
An Efficient and Effective Computation of
2-Dimensional Depth Contours

by

Ivy Olga Kwok

B.Sc. (Hons), The University of British Columbia, 1996

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

T H E REQUIREMENTS FOR T H E DEGREE OF

Maste r of Science

in

THE FACULTY OF GRADUATE STUDIES

(Department of Computer Science)

we accept this thesis as conforming
to the required standard

The University of British Columbia
October 1999

© Ivy Olga Kwok, 1999

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

Department

The University of British Columbia
Vancouver, Canada

DE-6 (2/88)

ABSTRACT

Depth contour computation is a useful aid to outlier detection. For two-dimensional

datasets, Rousseeuw and Ruts' ISODEPTH has been the state-of-the-art algorithm.

Further contributions involve improving its efficiency and effectiveness, and resolving

the issue of higher-dimensional datasets. This thesis details our research in these two

areas. It presents a Fast Depth Contour Algorithm - FDC, which permits the selection of

useful data points for processing and the removal of data point positioning limitations.

Different selection methods result in the creation of FDC-basic and FDC-enhanced; and

for buffer-space-compatibility, three further variants (FDC-M1, FDC-M2, and FDC-M3)

of FDC-basic have been developed. FDC-basic capitalizes on the normal location of

outiers and the relevancy of the vertices of convex hulls in depth contour computation.

By computing with only the useful data points, it proves to run 150 times faster than

ISODEPTH when computing the first 21 depth contours of a 6500-point dataset. FDC-

enhanced takes only a quarter of the time required by FDC-basic to compute the first 151

depth contours of a 100,000-point dataset because it maintains a constantly adjusted

sorted list of the useful data points to reduce redundant computation. FDC-M1 keeps

dividing the dataset into subsets and discarding the useless data points until the union of

the subsets fits the buffer size. FDC-M2 further uses a periodically adjusted inner convex

hull to filter useless data points. FDC-M3 saves buffer space by starting the computation

with a minimum dataset, which is enlarged with additional useful data points for each

succeeding computation. To tackle datasets of higher dimensions, we have pioneered a

promising algorithm in 3-dimensional computation, FDC-3D, which can be improved

i i

with the use of sorted lists. Algorithm Fast Depth Contour not only provides an efficient

and effective tool for immediate use, but also suggests a direction for future studies.

iii

TABLE OF CONTENTS

A B S T R A C T ii

T A B L E O F C O N T E N T S iv

L I S T O F T A B L E S , vi

L I S T O F F I G U R E S vii

A C K N O W L E D G E M E N T S x

C H A P T E R O N E : I N T R O D U C T I O N 1

D A T A MINING ...2

OUTLIER DETECTION 3

DEPTH CONTOUR 5

MOTIVATION 7

CONTRIBUTION .9

OUTLINE OF THE THESIS 11

C H A P T E R T W O : D E P T H C O N T O U R S & I S O D E P T H 13

BACKGROUND . 13

I S O D E P T H 16

COMPLEXITY ANALYSIS 19

C H A P T E R T H R E E : F A S T D E P T H C O N T O U R A L G O R I T H M - F D C 21

ALGORITHM F D C .21

DEMONSTRATION 24

CORRECTNESS OF F D C 32

COMPLEXITY ANALYSIS 34

C H A P T E R F O U R : E N H A N C E D F D C - F D C - E H N A H C E D 37

SORTED LISTS 37

CONSTRUCTION OF INITIAL SORTED LISTS 38

INCREMENTAL MAINTENANCE OF SORTED LISTS-. 40

DEMONSTRATION 43

COMPLEXITY ANALYSIS 48

iv

C H A P T E R F I V E : F D C W I T H B U F F E R S P A C E CONSTRAINTS 50

COMPUTATION WITH LIMITED BUFFER SPACE 50

F D C - M 1 : BASIC 52

F D C - M 2 : BATCH MERGING . 54

F D C - M 3 : FULL MERGING 58

C H A P T E R SIX: 3 -DIMENSIONAL F D C 64

3 -DIMENSIONAL DEPTH CONTOURS 64

EXPANDING E-INSIDE REGION 67

INTERSECTING HALF-SPACES 71

COMPLEXITY ANALYSIS 74

C H A P T E R S E V E N : P E R F O R M A N C E A N D E X P E R I M E N T A L R E S U L T S 76

PERFORMANCE: FDC-BASIC VS. I S O D E P T H 77

PERFORMANCE: FDC-ENHANCED VS. FDC-BASIC 80

PERFORMANCE: F D C - M 1 , F D C - M 2 A N D F D C - M 3 82

PERFORMANCE: F D C - 3 D 86

C H A P T E R E I G H T : C O N C L U S I O N 87

B I B L I O G R A P H Y 97

V

LIST OF TABLES

Table 1-1 Number of data points in the first 151 depth contours of different datasets...... 9

Table 4-1 Initial sorted lists for points {A, G} 39

Table 4-2 Inserting TV into SL[T\ 41

Table 4-3 Inserting H into SL[A] and A into SL[H] 44

Table 4-4 Sorted lists for T= {A, ...,H) .44

Table 4-5 Inserting / into SL[H] 45

Table 4-6 Sorted lists for T= {A, ...,/} .46

Table 4-7 Sorted lists for T= {A, ..., J) ,47

Table 4-8 Inserting K into SL[J] v. 47

Table 4-9 Sorted lists for T = {A, ..., M} .48

Table 7-1 FDC-basic vs. ISODEPTH in computing the first 21 depth contours of
different datasets 78

Table 7-2 FDC-basic vs. ISODEPTH in computing different numbers of depth contours
of 6500 data points 79

Table 7-3 FDC-enhanced vs. FDC-basic in computing different numbers of depth
contours of 100,000 data points 80

Table 7-4 FDC-basic vs. FDC-enhanced in computing the first 21 and the first 151 depth
contours of different datasets 81

Table 7-5 Total computation time and relative performance of FDC-M1, FDC-M2 and
FDC-M3 in computing the first 31 depth contours of different datasets with
buffer size = 250 83

Table 7-6 Total computation time and relative performance of FDC-M1, FDC-M2 and
FDC-M3 in computing the first 31 depth contours of different datasets with
buffer size = 500 83

Table 7-7 Computation time of FDC-3D in computing the first 21 and 31 depth contours
of different datasets 86

L I S T OF FIGURES

Figure 1-1 Peeling -.6

Figure 1-2 Half-space Depth 6

Figure 1-3 Data points in general position .8

Figure 1-4 Data points not in general position 8

Figure 2-1 O-Depth Contour touches 1-Depth Contour 15

Figure 2-2 1-Depth Contour generated by ISODEPTH 16

Figure 2-3 2-Divider, Special 2-Divider and its Special Half-plane 16

Figure 2-4a i precedes j 18

Figure 2-4b i coincides with j 18

Figure 2-4c i follows j 18

Figure 3-1 O-Depth Contour of the 17-point dataset 24

Figure 3-2 1-Dividers , 1-Intersected Inside Region and 1s t Inner Convex Hull 24

Figure 3-3 2-Dividers, 2-Intersected Inside Region and 2 n d Inner Convex Hull 26

Figure 3-4 Expanded IR(<A, H>,<H,D>) 26

Figure 3-5 Expanded IR(<B, I>, <I, J>, <J, E>) 27

Figure 3-6 Expanded IR(<C, J>,<J,F>) 27

Figure 3-7 2-Dividers, Expanded 2-Intersected Inside Region and 3 r d Inner Convex Hull
28

Figure 3-8 IR[K] = IR(<K, F>) u IR(<K, L>) 28

Figure 3-9 IR[I\ = IR(<I,E>) u IR(<I,N>,<N,K>) 29

Figure 3-10 IR[J] = IR(<J, K>) 29

Figure 3-11 3-Dividers and Expanded 3-Intersected Inside Region 30

Figure 3-12 O-Depth to 6-Depth Contours of the dataset 30

vii

Figure 3-13 O-Depth to 2-Depth Contours and Inner Convex Hull 31

Figure 3-14 3-Dividers and Inner Convex Hull 31

Figure 3-15 O-Depth to 4-Depth Contours of the Dataset 32

Figure 4-1 O-Depth and 1-Depth Contours 39

Figure 4-2 3-Dividers <I, E> and <I, N>; 4-Divider <I, K>; 5-Dividers <I, D> and <I, F>
41

Figure 4-3 2-Divider <A, H>; 4-Divider <H,A> 44

Figure 4-4 3-Dividers <H, B> and<ff, I> 45

Figure 4-5 A l l dividers for 7 46

Figure 4-6 3-Dividers <J, G> and <J, K> 47

Figure 5-1 O-Depth to 2-Depth Contours of a 60-point dataset 52

Figure 5-2 S i and S 2 52

Figure 5-3 2-Depth Contours and Outer Point Sets of S i and S 2 53

Figure 5-4 Updated S has 33 data points 53

Figure 5-5 S i and S 2 54

Figure 5-6 2-Depth Contours and Outer Point Sets of S i and S 2 54

Figure 5-7 O-Depth to 2-Depth Contours of S with 21 data points 54

Figure 5-8 Initial S, Controlling CH, and Outer Point Set of S 2 57

Figure 5-9 O-Depth to 2-Depth Contours of S with 28 data points 57

Figure 5-10 Outer Point Set and Next Convex Hulls of S i 61

Figure 5-11 Outer Point Set and Next Convex Hulls of S 2 61

Figure 5-12 O-Depth Contour and 1 s t Inner Convex Hull of S 62

Figure 5-13 O-Depth and 1-Depth Contours of S 62

Figure 5-14 O-Depth to 2-Depth Contours of S 63

Figure 6-1 O-Depth Contour 65

Figure 6-2 1-Depth Contour 65

viii

Figure 6-3 2-Depth Contour 65

Figure 6-4 3-Depth Contour '. 65

Figure 6-5a Point p in the 2-Dimensioanl Space 67

Figure 6-5b Point p in the 3-Dimensional Space, 67

Figure 6-6 O-Depth Contour and 1s t Inner Convex Hull 69

Figure 6-7 No points in CH\ is to the outside of 1-Divider [C, E, G] 69

Figure 6-8 Expand IR([B, D, F]) with / 70

Figure 6-9 Expand IR([A, C, E]) with /, J, and K : 70

Figure 6-10a Primal Plane 72

Figure 6-10b Dual Plane 72

Figure 6-1 la Primal Plane: Intersection of 12 half-planes (in dotted line) 73

Figure 6-1 lb Dual Plane: Convex hull of the duals of the half-spaces 73

Figure 7-1 Compare FDC-basic and ISODEPTH wrt dataset size 78

Figure 7-2 Compare FDC-basic and ISODEPTH wrt the depth 79

Figure 7-3 0- to 5-, 10-, 15-, 20-, 25-, and 30-Depth Contours of a 6500-point dataset.. 79

Figure 7-4 Compare FDC-enhanced and FDC-basic wrt the depth 80

ix

ACKNOWLEDGEMENTS

I wish to acknowledge my gratitude toward Dr. Raymond Ng for initiating me into this

research and guiding me till its completion. Without his insight into the importance of

depth contour computation and his innovative ideas toward its improvement, this thesis

would not have been possible.

I would also like to thank Dr. George Tsikins for taking much of his precious time

to read through my thesis and making many valuable suggestions thereto.

IVY OLGA K W O K

The University of British Columbia

October 1999

Chapter One: INTRODUCTION

Since the introduction of the relational model in the early 1970's, many corporate

enterprises have used database management systems (DBMS's) to store their business

data. A database management system is designed to manage a large amount of

information. It consists of a database and a set of programs to simplify and facilitate

access to the data. Besides providing a convenient and efficient means of storing,

retrieving and updating data, a database management system ensures the safety of the

information stored and enforces integrity and concurrency controls. Relational database

management systems store data in the form of related tables. These tables then form a

relational database, which can be spread across several tables and viewed in many

different ways. Relational database management systems are powerful because they

require few assumptions about how data is related or how it will be extracted from the

database.

For over 20 years, corporate databases have been growing exponentially in size.

A huge amount of data is collected in these databases. Traditionally, the data have been

analyzed to answer simple queries like "How many customers have bought product X?"

"Which products sell the best?" and "How many transactions involve amounts greater

than m dollars?" Yet, these data often contain more information than simple answers to

specific queries. They can answer complex questions such as "What are the

characteristics of customers who are most likely to buy product XI" "Which products are

more frequently sold in combination?" "Which products are usually included in

transactions with amounts greater than m dollars?" Valuable patterns that reveal the

1

customer characteristics are hidden in the database. However, the traditional database

systems do not support searches for these interesting patterns. Therefore, we need more

sophisticated analytical tools.

Data Mining

Data mining, or knowledge discovery in large databases, is the non-trivial extraction of

implicit, previously unknown, and potentially useful information from large databases,

thus, providing answers to non-specific but interesting queries. It has emerged from a

number of disciplines, including statistics and machine learning, and has been made

possible by advances in computer science and data storage. Since the 1990's, data mining

has become a very popular research area in database. Initially, researches were interested

in mining relational databases. Later on, studies are also conducted in mining temporal

databases, such as those involving stock market data, and spatial databases, such as GIS's

(Geographic Information Systems).

Not only has data mining excited the academic community, but it has also

attracted a lot of corporate interest. Many companies have used data mining tools to help

improve their business. Data mining tools can handle high volumes of data, and help both

well-trained specialists and non-experts to answer business questions. One common use

of data mining is database marketing. The identification of customer preferences helps to

target the market and to personalize advertisements, which efficiently reduce advertising

costs and attract customers.

2

Data mining tasks fall into four general categories: (a) dependency detection, (b)

class identification, (c) class description, and (d) exception/outlier detection. The first

three categories involve finding similar patterns that apply to the majority of objects in

the database. On the other hand, the fourth category focuses on the identification of the

outliers, the minority set, which is often ignored or discarded as noise. Most research

works in data mining focus on finding patterns, rules, and trends in the majority set. Such

works include concept generalizations [1, 2, 3], association rules [4, 5, 6, 7], sequential

patterns [8, 9], classification [10], and data clustering [11, 12]. Some existing works have

touched upon the outliers [11, 12, 13, 14]. Yet, they accept the outliers only as noise in

the database and their main focus is still the majority set. However, identifying and

analyzing the exceptions can be equally interesting as this aspect of data mining can

reveal useful hidden information other than the frequent trends exposed in the data. For

example, the identification of exceptional stock transactions and the detection of

fraudulence uses of credit cards rely on this aspect of data mining [15].

Outlier Detection

In [16], Hawkins defined an outlier as "an observation that deviates so much from other

observations as to arouse suspicions that it was generated by a different mechanism". His

definition differentiates outliers from the noise in the database.

Traditionally, outlier detection follows a statistical approach [16, 17, 18]. In the

field of statistics, more than one hundred discordancy/outlier tests have been developed.

These tests are based on data distribution, knowledge of the distribution parameters, and

3

the number and the type of outliers. However, these tests are subject to two serious

restrictions. First, because most of the tests involve only a single attribute, they cannot

handle datasets with multiple attributes. Second, since they are all distribution-based and

the distribution of an attribute is seldom given, extensive testing is necessary just to find

out the appropriate distribution.

Arning, Agrawal, and Raghavan have developed a linear method of deviation

detection [19]. Their algorithm searches a dataset for implicit redundancies, and extracts

data objects called sequential exceptions that maximize the reduction in Kolmogorov

complexity. However, their notion of outliers is very different form the aforementioned

statistical definitions of outliers.

Besides the statistical approach, there is a distance-based outlier detection method

developed by Knorr and Ng [20]. Distance-based outlier detection overcomes the

restrictions inherent in the statistical approach. It can handle datasets that have multiple

attributes following any data distribution. However, like any distance-based algorithm,

distance-based outlier detection requires the existence of a well-defined metric distance

function, which is not always available for every dataset.

To minimize the restrictions experienced in outlier detection, depth-based

approaches have been developed. The depth of a data object relative to the dataset

measures how deep the data object lies in the dataset. With a depth-based approach, each

data object is assigned a depth and organized into layers based on the assigned depth.

The deeper layers are more robust with respect to outliers than the shallower layers.

Depth-based approaches avoid distribution-fitting problem, handle multi-dimensional

4

datasets, and do not require a metric distance function. Also, they are independent of the

chosen coordinate system because the location of depth is affine-invariant, that is, the

depth of a data object remains the same if the dataset is scaled, rotated, or translated.

Depth Contour

Tukey has suggested a simple procedure (known as "peeling" or "shelling") to locate

suspected outliers in a dataset [21]. Peeling involves stripping away the convex hull of

the dataset, then removing the convex hull of the remainder, and continuing until only a

certain percentage of points remain. The number of convex hulls that have to be stripped

from D before a point p is exposed determines the depth of p in the dataset D. Point

depths contribute towards the construction of depth contours. When points of the same

depth are connected, they produce one depth contour of the dataset. Figure 1-1 shows the

depth contours of a dataset D consisting of data points {A, Q)using the peeling

definition. Points {A, G] make up the outermost convex hull and have depth 0;

points {H, M) form the next convex hull and have depth 1; {N, O, P, Q) constitute

the innermost convex hull and have depth 2. As the example in Figure 1-1 demonstrates,

peeling is straightforward; but it tends to move into the regions of high point density too

quickly.

In 1975, Tukey defined a more robust notion of depth - half-space depth [18, 22,

23]. The half-space depth of a point p in a dataset is the minimal number of data points

contained in a half-space the boundary plane of which passes through point p. The depth

of a point p can also be viewed as the minimum number of data points that have to be

5

removed to expose p. For example, in a univariate dataset, X = {x\, X2,..., xn}, the depth

of a point x, is the minimum of the number of data points to its left and the number of

data points to its right. Figure 1-2 shows the depth contours of the same dataset D using

the half-space depth definition. By this new definition, points {A, G} still have depth

0; but points {H, M) now have depth 2, and points {N, Q} have depth 3. The

stepping up in depth of these latter points is due to the fact that by the new definition their

exposure requires the removal of at least two or at least three data points.

A comparison of Figure 1-1 and Figure 1-2 also reveals that while all vertices of

the depth contours are actual data points under the peeling definition, they need not be so

under the half-space depth definition. Indeed, a depth contour may not consist of any

data points. For example, the vertex between H and / in the 2-depth contour in Figure 1-2

is not an actual data point; and there are no actual data points at all in the 1-depth, 4-

depth, 5-depth and 6-depth contours.

