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Abstract

This thesis presents the design of a bus interface for a computer controlled train
set. This design is useful for experiments in real-time control and embedded sys-
tems. The design was based on an experimental methodology based on modeling
both hardware and software with programs in a guarded command language. The
. successful completion of this design provides empirical support for this approach.
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Chapter 1

Introduction

Embedded systems can be found everywhere from airplanes to doorknobs. As em-
bedded systems have become more widespread and more complicated, interest in
systematic approaches to their design has grown as well. An embedded system dif-
fers from a general purpose computer by its specialization for a particular group
of tasks; often the system has to deal with interfacing and communication between
a wide variety of sensors (i.e. input devices) and actuators (i.e. output devices).
Design specification plays an important role in the design process.

Embedded systems are inherently concurrent. There are the sensors to be
monitored, the actuators for process control, and several software tasks may coordi-
nate all these activities. If we take as an example the automatic control of trains on
the same track system, several trains move on the track at the same time; position
sensors need to be monitored, each train has its own set of geographic objectives
and time schedule. This raises a coordination problem: avoiding collisions and ful-
filling the schedule requirements. Our model train set — a research project in the
Integrated System Design lab, see section 1.1 — includes several pieces of hardware,
each with its own notion of time: the host computer, the ISA bus, the train bus,
the switch controllers, the sensor interfaces, the signaling protocol on the track by
which commands are sent to the speed controllers in each train. These all operate
concurrently.

Concurrency may introduce non-determinism. Most hardware description
languages (HDLs) generally have deterministic semantics to appeal to designer in-
tuition and to simplify synthesis. Multiple notions of time, multiple clock-rates, and
non-determinism are hard or impossible to represent in such commonly used frame-
works. Although many HDLs prevent the designer from expressing non-determinism

in their models, this does not ensure that reality will cooperate: events may occur
in the implementation in orders that were not considered by the HDL model. Such




incomplete modeling can lead to errors in the final design.

This thesis uses a concurrent programming language, Synchronized Transi-
tions (ST), for design specification. An introductory description of the language is
given in chapter 4. It consists of a set of state variables and transitions; transitions
can be combined either synchronously or asynchronously. Considering the train set
example, we have components that operate synchronously but at different speeds
so there may not be a synchronous way to describe their interaction; also the soft-
ware that controls the whole application can issue commands at its own pace, which
should not have to be predictable. Here, the concurrency and non-determinism
inherent in the ST language provide a natural way to model the design.

ST was originally proposed by Ravn and Staunstrup [14] and has been used
extensively for design and verification of both synchronous and asynchronous cir-
cuits. Much of this work has been done by students at the Danish Technical Univer-
sity in Lyngby. The ST compiler used allowed either synchronous or asynchronous
descriptions, but not both; mixing the two kinds of operators was not allowed. The
ST version used in this thesis removes this limitation.

The mixing of combinators in UBC ST provides a natural way to express
concurrency and non-determinism encountered in co-design. The utility of this ap-
proach is demonstrated by using it to design a bus interface for a computer controlled
train sét. A more detailed description of the necessity and usefulness of mixing com-
binators is given in chapter 4; chapter 5 shows in what way this feature affects the
translation from ST to VHDL.

1.1 Train set project

Chapter 3 presents the train set. The train set is a test bed for embedded system
design in the Integrated System Design lab in the Computer Science department at
the University of British Columbia. It consists of a model train set (with tracks,
engines and cars) connected to a computer via a parallel bus. The test bed is used
for studying and illustrating safe implementations (e.g. running the trains without
accidents) in an integrated software/hardware system.

The project was started in 1992 by two former graduate students, and al-
though it has been operational, several factors have determined the decision for
important design changes. These are explained in detail in chapter 3. The main
concern are electrical problems (transmission line effects) and design modularity;

also the possibility to use the project for design verification studies.




1.2 Summary of thesis contributions

The research undertaken for this thesis included the design, implementation, and
test of a useful interface for real-time control and embedded system research. The
design is more modular than the previous design and it allows a standard computing
platform to be used for the controller. The thesis offers a documented design for
future verification projects.

Furthermore, this thesis proposes a methodology for hardware/software co-
design. The train bus controller represents a component of interest from a co-design
point of view: an interface between two buses with two different clocking method-
ologies. This design process was an experiment to validate the design methodology.
The ST language provided the framework for co-simulation. The ST design model
was used — with manual translations — for board layout and component program-
ming. Currently, we do not have automatic synthesis and layout tools based on ST.
Instead, the detailed ST description was translated to VHDL. Although this is not
an efficient design approach, it allowed a comparison of ST with VHDL.

Chapter 6 gives an evaluation of the chosen methodology and test results. It

summarizes the accomplishment of this thesis and suggests further work.




Chapter 2

Co-Design

2.1 What Is Co-Design ?

Co-design refers to a common framework for designing the hardware and software
architectures for an embedded system. “Embedded system” is a definition for a very
wide range of digital systems used mostly in dedicated applications, containing ana-
log circuitry and often mechanical parts as well. Co-design has become a strategic
technology for systems as simple as household items like thermostats or answering
machines, as well as for complicated medical instrumentation, automobile control
systems, or “fly by wire” aircrafts.

While the design of general purpose computers aims at a solution which
minimizes cost while maximizing speed, storage capacity etc. for a broad range of
applications, embedded systems are very application specialized. The application
domain also dictates the co-design methodology for a particular embedded system.
Apart from cost constraints, these systems also often have power, weight, and phys-
ical size limits (Wolf [21]); embedded systems usually have to meet hard real-time
deadlines.

For general purpose computers, requirements are relatively well defined: the
instruction set determines the correct behaviour of the processor, and performance
targets for benchmarks give high-level timing properties. For embedded systems,
specifications must describe the interaction of the system with its environment,
and producing a correct and complete specification can be much more challenging.
For example, consider the design of an ignition and fuel-injection controller for an
engine. The designer’s intention may be in terms of performance and efficiency of
the engine with its controller. Thus, a specification for the controller must include
a detailed model of the engine. Such a model may not be available at early stages

in the design.




Adding to the difficulty of the co-design problem is also the fact that in
embedded systems, as the name says, the computing part is embedded, therefore
hard to access for debugging. Traditional break-point debugging is often infeasible
for embedded designs. Again, consider the example of the engine controller: the
embedded system operates in a real-time environment. The only way to test the
controller is when it is connected to an engine. If the software stops at a breakpoint,
the engine will stop running.

