: an
environment for developing concurrent application". In De Michelis and
Diaz [de m95], pp. 141-160.

[buch93] Peter Buchholz. "Hierarchies in colored GSPNs". In Ajmone Marsan
[ajmo93], pp. 106-126.

[biitl90] B. Butler, R. Esser, and R. Mattmann. "A distributed simulator for high
order Petri nets". Advances in Petri Nets 1990 (Proceedings of the 10th

International Conference on Application and Theory of Petri Nets), Vol.

483 of Lecture Notes in Computer Science, pp. 22-34, 1990.

[chan79] E. G. Chang and R. Roberts. "An improved algorithm for decentralized
extrema-finding in circular configurations of processors". Communications
of the ACM, Vol. 22, No. 5, pp. 281-283, May 1979.

[chio93] Giovanni Chiola and Alois Ferscha. "Distributed simulation of timed Petri
nets: exploiting the net structure to obtain efficiency". In Ajmone Marsan
[ajmo93], pp. 146-165.

[chmi91] M. Chmilar, B. Wyvill, and C. Herr. "A Software Architecture for Inte
grating Modeling with Kinematic and Dynamic Animation". The Visual
Computer, Vol. 7, pp. 122-137, 1991.

98

[chri92] S0ren Christensen and Laure Petrucci. "Towards a modular analysis of
coloured Petri nets". Application and Theory of Petri Nets 1992 (Proceed
ings of the 13th International Conference), Vol. 616 of Lecture Notes in
Computer Science, pp. 113-133. Springer-Verlag, Berlin, Germany, 1992.

[chri93] S0ren Christensen and Niels Damgaard Hansen. "Coloured Petri nets
extended with place capacities, test arcs and inhibitor arcs". In Aj
mone Marsan [ajmo93], pp. 186-205.

[colo87] J. M. Colom, M. Silva, and J. L. Villarroel. "On software implementation
of Petri nets and colored Petri nets using high-level concurrent languages".
In Rozenberg [roze87], pp. 207-241.

[corm90] Thomas H. Cormen, Charles E. Leierson, and Ronald L. Rivest. Intro
duction to Algorithms. McGraw-Hill Book Co., New York, NY, USA,
1990.

[de m95] Giorgio De Michelis and Michel Diaz, editors. Application and Theory
of Petri Nets 1995 (Proceedings of the 16th International Conference),
Vol. 935 of Lecture Notes in Computer Science. Springer-Verlag, Berlin,
Germany, 1995.

[desr89] A. A. Desrochers. "Modeling and Control Using Petri Nets". Modeling and
Control of Automated M/G Systems, tutorial 5. IEEE Computer Society
Press, 1989.

[dijk65] Edsger W. Dijkstra. "Cooperating sequential processes". Technical report,
Technological University, Eindhoven, The Netherlands, 1965.

[dris88] James R. Driscoll, Harold N. Gabow, Ruth Shrairman, and Robert E.
Tarjan. "Relaxed heaps: an alternative to Fibonacci heaps with appli
cations to parallel computation". Communications of the ACM, Vol. 31,
No. 11, pp. 1343-1354, November 1988.

[evan93] John B. Evans. "The Devnet: a Petri net for discrete event simulation".
In Rozenberg [roze93], pp. 91-125.

[feld93] Frits Feldbrugge. "Petri net tool overview 1992". In Rozenberg [roze93],
pp. 169-209.

[fish88] Paul A. Fishwick. "The Role of Process Abstraction in Simulation". IEEE
Transactions on Systems, Man and Cybernetics, Vol. 18, No. 1, pp. 18-39,
January/February 1988.

99

[fium87] E. Fiume, D. Tsichritzis, and L. Dami. "A Temporal Scripting Language
for Object-Oriented Animation". Proceedings of the European Computer
Graphics Conference and Exhibition (EUROGRAPHICS '87), pp. 283-
294, August 1987.

[fred87] Michael L. Fredman and Robert E. Tarjan. "Fibonacci heaps and their
uses in improved network optimization algorithms". Journal of the ACM,
Vol. 34, No. 3, pp. 596-615, 1987.

[genr81] H. J. Genrich and K. Lautenbach. "System modelling with high-level
Petri nets". Theoretical Computer Science, Vol. 13, pp. 109-136. North-
Holland, Amsterdam, The Netherlands, 1981.

[genr86] Hartmann J. Genrich. "Place/transition nets". Petri Nets: Central Models
and Their Properties (Advances in Petri Nets 1986, Part I), Vol. 254 of
Lecture Notes in Computer Science, pp. 224-247. Springer-Verlag, Berlin,
Germany, 1986.

[gett90] Phillip Getto and David Breen. "An Object-oriented Architecture for a
Computer Animation System". The Visual Computer, Vol. 6, pp. 79-92,
1990.

