
A Logic and Decision Procedure for Verification of
Heap-Manipulating Programs

by

Zvonimir Rakamaric

A THESIS S U B M I T T E D I N P A R T I A L F U L F I L L M E N T O F

T H E R E Q U I R E M E N T S F O R T H E D E G R E E O F

Master of Science

in

T H E F A C U L T Y O F G R A D U A T E STUDIES

(Computer Science)

The University of British Columbia
August 2006

© Zvonimir Rakamaric, 2006

11

Abstract

Heap-manipulating programs (HMPs), which manipulate unbounded linked data structures

via pointers, are a major frontier for formal verification of software. Formal verification

is the process of proving (or disproving) the correctness of a system with respect to some

kind of formal specification or property. The primary contributions of this thesis are the

definition of a simple transitive closure logic tailored for formal verification of HMPs , and

an efficient decision procedure for this logic. To assess the effectiveness of the proposed

approach, we develop an H M P verification framework, which uses our fast implementation

of the decision procedure to verify a number of H M P examples. Experimental examples

(including three small container functions from the Linux kernel) demonstrate that the logic

is practically useful and expressive enough to prove many interesting heap properties. In

addition, the decision procedure provides a substantial time and space advantage over pre

vious approaches.

Ill

Contents

Abstract "

Contents i "

List of Tables v

List of Figures vi

1 Introduction 1

1.1 Motivation 1

1.2 Contributions 4

1.3 Organization of the Thesis 4

2 Background 6

2.1 Heap-Manipulating Programs 6

2.2 Predicate Abstraction 10

2.3 Over-Approximating the Reachable Abstract States 12

2.4 Related Work . . 14

3 Proposed Logic 19

3.1 Basic Logic 19

3.2 Handling Pointer and Data Function Updates 23

iv

4 Decision Procedure 25

4.1 Inference Rules 25

4.2 Basic Decision Procedure 31

4.3 Decision Procedure Extension for Handling Updates 32

5 Experiments 38

6 Conclusions and Future Work 45

Bibliography 47

Appendix A Proofs 54

A . l Proof of Theorem 1 54

A.2 Proof of Theorem 2 57

A.3 Proof of Theorem 3 58

A.4 Proof of Theorem 5 64

A . 5 Complexity of the Satisfiability Problem 65

Appendix B Formalization of the Decision Procedure 68

B . l Proof of Theorem 4 69

Appendix C Pseudocode of the Examples 70

List of Tables

Results of Verifying HMPs 43

vi

List of Figures

2.1 The Syntax of a Heap-Manipulating Program 7

2.2 ND-Insert H M P Example 8

2.3 Init-Cyclic H M P Example 9

2.4 Linux-List-Del H M P Example 10

3.1 Syntax of the Proposed Logic 20

3.2 Acyclic Heap Structure Example 22

3.3 Cyclic Heap Structure Example 22

4.1 Inference Rule Example 26

4.2 Basic Inference Rules 27

4.3 Between Inference Rules 28

4.4 Pseudocode of the Core Decision Procedure Algorithm 32

4.5 Pointer Update Inference Rules 35

4.6 Data Update Inference Rules 36

C l List-Reverse 70

C.2 List-Add 71

C.3 ND-Insert 71

C.4 ND-Remove 72

C.5 Zip 73

C.6 Sorted-Zip 74

vii

C.7 Sorted-Insert 75

C.8 Bubble-Sort 76

C.9 Remove-Elements 77

C I O Remove-Segment 78

C . l l Search-And-Set 79

C.12 Set-Union 80

C.13 Create-Insert 81

C.14 Create-Insert-Data 82

C.15 Create-Free 83

C.16 Init-List 84

C.17 Init-List-Var 84

C.18 Init-Cyclic 84

C.19 Sorted-Insert-DNodes 85

C.20 Remove-Doubly 86

C.21 Remove-Cyclic-Doubly 87

C.22 Linux-List-Add 88

C.23 Linux-List-Add-Tail 89

C.24 Linux-List-Del 90

Chapter 1

Introduction

1.1 Motivation

We are witnessing how software systems are becoming a part of every segment of human

life. Nowadays, software is often used to control many "mission-critical" tasks, where an

error in software could cause very serious consequences. Such software systems have to

meet a high reliability bar in order to prevent disasters from happening.

Back in 1972, Dijkstra realized that testing is not the solution for achieving error-

free software — "Program testing can be used to show the presence of bugs, but never to

show their absence!" [Dij72]. In theory, testing could be used to show that a software system

doesn't have any errors by exhaustively traversing all possible execution paths. In practice,

however, it is usually impossible to test software for every possible execution because of

the vast state space. As opposed to testing, formal verification is the process of proving (or

disproving) the correctness of a system with respect to some kind of formal specification or

property. Formal verification is a now well-accepted method for hardware verification, and

it could be used to achieve highly reliable and error-free software as well. Therefore, there

has been a lot of research recently in employing successful formal verification techniques

from the hardware world on software.

Much of the success of applying formal verification to hardware comes from using

model checking [CES86]. Model checking is a method for formally verifying finite-state

systems by exhaustively traversing their state space. Because the state space grows ex

ponentially with the size of a system, model checkers face a blow up of the state space,

commonly known as the state explosion problem. Different techniques are used to over

come state explosion, abstraction being one of the most successful ones. Abstraction is

the process of reducing the complexity of a system by removing information which is not

relevant for a particular task. It is often used in the verification of large, complex systems.

Software model checking has recently emerged as a vibrant area of formal verifi

cation research. Because of the state explosion problem, much of the success of applying

model checking to software has come from using predicate abstraction [GS97, DDP99,

B M M R 0 T , H J M S 0 2] .

Predicate abstraction is an abstraction technique that employs a finite set of predi

cates in some logic. The predicates are assertions about states of the concrete system; the

concrete system is usually infinite-state. In the abstraction, each predicate is represented

with a boolean variable. Therefore, predicate abstraction is used to transform a typically

infinite-state system, such as software, to a much smaller, finite-state, manageable over-

approximation. The finite-state over-approximation is defined as a transition system over

boolean variables which represent predicates, and can in turn be model checked using stan

dard model checking techniques. The smaller, reduced system tries to preserve some of

the properties of the original system that are necessary for proving system correctness. As

already mentioned, predicate abstraction usually requires a logic and associated decision

procedure to define predicates over the (typically infinite) concrete program state. The

logic must be expressive enough to allow useful abstractions, but performance of the de

cision procedure is also very important, since most predicate abstraction approaches make

numerous queries to the decision procedure.

A n important class of programs are heap-manipulating programs (HMPs): pro

grams that access and modify linked data structures consisting of an unbounded number of

heap nodes. H M P s access the heap nodes through a finite number of pointers (which we

3

call node variables) and by following pointer fields between nodes. Since the number of

nodes in the heap is unbounded, H M P s are infinite-state systems, so one cannot directly

apply finite-state model checking to this problem without using abstraction.

To apply predicate abstraction to HMPs and assert many interesting correctness

properties, one must be able to express the fact that a node is reachable from some other

node by following a number of links — pointers in the data structure. For instance, to

express a property that a node belongs to a particular singly-linked list, one must be able to

say that the node is reachable from the head of that list. This concept is called unbounded

reachability (a.k.a. transitive closure) between nodes. Several researchers have previously

identified the importance of transitive closure for H M P s [Nel79, Nel83, BRS99, IRR+04a,

BPZ05, LQ06, LAIR+05]. Unfortunately, adding support for transitive closure to even

simple logics often yields undecidability [IRR + 04a], and therefore, one must be careful

when defining such a logic. 1

Verification of H M P s has recently regained the focus of the software verification

community. Many of the published approaches are based on predicate abstraction [BPZ05,

LQ06, DN03, M Y R S 0 5] , and thus require a transitive closure logic and a decision proce

dure. Furthermore, other H M P verification approaches and tools [W K L + 0 6 , YRS04] could

also take advantage of a transitive closure logic. Therefore, defining such a logic and a fast

decision procedure with a good implementation would be an enormous benefit. However,

there exist only a handful of implemented decision procedures for logics that could be used

in the verification of HMPs . This thesis defines such a logic and accompanying decision

procedure, and assesses their usability and performance. In order to accomplish that, the

thesis sets up and uses an H M P verification framework. The framework employs predicate

abstraction, the logic, and the decision procedure to verify H M P s . The verification problem

it solves can be stated as follows: given an HMP, determine whether it is the case that all

executions that satisfy all initial assumptions also satisfy all assertions in the program.

1 In the heap analysis community, the term "transitive closure logic" refers to many different log

ics that include transitive closure, and not strictly to the first-order transitive closure logic (FO+TC).

4

1.2 Contributions

The first contribution is a decidable simple transitive closure logic. This logic is a fragment

of the decidable logics containing transitive closure, but we show (through many nontrivial

experiments) that it is still expressive enough to verify properties of interest for H M P s

using predicate abstraction. Important properties of data structures like singly-linked lists,

doubly-linked lists, and cyclic lists can be easily defined in this logic.

The second and most important contribution is an efficient decision procedure for

this logic 2 . Most other decision procedures for similar logics employ a small model theorem

and enumerate a huge number of heap structures up to some bound. Instead of using a small-

model theorem and enumerating a super-factorial number of possible models (e.g., [BRS99,

BPZ05, LQ06]), our decision procedure is based on inference rules. We show that this

procedure, though worst case exponential-time (a proof that satisfiability is NP-hard even

for a small fragment of our logic can be found in [RBH06]), solves very quickly the vast

majority of queries sent to it during predicate abstraction. The result is an approach that can

have large time and memory savings over decision procedures that enumerate all models.

Overall, we have been able to verify with a short runtime and an insignificant mem

ory consumption a large variety of interesting HMPs, such as three small container functions

from the Linux kernel.

1.3 Organization of the Thesis

The material presented in this thesis is based on previously published work [BR06, RBH06]

done with collaborators. The initial idea of the simple transitive closure logic and its deci

sion procedure belongs to Jesse Bingham. M y main contributions are extensions that made

the logic practically usable and the fast decision procedure.

The thesis is organized as follows: Chapter 2 provides background information. It

2The implementation of the decision procedure, called straclos, which stands for Simple TRAn-

sitive CLOSure logic, can be downloaded from http://www.cs.ubc.ca/~zrakamar.

http://www.cs.ubc.ca/~zrakamar

5

introduces heap-manipulating programs in Section 2.1, and predicate abstraction and the

verification framework in Sections 2.2 and 2.3, respectively. Section 2.4 summarizes other

work on verification of HMPs . Chapters 3 and 4 respectively define the transitive closure

logic and its decision procedure. Chapter 5 presents experimental results, while Chapter 6

concludes and suggests some possible extensions to the logic and decision procedure. The

appendices A and B provide additional, more theoretical aspects of the approach — proofs

of the supporting theorems and additional details regarding the decision procedure. Proofs

of the theorems are largely due to my collaborator Jesse Bingham. The thesis includes the

proofs for the sake of completeness of the presentation. Appendix C gives pseudocode for

the example programs and the sets of predicates needed for their verification.

Chapter 2

Background

2.1 Heap-Manipulating Programs

Heap-manipulating programs are an important and widespread class of programs. Any

program that accesses and modifies linked heap1 data structures consisting of an unbounded

number of heap nodes falls into this class. A heap node is a dynamically allocated chunk

of memory. It usually contains pointer fields and data fields of different types. Pointer

fields are links to other heap nodes. HMPs access the heap nodes through a finite number

of pointer variables and by following pointer fields between nodes.

In our framework, the heap consists of an unbounded number of uniform heap

nodes. Uniformity of the nodes means that they all contain the same pointer and data

fields. Data fields are booleans. Our HMPs can have a finite number of global node vari

ables (pointers) and a finite number of global boolean variables. Variables or data fields of

any other finite type can be modeled (or encoded as) booleans. Note that the form of HMPs

that we support doesn't preclude generality, as any HMP can be translated to our form. The

framework currently doesn't support procedure/function calls. Figure 2.1 formally defines

the supported HMP syntax.

1 In the thesis, the term heap always refers to a memory area used for dynamic memory alloca

tion, and not to the tree-based data structure where the value of each node is less than or equal to the

value of its parent, as used to implement, for example, sorting algorithms and priority queues.

7

x,y,z G NodeVariables
b G BooleanVariables

f,g,h G PointerFields
d G DataFields

HMP ::— [Statement; }*
Statement ::= while (BoolExp) do / / M P end while

| if (BoolExp) then / / M P else / / M P end if
| Assignment
| assert y/
| assume y/
| break

I n 0 P
Assignment ::= Term := Term

| Term := nil
| b := BoolExp
| d(Term) .= BoolExp

Term ::— x
I /(Term)

BoolExp ::=
| t rue
| false
j ND
| Term = Term
| d(Term)
| -^BoolExp
| (BoolExp A BoolExp)
| (BoolExp V BoolExp)

Figure 2.1: The Syntax of a Heap-Manipulating Program, i// is a simple transitive
closure logic formula (Chapter 3). ND is a boolean value that is nondeterministically true
or false.

8

1: procedure ND- lNSERT(/ i ead , i ' r em)
2: assume ~^f*(head, item) Af*(head,n\\) A ~^head= n i l A/(item) = n i l Ap = head
3: while t r u e do
4: if NDVf(p) = n\\ then
5: f(item):=f(p);
6: /(/>) := //em;
7: break
8: else
9: P-=f(p);

10: end if
11: end while
12: assert f*(head,item) Af*(head,ri\\)
13: end procedure

Figure 2.2: ND-Insert H M P Example. A program that nondeterministically inserts a
node item into the list pointed to by head. Here, ND is a boolean value that is nondetermin
istically t r u e or f a l s e .

Figure 2.2 gives an H M P example called N D - l N S E R T . This program takes a node

head and a node item, and inserts item into the linked list pointed to by head at a position se

lected nondeterministically. We denote by f(x) the node pointed to by a pointer field named

/ of a node x. The pointer head is assumed to be non-nil and to point to an acyclic linked

list that does not contain item. These assumptions are formalized by the assume statement

on line 2 of the program. In the assume statement, and also in the assert statement, the

subformulas of the form f*(x,y) express that node y is reachable from node x by following

a sequence of / links of any length; we wil l formally define these predicates in Chapter 3. 2

The fact that nil is reachable from head enforces the acyclicity assumption.3

The body of N D - l N S E R T is straightforward; a pointer p walks the list, and item is

inserted at some point. The loop breaks once the insertion has occurred. The expression

ND represents a nondeterministic boolean value. The node item is inserted when either

ND = t r u e , or the end of the list is reached (detected by the disjunct f(p) = n i l on line

4). The specification is expressed by the assert statement on line 12, and indicates that

2In C-like syntax, f(x) would be written as x->f. In a modal logic, / would be a next operator,

and / * would be eventuality. The notation we are using is standard in the heap analysis community.
3In our logical framework, nil is modeled simply as a node having /(nil) = nil.

9

procedure lNlT-CYCL!C(/iead)
assume f*(head,t) A /*(/(head),head) A curr = f (head)

A btwnf(curr,t,head) A ->head=ri\\
d(head) := t rue;
while -<curr = head do

d(curr) := t rue;
curr := f(curr);

end while
assert f*(head,t) A /*(/(head),head) A d(t) A -•head— ni l

end procedure

Figure 2.3: Init-Cyclic H M P Example. A program that sets data fields of all nodes in a
cyclic list to t rue.

whenever line 12 is reached, head must point to an acyclic list that contains item.

Figure 2.3 presents another example called INIT-CYCLIC, and it captures some of

the more interesting features the framework supports. The program takes a non-nil node

head that points to a cyclic list and sets the (boolean) data fields of all nodes in the list

to t rue. Similarly to f(x), we denote by d(x) the value of a data field named d of a node

x. Necessary assumptions are again formalized by the assume statement on line 2 of the

program. In the assume statement, the subformulas of the form btwn f(x,y,z) express that

by following a sequence of / links from node x, we'l l reach node y before we reach node

z, i.e. node y comes between nodes x and z. Because of cyclicity, b t w n / predicates are the

key to successful verification of this program. We wil l formally define these predicates in

Chapter 3. The fact that head is reachable from /(head) enforces the cyclicity assumption.

The body of the INIT-CYCLIC procedure first sets the data field of head to t rue on line 3.

Then, the loop sets the data fields of all other nodes in the list to t rue. The specification is

expressed by the assert statement on line 8, and indicates that whenever line 8 is reached,

head must point to a cyclic list with data fields of all nodes set to t rue.

Figure 2.4 shows a list container procedure from the Linux kernel. It illustrates the

need for multiple pointer fields. The procedure takes a node entry and removes it from a

cyclic doubly-linked list. Each node in the list has a prev and a next pointer. The body of

the procedure is simple; it connects prev and next pointers of the entry's neighbourhood

10

1: procedure LlNUX-LiST-DEL(enrry)
2: p := prev(entry);
3: n := next (entry);
4: prev(n) := p;
5: next(p) := n;
6: next(entry) := nil;
7: prev(entry) :— nil;
8: end procedure

Figure 2.4: Linux-List-Del HMP Example. A Linux kernel function that removes a node
from a cyclic doubly-linked list.

nodes and therefore removes entry from the list. The assumptions and specifications for

this example are very complicated and are given in the Appendix C.

Now that we have introduced heap-manipulating programs, we' l l present the basics

of the algorithm that our framework uses for their verification.

2.2 Predicate Abstraction

Our approach to verifying heap-manipulating programs is based on predicate abstrac

tion [GS97], which is an instance of abstract interpretation [CC77]. In the framework

of abstract interpretation, a concrete system is verified by constructing a finite-state over-

approximation called the abstract system. In this thesis, the concrete system we are ver

ifying is an H M P . Let 'rf (the concrete states) be the set of states of the concrete system.

Predicate abstraction employs a finite set of predicates </>i,..., fa in some logic that are as

sertions about concrete states. Corresponding to the predicates are the abstract boolean

variables b\,..., b^. A n abstract state a will be a vector of truth assignments to the abstract

boolean variables b\,...,bk- The set of abstract states s# will then be the set of assignments

to the abstract boolean variables. Note that a set of states S can also be represented by its

characteristic function, i.e. a logic formula \jf such that

s 1= y/ iff seS

11

In the rest of the thesis, we wil l use the set and formula definitions interchangeably, and it

wil l be clear from the context to which one we are referring.