Given the specification of a system which may include hardware, software,
analog and mechanical components, co-design represents the process of going from
the specification level to the implementation level. A typical co-design flow is hard
to give since co-design tools differ in how they delimit the design steps, but a generic
co-design methodology would include some key phases such as (see Gajski et al. [5]):

e Specification: stating system requirements and building a model of the de-
sign from these. If we take the engine control example, design specification
includes [9]: (a) identifying the tasks of the system — in this case providing the
correct amount of fuel and firing spark plugs at the right time, (b) identifying
the inputs to the controller, such as signals from the crank position sensor or
the manifold pressure sensor, (c¢) usually making abstraction of details, de-
ciding how the system is going to fulfill its tasks. This includes dealing with
deadlines, with obstacles to correct functioning — such as noise —, with power
constraints, safety requirements, etc. In other words, design specification gives
a description of the design as the outside world expects it to behave.

e Allocation & Partitioning: In general, a specification should describe what
the system is supposed to to, and an implementation describes how it does it.
However, most work on specification for co-design has been done by the CAD
community with agoal of automatic design synthesis from the specification. To
make this goal practical, specifications for co-design tend to include top-level
design decisions. For example, a specification may be in terms of a collection of
communicating processes [15] or as a “control data flow graph” [11]. Each pro-
cess can be implemented in either hardware or software, and the specification
describes the data and control interactions between these processes.

Allocation is the process of choosing the type and number of components
for implementation. partitioning defines the mapping of functions and/or
processes from the specification onto the allocated components. Most often
allocation and partitioning constitute one step only since if the partitioning

is not satisfactory, a different allocation may be tried. Much work has been
done towards CAD tools for this step of co-design [7, 12, 11]. There is usually




no single optimal solution to this allocation & partitioning problem; there are
trade-offs that need to be balanced. For example, one might want to put
all the functions into a general system processor to minimize cost. However,
such a processor may not be fast enough to handle everything. For the engine
controller, there may be one processor that computes the injector setting and
spark timing. A second processor may handle the real-time interface with the
engine. A dedicated DSP may process some of the data that is sampled to
assess the engine’s operation. An ASIC may provide communication between
these processors.

Scheduling: The operation of the embedded system is partitioned to tasks,
and tasks have been assigned to various kinds of CPUs, ASICs, etc. The
same hardware component may handle several tasks. This is why scheduling
is needed. Taking the engine controller example, there are operations that
need to be done for every rotation of the crankshaft: actuating fuel injectors
and firing spark plugs. These have real-time constraints. There are operations
that can be done on a longer time scale, but still must be fast compared to
human response time: computing the amount of fuel to be injected, setting
the throttle valve in the intake manifold. There are computations that can
be done on an even longer time scale: changing mode of operation based on
engine temperature, air temperature, oxygen content in exhaust, etc. These
processes need to be scheduled so that all deadlines are met.

There are many approaches to solve this NP-hard problem. One that takes into
account non-determinism (the impossibility to predict task execution times) is
the work of Gerber et al. [6]: an offline component checks if there is a possible
scheduling to meet all constraints and then produces a calendar that has lower
and upper bound functions for the start times of the tasks rather than absolute
numeric conditions. The online component then fills in the numeric values of
the parameters inside the functions as they become known (the parameters in
the bound functions of one task are start and execution times of other tasks).
Other approaches, as reviewed by R.Camposano et al. in [4], are

— ASAP/ALAP (as soon as possible/as late as possible) scheduling;

— List scheduling — the difference between the ASAP and ALAP times are
computed for all the tasks; this denotes the mobility of a task. The task
with the least mobility has the highest priority. Other criteria for priority
can also be used.

— Force-directed — also starts from computing the ASAP/ALAP difference,
then the algorithm builds a model of “operation density” using the prob-




abilities of operations to fall into certain execution steps. From here
there may be different variations of summing up these probabilities and
deciding on the actual scheduling.

— Path-based - each of the possible execution paths is scheduled, then the
path schedules are merged to form a single state transition graph.

— heuristic approaches: “percolation” scheduling, and scheduling by sim-
ulated annealing or simulated evolution. These are based on an initial
(trivial or random) schedule from which better solutions are iteratively
generated using heuristics.

e Communication Synthesis: components need to communicate with each other.
This communication can be implemented using shared memory, buses, special
serial links, etc. In the case of our train set, communication happens through a
special network - a bus with an established protocol. For the engine controller
it is signal lines, that is serial ports, that connect the controller to sensors and
actuators.

Analysis and validation is necessary after every step. In our case, the bus
controller fits into the context of a bigger co-design research project, the train set
described in the next chapter. The enumerated design steps apply mostly only to the
train set as a whole. For the controller, the choices for allocation and partitioning
were quite straightforward, as described in chapter 5.

2.2 Current Issues in Co-Design

A good reference for the reader regarding current issues in co-design is an IEEE
roundtable [16] where seven designers were invited to express their views on the
definitions, characteristics and shortcomings of co-design. This roundtable actually
shows how vaguely defined the term co-design still is. For instance, Paulin sees
co-design as all-hardware, programmable or not, while Harr says designers start
from the premise that everything should be done in software and only the necessary
hardware should be included.

Nagasamy points out that the “co” in co-design should stand for “concurrent
and cooperative design”, and that the real challenge lies in designing the software
along with the hardware. Agnew embraces this viewpoint too. Having different
teams working independently on hardware and on software is not really co-design.
Ernst prefers calling it computer-aided co-design because it is the CAD support that

unifies hardware and software development, but he further states that no decent
tools exist that go all the way down from specification to Register Transfer Level




(RTL) code, which is due the variety of target architectures. Wolf [20] also points
out pressing needs for CAD tools in several design phases such as co-simulation,
restructuring and partitioning of processes, system- and program-level evaluation.

In Paulin’s opinion [16], the main issue in co-design is compilers for the
diversity of processor architectures and the real-time constraints typical to embedded
systems. But Nagasamy sees a single pressing issue, which is the capture of the
design engineer’s specification. Paulin and Harr agree this time that the design
process in most cases starts from an incomplete specification; such specifications are
assumed complete and accurate before design starts, in other words, this high-level
description is usually not “debugged”. An impressive percentage of the roundtable
article is taken by arguments for the need for good specifications. Yasuura comes
right out and says academics should focus on a new specification model.

