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Abstract 

Data Snapshot technology is a standard feature of modern storage systems. Most such 

systems use copy-on-write techniques to manage snapshot data in order to optimize 

storage space requirements for maintaining history data. Copy-on-write methods tend 

to write data out-of-place at a location which may be far away from the original location 

of the data on the disk. This phenomenon gradually leads to fragmentation of the on-

disk snapshot data and degradation in the disk I/O performance. This work analyzes 

Logical Volume Manager's (LVM2) snapshot technology and studies the effect of copy-

on-write on the on-disk placement of the snapshot data. Based on these findings, we 

propose new disk space allocation and data placement techniques for snapshot volumes 

in order to reduce physical distance between related blocks and improve disk access 

performance. A prototype is implemented and its performance is compared with the 

original LVM2 implementation in order to measure the effectiveness of the proposed 

schemes. The new schemes tend to perform better than the old LVM2 ranging from 

18% to 40% at the cost of some performance penalty for first time writes in some cases. 
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Chapter 1 

i 

Introduction 

1.1 Problem Statement 

This thesis aims to study the fragmentation effects of copy-on-write techniques on 

the snapshot logical volumes and to devise new disk allocation and data placement 

schemes for these volumes in order to improve disk I/O performance. In this section 

we briefly describe the environments in which snapshot logical volumes are used, the 

ways in which copy-on-write techniques effect their on-disk data placement and the 

characteristics of modern day disk systems which impact their performance. 

In today's information age, the need to store large amounts of data, maintaining 

data history, and retrieving it efficiently has grown significantly. Modern storage sys­

tems invariably provide some means of capturing current data state and storing it for 

later use. Data snapshotting functionality is provided by the storage systems either at 

the file system level or at the disk block level. Section 4.1 provides a survey of such 

systems. Traditionally data backups have been used for purposes like data mining and 

recovery from accidental errors. Recently, OS-virtualized architectures like Xen [16] 

and Denali [9] have provided yet another reason to use data snapshots. In such envi­

ronments, the physical storage system needs to be transparently and efficiently shared 

by multiple, independently running virtual machines, each requiring its own private 

storage volume to host its file systems. Preparing a fresh storage volume and copying 

the entire root filesystem on it, for each new virtual machine, can be a time-consuming 

and disk-devouring process. An alternate solution is to create instant storage volume 

snapshots, which are consistent point-in-time copies of a base root filesystem image, 

using copy-on-write techniques, and then using them to support the active file systems 
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of each virtual machine. 

Copy-on-write technique for snapshotting data is fast because it does not prepare a 

data copy at the time of the snapshot creation. Data blocks are copied from the original 

data store to the snapshot data store as they are written. Thus, only those data blocks 

which are changed after the creation of the snapshot occupy space in the snapshot data 

store. Although fast and disk space-efficient, copy-on-write technique writes data out 

of place and breaks physical contiguity of logical blocks. The resulting disk fragmen­

tation raises concerns about the performance of snapshot volumes. Moreover, since 

the file systems operating above these volumes are mostly unaware of this block-level 

indirection, it further complicates the performance prediction of such systems under 

various different workloads. 

The problem of disk fragmentation is important to attend because the placement 

of data on the disk can greatly impact its performance. The access time for hard disk 

drives is a combination of seek time, rotational latency and data transfer time. Seek 

time is the time required to position the disk head over the required track and rota­

tional delay is the time taken by the required sector to rotate underneath the head. Data 

transfer rate is the number of bytes rotating under the head per second. Trends in disk 

technology show that while the data transfer rates are improving with increasing disk 

data densities, the mechanical delays (seek time, rotational delay) are not improving at 

the same pace. In the face of these limitations, system designers employ different tech­

niques to partially offset these delays and improve disk performance. Some of these 

techniques include using a buffer cache to serve I/O requests from the cache instead 

of going to the disk for every request, increasing block size to reduce seek overhead, 

permuting the disk head requests in order to reduce seek distances etc. Another set 

of efforts in this field is to carefully place free blocks on the disk in order to optimize 

disk performance for different workloads. This task is challenging because modern 

day disks rarely expose their true geometries to the BIOS for reasons of complexity 

and transparency. The disk blocks are accessed using linear block addressing (LBA). 

In this scheme, sectors are numbered sequentially starting from zero and the drive in­

ternally translates these sequential numbers into physical sector locations. There is a 

general understanding that disks map sequential logical block numbers(LBN) to ad-
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joining sectors and therefore blocks closer to each other in the logical addressing space 

are very likely to be physically close on the disk. Therefore, instead of randomly al­

locating free blocks, system designers aim to place related data closer in the logical 

address domain so that they end up physically closer thereby reducing seek delays. 

In the case of copy-on-write, the need is to co-locate related blocks of the snapshot 

volume some of which may be lying on the original volume data store. This will help 

reduce the number of long disk seeks to and from the original and the snapshot volume 

while running a workload on the snapshot volume. In this thesis, we study Linux's 

Logical Volume Manager (LVM2) and its copy-on-write snapshot technology. Based 

on our findings about the performance of the LVM2 snapshot volumes, we propose 

new disk space allocation and block placement techniques and build a prototype which 

serves as a proof of concept. In the subsequent sections, we provide a primer on the 

design and software architecture of LVM2 followed by a detailed description of its 

snapshot technology. The remainder of this thesis is structured as follows: 

Design and Implementation: In Chapter 2, we first present the results of some of 

our preliminary experiments conducted over LVM2 snapshot volumes in order to verify 

our concerns regarding degradation in the disk I/O performance due to copy-on-write 

data displacement. Subsequently, we describe the design decisions we made, the desgin 

itself and the implementation details of the LVM2 prototype. 

Evaluation: In Chapter 3, we present the results of our experiments which compare 

the disk I/O performance of the old LVM2 snapshot volumes and the new LVM2 snap­

shot volumes and analyze if the new scheme is effective in reducing disk seeks and 

improving performance. 

Related Work: Chapter 4 provides a survey of various storage systems which have 

implemented copy-on-write snapshot technology, their strategies to organize snapshot 

data on the disk and any available performance statistics for these systems. Further, we 

discuss the work on 'Virtual Contiguity', which deals with similiar problems as ours at 

the file system level. 
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Conclusion: Chapter 5 presents the conclusions we derive from this work and pro­

vides pointers for future work. 

1.2 Background on LVM2 

LVM2 [13] is the latest Logical Volume Manager for Linux. It provides a higher-level 

view of the storage system than the traditional view of disks and partitions. By hiding 

away the details of physical disk management, LVM2 offers an easy-to-use and flexible 

interface to manage disk space. 

The physical disk interface imposes lots of restrictions on the way disks can be 

managed and configured. Disk partitions, once created are difficult to resize, and that 

too, can not be done online, that is without unmounting the file system based on them. 

Also, the blocks constituting a physical partition need to be contiguous on the disk. 

Thus, the size of a file system mounted on a physical partition is bounded by the parti­

tion size and finally by the physical disk size. Another problem with this static scheme 

is that it does not allow for shrinking and growing of partitions in the face of changing 

needs of the users with time. These limitations are especially problematic in multi-user 

environments with large numbers of disks to manage. 

A logical volume manager hides all the above mentioned limitations from the user 

and allows the system administrator to flexibly allocate disk space to users and ap­

plications. It sits between the file system and disk partitions and provides a seamless 

interface to higher layers by binding the disparate disks and partitions underneath. A 

logical volume can be grown or shrunk in size, even without dismounting the existing 

file system in many cases. An LVM2 logical volume doesn't have to be made of contin­

uous blocks, it even doesn't have to be on the same disk. LVM2 takes care of binding 

all the pieces together and mapping the blocks of a logical volume to the correct disk 

blocks. With LVM2, adding or removing of disks can be done transparently. The log­

ical volumes can be simply resized to adjust to the new underlying disk configuration 

in such a case. 

In the following subsections, we shall discuss the common terms used with LVM2, 

its design, software architecture and important datastructures, which are helpful in un-
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derstanding its internal workings. 

1.2.1 LVM2 Terminology 

LVM2's storage model can be understood as a hierarchical structure as depicted in 

Figure 1.1. 

File System 

Logical Volume 

Volume Group 

Physical Volume 

Hard Disk/ Partition 

Figure 1.1: LVM2's Storage Hierarchy 

An LVM2 Physical Volume (PV) is typically a hard disk, or a hard disk partition 

which has been prepared to be used by LVM2. By prepared, we mean LVM2-specific 

configuration and identification information has been written on it. This information 

includes the LVM2 label, one or two copies of LVM2 metadata and a physical vol­

ume identifier which is unique to the system. The contents of the LVM2 metadata are 

discussed later. 

Once we have created the physical volumes, we can create a volume group from 

them. An LVM2 Volume Group (VG) is made up of one or more PVs. At the time of 

the creation of a volume group, the user can specify the basic unit of allocation, which 

will be used later to allocate space from the contained physical volumes. This basic 

unit of allocation is termed as Physical Extent Size. 

After the creation of a volume group, logical volumes can be created within it. 

LVM2 Logical Volumes (LV) are allocated space from the PVs contained in the VG. 

The logical volume size should be a multiple of the logical extent size, which is the 

basic unit of allocation within a VG and is equal to VG's physical extent size. The 
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space allocation is done according to the allocation policy specified by the user at the 

time of creation of the logical volume. The various allocation policies supported by 

LVM2 are discussed in Section 1.2.2. 

Finally, one can create a filesystem on top of the logical volume. 

The containment rules for PV, VG and LVs are depicted in Figure 1.2. 

Figure 1.2: Relation between LVM2 VGs, PVs and LVs (source [14]) 

A PV can only include a single hard disk or a single hard disk partition. A VG can 

be made of multiple PVs but a PV can only belong to one VG. Similarly, multiple LVs 

can be carved out of a VG but an LV can only belong to one VG. At the same time, an 

LV can be allocated space from one or more PVs contained in the L V s volume group. 

Also, there can be only one filesystem based on top of a logical volume. 

LVM2 Metadata Format and contents: LVM2's metadata stores information about 

the PVs, VGs and LVs, which needs to be persistent across machine reboots and is 

required by LVM2 to detect its volumes on the disk at boot. The LVM2 metadata 
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format is an ASCII text format. Each VG has metadata defined for it describing the 

physical volumes and the logical volumes contained in it. Normally, there is one copy 

of metadata placed at the beginning of each PV contained inside the VG. The metadata 

is updated everytime any change is done to the volume group like creation, deletion or 

resizing of a logical volume, addition or removal of a physical volume, etc. 

The on disk LVM2 metadata has the following parts: 

a) Label: Occupies one sector near the start of each PV . It contains the LVM2 label, 

a unique identification number of the PV and a pointer to the metadata areas and data 

areas on the physical volume. 

b) Metadata Areas : Each metadata area in turn has a header section and a circular 

buffer containing the metadata. The header contains the checksum of the metadata, the 

start position and size of the metadata area. The circular buffer, in turn, specifies to 

which volume group the physical volume belongs, and for the volume group, describes 

all the physical volumes and logical volumes contained within it. A logical volume is 

described as an ordered list of logical segments each of which maps to a corresponding 

physical segment. 

1.2.2 LVM2 Design and Software Architecture 

LVM2 is designed as a user-space command line interface which in turn communicates 

with a kernel-driver to manage logical volume mappings. The software architecture of 

LVM2 is detailed in Figure 1.3 

As shown in the figure, the LVM2 software architecture is composed of three main 

components, namely: the command line interface, the device mapper library, and the 

device-mapper kernel driver. These are described below: 

The LVM2 command line interface (CLI): LVM2 provides a unified command line 

interface to manage physical volumes, volume groups and logical volumes. The CLI 

has commands for creation, deletion, resizing, attribute modification, scanning, and 

displaying of PVs, VGs and LVs. This layer of software resides in the user-space and is 

responsible for reading and updating the LVM2 metadata. In the following paragraph, 
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dmsetup LVM2 CLI t t 
libdevmapper 

Applications 

control ioctl 
interface 

block interface 
UserSpace 
Kernel 

Core Device Mapper 

1 Mapping interface 

Linear mirror snapshot multipath 
log kcopyd Path selectors h/w handlers 

round-robin emc 

Figure 13: LVM2 Software Architecture 

we discuss the process of creation of a new logical volume, with emphasis on the space 

allocation policies of LVM2. 