The concrete and abstract systems are connected with two functions:

(i) The abstraction function a : —> s/, which maps a concrete state c to the abstract

state a, is defined as
k i bi iffchfc

a(c) = f\ I
1=1 I ->bi otherwise

A set of concrete states C is then abstracted by

a(C) = V «(c)
cec

(ii) The concretization function y:sf^c€, which maps an abstract state a to the set of

concrete states it represents, is defined as

. I 0; iff a 1= b\

y («) = A
/ I - i 0 , - iff a N ->bi

Because a is an abstract state, it defines every abstract boolean variable bi, and there

fore either a \= b, or a N always holds. A set of abstract states A is then concretized

by

7(A) = \ / y{a)

aCA

The abstraction function a and the concretization function y form a Galois connection, and

therefore for any concrete set of states C, the following formula is satisfied:
CCy(a(C))

Note that since si is finite, a(C) is always finite as well. In contrast, ^ is often infinite; in

our case, the infiniteness of the concrete state space arises from the unboundedness of the

heap in HMPs .

Given a set of concrete initial states Ic, \et R Cff be the set of concrete states that

are reachable in the concrete system. We wish to verify that a property expressed as a state

12

assertion i/f over the concrete states holds for all members of R. Predicate abstraction is used

to solve this problem by computing an over-approximation Ra C of the set of reachable

abstract states such that Cc(R) C Ra. Verification succeeds i f one can prove that the state

assertion y holds for all members of j{Ra). A key difference in the various approaches to

predicate abstraction is how Ra is computed [GS97, DDP99, DD01, FQ02, BPZ05, DN03].

This typically involves numerous queries to a decision procedure for the underlying logic,

and there are tradeoffs between how accurately Ra approximates cc(R) and the number

and complexity of these queries. The algorithm that our framework uses to compute Ra is

described in the next section.

Since predicate abstraction is an incomplete approach, if it fails to verify the prop

erty, this can happen either because the concrete systems actually violates the property, or

because of the loss of information inherent in the abstraction. Finding the "right" set of

predicates for completing the verification can be a difficult task. Many works have ad

dressed this issue of predicate discovery [DD02, BPR02, HJMS02, DN03], which falls un

der the more general framework of abstraction refinement [CGJ + 00] . As in recent papers

on this topic [BPZ05, LQ06], in our current framework, predicates are added by manual in

spection of counterexample behaviors; applying automatic predicate discovery techniques

is an important area of future work.

2.3 Over-Approximating the Reachable Abstract States

A n over-approximation Ra of the set of reachable abstract states is usually computed as a

fixpoint, using some approximation of the abstract post image operator post: 2s* —> 2s*,

defined as follows. Given a set of abstract states A, let

post(A) = {a(c')\3c,c' e<t?.(c,c') eTAa(c) €A}

where T is the transition relation of the concrete system. The abstract post image operator

post (A) is thus the set of abstract states representing concrete states that are concrete suc

cessors of those states represented by A . Given post(A) (or an over-approximation) and the

13

initial set of concrete states Ic, we compute Ra using the following least fixpoint iteration

(or equivalent)

Ro = a(Ic)

Ri = fl0Upost(/c0)

R2 = R\U p o s t a l)

which can be expressed using the least fixpoint operator u as a formula

Ra = nX. a (/ c) U X U post(X)

There exist a number of algorithms for computing post, with tradeoffs between how

precisely post is computed and the number of queries to the decision procedure. The naive

algorithm is straightforward. Since post distributes over disjunction, 4 computing post(A)

is reducible to computing post(p) for each disjunct p in some disjunctive normal form

decomposition of A. A disjunct p is a conjunction of possibly negated abstract boolean

variables. By using a B D D [Bry86] to represent A, we can easily obtain such a decomposi

tion. The naive algorithm cycles through all 2k abstract states a, and checks i f a 6 post(p);

the abstract post image operator post(p) is then the B D D representing the disjunction of all

such a. Each check of a e post(p) involves a call to the decision procedure to determine if

the following formula is satisfiable:

y(p)Awp(y(a)) (2.1)

where y is the concretization function defined in the previous section, and wp is the weakest

precondition operator [Gri81, Dij76]. The weakest precondition operator wp is a syntactic

transformation on logic formulas that depends on the program statement under considera

tion [Gri81, Dij76]. For example, for an assignment statement x :— e, where x is a variable

and e is some expression, wp(7r) is constructed by syntactically replacing all occurrences

of x with e in the formula n.5 Our approach applies wp at the granularity of individual

program statements when performing predicate abstraction.

4meaning that post(Ai VA2) = post(Aj) V post(A2)
5This only works under the assumption that x cannot be aliased.

14

Because our predicate abstraction framework is mainly developed for testing the de

cision procedure, we choose to implement a simple, precise predicate abstraction algorithm.

Specifically, the framework uses the described naive algorithm with several straightforward

improvements by Das et al. [DDP99] that preserve the precision of the naive algorithm.

First, i f (2.1) contains a syntactic contradiction, meaning the existence of a predicate and

its negation, then clearly the formula is not satisfiable. In such circumstances there is no

need to call the decision procedure. When computing post(p), our implementation initially

computes a B D D A representing the set of all abstract states a that won't yield such a con

tradiction. Second, rather than enumerating all a G A, we do recursive case-splitting on the

abstract variables, which allows for pruning of large portions of A. For example, let a = b\

be the disjunct containing only the positive occurrence of the abstract boolean variable b \.

This disjunct represents all abstract states having b\ true. Then i f y(p) A wp(y(o")) is un-

satisfiable, then so too is y(p) A wp(y(a)) for any abstract state a that has b\ equal to true.

Hence, our algorithm would only explore those abstract states having b\ false.

2.4 Related Work

There is an extensive literature on verification of H M P s describing many different ap

proaches. This section concentrates on the work similar to ours, and on techniques that

could benefit from the logic and the decision procedure presented in this thesis. Similarly

to Lahiri and Qadeer [LQ06], the described related work wil l be roughly divided, according

to the technique(s) it is based on, in the following categories: shape analysis, predicate ab

straction, logics, first-order axiomatization of reachability. These categories often overlap.

For example, this thesis spans the predicate abstraction and logic based categories.

Shape Analysis. The most well-known shape analysis tool is the Three Valued

Logic Analyzer or T V L A [LASOO]. T V L A extends conventional abstract interpretation

with a third "uncertain" logic value, and builds so-called 3-valued logical structures that

abstract the reachable states at each program point (a.k.a. canonical abstraction). The

abstract semantics of program statements are defined by abstract transformers, which can

15

be generated by T V L A or user-defined in the case that the generated transformers are not

strong enough. We cannot handle all heap structures that T V L A can. On the other hand, the

abstract invariant we compute is always the most precise w.r.t. the given set of predicates.

T V L A does not make such a guarantee, and there has been some work done to make T L V A

more precise [YRS04]. However, the described improvement hasn't been tested because

it requires a transitive closure logic decision procedure similar to ours, which the authors

didn't have. Now, T V L A could take advantage of the decision procedure described in this

thesis and make its analysis more precise.

A l l H M P verification approaches described in the literature require some amount

of manual user's effort during the verification (e.g. providing the loop invariants, finding

the right set of predicates, etc.). Recently, Loginov et al. [LRS05] presented an interesting

combination of abstraction refinement using machine learning techniques, and used T V L A

to fully automatically (i.e. no manual effort required) verify some H M P examples. Their

technique might be a good starting point for extending this thesis with the abstraction re

finement algorithm, which would even more automatize our approach.

Predicate abstraction. T V L A is also used as the underlying engine for the ap

proach by Manevich et al. [MYRS05] . In the approach, the authors observe that the number

of shared nodes in linked lists is bounded and present a novel definition of "uninterrupted

list segments". This is used to define predicate and canonical abstractions of potentially

cyclic singly-linked lists. The approach described in this thesis is not that limited, and

can also easily handle doubly-linked lists. The defined abstraction enables them to verify

a number of HMPs , though the properties they verify tend to be simpler than ours (see

Chapter 5).

Balaban et al. [BPZ05] present a predicate abstraction based approach for verifi

cation of H M P s that is similar to ours. The major difference between the two approaches

is the way a program abstraction is computed. To compute the abstraction, they employ a

small model theorem, and build BDDs representing all models up to the small model size.

This is a bottleneck in both computation time and memory, since these B D D s tend to blow-

16

up. We, on the other hand, use our saturation-based decision procedure which substantially

improves memory consumption and computation time. Though we do not consider liveness

in the thesis, it is likely that the technique of Kesten and Pnueli [KPOO] for establishing

termination (employed by Balaban et al.) is also compatible with our work.

Another approach based on predicate abstraction and model checking is proposed

by Dams and Namjoshi [DN03]. They abstract a program by iteratively calculating weakest

preconditions of shape predicates, and are able to handle second-order shape properties such

as reachability, cyclicity, and sharing. The algorithm doesn't use a decision procedure, and

as a consequence, new predicates can be generated in every iteration. Hence, the algorithm

often has to be manually provided with "approximation hints" to converge.

Logics. The pioneer of logic-based tools is the Pointer Assertion Logic Engine

(PALE) [MS01]. P A L E specifies heap structures using graph types [KS93], which are tree-

shaped data structures augmented with extra pointers that may point anywhere in the tree.

The authors show that many common heap structures can be defined that way, some of

which we cannot express, such as trees. P A L E employs a well-known decision procedure

for a monadic second-order logic on graph types called M O N A [KMSOO]. M O N A has

non-elementary complexity, and therefore, it pays a performance penalty compared to our

approach (Chapter 5 gives the initial comparison). Furthermore, loop invariants must be

provided by the user.

Inherent locality of the heap is employed in recent work that is based on separation

logic [MNCL06 , DOY06]. Both approaches utilize symbolic execution of separation logic

formulas to infer invariants of heap-manipulating programs. Because there are infinitely

many symbolic heaps, they have to use different techniques such as abstraction, widening

operators, or rewrite rules to reach a fixpoint.

In addition, two new decidable logics for expressing properties of linked data struc

tures have been proposed recently. Ranise and Zarba [RZ05] describe a decidable logic for

reasoning about acyclic singly-linked lists with an NP-complete decision problem. They

state a small model theorem for the logic, but the design and implementation of a practical

17

decision procedure is left as an area of future work. Yorsh et al. [Y R S + 0 6] define the Logic

of Reachable Patterns (LRP), a fragment of the first-order logic over graph structures with

transitive closure. Reachability in L R P is defined using regular expressions which denote

paths in the heap structure reaching a certain pattern. Patterns are quantifier-free first-order

formulas over graph structures used to limit the neighborhood of a reachable node. The

authors prove that with suitable restrictions on patterns, the satisfiability problem for L R P

is decidable. Because L R P operates on general graphs, even with those restrictions it can

express complex heap data structures, such as binary trees. Restricted L R P formulas can be

decided using M O N A [KMSOO], or alternatively by directly constructing a tree automaton.

There is still no implementation available, and therefore, the authors haven't provided any

experiments. The worst case complexity of the satisfiability problem is at least doubly-

exponential, but the authors hope to achieve a reasonable performance because formulas

that come up in practice are well-structured.

To handle more involved data structures, Wies et al. [W K L + 0 6] introduce field con

straint analysis, a novel technique for verifying heap structure invariants. The analysis

uses decidable logics (in particular monadic second-order logic of trees and its decision

procedure M O N A) to handle complex data structures originally beyond the scope of these

logics, such as skip lists. It generalizes a previous similar approach called structure simu

lation [IRR + 04b]. While doing the verification, the analysis makes a number of queries to

M O N A . We have evaluated our approach on these queries6, and the initial results are en

couraging, that is, we are solving the queries faster than M O N A is (see Chapter 5). There

fore, the field constraint analysis could benefit from using our faster decision procedure

instead of M O N A .

First-order axiomatization of reachability. First-order axiomatization of reach

ability was first proposed by Nelson [Nel83]. Lahiri and Qadeer [LQ06] define two new

predicates to express reachability of heap nodes in linked lists. To prove properties of

HMPs , they use an incomplete set of first-order axioms over those predicates. Because the

6Thanks to Thomas Wies and Viktor Kuncak for sending us the queries their tool generates.

18

given set of axioms is incomplete, they provide an induction principle that is used to derive

additional axioms when necessary. They use U C L I D [BLS02] as the underlying inference

engine. Lev-Ami et al. [LAIR+05] also propose a set of axioms, but it works only for

acyclic lists. These approaches harness the generality and expressiveness of more general

first-order theorem provers, at a sacrifice in performance.

McPeak and Necula [MN05] specify heap data structures using local equality ax

ioms, first-order axioms that constrain only a bounded fragment of the heap around some

node. This enables them to describe a variety of shapes and reason about scalar values

without abstracting them, while still preserving decidability. However, they can only ap

proximate reachability between nodes (though wnreachability is precise). When pointer

disequalities are added, their decision procedure becomes incomplete. We handle both

reachability and disequalities, but we can't describe such a variety of shapes and reason

about infinite scalar types without abstracting them with booleans. In addition, we compute

an inductive invariant of a program automatically (given an appropriate set of predicates),

while they require a user to provide loop invariants, which can be a significant burden.

19

Chapter 3

Proposed Logic

In the previous chapter, we introduced H M P s and predicate abstraction. Predicate abstrac

tion employs a set of predicates in a logic that has to be expressive enough to allow useful

abstractions. This chapter starts by defining the syntax and semantics of our proposed sim

ple transitive closure logic for predicate abstraction of HMPs . Next, it introduces logic

extensions necessary for handling pointer and data field updates. Chapter 4 then presents

our decision procedure for the described logic.

3.1 Basic Logic

Our logic assumes finite sets of node variables V, data variables B, data function symbols

D, and pointer function symbols F. The term, atom, and literal syntactic entities are given

in Figure 3.1. Literals of the form x = y, ~^x=y, f*(x,y), and ~^f*{x,y) (where x and y are

terms) are called equality, disequality, reachability, and unreachability literals, respectively.

Literals of the form btwn f(x,y,z) or its negation are called between literals, literals of the

form d(x) or -nrf(x), where d e D, are called data literals, while those of the form b or ->b

are called data variable literals.

The structures over which the semantics of our logic are defined are called heap

structures. A heap structure H = (N, 0) consists of a set of nodes N and an interpretation

function 0 . The interpretation function 0 interprets each symbol c i n V U B U D U F , such

20

term ::= v
I /(term)

atom ::— b
| d(term)
| term —term
| f* (term,term)
| btwnf(term, term, term)

literal ..= atom
| -^atom

Figure 3.1: Syntax of the Proposed Logic. In the syntax, the symbol v GV,d eD,b E.B,
and feF.

that:

• Each node variable symbol a G V is interpreted as a node 0 (c) G A/. The variables

of V model program variables that point to nodes in the data structure.

• Each data variable symbol a G B is interpreted as a boolean value 0 (c) G {true, false}.

The variables of B model program variables of boolean type.

• Each data function symbol a G D is interpreted as a function that maps nodes to

booleans 0 (c) G [N —> {true,false}]. Data function symbols D model data fields of

nodes.

• Each pointer function symbol a G F is interpreted as a mapping from nodes to nodes

0 (a) G [TV —+ A 7]. Pointer function symbols F model pointers from nodes to nodes.

The size of H is defined to be \N\. Heap structures naturally model linked data structures

of nodes, each node having some finite number of pointers to other nodes and some finite

number of boolean-valued data fields. Clearly, program variables or node data fields of any

finite enumerated type can be encoded using the booleans supported by our logic.

The interpretation function 0 extends to interpret any term, atom, or literal in a

straightforward, inductive way. The interpretation of a term z G V is defined above, other

wise, T has the form f(z') for some term z', and the interpretation is

0 (T) = 0 (/) (0 (T '))

21

Atoms are interpreted by 0 as boolean values:

• A data variable atom b £ B is interpreted as defined above.

• A data atom d(x) is interpreted as @(d)(&(x)).

• A n equality atom X\ — %i is interpreted as true iff) = © (1 2) .

• A reachability atom /*(Ti,T2) is interpreted as true iff there exists some n > 0 such

t h a t 0 (/) " (0 (T 1)) = 0 (T 2) . 1

• A between atom btwn , Vi, T3) is interpreted as true iff there exist no, mo > 0 such

that 0 (T 2) = 0 (/) " ° (0 (T i)) , 0 (T 3) = 0 (/) m ° (0 (T i)) , n0 < mo, and for all n,m such

that 0 (T 2) = 0(/)" (0(TI)) , 0 (T 3) = 0 (/) m (0 (T i)) , we have n0 < n and m0 < m.

Note that the corner case btwnf(x,y,x) holds only if x — y because the "distance"

between x and x is zero.

Finally, a literal that is not an atom must be of the form - > 0 where 0 is an atom, and we

simply define 0 (- i 0) = - > 0 (0) . Figures 3.2 and 3.3 give examples of some heap structures

and literals. Note that when dealing with acyclic lists, as in Figure 3.2, the fact that node

prev is between nodes head and curr can be expressed using a conjunction of reachability

literals f*(head,prev) A f* (prev, curr). However, i f nodes are on a cycle, as in Figure 3.3,

each node is reachable from every other node, and therefore it is not possible to express be-

tweenness using reachability literals. For instance, / * (x, z) A f* (z,y) holds in this example,

although node z is not between nodes x and y. We have introduced between literals to solve

that problem: the fact that node y is between nodes x and z in Figure 3.3 can be expressed

with btwn f(x,y,z).

Conforming to the usual notation, given a heap structure H = (N, 0) and a literal

0 , we write H N <j> iff 0 (0) = true. For a set of literals 4>, we write H \= <$> iff H N 0 for

all 0 S 4>. Given 4>, i f there exists H such that H N <£>, we say that <& is satisfiable. In

1 Here, function exponentiation represents iterative application: for a function g and an element

x in its domain, g°(x) =x, and g"(x) = g (g " _ 1 (; c)) I o r all n > 1.