2.3 Models and Specification Languages for Co-design

As Staunstrup states in [19], the aim of high-level design techniques is to reduce
design time and effort by moving decisions upwards in the abstraction level of the
design models. As designs become larger, the details are too many to be all grasped
by one designer. Models are necessary for design overview. As electronic designs
become more complex they push the abstraction levels of models upwards, making
it common today to describe hardware circuitry in a similar way to the abstraction
found in software.

In other words, designing hardware and software is not that much different
anymore. The delimitations of hardware and software components within an appli-
cation become less evident, and the designer needs to be able to model his design in
a manner general enough to cover both hardware and software, without any com-
mitment from the start as to what should be implemented in hardware and what in
software. But most existing modeling tools and languages today start from either
pure hardware description (for example Gupta and DeMicheli’s approach [7]), pure
software description (for example COSYMA [12]), or mixtures of both but clearly
delimited by using a different language for each (like CoWare [15] and Ptolemy [8)).

Vulcan [7] is a hardware-software cosynthesis system which performs au-
tomated partitioning on an internal graph representation; initially, the design is
specified in HardwareC, a subset of C. Vulcan starts from assuming an all-hardware
design and then performs repeated iterations of trying to move parts of the design
to software; the criteria are: (a) whether time constraints are still satisfied and (b)
minimizing communication overheads. Vulcan can handle parallel processes: hard-
ware and software components may run in parallel [11]. The method targets systems

“




consisting of ASICs and a CPU to reduce ASIC size.

COSYMA [12] is quite similar to Vulcan, except it starts from an all-software
assumption of a design specified in C*. C* is a superset of C with added features
to allow for timing constraints, task concepts and task communication. COSYMA
targets systems consisting of one CPU and one ASIC for processor speed-up. As
mentioned, it is a “software-oriented” approach; hardware is added only where nec-
essary because timing constraints are violated by the all-software solution. It is
an automated software-oriented partitioning tool with hardware extraction when
needed.

LYCOS [11] is another automated partitioning tool. It also starts from trans-
lating specifications to an internal graph representation, but it aims at not to limit
the designers in using the specification language they prefer; it currently supports
C and VHDL but the research group is working towards including other specifica-
tion languages among the accepted ones — including Synchronized Transitions. The
way it works is that based on the internal representation graph, LYCOS generates
“Basic Building Blocks” which later can be moved between hardware and software.
The partitioning algorithm — PACE - is based on elaborate methods for estimating
software execution time, hardware execution time and hardware area size.

CoWare [15] is a hardware-software co-design environment which aims at
integrating hardware and software components that were specified, implemented,
simulated in different languages and with different tools. A similar approach is
found in Ptolemy [8]; partitioning and mapping is done at the very beginning of the
design process. CoWare uses notions such as processes, ports, channels, protocols,
communication mechanisms — Ptolemy has blocks with portholes — the idea is that
after hardware and software components are produced by different tools, they need
to be interfaced correctly to result in the final system. These approaches do not
solve the problem of the separate design of hardware and software for an embedded
system, from the root of the problem, but aim at helping the designer “glue” the
components together in a correct and reliable way at the end.

The computational model of a design is a “delicate balance between abstract
and concrete” (Staunstrup [19]): if it is too concrete, the designer is constrained by
low-level decisions in early phases; if it is too abstract, it may become difficult at
later stages to make an efficient realization. However, it should be abstract enough

to describe computations in a range of technologies.




2.4 System Modeling and Co-simulation

As mentioned above in section 2.1, the process of going through various levels of
abstraction of the design model requires simulation after the model for each level
has been established, to make sure the model still respects the initial system require-
ments. If design is actually co-design of hardware and software, then simulation has
to become co-simulation of hardware and software, since we want to simulate the
system as a whole and not just isolated components.

From the examples given in the previous section, we can conclude that
system-level specifications can be viewed as homogeneous — when a single language
is used, like in [7], [12] - or heterogeneous, where different languages are used for
hardware parts and software parts ( [11], [8], [15]). This thesis uses and em-
phasizes the benefits for the former, using ST as the single language for modeling
the design. A most common example for heterogeneous specifications on the other
hand is the mixed C-VHDL model. Heterogeneous specification approaches make
co-simulation more complex and difficult since they have to deal with interfacing,
translating protocols, etc.

2.5 Summary

Co-design is a relatively new field of computer science, and one in which designer’s
efforts to cope with the difficulties of the moment have had to be “quick fixes” for
the simple reason that industry and market did not have time to wait for “elegant”
solutions. Although much work has been done by academia to address the most
pressing needs in industry, some issues, as mentioned in section 2.2, are still not at
all addressed, or in our opinion not satisfactorily solved. Some of these issues, which
the present thesis addresses, are:

e high-level specification with possibilities for automatic verification;
e modeling concurrency and non-determinism inherent to embedded systems;

e providing a single specification language for both hardware and software -
modeling the design as a whole rather than splitting it into hardware and
software from the start.

10




3.1

Chapter 3

Bus Interface Specification

The train set

As mentioned in chapter 1, the train set is a model train set built and used in our

lab for real-time application experiments.

3.1.1 Acknowledgments and brief history of the project

Since the train bus project was started several years ago and many students (and 2

faculty members) contributed to its design, I will give a brief history of the work:

1992: First train-set built. The idea to do a train set was Dr.Carl Seger’s based
on a similar set-up at the University of Waterloo. The hardware was designed
and built by Andy Martin and Eric Borm. Mike Donat and Nancy Day wrote
demonstration software (to move trains randomly without collisions).

1993: Train-set considered in class project in CpSc 513. A bus-based design
was chosen. The existing buses were evaluated and we chose our own design
for reasons of scalability and potential for verification (see section 3.4.4). The

original train-bus protocol was worked out in a project involving Catherine
Leung and Dwight Makaroff.

1994: David Weih wrote an ST model for the ISA to train-bus interface.

1995: Mohammad Darwish designed hardware for the bus interface based on
David’s code.