Figure 1-1 Peeling Figure 1-2 Half-space Depth

6

The fc-depth contour, DCk, of an n-point dataset is a sub-region in which every

point has depth greater than or equal to k. It separates the data points with depth < k and

those with depth > k. The boundary points on DCk have depth exactly equal to k, and the

interior points have depth at least k. The outermost depth contour, 0-depth contour, is

always the convex hull of the dataset. The fc-depth contour is the intersection of all half-

spaces which contain at least n-k data points. A l l depth contours are convex and nested,

that is, the fc-depth contour is contained in the (fc-l)-depth contour.

Depth contours help visualize the dataset. They are very useful in identifying the

outliers and the "core" of the dataset. The outliers are usually located in the shallower

depth contours of the dataset. On the contrary, the core data points are located in the

deeper depth contours.

Motivation

Although depth contours are useful tools in detecting outliers, there are very few

algorithms that compute depth contours. In [24], Rousseeuw and Ruts developed an

algorithm, ISODEPTH, to compute the &-depth contour of a 2-dimensional dataset in

three steps. ISODEPTH first checks if all n data points in the dataset are in general

position, that is, no two points are the same and no three points are collinear. Then, it

finds all half-spaces which contain n-k data points1. Finally, it intersects the half-spaces

and returns the depth contour.

1 The definition of depth in ISODEPTH is off by one point from ours. We will discuss the algorithm and
explain the difference in Chapter 2.

7

--^
/

1

/ // / ^
/

-N \ Vl
\
\
\
\ 1

\
\

I

\ I (j /
/

y

)
1

} 1
\
\ \V

j /
/

y J/l
\ y

/ •J/
/ > K . ^ >

Figure 1-3 Data points in general position Figure 1-4 Data points not in general position

However, ISODEPTH has two drawbacks. The first one is that it imposes a harsh

restriction on the position of the data points. A l l data points must be in general position,

which is a condition that many datasets do not satisfy. Figure 1-3 shows 12 data points

and their depth contours as generated by ISODEPTH. However, when we add one point

to the center, as in Figure 1-4, ISODEPTH fails to compute the depth contours because

the data points are no longer in general position. The removal of duplicate points and

collinear points can be very time consuming.

The second drawback is that regardless of the value of k, ISODEPTH processes

all data points in the dataset. However, when depth contours are used to find the outliers,

the value is usually very small and most of the data points do not contribute to the depth

contours. The last example in Table 1-1 shows that a very small percentage of the data

points in a dataset can indeed make up the required depth contours. There are eight

datasets of different sizes in the table; and, for each dataset, we have computed its first

151 depth contours (151 being a relatively high lvalue for outlier detection.). We have

included in Table 1-1 both the actual number of data points contributing to the depth

contours and the percentage of those data points. The first of the eight datasets contains

8

two groups of original data taken from the National Hockey League (NHL) records,

namely, the number of hockey games played and the plus-minus statistics of 855 N H L

players in the year 1995-96. The remaining seven datasets are expanded datasets

simulating the statistical distribution in the first dataset.

Dataset Size Number of Data Points in the First
151 Depth Contours

% of Data Points in the First 151
Depth Contours

855 521 60.93%

5 0 0 4 5 0 9 0 . 0 0 %

7 5 0 5 5 3 7 3 . 7 3 %

1,000 6 2 9 6 2 . 9 0 %

3 , 0 0 0 921 3 0 . 7 0 %

5 , 0 0 0 1039 2 0 . 7 8 %

10 ,000 1221 1 2 . 2 1 %

100 ,000 1854 1 .85%

Table 1-1 Number of data points in the first 151 depth contours of different datasets

Contribution

Our study comprising this thesis seeks to improve on the work of Rousseeuw and Ruts by

removing some of the limitations of ISODEPTH, to approach from new perspectives the

problem of developing an effective and efficient algorithm for 2-dimensional depth:

contour computation, and to probe into the possibility of multi-dimensional applications.

The product of this thesis is our Algorithm FDC (Fast Depth Contours), which consists

of six variants.

Unlike ISODEPTH, which generates only the £-depth contour in the computation,

Algorithm FDC generates the first ktb depth contours of a dataset, thereby providing a

more thorough view of the dataset to facilitate the identification of the outliers.

9

Algorithm FDC does not only relax the data point positioning criteria, but it also

optimizes the time and space requirements. With the construction of the appropriate

convex hulls, Algorithm FDC need not process the entire dataset but only a subset of the

data points.

We implement a basic version {FDC-basic) and an enhanced version (FDC-

enhanced) of Algorithm FDC for 2-dimensional datasets. FDC-basic is the first phase in

the development of Algorithm FDC. It focuses on restricting the computation to a

selected subset of data points. As mentioned earlier, when the lvalue is small, most of

the data points do not contribute to the requested depth contours. FDC-basic carefully

works out subsets of data points to process. We claim that the depth contours generated

from the chosen subsets are the same as those generated from the entire dataset.

Then, we work on improving the efficiency of our Algorithm FDC. Before

computing any depth contour, FDC-basics must check the relevancy of all the half-spaces

of the data points in the selected subset to see whether a half-space is required for the

computation of the depth contour in question or not. Knowing that a half-space is

contributive to the computation of only one depth contour, we make FDC-enhanced

"remember" all those half-spaces that have already been used. This new step helps

reduce redundant computation. In addition, we also introduce the use of sorted lists in

FDC-enhanced to speed up the detection of half-spaces for future depth contour

computation. These two steps combined raise the efficiency of our Algorithm FDC.

Furthermore, we realize that, like many other data mining applications, our

Algorithm FDC may have to deal with disk-resident datasets that are too large for the

10

available buffer. Therefore, we work on the development of three variants of Algorithm

FDC-basic, namely, FDC-M1, FDC-M2 and FDC-M3 to handle situations in which the

buffer space is not sufficient to accommodate the entire dataset. These three variants of

FDC-basic combine different merging methods with a divide-and-conquer approach to

reduce the size of the dataset to fit the buffer space available for computing the requisite

depth contours. A l l three variants are effective and show varying degrees of

improvement in efficiency.

Finally, we work on extending Algorithm FDC to a 3-dimensional space. In

designing Algorithm FDC-3D, we adhere to the same principal concept as is adopted for

our Algorithm FDC-basic: let the algorithm choose the best subset of data points to work

on, and terminate itself on completing the first k depth contours. We have completed the

groundwork for FDC-3D, and will need further study to improve its performance.

However, our work so far confirms our belief that the above concept can indeed apply to

a 3-dimensional space. Algorithm FDC-3D is a milestone towards higher dimensional

depth contour computation. Difficult to visualize as they may be, multi-dimensional

depth contours will prove to be an important tool in detecting outliers.

Outline of the Thesis

This thesis is organized in the following manner. Chapter 1 gives the general background

of our study, and touches on a few crucial historical developments. Chapter 2 explains in

detail the concept of depth contours and provides a summary of ISODEPTH. Chapter 3

presents the basic version of Algorithm FDC and the logic behind its working. Chapter 4

11

discusses the enhanced version of Algorithm FDC. Chapter 5 suggests certain

modifications to Algorithm FDC for working with a limited computer buffer space.

Chapter 6 brings Algorithm FDC into a 3-dimensional data environment. Chapter 7

compares the performance of the various versions of Algorithm FDC discussed in the

thesis. Chapter 8 concludes the thesis with a note on future study.

12

Chapter Two: DEPTH CONTOURS 61 ISODEPTH

In the previous chapter, we briefly discuss about the evolution of depth contour

computation as a tool for data mining. We culminate the chapter with comments on an

algorithm for computing depth contours proposed by Rousseeuw and Ruts, and point out

that we intend to introduce our new depth contour algorithm, Algorithm FDC. For a

better understanding of our problem, we will first define a few terms frequently used in

the ensuing discussion, and provide a summary of Rousseeuw and Ruts' paper

"Computing Depth Contours of Bivariate Point Clouds" [24] emphasizing how

ISODEPTH computes a depth contour of a 2-dimensional dataset.

Background

Even though all the definitions here refer to 2-dimensional situations only, they apply

equally well to cases of higher dimensions when suitably amended where necessary.

• Data point: A 2-tuple (px, py), where px is the.jc-coordinate and py is the y-coordinate.

• Dataset: A collection of data points.

• Convex Set: A dataset D that completely contains every straight line segment <p, q>,

where p and q are in D.

• Convex Hul l of D: The smallest convex set that contains the dataset D. (Intuitively,

it can be viewed as the polygon formed by stretching a rubber band around the data

points.)

13

• Half-plane: The part of the xy-plane that lies on either side of the boundary line.

• Depth of p: The minimal number of data points contained in a half-plane the

boundary line of which passes through point p.

• A:-Depth Contour: The closed boundary between all data points with depth < k and

those with depth >= k, where k is a whole number.

• e-Divider of n points: A directed straight line L, or any finite line segment of L, with

at most e points to its right and at most (n - e) points to its left.

• "Outside" of L : The right-hand side of the directed line L.

• "Inside" of L : The left-hand side of the directed line L.

• Inside Region of L : The sub-region of the convex hull of a dataset that is to the left-

hand side of the directed line L. It is the intersection of the convex hull and the half-

plane to the inside of L.

• e-Intersected Inside Region: The intersection of all the inside regions of the e-

dividers.

Depth contours form closed boundaries of points that have the same depth. Points

on the ft-depth contour, DCk, have depth equal to k, those outside DCk have depth less

than k, and those inside have depth greater than k. Intuitively, every edge of the fc-depth

contour in a 2-dimensional data space has at most k data points to its outside.

The 0-depth contour, DCo, of the dataset is the convex hull of the dataset. The

convex hull is the smallest convex set that contains the dataset. Since no data points are

outside the convex hull, for every point p on the boundary of the convex hull, there exists

14

a half-plane, whose boundary line passes through p, which contains no other data points.

By definition, these boundary points have depth 0. A l l the interior points of DCo have

depth greater than 0 because at least one of the boundary data points needs to be removed

to expose an interior point. The subsequent depth contours are constructed by

intersecting the appropriate inside regions. Thus, the fc-depth contour is the intersection

of all the inside regions of the ^-dividers, which is the ̂ -intersected inside region.

The depth contours form a collection of nested convex sets. A l l inside regions are

convex; the intersection of convex regions is convex. Thus, all depth contours are

convex. Because points outside DCk have depth < k and those contained in DQ+i have

depth strictly greater than k, DCk+i is completely contained in D Q . Different depth

contours never intersects; but that is not to say that D Q and DCk+\ cannot touch each

other. This scenario is possible when there are collinear points in the dataset. Figure 2-1

shows an example where the 0-depth contour touches the 1-depth contour at Point A.

Point A has depth 0, but it is on both the 0-depth and the 1-depth contours.

Figure 2-1 O-Depth Contour touches 1-Depth Contour

15

I S O D E P T H

Among the very few studies conducted on depth contours, Rousseeuw and Ruts' work -

I S O D E P T H - is the state-of-the-art algorithm, and the following is a brief summary of it.

In I S O D E P T H , the definition of depth is off by one point from ours; that is, instead of

calling the outermost depth contour 0-depth contour as we do, I S O D E P T H calls it 1-

depth contour. To facilitate comparison with the original text, we have adopted this

slightly different definition of Rousseeuw and Ruts' when preparing the summary.

I S O D E P T H defines the directed line L as a ^-divider of n data points where L has

at most k - 1, instead of k, data points to its outside and at most n - k to its inside. L is a

special ^-divider if it contains at least two data points. The inside half-plane bounded by

a special ^-divider is the special half-plane, which contains at least n + I - k data points.

The &-depth contour is the intersection of all special half-planes.

I S O D E P T H computes the &-depth contour of an /x-point dataset in three steps. In

the first step, I S O D E P T H checks whether the dataset D is in general position, that is, no

Figure 2-2 1-Depth Contour generated by
ISODEPTH

Figure 2-3 2-Divider, Special 2-Divider and its
Special Half-plane

16

two points are the same and no three points are collinear. The data points are sorted first

by their x-coordinates then by their y-coordinates. If two data points have the same x-

and y-coordinates, ISODEPTH halts because two data points coincide. If three points

have the same x-coordinates, it halts too because three data points lie on a vertical line.

Then, for each pair of data points, p,- and pj, ISODEPTH computes the angle between the

line directed from p, to pj and the horizontal axis, n data points result in n2 pairs and,

hence, n2 angles. These angles are sorted and stored in array ANGLE. If two angles are

the same and the corresponding lines share a common point, ISODEPTH halts because

three data points are collinear.

In the second step, ISODEPTH detects all special ^-dividers using the circular

sequence technique. The circular sequence is a periodic sequence of the n{n - 1)

permutations of n numbers. Given a dataset D = {p\,pi,...,pn}, where all data points are

in general position and a directed line L that is not perpendicular to any line through two

data points in D, the orthogonal projection of D onto L gives a permutation of the set of

indices N ={1, 2,..., n}. As L rotates counterclockwise, it defines the circular sequence

of permutations of N. The complete circular sequence can be obtained by rotating L over

only half a circle because the remaining permutations are exactly the reverse of the

previous permutations.

The difference between two successive permutations in the circular sequence is an

exchange of positions between two adjacent numbers, for example, {1, h, i,j, k, ... n)

and {1, h,j, i, k, n}. The exchange takes place when the line passing through p,-

and pj is perpendicular to L, in which case p, and py project to the same spot on L.

Consider the example shown in Figure 2-4. Let a be the angle between L and the

17

horizontal axis when L is perpendicular to the line passing through p, and ps. Suppose,

before L reaches the angle a, the projection of p, on L precedes that of pj, that is, i

precedes j in the permutation. When L and the horizontal axis form the angle a, the two

projections coincide and the exchange takes place. After L passes the angle a, the

projections of p, and pj change order and i follows j in the new permutation.

Figure 2-4a i precedes j Figure 2-4b i coincides with j Figure 2-4c i follows j

ISODEPTH constructs the circular sequence and, in doing so, detects the special

^-dividers. If i and j exchange positions and their positions are k and k + 1 or n - k and n

-k + 1, the line passing through p, and pj has k - 1 data points to either its left side or its

right side. Thus, either the line directed from p, to pj or the one directed from ps to p, is a

special ^-divider.

Since the data points are already sorted by their x-coordinates in the first step,

ISODEPTH readily gets the first permutation {1, 2, n) from the projection on the

horizontal axis. ISODEPTH then rotates the projection line L from 0 to ANGLE(\).

During the rotation, if the line passing through data points p, and pj is perpendicular to L,

the positions of i and j will exchange places in the next permutation. In other words, an

exchange occurs if there exists a line which is orthogonal to the line passing through any

two data points and whose angle is in the range [0, ANGLE(l)]. Since the angles of the

orthogonal lines can be computed from array ANGLE, an exchange, if there is one, can be

1 8

easily detected by going through ANGLE. A special ^-divider is found if the exchange

takes place at positions k and k + 1 or n - k and n - k + 1. ISODEPTH continues

checking for exchanges that occur between ANGLE(l) and ANGLE(2), between

ANGLE(2) and ANGLE(3), and so on, till ANGLE["{N ~ %] and n .

Once all the special ^-dividers are found, ISODEPTH computes the intersection

of all the special half-planes in the third step. It first sorts the special ^-dividers by their

angles. It then walks along the dividers to trace the intersection. When it completes the

entire cycle, ISDOEPTH gets all the vertices of the &-depth contour. If another depth

contour is needed, ISODEPTH repeats the second and the third steps.

Complexity Analysis

In the first step, ISODEPTH sorts n data points and n 2 angles. With a standard sorting

sub-routine, this step yields time complexity 0{n2 log n) . In the second step, since the

angles in ANGLE are sorted, ISODEPTH can search for all the special ^-dividers by

going through ALNGLE at most twice. Thus, the second step yields time complexity

0{n2). Because the number of special ̂ -dividers is proved to be bounded by 0(n4k) and

k is at most 0(ri), the number of special half-planes is at most 0(n 1 5) . Since the

intersection of N half-planes requires 0(N log AO time, to compute the intersection of the

special half-planes, the third step yield time complexity 0(n 5 log n) . Therefore, the

overall time complexity for computing one depth contour with ISODEPTH is 0(n2 log n).

If contours from depth 0 to depth k are required, the second and the third steps will be

repeated k+1 times, and ISODEPTH yields complexity 0(n2 log n + k n 2 + k n 1 5 log n).

19

ISODEPTH uses a number of arrays in the computation. Arrays X and Y, of

length n, store the x- and the y-coordinates of the data points. ANGLE, IND1 and IND2,

of length n , store the angles of all lines passing through two data points and the indices

of the corresponding data points. NCIRQ and NRANK, of length n, store the permutation

and the positions of the data points in NCIRQ. ALPHA, D, KAND1 and KAND2, of length

at most 0(n15), store the equations of the special ^-dividers and the indices of the

corresponding data points. Therefore, ISODEPTH requires 0(n2) space for the

computation.

20

Chapter Three: FAST DEPTH CONTOUR ALGORITHM - FDC

We have analyzed the performance of ISODEPTH, pointed out its shortcomings in

relation to, at least, quadratic time and space complexities, and concluded that

ISODEPTH is not feasible for large datasets. To remedy these shortcomings, we now

present our Fast Depth Contour Algorithm - FDC. The FDC Algorithm presented in this

chapter is the basic version of our algorithm and is called FDC-basic. We will simply

call FDC-basic FDC in this chapter.

Our major contention is that FDC does not have to process all data points to

compute depth contours. Since depth contours are often used to differentiate between

outliers and the core of the dataset, in many situations, only the first few depth contours

are needed. The majority of the dataset does not contribute to the shallow depth contours.

In one of our N H L test cases, we computed the first 151 depth contours of a generated

dataset that has 100,000 data points. Only 1854 data points, that is, fewer than 2% of the

total, belong to these depth contours. If we can minimize the work processing the

"useless" data points, the performance can improve drastically.