22

Figure 3.2: Acycl ic Heap Structure Example. Arrows marked with / represent a pointer
function / , while the Ts and Fs inside nodes are values of a data function d.
As examples of literals interpreted as true consider: next — curr (both variables point to
the same node), f* (head,n\\) (the node nil is reachable from the node pointed to by head
following / links), f* (head, prev) (the node pointed to by prev is reachable from the node
pointed to by head following / links), d(curr) (the data field of the node pointed to by curr
is true), f(f(curr)) = nil (the node to which we get to by following two / links from curr
is nil), btwn/(head,prev,next) (node prev is between nodes head and next).
As examples of literals interpreted as false consider: d(prev) (the data field of the node
pointed to by prev is false), never = nil (the node pointed to by next is not nil), / * (next,prev)
(the node pointed to by prev is not reachable from the node pointed to by next following /
links).

X y Z

Figure 3.3: Cycl ic Heap Structure Example. As examples of literals interpreted as true
consider: b\wr\f(x,y,z) (node y is between nodes x and z), btwn f(x,y,y), btwnf(x,x,y)
(node y is reachable from node x following / links, and between includes the endpoints),
f*(f(x),x) (node x is reachable from the node coming after x following / links, i.e. cyclic
ity).
As examples of literals interpreted as false consider: f*(x, nil) (nil is not reachable from x
following / links), btwn/(x,y,x) (the distance, i.e. the number of / links, between x and
y is greater than the distance between x and x because each node has a zero-distance from
itself).

23

Chapter 4, we wi l l describe our decision procedure for satisfiability, which has a worst-case

exponential running time. The problem it solves is NP-hard (see Appendix A.5), hence a

polytime algorithm is unlikely to exist.

3.2 Handling Pointer and Data Function Updates

When doing predicate abstraction and computing reachable abstract states, we are always

applying the weakest precondition operator over one program statement at a time (see Sec

tions 2.2 and 2.3). The weakest precondition of a formula 0 with respect to an assignment

statement x :— e, where x is a variable and e is an expression, is usually defined as the

formula constructed by replacing all occurrences of x in <p with e. This holds under the

assumption that x cannot be aliased. However, handling program assignments that modify

the heap structure or data fields is not that straightforward and requires special care. In

tuitively, assignments that modify heap structure influence not only literals related to the

assigned terms, but also other, apparently unrelated, reachability and between literals. For

instance, the assignment f(x) := y might alter the reachability between any pair of nodes

that link through the updated node x. Similarly, because of aliasing, updates of data fields

impose additional node constraints, e.g. the values of data fields of nodes that alias the up

dated node have to be changed accordingly. Therefore, handling these two requires special

additions to our logic that we wil l describe here.

To handle program assignments that modify the pointers in the heap, i.e. modify

some / 6 F, we use a special pointer function symbol / ' for each modified / . The symbols

/ and / ' model the pointer function before and after the assignment, respectively. Such an

assignment has the general form

/(TI) := T 2

where Ti and T2 are arbitrary terms. Lines 5 and 6 of the H M P of Figure 2.2 on page 8 are

examples of such assignments. The necessary semantic relationship between / and / ' can

24

be expressed using the well-known update operator: ..2

© (/) = u p d a t e (0 (/) , 0 (T 1) , 0 (T 2)) (3.1)

Rather than support update as an interpreted second order function symbol in the logic, our

decision procedure, described in the next chapter, implicitly enforces the constraint (3.1)

(see Section 4.3).

Assignments that modify a data field d e D are handled similarly by using the

primed symbol d' for each modified d. Such an assignment has the general form

where T is a term, and b is a data variable. Lines 3 and 5 of the H M P of Figure 2.3 on

page 9 are examples of such assignments. Analogously to (3.1), the semantic relationship

between d and d! is

Our decision procedure also knows to implicitly enforce the constraint (3.2).

2 I f g is a function, a is an element in g's domain, and b is an element in g's codomain, then

update(g,a,fo) is defined to be the function Ax.(if x = a then b else g(x)).

d(x) := b

®(d') = update(0(rf),0(T),0(Z>)) (3.2)

25

Chapter 4

Decision Procedure

Predicate abstraction, the previously described technique we are using for H M P verification,

makes a number of queries to a decision procedure in order to verify an HMP. Each query

is the conjunction of a set of literals in the employed logic. Therefore, the decision problem

we aim to solve here is this: given a finite set of literals 3> from the logic proposed in the

previous chapter, does there exist a heap structure H such that i.e. H models all the

literals in the set? If there is such an H, then we say that 4> is satisfiable, otherwise 4> is

unsatisfiable.

One approach to this problem would be through a small model theorem, akin to

other transitive closure logics [BPZ05, BRS99, RZ05, LQ06]. Unfortunately, even a very

small "small model" bound can generate impractical memory requirements, because the

number of heap structures with n nodes is at least nn. Our saturation-based approach, on

the other hand, has small memory requirements, and is based on the exhaustive application

of a set of inference rules.

4.1 Inference Rules

The inference rules (IRs) attempt to prove unsatisfiability by deriving a contradiction,

meaning the inference of both an atom <j) and its negation Figure 4.1 gives an ex

ample of a more involved IR r. A n antecedent of IR r is a literal appearing above the line,

26

/*(*,?) f*(y,z) f*(z,x)
btwn/(x,y,z)
btwn / (y ,z ,x)
btwn f{z,x,y)

:) btwn/{x,z,y)
:) btwn / (z,v,x) x = y
-) btwn / (y,x,z)

x = z y = z

Figure 4.1: Inference Rule Example. Here x, y, and z range over variables V and / £ F
ranges over pointer fields.

while a consequent is a set of vertically stacked literals appearing below the line. We say

that an IR r is applicable (to a set of literals 4>) if there are terms appearing in 4> such

that when these terms are substituted for the term placeholders of r (i.e. x, y, z), all of r's

antecedents appear in <&, and none of r's consequents appear in 4>, where a consequent n is

defined as appearing in * if for each literal 0 £ II it is also the case that 0 £ <1>. We define

the formal meaning of an IR with the antecedents A and consequents C as usual:

The basic IRs are presented in Figures 4.2 and 4.3. We now give a brief intuition

behind the IRs given in Figure 4.2:

IDENT - states that each node variable is equal to itself.

R E F L E X - enforces that any node variable is reachable from itself.

T R A N S 1 - states that the transitive closure / * must extend the function / .

T R A N S 2 - simply enforces that / * is transitive.

F U N C - asserts that if f(x) = y and z is reachable from x, then z must also be reachable

from y, unless x=z.

C Y C L E * - formalizes that i f there is a cycle of length k > 1 in / , then it follows that any

node y reachable from a node on the cycle must be on the cycle as well. Note that

C Y C L E * actually defines a separate rule for each k> I.

yeA nec <pen

27

-IDENT
X=X f*(x,x)

-REFLEX
f*(x,y)

•TRANS 1

f*(x,y) f*(y,z)
TRANS2 f(*)=y r(xa)

x=z f*(y,z)
-FUNC

f(xi)=x2 f(x2)=x3 f(xk)=xi y)
y=x\ y=x2 y=xk

C Y C L E *

d(x) -rf(y)
->x=y

•NOTEQNODES
r(x,y) f*(x,z)

f*(y,z) f*(z,y)
-TOTAL

f*(x,y) f*(y,x) f*(x,z)
x=y f*{z,x)

S e c

f(x)=z f(y)=z r(x,y) f*(y,x)
x—y

SHARE

Figure 4.2: Basic Inference Rules. Here x, y, z, etc. range over variables V, f € F ranges
over pointer fields, and d £D ranges over data fields. Note that C Y C L E * actually defines a
separate rule for each k > 1.

28

-BTWREFLEX f(x,y) rM / (*)=* B T W 1
b twn / (x , x , x) b twn / (x , y , z)

b twn / (x , y , z) () = b t w n / (x , y , z) D ,
f*(x,y) BTW2 7 7 / V Y BTW3

b twn/ (w,y ,z) x = y

b twn / (x , y , z) b twn / (x , z , y) B t w < | / * (x , y) / * (x , z) fiTw5

y = z b twn / (x ,y ,z) b twn / (x , z , y)

r (* , y) / * (y , z) / * (* , *)

b twn / (x , y , z) b twn / (x ,z ,y) B t w 6

b twn / (y , z , x) b twn / (z ,y ,x) x = y x=z y—z
b twn / (z , x , y) b t w n / (y,x,z)

r(x,y)
btwn/ (x ,x ,y) BTW7
btwn/ (x ,y ,y)

b twn / (x , y , z) f(x)=z B T W g / (z) = w b twn / (x , y ,w) / * (x , z) B t w 9

y=x y = z b twn / (x ,y ,z) y=w

btwn/ (x ,y ,z) b twn/ (w,z ,y) f*(x,w) B t w 1 0

f*(z,w) y.=z

btwn/ (w,x ,y) b twn/ (w,y ,z) - B t w U

btwn/(w,x,z)

btwn/ (v ,M , x) b twn/ (v ,n ,y) b t w n / (« , x , y) ^ 2

btwn/ (v ,x ,y)

Figure 4 .3 : Between Inference Rules. Here x, y, z, etc. range over variables V and / e F
ranges over pointer f ields.

29

N O T E Q N O D E S - ensures that if the values of a data field of two nodes are not equal, the

nodes are not equal as well.

TOTAL - requires that i f y and z are both reachable from another node x, then there must

exist some reachability relationship between y and z.

S C C - states that if x and y are distinct and mutually reachable from each other, and z is

reachable from x, then x is reachable from z (since x must lie on a cycle of /) . It is

similar to F U N C , though the two IRs are irredundant with respect to each other.

S H A R E - captures the fact that in a cycle of / , no two distinct nodes x and y can have

m = m .

Similarly, we give an intuition behind the between IRs given in Figure 4.3:

B T W R E F L E X - enforces that any node variable is between itself.

B T W I - i f a pointer field of node z points to x (i.e. /(z) =x) and y is on the cycle that

includes x and z, then y lies between x and z.

B T W 2 - states that i f node y lies between nodes x and z, then obviously y is reachable from

x, and also z is reachable from y.

B T W 3 - asserts that i f x, w, y, and z are on the same chain and f(x) — w, then y is also

between w and z, unless x=y.

B T W 4 - if y is between x and z, and also z between x and y, then it has to be that y and z

are equal.

B T W 5 - formalizes the fact that if y and z are both reachable from x, either y lies between

x and z, or z lies between x and y.

B T W 6 - handles the case when x, y, and z are all on the same cycle.

B T W 7 - ensures that betweenness includes the endpoints.

30

B T W 8 - if the distance between x and z is one, and y is between x and z, then y is either

equal to x or to z.

B T W 9 - asserts that i f x, y, z, and w are on the same chain, y is between x and w, and

/ (z) =w, then y is also between x and z, unless y = w.

B T W I O - covers "lollipop" shaped structures where x is a node in the stick leading to the

circle of which y and z are a part. It follows that w is on the circle as well, unless

y = z.

B T W I 1 - i f nodes w, x, y, and z are chained in that order, which is captured by the an

tecedents, then node x is between nodes w and z.

B T W I 2 - similarly to B T W I 1, if nodes v, u, x, and y are chained in that order, then node x

is between nodes v and y.

Given the preceding intuition, it is easy to prove the following:

Theorem 1. The inference rules of Figures 4.2 and 4.3 are sound.

Proofs of the inference rules related theorems are in Appendix A .

Theorem 1 tells us that the iterative application of the IRs preserves the satisfiability

status of the initial set of literals, that is, if it yields a contradiction along every branch

caused by the IRs with multiple consequents, then we can conclude that the original set of

literals is unsatisfiable.

To prove completeness, we first reduce the problem to sets of literals in a certain

normal form, then prove completeness for only normal sets, defined bellow.

Definition 1 (normal). Let Vars(<&) denote the subset of the node variables V appearing in

4>. A set of literals $ is said to be normal if all terms appearing in <$> are variables, except

that for each f G F and v G Vars(<J>) there may exist at most one equality literal of the form

/ (v) = u, where u G Vars(4>).

31

Theorem 2. There exists a polynomial-time algorithm that transforms any set into a

normal set <f>' such that O' is satisfiable if and only «/<E> is satisfiable.

The algorithm exhaustively replaces occurrences of terms of the form / (v) with freshly

introduced variables Vfresh, and consequently adds equality literals f(v) = Vfresh to the set.

Let us call a set of literals <t> consistent if it does not contain a contradiction, and

call <J> closed if none of the IRs of Figures 4.2 and 4.3 are applicable. Thus, we have our

completeness theorem, which is the foundation of our decision procedure:

Theorem 3. If<$> is consistent, closed, and normal, then 4> is satisfiable.

Corollary 1. For any normal set of literals, the inference rules of Figures 4.2 and 4.3 are

complete.

Intuitively, i f the iterative application of the IRs on the initial, normal set of literals saturates

(i.e. generates a closed set of literals), then the initial set of literals is satisfiable, which

brings us to our decision procedure algorithm.

4.2 Basic Decision Procedure

Viewed from a high level, the decision procedure first applies the transformation of Theo

rem 2 and transforms any initial set of literals to a normal one. Then, the procedure invokes

the core algorithm that is presented in Figure 4.4, which can without loss of generality

assume that <£> is normal.

The core decision procedure algorithm repeatedly searches for an applicable IR, ap

plies it (i.e. adds the literals of one of its consequents to the set), and recurses. The recursion

is necessary for those IRs that branch, i.e. have multiple consequents. If the procedure ever

infers a contradiction, it backtracks to the last branching IR with an unexplored consequent,

or returns unsatisfiable i f there is no such IR. If the procedure reaches a point where there

are no applicable IRs and no contradictions, then the inferred set of literals is consistent,

closed, and normal. Hence, by Theorem 3, it may correctly return satisfiable. We note that

32

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

function DECIDE(<J>)

if <$> contains a contradiction then
return U N S A T

end if
if there exists an IR r applicable to 4> then

for each consequent II of r do
for each literal 0 of II do

if § is an equality literal of the form v, = v, then
*' := *[Vi/vj]

else
<J>' : = 4>u{4>}

end if
end for
if DECIDE(4>') = S A T then

return S A T
end if

end for
return U N S A T

else
return S A T

end if
end function

Figure 4.4: Pseudocode of the Core Decision Procedure Algorithm. The procedure
D E C I D E requires <f> to be a normal set of literals. The notation *[v,-/vy-] on line 9 represents
the set obtained by replacing all occurrences of Vj in literals of <& with v,-.

our decision procedure is guaranteed to terminate because none of the IRs introduce new

terms.

Theorem 4. The decision procedure always terminates.

For the proof of this theorem and lemmas that demonstrate the correctness of the algorithm,

see Appendix B .

4.3 Decision Procedure Extension for Handling Updates

In Section 3.2, we introduced additions for handling pointer and data function updates to

our logic. Here, we enforce the introduced update constraints (3.1) and (3.2) by adding a

33

number of additional IRs to our decision procedure.

Initially, recall that in each pointer function update constraint

/ ' = u p d a t e (/ , T i , T 2) , (3.1)

the symbol / ' is the pointer function after the update. Therefore, each of the IRs of Fig

ures 4.2 and 4.3 that mention a pointer function apply to / ' also.

To enforce the constraint (3.1), which involves pointer function / before the update

and / ' after the update, we need additional IRs that mention both pointer functions. There

fore, the decision procedure includes the eight IRs of Figure 4.5. For each pointer function

update, the IR UPDATE introduces a fresh variable w that is forced to be equal to f(x\). The

reason behind introducing w is to preserve all literals in the normal form (page 31) when

applying IRs. Other IRs refer to these freshly introduced variables. This allows us to state

that

/ = u p d a t e (/ , T i , w) ,

and therefore we have the obvious symmetry between the IRs UPDFUNCI and UPDFUNC2,

between UPDTRANSI and UPDTRANS2, and between UPDTRANS3 and UPDTRANS4.

Note that some of the IRs in Figure 4.5 can introduce new terms, however, given a normal

set of literals, the number of new terms is bounded. This implies that the extended deci

sion procedure also always terminates. Next, we give a brief intuition behind the IRs in

Figure 4.5:

UPDATE - enforces the update constraint (3.1) on / ' , and also introduces a fresh variable

w that is forced to be equal to f(T\).

UPDBTWN - asserts that i f y is between x and z before the update, then after the update, y

is also between x and z, unless the node T i , whose pointer function is updated, is also

between x and z. If T i is between x and z, and not equal to z, its update can alter the

fact that y is between x and z.

UPDFUNC 1 - if f(x) =y before the update, then after the update also f'(x) —y, unless x is

the node X\.

34

UPDFUNC2 - analogously to UPDFUNCI , if f'(x) = y after the update, then before the

update also f(x) =y, unless x is the node X\.

UPDTRANSI - i f y is reachable from x before the update, then after the update y is also

reachable from x, unless the node t\ is on the path from x to y.

U P D T R A N S 2 - analogously to UPDTRANS 1 , if y is reachable from x after the update, then

before the update y is also reachable from x, unless the node Tj is on the path from x

to y.

UPDTRANS3 - if Ti and y are reachable from x before and after the update, respectively,

then we case-split on whether T\ comes before or after y following the path from x.

If Ti comes before y, the update can influence the reachability between x and y.

UPDTRANS4 - analogously to UPDTRANS3, if Ti and y are reachable from x after and

before the update, respectively, then we case-split on whether X\ comes before or

after y following the path from x.

Similarly to pointer function updates, recall that in each data function update con

straint

d! = update(d,T,fc) , (3.2)

the symbol d' is the data function after the update. Therefore, the IR NOTEQNODES of

Figure 4.2 applies to d' also. To enforce the data update constraint (3.2), which mentions

both d and d', we add the four IRs of Figure 4.6 to our decision procedure. Here, we give

the intuition behind the added rules:

EQDATA - enforces the data update constraint (3.2), that is, the data function value of the

node T, whose data function is updated, has to be equal to the boolean variable b that

is assigned to it.

PRESERVEVALUE - data values of nodes that are not equal to the node x have to be pre

served.

