
Pointcuts by Example
by

Edward J. McCormick

B . S c , Northeastern University, 2002

A T H E S I S S U B M I T T E D IN P A R T I A L F U L F I L M E N T O F
T H E R E Q U I R E M E N T S F O R T H E D E G R E E O F

Master of Science

in

The Faculty of Graduate Studies

(Computer Science)

The University O f British Columbia

December 16,2005

© Edward J. McCormick 2005

Abstract

The thesis of this dissertation is that it is possible to construct IDE-based tools that al
low the editing of AspectJ pointcut expressions through direct manipulation of effective
representations of join points in the code to which a pointcut applies.

There are two reasons why providing tool support for managing pointcut expres
sions is important. The first reason is that the pointcut-advice mechanism obscures
exactly what a given piece of code does. This is because the execution of any piece of
code may trigger additional advice of which the developer may be unaware. The sec
ond reason is that the creation and maintenance of pointcut expressions that capture the
intended set of join points is a difficult task. Pointcut expressions are typically based
on assumed naming and structural patterns in the code. We argue that without proper
tool support, it is difficult for the developer to properly verify that the conventions are
followed strictly enough for a pointcut to remain robust

Current tool support addresses these issues to some extent by alerting the developer
to where the local join points exist in the code, and the advice that applies at that point.
However, if the developer finds that the join points are incorrect he must open the aspect
and edit the pointcut expression outside the context of the code where the join point
should exist.

In this dissertation we present the notion of Pointcuts by Example. Using this tech
nique, a developer is able to specify examples in the code of join points that a pointcut
expression should or should-not match. As a constructive proof of existence, we de
veloped prototype tool support for editing pointcuts by example called the Pointcut
Wizard. The P W presents a G U I interface for editing pointcut expressions by selecting
add or remove operations at join point shadow sites.

ii

Contents

Abstract 'i

Contents iii

List of Tables v

List of Figures v i

1 Introduction 1
1.1 Thesis Statement 1
1.2 Background and Motivation for the Thesis 1

1.2.1 Aspect-Oriented Programming 1
1.2.2 Tool Support For Managing Pointcuts 2
1.2.3 Effective versus non-effective representations 4

1.3 Thesis Validation 6
1.3.1 Our Approach: Pointcut By Example 6
1.3.2 A Prototype Implementation 7

1.4 Conclusion 7

2 Related Work 9
2.1 The Difficulty of Writing Pointcuts 9
2.2 Current Language & Tool Support 10

2.2.1 Alternative Pointcut Languages 10
2.2.2 Pointcut Development Tools 12

2.3 Conclusions 14

3 The Tool 15
3.1 The AspecU Pointcut Language 15

3.1.1 Wild-card symbols 18
3.2 A User Interface for Shadow Browsing 19
3.3 The UI for Editing Pointcuts 22

3.3.1 Adding Shadows 22
3.3.2 Removing Shadows 25
3.3.3 Evaluating the Resulting Expression 28

3.4 Conclusion 29

iii

4 Implementation 30
4.1 Introduction 30

4.2 The Shadow Model 32
4.3 The Disambiguator 35
4.4 The Normalizer 36

4.4.1 Rules for Converting an AspectJ pointcut to an Expression on
Join Points 36

4.4.2 P C D N F : A Pointcut Expression in Disjunctive Normal Form . 39
4.4.3 Converting a P C D N F expression to AspectJ Pointcut Syntax . 39

4.5 The Resolver 41
4.6 Conclusion 41

5 Conclusion 43
5.1 Contributions 43

5.1.1 A UI for Effective Views of Join Point Shadows 43
5.1.2 A n Architecture to Support Effective Views of Join Point Shad

ows 44
5.2 Future Work 44

5.2.1 Usability and Usefulness 45
5.2.2 Improvements to Current Features 45

5.3 Concluding Remarks 47

Bibliography 48

iv

List of Tables

3.1 Kinded Pointcuts 16
3.2 Lexical-Structure based pointcuts 16
3.3 Binding pointcuts 17
3.4 Control-flow and conditional pointcuts 17

v

List of Figures

1.1 Gutter annotations mark shadows in A J D T 3
1.2 The Cross-References view of A J D T 5

1.3 method Ship.fire() 5

3.1 The Pointcut Wizard 20
3.2 Pointcut callsWithinFire is now an Active Pointcut 21
3.3 Adding a Constructor Call to the Active Pointcut 24
3.4 Removing a Method Call from the Active Pointcut 27

4.1 Data Flow Between Components 31

4.2 Shadow Signatures 33
4.3 The Shadow Model 34
4.4 P C D N F representation 40

5.1 A UI for Editing Pointcut Properties 45

vi

Chapter 1

Introduction

1.1 Thesis Statement
The thesis of this dissertation is that it is possible to construct IDE-based tools that
allow editing of Aspect! pointcut expressions through direct manipulation of effective
representations of join points in the code to which a pointcut applies.

This chapter consists of two sections. The first section explains and motivates the
thesis statement. The second section describes our validation of the thesis statement.

1.2 Background and Motivation for the Thesis

1.2.1 Aspect-Oriented Programming
Programming languages that support Aspect-Oriented Programming rely on the notion
of a join point mechanism to specify when, where and how an aspect should alter
program execution. In this dissertation we focus on AspectT [13], which is probably
the most well known and mature aspect-oriented language today. With AspectT, a
developer can create pointcut expressions to describe a set of join points at which to
apply some aspect functionality. Other aspect languages that offer similar support are
Ceasar [17], DemeterJ [9] and Aspectual Collaborations [15].

A l l these aspect-oriented programming languages have one thing in common: the
goal to provide novel language mechanisms to allow modularization of so-called cross-
cutting concerns. A concern is defined very generally as any kind of issue or problem
that a developer would want to reason about in relative isolation. Two concerns are
said to be crosscutting if a decomposition of the system that modularizes one concern
tends to cut across a decomposition along the lines of the other concern. The exis
tence of crosscutting concerns in a software system generally leads to tangling and
scattering [19]. Tangling means that one module contains a mix of code addressing
several concerns. Scattering means that code addressing a single concern is scattered
across multiple modules of the system. Tangling and scattering greatly increase the
complexity of software understanding, evolution and maintenance.

A n example of crosscutting concerns is given in [14]. The authors present a hy
pothetical situation of a developer creating a robotics application. The core concerns
during his design process are motion management and path computation. The applica
tion is successfully developed, but later it becomes clear that path optimizations would
greatly improve run-time results. Since optimization was not a high-priority in the
initial design of the system, the system is mostly decomposed along the lines of the

1

functional concerns which are well modularized. The path optimization concern cross
cuts the functional concerns of motion management and path computation. Therefore,
the implementation of the optimization concern ends up scattered across many differ
ent modules, as well as tangled with the other concerns addressed by those modules.
Future updates to the optimization code thereby become an exercise with much greater
difficulty.

The goal of AspectJ is to introduce a novel kind of modular unit, called an aspect,
which provides the developer with the means to modularize crosscutting concerns such
as the one in this example. If the modularization of the path optimization concern as
an aspect is successful, all the concern-specific code will be localized within a small
number of related aspects and classes and can be viewed and edited in relative isolation.

An AspectJ developer can write code in terms of Aspectf's join point model, in
which join points are principled points in the execution of a program. Using a syntactic
element of AspectJ called a pointcut designator, the developer is able to describe a
set of join points at which a particular piece of concern-specific code should execute.
The code that the developer wishes to execute at the join points matched by a particular
pointcut expression are contained in a modular structure similar to a Java method called
an advice. Put simply, the advice of an aspect describes what should happen and the
pointcut designator describes when.

1.2.2 Tool Support For Managing Pointcuts

In this dissertation we will be presenting a new technique for working with AspectJ
pointcut expressions. There are two reasons why providing tool support for managing
pointcut expressions is important.

The first reason is that the pointcut-advice mechanism obscures exactly what a
given piece of code does. This is because the execution of any piece of code may
trigger additional advice of which the developer may be unaware. This problem is
addressed by tools such as AJDT[5], which provide a visual representation of where in
the code an AspectJ advice will be executed. The static representation of a dynamic join
point is referred to as the join points shadow. Figure 1.1 shows the gutter annotation
mechanism AJDT uses to denote a join point shadow. By hovering over the annotation
the developer can view more specific information pertaining to the shadow, such as its
signature and the pointcut expression which it is matched by. Additionally, a menu
option at the shadow site allows the developer to hyperlink directly to the piece of
advice which will be executed at the join point during the program's execution. Tools
of this nature ease the burden on the developer of having to think both in terms of the
base code and any advice that might be executed.

2

\ft.

ft-

ft,

ft

ft.

••/•** c r e a t e a b u l l e t a n d f i r e i t *•/

void /f i r e () {
•/'/. f - i c i n g ' . a . , - s h o t x i t a k e s v e n e r g y

lad vised by SoundEffects.beforeQ: calls Within5hip,,r_EJf£RGY))

return;

• / / c r e a t e - =a b u l l e t - o b j e c t , so: ' i t . ' d o e s n l . t • I r i t •• , t h e v ' s h i p . t h a t ' s f i r l n g - i - i t

double x V = g e t X V e l f) + BVLLET_SPEED * (H a t h . c o s (o r l e n t a t i o n)) ;

double y V = g e t Y V e l () + EUULET_SPEED * (H a t h . s i H (o r l e n t a t i o n)) ;

/ / c r e a t e - , t h e . J a c t u a 1 B u l i e t s

new B u l l e t ' (

g e t G a m e () ,

(g e t X P o s () + U g e t S i z e Q / 2 + 2) i * (H a t h . c o s (o r i e n t a t i o n))) + x V) ,

(g e t Y P o s () + ((g e t S i z e () / 2 + 2) * (H a t h . s i n (o r i e n t a t i o a j i) ;) + ^yV)':,

y v j ;

IIP

•'Hi?'
ISP

Jfci|p§

(SSI

Figure 1.1: Gutter annotations mark shadows in A J D T

The second reason is that the creation and maintenance of pointcut expressions
that capture the intended set of join points is a difficult task. Pointcut expressions
are typically based on assumed naming and structural patterns in the code. We argue
that without proper tool support, it is difficult for the developer to properly verify that
the conventions are followed strictly enough for a pointcut to remain robust. If they
are not, a pointcut constructed by the developer may result in false-positive or false-
negative join points occurring at run-time. This problem is also partially addressed by
placing, as in A J D T , gutter annotations at join point shadow sites. Additionally, A J D T
provides a cross-references view, as shown in Figure 1.2, with which the developer can
look up any advice associated with a join point shadow in the code, or alternatively any
join point shadows associated with an aspect or advice.

The drawback with these tools is that although they present information concerning
the location and existence of join point shadows, they offer little help in correcting a
malformed pointcut expression. It is left as a task for the developer to inspect the
shadow sites and infer the error in the pointcut expression. In the following section we
present another technique to support the Aspect! developer: effective views.

1.2.3 Effective versus non-effective representations
In this section we will explain what we mean with the word effective in the thesis
statement. We will illustrate the usefulness of having an effective tool by illustrating
how a developer may use the powerful but non-effective Aspect! tool A J D T to edit a
pointcut expression.

As discussed in the previous section, creating and maintaining correct pointcut ex
pressions can be an onerous and error prone activity. The most common problem with
pointcut expressions is that they either capture too many join points or too few.

