
QJBrowser - A Query Based Approach to Explo

Concerns

by

Rajeswari Rajagopalan

B.S., University Of Madras, 1999

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

Mas te r of Science

in

THE FACULTY OF GRADUATE STUDIES

(Department of Computer Science)

We accept this thesis as conforming
to the required standard

The University of Brit ish Columbia

September 2002

© Rajeswari Rajagopalan, 2002

In presenting t h i s thesis i n p a r t i a l f u l f i l m e n t of the requirements
for an advanced degree at the U n i v e r s i t y of B r i t i s h Columbia, I
agree that the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e for reference
and study. I further agree that permission for extensive copying of
t h i s thesis for s c h o l a r l y purposes may be granted by the head of my
department or by h i s or her representatives. It i s understood that
copying or p u b l i c a t i o n of t h i s thesis for f i n a n c i a l gain s h a l l not
be allowed without my written permission.

Department of LOMfVTe^ Sc\£ti Vk

The U n i v e r s i t y of B r i t i s h Columbia
Vancouver, Canada

Date

Abstract

This dissertation presents a query-based browsing tool called Q JBrowser that
can assist developers in working with crosscutting concerns. Although there is no
apparent limit to the number of different kinds of crosscutting views of source code
that are potentially interesting to developers, many existing browser tools are ca­
pable of producing only a limited set of pre-defined views. This is because the logic
to locate and display code units is typically pre-programmed into these tools and
users have only limited control over it.

QJBrowser addresses this problem by providing a mechanism by which de­
velopers can dynamically define interesting views. The goals of QJBrowser are the
following:

• It must be configurable enough to define a multitude of different kinds of views
on source code.

• It must be simple enough so that a developer can define views on demand.

• It must provide an interface that is familiar to software developers.

• The query language that it provides must be extensible.

• Finally, it must provide assistance for the exploration of crosscutting concerns
in source code.

Besides presenting the motivation and concepts of QJBrowser, this disserta­
tion intends to provide evidence by using examples and observations from prelimi­
nary experience, that QJBrowser in fact meets these aforementioned goals.

Contents

Abstract ii

Contents iii

Lis t of Tables v i

List of Figures vi i

Acknowledgements vi i i

1 Introduction 1

1.1 Background 1
1.1.1 What are concerns? 2
1.1.2 What are crosscutting concerns? 2

1.2 Motivation and Thesis Statement ' 3
1.3 QJBrowser 5
1.4 Validation 6
1.5 Summary 7
1.6 Dissertation Overview 7

2 QJBrowser 8

2.1 Design Goals of QJBrowser 8
2.2 Basic Concepts 9
2.3 QJBrowser: Working 10

2.3.1 Example 1: Configuring QJBrowser using a simple query . . 11
2.3.2 Example 2: Configuring QJBrowser using a complex query . 13
2.3.3 Example 3: Extending the source model . ; 14
2.3.4 Example 4: Configuring QJBrowser for an application-specific

view 16
2.4 Design Decisions 17
2.5 Implementation 17

iii

2.5.1 Components Overview 17
2.5.2 Front End 19
2.5.3 Back End 21
2.5.4 Discussion 23

2.6 Summary . . . 25

3 Validation 26
3.1 Examples 26

3.1.1 General-Purpose Views 27
3.1.2 Code-base-specific browsers 31

3.2 Experience 36
3.3 Summary 39

4 Related Work 40
4.1 Integrated Development Environments 41
4.2 Query-Based Tools 42

4.2.1 Aspect Browser 42
4.2.2 Aspect Mining Tool 43
4.2.3 Concern graphs 43
4.2.4 Smalltalk Object Unification Language 44
4.2.5 ASTLOG 44
4.2.6 Coven and Gwydion 45
4.2.7 GraphLog 45
4.2.8 Semantic Visualization Tool 46

4.3 Alternative Modularization Approaches 46
4.3.1 Hyperspaces 46
4.3.2 AspectJ 47

5 Conclusion 49

5.1 Limitations and Future Work . . . 49

Bibliography 52

Appendix A Source Model 55

Appendix B Prolog 58

Appendix C Experience - Results 61
C l Comprehension Task 61
C.2 Change Task 65

iv

C.3 Summary 68

v

List of Tables

Source Model of QJBrowser 57

vi

List of Figures

1.1 Process of Using QJBrowser 6

2.1 Flat Set of Results for Exception Propagating Methods Query 12
2.2 Exception Handler Browsers 13
2.3 Sample Source Model 15
2.4 Core Components of QJBrowser 18
2.5 QJBrowser: User Interface 19
2.6 QJBrowser: System Architecture 24

3.1 Class Browser View 28
3.2 Useful organization criteria for exception browser 30
3.3 Tools Browser View 32
3.4 Tool Creation Browsers 34
3.5 Figure Browser View 35

B . l A simple source model 58

B.2 Execution path for the query (B.l) 59
B.3 Execution path for the query (B.2). . 60

vii

Acknowledgements

First and foremost, I am extremely grateful to my supervisor Dr. Kris De Voider.
He offered me guidance, support and ideas whenever I needed them. I thank my
husband Narayan Krishnamoorthy and my parents for being very supportive of me
throughout my Masters program. I thank Dr. Gail C. Murphy and my colleague
Jonathan Sillito for their valuable comments on the paper that was written on this
work. I am also thankful to Dr. Alan Wagner for agreeing to review my dissertation.
Last but not the least, I would like to thank the Department of Computer Science
of the University of British Columbia for their excellent facilities that I could use
for this research.

RAJESWARI RAJAGOPALAN

The University of British Columbia
September 2002

viii

Chapter 1

Introduction

Another common error is to combine two simple functions into one component be­
cause the functions seem too simple to separate. For example, one might be tempted
to combine synchronization with message sending and acknowledgment in building
an operating systemIf one later encounters an application in which synchro­
nization is needed very frequently, one may find that there is no simple way to strip
synchronization out of message sending routines. - D. L . Parnas [26]

It has been known from the early days of software engineering that modu­
larization, if done properly can improve comprehensibility and maintainability of
programs significantly. The modularization techniques used in the early seventies
involved decomposing a program recursively into steps and making each major step
in the program, a module. Parnas proposed the concept of "information hiding"
as a criterion for modularization of programs in his classic paper [25]. According
to him, at the inception of program development, one must list the major design
decisions that are likely to change in the future and hide each such decision inside
a module. In this way, the issues/concerns addressed by each module in a program
are cleanly separated and well localized. Therefore, future changes to any design
decision will not require invasive changes throughout the program. Unfortunately,
concerns in a program are frequently mutually dependent and overlapping. There­
fore, in practice, clean separation of concerns, is seldom if ever achievable. This
is the root cause of the problem that we address in the dissertation. We present
the problem, our motivation, our thesis statement and our approach to address the
problem in this chapter.

1.1 Background

In this section, we describe some of the terms and concepts essential for following the
motivation behind this dissertation. These include the terms concerns, crosscutting

1

concerns, tangling and scattering of code etc..

1.1.1 What are concerns?

In software engineering, although the term concern is very widely-used, it is not
clearly defined. In the context of this thesis, we think of a concern as any goal,
concept or task to be accomplished. [21] categorizes concerns as logical and physical
concerns. In this thesis, we preserve the same distinction between the two kinds of
concerns:

Physical Concern Any concern that is a part of an actual system, such as a
hardware or software unit, is a physical concern.

Logical Concern Any conceptual consideration for the system, such as issues,
features etc., are logical concerns.

According to this definition, a concern may exist in any phase of the software
lifecycle. For example, a feature in the Requirements Analysis stage such as Logging
or Distribution is a concern. A high-level concept like a Design pattern [13] in the
Design or Implementation stage is also a concern. Considering an Object-oriented
(OO) software system, these are some examples of the second kind of concerns,
namely logical concerns, since they do not exist in the system as a "unit". On the
other hand, a class in an OO system is a physical concern existing as a concrete
unit in the source code, trying to accomplish a certain task.

In the remainder of this dissertation, whenever we refer to the term con­
cern generally, we mean both types.of concerns. When needed, we make a clear
distinction between them.

1.1.2 What are crosscutting concerns?

Separation of concerns is the process of identifying, encapsulating and manipulating
parts of software that are relevant to a particular concern [24]. Clean separation
of concerns can enhance software trace-ability, maintainability, comprehensibility,
changeability etc.

Object-orientation1 has greatly improved separation of concerns in software
systems. However, achieving good separation of concerns in practice is still very
hard because:

• Concerns are mutually dependent and overlapping. The code that has to
implement Distribution might need to perform serialization, error-handling,
synchronization etc. as well..

2

• It is not always possible to express design-level concerns as code units using
abstractions provided by programming languages. Requirements deal with
features, while code deals with modules. Modules might not map one-to-one
to features stated in the requirements. As a result, a single feature may be
implemented in more than one module or a single module may implement
parts of more than one feature. The former property is called scattering and
the latter, tangling. [22]

• Concerns may change over time. There are several reasons for this, such as
addition or deletion of functionality, changes in the environment in which the
software operates, mistakes learned from experience and the need to restruc­
ture code to remedy them.

As a result, some concerns crosscut natural system modularity. Such con­
cerns are called crosscutting concerns. Classic examples of crosscutting concerns are
distribution, synchronization, exception/error handling, serialization and logging.

Crosscutting concerns result in implementations that are not only tangled
but also scattered across multiple modules in the system.[22]. Code scattering and
tangling make it more difficult to comprehend, modify and maintain object-oriented
software systems. For instance, when making a change in software, since all code
units related to the change are not present in the same module, it is difficult to
ensure that:

• modifying one part of the system does not render it inconsistent with the rest
and .

• all parts of the system that are affected by the change are modified.

Therefore tools that assist developers in working more effectively with cross-
cutting concerns are highly desirable.

1.2 Motivation and Thesis Statement

In the preceding section, we stated that it is desirable to have tools that support
developers when faced with crosscutting concerns. Integrated Development Envi­
ronments are the most widely-used kind of tools developers use today.

Current state-of-the-art IDEs already help developers to deal with crosscut­
ting concerns by providing effective tools to explore a code base. A n IDE provides a
set of programming-language-aware tools that offer different kinds of views that help
in exploring certain structural and semantic relationships between pieces of code.

Our work was motivated by the following observations about modern IDEs:

3

1. They offer different kinds of views using different tools built into them. As
such the number of views is limited by what the developers of the IDE chose
to provide.

2. In principle an IDE can support more types of. views by providing more built-
in tools. However, there is a practical limit on the number of tools that can be
developed and shipped with an IDE. Building a new tool for each potentially
interesting view is very costly and impractical. Besides, every added tool adds
to the overall complexity of the IDE.

3. The views offered by the different tools of an IDE are typically closely related
to the modularity mechanisms of the underlying programming language. For
example, a modern IDE for an Object-oriented programming language might
include a Class Browser and a Class-Hierarchy Browser that allow developers
to view and navigate code in terms of classes and inheritance relationships.

However, many different kinds of concerns may be relevant to developers at
different times [24]. Each of these concerns may benefit from different kinds
of views that may even crosscut the natural modularity of the system. Since
such crosscutting views do not align well with the modularization mechanisms
of the language for which a typical IDE is built, most IDEs do not offer tools
to support such views.

4. Views that are specific to an application, a library, a framework, a software
development company etc. can be very useful. For example, a browser that
is aware of the naming conventions used within a specific framework could
organize code base elements in terms of concepts that are specific to that
framework. It is hard to build such code-base-specific tools into an IDE.

Therefore it is not possible with most modern IDEs to dynamically obtain
a variety of customized, crosscutting views of a system, although such views can
greatly help a developer in working with crosscutting concerns. This is largely
because of the limited configurability offered by the tools built into the IDEs. We
think that a generic tool that can be configured with general or application-specific
parameters to generate many different views "on demand" would enhance an IDE's
capability to explore crosscutting concerns, in a code base. . .

One key issue in the design of such a tool is the trade-off between flexibility
and simplicity. An effective tool offers a configuration mechanism that is conceptu­
ally simple and, at the same time, flexible enough to allow the creation of a broad
set of useful views. Some IDEs like Eclipse offer a high degree of customizability at
the expense of ease of customization. Eclipse is ah open extensible IDE that can

4

be extended by writing plug-ins in Java [33] programming language. In Eclipse, a
developer who wants a customized view would have to write a tool in adherence
to Eclipse's plug-in API, compile it and integrate it with the core IDE. This might
involve significant effort and may not be useful for defining views dynamically.

This dissertation presents a prototype tool called QJBrowser that we built
to validate the following thesis statement:

A query-based browsing tool with an extensible query language
can be conceptually simple yet configurable enough to dynami­
cally generate a wide variety of interesting views that can help
a user in exploring crosscutting concerns in her software.

1.3 QJBrowser

QJBrowser is a tool that can be'configured to generate views relevant to a user's
interests using queries against a, source model. At this point, it is sufficient to
know that a source model is a database of information about source code, extracted
automatically and capable of being augmented by the user. The queries are written
in an expressive language and select elements that constitute a view. The view
generated by the tool is organized as a tree and is navigable like any conventional
browser. This configuration mechanism is conceptually simple and at the same time
flexible enough to generate a multitude of views. It provides a cost-effective way to
define new views because defining a view involves little more than the formulation
of a query.

The query entered by the user is called the selection criterion for the view.
It is a query against a semantically-rich source model containing different types of
information such as static types, calling dependencies and inheritance relationships.
The source model is automatically generated by a source code analysis tool. It
can also be appended to by the user specifying information that cannot be derived
directly by the analysis tool. For example, design rules, conventions and patterns
can be established by the user and queries can be formulated to examine their
presence in source code. Therefore, in QJBrowser, queries use not only a variety
of data about the source code, but also user-defined information that can describe
application- or domain-specific semantics. In this way, QJBrowser stands out to be
a tool that is highly configurable.