Algorithm F D C

As pointed out at the beginning of the chapter, FDC aims at processing only a selected

subset of data points. The dataset is divided into two disjoint subsets: the outer point set

consisting of data points that are outside the current depth contour and the inner point set

comprising the remaining data points. Initially, the outer point set is empty and the inner

21

point set is the dataset. When FDC starts generating a depth contour, it considers only

the outer point set and the inner convex hull (or the data points forming the convex hull

of the inner point set) while ignoring the data points that are inside the convex hull.

Certain data points are then removed from the inner point set and added to the outer point

set as FDC moves inward to build up the depth contours at deeper layers.

Let us review a few more terms before we present the pseudo code of Algorithm

FDC. We use <p, q> to denote is a straight line segment directed from data point p to

data point q. The right side of <p, q> is its outside; the left side of <p, q> is its inside.

<p, q> is an e-divider of an n-point dataset D if the directed line supporting <p, q>

divides D such that the subset to the right of the line has at most e data points and the

subset to the left has at most (n - e) data points. The inside region of <p, q>, denoted as

IR(<p, q>), is the intersection of the convex hull of D and the half-plane to the inside of

<p, q>. If <p, q> is an e-divider, IR(<p, q>) is an e-inside region. Given a set of e-inside

regions, their common intersection is the e-intersected inside region.

Algorithm FDC(D,k)

Input: D = the dataset and k = an integer.

Output: Contours of depth from 0 to k.

1 CH = vertices of the convex hull of D;

2 Output CH as the vertices of the 0-depth contour;

3 If k -= 0, done;

4 Initialize T=0;

5 For(d=l;d<k,){ /* new peel*/

5.1 If CH is empty, break; /* Done and Stop */

5.2 T=TKJCH;D = D-CH;

5.3 CH = vertices of the convex hull of (the updated) D;

5.4 If \CH\ -- 3, continue; /* degenerate case of having a triangle as the convex hull */

5.5 ¥or(e = d;e<m/2;) { /* Otherwise: the general case */

5.5.1 For all points p e T {

22

5.5.1.1 Find all points q in T (if any) so that <p, q> is an e-divider of the points in T;

5.5.1.2 If every point in CH is contained in lR(<p, q>),

IR[p] = lR(<p, q>); CT[p] = 0;

5.5.1.3 Else call Procedure Expand(p, q, CH, T,e)to compute IR[p] and CT\p];

} /*end for */

5.5.2 Output the boundary of the region (fl^r lR[p]) a s t n e ̂ -depth contour;

5.5.3 If d == k, break; /*Done and Stop */

5.5.4 /* Otherwise: */ d = d+I; e = e + \;

5.5.5 If UperCnpl*® (

5.5.5.1 T= Tu(U^ rCT[p]); D = D-{[)p^TCT[p]);

5.5.5.2 . CH = vertices of the convex hull of (the update) D;

} /*endif*/

} /* end for */

} /* end for */

If some points in the inner convex hull CH are not contained in the inside region

of an e-divider <p, q>, we have to expand IR(<p, q>) with the points outside the inside

region. The expanded series, <p\, ...,pn> (where p\ - p,pn = q, and p, * pj for all / * j), is

a set of line segments </?*, p,+i> for 1 < i < (n - 1). The expanded inside region, //?(...,

<Pi, Pi+\>, •••), is the intersection of the inside regions of the line segments in the

expanded series that are e-dividers. The intersection of some e-inside region and at least

one expanded e-inside region is an expanded ^-intersected inside region.

Procedure Expand(p, q, CH, T,e)

Input: <p, q> = an e-divider of points in T, and CH contains point(s) outside IR(<p, q>).

Output: IR[p] and C7Tj?].

1 Enumerate (in counter-clockwise fashion) all the points in CH that are outside <p, q> as rx,..., r„;

2 Among them, find r, that maximizes the angle between the segment <r„ p> and <p, q>;

3 Among them, find rs that maximizes the angle between the segment <r;, q> and <q, p>;

/* Without loss of generality, assume that i < j. For convenience, rename the expanded series
<p, r„ .. . , rs, q>as<p0,pu ...,pw.\,pj>, wherew=j-i + 2*/

4 Initialize IR\p] = convex hull of T and CT[p] = 0. /* convex hull oiT- DC0 */

23

5 For (u = 1; u < w, u++) { /* iterate over each segment */

5.1 If the line <pu-i,pu> is not an e-divider of the points in T u {<7„ g,},

continue;

5.2 Else { /* expand the inside region */

5.2.1 lR[p] = IR[p] n lR(<pu.uPu>);

5.2.2 Add puA and pu to CT[p];

} I* end else */

} /* end for */

6 Return lR[p] and CT[p]\

Demonstration

To make our algorithm easier to understand, we are going to construct the depth contours

of a sample dataset. Figure 3-1 shows a dataset of 17 data points. We are going to

compute the first 3 depth contours of the dataset step by step. We call the outer point set

T, the inner point set D, and the vertices of the inner convex hull CH.

Figure 3-1 O-Depth Contour of the 17-point Figure 3-2 1-Dividers , 1-Intersected Inside
dataset Region and 1st Inner Convex Hull

In Step 1 of Algorithm FDC, we find the convex hull of D to be the polygon with

vertices CH = {A, ... G}. The convex hull is also the 0-depth contour, DCo, of D. Then,

24

we initialize the outer point set T in Step 4 and proceed to Step 5, the heart of FDC. Data

points A to G are removed from D and added to Tin Step 5.2, and the updated D becomes

{H, ...,Q} with the first inner convex hull CH - {H, ...,M).

We are now ready to compute the 1-depth contour. In the first iteration of the for-

loop in Step 5.5, we go through all the data points in T successively to find their

corresponding 1-divider. We start with data point A, which has a 1-divider <A, C>. The

inside region of <A, C>, IR(<A, C>), is the polygon with vertices A, C, G. Because

IR(<A, C>) contains all the points in CH, IR[A] equals IR(<A, C>) following Step 5.5.1.2.

Indeed, all the inside regions of the 1-dividers of T contain CH. We compute the 1-

intersected inside region in Step 5.5.2 and output the boundary of the region as the 1-

depth contour, DC\.

The 1-dividers and the 1-intersected inside region, whose boundary is the 1-depth

contour DC\, are shown in Figure 3-2. From the figure, we see that every edge of DC\

has exactly one of the data points {A, ..., G} to its outside. Any point p that is inside DCo

but outside DC\ or on the boundary of DC\ has depth 1. In order to expose p, at least one

of the points {A, G) has to be removed. The points inside DC\ have depth greater

than 1. Any line passing through a point inside DC\ separates at least two of the points

{A, ..., G} from the rest of the set.

In our example, all the points in CH are contained in the 1-depth contour;

therefore we need not evoke Steps 5.5.5.1 and 5.5.5.2 to update T, D or CH before

computing the 2-depth contour. Instead, we move on to the second iteration of Step 5.5

to find the 2-dividers of the points in T. In this instance, we find that unlike the 1-

25

intersected inside region, the 2-intersected inside region does not contain all the points in

CH (Figure 3-3). For example, <A, D> is a 2-divider of T. However, IR(<A, D>) does

not contain point H. We, therefore, call Procedure Expand in Step 5.5.1.3 of Algorithm

FDC to expand the 2-inside regions that do not contain all the points in CH.

- - A A

J+. ,' \ , ' + P ; , 4 < - /

Figure 3-3 2-Dividers, 2-Intersected Inside
Region and 2 n d Inner Convex Hull

Figure 3-4 Expanded IR(<A, H>, <H, D>)

In Procedure Expand, we compute the expanded inside region, IR[A], and obtain

the list of the outside points, C7TA], for data point A. As H is the only point in CH that is

outside IR(<A, D>), we define the expanded series as <A, H, D> by the end of Step 3

under Procedure Expand, initialize IR[A] with DCo, and set CT[A] to null in Step 4. In

the first iteration of Step 5, we discover that <A, H> is a 2-divider with data points B and

C to its outside. Therefore, we subscribe IR[A] to the intersection of DCo and IR(<A,

H>), which is the polygon with vertices A, H', D, G as shown in Figure 3-4; and add

points A and H to CT[A]. Then, in the second iteration of Step 5, we discover that <H,

D> is a 2-divider, too. The expanded inside region IR[A] is IR(<A, H>, <H, D>), which

is the polygon with vertices A, H, D, G, and CT[A] has points A, H, and D.

26

In a similar fashion, we go on to inspect data point B, which has a 2-divider <B,

E>. We find that data points I and J are to the outside of IR(<B, E>). We, therefore,

expand <B, E> in Step 5.5.1.3 of FDC. Then, in Step 2 of Procedure Expand, we find

that data point I maximizes the angle ZriBE, and in Step 3, data point J maximizes the

angle ZrjEB. As neither is / contained in the region bounded by B, J and E, nor is J

contained in the region bounded by B, I and E, the expanded series has to be <B, I, J, E>

(Figure 3-5). Since <B, I>, <I, J> and <J, E> are all 2-dividers, the expanded insider

region IR[B] has vertices B, I,J,E, ...,A, and CT[B] has points B, I, J, and E.

Figure 3-5 Expanded IR(<B, />, <I, J>, <J, E>) Figure 3-6 Expanded IR(<C, J>, <J, F>)

Having considered points A and B, we will move on to consider data point C with

a view to expanding the 2-divider <C, F> and determining the expanded inside region

IR[C]. Figure 3-6 shows that data points /, J and K are outside IR(<C, F>). Point J also

maximizes both the angles ZrtCF and ZrjFC. Points I and K are, therefore, contained in

the region bounded by C, J and F, and cannot be included in the expanded series <C, J,

F>. IR[C] is the polygon with vertices C,I,F, ...,B and CT[C] has points C, J, and F.

27

We find the remaining inside regions in a similar way. Figure 3-7 shows all the

(expanded) 2-dividers and the intersection of their inside regions. This expanded 2-

intersected inside region is the 2-depth contour. Since the CT lists are not empty this

time, we update T, D, and CH in Steps 5.5.5.1 and 5.5.5.2 of FDC. Tnow has points {A,

B, G, H, M} while both D and CH contains points {N,0,P,Q}.

Figure 3-7 2-Dividers, Expanded 2-Intersected Figure 3-8 IR[K] = IR(<K, F>) u IR(<K, L>)
Inside Region and 3 r d Inner Convex Hull

To find the 3-dividers, we go back to Step 5.5 of FDC for the third time. The

procedures are the same as before. However, we should point out that while the data

points on the outermost depth contour always have unique e-dividers, the data points

inside the outermost depth contour may have multiple e-dividers. For example, data

points /, J and K have two 3-dividers. Figure 3-8 shows the two 3-dividers for K, Figure

3-9 shows for /, and Figure 3-10 shows those for J.

Finding the 3-inside region for K is simple. Both IR(<K, F>) and IR(<K, L>)

contain all the points in CH. Thus, IR[K] is the intersection of the above two inside

regions, which is the polygon with vertices F\ K, L\ A, B, and C.

28

Finding IR[I] is more interesting. As shown in Figure 3-9, both <I, E> and </, K>

are 3-dividers for I. But since IR(<I, E>) contains all the points in CH while IR(<I, K>)

does not contain data point N, we need to first expand IR(<I, K>) by calling Procedure

Expand in Step 5.5.1.3. The expanded series of <I, K> is <I, N, K>, where both </, N>

and <N, K> are 3-dividers. Therefore, IR[I] is the intersection of IR(<I, E>) and IR(<I,

N>, <N, K>), which is the polygon with vertices £", /, N, K', F, G, A, and B.

Figure 3-9 IR[I] = IR(<IJE>) u IR(<J,N>,<NJ(>) Figure 3-10 IR\J] = IR(<J, K>)

Point J also has two 3-dividers, namely <J, K> and <J, L>. We need to expand

IR(<J, L>) because it does not contain data points O and P. Since P is contained in the

region bounded by / , O, and L, the expanded series is <J, O, L>. However, data points D,

E, F, and K are outside <J, 0>, and data points E, F, G, and K are outside <0, L>.

Therefore, <J, 0> and <0, L> are 3-dividers. And since we are only interested in the 3-

dividers at this moment, <J, 0> and <0, L> are ignored and, thus, the expanded inside

region of <J, L> is the convex hull of the dataset (see Step 5.1 in Procedure Expand). As

a result, IR[J] is IR(<J, K>), which is the polygon with vertices T, FT, G, A, B, and C.

29

Figure 3-11 shows all the (expanded) 3-dividers. The 3-depth contour is the

expanded 3-intersected inside region. We will continue with the Algorithm FDC to

compute the rest of the depth contours. FDC will stop when it computes the 7-depth

contour of the dataset because the 7-intersected inside region is empty. Figure 3-12 shows

all the depth contours of the dataset, from the 0-depth contour to the 6-depth contour.

E F

Figure 3-11 3-Dividers and Expanded 3- Figure 3-12 O-Depth to 6-Depth Contours of the
Intersected Inside Region dataset

The above example explains the normal operations of our Algorithm FDC. In the

exceptional case where e reaches half the size of T in the for-loop in Step 5.5, continuous

iteration without modifying T will simply wrap around and reverse the previously found

dividers. Therefore, in this case, the execution returns to the beginning of Step 5 to

update T, D and CH before it moves on to the next iteration.

For this exceptional case, consider the example shown in Figure 3-13. The 0-

depth, the 1-depth, and the 2-depth contours of 12 data points {A, L} are shown.

Points {A, G} are in the outer point set T and points {H, L] are in the inner

convex hull CH. Let us say we have just finished computing the 2-depth contour in Step

5.5.2 and incremented e to 3 in Step 5.5.4. Since the 2-depth contour contains all the

30

points in CH, Tremains unchanged, and has 7 points {A, G}. As e reaches half the

size of T, we exit the for-loop in Step 5.5 and return to Step 5.1 to update T, D and CH.

But, what will happen if we continue with T = {A, G} in the third iteration? Can we

still find the 3-depth contour without modifying T, D and CHI

% \
/ W / } \

/ \ \ . ' ' / \

/ " >\ I \

/_ :. \ •G •G

•F

Figure 3-13 O-Depth to 2-Depth Contours and Figure 3-14 3-Dividers and Inner Convex Hull
Inner Convex Hull

If we continue with T = {A, G}, we will find the 3-dividers <A, E>, <B, F>,

<G, D>, but these 3-dividers are the previously found 2-dividers with the direction

reversed. For example, <A, E> is a 3-divider and <E, A> is a 2-divider. Since the 2-

intersected inside region of T contains all the points in CH, it follows that all the 2-inside

regions of T contain all the points in CH. If the inside region of a line L contains all

points in CH, the outside region of L does not contain any point in CH. In other words, if

IR(<E, A>) contains all points in CH, the outside region of <E, A> does not contain any

point in CH. However, the outside region of <E, A> is the same as the inside region of

<A, E>; therefore, IR(<A, E>) does not contain any point in CH, and it has to be

expanded.

31

In fact, if we continue with T= {A, G}, all inside regions of the 3-dividers will

be expanded. This will be an inefficient process, as we already know that CH is not

contained in these inside regions. We know that T is not sufficient for the computation of

the 3-depth contour; hence, we should not continue with T. We should merge T and CH

before the next iteration. Figure 3-15 shows all the depth contours of the dataset in this

example.

Correctness of FDC

In the above examples, we have demonstrated how Algorithm FDC correctly computes

the depth contours of two sample datasets. We are now going to prove that FDC can

correctly compute the depth contours of any 2-dimensional dataset, and during the proof,

we will study the structural relationships that exist among the depth contours.

Recall that at any stage of Algorithm FDC, the data points in the dataset are

classified into two subsets: the outer point set T, and the inner point set D. Among the

data points in D, the data points on the convex hull of D are also in the inner convex hull

Figure 3-15 O-Depth to 4-Depth Contours of the Dataset

32

CH. In what follows, let us call the sets T and CH at the beginning of i iteration of the

for-loop in Step 5.5 T, and CH respectively. If we refer to the first example, T\ and Tz =

{A, B, G}, C7/i and CH2 = {H, I, M}, T 3 = {A, 5, M}, and C# 3 = {N, O, P,

Q}; and for i > 3, 7, = {A, 5, 0} and CHi = 0.

Let us consider Tt and r,+i = T, if and only if the /-intersected inside region

contains all the points in the inner convex hull CT/,. For example, in our first example, T%

= Ti because the 1-intersected inside region contains CH\. It is obvious that 2", is

sufficient for the computation of DC,. Since all the points in D are inside CH and CH is

inside the /-intersected inside region, all the points in D have depth greater than / and,

thus, are not needed for the computation of DC.

On the other hand, TM c T, if and only if the /-intersected inside region does not

contain CH. Although many points in D may be outside the /-intersected inside region,

we consider only those points that are in CH. For the purpose of illustration, we will

make use of the example in Figure 3-5 again. In Figure 3-5, data points /, J, and N are all

outside the inside region of the 2-divider <B, E>. We consider only / and J, but not N,

during the expansion of IR(<B, E>) because N is not in CH2. The points in CHi are

immediately behind the /-intersected inside region. We have to remove CHi before we

can expose the remaining points in D. Therefore, if there are two points p and q, where p

is in CHi and q is not, and both are outside the /-intersected inside region, the depth of q

must be greater than the depth of p, which is greater than or equal to /. In other words,

the depth of q must be greater than /. For this reason, we need to consider only the points

in CHi in Procedure Expand in order to include all the necessary points.

33

Our observation confirms that there is a one-to-one correspondence between the

series T\, Tj, Tk and the depth contours DCQ, DC\, DCk- To compute DQ, we

need T, and, where expansion is necessary, certain points in CH{. We also note that Ti+\ is

exactly T, and the expanded points (if any). Thus, Tl+\ provides us with sufficient data

points for the computation of DQ. Namely, DQ is C]^ IR[p~\ • The following theorem

summarizes the above.

Theorem (Correctness of Algorithm FDC):

The list of contours of depth 0,1, 2,... is the list: Tj, f]peT2IR[p], f)peT3IR[p],

Complexity Analysis

We will now divide Algorithm FDC into 4 functional sections and analyze the

complexity of each one. The four sections are: 1) computing and maintaining convex

hulls, 2) finding initial e-dividers, 3) expanding e-dividers, and 4) intersecting half-

planes. And for the complexity analyses, let n be the size of the dataset, k be the

maximum number of depth contours desired, t be the size of Tk, and c be the maximum

cardinality of the first k CHt.