A J D T ' s gutter annotations provide some help by allowing developers to visit and
inspect the join point sites in the code and spot sites that are incorrectly matched (in
cluded or excluded) by a pointcut. However, when such points are discovered A J D T
provides no support to rectify the situation. To illustrate our point, we present a typical
scenario based on the section of code shown in Figure 1.3, which was taken from an
open source video game called Spacewar [1].

The object of Spacewar is for the player to shoot down enemy ships before being
shot down. In this scenario, the developer would like to create a version of the game
with sound effects. He decides.that this feature can be added most easily through an
aspect. As a first task, he'creates an advice to play a gunshot sound. The pointcut
for this advice must match every point during the execution of the program when a
ship fires a bullet at another ship. To begin, he creates an Aspect and some advice to
play the sound file. He then explores the code base until he finds a method (shown in
Figure 1.3) called f i r e in a class called S h i p . He returns to the Aspect and creates
the following pointcut to capture the execution of this method:

pointcut gunshot(): execution(void Ship.fire())

A J D T ' s cross references view confirms that a join point will be created for each
execution of f i r e . He then runs the program, but soon finds that his new sound
feature contains a bug: the sound is played every time the player attempts to fire the

4

method-call(boolean;spacewar.Ship.experidEriergy(double)y
c£> advisedby

v~ :.i>- SoundEf f ects. bef ore(): callsWithiriShip.,,
EJ •{->• method-call(double)ava.lang;Math;cos(dbuble j)

El • O advisedby
<••••••••& SoundEf f ects. bef gre(): callsWithinShip.;'.

• {•:;} method-call(double Java.lang.Math.sin(double))'
($> advisedby

• tf> SoundEf f ects. bef ore(): callsWithinShip..
•'•{•;;}'• method-call(spacewaf.Game;spacew

i- EJ-- advjsecfby
•SpuhdEff.ectSib.efore.Q; callsWithinShip..

{:;•}; meth
], g|.-.;. cj> advised by

^ SoundEffectsibeforei;):; callsWithinShip.:.
B--%}-methGd-call(double;java.lang

£]•••• c*> advisedby
tf> SoundEffects.befpreQ: callsWithinShip.

Figure 1.2: The Cross-References view of A J D T

class Ship {

void fire() {
/ / f ir ing a shot takes energy
i f (!expendEnergy(BULLET_ENERGY))

return;

double xV = getXVeK) + BULLET_SPEED * (Math.cos(orientation)); .
double yV = getYVelO + BULLET_SPEED * (Math.sin(orientation));

/ / create the actual bullet
new Bullet(

getGame(),
(getXPosO + ((getSize()/2 + 2) * (Math.cos(orientation))) + xV)
(getYPosO + ((getSize()/2 + 2) * (Math.sin(orientation))) + yV)

xV,
yV) •;

}
}

Figure 1.3: method Ship.fire()

5

gun, even if he is out of bullets and no shot is actually fired. In order to fix the problem,
he decides that he must refine his pointcut to capture only those join points where a
bullet is actually fired. B y re-inspecting the Ship.fire method's code, the developer
finds that the method only creates a B u l l e t object if an e x p e n d E n e r g y check (of
line number 3) is passed. To address this, he edits the g u n s h o t pointcut as follows:

pointcut gunshot(): withincode(void Ship.fire()) &&
call(* Bullet.new(..)) }

In this example, the developer diagnosed the bug in his program as an incorrectly
formulated pointcut. To find the error in the pointcut, however, it was necessary for
him to open and inspect the S h i p . f i r e method code. This was because the infor
mation necessary to form a correct pointcut existed at the join point shadow location,
rather than within the pointcut expression. The developer found by analyzing the f i r e
method body code that an appropriate fix was to create a pointcut which matched the
call to the B u l l e t constructor inside the f i r e method body. We propose that at this
point, it would have been desirable if tool support had allowed the developer to per
form this change by operating directly on join point representations provided by the
tool. Instead the developer was forced to produce the desired effect through an extra
level of indirection: navigating outside the location of the join point shadows to the
aspect where he could edit the corresponding pointcut expression.

Following the terminology from [11], we say that A J D T produces a non-effective
view of the join point representations in the code. A non-effective view allows you to
see but not change what is contained in the view. The opposite of a "non-effective" is
"effective". A n effective view of the join points matched by the pointcut would allow
the developer to both see and change what join points a pointcut matches.

This brings us back to the thesis of this dissertation, that it is possible to construct
IDE-based tools that allow editing of pointcut expressions through direct manipulation
of effective representations of join points in the code to which a pointcut applies.

1.3 Thesis Validation
The validation for our thesis is a constructive proof of existence. In other words we
constructed a prototype tool that provides an effective view of join point representations
in code. The bulk of this dissertation describes the design and implementation of the
prototype.

In this section we explain the most important idea behind the tools design and
provide an overview of the prototype.

1.3.1 Our Approach: Pointcut By Example

The main idea behind our approach towards building a tool that provides an effec
tive representation of Aspect! pointcuts is to allow the developer to edit the pointcut
expression by citing specific examples of shadows or non-shadows in the code.

We believe that since pointcut expressions are written in terms of patterns in the
base code, it is most natural to allow the developer to work on a pointcut from within the

6

base code. Our mechanism is called pointcut by example because join point shadows
in the base code can be used by the developer as specific examples of the kinds of join
points he wishes to add or remove from the set of join points the pointcut matches.

1.3.2 A Prototype Implementation
The Pointcut Wizard is a tool to support creating pointcuts by example. Using the
tool, a developer can specify whether to add or remove a join point from the pointcut
designator from the location of the join point site itself. B y allowing the developer
to effect changes in the pointcut designator during the exploration process without a
constant switching back and forth from the aspect code to the join point shadow site,
we believe a great deal of time in both creating and editing pointcut expressions can be
saved.

The user interface to the Pointcut Wizard is similar to A J D T . It is an Eclipse plug-
in and uses gutter annotations to highlight join point shadows. However the Pointcut
Wizard uses effective representations of join point shadows, allowing the developer to
edit the pointcut expression by specifying join point shadows in the code that it should
or should-not match. The user interface the tool provides is in the form of a context
menu at each possible join point site. If the shadow on a particular line is already
matched by the pointcut expression, the developer is given the option of removing it
from the set of shadows the pointcut matches. Alternatively, if a line of code contains
shadows that are not currently matched, and the developer wishes for an advice to apply
at that site, he may add the shadows to those matched by the pointcut through the same
context menu.

1.4 Conclusion

In this chapter we introduced Aspect Oriented Programming, and in particular the A O P
language AspectT. Aspect! programs can be difficult to maintain without proper tool
support for two reasons: the first reason is that the pointcut-advice mechanism can
obscure what a given piece of code does. The second reason is that it can be difficult
to write a pointcut expression that correctly matches the intended join points.

A J D T addresses these issues to some extent by alerting the developer to where the
local join points exist in the code, and the advice that applies at that point. However,
if the developer finds that the join points are incorrect he must open the aspect and
edit the pointcut expression outside the context of the code where the join point should
exist.

The thesis of this dissertation is that it is possible to construct IDE-based tools
that allow the editing of AspectT pointcut expressions through direct manipulation of
effective representations of join points in the code to which a pointcut applies.

To validate this thesis, we present the notion of Pointcuts by Example. Using this
technique, a developer is able to specify examples in the code of join points that a point-
cut expression should or should-not match. As a constructive proof of existence, we
developed prototype tool support for editing pointcuts by example called the Pointcut

7

Wizard. The Pointcut Wizard presents a G U I interface for editing pointcut expressions
by selecting add or remove operations at join point shadow sites.

In the following chapter we will examine related work in the area of pointcut editing
tools. Chapter 3 will present a more detailed explanation of how the Pointcut Wizard
can be used to edit pointcut expressions. In Chapter 4 we will describe the architecture
of the Pointcut Wizard. We will conclude with Chapter 5, where we will present our
plans for future work in this area and concluding remarks.

8

Chapter 2

Related Work

This dissertation introduces new tool support for creating and editing AspectJ pointcut
expressions.

In this chapter we present alternative methods for supporting the developer in these
tasks. The chapter is divided into two sections. The first section reviews related work
that motivates the need for better tool support for building and editing pointcut expres
sions. The second section discusses related work on developing tool support for writing
and maintaining pointcut expressions.

2.1 The Difficulty of Writing Pointcuts

In this section we will motivate the need for better tool support for writing and main
taining AspectJ pointcut expressions. We will first examine work by the developers
of A J D T which highlights the proper way to extract patterns from the base code in
order to form pointcuts that express an intention as well as capture the correct set of
join points. Then we will examine work that shows why the process of creating such a
pointcut can often be difficult, due to the difficulty in both extracting patterns from the
code and enforcing them once the pointcut has been written.

In [5] the authors guide the AspectJ developer in effectively using patterns to design
robust pointcuts. A robust pointcut accurately portrays the intentions of the developer,
capturing join points that exist in the current version of the code as well as raising the
probability that pertinent shadows in future versions will be captured. According to the
authors, the developer should include in the pointcut only that information which per
tains to the join points he wishes to match. A l l other information should be considered
extraneous and replaced with the appropriate wild-card symbol in the pointcut expres
sion. There are three types of wild-card symbols available in AspectJ. The " * " will
match any number of alpha-numeric characters in a type name or signature. The " .
will match a dotted list containing alpha-numeric characters. The "+" must follow a
type name and will match any sub-type of the type to which it is attached.

Although the wild-card symbols of the AspectJ language offer the user a great deal
of freedom in expressing his intentions, they may not always be sufficient. We see an
example of such a case in [6], where the authors identify a major obstacle in extracting
a particular cross-cutting concern. The authors state that extracting a concern often
necessitated pointcuts referencing seemingly random, yet specific places within method
boundaries of the original implementation. To capture the correct set of join points,
the developer created pointcut expressions which were essentially an enumeration of
pointcuts - each matching one of the so called random, yet specific places. The cause of

9

this situation, as stated by the authors, was that the code was (obviously) not designed
with the Aspect in mind.

This situation is described in more direct terms by the authors of [20]. This work
states that although the use of AspectJ may lead to greater modularity, it has not been
proven to actually increase evolvability. They describe current A O P languages, and
namely AspectJ, as simplistic because they are often unable to capture a crosscutting
concern without resorting to the enumeration method described above. The authors
argue that join points that share common properties that the developer would like to
capture with a single pointcut often do not share similarities in naming patterns. Since
AspectJ relies on these naming patterns to capture crosscutting concerns, the developer
may often find himself searching for patterns in the code that do not exist. When a
pattern can not be found, he is left to capture a crosscutting concern by enumerating
the patterns found at each join point location. In doing so, he creates very specific
references to program elements spread across many modules - greatly increasing the
coupling between aspect and base code. The authors believe that this situation occurs
frequently enough to make a good case against using languages like AspectJ. They
describe the situation as the AOP paradox: aspects, which are meant to increase the
evolvability of a system may be so closely coupled (and therefore dependent) on the
systems current implementation that its evolvability is lessened.

Creating a pointcut that enumerates each join point is a time consuming and error-
prone process, and currently available tools do not directly support this method for
AspectJ since the resulting pointcut creates a high degree of coupling between aspect
and base code. In the following section we will introduce work that uses a more ex
pressive pointcut syntax than AspectJ allows - creating the ability to base pointcuts on
properties of join points, rather than patterns in their signatures. Additionally, we will
introduce current work on providing tool support to assist the developer in evolving a
system that has been made fragile by the coupling between aspect and base code.

