
Disk Performance of Copy-On-Write Snapshot Logical Volumes
by

Bhavana Shah

B.E., Indian Institute of Technology Roorkee, India , 1999

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

The Faculty of Graduate Studies

(Computer Science)

The University Of British Columbia

August, 2006

© Bhavana Shah 2006

ii

Abstract

Data Snapshot technology is a standard feature of modern storage systems. Most such

systems use copy-on-write techniques to manage snapshot data in order to optimize

storage space requirements for maintaining history data. Copy-on-write methods tend

to write data out-of-place at a location which may be far away from the original location

of the data on the disk. This phenomenon gradually leads to fragmentation of the on-

disk snapshot data and degradation in the disk I/O performance. This work analyzes

Logical Volume Manager's (LVM2) snapshot technology and studies the effect of copy-

on-write on the on-disk placement of the snapshot data. Based on these findings, we

propose new disk space allocation and data placement techniques for snapshot volumes

in order to reduce physical distance between related blocks and improve disk access

performance. A prototype is implemented and its performance is compared with the

original LVM2 implementation in order to measure the effectiveness of the proposed

schemes. The new schemes tend to perform better than the old LVM2 ranging from

18% to 40% at the cost of some performance penalty for first time writes in some cases.

iii

Contents

Abstract »

Contents i"

List of Tables v

List of Figures vi

Acknowledgements viii

1 Introduction 1

1.1 Problem Statement 1

1.2 Background on LVM2 4

1.2.1 LVM2 Terminology 5

1.2.2 LVM2 Design and Software Architecture 7

1.2.3 The Mapping Table 11

1.3 LVM2's Snapshot Technology : Design and Implementation 12

1.3.1 Creation of an LVM2 snapshot logical volume 13

1.4 LVM2's Snapshot Technology : Disk Block Placement Analysis . . . 17

2 Design and Implementation 19

2.1 Experience With LVM2 Snapshot Volumes 19

2.1.1 Experiment Setup 20

2.1.2 Experiment Results 22

2.1.3 Spatial Density of Copy-On-Written Blocks 27

2.2 Design Decisions 27

Contents iv

2.3 Design 29

2.3.1 'Snap-Aware' Static Allocation Policy for LVM2 Logical Vol­

umes 29

2.3.2 Dynamic Allocation Policy and Intelligent Block Placement

for LVM2 Snapshot Logical Volumes 31

2.4 Implementation 33

2.4.1 LVM2 Disk Space Allocation Daemon 34

2.4.2 Device Mapper Datastructures 35

2.4.3 Device Mapper Control Flow 36

3 Evaluation 39

3.1 Kernel Compile and Grep Workload 39

3.1.1 Platform Configuration 39

3.1.2 Observations 42

3.1.3 Results 47

3.2 Performance Impact of Origin LV Slicing 49

3.3 Partial Filesystem Rewrite Workload . . . 52

3.3.1 Workload Description 53

3.3.2 Experiment Setup 53

3.3.3 Results 53

4 Related Work 58

4.1 Survey of Snapshot Technologies 58

4.1.1 Versioning File Systems 60

4.1.2 Block-level Snapshot Systems 62

4.2 Disk Block Placement Schemes for Copy-on-Write Snapshot Systems 65

5 Conclusion 68

Bibliography 73

List of Tables

1.1 Types of Device Mapper Mappings 10

2.1 Kernel Build and Grep Timings on Plain, Origin and Snapshot Logical

Volumes 22

3.1 Comparison of Hardware Configuration of the two Machines (source:

[6] and [11] . 41

3.2 Kernel Build and Grep Timings on the Plain, Origin and Snapshot Vol­

umes for Old and New LVM2 - Machine 1 47

3.3 Kernel Build and Grep Timings on the Plain, Origin and Snapshot Vol­

umes for Old and New LVM2 - Machine 2 49

3.4 Configuration Parameters for the Slicing Experiments 50

3.5 Configuration Parameters for the Partial Filesystem Rewrite Experiments 54

3.6 Results for the Partial Filesystem Rewrite Experiments - Old and New

LVM 54

vi

List of Figures

1.1 LVM2's Storage Hierarchy 5

1.2 Relation between LVM2 VGs, PVs and LVs (source [14]) 6

1.3 LVM2 Software Architecture 8

1.4 An Example of a Btree Mapping of a Logical Volume 12

1.5 LVM2 Snapshot Volume Creation - Step One 13

1.6 LVM2 Snapshot Volume Creation - Step Two 14

1.7 Snapshot Cow Device 15

2.1 Origin and Snapshot volume on the Disk 21

2.2 Difference between 'kernel-build' disk accesses on plain and origin LVs. 24

2.3 Disk Access Profile of the Kernel Grep Workload On the Origin LV . 25

2.4 Disk Access Profile of the Kernel Grep Workload on the Snapshot LV 26

2.5 Spatial Density of Copy-On-Written Blocks 28

2.6 Contiguous Vs. Snap-Aware Volume Space Allocation 31

2.7 LVM2 Space Allocation Daemon 34

2.8 Allocating new Snapshot LV Segment and Copying Blocks to it . . . 37

3.1 Blocks Written during 'Kernel-Build' on the Origin LV for the Old and

New Schemes 43

3.2 'Kernel-Grep' Disk Accesses on the Origin and the Snapshot LV - Old

LVM2 Scheme 44

3.3 'Kernel-Grep' Disk Accesses on the Origin and the Snapshot LV - New

LVM2 Scheme 45

List of Figures vii

3.4 'Kernel-Grep' Seek Profile on the Snapshot LV for the Old and the

New LVM2 Scheme 46

3.5 Trends in Kernel Grep Time on Origin and Snapshot LVs with increas­

ing number of slices 51

3.6 Trends in Kernel Build Time on Origin LV with increasing number of

slices 52

3.7 Disk Accesses during File System Grep on the Snapshot LV for the Old

and the New LVM2 Scheme 56

3.8 Disk Seek Profile for the File System Grep on the Snapshot LV for the

Old and the New LVM2 Scheme 57

Vl l l

Acknowledgements

I would like to express my sincere gratitude to my thesis supervisor Dr. Norman C.

Hutchinson who not only helped shape the main ideas in this thesis but also gave me

constant encouragement and support, making the whole experience very rewarding and

enjoyable. Many times during the course of the thesis, he provided valuable insight into

the problems and showed new research directions. Working under his mentorship has

been a truly wonderful experience.

I am also grateful to Dr. Charles Krasic for being the second reader and helping

with suggestions to improve this work. His efforts in setting up the emulab and main­

taining the netbed cluster are very much appreciated as this has provided an excellent

platform to the DSG students for conducting research and experimentation.

I would like to thank Cuong, Geoffrey, Brendan, Ken and other members of the

DSG Lab for their tips, suggestions and feedback.

Last but not the least, I am indebted to the Department and the Faculty of Com­

puter Science for providing continuous financial assistance, computing facilities and

an inspiring work atmosphere for conducting research.

Chapter 1

i

Introduction

1.1 Problem Statement

This thesis aims to study the fragmentation effects of copy-on-write techniques on

the snapshot logical volumes and to devise new disk allocation and data placement

schemes for these volumes in order to improve disk I/O performance. In this section

we briefly describe the environments in which snapshot logical volumes are used, the

ways in which copy-on-write techniques effect their on-disk data placement and the

characteristics of modern day disk systems which impact their performance.

In today's information age, the need to store large amounts of data, maintaining

data history, and retrieving it efficiently has grown significantly. Modern storage sys­

tems invariably provide some means of capturing current data state and storing it for

later use. Data snapshotting functionality is provided by the storage systems either at

the file system level or at the disk block level. Section 4.1 provides a survey of such

systems. Traditionally data backups have been used for purposes like data mining and

recovery from accidental errors. Recently, OS-virtualized architectures like Xen [16]

and Denali [9] have provided yet another reason to use data snapshots. In such envi­

ronments, the physical storage system needs to be transparently and efficiently shared

by multiple, independently running virtual machines, each requiring its own private

storage volume to host its file systems. Preparing a fresh storage volume and copying

the entire root filesystem on it, for each new virtual machine, can be a time-consuming

and disk-devouring process. An alternate solution is to create instant storage volume

snapshots, which are consistent point-in-time copies of a base root filesystem image,

using copy-on-write techniques, and then using them to support the active file systems

Chapter 1. Introduction 2

of each virtual machine.

Copy-on-write technique for snapshotting data is fast because it does not prepare a

data copy at the time of the snapshot creation. Data blocks are copied from the original

data store to the snapshot data store as they are written. Thus, only those data blocks

which are changed after the creation of the snapshot occupy space in the snapshot data

store. Although fast and disk space-efficient, copy-on-write technique writes data out

of place and breaks physical contiguity of logical blocks. The resulting disk fragmen­

tation raises concerns about the performance of snapshot volumes. Moreover, since

the file systems operating above these volumes are mostly unaware of this block-level

indirection, it further complicates the performance prediction of such systems under

various different workloads.

The problem of disk fragmentation is important to attend because the placement

of data on the disk can greatly impact its performance. The access time for hard disk

drives is a combination of seek time, rotational latency and data transfer time. Seek

time is the time required to position the disk head over the required track and rota­

tional delay is the time taken by the required sector to rotate underneath the head. Data

transfer rate is the number of bytes rotating under the head per second. Trends in disk

technology show that while the data transfer rates are improving with increasing disk

data densities, the mechanical delays (seek time, rotational delay) are not improving at

the same pace. In the face of these limitations, system designers employ different tech­

niques to partially offset these delays and improve disk performance. Some of these

techniques include using a buffer cache to serve I/O requests from the cache instead

of going to the disk for every request, increasing block size to reduce seek overhead,

permuting the disk head requests in order to reduce seek distances etc. Another set

of efforts in this field is to carefully place free blocks on the disk in order to optimize

disk performance for different workloads. This task is challenging because modern

day disks rarely expose their true geometries to the BIOS for reasons of complexity

and transparency. The disk blocks are accessed using linear block addressing (LBA).

In this scheme, sectors are numbered sequentially starting from zero and the drive in­

ternally translates these sequential numbers into physical sector locations. There is a

general understanding that disks map sequential logical block numbers(LBN) to ad-

Chapter 1. Introduction 3

joining sectors and therefore blocks closer to each other in the logical addressing space

are very likely to be physically close on the disk. Therefore, instead of randomly al­

locating free blocks, system designers aim to place related data closer in the logical

address domain so that they end up physically closer thereby reducing seek delays.

In the case of copy-on-write, the need is to co-locate related blocks of the snapshot

volume some of which may be lying on the original volume data store. This will help

reduce the number of long disk seeks to and from the original and the snapshot volume

while running a workload on the snapshot volume. In this thesis, we study Linux's

Logical Volume Manager (LVM2) and its copy-on-write snapshot technology. Based

on our findings about the performance of the LVM2 snapshot volumes, we propose

new disk space allocation and block placement techniques and build a prototype which

serves as a proof of concept. In the subsequent sections, we provide a primer on the

design and software architecture of LVM2 followed by a detailed description of its

snapshot technology. The remainder of this thesis is structured as follows:

Design and Implementation: In Chapter 2, we first present the results of some of

our preliminary experiments conducted over LVM2 snapshot volumes in order to verify

our concerns regarding degradation in the disk I/O performance due to copy-on-write

data displacement. Subsequently, we describe the design decisions we made, the desgin

itself and the implementation details of the LVM2 prototype.

Evaluation: In Chapter 3, we present the results of our experiments which compare

the disk I/O performance of the old LVM2 snapshot volumes and the new LVM2 snap­

shot volumes and analyze if the new scheme is effective in reducing disk seeks and

improving performance.

Related Work: Chapter 4 provides a survey of various storage systems which have

implemented copy-on-write snapshot technology, their strategies to organize snapshot

data on the disk and any available performance statistics for these systems. Further, we

discuss the work on 'Virtual Contiguity', which deals with similiar problems as ours at

the file system level.

Chapter 1. Introduction 4

Conclusion: Chapter 5 presents the conclusions we derive from this work and pro­

vides pointers for future work.

1.2 Background on LVM2

LVM2 [13] is the latest Logical Volume Manager for Linux. It provides a higher-level

view of the storage system than the traditional view of disks and partitions. By hiding

away the details of physical disk management, LVM2 offers an easy-to-use and flexible

interface to manage disk space.

The physical disk interface imposes lots of restrictions on the way disks can be

managed and configured. Disk partitions, once created are difficult to resize, and that

too, can not be done online, that is without unmounting the file system based on them.

Also, the blocks constituting a physical partition need to be contiguous on the disk.

Thus, the size of a file system mounted on a physical partition is bounded by the parti­

tion size and finally by the physical disk size. Another problem with this static scheme

is that it does not allow for shrinking and growing of partitions in the face of changing

needs of the users with time. These limitations are especially problematic in multi-user

environments with large numbers of disks to manage.

A logical volume manager hides all the above mentioned limitations from the user

and allows the system administrator to flexibly allocate disk space to users and ap­

plications. It sits between the file system and disk partitions and provides a seamless

interface to higher layers by binding the disparate disks and partitions underneath. A

logical volume can be grown or shrunk in size, even without dismounting the existing

file system in many cases. An LVM2 logical volume doesn't have to be made of contin­

uous blocks, it even doesn't have to be on the same disk. LVM2 takes care of binding

all the pieces together and mapping the blocks of a logical volume to the correct disk

blocks. With LVM2, adding or removing of disks can be done transparently. The log­

ical volumes can be simply resized to adjust to the new underlying disk configuration

in such a case.

In the following subsections, we shall discuss the common terms used with LVM2,

its design, software architecture and important datastructures, which are helpful in un-

Chapter 1. Introduction 5

derstanding its internal workings.

1.2.1 LVM2 Terminology

LVM2's storage model can be understood as a hierarchical structure as depicted in

Figure 1.1.