1. Computing and Maintaining Convex Hull:

In Step 1, we compute the convex hull of an rc-point dataset from scratch. With

standard convex hull computation, Step 1 yields complexity 0(n log n). In Steps

5.3 and 5.5.5.2, we compute the convex hull of the updated dataset. The

maintenance of a convex hull of n points after each removal of a data point is only

34

2 0(log ri). As there are at most 0(f) deletions, the complexity of the maintenance

is 0(t log ri). Thus, the total complexity of computing and maintaining the

convex hulls is 0(n log n + t log 2 ri)

2. Finding Initial e-Dividers:

In each iteration of Step 5.5.1.1, we go through t dividers <p, q> to find the e-

dividers among t points. It requires 0(t2) complexity to find the e-dividers for one

point. We need to find the e-dividers for t points in each iteration of Step 5.5.1,

which is executed k times. Thus, the total complexity for finding the initial e-

dividers is 0(kt3).

3. Expanding e-Inside Region:

In Step 5.5.1.3, we call Procedure Expand to expand an inside region if some

point in the inner convex hull is outside the inside region. In Step 5 of Procedure

Expand, we check if each line of the expanded series is an e-divider. The

complexity of finding the e-value of a line among t points is O(0- Since there are

at most 0(c) lines in the expanded series, the complexity of expanding an e-

divider is 0(ct). Procedure Expand is called at most 0(kt) times. Thus, the total

complexity of expanding the e-inside regions is 0(ckt2).

4. Intersecting Half-Planes:

In each execution of Step 5.5.2, we intersect t half-planes to find the depth

contours. The complexity of intersecting t half-planes is 0(t log t). Step 5.5.2 is

executed at most k times. Thus, the total complexity of intersecting half-planes is

0(kt log 0-

35

From the above analyses, we know that the overall complexity of FDC is 0(n log n + t

log 2 n + kt3 + ckt2 + kt log t), and we recall that the complexity of ISODEPTH is 0(n2 log

n + kn +kn log n). Since complexity is a key issue in comparing these two algorithms,

the following important question arises: what are the relative magnitudes of c, k, t, and nl

Remember that both algorithms set out to identify outliers in large datasets, and that we

do not expect outliers to be located in the deep contours. Thus, it is legitimate to assume

that k is not going to be large. Although the magnitude of t depends on n and k, in most

cases, t is much smaller than n. We have mentioned a test case at the beginning of this

chapter: among 100,000 generated data points, fewer than 2% of the data points are to the

outside of the 151-depth contour. Furthermore, c is relatively small and is insignificant

when compared with t or n. Therefore, we have reasons to believe that FDC will

outperform ISODEPTH in finding outliers when n is large and k is not. We will present

some experimental results in Chapter 7.

36

Chapter Four: ENHANCED FDC - FDC-EHNAHCED

In Chapter 3, we have proved that FDC-basic is capable of correctly computing the depth

contours of any 2-dimensional dataset without having to process all data points. We have

also explained how FDC-basic significantly improves the performance of depth contour

computation through its systematic removal and retrieval of data points and the

imposition of restrictions on computation so that only selected subsets of data points are

worked on. In this chapter, we will present an enhanced version of FDC - FDC-enhanced

- that is capable of further reducing the computational time by optimizing FDC-basic.

Sorted Lists

In FDC-basic, the overall complexity is 0(n log n + t log 2 n + kt3 + ckt2 + kt log t), and

Step 5.5.1.1 alone has 0(kt3) time complexity. This step for finding the initial e-dividers

dominates the algorithm. Thus, in FDC-enhanced, we aim at optimizing this step. In

FDC-basic, the process of finding the initial e-dividers in Ti+\ is independent of the

corresponding process involved in finding the initial e-divider in Tt. We have learned

from the previous chapter that TM and Tv are closely related because r,+i contains all the

data points in T,. Now we will make use of this close relationship to reduce redundancies

in our computation. Specifically, we will carry out an incremental process that works on

only those points that are newly added to

In FDC-enhanced, which we are going to present below, we will associate a

sorted list, SL[p], with every point p in Tt. The sorted list SL[p] stores all points q in T„

37

where q * p, sorted according to the e-values of the lines passing through p and q. Once

the sorted lists for all points p are set up, the e-dividers for point p can easily be read from

SL[p] in Step 5.5.1.1.

While finding the initial e-dividers becomes easier now, constructing and

maintaining the sorted lists are still challenging tasks. Before we enter the for-loop in

Step 5, we have to create the initial sorted lists for all points p in Ti; and then, we must

modify the sorted lists systemically whenever we add new data points to Ti+\.

Construction of Initial Sorted Lists

The construction of the initial sorted lists is relatively straightforward. Recall that T\ is

the convex hull of the dataset, and each sorted list is a list of points in T\ sorted in the

counter-clockwise direction. Note also that we will use the same example as shown in

Chapter 3 to demonstrate the construction of the initial sorted lists and their maintenance.

Table 4-1 below shows the initial sorted lists corresponding to T\ = {A, B, G}. For

any point p, the line <p, SL[p][e]> has exactly e points, namely the points in SL[p][0],

SL\p][l], SL\p][e - 1] to the outside, and the points in SL[p][e + 1], SL[p][e + 2], ...

to the inside. In other words, the line <p, SL[p][e]> is an e-divider. For example,

SL[A][0] = B forms a 0-divider (with no point to the outside of <A, B>); 5L[A][1] = C

forms a 1-divider (with B to its outside); SL[A][2] = D forms a 2-divider (with B and C to

its outside), and so on.

In this example, since T\ = Ti, the next set of e-dividers can be read from the

existing sorted lists. As a result, we can get both the set of 1-dividers {<A, C>, <B, D>,

38

<G, B>} and the set of 2-dividers {<A, D>, <B, E>, <G, C>} from the initial

sorted lists.

\ Sorted List For

e \ A B C D E F G

0 B C D E F G A

1 C D E F G A B

2 D E F G A B C

3 E F G A B C D

4 F G A B C D E

5 G A B C D E F

Figure 4-1 O-Depth and 1-Depth Contours Table 4-1 Initial sorted lists for points {A,G}

In fact, in all cases, we need not modify any sorted list until we add new data

points to Ti+\. When new points are added to Ti+i, we update the sorted lists in two steps:

1) we insert new points to the existing lists, and 2) we create new lists for the new points.

In our example, since T3 has additional points CT = {H, I, M}, we must insert points

Hto Mto SL[A], SL[B], SL[G], and create new sorted lists SL[H], SL[T\, SL[M].

Before we continue with our example, we want to expand on a few characteristics

of the sorted list and its elements. First, since an interior point can have multiple e-

dividers, an element in a sorted list for an interior point can consist of more than one

point; therefore, each element by itself can be a list. Second, the sorted list for an interior

point need not to be a complete list. For example, the sorted list for an interior point p

that is added during the expansion of an e-divider will have the first e"1 elements missing

because p has depth > e and, thus, no divider <p, q> can have an e-value less than e. We

will look at some more examples later. Last, based on the above clarification, we shall

39

expand what we mean by "inserting a point q to SL[p]". When we "insert a point q to

SL[p] at position i", we insert a list with a single point q before the current ith element of

SL[p] so that 5L[p][/] = {q}, and the original / t h as well as the subsequent elements of

SL[p] are pushed down. When we "insert a point q to SL[p][i]", we insert a single point q

to the list SL[p][i], and the positions of the elements in SL[p] remain unchanged.

Incremental Maintenance of Sorted Lists

We will now go back to our discussion about the addition of new points and the creation

of new lists. In general, the addition of a new point q to an existing list SL[p], where <p,

q> is an /-divider, involves the insertion q to SL[p] at position i, and the re-arrangement

of the points in SL[p] that are no longer in their correct positions.

The need for re-arrangement is not always apparent. For instance, the insertion of

q to SL[p] does not apparently affect the positions of the points in SL[p]\j] where j < i.

However, the addition of q to T may have change the e-values of some of these points, as

when q is indeed to the outside of certain dividers <p, r> where r is a point in SL[p][j].

Thus, there exists a real but undetected need for re-arrangement, and the affected points

must be pushed down so that all points will be in line with their e-values.

In other instances, as in SL[p] [/] where j > i, the insertion of q to SL[p] obviously

requires all points in SL[p]\j] to be pushed down. Yet, in these instances, the e-values of

some of the points may not have been affected by the addition of q, that is, q is indeed to

the inside of certain dividers <p, r> where r is a point in SL[p]\j]. For this reason, the

unaffected points should be pushed up back to their original positions.

40

The only occasion when the re-arrangement of point positions can be readily

predicted relates to the maintenance of the sorted list for a boundary point. Points in the

sorted list for a boundary point p always remain in their correction positions even after

the insertion of a new point q because here p has a single e-divider for all values of e. A l l

the dividers for p follow a specific sequence - if we rotate a line directed from p in the

counterclockwise direction, we will encounter the 0-divider, the 1-divider, ... in that

order. Therefore, the insertion of q into SL\p] at position i will affect all the points in

SL[p]\j] where j > i and leave all the points in SL[p]\j] intact where j < i.

Unfortunately, this unique case does not apply to an interior point. An interior

point may have multiple e-dividers, and each e-dividers may have a different set of points

to its outside; hence, one e-divider may need expansion while another may not. Re­

arrangement of point positions, therefore, requires careful handling.

Figure 4-2 3-Dividers <I, E> and <I, N>; 4-
Divider <I, K>; 5-Dividers </, D> and
<I,F>

e SL[I]

0 — — —

1 — — —
2 J J J
3 E, K N E, N
4 F E, K K
5 D, L -> F -> D, F
6 G, M D, L L
7 A G, M G, M
8 C, H A A
9 B C, H C, H
10 - B B

Table 4-2 Inserting N into SL[7]

Now, consider the example in Figure 4-2 that illustrates how FDC-enhanced

handles the insertion of data point iV into the sorted list for data point /. Point / has two

3-dividers: <I, E> and <I, K>. IR(<I, K>) does not contain data point N. Thus, <I, K> is

41

expanded to </, N, K>. When we insert N to SL[I] at position 3, we push both E and K

down to the 4 t h position. However, N is to the inside of <I, E> and does not affect the e-

value of <I, E>. Therefore, E should remain in the 3 r d position. Similarly, 5-divider <I,

D> is pushed down to the 6 t h position. But, since N is to the inside of <I, D>, D should

remain in the 5 t h position.

Inserting new points q into the existing sorted lists, and re-arranging the positions

of the points, if necessary, complete one step in the maintenance of the sorted lists. The

other step is the creation of a new listed list for each new point. In fact, these two steps -

the creation of SL[q] and the insertion of q into the existing lists - are closely related

because we know that for any pair of data points a and b, the position of b in SL[a] is the

opposite of the position of a in SL[b]. Therefore, in the example in Figure 4-1, B is the

first element in SL[A] and A is the last element in SL[B]. For the creation of SL[q], if we

know the position of q in SL[p], we will also know the position of p in SL[q]. In other

words, the new sorted list SL[q] can be created simultaneously with the insertions of q

into the existing lists. We capitalize on this idea to speed up FDC-enhanced.

We can now look at one more way to achieve greater efficiency. As the e-value

of a divider can only increase when new points are added, a divider will never be used in

the computation of the first fc-depth contours once its e-value exceeds k. Therefore, to

optimize the maintenance procedure, the sorted lists need to keep only the first k dividers.

A new point q need not be inserted to SL[p] if <p, q> has an e-value greater than k. On

the other hand, the e-value of an e-divider will not change after the generation of DCe

because the inside region of the divider contains all the points in CH; and thus, all the

points in the inner point set. Since an e-divider does not contribute to the construction of

42

depth contours whose depths are greater than e, the sorted lists can remove the dividers

that are no longer in use.

In light of these findings, Step 5.5.5.1 in the original Algorithm FDC is replaced

by the following maintenance procedure.

5.5.5 If \JpeTCT[p}*0{

5.5.5.1 For all new points q e CT {

5.5.5.1.1 SL[q] = 0;

5.5.5.1.2 For all points p e T {

5.5.5.1.2.1 i = e-value of <p, q>,j = e-value of <q, p>;

5.5.5.1.2.2 If (' < k, insert q to SL[p] at position i;

5.5.5.1.2.3 For (l = e,l<i,l++){

5.5.5.1.2.3.1 For all points r in SL[p][l],

If q is outside <p, r>, move r to SL[p][l+l];

} /* end for */

5.5.5.1.2.4 -For (/ = /+l,/<*,/++) {

5.5.5. L2.4.1 For all points r in SL[p][l],

If q is inside <p, r>, move r to SL[p][l-l];

} I* end for */

5.5.5.1.2.5 If j<k, insert p to SL[q]\j\,

} I* end for */

5.5.5.1.3 Remove q from D and Add q to T;

} I* end for */

5.5.5.2 CH = vertices of the convex hull of (the updated) D;

} /*endif*/

Demonstration

Let us compute the first 5 depth contours of the dataset shown in Figure 4-1 using the

enhanced algorithm. The first two depth contours are already computed and the sorted

lists are shown as Table 4-1. We are now at the second iteration of Step 5.5.5 where T2 =

43

{A, B, G} and CT= {H, I, M}. Since CT is not empty, we proceed to Step 5.5.5.1

and update the sorted lists following the maintenance procedure.

In the first iteration of Step 5.5.5.1, we insert data point H to all the existing

sorted lists and create SL[H] by first initializing SL[H] with an empty list. We start with

point A in Step 5.5.5.1.2. <A, H> is a 2-divider and <H, A> is a 4-divider as shown in

Figure 4-3.

/ ...4
/ —

/
/ <

/

\
E F

e SL[A] SL[H\

2 D H - --

3 E D - --

4 F E - A

5 G F - -

Figure 4-3 2-Divider <A, H>; 4-Divider <H, A> Table 4-3 Inserting H into SL[A] and A into
SL[/Z]

Because the e-value of <A, //> is less than k (5), we insert H to SL[A] at position 2

in Step 5.5.5.1.2.2. Since 5L[A][2] is already the first element in the sorted list, we skip

Step 5.5.5.1.2.3 and proceed to Step 5.5.5.1.2.4. H is outside <A, D>, <A, E> and <A,

F>. No points need to be moved. We insert A to SL[H][4] in Step 5.5.5.1.2.5.

SL[A] SL[B] SL[C] SL[D] SL[E] Sim SL[G] SL[H]

2 H E F G A B H C, D

3 D H G A H H C B, E, F

4 E F H H B C D A, G

5 F G A B C D E -

Table 4-4 Sorted lists for T = {A,H)

44

We insert H to SL[B], SL[G] and update SL[H] using the same steps. At the

end of the first iteration, we remove H from D and add H to T in Step 5.5.5.1.3. The

sorted lists SL[A], SL[B], SL[H] are as shown in Table 4-4.

Then we insert I to the existing sorted lists and create SL[F]. We first insert / to

SL[A], then.to SL[B], and so on. Finally we insert I to SL[H] as shown in Table 4-5.

Since <H, I> is a 3-divider, / is inserted to SL[H] at position 3. B, E and F are pushed

down to the 4 t h position; A and G are pushed down to the 5 t h position. In Step 5.5.5.1.2.3,

the points above the newly added point I, which corresponds to SL[H][2] in this case, are

checked. SL[LT\ [2] has points C and D. Because I is to the inside of both <H, C> and

<H, D>, C and D need not be re-arranged. In Step 5.5.5.1.2.4, the points after /, which

are points in SL[H][4] and SL[H][5], are checked. Since I is to the inside of <H, B>, B is

pushed up from SL[H][4] to SL[H][3]. From Figure 4-4, we see that <H, B> is indeed a

3-divider and should remain in SL[H][3]. Table 4-6 shows the sorted lists for all points

after the addition of /.

e SL[H]

2 C,D C, D C, D

3 B,E,F I
->

B, I

4 A, G B,E,F
->

E, F

5 - A, G A, G

Figure 4-4 3-Dividers <H, B> and<ff, /> Table 4-5 Inserting / into SL[H]

45

e SL[A] SL[B] SL[C] SL[D] SL[E] SL[F] SL[G] SL[H] SL[7]

2 H I 1 G A B H C, D E, F

3 D E F I H H C B, I A, G

4 I H G A B C I E, F D, H

5 E G H H I I D A, G B, C

Table 4-6 Sorted lists for T = {A,/}

Next we insert J to the existing sorted lists and create SL[J]. When H and / were

being inserted to T earlier, the size of T was small and the maximum depth of the dividers

was less than k = 5. Now when J is inserted to T, T has 10 data points and some dividers

have depth greater than 5. Figure 4-5 shows all the dividers passing through J.

<r7 A ^
/

A /
<r7 A ^

\
\ < W>"

f^r"
^ —^/'

E F

/

Figure 4-5 All dividers for /

<A, J> is a 5-divider and <J, A> is a 3-divider. Both dividers are inserted to the

sorted lists SL[A] and SL[J] respectively. Similarly, <B, J>, <J, B>, <H, J>, and <J, H>

are inserted. <C, 7> is a 2-divider but <J, C> is a 6-divider. So J is insert to SL[C] at

position 2, but C is not inserted to SL[J]. Likewise, J is inserted to SL[D] and 5L[7], but

D and / are not added to SL[J]. Conversely, <E, J> is a 6-divider, but <J, E> is a 2-

divider. So J is not inserted to SL[E] while E is inserted to SL[7][2]. For similar reasons,

46

J is not inserted to SL[F] and SL[G], but F and G are inserted to SL[J][2]. Table 4-7

below shows the sorted lists after the insertion of J. Note that both points D and C are

pushed up in SL[f\ because they are outside <I, J>.

e SL[A] SL[B] SL[C] SL[D] SL[E] SL[F] SL[G] SL[H] SL[7] SL[J]

2 H I J J A B H C, D J E,F,G

3 D J I G H H C B, I E, F A

4 I E F I B C I J A,D,G H

5 J H G A I I D E, F H, C B

Table 4-7 Sorted lists for T = {A,/}

The rest of the maintenance procedure follows the same pattern. Before we

present the finalized sorted lists, we will show an example in which we push a point

down in Step 5.5.5.1.2.3. We are going to insert data point K to SL[J]. As shown in

Figure 4-6, <J, K> is a 3-divider. K is inserted to SL[J] at 3. E, F, and G are the points in

SL[J][2], which are above K. Yet, <J, G> is indeed a 3-divider. K is found to be to the

outside of <J, G>. Therefore, G is pushed down to the 3 r d position.

if/'

/ \

V J " -
\

\
\

X
/

\
E

" ' ; /
F

e SL[J]

2 E,F,G E,F,G E, F

3 A K
->

G, K

4 H A
->

A

5 B H H

Figure 4-6 3-Dividers <J, G> and <J, K> Table 4-8 Inserting K into SL[J]

47

After the last iteration of Step 5.5.5.1, we compute the convex hull of the updated

D in Step 5.5.5.2 as in FDC-basic. At the end of Step 5.5.5, we obtain the following

sorted lists for all points in T= {A, M).

e SL[A] SL[B] SL[C] SL[D] SL[E] SL[F] SL[G] SL[H] sun SL[J] SL[K] SL[L] SL[M]

2 H I J K L L M C,D J E,F G A,M B,H

3 D J I J A M H I E,K K,L F.L B,G C

4 I E K L M B C J F G A H D

5 J K F G K H I B,E D,L M H,M C A,I

Table 4-9 Sorted lists for T = {A,M}

We use the same maintenance procedure to update the sorted lists when we merge

CH with T in Step 5.2. We treat the data points in CH as the new points in CT. For each

point q in CH, we insert q into the existing sorted list and create a new sorted list SL[q].