2.2 Current Language & Tool Support
In this section we discuss related work on developing language and tool support for
writing and maintaining pointcut expressions. Each work is an attempt to address the
problem motivated in the previous section: that when a developer resorts to enumer
ating the set of desired join points in a pointcut, a high degree of coupling between
aspect and base code is introduced into the system. This decreases the robustness of
the aspect, lowering the evolvability of the system as a whole.

The set of works we will look at can be loosely divided into two groups. The
first group suggests an alternative, more expressive pointcut language to answer the
coupling problem. The second presents a set of tools to alert the developer of the
impact of any changes he is making to the base or aspect code.

2.2.1 Alternative Pointcut Languages

AspectJ's pointcut language is based on patterns, rather than properties in the code.
The following two areas of research challenge this implementation. The first is based

10

on using a more expressive logic language to capture properties of join points. The
second allows the developer to use meta-tags to annotate the code.

Soul and Inductive Logic

In [4], the authors present the use of a specialized pointcut managing environment to
assist the developer in creating pointcut-like expressions written in the logic language
Soul [21].

As an initial step, the environment gathers background knowledge of the source
code in the form of logic facts. Once a database has been formed, the developer begins
to create a pointcut by iteratively selecting and de-selecting elements from the source
code that he wishes to be captured by the pointcut. As this occurs, the tool actively
maintains a set of logic rules that match the developers examples. As a final step,
the tool uses an inductive logic technique called relative least general generalization
[16] to reduce the amount of redundancy in the expression. When an incorrect set of
shadows is captured by an expression, the developer can either continue with more
iterations of providing positive and negative source code examples to the inductive
logic engine, or attempt to manually fix the expression.

A n important aspect of this environment is that it continually checks the correctness
of pointcut expressions. If the examples used to create the pointcut are refactored or
removed, the logic engine recomputes the pointcut to take these changes into effect.
This dynamic quality greatly increases the evolvability of an aspect oriented system,
because the developer has the option of refactoring the base code without needing to
worry about removing a necessary join point.

This work is relevant to ours because the technique used to form and edit pointcut
expressions is what this dissertation refers to as pointcut by example. The difference
between the two is that Soul is a more expressive logic language than AspectT. Using
Soul, the developer is able to express properties of a join point shadow other than its
signature and lexical context. The challenge of our work was to create a environment
that supported editing Aspect! pointcuts by example.

Annotations

Annotations are meta-data tags that developers can use to classify elements of the
code. They are typically processed by build-time tools or run-time libraries. The A O P
community has embraced the use of annotations, with tools such as JBoss [12], As
pect Werkz [3] and Aspect! [2] each providing tool support. Since we are focused on
AspectT in this dissertation, we will here illustrate the support A J D T provides for pro
gramming with annotations using AspectT.

A J D T allows the developer to both d e c l a r e annotations on elements of the code
and to create pointcut expressions that match join points based on annotations. We will
here provide an example based on the E J B 3.0 specifications [8], where methods have
a transaction policy associated with them that can be annotated as follows:

@Tx(TxType.REQUIRED)
vo id credit(Money amount) {...}

11

Here, the @Tx denotes the type of the annotation, and the T x T y p e . R E Q U I R E D is the
value of the annotation. If the developer wishes to use AspectJ to advise all method
annotated with the R E Q U I R E D type, he can write the following pointcut:

pointcut transactionalMethodExecution(Tx tx) :
execution(* *(..)) && ©annotat ion(tx) &&
if(tx == TxType.REQUIRED);

The © a n n o t a t i o n pointcut is new to AspectJ version 5. It allows the developer to
retrieve the value of the annotation (in this case the T x T y p e type) for each join point
matched by the pointcut.

This work is pertinent to ours because by using annotations the developer can ex
plore a system of code and annotate program elements as having a property he wishes to
capture with a pointcut expression. With AspectJ, it is also possible to use a d e c l a r e
statement to automatically annotate program elements.

The Pointcut Wizard performs a similar task, but the tools gutter annotations are
only used by the tool; no meta-data is added directly to the code. Another difference
is that the Pointcut Wizard allows the developer to edit a pointcut expression based
on examples from the code. Using annotations, the developer has no control over the
pointcut - he may only annotate program elements in the code and then write a pointcut
expression to capture those join points based on their annotations.

In the next section we will introduce other tools that support the developer in writ
ing or editing pointcut expressions.

2.2.2 Pointcut Development Tools

Another important issue for AspectJ developers is that of making sure pointcuts con
tinue to match intended join points as changes are made to the base code or the Aspect.
This can be difficult without proper tool support because the developer may be unaware
of where the join point shadows in the code are - and what properties they posses that
make them a target join point for advice. In this section we will present some examples
of how current tool support supports the developer in editing code while maintaining
the operability of both aspect and base code.

A J D T

A J D T [5] is the AspectJ tool suite developed by the AspectJ team. The tools contained
in the suite are geared towards helping the developer to understand what impact an
Aspect will have on the base code when the program is run. The suite is made up of
four tools:

• The Aspect Visualizer presents the developer with a macro-view of the impact
an aspect will have on his system. B y selecting an aspect, a view is presented in
the manner of SeeSoft [7], with join point shadows in the code highlighted in a
color determined by the developer.

12

• The Cross-References view, shown on page 5, provides a structured view of
advice and join point shadows in the base code. This view allows a developer to
view an outline of which advice applies to the join points in the code with which
he is working. Alternatively, an Aspect developer can use this view to determine
where an advice he is working on will apply in the base code. This view updates
dynamically as changes in the code are made.

• The Crosscutting Comparison View presents a view of how changes the devel
oper has made to either the base code or Aspect code have affected the number of
join points. Whereas the other views reveal information about how the aspect is
currently joining with the base code, this view shows join points that have either
recently appeared or recently disappeared as a result of changes to the code.

Gutter annotations appear in both Aspects and Java classes for a developer using
A J D T . If the developer is viewing an Aspect, the annotations provide a list of hyper
links to shadows in the code. If the developer is viewing a join point shadow in the base
code, hyperlinks are provided for the developer to open the advice which will be exe
cuted at the shadow. These annotations are an intuitive way of keeping the developer
alert to the interaction of Aspect and base code in the system he is working with.

Each of these tools provides the developer with an important view of how the aspect
code is interacting with the base code. However, none of the tools directly supports the
editing of pointcut expressions. It is up to the developer to deduce from the current set
of join points how and why a pointcut expression is failing to match shadows he wishes
to capture. Additionally, none of these tools are effective; they present information
dynamically, but provide no support in diagnosing or fixing problems. Therefore, if
the developer needs to troubleshoot a pointcut that is capturing too many join points,
he must first navigate to the advice which will execute at the join point. Then he must
navigate to the pointcut on which the advice is based. He must then begin an iterative
process of changing the pointcut and observing join points listed in the outline view
until the correct set appears.

PCDiff

P C D i f f [18] provides the same information as the Crosscutting Comparison View of
A J D T , but with a better visualization. The tool uses three different types of views.
Firstly, if a change the developer has made in the base code has added or removed a
join point, a plus or minus sign appears in the gutter next to the affected position. A d
ditionally, the creators of this tool make use of the Eclipse task view. Entries to the task
view are made every time a shadow is added or removed. Should the developer find that
a change he has made has negatively impacted the Aspect's functionality, he may find
this view very useful to scan through, in order to diagnose the problem. Lastly, the tool
provides a separate view which is very similar to the Crosscutting Comparison View.
As the shadows are added or removed they appear in a structured view which lists the
Java compilation unit, the Java class, the shadow type, and the advice whose join points
have been affected. Although this tool provides the developer with a better visualiza
tion than A J D T for how a change has impacted the number of join points, similarly to
A J D T it provides no assistance in diagnosing or fixing the associated pointcut.

13

2.3 Conclusions
Our dissertation states that it is possible to construct IDE-based tools that allow editing
of AspectJ pointcut expressions through direct manipulation of effective representa
tions of join points in the code to which a pointcut applies. In this chapter we pre
sented two groups of work focused on supporting the developer in creating and editing
pointcut expressions.

The first set of works presented language-based features geared toward allowing
the developer to match join points based on their properties rather than on their pat
terns. The first group developed an environment with support for editing Soul pointcut-
expressions by example. The second group provided support that allowed the developer
to annotate and match join point shadows with Java annotations.

The second group of works presented tool support for managing pointcut expres
sions. The first work we looked at was the A J D T tool suite. The tools in this suite
were designed to illustrate the relationship between AspectJ aspects and the base code.
This involved gutter annotations at join point locations, and a cross-references view
that provided an outline of information regarding local join points. The second tool,
PCDiff, was focused on alerting the developer of any impact on the set of local join
points that a current refactoring or editing of the code was having.

14

Chapter 3

The Tool

The Pointcut Wizard is unique because it allows the developer to edit a pointcut expres
sion from the location of the join point shadows. This support is made possible through
the use of effective gutter annotations. The operations supported by the Pointcut Wiz
ard include adding or removing shadows in the code from the set of shadows matched
by a pointcut expression. As the developer explores the base code, shadows matched
by the pointcut are shown with annotations in the gutter of the editor next to the line
where the shadow exists. As shadows are added or removed through either interaction
with the gutter annotation or direct manipulation of the pointcut expression, the gutter
annotations are refreshed to reflect each change.

This chapter will begin with a more formal description of the AspectJ pointcut lan
guage and an explanation of the features the Pointcut Wizard supports. Following that,
we will give a detailed explanation of how to use the Pointcut Wizard to edit a pointcut
while browsing Java code. Additionally, we will explain the transformation effected on
the pointcut expression through operations performed by the Pointcut Wizard.

3.1 The AspectJ Pointcut Language
The Pointcut Wizard is able to parse and annotate shadows for lexical-structure based
pointcuts, binding pointcuts and a subset of kinded pointcuts.1 In this section we will
explain each of these categories and which members of each category are supported by
the tool.

Kinded pointcuts: are pointcuts that each match a corresponding category of join
points. For example, the e x e c u t i o n pointcut matches method executions and the
c a l l pointcut matches method calls. Table 3.1 is a listing of all kinded pointcuts in
AspectJ version 1.1. The Pointcut Wizard supports a subset of kinded pointcuts. In the
table, the right-most column states whether the pointcut for that row is supported or
not.

We believe that the subset of kinded pointcuts we implemented for the prototype
of the Pointcut Wizard is enough for a developer to use the tool effectively. We plan to
add support for the rest of this set in production versions of the tool. We describe our
plans to do so in the Future Work section of Chapter 5.

Lexical-structure based pointcuts: are pointcuts that capture all join points oc
curring inside the lexical scope of specified classes, aspects or methods. The Pointcut
Wizard supports each of the two lexical-structure based pointcuts of the AspectJ point-
cut language - shown in Table 3.2.