Apart from the selection criterion, another element that goes into the for­
mation of a view is the organization criterion. It is a mechanism for the user to
specify the order in which the elements in the view must be organized. It is simply

5

a comma-separated list of query variables1 representing the different elements that
will form the generated view. We will describe this in greater detail in Chapter 2.

The organization criterion is another factor contributing to QJBrowser's con­
figurability. The tool does not yield a flat set of results, but a neat browsable view,
the organization of which is also configured by the user herself. In spite of the high
configurability, the tool is still relatively simple to use. A new view is generated
with just two parameters: a query and a list of variables in the query.

(Browser

Ret
Qu

Res
pry
t i t s

Front End

> Creates Hie r a r c h i c a l
Navigable View 5

X Q u e r i
rns

Query Engine Returns
ery

Resul

R e i f i c a t i o n
Engine >

Results
Creates • Source Model

Figure 1.1: Process of Using QJBrowser

The entire process of using QJBrowser to generate views is illustrated in
Figure 1.1.

1.4 Validation

This dissertation will provide validation for our thesis statement in two ways.
First, we will present a number of example scenarios that use QJBrowser.

These examples are meant to illustrate that the tool achieves the right kind of trade­
off between simplicity and configurability. They show that a wide variety of views
can be defined with relative ease. Some of the views are similar to views offered by
the tools included in a traditional IDE. Other examples show crosscutting views as
well as views that are specific to a particular code base. Although the examples allow
us to provide some conceptual arguments in support of the thesis, by themselves
they provide little insight into how the tool would be used in practice.

1A query variable is an identifier starting with an uppercase letter. Please refer to
appendix B.

6

Therefore, as a second part of the validation, we discuss two simple case
studies using the tool for two development tasks. These provide some preliminary
indications about the practical usability of the tool. Both the examples and the case
studies are intended to illustrate that QJBrowser can produce different crosscutting
views of a system, thereby helping developers in dealing with crosscutting concerns
effectively.

1.5 Summary

In this chapter, we outlined the motivating ideas behind QJBrowser. QJBrowser
was motivated mainly by the limitations of modern IDEs to provide customized or
crosscutting views on their code base. QJBrowser addresses this issue by allowing
developers to configure a view with a query. This assists developers in dealing with
crosscutting concerns by allowing them to explore a code base more effectively.

1.6 Dissertation Overview

The rest of this dissertation is organized.as follows. Chapter 2 introduces the con­
cepts of QJBrowser and demonstrates the usage of the tool using a few basic exam­
ples. Chapter 3 provides support for our thesis by presenting more examples as well
as observations from our own experience with the tool. Chapter 4 discusses other
related approaches to deal with crosscutting concerns. Finally, chapter 5 summa­
rizes the dissertation. It also lists the limitations and ideas for further improvement
of the tool.

7

Chapter 2

QJBrowser

QJBrowser is a prototype tool that we developed in order to validate our thesis.
We presented our thesis in Chapter 1. In this chapter, we explain QJBrowser in
detail. We discuss the fundamental concepts behind it followed by examples of how
to use it. We also outline the design decisions that we made while building the tool.
Finally, we discuss its implementation in brief.

2.1 Design Goals of QJBrowser

We built QJBrowser to validate our thesis, which we presented in section 1.2. Our
thesis forms the basis for the design goals of the tool. We present the design goals
of the tool below:

• It must be a query-based browsing tool.

Users should be allowed to browse their source code by defining their views us­
ing queries. In addition, the views obtained must have a conventional browser­
like interface that is familiar to most developers. The tools offered by most
modern IDEs that are very widely used for working with program concerns
provide a simple tree-shaped, view, which can be clicked on to navigate the
code. This is the kind of user interface that we mean by a browser-like view.

Some visualization tools offer very complex views, such as views consisting of
graphs and arcs. These views may be interesting for a number of development
tasks. However, graphical visualization of program data is out of the scope of
our tool. We target the domain of code browsing tools with a conventional
browser-like user interface that could potentially be plugged into an IDE to
replace a number of specific tools that offer specialized views pre-programmed
into the tool.

• It must be configurable enough to generate a wide variety of interesting views.

The tool must not limit users to only viewing source code units connected by
a pre-defined set of patterns. It must let users incorporate a wide range of
interesting information about the underlying system in defining their views.

• The query language that it offers must be extensible.

A query language that is not extensible tends to limit the kinds of views that
can be obtained from the tool.

• It must be simple to use.

By simplicity, we do not mean the complete absence of a learning curve. We
intend our tool to be used easily to generate views "on demand". We limited
the scope of our tool to browsing rather than graphical visualization simply
because configuring the appearance and contents of a fancy graphical view
(that is common in visualization tools) might involve more effort than a simple
hierarchical browser view. We feel that configurability of the tool must not
be achieved at the expense of its ease-of-use. Therefore, we intend our tool to
strike a balance between configurability and simplicity.

• It must help a user work with crosscutting concerns in her software.

The ultimate aim of the tool is to assist developers by further enhancing the
ability of program development tools such as IDEs to deal with crosscutting
concerns in software.

These goals served as our guidelines while designing and building the tool.

2.2 Basic Concepts

There are some important concepts of QJBrowser that one must know before work­
ing with the tool. The goal of this section is to discuss them briefly. The next
section will describe their role in QJBrowser with examples.

QJBrowser is a tool that helps a user in obtaining a number of crosscutting
views of her system. To obtain a view, the user must define it appropriately.

There are two parameters in the definition of a view in QJBrowser:

Selection Criterion - It is a query that selects the entities that should be part of
the view.

9

Organization Criterion - It defines how the entities in the view must be organized
in relation to one another. In the current version of the tool, it is simply a
comma-separated list of query variables.

The selection criterion query is executed by a query engine (See section 2.5.3)
against a source model. The source model contains information about the underlying
system. In the current version, the source model is generated automatically by
static analysis of source code during initialization. It contains information such as
static types, calling dependencies and inheritance relationships. A user can add
new information to it using the user interface of the tool. This will be discussed in
sections 2.3.3 and 2.5.2. The expressions available in the query language for writing
selection criterion queries is dependent on the data in the source model.

The next section concretizes these concepts by discussing the usage of
QJBrowser using examples. The examples are based on the current implementa­
tion of QJBrowser. Hence understanding them would require some knowledge of
the language offered by the tool for writing queries. The query language used in
the prototype tool is Prolog [2]. A reader who is not familiar with the concepts and
syntax of Prolog is referred to Appendix B for a brief introduction.

2.3 QJBrowser: Working

The section aims to show the reader how to use QJBrowser for the following set of
tasks:

• Configuring the tool using a simple query.

• Configuring the tool using a complex query.

• Extending the source model.

• Configuring the tool for an application-specific view.

To this end, we provide four examples centered on exception propagation and
handling in Java code. Exception propagation and handling mechanisms are noto­
rious for being difficult to manage in Java, partly due to their crosscutting nature
[27]. Therefore, if one needs to alter the exceptions or their propagation/handling
mechanisms in code, she might have to make invasive changes to several modules.
Tracing the exception flow or locating the different exception handlers, in order to
effect the necessary changes in them, would require laborious exploration of source
code.

10

In our first example, our aim is to show how a developer can define a view
using selection and organization criteria. In this example, she is interested in only
the propagation of exceptions in her system. We willdescribe how she defines a view
that displays the exceptions propagated in her system along with the methods that
propagate them. We will also show how specifying different organization criteria
results in different "perspectives" of a view.

Our second example will build on the the first example to define a view that
locates the exception handlers in a system. The goal of this example is to show the
reader how to combine queries to define complex views.

The third example describes how to extend the tool's source model with extra
information, which could be domain-specific. Lastly, our fourth example discusses
how to define views that are specific to an application or domain.

2.3.1 Example 1: Configuring QJBrowser using a simple query

The goal of this example is to demonstrate the usage of selection and organization
criteria for defining a view. In this example, our developer wants to find methods
that throw exceptions in her system. As we said before, in QJBrowser, a view is
defined using two parameters:

• Selection criterion: A query that selects the relevant elements.

• Organization criterion: A comma-separated list of variables in the query, which
dictates the categorization of elements in the view.

Our developer must first frame her selection criterion query. The reader
might remember that this query depends on the information in the source model.
In the current version of the tool, the source model has a relation named exception
that connects an exception to the method that throws it. Its structure is
except ion (ThrowingMethod, ThrownException). For an analysis of the different
kinds of relations in the. source model, please refer to section 2.5.3.

Our developer can use, this query as her selection criterion:

exception(ThrowMethod, XCeption).

The result of the execution of this query is a set of pairs, each containing bind­
ings for ThrowMethod and XCeption, such that the method bound to ThrowMethod
throws the exception bound to XCeption.

11

ThrowMethod: testpackage.Foo.doA()
XCeption: testpackage.exceptions.X
ThrowMethod: testpackage.Foo.doA ()
XCeption: testpackage.exceptions.M
ThrowMethod: testpackage.Foo.doB()
XCeption: testpackage.exceptions.X
ThrowMethod: testpackage.Foo.doB()
XCeption: testpackage.exceptions.Y
ThrowMethod: testpackage.Foo.doD()
XCeption: testpackage.exceptions.Y
ThrowMethod: testpackage.Foo.doF()
XCeption: java.rmi.RemoteException

Figure 2.1: Flat Set of Results for Exception Propagating Methods Query

A selection criterion query by itself just produces a flat set of results. In this
example, that would be a listing of names of all the exception-propagating methods
followed by all the propagated exceptions, as shown in Figure 2.1. It does not impose
any organization on the results, and hence might be very difficult to understand,
especially if the result set is large.

Besides, as previously stated, one of the goals of QJBrowser is to generate
a view that resembles a conventional browser. In a conventional browser, elements
are organized hierarchically as a tree. In order to organize the results as a tree
and abstract and hide data until needed, QJBrowser uses the second view-definition
parameter, namely organization criterion.

In the current implementation, the organization criterion is just a comma-
separated list of query variables. The developer can.specify the variables in any
order and may choose to leave out some of them. The order in which the variables
are specified determines how the elements in the resulting view will be classified and
grouped.

For this example, one possible organization criterion is
(ThrowMethod,XCeption). This criterion would categorize exceptions according to
the methods that propagate them, as shown in Figure 2.2(a). By categorization,
we mean how the elements in a view are grouped together. For example, in a
traditional class browser, methods and member variables are categorized according
to the classes in which they are defined. Similarly in a file system browser, files are

12

, .
: Jnlil 3 ITI rene.ifelogs.FTPFileDialog.QetFTPO

J
fc^'SS^va.net.UnknownHostExcepbon .-.- '

i Blrene.dialogs.FTPFileDialog.getFTPQ
- -Bl rene.util.ftp.FTP:open()
.....|H rene;uti!.ftp.FTP;open(5tring;String)-

:: "IH rene.util.ftp.FTP.passive()
f - B l rene.uta.ftp;FTR.getFile(String)••
>• Bl rene.util.ftp;FTR;getDir(String):.
r.•'• -Bl rene.utJ.ftp.FTP.getUCStnng)...
••• 'Bl.rene;ut3.ftp.FTP.putFile(String)

(a) (b)

Figure 2.2: Exception Handler Browsers

categorized according to the directories in which they reside.
Another useful organization criterion for the same query is

(XCeption,ThrowMethod). This will result in a view that categorizes meth­
ods according to the exceptions that they handle (shown in Figure 2.2(b)).

Since both views display the same data, we can think of these two organiza­
tions as a way to view the query results from different perspectives. Note that, the
perspectives in both Figure 2.2(a) and Figure 2.2(b). are useful. Each one reveals
different kinds of information more clearly. In Figure 2.2(b), it is easy to find out
all locations where a particular exception is being thrown in the system but it is not
easy to find out a list of exceptions that are thrown by a particular method. The lat­
ter is more easily found in the browser in Figure 2.2(a). We call this generated view
a browser because it has all characteristics of a typical source-code browser, includ­
ing the ability to expand/collapse nodes, navigate to the source code corresponding
to a node etc.

2.3.2 Example 2: Configuring QJBrowser using a complex query

This example aims to show how a user can combine queries using operators provided
by the query language to define views that cannot be defined using simple queries.
Some views cannot be defined using simple queries because of either their inherent
complex nature or the unavailability of suitable predicates in the source model that
can capture them. In this section, we describe a view that requires certain infor­
mation not available in the current implementation of the source model and how a
developer can instead use a combination of the available information to define that
view.

13

ftp://ftp.FTP:open(
ftp://ftp.FTP;open(5tring;String)-
ftp://ftp.FTP.passive(
ftp://ftp.FTP.getUCStnng
ftp://ftp.FTP.putFile(String

In this example, our developer wants to view where exceptions are handled
in her system. In the ideal case, she would use a query catch (Method .XCeption),
where catch is a relation in the source model that makes explicit the exact location
of catch statements in a program. This query would bind the variables Method
and XCeption to pairs of values such that, in each pair, the method bound to
Method catches the exception bound to XCeption. Unfortunately, in the current
implementation of the source model, such a relation is not available1.

Therefore our developer has to follow a less straightforward method to define
her view: In Java code, any checked exception that is thrown by a method must be
declared in the method's signature. Hence, when a method does not throw an
exception that reaches it in a calling sequence, one can say that it catches/handles
that exception2. Our developer can use this knowledge to define her view.

The query exception (ThrowMethod, XCeption), in our last example, locates
the methods that propagate exceptions in a system. One could refine it in conjunc­
tion with static callgraph information available in the source model. The query thus
formulated is shown below. Please refer to Table A . l for the exact meaning of the
relations in the query.

except ion(ThrowMethod,XCept ion),
c a l l i n f p(CatchMethod,ThrowMethod, _),

\+(exceptipn(CatchMethod,XCeption)).