Creation of a New Logical Volume: In order to create a new logical volume, the user 

has to specify the name, size, and volume group of the new logical volume. Optionally, 

he can also specify the list of physical volumes on which to allocate the logical volume, 

and/or an allocation policy. LVM2 first prepares a list of free physical segments on the 

PVs specified by the user or on all of the PVs of the VG, if no preference is given. This 

list of free physical segments is maintained in increasing order of their size. After that, 

LVM2 allocates space to the logical volume from these physical segments, depending 

on the allocation policy specified by the user. LVM2 supports following two allocation 

policies : 

Contiguous: According to this allocation policy, the logical volume should be laid 

down on the disk in one single continuous chunk. The creation of the LV may fail if a 

physical segment of the required size is not found in the list of free segments. 

Anywhere: This is the default allocation policy for logical volumes. As the name 
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suggests, in this case LVM2 starts allocating segments to the logical volume from the 

head of the free segment list, till the required amount of space has been allocated. If 

the last allocated segment size is bigger than the space left to be allocated, the segment 

is split. 

The device-mapper kernel driver: Once a logical volume is created using the LVM2 

command line interface, it can be used to create file systems on top of it and direct 

read/write I/O to it. We need a kernel mapping driver which maintains the mapping 

from the logical volume to the physical disk sectors and routes these disk requests to 

the required physical blocks. The device-mapper kernel driver is that piece of software 

which takes care of this. It provides a generic framework for volume management. It 

has no knowledge of the volume groups and metadata formats used by the user space 

applications like LVM2. It only has the concept of a logical block device, for which 

it maintains a mapping table that specifies how to map each range of logical sectors 

of the device onto a target device, using one of the supported mapping types. The 

device mapper supports various kinds of sector mappings from a source block device 

to a target block device. Table 1.1 lists some of the mapping types implemented in 

the current version of the device mapper. Each of these mapping types are loaded as 

separate modules and registered with the core device mapper module. 

Each table mapping for a block device has the form : 

<start-sector> <length> mapping-type <mapping parameters> 

where the mapping parameters are dependent on the type of mapping. The start-sector 

and length fields are in the logical domain. 

LVM2 creates and registers a logical block device with the kernel-resident device 

mapper for each of its logical volumes. The notion of Volume Groups and Physical 

Volumes is only maintained at the LVM2 level and is not exposed to the device mapper 

which treats each logical volume as a uniquely identifiable and independent block de­

vice. At machine boot, LVM2 scans its metadata to get information about the volume 

groups and the logical volumes they contain. Then it registers each logical volume and 

its mapping table with the device mapper through the control ioctl interface exported 

by the device mapper. The device mapper, in turn, assigns these logical block devices a 
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Mapping Arguments Action 

Linear <start> <len> linear <dev> <start> Maps onto a continuous 
range of other block device 

Error <star> <len> error All I/O to this mapping is 
dicarded and error returned 

Zero <start> <ten> zero Read returns blocks of zero 

Writes are silently discarded 

Striped <start> <len> striped <#stripes> <chunk size> [<device> 
<start>] 

Stripes data across devices 

Crypt <start> <len> crypt <cipher> <key> <IV offset* <device> 
<start> 

Encrypts the data passing 
through 

Snapshot 
-origin 

<start> <len> snapshot-origin <origin device> Reads go directly to origin 
device 

For Writes, first make a 
copy of the sector on all 
those snapshots of the 
origin device, which are 
sharing the sector with ft 
and then proceed with write 
on origin. 

Snapshot <start> <len> snapshot <origin device> <snapshot 
device> <persistency> <chunk size> 

Reads go to origin device if 
sector is still shared with 
origin, otherwise goes to 
snapshot device. 

If the sector to be written is 
shared with origin, first copy 
the corresponding chunk of 
sectors from origin to 
snapshot device, then 
proceed with write on 
snapshot 

Table 1.1: Types of Device Mapper Mappings 

major and a minor number and registers them with the kernel. Subsequently, any block 

I/O request coming for these devices are routed to the device mapper module, which 

redirects the I/O to the appropriate target block device, after consulting the device's 

mapping table. 

The device mapper library: The device mapper library provides a programming in­

terface to the applications using the device-mapper. It hides the difference between 

various versions of the device-mapper driver. The purpose of the library is to marshall 
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the arguments for the ioctl commands given by the applications, according to the un­

derlying kernel driver version and unmarshall the results returned from the driver into 

a format appropriate for the applications. 

1.2.3 The Mapping Table 

The mapping table maintained by the device mapper for each block device is arranged 

as a btree. Each of the segments in a logical volume is mapped as a specific target inside 

the device mapper. The device mapper allows the mapping type for each segment to be 

different. For instance, some segments of a block device may have a linear mapping to 

a physical volume area while others may have an error mapping. The keys of the btree 

are the boundary logical block numbers of the block device segments and the leaf nodes 

are the mapping-specific target datastructures which contain the necessary information 

and functions to map the incoming block requests to the target block device. 

At the time of the block device creation, the device mapper prepares the leaf nodes 

of the btree, one target node for each logical segment inside an LV. Once all the targets 

are added, the device mapper prepares a set of btree indexes based on the logical block 

numbers these segments represent, thus completing the mapping table. 

An example mapping is shown in Figure 1.4. It shows a logical volume at the 

top along with its nine logical segments. Eight of these segments are linearly mapped 

to segments on the physical disk while the ninth one is mapped to an error segment. 

The figure shows the btree data structure which maps the logical segments to their 

targets. Each node within the btree, except the leaf nodes, holds multiple keys each 

pointing to one child node. The keys denote the high boundaries of the logical segments 

represented by the child nodes. By following down the index nodes in the btree starting 

from the root node using the high boundary of the logical segment one wants to map, 

one can get to the segment's physical target. 
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Linear mapping 

LV Segments on the Physical Disk 

Figure 1.4: An Example of a Btree Mapping of a Logical Volume 

1.3 LVM2's Snapshot Technology : Design and 

Implementation 

Unlike most storage snapshotting systems, which support readonly snapshots only, 

LVM2 supports writable snapshots of the logical volumes. The writability feature 

makes the usage of snapshots more flexible, as it allows to capture the state of the 

storage device at some point in time, remount it later and run live applications on it. 

This scenario is especially relevant in virtual machine environments where there is a 

need to configure filesystems for each new guest operating system before running it, 

and doing so by taking a snapshot of a standard base image is fast and convenient. 

LVM2 uses copy-on-write technique to maintain snapshot data. The basic idea is 

that the snapshot volume initially points to its origin volume blocks. After the snapshot 

volume creation, any block which needs to be written, either on the origin volume or 

on the snapshot volume, is first copied from the origin volume to the snapshot volume 

and then written to. Thus, the snapshot volume holds only the changed blocks while 
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blocks which are unchanged since the time of their creation, are still shared with the 

origin volume. 

In the following sections, we shall discuss how LVM2 creates a snapshot logical 

volume and does the bookkeeping for tracking changed blocks. 

1.3.1 Creation of an LVM2 snapshot logical volume 

LVM2 creates a snapshot logical volume in two steps. The first step is similiar to the 

creation of a plain logical volume, as discussed in Section 1.2.2. The important thing 

to note here is that LVM2 does the space allocation to the snapshot logical volume 

without any consideration of the position of its origin volume on the disk. Therefore, 

the snapshot volume segments may lie anywhere on the disk with respect to its origin 

volume segments. Figure 1.5 shows an example scenario of the placement of a snapshot 

and its origin volume segments on the physical volume, assuming that both of the 

volumes are allocated on the same physical volume. 

LV-org 
block device 

linear mapping 

LV-snap 
block device 

read/write read/write 

linear mapping 

LV-snap 
segment 

LV-origin 
segment 

Free 
segment 

LV-origin 
segment 

LV-snap 
segment 

Free 
segment 

VG 

PV 

\ 

Figure 1.5: LVM2 Snapshot Volume Creation - Step One 

In second step, LVM2 inserts another virtualization layer between the logical vol­

ume layer and the physical volume layer. This layer contains the logic for keeping 

track of which blocks have changed since the creation of the snapshot volume and 
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where they are located on the snapshot volume. Figure 1.6 shows the final mapping of 

the snapshot and origin logical volume segments to their physical position on the disk. 

snapshot-origin 
mapping 

/ 

linear mapping 

Figure 1.6: L V M 2 Snapshot Volume Creation - Step Two 

As shown in the figure above, the origin LV is mapped to a 'origin-real' device 

using the 'snapshot-origin' mapping type. Similarity, the snapshot LV is mapped to 

both the 'origin-real' and 'snapshot-cow' devices using the 'snapshot' mapping type. In 

turn, the 'origin-real' device is mapped to the origin LV segments, which were allocated 

to the origin LV at the time of its creation, using a linear mapping. Likewise, the 'snap-

cow' device is mapped to the snapshot LV segments, allocated to the snapshot LV in 

step one, using a linear mapping. 

Figure 1.7 shows how the data on the snapshot volume is arranged on the 'snap-

cow' device. The device is shown to be divided into equal pieces called 'chunks'. A 

'chunk' is a contiguous collection of blocks, whose purpose is explained a little later in 

this section. The first chunk of the 'snap-cow' device contains the label for the LVM2 

cow device type. The rest of the device contains the data blocks which have been 
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copied from the origin volume and the metadata, called an 'exception-table', which 

has entries mapping the copied data location on the 'origin-real' device to the block 

location on the 'snap-cow' device. Data chunks are allocated on the 'snap-cow' device 

starting from the third chunk in a sequential order. Metadata chunks are allocated on 

the 'snap-cow' device starting from the second chunk, spaced out by the number of 

data chunks whose mapping can be held in one chunk of metadata. The 'exception-

table' mapping helps to route read/write I/O requests coming for the snapshot volume 

to the right place, as described in the following paragraphs. 

In order to reduce the size of the exception table, LVM2 copies the data and main­

tains its mapping chunk-wise, which is by default equal to 8K in size, instead of block-

wise. An asynchronous copying daemon, called 'kcopyd daemon', handles the copying 

of chunks from the origin to the snapshot volume and informing the main request pro­

cessing thread of the copy completion. The snapshot mapping module reads the entire 

exception table from the 'snap-cow' disk into main memory, at machine boot, for faster 

processing of incoming I/O requests. This table is called 'completed exception table'. 

Another table called 'pending exception table' maintains all those exceptions, which 

have been allocated a new chunk on the snapshot device but for which the chunk copy 

has not been completed yet. 

Figure 1.7: Snapshot Cow Device 

The 'snapshot-origin' mapping handles the I/O for a logical volume which is an 

origin LV for one or more snapshot logical volumes in the following way: 

Read: A read request on an origin volume is simply routed to the 'origin-real' block 

device, without any change. 
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Write: For a write request, the exception tables of each of the.snapshot volumes of 

this origin volume are consulted to check if the particular block to be written has been 

copied to the snapshot volume or not. If not, then a free chunk is allocated on the 

snapshot volume, and a request is issued to the 'kcopyd' daemon to copy the chunk 

containing the block from the 'origin-real' device to the 'snap-cow' device. Once the 

chunk has been copied to the 'snap-cow' device, an entry is made in the exception table 

mapping the old logical chunk number in the 'origin-real' device to the new logical 

chunk number on the 'snapshot-cow' device. Finally, the write request is routed to the 

'origin-real' device. 

The 'snapshot' mapping handles the I/O for a snapshot logical volume in the fol­

lowing way: 

Read: For a read request on a snapshot volume, the exception table of the volume is 

consulted to check if the block to be read has been copied to the 'snap-cow' device or 

not. If yes, then the read request is routed to the 'snap-cow' device. Otherwise, it is 

routed to the 'origin-real' device. 

Write: For a write request, the exception table of the snapshot volume is consulted 

to check if the particular block to be written has been copied to the snapshot volume or 

not. If not, then a free chunk is allocated on the snapshot volume, and a request is issued 

to the 'kcopyd' daemon to copy the chunk containing the block from the 'origin-real' 

device to the 'snap-cow' device. Once the chunk has been copied to the 'snap-cow' 

device, an entry is made in the exception table mapping the old logical chunk number in 

the 'origin-real' device to the new logical chunk number on the 'snapshot-cow' device. 