'This categorization of pointcut expressions was used in [14] '

15

Table 3.1: Kinded Pointcuts
Join Point Category Pointcut Syntax Supported by PW
Method execution execution(MethodSignature) yes
Method call call(MethodSignature) yes
Constructor execution execution(ConstructorSignature) yes
Constructor call call(ConstructorSignature) yes
Class initialization staticinitializatiion(TypeSignature) no •
Field read access get(FieldSignature) yes .
Field write access set(FieldSignature) yes
Exception handler execution handler(TypeSignature) no
Object initialization initialization(ConstructorSignature) no
Object pre-initialization preinitialization(ConstructorSignature) no
Advice execution adviceexecutionQ no

Table 3.2: Lexical-Structure based pointcuts

Pointcut Syntax Join Point Category
within(TypePattern) Any join point occurring within a class or aspect
withincode(MethodSignature) Any join point occurring within a method body
withincode(ConstructorSignature) Any join point occurring within a constructor body.

Binding pointcuts: can be used in two ways. First, if the developer wishes to
access an object's state at run-time, he can edit the pointcut expression by hand to take
an object of that type as an argument. He can then use a binding pointcut to bind the
argument to run-time objects during program execution.

Second, the developer can pass a type name to a binding expression. Any run-time
object that matches a binding pointcut in both category and signature will be matched
by the pointcut. For example, in Table 3.3 below, there is a binding pointcut of type
t h i s . If a developer were to use this pointcut and pass to it as an argument a type
F o o , the pointcut would match every join point in the code where t h i s is of type
F o o .

Table 3.3 presents a list of all binding pointcut types:
To support binding pointcuts, the Pointcut Wizard performs a static analysis on the
code to determine (and annotate) all join point shadows where the run-time object is
possibly of the type passed to a binding pointcut as an argument. However, it does
not allow the developer to create pointcut designators of this type while browsing the
code. To make such a feature useful, the P W would need to also support the developer
in selecting variables and fields in the code that he wishes to bind. We do believe each
of these features is useful though - a topic we discuss in the Future Work section of
Chapter 5.

Control-flow and conditional pointcuts, shown in Table 3.4, are dynamic point-
cuts and do not have a direct representation in the source code. The conditional check
pointcut if also depends on run-time information to determine a shadow and was there
fore not included.

A developer using A J D T is alerted to the dynamic nature of a join point shadow by

16

Table 3.3: Binding pointcuts

Pointcut Syntax Join Point Category

thisfTypePattern or Object Identifier) A l l join points where t h i s is an

object of the type passed as an
argument to the pointcut.

target(TypePattern or Object Identifier) A l l join points where the
object on which a method call
is performed is of the type passed
as an argument to the pointcut.

args(List of TypePattern or Object Identifier) A l l join points where the
method or constructor signature
matches the list of types passed
in as an argument to the pointcut.

Table 3.4: Control-flow and conditional pointcuts

Pointcut Syntax Join Point Category

cflow(pointcut) A l l join points in the control flow of any join point
matched by the pointcut passed as an argument.

cflowbelow(pointcut) A l l join points within the control from of any join
point matched by the pointcut, excluding the actual
join points themselves.

if(boolean expression) Does not match any join points, only evaluates
to a boolean value.

17

tool-tips that state a run-time check is performed at that location.
The Pointcut Wizard prototype does not support these types of pointcuts. In order

to support them, the tool would require a more expressive user interface. It would
also need a resolver component capable of resolving c f l o w pointcuts. Our thoughts
on design features to address these issues are discussed in the Future Work section of
Chapter 5.

3.1.1 Wild-card symbols

The Pointcut Wizard's support for wild-card symbols can be best explained broken
down into two categories: support for finding all shadows that match a pointcut ex
pression, and support for building pointcut expressions with wild-card symbols based
on examples from the code. We will discuss the extent of support for each category
here.

The three wild-card symbols that AspectJ supports are "*", "+", and " . ." . The
following list presents an explanation of the meaning of each type of wild-card, as well
as the extent to which each is supported by the Pointcut Wizard.

The star pattern, "*", denotes any number of characters except the period. Using
this pattern the AspectJ developer is able to form regular expressions to match patterns
in the code. For example, he can match all method names that contain the word log
with the following expression: * l o g * . Using AspectJ, the star can be used at the
middle, beginning, end or both sides of a set of characters.

The Pointcut Wizard supports the star pattern only for the case where the star is
not combined with any other characters. A developer can therefore either use a star to
capture all names or he can use the actual name. In our Future Work section in Chapter
5 we present our plans for providing full support for the star pattern in a future version
of the Pointcut Wizard.

The plus pattern, "+" denotes all sub-types of any type name it follows. For ex
ample, the following pointcut:

pointcut starPatExO: call(* Foo+.*(..));

will match any method call where the receiver class is of type F o o or any of its sub
types. This operator can be used on any type name, in any type of pointcut designator
AspectJ supports.

The Pointcut Wizard does not currently support this operator.
The dot-dot operator " . . " denotes any number of characters including any num

ber of periods. Using this pattern the developer is able to match fully qualified path
names and lists of arguments. Consider the following example:

pointcut dotDotPatEx(): call(* j a v a . u t i l . . * . * (. . , Bar))

The receiver of this method call can be any type contained j a v a . u t i l or any of its
sub-packages. The arguments list can match any arguments list as long as it ends in
type B a r - including the case where B a r is the only argument.

The Pointcut Wizard prototype supports the use of this pattern in place of an argu
ments list to match signatures with any number of arguments.

18

3.2 A User Interface for Shadow Browsing
In this section we will present the user interface for exploring the set of shadows
matched by a pointcut expression.

The developer can begin using the Pointcut Wizard view by opening an Aspect.
The view organizes information about the Aspect as a tree hierarchy, with the Aspect
as the root node, pointcut expressions as child nodes of each Aspect, and shadows as
the children of each pointcut. The view on the left-hand side of Figure 3.1 shows an
example of an Aspect open for editing in the Pointcut Wizard view. In the view the
top level node, named Pointcut Shadows, notes the selection made by the developer
to reveal all shadows matched by a pointcut expression in any of the Aspects with
which the developer is working. Selecting any of the nodes in this view will open the
associated program element in the code editor.

In this example, the developer has opened the SoundEffects Aspect and selected the
node for a pointcut named callsWithinFire. The node has expanded to reveal a list of
all join point shadows in the code that match callsWithinFire. The expression for the
pointcut is shown bellow. It was written to capture all method calls made from within
the method f i r e in class S h i p .

pointcut callsWithinFire(): (call(* *.*(..)) &&
withincode(void Ship.fire()));

To view shadows in the Java code editor, the developer must select an Active Point-
cut. In order to reduce the complexity involved in navigating context menus at the
shadow sites, only the shadows for an active pointcut are shown in the code editor.
When a pointcut is active, context menus at join point shadow sites pertain only to that
particular pointcut. To make a pointcut active, the developer must select that option
from a context menu at the pointcut node in the Pointcut Wizard view.

Once the developer has chosen an active pointcut, lines in the code editor that
contain a shadow matched by the pointcut are marked by a pointcut gutter annotation.
In Figure 3.2, the developer has selected callsWithinFire as his active pointcut. The
lightning bolt gutter annotations along the left-hand side of the code editor each signify
that at least one matched shadow exists on that line.

19

'©-JQuery sf\ ~ ~ $ 1 7 ° B

iTree 1:SpaceWar 1

i Tree | Console |

I E © fttntcut Shadows'

| SouidEffects

accelerate-

caDsWithifire

—:?S1 fire calls experidEnergy

--tej fire calls getGame

--tel fire calls.getSze

~tej fire cals get5ze

- f e i fire cab.geOTos

- t e j fire caDs getXVel

- f e j fire cafe.gecYPqs

--fejfirecals.getyVel

gurfte

maiiMethod

planesCdfcfc

playerDead

/*.?• create a bullet and f i r e i t V

void f i re ') (

/ / • f i r i n g a shot takes energy

i f ; lexper.dEr.ergy (SSLLfT_£K£RC?Y)):

return;

21

/ /create a bullet object so i t doesn't hit the ship that's f i r i n g i t

double xV = getXVelO + EULLET_S?EE2 * (Hath, cos (orientation) j ;

double yV =. getTVel() +' BULLET SPEED * (Hath.sin(orientation)]; n
/ / create the actual bul let

hew Bullet(

getGame 0 ,

(getXPpsO +

(getYPosO +

xV,

yV);;

[getSize()/2 + 2)

(getSize()/2 +. 2)

(Hathi-cos (orientation)')')' + xV),

(Hath.sin(orientation))) +. yV),

1

Figure 3.1: The Pointcut Wizard

http://lexper.dEr.ergy

1— v, 1 ; ; ' — ~ ^

:[|J|5liip.java-^\n-SodncEffects.aj '• . ; °'D
1 Tree 1: SpaceWar | ' .
l i - " •• - •

Tree | Console | ,' ' " :
B~®- Pointcut Shadows:

' B 0 SouridEffects
B-9 accelerate

ESEG23
h-tED fire calls expendEnergy
j~~?53| fire calls getSanie
•h'Jt fire calls getSze
• t=D fire calls getSize
j-- fcp fire calls getXPos'
!~ t s | fire calls getXVei'
l--fel fire calls getYPos"

j-^'fire'cailsgetvyei
a-? gunfire
3 9 iriainMethod
% 9 planesColtde
B-9 playerOead

L

m
1

1

if

If

d
/ **• c rea te a b u l l e t and f i r e i t . */ • ,

. . . • -•>-• • • {

void fire() (<.j j

/ / • f i r i n g a s h o t - t a k e s energy Jgf^1

i f (IexpendEnergy(BULLET__ENERGYi:)
return; j

//create'--a b u l l e t - o b j e c t :30 i t - doesn ' t , h i t - the ' s r i i p - t h a t ' s f i r i n g i t

doable xV = getXVei() +.BULLET SPEED * (Hath.cos(orientation|);
double yV = getYVelt) •+. BULLET_SPEED * (Hath; sin (orientation)); g^,

/ / c rea te t h e . a c t u a l b u l l e t & :

' ' ' ' ' ^ % ' -

.new B u l l e t f |t§«

getGameilv ,
(get-XPosfj + ((getSize (]/2.+.:2) * (Hath-, cos (orientation)')) + xV), CJi

1 Tree 1: SpaceWar | ' .
l i - " •• - •

Tree | Console | ,' ' " :
B~®- Pointcut Shadows:

' B 0 SouridEffects
B-9 accelerate

ESEG23
h-tED fire calls expendEnergy
j~~?53| fire calls getSanie
•h'Jt fire calls getSze
• t=D fire calls getSize
j-- fcp fire calls getXPos'
!~ t s | fire calls getXVei'
l--fel fire calls getYPos"

j-^'fire'cailsgetvyei
a-? gunfire
3 9 iriainMethod
% 9 planesColtde
B-9 playerOead

L

m
1

1

if

If
Multiple markers at this line; . . ,'\. n) |) .+'yV), ||t -

- Method Cai: "int sĵ war.Ship.getSzeO" shadowVeated by pointcut'calsW S-
- Method Cai; "doublespacewar'.Sp̂ eObject.qetYPosO" shadow created by pointcut caUWithiriFire f § &

1 Tree 1: SpaceWar | ' .
l i - " •• - •

Tree | Console | ,' ' " :
B~®- Pointcut Shadows:

' B 0 SouridEffects
B-9 accelerate

ESEG23
h-tED fire calls expendEnergy
j~~?53| fire calls getSanie
•h'Jt fire calls getSze
• t=D fire calls getSize
j-- fcp fire calls getXPos'
!~ t s | fire calls getXVei'
l--fel fire calls getYPos"

j-^'fire'cailsgetvyei
a-? gunfire
3 9 iriainMethod
% 9 planesColtde
B-9 playerOead

L

m
1

1

if

If Figure 3.2: Pointcut callsWithinFire is now an Active Pointcut

Since more than one join point shadow may exist on a particular line, the developer
can hover over an annotation to view a tool tip listing the pointcut, the shadow, and the
type of shadow for each shadow in mat line of code. In Figure 3.2, he has prompted a
tool tip which reveals the two shadows on a line of the f i r e method: a method call
to S h i p . g e t S i z e () and a method call to S p a c e O b j e c t . g e t Y P o s () . We will
now explain how the developer can interact with a menu structure at these shadow sites
to effect changes in the active pointcut.