The execution of the above query results in a stream of solutions that are
triples of values that match the variables in the query. In each solution, the first
two goals of the query make sure that the value bound to ThrowMethod throws an
exception bound to XCeption and is called by a method bound to CatchMethod.
The third goal filters out from the set of bindings for CatchMethod, the methods that
propagate the exception XCeption instead of handling it. Therefore any solution
bound to CatchMethod will be the.methods that handle exceptions in the system.

2.3.3 Example 3: Extending the source model

One of the merits of QJBrowser is the extensibility of.its source model. The range of
information that can be incorporated in user queries can be enhanced by augmenting

1 I t however would riot be very difficult to make our static analysis tool add such a relation
to the source model. Whenever a catch clause is encountered in the code, the tool would
write the exact location and the name of the exception being caught, to the source model.

2 I t should be noted this method holds good only for checked exceptions. Detection of
unchecked exceptions would require runtime analysis of the code, which is not available in
the current version of the tool.

14

the source model with extra information.
In the current implementation, there are two ways of extending the source

model:

Adding facts - For example, consider the source model in Figure 2.3. One can
extend it with a new fact/relation such as

factory(MazeFactory).

This relation states that the class MazeFactory obeys the design pattern Fac­
tory [13]. Similarly, any programmer annotation about a piece of code can be
introduced into the source model using new facts.

Adding rules - Rules can be thought of as abstractions in the source model
that name user queries. For example, we can define a new rule called
exception-handler that will abstract the selection criterion query of our
last example, as follows.

exception-handler(CatchMethod,XCeption) :-
exception(ThrowMethod.XCeption),

callinfo(CatchMethod,ThrowMethod,_),
\+(exception(CatchMethod,XCeption)).

As can be seen, the name exception-handler, relates two variables in the
query, namely CatchMethod and XCeption, which are the two interesting vari­
ables for the exception handling example. The goal exception-handler (X,Y)
is satisfied only if the query that it abstracts is satisfied.

class(MazeFactory).
method(makeMaze.MazeFactory).
method(makeWall,MazeFactory).

exception(makeMaze.MazeTypeNotKnownException).
exception(makeMaze.MazeComponeritTypeNotKnownException).

exception(makeWall.WallTypeNotKnownException).

Figure 2.3: Sample Source Model

15

A rule defines an extension to the query language. Such an extension provides
a convenient shorthand for long and complex queries and can serve as an ab­
straction for high-level concepts like design patterns, design rules, conventions
etc.

Please refer to section 2.5.2 for a discussion of the user interface component
of the prototype tool that aids in editing the source model.

2.3.4 Example 4: Configuring QJBrowser for an application-specific
view

The example discussed in section 2.3.2 was used to generate a general-purpose ex­
ception handler browser. The view and its definition parameters (selection and
organization criteria) were not restricted to a single application. However, it is pos­
sible to generate views specific to an application or domain using code-base-specific
queries.

For example, let us suppose that the developer in our example is working on
a drawing application that uses a number of graphics tools. If in her application, all
graphics tools have a certain signature - say for instance, all of them derive from
an abstract class called Tool and implement certain specific listener interfaces -
our developer can then use this knowledge to form an abstraction that defines a
Tool. She can then use this abstraction in her exception-handler query to find the
exception handler methods in only her tool classes, as shown below.

tool(X) :- subtype(X/Tool'),...

except ion(ThrowMethod,XCept ion),
callinfo(CatchMethod,ThrowMethod,.),
tool(Tool),context(CatchMethod,Tool)
\+(exception(CatchMethod,XCeption)).

We will discuss more such code-base-specific browsers in section 3.1.

16

2.4 Design Decisions

In the preceding sections, we described the concepts of QJBrowser and showed
how they can be used to define multiple crosscutting views of source code. While
designing and building the tool, we made a number of decisions with the goals of
the tool in mind. The following are two of our most important design decisions:

• We chose to use Prolog as the query language for QJBrowser. Prolog offers the
full expressive power of a Turing-complete programming language for defining
new predicates. This choice was made to support the goal that the query
language provided must be extensible.

• The organization criterion in QJBrowser is a very simple list of variables sep­
arated by commas, which specifies the categorization order of the elements in
a view. It should be noted that not letting users configure every aspect of
the view restricts configurability to some extent. However, one of our goals
is to keep the tool simple enough to generate a number of views on demand.
Therefore, we decided tp keep the organization criterion simple.

2.5 Implementation

In this section, we discuss the implementation aspects of QJBrowser. The imple­
mentation of the tool is in Java! The tool's query engine uses Prolog for its search
strategy. We also developed a version of the tool whose query engine uses another
logic programming language called TyRuBa [34] instead of Prolog. The version of
the tool that uses TyRuBa as its query language was not used very much in our
validation phase and hence this dissertation talks only about the Prolog version.

In this section, we discuss the important components of the tool followed by
some of the highlights of our implementation.

2.5.1 Components Overview

The core components of QJBrowser are shown in Figure 2.4. The source model
is a database of information about the underlying system. The reification engine
transforms source code into an appropriate format in the source model. The query
engine reads the source model to answer queries typed by users. The front end of
the tool is made up of the following components -

user interface - The user interface allows users to configure the tool with the se­
lection and organization criteria for their views. It also lets users communicate
with the source model editor component described below.

17

QJBrowser

Source Model ^
Editor J

Figure 2.4: Core Components of QJBrowser

source model editor - The source model editor provides a way for users to aug­
ment the source model with additional knowledge.

source code editor - The source code editor is used to edit the source code of the
system being browsed.

browser - The browser component adds the features of a conventional browser,
such as navigability, to the generated views.

In the following sections, we describe each of these components in detail.

18

• • • • i l l B i i
^cteatesTooKJLpplication.ToolvlineJiCooiHanipulatestToolvKig)

""J,/ Query

KK Existing Queries JelassflD)

: reatesToof (Appticattflii; Ia'6t,Une},

H Variables oftnterestl̂ ppllcatlon.FlgJool

Eg. ll Query a ca5s(Ca,P);ya) mtgM enter Cs or Par Cs.P as aw Case variable. • _

SaveOueiy I 8aveRgie |[Rnei I t.jcL't I MopEnann I L J U I

sacreatesTooKApplitaton.Tool.Dnei.loolMarlDulatesCrool.FlgjS:
|CH.ifa.draw.samples:|avadraw.JavaDrawAppJX;::>NV::V::
, £: & CH ifa draw samples javadraw JavaDrawApplet

r;CH.rfa.draw.figures .PoMJneFtQure.K
;lh> 3CH.ifa;draw.framev A binding ofvarlable Fig in your query. I

CH.rfa.draw.samples:noinmfl.NomirigAtip • . - -
j fcs~ft CH.rfa.draw.samples.nothing.NolhinoApptel :.

CH.ffa^draw.samplBs.net.NetApp:-
1 CH.rfa.draw.samples.pert-PertApplet i i

not Rdty Edl Saodi Options TooU Widows

• - i • U " h « I : ^

/ " ' X ; ' -:f.::-['::::if f̂̂ t • ' : ^
: * A.:scai3ii le, -cototai l f i .polygon wid i . en -arbi t rary nuabi
• ^ V ^ - x ' ' -:': V - 7 : ' . ' : ::

public:~:Class: PolygonFigure:- extends At tnbuteFiguce (::

Figure 2.5: QJBrowser: User Interface

2.5.2 Front E n d

The front end of the tool is responsible predominantly for interfacing with users.
This section discusses components that constitute the front end of the tool.

User Interface

A screenshot of QJBrowser's user interface is shown in Figure 2.5. It consists of
a dialog box from which it is possible to launch different views by entering the
parameters that define them. The text-box named Query is where the query rep­
resenting the selection criterion is entered. The entry in the box named Variables
of interest represents the organization criterion. The specification of organization
criterion is optional in the current version of the tool. When a user does not specify
an organization criterion, the tool automatically considers all the query variables as
interesting and displays them in the order that they appear in the query.

A developer can expand or collapse nodes by clicking in the tree view. By
double-clicking on a node, she can open a source code editor with the cursor po­
sitioned near the corresponding code element, provided the node has source code
associated with it.

To assist the developer in composing queries, QJBrowser provides a drop­
down menu box named Existing Queries from which useful expressions can be se­
lected and appended to the Query box. These expressions are obtained during the
initialization of the tool by parsing the source model. Apart from the ones loaded

19

automatically by the tool, the user can load other files containing additional data
by clicking on the Load button.

The button Save Rule interfaces with the Source Model Editor component,
which is described in section 2.5.2. Its purpose is to add extra information to
the tool's source model. The button Save Query provides a mechanism to store
frequently used queries in the Existing Queries box. It is especially useful in the
case of long derived queries that are formed by combining two or more simple queries.

Source Model Editor

The source model editor component is responsible for augmenting the source model
with user-defined information. As explained in section 2.3.3, there are two ways to
extend the source model in the current implementation:

1. By adding facts

2. By adding rules

Users can communicate with the source model editor using a button named Save
Rule in the user interface. .

A rule is made up of two parts: a head and a body. The head of a rule is the
combination of the name of the rule and the interesting variables in it. The body
of a rule can be thought of as the query that the rule abstracts.

A rule is saved by typing the query that it abstracts in the box named Query.
Users must supply a name for the rule in a dialog box that pops up on clicking the
Save Rule button. She might optionally specify the interesting variables of the rule in
the Variables of Interest box. For example, entering the text a(X) ,b(Y) , c (Y,Z) in
the Query box, the text Z,X in the Variables of interest box and the text somename
in the dialog box that pops up on clicking the Save Rule button, the following rule
is saved in the source model:

somename(Z,X):- a (X) , b (Y) , c (Y , Z) .

For saving a new fact to the source model, one can type the fact in the Query
box and click on the Save Rule button. The dialog box that asks for a name pops
up and should be ignored/canceled.

20

Browser

The browser component transforms the results of a selection-criterion query onto a
tree view and provides searching and navigation capabilities for the generated view.

The browser component takes the output of the query engine, which is a set
of bindings for the interesting variables in the query and renders them as a tree in
accordance with the organization criterion.

A node in a tree serves a "link" to the location of the corresponding element
in the source code. When a user double-clicks on a tree node, the browser component
opens up an editor for her, with the cursor positioned exactly near the definition
of the element in the code. In this way, the generated view closely resembles a
conventional browser interface, in line with our design goals (see section 2.1).

The browser component also offers a lexical pattern matching search utility
within the tree structure of the view. A lexical pattern entered in a box at the
bottom of the generated view is searched in all the tree nodes and the results of the
search are brought into focus one-by-one.

Source Code Editor

The source code editor of our prototype tool is a modified version of a third-party
open-source editor called JE [19]. It has a comprehensive set of features for source
code editing, including sophisticated features such as syntax coloring, code beauti-
fication, spell checking etc.

Originally, we built a very simple editor for QJBrowser with no bells or
whistles. Later we replaced this editor with JE. To accomplish this change task, we
used QJBrowser itself to locate the code units that needed to be modified in both
JE and QJBrowser. This will be described in detail in Chapter 3.

2.5.3 Back End

The back end components of QJBrowser deal mainly with the formation and query­
ing of the source model. This section discusses the individual components of the
back end in detail.

Reification Engine

The reification engine is responsible for the creation of the tool's source model. It
is a static-analysis tool that uses a modified version of Aspect J parser to parse and
type-check the source code and create the corresponding meta data on a storage
medium. The meta data are simply facts about the source code, compatible with
the query language used.

21

The reification engine is triggered during program initialization as well as
every time a user clicks on the "Reify File" menu item in the source code editor (see
section 2.5.2).

Query Engine

The query engine is responsible for executing user queries against the source model.
The query engine of our prototype uses SICStus Prolog [2] and a library called
Jasper [17] for interfacing with native Prolog code.

Source Model

Source model is a database of information about the underlying system. By database,
we mean just a collection of data; it can be represented as a set of flat files or a
relational database or any other kind of representation. The current implementation
uses a set of flat files.

In our prototype, the source model is a collection of Prolog relations. It is
generated automatically during startup by the reification engine component. Users
can augment it using the source model editor and the corresponding user interface
component (see section 2.5).

In the current implementation of the source model there are essentially four
kind of relations:

• Relations about entities in the code: These include facts that establish the
entities in the source code. They are unary relations with complete names
of the entities that they establish as their only argument. By complete
name, we mean the name that identifies the entity within the context of
the underlying system. Facts like c l a s s C t h i s P a c k a g e . t h i s C l a s s ') and
method('thisPackage.thisClass.thisMethod') are examples of this kind
of relations.

• Relations connecting entities with their properties: These are bi­
nary relations that connect entities with their properties. For
example, a fact like context(' thisPackage. thisClass . thisMethod' ,
' th isPackage . thisClass ') establishes that the context of the entity
thisPackage . th i sClass .thisMethod is thisPackage . th i sClass . Here the
property established is context. Other examples of properties include modifiers
of an entity, exceptions thrown by methods, static type of member variables
etc.

22

In these relations, the first argument represents the entity and the second
represents the entity's property. Thus, for a relation modifier, the fact
modif ier(' th isPackage. thisClass ' , 'publ ic ') can be read as ' pub l i c '
is a modifier of ' thisPackage. th isClass ' .

• Relations that establish mutual connections: Relations like ca l l i n fo and
f ieldaccessinf o establish the relationship between two interacting entities
in the code. Such relations typically have three arguments: the first two rep­
resenting the respective entities and the third representing the exact location
in the code where the relationship is expressed.

• Arbitrary user-defined relations: These include relations that users add to
the source model. They may have any number of arguments and establish
arbitrary information. Recall from section 2.3.3 that there are two ways of
adding information to the source model: adding facts and adding rules.

For a listing of relations in the source model, please see Table A . l .

2.5.4 Discussion

In designing the tool, we spent considerable effort to make it flexible and extensible.
The following are the highlights of our design and implementation:

• Our design acknowledges the general principle "Program to an interface, not
an implementation". Therefore, the different components of the tool actually
implement interfaces that are needed by their client objects. The client objects
do not directly hold references to the components directly. Instead, they refer
to the corresponding interface classes. This reduces the coupling between
objects. The components can be easily replaced without modifying their client
code. The actual component instantiation is done in a Factory [13] class that
is configured using a configuration file.