Finally, this entry is used to get the block number on 'snap-cow' which is to written, 

and the request is updated with this block number and routed to the 'snap-cow' device. 

Once the read or write request reaches the 'snap-cow' or 'origin-real' device, it is 

mapped to the final physical block on the disk using linear mapping. 



Chapter 1. Introduction 17 

1.4 LVM2's Snapshot Technology : Disk Block 

Placement Analysis 

In the last section, we discussed the way LVM2 creates logical volume snapshots and 

maintains their copy-on-write block mappings. In this section, we shall analyse the 

ways in which virtualization at the logical volume level may affect disk I/O perfor­

mance. 

File systems make their own allocation decisions for file, directory and metadata 

blocks, at their level, depending on their goals and policies. Some file systems optimize 

data placement for improving disk performance in general, like the Fast File System [7] 

which tries to co-locate file metadata and data on the disk for fast reads and writes, 

whereas some have their allocation policies designed for optimizing write performance, 

as in the Log Structured File System [17], where the writes go to a sequential log on 

the disk, thereby speeding up the write performance. 

By having logical volumes underneath the file systems instead of actual physical 

volumes, some of the assumptions made by the file system may no longer hold true. 

In case of logical volumes, the file system has no knowledge that there is another layer 

of software underneath, which is re-routing its allocation requests. Logical volumes, 

unlike physical disks or partitions, are not guaranteed to be continuously laid down 

on the disk, and may even be allocated on multiple disks or partitions. Because of 

this possible segmentation in logical volumes, the allocation decisions made at the file 

system layer may not pay-off or may even turn out to be sub-optimal. 

In addition, the LVM2's snapshotting logic adds another level of indirection in the 

I/O path, as seen in the above section. LVM2's snapshot logical volume does not 

have a direct linear mapping for its filesystem data blocks. It only keeps changed 

data blocks in its allocated space and, that too, in a sequential log fashion interspersed 

with regular snapshot metadata blocks. Rest of the unchanged blocks lie on the origin 

logical volume. Thus, we see that the file system, which is hosted on the snapshot 

logical volume, has some of its blocks lying in the origin volume space and the rest of 

them in the snapshot volume space, without its knowledge. Further, the origin volume 
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and snapshot volume space on the disk itself may be segmented and may lie anywhere 

on the disk with no effort made by LVM2 to co-locate these segments. We saw in 

the last section that LVM2 allocates space to the snapshot volume just like any other 

ordinary logical volume with no consideration to the fact that this volume's data may 

be related to the data on its origin volume. 

We see from the above discussion that LVM2's implementation of snapshot logical 

volumes does not make any special effort to place snapshot's changed data blocks near 

their original locations, in order to improve disk I/O performance for these volumes. 

While we expect some degradation in performance for first time writes to either of 

the origin or snapshot volumes due to the extra chunk copy from the origin to the 

snapshot volume, it is the read performance which we are concerned about because of 

the copy-on-write displacement of changed blocks from their original location, thereby 

disturbing the physical contiguity of related blocks. In the next Chapter, we present the 

results of our preliminary experiments on the LVM2 volumes, which verify some of 

our concerns related to I/O performance of snapshot logical volumes due to copy-on-

write effects, and elaborate on the design decisions we took in proposing new schemes 

for space allocation to logical volumes and placement of changed blocks in snapshot 

volumes for LVM2. 

This chapter presented the problem which this thesis deals with. Since our work is 

based on LVM2, we have provided a background on its terminology, software archi­

tecture and internal workings. Later, we describe the design and implementation of the 

snapshot logical volumes in LVM2. 
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Chapter 2 

Design and Implementation 

In this chapter we present the results of some of our early experiments with LVM2 

snapshot volumes, which corroborated our concerns regarding performance degrada­

tion in LVM2 snapshot volumes due to poor block placement, and helped us in deriving 

design guidelines for creating new schemes for disk space allocation of LVM2 logical 

volumes and for smart placement of copy-on-written blocks on the snapshot volumes 

in order to maintain their proximity with their related blocks. Section 2.1 details these 

experiments and their findings. Section 2.2 discusses the conclusions which we draw 

from these results which informed our design of new allocation and block placement 

schemes for LVM2. Section 2.3 presents our design and Section 2.4 describes its 

implementation. 

2.1 Experience With LVM2 Snapshot Volumes 

We conducted a set of experiments to study the actual effects of copy-on-write block 

displacement on the disk I/O performance of LVM2 snapshot volumes. The purpose 

was to study the degree of fragmentation caused by copy-on-write on the snapshot 

volumes and to see if this fragmentation really affected the performance. Our premise 

was that the spatial discontiguity between different related blocks of a snapshot volume 

would lead to more disk seeks, amounting to an increase in the disk access times. In 

the following sections, we explain these experiments and their results. 
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2.1.1 Experiment Setup 

We have conducted our experiments over the Xen [16] virtual machine monitor plat­
form, which is an OS-virtualized environment running the Xen hypervisor at the hard­
ware interface level and supporting the execution of multiple guest operating systems 
on top of it. Xen is open source software developed at the University of Cambridge. 
In OS-virtualized environments, LVM2 logical volume snapshots come to offer great 
ease in capturing the initial file system configuration from a base image and hosting live 
Guest OSes on top of them. Therefore, we contemplate that the performance of LVM2 
snapshot volumes in these environments is important and interesting to investigate. 

I n s t r u m e n t a t i o n : We instrumented the ide disk driver in the linux kernel to record 
the following information about the I/O requests reaching the disk: 

• Type of I/O request: read or write 

• Time of I/O request arrival 

• The disk block number which is being read or written 

• Type of filesystem block, i.e., if it is an inode, file data, directory, indirect, jour­
nal, superblock, block bitmap, inode bitmap or group descriptor block which is 
being read or written. 

This information is routed by the kernel syslogger to another machine on the local 

network, in order to prevent this logging activity from affecting our results. In the Xen 

environment, there is a single privileged GuestOS called DomainO which has access 

to the hardware resources like the machine's physical disks and network devices. All 

the of other GuestOSes run in unprivileged mode in which they see virtual block de­

vices (VBDs) and network interfaces (VIFs) which are created and configured within 

DomainO. The actual disk and network drivers thus reside in DomainO and receive 

disk read/write requests from and send responses to unprivileged domains via Xen's 

inter-domain communication interface. 
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Platform Configuration: We run our experiments on a 2.8GHz Pentium 4 machine 
with 512MB RAM and 40GB Western Digital(WD400BB-23FJA0) ATA disk drive. 
The machine hosts Xen-2.0 ported over the base Fedora Core 4 operating system. The 
GuestOSes run modified unprivileged Fedora Core 4 operating systems. For our exper­
iment, we run DomainO on a 15GB origin logical volume and an unprivileged GuestOS 
on a 10GB snapshot logical volume. Figure 2.1 shows how these volumes are laid out 
on the disk. 

Origin Volume (15GB) Snapshot Volume (10GB) Free Space 

Figure 2.1: Origin and Snapshot volume on the Disk 

Workload Description: In this experiment, we run a Linux kernel source tree com­

pile and grep workload. We first install a clean kernel source tree on a 15GB logical 

volume. The size of the kernel source tree is around 209MB and after compilation, it 

becomes 1.22GB. Then we build this kernel source tree and record the time and disk 

block requests for this activity. After this, we run a grep on this compiled kernel source 

tree and record the time and disk block requests this time too. The grep is done on 

the entire kernel source tree with object files included. These build and grep times 

on the plain logical volume are the base times against which we shall compare the 

performance of build and grep on origin and snapshot logical volumes. 

Next, we make a 10GB snapshot of this plain logical volume. The size of a snapshot 

volume can be less, equal to or more than its origin logical volume. Thus, now the 

plain logical volume becomes an origin logical volume for the newly created snapshot 

volume. Now, we clean the kernel source tree on the origin logical volume and build it 

again. This time all the first writes during kernel build on the origin logical volume shall 

generate a copy-on-write block copy from the origin to the snapshot volume. We record 

the time and disk block requests for this activity. Then we do a grep similiar to the 

previous one on the original logical volume's kernel source tree. Now, we instantiate a 
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GuestOS on the snapshot logical volume and also run a grep on its kernel source tree. 

For this source tree, the source files will lie in the origin volume space while those 

object files which have been overwritten will be copied to the snapshot volume area. 

Thus, the grep on the snapshot kernel source tree will exhibit performance penalties, 

if any, due to disk seeks between the source files and object files lying on different 

volumes. 

2.1.2 Experiment Results 

The results of our experiments are compiled in Table 2.1. From the table, we deduce 
that the kernel build time on the origin volume is 6.7% more than the kernel build 
time on the plain logical volume, due to the copy-on-write induced extra chunk copies 
from the origin to the snapshot volumes. More importantly, we find that the grep 
performance on the snapshot volume is 62% less than on the origin volume. 

Volume Kernel-Build Time 
(min:sec) 

Kemel-Grep Time 
(min:sec) 

Plain LV 39:39 4:40 

Origin LV 4250 4:45 

Snapshot LV - 7:42 

Table 2.1: Kernel Build and Grep Timings on Plain, Origin and Snapshot Logical 

Volumes 

We have plotted the disk block accesses for the kernel build workload on the plain 

LV and the origin LV. Figure 2.2 shows these graphs. The x-axis in these graphs rep­

resents the time in milliseconds during the kernel build and the y-axis represents the 

disk block number which was accessed at a particular point of time. In the graphs, the 

'READ' data points represent the disk blocks which were read during the kernel build 

workload and the 'WRITE' data points represent the disk blocks which were written. 

During kernel source tree compilation, the source files contained in each directory of 

the tree are read and compiled. The objects files thus written on the origin volume 
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cause the corresponding original data blocks to be copied from the origin to the snap­
shot volume. 

We see two dense horizontal bands of 'READ' blocks in each graph. The upper 
band is probably the region of disk space where the kernel source files are placed. The 
lower band on the origin volume contains the ext3 file system's metadata like journaling 
blocks, inode bitmap, block bitmap etc., which are heavily read and written during the 
kernel build workload. We notice that towards the end of the kernel build workload, 
there is a heavy vertical band of disk reads followed by disk writes. This disk read 
activity takes place at the object files' linking stage and the disk write activity is caused 
during the module building stage. 

On comparing the two graphs, we note a linear 'WRITE' curve in the top portion 
of the lower graph. These are the copy-on-write disk writes during kernel build on the 
origin volume which copy original data from the origin volume to the snapshot volume. 

Similiarly, Figure 2.3 and Figure 2.4 show the disk block accesses for the kernel 
grep workload on the origin LV and the snapshot LV respectively. The disk block 
access graphs mostly have 'READ' data points as the kernel grep workload mostly 
consists of disk reads. Comparing the graphs in Figure 2.3(a) and Figure 2.4(a), we see 
that the graph pertaining to the snapshot volume has a prominent 'READ' band at the 
top of the graph. These data points represent the blocks which were copied from the 
origin volume to the snapshot volume during the kernel build workload. 

These figures also contain graphs showing the disk access times vs. disk seek 
distances for this workload on the two volumes. The purpose of these graphs is to see 
if the 62% decrease in the snapshot read performance is due to increased disk seeks 
or not. The x-axis in these graphs is the seek distance in units of disk blocks and 
the y-axis represents the disk access time in milliseconds. Note that in Figure 2.4(b), 
the seek distances have increased for a large amount of disk accesses as compared 
to Figure 2.3(b). This increase is due to the longs seeks which the disk has to make 
between blocks lying in the origin volume and those lying on the snapshot volume. 