3.3 The UI for Editing Pointcuts
In this section we will illustrate the process a developer can use to edit a pointcut while
browsing code with the Pointcut Wizard.

There are a range of possibilities for implementing a system where the developer
can edit a pointcut by selecting examples from the code. The most popular of these is
by applying inductive logic. In Chapter 2 we presented an example of such work [4]
where a pointcut editing environment used inductive logic to reason about the examples
using information based on the current structure of the pointcut expression combined
with information from a database containing all structural relationships of the program.
However, in order to build this tool, the authors used a logic language called Soul to
express and edit pointcut expressions.

The Pointcut Wizard was designed to work with AspectJ pointcut expressions,
which are written in a less expressive language than Soul. Therefore, the informa
tion used in performing an edit operation on a pointcut comes only from the join point
shadow chosen as an example by the developer.

Because it is unclear what the developer is interested in when selecting a shadow
as an example, the Pointcut Wizard uses what we call a most-specific description to
identify it. This description identifies a shadows type, its signature, and the lexical
context within which it exists. This set of properties regarding a shadow make up what
we call the Shadow Model component of the Pointcut Wizard. A further explanation of
the model will be presented in Chapter 4.

In the remainder of this section we will present the user interface for adding and re
moving shadows matched by a pointcut expression. Following the description of each
operation, we will also present the impact for each type of operation on the pointcut
expression.

3.3.1 Adding Shadows

Using the Pointcut Wizard to add a shadow is a very simple process. To illustrate the
steps involved, we will continue with the same example from Figures 3.1 and 3.2.

In the previous examples, the pointcut expression callsWithinFire was used to cap
ture all method calls made from within S h i p . f i r e () . Suppose that the developer
had written a tracing advice with the intention that it trace all outgoing calls from
f i r e . If this were the case, the developer would soon realize that the constructor call
to B u l l e t was not being included in the trace. The reason is that a call pointcut can
use a method signature or a constructor signature, but one signature type can not match

22

both types of join points. In the remainder of this section we will highlight the steps
involved in using the Pointcut Wizard to change callsWithinFire so that it captures the
constructor call.

As a first step, the developer navigates to the f i r e method in the class S h i p . He
then opens the Pointcut Wizard view and selects callsWithinFire as his active pointcut.
Once the shadows have been marked with a gutter annotation (as shown in Figure 3.2),
the developer notices that there is no gutter annotation next to the constructor call to
B u l l e t .

To add the constructor call to the set of shadows captured by callsWithinFire, the
developer opens a context menu at the shadow site, as shown in Figure 3.3 on page 24.
Under the Joinpoint Shadow Operations sub-menu, he selects the option:

add Constructor Cal l :
11spacewar.Bullet.new(Game, double, double,

double, double)''
to pointcut callsWithinFire

As shown in the figure, the Pointcut Wizard includes the type of the shadow (con
structor call), the full signature of the shadow (s p a c e w a r . B u l l e t . new (Game,
d o u b l e , d o u b l e , d o u b l e , d o u b l e) and the active pointcuts name {callsWith
inFire). Once the section has been made, both the Pointcut Wizard view and the code
editor are refreshed to show the new shadow being captured by callsWithinFire. The
developer runs the trace program and finds that the fix was successful.

23

4^

• SoundEffects.aj

/ * * c r e a t e a b u l l e t and f i r e i t * /
v o i d f i r e () {

/ / f i r i n g a s h o t t a k e s , e n e r g y
i f (i e x pendE riergy(BULLET_ENERGY) t)

r e t u r n ;

/ / c r e a t e a b u l l e t o b j e c t so i t d o e s n ' t h i t t h e s h i p t h a t ' s f i r i n g i t
d o u b l e xV. - g e t X V e l () + BULLET_SPEED * (Hath , cos (or l e n t a t i o n)) :;
d o u b l e yV = ge tYVe l () ' ; + BULLET_SPEED * (Hath , s i n (o r i e n t a t i o n)) ;

/ / c r e a t e t h e a c t i i a l ' . b u l l e t

Breakpoint Ptoperhes

:Go;to.'Afjnotatfqn_.^

!Run As
.Debug As.
-.Team • \ . ,
•Compare With
Replace With

Add Bookmark,..

MddTask!..

Shew Quick Dfffy
' ^Show Une Numbers"

Folding

Gtri+SNft+Qr

- Preferences., r

ze()/2 + 2), * (Ha th , cos (o r i e n t a t i o n))) + xVJ>
ze()V2 + 2f * (H a t h . s i n (b r i e n t a t i o n))') + yV) ,.

Joinpoint Shadow Oper-atior add Constnjctor Call "spacewar.Bullet.new(<jarne, double, double, double, double/ to pointcut callswithmFire

Figure 3.3: Adding a Constructor Cal l to the Active Pointcut

Impact on the Pointcut Expression

The Pointcut Wizard uses detailed information about a shadow when forming the point-
cut to append to the current pointcut expression. In the above example, before the de
veloper had used the tool to change the pointcut expression, it had appeared as follows:

pointcut callsWithinFire(): (call(* *.*(..)) &&
withincode(void Ship.fire())) ;

When the selection was made, the Pointcut Wizard queried the site for the full
signature of the Bullet constructor and the method from within which it was made. A l l
of this information was used in creating the most-specific pcd, as follows:

call(spacewar.Bullet.new(Game, double, double, double, double))
&& withincode(void Ship.fire())

The current implementation of the Pointcut Expression uses detailed information
to describe the join point shadow so that no false positives are formed when the active
pointcut expression is edited to match the new join point. Following the add operation,
the pointcut expression will look as follows:

pointcut callsWithinFire():
((call(* *.*(..)) && withincode(void Ship.fire 0)) | |
(call(spacewar.Bullet.new(Game, double, double, double, double))
&& withincode(void Ship.fire())))

A side effect of this method, however, is that the pointcut expression grows consider
ably longer with each newly added shadow. Our methods for dealing with this issue
are presented in the following chapter, where we explain the tool's implementation.

3.3.2 Removing Shadows

To illustrate the process of removing shadows from the set of shadows matching a
pointcut, we will continue with our callsWithinFire example.

Suppose that while the developer was inspecting the shadows within the method
S h i p . f i r e () , he realized that the call to S h i p . e x p e n d E n e r g y should not be
captured by the pointcut. To remove this shadow, the developer must open the context
menu, as shown in 3.4, and select the following option:

remove Method Cal l :
1'boolean spacewar.Ship.expendEnergy(double)''

from pointcut callsWithinFire

Once the selection has been made, the Pointcut Wizard gathers a set of detailed infor
mation about the shadow and generates the following pcd:

call(boolean spacewar.Ship.expendEnergy(double)) &&
withincode(void Ship.fire ())

25

Because the selection was to remove the shadow from the set of shadows matching
the pointcut expression, the pcd is negated and then appended to the pointcut with a
logical A N D .

Having used the Pointcut Wizard to add a shadow and remove a shadow, the devel
oper has fixed the incorrect pointcut expression without ever leaving the code where
the shadows exist. Additionally, the pointcut expression callsWithinFire, shown below,
has been edited in a methodical manner, so that it can be read and edited directly if
necessary:

(

((call(* *.*(..)) && withincode(void Ship.fire())) &&
!(call(boolean spacewar.Ship.expendEnergy(double))))

I I
(call(spacewar.Bullet.new(Game, double, double, double, double))
&& withincode(void Ship.fire 0))

)

The resulting pointcut expresses the same semantic meaning, but has been normalized.
The technique used is described in Chapter 4.

26

remove Method Call "boolean spacewar.Ship.expendEnergy(double)" from pointcut callsWithinFire

add Reld Get_"int Ship.BULLETJENERGY" to pointcut callsWithinFire

• SouridEffects.aj •

create a b u l l e t and f i r e i t *•/
v o i d f i r e () : {

// f i r i n g a shot takes energy
'==^;^ . . ,^=^Tt jr : ENERGY) j;

! Toggle Breakpoint

*'Go to Annotation

Run As-:

Debug As

Team

Compare-With ,

Replace .With"

.-ctwi

Add Bookmark...

Add Task!:.

yjShowQuick '

Show Line'Numbers

Folding- •

yCJtVl+SHiffc+'Q"

. Preferences":.',

ect so i t doesn.'
+ B ULLET_ SPEED

+ BULLET_SPEED

b u l l e t

h i t the s h i p t h a t ' s f i r i n g
(Hath.,cos (ordentation)) •,
(Hathvsi ' 22 (or i e n t a t ion)) ;

t z e () / 2 + 2) * (Hath; cos (o r i e n t a t i o n))) + xV) ,
ze'()••/2 + 2) * (Hath, sin (orientation);)')- +. yV) ,

'A

%1
<i

J
- 1

31111 J 1

Joinpoint Shadow Operations

Figure 3.4: Removing a Method Call from the Active Pointcut

3.3.3 Evaluating the Resulting Expression

The original intention of the c a l l s W i t h i n F i r e pointcut expression was to capture
all calls made from within the method S h i p . f i r e () . The original version of the
pointcut appeared as follows:

pointcut callsWithinFire(): (call(* *.*(..)) &&
withincode(void Ship.fire())) ;

The developer then edited the pointcut twice. The first edit was necessary because the
pointcut did not capture constructor calls made from within S h i p . f i r e () . The add
operation he performed with the Pointcut Wizard resulted in the following expression:

((call(* *.*(..)) && withincode(void Ship.fire()))
I I
(call(spacewar.Bullet.new(Game, double, double, double, double))
&& withincode(void Ship.fire())))

The developer then performed a r e m o v e operation using the Pointcut Wizard to ex
press his new intention to capture all method and constructor calls except the one to
S h i p . e x p e n d E n e r g y . The edit resulted in a pointcut of the following form:

(
((call(* *.*(..)) && withincode(void Ship.fire())) &&
!(call(boolean spacewar.Ship.expendEnergy(double))))

I I

(call(spacewar.Bullet.new(Game, double, double, double, double))
&& withincode(void Ship.fire()))

)

We compare this to the following best case form of the pointcut expression.

((call(* *.*(..)) | | call(*.new(..)) &&
withincode(void Ship.fire())

Each version of the pointcut expression c a l l s W i t h i n F i r e correctly matches all
intended join points. However, the use of wild-card symbols in the second version
creates a pointcut expression that matches not only the constructor call to B u l l e t ,
but also any other constructor calls that may exist in a future version of the method.

In future versions of the Pointcut Wizard we plan to increase support in the user
interface for allowing the developer more freedom in creating a pointcut expression
that best reflects his intentions. One possible option is presented in the Future Work
section of Chapter 5. The Figure 5.1 on page 45 presents a mock-up of a possible
user interface that provides the developer with check-box options for specifying which
properties of a signature should be used to match join points.