• The entire system is made up of a number of small component objects. A
configuration file is responsible for naming the components to be used in the
final system. The configuration file for the system can be thought of as a
little meta-program, which defines the components that must be part of the
tool. This type of .assembly of the system allows mix-and-match between
components and improves the overall changeability of the system.

• The user interface of the system and the functionality of the user interface are
cleanly separated using Observer pattern [13]. Therefore, the interface and
the implementation can be changed independent of each other.

23

User

Front End

—1
V

Back End

, 1 .
1 1 Rfiifiratinn
• 1 • Engine

i 1 i
1 1 Oufiry
1 1 | Engine

IS,
Source
Model

Figure 2.6: QJBrowser: System Architecture

• The architecture of the system is strictly layered. The classes at a lower
level in the architecture provide services to the classes at a higher level. The
overall architecture of the system is shown in Figure 2.6. Layering is a tried
and tested architecture advocated by Dijkstra [35] and has been analyzed in
literature before [8, 35, 36].

• As much as possible, each class implements only the functionality that it needs
to. This reduces the problem of code tangling in the system. In addition,
components that have distinct responsibilities can be replaced independent
of each other. For example, instead of having a single class parse the query
engine's output, compose it appropriately and render it on a view, our tool uses

24

a ResultParser class to parse the query results, a ResultComposer class to
compose them according to user's organization criterion and a TreeRenderer
class to render them as a tree. It should however be noted that this results
in a trade-off in terms of the number of little classes in the system. To be
more precise, since each class has fewer responsibilities, the system has more
classes. There are more interactions between classes which might impact the
overall performance of the system as well its comprehensibility.

2.6 Summary

In this chapter we discussed our prototype tool QJBrowser in detail. We outlined
its concepts, demonstrated its usage and discussed its design and implementation.

QJBrowser is a tool that generates views based on the criteria supplied by
a user, namely a selection criterion and an organization criterion. The selection
criterion is a query written in an expressive query language using a variety of in­
formation, such as inheritance relationships, calling dependencies, static types etc.
It selects the elements that should constitute the generated view. The organiza­
tion criterion projects the results of the execution of this query onto a hierarchical
browser-like view.

Overall, it was evident from this chapter that QJBrowser is a query-based
browsing tool that offers an extensible query language to define crosscutting views on
the system. We saw that the configuration mechanisms provided are simple enough
to generate views on demand. The next chapter will provide evidence supporting
our contention that such a tool can be used to obtain a wide variety of views that
can help a user explore crosscutting and non-crosscutting concerns in software.

25

Chapter 3

Validation

This chapter is intended to provide evidence supporting our thesis that QJBrowser, a
configurable browsing tool with an extensible query language, can offer conceptually
simple mechanisms to create different kinds of views that can help a user work with
crosscutting concerns.

This chapter is organized as follows: In section 3.1, we illustrate the utility
of QJBrowser by outlining some example views generated by it. This section will
show that QJBrowser achieves its goals of being simple and configurable enough
to generate many kinds of different crosscutting as well as non-crosscutting views
dynamically. This is followed by section 3.2, which is a discussion of our own pre­
liminary experience with the tool. Section 3.2 will describe how we used the views
generated by QJBrowser in accomplishing two of our simple development tasks.

3.1 Examples

This section focuses on example views generated by QJBrowser. These example
views are intended to illustrate the following:

• QJBrowser can be configured to generate a wide variety of crosscutting and
non-crosscutting views.

• QJBrowser can be configured using simple mechanisms. The configuration
process is not very complex and can be done on demand.

The examples discussed in this section are of two types: General-purpose
and Application-specific. By general-purpose views, we mean the kind of views that
are applicable to any software system. The other kind of views, application-specific
views, are obtained using application-specific data and may not be applicable to all
software.

26

General-purpose views are the kind of views that can obtained with most
development tools. Unlike most development, tools, the general-purpose views that
can be obtained using QJBrowser are not limited to a pre-defined set.

Application-specific views capture a user's knowledge about a domain or
application. This kind of views is particularly interesting because it is not possible
to obtain such views with a typical development tool that offers a pre-defined set of
views. Besides, an application-specific or a task-specific view can be more "in tune"
with a user's task than a general-purpose view offered by a development tool.

Our aim in using these two kinds of views in this section is to illustrate
that QJBrowser is generic enough to encompass most of the standard views offered
by typical development tools and configurable enough to produce views that are
tailored to specific user tasks. We show in this section that it is possible to obtain
many different kinds of views - both general-purpose and application-specific - and
different perspectives of the same view using QJBrowser. Additionally, several of
the views are crosscutting and reveal information which would be hard to discover
with a traditional browser.

3.1.1 General-Purpose Views

This section starts with a very simple view that can be obtained in most of the
modern development tools : a class browser. A class browser is a familiar view
to most developers and is found in almost all IDEs. This will be followed by an
exception browser example, where we discuss a class-browser-based organization of
the exceptions propagated in a system. That is, we organize exceptions based on
the classes in which they are thrown, in a class-browser-like view. We also discuss
a number of possible useful variations for the same view. Our aim in doing so is to
illustrate that QJBrowser can be used not only to generate a wide range of different
views based on different data, but also, a multitude of views based on the same data.

Conventional Class Browser

This example demonstrates that QJBrowser can be used to define a view that is
very familiar to most developers: a class browser. A class browser can be found in
most development tools like IDEs. These tools typically provide a fixed class view
with packages, classes and members displayed in a hierarchy, in that order.

We can define a class browser in QJBrowser using the following view-definition
parameters:

27

(g'class(X,Pa),member(M,X) - | D | X |

class(X,Pa),member(M,X) •
£2l CH ifa.draw.applet
o l CH i(a draw application
' i l CH.ifa.draw.contrlb
lual CH ifa draw figures
ijiji] CH ifa draw framework
.££ CH.ifa.draw.samples.iavadraw
23 CH.Ifa draw samples net
El & CH.ifa.draw.samples net.NetApp
B & CH.Ifa draw samples net NodeFigure

ff CH ifa draw.samples.net.NodeFigure BORDER
. ff CH.ifa.draw:samples:net:NodeFigure.fConnedors:! • ! » !

ff.ffHifartrawgamnlPC not :Mnr ipFmi i rp ' fCnnnpr tn rs \ / i« ; ih) i

Abindinfl^ofvarlableMiln your query* j newO i
CH.ifa.draw.samples.net.NodeFigure.displayBoxO : • j

mcH.ifa.drawjsamples.netNodeFlgure.contalnsPointOriWj

rrr

Find

Figure 3.1: Class Browser View

Selection: class(Class.Package),
member(Member.Class)

Organization: Package.Class.Member

The view generated for this set of parameters is shown in Figure 3.1. It
is possible to obtain a number of perspectives of the same view although some of
them might not be very natural or useful. For example, it is possible to obtain a
view that leaves out packages in the hierarchy by using the organization criterion,
Class, Member. It is also possible to obtain various flavors of the class browser: One
such flavor is a class browser that shows exceptions propagated in a system. This
browser can be obtained by simply refining the query for an ordinary class browser,
with extra information. The next subsection discusses this view in detail.

Exception Browser

The exception browser discussed in the section 2.3.1 is only one of many similar
browsers that can be defined around the theme of exceptions. The example in this
section shows how one can obtain with QJBrowser, a "family" of useful browsers
by combining a class-browser-like view with organization based on exceptions. Al l
browsers in this family share the same selection criterion but have different organi­
zation criteria. The selection criterion for this kind of browsers is shown below:

28

class(Class,Package), member(Method,Class),
exception(Method,Exception).

It must be noted that this query builds on the query stated in our last
example. Thus, configuring QJBrowser to produce different types of browsers need
not involve complex operations. It can be a simple editing operation incorporating
the appropriate predicates in the selection criterion query;

There are many possible organization criteria for this selection criterion, each
defining a somewhat different view. The total number of possible views that can be
obtained by selecting different variables and reordering them is calculated by using
the formula YA=\ n^ii where nPi represents a permutation of length i from a set of
n elements.

Since in this example, there are 4 variables, the above formula computes to:

4P, + 4P2 + 4P3 + 4P4 = ^ + ^ + J J ^ J 4- ̂ = 64

It should be noted that not all 64 variations are (equally) useful. For one
thing, there is a natural order on the variables Package, Class and Method.
Putting these variables in a different order does not result in a very useful view,
because it will not impose any meaningful organization. In a way, we can say that
the Package, Class and Method variables do not represent orthogonal entities. We
explain this further in the following paragraphs.

• Typically, executing a logic query produces a set of solutions. Each solution
in the set can be thought of as a n-tuple composed of bindings for the n
variables in the query. The query results can thus be represented as points in
a n-dimensional space in which each of the variables corresponds to an axis or
dimension.

In principle, none of the axes is more important than another. However, for
projecting the result space onto a tree, the user specifies an explicit order on
them. This order defines how the units on the axes are categorized in the tree.
For example, considering dimensions X and Y , if the order imposed on them
is (Y,X), then the units on the X-axis are categorized according to units on
the Y-axis. Similarly, if the order on the axes is (X,Y), then the units on the
Y-axis are categorized according to the units on the X-axis.

In our example, the variables Package,Class and Member have a natural hi­

erarchical categorization. A package is made up of classes and class is made

29

up of members. When modeling them on a n-dimensional graph, they are
not independent of one another and hence do not form orthogonal dimen­
sions. They can rather be represented using a single dimension, with one or
more classes mapping on to a package and One or more members mapping
on to a class. Whereas, the variable Exception is orthogonal to Package,
Class and Method variables. This means that Exception can be positioned
independently of Package, Class and Method in the organization criterion.

Ctfganizati
on#

Useful organization criteria

1.
2.
•T

E P C M
P E C M
X> C TT "UT

J.

4.
if IL 1V1
P C M E

5.
6.

&
9.
10.
11.
12.

E P M
E C M
P E M
P M E
C E M
C M E
E M
C E
M E •

5.
6.

&
9.
10.
11.
12.

E P M
E C M
P E M
P M E
C E M
C M E
E M
C E
M E •

E = Exception
P= Package
O Class
M= Method

13.

E P M
E C M
P E M
P M E
C E M
C M E
E M
C E
M E •

Figure 3.2: Useful organization criteria for exception browser.

Some variations of the exception browser can be easily obtained by hiding
parts of other variations. For example a view with organization criterion Package,
Class, Exception can be obtained by expanding the view generated by the crite­
rion Package, Class, Exception, Method only up to the third level. Similarly,
any variation that leaves out the variable Exception might not represent a class
browser that deals with exceptions propagated in a system.

Taking these and other similar considerations into account we have reduced
the number of actually useful views to the 13 shown in Figure 3.2. We will only
explicitly discuss the first 4 variations in detail, which use all the variables in the
query. These four are presumably the most useful ones. Each one of the four

30

resulting views differs from the others only in the way it shows how exceptions
crosscut the organization of methods into classes and packages.

Organization 1 lists all exceptions propagated in the system. Opening an
exception node will reveal a structure similar to a conventional class browser except
that it only shows packages, classes and methods in which that exception is declared
to be thrown. This browser allows the developer to quickly find all the places in the
system where a particular exception is thrown.

Whereas organization 1 shows crosscutting of exceptions at a systemic level,
organization 2 shows crosscutting of exceptions at the level of packages. On open­
ing a package node, a list of exceptions declared to be thrown in that package is
shown. Opening an exception node reveals classes and methods belonging to the
corresponding package, much like an ordinary class browser. However, it should
be noted that only those classes and methods in the package that propagate the
exception corresponding to the expanded node are revealed.

Similarly, organization 3 shows crosscutting of exceptions at the level of
classes. Organization 4 may, at first, appear to be less useful with respect to cross-
cutting, because it requires the developer to descend all the way to the level of
individual methods to find out what exceptions are thrown. However, it does pro­
vide a useful exception-oriented view on classes and packages because it only shows
a "filtered" package-class-member hierarchy where entities that do not propagate
any exception are culled out.

This example shows that QJBrowser can display crosscutting from differ­
ent perspectives. There may be several variations possible for the same view and
each of the variations might be useful in depicting crosscutting at a different level.
QJBrowser is configurable enough to capture a wide range of these (subtly different)
variations, while a conventional browsing tool is not.

With QJBrowser, one can get general-purpose views, similar to the views
offered by a conventional browsing tool. In addition to that, one can define a view
that is specific to a code base using data specific to that code base. The next
subsection discusses these kind of views in detail.

3.1.2 Code-base-specific browsers

In this section we discuss examples that illustrate the utility of QJBrowser in allow­
ing developers to define views specific to a particular code base. In other words, in
these examples, a browser's view-definition is inspired by some specific knowledge,
which is closely linked to a particular code base and may not hold true for any other
code base.

For this purpose, we shall consider a Java GUI framework for graphics, called

31

JHotDraw [12, 20]. JHotDraw provides several elements such as tools, menus and
handles for drawing and manipulating different figures. The package includes some
sample applications/applets that use these elements for different purposes, for ex­
ample, a Network editor, a PERT editor etc.

Naturally, the aforementioned concepts (application, tool, menu, figure, etc.
) also play an important role in the JHotDraw code base. Specific bits of knowledge
about how these concepts are implemented in JHotDraw will be the basis for the
examples in this section.

Tools Browser

-iDlx
l l tool(ConcTool) -±

1 & CH ifa draw.standard.Abstract.Tool
, & CH Ifa draw.contrlb PolygonTool

& CH ifa draw figures ScribbleTool
& CH.Ifa draw.samples.javadraw.FollowURLTool

i! r:'& CH:ifa.draw.samples:)avadraw.URI_Tool •
j •&CH.ifa.draw-standard:ActionTool-•-• • : WW

1 Find |

Figure 3.3: Tools Browser View

The browser in this example presents a view that shows all the tools in
JHotDraw. Every tool in JHotDraw implements an interface called Tool, either
directly or indirectly. This knowledge about how JHotDraw tools are implemented
can be easily translated into a query for finding all tool classes. The resulting query
constitutes the selection criterion for our first simple browser:

Selection: shortname(Toollnterface,'Tool'),
subtype(Tool,Toollnterface).class(Tool).