1996: Dr.Mark Greenstreet recognized the ground shift problem. His solution
to this (see section 3.4.3) involved changing the protocol from two-phase to
four-phase; also adding series resistors to drivers for signals other than the

11




clocks; using complementary signaling for clocks to improve robustness. It
appears that complementary signaling is not needed for other signals; doing
so would result in an unwieldy number of wires in the bus.

e 1996: I took over the project.

3.1.2 Description of train set components

Figure 3.1 is a diagram of the train track system; it shows tracks, switches (marked
with an “S”) and position sensors (small circles). The train set has been working
with three trains in the past; they are shown in the starting position.

There are about 18 meters of track, 13 track switches and 60 position sensors.
The sensors are photo-darlington transistors that detect the shadow of a train as it
passes over the sensor. The train engines include decoder chips like the ones used
in infrared (IR) controllers for TVs, VCRs etc. Commands are sent to the trains by
pulsing the power supply that drives the track. Each such command has 9 bits: 5
bits specify a train, and 4 specify the speed. Each train has 8 forward and 8 reverse
speeds. There are 32 train addresses, but not enough room on the track for that
many trains. Typically, the train set has been operated with three trains.

The figure-8 type of track layout requires a polarity reverser. Trains may start
in the same direction and end up facing each other. This means that if initially both
had all the right wheels touching the positive rail and all the left wheels touching
the negative rail, eventually one of them will have all the right wheels negative;
that train went across a pola}‘ity reverser. Polarity reversal means there must be
electrical breaks in the rails. Furthermore, the engines draw current from all of their
wheels, which means that all of the wheels on one side of the engine are connected in
parallel. The polarity reverser is a segment of track that is electrically isolated from
the segments before and after it. As a train approaches this segment, the segment
is connected to the power supply in the same polarity as the segment that the train
is currently on. This allows the train to safely cross onto the reverser. When the
train is fully on the reverser, the polarity of the reverser is flipped. This allows the
train to safely continue on to the next segment. The trains have bridge rectifiers in
them so they can accept power of either polarity without changing direction. The
direction control is independent of the polarity of the tracks. The power is DC (a
reverser would still needed if AC power were used).

The difference between the existing and the proposed train set is in the
implementation of the controller. The existing train-set was implemented by two
former graduate students in 1992, as described in section 3.2. The necessity for a
more modular design which could better serve design and verification experiments

12




Figure 3.1: The track topology
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became evident later. A key piece of the new design is a bus interface, which is the
focus of this thesis.

3.2 The existing design

(rain tracks

=i
/]

SUN workstation

interface
cireuitry

Figure 3.2: The old architecture

Figure 3.2 shows the existing train controller architecture. Programs are
written and cross-compiled on the SUN workstation. Executables are then down-
loaded over a serial link to the single board computer (SBC). A MOTOROLA 68010
based controller was used because UNIX doesn’t provide real-time guarantees; the
simpler computer can respond to real time events. The 68010 SBC communicates
with the interface hardware using its parallel port. This involves using undocu-
mented features of the parallel port to allow data to be read from the port.

The interface hardware consists of 31 TTL chips in addition to some discrete
components for the speed controller and to read the photo transistors. There is
a rats nest of wires under the track layout table, to connect to the switches and
sensors in the track. The design is monolithic and incompletely documented, which
makes any hardware modification difficult and unreliable.

3.3 The proposed design

To support more experimentation, we wanted a more modular design. An
adequately documented design is also a prerequisite for verification. The key change
is to make the control and sensor hardware distributed. This will allow individual
pieces to be replaced for design experiments.
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Figure 3.3: The proposed architecture

Figure 3.3 presents the proposed architecture for the train set control. The
software will run on a PC as the host computer; the train-bus controller will be
a PC-board. We chose a PC-based controller because PCs are readily available,
cheap, and provide a popular software development environment. This also means
we can further expand the design in the future — we can add other interfaces, such
as network cards to communicate with other computers during experiments. The
use of DOS makes it possible for an application to override all operating system
functionality, thus making real-time applications possible.

The separate modules for each control and sensor function allow the design
to be modified one piece at a time; they provide an alternative to the monolithic
rats nest of wires of the current design.

3.4 The train-bus

The decentralization of the design requires an organized means of communi-
cation between the modules. This is the train-bus, which provides a simple interface
to sensor and actuator modules. The simple design should help teaching and verifi-
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cation research.

3.4.1 High-level design choices

A parallel bus was chosen for teaching and verification purposes. Also, a protocol
for the bus had to be established: it should be synchronous, master-slave. This
should make it easier to teach to CS grad students with little hardware experience.
Bus operations are simple. There is a clear mapping of wires to functions (unlike
a serial bus where the same wire carries several different logical signals at different
times). We hope that this will make formal verification easier as well.

From a mechanical point of view, the decision was for ribbon cable. Devices
can be connected via crimp connectors. The bus goes under most of the track so that
sensor and switch modules can be close to the devices that they sense or control. We
expect to use between 5 and 15 meters of ribbon cable. This makes it impractical
to ensure tight control of electrical properties.

3.4.2 Logical details

The wires of the train-bus are split into logical groups as follows:
e 8 wires for data
e 8 wires for address
e 4 wires for command

The justification for choosing these numbers is as follows: for address, 4 bits pre-
sented a risk for running out of device addresses if the design was successful. 8 bits
offer 256 distinct addresses, which seems large enough to be a safe choice (since slave
devices may be controllers that can handle several sensors/actuators). For data, an
8 bit bus is small enough to keep the bus from having too many wires and seems
adequate for typical control applications. The 4 bits for command offer 16 possible
commands, which means again flexibility for future extensions.

3.4.3 Electrical details

This section presents some issues that need to be considered when implementing a
long bus with many devices. The devices draw no DC power. The bus operates
at a relative low clock frequency, giving the signals time to settle to valid digital
values. However the low frequency does not mean we can completely ignore high-
frequency effects. Ringing, spurious triggering, etc. are all possibilities because the
logic devices can drive their outputs with small rise and fall-times, the ribbon cable
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can transmit relatively high-frequency signals, and the logic devices can respond on
short time-scales. We have to make sure that this sensitivity to short-time scale
behaviour doesn’t cause the system to malfunction.