28

3.4 Conclusion

This chapter covered two aspects of the Pointcut Wizard design. The first half of the
chapter provided an explanation of the types of AspectJ pointcut expressions the tool
currently supports. Following that explanation we provided an overview of the user
interface presented to the developer for the adding and removing of shadows from the
set matched by a pointcut expression.

We felt it was important to provide a brief explanation of the types of changes a de
veloper using the P W will see in a pointcut expression after performing add or remove
operations. This explanation was provided as an overview of the tool's functionality,
rather than as an explanation of how the tool is implemented. In Chapter 4 we take a
more detailed approach to describing the implementation of the Pointcut Wizard.

29

Chapter 4

I m p l e m e n t a t i o n

4.1 Introduction
In this chapter we will present the design of the Pointcut Wizard. First we will begin
with an overview of the tool's architecture. The Pointcut Wizard tool consists of four
components: the shadow model, the disambiguator, the normalizer and the resolver.
The shadow model was built to model all join point shadows in the code. The other
three components share information pertaining to a shadow based on this model. The
disambiguator is responsible for deciding the meaning of an operation performed at a
join point shadow and then mapping the information found at the join point site to a
poincut designator that will match it. The normalizer is responsible for reducing the
pointcut to normal form. Doing so allows the Pointcut wizard to remove redundan
cies that may appear in the pointcut expression following successive add and remove
operations. The resolver is responsible for identifying the set of shadows in the code
which match the pointcut expression. This information is sent to the user-interface so
that each shadow can be identified with a gutter annotation.

The data flow between these components is illustrated in Figure 4.1. To understand
the diagram, imagine that a developer has selected an active pointcut and opened the
Pointcut Wizard menu for a particular line of code. Before the menu is opened, the
disambiguator queries the shadow model for the set of shadows that exist on that line.
If the shadows are currently matched by the pointcut expression, the tool presents the
shadows information with a remove option, and if a shadow is not currently matched
by the expression, the tool will present an add operation.

The tool then waits for a developer to make a selection from the menu. Once a
selection has been made, the disambiguator creates a pointcut expression PCD' that
matches the selected shadow. Then, depending on the operation selected, the tool
acts one of two ways. If the add operation has been selected, the tool forms a new
pointcut PCD' by ORing the active pointcut PCD with the pointcut that matches the
selected shadow PCD'. If a remove operation is chosen, the tool creates PCD' by
A N D - N O T i n g PCD with PCD'.

The outcome PCD' of whichever operation has been chosen is then taken by the
normalizer component which reduces it to normal form. The newly formed pointcut
expression is then written to the aspect as a replacement for the active pointcut. The
resolver component then annotates all join point shadows that match the new version
of the pointcut expression.

The remainder of this chapter will provide a more detailed description of the im
plementation of each of these four components.

30

[• %
User;.Selects ADD or REMOyE.at shadow .site.

JResolver NF
! Adeniify Shadows that match PCD"

Figure 4.1: Data Flow Between Components

31

4.2 The Shadow Model
The shadow model is used by the Pointcut Wizard to model all shadows in the code.
It is used by the other components of the tool as a mechanism for sharing information
regarding shadows. In this section we will illustrate the design and implementation of
the model.

The shadow model was built on top of a source code browser called JQuery [10].
JQuery uses a declarative database as a back-end to query on properties of elements of
a code base. When the Pointcut Wizard is being used, the properties of each shadow in
the code can be modeled using this same database.

The class diagram in Figure 4.3 on page 34 is a representation for all of the prop
erties stored in the database for each shadow in the code. The diagram shows that
all shadows contain a S o u r c e L o c a t i o n field which represents their location in the
source code. Each SourceLocation object in the database is unique. Therefore, the
shadow model can extract information about a shadow from the database based on a
location in the source code.

As an example of how the shadow model is used, suppose the developer wishes to
perform an add operation for a shadow on a particular line of code. The disambiguator
component first creates a query that returns all shadows whose location in the source
code lies within that line. Then, another query is performed to find the types of shadows
that exist on that line. The possible shadow types are represented by the third layer of
the hierarchy in Figure 4.3.

When the shadow types for the shadows that exist on a line of code are known,
the signature properties for those shadows can be found through another set of queries.
The shadow types must be known before these queries can be created because different
shadow types are parameterized by different signature properties.

The second layer of the hierarchy in Figure 4.3 represents the three categories of
shadows that the Pointcut Wizard supports. The difference between the categories
of shadows are the signatures by which they are parameterized. The C a l l S h a d o w
and F i e l d A c c e s s S h a d o w shadow types each contain a thisSignature field which is
of type S i g n a t u r e P a t t e r n . A class diagram representation of signature types is
shown in Figure 4.2. The diagram shows that an object of type S i g n a t u r e P a t t e r n
will either be a constructor signature or a method signature. This is logical, because a
field access or call site will be made either from within a constructor or a method call.

Each of the shadow types expressed as the third layer of the shadow model hier
archy is parameterized by a targetSignature. This signature represents the signature
properties of the shadow itself, so each type of shadow contains a targetSignature of
the appropriate type.

In the next three sections we will describe the implementations of the components
illustrated in Figure 4.1.

32

Signature:

TypeSlgnature' SignaturePattern
-type ̂ ;ExaclNarnePattem"

MathodSlgnature
^ a ^ t ^ ' ^ B « (K ^ r r i < ^ t t . « m ' .
insturnTypeJ ExacWirrKrfatterri':.
:riarne;:: watlNameRanefh'".
•aips^ExactNam^

FlejdSlgnature
- type: Exac 'Naci iePal tem
-name;: E x a c t N a m e ^ U e r r t ;
T C l a s s N a i n e . : E x ^ t N a m e P a i W n

ConstructorSignature
dareNama. :;:ExacttoiTiePattern
args •: ExactNamePat.ern

Figure 4.2: Shadow Signatures

33

Shadow
^sourceliocation: SourceLocatiocv

Cat/Shadow

thisSignature: SignaturePattem
ExecutionShadow ReldAccessShadow

HhisSignature: SignaturePattern

ConstructorCallShadow

•targBtSjghature: CdnstrucmrSigfiatura
ConstructorExecutionShadow

•targetSignature.: Cor.structocSignature

FieldGetShadow

[•targetSignature,:.Fie[dSigiiature

MetHodCallShadow

targetSignature: MethodSignature

MethodExocutionShadow

targetSignature: MethadS^natuie
FloldSotShadow

: targetSlgnatur6" : . FialdStgnature.

s h a d o w t y p e s

Figure 4.3: The Shadow Model

4.3 The Disambiguator
The disambiguator is responsible for deciding the meaning of an operation performed
at a join point shadow and then mapping relevant information from the shadow site
to a pointcut designator. In this section we will describe the implementation of the
component.

When the developer selects an active pointcut, the resolver component of the Point-
cut Wizard creates a representation for each shadow in the code that it matches. The UI
of the tool then creates menu options at each site where a shadow exists. When the de
veloper selects an option, the disambiguator builds a new pointcut designator based on
the type of operations selected (add or remove) and information based on the shadow
model's representation for that shadow.

In the current version of the disambigutor, add and remove operations translate to
logical operations on pointcut expressions. Figure 4.1 on page 31 provides an overview
of each operation. The diagram shows that when the developer selects an add opera
tion, the disambiguator forms a new pointcut from the logical OR of the active pointcut
and the most specific pointcut which matches the selected shadow. If a remove op
eration is selected, the disambiguator forms a new pointcut from the active pointcut
AND-NOT the selected shadow's most specific pointcut.

The most specific pointcut is the pointcut that matches the smallest set of join points
that includes the shadow. This may at times include more shadows than the developer
has selected. For example, if two call sites with the same signature exist within the
same method, there is no way for the developer to specify one and not the other using
AspectJ - and therefore the Pointcut Wizard. If new versions of the AspectJ language
grow to support such cases, the shadow model of the Pointcut Wizard will be adapted
to fit the new semantics.

The properties of a join point that the Pointcut Wizard uses to specify a most specific
pointcut are based on AspectJ's join point model. The AspectJ join' point model can
be divided into two areas: dynamic join points and statically determined join points.
Statically determined join points are the join points which have a direct representation,
or shadow in the code. Dynamically determined join points are unknown until the
program is running. The prototype version of the disambiguator only supports statically
determined join points, although the Future Work section of Chapter 5 presents our
plans for extending the tool's support to cover dynamically determined join points as
well.

A statically determined join point can be expressed in AspectJ using two types
of pointcut designators: kinded pointcuts and lexical-structure pointcuts. As noted
in Chapter 3, kinded pointcuts each match a type of action that may occur during
the execution of the program, such as a method call or execution. Lexical-structure
pointcuts match join points based on where they exist in the source code. To create
a most specific pointcut to match a shadow, the Pointcut Wizard creates a pointcut by
AND'mg the kinded pointcut and the lexical-structure pointcut for that shadow.

There are other possibilities for disambiguating an operation performed at a join
point shadow. For example, in Chapter 2 we presented inductive logic as a means of
interpreting operations on join point shadows [4]. The pointcut editing environment
presented in this work uses information from the current state of the pointcut as well

35

as from the shadow site to make a best guess of the intentions behind the developers'
add or remove operations.

We believe that there would be benefits to providing the developer with more con
trol in specifying the properties of a join point shadow he is interested in matching
with the pointcut. Also, we believe that support for dynamic pointcut designators such
as c f l o w and i f is possible. Each of these ideas are discussed in the Future work
section of Chapter 5.

4.4 The Normalizer
The normalizer is responsible for maintaining the active pointcut in normalized form
while the developer edits it through effective representations of the shadows it matches.

B y maintaining the pointcut expression in a normalized form, the Pointcut Wizard
is able to reduce the occurance of pointcut expressions which either conflict with each
other or imply one another. Both of these situations make the pointcut unnecessarily
difficult to understand and edit.

For example, the following pointcut expression specifies method execution join
points with two sets of disjunct properties.

(e x e c u t i o n (* B a r . f o o (. .)) && e x e c u t i o n (v o i d * *(Z e d)))

A normalized pointcut with the same semantic meaning would appear as follows:

e x e c u t i o n (v o i d B a r . f o o (Z e d))

In this section we describe how the normalizer is constructed. First we illustrate
how each AspectJ pointcut expression is broken down into a more primitive but equiv
alent logic expression for testing properties of the join points. Following that, we de
scribe the normal form of the logic expression, which the normalizer uses as an internal
representation of the pointcut expression. Last, we explain how this internal represen
tation is converted into an equivalent AspectJ pointcut expression which matches the
selected join point shadows.

4.4.1 Rules for Converting an AspectJ pointcut to an Expression
on Join Points

In this section we present the set of rules the normalizer uses to convert AspectJ point-
cuts to a more primitive expression over join point properties.

The language in which this internal representation of pointcuts is expressed can be
thought of as of the Aspec J pointcut language with three additional expressions:

T R U E : This expression trivially matches any pinpoint
F A L S E : This expression doesn't match any joinpoints.
< p r o p e r t y _ n a m e > == < p r o p e r t y _ V a l u e >

This expression matches if the join point property denoted by
propertyName is of the value propertyValue.