[hack74] M. H. Hack. "Decision problems for Petri nets and vector addition sys
tems". Memo 94, Massachusetts Institute of Technology, Cambridge, MA,
USA, March 1974.

[haeb88] Paul E. Haeberli. "ConMan: A Visual Programming Language for In
teractive Graphics". Computer Graphics, Vol. 22, No. 4, pp. 103-111,
August 1988.

[hein89] A. Heinrich and W. Ameling. "Multiprocessor system architecture for the
execution of higher Petri nets". In Rozenberg [roze89], pp. 321-332.

[holl85] M. A. Holliday and M. K. Vernon. "A generalized timed Petri net model
for performance analysis". Proceedings of the International Workshop on

Timed Petri Nets, pp. 181-190, July 1985.

[hopk91] R. P. Hopkins. "Distributable nets". In Rozenberg [roze91a], pp. 161-187.

[jens81] Kurt Jensen. "Coloured Petri nets and the invariant method". Theoretical
Computer Science, Vol. 14, pp. 317-336. North-Holland, Amsterdam, The
Netherlands, 1981.

100

[jens83] Kurt Jensen. "High-level Petri nets". Applications and Theory of Petri
Nets, Vol. 66 of Informatik-Fachberichte, pp. 166-180. Springer-Verlag,
Berlin, Germany, 1983.

[jens92] Kurt Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods
and Practical Use, Vol. 1 of EATCS Monographs on Theoretical Computer
Science. Springer-Verlag, Berlin, Germany, 1992.

[jens95] Kurt Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods
and Practical Use, Vol. 2 of EATCS Monographs on Theoretical Computer
Science. Springer-Verlag, Berlin, Germany, 1995.

[kalr92] Devendra Kalra and Alan H. Barr. "Modeling with time and events in
computer animation". Computer Graphics Forum (EUROGRAPHICS '92
Proceedings), Vol. 11, No. 3, pp. 45-58, September 1992.

[kazm93] Rick Kazman. "HIDRA: An Architecture for Highly Dynamic Physi
cally Based Multi-Agent Simulations". International Journal for Com
puter Simulation, 1993.

[kiihn93] Volker Kiihn and Wolfgang Miiller. "Advanced object-oriented methods
and concepts fro simulations of multi-body systems". Journal of Visual
ization and Computer Animation, Vol. 4, pp. 95-111, 1993.

[lako95] Charles Lakos. "From coloured Petri nets to object Petri nets". In
De Michelis and Diaz [de m95], pp. 278-297.

[lalo94] Paul Lalonde, Robert Walker, Jason Harrison, and David Forsey. "A
Model for Coordinating Interacting Agents". Proceedings of Graphics In
terface '94, pp. 149-156, May 1994.

[lalo96] Paul Lalonde, Robert Walker, Jason Harrison, and David Forsey. "An
architecture for coordinating kinematic and dynamic animation". Sub
mitted to Journal of Visualization and Computer Animation, May 1996.

[lee-87] Hyung Lee-Kwang, Joel Favrel, and Pierre Baptiste. "Gerneralized Petri
Net Reduction Method". IEEE Transactions on Systems, Man and Cy
bernetics, Vol. 17, No. 2, pp. 297-303, March/April 1987.

[Iee94] Gene S. Lee. "RASP: Robotics and Animation Simulation Platform".
M.Sc. thesis, University of British Columbia, Vancouver, BC, Canada,
January 1994.

101

[mcgr94] Donald R. McGregor and Sabah U. Randhawa. "ENTS: An Interactive
Object-oriented System for Discrete Simulation Modeling". Journal of
Object Oriented Programming, pp. 21-29, January 1994.

[moll81] M . K. Molloy. On the integration of delay and throughput measures in

distributed processing models. Ph.D. thesis, University of California at
Los Angeles, Los Angeles, CA, USA, 1981.

[mura89] T. Murata. "Petri nets: properties, analysis and applications". Proceed
ings of the IEEE, Vol. 77, No. 4, pp. 541-580, April 1989.

[natk80] S. Natkin. Les reseaux de Petri stochastiques et leur application d

revaluation des systemes informatiques. These de Docteur Ingegneur,
CNAM, Paris, France, 1980.

[over93] C. W. A. M . van Overveld. "Building Blocks for Goal-directed Motion".
Journal of Visualization and Computer Animation, Vol. 4, pp. 233-250,

1993.

[pete77] James L. Peterson. "Petri Nets". ACM Computing Surveys, Vol. 9, No. 3,
pp. 223-252, September 1977.

[petr62] Carl Adam Petri. Kommunikation mit Automaten. Ph.D. thesis, Univer
sity of Bonn, Bonn, Germany, 1962.

[ramc74] C. Ramchandani. "Analysis of asynchronous concurrent systems by timed
Petri nets". Technical Report 120, Laboratory for Computer Science,
Massachusetts Institute of Technology, Cambridge, MA, USA, 1974.