Our concern is about reflections and about power voltage shifts that may
occur for imbalanced changes of the signals. According to Kirchhoff’s current law,
the current through the ground circuit must equal the current through the signal
wires. The signal wires each have their own impedance so it will take a certain time
for the data/address lines to become low, during which the ground voltage level is
shifted upwards. As a worst case example, let’s see what happens if 8 address and 4
command wires happen to change in the same direction at the same time (later in
this section, figure 3.5 and the related explanation show why we are considering this
example). We get the voltage divider effect shown in figure 3.4, where V1/V2 = 2/3
and V1 4 V2 = 5, which means that the signal lines will go to 2V (instead of 5V)
and the 8 ground lines will go to -3V.

Z
signal lines
:[:la. z &

1 : t

z
+ Vi
()
" Z
‘I] z ground lines
|

Figure 3.4: Voltage shifts at imbalanced changes of signal lines

The signal lines of the train bus are very long and have to be analyzed as
transmission lines. Reflection along the cable lines causes the power lines to bounce
back and forth after such shifts, and since ground is the reference voltage, the circuit
behaves as if the signal lines would bounce. Even if power shifts would not be a
problem, reflection means that every time we have a transitions at the driving end
of a line, this voltage change will travel along the cable and get reflected at the other
end, which results in ringing on the signal lines.

We apply a strategy to deal with this problem:
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e We use series resistors to limit drive current for address, data, and command.
The impedance of the ribbon cable was measured (about 70 ohms). Using
680 ohm series resistors gives a total drive impedance of 680/12 = 56 ohms
(for the worst case considered, of 12 wires switching simultaneously). Ground
impedance is 70/8 = 9 ohms. Thus, we expect a worst-case ground shift of
about 1 volt.

e We use differential clocking, so clock signals should have minimal contribution
to ground shift. Also, with the 4-phase protocol, address and command lines
are changing at different times from data lines (less wires that may change
level at the same time). A timing diagram of the new protocol is shown in
figure 3.5. The actions corresponding to the 4 marked clock edges are as

CLK]
CLK2
Figure 3.5: A 4-phased Train-Bus Protocol
follows:

1. controller sends address and command;

2. device reads address and command;

— 3. controller or device sends data (depending if it was a read or a write);

4. data received.

e We use Schmitt-triggers and C-element clock debouncers, as in figure 3.6.
The Schmitt triggers annihilate slight variations on the signal lines, while the

Mueller-C element eliminates ringing. That is, one signal can oscillate until
the other one changes, without causing problems.

As a summary, we make the clock distribution robust and we only look at the
address, data, and command signals at times when they are guaranteed to have
settled.
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Figure 3.6: The train-bus clocks
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3.4.4 Comparison with other bus-schemes

e HP-IB: (Hewlett Packard Instrumentation Bus interface, or GP-IB or IEEE
488 standard) This bus standard has similar bandwidth (also 8 bit parallel
data). It allows a limited number of devices to connect (15). Devices present
a DC load, which limits scalability.

e [IC: This is a serial, twisted pair interface standard for embedded controllers.
It would require less wiring and we could use micro-controller chips that have
the interface hardware built-in. In that case however, all the design details
would be buried in those microcontrollers. We believe that it would be difficult
to write a satisfactory formal model for such a controller. This would be a
barrier to our verification efforts. Also, hiding all of the hardware would make
the design be of less pedagogical value

3.5 The ISA to train-bus interface

As mentioned in section 3.3, the proposed design uses a controller between the host
PC and the train bus; the controller is the interface between the ISA-bus and the
train-bus.

The design of this interface is the subject of this thesis: the interface is
needed before other modules can be built and tested. Also, interfacing between two
different bus protocols with two different sets of timing requirements provides an
interesting design example.

The ISA bus

We used the PC’s Industry Standard Architecture (ISA) bus because it’s simple
and we do not need the higher performance of other PC buses. Following is a very
brief description of the ISA-bus, presenting only details relevant for our application.
More information can be found in [17].

A standard ISA 8-bit I/O cycle is given in figure 3.7.

The meanings of the signal names are:

o BCLK - bus clock: the ISA clock;

e AEN - address enable. This line is driven by the platform circuitry as an
indication to ISA resources not to respond to the address and 1I/O command
lines when the DMA controller is the bus owner.
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Figure 3.7: Standard ISA cycle

e BALE - bus address latch enable. This signal is driven by the platform CPU
to indicate when the address lines are valid. This signal is used to latch the
address lines.

e SA(0-9) - the address lines.
e IOW - I/0 write: indicates a write cycle to an input/output port;
e IOR - [/O read: similar as above;

The cycle starts with a rising edge of BALE. On the falling edge of BALE, the
address is guaranteed to be valid (on lines SA0-9). On the rising edge of BCLK3
we are guaranteed to have the correct value for the command lines. There are two
separate lines for read and for write: IOR and IOW, both active low. If neither is
driven low, this means the cycle is not an IOQ-access. If it is an 10-write cycle, the
data to be written is already valid at the falling edge of IOW. If it is an [O-read
cycle, the data must be valid on the fifth rising edge of BCLK after IOW goes low
(BCLK7 in the figure).

The ISA-bus supports many other operations. For example, there are “early
read” and “early write” operations that can be performed if the device asserts the
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appropriate signals. Alternatively, the device can signal that it is not ready and the
bus stalls until the device indicates that it is ready. We use the default timings for

simplicity. There are also 16-bit transfer cycles for both IO and memory operations,

but we do not need to use these.

Read and write transactions on the train-bus

A timing diagram for the 4-phase clocking was shown in figure 3.5. The train-bus
protocol operates on a master-slave basis; the controller is always the master of the
train bus, while the devices connected to it are the slaves. Regardless of the direction
of the transfer, it is always the master who initiates it. The least significant bit of
the command specifies whether it is a command of type write or read, so there are
8 write commands and 8 read commands possible. The signal diagram for a write
command on the train-bus is shown in figure 3.8 (a write to a device connected
to the train-bus). On the rising edge of tbclk; (clock-event #1), the master (the
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Figure 3.8: A write to a device on the train-bus

bus controller) sends the address of the device the command is intended for, and
the actual command. On the following clock event (#2), the rising edge of tbclks,
the devices decode the address and command lines. On the falling edge of tbelk,
(clock-event #3) the master drives the data lines with the information intended for
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the addressed device, and on the falling edge of tbelks (clock-event #4) the device
that decoded its own address on event #2 will read the data.