File System

Logical Volume

Volume Group

Physical Volume

Hard Disk/ Partition

Figure 1.1: LVM2's Storage Hierarchy

An LVM2 Physical Volume (PV) is typically a hard disk, or a hard disk partition

which has been prepared to be used by LVM2. By prepared, we mean LVM2-specific

configuration and identification information has been written on it. This information

includes the LVM2 label, one or two copies of LVM2 metadata and a physical vol­

ume identifier which is unique to the system. The contents of the LVM2 metadata are

discussed later.

Once we have created the physical volumes, we can create a volume group from

them. An LVM2 Volume Group (VG) is made up of one or more PVs. At the time of

the creation of a volume group, the user can specify the basic unit of allocation, which

will be used later to allocate space from the contained physical volumes. This basic

unit of allocation is termed as Physical Extent Size.

After the creation of a volume group, logical volumes can be created within it.

LVM2 Logical Volumes (LV) are allocated space from the PVs contained in the VG.

The logical volume size should be a multiple of the logical extent size, which is the

basic unit of allocation within a VG and is equal to VG's physical extent size. The

Chapter 1. Introduction 6

space allocation is done according to the allocation policy specified by the user at the

time of creation of the logical volume. The various allocation policies supported by

LVM2 are discussed in Section 1.2.2.

Finally, one can create a filesystem on top of the logical volume.

The containment rules for PV, VG and LVs are depicted in Figure 1.2.

Figure 1.2: Relation between LVM2 VGs, PVs and LVs (source [14])

A PV can only include a single hard disk or a single hard disk partition. A VG can

be made of multiple PVs but a PV can only belong to one VG. Similarly, multiple LVs

can be carved out of a VG but an LV can only belong to one VG. At the same time, an

LV can be allocated space from one or more PVs contained in the L V s volume group.

Also, there can be only one filesystem based on top of a logical volume.

LVM2 Metadata Format and contents: LVM2's metadata stores information about

the PVs, VGs and LVs, which needs to be persistent across machine reboots and is

required by LVM2 to detect its volumes on the disk at boot. The LVM2 metadata

Chapter 1. Introduction 7

format is an ASCII text format. Each VG has metadata defined for it describing the

physical volumes and the logical volumes contained in it. Normally, there is one copy

of metadata placed at the beginning of each PV contained inside the VG. The metadata

is updated everytime any change is done to the volume group like creation, deletion or

resizing of a logical volume, addition or removal of a physical volume, etc.

The on disk LVM2 metadata has the following parts:

a) Label: Occupies one sector near the start of each PV . It contains the LVM2 label,

a unique identification number of the PV and a pointer to the metadata areas and data

areas on the physical volume.

b) Metadata Areas : Each metadata area in turn has a header section and a circular

buffer containing the metadata. The header contains the checksum of the metadata, the

start position and size of the metadata area. The circular buffer, in turn, specifies to

which volume group the physical volume belongs, and for the volume group, describes

all the physical volumes and logical volumes contained within it. A logical volume is

described as an ordered list of logical segments each of which maps to a corresponding

physical segment.

1.2.2 LVM2 Design and Software Architecture

LVM2 is designed as a user-space command line interface which in turn communicates

with a kernel-driver to manage logical volume mappings. The software architecture of

LVM2 is detailed in Figure 1.3

As shown in the figure, the LVM2 software architecture is composed of three main

components, namely: the command line interface, the device mapper library, and the

device-mapper kernel driver. These are described below:

The LVM2 command line interface (CLI): LVM2 provides a unified command line

interface to manage physical volumes, volume groups and logical volumes. The CLI

has commands for creation, deletion, resizing, attribute modification, scanning, and

displaying of PVs, VGs and LVs. This layer of software resides in the user-space and is

responsible for reading and updating the LVM2 metadata. In the following paragraph,

Chapter 1. Introduction

dmsetup LVM2 CLI t t
libdevmapper

Applications

control ioctl
interface

block interface
UserSpace
Kernel

Core Device Mapper

1 Mapping interface

Linear mirror snapshot multipath
log kcopyd Path selectors h/w handlers

round-robin emc

Figure 13: LVM2 Software Architecture

we discuss the process of creation of a new logical volume, with emphasis on the space

allocation policies of LVM2.

Creation of a New Logical Volume: In order to create a new logical volume, the user

has to specify the name, size, and volume group of the new logical volume. Optionally,

he can also specify the list of physical volumes on which to allocate the logical volume,

and/or an allocation policy. LVM2 first prepares a list of free physical segments on the

PVs specified by the user or on all of the PVs of the VG, if no preference is given. This

list of free physical segments is maintained in increasing order of their size. After that,

LVM2 allocates space to the logical volume from these physical segments, depending

on the allocation policy specified by the user. LVM2 supports following two allocation

policies :

Contiguous: According to this allocation policy, the logical volume should be laid

down on the disk in one single continuous chunk. The creation of the LV may fail if a

physical segment of the required size is not found in the list of free segments.

Anywhere: This is the default allocation policy for logical volumes. As the name

Chapter 1. Introduction 9

suggests, in this case LVM2 starts allocating segments to the logical volume from the

head of the free segment list, till the required amount of space has been allocated. If

the last allocated segment size is bigger than the space left to be allocated, the segment

is split.

The device-mapper kernel driver: Once a logical volume is created using the LVM2

command line interface, it can be used to create file systems on top of it and direct

read/write I/O to it. We need a kernel mapping driver which maintains the mapping

from the logical volume to the physical disk sectors and routes these disk requests to

the required physical blocks. The device-mapper kernel driver is that piece of software

which takes care of this. It provides a generic framework for volume management. It

has no knowledge of the volume groups and metadata formats used by the user space

applications like LVM2. It only has the concept of a logical block device, for which

it maintains a mapping table that specifies how to map each range of logical sectors

of the device onto a target device, using one of the supported mapping types. The

device mapper supports various kinds of sector mappings from a source block device

to a target block device. Table 1.1 lists some of the mapping types implemented in

the current version of the device mapper. Each of these mapping types are loaded as

separate modules and registered with the core device mapper module.

Each table mapping for a block device has the form :

<start-sector> <length> mapping-type <mapping parameters>

where the mapping parameters are dependent on the type of mapping. The start-sector

and length fields are in the logical domain.

LVM2 creates and registers a logical block device with the kernel-resident device

mapper for each of its logical volumes. The notion of Volume Groups and Physical

Volumes is only maintained at the LVM2 level and is not exposed to the device mapper

which treats each logical volume as a uniquely identifiable and independent block de­

vice. At machine boot, LVM2 scans its metadata to get information about the volume

groups and the logical volumes they contain. Then it registers each logical volume and

its mapping table with the device mapper through the control ioctl interface exported

by the device mapper. The device mapper, in turn, assigns these logical block devices a

Chapter 1. Introduction 10

Mapping Arguments Action

Linear <start> <len> linear <dev> <start> Maps onto a continuous
range of other block device

Error <star> <len> error All I/O to this mapping is
dicarded and error returned

Zero <start> <ten> zero Read returns blocks of zero

Writes are silently discarded

Striped <start> <len> striped <#stripes> <chunk size> [<device>
<start>]

Stripes data across devices

Crypt <start> <len> crypt <cipher> <key> <IV offset* <device>
<start>

Encrypts the data passing
through

Snapshot
-origin

<start> <len> snapshot-origin <origin device> Reads go directly to origin
device

For Writes, first make a
copy of the sector on all
those snapshots of the
origin device, which are
sharing the sector with ft
and then proceed with write
on origin.

Snapshot <start> <len> snapshot <origin device> <snapshot
device> <persistency> <chunk size>

Reads go to origin device if
sector is still shared with
origin, otherwise goes to
snapshot device.

If the sector to be written is
shared with origin, first copy
the corresponding chunk of
sectors from origin to
snapshot device, then
proceed with write on
snapshot

Table 1.1: Types of Device Mapper Mappings

major and a minor number and registers them with the kernel. Subsequently, any block

I/O request coming for these devices are routed to the device mapper module, which

redirects the I/O to the appropriate target block device, after consulting the device's

mapping table.

The device mapper library: The device mapper library provides a programming in­

terface to the applications using the device-mapper. It hides the difference between

various versions of the device-mapper driver. The purpose of the library is to marshall

Chapter 1. Introduction 11

the arguments for the ioctl commands given by the applications, according to the un­

derlying kernel driver version and unmarshall the results returned from the driver into

a format appropriate for the applications.

1.2.3 The Mapping Table

The mapping table maintained by the device mapper for each block device is arranged

as a btree. Each of the segments in a logical volume is mapped as a specific target inside

the device mapper. The device mapper allows the mapping type for each segment to be

different. For instance, some segments of a block device may have a linear mapping to

a physical volume area while others may have an error mapping. The keys of the btree

are the boundary logical block numbers of the block device segments and the leaf nodes

are the mapping-specific target datastructures which contain the necessary information

and functions to map the incoming block requests to the target block device.

At the time of the block device creation, the device mapper prepares the leaf nodes

of the btree, one target node for each logical segment inside an LV. Once all the targets

are added, the device mapper prepares a set of btree indexes based on the logical block

numbers these segments represent, thus completing the mapping table.

An example mapping is shown in Figure 1.4. It shows a logical volume at the

top along with its nine logical segments. Eight of these segments are linearly mapped

to segments on the physical disk while the ninth one is mapped to an error segment.

The figure shows the btree data structure which maps the logical segments to their

targets. Each node within the btree, except the leaf nodes, holds multiple keys each

pointing to one child node. The keys denote the high boundaries of the logical segments

represented by the child nodes. By following down the index nodes in the btree starting

from the root node using the high boundary of the logical segment one wants to map,

one can get to the segment's physical target.

Chapter 1. Introduction 12

20(> 4C W 6! >0 9C » 1200 1300 1550 1600 2100

1 2 3 4 5 6 7 8 9

Block Device-LV with9

Represented as a Btree

650. 1300 . 2100

Leaf Node Leaf Node Leaf Node Leaf Node

Linear mapping

LV Segments on the Physical Disk

Figure 1.4: An Example of a Btree Mapping of a Logical Volume

1.3 LVM2's Snapshot Technology : Design and

Implementation

Unlike most storage snapshotting systems, which support readonly snapshots only,

LVM2 supports writable snapshots of the logical volumes. The writability feature

makes the usage of snapshots more flexible, as it allows to capture the state of the

storage device at some point in time, remount it later and run live applications on it.

This scenario is especially relevant in virtual machine environments where there is a

need to configure filesystems for each new guest operating system before running it,

and doing so by taking a snapshot of a standard base image is fast and convenient.

LVM2 uses copy-on-write technique to maintain snapshot data. The basic idea is

that the snapshot volume initially points to its origin volume blocks. After the snapshot

volume creation, any block which needs to be written, either on the origin volume or

on the snapshot volume, is first copied from the origin volume to the snapshot volume

and then written to. Thus, the snapshot volume holds only the changed blocks while

Chapter 1. Introduction 13

blocks which are unchanged since the time of their creation, are still shared with the

origin volume.

In the following sections, we shall discuss how LVM2 creates a snapshot logical

volume and does the bookkeeping for tracking changed blocks.

1.3.1 Creation of an LVM2 snapshot logical volume

LVM2 creates a snapshot logical volume in two steps. The first step is similiar to the

creation of a plain logical volume, as discussed in Section 1.2.2. The important thing

to note here is that LVM2 does the space allocation to the snapshot logical volume

without any consideration of the position of its origin volume on the disk. Therefore,

the snapshot volume segments may lie anywhere on the disk with respect to its origin

volume segments. Figure 1.5 shows an example scenario of the placement of a snapshot

and its origin volume segments on the physical volume, assuming that both of the

volumes are allocated on the same physical volume.

LV-org
block device

linear mapping

LV-snap
block device

read/write read/write

linear mapping

LV-snap
segment

LV-origin
segment

Free
segment

LV-origin
segment

LV-snap
segment

Free
segment

VG

PV

\

Figure 1.5: LVM2 Snapshot Volume Creation - Step One

In second step, LVM2 inserts another virtualization layer between the logical vol­

ume layer and the physical volume layer. This layer contains the logic for keeping

track of which blocks have changed since the creation of the snapshot volume and

Chapter 1. Introduction 14

where they are located on the snapshot volume. Figure 1.6 shows the final mapping of

the snapshot and origin logical volume segments to their physical position on the disk.

snapshot-origin
mapping

/

linear mapping

Figure 1.6: L V M 2 Snapshot Volume Creation - Step Two

As shown in the figure above, the origin LV is mapped to a 'origin-real' device

using the 'snapshot-origin' mapping type. Similarity, the snapshot LV is mapped to

both the 'origin-real' and 'snapshot-cow' devices using the 'snapshot' mapping type. In

turn, the 'origin-real' device is mapped to the origin LV segments, which were allocated

to the origin LV at the time of its creation, using a linear mapping. Likewise, the 'snap-

cow' device is mapped to the snapshot LV segments, allocated to the snapshot LV in

step one, using a linear mapping.

Figure 1.7 shows how the data on the snapshot volume is arranged on the 'snap-

cow' device. The device is shown to be divided into equal pieces called 'chunks'. A

'chunk' is a contiguous collection of blocks, whose purpose is explained a little later in

this section. The first chunk of the 'snap-cow' device contains the label for the LVM2

cow device type. The rest of the device contains the data blocks which have been

Chapter 1. Introduction 15

copied from the origin volume and the metadata, called an 'exception-table', which

has entries mapping the copied data location on the 'origin-real' device to the block

location on the 'snap-cow' device. Data chunks are allocated on the 'snap-cow' device

starting from the third chunk in a sequential order. Metadata chunks are allocated on

the 'snap-cow' device starting from the second chunk, spaced out by the number of

data chunks whose mapping can be held in one chunk of metadata. The 'exception-

table' mapping helps to route read/write I/O requests coming for the snapshot volume

to the right place, as described in the following paragraphs.