The results of this experiment show that copy-on-write displacement of blocks 
across LVM2 volumes can lead to significant performance degradation of read work­
loads. 
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(a) Blocks Accessed during Kernel Build on the Plain Volume 

1.134E+12 1.134E+12 1.134E+12 1.134E+12 1.134E+12 1.134E+12 1.134E+12 

Time in msec 

(b) Blocks Accessed during Kernel Build on the Origin Volume 

Figure 2.2: Difference between 'kernel-build' disk accesses on plain and origin LVs. 
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(b) Seek Profile during Kernel Grep on the Origin Volume 

Figure 2.3: Disk Access Profile of the Kernel Grep Workload On the Origin LV 
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(a) Blocks Read during Kernel Grep on the Snapshot Volume 

(b) Seek Profile during Kernel Grep on the Snapshot Volume 

Figure 2.4: Disk Access Profile of the Kernel Grep Workload on the Snapshot LVs. 
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2.1.3 Spatial Density of Copy-On-Written Blocks 

In order to understand the distribution of blocks which were copied from the origin 
volume to the snapshot volume, we extracted the 'exception-table' from the 'snap-cow' 
device and plotted the original location of copied blocks on the origin volume. This 
information is depicted in Figure 2.5(a). The x-axis represents the origin volume disk 
space divided into 480 buckets of 32MB each, while the y-axis represents the number 
of disk blocks which were copied from the origin volume to the snapshot volumes from 
each bucket. The graph in Figure 2.5(b) depicts the same information but sorted by the 
number of blocks copied rather than the slice index. 

In these graphs, we see that the physical distribution of blocks copied from the 
origin volume to the snapshot volume is non-uniform, with most of the blocks copied 
from a few regions while the remaining regions are untouched or copied very little. 

2.2 Design Decisions 

P r o v i s i o n i n g o f F r e e Space nea r the O r i g i n V o l u m e : The results of the preliminary 

experiment, conducted on LVM2-based logical volumes show that the displacement 

of related blocks caused by copy-in-write can be large enough to cause a significant 

degrading effect on the disk read performance. We found out from the seek profile 

of the kernel grep workload on the origin and the snapshot volume that the increased 

seek distances in the case of the snapshot volume are one of the probable reasons of 

the degradation in performance. Earlier, we noted in Section 1.2.2, that the space 

allocation for the origin and snapshot volumes, in case of LVM2, is done completely 

independent of each other. We decided to modify the scheme of space allocation for 

logical volumes in LVM2, so that it provisions for some free space near these volumes 

for future allocation of snapshot data blocks. This will help in keeping displaced copy-

on-written blocks near their original locations and thereby reducing the long disk seeks 

which we saw in our experiments. 

D y n a m i c a l l o c a t i on o f S n a p s h o t V o l u m e Space : At first, we thought of allocating 

space statically to the snapshot logical volumes, at the time of their creation, in seg-
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(a) Density Distribution of Blocks Copied during Kernel Build on the Origin 
Volume - Sorted by Slice Index 
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Volume - Sorted by Number of Copied Blocks 

Figure 2.5: Spatial Density of Copy-On-Written Blocks 
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merits adjacent to the origin volume segments. This allocation scheme would perform 
very well in co-locating displaced blocks if the data writing and copying takes place 
uniformly across all origin volume segments. In Figure 2.5, we see that the block dis­
placement from the origin volume due to copy-on-write occurs non-uniformly, with 
most of the blocks being copied from very few regions of the origin volume. Keep­
ing this in mind, we decided to replace the LVM2's static space allocation scheme for 
the snapshot logical volumes to a dynamic one in which space gets allocated to the 
snapshot volume in small segments on-demand at run-time and at locations which best 
preserve the spatial locality of related blocks. This method will not only allow more 
flexibility in sharing the free space provisioned near the origin volumes for various 
snapshot volumes, but will also reduce space wastage in the snapshot volumes and 
co-locate related blocks in the best possible way. 

2.3 Design 

In this section we discuss the design of the new disk allocation and block placement 
schemes which we have developed for LVM2 in order to improve the disk performance 
of snapshot logical volumes. First, we describe the design changes we introduced in the 
static space allocation scheme of plain logical volumes in LVM2. Then, we describe 
the design of a dynamic space allocation scheme and an intelligent block placement 
scheme for LVM2 snapshot volumes. 

2.3.1 'Snap-Aware' Static Allocation Policy for LVM2 Logical 

Volumes 

We have designed a new static allocation policy, called 'Snap-Aware', for LVM2 logi­

cal volumes, which leaves free space in between the volume segments for the volume's 

future snapshot logical volumes. According to this allocation scheme, a new logical 

volume will be allocated equal-sized segments called slices which are equi-distantly 

spaced from each other. The size of these slices and the gap between them is config­

urable by the user at the time of the creation of the logical volume. 
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The 'Snap-Aware' allocation policy accepts following parameters: 

• Number of Slices: The user can specify the number of slices in which to divide 

the logical volume. The size of each slice can thus be calculated by dividing the 

size of the volume by this number. 

• Size of a Slice: Optionally, the user can specify the size of a slice instead of the 

total number of slices. 

• Number of Snapshots: The user can tentatively suggest a value for the number 
of snapshots he is provisioning for at the time of creating a logical volume. This 
will help the LVM2's space allocator in deciding the size of the inter-slice gap. 

• Percentage Size of Snapshots: Along with the number of snapshots to provision 
for, the user can specify an approximate value of the size of a snapshot volume 
as a percentage of the origin volume size, so that the total size of the free space 
to be provisioned for can be calculated accordingly. 

Figure 2.6 shows an example of a logical volume which has been allocated space 

using the 'Snap-aware' allocation policy and how it may have looked if allocated using 

the 'Contiguous' allocation policy of LVM2. 

Discussion: This scheme makes the space allocation of a logical volume anticipate 

that in future some snapshot logical volumes may be based on it and would benefit 

by being closer to it. The scheme has been desgined to offer flexibility to the user 

in deciding how much slicing and space provisioning he wants to do. At the same 

time it also encumbers the user with the burden of deciding suitable values for these 

parameters which are apt for the kind of workloads he expects to run on the system. 

There are certain tradeoffs which have to be considered while choosing a value for 

the above parameters. For example, the slice size should not be so big that it renders 

the snapshot blocks to be too far from their original allocations to be of any value. 

Similarity, the gap between the slices should be not be too much that it separates the 

original volume data so much that it hurts its performance. At the same time, the gap 

between the slices should be big enough to hold the difference data pertaining to its 
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Slices allocated to Snapshot LVs on-demand at run-time 

(a) Snap-Aware Allocation Policy 

Origin LV Snapshot LV 1 Snapshot LV 2 Snapshot LV3 Free Space 

(b) Contiguous Allocation Policy 

Figure 2.6: Contiguous V s . Snap-Aware Volume Space Allocation 

neighbouring origin volume slices otherwise the difference data would spill over to 

other areas. But, as we saw in Figure 2.5, since the physical distribution of blocks 

copied from the origin volume is non-uniform and workload-dependent, it is difficult 

to anticipate the required free space provisioning to prevent spilling over of copied data 

from the intended physical disk area. 

2.3.2 Dynamic Allocation Policy and Intelligent Block Placement 

for LVM2 Snapshot Logical Volumes 

On-Demand Disk Space Allocation: For the LVM2 snapshot logical volumes, we 

have introduced two changes. The first change is in the way disk space is allocated 

to the snapshot volume. LVM2, in its original design, allocates space to a snapshot 

logical volumes statically at the time of its creation. We have modified this allocation 

scheme to make it dynamic. In the new LVM2 scheme, at the time of the creation of a 

snapshot volume, its blocks will be mapped to a single error segment equal in size to 

that of the snapshot volume size. Actual disk space will be allocated to the snapshot 

volume in terms of equal sized segments at run-time, and at a location near the disk 
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chunk which is to be copied from the origin volume to the snapshot volume. This 

allocation will be done by a userspace-resident LVM2 space allocation daemon, which 

gets allocation requests from the kernel-resident device mapper module at run-time. 

The size of the segment which is allocated in one request is configurable and can be 

different for different snapshot volumes of the same origin volume. 

Smart Block Placement: The second change which we have done is in the way data 
and metadata chunks are placed on the snapshot volume space. In the original LVM2 
scheme, as we saw in Figure 1:7, the data chunks in the logical block domain are 
allocated on the snapshot volume in a sequential manner starting from the third chunk 
with single metadata chunks appearing between them after regular intervals. In the 
new LVM2 scheme, the logical block domain of the snapshot logical volume is divided 
into segments of equal size, each equal to the amount of space allocated by the LVM2 
space allocator in one allocation request, and one error segment at the end mapping 
all the blocks which are yet unallocated. Instead of placing chunks contiguously in the 
logical domain, in the new LVM2 scheme, the device mapper, on getting an I/O request, 
first finds out the physical location of the chunk which is being copied from the origin 
logical volume to the snapshot logical volume. Then it tries to find an allocated segment 
whose physical location is within a desired range of the chunk's physical location. If 
such a segment is found, then the device mapper picks a free chunk from it, maps the 
I/O request to the new chunk and routes it to the target physical device. Free chunks 
are picked from the segment in a sequential manner. If such a segment is not available 
or does not have a free chunk, then the device mapper stalls the I/O request and sends 
a segment allocation request to the LVM2 space allocation daemon. Once the segment 
allocation is done, the device mapper adds this segment to its mapping table for the 
snapshot device and proceeds with the servicing of the I/O request. 

Thus, in summary, we have sliced up the origin volume and left free spaces between 
the slices to be allocated to its future snapshot volumes. Additionally, we have made 
the space allocation to snapshot volumes dynamic so that space can be allocated to 
them as and when required and at a location which best preserves the spatial locality of 
snapshot volume blocks with their related blocks lying in the origin volume. Further, 
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we have modified the block placement strategy within the snapshot volume segments 

so that the displaced blocks can be placed in that segment of the snapshot volume which 

is nearest to the original location of the blocks. 

Discussion: There are certain concerns which ought to be discussed with regards to 
the above dynamic space allocation scheme. First concern is about the time overhead 
incurred at runtime for allocating space to the snapshot volume since the disk requests 
which need to write to the unallocated space are delayed for this amount of time. One 
obvious solution to minimize the impact of this overhead is to increase the amount of 
space allocated to the snapshot volume in one allocation request, thereby reducing the 
number of such requests. But this approach may lead to large amount of space wastage 
in those segments of the snapshot volume which hold very little copy-on-written data. 
This may also negatively affect the space allocation of other snapshot volumes which 
may not get free space in the desired regions because of the extra allocation done by 
previous snapshots. In our experiments (refer Section 3.1), we find that the overhead 
of dynamic space allocation is minimal and does not effect the overall performance of 
the snapshot volumes significantly. But, this overhead may become large if the size of 
the allocated segments is reduced considerably leading to frequent requests for space 
allocation. In short, this scheme calls for striking a balance between the tradeoffs 
of write time efficiency versus fine grained data placement and efficient free space 
utilization by snapshots. 

2.4 Implementation 

In the last section, we described the new space allocation and block placement schemes 

which we have introduced for LVM2 logical volumes. In this section, we discuss the 

software architectural changes, datastructure modifications and control flow changes 

which we made in the LVM2 software in order to implement these schemes. 
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Figure 2.7: LVM2 Space Allocation Daemon 

2.4.1 LVM2 Disk Space Allocation Daemon 

We implemented a user-space resident disk space allocation daemon for dynamically 

allocating disk space to the snapshot logical volumes. It has a multi-threaded design. It 

interacts with the device-mapper using a set of ioctl commands as shown in Figure 2.7. 

• Each thread within the daemon calls the 'wait' ioctl of the device-mapper and 

gets blocked till it reads a pending disk segment allocation request. This request 

has the following format: 

- The snapshot device id: This field uniquely identifies the snapshot volume 

which needs disk space to be allocated. 

- The lower physical address range: This field specifies the lower end of the 

physical disk address range within which to allocate the segment. 

- The upper physical address range: This field specifies the upper end of the 
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physical disk address range within which to allocate the segment. 

• On getting the request, one of the daemon threads reads the current volume group 
metadata from the disk, prepares a list of free spaces on the VG, arranges them 
in the order of their physical location on the disk, and then attempts to find a 
free segment of the required size within the physical address range specified by 
the request. If such a segment is not found within the desired range, it tries to 
allocate a segment which is nearest to the specified address range. 

• After allocating a free segment, the daemon thread updates the on-disk VG meta­
data to reflect the newly added segment and sends a segment allocation response 
back to the device mapper using the 'dev-alloc' ioctl with following details: 

- The snapshot device id 

- The lower and upper physical address range 

- The allocated segment's size. 

- The allocated segment's start address in the logical address range. 