Organization: Tool

Because the notion of what constitutes a tool is a generally useful concept in
JHotDraw's code base, and because tools will also play a role in the other JHotDraw-
specific browsers shown in the remainder of this section, we will make a reusable
abstraction, namely a rule (see Appendix B) that defines it:

tool(X) : - shortname(Toollnterface,'Tool'),
subtype(X,Toollnterface),class(X).

32

http://draw.standard.Abstract.Tool

After defining this rule, we can use the query tool(X) to find all classes represent­
ing JHotDraw tools (see Figure 3.3). This rule is very useful as it improves the
readability of the queries as well as the ease with which queries can be composed,
in the following examples.

Tool Creation Browser

To explore the tools actually created in the sample applications/applets, in addition
to knowing how tools are implemented in the package, we must also know how
and where they are instantiated. By convention, JHotDraw applications/applets
have a method called createTools which instantiates the tools to be used in that
application/applet. We can define a rule to locate all createTools methods in the
code, as follows:

createMethod(Method,Application) :-
shortname(Method,.'createTools'),

method(Method,Application).

The instantiation is accomplished by simply invoking the constructor of the
corresponding tools. We use this useful bit of knowledge, in conjunction with the
rule defined above, to add another rule that defines the relationship between an
application/applet and the tools it creates.

createsTool(Application,CreatedTool,Line) :-
tool(CreatedTool).createMethod(CreateMethod,Application),

constructor(CreatedTool,Cons), callinfo(CreateMethod,Cons.Line).

We can then use this rule, as shown below, to define tool-creation views
(Figure 3.4 (a) and (b)).

Selection: createsTool(Application,Tool,Line).
Organization: Tool, Application, Line

The browser shown in Figure 3.4(a) is the result of the above definition.
It shows a hierarchy that lists the applications/applets in a code base that create
particular tools. The last variable, Line, will appear as a hyperlink to the precise
location in the code where the tool's constructor is being called. This view makes

33

gjoeatesTool(A|>ri]ir<ihnn,l ool.Liin) •-1EL*
createsTool(Application;Tool,Line). • • .
ffip CH.ifa:draw.contrib;PolygonTool '
& CH.ifa.draw.figures.ScnbbieTool . .

s»l & CH ifa draw samples JavadrawJavaDrawApp
3 £& CH Ifa draw samples javadraw JavaDrawApplet

* C\thesis\sources\CHVfe\draw\samples\iavadraw\Javal'
& CH Ifa draw samples javadraw URLTool
& CH ifa draw.standard ConnectionTool

Find

(a)

pjcreatesTool(Applicatian,lool,l mr) •JSf*.
_ j crealesTool(Application,Tool,Line)
U & CH.ifa draw.samplesjavadrawJavaDrawApp

- E & CH Ifa draw contrib PolygonTool

E & CHMfa.draw.figures.ScnbbleTool: :l
M C :\lhesis\s ourc es\GH\ifa\draw\samples\iavadraw\Jav;t

i . ffi-ft CH:ifa.draw.samples.javadraw.URIiTool :' I
i. : B-&CH.ifa:draw.standard ;ConnectionTool is

• " * C.\fcesis\sources\CHyifa\draw\samples\javadrawUav^-J
| H! & CH Ifa draw standard CreationTool \
' E & CH Ifa draw figures BorderTool '

B & CH ifa.draw figures ConnectedTextTool

i i i i ^ i i " - " - ^ l - v
-Find

(b)

Figure 3.4: Tool Creation Browsers

it easy find out all applications/applets that create a particular tool in addition to
the precise location of the tool creation call in the corresponding application/applet.
Note that it would be hard to gather the same information with a traditional browser
because the creation methods where the relationships between a tool and the cor­
responding applications are expressed, are scattered across the different application
classes.

Swapping the order of the first two variables in the organization criterion
provides another useful view (Figure 3.4(b)) of the same data. This view is com­
plementary to the previous one, making it easy to find out all the tools created by
a particular application/applet. The definition parameters for this view are shown
below:

Selection: createsTool(Application,Tool.Line).
Organization: Application, Tool, Line

Figure Browser

In this example, we define browsers around yet another JHotDraw-specific concept,
namely Figure. Figures in JHotDraw are graphical objects that can be drawn and
manipulated in applications/applets using appropriate tools.

We want to produce different views that show the relationships between
figures, tools and applications. To define an appropriate selection criterion, we need

34

to make explicit some knowledge about the specifics of the JHotDraw's code base,
by defining rules about them.

First of all, there is the knowledge that classes representing figures are identi­
fiable because they implement an interface called Figure. We express this knowledge
as a rule:

f i g u r e (X) : - shortname(Fig, 'Figure') ,
subtype(X,Fig) ,c lass (X) .

The connection between a figure and a tool that operates on the figure is also
apparent in the code base. Al l tool classes in the code base encapsulate the figures
that they can manipulate, as their data members. We turn this knowledge into the
following rule:

toolManipulates(Tool,Figure) :- tool(Tool),
field(Field,Tool).figure(Figure), type(Field,Figure).

^createsTooKApplicatton.lool.Li i . f^ ioohlom JSJXJ

_j creat8sTool(Applica!ion,Tool,Line),toolManipulates(Tool.fig)
E f c & eH.lfa:draw.samples;javadraw;JavaDrawApp

& CHifadraw.samplesiavadraw.JavaDrawApplet
s: & CH.ifa draw.samples.nothing.NotriingApp

& CH Ka draw contrib PolygonTool

£ & CH ifa draw.samples.nothing.NothingApplet . s-.f.vss
& CH.ifa.draw.samples.netNetApp

5; & CH.ifa.draw.samples.peitPerlApplet
:•" & CH ifa draw.samples pert.PertApplication ...v ./.•:

Find

Figure 3.5: Figure Browser View

We can now define several interesting views, which would reveal the figures
used by the different applications/applets. The following selection criterion is the
basis for a family of Figure Browsers. We only show one of the possible variations
in Figure 3.5.

Selection: createsTool (Appl icat ion ,Tool ,L ine) ,

toolManipulates(Tool ,Fig) .
Organization: Appl i ca t ion , Figure , Tool

35

The examples in this section illustrated how interesting views can be defined
using application-dependent knowledge. Such views can organize specific kinds of
code units based on high-level relationships between code-base-specific concepts.
Since the expression of these relationships are scattered throughout the code base
they would be rather hard to discover by a developer using a conventional browser.

3.2 Experience

The last section illustrated that QJBrowser is configurable enough to produce a
wide range of views on demand. The examples provided conceptual evidence that
QJBrowser can indeed be used to work with crosscutting concerns by providing a
way to generate a number of crosscutting views on the source code.

The examples only provide limited insight into the practical usability of the
tool. This section is intended to illustrate the utility of QJBrowser in practice.
We provide an account of our experience with the tool for performing two actual
development tasks. We describe how the views offered by QJBrowser helped us in
exploring our concerns during the tasks.

We would like to mention that "exploring" crosscutting concerns is a rather
fuzzy goal. When we say that a fool like QJBrowser can help a user work with
crosscutting concerns, we in fact mean that it can offer views that can help a user
locate relevant software units in one or more steps.

In this section, we describe our preliminary experience with QJBrowser for
performing two tasks:

• Comprehending the overall structure of a software package.

• Making a change to an existing application.

While performing the tasks, we recorded informal notes about the proce­
dure as well as our general observations. The nature of the study itself was very
preliminary. Therefore it does not provide unquestionable evidence regarding the
usability of the tool. It however does provide support for our contention that one
can use such a tool to explore a number of crosscutting concerns that arise during
software development/maintenance. W e could not perform more formal studies in
the limited time that was available to us.

In the first task, our goal was to gain some general understanding of the
structure and organization of JHotDraw [12], a Java GUI framework for technical
and structured graphics. JHotDraw consists of 148 classes, 490 methods and a total
of approximately 16000 lines of code.

36

We chose JHotDraw because its code is known to rely heavily on a few well-
known design patterns [13]. We considered it an ideal test case because, despite
its use of a number of good design principles, it is complex and understanding it
requires the developer to identify and understand various structural relationships
that exist among the scattered elements in the code.

The second task was more directed. It involved making a change to the
QJBrowser package itself by replacing its simple editor with a more sophisticated
one downloaded from the Internet, called J E . J E has 236 classes, 786 methods and
a total of approximately 13000 lines of code. This task consisted of changing J E
appropriately to make it perform the tasks required of an editor for QJBrowser,
besides making changes to QJBrowser to accommodate J E .

A n editor for QJBrowser would have to provide a way to update the source
model of the tool with the changes made by editing. The most essential part of the
change task was to find a way to provide this functionality in the editor by using
a GUI component that was consistent with the ones already used by the editor. In
addition, some parts of QJBrowser had to be changed to unplug the old editor and
plug in J E .

For both tasks, we began by running the application and studying its external
behavior before examining the source code. The next step was to search for the
application entry points using a simple logic query for finding methods named main:

Selection: shprtname(Main,'main'),
method(Main,EntryClass)

Organization: EntryClass,Main

The view defined by these parameters displayed all the classes that provided
an entry into the application. Subsequently, we elaborated this query to define a
view showing all methods that were transitively reachable (using the cal lgraph
predicate) from the respective main methods. For this we just refined the previous
query with extra information asking for the calling sequence of the main methods:

Selection: shortname(Main,'main'),
methbd(Main,EntryClass),
callgraph(Main,CalledMethods).

Organization: EntryClass,Main,CalledMethods

These parameters defined a view that consisted of all operations that could
potentially be performed after the application is started. From this point on, both

37

experiments started to diverge. Nevertheless, in both cases, there was a tendency
to formulate directed queries inspired by the results of the previous queries and a
desire to further explore specific aspects in more detail. Appendix C lists some of
the major steps taken during each task. The reader is referred to it for more details.
Here we provide an interpretation of the results of our experience.

Overall, we had a relatively positive experience with the tool although we did
notice some usability issues with it. Some things that were experienced as positive
were:

• The ability to obtain different perspectives on query results by reordering
variables.

In the first task, we wanted to get an overview of the class hierarchy in JHot­
Draw. For this purpose, we used the primitive query subtype(C,P) and the
two possible organization criteria, namely C,P and P,C, resulting in two dif­
ferent perspectives on the system. While the former perspective helped us in
identifying the. ancestors of particular classes, the latter helped us in getting
a more conventional inheritance view.

• The ability to formulate specific queries inspired by the preceding results.

Upon inspecting our notes, we found that we often formulated new queries to
further explore some pivotal elements revealed by the preceding query. For
example, from the class-hierarchy view described above, we found that only
one class in JHotDraw, namely CommandMenu, derived from JMenu, the class
that represents menu in Java's swing [30] package. This led us to formulate
more queries to explore the role of CommandMenu further, which gave us an
overall understanding of the way menus are implemented in JHotDraw.

• The ability to repeatedly edit the selection criterion to reveal more or less
information.

For example, in the second task, in order to update QJBrowser's source model
after editing a source file, we needed to get at the reference of the file being
edited, as maintained by the editor. By means of queries, we discovered that
J E maintains the current file as a field, namely CurrentFi le in the class
EditorFrame. Our next immediate goal was to find all public methods that
return this field. First, we queried for all the methods that accessed the field.
The resulting view was not instantly helpful because it showed all the methods
that accessed the field and not just the ones that returned it. To reduce the
number of results, we refined the query to match only those methods that
returned a type that was equivalent to that of CurrentFi le . Finally, we

38

refined the query even further because were only interested in methods that
had public access.

One of the problems that we noted with the tool was that, although the tool
offers some support for composing queries by providing useful query fragments in a
pull-down menu, composing queries that had the desired effect was not always easy
and required some trial-and-error. Another issue encountered was related to the
performance of the query engine. The execution of a query can take anywhere from
a fraction of a second to a few minutes, depending on the complexity of the query
and the number of results. Sometimes we lost patience waiting for all the results to
be computed. Rather than wait for query execution to complete we would abort its
execution and inspect a partially generated view.

3.3 Summary

This chapter provided support for our thesis tha,t a tool like QJBrowser can help a
user in working with crosscutting concerns by offering many different kinds of cross-
cutting views. We provided example views for sample scenarios and also discussed
our practical experience with the tool.

In essence, QJBrowser offers a configurable query-based mechanism to define
a multitude of views. A user can define a wide variety of views that are general-
purpose or specific to an application. She can create a new view using a simple
editing operation. We illustrated this by using examples. We also reported on
two simple case studies that provide some preliminary insights into the practical
usability of the tool.

39

Chapter 4

Related Work

In previous chapters, we described QJBrowser and how it can be used to deal with
crosscutting concerns in source code by defining views using an expressive and ex­
tensible query language. In this chapter, we discuss some of the existing work similar
to QJBrowser and how our research differs from them.

We discuss three kinds of work that have some relation to ours:

1. Commonly used integrated development tools that offer a pre-defined set of
browsing capabilities.

2. Tools that can be configured to produce different views.

3. Tools that explicitly provide ways to deal with crosscutting concerns.

We choose to discuss exactly these kinds of tools for the following reasons:

• QJBrowser was motivated by the drawbacks in most modern development
environments (see section 1.2 for details). Therefore, it is only logical to
discuss some IDEs and show how QJBrowser can enhance their capabilities.

• QJBrowser is not the first tool to be configurable enough to generate a wide
variety of views of source code. Several existing tools are configurable and
they, like QJBrowser, establish a trade-off between configurability and sim­
plicity. We discuss these tools since comparing the trade-offs made by each
of them would help to establish the place of QJBrowser in relation to similar
configurable tools.