[rayn88] Michel Raynal. Distributed Algorithms and Protocols. John Wiley k. Sons,
New York, NY, USA, 1988.

[rica81] G. Ricart and A. K. Agrawala. "An optimal algorithm for mutual exclu
sion in computer networks". Communications of the ACM, Vol. 26, No. 1,
pp. 9-17, January 1981.

[roze87] Grzegorz Rozenberg, editor. Advances in Petri Nets 1987 (Proceedings
of the 7th European Workshop on Application and Theory of Petri Nets),

Vol. 266 of Lecture Notes in Computer Science. Springer-Verlag, Berlin,

Germany, 1987.

[roze88] Grzegorz Rozenberg, editor. Advances in Petri Nets 1988 (Proceedings
of the 8th European Workshop on Application and Theory of Petri Nets),

102

Vol. 340 of Lecture Notes in Computer Science. Springer-Verlag, Berlin,

Germany, 1988.

[roze89] Grzegorz Rozenberg, editor. Advances in Petri Nets 1989 (Proceedings
of the 9th International Conference on Application and Theory of Petri

Nets), Vol. 424 of Lecture Notes in Computer Science. Springer-Verlag,

Berlin, Germany, 1989.

[roze91a] Grzegorz Rozenberg, editor. Advances in Petri Nets 1991 (Proceedings
of the 11th International Conference on Application and Theory of Petri

Nets), Vol. 524 of Lecture Notes in Computer Science. Springer-Verlag,

Berlin, Germany, 1991.

[roze91b] Gary D. Rozenblat and Richard R. Muntz. "The Tangram Simulation
Animation System". Proceedings of the EUROGRAPHICS Workshop on
Animation and Simulation, pp. 153-167, September 1991.

[roze93] Grzegorz Rozenberg, editor. Advances in Petri Nets 1993 (Proceedings
of the 12th International Conference on Application and Theory of Petri

Nets), Vol. 674 of Lecture Notes in Computer Science. Springer-Verlag,

Berlin, Germany, 1993.

[sibe93] C. Sibertin-Blanc. "A client-server protocol for the composition of Petri
nets". In Ajmone Marsan [ajmo93], pp. 377-396.

[sifa77] J. Sifakis. "Use of Petri nets for performance evaluation". Measuring,
Modelling and Evaluating Computer Systems, pp. 75-93. North-Holland,

Amsterdam, The Netherlands, 1977.

[silb93] Abraham Silberschatz, James L. Peterson, and Peter B. Galvin. Operating
System Concepts. Addison-Wesley Publishing Co., Reading, MA, USA,
fourth edition, 1993.

[snyd92] John M . Snyder. "Interval Analysis for Computer Graphics". Computer
Graphics, Vol. 26, No. 2, pp. 121-130, July 1992.

[stei92] Jeff S. Steinman. "SPEEDES: A Multiple-Synchronization Environment
for Parallel Discrete-Event Simulation". International Journal for Com
puter Simulation, Vol. 2, No. 3, pp. 251-286, 1992.

[stei94] Jeff S. Steinman. "Discrete-Event Simulation and the Event Horizon".
Proceedings of the 8th Workshop on Parallel and Distributed Simulation,

1994.

103

[tane92] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall, En-
glewood Cliffs, NJ, USA, 1992.

[tani94] Oryal Tanir and Suleyman Sevinc. "Defining Requirements for a Standard
Simulation Environment". Computer, No. February, pp. 28-34, 1994.

[taub88] D. Taubner. "On the implementation of Petri nets". In Rozenberg
[roze88], pp. 418-439.

[vale86] Robert Valette. "Nets in production systems". Advanced Course On
Petri Nets: Application and Relationships to Other Models of Concur
rency, Part I, Vol. 255 of Lecture Notes in Computer Science, pp. 191-217.
Springer-Verlag, Berlin, Germany, 1986.

[vale91] Robert Valette and Babou Bako. "Software implementation of Petri nets
and compilation of rule-based systems". In Rozenberg [roze91a], pp. 296-
316.

[valk78] Riidiger Valk. "Self-modifying nets, a natural extension of Petri nets".
Vol. 62 of Lecture Notes in Computer Science, pp. 464-476. Springer-

Verlag, Berlin, Germany, 1978.

[vaut87] J. Vautherin. "Parallel systems specification with coloured Petri nets and
algebraic specifications". In Rozenberg [roze87], pp. 293-308.

[zele91] Robert C. Zeleznik, D. Brookshire Conner, Matthias M. Wloka, Daniel G.
Aliaga, Nathan T. Huang, Philip M. Hubbard, Brian Knep, Henry Kauf
man, John F. Hughes, and Andries van Dam. "An Object-Oriented Frame
work for the Integration of Interactive Animation Techniques". Computer
Graphics, Vol. 25, No. 4, pp. 105-111, July 1991.