In order to reduce the size of the exception table, LVM2 copies the data and main­

tains its mapping chunk-wise, which is by default equal to 8K in size, instead of block-

wise. An asynchronous copying daemon, called 'kcopyd daemon', handles the copying

of chunks from the origin to the snapshot volume and informing the main request pro­

cessing thread of the copy completion. The snapshot mapping module reads the entire

exception table from the 'snap-cow' disk into main memory, at machine boot, for faster

processing of incoming I/O requests. This table is called 'completed exception table'.

Another table called 'pending exception table' maintains all those exceptions, which

have been allocated a new chunk on the snapshot device but for which the chunk copy

has not been completed yet.

Figure 1.7: Snapshot Cow Device

The 'snapshot-origin' mapping handles the I/O for a logical volume which is an

origin LV for one or more snapshot logical volumes in the following way:

Read: A read request on an origin volume is simply routed to the 'origin-real' block

device, without any change.

Chapter 1. Introduction 16

Write: For a write request, the exception tables of each of the.snapshot volumes of

this origin volume are consulted to check if the particular block to be written has been

copied to the snapshot volume or not. If not, then a free chunk is allocated on the

snapshot volume, and a request is issued to the 'kcopyd' daemon to copy the chunk

containing the block from the 'origin-real' device to the 'snap-cow' device. Once the

chunk has been copied to the 'snap-cow' device, an entry is made in the exception table

mapping the old logical chunk number in the 'origin-real' device to the new logical

chunk number on the 'snapshot-cow' device. Finally, the write request is routed to the

'origin-real' device.

The 'snapshot' mapping handles the I/O for a snapshot logical volume in the fol­

lowing way:

Read: For a read request on a snapshot volume, the exception table of the volume is

consulted to check if the block to be read has been copied to the 'snap-cow' device or

not. If yes, then the read request is routed to the 'snap-cow' device. Otherwise, it is

routed to the 'origin-real' device.

Write: For a write request, the exception table of the snapshot volume is consulted

to check if the particular block to be written has been copied to the snapshot volume or

not. If not, then a free chunk is allocated on the snapshot volume, and a request is issued

to the 'kcopyd' daemon to copy the chunk containing the block from the 'origin-real'

device to the 'snap-cow' device. Once the chunk has been copied to the 'snap-cow'

device, an entry is made in the exception table mapping the old logical chunk number in

the 'origin-real' device to the new logical chunk number on the 'snapshot-cow' device.

Finally, this entry is used to get the block number on 'snap-cow' which is to written,

and the request is updated with this block number and routed to the 'snap-cow' device.

Once the read or write request reaches the 'snap-cow' or 'origin-real' device, it is

mapped to the final physical block on the disk using linear mapping.

Chapter 1. Introduction 17

1.4 LVM2's Snapshot Technology : Disk Block

Placement Analysis

In the last section, we discussed the way LVM2 creates logical volume snapshots and

maintains their copy-on-write block mappings. In this section, we shall analyse the

ways in which virtualization at the logical volume level may affect disk I/O perfor­

mance.

File systems make their own allocation decisions for file, directory and metadata

blocks, at their level, depending on their goals and policies. Some file systems optimize

data placement for improving disk performance in general, like the Fast File System [7]

which tries to co-locate file metadata and data on the disk for fast reads and writes,

whereas some have their allocation policies designed for optimizing write performance,

as in the Log Structured File System [17], where the writes go to a sequential log on

the disk, thereby speeding up the write performance.

By having logical volumes underneath the file systems instead of actual physical

volumes, some of the assumptions made by the file system may no longer hold true.

In case of logical volumes, the file system has no knowledge that there is another layer

of software underneath, which is re-routing its allocation requests. Logical volumes,

unlike physical disks or partitions, are not guaranteed to be continuously laid down

on the disk, and may even be allocated on multiple disks or partitions. Because of

this possible segmentation in logical volumes, the allocation decisions made at the file

system layer may not pay-off or may even turn out to be sub-optimal.

In addition, the LVM2's snapshotting logic adds another level of indirection in the

I/O path, as seen in the above section. LVM2's snapshot logical volume does not

have a direct linear mapping for its filesystem data blocks. It only keeps changed

data blocks in its allocated space and, that too, in a sequential log fashion interspersed

with regular snapshot metadata blocks. Rest of the unchanged blocks lie on the origin

logical volume. Thus, we see that the file system, which is hosted on the snapshot

logical volume, has some of its blocks lying in the origin volume space and the rest of

them in the snapshot volume space, without its knowledge. Further, the origin volume

Chapter 1. Introduction 18

and snapshot volume space on the disk itself may be segmented and may lie anywhere

on the disk with no effort made by LVM2 to co-locate these segments. We saw in

the last section that LVM2 allocates space to the snapshot volume just like any other

ordinary logical volume with no consideration to the fact that this volume's data may

be related to the data on its origin volume.

We see from the above discussion that LVM2's implementation of snapshot logical

volumes does not make any special effort to place snapshot's changed data blocks near

their original locations, in order to improve disk I/O performance for these volumes.

While we expect some degradation in performance for first time writes to either of

the origin or snapshot volumes due to the extra chunk copy from the origin to the

snapshot volume, it is the read performance which we are concerned about because of

the copy-on-write displacement of changed blocks from their original location, thereby

disturbing the physical contiguity of related blocks. In the next Chapter, we present the

results of our preliminary experiments on the LVM2 volumes, which verify some of

our concerns related to I/O performance of snapshot logical volumes due to copy-on-

write effects, and elaborate on the design decisions we took in proposing new schemes

for space allocation to logical volumes and placement of changed blocks in snapshot

volumes for LVM2.

This chapter presented the problem which this thesis deals with. Since our work is

based on LVM2, we have provided a background on its terminology, software archi­

tecture and internal workings. Later, we describe the design and implementation of the

snapshot logical volumes in LVM2.

19

Chapter 2

Design and Implementation

In this chapter we present the results of some of our early experiments with LVM2

snapshot volumes, which corroborated our concerns regarding performance degrada­

tion in LVM2 snapshot volumes due to poor block placement, and helped us in deriving

design guidelines for creating new schemes for disk space allocation of LVM2 logical

volumes and for smart placement of copy-on-written blocks on the snapshot volumes

in order to maintain their proximity with their related blocks. Section 2.1 details these

experiments and their findings. Section 2.2 discusses the conclusions which we draw

from these results which informed our design of new allocation and block placement

schemes for LVM2. Section 2.3 presents our design and Section 2.4 describes its

implementation.

2.1 Experience With LVM2 Snapshot Volumes

We conducted a set of experiments to study the actual effects of copy-on-write block

displacement on the disk I/O performance of LVM2 snapshot volumes. The purpose

was to study the degree of fragmentation caused by copy-on-write on the snapshot

volumes and to see if this fragmentation really affected the performance. Our premise

was that the spatial discontiguity between different related blocks of a snapshot volume

would lead to more disk seeks, amounting to an increase in the disk access times. In

the following sections, we explain these experiments and their results.

Chapter 2. Design and Implementation 20

2.1.1 Experiment Setup

We have conducted our experiments over the Xen [16] virtual machine monitor plat­
form, which is an OS-virtualized environment running the Xen hypervisor at the hard­
ware interface level and supporting the execution of multiple guest operating systems
on top of it. Xen is open source software developed at the University of Cambridge.
In OS-virtualized environments, LVM2 logical volume snapshots come to offer great
ease in capturing the initial file system configuration from a base image and hosting live
Guest OSes on top of them. Therefore, we contemplate that the performance of LVM2
snapshot volumes in these environments is important and interesting to investigate.

I n s t r u m e n t a t i o n : We instrumented the ide disk driver in the linux kernel to record
the following information about the I/O requests reaching the disk:

• Type of I/O request: read or write

• Time of I/O request arrival

• The disk block number which is being read or written

• Type of filesystem block, i.e., if it is an inode, file data, directory, indirect, jour­
nal, superblock, block bitmap, inode bitmap or group descriptor block which is
being read or written.

This information is routed by the kernel syslogger to another machine on the local

network, in order to prevent this logging activity from affecting our results. In the Xen

environment, there is a single privileged GuestOS called DomainO which has access

to the hardware resources like the machine's physical disks and network devices. All

the of other GuestOSes run in unprivileged mode in which they see virtual block de­

vices (VBDs) and network interfaces (VIFs) which are created and configured within

DomainO. The actual disk and network drivers thus reside in DomainO and receive

disk read/write requests from and send responses to unprivileged domains via Xen's

inter-domain communication interface.

Chapter 2. Design and Implementation 21

Platform Configuration: We run our experiments on a 2.8GHz Pentium 4 machine
with 512MB RAM and 40GB Western Digital(WD400BB-23FJA0) ATA disk drive.
The machine hosts Xen-2.0 ported over the base Fedora Core 4 operating system. The
GuestOSes run modified unprivileged Fedora Core 4 operating systems. For our exper­
iment, we run DomainO on a 15GB origin logical volume and an unprivileged GuestOS
on a 10GB snapshot logical volume. Figure 2.1 shows how these volumes are laid out
on the disk.

Origin Volume (15GB) Snapshot Volume (10GB) Free Space

Figure 2.1: Origin and Snapshot volume on the Disk

Workload Description: In this experiment, we run a Linux kernel source tree com­

pile and grep workload. We first install a clean kernel source tree on a 15GB logical

volume. The size of the kernel source tree is around 209MB and after compilation, it

becomes 1.22GB. Then we build this kernel source tree and record the time and disk

block requests for this activity. After this, we run a grep on this compiled kernel source

tree and record the time and disk block requests this time too. The grep is done on

the entire kernel source tree with object files included. These build and grep times

on the plain logical volume are the base times against which we shall compare the

performance of build and grep on origin and snapshot logical volumes.

Next, we make a 10GB snapshot of this plain logical volume. The size of a snapshot

volume can be less, equal to or more than its origin logical volume. Thus, now the

plain logical volume becomes an origin logical volume for the newly created snapshot

volume. Now, we clean the kernel source tree on the origin logical volume and build it

again. This time all the first writes during kernel build on the origin logical volume shall

generate a copy-on-write block copy from the origin to the snapshot volume. We record

the time and disk block requests for this activity. Then we do a grep similiar to the

previous one on the original logical volume's kernel source tree. Now, we instantiate a

Chapter 2. Design and Implementation 22

GuestOS on the snapshot logical volume and also run a grep on its kernel source tree.

For this source tree, the source files will lie in the origin volume space while those

object files which have been overwritten will be copied to the snapshot volume area.

Thus, the grep on the snapshot kernel source tree will exhibit performance penalties,

if any, due to disk seeks between the source files and object files lying on different

volumes.

2.1.2 Experiment Results

The results of our experiments are compiled in Table 2.1. From the table, we deduce
that the kernel build time on the origin volume is 6.7% more than the kernel build
time on the plain logical volume, due to the copy-on-write induced extra chunk copies
from the origin to the snapshot volumes. More importantly, we find that the grep
performance on the snapshot volume is 62% less than on the origin volume.

Volume Kernel-Build Time
(min:sec)

Kemel-Grep Time
(min:sec)

Plain LV 39:39 4:40

Origin LV 4250 4:45

Snapshot LV - 7:42

Table 2.1: Kernel Build and Grep Timings on Plain, Origin and Snapshot Logical

Volumes

We have plotted the disk block accesses for the kernel build workload on the plain

LV and the origin LV. Figure 2.2 shows these graphs. The x-axis in these graphs rep­

resents the time in milliseconds during the kernel build and the y-axis represents the

disk block number which was accessed at a particular point of time. In the graphs, the

'READ' data points represent the disk blocks which were read during the kernel build

workload and the 'WRITE' data points represent the disk blocks which were written.

During kernel source tree compilation, the source files contained in each directory of

the tree are read and compiled. The objects files thus written on the origin volume

Chapter 2. Design and Implementation 23

cause the corresponding original data blocks to be copied from the origin to the snap­
shot volume.

We see two dense horizontal bands of 'READ' blocks in each graph. The upper
band is probably the region of disk space where the kernel source files are placed. The
lower band on the origin volume contains the ext3 file system's metadata like journaling
blocks, inode bitmap, block bitmap etc., which are heavily read and written during the
kernel build workload. We notice that towards the end of the kernel build workload,
there is a heavy vertical band of disk reads followed by disk writes. This disk read
activity takes place at the object files' linking stage and the disk write activity is caused
during the module building stage.

On comparing the two graphs, we note a linear 'WRITE' curve in the top portion
of the lower graph. These are the copy-on-write disk writes during kernel build on the
origin volume which copy original data from the origin volume to the snapshot volume.

Similiarly, Figure 2.3 and Figure 2.4 show the disk block accesses for the kernel
grep workload on the origin LV and the snapshot LV respectively. The disk block
access graphs mostly have 'READ' data points as the kernel grep workload mostly
consists of disk reads. Comparing the graphs in Figure 2.3(a) and Figure 2.4(a), we see
that the graph pertaining to the snapshot volume has a prominent 'READ' band at the
top of the graph. These data points represent the blocks which were copied from the
origin volume to the snapshot volume during the kernel build workload.

These figures also contain graphs showing the disk access times vs. disk seek
distances for this workload on the two volumes. The purpose of these graphs is to see
if the 62% decrease in the snapshot read performance is due to increased disk seeks
or not. The x-axis in these graphs is the seek distance in units of disk blocks and
the y-axis represents the disk access time in milliseconds. Note that in Figure 2.4(b),
the seek distances have increased for a large amount of disk accesses as compared
to Figure 2.3(b). This increase is due to the longs seeks which the disk has to make
between blocks lying in the origin volume and those lying on the snapshot volume.

The results of this experiment show that copy-on-write displacement of blocks
across LVM2 volumes can lead to significant performance degradation of read work­
loads.

Chapter 2. Design and Implementation 24

(a) Blocks Accessed during Kernel Build on the Plain Volume

1.134E+12 1.134E+12 1.134E+12 1.134E+12 1.134E+12 1.134E+12 1.134E+12

Time in msec

(b) Blocks Accessed during Kernel Build on the Origin Volume

Figure 2.2: Difference between 'kernel-build' disk accesses on plain and origin LVs.