• QJBrowser's ultimate purpose is to support the exploration of crosscutting
concerns in source code. Some tools such as Aspect-oriented programming
languages are also intended to address the same goal. We discuss such tools in

40

order to compare the support each methodology (linguistic, browser-support

etc.) offers to deal with crosscutting in code.

4.1 Integrated Development Environments

In this section, we discuss the most widely used kind of tool support for working
with program concerns: Integrated Development Environments (IDEs). Typically,
IDEs provide a suite of tools that target different aspects of program development.
For example, an IDE might provide tools like editor, class browser, class hierarchy
browser, resource browser, file browser, debugger and compiler.

Commercial IDEs such as Visual Studio [23], Visual Age [3], Forte [11] and
JBuilder [18] provide only limited support for exploring crosscutting concerns. They
provide a few standard set of browsing tools, such as class browser, package browser,
class hierarchy browser etc. These tools offer useful views that are mostly in line
with the notion of modularity as defined by the supported programming language.
In comparison, QJBrowser offers much greater flexibility and provides a way to
define many different kinds of views that may embody concepts that crosscut the
basic modularity of the supported programming language.

It must be mentioned that the focus of an IDE is not simply browsing source
code. Generally, IDEs are targeted towards providing a comprehensive set of tools
for program development. Whereas, QJBrowser is a browsing tool that does not
by itself offer any other functionality such as compiling, debugging etc. that are
common to a typical IDE. Therefore, QJBrowser cannot be seen as a counterpart
or replacement for an IDE, but it is complementary to it. A tool like QJBrowser
can possibly be plugged in to an IDE to replace the different browser tools offered
by the IDE.

Eclipse [9, 10] is an open extensible IDE with API's for plugging in a va­
riety of development tools. Developers can build their own extensions and tools
and integrate them seamlessly with the core IDE, thereby, greatly customizing the
environment. Nonetheless, this requires significant effort, if one wants to produce a
new view that is not offered by the existing set of tools in the Eclipse tool set, one
has to develop a full-fledged plug-in tool in accordance with the Eclipse specifica­
tions. In comparison, defining a view with QJBrowser merely requires typing in the
parameters that define the view.

Because Eclipse is an extensible development environment which comes with
a high-quality set of core Java development tools, it is an interesting idea to de­
velop QJBrowser itself as an Eclipse plug-in. Currently, the people at the Software
Practices Laboratory in the University of British Columbia are investigating this

41

idea.

4.2 Query-Based Tools

In IDEs, the views offered are typically pre-programmed into a fixed set of tools.
The reasons for why this is not so desirable were discussed in section 1.2. We stated
that a tool that can instead be configured by a user with the logic for generating
different kinds of views is desirable.

There are some existing tools that can be configured to produce views of
source code. One of the commonly used techniques to configure a view is by writing
a query, which selects the elements that have to be shown in the view. Queries are
essentially a way to identify elements related by a pattern/theme. For example, the
commonly used search utility grep takes a lexical pattern/regular expression as a
query that identifies the elements to be displayed. These elements may be present
in different modules and the query output lets a user view them together. This
in itself provides a way to deal with crosscutting code, since elements belonging to
crosscutting code elements can be viewed as as unit.

In this section, we survey some tools that use queries as the basis for dealing
with crosscutting in code.

4.2.1 Aspect Browser

Aspect Browser (AB) is a tool intended to assist evolutionary changes by making
code relating to a global change feel like a unified entity [14]. A n aspect in A B
is defined as a pair consisting of a textual pattern and a color. When an aspect is
enabled, the display of any program text matched by the pattern is highlighted with
the aspect's corresponding color.

Aspect browser was built to help programmers in dealing with crosscutting
changes to software. QJBrowser also has this as one of its goals. However, there
are some important differences between the two tools. Firstly, Aspect Browser
uses a much weaker query language based on lexical pattern matching (like grep).
Although regular expressions are easier for typical programmers to frame than logic
language queries, they are not Turing equivalent like a logic programming language.
Secondly A B visualizes query results using a map metaphor. That is, query results,
are represented spatially in a map using coloring scheme, indexing, folding and
zooming, a "You are here" pointer etc. In QJBrowser, query results are represented
as navigable trees with collapsible nodes. Each representation has its own pros
and cons. However, no formal studies have been done to prove the benefits of one
representation over the other.

42

4.2.2 Aspect Mining Tool

. . . Each compilation unit (i.e. class) itself is represented as a collection
of horizontal strips that correspond to the relevant lines of source code.
The tool allows user-defined queries based on type usage and regular
expressions, displaying matching lines in specific colors. Ifa line matches
more than one criterion, it will be separated into two or more differently
colored parts... [15]

Aspect Mining Tool (AMT) [15] extends Aspect Browser's query language to
include type-based queries in addition to lexical matching. Although, it does not use
an extensive map metaphor like AB, it does use a coloring scheme similar to AB to
distinguish different concerns. In QJBrowser, users define browser-like views using
queries. Whereas, in A M T user-defined queries identify and color lines of source
code that match a certain criteria.

A M T is very good for identifying aspects in a global view of the code base.
Since it uses colors to distinguish patterns in the code base, it is easy to spot
crosscutting aspects in a system. This may not be apparent using QJBrowser.

However, QJBrowser is a browser-like navigable tool that can be configured
to view different crosscutting units on demand. These units could exhibit a wider
variety of patterns among them than simple textual or type-based patterns; in other
words, QJBrowser is a tool that can allow the exploration of source code using views
that can be characterized by a wide range of syntactic as well as semantic queries.

4.2.3 Concern graphs

. . . we introduce the Concern Graph representation that abstracts the
implementation details of a concern and makes explicit the relationships
between different parts of the concern. The abstraction used in a Con­
cern Graph has been designed to allow an obvious and inexpensive map­
ping back to the corresponding source code. To investigate the practical
tradeoffs related to this approach, we have built the Feature Exploration
and Analysis tool (FEAT) that allows a developer to manipulate a con­
cern representation extracted from a Java system, and to analyze the
relationships of that concern to the code base... [28]

Concern graphs [28] are used for abstracting the implementation details of a
concern and showing relationships among the different parts of a concern explicitly.
In the proof-of-concept tool FEAT, developers add individual code fragments to
their concern one by one. The query language used in FEAT assists a developer in
incrementally locating new fragments to add to the representation of a concern.

43

F E A T and QJBrowser are to a large degree complementary in functionality.
Whereas QJBrowser has a more powerful query language and allows intentional
specification of organizational views, F E A T supports an extensional specification of
individual concerns. For the purpose of identifying concerns, F E A T supports six
pre-defined set of queries. This is in sharp contrast with QJBrowser, which provides
an extensible query language for expressing relationships among code elements that
are connected to a user concern.

4.2.4 Smalltalk Object Unification Language

. . . The common denominator in the sketched problems is the incapability
to express high level structural information in a computable medium that
is then used to extract implementation elements. To solve this problem
we introduce a logic programming language as meta-language to express
and reason about the structural information of software systems... [37]

Smalltalk Object Unification Language (SOUL) [38, 37] is a logic meta­
language that was developed for, expressing and querying structural information
about programs. It is a logic programming language that can reason about a base
language program written in Smalltalk. It is based on Prolog, but provides specific
extensions that can be used to query object-oriented systems.

SOUL was built as, a meta-language to express high-level structural informa­
tion in a computable medium that can be used to extract implementation elements.
The language itself is extensible by using facts and rules. It was designed to provide
evidence to the contention that a logic meta-language can be used to reason about
and extract system structure in a base language independent way.

Whereas SOUL is a logic meta-language to query software, QJBrowser is a
browsing tool that uses a logic meta-language to allow browsing of source code in
different ways.

4.2.5 ASTLOG

. . .We desired a facility for locating/analyzing syntactic artifacts in ab­
stract syntax trees of C/C++ programs; similar to the facility grep or
awk provides for locating artifacts at the lexical level. Prolog, with
its implicit pattern-matching and backtracking capabilities, is a natural
choice for such an application. We have developed a Prolog variant that
avoids the overhead of translating the source syntactic structures into
the form of a Prolog database; this is crucial to obtaining acceptable
performance on large programs... [7]

44

A S T L O G [7] is a system similar to SOUL for querying C and C++ abstract syntax
trees. It can be used to perform syntax level analysis of source code. Similar
to SOUL, A S T L O G was intended to be a language for querying rather than a
customized navigation tool like QJBrowser.

It must however be noted that both SOUL and A S T L O G use more sophis­
ticated implementation strategies than QJBrowser. They do not require an explicit
translation phase to transform source code into a database that can be queried.
Rather, they allow users to directly query the Smalltalk image and C / C + + A S T
structures respectively. This provides advantages in terms of performance and elimi­
nates the need to synchronize two separate representations of the source code. These
techniques are potentially also useful for a tool like QJBrowser and may be adopted
in future versions of the tool.

4.2.6 Coven and Gwydion

In Coven, source files are treated as collections of separate program fragments. Pro­
grammers can dynamically organize these fragments into new organizations, cor­
responding to new decompositions of a system, into source files. The approach
lets users write queries to dynamically generate new organizations by assembling
individual fragments into virtual source files (VSFs).

Gwydion's approach is similar to Coven's in considering each source file as a
collection of program fragments called sheets. Sheets provide linear textual display
of the code, and users may directly edit the displayed text in order to modify the
program. A query in Gwydion is simply a search that returns some subset of the
currently defined program fragments.

In both Coven [4] and the Gwydion [32], queries are a mechanism for selecting
flat sets of code-units, unlike the hierarchically organized results in QJBrowser. The
tools themselves are targeted towards source code repository management. Whereas,
QJBrowser is browsing tool and does not perform any source code management.

4.2.7 GraphLog

GraphLog [6] is a logic query language in which queries and query results are rep­
resented as directed graphs. Queries are represented as graph patterns. Edges in
queries represent edges or paths in the program database. This visual formalism
might ease the formulation of queries. The key difference between GraphLog and
QJBrowser is that the former is a query language and not a tool by itself. It could
potentially be used in QJBrowser, instead of Prolog or TyRuBa, to facilitate the
composition of queries.

45

4.2.8 Semantic Visualization Tool

Semantic Visualization Tool (SVT)[1] is a framework providing primitives for visu­
alizing and browsing any kind of data present in a code base. Conceptually, S V T is
by far the most similar to QJBrowser. In S V T , navigation and visualization primi­
tives are defined as Prolog predicates. The program source code and runtime data
are represented as Prolog facts in files. Data queries are used to generate specific
views. Many of the underlying ideas in QJBrowser and S V T are highly similar.

However, QJBrowser and S V T make different kinds of tradeoffs in terms of
the degree of flexibility and ease of defining tools/views. S V T is more accurately
characterized as an implementation platform for all kinds of visualization tools.
Because S V T has different set of goals than QJBrowser, it offers much greater
flexibility in the definition of a tool. Nevertheless, defining a S V T tool requires
considerably more effort than defining a QJBrowser view. Whereas QJBrowser just
requires a selection criterion and an organization criterion, the configuration of a
S V T tool involves defining views, view contents, view contexts, visual components,
menus, actions, reactions, visual objects and content types.

4.3 Alternative Modularization Approaches

In the last section, we discussed tools that used queries to produce crosscutting
views of code. With these tools, it is possible to view and explore concerns that
crosscut each other. However, it is not possible to separate the crosscutting code
and make them into individual compilation units.

There are other approaches that support crosscutting concerns by allowing
programmers to code crosscutting units of a system and weave them together ap­
propriately. Two such popular approaches are,the Hyperspace approach [24] and
A sped-oriented programming [22] approach. We discuss these two approaches in
this section.

4.3.1 Hyper spaces

. . . We use the term multi-dimensional separation of concerns (MDSOC)
to refer to flexible and incremental separation, modularization, and in­
tegration of software artifacts based on any number of concerns. It over­
comes limitations of existing mechanisms by permitting clean separation
of multiple, potentially overlapping and interacting concerns simulta­
neously, with support for on-demand re-modularization to encapsulate
new concerns at any time.:. Hyperspaces are our approach to achiev-

46

ing M D S O C . Hyperspaces also provide a powerful composition mech­
anism that facilitates non-invasive integration, adaptation, and "plug-
and-play"... We have defined a tool, called Hyper/J ™ , which provides
support for hyperspaces in J a v a ™ . . . [16]

HyperJ [16] is a tool that provides support for multiple decompositions and
compositions of a system using a static file called Hypermodule. A hypermodule is
composed of a number of Hyperslices. A hyperslice is created using a combination
of a predefined set of pattern-matching expressions that name the entities that
constitute the hyperslice.

Whereas, HyperJ supports on-demand re-modularization and executable com­
position of a system, QJBrowser supports the browsing of crosscutting views that
are created dynamically. To this end, QJBrowser provides an expressive query lan­
guage and a familiar user interface. Defining a crosscutting view requires as little
effort as typing its definition parameters.

In contrast, in HyperJ dynamic decomposition of a system requires writing
concern mappings that map concerns to their individual code units and forming
hyperslices using these mappings. The final system is obtained by creating hyper-
modules by appropriately combining the hyperslices. This might be fairly more
complex for a developer than a simple editing that defines a crosscutting view of a
system.

Nevertheless, HyperJ supports encapsulation and composition of crosscut­
ting modules into executable units. QJBrowser only supports viewing of concerns
in code, but not encapsulation and composition of concerns, since its goal is to
be a "browsing tool" that can assist developers in exploring crosscutting concerns
effectively.

4.3.2 AspectJ

. . . A s p e c t J ™ is a simple and practical extension to the Java ™ pro­
gramming language that adds aspect-oriented programming (AOP) ca­
pabilities. A O P allows developers to reap the benefits of modular­
ity for concerns that cut across the natural units of modularity. In
object-oriented programs like Javai, the natural unit of modularity is the
class. In AspectJ, aspects modularize concerns that affect more than
one class... [22]

AspectJ is one of the early linguistic approaches to crosscutting concerns. It
provides language support for coding concerns that affect more than one module.