[zhan94] Ying Zhang. A foundation for the design and analysis of robotic systems

and behaviors. Ph.D. thesis, University of British Columbia, Vancouver,
BC, Canada, 1994.

[zhan95] Ying Zhang and Alan K. Mackworth. "Constraint Nets: A Semantic
Model for Hybrid Dynamic Systems". Theoretical Computer Science, Vol.
138, No. 1, pp. 211-239, 1995.

104

Appendix A

Formal Definitions

A . l Notation

The following notational styles are followed in the equations in the definitions and

theorems. This notation is only loosely based upon that in the literature, which is

notoriously malleable in this area of study, due to the special needs of the formulation

of CPNs we required.

• Uppercase italics (5) indicate locally defined sets.

• Lowercase italics (t) indicate elements of sets.

• Lowercase Greek letters (£) indicate functions.

• Uppercase Fraktur letters (T) indicate transforms.

• Uppercase blackboard-bolds (U) indicate special sets: U is the universal colour

set, and N is the set of non-negative integers.

• Lowercase Fraktur letters (e) indicate special elements.

105

• Lowercase words (enabled) indicate logical predicates.

• The symbol oo is used to indicate the lack of an upper bound.

• The symbol e ̂ U by definition.

• | • | is the set-cardinality operator.

• [p] is the equivalence class of p.

• 2*2 is the power set of Q.

A.2 Definitions

Definition 1 (Colour set) Any set S C U, the universal colour set, used to dis

tinguish the functionality of different parts of a coloured Petri net.

Definition 2 (Excidence and incidence) An arc a which goes from a vertex v

to a vertex v' is said to be excident upon v and incident upon v'.

Definition 3 (Generalized Petri net) A tuple (P, T, A, C, w, T, £) where:

• (PUT, A) forms a bipartite directed graph with bipartite sets P and T,

• P, T and A are disjoint sets,

• C: A-> {P,t},

• IT : A P,

• r : A —>• T, and

• £ : P -> NU {oo}

106

is termed a generalized Petri net, or more commonly nowadays, simply as a Petri

net.

Elements of P are called places, elements of T are called transitions, and

elements of A are called directed arcs. £ is the arc-incidence function, n is the arc-

place function, r is the arc-transition function, and £ is the place-capacity function.

Definition 4 (Marked generalized Petri net) A tuple (n, fi) where:

• n is a generalized Petri net, and

• 0 < /i(pi) < £ (j > t) , 1 < i < \P\, is a marking

is termed a marked generalized Petri net.

Definition 5 (Ordinary Petri net) A tuple (P, T, A, C, 7r, r) where:

• (P U T , A) forms a bipartite directed graph with bipartite sets P and T,

• P,T and A are disjoint sets,

• C:A->{p,t},

• 7T : A -> P,

• T : A —y T, and

• Va,-, aj G A[(n(ai) = 7r(aj)) A (r(a;) = r (a j)) =>• (at- = aj)]

is termed an ordinary Petri net, or a place-transition net.

Elements of P are called places, elements of T are called transitions, and

elements of A are called directed arcs. £ is the arc-incidence function, n is the

arc-place function, and r is the arc-transition function.

107

Definition 6 (Marked ordinary Petri net) A tuple (n,fi) where:

• n is an ordinary Petri net, and

• fi : P —> {0,1} is a marking

is termed a marked ordinary Petri net.

Definition 7 (Coloured pre-net) A tuple (P, T, A, H, C, £, x, r, K) where:

• (PUT, AU HUC) forms a bipartite directed graph with bipartite sets P and

T,

• P, T, A, H and C are disjoint,

• (-A^{p,t},

• 7r:ALiH U C - > P ,

• T : AUHUC ->T,

• K : P ^ 2 v ,

• V/i € H, h is incident upon a transition, and

• Vc G C , c is incident upon a transition

is termed a coloured pre-net.

Elements of P are called places, elements of T are called transitions, elements

of A are called directed arcs, elements of H are called inhibitor arcs, and elements

of C are called test arcs. £ is the arc-incidence function, n is the arc-place function,

T is the arc-transition function, and n is the place colour-set function.

Definition 8 (Coloured Petri net) A tuple (P,T, A, H,C,C,, K,T,K,X) where:

108

• (P, T, A, H, C, C> ""j TiK) forms a coloured pre-net,

• Va, a' £ A {[(Tr(a) = >r(a')) A (r(a) = r(a'))] [(a = a') V (C(a) 7̂ C(a'))] },

• V/i, h' £ H {[(n(h) = n(h')) A (r(/i) = T{h'))] =» (/J = V) }, and

• % : ^* x ^ -> {h °> c i u} is the place-class function satisfying the conditions

described in Theorem 8

is termed a coloured Petri net.