A read is quite similar except the direction of the data transfer is reversed
so on clock-event #3 the slave device (instead of the master) is the one who drives
the data lines with the requested data, and it is the master who reads the data lines
on clock-event #4.

The top-level controller design

We can model the design as a Finite State Machine (FSM) for the ISA bus on one
end, another FSM for the train-bus at the other end, and FIFOs in-between for
communication.

The application running on the PC, i.e., performing write and read trans-
actions on the ISA-bus, will see the controller as a collection of registers. We need
one for Data, Address and Command each, and then we also need one for Status
because we need to know when the controller is ready to accept a new command;
and since the train-bus operates at a much lower frequency than the ISA-bus, this
means we must have a way to inform the application when there is requested data
available to read. So our Status register has two bits of information, Cf0 (Command
FIFO stage 0 is full) and Rfl (Result IFIFO stage 1 is full). The application must
also be able to reset the controller; this is done by performing a write to the Status
register. Every program running on the host computer for the train-set control will
need to start by doing a write to this register. Note that the Status register may be
both read and written, as well as the Data register; but the Address and Command
registers may only be written.

Before sending a command, the program has to check whether the controller
is ready for a new command, so it needs to read the Status register until the Cf0 bit
indicates the FIFO has room in its bottom stage for a new command. The controller
guarantees that only the application can set this bit, so once it was read as empty, it
will stay so until the application issues a new command, that is, performs a write to
the Command register. The application may write to the Address and Data registers
without changing the status of the controller; only a write to the Command register
changes that. A write to the Command register will cause the FIFOs to advance
even if there were not new values supplied to the Data and Address registers. This
means that if a new write command was issued for instance, the last values written
into those registers will be used for the new command.

As mentioned in the section above, the controller does not need to know
about the exact command, only about the transfer direction (read/write). A write
command does not need to be retired, but a read command does, because when
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issuing the command the application only asks for the data, and then it has to wait
until the device provides the requested data. To retire a command, the program
needs to read the Status register until the Rfl bit indicates that the result FIFO
has new data available; then it may perform a read from the Data register to get
the actual data value. As with Cf0, the controller guarantees that once Rfl became
high, it will stay so until the program performs a read from the Data register, which
is the only way to reset this bit. The controller also guarantees that the data read is
always in the order the read commands were dispatched. Due to the FIFOs, we may
have several train-bus transactions outstanding at any time; however, the condition
for correct operation of the controller is that operations are completed in the same
order that they were issued by the program.

3.6 Summary

We presented the train-set — the history of the project, the description of its com-
ponents, and the train-bus. For the train-bus we justified the choice for the type
of the bus (and the number of wires) as well as for the protocol. We explained
the electrical considerations that were the reason for changing the protocol from
two-phase to four-phase.

We further justified the choice for a PC-platform for the bus-controller. The
circuit is an interface between the ISA bus on the PC and the train-bus on the
experimental train set up; we described the protocols used in each of these buses,
and the interaction between the two protocols.
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Chapter 4

Specification Language

4.1 Why ST ?

An important issue in co-design is correct design specification capture (Nagasamy,
[16]; Wolf, [20]). Because of the complex application nature of embedded systems,
a clean and complete specification is both very important and hard to achieve. The
penalty of specification errors grows with the time until detection.

Embedded systems can contain hardware, software, analog circuits, and me-
chanical parts. Interfacing them correctly is as important as it is challenging. The
components are working at the same time, often at different rates. This is why
writing specifications in sequential programming languages may not be accurate.

Staunstrup [19] makes a strong case for the use of concurrent programming
languages in the design of embedded systems: for such systems, the order of external
events and computation systems cannot be known in advance or prescribed, so
sequential languages are not adequate since the operation sequence is unknown.
Concurrent models are more appropriate since they can model non-determinacy,
simultaneity, and multiprocessing, which arise in embedded systems.

Synchronized Transitions (ST) [18] is a concurrent programming language
that will be described in section 4.2. It is easy to learn and use, yet very powerful
for modeling. Its advantages address many of the current co-design problems (some
cited above) and bottlenecks.

A major co-design bottleneck is in the design flow from specification to im-
plementation (Nagasamy, [16]). In that respect, ST code is easy to translate to
either another programming language like C or a hardware description language like
VHDL. Key areas of co-design like partitioning and co-simulation are also helped
by using ST. The same notation is used to model both hardware and software. Al-
though we cannot claim we have practical synthesis techniques for going from an
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arbitrary ST program to a hardware implementation or to an efficient software im-
plementation, we do have techniques that work if the program is written in a certain
style. However, the styles that are suitable for hardware implementation are not
the same as the styles that are suitable for software implementation.

We also take a refinement based approach. The design starts with a high-level
program that models the key behaviours of the intended system. This program is
successively refined, adding more detail at each step, until we get something we can
implement. Although there may be little or no distinction between hardware and
software at the most abstract level, we tend to head towards hardware-specific or
software specific styles for different parts of the program in this refinement process.
Thus, partitioning is done by the designer as part of the refinement process.

Co-simulation is done naturally since everything, hardware and software, is
modeled in the same ST program.

Last but not least, verification, or rather co-verification, is well supported by
ST. It can even be done automatically [10, 13]

4.2 Synchronized Transitions

Synchronized Transitions (ST) is a concurrent programming language. In ST a
design is modeled as a set of independent transitions. Transitions consist of a
guard and a multi-assignment. For example

LaANDb—c:=d>
is read “a and b enables ¢ gets d”. “a AND b” is the guard of this transition; in
other words, the assignment ¢ := d can only be executed if the guard evaluates to
true. A transition is said to be enabled if the guard is satisfied.

Transitions are executed atomically, i.e. the evaluation of the guard and
performing the multi-assignment is a single indivisible operation.

4.2.1 Combinators

ST offers three transition combinators, ||, * and +. If two or more transitions are
combined with the asynchronous combinator, ||, then at each step in program
execution, one is selected non-deterministically from those that are enabled. For
example, if we have

€ a—c:=d >
| boe=f >
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then if only one of @ or b holds, the corresponding assignment will be executed; how-
ever, if both hold, one of the transitions will be chosen, but the choice is not specified
by the program. This allows abstract models to describe a wide class of behaviours.
It also provides an opportunity for optimization when deriving an implementation.
For example, the implementation may choose which transition to execute to max-
imize performance or minimize the amount of hardware required, or to optimize
some trade-offs. The final implementation is often completely deterministic.