47

Whereas QJBrowser provides dynamic support for working with crosscutting
concerns, with AspectJ, one must code aspects, weave them with the source code
and compile the resulting code to work with crosscutting. Likewise, since AspectJ
is a new programming language based on a new paradigm, its adoption might take
longer than a browsing tool like QJBrowser.

However, just as we stated in the last section, QJBrowser is only a browsing
tool. It does not aim to produce executable code for crosscutting units. AspectJ and
HyperJ provide support for modularizing crosscutting units and executing them.
The advantage of QJBrowser is predominantly its ability to allow developers to
work more "on demand" with crosscutting concerns than possible with linguistic
approaches like HyperJ and AspectJ.

48

Chapter 5

Conclusion

This dissertation presented the design and implementation of QJBrowser, a query
based tool that can assist in the exploration of crosscutting concerns in source code.
We showed how QJBrowser can be configured dynamically to create multiple cross-
cutting views of source code. We illustrated using examples and our own experience
with the tool that our implementation indeed confirms to the goals we stated for a
tool that can support our thesis, in the beginning of the dissertation:

• It must be a query-based browsing tool. Users should be allowed to browse
their source code by defining their views using queries. In addition, the views
obtained must have a conventional browser-like interface that is familiar to
most developers.

• The query language that it offers must be extensible so that it does not limit
the kinds of views that can be obtained from the tool.

• It must be configurable enough to generate a wide variety of interesting views.

• It must be simple to use. The tool must be used easily to generate views on
demand. We limited the scope of our tool to browsing rather than graphical
visualization simply because configuring the appearance and contents of a
graphical view can quickly get overwhelming to be used on the fly.

• It must help a user work with crosscutting concerns in her software.

5.1 Limitations and Future Work

QJBrowser is only a proof-of-concept prototype that we developed to advance our
thesis. In its current state of implementation, it has several limitations:

49

1. The queries used are in Prolog. One factor to consider here is that the tool's
intended audience are Object-oriented developers who might not be very fa­
miliar with logic languages. One possible approach to address this issue could
be to investigate better GUI support for editing queries. Another approach
is to define a more intuitive syntax for logic queries, for example, graphical
syntax as in GraphLog [6]. A third possibility is to look at non-logic query
languages such as SQL, which are typically less expressive, but might be more
familiar to developers.

2. Sometimes the performance of the tool is poor. This is especially true when
the query result set or the code base is large. Enhancing the tool's perfor­
mance can be done by performing optimizations like caching of query results,
incorporating better search strategies for query execution etc. It must be men­
tioned that TyRuBa, the query language that we used for the second version
of QJBrowser, uses some optimizations like this. In the TyRuBa version of
QJBrowser, it is a lot faster to execute a query that has been encountered by
the query engine before, than running a query for the very first time.

3. Formulating queries that have the intended effect is difficult. In our experience,
we had to continuously refine queries to get the result we needed.

4. Some tree views might not be very intuitive. For example, when an inheritance
tree is displayed one would expect the results to be recursively nested. That is,
if A is a parent of B which is a parent of C, then one would like C to be nested
inside B and B to be nested inside A. But in the current implementation, both
B and C will be nested inside A, since both are the subclasses of A. The same
is true for other recursive queries like callgraph.

This limitation is a direct result of our decision to keep the configuration of
a view as simple as possible. If the configuration mechanism is made more
elaborate, this limitation could be overcome. For instance, if it were possible
to express in the view-definition parameters that subclass is a recursive query
and the display must reflect that fact, the class-hierarchy view obtained with
QJBrowser could be made much more intuitive. However, one of QJBrowser's
goals is to strike a balance between configurability and simplicity. Making the
configuration process more elaborate might it make it more difficult to use the
tool.

5. Another idea for future research concerns extending the range of information
that is automatically extracted from the code base by the tool. The current
source model includes only facts about the source code that are automatically

50

extracted by simple static analysis of source code. However, it can be extended
easily to incorporate information from a variety of other sources, such as infor­
mation from dynamic analysis, JavaDoc comments, version management tools
etc.

6. Apart from these limitations of the implementation itself, the studies we per­
formed with the tool are quite preliminary. They do not provide conclusive
evidence with respect to the usability of the tool. We could not perform more
formal user studies in the limited time we had.

51

Bibliography

[1] Calum McK Grant A. Software Visualization in Prolog. PhD thesis, Queens'
College, Cambridge, 1999.

[2] J. Andersson, S. Andersson, K. Boortz, M . Carlsson, H. Nilsson, J. Widn, and
T. Sjland. The SICStus emulator. Technical Report T91:15, Swedish Institute
of Computer Science., 1991.

[3] L. A. Chamberl, S. F. Lymer, and A. G. Ryman. IBM VisualAge for Java.
IBM Systems Journal, 37(3), 1998.

[4] M . C. Chu-Caroll and S. Sprenkle. Coven: Brewing better collaboration
through software configuration management. In Foundations of Software En­
gineering (FSE), November 2000.

[5] H. Coelho and J.C. Cotta. Prolog by Example. The MIT Press and Springer-
Verlag, 1988.

[6] Mariano P. Consens and Alberto O. Mendelzon. GraphLog: A visual formalism
for real life recursion. In proceedings of the Nineth ACM SIGACT-SIGMOD
Symposium on principles of Database systems, pages 404-416, 1990.

[7] R. F. Crew. ASTLOG: A language for examining abstract syntax trees. In
Conference on Domain-Specific Languages, 1997.

[8] P. J. Denning and R. L. Brown. Operating systems. Scientific American,
251(3):80-90, 1984.

[9] The Eclipse platform: Technical overview. Technical report, Object Technology
International Inc., July 2001.

[10] The Eclipse IDE. Available online at http://www.eclipse.org.

[11] Forte for Java. Available online at http://wwws.sun.com/software/.

52

http://www.eclipse.org
http://wwws.sun.com/software/

[12] E. Gamma. The JHotDraw framework.
Available online at http://www.jhotdraw.org.

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[14] W. G. Griswold, J. J. Yuan, and Y. Kato. Exploiting the map metaphor in a
tool for software evolution. In Proceedings of the 2001 International Conference
on Software Engineering, May 2001.

[15] J. Hanneman and G. Kiczales. Overcoming the prevalent decomposition of
legacy code. In Workshop on Advanced Separation of Concerns at the Interna­
tional Conference on Software Engineering (ICSE), May 2001.

[16] Hyper/j ™ : Multi-dimensional separation of concerns for Java. Available
online at http://www.research.ibm.com.

[17] Intelligent Systems Laboratory, Swedish Institute of Computer Science. Mixing
Java and Prolog - Jasper. SICStus Prolog User's Manual., 3.7.1 edition, October
1998.

[18] JBuilder. Available online at http://www.borland.com/jbuilder/.

[19] JE—just an editor.
Available online at http://mathsrv.ku-eichstaett.de/MGF/homes/grothmann/je/.

[20] R. E. Johnson. Documenting frameworks using patterns. In Proceedings of the
OOP SLA '92 Conference on Object-oriented Programming Systems, Languages
and Applications, pages 63-76, October 1992.

[21] Stanley M . Sutton Jr. and I. Rouvellou. Concern space modeling in Cosmos.
In 2001 Conference on Object-Oriented Programming, Languages and Systems,
October 2001.

[22] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C- Videira Lopes, J. Lo-
ingtier, and J. Irwin. Aspect oriented programming. In ECOOP '97 — Object-
Oriented Programming 11th European Conference, June 1997.

[23] M . Kirtland. Introducing Visual Studio 97: A well stocked toolbox for building
distributed apps. Microsoft Systems Journal, 12(5), May 1997.

[24] H. Ossher and P. Tarr. Multi-dimensional separation of concerns using hyper-
spaces. Technical Report 21452, IBM, April 1999.

53

http://www.jhotdraw.org
http://www.research.ibm.com
http://www.borland.com/jbuilder/
http://mathsrv.ku-eichstaett.de/MGF/homes/grothmann/je/

[25] D. L . Parnas. On the criteria to be used in decomposing systems into modules.

Communications of the ACM, 15(12):1053-1058, December 1972.

[26] D. L. Parnas. Designing software for ease of extension and contraction. In

Proceedings of the 3rd international conference on Software engineering, 1978.

[27] M . Robillard and G . C. Murphy. Analyzing exception flow in Java programs.
In Lecture Notes in Computer Science, volume 1687, pages 322-337. Springer-
Verlag, September 1999.

[28] M . P. Robillard and G. C. Murphy. Concern Graphs: Finding and describing
concerns using structural program dependencies. In 24th International Confer­
ence on Software Engineering (ICSE), May 2002.

[29] P. Saint-Dizier. An Introduction to Programming in Prolog. Springer-Verlag,
1990.

[30] John Sands. News: J F C : An in-depth look at Sun's successor to A W T . Java-
World: IDG's magazine for the Java community, 3(1), January 1998.

[31] L . Sterling and E . Shapiro. The Art of Prolog. The MIT Press, 1994.

[32] R. Stockton and N. Kramer. The Sheets hypercode editor. Technical Report
0820, Dept. Computer Science, Carnegie Mellon U. , 1997.

[33] Sun Microsystems. Java RMI. http://java.sun.com/products/jdk/rmi/.

[34] K . De. Voider. Type-Oriented Logic Meta Programming. PhD thesis, Vrije
Universiteit Brussel, 1998.

[35] Dijkstra E . W. The multiprogramming system for the E L X8 T H E . circulated
privately, June 1965.

[36] W. Wulf, E . Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and F. Pollack.
H Y D R A : The kernel of a multiprocessor operating system. Communications of
the ACM, 17:337-345, June 1974.

[37] R. Wuyts. Declarative reasoning about the structure of object-oriented sys­
tems. In Proceedings of the TOOLS USA '98 Conference, pages 112-124. I E E E
Computer Society Press, 1998.

[38] R. Wuyts. A Logic Meta-Programming Approach to Support the Co-Evolution
of Object-Oriented Design and Implementation. PhD thesis, Vrije Universiteit
Brussel, 2001.

54

http://java.sun.com/products/jdk/rmi/

Appendix A

Source Model

In this appendix, we list some important relations available in the current version
of the tool's source model.

c lass (Cls) Find all classes Cis declared in the system.
f i e l d (F l d) Find all fields Fids declared in the system.

method(Mtd) Find all methods Mtd declared in the sys­
tem.

c ont e xt(Ent,Cont) Find all pairs Ent,Cont where Ent is an
entity (class, method or field) in a system
and Cont is its context.

modifier(Dec,Mod) Find all pairs Dec,Mod where Dec is a
declaration (for a class, interface, method,
constructor or variable) in the system and
Mod is a modifier (public, private, pro­
tected etc) attached to that declaration.

shortname(Dec,Name) Find all pairs of Dec,Name where Dec
is a declaration (for a class, interface,
method, constructor or variable) in the
system and Name is the short name for
the declared entity: the unqualified name
for a class, interface, field or selector name
for a method.

exception(Met,Exc) Find all pairs Met,Exc where Met is a
method declaration in the system and Exc
is an exception declared to be thrown by
Met.

55

arg(Met,Arg) Find all pairs Met,Arg where Met is a
method declaration in the system and Arg
is an argument of that method.

c a l l i n f o (C a l l e r , Cal l ee .L ine) Find all pairs Caller,Callee where Caller
is a method declared in the system and
Callee is a method called by Caller (ac­
cording to the static call graph). Addi­
tionally, Line will be bound to a reference
to the actual source-code line where the
call occurs.

f i e l d a c c e s s i n f o (F i e l d , Method,Line) Find all pairs Field,Method where Field is
a Field declared in the system and Method
is a method that accesses the field Field in
the code. Additionally, Line will be bound
to a reference to the actual source-code
line where the field is accessed.

f i e ldchange info(Fie ld , Method,Line) Find all pairs Field,Method where Field is
a Field declared in the system and Method
is a method that changes (uses the field in
the LHS of an expression) the field Field in
the code. Additionally, Line will be bound
to a reference to the actual source-code
line where the field is changed.

type(Fid,Typ) Find all pairs Fid,Typ where Fid is a field
declaration in the system and Typ is the
declared type of Fid.

method(Met.Cls) Find all pairs Met,Cls where Cls is a class
(or interface) declared in the system and
Met is a method declared in that class.

member(Mem,Cls) Find all pairs Mem,Cls where Cls is a class
declared in the system and Mem is a mem­
ber (variable, method or constructor) de­
clared in that class.

56

callgraph(Startmethod,Graph) Find all pairs Startmethod,Graph where
Startmethod is a method declared in the
system and Graph is the transitive closure
of the methods that gets called starting
from Startmethod.

subtype(Sub,Sup) Find all pairs Sub,Sup of class or interface
types declared in the system, such that
Sub is a subtype of Sup.

constructor(Met, Cis) Find all pairs Met,Cis where Cis is a class
declaration in the system and Met is a con­
structor method declaration.

Table A . l : Source IV odel of QJBrowser

57

Appendix B

P r o l o g

Prolog is a logic programming language that provides for the representation of a
subset of first-order predicate calculus. It is very expressive and has a simple and
intuitive syntax. Prolog queries are composed of one or more goals. In its simplest
form, a query is just a single goal that has to be satisfied by the Prolog engine.
The result of a goal can be positive or negative based on information in the internal
database of the Prolog engine.

class(thisClass).

method(thisMethod).

method(thatMethod).

context(thisMethod.thisClass).

context(thatMethod,thisClass).

throws(thisMethod,thisXCep).

Figure B . l : A simple source model

For instance, let us consider the source model shown in Figure B . l .

Every line in the figure represents a fact about the source code. For this

source model, the goal method (thisMethod) will yield a positive result since the

source model has a fact that names the term thisMethod to be a method. Likewise,

the goal method(someMethod) will yield a negative result.