Definition 9 (Input and output places) The functions 0T '• T —> 2P and <f>T •

T —> 2P where

PT(U) = {pj :3ake A[(n(ak) = pj) A (r(ak) = t,-) A (C(a*) = t)] } , and

MU) = {Pj :3akeA[(ir(ak) = pj) A (r(afc) = U) A (((ak) = p)] }

yield the set of input places and the set of output places relative to the transition

U, respectively.

Definition 10 (Input and output transitions) The functions /3p : P -> 2 T and

<f>P : P —> 2T where

PP(P*) = {*j • 3ak e A [(ff(ofc) = Pi) A (T(ak) = tj) A (C(ajfe) = p)] } , and

MPi) = ih • 3afc e A [{n{ak) = Pi) A (r(afc) = A (((ak) = t)] }

yield the set of inputf transitions and the set of output transitions relative to the

place pi, respectively.

Definition 11 (Unconnected places and transitions)

• Ordinary and generalized Petri nets: A place p is termed unconnected to a

transition t, iff Va £ A [(n(a) / p) V (r(a) ̂ i)].

109

• Coloured pre-nets: A place p is termed unconnected to a transition t, iff Va G

A U t f U C [(7r(a)/p)V(r(a)^)].

Unconnected transitions are defined symmetrically.

The functions vp : P —> 2T and VT • T —> 2P yield respectively the set of

transitions unconnected to a place, and the set of places unconnected to a transition.

Definition 12 (Arc count) In a generalized Petri net and a coloured pre-net,

• the function eT{t,p) = \{a : Va G A [(n(a) = p) A (r(a) = t) A (C(a) = p)] }|

is the transition excident-arc count function,

• the function eP(p,t) = \{a : Va 6 A [(7r(a) = p) A (r(a) = i) A (C(a) = t)] }| is

the place excident-arc count function,

• the function iT(t, p) = \ {a : Va e A [(w{a) = p) A (r(a) = f) A (C(a) = t)]} | is

the transition incident-arc count function, and

• the function ip(p,t) = \{a : Va £ A [(ir(a) = p) A (r(a) = t) A (C(a) = p)] }|

is the p/ace incident-arc count function.

Definition 13 In a coloured pre-net,

• the function rjT{t) - {p G P : 3h G H [(n(h) = p) A (r(/i) = *)]} yields the

set of places which inhibit a transition,

• the function r)P(p) = {t G T : 3h G H [(TT(/I) = p) A (r(/i) = t)]} yields the

set of transitions which are inhibited by a place,

• the function 6T{t) = {p G P : 3c G C [(n(c) = p) A (r(c) = t)]} yields the set

of places which are tested by a transition, and

110

• the function 6P(p) = {t G T : 3c G C [(TT(C) = p) A (r(c) = i)]} yields the set

of transitions which test a place.

Definition 14 (Marked coloured pre-net) A tuple (n,fi, £>,T) where:

• n is a coloured pre-net,

• nipt) G K(pi)U{e},l < t < \P\,

• G T, '©{i} maps the Cartesian product of the markings of the places tested

by t to {0,1}, and

• 1{fj,;ti} = n*, where:

A*i Pj i <f>T{ti)U (3T{U)

^* = I {e}, Pj e)9r(t,-) - ̂T(*,-)
^i', otherwise,

for i,- G T and pj G P,

is termed a marked coloured pre-net.

fi is termed the marking of the net, and fi(p) is termed the marking of p.

®{t} is the decision function of or guard oft, and T is the transition transform.

Definition 15 (Marked coloured Petri net) A marked coloured pre-net (n,fi,

1),T) where n is a coloured Petri net is termed a marked coloured Petri net.

Definition 16 (Prioritized net) A tuple (n, p) where:

• n is any non-prioritized net containing a set of transitions T, and

111

is termed a, prioritized net, specifically a prioritized generalized Petri net, prioritized

coloured Petri net, etc. as appropriate to the net-type of n.

p is called the relative delay-factor function.

Definition 17 (Potentially enabled)

• Ordinary Petri nets: For a given transition £; in a marked ordinary Petri net,

{Vp G pT{ti) HP) = i]} A {Vp G (<fr(ti) - Mu)) HP) = o]}

is equivalent to saying that i,- is potentially enabled.

• Generalized Petri net: For a given transition £; in a marked generalized Petri

net,

{Vp G /3T(ti) HP) > IT(U,P)]} A {Vp G (Mu) -PT{U)) HP) < £G>)]}

is equivalent to saying that is potentially enabled.

• Coloured pre-net: A transition t in a marked coloured pre-net is termed po

tentially enabled iff:

{VpG/? T («) M*,P) = I]}. A

{ V p e £ r(0 M*,P) = I]} A

{VpG/?rW b(p)^e]} A

{VpG (<fr(t) ~ PT(*)) Hp) = e]} A

{©{*}(•) = 1} A

{ V p G 7 ? r W [/*(?) = e] } -

The predicate p-enabled(t; m) indicates that the transition t is potentially enabled

for a marked net m.