Chapter 2. Design and Implementation 25

40000000

35000000

30000000
a
O. 25000000
w
g 20000000 H
m

15000000

10000000

5000000

1E+12 1E+12 1E+12 1E+12 1E+12 1E+12 1E+12 1E+12 1E+12

Time In m s e c

(a) Blocks Read during Kernel Grep on the Origin Volume

10000000 20000000 30000000 40000000

S e e k D i s t a n c e in D i s k B l o c k s

(b) Seek Profile during Kernel Grep on the Origin Volume

Figure 2.3: Disk Access Profile of the Kernel Grep Workload On the Origin LV

Chapter 2. Design and Implementation 26

1.13377E+12 1.13377E+12 1.13377E+12 1.13377E+12 1.13377E+12
Time in msec

(a) Blocks Read during Kernel Grep on the Snapshot Volume

(b) Seek Profile during Kernel Grep on the Snapshot Volume

Figure 2.4: Disk Access Profile of the Kernel Grep Workload on the Snapshot LVs.

Chapter 2. Design and Implementation 27

2.1.3 Spatial Density of Copy-On-Written Blocks

In order to understand the distribution of blocks which were copied from the origin
volume to the snapshot volume, we extracted the 'exception-table' from the 'snap-cow'
device and plotted the original location of copied blocks on the origin volume. This
information is depicted in Figure 2.5(a). The x-axis represents the origin volume disk
space divided into 480 buckets of 32MB each, while the y-axis represents the number
of disk blocks which were copied from the origin volume to the snapshot volumes from
each bucket. The graph in Figure 2.5(b) depicts the same information but sorted by the
number of blocks copied rather than the slice index.

In these graphs, we see that the physical distribution of blocks copied from the
origin volume to the snapshot volume is non-uniform, with most of the blocks copied
from a few regions while the remaining regions are untouched or copied very little.

2.2 Design Decisions

P r o v i s i o n i n g o f F r e e Space nea r the O r i g i n V o l u m e : The results of the preliminary

experiment, conducted on LVM2-based logical volumes show that the displacement

of related blocks caused by copy-in-write can be large enough to cause a significant

degrading effect on the disk read performance. We found out from the seek profile

of the kernel grep workload on the origin and the snapshot volume that the increased

seek distances in the case of the snapshot volume are one of the probable reasons of

the degradation in performance. Earlier, we noted in Section 1.2.2, that the space

allocation for the origin and snapshot volumes, in case of LVM2, is done completely

independent of each other. We decided to modify the scheme of space allocation for

logical volumes in LVM2, so that it provisions for some free space near these volumes

for future allocation of snapshot data blocks. This will help in keeping displaced copy-

on-written blocks near their original locations and thereby reducing the long disk seeks

which we saw in our experiments.

D y n a m i c a l l o c a t i on o f S n a p s h o t V o l u m e Space : At first, we thought of allocating

space statically to the snapshot logical volumes, at the time of their creation, in seg-

Chapter 2. Design and Implementation 28

• Number of Blocks Copied

1
. i 1 1 . . i j

Wffrl iinnpiffi«niif7i
106 141 176 211 246 281 316 351 386 421 456
480 Buckets - 32 MB/65536 blocks each

(a) Density Distribution of Blocks Copied during Kernel Build on the Origin
Volume - Sorted by Slice Index

1 36 71 106 141 176 211 246 281 316 351 386 421 456
480 Buckets of size 32 MB

(b) Density Distribution of Blocks Copied during Kernel Build on the Origin
Volume - Sorted by Number of Copied Blocks

Figure 2.5: Spatial Density of Copy-On-Written Blocks

Chapter 2. Design and Implementation 29

merits adjacent to the origin volume segments. This allocation scheme would perform
very well in co-locating displaced blocks if the data writing and copying takes place
uniformly across all origin volume segments. In Figure 2.5, we see that the block dis­
placement from the origin volume due to copy-on-write occurs non-uniformly, with
most of the blocks being copied from very few regions of the origin volume. Keep­
ing this in mind, we decided to replace the LVM2's static space allocation scheme for
the snapshot logical volumes to a dynamic one in which space gets allocated to the
snapshot volume in small segments on-demand at run-time and at locations which best
preserve the spatial locality of related blocks. This method will not only allow more
flexibility in sharing the free space provisioned near the origin volumes for various
snapshot volumes, but will also reduce space wastage in the snapshot volumes and
co-locate related blocks in the best possible way.

2.3 Design

In this section we discuss the design of the new disk allocation and block placement
schemes which we have developed for LVM2 in order to improve the disk performance
of snapshot logical volumes. First, we describe the design changes we introduced in the
static space allocation scheme of plain logical volumes in LVM2. Then, we describe
the design of a dynamic space allocation scheme and an intelligent block placement
scheme for LVM2 snapshot volumes.

2.3.1 'Snap-Aware' Static Allocation Policy for LVM2 Logical

Volumes

We have designed a new static allocation policy, called 'Snap-Aware', for LVM2 logi­

cal volumes, which leaves free space in between the volume segments for the volume's

future snapshot logical volumes. According to this allocation scheme, a new logical

volume will be allocated equal-sized segments called slices which are equi-distantly

spaced from each other. The size of these slices and the gap between them is config­

urable by the user at the time of the creation of the logical volume.

Chapter 2. Design and Implementation 30

The 'Snap-Aware' allocation policy accepts following parameters:

• Number of Slices: The user can specify the number of slices in which to divide

the logical volume. The size of each slice can thus be calculated by dividing the

size of the volume by this number.

• Size of a Slice: Optionally, the user can specify the size of a slice instead of the

total number of slices.

• Number of Snapshots: The user can tentatively suggest a value for the number
of snapshots he is provisioning for at the time of creating a logical volume. This
will help the LVM2's space allocator in deciding the size of the inter-slice gap.

• Percentage Size of Snapshots: Along with the number of snapshots to provision
for, the user can specify an approximate value of the size of a snapshot volume
as a percentage of the origin volume size, so that the total size of the free space
to be provisioned for can be calculated accordingly.

Figure 2.6 shows an example of a logical volume which has been allocated space

using the 'Snap-aware' allocation policy and how it may have looked if allocated using

the 'Contiguous' allocation policy of LVM2.

Discussion: This scheme makes the space allocation of a logical volume anticipate

that in future some snapshot logical volumes may be based on it and would benefit

by being closer to it. The scheme has been desgined to offer flexibility to the user

in deciding how much slicing and space provisioning he wants to do. At the same

time it also encumbers the user with the burden of deciding suitable values for these

parameters which are apt for the kind of workloads he expects to run on the system.

There are certain tradeoffs which have to be considered while choosing a value for

the above parameters. For example, the slice size should not be so big that it renders

the snapshot blocks to be too far from their original allocations to be of any value.

Similarity, the gap between the slices should be not be too much that it separates the

original volume data so much that it hurts its performance. At the same time, the gap

between the slices should be big enough to hold the difference data pertaining to its

Chapter 2. Design and Implementation 31

Slices allocated to Snapshot LVs on-demand at run-time

(a) Snap-Aware Allocation Policy

Origin LV Snapshot LV 1 Snapshot LV 2 Snapshot LV3 Free Space

(b) Contiguous Allocation Policy

Figure 2.6: Contiguous V s . Snap-Aware Volume Space Allocation

neighbouring origin volume slices otherwise the difference data would spill over to

other areas. But, as we saw in Figure 2.5, since the physical distribution of blocks

copied from the origin volume is non-uniform and workload-dependent, it is difficult

to anticipate the required free space provisioning to prevent spilling over of copied data

from the intended physical disk area.

2.3.2 Dynamic Allocation Policy and Intelligent Block Placement

for LVM2 Snapshot Logical Volumes

On-Demand Disk Space Allocation: For the LVM2 snapshot logical volumes, we

have introduced two changes. The first change is in the way disk space is allocated

to the snapshot volume. LVM2, in its original design, allocates space to a snapshot

logical volumes statically at the time of its creation. We have modified this allocation

scheme to make it dynamic. In the new LVM2 scheme, at the time of the creation of a

snapshot volume, its blocks will be mapped to a single error segment equal in size to

that of the snapshot volume size. Actual disk space will be allocated to the snapshot

volume in terms of equal sized segments at run-time, and at a location near the disk

Chapter 2. Design and Implementation 32

chunk which is to be copied from the origin volume to the snapshot volume. This

allocation will be done by a userspace-resident LVM2 space allocation daemon, which

gets allocation requests from the kernel-resident device mapper module at run-time.

The size of the segment which is allocated in one request is configurable and can be

different for different snapshot volumes of the same origin volume.

Smart Block Placement: The second change which we have done is in the way data
and metadata chunks are placed on the snapshot volume space. In the original LVM2
scheme, as we saw in Figure 1:7, the data chunks in the logical block domain are
allocated on the snapshot volume in a sequential manner starting from the third chunk
with single metadata chunks appearing between them after regular intervals. In the
new LVM2 scheme, the logical block domain of the snapshot logical volume is divided
into segments of equal size, each equal to the amount of space allocated by the LVM2
space allocator in one allocation request, and one error segment at the end mapping
all the blocks which are yet unallocated. Instead of placing chunks contiguously in the
logical domain, in the new LVM2 scheme, the device mapper, on getting an I/O request,
first finds out the physical location of the chunk which is being copied from the origin
logical volume to the snapshot logical volume. Then it tries to find an allocated segment
whose physical location is within a desired range of the chunk's physical location. If
such a segment is found, then the device mapper picks a free chunk from it, maps the
I/O request to the new chunk and routes it to the target physical device. Free chunks
are picked from the segment in a sequential manner. If such a segment is not available
or does not have a free chunk, then the device mapper stalls the I/O request and sends
a segment allocation request to the LVM2 space allocation daemon. Once the segment
allocation is done, the device mapper adds this segment to its mapping table for the
snapshot device and proceeds with the servicing of the I/O request.

Thus, in summary, we have sliced up the origin volume and left free spaces between
the slices to be allocated to its future snapshot volumes. Additionally, we have made
the space allocation to snapshot volumes dynamic so that space can be allocated to
them as and when required and at a location which best preserves the spatial locality of
snapshot volume blocks with their related blocks lying in the origin volume. Further,

Chapter 2. Design and Implementation 33

we have modified the block placement strategy within the snapshot volume segments

so that the displaced blocks can be placed in that segment of the snapshot volume which

is nearest to the original location of the blocks.

Discussion: There are certain concerns which ought to be discussed with regards to
the above dynamic space allocation scheme. First concern is about the time overhead
incurred at runtime for allocating space to the snapshot volume since the disk requests
which need to write to the unallocated space are delayed for this amount of time. One
obvious solution to minimize the impact of this overhead is to increase the amount of
space allocated to the snapshot volume in one allocation request, thereby reducing the
number of such requests. But this approach may lead to large amount of space wastage
in those segments of the snapshot volume which hold very little copy-on-written data.
This may also negatively affect the space allocation of other snapshot volumes which
may not get free space in the desired regions because of the extra allocation done by
previous snapshots. In our experiments (refer Section 3.1), we find that the overhead
of dynamic space allocation is minimal and does not effect the overall performance of
the snapshot volumes significantly. But, this overhead may become large if the size of
the allocated segments is reduced considerably leading to frequent requests for space
allocation. In short, this scheme calls for striking a balance between the tradeoffs
of write time efficiency versus fine grained data placement and efficient free space
utilization by snapshots.

2.4 Implementation

In the last section, we described the new space allocation and block placement schemes

which we have introduced for LVM2 logical volumes. In this section, we discuss the

software architectural changes, datastructure modifications and control flow changes

which we made in the LVM2 software in order to implement these schemes.

Chapter 2. Design and Implementation 34

LVM2
Space ABocatkn Daemon

Disk

Figure 2.7: LVM2 Space Allocation Daemon

2.4.1 LVM2 Disk Space Allocation Daemon

We implemented a user-space resident disk space allocation daemon for dynamically

allocating disk space to the snapshot logical volumes. It has a multi-threaded design. It

interacts with the device-mapper using a set of ioctl commands as shown in Figure 2.7.

• Each thread within the daemon calls the 'wait' ioctl of the device-mapper and

gets blocked till it reads a pending disk segment allocation request. This request

has the following format:

- The snapshot device id: This field uniquely identifies the snapshot volume

which needs disk space to be allocated.

- The lower physical address range: This field specifies the lower end of the

physical disk address range within which to allocate the segment.

- The upper physical address range: This field specifies the upper end of the

Chapter 2. Design and Implementation 35

physical disk address range within which to allocate the segment.

• On getting the request, one of the daemon threads reads the current volume group
metadata from the disk, prepares a list of free spaces on the VG, arranges them
in the order of their physical location on the disk, and then attempts to find a
free segment of the required size within the physical address range specified by
the request. If such a segment is not found within the desired range, it tries to
allocate a segment which is nearest to the specified address range.

• After allocating a free segment, the daemon thread updates the on-disk VG meta­
data to reflect the newly added segment and sends a segment allocation response
back to the device mapper using the 'dev-alloc' ioctl with following details:

- The snapshot device id

- The lower and upper physical address range

- The allocated segment's size.

- The allocated segment's start address in the logical address range.

• On getting this response, the device mapper adds this segment to the mapping ta­

ble of the 'snap-cow' device and proceeds with the servicing of pending disk I/O

requests. In order to prevent new incoming requests from waiting for a long time

till the above processing takes place, the mapping table datastructure is locked

only for the time when the new segment is being added to it. After segment ad­

dition, the mapping table is unlocked. Subsequently, for each pending or freshly

arriving request for this segment, the lock is reacquired in order to process the

request.

2.4.2 Device Mapper Datastructures

In this section, we describe the datastructure changes we have made in the device map­

per kernel module to implement the new block placement schemes for snapshot de­

vices.