Complexity Analysis

How much faster is FDC-enhanced compared with FDC-basic in computing the first k

depth contours of an n-point dataset? In FDC-basic, finding the initial e-dividers for each

data point in Step 5.5.1.1 requires time complexity 0(t2), where t is the number of data

points in the final outer point set T. Since Step 5.5.1.1 is executed kt times, the total

complexity is 0(kt). In FDC-enhanced, the initial <?-dividers for each point p are the

lines directed from p to the points in SL[p][e]. Therefore, the time required to find the

initial <?-dividers for a data point is simply the time required to read the points from the e"1

element in a sorted list, which is 0(1). Thus, the total complexity for Step 5.5.1.1 is

0(kt).

48

However, FDC-enhanced does introduce an extra procedure to maintain the sorted

lists in Step 5.5.5.1. When a new point q is inserted into a sorted list SL[p], the

computation of the e-value of <p, q> in Step 5.5.5.1.2.1 requires 0(t) time, the insertion

of q to SL[p] in Step 5.5.5.1.2.2 and that of p to SL[q] in Step 5.5.5.1.2.5 require 0(1)

time, and the re-arrangement of points in SL[p] in Steps 2.6.5.1.2.3 and 2.6.5.1.2.3

requires 0(k) time. Thus, the complexity of one iteration of Step 5.5.5.1.2 is 0(t + k).

Since a new point is inserted into at most t sorted lists and the total number of new points

is at most t, the total complexity of Step 5.5.5.1 is 0(t3 + kt2).

FDC-enhanced requires a total complexity 0(t3 + kt2 + kt) to find the initial e-

dividers while continuously updating the sorted lists, whereas FDC-basic requires 0(kt3)

merely to find the initial e-dividers. When k is small, FDC-enhanced may not excel

FDC-basic. However, when k gets larger, the improvement becomes obvious. We will

see more comparisons between FDC-basic and FDC-enhanced in Chapter 7.

49

Chapter Five: FDC WITH BUFFER SPACE CONSTRAINTS

We have explained and showed with examples why our Algorithm FDC can work faster

in computing depth contours. However, both the basic version and the enhanced version

of Algorithm FDC are main-memory algorithms; and, so far, we have assumed that the

computer system has sufficient buffer space to handle the entire computation. On the

other hand, we know that data mining applications almost always deal with a large

volume of data. What can we do if the buffer space can accommodate only a portion of

the dataset? In anticipation of this buffer space problem, we have come, up with three

different solutions based on three different divide-and-conquer techniques. The central

idea is to divide the original dataset D into smaller subsets, find the outer point set of

each subset 5„ and compute the depth contours of the union, S, of all the outer point sets.

We call the three variants of FDC-basic that we have developed FDC-M1, FDC-M2, and

FDC-M3. Although these three variants have been developed with FDC-basic, they can

be enhanced to work with FDC-enhanced.

Computation with Limited Buffer Space

We begin our introduction of the three variants with a more precise definition of the

problem: Given a dataset D of n points of which t points are outside the &-depth contour,

compute the first k+lst depth contours of D within the constraint of a buffer space which

can accommodate only m data points, where t <m<n.

50

While the buffer space need not be large enough to hold all n data points, it must

nevertheless be large enough to accommodate at least all t data points. Otherwise, we

cannot correctly compute the depth contours.

We observe that for any point p in a subset 5„ if p is inside the fc-depth contour of

Si, p must also be inside the &-depth contour of the original dataset. This is because the

depth of p can only increase as more points are added to 5,. Since 5, is a subset of the

original dataset, if p has depth > k in Si, p must also have a depth > k in the original

dataset. In other words, to compute the first kth depth contours of the original dataset, we

need only the k+lst outer point sets of the subsets, for these outer point sets contain all the

data points with depths < k.

Among the three variants of FDC-basic mentioned above, FDC-M1 is the basic

method, FDC-M2 is enhanced with batch merging, and FDC-M3 is further enhanced with

full merging. A l l three methods start with the division of the original dataset into smaller

subsets. For the sake of simplicity2, we divide up the data points by their physical order:

we put the first m points into subset Si, the next m points into subset 52, and carry on this

division up to the last subset 5/, where / = [n/m~\. Figure 5-1 shows the first 2 depth

contours of a sample dataset D of 60 data points. These depth contours are generated by

FDC-basic on the basis that the buffer size is large enough for the computation. Figure

5-2 demonstrates how FDC-M1, FDC-M2, and FDC-M3 divide the same dataset into two

subsets Si and S 2 for computing the first 2 depth contours when the buffer space can

accommodate the computation of only 30 data points.

2 Although a different way of dividing up the data points may affect the performance, the resulting depth
contours will remain the same. We will further investigate the use of different divisions in future.

51

Figure 5-1 O-Depth to 2-Depth Contours of a 60- Figure 5-2 SiandS2

point dataset

FDC-M1: Basic

Algorithm FDC-M1(D,k,m)

Input: D - the dataset, k - an integer, and m is the maximum buffer space size.

Output: Contours of depth from 0 to k.

1 S = D;

2 While (\S\ > m) {

2.1 Divide the dataset S into smaller subsets 5i,..., 5(;

2.2 Initial 5 with 0;

2.3 For (i = l ; ;</;/++){

2.3.1 Call FDC-basic to compute the k+V outer point set of 5,;

2.3.2 S= S u the k+lst outer point set of Sr,

} I* end for */

} /* end while */

3 Compute the first k depth contours of S using FDC-basic;

We now consider the sample dataset shown above for the purpose of

demonstrating the operation FDC-M1. In Step 2.1, we obtain S\ and 52. Then we find

the k+lst outer point sets of Si and 52 in the first and the second iteration of Step 2.3.1.

Step 2.3.1 in FDC-M1 is quite similar to the process in FDC-basic for computing the first

52

k depth contours of S,. However, Step 2.3.1 of FDC-M1 stops short of actually working

out the depth contours by skipping Step 2.6.2 of FDC-basic - intersecting the inside

regions; and returns, instead, the outer point set at the end of the computation. Figure 5-3

shows the 2-depth contours and the outer point sets of S i and S 2 respectively. S i has 17

outer data points and S 2 has 16. Thus, S has 33 points altogether as shown in Figure 5-4.

• • * s, + +

Figure 5-3 2-Depth Contours and Outer Point Figure 5-4 Updated S has 33 data points
Sets of Si and S 2

As S still exceeds our buffer limit of 30 data points, further pruning of S is

necessary. We, therefore, repeat Step 2. Here again, while other methods of division will

yield the same result, for the sake of simplicity, we divide up the 33 data points by their

original physical order, putting the first 30 points of D into S i and the remaining 3 points

into S 2 as shown in Figure 5-5. Of the 30 points in S i , 18 points have depths < 2; all three

points in S 2 have depth 0 3. The 18 points in S i and the 3 points in S 2 make up S, which

now has 21 points in total and does not exceed the buffer limit.

3 A 3-point dataset is a special case because all of its data points are on the outermost convex hull and
automatically have depth 0; we need not even compute the outer point set with Algorithm F D C in this
special case.

53

Then, we compute the depth contours of these 21 points in Step 3. Figure 5-7

shows the first two depth contours of S. These depth contours are the same as the ones

shown in Figure 5-1 computed by FDC-basic.

Figure 5-5 Si and S 2 Figure 5-6 2-Depth Contours and Outer Point
Sets of Si andS 2

Figure 5-7 O-Depth to 2-Depth Contours of S with 21 data points

FDC-M2: Batch Merging

FDC-M1 treats all data points in the outer point sets equally. S is the union of all the

outer point sets. However, certain of these points will definitely not appear in any of the

desired depth contours, namely, those points that are inside the k+lst inner convex hull of

5 4

any subset. FDC-M2 reduces the number of data points to be added to S by first filtering

the data points in the outer point sets. It uses the &+l s t inner convex hull of S\ as the

controlling convex hull, CCH, to determine which data points should be added to S and

which ones should be excluded. Data points inside CCH have depths greater than k.

Thus, all data points in the outer point sets that are inside CCH are too deep to be added

to S.

Algorithm FDC -M2(D,k,m)

Input: D - the dataset, k - an integer, and m is the maximum buffer space size.

Output: Contours of depth from 0 to k.

1 Divide the dataset D into smaller sets S\, ..., Sr,

2 Call FDC-basic to compute the k+lsl inner convex hull and the k+lst outer point set of Si;

3 CCH = the k+151 inner convex hull of Si; S = the k+1st outer point set of S i ;

4 For (j = 0;j< k; j++) Initialize 57} with 0;

5 For (i = 2;i< I; i++) {

5.1 For O = 0;; <£;./++) {

5.1.1 Call FDC-basic to compute the £+l s t outer point set of S i ;

5.1.2 STj = STj U the data points of depth j in S,;

} /* end for */

} /* end for */

6 FoT(j = 0,j<k;j++) {

6.1 For every point p in S7} {

6.1.1 If p is inside CCH, continue;

6.1.2 /* Otherwise */ ' S = S u { p } ;

6.1.3 If(|S|>m){

6.1.3.1 Call FDC-basic to compute the k+lsl inner convex hull and the &+lsl outer point
set of S;

6.1.3.2 CCH = the &+15' inner convex hull ofS; S = the k+ 1st outer point set of S;

} /* end if */

} /* end for */

} /* end for */

7 Compute the first k depth contours of S using FDC-basic;

55

Because we have picked the inner convex hull of S i as the controlling CH, the

outer point set of S i becomes the initial S . The data points in the other outer point sets are

organized by depth in Step 4.1.1. In Step 5, these data points will be added to S provided

they are outside CCH. Data points with the smallest depth will be added to S first

followed by data points with the second smallest depth, and so on. Thus, FDC-M2

ensures that the "more useful" points - those points outside and farthest away from CCH

- will always be added to S first. As for those points inside CCH, FDC-M2 stows them

away as "useless" points right away.

The unique step taken by FDC-M2, however, is Batch Merging, which

distinguishes it from the other variants of our Algorithm FDC; and it is because of this

unique step that FDC-M2 can become more efficient than FDC-M1.

After adding each new data point to S, FDC-M2 finds out whether S is within the

set buffer limit m or not. Once the size of S reaches m, FDC-M2 will compute the k+lst

outer point set of S as well as the k+lst inner convex hull of S. Then, FDC-M2 will re-set

S to the outer point set and CCH to the inner convex hull (Step 5.1.3.1). Thus, a new

initial S is in place. Because of the addition new points to S , the updated CCH will be

enlarged; and, therefore, more "useless" data points can be discarded or filtered.

With S as the new initial S , FDC-M2 now continues to search the remaining data

points in the outer point sets to select the next batch of data points for merging with S .

Batch merging coupled with the continual updating of CCH increases the efficiency of

FDC-M2. The cycle is complete when all the "useful" points in the other outer point sets

have been added to S.

56

The final step in FDC-M2 involves the computation of the requisite depth

contours, which is exactly the same as the final step in FDC-M1.

We will use the same sample dataset in Figure 5-1 to show how FDC-M2

computes the first two depth contours. As does FDC-M1, FDC-M2 divides the dataset

into Si and S2 as shown in Figure 5-2. However, instead of setting S to the union of the

outer point sets of Si and S2, FDC-M2 sets the initial S to the outer point set of Si and

divides up the data points in the outer point set of S2 by depth into Sro, ST\, and Sr2.

Figure 5-8 shows the initial S, the controlling CH, S7n, Sri and Sr2. Initial S has 17

points. Sro, Sri and Sr2 have 6, 6 and 4 points respectively.

Figure 5-8 Initial S, Controlling CH, and Outer Figure 5-9 O-Depth to 2-Depth Contours of S
Point Set of S2 with 28 data points

In the first iteration of Step 7, we find that all the points in Sro are outside CCH;

therefore, we add all these points to S, which now has 23 points. Then we check the

points in Sri. As data points A, B, C and D are inside CCH, only two points in Sri are

added to S. By the end of the second iteration, S has 25 points. In the next iteration, we

find that data point E is inside CCH; so all the points in Sr3 but E are added to S. After

all the useful data points are added to it, S has only 28 data points, which does not exceed

57

the buffer limit. Finally, we compute the first two depth contours of S (Figure 5-9),

which again match those in Figure 5-1 and Figure 5-7.

F D C - M 3 : Ful l Merging

When FDC-M2 carries out batch merging in the intermediate steps, it does not simply

pick all the data points that have a depth < k in each subset for addition to S as FDC-M1

does. It discards such outer points as are within CCH, so as to reduce the number of data

points to be added to S for computing the required depth contours - the final

computation.

However, both FDC-M1 and FDC-M2 use the information about the depth of

points only during the intermediate steps. Such information helps FDC-M1 and FCD-M2

to determine which points are to be added to S; but once a point has been added to S, both

algorithms ignore the depth of that point on the basis that the point can assume new

depths in the expanding 5. However, with FDC-M3, the depth of a point in any subset

becomes the basis for relating that point to other points within the same subset. When

FDC-M3 has worked out the depth of a point p, it associates p with its next convex hull -

nextCHip) - the set of points of immediate behind p. The next convex hull of a point p of

depth i is the inner convex hull CHM, that is, nextCHip) = CHM, and the next convex

hulls of all the points of the same depth are the same. FDC-M3 places special emphasis

on this relationship between a point and its next convex hull because it intends to use this

relationship in the final computation; and for this reason, it retains all such relational

information and all information about the depth of points.

58

How can such information help FDC-M3 minimize the number of data points

required to compute the depth contours? The answer lies in the fact that a different

concept is adopted in designing FDC-M3. In designing the previous two variants, we try

to obtain an S that contains all the data points of the desired depths before starting the

final computation. This means that S will look like the complete original dataset without

the points of depths greater than k. In designing FDC-M3, we want to start with the

smallest S that contains only those points required for computing the 0-depth contour.

This concept of working on an "incomplete" 5 avoids the need to maintain a mixed bag

of data points of different depths, some of which are not yet due to be worked on. It is

only when FDC-M3 has completed the computation of the 0-depth contour that it will

merge the next minimum set of data points with the data points inside the 0-depth contour

to form another 5. At that point, the union of the all the next convex hulls of the points

comprising the 0-depth contour will give the next minimum set. As FDC-M3 tries to

complete the "incomplete" S in this manner while working on the final computation, the

depth and relational information it generates in the intermediate step becomes a

tremendous help.

Before we present our Algorithm FDC-M3 and demonstrate its operation with the

help of an example, we will explain how FDC-M3 makes use of the Full Merging

approach. To achieve its goal of minimizing the number of data points to be included in

the final computation, FDC-M3 retrieves only the points of 0-depth from all the subsets

and merges them to create the initial S for computing the 0-depth contour of the entire

original dataset. This is the first round of merging performed by FDC-M3, and it aims at

merging all the requisite data points in one go instead of merging them only a batch at a

59

time. For the next round of full merging, it will retrieve from all the subsets the next

convex hulls of only those data points that are on the 0-depth contour, which is identical

with the convex hull of the initial 5. A l l such next convex hulls will then be merged in

one go with the 0-depth data points that are not on the convex hull of the initial 5. The

resultant dataset becomes the next S for another round of final computation—the

computation of the 1-depth contour of the entire original dataset. Full Merging to form

an "incomplete" S distinguishes FDC-M3 from FDC-M2.

Algorithm FDC -M3(D,k,m)

Input: D = the dataset, k = an integer, and m is the maximum buffer space size.

Output: Contours of depth from 0 to k.

1 Divide the dataset D into smaller sets Si, ...,Su

1 Initialize S with 0;

3 For {i=l;i</;/++){ .

3.1 Call FDC-basic to compute the first k inner convex hulls and the &+lst outer point set of 5,;

3.2 For 0 = 0;./<£;;++) {

3.2.1 STJJ - the data points of depth j in 5,;

3.2.2 nextCHjj- thej+lst inner convex hull of S,;

3.2.3 For every data point p in STQ,

3.2.3.1 nextCHip) - nextCHij,

} /* end for */

} /* end for */
4 -S=U1<j</57->0; /* initials*/

5 Run FDC-basic with the following change in Step 5.2 and Step 5.5.5 (when we update S and 7):

5.1 For every point p to be moved from S to T {

5.1.1 T=Tu{p};

5.1.2 S = S-pv nextCHip);

5.1.3 If(|S|>m){

5.1.3.1 i- current depth contour; j = k-i+ I;

5.1.3.2 Call FDC-basic to compute the7+lst outer point set of S;

5.1.3.3 Reset S to the j+1st outer point set;

} /*endif*/

} /* end for */

60

We now consider again the sample dataset in Figure 5-1, which is divided into Si

and S2 as shown in Figure 5-2. For each of these subsets, we compute the outer point sets

and the next convex hulls of all the data points in the outer point set. Figures 5-10 and 5-

11 show the outer point sets and the different next convex hulls for Si and S2,

respectively.