112

Definition 18 (Enabled) A transition t in a marked non-prioritized net is termed

enabled iff it is potentially enabled.

A transition t in a marked prioritized net m is termed enabled iff

Vt,- € T [(S(t) < 8(t.i)) A p-enabled(i; m)].

The predicate enabled (t;m) indicates that the transition t is enabled for a

marked net m.

Definition 19 (Firing)

• Ordinary Petri nets: Let m = (n, p) be a marked ordinary Petri net, and t 6 T

be an enabled transition in n. A new, marked ordinary Petri net in = (n, p,*)

is computed when t fires. The new function fi* is:

A**(Pi)

0, Pi e (/3T(0 - ^r(t))

1, Pi e {<h(P) - W))

fJ,(pi), otherwise

Generalized Petri nets: Let m = (n, fi) be a marked generalized Petri net, and

t 6 T be an enabled transition in n. A new, marked generalized Petri net

m = (n, p,*) is computed when t fires. Then, the new marking fi* is:

A»(Pi) + €T(*IPI) - tr(*iPt)i Pi € (#r(0 U <M*))

H(pi), otherwise

• Coloured pre-nets: Let m = (n, /z, 1), T) be a marked coloured pre-net, and t €

T be an enabled transition in n. A new, marked coloured pre-net fh — (n, /i*)

is computed when t fires. The new function p,* is T{/ / ;£;} .

113

Definition 20 (Immediately reachable marking) Let m = (n, /x,...) and fh =

(n,fi*,...) be marked nets. Iff there exists an enabled transition t G T in m such

that firing t computes fh, the marking /x* is said to be immediately reachable from

the marking xx. This is denoted /x* 4- xx, or less precisely, fx* 4— xx. Likewise, the

notation /x -» /x* (or /x A xx*) denotes that /x has computed xx* (via £).

Definition 21 (Reachable marking) Let m = (n, /x,...) and fh = (n, /x*,...) be

marked nets. The marking xx* is termed reachable from the marking xx iff /x* is im

mediately reachable from xx, or there exist some sequence of marked nets (n, /xi,...),

(n, /x 2 , . . .) , . . . , (ra,/x„, • • •) such that /xj <- xx, xx* <- /xn, and /Xfc+i <- xxjt, 1 < < n.

This may be denoted /x* <— /xn • • • <— xx2 «— xxi <— xx, or less specifically,

/x* «- • • • <- /x.

Definition 22 (Boundedness) Let m = (n, xx) be a marked non-coloured net.

Vp G P [xx(p) < 1] A

V/x* < <-/xVpG P [xx*(p) < 1]

is equivalent to saying that m is bounded.

All coloured nets are bounded under the definitions of this work.

Definition 23 (Vectorization of a marking) The vectorization of xx, given a

marked net m = (n, xx,...), is defined as:

H{n;m)

A*(Pi)

A*(P2)

/*(P|P|)

114

Definition 24 (Conservativeness) Given an initial marking /to for a marked net

m,

V/x0 V/x <- /x0 3x € Nl pl [(x ^ 0) A (xT/x(/i) = x T / x M)]

is equivalent to saying that the net is conservative.

Definition 25 (Dead transition) Let m = (n, /x) be a marked net, and t G T be

a transition in n.

dead(i; m) V/x* /x [-.enabled (i; (n, xx*))]

Definition 26 (Potentially firable transition) Let m = (n, xx) be a marked net,

and t G T be a transition in n.

p-firable(i; m) 3/x* xx [enabled(i; (n, xx*))]

Definition 27 (Live transition) Let m — (n, xx) be a marked net, and t € T be

a transition in n.

live(i; m) V/x* /x [p-firable(i; (n, /x*))]

Definition 28 (Live net) Let m = (n, /i) be a marked net,

livenet(m) ^ Vi G T [enabled (i; m)].

Definition 29 (Deadlock) Let m = (n, /x) be a marked net,

deadlock(m) Vi G T [-.enabled (i; m)].

Definition 30 (Potential deadlock) Let m = (n, /x) be a marked net,

p-deadlock(m) 3/x* <- • • • <- /x Vi G T [--enabled (£; m)].

115

Definition 31 (Reversible net) Let m = (n, /i) be a marked net,

reversible(m) O V/i* fi [p <— • • • «- /**].

Definition 32 (Effective functionality) Let n = (F, T, A, H, C, C, T, T, «) be a

coloured pre-net, p £ P, t € T, and T be a transition transform for n. Then

suppose

{ 3n* V/i 3 T [n* = (F, T, A, i T , C, C, TT, r, K) A (if* C ff)]} A

Vhe(H- H*) [(TT(A) = p) A (T(h) = t)

where all markings reachable by (n,/i, TJ,T) are reachable by (n*,/i, D, 1*). Then

• p is effectively an input place of r. if p € Pr(t),

• p is effectively an output place of t if p 6 0x (*) i and

• p is effectively an inhibiting place of i if p € r?T(*) a n d p is neither effectively

an input place of i, nor effectively an output place of t.