Chapter 2. Design and Implementation 36

Snapshot Device Metadata: As we saw in Figure 1.7, in the original scheme new

chunks are allocated sequentially from the snapshot volume space. The device mapper

maintains a 'next-free' chunk counter for each snapshot device which is increased every

time a new chunk is allocated on the 'snap-cow' device. In the new LVM2 scheme,

the new chunks on the snapshot volume are not allocated sequentially on the 'snap-

cow' device but are allocated on that logical segment of the 'snap-cow' device which

is physically closest to the chunk's original location. Therefore, in the new LVM2

scheme the 'next-free' chunk counter is maintained within each logical segment of the

'snap-cow' device. Whenever a new chunk needs to be allocated, first an appropriate

segment is chosen. Then, the next free chunk within that segment is allocated.

Mapping Tables: In the original scheme, the device mapper maintains a linear map­
ping table for each of the 'snap-cow' device and the 'origin-real' device. These map­
ping tables are indexed by the logical start block numbers of the segments allocated to
these devices. In the new LVM2 scheme, the device mapper maintains an additional
mapping table, one each for these devices, indexed by the physical start block number
of the segments allocated to these devices. This kind of mapping table is useful for
locating segments of a device based on their physical location on the disk. The usage
of these tables is discussed futher in the next section where we describe the control
flow within the device mapper module.

2.4.3 Device Mapper Control Flow

In this section, we will discuss the control flow of write requests which result in copying

of data blocks from the origin to the snapshot volume. Such writes may either be

directed to the origin device or to the snapshot devices. Figure 2.8 depicts a typical

scenario of adding a new segment to the snapshot volume and copying a block from

the origin volume slice to an adjacent snapshot segment.

• Stepl: For an incoming write request, the device mapper looks into the com­

pleted exception table of the snapshot device to check if the block to be written

has already been copied from the origin to the snapshot device. If yes, then the

Chapter 2. Design and Implementation 37

Physical range

Block to be
written

im

Snapshot LV Data Chunks

Figure 2.8: Allocating new Snapshot LV Segment and Copying Blocks to it

write request is simply routed to the target device with the correct block map­

ping. If no, then the device mapper follows Step2.

• Step2: Now, the device mapper first finds the physical location of the block to be

written on the origin device. Then, using the 'origin-real' device's mapping table

which is indexed by physical disk location, finds out the segment which contains

this block and the neighbouring segments. By using the physical start location of

the neighbouring segments, the device mapper defines a range of physical disk

addresses within which the block should be copied.

• Step3: Using this physical addresses range, the device mapper looks into the

'snap-cow' device's mapping table indexed by physical disk location to find a

segment which lies in that range. If such a segment is found which has a free

chunk, then this chunk is allocated for the new exception and the chunk copy

request is issued to the 'kcopyd daemon'. If no such segment with a free chunk

is found, then the device mapper goes to Step4.

• Step4: The device mapper maintains a list of pending segment allocation re-

Chapter 2. Design and Implementation 38

quests which have been sent to the userspace LVM2 allocation daemon. Each of
these requests contains the range of physical addresses within which they have
requested a segment to be allocated, and a list of pending exceptions which are
waiting to allocate a free chunk from the segment. Each pending exception in
turn has a list of pending disk I/O requests to be serviced once a free chunk has
been allocated on the snapshot and the old data chunk has been copied to it. The
device mapper looks into the list of pending requests to see if there is a segment
allocation request already pending for this range of physical disk addresses. If
yes, then it appends the pending exception to this request's list of pending ex­
ceptions. If no such request is present, then the device mapper creates a fresh
segment allocaton request and sends it over to the LVM2 allocation daemon.

• Step5: On receiving a response to its segment allocation request, the device
mapper adds this newly allocated segment to the mapping tables of the 'snap-
cow' device. Then, it services all of the pending exceptions which were waiting
to allocate free chunks from this segment.

Summarizing this chapter, we first presented the results of some of our early ex­

periments with LVM2 snapshot logical volumes. These experiments not only verified

our concerns about the performance degradation of the snapshot logical volumes due

to copy-on-write, but also provided some guidelines to remedy this effect. Next, we

described the design decisions we took and the actual design followed by its imple­

mentation.

Chapter 3

39

Evaluation

In this chapter, we shall describe the various experiments we conducted in order to
evaluate our new disk space allocation and block placement schemes for the LVM2
snapshot logical volumes. The primary goal of these experiments is to determine if
the new block placement scheme, in which the copy-on-written blocks are placed as
close to their original locations as possible, improves read performance on the snap­
shot logical volumes or not. Other goals are to measure the effect of slicing on the disk
I/O performance of the origin volumes, and to determine if the overhead of allocating
disk space to the snapshot volumes dynamically significantly effects the runtime per­
formance of these systems. These experiments have been conducted on two different
sets of hard disk subsystems from different vendors in order to see how disk-specific
characteristics like on-disk cache buffer, average seek times, etc., impact the results of
our experiments.

3.1 Kernel Compile and Grep Workload

In the Section 2.1 we described a kernel compile and grep workload and presented

the results of running this workload on LVM2 logical volumes in a Xen-based virtual

machine environment. In this experiment, we use the same workload and compare the

results obtained with the original LVM2 scheme and the new LVM2 scheme.

3.1.1 Platform Configuration

We did two runs of this experiment, each on a different machine. Table 3.1 compares

the hardware configuration of the two machines. The first machine has a 2.8GHz CPU

Chapter 3. Evaluation 40

and a 40GB Western Digital IDE disk with 2MB of on-disk cache buffer, while the
second machine has a 3.2GHz CPU and a 80GB Maxtor SATA disk with 8MB of
on-disk cache buffer. Each machine has Xen-2.0 installed on it and the guest virtual
machines, running on top of Xen, have Xen-ported Fedora Core 4 as their operating
system.

The disk is prepared by creating a physical volume on it and then creating a volume
group containing this physical volume. The extent size, which is the basic unit of space
allocation for logical volumes, is configured to be 4MB for this volume group. After
creating the volume group, a logical volume is created which is 15GB in size and the
root file system containing an uncompiled kernel source tree is copied on it. Then
a guest operating system is run on this volume which compiles, the kernel source tree.
Now a snapshot of the volume is taken. The snapshot's chunk size, which is the amount
of data copied from the origin to the snapshot volume as a result of copy-on-write of
a disk block, is configured to be 8K. At this point, both origin and snapshot volumes
point to the same compiled kernel source tree. After that, we clean the source tree
on the origin volume and run a kernel build workload which recompiles the kernel
source tree and writes object files. Once the kernel compilation is complete, we do a
grep on the entire kernel source tree including object files. After that, we run another
guest operating system on the snapshot logical volume and run the grep workload on its
kernel source tree. For all these workload runs, we log the disk read and write requests
and record the running time.

In the case of the new LVM2 scheme, the 15GB origin volume is sliced to provision
for 6GB of free space for three snapshots between its slices, in the following way:

• Number of Slices = 30

• Size of Each slice = 15GB/30 = 512MB (128 extents)

• Interslice Gap = 6GB/30 = 200MB (50 extents)

The segment allocation size per allocation request is configured to be 2 extents

(8MB) in the LVM2 allocation daemon.

Chapter 3. Evaluation 41

Features Machine 1 Machine 2
CPU Speed 2.8GHz 3.2GHz

CPU L1 cache 8K 16K
CPU L2 cache 512K 1024K

RAM 512MB 1GB
Hard Disk Model WD4C0BB-23FJA0, ATA Maxtor 6Y080M0, ATA

Interface EIDE SATA
Rotational Speed 7200 RPM 7200 RPM
Hda max req. size 128KB 128KB

Hda capacity 40GB 80GB
Cache Buffer 2MB 8MB

Average Seek time 8.9ms(read seek time) <= 9.3ms
Write seek time 10.9ms -

Track to track see time 2ms .9ms
Full Stroke seek 21ms <= 20ms

Transfer rate (buffer to
disk)

400 Mbrt/s(max) -

Transfer Rate (buffer to
host)

100Mbit/sec 150Mbit/sec

Number of Platters 2 -
Number of Cylinders - 158816

Data Zones per surface - 16
Data Sectors /track - 610/1102

Track Density per Inch - 89 ktpi

Table 3.1: Comparison of Hardware Configuration of the two Machines (source: [6]
and [11]

Chapter 3. Evaluation 42

3.1.2 Observations

We have plotted the disk access graphs for the kernel build workload on the origin
volume with the old and the new LVM2 scheme. These graphs are shown in Figure 3.1.
The x-axis in these graphs represents the time during the compilation and the y-axis
represents the disk blocks written during the kernel build on the origin volume. We
observe in the disk access graph for the old LVM2 scheme that the blocks which are
written to during the kernel build workload are copied from the origin volume to the
snapshot volume in a linearly increasing disk segment at the top end of the graph.
While for the new LVM2 scheme, we observe that the blocks are copied from the origin
volume to the nearby snapshot segments on the disk. These segments are allocated on-
demand at kernel build time by the LVM2 space allocation daemon.

Figure 3.2 shows the disk access graphs for the kernel grep workload on the origin
and the snapshot volume with the old LVM2 scheme. Note that in case of kernel grep
on the snapshot volume, the workload reads the unchanged data from the origin volume
and the copy-on-written data from the snapsot volume. This causes disk seeks between
the snapshot volume and the origin volume. Figure 3.3 shows the disk access graphs
for the kernel grep workload on the origin and the snapshot volume with the new LVM2
scheme, where the two graphs look similiar to each other. The disk seeks in case of
kernel grep on the snapshot volume are greatly reduced as the copy-on-written data lies
adjacent to the unchanged data in this case. These observations are verified from the
graphs in Figure 3.4 depicting the disk seek times as a function of disk seek distance
during the grep workload on the snapshot volume with the old and new LVM2 scheme.
The x-axis in these graphs denotes the seek distance which the disk travels for accessing
blocks during the kernel grep workload and the y-axis denotes the corresponding time
taken for these disk seeks. Comparing the two graphs in this figure, we note that the
disk seek distances on the snapshot LV are reduced greatly with the new LVM2 scheme
as compared to the old LVM2 scheme.

Chapter 3. Evaluation 43

• Blocks written on Origin LV
• Copy-on-written Blocks on Snapshot LVl

1.15233E+12 1.15233E+12 1.15233E+12 1.15233E+12

Time In m s e c

(a) Blocks Written during Kernel Build on the Origin Volume - Old LVM2
Scheme

• Blocks written on Origin L V

1.2E+12 1.2E+12 1.2E+12 1.2E+12 1.2E+12 1.2E+12 1.2E+12 1.2E+12
Time in m s e c

(b) Blocks Written during Kernel Build on the Origin Volume - New LVM2
Scheme

Figure 3.1: Blocks Written during 'Kernel-Build' on the Origin LV for the Old and

New Schemes

Chapter 3. Evaluation 44

1.152E+12 1.152E+12 1.152E+12 1.152E+12 1.152E+12 1.152E+12
Time In msec

(a) Blocks Read during Kernel Grep on the Origin Volume - Old LVM2 Scheme

1E+12 1E+12 1E+12 1E+12 1E+12 1E+12 1E+12 1E+12 1E+12
Time in msec

(b) Blocks Read during Kernel Grep on the Snapshot Volume - Old LVM2
Scheme

Figure 3.2: 'Kernel-Grep' Disk Accesses on the Origin and the Snapshot LV - Old

LVM2 Scheme.

Chapter 3. Evaluation 45

60000000

50000000

„ 40000000
a o

K
jo 30000000
u
o

° 20000000

10000000

[• R E A D |

— r — \ — * • 1 — " * • — • • —

. • • •

0-1 , , , , ,
1.152E+12 1.152E+12 1.152E+12 1.152E+12 1.152E+12 1.152E+12

T i m e in m s e c

(a) Blocks Read during Kernel Grep on the Origin Volume - New L V M 2 Scheme

10000000

1.2E+12 1.2E+12 1.2E+12 1.2E+12 1.2E+12 1.2E+12 1.2E+12 1.2E+12
T ime In m s e c

(b) Blocks Read during Kernel Grep on the Snapshot Volume - New LVM2
Scheme

Figure 3.3: 'Kernel-Grep' Disk Accesses on the Origin and the Snapshot L V - New

L V M 2 Scheme.

Chapter 3. Evaluation 46

25

20

• Disk Seeks

— — . ••. *Af s • •"..«"
s •- • v . " w t*. . i

10000000 20000000 30000000

S e e k D is tance in D i s k B l o c k s

(a) Seek Profile during Kernel Grep on the Snapshot Volume - Old LVM2
Scheme

10000000 20000000 30000000 40000000 50000000
Seek Distance In Disk Blocks

(b) Seek Profile during Kernel Grep on the Snapshot Volume - New LVM2
Scheme

Figure 3.4: 'Kernel-Grep' Seek Profile on the Snapshot LV for the Old and the New

LVM2 Scheme.

Chapter 3. Evaluation 47

3.1.3 Results

Table 3.2 shows the timing results for the experiment run on Machine 1. With the old
LVM2 scheme, we observe 68% performance degradation for the kernel-grep workload
on the snapshot volume as compared to the origin volume. Additionally, the extra
copy-on-write chunk copies during the kernel build workload on the origin volume
costs 8% performance degradation as compared to kernel build on the plain LV. With
the new LVM2 schemes, we observe that the performance degradation in the kernel
grep workload over the snapshot volume is 50% as compared to the kernel grep on the
origin volume, while the percentage degradation in kernel build performance is the
same as with the old LVM2 scheme. Overall, the new LVM2 scheme leads to an 18%
improvement in read performance.