• On getting this response, the device mapper adds this segment to the mapping ta­

ble of the 'snap-cow' device and proceeds with the servicing of pending disk I/O 

requests. In order to prevent new incoming requests from waiting for a long time 

till the above processing takes place, the mapping table datastructure is locked 

only for the time when the new segment is being added to it. After segment ad­

dition, the mapping table is unlocked. Subsequently, for each pending or freshly 

arriving request for this segment, the lock is reacquired in order to process the 

request. 

2.4.2 Device Mapper Datastructures 

In this section, we describe the datastructure changes we have made in the device map­

per kernel module to implement the new block placement schemes for snapshot de­

vices. 
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Snapshot Device Metadata: As we saw in Figure 1.7, in the original scheme new 

chunks are allocated sequentially from the snapshot volume space. The device mapper 

maintains a 'next-free' chunk counter for each snapshot device which is increased every 

time a new chunk is allocated on the 'snap-cow' device. In the new LVM2 scheme, 

the new chunks on the snapshot volume are not allocated sequentially on the 'snap-

cow' device but are allocated on that logical segment of the 'snap-cow' device which 

is physically closest to the chunk's original location. Therefore, in the new LVM2 

scheme the 'next-free' chunk counter is maintained within each logical segment of the 

'snap-cow' device. Whenever a new chunk needs to be allocated, first an appropriate 

segment is chosen. Then, the next free chunk within that segment is allocated. 

Mapping Tables: In the original scheme, the device mapper maintains a linear map­
ping table for each of the 'snap-cow' device and the 'origin-real' device. These map­
ping tables are indexed by the logical start block numbers of the segments allocated to 
these devices. In the new LVM2 scheme, the device mapper maintains an additional 
mapping table, one each for these devices, indexed by the physical start block number 
of the segments allocated to these devices. This kind of mapping table is useful for 
locating segments of a device based on their physical location on the disk. The usage 
of these tables is discussed futher in the next section where we describe the control 
flow within the device mapper module. 

2.4.3 Device Mapper Control Flow 

In this section, we will discuss the control flow of write requests which result in copying 

of data blocks from the origin to the snapshot volume. Such writes may either be 

directed to the origin device or to the snapshot devices. Figure 2.8 depicts a typical 

scenario of adding a new segment to the snapshot volume and copying a block from 

the origin volume slice to an adjacent snapshot segment. 

• Stepl: For an incoming write request, the device mapper looks into the com­

pleted exception table of the snapshot device to check if the block to be written 

has already been copied from the origin to the snapshot device. If yes, then the 
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Figure 2.8: Allocating new Snapshot LV Segment and Copying Blocks to it 

write request is simply routed to the target device with the correct block map­

ping. If no, then the device mapper follows Step2. 

• Step2: Now, the device mapper first finds the physical location of the block to be 

written on the origin device. Then, using the 'origin-real' device's mapping table 

which is indexed by physical disk location, finds out the segment which contains 

this block and the neighbouring segments. By using the physical start location of 

the neighbouring segments, the device mapper defines a range of physical disk 

addresses within which the block should be copied. 

• Step3: Using this physical addresses range, the device mapper looks into the 

'snap-cow' device's mapping table indexed by physical disk location to find a 

segment which lies in that range. If such a segment is found which has a free 

chunk, then this chunk is allocated for the new exception and the chunk copy 

request is issued to the 'kcopyd daemon'. If no such segment with a free chunk 

is found, then the device mapper goes to Step4. 

• Step4: The device mapper maintains a list of pending segment allocation re-
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quests which have been sent to the userspace LVM2 allocation daemon. Each of 
these requests contains the range of physical addresses within which they have 
requested a segment to be allocated, and a list of pending exceptions which are 
waiting to allocate a free chunk from the segment. Each pending exception in 
turn has a list of pending disk I/O requests to be serviced once a free chunk has 
been allocated on the snapshot and the old data chunk has been copied to it. The 
device mapper looks into the list of pending requests to see if there is a segment 
allocation request already pending for this range of physical disk addresses. If 
yes, then it appends the pending exception to this request's list of pending ex­
ceptions. If no such request is present, then the device mapper creates a fresh 
segment allocaton request and sends it over to the LVM2 allocation daemon. 

• Step5: On receiving a response to its segment allocation request, the device 
mapper adds this newly allocated segment to the mapping tables of the 'snap-
cow' device. Then, it services all of the pending exceptions which were waiting 
to allocate free chunks from this segment. 

Summarizing this chapter, we first presented the results of some of our early ex­

periments with LVM2 snapshot logical volumes. These experiments not only verified 

our concerns about the performance degradation of the snapshot logical volumes due 

to copy-on-write, but also provided some guidelines to remedy this effect. Next, we 

described the design decisions we took and the actual design followed by its imple­

mentation. 
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Evaluation 

In this chapter, we shall describe the various experiments we conducted in order to 
evaluate our new disk space allocation and block placement schemes for the LVM2 
snapshot logical volumes. The primary goal of these experiments is to determine if 
the new block placement scheme, in which the copy-on-written blocks are placed as 
close to their original locations as possible, improves read performance on the snap­
shot logical volumes or not. Other goals are to measure the effect of slicing on the disk 
I/O performance of the origin volumes, and to determine if the overhead of allocating 
disk space to the snapshot volumes dynamically significantly effects the runtime per­
formance of these systems. These experiments have been conducted on two different 
sets of hard disk subsystems from different vendors in order to see how disk-specific 
characteristics like on-disk cache buffer, average seek times, etc., impact the results of 
our experiments. 

3.1 Kernel Compile and Grep Workload 

In the Section 2.1 we described a kernel compile and grep workload and presented 

the results of running this workload on LVM2 logical volumes in a Xen-based virtual 

machine environment. In this experiment, we use the same workload and compare the 

results obtained with the original LVM2 scheme and the new LVM2 scheme. 

3.1.1 Platform Configuration 

We did two runs of this experiment, each on a different machine. Table 3.1 compares 

the hardware configuration of the two machines. The first machine has a 2.8GHz CPU 
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and a 40GB Western Digital IDE disk with 2MB of on-disk cache buffer, while the 
second machine has a 3.2GHz CPU and a 80GB Maxtor SATA disk with 8MB of 
on-disk cache buffer. Each machine has Xen-2.0 installed on it and the guest virtual 
machines, running on top of Xen, have Xen-ported Fedora Core 4 as their operating 
system. 

The disk is prepared by creating a physical volume on it and then creating a volume 
group containing this physical volume. The extent size, which is the basic unit of space 
allocation for logical volumes, is configured to be 4MB for this volume group. After 
creating the volume group, a logical volume is created which is 15GB in size and the 
root file system containing an uncompiled kernel source tree is copied on it. Then 
a guest operating system is run on this volume which compiles, the kernel source tree. 
Now a snapshot of the volume is taken. The snapshot's chunk size, which is the amount 
of data copied from the origin to the snapshot volume as a result of copy-on-write of 
a disk block, is configured to be 8K. At this point, both origin and snapshot volumes 
point to the same compiled kernel source tree. After that, we clean the source tree 
on the origin volume and run a kernel build workload which recompiles the kernel 
source tree and writes object files. Once the kernel compilation is complete, we do a 
grep on the entire kernel source tree including object files. After that, we run another 
guest operating system on the snapshot logical volume and run the grep workload on its 
kernel source tree. For all these workload runs, we log the disk read and write requests 
and record the running time. 

In the case of the new LVM2 scheme, the 15GB origin volume is sliced to provision 
for 6GB of free space for three snapshots between its slices, in the following way: 

• Number of Slices = 30 

• Size of Each slice = 15GB/30 = 512MB (128 extents) 

• Interslice Gap = 6GB/30 = 200MB (50 extents) 

The segment allocation size per allocation request is configured to be 2 extents 

(8MB) in the LVM2 allocation daemon. 
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Features Machine 1 Machine 2 
CPU Speed 2.8GHz 3.2GHz 

CPU L1 cache 8K 16K 
CPU L2 cache 512K 1024K 

RAM 512MB 1GB 
Hard Disk Model WD4C0BB-23FJA0, ATA Maxtor 6Y080M0, ATA 

Interface EIDE SATA 
Rotational Speed 7200 RPM 7200 RPM 
Hda max req. size 128KB 128KB 

Hda capacity 40GB 80GB 
Cache Buffer 2MB 8MB 

Average Seek time 8.9ms(read seek time) <= 9.3ms 
Write seek time 10.9ms -

Track to track see time 2ms .9ms 
Full Stroke seek 21ms <= 20ms 

Transfer rate (buffer to 
disk) 

400 Mbrt/s(max) -

Transfer Rate (buffer to 
host) 

100Mbit/sec 150Mbit/sec 

Number of Platters 2 -
Number of Cylinders - 158816 

Data Zones per surface - 16 
Data Sectors /track - 610/1102 

Track Density per Inch - 89 ktpi 

Table 3.1: Comparison of Hardware Configuration of the two Machines (source: [6] 
and [11] 
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3.1.2 Observations 

We have plotted the disk access graphs for the kernel build workload on the origin 
volume with the old and the new LVM2 scheme. These graphs are shown in Figure 3.1. 
The x-axis in these graphs represents the time during the compilation and the y-axis 
represents the disk blocks written during the kernel build on the origin volume. We 
observe in the disk access graph for the old LVM2 scheme that the blocks which are 
written to during the kernel build workload are copied from the origin volume to the 
snapshot volume in a linearly increasing disk segment at the top end of the graph. 
While for the new LVM2 scheme, we observe that the blocks are copied from the origin 
volume to the nearby snapshot segments on the disk. These segments are allocated on-
demand at kernel build time by the LVM2 space allocation daemon. 

Figure 3.2 shows the disk access graphs for the kernel grep workload on the origin 
and the snapshot volume with the old LVM2 scheme. Note that in case of kernel grep 
on the snapshot volume, the workload reads the unchanged data from the origin volume 
and the copy-on-written data from the snapsot volume. This causes disk seeks between 
the snapshot volume and the origin volume. Figure 3.3 shows the disk access graphs 
for the kernel grep workload on the origin and the snapshot volume with the new LVM2 
scheme, where the two graphs look similiar to each other. The disk seeks in case of 
kernel grep on the snapshot volume are greatly reduced as the copy-on-written data lies 
adjacent to the unchanged data in this case. These observations are verified from the 
graphs in Figure 3.4 depicting the disk seek times as a function of disk seek distance 
during the grep workload on the snapshot volume with the old and new LVM2 scheme. 
The x-axis in these graphs denotes the seek distance which the disk travels for accessing 
blocks during the kernel grep workload and the y-axis denotes the corresponding time 
taken for these disk seeks. Comparing the two graphs in this figure, we note that the 
disk seek distances on the snapshot LV are reduced greatly with the new LVM2 scheme 
as compared to the old LVM2 scheme. 
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• Blocks written on Origin LV 
• Copy-on-written Blocks on Snapshot LVl 
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• Blocks written on Origin L V 
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Scheme 

Figure 3.1: Blocks Written during 'Kernel-Build' on the Origin LV for the Old and 

New Schemes 
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(b) Blocks Read during Kernel Grep on the Snapshot Volume - Old LVM2 
Scheme 

Figure 3.2: 'Kernel-Grep' Disk Accesses on the Origin and the Snapshot LV - Old 

LVM2 Scheme. 
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Figure 3.3: 'Kernel-Grep' Disk Accesses on the Origin and the Snapshot L V - New 

L V M 2 Scheme. 
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Figure 3.4: 'Kernel-Grep' Seek Profile on the Snapshot LV for the Old and the New 

LVM2 Scheme. 
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3.1.3 Results 

Table 3.2 shows the timing results for the experiment run on Machine 1. With the old 
LVM2 scheme, we observe 68% performance degradation for the kernel-grep workload 
on the snapshot volume as compared to the origin volume. Additionally, the extra 
copy-on-write chunk copies during the kernel build workload on the origin volume 
costs 8% performance degradation as compared to kernel build on the plain LV. With 
the new LVM2 schemes, we observe that the performance degradation in the kernel 
grep workload over the snapshot volume is 50% as compared to the kernel grep on the 
origin volume, while the percentage degradation in kernel build performance is the 
same as with the old LVM2 scheme. Overall, the new LVM2 scheme leads to an 18% 
improvement in read performance. 