116

Appendix B

Theorems

The following theorems are not based on existing ones except for the general prin

ciples of Petri nets. This may or may not mean this is unique work.

Lemma 1 (Enablement is unaltered by multiple inhibitor arcs) Let t be a

transition in marked coloured pre-nets m = (n,fx, 1),T) and m* = (n*,fx,X),T),

where:

ri = {P,T,A,H,C,C,n,T,K),

n* = {P,T,A,H*,CX,TT,T,K),

H* = HuH,

MheH and

BheHVhiEH [(n(h) = IT (hi)) A (r(h) = r(hi))]. (a)

Then

enabled (t; m) enabled (t; m*).

117

Proof By Definition 18,

enabled(£;m)«>{VpG/MO [tr(t,p) = 1] } A { Vp G <M0 [e T(£,p) = 1] } A

{ Vp G /MO b(p) ^ e] } A { Vp G (MO - /MO) [/*(P) = e] } A

{©{<}(•) = 1} A { Vp G »?T(0U MP) = e] } •

Likewise,

enabled(t; m*) <S> { Vp G /MO M*,p) = 1] } A { Vp G <M0 M*>P) = 1] } A

{ Vp G /MO [MP) ̂ e] } A { Vp G (<£r (0 - /MO) [/*(P) = e] } A
{©{*}(•) = 1} A { Vp G TMOL- [MP) = e] } •

These differ only in r?x(0L and ^(i) | m . . But r?T(0U = »7r(0L» by Equation (a)

and Definition 13. •

Theorem 2 (Redundancy of multiple inhibitor arcs) Let m = (n, if, X>,T),

and m* = (n*,/i, 13,T) be marked coloured pre-nets, where:

n = (P,r,A,ff ,C,C ,7r ,r,K),

rc* = (F, r , A, if*, C, C, 7T, r, K) , and

ff C if*.

Let if = ff * - if. If

(jr(ft) = A (r(fc) = r(hj) 3heHVheH

then

V / i ' [// < <- A*L <=> A*' < <- A*|m«] •

118

Proof By induction. Let t = r(h) and p = n(h).

By Lemma 1, enabled (t; m) enabled (t; m*). Since an inhibitor arc affects only

the enablement of a transition and not the computation of a new marking,

V>1 [pi <~ fJ-\m O Ml <- fJ-\m']

Assume that,

VA; > 1 Vpk

k—2 times

Pi <- p
k—2 times

Then

v̂ fc V/ifc+i at* e r

fc—2 times

Mfc •flit- fJ. A pk+i <- Mfc

W+i Mfc

i n '

A:—2 times

•Hi*- p.

If this £' 7̂ f, then pk+i will be computable by m*, by Definition 19. And if this

t' — i, then pk+i will be computable by m*, by Lemma 1. •

Theorem 3 (Deadness condition of a transition, part I) Let m be a marked

coloured pre-net, where m = (n, /i, and n = (P, T, .4, if, C,£, 7 r , r , K). If

3t € T 3a,-, aj € A [(<n ^ aj) A (r(at) = r(aj) = t) A (7r(a,) = fl"(aj))], (a)

then

V/u [dead(i; m)].

119

Proof By Definition 25,

dead(i; m) V/i* « - • • • « - / * [--enabled(t, (n, /x*))].

By Definition 18,

enabled(i; m) { Vp € 0r(O M*iJ>) = 1] } A { Vp € ^r(t) M*>P) = 1] } A

{ Vp € #r(0 HP) + e] } A { Vp G (M O " /MO) [A*(P) = e] } A

{©{*}(•) = 1} A { Vp € ^ (O U [M(P) = e] } •

But Equation (a) states

3pe((3T(t)U<t>T(t)) [M * , p) ^ l) V (e T (i , p) / l)] .

•

120

Theorem 4 (Redundancy of a dead transition) Let m and m* be marked

coloured pre-nets, m — (n, /z, I),T) and m* = (n*, /z, I), T*), where:

ra = {Pi T, 4, if, C, £, 7r, r, K),
n* = (P,T*,4*,ii*,C*,C ,7r*,r*,K),

T* = TU{i*},

dead(i*; m*),

4* = 4 U 4,

Va € 4 [a g 4],

Va € 4 [r(a) = f] ,

if* = if U if,

Vfo G if \hg H],

\/h<=H \T{K) = t*

c* = c u c ,

Vced [cgc],

Vc G C [r(c) = **], and

Then

V/*' « «- /*|m <S> n' < <- / i | m «]

Proof By induction.