Logical variables are identifiers starting with uppercase alphabets. The goal

58

a(X), for example, has a logical variable named X. The solution to this goal is a
set of values for X for which the relation a is true. If the relation a is method and
the source model is the one shown in Figure B . l , then the query engine will assign
the values thisMethod and thatMethod to X. The process of assigning a value to a
variable is called the instantiation or binding of a value to that variable.

Goals can be combined to form derived queries using logical operators: ','
and ';', representing logical conjunction and logical disjunction respectively. In such
a case, the query execution will attempt to satisfy the goals one-by-one, starting
from left to right.

To be more precise, consider a simple conjunction:

context(X, thisClass) , throws(X, thisXCep). (B.l)

Let us see the sequence in which Prolog executes this query for the source
model shown is Figure B . l . Prolog tries to satisfy the first goal context (X, thisClass)
first. This results in two value bindings/substitutions for the variable X - thisMethod
and thatMethod - and hence a fork in the execution as shown in Figure B.2.

context(X,thisClass),

throws(X,thisXCep).

context(thisMethod,thisClass), context(thatMethod,thisClass),

throws(thisMethod,thisXCep). throws(thatMethod,thisXCep).

<YES> <NO>

Figure B.2: Execution path for the query (B.l).

Following fork A, we can see that the variable X has been substituted by
thisMethod. With this substitution, Prolog tries to satisfy the next goal, namely
throws (thisMethod, thisXCep). This goal succeeds as the source model has a fact
that matches it. Since there is no more goal to match, Prolog engine concludes that
thisMethod is a valid binding for the variable X and returns it as an answer to the
query.

Along fork B of Figure B.2, the variable X has been substituted by
thatMethod.

59

Prolog tries to satisfy the next goal with this substitution. It fails because
there is no fact in the source model that matches it exactly. Therefore this fork
is an unsuccessful branch. Whenever Prolog encounters an unsuccessful branch, it
backtracks to the previous node and follows an alternative path. Since in this case
there are no more paths left at the previous node, execution stops with just one
binding for the variable X , namely thisMethod.

Let us now consider a query that uses a disjunction to join two goals as
shown below:

A disjunction offers an alternative execution path for the query engine. The
execution path for the query B.2 is shown in Figure B.3.

context(X, thisClass); throws(X, thisXCep). (B.2)

context(X.thisClass);

throws(X,thisXCep).

context(X,thisClass) throws(X,thisXCep).

context(context(

thisMethod, thatMethod,

thisClass) thisClass)

throws(thisMethod,

thisXCep)

<YES> <YES> <YES>

Figure B.3: Execution path for the query (B.2).

For more information on Prolog, please refer to [31], [29] and [5]

60

Appendix C

Experience - Results

In order to gain some experience with the tool and test its applicability to explore
software concerns, the author of the tool performed two simple development tasks
with QJBrowser, involving non-trivial software packages downloaded from the In­
ternet.

During both tasks, the author took informal notes about the steps she per­
formed and the queries used. In the first experiment, the author's goal was to under­
stand the overall structure and organization of a software package called JHotDraw
of which she had no prior knowledge. In the second experiment, the goal was more
specific, involving a specific change task - an open-source editor called JE must
be modified to incorporate new functionality and be plugged in as an editor for
QJBrowser.

This appendix provides an abridged account of the informal notes taken by
the author during both tasks. We provide only an abridged version of the notes
taken by the developer, mainly because of space constraints. Additionally, the
account provided is simply a paraphrasing of the notes taken by the author. For a
more focused discussion of the notes, please refer to section 3.2.

C l Comprehension Task

The first step that the author took was to compile and run JHotDraw to get a first
impression of what the application does - It created a window with a menu, toolbar
and other GUI components. It was possible for the user to draw different shapes
using these components.- After the author had some hands-on experience with the
tool, she was ready to start exploring its source code.

The paragraphs below provide an account of the steps taken by the author
to explore the structure of the package's source code using QJBrowser. They list

61

the definition parameters for some of the major views generated during that task
along with a brief description for them.

Selection: shortname(M,'main'),method(M,C),
callgraph(M.G).

Organization: C.M.G

This view displayed all the methods named main(application-entry methods)
in the application and their corresponding callgraphs. The developer noted
that four classes in JHotDraw had application entry points and all the appli­
cation entry points were followed by a very similar call sequence.

Using the navigation feature of the generated view, the author could easily
navigate to the source code of the methods in the call sequence. She noted
that in the call sequence, an instance of a class called DrawApplication was
created, which in turn created a window, menus and a tool bar. Therefore,
the developer decided to explore the DrawApplication class, the menus and
the toolbar further.

ii.

Selection: subclass(C,P)i(P
=='javax.swing.JMenu'; P ==
'j ava.awt.Menu').

Organization: •P.C

This view showed all the classes that could act as menus. A n interesting detail
that was found in this step was that all Menu components in the software were
swing [30] components. The developer also found that there was a class called
CommandMenu that was a subtype of JMenu. Since her immediate subgoal was
to understand the implementation of menu functionality in the package, she
decided to explore CommandMenu further.

Selection: shortname(C, 'CommandMenu'),
callinfo(Al,A2,_) , context(A2,C).

Organization: A2.A1

This view displayed all units of the software that called any of the methods in
the CommandMenu class. The author wanted to explore the CommandMenu class,
since she found it to be the only class that derived from JMenu and hence a
core part of the menu implementation in JHotDraw.

62

From the result of this query, the developer observed that the methods
that created different menus in the DrawApplication class, for example
createEditMenu, createMenuItem, createDebugMenu, createColorMenu
etc., invoked a method called add in CommandMenu. This method took a
Command object as its parameter.

Suspecting that there might be a command [13] design pattern involved in
this interaction, she wrote a number of rules that abstracted the structural
relationships of the participants of the command design pattern. She found
that the Command class was in fact a participant in the Command pattern.

However, it should be noted that most design pattern instances cannot be
distinctly and unambiguously defined using the structural relationships among
their components. For example, aggregation/association can be implemented
in a variety of ways - A class can have an aggregate in the form of a Vector
of generic objects. It might not be possible to know the actual type of the
objects in the vector until runtime. Such cases might result in false negatives
while trying to detect patterns using just static information.

Similarly the structure of a pattern itself is very broadly defined. Therefore,
some classes that are not intended to implement a pattern, but possess a
resemblance to its structure might be detected wrongly.

Selection: subclass(C,P),P ==
' j avax.swing.JToolBar' .

Organization: p .c

Having understood the implementation of menu functionality in the package
to a reasonable degree, the author decided to shift her focus to other GUI com­
ponents like tool bars. To this end, she constructed a view with the parameters
listed above. For constructing this view, the author used her knowledge that
in Java's swing package, the class JToolBar is used for representing a toolbar.
The resulting view showed that there was a class called CustomToolBar that
inherited from JToolBar, that could potentially be used for implementing the
application's toolbar functionality.

Selection: shortname(C, 'CustomToolBar'),
ca l l in fo (Al ,A2 ,_) , context(A2,C).

Organization: A2.A1

63

This view was used to find where any of the methods in CustomToolBar was
called. To the surprise of the author, it was not called anywhere in the appli­
cation, at least directly1

The developer checked her initial callgraphs and found a method
called createToolPalette that actually created a JToolBar instead of
a CustomToolBar. This toolbar was configured by a method called
createTools. However, createTools did not create any particular Tool but­
ton (a toolbar is typically made of a number of buttons that can be clicked).
Hence, the developer decided to find out if that was the only createTools
method in the suite or if some subclasses overrode it.

Selection: shortname(D,'DrawApplication'),
subclass(C,D),

vi. shortname(M,'createTools'),
method(M,C).

Organization: C,M

All the subclasses of DrawApplication, which were also the classes containing
the application entry points, contained their own versions of createTools
method. Each of them created instances of a class called Tool and added the
resulting tools to the toolbar. The developer wanted to explore the Tool class
further by investigating its class hierarchy.

Selection: shortname(P, 'Tool') , subtype(C,P),
code(C.U).

Organization: P,C

This view showed a bunch of classes that represented the different tools in
the suite, like TextTool, CreationTool, PolygonTool etc. The developer
skimmed the source code of these classes and found that they encapsulated
the logic for manipulating the entities that they created.

These steps are only a subset of what the author followed in understanding
the software suite. Since the notes were quite informal and some steps were minor
or a refinement of the major ones listed here, we do not discuss every step in detail
here.

xIt should be noted that the above query would not reveal any call sequence generated
by reflection.

64

C.2 Change Task

The second experiment involved making a change to the QJBrowser package itself
by replacing its very simple editor with a more sophisticated one downloaded from
the Internet, called J E . In essence, this task consisted of changing J E appropriately
to make it perform the tasks required of an editor for QJBrowser. A n editor for
QJBrowser would have to provide a way to update the source model of the tool with
changes introduced by the editing operation.

Hence, the most essential part of the change task was to find a way to provide
this functionality in the editor using a GUI component that was consistent with the
ones already used by the editor. In addition, some parts of QJBrowser had to be
changed to unplug the old editor and plug in J E . In this section, we only discuss
the steps taken by the author to figure out the places where J E had to be changed
to accommodate QJBrowser-specific functionality.

To modify parts of a software, a user would generally require a good degree
of understanding of its working. Therefore, the first step our developer took was
to compile and run the application in its "stand-alone" mode. She found that the
application used a toolbar and menus as the primary GUI components. Hence, she
wanted to provide the QJBrowser-specific functionality in the editor using a new
menu and a toolbar item. We shall describe how she added her new menu in the
editor in the following paragraphs.

Selection: shortname(M,'main'),method(M,C),
callgraph(M,G).

Organization: C,M,G

Using this view, the developer traced the callgraph of the single application
entry point in the software. She looked for all methods in the callgraph that
had names that were suggestive of creating a menu or adding a menu to the
menu bar. There were methods like makeFileMenu, makeEditMenu etc, that
could potentially be the ones creating/adding menus in the application. These
methods were part of a class called EditorFrame. She inspected their source
code and found that they indeed created and added new menus to the menu
bar of the application. The menu bar was passed as a parameter to them in
the menu creation protocol.

Selection: shortname(E,'EditorFrame'),
subtype(E,P).

Organization: E,P

65

The developer's immediate subtask was to find a way to get at the reference
to the application's menu bar so that she could add her own menu to it. Since
the menus were created and added by methods in the EditorFrame class, the
developer decided to explore this class a bit further.

She used the view above to locate the parent classes of EditorFrame. This
view revealed that EditorFrame inherited from a class called j ava. awt. Frame.
Knowing that j ava. awt. Frame had a method called getMenuBar that could
be used to add a new menu to the existing menu bar, the developer set out to
find how the menu actions were handled in the suite.

iii.

Selection: shortname(M,'makeFileMenu'),
cal lgraph(M.P) , method(P,C),
subtype(C,'Java.awt.event .ActionListener')

Organization: C.M.G

This view showed all methods that belonged to a class that was a subtype
of Java.awt.event.ActionListener and were called in the menu creation
sequence. The developer was aware that Java, awt .event .Act ionListener
represented the interface responsible for handling menu item actions.

She found from the result of this query that a new instance of a class called

MenuItemActionTranslator was created for handling menu actions.

Selection: shortname(M,'actionPerformed'),
shortname(C,'MenuItemActionTranslator'),
method(M,C),callgraph(M,A)

Organization: M,A • ••

This view was defined to examine the course of the actionPerf ormed
method, the method that is a part of the signature of
Java.awt.event.ActionListener, in the MenuItemActionTranslator
class. It showed that this method called just One method called doAction in
an interface called DoActionListener.

Selection: shortname(P,'DoActionListener') ,
subtype(G,P), shortname(M,'doAction'),
method(M.C), \+(modif ier(M, 'abstract ') .

Organization: C,M

66

Having found that a method called doAction might be responsible for han­
dling the menu actions, the developer decided to explore the definitions of this
method in the classes that implemented DoActionListener. She used the
parameters listed above for this purpose, and found that EditorFrame, the
class that created the different menus and added them to the menu bar, had
a definition of this method and hence handled menu actions.

So the developer decided to subclass EditorFrame, add a method called
makeReif yMenu in the menu creation sequence, and override doAction to han­
dle her new functionality appropriately.

Selection: member(A,C), shortname(A,N),
(atom_concat('save', _,N);
atom_concat('load', _, N)) .

Organization: C,A

The next step was to get hold of the absolute name of file being edited in order
to update the source model with the relevant data. Using the query above,
our developer looked for methods that saved or loaded a file to find out how
a reference to the name of the corresponding file was maintained in the class.
From examining the code of the resultant methods, the developer found that
a member called CurrentFi le belonging to class EditorFrame was used to
refer to the file being edited.

Selection: shortname(C, 'CurrentFi le ') ,
f ieldaccessinfo(M,C,_) .

Organization: M

Selection: shortname(C, 'CurrentFi le ') ,
modifier(C.Mod).

Organization: Mod

Using these queries, the developer found that the variable, CurrentFi le , had

package access and there were no inspector methods that returned its value.

Hence, it was virtually impossible to get at the current file without modifying

the original J E package.

67

viii. The developer decided to alter the original package to provide a new pub­
lic method in the class EditorFrame that would return the value of the
CurrentF i l e variable. She also subclassed EditorFrame and provided her
own doAction method that would trigger the reification engine to update the
source model with current changes.

C.3 Summary

This section presented the major steps and observations while performing two simple
development tasks using QJBrowser. It should be noted that most of the views
described in this section are highly tailored to the user's needs. They use parameters
that are specific to the application being dealt with.

This section provided evidence that it is possible to use QJBrowser to ex­
plore concerns, like comprehending and modifying software, in realistic situations.
However, since we did not perform any detailed user studies with the tool in the
limited time available to us, it is not possible to predict the usability of the tool
from an end-user perspective.

68