The operands of the product combinator, *, are performed as a single,
atomic state transition.

< a—c:i=d >
*x L boe=f >

is equivalent to

KX aANDb— c,e:i=d, f>
in other words the combined transitions are enabled only if both of their guards are
enabled.

For transitions combined with the synchronous combinator, 4, at each step
during program execution all enabled transitions are executed as a single atomic
operation. For example, if we have:

&€ a—=ci=d >
+<€ boe=f >

this means that if only one of a, b is true, then only the corresponding assignment
is executed, and if both a and b are true, then the two assignments are executed as
an atomic operation.

Any transition or combination of transitions that causes a write conflict is
illegal. A write conflict occurs when there is more than one assignment to the same
variable in the same atomic operation. A write conflict can occur if transitions

are erroneously combined with the + or the *

operator, or even within a single:
transitions if the same variable is used more than once on the left side of a multias-
signment: for example, if two array elements, a(¢) and a(j) are on the left side, and

¢ = 7 holds when the transition is enabled.

4.2.2 Modular Designs
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A solution to dealing with increasingly complex designs is making them mod-
ular. A modular design can be flat, i.e. all modules communicating on the same
level, or hierarchical — a module can contain other modules in its internal structure.

Synchronized Transitions supports modular and hierarchical designs through

_the use of cells - collections of state variables and transitions. In a hardware analogy,
cells are like subcircuits. One cell may have several different instantiations just like
a circuit may have many instances of the same subcircuit with different external
connections. Likewise, a cell may be composed of other cells just as a circuit design
may consist of a hierarchy of subcells. An ST program has a top cell that is the
root of this cell hierarchy.

The interface of a cell to the outside world are its formal parameters. These
can be of type static or state. Formal parameters that have been declared as STATE
variables are bound to storage locations (like latches on a chip or memory locations
of a process) when the cell is instantiated. Both the cell and its parent can read
or write these parameters, which provides a mechanism of communication between
cells. The values of STATIC parameters are bound when the cell is instantiated
and are typically used to control the size of data structures or control recursive
instantiations. The default for formal parameters is STATE.

ST also has arrays, records and functions, which have the usual interpreta-
tion. ST programs can be split into modules; each module consists of a definition
part (file .std) and an implementation part (file .sti). This eases the writing and
maintaining of the program; however, a module can contain descriptions of several
cells, so program modules do not necessarily have a clear mapping to the design mod-
ules (the cells); this depends on the programmer’s way of organizing his program
files.

ST also allows a module to be written with the definition part in ST and
the implementation part in C. This is a way to refine an abstract ST description to
detailed code.

4.2.3 ST for Co-design
Modeling synchronous circuitry with 4

Let’s take a three-bit synchronous counter. In ST, it would be described as follows:
L tner — qo:= NOTq0 > (* 21 %)
+ <iner AND g0 — ¢q1:=NOTql > (% t2 %)
+ < incr AND g0 AND g1 — ¢2:=NOT¢q2> (13 %)
A diagram of the digital circuitry to implement this is shown in figure 4.1.
“expr;” in this case mean just “NOT q;”, but they could be more complicated in
other examples (here we could just have taken them from the negated output of the
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D-latch, but we wanted to illustrate an approach); “enable;” is high if transition ¢ is
enabled and low otherwise. For example, if enable; is high, on the next clock cycle
the q0 latch will load expr;, otherwise it will keep its old value.

LMUX
L {D Q
exprl q0 exprl
enablel r l— D-latch expr2
LMUX expr3
| ID
expr2 ql Q enablel
enable2 r
| D-latch enable2
enable3
l—MUX —
D Q
expr3 2
B uL A 4 combinational
logic
clk enable3 | ’_ D-latch ¢
incr

Figure 4.1: A direct mapping of the ST 3-bit counter to hardware

This hardware can be described in VHDL as follows:

entity counter is
port{ clk, inc: in std_logic;
cnt: out std_logic_vector(2 downto 0) );
end counter;

architecture struct of counter is
componenﬁ mux
port( in0O, inl, select: in std_logic;
out: out std_logic );
end component;

component d_latch
port( d, clk: in std_logic;
q: out std_logic );
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end component;

component comb_logic
port( inl, in2, in3, in4: in std_logic;
outl, out2, out3, out4, outb5, out6: out std_logic )
end component;

signal exprl, expr2, expr3: std_logic;
signal enablel, enable2, enable3: std_logic;
signal dO, di, d2: std_logic;

signal q: std_logic_vector(2 downto 0);

begin

ml: mux( q(0), expri, enablel, d0);

m2: mux( q(1), expr2, enable2, di1);

m3: mux( q(2), expr3, enable3, d2);

q0: d_latch( d0, clk, q(0) );

ql: d_latch( d1, clk, q(1) );

q2: d_latch( d2, clk, q(2) );

c: comb_logic( q(0), q(1), q(2), inc, :

exprl, expr2, expr3, enablel, enable2, enable3 )R

end struct;

where the the multiplexer and the D-latch are regular multiplexers and D-latches
and the combinational logic performs the logic operations described in the ST code.

Mixing combinators: non-determinism to model multiple clock domains

As mentioned, the train-bus controller is an interface between two synchronous buses
operating at different clock rates. A description of this in ST would look like:
(isal + isa2 + isa3 + ...)
| isaTOtrainbusFIFO()
I trainbusTOisaFIFO()

I (b1 + tb2 4 tb3 + ...)
where isal,isa2, ... are transitions synchronous to the ISA-bus and tb1,tb2, ... are

transitions synchronous to the train-bus. Note that this ST model does not state
the relative frequency of the ISA-bus and the train-bus and is robust to changes in
the train-bus frequency. In other words, we do not have to worry about frequency
details at this high-level description stage. "

30



To refine this model for a particular clock frequency, even a specific clocking
protocol, we can write:
(isal + isa2 + isa3 + ...)
isaTOtrainbus I FO()
trainbusTOisa FIFO()
trainbusClockGenerator()
K thEdgel > *(tbla + tblb + tblc + ...)
L thEdge2 > x(tb2a + tb2b + tb2c + ...)
L thEdge3 > (tb3a + tb3b + tb3c + ...)
L thEdged > +(tbda + tbdb + tbdc + ...)
The asynchronous combinator || has disappeared and the synchronous combinator +

+ 4+ + A+ A+t

is used instead, since we went from a high-level description of components operating
at different speeds, to a refined (lower-level) description where we already decided
about the clocking methodology.