The following is a list of transformations the normalizer uses to convert k i n d e d
and l e x i c a l pointcuts supported by the Pointcut Wizard. For each type of pointcut,

36

a breakdown of the property tests-performed implicitly by the pointcut is followed by
the semantically equivalent expression used by the normalizer.

method call:

call(<return_type> <class_name>.<name> (<args>))

converted to:
actionType==call &&
target.signatureType==method &&
target.returnType==<return_type> &&
target.className==<class_name> &&
target.methodName==<name> &&
target.args==<args>

constructor call:

call(<class_name>."new" (<args>))

converted to:
actionType==call &&
target.signatureType==constructor &&
target.className==<class_name> &&
target.name==""
target.returnType=="" &&
target.args==<args>

method execution:

execution) <return_type> <class_name>.<name> (<args>))

converted to:
actionType==execution &&
this.signatureType==method &&
this.returnType==<return_type> &&
this.className==<class_name> &&
this.methodName==<name> &&
this.args==<args>

constructor execution:

execution(<class_name>."new" (<args>))

converted to:
actionType==execution &&
this . signatureType==construc.tor && .
this.className==<class_name> &&
this.name=="" &&
this . returnType= = "11 &&
this.args==<args>

37

field get:

get(<field_type> <container_class>.<field_name>)

converted to:

actionType==<fieldGet> &&
target.returnType==<field_type> &&
target.className==<container_class> &&
target.name==<field_name>

field set:

set(<field_type> <container_class>.<field_name>)

converted to:

actionType==<fieldSet> &&
target.returnType==<field_type> &&
target.className==<container_class> &&
target.name==<field_name>

within method code:

withincode(<return_type> <class_name>.<name>(<args>

converted to:

actionType==withinCode &&
this.signatureType==method &&
this.returnType==<return_type> &&
this.className==<class_name> &&
this.methodName==<name> &&
this.args==<args>

within constructor code:

withincode(<class_name>."new"(<args>))

converted to:

actionType==withinCode &&
this.signatureType==constructor &&
this.className==<class_name> &&
this.name=="" &&
this. returnType==1111 &&
this.args==<args>

38

within:

within(<className>)

converted to:

actionType==within && this.className==<className>

In Chapter 3 the Pointcut Wizard's support for matching join points by using wild
cards was discussed. To summarize here: the tool supports the wildcard symbols "*"
and ". ." when they are not used in conjunction with other characters to express a join
point property. In the normalizer's property expression language, the "*" and ". ."
wild-cards are represented by the absence of a property expression of that type.

The empty string is used for the name and r e t u r n T y p e properties of constructor
signatures for the c o n s t r u c t o r c a l l , c o n s t r u c t o r execut ionand c o n s t r u c t o r
w i t h i n c o d e pointcut types. At the implementation level, this allows the normalizer
to treat the arguments for these types of pointcuts similarly to the corresponding method
pointcuts.

4.4.2 PCDNF: A Pointcut Expression in Disjunctive Normal Form
When all AspectJ primitive pointcut expressions have been broken down into more
primitive property tests as described above, it is relatively straight forward to use logic
laws such as DeMorgan's law to reduce this expression into a disjunctive normal form.
We call this normal form PCDNF.

A pointcut expression is in PCDNF if it matches the grammar shown in Figure 4.4.2
and there does not exist any conjunction in the expression that contains two P r o p e r t y -
E q u a l T e s t s where one implies the other or the negation of the other (such conjunc
tions can be further reduced).

<Disjunction> := FALSE
| <Conjunction>
| <Conjunction> | | <Disjunction>

<Conjunction> := TRUE
| <PropertyExpression>

| <PropertyExpression> && <Conjunction>

<PropertyExpression> := <PropertyEqualTest>

<PropertyEqualTest> := [<property_name> "==" <property_value>]
| [<property_name> "!=" <property_value>]

4.4.3 Converting a PCDNF expression to AspectJ Pointcut Syntax
PCDNF is not valid AspectJ syntax. Before the pointcut expression can be inserted
back into the aspect it must be converted to AspectJ syntax. This means re-grouping

39

target.className==Bullet && target.return== &&
target.name== && target.sigType==constructor &&
actionType==call && this.name!=bar

I
target.className==Bullet && target.return== &&
target.name== && target.sigType==constructor &&
actionType==call && this.className!=Foo

I
target.className==Bullet & target.return== &
target.name== & target.sigType==constructor &
actionType==call & this.sigType!=method

I
this.className==Ship && this.name==fire &&
this.sigType==method && actionType==execution

Figure 4.4: P C D N F representation

primitive property test expressions back into AspectJ pointcut expressions. The pro
cess is somewhat complicated because AspecfJ's primitive pointcut expressions pro
vide somewhat adhoc combinations of tests on different properties of a join point.

To perform this converstion we have implemented an adhoc solution that searches
for property test expressions in the disjunctive normal form that can be grouped to
gether into meaningful AspectJ expressions. These expressions are then used to build
up an AspectJ pointcut - and are then removed from the disjunctive normal form. This
process repeats until all property test expressions have been consumed. Rather than
explain the details of this process we will show an example of the kinds of results that
it produces.

The example is based on the following pointcut expression, which was sent as input
to the normalizer component.

(call(Bullet.new(..)) | | execution(Ship.fire(..))) &&
!withincode.(* Foo.barf..))

The resulting P C D N F representation of this expression is shown in Figure 4.4.3.
From this P C D N F representation, the following AspectJ pointcut expression is

formed:

cal l (Bullet .new(..)) && ! withincode (* Foo.bar(.J)
| | execution)* Ship.f ire(. .))

Note that the ! w i t h i n c o d e (* F o o . b a r (. .)) expression has been omitted
from the e x e c u t i o n (* S h i p . f i r e (. .))) conjunct of the resulting P C D . This
is because during the conversion to P C D N F it was determined that it is implied by the
conditions of e x e c u t i o n (* S h i p . f i r e (. .)) .

40

4.5 The Resolver
The resolver is responsible for identifying the set of shadows in the code that match
the pointcut expression. This information is sent to the user interface so that a gutter
annotation can be placed at each shadow matched by the active pointcut. In this section
we will describe the implementation of this component.

To identify the location of each shadow in the code, the resolver relies on informa
tion from the shadow model. When a pointcut expression is received from the normal
izer, the resolver creates a semantically equivalent query that can be executed by the
shadow model. The results of this query are objects of type S o u r c e L o c a t i o n . As
was stated in the shadow model section, each S o u r c e L o c a t i o n object maintained
in the shadow model is unique - so the results of this query each represent a shadow
matched by the pointcut expression.

For each S o u r c e L o c a t i o n object returned, the resolver queries the shadow
model for the type of shadow that exists at that location. The results of this query
must be one of the types specified in the diagram shown in Figure 4.3 on page 34.
The figure also reflects the information pertinant to each shadow type. For example, a
C o n s t r u c t o r C a l l S h a d o w contains two sets of signature properties: one for the
method or constructor from which it is called, and the signature of the constructor call
itself. A l l of this information is gathered from the shadow model through a series of
shadow type specific queries.

Once each shadow has been resolved, the resolver component sends information
to the user interface of the Pointcut Wizard. The UI places a gutter annotation at each
shadow location, along with the type specific properties of the shadow and the pointcut
by which it was matched.

Once this process has finished, the developer is able to perform operations at any
of the shadow sites. If a remove operation is selected, the disambiguator uses the
shadow properties saved at the annotation site to begin the process of disambiguating
the meaning of the operation, and the process shown in Figure 4.1 on page 31 begins
again.

4.6 Conclusion
In this chapter we presented the design of the Pointcut Wizard. The tools architechure
consists of the following four components:

• Shadow Model: The role of this component is to model all shadows in the code.
The prototype implementation of the shadow model is as a database built on top
of JQuery. [10]

• Disambiguator: The disambiguator is responsible for deciding the meaning of
an operation performed at a join point shadow and then mapping the information
found at the join point site to a pointcut designator that will match it.

• Normalizer: The normalizer is responsible for reducing the occurance of certain
redundancies that may appear in the pointcut expression following successive
add and remove operations.

41

• Resolver: The resolver is responsible for identifying the set of shadows in the
code which match the pointcut expression. This information is sent to the user-
interface so that each shadow can be identified with a gutter annotation.

The thesis of this dissertation is that it is possible to construct IDE-based tools that
allow editing of AspectJ pointcut expressions through direct manipulation of effective
representations of joinpoints in the code to which a pointcut applies. In this chapter
we have presented the architecture of the Pointcut Wizard - a constructive proof of the
thesis.

42

Chapter 5

Conclusion
T h e thesis o f this dissertat ion is that i t is possible to construct IDE-based tools that

a l low ed i t ing o f AspectJ po in tcu t expressions th rough di rect man ipu la t ion o f ef fect ive

representations o f j o i n points in the code to w h i c h a po in tcu t appl ies.

We presented Pointcut by Example as a method fo r accompl ish ing this goal . To

create a po in tcu t by example the developer can speci fy j o i n po in t shadows in the code

as examples o f the k inds o f j o i n points he wishes fo r a po in tcu t expression to match or

not to match.

A s a construct ive p r o o f that a po in tcu t can be created in this manner we presented

the Po in tcut W i z a r d . The Poin tcut W i z a r d is too l support f o r ed i t ing a po in tcu t th rough

ef fect ive annotat ions at locat ions where j o i n po in t shadows exist. B y select ing an add
or remove operat ion at a j o i n po in t shadow site, the developer can edi t the po in tcu t

expression so that i t e i ther captures or no longer captures the j o i n point .

I n this chapter we w i l l reiterate the contr ibut ions made in this dissertat ion. F o l l o w

ing that, we w i l l present our plans f o r fu ture w o r k in this area. T h e dissertat ion w i l l

conc lude w i t h a b r ie f discussion about where a too l f o r ed i t ing pointcuts b y example

fits in to the w o r l d o f Aspect Or ien ted Sof tware Deve lopment .

5.1 Contributions
The central con t r ibu t ion made by this dissertat ion is the Po in tcu t W i z a r d : a construct ive

p r o o f o f po in tcu t by example fo r AspectJ. Our descr ip t ion o f the too l was d iv ided in to

t w o areas: the user interface (Chapter 3) and the under l y ing imp lementa t ion (Chapter

4). W e bel ieve that each presents a layer o f a novel archi tecture f o r m o d e l i n g shadows

and ed i t ing pointcuts . I n this section we w i l l summar ize the impor tan t aspects o f each

area.

5.1.1 A U I for Effective Views of Join Point Shadows

T h e Poin tcut W i z a r d prov ides ef fect ive representations fo r j o i n po in t shadows i n the

code. To i n f o r m the developer o f w h i c h j o i n po in t shadows in the code are matched

by a po in tcu t expression, we decided to use gutter annotat ions next to each l ine that

con ta in ing a matched shadow. Th is technique is s imi la r to that used b y A J D T to m a r k

locat ions where an advice w i l l apply. B y hover ing over an annotat ion, the developer

can access an Ec l ipse too l - t ip conta in ing i n fo rma t ion about the shadow i tsel f and the

po in tcu t by w h i c h i t is matched. The too l provides an effective v i ew o f j o i n po in t shad

ows because the developer is able to access context menus at any j o i n po in t loca t ion

43

and perform an add or remove operation.
If the shadow is already matched by the pointcut expression, the developer is pro

vided with the option of removing it. Selecting the remove shadow option edits the
pointcut expression so that it no longer captures the selected shadow. The tool provides
immediate feedback as to the result of the operation.