Wortdoad(M/C#1) Time {min.sec) 
OLD LVM2 

Time (mirtsec) 
NEW LVM2 

Kernel build on Plain LV 42:59 42:39 

Kernel grep on Plain LV 2:59 02:54 

Kernel build on Origin LV 46:24 46:21 

Kernel grep on Origin LV 03:00 02:58 

Kernel grep on Snapshot LV 05:03 04:27 

Table 3.2: Kernel Bui ld and Grep Timings on the Plain, Origin and Snapshot Volumes 

for O l d and New LVM2 - Machine l 

On comparing the kernel build time over the origin volume in case of the new 

LVM2 scheme with the old LVM2 scheme, we observe that the overhead of dynamic 
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segment allocation in case of the new LVM2 scheme has no effect on the workload 

performance. Also, if we compare the kernel build time and grep time over the plain 

volume in case of the new LVM2 scheme with the old LVM2 scheme, we will see that 

the slicing of the origin volume in case of the new LVM2 scheme too has no noticeable 

impact on performance. Of course, these results are dependent on the degree of slicing 

in the origin volume, the free space provisioned between the slices, and the segment 

allocation unit for dynamic space allocation to the snapshot volume. 

Table 3.3 shows the timing results for the experiment run on Machine 2. During 

this run, under the old LVM2 scheme, copy-on-write causes the kernel build time to 

increase by 26% and the kernel grep time by 15%. The new LVM2 scheme performs 

almost equally to the old LVM2 scheme. In this case the degradation in the snapshot 

volume's kernel grep performance due to copy-on-write is significantly less than in the 

previous case. We attribute this to the four, times larger on-disk cache buffer. As shown 

in Table 3.1, the machine for this run has an 8MB on-disk cache buffer as compared to 

the 2MB cache buffer on the previous machine. As a result, the disk is able to cache 

more data and more effectively reduce number of disk accesses, which in turn improves 

read performance. The disk writes do not benefit from this cache buffer and therefore 

there is no improvement in the kernel build time which involves 43% writes. 

Coming to the overall performance improvement for the kernel build and grep 

workload with the new LVM2 scheme, one may wonder if performance can be fur­

ther improved by even more fine grained data placement. We can adjust the granularity 

of data placement by tuning the volume slicing and segment allocation parameters in 

the new LVM2 scheme, but it involves balancing some tradeoffs. For example, one 

may want to have thinner origin volume slices in order to reduce the distance between 

origin and snapshot data, but at the same time increasing the number of origin LV slices 

also implies increasing the number of gaps at the cost of their size thus leading to large 

number of dynamic allocations for the snapshot volume which could increase the write 

overhead on these volumes. In order to evaluate this aspect of the new LVM2 scheme, 

we conducted a series of experiments with increasing number of slicing while keeping 

the relative ratios of all other factors constant. These experiments are described in the 

next section. 
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W o r k l o a d ( M / C # 2 ) T i m e ( h n m i n : s e c ) 

O L D L V M 2 

T i m e ( h r m i n r s e c ) 

N E W L V M 2 

K e r n e l b u i l d o n P l a i n L V 5 6 : 2 7 5 6 : 4 4 

K e r n e l g r e p o n P l a i n L V 1 0 : 1 6 1 0 : 2 3 

K e r n e l b u i l d o n O r i g i n L V 1 : 1 1 : 1 5 1 : 1 2 : 9 

K e r n e l g r e p o n O r i g i n L V 1 0 : 1 7 1 0 : 2 4 

K e r n e l g r e p o n S n a p s h o t L V 1 1 : 5 3 1 2 : 1 5 

Table 3.3: Kernel Build and Grep Timings on the Plain, Origin and Snapshot Volumes 

for Old and New LVM2 - Machine 2 

3.2 Performance Impact of Origin LV Slicing 

In this set of experiments, we aimed to explore the impact of slicing on the perfor­

mance of the origin volumes and the snapshot volumes and see if there is any value in 

having more fine-grained slicing of the origin volume. In the last section we saw 18% 

performance improvement in the grep workload over the snapshot volume by slicing 

the 15GB origin volume into 30 slices. In these experiments we gradually increase the 

origin volume slicing from 30 to 8192 while keeping other factors constant and record 

their performance for the 'kernel compile and grep' workload. The configuration pa­

rameters for these experiments are shown in Table 3.4. In this table, we see that we 

have kept all other factors constant like the origin LV size, total space provisioning for 

the snapshot volumes, the snapshot LV size and the ratio of the gap between the slices 

to the dynamic allocation size. 

During our experiments, we observe that increased slicing decreases the distance 

between the origin and the snapshot volume data blocks and increases kernel-grep per-
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# of Origin 
LVSBces 

Origin LV 
Size 

Snapshot 
Provision 

Extent 
Size 

Origin LV 
Slice Size 

Gap 

Slices 

Dynamic 
Allocation 
Size 

Snapshot 
LVSize 

30 15GB 6GB 4MB 512MB 196MB 8MB 2GB 

512 15GB 6GB 2MB 30MB 12MB 4MB 2GB 

1024 15GB 6GB 2MB 15MB 6MB 2MB 2GB 

2048 15GB 6GB 512K 7.5MB 3MB 1MB 2GB 

4096 15GB 6GB 256K 3.75MB 1.5MB 512K 2GB 

8192 15GB 6GB 128K 1.875MB .75MB 256K 2GB 

Table 3.4: Configuration Parameters for the Slicing Experiments 

formance on the snapshot volumes. But at the same time, the overhead of dynamically 

allocating space to the snapshot volumes increases during the kemel-build workload as 

the amount of space allocated per request decreases with increased slicing thereby in­

creasing the number of allocation requests. These trends are depcited in the Figures 3.5 

and 3.6. 

The graph in Figure 3.5 shows the trend in kernel grep time on the origin volume 

and the snapshot volume with an increasing number of origin volume slices. The 'ori­

gin LV grep' data points in the graph depict the kernel grep time on the origin volume 

for different number of origin volume slices. We observe that there is not much varia­

tion in the kernel grep time over the origin volume as the number of slices are increased. 

The 'snapshot LV grep' data points in the graph depict the kernel grep time on the snap­

shot volume for different number of origin volume slices. The percentage value printed 

above each data point denotes the percentage by which the kernel grep workload takes 

more time on the snapshot volume than on the origin volume. We see that the kernel 

grep time on the snapshot volume shows a decreasing trend as the number of origin 

volume slices are increased. The percentage gap between the kernel grep time on the 

origin and the snapshot volume decreases from 68% in case of one slice(equivalent to 
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the old LVM2 scheme) to approximately 35% with more slices. Thus we see that the 

idea of slicing up the origin volume and carefully placing snapshot data in between 

these slices does prove beneficial in improving the read performance over the snapshot 

volume without sacrificing the origin volume's read performance. 

The graph in Figure 3.6 shows the trend in kernel build time on the plain and the 

origin volume with an increasing number of origin volume slices. The 'Plain LV Build' 

data points in the graph depict the kernel build time on the plain sliced volume and the 

'Origin LV Build' data points depict the kernel build time on the origin sliced volume 

for different numbers of slices. The percentage value printed above each 'Origin LV 

Build' data point depicts the percentage by which the kernel build workload takes more 

time on the origin volume than on the plain volume. We observe an increasing trend 

in the kernel build time on the origin volume with increasing numbers of slices. This 

is because of the increasing overhead of dynamic space allocation for the snapshot 

volume during the kernel build on the origin volume. In this case, this overhead almost 
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Figure 3.6: Trends in Kernel Build Time on Origin LV with increasing number of 

slices 

starting doubling after a point as the amount of space allocated per dynamic allocation 

request is halved. 

Thus, we observe that as we go on slicing the origin volume more and more, the 
snapshot volume blocks get further closer to their original locations, thereby improving 
the snapshot read performance. But, as the slicing is increased beyond a point, the 
overhead of dynamic space allocation for snapshot volumes becomes considerable. 

3.3 Partial Filesystem Rewrite Workload 

This is an artifical workload which ages the origin volume by writing random parts of 

the filesystem in order to generate copy-on-write data and then greps on the filesystem 

to measure the read performance of the snapshot volume. It differs from the kernel 

compile and grep workload in the sense that it does not allocate new data blocks on the 

origin volume but rewrites the existing data blocks. 
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3.3.1 Workload Description 

In this workload, first a script is run which finds all the files present on the origin 
volume and writes this list into a file. Then a snapshot of the origin volume is taken. 
After that, another script is run on the origin volume which randomly picks files from 
the above list and partially rewrites them. During this rewriting process, the rewritten 
disk blocks get copied from the origin volume to the snapshot volume. The files are 
rewritten partially in order to generate copy-on-data which is related to unchanged file 
data. For the rewriting, the script starts from the beginning of each file, skipping few 
blocks of data in the process periodically till it reaches the end of the file. For our 
experiments, we have configured the script to skip 8K of data periodically. Once this 
script is over, a grep is run on the snapshot volume's filesystem and the origin volume's 
filesystem and time recorded. In order to maintain uniformity across the two workload 
runs, the list of random files picked up for partial rewriting in the second step is kept 
same for the two runs. 

3.3.2 Experiment Setup 

For our experiment, we performed two runs of the above workload once using the old 

LVM2 scheme and once the new LVM2 scheme. In both the cases, same machine was 

used(Machine 1 in Table 3.1). The configuration parameters for the two runs are shown 

in Table 3.5. 

3.3.3 Results 

The results of the above experiment runs are shown in Table 3.6. We see in the table 

that while the new LVM2 scheme takes 22% more time to partially rewrite the filesys­

tem than the old LVM2 scheme, it fairs better in the read performance of the snapshot 

volume by almost 40%. With the old LVM2 scheme, the snapshot volume's read per­

formance is 84% degraded as compared to the origin volume. On the other hand, the 

new LVM2 scheme brings down this degradation in the read performance to 45%. 

We have plotted the disk accesses and seek profile of the filesystem grep workload 

for the old and the new LVM2 scheme in order to understand what the disk is doing 
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Parameter Old LVM2 New LVM2 

Origin Volume 
Size 

15GB 15GB 

Snapshot Volume 
Size 

2GB 2GB 

Provision for 
Snapshots 

- 2GB 

# of Slices - 2048 

Slice size - 7.5MB 

Slice Gap - 1MB 

Dynamic 
Allocation Size 

- 1MB 

Table 3.5: Configuration Parameters for the Partial Filesystem Rewrite Experiments 

Workload (M/C#1) Time (nrdnsec) 
OLD LVM2 

Time (rrdnsec) 
NEW LVM2 

Partial File system Rewrite on Origin LV 19:40 24:02 

Grep on Origin LVs FBe System 0429 0426 

Grep on Snapshot LVs FBe System 08:14 0826 

Table 3.6: Results for the Partial Filesystem Rewrite Experiments - Old and New 

LVM2 

during this workload. Figure 3.7 shows the disk blocks read with time during the 

file system grep for the old and the new LVM2 scheme. For the old LVM2 scheme 

we observe that the copy-on-written blocks lie in a dense horizontal band on the top 
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belonging to the snapshot volume while the unchanged data blocks lie below in the 
origin volume. For the new LVM2 scheme, the copy-on-written blocks occupy space 
in the snapshot segments which lie near their original locations in the origin volume 
slices. 

Figure 3.8 shows the disk seek profile of the filesystem grep workload for the old 
and the new LVM2 scheme. The x-axis in these graphs denotes the seek distances 
which the disk travels to access the data blocks during the gTep and the y-axis denotes 
the corresponding disk seek time for these accesses. We can clearly see in these graphs 
that the seeks are greatly reduced in case of the new LVM2 scheme as compared to the 
old LVM2 scheme. 

In this chapter, we presented the results of our experiments which compared the 
new LVM2 design with the old one. We evaluated the new scheme with two different 
workloads and on two different machines and found out that it performs better than 
the old scheme by 18% to 40% depending upon the configuration parameters like the 
degree of origin volume slicing, etc. Although it incurs extra overhead during first time 
writes due to its dynamic space allocation policy, the read performance of the snapshot 
logical volumes with the new scheme can be improved considerably while keeping this 
overhead low. 
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(a) Seek Profile during File System Grep on the Snapshot Volume - Old LVM2 
Scheme 
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Chapter 4 

Related Work 

Data Snapshot Technology is a key component of commerical-grade storage products 
and has been implemented by most hardware and software storage vendors today. In 
Section 4.1, we discuss some of the commerical and research-based snapshot tech­
nology solutions, focusing on the copy-on-write aspect of their implementations and 
the related I/O performance issues. Section 4.2 provides a survey of previous research 
work on improving performance of copy-on-write data. In this section, we particularity 
focus on the data placement techniques explored by other researchers. 