Wortdoad(M/C#1) Time {min.sec)
OLD LVM2

Time (mirtsec)
NEW LVM2

Kernel build on Plain LV 42:59 42:39

Kernel grep on Plain LV 2:59 02:54

Kernel build on Origin LV 46:24 46:21

Kernel grep on Origin LV 03:00 02:58

Kernel grep on Snapshot LV 05:03 04:27

Table 3.2: Kernel Bui ld and Grep Timings on the Plain, Origin and Snapshot Volumes

for O l d and New LVM2 - Machine l

On comparing the kernel build time over the origin volume in case of the new

LVM2 scheme with the old LVM2 scheme, we observe that the overhead of dynamic

Chapter 3. Evaluation 48

segment allocation in case of the new LVM2 scheme has no effect on the workload

performance. Also, if we compare the kernel build time and grep time over the plain

volume in case of the new LVM2 scheme with the old LVM2 scheme, we will see that

the slicing of the origin volume in case of the new LVM2 scheme too has no noticeable

impact on performance. Of course, these results are dependent on the degree of slicing

in the origin volume, the free space provisioned between the slices, and the segment

allocation unit for dynamic space allocation to the snapshot volume.

Table 3.3 shows the timing results for the experiment run on Machine 2. During

this run, under the old LVM2 scheme, copy-on-write causes the kernel build time to

increase by 26% and the kernel grep time by 15%. The new LVM2 scheme performs

almost equally to the old LVM2 scheme. In this case the degradation in the snapshot

volume's kernel grep performance due to copy-on-write is significantly less than in the

previous case. We attribute this to the four, times larger on-disk cache buffer. As shown

in Table 3.1, the machine for this run has an 8MB on-disk cache buffer as compared to

the 2MB cache buffer on the previous machine. As a result, the disk is able to cache

more data and more effectively reduce number of disk accesses, which in turn improves

read performance. The disk writes do not benefit from this cache buffer and therefore

there is no improvement in the kernel build time which involves 43% writes.

Coming to the overall performance improvement for the kernel build and grep

workload with the new LVM2 scheme, one may wonder if performance can be fur­

ther improved by even more fine grained data placement. We can adjust the granularity

of data placement by tuning the volume slicing and segment allocation parameters in

the new LVM2 scheme, but it involves balancing some tradeoffs. For example, one

may want to have thinner origin volume slices in order to reduce the distance between

origin and snapshot data, but at the same time increasing the number of origin LV slices

also implies increasing the number of gaps at the cost of their size thus leading to large

number of dynamic allocations for the snapshot volume which could increase the write

overhead on these volumes. In order to evaluate this aspect of the new LVM2 scheme,

we conducted a series of experiments with increasing number of slicing while keeping

the relative ratios of all other factors constant. These experiments are described in the

next section.

Chapter 3. Evaluation 49

W o r k l o a d (M / C # 2) T i m e (h n m i n : s e c)

O L D L V M 2

T i m e (h r m i n r s e c)

N E W L V M 2

K e r n e l b u i l d o n P l a i n L V 5 6 : 2 7 5 6 : 4 4

K e r n e l g r e p o n P l a i n L V 1 0 : 1 6 1 0 : 2 3

K e r n e l b u i l d o n O r i g i n L V 1 : 1 1 : 1 5 1 : 1 2 : 9

K e r n e l g r e p o n O r i g i n L V 1 0 : 1 7 1 0 : 2 4

K e r n e l g r e p o n S n a p s h o t L V 1 1 : 5 3 1 2 : 1 5

Table 3.3: Kernel Build and Grep Timings on the Plain, Origin and Snapshot Volumes

for Old and New LVM2 - Machine 2

3.2 Performance Impact of Origin LV Slicing

In this set of experiments, we aimed to explore the impact of slicing on the perfor­

mance of the origin volumes and the snapshot volumes and see if there is any value in

having more fine-grained slicing of the origin volume. In the last section we saw 18%

performance improvement in the grep workload over the snapshot volume by slicing

the 15GB origin volume into 30 slices. In these experiments we gradually increase the

origin volume slicing from 30 to 8192 while keeping other factors constant and record

their performance for the 'kernel compile and grep' workload. The configuration pa­

rameters for these experiments are shown in Table 3.4. In this table, we see that we

have kept all other factors constant like the origin LV size, total space provisioning for

the snapshot volumes, the snapshot LV size and the ratio of the gap between the slices

to the dynamic allocation size.

During our experiments, we observe that increased slicing decreases the distance

between the origin and the snapshot volume data blocks and increases kernel-grep per-

Chapter 3. Evaluation 50

of Origin
LVSBces

Origin LV
Size

Snapshot
Provision

Extent
Size

Origin LV
Slice Size

Gap

Slices

Dynamic
Allocation
Size

Snapshot
LVSize

30 15GB 6GB 4MB 512MB 196MB 8MB 2GB

512 15GB 6GB 2MB 30MB 12MB 4MB 2GB

1024 15GB 6GB 2MB 15MB 6MB 2MB 2GB

2048 15GB 6GB 512K 7.5MB 3MB 1MB 2GB

4096 15GB 6GB 256K 3.75MB 1.5MB 512K 2GB

8192 15GB 6GB 128K 1.875MB .75MB 256K 2GB

Table 3.4: Configuration Parameters for the Slicing Experiments

formance on the snapshot volumes. But at the same time, the overhead of dynamically

allocating space to the snapshot volumes increases during the kemel-build workload as

the amount of space allocated per request decreases with increased slicing thereby in­

creasing the number of allocation requests. These trends are depcited in the Figures 3.5

and 3.6.

The graph in Figure 3.5 shows the trend in kernel grep time on the origin volume

and the snapshot volume with an increasing number of origin volume slices. The 'ori­

gin LV grep' data points in the graph depict the kernel grep time on the origin volume

for different number of origin volume slices. We observe that there is not much varia­

tion in the kernel grep time over the origin volume as the number of slices are increased.

The 'snapshot LV grep' data points in the graph depict the kernel grep time on the snap­

shot volume for different number of origin volume slices. The percentage value printed

above each data point denotes the percentage by which the kernel grep workload takes

more time on the snapshot volume than on the origin volume. We see that the kernel

grep time on the snapshot volume shows a decreasing trend as the number of origin

volume slices are increased. The percentage gap between the kernel grep time on the

origin and the snapshot volume decreases from 68% in case of one slice(equivalent to

Chapter 3. Evaluation 51

350

300

Kernel Grep Time Trends (Origin and Snapshot LV)

6 8 %
-•-origin LV grep
- o - snapshot LV grep

250

5 0 %
. 3 8 % 3 5 % , 3 2 % / - 3 6 %

- 200
a>

B
P 150
Q.

<5 100
50

30 512 1024 2048 4096

Number of Origin LV slices

8192

F i g u r e 3 . 5 : Trends in Kernel Grep Time on Origin and Snapshot L V s with increasing

number of slices

the old LVM2 scheme) to approximately 35% with more slices. Thus we see that the

idea of slicing up the origin volume and carefully placing snapshot data in between

these slices does prove beneficial in improving the read performance over the snapshot

volume without sacrificing the origin volume's read performance.

The graph in Figure 3.6 shows the trend in kernel build time on the plain and the

origin volume with an increasing number of origin volume slices. The 'Plain LV Build'

data points in the graph depict the kernel build time on the plain sliced volume and the

'Origin LV Build' data points depict the kernel build time on the origin sliced volume

for different numbers of slices. The percentage value printed above each 'Origin LV

Build' data point depicts the percentage by which the kernel build workload takes more

time on the origin volume than on the plain volume. We observe an increasing trend

in the kernel build time on the origin volume with increasing numbers of slices. This

is because of the increasing overhead of dynamic space allocation for the snapshot

volume during the kernel build on the origin volume. In this case, this overhead almost

Chapter 3. Evaluation 52
Kernel Build Time Trend (Plain and Origin LV)

4500.00

4000.00

3500.00

e> 3000.00
(0
{j 2500.00
E

i= 2000.00

= 1500.00

1000.00

500.00

0.00

30.4%

8 .8% -J^f
7 . 2 % /

-J^f

ft% 8 . 6 % J - — — a m

D—

-m- P la in L V Bui ld
- o - O r i g i n L V Bui ld

30 512 1024 2048
Number of Origin LV Slices

4096

Figure 3.6: Trends in Kernel Build Time on Origin LV with increasing number of

slices

starting doubling after a point as the amount of space allocated per dynamic allocation

request is halved.

Thus, we observe that as we go on slicing the origin volume more and more, the
snapshot volume blocks get further closer to their original locations, thereby improving
the snapshot read performance. But, as the slicing is increased beyond a point, the
overhead of dynamic space allocation for snapshot volumes becomes considerable.

3.3 Partial Filesystem Rewrite Workload

This is an artifical workload which ages the origin volume by writing random parts of

the filesystem in order to generate copy-on-write data and then greps on the filesystem

to measure the read performance of the snapshot volume. It differs from the kernel

compile and grep workload in the sense that it does not allocate new data blocks on the

origin volume but rewrites the existing data blocks.

Chapter 3. Evaluation 53

3.3.1 Workload Description

In this workload, first a script is run which finds all the files present on the origin
volume and writes this list into a file. Then a snapshot of the origin volume is taken.
After that, another script is run on the origin volume which randomly picks files from
the above list and partially rewrites them. During this rewriting process, the rewritten
disk blocks get copied from the origin volume to the snapshot volume. The files are
rewritten partially in order to generate copy-on-data which is related to unchanged file
data. For the rewriting, the script starts from the beginning of each file, skipping few
blocks of data in the process periodically till it reaches the end of the file. For our
experiments, we have configured the script to skip 8K of data periodically. Once this
script is over, a grep is run on the snapshot volume's filesystem and the origin volume's
filesystem and time recorded. In order to maintain uniformity across the two workload
runs, the list of random files picked up for partial rewriting in the second step is kept
same for the two runs.

3.3.2 Experiment Setup

For our experiment, we performed two runs of the above workload once using the old

LVM2 scheme and once the new LVM2 scheme. In both the cases, same machine was

used(Machine 1 in Table 3.1). The configuration parameters for the two runs are shown

in Table 3.5.

3.3.3 Results

The results of the above experiment runs are shown in Table 3.6. We see in the table

that while the new LVM2 scheme takes 22% more time to partially rewrite the filesys­

tem than the old LVM2 scheme, it fairs better in the read performance of the snapshot

volume by almost 40%. With the old LVM2 scheme, the snapshot volume's read per­

formance is 84% degraded as compared to the origin volume. On the other hand, the

new LVM2 scheme brings down this degradation in the read performance to 45%.

We have plotted the disk accesses and seek profile of the filesystem grep workload

for the old and the new LVM2 scheme in order to understand what the disk is doing

Chapter 3. Evaluation 54

Parameter Old LVM2 New LVM2

Origin Volume
Size

15GB 15GB

Snapshot Volume
Size

2GB 2GB

Provision for
Snapshots

- 2GB

of Slices - 2048

Slice size - 7.5MB

Slice Gap - 1MB

Dynamic
Allocation Size

- 1MB

Table 3.5: Configuration Parameters for the Partial Filesystem Rewrite Experiments

Workload (M/C#1) Time (nrdnsec)
OLD LVM2

Time (rrdnsec)
NEW LVM2

Partial File system Rewrite on Origin LV 19:40 24:02

Grep on Origin LVs FBe System 0429 0426

Grep on Snapshot LVs FBe System 08:14 0826

Table 3.6: Results for the Partial Filesystem Rewrite Experiments - Old and New

LVM2

during this workload. Figure 3.7 shows the disk blocks read with time during the

file system grep for the old and the new LVM2 scheme. For the old LVM2 scheme

we observe that the copy-on-written blocks lie in a dense horizontal band on the top

Chapter 3. Evaluation 55

belonging to the snapshot volume while the unchanged data blocks lie below in the
origin volume. For the new LVM2 scheme, the copy-on-written blocks occupy space
in the snapshot segments which lie near their original locations in the origin volume
slices.

Figure 3.8 shows the disk seek profile of the filesystem grep workload for the old
and the new LVM2 scheme. The x-axis in these graphs denotes the seek distances
which the disk travels to access the data blocks during the gTep and the y-axis denotes
the corresponding disk seek time for these accesses. We can clearly see in these graphs
that the seeks are greatly reduced in case of the new LVM2 scheme as compared to the
old LVM2 scheme.

In this chapter, we presented the results of our experiments which compared the
new LVM2 design with the old one. We evaluated the new scheme with two different
workloads and on two different machines and found out that it performs better than
the old scheme by 18% to 40% depending upon the configuration parameters like the
degree of origin volume slicing, etc. Although it incurs extra overhead during first time
writes due to its dynamic space allocation policy, the read performance of the snapshot
logical volumes with the new scheme can be improved considerably while keeping this
overhead low.

Chapter 3. Evaluation 56

1.16E+12 1.16E+12 1.16E+12 1.16E+12 1.16E+12 1.16E+12 1.16E+12

T ime in m s e c

(a) Blocks Read during File System Grep on the Snapshot Volume - Old LVM2
Scheme

• 50000000

45000000

40000000

35000000

g 30000000
OC
£ 25000000

o 20000000
m

15000000

10000000

5000000 A

f '

1.155E+12 1.155E+12 1.155E+12 1.155E+12 1.155E+12 1.155E+12
T ime In m s e c

(b) Blocks Read during File System Grep on the Snapshot Volume - New LVM2
Scheme

Figure 3.7: Disk Accesses during File System Grep on the Snapshot L V for the Old

and the New LVM2 Scheme.

Chapter 3. Evaluation 57

(a) Seek Profile during File System Grep on the Snapshot Volume - Old LVM2
Scheme

25 i • Disk S e e k s !

I". •

E.-V:..'

10000000 20000000 30000000

S e e k D i s t a n c e In D i s k B l o c k s

(b) Seek Profile during File System Grep on the Snapshot Volume - New LVM2

Scheme

Figure 3.8: Disk Seek Profile for the File System Grep on the Snapshot LV for the Old

and the New LVM2 Scheme.

58

Chapter 4

Related Work

Data Snapshot Technology is a key component of commerical-grade storage products
and has been implemented by most hardware and software storage vendors today. In
Section 4.1, we discuss some of the commerical and research-based snapshot tech­
nology solutions, focusing on the copy-on-write aspect of their implementations and
the related I/O performance issues. Section 4.2 provides a survey of previous research
work on improving performance of copy-on-write data. In this section, we particularity
focus on the data placement techniques explored by other researchers.