The Pointcut Wizard also allows the developer to add shadows in the code that are
not yet matched by the pointcut. If the developer wishes to capture a potential join
point shadow, he can access the add shadow menu selection from the line the shadow
exists on and the pointcut expression will be edited to capture that shadow.

Because the tool is implemented on top of a query engine, finding the results of
a change operation on a pointcut is as simple as re-running a query. Therefore, all
changes to the pointcut have an immediate impact on the annotations shown in the
code editors.

5.1.2 An Architecture to Support Effective Views of Join Point
Shadows

The Pointcut Wizard was implemented as four components: the shadow model, the
disambiguator, the normalizer and the resolver. In this section we will summarize the
role of each.

• The shadow model was built to model all shadows in the code. This was a
necessary means for each of the other three components to share information
about a shadow.

• The disambiguator is responsible for deciding the meaning of an operation per
formed at a join point shadow, and then mapping relevant information from the
shadow site to a pointcut designator.

• The normalizer was built to maintain the pointcut expression in normalized form
while the developer performs operations on it. This was necessary because of the
additive nature of the operations performed on the pointcut following an add or
remove operation.

• The resolver is responsible for identifying the set of shadows in the code which
together represent the pointcut expression. This information is sent to the user-
interface so that each shadow can be annotated.

5.2 Future Work
In this section we will present what we see as future work for this tool. We divide
the work into two areas: improvements to current features and validation of the tool's
usefulness and usability. In this section we will present our ideas for each area.

44

' Delete j6inp6ihts:.method>xecution

,K3 class:

IXI public

' KI name:

spacewar.Ship K returns: void ,K3 class:

IXI public

' KI name: f i re

KI args: i 0 • |

OK

Figure 5.1: A UI for Editing Pointcut Properties

5.2.1 Usability and Usefulness
This dissertation has shown that it is possible to construct IDE-based tools that allow
editing of pointcut expressions through direct manipulation of effective representations
of join points in the code to which a pointcut applies. However, for future work we
would like to validate the usefulness and usability of our technique to actual AspectJ
developers.

We believe that the prototype of the Pointcut Wizard provides enough functionality
to be able to determine its value to developers. Therefore, these experiments will occur
prior to any of the following feature updates.

5.2.2 Improvements to Current Features
In this section we will present our plans for improving features that the Pointcut Wizard
currently supports. Our first challenge will be to support the full AspectJ language.
This will include full support for wild-card symbols, binding pointcuts, and cflow and
conditional pointcuts. Additionally, we wish to provide support for editing join point
shadows that occur within aspects. Each of these new language features brings with
it new challenges for effective editing from the join point shadow location. In the
following subsections we will describe our ideas for how to adapt the Pointcut Wizard
to meet these challenges.

Support for Wildcards

We believe that it may be useful for a developer to specify a pointcut designator that
matches only certain properties of a shadow he has selected. Through a menu selection,
we plan to give the developer access to the dialog box with check-box options for
specifying which properties of a signature by which to match join points. A mock-up
of the dialog box is shown in Figure 5.1.
Upon opening this dialog box, each box would initially contain values specific to the
shadow of interest. The developer would have the options of either un-checking a box
to use a wild-card symbol in place of the value, or filling in a value. If he wishes to fill
in the value by hand, we plan to support using regular expressions to match join points.

45

To implement this feature, we plan to update the resolver component of the Point-
cut Wizard to include full support for wild-card symbols. Using the new interface,
the developer should be able to create a pcd such a s c a l l (* * . s e t * (. .)) that
matches all methods where the method name starts with set.

The developer would also have access to the " . . " operator, allowing him to match
argument lists by a certain type contained at the beginning, end, or both of an operator
list. For instance, the following pointcut designator could be used to capture all calls to
a method s e t where the first argument is i n t and the last is b o o l - and any number
of arguments appear between them:
c a l l (* * . s e t (i n t , . . , b o o l)) .

If the developer un-checks a box in the new interface, the value for that property
will be either a star pattern or a dot-dot pattern, depending on the property.

Support for Binding PCDs

In the next version of the Pointcut Wizard we also plan to increase support for binding
pointcuts. As explained in Chapter 3, the Pointcut Wizard does not fully support the
binding pointcuts t h i s , t a r g e t or a r g s . Using the prototype, a developer can
specify a type name as an argument to these pcds and match any join point where an
object takes on that role.

However, the binding pcds are most useful when the developer needs to access an
object's state at run-time. We therefore plan to add a feature to the Pointcut Wizard that
will allow the developer to specify variables or fields located at a join point shadow that
should be bound in the active pointcut expression. Designing this feature should not be
difficult, because the role the developer may wish to bind an object to (i.e. whether to
use t h i s , t a r g e t or a r g s) can be determined by the role it takes at the join point
shadow.

As an example, suppose the developer selects an add operation on a method call
f o o . f i r e () ; . We plan to add UI support that would allow the developer to select
a bind operation on the variable (or field) f o o . Because f o o is the target at this
location, the Pointcut Wizard could automatically use that type of binding operation.
The type of the variable f o o could then be determined by JQuery, and added to the
pointcut's signature as a parameter.

Support for Cflow and If PCDs

Supporting c f l o w and i f pointcut designators will require a change to the shadow
model and the disambiguator of the Pointcut Wizard.

Currently, the disambiguator attempts to form a one-to-one correspondence be
tween the shadow of interest and the pcd that matches it. Therefore, the shadow model
was designed to capture the shadow's signature and its lexical context. However, if the
Pointcut Wizard were updated to support dynamic pcds such as c f l o w and i f pcds,
the model could no longer identify shadows based only upon signature and lexical con
text. The next version of the Pointcut Wizard will create a new shadow model that
contains a shadow's signature, its lexical context, and information pertaining to any
run-time checks associated with it.

46

The disambiguator wouldSlso need to be updated to handle the dynamic quality of
such shadows. A J D T [5] addresses this issue with tool-tips that alert the developer to
the possibility that the shadow may or may not be matched by the pointcut designator at
run time. Our case is rather more complex however because the annotations must also
be effective. To illustrate this point, take for example the following pointcut expression:

pointcut foot): call(* *.foo()) && cflow(call((* *.bar)))

Suppose the developer is at a call site for a method f o o . Along with the add and
remove operations that the tool currently supports, the developer may also wish to have
the option of adding, removing or changing the c f l o w pcd. The problem is that the
context on which the cflow is based (i.e. the pointcut taken as an argument by the cflow
pcd), may exist outside the context of the f o o call site. Since a central design goal of
the Pointcut Wizard was to allow the developer to edit a pointcut expression without
facing the disorientation involved with leaving the context where the shadow exists, we
believe this new feature could require fundamental change to the design of the Pointcut
Wizard. Currently, this issue remains unresolved.

Editing Join Point Shadows in Aspects

According to AspectJ semantics, join point shadows can occur in aspects as well as
classes. The prototype of the Pointcut Wizard supports the latter. In order to support
the editing of join point shadows in aspects with effective views, the tool would need
to support the kinded pcd type a d v i c e e x e c u t i o n , shown in Table 3.1 on page 16.

In order to support this feature we would need to update the shadow model to
account for a new shadow type that exists within an advice. Additionally, the tool only
supports the parsing of Java code in classes, and pointcut expressions in aspects. To
fully support this new feature, the tool would also need to parse both introductions and
advice.

5.3 Concluding Remarks
This dissertation applied the notion of creating Pointcuts by Example to AspectJ's join
point model. We argued that AspectJ pointcut expressions are particularly difficult to
edit because the pointcut language is based on patterns in the code, rather than the
properties the patterns are meant to represent. Editing pointcuts by example allows the
developer to gather more information about the property of a join point based on the
context in which it exists. The goal of this dissertation was to prove that tool support
which was capable of allowing the developer to edit pointcuts by example was possible.
We have provided proof in the form of the Pointcut Wizard that such support is indeed
possible.

47

Bibliography

[1] Aspectj documentation.

[2] AspectJ home page, http://eclipse.org/aspectj/.

[3] AspectWerkz home page, http://aspectwerkz.codehaus.org/.

[4] Tom Tourwe Centrum. Inductively generated pointcuts to support refactoring to
aspects.

[5] Andy Clement, Adrian Colyer, and M i k Kersten. Aspect-oriented programming
with ajdt. In Analysis of Aspect-Oriented Software (AAOS), 2003.

[6] Bart De Win, Wouter Joosen, and Frank Piessens. Aosd & security: a practical
assessment. In Workshop on Software engineering Properties of Languages for
Aspect Technologies (SPLAT, AOSD), Boston, Masachussets, March 2003.

[7] Stephen G . Eick, Joseph L . Steffen, and Jr. Eric E . Sumner. Seesoft-a tool for
visualizing line oriented software statistics. IEEE Trans. Softw. Eng., 18(11):957-
968, 1992.

[8] Enterprise Java Beans 3.0 spec. http://www.jcp.org/en/jsr/detail?id=220.

[9] Geoff Hulten, Karl Lieberherr, Josh Marshall, Doug Orleans, and Binoy Samuel.
DemeterJ User Manual.
http://www.ccs.neu.edu/research/demeter/.

[10] Doug Janzen and Kris De Voider. Navigating and querying code without getting
lost, pages 178-187.

[11] Doug Janzen and Kris De Voider. Programming with crosscutting effective views.
In ECOOP, pages 195-218, Washington, D C , U S A , 2004.

[12] Bugdel home page, http://jboss.com.

[13] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, M i k Kersten, Jeffrey Palm, and
Will iam G . Griswold. A n overview of AspectJ. Lecture Notes in Computer Sci
ence, 2072:327-355,2001.

[14] Ramnivas Laddad. AspectJ in Action: Practical Aspect-Oriented Programming.
Manning Publications Co. , Greenwich, C T , U S A , 2003.

48

http://eclipse.org/aspectj/
http://aspectwerkz.codehaus.org/
http://www.jcp.org/en/jsr/detail?id=220
http://www.ccs.neu.edu/research/demeter/
http://jboss.com

[15] Karl Lieberherr, David H . Lorenz, and Johan Ovlinger. Aspectual collaborations
for collaboration-oriented concerns. Technical Report NU-CCS-01-08 , College
of Computer Science, Northeastern University, Boston, M A 02115, November
2001.

[16] S. Muggleton and C . Feng. Efficient induction of logic programs, 1990.

[17] Klaus Ostermann and Mira Mezini. Conquering aspects with Caesar, pages 90-
99.

[18] M Strzer and C Koppen. Pcdiff: Attacking the fragile pointcut problem. In
Interactive Workshop on Aspects in Software (EIWAS), September 2004.

[19] Klaas van den Berg and Jose Maria Conejero. A conceptual formalization of
crosscutting in aosd. In DSOA'2005 Iberian Workshop on Aspect Oriented Soft
ware Development, Technical Report TR-24/05, pages 46-52. University of Ex-
tremadura, 2005. I S B N 84-7723-670-4.

[20] Tom Tourw Vrije. On the existence of the aosd-evolution paradox.

[21] R. Wuyts. Declarative reasoning about the structure of object-oriented systems.
In TOOLS '98: Proceedings of the Technology of Object-Oriented Languages and
Systems, page 112, Washington, D C , U S A , 1998. I E E E Computer Society.

49