4.1 Survey of Snapshot Technologies 

Most of the today's storage systems provide some kind of snapshotting facility to cap­

ture data as it appears at some point of time and use it for backup, recovery and other 

purposes like data mining and data cloning. A snapshot can be defined as a consistent 

point-in-time image of data. Depending on the way snapshots are created, they can be 

classified along several lines. 

One of the important feature of snapshots is their writability. Some storage systems 

support only read-only snapshots which are mainly used for backup and error recovery 

purposes. Other systems provide the facility to create writable snapshots which can 

support live applications running on them. One such use of writable snapshots is in the 

OS-virtualized environments where a snapshot is created from a base image and then 

mounted to support live filesystems of individual guest operating systems. 

Another way in which snapshots may differ is the manner in which they are cre­

ated. A snapshot can be either a full-copy of the original data or a log of changes on 

the original data since the time of the snapshot creation. While the full-copy method 
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removes any dependency on original data and reduces recovery time, its preparation 
time and disk space requirement is proportional to the original data size. Long cre­
ation time implies equivalent down-time for applications while the snapshot is being 
taken. On the other hand, the differential log method utilizes copy-on-write technique 
to generate snapshots instantaneously while using minimal disk space. In the copy-on-
write technique, the snapshot initially points to the original data. Whenever some data 
is changed in the original data store, it is first copied to the snapshot area to preserve 
data as it appeared at the snapshot creation time. Thus, the copy-on-write snapshot re­
quires only a fraction of the original datastore disk space size to store the changed data 
blocks. With all these benefits of disk space savings, zero application down-time, and 
instantaneous snapshot generation, copy-on-write techniques have been widely used 
in snapshot technology design. We shall see some of these designs in the subsequent 
subsections. 

Besides the above mentioned classifying features, snapshots can also be differenti­
ated based on the level of storage hierarchy at which they are created, the granularity of 
data which they represent and the frequency with which they are generated. At the ap­
plication level, software version control systems, like CVS [3] and RCS [21], provide 
a facility to create and manage various point-in-time versions of software. They give 
user the flexibility to choose whichever parts of the file system need to be versioned. 
Also, they allow users to concurrently checkout old versions and make changes to them 
and return them back to the repository. 

At the file system level, the versioning semantics may be implemented inside the 
file system. While several file systems like Plan9 [23], Network Appliance's 'Write 
Anywhere File Layout' file system [12], and Ext3cow [5] allow periodic snapshots of 
entire file systems, others like Elephant [22], VersionFS [15], WayBack [2], Compre­
hensive Versioning File System CVFS [8] provide individual file and directory ver­
sioning. Filesystem-based snapshot systems understand filesystem semantics and thus 
enable greater control and finer granularity in the snapshotting process. For instance, 
the Elephant [22] file system implements support for user-specified retention policies 
for individual files, groups of files or directories. Also, since most of these systems are 
implemented inside the file systems, they provide snapshot feature as an easy extension 
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to the existing file system interface. 
On the other hand, there are systems which implement a snapshot facility at the stor­

age block virtualization level. The advantage of this approach is that such mechanisms 
provide a common, filesystem-agnostic snapshot facility which can be transparently 
used by all higher system layers. By moving the data management functionality near 
the disk, such systems reduce the complexity of higher layers and take advantage of 
powerful processing capabilities of the disk subsystems. However, since information 
about the content of data is not available at this level, most block-level snapshot systems 
provide snapshotting of entire volumes and not individual files or directories. Examples 
include volume management systems like Logical Volume Manager [13], Parallax [1], 
Petal [20] and block-level versioning systems like Clotho [4] and Peabody [10]. 

In the following sections we shall discuss various data snapshot systems, primar­
ily focusing on the algorithms, datastructures and data placement mechanisms imple­
mented by them. 

4.1.1 Versioning File Systems 

At the file system level, we can find a wide variety of snapshot and versioning systems 

designed with a varying set of goals, priorities and requirements. In these systems, 

the snapshot granularity varies from single file versions to entire filesystem snapshots. 

Nevertheless, saving disk space in storing various different versions of filesystem data 

is one of the primary concerns for all these systems. So, most of these systems use 

block-level copy-on-write techniques to replicate metadata and data blocks for different 

versions or snapshots. Some systems, like CVFS [8], go further in saving space for 

metadata replication by maintaining metadata versions in a log or in a multi-version 

btree. Other systems have to optimize for their use-specific requirements like Network 

Appliance's WAFL file system [12], which is optimized for writes for providing fast 

NFS service. 

The problem of arranging copy-on-write data of versioned filesystems on the disk 

which optimizes read performance has largely been ignored or not investigated. Copy-

on-write versioning inherently destroys contiguity of metadata and data blocks in cases 
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where file versions, which share some blocks but not all of their blocks, not all versions 

can be laid out contiguously on the disk. Let us look at some of the snapshotting and 

file versioning system designs and understand how they optimize their data placement 

on the disk. 

Write Anywhere File Layout(WAFL): Network appliance's Write Anywhere File 
Layout file system [12] is specifically designed for an NFS filserver appliance. It pro­
vides online read-only snapshots of entire file systems. WAFL's design has been opti­
mized for write-performance. They adopt a write anywhere design in which all meta­
data is kept in files, which can be allocated anywhere on the disk. This design choice 
gives more flexibility in write allocation policies as metadata and data can be arranged 
on the disk more creatively. WAFL uses non-volatile RAM to collect write requests 
and send them to the disk in one 'write episode'. This not only reduces the response 
time of write requests but also allows WAFL to do block allocation for a large num­
ber of requests at once. WAFL implements snapshots at the entire file system level. 
It maintains a 32-bit entry for each 4K block, with each bit indicating if the block is 
being used by the corresponding snapshot. Whenever a disk block is updated, WAFL 
makes a copy of it and its metadata and updates the corresponding block mappings of 
the active file system. In summary, WAFL, by virtue of its write-anywhere design and 
ability to schedule writes in bulk, allows for a wide variety of intelligent block place­
ment strategies. But, no effort has been made to co-locate newly written copy-on-write 
data with its previous versions in case of WAFL. 

Elephant File System: The Elephant [22] file system works like a version control 

system, storing all version of files or group of files automatically and managing their 

storage based on user-specified retention policies. It differs from checkpointing sys­

tems like WAFL, as described above, in the sense that entire filesystems need not be 

versioned, instead users can specify versioning at the level of individual files. In Ele­

phant, a file can have multiple inodes, one for each of its versions. These inodes are 

stored in an inode log indexed by the time each inode in the log was closed. Elephant 

does allow some flexibility in the location and size of the inode log by introducing a 
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level of indirection from inode number to the inode log, but it is not clear how it man­

ages the physical organisation of various versions of files on the disk. For systems like 

Elephant, which maintain different versions of files in a copy-on-write fashion on the 

disk, it is important to prevent disk fragmentation for performance reasons. 

Ext3cow File System: The ext3cow filesystem [5] provides both filesystem-level 
snapshots and file-level versioning. It implements these features through copy-on-write 
of file system blocks and inodes on the disk. Different versions of files have their own 
copy of the inode and are identified by the 'epoch' in which they were created. In­
odes belonging to different versions of a file are arranged as a chain of inodes with the 
most recent file version's inode heading the list. The ext3cow paper [5] mentions the 
problem of optimizing read performance in versioning file systems. It identifies that 
duplicating inodes for file versions reduces efficacy of inode clustering and block-level 
copy-on-write destroys contiguity. The authors of this paper have proposed the concept 
of Virtual Contiguity [19] [18] in which related blocks belonging to different versions 
of the same file are kept as near as possible on the disk to prevent long seeks between 
them. We shall discuss their work on virtual contiguity in Section 4.2. 

4.1.2 Block-level Snapshot Systems 

Block-level snapshot systems work on the principle of virtualizing the target disk and 

exposing logical disks to the higher layer. Internally, they manage the block mappings 

for different versions of the logical disk or volume. Most of them employ copy-on-

write techniques to cut down on the disk space required to store different data versions. 

Some systems, like Peabody [10], which perform fine-grained data versioning also 

perform content-based block coalescing to save space. The major advantage of mov­

ing snapshot functionality to the block layer is that it provides a common, filesystem-

independent mechanism of versioning and backing up data. In the following para­

graphs, we shall briefly describe the design of some block-based versioning systems. 

Petal Storage System: Petal [20] is a distributed storage management system which 

manages a pool of physical disks in a way which exposes an easy to manage, highly 
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available block-level storage system consisting of virtual disks. By virtualizing the 
physical disk resources, Petal is able to provide transparent component and site failure 
recovery, re-configuration, load-balancing and backup. Petal's virtual disk provides 
64-bit byte storage space and is allocated disk space on demand. Petal translates the 
client-supplied virtual disk block addresses into physical disk addresses by using a set 
of local and global address mapping datastructures. It provides read-only snapshots of 
virtual disk in a copy-on-write fashion and identifies each snapshot by the 'epoch' in 
which it was created. The placement of virtual disk blocks on the underlying physical 
disks is governed by the redundancy requirements of the virtual disk as specified by 
the user, and the load-balancing algorithms in Petal which aim at equally distributing 
storage load on all physical disks. Clearly, in the Petal system's design, requirements 
of high-availability and load-balancing due to the distributed nature of the system take 
precedence in deciding data organisation on the physical disks. 

Parallax storage system: The Parallax storage system [IJ is'a distributed storage 

system designed to manage storage for live and dormant virtual machine (VM) images 

in large cluster environments. Like Petal [20], Parallax servers manage the disks of the 

cluster machines and present an abstraction of virtual disks to their clients (the virtual 

machines). A virtual disk, in case of Parallax, represents both the current state and 

the set of read-only snapshot images of a virtual machine. The mapping from virtual 

disk block number to physical address is stored in a radix-tree datastructure which rep­

resents the copy-on-write block sharing between the various snapshots of the virtual 

machine. Similiar to Petal, a Parallax virtual disk is accessible from any node in the 

cluster and is replicated for high availability and failure-protection. On each machine 

in the cluster runs a 'Parallax server VM', which manages local disk, servicing virtual 

disk requests coming from host VMs, and participating in the distributed sharing and 

replication schemes. From the block placement point of view, each Parallax VM ex­

plicitly manages block allocation on its local disk for its volumes but also contributes 

a part of its disk space to host blocks belonging to volumes from other cluster ma­

chines. Parallax design does not make any effort to manage physical block placement 

for snapshot virtual disks and here too, similiar to Petal, the data replication require-
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merits across cluster machines would affect any such considerations. 

Clotho : Clotho [4] is a block-level volume versioning system, similiar to volume 
managers in design. It provides read-only snapshots of data volumes each identified 
by the timestamp at which it was created. In order to reduce the size of the meta­
data holding mappings from logical addresses to physical disk addresses, Clotho uses 
extent size, which is bigger than single block size, as a unit of mapping. At volume 
initialization time, Clotho partitions the volume capacity into two logical segments: a 
primary data segment and a backup data segment, and reports the volume size as the 
size of primary data segment to the higher layer. This partitoning is only logical and 
is actually enforced by Clotho by partitioning its metadata table into two segments: a 
primary extent mapping table and a backup extent mapping table. When the backup 
mapping table becomes full, Clotho simply returns an error to its higher layer, in which 
case, the higher layer has to reclaim, compact or move some of the backup versions. 
Clotho maintains the version history of each extent as a chained list of mapping entries 
in the extent mapping table. The most recent version of an extent has its mapping in 
the primary extent mapping table. Inorder to access subsequent versions of the ex­
tent, Clotho needs to follow the chain of mapping entries till it reaches the right entry 
with the corresponding version timestamp. New extents, whether for current or archive 
data, are allocated on the target volume device by the extent allocator, which follows a 
sequential disk allocation policy, in which extents are allocated sequentially from the 
beginning of the volume till its end. Any extents freed on the disk shall be scanned 
in the next pass of the disk by the extent allocator. Thus, on the target volume device, 
extents belonging to the current and backup versions shall be arranged in a mixed way. 