4.1 Survey of Snapshot Technologies

Most of the today's storage systems provide some kind of snapshotting facility to cap­

ture data as it appears at some point of time and use it for backup, recovery and other

purposes like data mining and data cloning. A snapshot can be defined as a consistent

point-in-time image of data. Depending on the way snapshots are created, they can be

classified along several lines.

One of the important feature of snapshots is their writability. Some storage systems

support only read-only snapshots which are mainly used for backup and error recovery

purposes. Other systems provide the facility to create writable snapshots which can

support live applications running on them. One such use of writable snapshots is in the

OS-virtualized environments where a snapshot is created from a base image and then

mounted to support live filesystems of individual guest operating systems.

Another way in which snapshots may differ is the manner in which they are cre­

ated. A snapshot can be either a full-copy of the original data or a log of changes on

the original data since the time of the snapshot creation. While the full-copy method

Chapter 4. Related Work 59

removes any dependency on original data and reduces recovery time, its preparation
time and disk space requirement is proportional to the original data size. Long cre­
ation time implies equivalent down-time for applications while the snapshot is being
taken. On the other hand, the differential log method utilizes copy-on-write technique
to generate snapshots instantaneously while using minimal disk space. In the copy-on-
write technique, the snapshot initially points to the original data. Whenever some data
is changed in the original data store, it is first copied to the snapshot area to preserve
data as it appeared at the snapshot creation time. Thus, the copy-on-write snapshot re­
quires only a fraction of the original datastore disk space size to store the changed data
blocks. With all these benefits of disk space savings, zero application down-time, and
instantaneous snapshot generation, copy-on-write techniques have been widely used
in snapshot technology design. We shall see some of these designs in the subsequent
subsections.

Besides the above mentioned classifying features, snapshots can also be differenti­
ated based on the level of storage hierarchy at which they are created, the granularity of
data which they represent and the frequency with which they are generated. At the ap­
plication level, software version control systems, like CVS [3] and RCS [21], provide
a facility to create and manage various point-in-time versions of software. They give
user the flexibility to choose whichever parts of the file system need to be versioned.
Also, they allow users to concurrently checkout old versions and make changes to them
and return them back to the repository.

At the file system level, the versioning semantics may be implemented inside the
file system. While several file systems like Plan9 [23], Network Appliance's 'Write
Anywhere File Layout' file system [12], and Ext3cow [5] allow periodic snapshots of
entire file systems, others like Elephant [22], VersionFS [15], WayBack [2], Compre­
hensive Versioning File System CVFS [8] provide individual file and directory ver­
sioning. Filesystem-based snapshot systems understand filesystem semantics and thus
enable greater control and finer granularity in the snapshotting process. For instance,
the Elephant [22] file system implements support for user-specified retention policies
for individual files, groups of files or directories. Also, since most of these systems are
implemented inside the file systems, they provide snapshot feature as an easy extension

Chapter 4. Related Work 60

to the existing file system interface.
On the other hand, there are systems which implement a snapshot facility at the stor­

age block virtualization level. The advantage of this approach is that such mechanisms
provide a common, filesystem-agnostic snapshot facility which can be transparently
used by all higher system layers. By moving the data management functionality near
the disk, such systems reduce the complexity of higher layers and take advantage of
powerful processing capabilities of the disk subsystems. However, since information
about the content of data is not available at this level, most block-level snapshot systems
provide snapshotting of entire volumes and not individual files or directories. Examples
include volume management systems like Logical Volume Manager [13], Parallax [1],
Petal [20] and block-level versioning systems like Clotho [4] and Peabody [10].

In the following sections we shall discuss various data snapshot systems, primar­
ily focusing on the algorithms, datastructures and data placement mechanisms imple­
mented by them.

4.1.1 Versioning File Systems

At the file system level, we can find a wide variety of snapshot and versioning systems

designed with a varying set of goals, priorities and requirements. In these systems,

the snapshot granularity varies from single file versions to entire filesystem snapshots.

Nevertheless, saving disk space in storing various different versions of filesystem data

is one of the primary concerns for all these systems. So, most of these systems use

block-level copy-on-write techniques to replicate metadata and data blocks for different

versions or snapshots. Some systems, like CVFS [8], go further in saving space for

metadata replication by maintaining metadata versions in a log or in a multi-version

btree. Other systems have to optimize for their use-specific requirements like Network

Appliance's WAFL file system [12], which is optimized for writes for providing fast

NFS service.

The problem of arranging copy-on-write data of versioned filesystems on the disk

which optimizes read performance has largely been ignored or not investigated. Copy-

on-write versioning inherently destroys contiguity of metadata and data blocks in cases

Chapter 4. Related Work 61

where file versions, which share some blocks but not all of their blocks, not all versions

can be laid out contiguously on the disk. Let us look at some of the snapshotting and

file versioning system designs and understand how they optimize their data placement

on the disk.

Write Anywhere File Layout(WAFL): Network appliance's Write Anywhere File
Layout file system [12] is specifically designed for an NFS filserver appliance. It pro­
vides online read-only snapshots of entire file systems. WAFL's design has been opti­
mized for write-performance. They adopt a write anywhere design in which all meta­
data is kept in files, which can be allocated anywhere on the disk. This design choice
gives more flexibility in write allocation policies as metadata and data can be arranged
on the disk more creatively. WAFL uses non-volatile RAM to collect write requests
and send them to the disk in one 'write episode'. This not only reduces the response
time of write requests but also allows WAFL to do block allocation for a large num­
ber of requests at once. WAFL implements snapshots at the entire file system level.
It maintains a 32-bit entry for each 4K block, with each bit indicating if the block is
being used by the corresponding snapshot. Whenever a disk block is updated, WAFL
makes a copy of it and its metadata and updates the corresponding block mappings of
the active file system. In summary, WAFL, by virtue of its write-anywhere design and
ability to schedule writes in bulk, allows for a wide variety of intelligent block place­
ment strategies. But, no effort has been made to co-locate newly written copy-on-write
data with its previous versions in case of WAFL.

Elephant File System: The Elephant [22] file system works like a version control

system, storing all version of files or group of files automatically and managing their

storage based on user-specified retention policies. It differs from checkpointing sys­

tems like WAFL, as described above, in the sense that entire filesystems need not be

versioned, instead users can specify versioning at the level of individual files. In Ele­

phant, a file can have multiple inodes, one for each of its versions. These inodes are

stored in an inode log indexed by the time each inode in the log was closed. Elephant

does allow some flexibility in the location and size of the inode log by introducing a

Chapter 4. Related Work 62

level of indirection from inode number to the inode log, but it is not clear how it man­

ages the physical organisation of various versions of files on the disk. For systems like

Elephant, which maintain different versions of files in a copy-on-write fashion on the

disk, it is important to prevent disk fragmentation for performance reasons.

Ext3cow File System: The ext3cow filesystem [5] provides both filesystem-level
snapshots and file-level versioning. It implements these features through copy-on-write
of file system blocks and inodes on the disk. Different versions of files have their own
copy of the inode and are identified by the 'epoch' in which they were created. In­
odes belonging to different versions of a file are arranged as a chain of inodes with the
most recent file version's inode heading the list. The ext3cow paper [5] mentions the
problem of optimizing read performance in versioning file systems. It identifies that
duplicating inodes for file versions reduces efficacy of inode clustering and block-level
copy-on-write destroys contiguity. The authors of this paper have proposed the concept
of Virtual Contiguity [19] [18] in which related blocks belonging to different versions
of the same file are kept as near as possible on the disk to prevent long seeks between
them. We shall discuss their work on virtual contiguity in Section 4.2.

4.1.2 Block-level Snapshot Systems

Block-level snapshot systems work on the principle of virtualizing the target disk and

exposing logical disks to the higher layer. Internally, they manage the block mappings

for different versions of the logical disk or volume. Most of them employ copy-on-

write techniques to cut down on the disk space required to store different data versions.

Some systems, like Peabody [10], which perform fine-grained data versioning also

perform content-based block coalescing to save space. The major advantage of mov­

ing snapshot functionality to the block layer is that it provides a common, filesystem-

independent mechanism of versioning and backing up data. In the following para­

graphs, we shall briefly describe the design of some block-based versioning systems.

Petal Storage System: Petal [20] is a distributed storage management system which

manages a pool of physical disks in a way which exposes an easy to manage, highly

Chapter 4. Related Work 63

available block-level storage system consisting of virtual disks. By virtualizing the
physical disk resources, Petal is able to provide transparent component and site failure
recovery, re-configuration, load-balancing and backup. Petal's virtual disk provides
64-bit byte storage space and is allocated disk space on demand. Petal translates the
client-supplied virtual disk block addresses into physical disk addresses by using a set
of local and global address mapping datastructures. It provides read-only snapshots of
virtual disk in a copy-on-write fashion and identifies each snapshot by the 'epoch' in
which it was created. The placement of virtual disk blocks on the underlying physical
disks is governed by the redundancy requirements of the virtual disk as specified by
the user, and the load-balancing algorithms in Petal which aim at equally distributing
storage load on all physical disks. Clearly, in the Petal system's design, requirements
of high-availability and load-balancing due to the distributed nature of the system take
precedence in deciding data organisation on the physical disks.

Parallax storage system: The Parallax storage system [IJ is'a distributed storage

system designed to manage storage for live and dormant virtual machine (VM) images

in large cluster environments. Like Petal [20], Parallax servers manage the disks of the

cluster machines and present an abstraction of virtual disks to their clients (the virtual

machines). A virtual disk, in case of Parallax, represents both the current state and

the set of read-only snapshot images of a virtual machine. The mapping from virtual

disk block number to physical address is stored in a radix-tree datastructure which rep­

resents the copy-on-write block sharing between the various snapshots of the virtual

machine. Similiar to Petal, a Parallax virtual disk is accessible from any node in the

cluster and is replicated for high availability and failure-protection. On each machine

in the cluster runs a 'Parallax server VM', which manages local disk, servicing virtual

disk requests coming from host VMs, and participating in the distributed sharing and

replication schemes. From the block placement point of view, each Parallax VM ex­

plicitly manages block allocation on its local disk for its volumes but also contributes

a part of its disk space to host blocks belonging to volumes from other cluster ma­

chines. Parallax design does not make any effort to manage physical block placement

for snapshot virtual disks and here too, similiar to Petal, the data replication require-

Chapter 4. Related Work 64

merits across cluster machines would affect any such considerations.

Clotho : Clotho [4] is a block-level volume versioning system, similiar to volume
managers in design. It provides read-only snapshots of data volumes each identified
by the timestamp at which it was created. In order to reduce the size of the meta­
data holding mappings from logical addresses to physical disk addresses, Clotho uses
extent size, which is bigger than single block size, as a unit of mapping. At volume
initialization time, Clotho partitions the volume capacity into two logical segments: a
primary data segment and a backup data segment, and reports the volume size as the
size of primary data segment to the higher layer. This partitoning is only logical and
is actually enforced by Clotho by partitioning its metadata table into two segments: a
primary extent mapping table and a backup extent mapping table. When the backup
mapping table becomes full, Clotho simply returns an error to its higher layer, in which
case, the higher layer has to reclaim, compact or move some of the backup versions.
Clotho maintains the version history of each extent as a chained list of mapping entries
in the extent mapping table. The most recent version of an extent has its mapping in
the primary extent mapping table. Inorder to access subsequent versions of the ex­
tent, Clotho needs to follow the chain of mapping entries till it reaches the right entry
with the corresponding version timestamp. New extents, whether for current or archive
data, are allocated on the target volume device by the extent allocator, which follows a
sequential disk allocation policy, in which extents are allocated sequentially from the
beginning of the volume till its end. Any extents freed on the disk shall be scanned
in the next pass of the disk by the extent allocator. Thus, on the target volume device,
extents belonging to the current and backup versions shall be arranged in a mixed way.

Peabody: Peabody [10] is a network block storage device that exposes virtual disks.

It provides an 'undo' mechanism at the block-level to recover any previous state of the

exposed virtual disks. For doing so, it logs the content of all the writes to the virtual

disk blocks in a write-log and records metadata for writes in a transaction-log. The

metadata includes the location being written and the time stamp which can be used in

rolling back to a particular point in time. Recovery is managed by Peabody's virtual

Chapter 4. Related Work 65

disk manager, Sherman, which allocates a new virtual disk and traverses the write log in
reverse order, writing the old contents back to the virtual disk. Since Peabody records
the content of all writes going to the virtual disks, it needs to have some mechanism
to minimize storage consumption. Peabody authors found out through experiments
that there is considerable amount of identical content sharing between blocks within
same virtual disk and across different virtual disks. Based on all these findings and
the requirement to reduce space consumption, Peabody allows for coalescing of iden­
tical content blocks. Preliminary experiments with the Peabody prototype show 20%
lower bandwidth for both read and write requests than the normal iSCSI target. This
reduction in throughput is because of the overhead of fine-grained write logging and
the processing overhead of content-based block coalescing logic.

Peabody [10] attempts to combine both content-based block coalescing and fine­
grained write logging to achieve a balance between space requirements and fine-grained
data recovery. In the Peabody paper, the authors explore different strategies to imple­
ment the on-disk datastructures for write logging and content-sharing. The run-time
performance of read and write requests on Peabody virtual disks and the rollover per­
formance shall depend on these implementation choices.

4.2 Disk Block Placement Schemes for Copy-on-Write

Snapshot Systems

In the last section, we saw that storage snapshot technology has been extensively re­

searched and applied both at the logical file system level [5] [22] [12] and the physical

block level [4] [20] [1] [13] with varying granularity. It is used to provide entire vol­

ume as well as file-level versioning. Although a lot of documentation is available on

the design and implementation of these techniques, there has been lesser emphasis on

analyzing the effects of copy-on-write on the I/O performance of such systems. In most

cases, the problem of efficiently laying down data on the disk, in the face of the frag­

mentation caused by copy-on-write, has largely been ignored or superseded by other

concerns:

Chapter 4. Related Work 66

We could only find the 'Virtual Contiguity' work done by Randal et. al. [19] [18],

which deals with this problem at the file system level. In the following paragraphs,

we shall present the concept of 'Virtual Contiguity', their design, and important results

and conclusions drawn by their work.