S T 1 . 2
n e x t C H ,

* +

Figure 5-10 Outer Point Set and Next Convex Figure 5-11 Outer Point Set and Next Convex
Hulls of Si Hulls of S 2

Because Sr^o contains the outermost data points of Si, and S^.o contains those of

S2, their union includes all of the outermost data points of the original dataset and is

sufficient for the initial S (13 data points). The convex hull of the initial S is the 0-depth

contour, and it gives us the first outer point set T (8 data points). As all the points in T

have come from either STi$ or S72,o, their next convex hulls are either nextCH\# or

nextCH2,o', and when we remove the points in T from S and add their next convex hulls to

S, we obtain the updated S = {S - T u nextCHifi u nextCH2,o} (24 data points), and re­

compute the inner convex hull CH. Figure 5-12 shows the 0-depth contour, the inner

convex hull, the initial S, and the additional points from the next convex hulls nextCH^

and nextCH2,o after the update.

61

Figure 5-12 O-Depth Contour and 1st Inner Figure 5-13 O-Depth and 1-Depth Contours of S
Convex Hull of 5

We then compute the 1-depth contour with T and CH. As data points A, B and C

are on the 1-depth contour, they are removed from S and added to T; also added to S are

nextCH(A), nextCH(B) and nextCH(C). However, since point B is in the initial S,

nextCH(B) has, in fact, already been added to S. As point A is in ST\,i, nextCH(A), which

is nextCHi^, has now to be added to S; similarly, point C is in ST2,i, and nextCH{C),

which is nextCH2,\, has also to be added to 5. 5 now has 30 data points. Figure 5-13

shows all the data points newly added to S due to the removal of A, B and C. In general,

the data points common to two different next convex hulls are added to S only once.

To compute the 2-depth contour, we use the updated T and the correspondingly

updated CH. Figure 5-14 shows all the data points added at different stages and the depth

contours computed by FDC-M3. On comparing these depth contours with those

computed by FDC-M1 and FDC-M2, we are satisfied that all three space-constrained

variants of FDC-basic produce matching results.

62

Figure 5-14 O-Depth to 2-Depth Contours of S

These variants of our basic algorithm are designed for use in situations with

buffer-space constraints; and as space-constrained variants, all of them have an additional

data-pruning process to remove the "useless" points (those with depth > k) so that 5 will

fit the buffer limit. With FDC-M1 and FDC-M2, pruning takes place long before the

final computation. In the case of FDC-M3, pruning is taken care of by Step 5.1.3. In the

above example, S does not exceed the buffer limit, and no pruning is done. In fact, with

FDC-M3, S does not normally require pruning; and if it does, pruning takes place only

half way through the final computation, for example, after the computation of the first Ith

depth contours. In that case, we reset 5 to the data points of depths from / to k by calling

FDC-basic to compute the 7+l s t outer point set of S, where j = k - i + 1. We need not

work up to the k+lst outer point set because S must consist of data points of depth > i and

only those data points of depth < k are useful data points. These useful data points are

located in the first / h depth contours of S; therefore, the j+ 1s t outer point set of S becomes

the new S.

63

Chapter Six: 3-DIMENSIONAL FDC

Although FDC has been designed with a 2-dimensional scenario in mind, we have

successfully generalized our study to cover 3-dimensional situations. In this chapter, we

are going to show the reasoning, the working, and the performance of our 3-dimensional

version of Algorithm FDC, FDC-3D.

We shall begin by first reviewing some of the terms we have defined for use in a

2- dimensional space. A data point is a 2-tuple (px, py) where px is the x-coordinate and py

is the y-coordinate. <p, q> is an e-divider of an ra-point dataset D if at most e points are

to the outside of the directed line passing through points p and q, where the outside of <p,

q> is its right side and the inside is its left side. The inside region of <p, q> is the

intersection of the convex hull of D (the smallest convex polygon that contains all data

points in D) and the half-plane to the inside of <p, q>. The (expanded) e-intersected

inside region is the convex polygon resulted from the intersection of all the (expanded)

inside regions of a set of e-dividers.

3- Dimensional Depth Contours

In a 3-dimensional context, however, a data point becomes a triplet (px, py, pz) where px is

the x-coordinate, py is the y-coordinate and pz is the z-coordinate. [p, q, r] is an e-divider

of an n-point dataset D if at most e data points are to the outside of the plane passing

through points p, q and r. The outside of [p, q, r] is the side out of which the normal

vector of [p, q, r] points; the inside is the opposite side. The inside region of [p, q, r] is

64

the intersection of the convex hull of D (the smallest convex polyhedron that contains all

data points in D) and the half-space to the inside of [p, q, r\. The (expanded) e-

intersected inside region is the convex polyhedron resulted from the intersection of all the

(expanded) inside regions of a set of the e-dividers.

Figure 6-1 O-Depth Contour

< r

+ V

Figure 6-3 2-Depth Contour

Figure 6-2 1-Depth Contour

Figure 6-4 3-Depth Contour

3-dimensional depth contours are like their 2-dimensional counterparts in that

they are also convex and nested. The above four figures (Figure 6-1 to Figure 6-4) show

respectively the 0-depth contour, 1-depth contour, 2-depth contour, and 3-depth contour

of a new sample dataset. This same sample dataset set is used throughout Chapter 6 to

demonstrate the various phases of our 3-dimensional algorithm.

65

We have designed our 3-dimensional FDC algorithm - FDC-3D - following

closely the logic of our 2-dimensional one. However, new steps are introduced when we

expand the e-inside regions and intersect the half-spaces. Of course, the implementation

of the two algorithms has to be different even if it is only because there are three

attributes in a 3-dimensional dataset instead of two as in a 2-dimensional scenario.

Algorithm FDC(D,k)

Input: D = the dataset and k = an integer.

Output: Contours of depth from 0 to k.

1 Compute the 0-depth contour as in Steps 1 to 4 of FDC-basic;

2 Vox{d= 1; d<k;) { /* new peel*/

2.1 Update D, T, and CH as in Steps 5.1 to 5.3 of FDC-basic;

2.2 If \CH\ == 4, continue; /* degenerate case of having a tetrahedron as the convex hull */

2.3 For (e = d; e <'cw'/2;) { /* Otherwise: the general case */

2.3.1 For all pairs of points p,qeT (p* q) {

2.3.1.1 Find all points r in 7 (if any) so that [p, q, r] is an e-divider of the points in T;

2.3.1.2 If every point in CH is contained in IR([p, q, r]),

lR[p][q] = IR([p, q, r]) ; CT\p][q] = 0 ;

2.3.1.3 Else call Procedure Expand-3D(p, q, r, CH, T, e) to compute IR[p][q] and
CT[p][q];

} /*end for */

2.3.2 Output the boundary of the region (f]p,q£T IR[p][q]) as the d-depth contour;

2.3.3 If d == k, break; /*Done and Stop */

2.3.4 /* Otherwise: */ d = d+ 1; e = e + 1;

2.3.5 If {JpqeTCT[PIq]±0{

2.3.5.1 T = T u (\J p m T CT[pM);D = D-(Up^TCT[p}[q));

2.3.5.2 CH - vertices of the convex hull of (the update) D;

} /*endif*/

} /* end for */

} /* end for */

66

Expanding e-lnside Region

In our 2-dimensional algorithm, we expand the inside region of an e-divider <p, q> with

the points in the inner convex hull CH that are outside IR(<p, q>) as follows. We sort the

points outside IR(<p, q>) in a counter-clockwise direction as {n, r,,}. Then we find r,

that maximizes the angle between the segments <r„ p> and <p, q> and r, that maximizes

the angle between the segments <rp q> and <q, p>. The expanded series <p, rt, ..., rs, q>

is the list of line segments {<p, r,>, <r,, q>}. The expanded inside region is the

intersection of the inside regions of the line segments in the expanded series that are e-

dividers. However, this particular Procedure Expand is applicable only to the 2-

dimensional algorithm.

In a 3-dimensional algorithm, we cannot use this relatively straightforward

procedure. First of all, we have no easy way to enumerate the vertices of the inner

convex hull: we can no longer follow only one direction in the enumeration because a

point now has both a longitude and two co-latitude co-ordinates. Figure 6-5a shows how

0 alone can define a sequence in CH in a 2-dimensional case, while Figure 6-5b

demonstrates that both 0 and ()) are needed in a 3-dimensional situation.

i I
p
y*

t
w w

Figure 6-5a Point p in the 2-Dimensioanl Space Figure 6-5b Point p in the 3-Dimensional Space

67

Then, as the points are not sorted in one direction in the 3-dimensional algorithm,

we cannot obtain the sorted list {r\, rn} simply by comparing the angles of the points

in CH. In the 2-dimensional algorithm, once we find r, and ry, we can easily locate all the

points to be included in the expanded series, knowing that the points between r, and r, are

also relevant. If we apply the same concept to a 3-dimensional space, we can name the

data points in CH that are outside the e-divider [p, q, r] {s\, sn}. We can even find s,

that maximize the angle with the edge <p, q>, Sj that maximizes the angle with the edge

<q, r>, and Sk that maximizes the angle with the edge <r, p>. However, as { s\, sn}

cannot be sorted in any single direction, we will still be unable to tell exactly where all

relevant data points are "among" s„ Sj and st In other words, if we use the same concept

as we do in our 2-dimensional algorithm, we will not be able to know what other data

points and in what order these data points should be included in the expanded series.

Finally, if we follow the same concept, we cannot obtain a list of planes to expand

the original e-divider. On summary, we are stuck with a set of unordered data points

which does not enable us to derive the necessary list of planes for expanding the inside

region.

Therefore, in the 3-dimensional algorithm, we conceive a new procedure to work

out the correct planes. We institute Procedure Expand-3D by working on the convex hull

of the data points {p, q, r, s\, sn}. The expanded series {[p, q, si], [q, r, sj], [r, p, Sk],

...} is the list of facets of the convex hull excluding the plane [p, q, r]. The expanded

inside region is the intersection of the inside regions of the planes that are e-dividers.

68

Procedure Expand-3D(p, q, r, CH, T,e)

Input: [p, q, r] = an e-divider of points in T, and CH contains point(s) outside IR(\p, q, r]).

Output: IR[p][q] and CT\p][q].

1 Find all the points [st, s„} in CH that are outside [p, q, r];

2 Compute the convex hull of [p, q, r, su ..., sn};

3 Initialize lR\p][q\ = convex hull of T and CT[p][q] = 0; /* convex hull ofT = DC0 */

4 For all facets F of the convex hull {

4.1 If F is not an e-divider of the points in CH u {s\,..., sn},

continue;

4.2 Else { /* expand the inside region */

4.2.1 IR[p][q] = IR[p][q] n IR(F);

4.2.2 Add the vertices of F to CT[p] [q];

} /* end else */

} /* end for */

5 Return IR\p] [q] and CT[p] [q];

Let us now consider the examples below.

Figure 6-6 O-Depth Contour and 1st Inner Figure 6-7 No points in CH\ is to the outside of
Convex Hull 1-Divider [C, E, G]

Figure 6-6 shows the 0-depth contour (DCo) and the first inner convex hull (CH\)

of the sample dateset. To simplify the drawing, we will display only the vertices of the

inner convex hull in the subsequent figures.

69

We want to find the 1-dividers of points {A, H}. Figure 6-7 shows the 1-

divider [C, E, G]. Since no points in CH\ are outside [C, E, G], no expansion is

necessary.

In Figure 6-8, point / in CH\ is outside the 1-divider [B, D, F]. The convex hull

of {B, D, F, 1} gives the expanded series {[B, D, /], [D, F, /], [F, B, /]}. Because all of

these three planes [B, D, T\, [D, F, L) and [F, B, 7] are 1-dividers, the expanded inside

region is the intersection of the inside regions IR([B, D, /]), IR([D, F, i]) and IR([F, B,

I}).

Figure 6-8 Expand IR([B, D, FJ) with J Figure 6-9 Expand IR([A, C, E]) with / , / , and K

In Figure 6-9, points /, J and K are outside the 1-divider [A, C, E]. As J and K are

not contained in the convex hull of {A, C, E, I, J, K}, the expanded series has only planes

[A, C, /], [C, E, T] and [E, A, /] , all of which are 1-divider. The expanded inside region is

the intersection of their inside regions.

70

Intersecting Half-Spaces

Another major difference between the implementation of the 3-dimensional algorithm

and that of the 2-dimensional algorithm lies in the intersection of half-spaces (which are

half-planes in 2-dimension). We need the intersection of half-spaces when we expand an

inside region and when we compute the intersected inside regions. In either case, we

intersect some half-spaces with the convex hull of the dataset.

In 2-dimensional cases, we construct the intersection of n half-planes using a

straightforward 0(n) computational geometric approach. (Preparata and Shamos has

suggested a divide-and-conquer approach to compute the intersection of N. half-planes in

0(N log N) time. But, due to the unavailability of the source code, we use a simpler

method in our implementation. We will improve on this part of the implementation in

future.) Both the convex hull of the dataset and the half-planes are convex regions.

Intersecting the convex hull with the half-plane to the inside of an e-divider simply

involves slicing the convex hull with the e-divider and retaining the piece to the left of

the e-divider, which can be done in linear time. The intersection of two convex regions is

always convex. If we continue intersecting the intersection with the next half-plane, the

final intersection can be found in quadratic time.

The corresponding operation in a 3-dimensional situation is more complicated.

There is currently no computational geometry code available that can handle the

intersection of 3-dimensional half-spaces in a straightforward and effective manner. As a

result, we compute the intersection of half-spaces using both linear programming and

duality transformation.

71

Duality transformation is a one-to-one mapping of a point to a plane, and vice

versa. It maps objects from the primal space to the dual space. The image of an object

under a duality transformation is called the dual of the object. Duality transformation is

incidence preserving. A point p lies on a plane P if and only if the point P* (the dual of

P) lies on the plane p* (the dual of p). If points p\, p2, p^ and p4 lie on plane P, then

* * * * *

planes pi , P2 , pj and p* intersects at point P . Several different transformations that

preserve incidence are possible. A simple one is the following. The dual of point p = (px,

py, pz) is the plane p* = (pxx + pyy + pz - 1 = 0); the dual of plane P = (Ax + By + Cz + D =

0) is the point P* = ("%,"%,"%).

Figure 6-10a Primal Plane Figure 6-10b Dual Plane

Figure 6-10a and Figure 6-10b are examples of a 2-dimensional duality

transformation. Point p = (px, py) in the primal plane becomes line p* = (pxx + pyy - 1 = 0)

in the dual plane; line / = (Ax + By + C = 0) becomes point /* = (~Alc, ~Blc)- The three

points p\, p2 and pz lie on the line / in the primal plane; the lines p\, p2 and p^ go

through the point /* in the dual plane.

72

The intersection of N half-spaces H = {h\, HN} can be computed via

dualization if all TV half-spaces contain the origin. We will not get into the details of the

geometric theory behind the computation. In brief, the intersection of H is the dual of the

convex hull of the point set H* = {hi*, hN*}, where h* is the dual point of the half-

space hi.

To explain the dualization approach for the intersection of half-spaces while

keeping the drawing simple, we illustrate the intersection of half-planes instead of half-

spaces in Figure 6-1 la. We want to find the intersection of the 12 half-planes in the

primal plane. Each half-plane in the primal plane is dualized to a point in the dual plane

(Figure 6-1 lb). The convex hull of the dual points is the dual of the intersection. Each

line supporting the convex hull dualizes to a vertex of the intersection. For example, the

line supporting edge 1 of the convex hull dualizes to vertex 1 of the intersection.

Figure 6-lla Primal Plane: Intersection of 12 Figure 6-llb Dual Plane: Convex hull of the
half-planes (in dotted Une). duals of the half-spaces.

While the dualization method solves our library software problem, its use hinges

on two pre-requisites: (1) all the half-spaces must have a common intersection; and (2)

the origin must be contained in the intersection. For the origin to be contained in the

73

intersection, we must first ascertain if the origin is contained in all the half-spaces. If that

is not the case, we must find a common interior point for all the half-spaces before we

can intersect the half-spaces. In our implementation, we use linear programming to find

the common interior point. Each half-space is defined by an inequality Ax + By + Cz + D

> 0. The objective of the linear program is to maximize w subject to the constraints Atx +

5,y + Qz + DiUi - w, > 0 for 1 < i < N. The optimal solution (x, y, z, u, w) with u, w > 0

gives an interior point (7W, y/w, z/w) of H.

Once we know an interior point, we can translate the half-spaces so that the origin

coincides with the interior point. Then we can obtain the intersection using the

dualization method. Finally, we translate the origin back to its original position. Of

course, it is possible that there is no solution for the linear program. In that case, no

points are inside the intersection, that is, the intersection is empty.

Complexity Analysis

In Chapter 3, we have broken down FDC-basic into four parts to analyze its complexity.

For easy reference, we summarize below the complexities of the four parts of FDC-basic:

(n = the size of the dataset; k = the largest depth of contours desired; t = the size of the

final outer point set T; c - the maximum cardinality of the first k CH)

1. Computing and maintaining convex hulls: 0(n log n + t log 2 n)

2. Finding initial e-dividers: 0(kt3)

3. Expanding e-inside regions: 0(ckt2)

4. Intersecting half-planes: 0{ kt log t)

74

We have analyzed the complexity of FDC-3D in the same way. Due to the

existence of an additional dimension in FDC-3D, the complexity of each part is expected

to be different when compared with the complexity of its 2-dimensioanl counterpart.

However, we find that with standard routines, parts 1 and 4 maintain the same

complexities in both dimensions. We will present the complexity analyses of parts 2 and

3 of our 3-dimensional algorithm as follows:

In Part 2, the complexity of finding the e-dividers for one point becomes 0(t)

because for each point p, there are t2 dividers [p, q, r]. We need to find the e-dividers for

t points in each of the k iterations. Thus the total complexity of finding the initial e-

dividers is 0(kt4).

In Part 3, we need to compute the convex hull of the e-divider and the points in

CH to get the expanded series. This step takes 0(c log c) time. With at most 0(kt)

expansions, the total complexity for expanding the e-dividers is 0(ckt log c + ckt2).