35

b t w n / (x , y , z) - a = z
f ' (T i) = T2 UPDATE , , . b t w n / - (j c , T i , z) UPDBTWN

/ (T i) = W 7 i T i = Z

X=TI /'(*)=y UPDFUNCI X=TI f(x)=y UPDFUNC2

y = w y = ̂ 2

f*(x,y) f*(x,y)
f* (x, Ti) f'*{x,y) UPDTRANSI f*{x,xx) f*(x,y) UPDTRANS2

/*(* ,Ti) r{x,y) _UpDTRANs3 /*(*,*.) C(f,y\ U P D T R A N S 4

f"(x.j) r(T,,y) /'*(*,y) r(T, ,y)

Figure 4.5: Pointer Update Inference Rules. These are used to extend our logic to
support a second pointer function symbol / ' for each updated / £ F, with the implicit
constraint / ' = upda te (/ ,T i ,T2) , where Ti and T 2 are variables, and w is a fresh variable
used to capture f(X\). Note that each pointer update introduces its own, unique variable w,
and therefore for each update we actually introduce a separate set of IRs.

36

->z=x

b
d'(x) -id'(r) EQDATA

-^b
d{x)
d'(x)

-<d(x) PRESERVEVALUE
->d'(x)

d(x) -d'(x)
•EQNODESI

-d(x) d'(x)
•EQNODES2

X=X X — X

Figure 4.6: Data Update Inference Rules. These are used to extend our logic to support
a second data function symbol d' for each updated d G D , with the implicit constraint d' —
update(<i, x,b), where x e V and b is a boolean variable.

EQNODESI , EQNODES2 - nodes whose data function value changes have to be equal to

Using the presented intuition behind pointer and data function update rules, we prove the

following:

Theorem 5. The inference rules of Figures 4.5 and 4.6 are sound;

The proof of this theorem is provided in Appendix A . Extending our decision procedure

with these additional inference rules allows us to soundly conclude unsatisfiability of a set

of literals involving both pointer and data function updates, with the implicit constraints

We don't have a proof that this extended set of IRs is complete. Fortunately, not

having such a theorem does not compromise the soundness of verification by predicate

abstraction. Each time the predicate abstraction engine wants to determine whether some

abstract state is reachable, the decision procedure is queried for the satisfiability of formula

(2.1). If the decision procedure falsely infers that the formula is satisfiable, when it is

actually unsatisfiable, the predicate abstraction algorithm wil l add the unreachable abstract

state to the set of abstract states we are assuming are reachable. Therefore, the computed

set of reachable abstract states won't be the most precise one, but an over-approximation.

Having an over-approximated set of reachable abstract states doesn't preclude soundness

of the verification, i.e. i f the program is verified, it satisfies all specified properties. The

the node x.

(3.1) and (3.2).

37

over-approximation may increase the number of falsely reported property violations (see

Section 2.2). However, in our practical experiments of Chapter 5, we never found any

property violations caused by the extended decision procedure erroneously concluding that

a set of literals was satisfiable.

38

Chapter 5

Experiments

This chapter presents the results of testing our framework and the proposed simple transitive

closure logic decision procedure on a number of H M P examples. We implemented the de

cision procedure (called straclos1) used in our experiments in C++, and the implementation

is publicly available 2.

The examples we used in our experiments perform different operations on acyclic

and cyclic, singly- and doubly-linked lists. Appendix C provides pseudocode and lists the

required predicates for all examples. Here, we give a short summary for each example:

LIST-REVERSE is a classical H M P example that performs in-place reversal of a linked list.

LIST-ADD first traverses a linked list. Then, it adds a node to the end of the list.

ND-INSERT nondeterministically inserts a node into the linked list. (Pseudocode for this

example was previously given in Figure 2.2 on page 8 in the background section on

HMPs.)

ND-REMOVE is similar to ND-lNSERT, except that instead of inserting a node, a node is

nondeterministically chosen and removed from the list.

1straclos stands for Simple TRAnsit ive CLOSure logic.
2straclos can be downloaded from http:/ /www.cs.ubc.ca/~zrakamar.

http://www.cs.ubc.ca/~zrakamar

39

ZIP zips two linked lists, shuffling the elements of both list into one. Then, the tail of the

longer list is appended to the resulting list. This example is taken from a paper by

Jensen et al. [JJKS97].

SORTED-ZlP merges the elements of two sorted lists into one, also sorted. Here, the data

elements are simply booleans, so "sorted" means that all nodes with data fields whose

value is false come before nodes with data fields whose value is true. This is sufficient

to express sortedness of a list of any finite enumerated type (for example i n t) .

SORTED-lNSERT inserts a node into a sorted linked list so that sortedness is preserved.

This is a modification of the example from a paper by Lahiri and Qadeer [LQ06]. 3

BUBBLE-SORT sorts elements of a linked list using the bubble sort algorithm. It is taken

from a paper by Balaban et al. [BPZ05]. The data fields on which we sort are again

booleans.

REMOVE-ELEMENTS removes from a cyclic list elements whose data field is false.

REMOVE-SEGMENT removes the first contiguous segment of elements whose data field is

true from a cyclic singly-linked list. This example is taken from a paper by Manevich

et al. [MYRS05] .

SEARCH-AND-SET searches for an element with specified data fields in a cyclic singly-

linked list, and sets data fields of previous elements to true.

SET-UNION combines two cyclic singly-linked lists. Each list represents a set that is

uniquely defined with the data field value of its nodes. Therefore, the combination of

two lists represents the set union, and the data fields of both lists have to be set to the

same value. This example is taken from a paper by Nelson [Nel83].

3To simplify things, they require that the input list starts with a dummy element whose data field

value has to be less than all possible values of that data field. We don't have such requirements in

our example, which makes it slightly more complicated.

40

CREATE-INSERT creates a new node (malloc4) and inserts it nondeterministically into a

linked list.

CREATE-INSERT-DATA creates a new node, initializes its data field, and inserts it nonde

terministically into a linked list.

CREATE-FREE creates a new node and inserts it nondeterministically into a linked list.

Also, nondeterministically removes a node from the linked list and frees5 it.

INIT-LIST initializes the data fields of an acyclic singly-linked list.

INIT-LIST-VAR similarly to INIT-LIST, initializes the data fields of an acyclic singly-

linked lists, but also sets the value of a global data variable before terminating.

INIT-CYCLIC initializes data fields of a cyclic singly-linked list.

S O R T E D - l N S E R T - D N O D E S inserts an element into a sorted linked list so that sortedness

is preserved. Every node in the linked list has an additional pointer to a node that

contains a data field which is used for sorting.

REMOVE-DOUBLY removes an element from an acyclic doubly-linked list.

REMOVE-CYCLIC-DOUBLY removes an element from a cyclic doubly-linked list. This

example is taken from a paper by Lahiri and Qadeer [LQ06].

LINUX-LIST-ADD, LINUX-LIST-ADD-TAIL, LINUX-LIST-DEL are three examples from

the Linux kernel list container6, which add and remove nodes from a cyclic doubly-

linked list.

The data fields and data variables in all of our examples are booleans. The safety properties

the tool checked (when applicable) at the end of the H M P s are roughly:

Amalloc is modeled as removing a node from the unreachable infinite cyclic list [RSL03].
-'free is modeled in the same fashion as malloc, as adding a node to the unreachable infinite

cyclic list.
6Linux kernel version 2.6.13; list container source file is i n c l u d e / l i n u x / l i s t .h; verified

functions are l is t_add, l i s t_add_ ta i l , and l i s t jdel .

41

• no leaks (NL) - all nodes reachable from the head of the list at the beginning of the

program are also reachable at the end of the program.

• insertion (IN) - a distinguished node that is to be inserted into a list is actually reach

able from the head of the list, that is, the insertion "worked".

• acyclic (AC) - the final list is acyclic, that is, nil is reachable from the head of the list.

• cyclic (CY) - list is a cyclic singly-linked list, that is, the head of the list is reachable

from its successor.

• doubly-linked (DL) - the final list is a doubly-linked list.

• cyclic doubly-linked (CD) - the final list is a cyclic doubly-linked list.

• sorted (SO) - list is a sorted linked list, that is, each node's data field is less than or

equal to its successor's.

• data (DT) - data fields of selected (possibly all) nodes in a list are set to a value.

• remove elements (R E) - for examples that remove node(s), this states that the node(s)

was (were) actually removed. For the program R E M O V E - E L E M E N T S , R E also asserts

that the data field of all removed elements is false.

Often, the properties one is interested in verifying for H M P s involve universal quantification

over the heap nodes. For example, to assert the property N L , we must express that for all

nodes t, i f t is reachable from head initially, then t is also reachable from head (or some

other node) at the end of the program. Since our logic doesn't support quantification, we

use the trick of introducing a Skolem constant t [FQ02, BPZ05] to represent a universally

quantified variable. Here, t is a new node variable that is initially assumed to satisfy the

antecedent of our property, and is otherwise unmodified by the program. For the example

program of Figure 2.2 on page 8, we can express N L by conjoining —if = nil A _/** (head, t) to

the a s s u m e statement:

a s s u m e ^f*(head,item) Af*(head, nil) A —<head= nil A f(item) — n\\ A p = head

42

on line 2, and conjoining f*(head,t) to the assertion:

assert /*(head,item) Af*(head, nil)

on line 12. Since (after the assume) t can be any non-nil node reachable from head, i f the

assertion is never violated, we have proven N L .

Table 5.1 summarizes the results of the experiments, which were run on a 2.6 Ghz

Pentium 4 machine. As the table shows, we were successful in verifying interesting prop

erties of many examples quickly and in small amounts of memory.

It is hard to make a good comparison with other tools and approaches because the

heap structures the tools are able to handle, their expressiveness, and the amount of required

manual effort vary greatly.7 Furthermore, most tools are not publicly available, and most

papers do not publish quantitative performance results. Here, we make a few comparisons

to tools similar to ours, for which we know some performance results:

The BUBBLE-SORT example is from Balaban et al. [BPZ05]. Our successful ver

ification of this example highlights the advantage of our inference-rule-based approach

against their state-of-the-art small-model-theorem-based approach, which spaced out on

this problem [Bal05].

The recent experimental results of Manevich et al. [MYRS05] report comparable

execution times to us, in spite of the fact they were executed on a slower machine. 8 For

most of their examples, however, their times are for verifying only the simple property of

no-null-dereferences (and cyclicity for two examples). Our times are for verifying more

complicated properties, for instance N L . In addition, for most of the examples, we verify

more than one property in a single run.

For the examples in common with Lahiri and Qadeer [LQ06], we are vastly faster at

verifying the same properties, with speed-ups of roughly 1 to 3 orders of magnitude on all

but one example. It should be noted, however, that we used a slightly faster machine, and

7For instance, some of the tools put the burden of providing loop invariants on the users, while

we compute those automatically, which is a costly operation.
8Unfortunately, their tool hasn't been publicly released, and therefore we couldn't make a more

thorough comparison.

43

Program Property C F G Preds DP Time
calls (sec)

LIST-REVERSE N L 6 8 184 0.2
LIST-ADD N L A A C A I N 7 8 66 0.1

ND-INSERT N L A A C A I N 5 13 259 0.5
N D - R E M O V E N L A A C A R E 5 12 386 0.9

ZIP N L A A C 20 22 9153 17.3
S O R T E D - Z l P N L A A C A SO A IN 28 22 14251 22.8

S O R T E D - l N S E R T N L A A C A SO A IN 10 20 5990 13.8
BUBBLE-SORT N L A A C 21 18 3444 11.1
BUBBLE-SORT N L A A C A SO 21 24 31446 114.9

REMOVE-ELEMENTS N L A C Y A R E 15 17 3062 8.8
REMOVE-SEGMENT C Y 17 15 902 2.2
SEARCH-AND-SET N L A C Y A DT 9 16 4892 5.3

SET-UNION N L A C Y A DT A IN 9 21 374 1.4
CREATE-INSERT N L A A C A I N 9 24 3020 14.8

CREATE-INSERT-DATA N L A A C A IN 11 27 8710 39.7
CREATE-FREE N L A A C A I N A R E 19 31 52079 457.4

INIT-LIST N L A A C A DT 4 9 81 0.1
INIT-LIST- VAR N L A A C A D T 5 11 244 0.2

INIT-CYCLIC N L A C Y A D T 5 11 200 0.2
S O R T E D - l N S E R T - D N O D E S N L A A C A SO A IN 10 25 7918 77.9

REMOVE-DOUBLY N L A D L A R E 10 34 3238 24.3
REMOVE-CYCLIC-DOUBLY N L A C D A R E 4 27 1695 15.6

LINUX-LIST-ADD N L A C D A IN 6 25 1240 6.4
LINUX-LIST-ADD-TAIL N L A C D A IN 6 27 1598 7.3

LINUX-LIST-DEL N L A C D A R E 6 29 2057 24.7

Table 5.1: Results of Verifying HMPs. "Program" is the verified H M P ; "Property" spec
ifies the verified property; " C F G " denotes the number of edges in the control-flow graph of
the program; "Preds" is the number of predicates required for verification; "DP calls" is the
number of decision procedure queries; "Time(sec)" is the total execution time in seconds.
The experiments were executed on a 2.6 Ghz Pentium 4 machine. The memory usage for
each of the experiments was less than 20 M B .

44

also that our data fields are booleans whereas theirs are abstract integers. For the REMOVE-

CYCLIC-DOUBLY example, we are only two times faster. We suspect the the reason behind

this is the usage of skolemization which sometimes requires a large number of predicates to

define a cyclic, doubly-linked list. The limited support for universally quantified variables

we are planning to add would solve this problem.

In addition to these experiments, we ran straclos on a couple of queries for M O N A

generated by field constraint analysis tool Bohne [W K L + 0 6] . Initial results show that str

aclos is faster than M O N A , but the queries we have are too simple to make a more serious

comparison.

45

Chapter 6

Conclusions and Future Work

This thesis has presented a novel logic and accompanying decision procedure that are used

in the verification of heap-manipulating programs using predicate abstraction techniques.

A number of experiments demonstrate the usability and effectiveness of our work for ver

ification of H M P s that occur in practice. Of special note is our verification of three small,

but real, Linux kernel list container functions, which use cyclic doubly-linked lists. These

results clearly show the potential that this work has in the world of H M P verification.

There are some obvious directions left for further improving the proposed logic.

First is the addition of quantifiers. We have found that even minimal support for univer

sally quantified variables (e.g. allowing universal quantification over variables only in the

beginning of a formula) would allow expression of many common heap structure attributes.

For example, even if we introduce Skolem constants, as described in Chapter 5, the cur

rent logic cannot assert that two terms x and y point to disjoint linked lists. Intuitively,

using skolemization we can express that some unconstrained node from the list x is not

reachable from y, which doesn't necessarily mean that all nodes from the list x are not

reachable from y. A single universally quantified variable would allow for this property

(see Nelson [Nel79, page 22]). We also found that capturing disjointedness is necessary

for verifying that L I S T - R E V E R S E example always produces an acyclic list; hence we were

unable to verify this property. Our decision procedure can be enhanced to soundly support

46

universal quantification using heuristic quantifier instantiation techniques, i.e., eliminating

quantifiers by instantiating them with terms appearing in a formula.

The other logic limitation, that we see no immediate solution to, is our inability

to express more involved heap structure properties, in particular trees. Our logic cannot

capture "x points to a tree" because expressing that requires using transitive closure over

multiple pointer functions (i.e. expressing the fact that some node is reachable from the tree

root following a sequence of left or right pointers). It is likely that adding such a transitive

closure operator to our logic would cause undecidability [IRR + 04a]. However, we believe

that it is possible that an extension could be used to verify simple properties of programs

that manipulate trees. For example, by supporting relations instead of pointer functions, we

could verify that there are no memory leaks in H M P s that manipulate trees.

Besides improving the logic, we also plan on investigating how existing techniques

for predicate discovery and more advanced predicate abstraction algorithms mesh with our

decision procedure. For instance, predicate abstraction algorithm could be enhanced to

support quantifiers by employing indexed predicate abstraction [LB04]. We would also

like to look into possible ways of extending our decision procedure to generate inter-

polants [CraSl]} Interpolants have been successfully used for refining abstractions in soft

ware model checking [HJMM04], and can be efficiently generated from proofs of unsatis-

fiability. Furthermore, by incorporating our decision procedure into a Nelson-Oppen style

theorem prover [N079, MZ03], it would be possible to improve the precision of a heap

abstraction used by the existing software verification tools that employ theorem provers

[B M M R 0 1 , HJMS02, FLL+02]. We already have the initial results (the sketch of the proof

that our logic is stably infinite, which is an important Nelson-Oppen requirement) showing

that incorporating the decision procedure can be done.

Thanks to Ken McMillan for the proof-generation and interpolant suggestion.

47

Bibliography

[Bal05] I. Balaban, 2005. Personal correspondence.

[BLS02] R. E . Bryant, S. K . Lahiri, and S. A . Seshia. Modeling and verifying systems

using a logic of counter arithmetic with lambda expressions and uninterpreted

functions. In 14th International Conference on Computer Aided Verification

(CAV), pages 78 - 92, 2002.

[BMMR01] T. Bal l , R. Majumdar, T. D. Millstein, and S. K . Rajamani. Automatic pred

icate abstraction of C programs. In ACM Conference on Programming Lan

guage Design and Implementation (PLDI), pages 203-213, 2001.

[BPR02] T. Bal l , A . Podelski, and S.K. Rajamani. Relative completeness of abstraction

refinement for software model checking. In 8th International Conference on

Tools and Algorithms for the Construction and Analysis of Systems (TACAS),

2002.

[BPZ05] I. Balaban, A . Pnueli, and L . Zuck. Shape analysis by predicate abstraction.

In 6th International Conference on Verification, Model Checking and Abstract

Interpretation (VMCAI), 2005.

[BR06] J. Bingham and Z. Rakamaric. A logic and decision procedure for predicate

abstraction of heap-manipulating programs. In 7th International Conference

on Verification, Model Checking and Abstract Interpretation (VMCAI), pages

48

207-221, 2006. Extended version: U B C Department of Computer Science

Technical Report TR-2005-19.

[BRS99] M . Benedikt, T. Reps, and M . Sagiv. A decidable logic for describing linked

data structures. In European Symposium on Programming (ESOP), 1999.

[Bry86] R. E . Bryant. Graph-based algorithms for boolean function manipulation.

IEEE Transactions on Computers, C-35(8):677-691, August 1986.

[CC77] R Cousot and R. Cousot. Abstract interpretation: a unified lattice model

for static analysis of programs by construction or approximation of fixpoints.

In 4th ACM Symposium on Principles of Programming Languages (POPL),

pages 238-252, 1977.