Concept of Virtual Contiguity: The idea of Virtual Contiguity is to relax the re­
quirement of strict physical contiguity of data blocks and to allocate them in dense
regions on the disk so that they are close enough to be read in a single disk head move­
ment, but at the same time leaving space between them for reallocation. By breaking
a file into densely allocated segments, virtual contiguity attempts to reduce the number
of disk seeks required to read the file. And by leaving space within these segments, the
copy-on-written file blocks can be placed near their original allocation, thereby keeping
data close and maintaining read performance for copy-on-write data.

They adopt a randomized dynamic storage allocation policy which instead of con­
suming space sequentially for initial file allocations, randomly selects a start offset and
begins searching forward from that offset for a contiguous allocation. By doing so,
they hope to keep the density of allocated blocks uniform across the disk.

Results and Conclusions: In his work [18], Zachary found out that although a very

small percentage of total files are copy-on-written, such files fragment heavily across

the disk, and that the read performance of these files is important because a large part

of these files belong to the active working set of files. He also found out that tradi­

tional file system allocation schemes, like the Next-Fit and Best-Fit, fail to maintain

the contiguity of copy-on-written files. Even in non-cow file systems, Zachary found

out that almost 20% of all writes have to be reallocated because they are unable to grow

in place.

In the Virtual Contiguity work [19] [18], the authors note that the benefits of co-

locating overwritten blocks near the original allocations for copy-on-written files get

nullified by the losing of spatial inter-file and inter-segment locality. In their results,

they discover that the random selection of start offset for segment allocation, instead

of resulting in a uniform density of allocated blocks, causes hotspots to be created,

Chapter 4. Related Work 67

which exhibit a high degree of variance in region density. Also, it affects the spatial

locality of related files, whose segments are initially allocated randomly on the disk.

Thus, Virtual Contiguity scheme results in poorer disk performance as compared to the

standard schemes like Best-Fit and Next-Fit.

Comparison with Our Work: We share most of the Virtual Contiguity ideas in our
research but at a different plane. We adopt the basic idea of Virtual Contiguity, that
is to initially allocate the blocks in dense groups with some space left between them
for receiving the copy-on-written blocks. That way, the snapshot volume blocks would
reside near the origin volume blocks to which they are related. But, we also take
note of the failure of the random initial allocation scheme in the Virtual Contiguity
work, and therefore allocate space to the origin volume in configurable fixed size slices
with configurable fixed space between them. However, the fixed scheme has its own
disadvatanges as it is difficult to anticipate the amount of copy-on-written data which
will be generated per origin volume slice for different workloads. We have discussed
the tradeoffs of our scheme in Section 2.3.

Coming to the differences between the two schemes, the virtual contiguity work is
applied at the file system allocation level, where the system has semantic understanding
of file data and metadata. Whereas, our research focuses on volume-level copy-on-
write snapshots at the block level, a level which is file-system agnostic and unaware
of any associations between the data which is stored in the blocks. So, the task of
co-locating related blocks in our case is a bit more challenging as it becomes more
difficult to justify meaningful relation between copy-on-written blocks at the block
level. The only intuition which we have at the block level is that the block which is
written to is somehow related to its neighbouring blocks. So, the reallocation for this
block should be done near its original location in order to preserve the spatial proximity
of the reallocated block with its related blocks.

In this chapter, we provided a survey of various data snapshot technologies im­
plemented at the file system level and the disk block level. We discussed their space
allocation and block placement policies for copy-on-write data. Then we described the
Virtual Contiguity work and drew some similarities and differences with our work.

Chapter 5

68

Conclusion

In this thesis, we investigated the disk space allocation, data placement and disk I/O
performance of LVM2 logical volumes. We found out that the disk I/O performance
of the LVM2 snapshot volumes is gravely effected by the out-of-place data writing due
to copy-on-write. While some degree of performance degradation is expected for the
first time writes on the origin or the snapshot volume after the creation of the snap­
shot volume due to the copying of data from the origin to the snapshot volume, it is
the read performance of the snapshot volume which is a subject of concern. Because
of the discontiguity created in the physical placement of the snapshot volume blocks
due to copy-on-write, the disk has to make long seeks while reading data on the snap­
shot volume. Our experiments verified this phenomenon in case of LVM2, showing
that these disk seeks lead to significant lowering of the read performance of snapshot
volumes as compared to that of plain volumes. The performance of snapshot volumes
is an important issue in OS-virtualized environments where such volumes are used to
support live applications running inside Guest virtual machines. Even in case of sys­
tems which apply copy-on-write at other data planes, for example filesystems which
provide versioning of files and directories (refer Section 4.1), the time taken to access
snapshotted data can be a crucial performance factor for purposes like data mining etc.

In order to reduce the physical distance between the snapshot data blocks, we ex­
perimented with the physical placement of this data on the disk. We changed the way
LVM2 allocated space to the origin volume such that it leaves free space between the
origin volume segments so that copy-on-written snapshot data can be written near its
original location on the origin volume. In order to ensure that the snapshot volume
data is allocated the closest avaliable free space near its original location, we replaced

Chapter 5. Conclusion 69

the static space allocation scheme of LVM2 with a dynamic one which looks for an
appropriate location to copy data on the snapshot volume at run-time. This new LVM2
scheme is more deterministic in placing snapshot volume data near the origin volume
data as compared to the original LVM scheme which allocates space to the origin and
the snapshot volume independently.

From our experiments with the new LVM2 scheme, we found out that carefully
placing snapshot data near the original data does give us performance improvement
by reducing the seek distance between the snapshot and the origin data blocks. This
performance gain increases with increased origin volume slicing as it ensures more
fine-grained snapshot data block placement. Thus, our work clearly shows that the
idea of placing copy-on-written data blocks near their original locations holds value
and can lead to disk I/O performance gain for the snapshot volumes.

In our implementation, we adopted a dynamic space allocation scheme for the snap­
shot volumes in order to seek maximum benefit at run time in co-locating the related
blocks. Dynamically allocating space to the snapshot volume at runtime keeps disk
I/O requests waiting till the time space is allocated, thereby adding delay in the I/O
processing path. This leads to performance overhead during the first time writes to the
origin or snapshot volumes. This overhead becomes significant when the dynamic all-
coation requests become more frequent (as we saw in Section 3.2). With our scheme,
we need to balance the need to co-locate data finely and the need to reduce the process­
ing delays caused by this dynamic allocation. We do observe that it is possible to attain
such a balance with our scheme but it is difficult to decide the suitable configuration
values like the number of origin volume slices, dynamic segment allocation size etc.,
which lead to an optimal balance.

In our experiments with machines having disks with large cache buffers, we ob­
served that such disks can cache multiple different tracks simultaneously and can thus
improve the read performance of physically scattered data on the disk. In this case,
we observed that the degradation in snapshot volume's performance as compared to
the origin volume performance is reduced to a small percentage due to these caching
effects. Thus the snapshot volumes with old LVM2 scheme perform well and those
with the new LVM2 scheme also perform equivalent to the origin volume.

Chapter 5. Conclusion 70

In summary, we studied the disk placement and I/O performance of copy-on-written

data in case of LVM2 and implemented an alternative scheme to co-locate related on-

disk data for improving performance. We noted some performance overheads in the

first time writes with our scheme, but also saw the new scheme perform better than the

old LVM2 implementation by 18% to 40%. We believe that this idea of co-locating

copy-on-written with its original location on the disk holds value and can be taken

further to improve the performance of data snapshot systems. We would like to explore

the possibilities of applying this idea to other block-based data snapshotting systems in

future.

71

Glossary

Chunk : A chunk is a contiguous collection of disk blocks. It is the amount of data
copied from a origin logical volume to a snapshot logical volume during first

time writes., 14

Device Mapper Library: A device mapper library provides a programming interface

to the user-space applications for accessing the device mapper's ioctls., 10

Device Mapper: A device mapper is a kernel module which maintains the mapping

tables for logical volumes and maps their I/O requests., 9

Error Mapping: In Error Mapping the disk I/Os directed to the logical volume are

failed by the device mapper, 11

Linear Mapping: In Linear Mapping the logical extents are mapped sequentially to

extents on a physical volume., 11

Logical Extent: A logical extent is the basic unit of space allocation for logical vol­

umes and is equal to the volume group's physical extent size., 5

Logical Segment: A Logical Segment is a collection of contiguous logical extents., 7

Logical Volume (LV): A Logical Volume is an abstraction of a physical hard disk.

This abstraction may either consist of a portion of the physical drive, known as a

partition, or it may consist of a set of disks, such as a RAID volume or array., 5

LVM2 Mapping Table: An LVM2 mapping table maps a logical volume's logical

segments to physical segments., 9

Chapter 5. Conclusion 72

Mapping Type: A mapping type defines how the blocks from a logical segment will

be mapped to blocks in a physical target segment., 9

Origin Logical Volume: An origin logical volume is a volume which has one or more

snapshot logical volumes based on it., 12

Physical Extent: A physical extent is the quantum of storage space that LVM uses

when sizing logical volumes., 5

Physical Segment: A Physical Segment is a collection of contiguous physical extents

on a disk., 7

Physical Volume (PV): A hard disk or a hard disk partition which has been prepared

to be used by LVM2., 5

Slicing: A logical volume is made up of multiple equal sized and equally spaced

physical segments., 29

Snapshot Logical Volume: A snapshot logical volume is a volume which maintains

volume data frozen at some point of time., 12

Volume Group (VG): A Volume Group (VG) is the highest level abstraction used

within the LVM. It gathers together a collection of Logical Volumes (LV) and

Physical Volumes (PV) into one administrative unit., 5

73

Bibliography

[1] R. Ross K. Fraser C. Limpach A. Warfield and S. Hand. Parallax: Managing
storage for a million machines. In Proceedings of the 10th USENIX Workshop on
Hot Topics in Operating Systems (HotOS-X), 2005.

[2] B. Cornell And, P. Dinda, and F. Wayback: A user-level versioning file system for
linux. CORNELL, B., DINDA,P^AND BUSTAMANTE, E Wayback: A user-level

versioning file system for linux. In Proceedings of USENIX 2004., 2004.

[3] B. Berliner. CVS II: Parallelizing software development. In Proceedings of the

USENIX Winter 1990 Technical Conference, pages 341-352, 1990.

[4] Michail D. Flouris Bilas and Angelos. Clotho: Transparent data versioning at the

block i/o level.

[5] Zachary N. J. Peterson Burns and Randal C. Ext3cow: The design, implementa­

tion, and analysis of metadata for a time-shifting file system.

[6] Maxtor Corporation. Diamondmax plus9 60/80/120/160/200gb at product man­

ual, 2003.

[7] Marshall K. McKusick Fabry, William N. Joy, Samuel J. Leffler, and Robert S. A

fast file system for UNIX. Computer Systems, 2(3): 181-197, 1984.

[8] C. Soules Ganger, G. Goodson, J. Strunk, and G. Metadata efficiency in version­

ing file systems. Conference on File and Storage Technologies (San Francisco,

CA, 31 March-02 April2003., 2003.

[9] A. Whitaker Gribble, M. Shaw, and S. Denali: Lightweight virtual machines for

distributed and networked applications. A. Whitaker, M. Shaw, and S. D. Gribble.

Bibliography 74

Denali: Lightweight virtual machines for distributed and networked applications.

In Proceedings of the USENIX Annual Technical Conference, Monterey, CA, June

2002. 10, 2002.

[10] Charles B. Morrey III Grunwald and Dirk. Peabody: The time travelling disk. In

IEEE Symposium on Mass Storage Systems, pages 241—253, 2003.

[11] Western Digital Technologies Inc. Wd caviar eide hard drives specification sheet,

Feb 2006.

[12] D. Hitz Malcolm, J. Lau, and M. File system design for an NFS file server appli­

ance. In Proceedings of the USENIX Winter 1994 Technical Conference, pages

235-246, 1994.

[13] Heinz Mauelshagen. Linux volume manager, 2001.

[14] Heinz Mauelshagen. Logical volume manager(lvm2), 23 Sep, 2004.

[15] Kiran-Kumar Muniswamy-Reddy. VERSIONFS: A versitile and user-oriented

versioning file system. 2003.

[16] B. Dragovic Neugebauer, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt,
A. Warfield, P. Barham, and R. Xen and the art of virtualization.

[17] Mendel Rosenblum Ousterhout and John K. The design and implementation of

a log-structured file system. ACM Transactions on Computer Systems, 10(1):26—
52, 1992.

[18] Z. Peterson. Data placement for copy-on-write using virtual contiguity. Z. N.
J. Peterson. Data placement for copy-on-write using virtual contiguity. Master's

thesis, University of California, Santa Cruz, September 2002., 2002.

[19] Randal Burns Robert. Allocation and data placement using virtual contiguity.

[20] Edward K. Lee Thekkath and Chandramohan A. Petal: Distributed virtual disks.

In Proceedings of the Seventh International Conference on Architectural Support

for Programming Languages and Operating Systems, pages 84-92, 1996.

Bibliography 75

[21] Walter F. Tichy. RCS — a system for version control. Software — Practice and

Experience, 15(7):637-654,1985.

[22] Douglas J. Santry Veitch, Michael J. Feeley, Norman C. Hutchinson, and Alistair

C. Elephant: The file system that never forgets. In Workshop on Hot Topics in

Operating Systems, pages 2-7, 1999.

[23] Rob Pike Winterbottom, Dave Presotto, Sean Dorward, Bob Flandrena, Ken
Thompson, Howard Trickey, and Phil. Plan 9 from Bell Labs. Computing Sys­
tems, 8(3):221-254, 1995.