Thus, the total complexity of our 3-dimensioanl FDC is 0(n log n + t log 2 n + kt

log t + ckt log c + ckt2 + kt4). Once again, Part 2 dominates the algorithm. We claims

that it is possible to optimize Part 2 using the sorted-list technique as in the enhanced

version of the 2-dimensional FDC.

•75

Chapter Seven: PERFORMANCE AND EXPERIMENTAL RESULTS

We have described the algorithms for the different versions of FDC - the basic version

(FDC-basic), the enhanced version (FDC-enhanced), the limited-buffer-space versions

(FDC-M1, FDC-M2 and FDC-M3), and the 3-dimensional version (FDC-3D). We shall

now review and compare their performances. We are going to compare the performance

of FDC-basic with that of ISODEPTH; the performance of FDC-enhanced with that of

FDC-basic; and the performance of FDC-M1, FDC-M2 and FDC-M3 among themselves.

A l l the above versions are implemented in C++; and because computational

geometry plays an important role in the computation of depth contours, we have used the

LEDA library in most of our computational geometry operations. These operations

include the manipulation of geometric objects, the computation of convex hulls, and the

intersection of. half-planes. In the implementation of our 3-dimensional algorithm, we

also use in addition to the L E D A library, the LP_SOLVE library when looking for interior

points of the intersections of half-spaces, and the QHULL library when computing the

intersections of half-spaces.

For the purpose of our study, we have translated Rousseeuw and Ruts'

ISODEPTH program, which was written in Fortran, into C. We understand that

ISODEPTH does not work with datasets that include duplicated or collinear points, and

therefore we have been careful to remove such data points from our sample datasets when

carrying out our comparative studies involving ISODEPTH. A l l our sample datasets are

generated by using the randn(n, 2) command in M A T L A B to generate n normally

7 6

distributed random number pairs; and all our smaller datasets are contained in the bigger

ones.

Performance: FDC-basic vs. I S O D E P T H

As discussed in Chapters 2 and 3, FDC-basic achieves a complexity of 0(n log n + t log 2

2 3

n + kt log t + ckt + kt) in computing the first k+l depth contours (where n is the size of

the dataset, t is the size of the outer point set, and c is the size of the inner convex hull),

which is an improvement on ISODEPTH's complexity, 0(n2 log n + kn2 + kn15 log n). In

support of this claim, we now stipulate the results of our various experiments on the

computation time4 and the relative performance of ISODEPTH and FDC-basic. First, in

computing the first twenty-one depth contours of different datasets, we discovered that

FDC-basic significantly outperforms ISODEPTH in computation time as n increases.

Table 7-1 shows the actual time taken by the two algorithms in computing the first

twenty-one depth contours of 100 to 5,000 data points. It also shows the relative

performance of FDC-basic and ISODEPTH. When n is small, the two algorithms are

competitive. For example, when there are fewer than 500 points to compute, FDC-basic

merely needs one-third of the time taken by ISODEPTH. As n increases to 1,000, it runs

7 times faster than ISODEPTH; and when n reaches 3000, the disparity in favour of

FDC-basic becomes apparent. Then, when n reaches 5000 with FDC-basic running more

than 115 times faster than ISODEPTH, the improvement becomes indeed very

significant. The change in gradient in the graph (Figure 7-1) illustrates the improvement

4 The computation time (in seconds) is the average time for three runs performed to produce the first k+l
depth contours after the data points are loaded.

77

in computation time achieved by FDC-basic with respect to the increase in dataset size.

Our comparison stops at n = 6500 because the version of ISODEPTH we use returns a

segmentation fault when the dataset has more than 6500 data points.

ft ISODEPTH
(sec)

FDC-basic
(sec)

ISODEPTH
FDC-basic

100 1.212 1.208 1.003

250 3.413 1.956 1.745

500 9.599 2.731 3.515

750 17.997 3.245 5.546

1000 29.474 3.880 7.596

3000 214.859 4.547 47.253

5000 571.405 4.964 115.110

6500 954.588 6.180 154.464

160

140

120

8100

a
f-c 80
i

I 60

40

20

0

: /
\ /
• /

A
/ < / !

/
/

A

""/

/
i

0 1000 2000 3000 4000 5000 6000 7000
Dataset Size

Table 7-1 FDC-basic vs. ISODEPTH in Figure 7-1 Compare FDC-basic and ISODEPTH
computing the first 21 depth contours of wrt dataset size
different datasets

Our studies reveal that the comparative advantage of FDC-basic over ISODEPTH

in computation time and performance with respect to the number of depth contours to be

computed is the greatest at the outset of the computation. This comparative advantage

diminishes as the number of depth contours increases. Table 7-2 shows the computation

time and relative performance of FDC-basic and ISODEPTH for the computation of 0- to

fc-depth contours of a 6500-point dataset, where 5 < k < 30.

As k increases, FDC-basic continues to enjoy a substantial advantage over

ISODEPTH, but the margin becomes closer. For example, in computing the first five

depth contours, FDC-basic is 750 times faster than ISODEPTH. However, in computing

thirty depth contours, FDC-basic is merely 79 times faster. This latter improvement in

computation time achieved by FDC-basic is still considered significant. The decrease in

78

comparative advantage is predicted in our analysis, for we know that when k gets larger,

the difference between n and t gets smaller. For example, in a 6500-point dataset, when k

= 6, t = 61 (that is 0.94% of n); but, when k = 30, t = 228 (that is 3.51% of n). This

observation matches our analysis.

k ISODEPTH
(sec)

FDC-basic
(sec)

ISODEPTH
FDC - basic

5 359.096 0.477 753.559

10 550.069 1.730 317.959

15 746.278 3.678 202.903

20 954.588 6.180 154.464

25 1175.748 10.769 109.179

30 1400.608 17.645 79.377

BOO

700

BOO

'8500

£ t o o

300

200

100

0

.V
\

\ '

\
. . . _ - . \ — \

\
" " "V

\ v,

:
• :

15 20
Depth

Table 7-2 FDC-basic vs. ISODEPTH in Figure 7-2 Compare FDC-basic and ISODEPTH
computing different numbers of depth wrt the depth
contours of 6500 data points

Figure 7-3 0- to 5-, 10-, 15-, 20-, 25-, and 30-Depth Contours of a 6500-point dataset

However, as mentioned earlier, the purpose of depth contour computation is to

find the outliers of a large dataset, and these outliers are often embedded in the shallower

depth contours, which are always computed first. A comparative advantage in computing

79

the shallow depth contours at the outset is, therefore, a significant improvement that

contributes toward the overall performance of the algorithm.

Performance: FDC-enhanced vs. FDC-basic

In Chapter 4, we show that FDC-enhanced excels FDC-basic when k is large enough so

that the reduction of the time from 0(kt3) to 0(kt) by using sorted lists exceeds the extra

time 0(t3 + kt2) required for their maintenance. Table 7-3 shows the computation time

and the relative performance of FDC-enhanced and FDC-basic in computing the first k+l

depth contours of a 100,000-point dataset. When k = 25, FDC-enhanced takes slightly

more time than FDC-basic; but as k approaches to 50, FDC-enhanced becomes 1.26 times

faster than FDC-basic. When k = 100, FDC-enhanced is almost 3 times faster. The

graph in Figure 7-4 shows the progressive improvement of FDC-enhanced over FDC-

basic as the computation of depth contours moves progressively inwards.

k FDC-basic
(sec)

FDC-enhanced
(sec)

FDC - basic
FDC - enhanced

25 3 5 . 1 1 9 42 .001 0 .84

5 0 184 .715 146 .423 1.26

7 5 6 7 7 . 5 1 8 3 4 7 . 3 6 7 1.95

100 1894 .533 7 2 0 . 2 2 2 2 .63

125 4 3 2 0 . 4 2 3 1 2 4 1 . 3 0 0 3 .48

150 8 5 9 2 . 2 9 9 1987 .325 4 . 3 2

3.5

J2 .5

* 2

1.5

1

0.5

>

/
.y...<

/
>

20 40 B0 80 100 120 140 160
D e p t h

Table 7-3 FDC-enhanced vs. FDC-basic in
computing different numbers of depth
contours of 100,000 data points

Figure 7-4 Compare FDC-enhanced and FDC-
basic wrt the depth

8 0

The above comparative study focuses on the value of k while keeping the size of

the dataset constant at 100,000 data points. To complete our study, we now consider the

computation time and performance of FDC-enhanced and FDC-basic with respect to

datasets of various sizes. We have conducted two computation runs - the first run

covering the first twenty-one depth contours, and the second run covering the first one

hundred and fifty-one depth contours. Both computation runs are based on the same

eight datasets shown in Table 7-4 below. The datasets differ in size starting from a

dataset containing 250 data points and culminating in a dataset containing 100,000 data

points. (The first dataset of 250 data point has only one hundred and eighteen depth

contours; therefore, as the only exception in this part of our study, the second

computation run for this particular dataset stops at the 117-depth contour instead of the

150-depth contour.) Our findings are reflected in Table 7-4. Column 4 of Table 7-4

records the performance of FDC-basic relative to that of FDC-enhanced for computing a

small number of depth contours; Column 7 of the same table records the relative

performance of the two algorithms in computing a larger number of depth contours.

n

0- to 20-Depth Contours 0- to 150-Depth Contours

n FDC-basic
(sec)

FDC-enhanced
(sec)

FDC - basic FDC-basic
(sec)

FDC-enhanced
(sec)

FDC - basic n FDC-basic
(sec)

FDC-enhanced
(sec) FDC - enhanced

FDC-basic
(sec)

FDC-enhanced
(sec) FDC - enhanced

250 2.674 2.497 1.07 198.013 44.414 4.46

500 3.149 3.034 1.04 983.820 157.831 6.23

750 3.712 3.617 1.03 1380.745 242.220 5.70

1000 3.931 3.780 1.04 1644.037 302.097 5.44

3000 5.385 6.072 0.89 2887.457 579.034 4.99

5000 5.513 6.117 0.90 3611.877 766.316 4.71

10000 7.423 9.456 0.79 4732.456 1017.312 4.65

100000 23.434 28.872 0.81 8592.299 1987.325 4.32

Table 7-4 FDC-basic vs. FDC-enhanced in computing the first 21 and the first 151 depth contours of
different datasets

81

Reading across the table, we find that all the results in Column 7 compare

favourably with those in Column 4. This confirms that, irrespective of the data size,

FDC-enhanced is the more powerful algorithm when k is large as Table 7-3 already

demonstrates. However, when k is small, the relative advantage of FDC-enhanced over

FDC-basic is less obvious, and even turns negative when dataset gets bigger as in the last

four cases Column 4 of Table 7-4.

Performance: F D C - M 1 . F D C - M 2 and F D C - M 3

FDC-M1, FDC-M2 and FDC-M3 are designed for situations in which the buffer space is

insufficient to accommodate the computation of the entire dataset. FDC-M1 repeats a

simple divide-and-conquer technique to reduce the original dataset to a final dataset

sufficiently small for the buffer to perform the final computation. FDC-M2 adopts also a

periodically adjusted controlling convex hull to exclude more unqualified data points

from the final dataset. FDC-M3 starts the final computation with a starter dataset that

contains only points of 0-depth, and expands the dataset by relatively small increments

before the next computation.

Our comparative studies show the total computation time5 and the relative

performance of FDC-M1, FDC-M2 and FDC-M3 in computing the first thirty-one depth

contours of six datasets of increasing sizes, using two buffer-space constraints, namely,

250 data points (Table 7-5) and 500 data points (Table 7-6). The second column (i) in

5 Total computation time, in seconds, includes the time to load the data points, to divide the data points into
smaller subsets, to compute the outer point sets and related intermediate steps, and to compute the final
depth contours.

82

each table records the number of data points outside the 30-depth contour of each dataset

in the first column (n), and constitutes the minimum buffer space requirement for all the

three methods at any particular level. It is important to note that the t values for the

bigger datasets are fairly close to the 250 buffer limit.

n t I DC-Ml
(sec)

FDC-M2
(sec)

FDC-M3
(sec)

FDC - M l
FDC - M2

F D C - M l
FDC - M3

FDC-M2
FDC-M3

500 157 21.743 18.981 16.489 1.15 1.32 1.15

750 174 36.927 25.229 22.007 1.46 1.68 1.15

1000 184 52.547 38.918 27.495 1.35 1.91 1.42

3000 214 251.433 91.760 53.976 2.74 4.66 1.70

5000 231 557.971 499.862 85.411 1.12 6.53 5.85

10000 241 2346.565 5045.281 197.922 0.47 11.86 25.49

Table 7-5 Total computation time and relative performance of FDC-M1, FDC-M2 and FDC-M3 in
computing the first 31 depth contours of different datasets with buffer size = 250

n t FDC-M1
(sec)

FDC-M2
(sec)

FDC-M3
(sec)

FDC - M l
FDC - M2

F D C - M l
FDC - M3

FDC-M2
FDC-M3

750 174 19.889 17.434 20.204 1.14 0.98 0.86

1000 184 23.817 20.925 24.436 1.14 0.97 0.86

3000 214 61.947 56.531 49.266 1.10 1.26 1.15

5000 231 104.125 87.218 77.346 1.19 1.35 1.13

10000 241 207.852 166.320 153.465 1.25 1.35 1.08

Table 7-6 Total computation time and relative performance of FDC-M1, FDC-M2 and FDC-M3 in
computing the first 31 depth contours of different datasets with buffer size = 500

The results of our experiments confirm three distinctive characteristics of our

solutions to the buffer-space problem. First, in general, both FTJC-M2 and FDC-M3

outperform FDC-M1, with FDC-M3 taking the lead. Second, FDC-M2 is the least

effective when the buffer size is close to t and very small when compared with n. Third,

FDC-M3 is decidedly the best solution for larger datasets under buffer-space constraints.

83

The better performance of FDC-M2 and FDC-M3 is predictable because we know

that FDC-M2 and FDC-M3 are more effective in reducing the number of data points than

FDC-M1. Fewer data points for processing means less buffer-space requirement and

shorter processing time.

When the dataset is large and the buffer space is severely constrained, FDC-M1

and FDC-M2 crunch more data points before the final computation because of the way

they go about screening the data points. The last two experiments recorded in Table 7-5

show that both FDC-M1 and FDC-M2 drop in performance when the buffer size is close

to t and very small when compared with n. We have looked into these two experiments

and observed that FDC-M1 and FDC-M2 repeat their respective intermediate steps a

great number of times. For example, in the case when n = 10,000 and t = 241, FDC-M1

carries out 53 division-and-elimination runs while FDC-M2 conducts a total of 334 runs

of batch merging. Repeating these intermediate steps to reduce the number of data points

has caused the two algorithms to slow down before the final computation begins.

Then, we compared the time taken by the division-and-elimination process and

the time taken to complete a single run of batch merging. We found that while a single

run of batch merging takes a shorter time, the total time required for the completion of

334 runs of batch merging has actually dragged down the performance of FDC-M2. We

further noticed that when 5 has accumulated 200 data points after the first four runs of

batch merging, FDC-M2 goes into an "equilibrium" stage. Thereafter, when S grows to

230 data points, FDC-M2 completes its eighth run of batch merging; when S grows to

240 data points, FDC-M2 completes the seventeenth run. In other words, FDC-M2 still

has to do more than 300 runs of batch merging, each updating fewer than 10 data points.

84

This is the reason why FDC-M2 proves to be the least efficient of the three algorithms

when the buffer size is close to t and very small when compared with n.

By contrast, the performance of FDC-M3 is the most stable among the three

algorithms. It is the one least affected by an increase in the size of the dataset. Indeed,

FDC-M3 performs best among the three when the dataset is very large - a scenario we

are most likely to encounter in outlier detection projects. In Table 7-5, the last two

records show that FDC-M3 is 11.86 times faster than FDC-M1, and 25.49 times faster

than FDC-M2 when n = 10000, t = 241 and the buffer limit is 250. In the corresponding

records in Table 7-6, when n = 10000, t = 241 and the buffer limit is 500, FDC-M3 excels

FDC-M1 by 1.35 times; and FDC-M2 by 1.08 times.

When the buffer space is increased from 250 to 500, all three algorithms work

faster. However, while the increase in efficiency experienced by FDC-M1 and FDC-M2

ranges from over 30% (when the dataset is small) to over 90% (when the dataset is large),

FDC-M3 maintains a steady improvement of under 25%. Indeed, FDC-M3 needs more

time than FDC-M1 and FDC-M2 when the dataset is small and the buffer size is relaxed

as in the first two experiments in Table 7-6, in which the buffer can accommodate 500

data points, and there are only 750 points and 1,000 points respectively in the given

datasets. The relaxation in buffer space enables FDC-M1 and FDC-M2 to cut down on

the repetition of their intermediate steps drastically, but FDC-M3 must still work through

its time-consuming intermediate step. This insistence writes off some of the gains in

efficiency by FDC-M3 in its final computation. However, as these three variants are

designed to work with large datasets under buffer-space constraints, FDC-M3 is still the

best solution.

85

Performance: FDC-3D

We admit that our 3-dimensional algorithm is still at a rudimentary stage of its

development. With the addition of one more dimension to the algorithm, the complexity

of FDC-3D becomes 0(n log n + t log 2 n + kt log t + ckt log c + ckt2 + kt4). Geometrical

computations are more costly in 3-dimensional situations. Thus, we expect a drop in the

performance of FDC-3D as the data set gets larger. Moreover, our FDC-3D is a

generalization of only the basic version of our Algorithm FDC. There is still room for

improvement and further studies. In this study, we just want to show that FDC can be

generalized to cover 3-dimensional situations.

Table 7-7 shows the computation time of FDC-3D in computing the first 21 and

the first 31 depth contours of eight datasets of various sizes ranging from 100 data points

to 10,000 data points each.

n £ = 20 (Time in Sec.) k = 30 (Time in Sec.)

100 64.425 162.442

250 293.530 970.763

500 713.617 2648.016

750 855.178 3506.481

1000 1283.118 5335.907

3000 3461.361 15534.112

5000 4379.839 19546.748

10000 6352.490 29352.494

Table 7-7 Computation time of FDC-3D in computing the first 21 and 31 depth contours of different
datasets.