[CES86] E . M . Clarke, E . A . Emerson, and A . R Sistla. Automatic verification of finite-

state concurrent systems using temporal logic specifications. ACM Trans

actions on Programming Languages and Systems (TOPLAS), 8(2):244-263,

1986.

[CGJ+00] E . Clarke, O. Grumberg, S. Jha, Y. L u , and H . Veith. Counterexample-guided

abstraction refinement. In 12th International Conference on Computer Aided

Verification (CAV), pages 154-169, 2000.

[Cra57] W. Craig. Linear reasoning. A new form of the Herbrand-Gentzen theorem.

The Journal of Symbolic Logic, 22(3):250-268, 1957.

[DD01] S. Das and D. L . D i l l . Successive approximation of abstract transition rela

tions,. In IEEE Symposium on Logic in Computer Science (LICS), 2001.

[DD02] S. Das and D. L . D i l l . Counter-example based predicate discovery in predicate

abstraction. In 4th International Conference on Formal Methods in Computer-

Aided Design (FMCAD), 2002.

49

[DDP99] S. Das, D . L . D i l l , and S. Park. Experience with predicate abstraction. In 11th

International Conference on Computer Aided Verification (CAV), 1999.

[Dij72] E . W. Dijkstra. Notes on structured programming. In O.J. Dahl, E.W. Dijkstra,

and C . A . R . Hoare, editors, Structured Programming, pages 1-82. Academic

Press, 1972.

[Dij76] E . W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood

Cliffs, New Jersey, 1976.

[DN03] D. Dams and K . S. Namjoshi. Shape analysis through predicate abstraction

and model checking. In 4th International Conference on Verification, Model

Checking and Abstract Interpretation (VMCAI), pages 310-323, 2003.

[DOY06] D. Distefano, P. O'Hearn, and H . Yang. A local shape analysis based on

separation logic, 2006.

[FLL+02] C. Flanagan, K . R. M . Leino, M . Lillibridge, G . Nelson, J. B . Saxe, and

R. Stata. Extended static checking for Java. ACM SIGPLAN Notices,

37(5):234-245, 2002.

[FQ02] C. Flanagan and S. Qadeer. Predicate abstraction for software verification.

In 29th ACM Symposium on Principles of Programming Languages (POPL),

pages 191-202, 2002.

[GJ90] M . R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the

Theory of NP-Completeness. W. H . Freeman & Co., New York, NY, U S A ,

1990.

[Gri81] D . Gries. The Science of Programming. Springer, New York, 1981.

[GS97] S. Graf and H . Saidi. Construction of abstract state graphs with P V S . In 9th

International Conference on Computer Aided Verification (CAV), 1997.

50

[HJMM04] T. A . Henzinger, R. Jhala, R. Majumdar, and K . McMi l l an . Abstractions from

proofs. In 31st ACM Symposium on Principles of Programming Languages

(POPL), pages 232-244, 2004.

[HJMS02] T. A . Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction.

In 29th ACM Symposium on Principles of Programming Languages (POPL),

pages 58-70, 2002.

[IRR +04a] N . Immerman, A . Rabinovich, T. Reps, M . Sagiv, and G . Yorsh. The boundary

between decidability and undecidability for transitive closure logics. In 18th

International Workshop on Computer Science Logic (CSL), pages 160-174,

2004.

[IRR + 04b] N . Immerman, A . Rabinovich, T. Reps, M . Sagiv, and G . Yorsh. Verifica

tion via structure simulation. In Conf. on Computer Aided Verification (CAV),

2004.

[JJKS97] J. L . Jensen, M . E . J0rgensen, N . Klarlund, and M . I. Schwartzbach. Automatic

verification of pointer programs using monadic second-order logic. In ACM

Conference on Programming Language Design and Implementation (PLDI),

pages 226-236, 1997.

[KMS00] N . Klarlund, A . M0ller, and M . I. Schwartzbach. M O N A implementation

secrets. In 5th International Conference on Implementation and Application

of Automata (CIAA), 2000.

[KP00] Y. Kesten and A . Pnueli. Verification by augmented finitary abstraction. In

formation and Computation, 163(l):203-243, 2000.

[KS93] N . Klarlund and M . I. Schwartzbach. Graph types. In 20th ACM Symposium

on Principles of Programming Languages (POPL), pages 196-205, 1993.

[LAIR+05] T. Lev-Ami , N . Immerman, T. W. Reps, M . Sagiv, S. Srivastava, and G. Yorsh.

Simulating reachability using first-order logic with applications to verification

51

of linked data structures. In Conference on Automated Deduction (CADE),

2005.

[LAS00] T. Lev-Ami and M . Sagiv. T V L A : A system for implementing static analyses.

In 7th International Static Analysis Symposium (SAS), pages 280-301, 2000.

[LB04] S. K . Lahiri and R. E . Bryant. Constructing quantified invariants via predicate

abstraction. In 5th International Conference on Verification, Model Checking

and Abstract Interpretation (VMCAI), pages 267-281, 2004.

[LQ06] S. K . Lahiri and S. Qadeer. Verifying properties of well-founded linked lists.

In 33rd ACM Symposium on Principles of Programming Languages (POPL),

pages 115-126, 2006.

[LRS05] A . Loginov, T. W. Reps, and S. Sagiv. Abstraction refinement via inductive

learning. In 17th International Conference on Computer Aided Verification

(CAV), pages 519-533, 2005.

[MN05] S. McPeak and G. C. Necula. Data structure specifications via local equality

axioms. In 17th International Conference on Computer Aided Verification

(CAV), pages 476-490, 2005.

[MNCL06] S. Magil l , A . Nanevski, E . Clarke, and P. Lee. Inferring invariants in sepa

ration logic for imperative list-processing programs. In 3rd Workshop on Se

mantics, Program Analysis, and Computing Environments for Memory Man

agement (SPACE), 2006.

[MS01] A . M0ller and M . I. Schwartzbach. The pointer assertion logic engine. In ACM

Conference on Programming Language Design and Implementation (PLDI),

pages 221-231, 2001.

[MYRS05] R. Manevich, E . Yahav, G . Ramalingam, and M . Sagiv. Predicate abstraction

and canonical abstraction for singly-linked lists. In 6th International Confer-

52

ence on Verification, Model Checking and Abstract Interpretation (VMCAI),

pages 181-198, 2005.

[MZ03] Z. Manna and C. G. Zarba. Combining decision procedures. In Formal Meth

ods at the Cross Roads: From Panacea to Foundational Support, volume 2757

of Lecture Notes in Computer Science, pages 381-422. Springer, 2003.

[Nel79] G. Nelson. Techniques for program verification. PhD thesis, Stanford Univer

sity, 1979.

[Nel83] G. Nelson. Verifying reachability invariants of linked structures. In 10th ACM

Symposium on Principles of Programming Languages (POPL), pages 38-47,

1983.

[N079] G. Nelson and D. C. Oppen. Simplification by cooperating decision pro

cedures. ACM Transactions on Programming Languages and Systems

(TOPLAS), l(2):245-257, 1979.

[RBH06] Z. Rakamaric, J. Bingham, and A. J. Hu. A better logic and decision procedure

for predicate abstraction of heap-manipulating programs. Technical Report

TR-2006-02, UBC Department of Computer Science, January 2006.

[RSL03] T. Reps, M . Sagiv, and A. Loginov. Finite differencing of logical formulas

for static analysis. In European Symposium on Programming (ESOP), pages

380-398, 2003.

[RZ05] S. Ranise and C. G. Zarba. A decidable logic for pointer programs manipulat

ing linked lists. Unpublished manuscript, 2005.

[WKL+06] T. Wies, V. Kuncak, P. Lam, A. Podelski, and M. Rinard. Field constraint

analysis. In 7th International Conference on Verification, Model Checking

and Abstract Interpretation (VMCAI), 2006.

53

[YRS04] G. Yorsh, T. Reps, and M. Sagiv. Symbolically computing most-precise ab

stract operations for shape analysis. In 10th International Conference on Tools

and Algorithms for the Construction and Analysis of Systems (TACAS), pages

530-545, 2004.

[YRS+06] G. Yorsh, A. Rabinovich, M. Sagiv, A. Meyer, and A. Bouajjani. A logic

of reachable patterns in linked data-structures. In Foundations of Software

Science and Computation Structures (FOSSACS), 2006.

54

Appendix A

Proofs

In this appendix, we prove all theorems except the decision procedure related Theorem 4,

which is proven in Appendix B. The proofs presented here are largely due to Jesse Bingham,

who was a coauthor of the published papers on the topic. I have included the proofs in my

thesis for the sake of completeness of the presentation.

A.l Proof of Theorem 1

Our proof of Theorem 1 uses the following notation and lemmas. Let us fix a heap structure

(N,&), and, in a slight abuse, we identify a term x with its interpretation @(x) (which is a

node in AO and we also identify the symbol / with © (/) . Let x,y EN, then S(x,y) denotes

the minimum n such that y — fn (x) if such an n exists, otherwise 8(x,y)=°°. (Hence 8 (x, y)

is simply the graph-theoretic directed distance from x to y in the graph of /).

Lemma 1. For any nodes x, y, andz, ifS(x,y) is finite, 8(x,z) is finite, andS(x,y) < 8(x,z)

then btwnf(x,y,z).

Proof. Follows trivially from the semantics of the btwn/ operator. •

Lemma 2. Iff(y) — x, then either 8(x,y) = <», or 8(x,y) is finite and 8{x,y) > 8(x,z) for

all z such that that 8(x, z) is finite.

55

Proof. If 8(x,y) is finite, then x and y must lie adjacent on a cycle in / ; the result follows.

•

Lemma 3. If 5(x, y) <8 (x, z) <°° and x^y, then 8(y, z) < 8(y,x).

Proof. If 8(y,x) = °o, then the lemma trivially holds. Otherwise we have

0<S(x,y),8(y,x) < °°

and thus x, y, and z must occur on a cycle. The lemma follows. •

Lemma 4. If btwn f(x,y,z), then 8(x,y) + 8(y,z) = 8(x,z).

Proof. Since btwnf(x,y,z), there exist (graph theoretic) paths in the graph of / from x to y

and y to z, and hence from x to z. Since the out-degree of all nodes in the graph of / is 1, it

follows that all these paths are unique, and that the path from x to z is the concatenation of

the path from x to y and the path from y to z. The lemma follows. •

Theorem 1. The inference rules of Figures 4.2 and 4.3 are sound.

Proof. We argue in turn that each inference rule is sound. Most between inference rule

cases involve an implicit appeal to Lemma 1.

IDENT, R E F L E X , T R A N S 1, T R A N S 2 . These rules are clearly sound.

F U N C . If y = f(x) and z =. fn(x) for some n > 0, then in the case n = 0 we find x = z, and

in the case n > 1 we have z = fn~x (y) and hence /*(z,y) holds.

C Y C L E * , k > 1. Suppose all the antecedents hold; then y = fn(x\) for some n > 0 and thus

y =x\+{n mod it) •

N O T E Q N O D E S . The antecedents imply that d(x) ^ d(y), which implies x ^ y.

T O T A L . Suppose all the antecedents hold. Then y = fn(x) and z = f"(x) for some n,m>0.

Now if n > m, then y = / " _ m (z) , otherwise if n < m, then z = fm~n(y).

Sec . Suppose all the antecedents hold. In the case x = y, then one of the consequents holds

trivially. In the case x^y, then x is on a cycle of / , hence / * (x,z) implies / * (z,x).

56

S H A R E . Suppose all the antecedents hold, and suppose x ^ y. From the third and fourth

antecedents, x and y lie on the same cycle of / , and it follows from the first antecedent that z

is also on this cycle. If we restrict the domain of / to be this cycle, / must be a permutation,

which contradicts f(x) = / (y) .

B T W R E F L E X . Trivial.

B T W I . From the antecedents it follows that 8(x,y) and 8(x,z) are both finite. In particular,

z is reachable from x, and using Lemma 2 we have 8(x,y) < 8(x,z) and thus btwnf(x,y,z).

BTW2. Trivial.

B T W 3 . Let us suppose the antecedents hold, and x ^ y. It follows that 8(x,y) and S(x,z)

are both positive and finite, and that 8(w,y) = 8(x,y) — 1 and 8(w,z) = 8(x,z) — 1. Since

8(x,y) < 8(x,z), this implies 8(w,y) < 8(w,z), and therefore btwn f(w,y,z).

B T W 4 . From the antecedents it follows that 8(x,y) and 8(x,z) are both finite. From the first

antecedent we have 8(x,y) < 8(x,z); from the second antecedent we have 8(x,y) > S(x,z).

Thus S(x,y) = 8(x,z), implying y = z.

B T W 5 . From the antecedents it follows that 8(x,y) and 8(x,z) are both finite. If 8(x,y) <

8(x,z), then we have btwnf(x,y,z). If 8(x,y) > 8(x,z), then we have btwn/(.x,z,y).

B T W 6 . From the antecedents it follows that 8(a,b) is finite for all a,b e {x,y,z}. Ifx — y,

x — z, or y = z, then one of the right three consequents holds. Hence we assume that x,

y, and z are distinct nodes. Suppose that we have 8(x,y) < 8(x,z). Then, by Lemma 3,

we have 8(y,z) < 8(y,x), and, again by Lemma 3, we have 8(z,x) < S(z,y). We conclude

that btwn/(;t,y,z), btwn/(y,z,;t), and btwn/(z,jc,y) all hold. The proof that the second-to-

leftmost branch of B T W 6 follows from 8(x,y) > S(x,z) is similar.

B T W 7 . From the antecedent it follows that 8(x,y) is finite. Since 8(x,x) = 0 < 8(x,y), we

have btwnf(x,x,y); since 8(x,y) < 8(x,y), we also have btwn/(^;,y,y).

B T W 8 . From the antecedents it follows that 8(x,y) < 8(x,z) < 1. If 8(x,y) — 0 then y = x,

while i f 8(x,y) — 1 then y = z.

57

B T W 9 . Suppose the antecedents hold, and y^w From btwn f(x,y, w) it follows that 8(x, w)

is finite and positive, and 8(x,y) < 8(x,w). Since f(z) = w, we have 8(x,z) = 8{x, w) — 1.

Thus 8(x,y) < 8(x,z), and hence btwnf(x,y,z).

B T W I O . If y = z, then the right consequent holds, hence we assume y ^ z. From the

antecedents and y ^ z it follows that z and y are on an /-cycle C. If w is on C, then the

left consequent holds and we are done. Otherwise, let k > 0 be minimal such that fk(x) is

in C. Since 8(x,w) < °°, we must have 8(x,w) < k, else w would be in C. It follows that

8(w,y) = 8(x,y) - S(x,w) and that 8(w,z) = 8(x,z) - 8(x,w), thus 8(w,y) < S(w,z), since

8(x,y) < 8(x,z), which contradicts the antecedent btwn f(w,z,y).

B T W l l . From the antecedents it follows that 8(w,x) < 8(w,y) < 8(w,z) < °°. Thus,

8(w,x) < 8(w,z) < °°, implying btwn/(w,x,z).

BTW12. From the antecedent btwn/(w,x,y), it follows that 8(u,x) < 8(u,y) < <». When

we add 8(v,u) to this inequality, we get 8(v,u) + 8(u,x) < S(v,u) +8(u,y) < °°. From

the antecedents btwn/(v,M,x) and btwn/(v,w,y), it follows that 8(v,u) + 8(u,x) = 8(v,x)

and 8(v,u) + 8(u,y) — 8(v,y), respectively, by Lemma 4. Therefore, we conclude that

8(v,x) < 8(v,y) < °°, and thus btwny(v,x,y) is implied.

•

A.2 Proof of Theorem 2

Theorem 2. There exists a polynomial-time algorithm that transforms any set 4> into a

normal set such that Q>' is satisfiable if and only if<b is satisfiable.

Proof. Our transformation algorithm has two variables 4>o and <J>i of type "set of literal",

such that initially we have 4>o = <t> and <E>i = 0. Now, while there exists mention of a term

of the form f(y) (where v e V and / G F) in <t>0, create a fresh variable Vfresh, replace all

occurrences of / (v) in 4>o with Vfresh, and add the literal f(v) — Vfresh to 4>i. Once we have

no terms of the form / (v) in <50> let * 2 = *o U * i . Now, for each equality of the form v=u

(where v and u are variables) in 4>2, replace

the equality; Let be the set obtained by

<£' satisfies Definition 1, is satisfiable i f and

time.

58

all occurrences of u in 4>2 with v, and remove

exhaustively applying this reduction. Clearly

only i f <l> is, and is constructed in polynomial

•

A.3 Proof of Theorem 3

In order to prove Theorem 3, we wi l l demonstrate how, given a consistent, closed, and

normal set of literals <$>, one can construct a heap structure / / * such that 1= 3>. For the

remainder of this section, let us fix a consistent, closed, and normal set 4>, let V = Vars(<I>),

and let F, D, and B be respectively the set of pointer fields, data fields, and data variables

mentioned in 4>. The set of nodes of / / * wil l be V. For each / £ F, we define the relation

/ * * C V x V such that (u, v) £ / * * iff f* (u, v) £ <1>. For each v £ V and / £ F, let us define

<v

fC V x V as follows: u <v

f w iff btwn/(v,w, w) £ 4>. Letrt/(v) = {u \ f*(v,u) £ 4>}.

Lemma 5. For a// v £ V and f £ F , <^ « a tofa/ order onR/(v).

Proof. <vj is clearly reflexive , since B T W R E F L E X is not enabled. Now suppose x<yy and

y </ z. Then btwnf(v,x,y) and btwn/(v,y,z) are both in and thus so too is btwnf(v,x,z),

since B T W I 1 is disabled. Therefore x <v

f z, and <vj is transitive. Now suppose x <j y and

y <v

f x. Then btwnf(v,x,y) and btwn/(v,y,jc) are both in <£>, which, since B T W 4 is disabled,

implies that x — y £ 4>, which implies that x = y (i.e. x and y are the same symbol in V)

since 3> is normal. Thus <^ is antisymmetric. Finally, suppose x,y £Rf(v). Then f*(v,x)

and / * (v,y) are in 3>, and thus, since B T W 5 is disabled, either x<yyory<yx. •

Lemma 6. For all f £ F and v £ V, rne minimal element of<y is v.