121

Since

Vt G T V/ii (enabled (r; m) A Li\ ii) (enabled (i; m*) A Hi ^- Li)

dead(r*; m*),

A

we have that

v>i [Mi «- Hm MI <- MU*]

Assume that,

Vfc > 1 V/i*
/c—2 times

Mfc < <-fii<- (i
k—2 times

Hi <r- jX

Then

V/xfc V/ifc+i 3*' G T

k—2 times

A fik+l <~ Hk

t'
Mfc+i ^- Vk

A:—2 times

This ^ £*, since dead(r*;m*); therefore /ifc+i will be computable by m*. And no

other markings will be computable by m*. •

Lemma 5 (Deadness condition of a transition, part II) Let m be a marked

coloured pre-net, where m — (n, /x, X), T) and n = (P, T, A, if, C, C, T , T", «)• If

3teT3aeA3heH [(r(a) = r (» = t) A (ir(a) = ir(h)) A (C(o) = t)],

then

V/i [dead(i; m)].

122

Proof If /x(7r(a)) = e, -.enabled(t; m) by Definition 18, since 3p G /?x(*) [vip) = e j -

And if ii(n(a)) ^ e, -.enabled(t; m) by Definition 18, since Bp G ?7T(0 7^ D

Lemma 6 (Redundancy condition of an inhibitor arc) Let m = (n,/i, DjT)

and m* = (n*,/i,'D,T) be marked coloured pre-nets, where

n={P,T,A,H,C,C,*,r,K),

n* = (P,T,A,H*,CX,*,T,K),

7f* = H UH,

VheH \h#H\, and

3t£T3pe PVheH3aeA

' (TT(/*) = TT(O) = p) A (r(fc) = r(a) = t) A (C(a) = p) A (p G (0r(t) - #r(0))

Then

V/*' [/*' MU*.

Proof If /i(p) = e then both conditions Vp G (<£r(i) - /?T(0) \P(P) — e l a n < ^ Vp G

rfr(t) \p{p) = e] are met. Likewise, if fi(p) / e then neither of these conditions is

met. Thus, m and m* are effectively identical. •

123

Lemma 7 (Deadness condition of a transition, part III) Let m and m* be

marked coloured pre-nets, m = (n,p,V,Tj and m* = (n*,/x,D,T), where

n= (P,T,A,H,CX,TV,T,K),

n* = {P,T,A,H*,CX,IT,T,K),

H* = HUH,

hgH and

3t eT 3p £ PVh e H 3a £ A

(n(h) = 7r(a) = p) A (r(h) = r(a) = t) A (C(a) = p) A (p € AMO)
Then

Vii [dead(£; m)],

Proof If /Li(p) = e then the condition Vp G /?T(*) [MP) 7^
 e] f ° r enablement is not

met. And if p(p) ^ e then the condition Vp G ??T(0 [̂ (P) = e] f ° r enablement is not

met. •

Theorem 8 (Partition of places) Let n — (P, T, A, H, C, C, n, r, K) be a coloured

pre-net, and t G T be a non-dead transition. Let \Pt = {{Pie) : p G P A e G -Et},

where Et = {i, 0, c, h,u} and, for a particular p G P,

• p tp* i if p is effectively only an input place of t,

• p \P< 0 if p is effectively only an output place of i,

• p\P< c if p is effectively an input place of i and effectively an output place of i,

• p h if p is effectively an inhibiting place of t,

124

• p \P< u if p is unconnected to t.

Then \J>t partitions P.

Proof It should be clear that

Vp € P 3e € Et [p * e]

since a place is either connected in some fashion to a transition or it is not. Thus,

if p is connected to t, and p u is not, [p] D [pu] = 0-

Also, for ̂ € (/?r(t) - <M0), Po G (<M*) - #r(*)). and p c £ (#r(0 n 0r(O)»

[pi] D [po] = 0,

[Pi] n [pc] = 0, and

bd n bo] = 0.

Now given ap^wr(t),

(p £ /?r(i)) V(p€ <M0) v (P G »?T(*))-

But, by Lemma 5,

VM [(p £ /3T(0) A (p £ T?T(0) => dead(i; (n, /i))],

so for pi £ (3T(t) and pi, £ 7/r(*)i N n bf)] = 0-

By Lemma 6,

(P e (Mt) - /MO)) A (p £ 7?T(0)

{V/i £ if [(TT(/I) = p) A (r(/i) = t) =• redundant(/i)] } ,

so for po £ (</>T(0 - /3T(t)) and p b £ 7?T(t), bo] n bf)] = 0-

And by Lemma 7,

V/x [(p £ M O) A (p £ M O) => dead(i; (n, /i))],

125

so for P c G (f3T(t) n <h{t)) and P t) G nT(t), [pc] D [p6] = 0. •

126