Peabody: Peabody [10] is a network block storage device that exposes virtual disks. 

It provides an 'undo' mechanism at the block-level to recover any previous state of the 

exposed virtual disks. For doing so, it logs the content of all the writes to the virtual 

disk blocks in a write-log and records metadata for writes in a transaction-log. The 

metadata includes the location being written and the time stamp which can be used in 

rolling back to a particular point in time. Recovery is managed by Peabody's virtual 
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disk manager, Sherman, which allocates a new virtual disk and traverses the write log in 
reverse order, writing the old contents back to the virtual disk. Since Peabody records 
the content of all writes going to the virtual disks, it needs to have some mechanism 
to minimize storage consumption. Peabody authors found out through experiments 
that there is considerable amount of identical content sharing between blocks within 
same virtual disk and across different virtual disks. Based on all these findings and 
the requirement to reduce space consumption, Peabody allows for coalescing of iden­
tical content blocks. Preliminary experiments with the Peabody prototype show 20% 
lower bandwidth for both read and write requests than the normal iSCSI target. This 
reduction in throughput is because of the overhead of fine-grained write logging and 
the processing overhead of content-based block coalescing logic. 

Peabody [10] attempts to combine both content-based block coalescing and fine­
grained write logging to achieve a balance between space requirements and fine-grained 
data recovery. In the Peabody paper, the authors explore different strategies to imple­
ment the on-disk datastructures for write logging and content-sharing. The run-time 
performance of read and write requests on Peabody virtual disks and the rollover per­
formance shall depend on these implementation choices. 

4.2 Disk Block Placement Schemes for Copy-on-Write 

Snapshot Systems 

In the last section, we saw that storage snapshot technology has been extensively re­

searched and applied both at the logical file system level [5] [22] [12] and the physical 

block level [4] [20] [1] [13] with varying granularity. It is used to provide entire vol­

ume as well as file-level versioning. Although a lot of documentation is available on 

the design and implementation of these techniques, there has been lesser emphasis on 

analyzing the effects of copy-on-write on the I/O performance of such systems. In most 

cases, the problem of efficiently laying down data on the disk, in the face of the frag­

mentation caused by copy-on-write, has largely been ignored or superseded by other 

concerns: 
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We could only find the 'Virtual Contiguity' work done by Randal et. al. [19] [18], 

which deals with this problem at the file system level. In the following paragraphs, 

we shall present the concept of 'Virtual Contiguity', their design, and important results 

and conclusions drawn by their work. 

Concept of Virtual Contiguity: The idea of Virtual Contiguity is to relax the re­
quirement of strict physical contiguity of data blocks and to allocate them in dense 
regions on the disk so that they are close enough to be read in a single disk head move­
ment, but at the same time leaving space between them for reallocation. By breaking 
a file into densely allocated segments, virtual contiguity attempts to reduce the number 
of disk seeks required to read the file. And by leaving space within these segments, the 
copy-on-written file blocks can be placed near their original allocation, thereby keeping 
data close and maintaining read performance for copy-on-write data. 

They adopt a randomized dynamic storage allocation policy which instead of con­
suming space sequentially for initial file allocations, randomly selects a start offset and 
begins searching forward from that offset for a contiguous allocation. By doing so, 
they hope to keep the density of allocated blocks uniform across the disk. 

Results and Conclusions: In his work [18], Zachary found out that although a very 

small percentage of total files are copy-on-written, such files fragment heavily across 

the disk, and that the read performance of these files is important because a large part 

of these files belong to the active working set of files. He also found out that tradi­

tional file system allocation schemes, like the Next-Fit and Best-Fit, fail to maintain 

the contiguity of copy-on-written files. Even in non-cow file systems, Zachary found 

out that almost 20% of all writes have to be reallocated because they are unable to grow 

in place. 

In the Virtual Contiguity work [19] [18], the authors note that the benefits of co-

locating overwritten blocks near the original allocations for copy-on-written files get 

nullified by the losing of spatial inter-file and inter-segment locality. In their results, 

they discover that the random selection of start offset for segment allocation, instead 

of resulting in a uniform density of allocated blocks, causes hotspots to be created, 
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which exhibit a high degree of variance in region density. Also, it affects the spatial 

locality of related files, whose segments are initially allocated randomly on the disk. 

Thus, Virtual Contiguity scheme results in poorer disk performance as compared to the 

standard schemes like Best-Fit and Next-Fit. 

Comparison with Our Work: We share most of the Virtual Contiguity ideas in our 
research but at a different plane. We adopt the basic idea of Virtual Contiguity, that 
is to initially allocate the blocks in dense groups with some space left between them 
for receiving the copy-on-written blocks. That way, the snapshot volume blocks would 
reside near the origin volume blocks to which they are related. But, we also take 
note of the failure of the random initial allocation scheme in the Virtual Contiguity 
work, and therefore allocate space to the origin volume in configurable fixed size slices 
with configurable fixed space between them. However, the fixed scheme has its own 
disadvatanges as it is difficult to anticipate the amount of copy-on-written data which 
will be generated per origin volume slice for different workloads. We have discussed 
the tradeoffs of our scheme in Section 2.3. 

Coming to the differences between the two schemes, the virtual contiguity work is 
applied at the file system allocation level, where the system has semantic understanding 
of file data and metadata. Whereas, our research focuses on volume-level copy-on-
write snapshots at the block level, a level which is file-system agnostic and unaware 
of any associations between the data which is stored in the blocks. So, the task of 
co-locating related blocks in our case is a bit more challenging as it becomes more 
difficult to justify meaningful relation between copy-on-written blocks at the block 
level. The only intuition which we have at the block level is that the block which is 
written to is somehow related to its neighbouring blocks. So, the reallocation for this 
block should be done near its original location in order to preserve the spatial proximity 
of the reallocated block with its related blocks. 

In this chapter, we provided a survey of various data snapshot technologies im­
plemented at the file system level and the disk block level. We discussed their space 
allocation and block placement policies for copy-on-write data. Then we described the 
Virtual Contiguity work and drew some similarities and differences with our work. 
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Conclusion 

In this thesis, we investigated the disk space allocation, data placement and disk I/O 
performance of LVM2 logical volumes. We found out that the disk I/O performance 
of the LVM2 snapshot volumes is gravely effected by the out-of-place data writing due 
to copy-on-write. While some degree of performance degradation is expected for the 
first time writes on the origin or the snapshot volume after the creation of the snap­
shot volume due to the copying of data from the origin to the snapshot volume, it is 
the read performance of the snapshot volume which is a subject of concern. Because 
of the discontiguity created in the physical placement of the snapshot volume blocks 
due to copy-on-write, the disk has to make long seeks while reading data on the snap­
shot volume. Our experiments verified this phenomenon in case of LVM2, showing 
that these disk seeks lead to significant lowering of the read performance of snapshot 
volumes as compared to that of plain volumes. The performance of snapshot volumes 
is an important issue in OS-virtualized environments where such volumes are used to 
support live applications running inside Guest virtual machines. Even in case of sys­
tems which apply copy-on-write at other data planes, for example filesystems which 
provide versioning of files and directories (refer Section 4.1), the time taken to access 
snapshotted data can be a crucial performance factor for purposes like data mining etc. 

In order to reduce the physical distance between the snapshot data blocks, we ex­
perimented with the physical placement of this data on the disk. We changed the way 
LVM2 allocated space to the origin volume such that it leaves free space between the 
origin volume segments so that copy-on-written snapshot data can be written near its 
original location on the origin volume. In order to ensure that the snapshot volume 
data is allocated the closest avaliable free space near its original location, we replaced 
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the static space allocation scheme of LVM2 with a dynamic one which looks for an 
appropriate location to copy data on the snapshot volume at run-time. This new LVM2 
scheme is more deterministic in placing snapshot volume data near the origin volume 
data as compared to the original LVM scheme which allocates space to the origin and 
the snapshot volume independently. 

From our experiments with the new LVM2 scheme, we found out that carefully 
placing snapshot data near the original data does give us performance improvement 
by reducing the seek distance between the snapshot and the origin data blocks. This 
performance gain increases with increased origin volume slicing as it ensures more 
fine-grained snapshot data block placement. Thus, our work clearly shows that the 
idea of placing copy-on-written data blocks near their original locations holds value 
and can lead to disk I/O performance gain for the snapshot volumes. 

In our implementation, we adopted a dynamic space allocation scheme for the snap­
shot volumes in order to seek maximum benefit at run time in co-locating the related 
blocks. Dynamically allocating space to the snapshot volume at runtime keeps disk 
I/O requests waiting till the time space is allocated, thereby adding delay in the I/O 
processing path. This leads to performance overhead during the first time writes to the 
origin or snapshot volumes. This overhead becomes significant when the dynamic all-
coation requests become more frequent (as we saw in Section 3.2). With our scheme, 
we need to balance the need to co-locate data finely and the need to reduce the process­
ing delays caused by this dynamic allocation. We do observe that it is possible to attain 
such a balance with our scheme but it is difficult to decide the suitable configuration 
values like the number of origin volume slices, dynamic segment allocation size etc., 
which lead to an optimal balance. 

In our experiments with machines having disks with large cache buffers, we ob­
served that such disks can cache multiple different tracks simultaneously and can thus 
improve the read performance of physically scattered data on the disk. In this case, 
we observed that the degradation in snapshot volume's performance as compared to 
the origin volume performance is reduced to a small percentage due to these caching 
effects. Thus the snapshot volumes with old LVM2 scheme perform well and those 
with the new LVM2 scheme also perform equivalent to the origin volume. 
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In summary, we studied the disk placement and I/O performance of copy-on-written 

data in case of LVM2 and implemented an alternative scheme to co-locate related on-

disk data for improving performance. We noted some performance overheads in the 

first time writes with our scheme, but also saw the new scheme perform better than the 

old LVM2 implementation by 18% to 40%. We believe that this idea of co-locating 

copy-on-written with its original location on the disk holds value and can be taken 

further to improve the performance of data snapshot systems. We would like to explore 

the possibilities of applying this idea to other block-based data snapshotting systems in 

future. 
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Glossary 

Chunk : A chunk is a contiguous collection of disk blocks. It is the amount of data 
copied from a origin logical volume to a snapshot logical volume during first 

time writes., 14 

Device Mapper Library: A device mapper library provides a programming interface 

to the user-space applications for accessing the device mapper's ioctls., 10 

Device Mapper: A device mapper is a kernel module which maintains the mapping 

tables for logical volumes and maps their I/O requests., 9 

Error Mapping: In Error Mapping the disk I/Os directed to the logical volume are 

failed by the device mapper, 11 

Linear Mapping: In Linear Mapping the logical extents are mapped sequentially to 

extents on a physical volume., 11 

Logical Extent: A logical extent is the basic unit of space allocation for logical vol­

umes and is equal to the volume group's physical extent size., 5 

Logical Segment: A Logical Segment is a collection of contiguous logical extents., 7 

Logical Volume (LV): A Logical Volume is an abstraction of a physical hard disk. 

This abstraction may either consist of a portion of the physical drive, known as a 

partition, or it may consist of a set of disks, such as a RAID volume or array., 5 

LVM2 Mapping Table: An LVM2 mapping table maps a logical volume's logical 

segments to physical segments., 9 
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Mapping Type: A mapping type defines how the blocks from a logical segment will 

be mapped to blocks in a physical target segment., 9 

Origin Logical Volume: An origin logical volume is a volume which has one or more 

snapshot logical volumes based on it., 12 

Physical Extent: A physical extent is the quantum of storage space that LVM uses 

when sizing logical volumes., 5 

Physical Segment: A Physical Segment is a collection of contiguous physical extents 

on a disk., 7 

Physical Volume (PV): A hard disk or a hard disk partition which has been prepared 

to be used by LVM2., 5 

Slicing: A logical volume is made up of multiple equal sized and equally spaced 

physical segments., 29 

Snapshot Logical Volume: A snapshot logical volume is a volume which maintains 

volume data frozen at some point of time., 12 

Volume Group (VG): A Volume Group (VG) is the highest level abstraction used 

within the LVM. It gathers together a collection of Logical Volumes (LV) and 

Physical Volumes (PV) into one administrative unit., 5 
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