Proof. Suppose, on the contrary, that there exists some symbol w different from v such

that w <yv and hence btwn/(v,w,v) £ <J>. Since B T W 7 is disabled, we also have that

btwn/(v, w, w) £ But since B T W 4 is disabled, we also have v—w £ <I>, which contradicts

<I> being normal. •

59

Now that we have Lemma 5, the following function is well-defined.

Definition 1 (TJ/). For each f G F, define the function T]f : V —> V such that H/(v) =v if

Rf(v) = {v}, otherwise T7/(v) is the <vj-minimal element ofRf(v) \ {v}.

Definition 2 (/-basin). For f G F and v G V, if R/(v) = /?/(TJ/(v)) we say that v is an

/-basin node and we call R/(v) a /-basin.

Lemma 7. For all f G F and all v, u G V, if f(v) = then Tj/(v) = u.

Proof. Suppose / (v) = M £ $. Since T R A N S 1 is disabled, we have /*(v,u) G 4>, and hence

u G Rf{v). Now if v and u are the same symbol, say v, then there cannot exist some other

symbol w G V such that f*(v,w) G since C Y C L E I is disabled and <f> is normal. Thus

Rf(v) = {v}, and from Def. 1,7]/(v) = v. On the other hand, i f v and u are distinct symbols,

we claim that u is the <^-minimal element of R/(v) \ {v}. Suppose, on the contrary, there

exists y G / ? / (V) \ V , H such thaty <y u. Than btwn/(v,y,w) G <1>, and we already have / (v) =

« £ $, However, this contradicts the facts that B T W 8 is disabled and <E> is normal. We

conclude that f]f(v) = u. •

Lemma 8. For all f G F, suppose x, y, and z distinct elements of V in the same SCC of

/**, and y <y z. Then z<yx and x <y y.

Proof. Since 4> is normal and x, y, and z are distinct symbols, we have that none of x=y,

x=z, o r y = z a r e i n <f>. Now from our supposition, btwr\f(x,y,z),f*(x,y),f*(y,z),f*(z,x) G

<I>. Since B T W 6 is disabled, either we also have btwn/(y,z,x), btwnf(z,x,y) G 4>, and our

lemma holds, or we have btwn / (^ ,z ,y) ,btwn / (z ,y) A;)) btwn / (y ,Jc ,z) G <£>. The latter case

yields a contradiction, however, since having both b twn / (* ,y ,z) ,btwn / (* ,z ,y) G <fr and

B T W 4 disabled implies that z=y G <f>, which contradicts the first sentence of this proof. •

Lemma 9. For all f G F, /** is reflexive and transitive.

Proof. / * * is clearly reflexive and transitive since I D E N T and T R A N S 2 are disabled. •

Lemma 10. For all f G F and v G V we have that R/(rj/(v)) C Rf(v).

60

Proof. Let J | /(v) = u. From Def. 1, there exists w G V such that btwn/(v,M,w) G 3>, and

since B T W 2 is disabled, we have (v, u) G / * * . Therefore, by Lemma 9 we are done. •

Lemma 11. For all f G F and v G V and let u = r//(v). Then either

v is an f-basin node, and <" is identical to <vj- except v is made the maximal, or

Rf(u) —Rf{y) \ {v} and <y- is <Vf restricted to Rf(u).

Proof. If u and v are the same symbol v, then we must have R/(v) — {v} from Def. 1 and

<y— {(v, v)}; thus the first bullet holds trivially. Thus we assume for the remainder of the

proof that u and v are distinct symbols. We case-split on whether or not (w, v) G / * * .

Case: (w,v) G / * * . Then Rf(u) 2 Rf(v) from Lemma 9, and thus, by Lemma 10,

Rf(u) — R/(v). Now, let x and y be elements of Rf[u) \ {v}. We wish to show that x <" y

implies x <y y. Let us assume that x <" y. If x and y are the same symbol, x, then the

facts that (u,x),(v,x) G / * * and B T W 7 is disabled imply that x <"x and x <yx. Hence, we

assume that x and y are distinct symbols. From Lemma 5 exactly one of x <vj- y or y <y x

holds. In the former case, we are done. In the latter case, we have x <yv by Lemma 8.

Also, from the definition of r\f, we have that u <vj y, and, again by Lemma 8, we have

v <yj u. Since x <yv,v <y u, and B T W I 1 is disabled, we have x <^ u. Finally, by another

application of Lemma 8, we conclude y <" x, which contradicts our assumption x<"y and

the facts that x and y are distinct and <" is a total order.

It remains to show that x <" v for all x G Rf(u). If x is v we are done; else if x is u

we are done by Lemma 6. Hence, we assume that x is distinct from v and u. We have that

u<yx and thus, by Lemma 8, x <" v. Hence v is the maximal element of <".

Case: (u, v) 0/**. Then clearly v G- R/(u), and from Lemma 10, Rf(u) C R/(v) \

{v}. Conversely, choose w eR/(v) \ {v}. Then, from Def. 1, the fact that r//(v) = u, and

Lemma 5 we have that u <vj w and hence btwn/(v, u, w) G 4>. Now, since B T W 2 is disabled,

this implies that f*(u,w) G <I> and thus w eR/(u). Therefore, R/(u) =R/(v) \ {v}.

Now we argue that <" is <Vf restricted to Rf(u). Let x,y 6 R/{u) be such that

x <u

f y. As in the previous case, we may assume that x and y are distinct symbols. Thus

61

btwn/(w,;t,y) G <f>. Since u is the <^-minimal element of Rf(y) \ {v}, we also have that

btwn/(v,M,;c) G and btwn/(v,u,y) G 3>. It follows that btwn/(v,;e,y) G 4>, since B T W 12

is disabled, and thus x <y y. •

Definition 3 (seqj-(y)). Given v G V and / e F , /ef seqj(v) be the infinite sequence over

Rf(v) defined inductively as follows.

Ifv is an f-basin node, then seq^(v) = s03, where s is the sequence of length \Rf(v) | wherein

all elements ofR/(v) are listed according to the total order <y.

Otherwise, seqf(v) = v • seqjr(r]f(v))

Lemma 12. For all f E F and v £ Vw e have that seqjiy) =v • seqf(t]f(v))

Proof. If v is an /-basin node, the result follows from Lemmas 6 and 11 and Def. 3. Other

wise, the Lemma follows trivially from Def. 3. •

Lemma 13. For all f £ F and v e V and n>0, the nth element ofseqy(v) is T}" (v).

Proof. B y induction using Lemma 12. •

Lemma 14. For all f G F and v G V, the symbols appearing in seqjiy) are precisely R/(v).

Proof. Let i > 0 be the position of the first /-basin node in seqj(v). Note that such a

node must exist, else, by Lemma 11, we would have that Rf(v),Rf(r]f(v)),Rf(r]j(v)),...

would be an infinite sequence of finite sets, each being a proper subset of the previous.

We complete the proof by induction on i. If i = 0 then v is an /-basin node, the lemma

follows trivially by Def. 3. Now assume / > 0 and the lemma holds for for all w G V

with first /-basin node of seqj(w) begin at position i— 1. From Lemma 12, seqf(v) =

v-seqf(r\f(v)), thus the first/-basin node of seqj(r\f(v)) is at position i—l. Therefore the

symbols appearing in seqf(r}f(v)) are precisely /?/(n/(v)). Now from Lemma 11 we have

that Rf(r}f(y)) = R/(v)\{v}; therefore, since the symbols appearing in seqj-(v) arevalong

with those appearing in seqy(r//(v)), we are done. •

Lemma 15. For all f G F, /** is the reflexive transitive closure ofrjf.

62

Proof. From Lemma 9 we have that / * * is reflexive and transitive. Thus, letting TJ J denote

the reflexive transitive closure of 71/, we must show that T/jf = / * * . Suppose (v, u) G / * * ;

then u £ /?/(v), and hence by Lemma 14, u appears in seqj(v). Let n be the position of

an occurrence of u in seq^iy). B y Lemma 13 we have that u = n"(v), thus (v,w) G n^.

Conversely, suppose that there exists n > 0 such that nj!(v) = u. Using a simple induction

along with Lemma 10 and the fact that w G R/(w) for all w G V, one can show that (v,w) G

y*(J> j-j

Lemma 16. For all f € F and v G V, r/ie pre/a ofseqj(v) of length |/?/(v) | is r/ie elements

ofRfiy) ordered according to <y

Proof. As in the proof of Lemma 14, let i > 0 be the position of the first /-basin node

in seqj-(v). We proceed by induction on /. If i = 0, then v is an /-basin node and the

result follows from Def. 3. Now, assume the statement is true for sequences with first / -

basin node at position /— 1 for some i > 0. Let u = rj/(v). From Lemma 12 we have that

seqj(v) = v-seqf(u), and thus, from our inductive assumption, the prefix of seqj-(u) of

length of length is the elements of R/(u) ordered according to <". From Lemmas 6

and 11 and the fact that v is not an /-basin node, it follows that R/(v) = R/(u) U {v}.

Therefore, the first |/?/(v)| elements of R/(v) are R/(u) U{v} = R/(v). Furthermore, by

Lemmas 6 and 11, we have the ordering requirement on this prefix as well. •

Lemma 17. For all f G F and u, v, w G V, btwn f(u, v, w) 6 $ iff the minimal n and m where

v — T}J(u) and w = Tj^(u) are such that n<m.

Proof. (=>) Since B T W 2 is disabled, we have v,w G /?/(«) and thus, by Lemma 16, v and

w appear in the first |/?/(M)| elements of seqj(u). Also, since btwn/(w,v,w) G 4>, we have

that v <" w. Finally, using Lemmas 13 and 16, we have that the minimal n and m where

v = rif(u) and w = n^(w) exist, and are such that n<m.

(4=) Suppose the minimal n and m where v = rjj(u) and w = t]f{u) exist and are

such that n<m. Thus, by Lemmas 13 and 14, v,w G / ? / («) . Also, by Lemma 16, we must

have v <ur w, therefore, by the definition of we have btwn j (w, v, w) G <E>. •

63

Definition 4. Let = (V, 0*) be defined such that

0 * is the identity on V

For each f £ F, let f be interpreted by 0 * as rjf.

For each d G D and v G V, let

0*(rf)(v)
true ifd(v) G <D

false otherwise

For each b G B, /ef

true

false otherwise

Theorem 3. If<& is consistent, closed, and normal, then <f> is satisfiable.

Proof. We argue that / / * N <J>. Let 0 be a positive literal of 4>; we show that / / * 1= 0, case-

splitting on the type of 0. Here v, u, and w range over V; f £ F, d £ D, and b £ B. Also,

only those literals of forms allowed in normal sets (see Definition 1) need be considered.

v=v : clearly satisfied by any heap structure.

/ (v) = u : From Lemma 7 we have that r//(v) = u.

d(v) : satisfied by / / * from Def. 4.

6 : satisfied by H® from Def. 4.

/ * (v, w) : From Lemma 15 we have that (v, u) is in the reflexive and transition closure of r/y.

btwnf{y, u, w) : satisfied by by Lemma 17.

Let - i0 be a negative literal of <J>; we show that / / * ^ 0, case-splitting on the type of 0.

v=w : v and u must be distinct symbols, else <I> would contain a contradiction (since IDENT

is disabled). Clearly / / * \fv — u, since v ^ M and 0 * is the identity on V.

d(y) : not satisfied by from Def. 4.

: not satisfied by / / * from Def. 4.

64

f*(v,u) : Since 4> is consistent, f*(v,u) S- * and thus, by Lemma 15, (v,u) is not in the

reflexive and transitive closure of r/y.

btwn/(v, w. w) : not satisfied by / / ° by Lemma 17.

This completes the proof. •

A.4 Proof of Theorem 5

Theorem 5. The inference rules of Figures 4.5 and 4.6 are sound.

Proof. We use the same abuse of notation used in the proof of Theorem 1.

U P D A T E . This IR is sound since w is a fresh variable.

U P D B T W N . We employ the notation 5(-, •) used in the proof of Theorem 1, with the ad

ditional notation S'(x,y) to denote the distance in / ' from x to y. From the antecedents,

it follows that 8(x,y) and 8(x,z) are both finite, and also that 8(x,z) > 0. Now suppose

8(x,Ti) > 8(x,z). Then it follows that 8'(x,z) = 8(x,z) and S'(x,y) — 8(x,y), and thus

S'(x,y) < 5(x,z) and btwnf(x,y,z). On the other hand, i f 8(x,T\) < 8(x,z), then it follows

that Ti ^zand btwnf(x,T\,z).

U P D F U N C I . The inference rule clearly respect the facts that / ' = update(/ ,Ti,T 2) and

/ = update(/ ' ,Ti ,w).

U P D F U N C 2 . Analogous to U P D F U N C I .

U P D T R A N S 1. Suppose y = fn(x) for some n > 0. We case split on whether or not Ti =

fm(x) for some m<n.\i so, then y = fn~m{%\) = f"-m~x (w), where n - m - 1 > 0, thus

/* (w,y). If Ti / fm(x) for all m such that 0 < m < n, then f'j(x) = fj(x) for all j such that

0<j<n, hence f'*(x,y).

U P D T R A N S 2 . Analogous to U P D T R A N S 1.

U P D T R A N S 3. Suppose that Ti = fn(x) and y = f'm(x) for some n and m, and let our choices

of n and m be minimal. Now if m < n we clearly have y = fm[x). Otherwise, i f m > n, then

y = / " " - « (T 1) .

65

U P D T R A N S 4 . Analogous to U P D T R A N S 3 .

E Q D A T A . This IR ensures that after the update the value of a data function d'(z) is equal

to b. This is clearly sound, because from the definition d' = update(d,T,o) of d' it can be

seen that d'(%) has to be equal to b.

P R E S E R V E V A L U E preserves values of data function of nodes which are not equal to T and

therefore cannot be influenced by the update. It is clearly sound.

E Q N O D E S I . Trivial, since under the constraint d' = update(d,z,b), we have that d(x) ^

d'(x) implies that x — Z.

EQNODES2. Analogous to E Q N O D E S I .

•

A.5 Complexity of the Satisfiability Problem

The proof of complexity of the satisfiability problem for our logic uses a reduction from the

following decision problem, which is known to be NP-complete [GJ90].

Definition 5 (B E T W E E N N E S S) . The decision problem B E T W E E N N E S S asks, given a finite

set A and a set C of triples (a,b,c) of distinct elements from A, if there exists a one-to-one

function g : A —» { 1 , 2 , s u c h that for each (a,b,c) EC we have either g(a) < g(b) <

g{c) or g(c) < g{b) < g{a).

Theorem 6. Given a set of literals 4>, the problem of deciding if<& is satisfiable is NP-hard.

This holds even when <J> contains no updates, no btwn predicates, no data fields, and only

mentions a single pointer function f.

Proof. We reduce B E T W E E N N E S S to satisfiability of a set of literals adhering to the sec

ond sentence of the theorem statement. Let (A,C) be an arbitrary instance of B E T W E E N

N E S S .

66

Given a set of terms T, let distinct(T) be the set of ('2') literals that enforces that

the terms of T are pair-wise unequal, for example

distinct({x,f(x),y}) = = / (*) , - * = y,-./(*) = y }

Similarly, given two sets of terms T\ and T2, let distinct(T\, T2) be the set of \T\ \ \Tz\ literals

that enforces that no term in T\ is equal to any term in Ti. Our set of literals 4> wi l l involve

a variable h, a variable e for each e EA, and for each triple t EC, two variables y, and z,.

Now, let <E> be the union of the following five sets of literals, where n= \A\:

hfn-\h)=f-\h),r\h)=fn{h)} (A.1)

distinct (A) (A.2)

{f(h,e)\eEA} (A.3)

U {/* (y(aAc) MJ* (b, z (a , M) , f («, y { a M) , f* (h, Z { a M) } (A.4)

(a,b,c)eC

\J distinct ({y{aM,Z(aAc)},A\{a, c}) (A.5)
(a,b,c)eC

(A . l) says that h is the head of a non-cyclic list of exactly n nodes h,f(h),...,f~l(h).

(A.2) and (A.3) say that the elements of A are associated in a one-to-one correspondence

with the nodes in this list. To see this, note that (A.3) implies that for each e E A we have

e = f(h) for some 0 < i < n while (A.2) enforces that there is no e' E A \ {e} such that

e' = f'(h). (A.4) says that for each triple (a,b,c) E C, the variables y(a,b,c) and z{a,b,c) are

both in the list (and are hence both equal to elements of A), and further y(a,b,c) comes (not

necessarily strictly) before b and Z(a,b,c) comes (not necessarily strictly) after b in the list.

Now taking (A.5) into account allows us to conclude that y(a,b,c) ar>d z(a,b,c) can each only

be equal to a or c (hence the previous before and after relations become strict, since a and c

are distinct from b).

67

With the preceding intuition, it is easy to see that i f (A,C) is a positive instance of

B E T W E E N N E S S then one can construct a heap structure that satisfies <t> using the function

g of Def. 5 to define an interpretation of the variables A as nodes in the linked list. The

interpretation of the variables y(a,b,c) a n d £(a,i>,c) i s respectively a and c i f g(a) < g(c), or

respectively c and a otherwise. Conversely, from any satisfying heap structure, one can

extract a one-to-one function g satisfying Def. 5 by simply using the total order defined

by the linked list. Finally, we note that |<J>| = &(\A\2 + \A\|C|), and each literal of * has

length that is at most linear in \A\. It follows that * can be constructed in time polynomial

in the size of (A,C). The NP-hardness of satisfiability in our logic therefore follows from

the NP-completeness of B E T W E E N N E S S . •

68

Appendix B

Formalization of the Decision

Procedure

The core decision procedure algorithm takes a normal set of literals <£>; this restriction does

not lose us any generality thanks to Lemma 18. The pseudocode of the core of the decision

procedure is given in Figure 4.4 on page 32. The following three lemmas and a theorem

demonstrate the correctness of our algorithm.

Note that the proofs of these lemmas and the theorem assume that the literals are

from the logic of Figure 3.1 on page 20; they do not apply to the extended logic of Sec

tion 3.2. The proofs of Lemmas 18, 19, and Theorem 4 can easily be generalized to deal

with the extension. However, we have not yet been able to prove Lemma 20 for the extended

decision procedure.

Lemma 18. If invoked with a normal set <I> <P' will be normal if the recursive call of line

14 is reached.