86

Chapter Eight: CONCLUSION

In data mining, there are now three general methods for outlier detection: a statistical

approach, a distance-based approach, and a depth-based approach. Unfortunately, the

statistical approach works only with single-attribute databases, and requires apriori

knowledge of the distribution of the data; and the distance-based approach requires the

existence of a well-defined metric distance function. A depth-based approach is not

limited by either of these restrictions. By looking at the depths of data objects within a

dataset and constructing a depth contour to surround all the data objects of the same

depth, a depth-contour algorithm can indicate precisely where the outliers are within a

dataset. Different depth contours reveal data objects lying within different layers of the

dataset, each layer closer to the centre of the dataset being more robust with respect to the

outliers. Rousseeuw and Ruts' depth contour algorithm, ISODEPTH, is an important

pioneer in furthering this approach.

However, we find that ISODEPTH leaves something to be desired both in its

speed and its universal application. We have, therefore, designed a Fast Depth Contour

Algorithm - FDC. Aimed at efficiency and effectiveness, Algorithm FDC has two

distinguishing features: it need not process all n data points to compute the required depth

contours, and it relaxes all data positioning criteria. We have invented a basic version of

FDC (FDC-basic), and created an enhanced version (FDC-enhanced) as well as a 3-

dimensional version (FDC-3D). Moreover, we developed three other variants of our

Algorithm FDC-basic (FDC-M1, FDC-M2, and FDC-M3) to cover the eventuality of

87

insufficient computer buffer space. A l l three versions and all three variants of our

Algorithm FDC are presented in this thesis.

Algorithm FDC-basic is our original design to solve the problem posted by

ISODEPTH. We recognize that the outliers of a dataset comprise only a small percentage

of the dataset in the shallow depth contours, and that only a few depth contours are

needed to identify the outliers. The bulk of the dataset not contributing to the

computation of the required depth contours, FDC-basic selects only the boundary points

and the exterior points for computing the &-depth contour. By definition, the &-depth

contour separates the boundary points (data points of depth = k) and the exterior points

(data points of depth < k) from the interior points (data points of depth > k).

For the computation of each depth contour, we make FDC-basic divide the dataset

into two disjoint subsets: the outer point set T, and the inner point set D. T consists of the

data points outside the depth contour, and D contains the data points inside the depth

contour. We further make FDC-basic use only the data points in T and the data points in

the convex hull of D, which we call the inner convex hull CH, when computing the

current depth contour.

As the convex hull of the dataset is the 0-depth contour, the vertices of the convex

hull become the first Tfor computing the 1-depth contour. The inner convex hull CH is

the convex hull of the remaining data points. To compute the 1-depth contour, FDC-

basic finds all the 1-dividers of T. For every 1-divider found, FDC-basic checks if the

inside region of the 1-divider contains all the points in CH. If so, the 1-divider is not only

88

a 1-divider of T, but also a 1-divider of the dataset. If some points in CH are outside the

inside region, the inside region is expanded.

To expand the inside region of an e-divider <p, q>, FDC-basic finds all the data

points {ri, r,,} in CH that are outside the insider region. Then, among those data

points, it finds a point r, that maximizes the angle Z.rtpq and a point r7 that maximizes the

angle Z.rflp (where r, and ry can be the same). The expanded series is a chain of line

segments, where the first point of the first segment is p, the last point of the last segment

is q, and the segments in between are the edges of CH starting from point n to point ry.

The expanded inside region is the intersection of the inside regions of the segments that

are e-dividers.

After finding the (expanded) inside regions of all the 1-divider, FDC-basic

computes the intersection of these (expanded) inside regions and returns the boundary of

the intersection as the 1-depth contour.

If none of the inside regions are expanded, FDC-basic proceeds to compute the 2-

depth contour with the existing T and CH. But, if some inside regions are expanded,

FDC-basic updates T and CH. A l l the points in CH that are outside some inside regions

are removed from the inner point set D and added to T. Whenever D is changed, CH is

updated as well. After updating CH, FDC-basic proceeds to compute the next depth

contour.

Thus, we have an algorithm that computes the depth contours of a dataset

effectively, using only a subset of the dataset. The complexity of our Algorithm FDC-

2 3 2

basic is 0(n log n + t log n + kt + ckt + kt log 0, where n is the size of the dataset, t is

89

the maximum number of points in T, c is the maximum cardinality of CH, and k is the

number of desired depth contours. When n is large, FDC-basic significantly outperforms

ISODEPTH. When computing the first 21 depth contours of a 6500-point dataset, FDC-

basic is 150 times faster than ISODEPTH.

Despite this breakthrough by FDC-basic, we believe that our Algorithm FDC can

be developed further. We note that the 0(kt3) complexity of FDC-basic relates to the

finding of the initial e-dividers. To find an e-divider for point p, FDC-basic goes through

each point q in T and checks if <p, q> is an e-divider. Then, when FDC-basic needs to

find the e+1-divider, it goes through all the points in T again just because some points

have been freshly added, and repeats all the steps from scratch.

To avoid this repetition, we have created FDC-enhanced. We made FDC-

enhanced remember the e-values of all the dividers, and put them into sorted lists. If no

new points are added to T, we can now read the set of e+l -dividers from the sorted lists

directly. Even if some points have been added, FDC-enhanced simply updates the sorted

lists by providing new e-values to the affected dividers and_associates each data point in T

with a sorted list. The sorted list of a point p has at most k+l elements, where the z'th

element of the sorted list of p consists of all the points q in T, where <p, q> is an i-

divider. The initial e-dividers can now be read from the sorted lists in 0{ki) time.

However, FDC-enhanced also introduces two new procedures: the maintenance

and the creation of the sorted lists. When new data points are added to the outer point set,

FDC-enhanced has to maintain the existing sorted lists and create new sorted lists for the

new data points. The maintenance procedure involves the insertion of the new points into

90

the existing sorted lists and the re-arrangement of the points in the sorted lists so as to

maintain the correct position of all the elements. As the position of a data point p in the

sorted list for a new data point q is exactly the opposite of the position of q in the sorted

list for p, the creation of the new sorted lists is a by-product. The maintenance procedure

and the creation procedure together require 0(t3 + kt2) time.

Since FDC-basic requires 0(kt3) time to find the initial e-dividers and FDC-

enhanced requires a total of 0(t3 + kt2 + kt) time to find the initial e-dividers and to

maintain the sorted lists, the comparison of the two algorithms relies on how many depth

contours are requested. When only a few depth contours are requested, that is when k is

small, FDC-enhanced may not excel FDC-basic. However, when more depth contours

are requested, FDC-enhanced becomes more efficient than FDC-basic. For a 100,000-

point sample dataset, FDC-enhance takes slightly more time than FDC-basic to compute

the first 21 depth contours; but it takes only a quarter of the time required by FDC-basic

to compute the first 151 depth contours.

As both FDC-basic and FDC-enhanced are main-memory algorithms, we have

been wary of insufficient computer buffer space. What should we do if we want to

compute the first £+1 depth contours of a dataset of size n when the buffer space can

accommodate only m < n data points? To provide for such a case, we have come up with

three variants of FDC-basic.

FDC-M1 is the basic method that uses a simple divider-and-conquer technique. It

first divides the dataset into smaller subsets, then computes the k+lst outer point sets of

all the subsets, and finally computes the depth contours of the union of all the outer point

91

sets. After computing the outer point set, it discards those data points of depth > k in

each subset because a point of depth > k in a subset must have depth > k in the original

dataset; and, therefore, is not needed in the computation of the first k+1 depth contours.

FDC-M2 uses the batch-merging method. It is similar to FDC-M1, except that it

also organizes the data points in the outer point sets by their depth and performs an extra

filtering procedure in the batch-merging phase to reduce the number of data points to be

considered in the final computation. It picks a convenient subset and uses its k+lst outer

point set as the initial S (the dataset for the final computation) and its k+lst inner convex

hull as CCH (the controlling convex hull). The data points in the outer point sets of the

other subsets are categorized by their respective depths within the subsets, and added to 5

only if they are outside the controlling convex hull. We have developed this procedure

because we know that if a data point is inside the controlling convex hull, it will have

depth > k and will be too deep for use in finding the first k+l depth contour. If S already

reaches the buffer space limit before taking up all the qualified data points, FDC-M2 will

re-initiate S to the k+lst outer point set of S and CCH to the k+lst inner convex hull of S.

Once S contains all the qualified data points, FDC-M2 will proceed to compute the depth

contours of S.

Our FDC-M3 proceeds in a manner different from that of FDC-M1 or FDC-M2.

When it starts computing the outermost depth control, it uses but a minimal S derived

from a full merging of the 0-depth points in all the subsets. Then, as the computation of

depth contours proceeds inward, contour by contour, it reinitiates S by merging all the

next convex hulls of points freshly moved to the outer point set T and adding them to the

points that have not been touched. In this manner, FDC-M3 saves much buffer space by

92

minimizing the number of data points to be considered in each round of the final

computation. A l l versions of FDC share the standard procedure of computing the 0-

depth contour as the convex hull of S. However, before they begin the computation,

FDC-M1 and FDC-M2 fill 5 with all the necessary data points. Then, they simply move

the points on the 0-depth contour from S to the outer point set T, and set the inner convex

hull to the convex hull of the remaining points in S. Not having filled 5 in a like manner

when computing the 0-depth contour, FDC-M3 must add a further minimum number of

necessary data points to S before computing its inner convex hull and returning to the

other regular FDC-basic procedures. For the addition of further points, FDC-M3 makes

use of the fact that when a point is moved from S to T, its next convex hull is the set of

data points immediately behind it. Indeed, FDC-M3 has already associated a next convex

hull with each data point in the outer point set of each subset into which FDC-M3 divides

up the original dataset. Some of these next convex hulls are now referenced to one of the

points moved to T, and become eligible for addition to S. For each data point moved to T,

FDC-M3 adds its next convex hull to S if that next convex hull has not already been

included once. Avoidance of duplication is necessary because data points of the same

depth have the same next convex hull.

A l l three methods have achieved some savings of buffer space by reducing the

size of the original dataset before commencing the final computation. FDC-M1 is the

naive and slowest method among the three. FDC-M3 is slightly better than FDC-M2 in

general, and greatly outperforms FDC-M2 when the buffer size is severely constrained

and the dataset is large. Although FDC-M2 does a better job when the dataset is small

and the buffer space is less constrained because fewer repetitions of the intermediate step

93

are then necessary, as an algorithm to overcome buffer-space constraints, FDC-M3 is the

more versatile.

Finally, our product, FDC-3D, is a generalization of Algorithm FDC-basic to

accommodate 3-dimensional situations. For the present study, we have stopped the

generalization at the 3-dimensional level as computational geometry in even higher

dimensions is quite costly and the resultant depth contours may appear hard to visualize.

We have also noted that even at the 3-dimensional level, the complexity is already 0(n

log n + t log 2 n + kt log t + ckt log c + ckt2 + kt4). As a preliminary study, this complexity

may still be acceptable; but we intend to improve the performance of the FDC-3D

algorithm in the future by using sorted lists as we have done in FDC-enhanced.

A l l in all, our FDC algorithms have pointed out new directions for working at

depth-contour computation; and we wish to devote our future study to improving further

their efficiency and effectiveness. Therefore, besides the proposed enhancement in FDC-

3D, we have planned to add the following new features to our 2-dimentional FDC

algorithms.

At present, users of our FDC algorithms must supply the maximum desired depth

k in order to computes the first k+1 depth contours. In other words, for the purpose of

outlier detection, the users must first make a legitimate guess of the appropriate k. This

being a less familiar concept than the universally understood notation of percentages,

most users will find it easier to work with FDC if they need simply to specify a desired

percentage of data points to initiate the algorithm. Our next enhancement, therefore, is

94

to enable FDC to work on the generation of depth contours until the specified percentage

of data points are included in the depth contours.

Moreover, in the current FDC, the depth contours are computed one by one

consecutively. As the set of data points outside the /-depth contour does not usually

differ a great deal from that outside the i+ 1-depth contour, a strict adherence to one-by-

one consecutive computation may not always be necessary. We will work on an

enhancement aimed at allowing the users to specify the incremental value they consider

appropriate in the circumstances so that the depth contours will then jump instead of

stepping up.

Finally, in our study of FDC-M1, FDC-M2 and FDC-M3, we have adopted just

the simplest method in dividing up the original data set into subsets. However, other

division methods are also available. We believe that some of these other methods are

worth testing. Our future study in respect of FDC-M1, FDC-M2 and FDC-M3 will focus

on the search for the most efficient and effective means of dividing up the data points so

as to facilitate the intermediate steps and enhance the overall efficiency of the algorithms.

Our studies up to this point have produced six new algorithms for computing

depth contours. A l l six algorithms - FDC-basic, FDC-enhanced, FDC-M1, FDC-M2,

FDC-M3 and FDC-3D - have been implemented with sample data that we believe to be

unbiased. The results of our lab-tests are reported and commented on in this thesis. In

general, they have demonstrated new methods of improving the way in which we tackle

the problem of finding extraordinary information in large databases. As our information

age progresses into the twenty-first century, people will see more and more uses of

95

databases in all aspects of their activities. Although data management techniques have

improved in leaps and bounds following the rapid development of hardware and software,

databases are increasing and expanding at such alarming rates at all levels that data-

mining techniques can hardly catch up. Such phenomena point directly to a

corresponding increase in the importance of studies concerning outliers and their

discovery. It is our fervent hope that the modest improvement achieved by our Algorithm

FDC in the speed of computing depth contours will help propagate more uses of

databases in the next millennium, and kindle a greater interest in academic studies in this

specialized area.

96

BIBLIOGRAPHY

1. J. Han, Y . Cai, and N . Cercone. Knowledge Discovery in Databases: An Attribute-
Oriented Approach. In Proc. of the 18th VLDB Conference, pages 547-559,
Vancouver, British Columbia, Canada, 1992.

2. E. M . Knorr and R. T. Ng. Find Aggregate Proximity Relationships and
Commonalties in Spatial Data Mining. IEEE Transactions on Knowledge and Data
Engineering, 8(6): 884-897, 1996.

3. E. M . Knorr and R. T. Ng. Extraction of Spatial Proximity Patterns by Concept
Generalization. In Proc. of the 2nd KDD Conference (KDD-96), pages 347-350,
Portland, Oregon, USA, 1996.

4. R. Agrawal and A. Swami. Fast Algorithms for Mining Association Rules. In
Proc. of the 20th VLDB Conference, pages 487-499, Santiago, Chile, 1994.

5. R. Agrawal and R. Srikant. Mining Generalized Association Rules. In Proc. of the
21s' VLDB Conference, pages 407-419, Zurich, Switzerland, 1995.

6. J. Han and Y . Fu. Discovery of Multiple-Level Association Rules from Large
Databases. In Proc. of the 21s' VLDB Conference, pages 420-431, Zurich,
Switzerland, 1995.

7. R. Agrawal and R. Srikant. Mining Quantitative Association Rules in Large
Relational Tables. In Proc. of the 1996 ACM SIGMOD International Conference
on Management of Data, pages 1-12, Montreal, Quebec, Canada, 1996.

8. R. Agrawal and R. Srikant. Mining Sequential Patterns. In Proc. of the 11th

International Conference on Data Engineering, pages 3-14, Taipei, Taiwan, 1995.

9. H. Mannila, H . Toivonen, and A. I. Verkamo. Discovering Frequent Episodes in
Sequences. In Proc. of the Is' KDD Conference (KDD-95), pages 210-215,
Montreal, Quebec, Canada, 1995.

10. R. Agrawal, S. P. Ghosh, T. Imielinski, B. R. Iyer, and A. N . Swami. An Interval
Classifier for Database Mining Applications. In Proc. of the 18th VLDB
Conference, pages 560-573, Vancouver, British Columbia, Canada, 1992.

97

11. R. T. Ng and J. Han. Efficient and Effective Clustering Methods for Spatial Data
Mining. In Proc. of the 20th VLDB Conference, pages 144-155, Santiago, Chile,
1994.

12. M . Ester, H . -P. Kriegel, J. Sander, and X . Xu. A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise. In Proc. of the 2nd

KDD Conference (KDD-96), pages 226-231, Portland, Oregon, USA, 1996.

13. R. Agrawal, K.-I. Lin, H . S. Sawhney, and K. Shim. Fast Similarity Search in the
Presence of Noise, Scaling, and Translation in Time-Series Databases. In Proc. of
the 21s' VLDB Conference, pages 490-501, Zurich, Switzerland, 1995.

14. D. Angluin and P. Laird. Learning From Noisy Examples. Machine Learning,
2(4): 373-370, 1988.

15. E. M . Knorr. On Digital Money and Card Technologies. Technical Report 97-02,
University of British Columbia, 1997.

16. D.Hawkins. Identification of Outliers. Chapman and Hall, London, 1980.

17. V . Barnett and T. Lewis. Outliers in Statistical Data. John Wiley & Sons, 1994.

18. D. C. Hoaglin, F. Mosteller, J. W. Tukey. Understanding Robust and Exploratory
Data Analysis. Wiley, New York, 1983.

19. Arning, R. Agrawal, P. Raghavan. A Linear Method for Deviation Detection in
Large Databases. In Proc. of the 2nd KDD Conference (KDD-96), pages 164-169,
Portland, Oregon, USA, 1996.

20. E. M . Knorr and R. T. Ng. Algorithms for Mining Distance-Based Outliers in
Large Datasets. In Proc. of the 24th VLDB Conference, pages 392-403, New York
City, New York, USA, 1998.

21. F. P. Preparata and M . I. Shamos. Computation Geometry: an Introduction.
Springer-Verlag, New York, 1985.

22. J. W. Tukey. Mathematics and the Picture of Data. In Proc. International
Congress on Mathematics, pages 523-531, 1975.

23. J. W. Tukey. Exploratory Data Analysis. Addison-Wesley, Don Mills, Ontario,
1977.

98

24. P. J. Rousseeuw and I. Ruts. Computing Depth Contours of Bivariate Point Clouds.
Computational Statistics & Data Analysis, 23: 153-168, 1996.

25. T. Johnson, I. Kwok, and R. T. Ng. Fast Computation of 2-Dimensional Depth
Contours. In Proc. of the 4th KDD Conference (KDD-98), pages 224-228, New
York City, New York, USA, 1998

99