Proof. If <f> is normal, then any applicable IR r wil l have all its free terms x, y, z, x\,

etc. instantiated as variables of 4>. Inspection of all IRs reveals that if the free terms are

instantiated with variables, then any consequent wil l either be an equality between variables,

disequality between variables, a set of reachability literals involving two/three variables, or

a set of between literals involving three/four variables. In the first case, <$>' is assigned by

69

line 9, and clearly performing the substitution preserves normality. In all other cases, 4>'

is assigned by line 11, and 0 is a disequality literal, a set of reachability literals involving

two/three variables, or a set of between literals involving three/four variables. Addition of

such literals also preserves normality. •

Lemma 19. If DECTDEf̂ J returns UNSAT then <& is unsatisfiable.

Proof. (Sketch) If U N S A T is returned on line 3, then <5 contains a contradiction and is

obviously unsatisfiable. If U N S A T is returned on line 18, addition of all consequents of

an applicable IR yielded UNSAT from the recursive calls. The proof thus depends on the

Theorem 1, which states that the IRs of Figure 4.2 and Figure 4.3 are sound. •

Lemma 20. If DECIDE^ returns SAT then <I> is satisfiable.

Proof. (Sketch) If SAT is returned, then by applying a sequence of IRs to 4> the algorithm

reached a point in which SAT was returned by line 20. Let <f> be the set of literals that caused

line 20 to be reached. Then, <I> is obtained from <5 by adding disequality, reachability, and

between literals, and doing variable substitutions. Furthermore, <l> is consistent, closed, and,

by Lemma 18, normal. Thus, by Theorem 3, <l> is satisfiable, which implies the satisfiability

of <l> also. •

B.l Proof of Theorem 4

Theorem 4. The decision procedure always terminates.

Proof. Follows from the fact that none of the IRs create new terms, and there are only a

finite number of possibly literals that one could add given a fixed set of terms. Also, the

variable substitutions can only reduce the number of terms. •

70

Appendix C

Pseudocode of the Examples

1: procedure L I S T - R E V E R S E (X)
2: assume -a; = n i lA/*(x ,n i l) A/*(x , r) A - i ? = n i l A y = n i l
3: while —IJC= nil do
4: temp := f(x);
5: f(x):=y;
6: y:=x;
7: x:— temp;
8: end while
9: assert f*(y,t)

10: end procedure

Figure C l : LlST-REVERSE is a classical HMP example that performs in-place reversal
of a linked list. Predicates used to verify the example: = ni l , f*(x, n i l) , f*(x,t), / = ni l ,
y = n i l , f*(y,t), f*(temp,t), f(x)=temp.

71

1: procedure LIST-ADD(head, item)
2: assume -*/*(head, item) Af*(head,ri\\) Af*(head,t) A/(item) = nil A p = head
3: if head = nil then
4: head := p;
5: else
6: while ->f(p) — nil do
7: p:=/(p)\-
8: end while
9: /(p) := item;

10: end if
11: assert /*(head,item) A/*(head, n\\) A/*(head,t)
12: end procedure

Figure C.2: L I S T - A D D first traverses a linked list. Then, it adds a node to the end of the
list. Predicates used to verify the example:
f*(head,item), /*(head,r\\\), /*(head,t), /(item) = nil, p = head, head—n\\, /(p) — nil,
/*(head,p).

1: procedure ND-lNSERT(head,item)
2: assume -i/*(head, item) A /*(head,r\\\) A ̂ head — nil A / * (head, t) A ->t = nil A

/(item) = nil A p = head

9
10
11
12
13

while t rue do
if NDV/(/>) = nil then

/(item) :=/(p);
/(p) := item;
break;

else
P.•=/(/>);

end if
end while
assert / * (head, item) A /* (head, ni I) A /*(head,t)

end procedure

Figure C . 3 : ND-lNSERT nondeterministically inserts a node into the linked list. Pred
icates used to verify the example: /*(head,item), /*(head,n\\), head = n\\, /*(head,t),
f = nil, /(item) = nil, p — head, /(p) = n'\\, /*(head,p), /*(item, nil), /*(item,p), /*(item,t),
r(f(p),t).

72

1: procedure ND-REMOVE(nead)
2: assume -<head = n i IA / * (head, n i I) A /* (head, t)A-^t = n\\Ap — head A r—f{head)
3: while true do
4: if M D V / (r) = nil then
5: f(p)-=f(r);
6: break;
7: else
8: p:=r;
9: r:=f(r);

10: end if
11: end while
12: assert f*(head,n\\) A(f*(head,t)@r=t)
13: end procedure

Figure C.4: N D - R E M O V E nondeterministically chooses a node and removes it from the
list. Predicates used to verify the example: head = ri\\, f*(head,nil), f*(head,t), f = nil.
p = head, r=/(head), r=t, f(r) = n\\, f*(head,p),f*(p,r), f*(r,t), f*(f(p),t).

73

procedure Zip(x,y)
assume f*(x, nil) A / * (y, nil) A (/* (x, t) V / * (y, t)) A z = nil A p= nil A femp = nil
if x=n i l then

femp := x;
x:=y;
y := temp;

end if
while — IJC=n i I do

if z=ni l then
z :—x;
P '•= x;

else
f(p) -=x;
P '•= x;

end if
x := f(x);
f{p) := nil;
if -iy=nil then

femp := x;
x:=y;
y:— temp;

end if
end while
assert /*(z, nil) Af*(z,t)

end procedure

Figure C.5: ZIP zips two linked lists, shuffling the elements of both list into one. Then, the
tail of the longer list is appended to the resulting list. Predicates used to verify the example:
/*(x,nil) , /*(y,ni l) , f*(x,t), f*(y,t), z = nil, p = n\\, temp = n\\, /*(Z)nil), f*(z,t), x=n\\,
y = nil, f*(temp,t), p=x, f*(p,n\\), f*(p,t), f*{z,x), f*(z,p), p = t, f*(y,p), f*(temp,p),
r(x,p),f(P)=x.

74

1: procedure SORTED-ZlP(x,y)
2: assume f*(x, nil) A / * (y , nil) A -tf = nil A (rf(f) < d(f(t)) V / (r) = nil) A (/*(.x,f) ®

/*(y ,0) A merge — nil A temp — nil
while - a = n i l A - \ y = nil do

if rf(*) <rf(y) then
if -ifemp = nil then

f(temp) :=x;
else

merge := x;
end if
remp := x; JC := / (x) ;

else
if -'temp = nil then

f(temp) := y;
else

merge := y;
end if
temp:=y; y:= f(y);

end if
end while
if -<x= nil then

if merge = nil then
merge :=

else
f{temp) :=x;

end if
end if
if —>y = n i I then

if merge = nil then
merge := y;

else
/(/ewp) :=y;

end if
end if
assert f*{merge,t) A(d(t) < d(f(t))V f(t) = n\\)

end procedure

Figure C.6: SORTED-ZlP merges the elements of two sorted lists into one, also sorted.
Predicates used to verify the example: f*(x,nil), f*(y,nil), r = nil, d(t), d(f(t)), f(t) =
nil, f*(x,t), f*(y,t), merge = nil, femp = nil, f*(merge,t), x = nil, y = nil, d(x), d(y),
f*(merge,temp), f(temp)=x, f(temp)=y, temp—x, temp—y, merge—x, merge=y.
Comparison between data values is defined as a formula over boolean data predicates. For
instance, d(x) < d(y) is defined as -i(d(x) A -*d(y)).

75

1: procedure SORTED-lNSERT(/iead, item)
2: assume -if*(head,item) A f*(head, nil) A -ihead—n\\ A (/*(head,t) ® item — t) A

->t = nil A /(item) = nil A (d(t) < d(f(t)) V f(t) = nil) A curr = head A succ =
/(head)

3: while -^succ = x\\\Ad(item) > d(succ) do
4: curr := succ;
5: succ := /(curr);
6: end while
7: if d(head) > d(item) then
8: /(item) := head;
9: /lead := item;

10: else
11: /(item) := succ;
12: /(curr) := item;
13: end if
14: assert /*(head, nil) Af(head,t) A (d(t) < d(/(t)) V/(t) = nil)
15: end procedure

Figure C.7: SORTED-lNSERT inserts a node into a sorted linked list so that sortedness is
preserved. Predicates used to verify the example: /*(head, item), /*(head,W\\), head = n\\,
/*(head,t), item = t, r = nil. /(item) = nil, d(t), d(/(t)), / (r) = nil, curr = head, succ =
/(head), succ = nil, d(item), d(head), d(succ), /*(head,curr), /(item) = succ, /(curr) =
succ, /(item) = curr.
Comparison between data values is defined as a formula over boolean data predicates. For
instance, d(x) < d(y) is defined as ->(d(x) A ^d(y)).

76

procedure B U B B L E - S O R T (X)
assume / * (x, n i I) A / * (x, t) A -if = n i IA y=x A yn = f(y) A prev = n i IA last = n i I
while ->last = f(x) do

while ->yn = last do
if d(y) > d(yn) then

f(y) :=f(yn);
f(yn) :=y;
if prev = nil then

x : = y n ;
else

fiprev) := yn;
end if
prev := yn;
y n : = / (y) ;

else
prev := y;
y :=yn;
y n : = / (y n) ;

end if
end while
prev := nil;
/a^f := y;
y :=x;
y n : = / (x) ;

end while
assert f*(x, nil) Af*(x,t) A (d(t) < d(f(t)) V / (f) = nil)

end procedure

Figure C.8: BUBBLE-SORT sorts elements of a linked list using the bubble sort algorithm.
Predicates used to verify the example: f*(x, nil), f*(x,t), t — r\\\, y=x, yn=f(y), prev = nil,
Zosf = ni l , d(t), d(f(t)), / (f) = ni l , f(x) = last, yn = last, d(y), d(yn)y f*(yn,t), f*(last,t),
f*(x,prev), f(yn) =y, fiprev) = y , f = y , / (yn) = / (y) , f*(x,yn), d(last), prev=y.
Comparison between data values is defined as a formula over boolean data predicates. For
instance, d(x) < diy) is defined as -<(d(x) A ->d(y)).

77

1: procedure R E M O V E - E L E M E N T S (X)

2: assume - i * = n i l A f*(f(x),x) A f*(x,t) A btwn / (curr, t,x) Aprev=x Acurr — f(x)
3: while -*curr=x do
4: if d(curr) = false then
5: curr:—f (curr);
6: f(prev) := cwrr;
7: else
8: prev := curr;
9: curr :—f (curr);

10: end if
11: end while
12: if d(x)= false then
13: if ->prev=x then
14: * : = / (*) ;
15: f(prev) := x;
16: else
17: x : = n i l ;
18: end if
19: end if
20: assert f*(f(x),x) A((f*(x,t) Ad(t) = true)

V (^f*(x,t) A d (f) = false))
21 : end procedure

Figure C.9: R E M O V E - E L E M E N T S removes f rom a cyc l ic l ist elements whose data f ield

is false. Predicates used to veri fy the example: f*(f(x),x), curr = x, prev = x, d(curr),

d(x), f*(x,t), d(t),x=ri\\, curr=f(x), btwn/(curr, t,x), f(prev) = curr, f (f (prev))=curr,
f{f(x),prev), prev = curr, f*(t,prev), f(prev) =t, f(curr) =x.

78

procedure R E M O V E - S E G M E N T (X)
assume - a = n i l A /* (/ (*) , *) Atemp = ri\\ A y = x A z = n i l
while -itemp=x do

if d(y) = false then
temp := f(y);
y := temp;

else
break;

end if
end while
z := y;
while ->z—x do

if d(z) = true then

z := fewp;
else

break;
end if

end while
if ->y=z then

/ (y) := nil;

/ (y) : = z ;
end if
assert f*(f(x),x)

end procedure

Figure CIO: REMOVE-SEGMENT removes the first contiguous segment of elements
whose data field is true from a cyclic singly-linked list. Predicates used to verify the exam
ple: f*(f(x),x), * = n i l , temp = nil, y=x, z = nil, x = temp, z = x, z-y, d(y), d(z), f*(z,x),
f*[z,y), btwn / (y,z,x), btwnf (y,temp,x), f*(y,x).

79

1: procedure SEARCH-AND-SET(x,data; ,datai)
2: assume —>JC = n i I A f*(f(x),x) A f(x) — curr A f* (x, t) A btwn/(curr, t,x) Atrue
3: d\ (x) := true;
4: d2(x) := true;
5: while ^curr—x do
6: if dl (curr) = data; A d 2 (curr) — data2 then
7: break;
8: else
9: d\(curr) true;
10: d2(curr) := true;
11: curr := f (curr);
12: end if
13: end while
14: assert f*(f(x),x) Af*(x,t) A-^x—r\\\Atrue
15: assert (x — curr Ad\(t) Ad 2(f))

V (-ix = curr A di (cwrr) = data/ A d 2 (cw/r) = data2
A ((btwn/(x,t,curr) A^t —curr Ad\(t) Adi(t))

V (btwny(x,t,curr) At —curr)
V - i btwn f (x, t, curr)))

16: end procedure

Figure C . l l : S E A R C H - A N D - S E T searches for an element with specified data fields in a
cyclic singly-linked list, and sets data fields of previous elements to t rue. Predicates used
to verify the example: f*(f(x),x), f(x) = curr, d\(curr), d2(curr), data/, datai, x = curr,
f*(x,t), x=nil, btwnf(curr,t,x), btwnf(x,t,curr), d\ (t), d 2(f), true, curr = t, x = t.

80

1: procedure SET-UNiON(a,fe)
2: assume f(a) = curr A /* {/(a), a) A /* (f(b), b)
3: assume f*(a,t) f\->f*(b,t) A->d(t)
4: assume -if*(a,s) Af*(b,s) Ad(s)
5: assume ~^d(a) Ad(b)
6: assume btwny(/(a),r,a) A btwn f(f(b),s,b)
7: assume -tf = nil A —"51 = niI
8: tmpd:=d(b);
9: d(a) := rmpd;

10: while -<curr — a do
11: d(curr) := fmpd;
12: curr:—f (curr);
13: end while
14: tmp := f(a);
15: / (a) :=/(/>);
16: f(b):=tmp;
17: assert f*(f(b),b) Af*(b,t) Ad(t) Af*(b,s) Ad(s) Ad(b) A ->t = nil A -tf = nil
18: end procedure

Figure C.12: S E T - U N I O N combines two cyclic singly-linked lists. Predicates used to
verify the example: a = curr, f(a) = curr, f*(f(a),a), f*(f(b),b), f*(f(a),t), f*(f(b),t),
d(t), f*(f(a),s), f*(f(b),s), d(s), d(a), d(b), btwn f(f(a),t,a), btwnf(f(b),s,b), f = nil,
5 = nil, tmpd, d(curr), btwn/(/'(a), s,b), btwn f(tmp,t,a), btwn j (curr,t, a).

81

1: p rocedu re CREATE-lNSERT (nead)

2 : assume p — head A -tf = n i IA / * (head, n i I) A -<head = n i IA / * (f(malloc) ,malloc) A
-'/(malloc) = pmalloc A item = nil A f(pmalloc) = malloc A ~*malloc = nil A
/* (malloc, pmalloc)

3 : assume (f*(head,t) A ~<f*(malloc,t)) V (head,t) A/*(malloc,t))
4 : assume ->f (malloc) = pmalloc;
5: item := malloc;
6: malloc := /(malloc);
7: /(pmalloc) := malloc;
8: wh i l e t rue do
9: i f M) V / (p) = nil then

10: /(item) :=/(p);
1 1 : /(p):=item;
12: b r e a k ;
13: else
14: p:=f(p);
15: e n d i f

16: end wh i l e
17: assert -tf = ni IA / * (head, niI) A -*head = niIA / * (/(malloc), malloc) A - n ' f e m = niIA

/*(head, item) A/(pmalloc) = malloc A -^malloc• = nil A / * (malloc, pmalloc)
18: assert (/*(head,t) A-*/*(malloc,t)) V (^/*(head,t) A/*(malloc,t))
19: end p r o c e d u r e

F i g u r e C . 1 3 : C R E A T E - l N S E R T creates a new node {malloc) and inserts it nonde
terministically into a linked list. Predicates used to verify the example: /*(head,t),
n i l = / (p) , p — head, f = nil, /*(head,nil), /icat/ = nil, /*(/(malloc),malloc), /(malloc) —
pmalloc, /*(malloc,t), item = nil, /*(head,item), /(pmalloc) = malloc, malloc = nil,
/*(malloc,pmalloc), /*(head,p), /*(item,n\\), /*(item,p), /*(item,t), /*(/(p),t) item =
t, /(pmalloc) = item, /(/(pmalloc)) = malloc, /*(malloc,item), n\\=/(item).
Lines 4 - 7 model a malloc statement by removing a node from an infinite cyclic list which
represents unallocated nodes.

82

1: procedure CREATE-lNSERT-DATA(nead)
2: assume p = head A —•/ = nil A / " * (head, ni I) A ->head — n i IA / * (f(malloc), malloc) A

-^/(malloc) = pmalloc A /rem = nil A /(pmalloc) = malloc A -^malloc — nil A
/* (malloc, pmalloc)

3: assume (f*(head,t) A->/* (malloc,t) A^(d(head) ®d(t)))
V (-if*(head,t) A f*(malloc,t))

4: assume -i/'(malloc)— pmalloc;
5: /rem := malloc;
6: malloc := f (malloc);
7: f (pmalloc) :— malloc;
8: tmpd := d(head);
9: d(item) := tmpd;

10: while true do
11: if N£>V/(/>) = nil then
12: f(item):=f(p);
13: /(/?) := /rem;
14: break;
15: else
16: p:=f(p)\
17: end if
18: end while
19: assert —.f = nil A / " * (/read, ni I) A ->head — n i IA / * (/(malloc), malloc) A ->item = nil A

/ * (/read, /rem) A /(pmalloc) — malloc A -<malloc = ni IA / * (malloc,pmalloc)
20: assert (/*(head,t) A (malloc,t) A~>(d(head)®d(t)))

V (-^/*(head,t) A/* (malloc,t))
21: end procedure

Figure C.14: CREATE-lNSERT-DATA creates a new node, initializes its data field, and
inserts it nondeterministically into a linked list. Predicates used to verify the example:
r = nil, /*(head,t), nil = /(/?), p — head, /*(head,n\\), head — x\\\, /*(/(malloc),malloc),
/(malloc) = pmalloc, /*(malloc,t), item — nil, /*(head, item), /(pmalloc) = malloc,
malloc = nil, /*(malloc,pmalloc), d(head), d(t), /*(item,p), /*(item,t), /*(/(p),t) item =
t, /(pmalloc) = item, /(/(pmalloc)) = malloc, /*(malloc, item), nil = /(item), /*(head,p),
f*(item, nil), tmpd.
Lines 4-7 model a malloc statement by removing a node from an infinite cyclic list which
represents unallocated nodes.

83

1: procedure CREATE-FREE(/iearf)
2: assume p = head A -if = n i IA / * (head, ni I) A -<head = n i IA / * (/(malloc), malloc) A

^f (malloc) = pmalloc A item — nil A /(pmalloc) — malloc A -^malloc — nil A
/* (malloc, pmalloc)

3: assume (/*(head,t) A-</*(malloc,t)) V (-•/*(head,t) A/*(malloc,t))
4: assume -'/(malloc) = pmalloc;
5: item := malloc;
6: malloc := /(malloc);
7: /(pmalloc) := malloc;
8: while true do
9: if NDV/(/>) = nil then

10: /(item) := /(p);
11: /(p):=item; break;
12: else
13: P-=/(p);
14: end if
15: end while
16: p :— head; r:=f(head);
17: while true do
18: if NDV/(r) = w\ then
19: / (/ ») = = / W ;
20: /(pmalloc) :— r;
21: / (r) := malloc;
22: malloc := r; break;
23: else
24: p:=r;r:=/(r);
25: end if
26: end while
27: assert -if = n i IA / * (head, ni I) A -ihead = n i IA / * (/(malloc), malloc) A ->item = n i IA

/(pmalloc) = malloc A -^malloc — nil A / * (malloc, pmalloc) A -if* (head, r)
28: assert (f*(head,t) A -if*(malloc,t) A ->r—t A (f*(head, item) © r=item))

V (-•/* (head, t) A f* (malloc, t) A (f* (head, item) ®r — item))
29: end procedure

Figure C.15: CREATE-FREE creates a new node and inserts it into a linked list.
Also, removes a node from the list and frees it. Predicates used to verify the example:
f*(head,t), <n\\ = f(p), p — head, r = nil, f*(head,nil), head = n\\, /*(/(malloc),malloc),
/(malloc) — pmalloc, /*(malloc,t), item = nil, /*(head, item), /(pmalloc) = malloc,
malloc — nil, /*(malloc,pmalloc), n i l=/ (r) , r = f, r—item, /*(head,r), /*(head,p),
/*(item,n\\), /*(item,p), /*(malloc,item), /*(item,t), /*(/(/?),f) item — t, f(pmalloc) =
item, f(f (pmalloc)) = malloc, nil =/(/rem), f (pmalloc) = r, f*(f(p),r) f*(f(p)J(r)).
Lines 4-7 model a malloc statement by removing a node from an infinite cyclic list which
represents unallocated nodes. Lines 20-22 model a free statement by returning a node to
the infinite cyclic list of unallocated nodes.

84

1: procedure INIT-LIST(X)
2: assume f*(x,t) Af*(x,nil) Acurr—xA —>r = nil Atrue
3: while -*curr = n i I do
4: d(curr) := rrwe;
5: curr:—f (curr);
6: end while
7: assert / * (x , f) A / * (x , nil) Ad(t) A true A ->/= nil
8: end procedure

Figure C.16: I N I T - L I S T in i t ial izes the data fields of an acyc l ic s ing ly- l inked list. Pred i
cates used to veri fy the example: curr=W\\, curr=x, f*(x,t), f*(x,nil), d(t), true, f = ni l ,
f * (curr, t),f*(t, curr).

1: procedure INIT-LIST-VAR (X, my?)
2: assume f*(x,t)A/*(x,nil)Acurr=x A-^t = n\\ Atrue
3: while -^curr = n i I do
4: d(curr) := true;
5: curr := f (curr);
6: end while
7: tmp:=d(x);
8: assert f*(x,t) Af*(x, nil) A<i(f) A true A tmp A ->t — nil
9: end procedure

Figure C.17: i N I T - L l S T - V A R init ial izes the data fields of an acyc l ic s ing ly- l inked lists,
and also sets the value of a global data variable before terminating. Predicates used to verify
the example: curr= ni l , curr — x, f*(x,t), f*(x,n\\), d(t), true, r = ni l , tmp, f*(curr,t),
f*(t,curr), d(x).
Parameter tmp is a boolean variable.

1: procedure INIT-CYCLIC(X)
2: assume f*(x,t)Af*(f(x),x)Acurr=f(x) A btwnf(curr,t,x) A - a = n i l A true
3: d(x) := true;
4: while ̂ curr=x do
5: d(curr) := true;
6: curr := f (curr);
1: end while
8: assert f*(x,t) Af*(f(x),x) Ad(t) Atrue A ->x= nil
9: end procedure

Figure C.18: INIT-CYCLIC ini t ial izes data fields of a cyc l i c s ing ly- l inked list. Pred i
cates used to veri fy the example: curr = x, curr = f(x), f*(x,t), f*(f(x),x), d(t), true,
btwn/(curr,t,x), x = n i l , t=x, btwnf(x,t,curr), f*(t,curr).

85

procedure SORTED-lNSERT-DNODES(/ieaJ, item)
assume -if*(head, item) A/*(head, nil) A -^head = nil
assume / * (head, t) © item = t
assume -if = nil A /(item) = nil
assume d(t) < d(/(t)) V / (f) = nil
assume curr— head A succ — /(head) A/(g(t)) = r\\\Ag(g(t)) = r\\\A/(g(item)) —

ri\\Ag(g(item)) = ri\\Ag(t)=s
while -^succ — nW Ad(g(item)) > d(g(succ)) do

curr:— succ;
succ := /(curr);

end while
if d(g(head)) > d(g(item)) then

/(item) := head;
head := item;

else
/(item) :— succ;
/(curr) := item;

end if
assert /*(head, nil) A/*(head,t) A (d(t) < d(/(t))V/(t) — n\\) Ag(t)=s

end procedure

Figure C.19: SORTED-lNSERT-DNODES inserts an element into a sorted linked list
so that sortedness is preserved. Every node in the linked list has an additional pointer
to a node that contains a data field which is used for sorting. Predicates used to verify
the example: /*(head,t), succ = ri\\, d(g(item)), d(g(succ)), d(g(t)), d(g(/(t))), f = nil.
/ (f) = nil, d(g(head)), item = t, curr = head, /*(head, item), succ =/(head), /*(head, nil),
/(item) = nil, head = nil, /(g(t)) = nil, g(g(t)) = nil, /(g(item)) = nil, g(g(item)) = nil,
g(t)=s, /(item) = succ, /(curr) = succ, /(item) —curr, /* (head, curr).
Comparison between data values is defined as a formula over boolean data predicates. For
instance, d(x) < d(y) is defined as ->(d(x) A ->d(y)).

86

1: procedure REMOVE-DouBLY(/ieaa*, tail,node)
2: assume next * (head, tail) A prev* (tail, head) A nil = next (tail) A nil = prev(head)
3: assume next* (head, t) A prev* (tail, t)
4: assume next * (head, node) A prev* (tail, node)
5: assume next * (head, prev(node)) A prev* (tail, next(node))
6: assume -^node — nWA->f = nil
7: assume (head = t

A (head = t®t = f(g(t)))
A(tail = t®t = g(f(t))))

V (-ihead — t A(head = t®t = f(g(t)))
A (tail = t®t = g(f(t)))
A (head = node®node = f(g(node)))
A (tail = node® node —g(f (node))))

8: if prev (node) = n i I then
9: head : = next (node);

10: else
11: temp:—prev (node); next (temp) := next (node);
12: end if
13: if next (node) —n\\ then
14: tail:—prev(node);
15: else
16: temp ;= next (node); prev(temp) := prev(node);
17: end if
18: assert next* (head, tail) A prev*(tail, head) A nil = next(tail) A nil = prev(head)
19: assert -^next*(head,node) A->prev*(tail,node)
20: assert -inode = ri\\ A -if = nil
21: assert (node = t A -mext* (head, t) A -iprev* (head, t) A -^head — t A -<tail = t)

V (-mode=t A next* (head, t) A prev* (tail, t)
A(head = t®t = f(g(t)))
A(tail = t®t = g(f(t))))

22: end procedure

Figure C.20: REMOVE-DOUBLY removes an element from an acyclic doubly-linked list.
Predicates used to verify the example:
nil = prev(node), nil = next(node), next* (head, tail), prev*(tail,head),
n\\ = next (tail), nil = prev(head), next* (head,t), prev* (tail,t),
head — t, tail = t, t = prev (next (t)), t = next(prev(t)),
next*(head,node), prev*(tail,node), head = node, tail = node,
node —prev(next(node)), node = next(prev(node)),
next* (head, prev(node)), prev* (tail, next (node)),
ri\\ = prev (next (node)), n i I=next (prev (node)),
node = n\\, node = t, r = nil. head = next (node), head —temp, temp = prev(node),
next* (head, temp), temp = t, temp = next (prev (node)), next (node) — next (prev (node)),
prev(temp) — prev(node), prev(node) =t.

87

1: procedure REMOVE-CYCLlC-DouBLY(/zead,enfry)
2: assume next* (next(head), head) A prev* (prev(head), head)
3: assume prev* (head, next (head)) A next* (head, prev(head))
4: assume next* (head, t) A prev* (head,t)
5: assume next * (head, prev(t)) A prev* (head, next(t))
6: assume next * (head, entry) A prev* (head, entry)
7: assume next* (head, prev(entry)) A prev*(head, next(entry))
8: assume t = prev(next(t)) At = next(prev(t))
9: assume head = prev (next (head)) Ahead = next(prev(head))

10: assume entry — prev(next(entry)) A entry = next(prev(entry))
11: assume -<entry = head
12: p := prev(entry);
13: n := next (entry);
14: prev(n) := p;
15: next(p) := n;
16: assert next*(next(head),head) Aprev*(prev(head),head)
17: assert -^next* (head, entry) Aprev* (head, entry)
18: assert prev* (head, next (head)) A next* (head, prev(head))
19: assert head = prev (next (head)) Ahead — next(prev(head))
20: assert -*entry = prev(next(entry)) A ̂ entry = next(prev(entry))
21: assert -<entry = head
22: assert (next* (head,t) A prev* (head,t) At —prev(next(t)) A sentry = t

A t = next(prev(t)) Anext* (head,prev(t)) A prev*(head,next(t)))
V (^next* (head, t) A-iprev* (head, t)

A -it = prev(next(t)) A -if = next(prev(t)) A entry = t)
23: end procedure

Figure C.21: R E M O V E - C Y C L I C - D O U B L Y removes an element from a cyclic doubly-
linked list. Predicates used to verify the example:
next*(next(head),head), prev*(prev(head),head),
next* (head, t), prev* (head, t),
t = prev (next(t)), t = next (prev(t)),
next*(head,entry), prev*(head, entry),
prev* (head, next (head)), next* (head, prev(head)),
head = prev(next(head)), head = next (prev(head)),
entry — prev(next (entry)), entry = next (prev (entry)),
next*(head,prev(entry)), prev*(head,next(entry)),
next*(head,prev(t)), prev*(head,next(t)),
t — entry, entry = head, next(entry) = n, prev(entry) = p, n = head, prev(n) — p, n = t,
next(head) = entry, p = t.

88

1: procedure LlNUX-LlST-ADD(«ead,new)
2: assume next* (next (head), head) A prev* (prev(head), head)
3: assume -mext* (head, new) A ->prev*(head,new)
4: assume prev* (head, next(head)) A next* (head, prev(head))
5: assume next (new) = nil A prev(new) = nil
6: assume head = prev(next(head)) A head = next(prev(head))
7: assume (next*(head,t) A prev*(head,t) At = prev(next(t)) At = next(prev(t))

A -*t = new Anext* (head, prev(t)) A prev* (head, next (t)))
V (-*next*(head,t) A ^ prev* (head, t) A^t — prev(next(t)) At=new

A ->t = next(prev(t)) A ->next*(head,prev(t)) A ->prev*(head,next(t)))
8: p:— head;
9: n := next (head);

10: prev(n) := new;
11: next(new) := n;
12: prev(new) := p;
13: next(p) := new;
14: assert next* (next(head), head) A prev* (prev(head), head)
15: assert prev* (head, next (head)) Anext* (head, prev (head))
16: assert nexf * (head, t) A prev* (head, t)
17: assert next * (head, prev(t)) A prev* (head, next(t))
18: assert next* (head, new) A prev* (head, new)
19: assert t — prev(next(t)) At = next(prev(t))
20: assert ->next(new) = r\\\ A^prev(new) — n\\
21: assert head = prev (next (head)) A head=next (prev(head))
22: end procedure

Figure C.22: L I N U X - L I S T - A D D adds a node to a cyc l i c doubly- l inked list. Predicates

used to verify the example:

next * (next (head), head), prev* (prev(head), head),
next*(head,t), prev*(head,t),
t — prev(next(t)), t — next(prev(t)),
next* (head, new), prev* (head,new),
prev*(head,next(head)), next*(head,prev(head)),
next(new) = nil, prev(new) — nil,
head — prev (next (head)), head = next(prev(head)),
next*(head,prev(t)), prev*(head,next(t)),
t=new, p=head, next(new)=n, prev(n)=new, n=t, head=t, prev(new)—head, n=head,
n = next(head).

89

1: procedure LlNUX-LlST-ADD-TAlL(nead,n<?w)
2: assume next* (next (head), head) A prev*(prev(head), head)
3: assume prev*(head,next(head)) Anext*(head,prev(head))
4: assume -^next*(head,new) A ^prev*(head,new)
5: assume next(new) = nil A prev(new) = nil
6: assume head = prev(next (head)) A head=next (prev(head))
7: assume (next*(head,t)Aprev*(head,t)At = prev(next(t))At — next(prev(t))

A -<t = new A next* (head, prev(t)) A prev* (head, next(t)))
V (-next*'(head, t) A~>prev*'(head, t) A-^t —prev (next (t)) At—new

A -it = next (prev (t)) A -mext* (head,prev(t)) A -> prev* (head, next(t)))
8: p := prev(head);
9: n := head;

10: prev(n) :— new;
11: next (new) := n;
12: prev(new) := p;
13: next(p) :— new;
14: assert next* (next(head), head) A prev*(prev(head), head)
15: assert prev* (head, next (head)) A next* (head, prev(head))
16: assert next * (head, t) A prev* (head, t)
17: assert next* (head, prev(t)) A prev* (head,next(t))
18: assert next * (head, new) A prev* (head, new)
19: assert t = prev (next (t)) At = next(prev(t))
20: assert -mext(new) = nil A -*prev(new) = nil
21 : assert head = prev(next(head))Ahead — next(prev(head))
22: end procedure

Figure C . 2 3 : L I N U X - L I S T - A D D - T A I L adds a node to the tail o f a cyc l i c doubly- l inked

l ist. Predicates used to veri fy the example:
next * (next (head), head), prev* (prev(head), head),
next* (head, t), prev* (head, t),
t — prev (next (t)), t = next (prev (t)),
next*(head,new), prev*(head,new),
prev*(head,next(head)), next*(head,prev(head)),
next(new) — nil, prev(new) = nil,
head — prev(next(head)), head —next (prev (he ad)),
next*(head,prev(t)), prev*(head,next(t)),
t—new, p = t, prev(new)—p, next*(head,p), next(p)—head, new = prev(head),
prev* (p, next (head)), n = head, prev(new) = head, prev* (p, next (t)), n = t.

90

1: procedure LlNUX-LlST-DEL(/iead, entry)
2: assume next * (next (head), head) A prev* (prev (head), head)
3: assume prev* (head, next (head)) A next* (head, prev(head))
4: assume next * (head, t) A prev* (head, t)
5: assume next* (head, prev(t)) A prev* (head,next (t))
6: assume next* (head, entry) A prev* (head, entry)
7: assume next* (head, prev(entry)) A prev* (head, next(entry))
8: assume t = prev (next (t)) At = next (prev (t))
9: assume head = prev(next(head)) Ahead = next(prev(head))

10: assume entry = prev(next(entry)) A entry = next(prev(entry))
11: assume -mext(entry) = r\\\A-^prev(entry) = n\\
12: assume ->entry = head
13: p := prev(entry);
14: n := next(entry);
15: prev(n) := p;
16: next(p) := n;
17: next(entry) := n i l ;
18: prev(entry) := n i l ;
19: assert nexr* (next(head), head) A prev*(prev(head), head)
20: assert prev* (head, next (head)) A next* (head, prev(head))
21: assert -wex?* (head, entry) A -*prev* (head, entry)
22: assert -^next* (head, prev(entry)) A ̂ prev* (head,next (entry))
23: assert next(entry) = nil A prev(entry) = nil
24: assert /zeaa" = prev (next (head)) Ahead — next (prev (head))
25: assert -sentry = prev (next (entry)) A ̂ entry = next (prev(entry))
26: assert -sentry— head
27: assert (next*(head,t) A prev*(head,t) A r = prev(next(t)) At=next (prev (t))

A ->entry = t Anext* (head, prev(t)) A prev* (head, next (t)))
V (-inext*(head,t) A~<t — prev(next(t)) A^t —next (prev (t)) Aentry = t

A -<prev*(head, t) A -mext*(head, prev(t)) A prev* (head, next(t)))
28: end procedure

Figure C.24: LlNUX-LlST-DEL removes a node f rom a cyc l i c doubly- l inked list. Pred i
cates used to veri fy the example:

next*(next(head),head), prev*(prev(head),head), next*(head,t), prev*(head,t),
t = prev(next(t)), t = next(prev'(?)), next*(head,entry), prev*(head,entry),
prev* (head, next (head)), next* (head, previhead)), next(entry) = ni l , prev(entry) — ni l ,
head — prev(next(head)), head = next(prev(head)),
entry = prev(next(entry)), entry = next (prev (entry)),
next*(head,prev(entry)), prev*(head,next(entry)),
next*(head,prev(t)), prev*(head,next(t)),
t = entry, entry = head, next(entry) = n, prev(entry) = p, n = head, prev(n) = p, n — t,
next(head) = entry, p = t.