Note there are transitions without any actions in the example above (e.g.
< tbFEdgel >>); when combined with the product operator *, such transitions act
as guards for the transitions they are combined with. The execution of this code
looks as follows: at every execution step, the following group of transitions will be
executed as an atomic operation:

e every enabled transition from the isa-group;
e every enabled transition from the tra:nbusTQtsaF'I FO-group;
e every enabled transition from the tsaTOtrainbusF I FO-group;

e the counter model is incremented; the counter divides the ISA-clock signal to
generate the clocking required for the train-bus. In our case, this is a 4-phase
clocking which means the events of interest are the rising and falling edges of
two differential clocks (tbFdgel to tbEdged).

e whenever tbFEdge; is true, every enabled transition from the group tb; is exe-
cuted.

The train-bus clock generator is modeled in a similar fashion. It consists
of two cells, a counter modulo 21 and a counter modulo 4 that generates the two
delayed clocks phij, phiz and the pulses corresponding to the 4 edges (rising and
falling for the two clocks).

The “counter21” cell (in figure 4.2) is a value of a CELL type, its value is
given by the initializer expression, which is roughly a lambda expression. The type
definition for the CELL type defines the types and storage classes of the parameters
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STATIC
counter21: COUNTER21 =

STATIC
max: INTEGER = 21;
STATE
count: INTEGER;
BEGIN
<< reset -> count =1 >>
+ << NOT reset >> *
( << count := (count+1) MOD max>>
+ << inc := count=0 >>
)
END;

Figure 4.2: The counter modulo-21

for the cell. The code is straightforward: it generates a positive pulse for inc every
21 execution steps.

The counterd-cell (see figure 4.3) uses the output of the modulo-21 counter
to toggle phiy; and phi, follows phi; by a delay equal to the period of the signal
inc. This means that if we use the four events corresponding to the 4 edges of the
signals phi; and phi,, they will be separated by periods equal to the inc period, and
if we look at the set of 4 events, they will repeat after a period of 4 * period(inc).

The two cells are connected in the main cell of the controller hierarchy as
shown in figure 4.4. The full code of this cell, with comments, can be found in
appendix A; the purpose of the above fragment was just to illustrate that we need 3
of the 4 events to control the operations of some of the FIFO buffers, so we presented
these actions in a simplified way.

Mixing combinators: non-determinism to model the environment

The non-determinism of ST can be used to model the environment for a design. For
example, the train-bus controller should work with any legal software running on the
PC, and we do not want to limit our model to describing one specific program. The
ST model for the ISA interface can perform any sequence of ISA reads and writes
that correspond to legal transactions with the bus controller. Figure 4.5 gives a
state diagram of a “dispatcher” cell — a cell modeling the legal actions a train-set
control software may take to send commands to the train-bus. Note that from state
START, several actions may be taken without any condition specified on the arrows
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STATIC
counter4: COUNTER4 =
STATE
phit, phi2: BOOLEAN;
BEGIN
<< reset -> phil, phi2 := FALSE, FALSE >>
+ << (NOT reset) AND inc >> * (
<< phil := NOT phi2 >>

+ << phi2 := phil >>
)
+ << evl := inc AND (NOT reset) AND phil AND (NOT phi2) >>
+ << ev2 := inc AND (NOT reset) AND phil AND phi2 >>
+ << ev3 := inc AND (NOT reset) AND (NOT phil) AND phi2 >>
+ << ev4 := inc AND (NOT reset) AND (NOT phil) AND (NOT phi2) >>
END;
Figure 4.3: The differential clock generator
STATIC
bcCell: BCcell = (* the model for the bus controller *)
(* ... declaration of internal signals *)
BEGIN
counter21( reset, inc )
+ counter4( reset, inc, phil, phi2, tbEdgel, tbEdge2,
tbEdge3, tbEdge4 )
+ << tbEdgel >> * (
AdvanceAddressFIFO()
+ AdvanceCommandFIFO()
)
+ << tbEdge3 >> * WriteTrainData()
+ << tbEdge4 >> * ReadTrainData()
(x + ... %)

Figure 4.4: Instantiations of the counter cells
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Cf0 = Command FIFO stage 0 is full

Figure 4.5: State Diagram for the Command Dispatcher
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<< state = START >> * (

ReadStatus()
|| WriteAddress()
1l WriteData()
|| WriteCmd() * << state := ISSUED >>
)
+ << state = ISSUED -> state := NEXT >> =*

ReadStatus()
+ << state = NEXT >> * (
<< Cf0 >> * ReadStatus()
+ << NOT CfO >> * << state := START >>
)

Figure 4.6: ST code for the dispatcher cell

towards these actions; this means that from state START, any of “read status”,
“write address”, and “write data” can be done without advancing to the following
state; only writing a command advances the state machine to ISSUED. After we
issued a command, we cannot issue the next before we know the controller is ready
to accept a new command, which is signaled by the Cf0 status bit being false. Cf0is
an acronym for “Command FIFO, stage 0”; Cf0 being true indicates that the stage
that accepts a new command is full. So the state machine stays in the intermediary
state “NEXT” until the status bit Cf0 indicates a new command can be dispatched,
and the state machine moves back to START. Also note that since we have a choice
of actions in the START state, it means the order of sending the data and address
components is not specified; what’s more, we can dispatch a new command without
providing new data and/or address values; in that case, the last written data and
address values will be the ones sent onto the train-bus.

The ST code for such a cell is presented in figure 4.6. The non-determinism of
the choice between the actions that can be taken from the START state is modeled
by using the asynchronous combinator ||.

We also need a model of a cell that can retire data requested by a previous
read command. The state diagram for such a “retire” cell is given in figure 4.7. It
is similar to the one for the dispatcher, but simpler because there is not a choice
of actions that can be done from a certain state. A new response can only be read
if another status bit, Rfl (which stands for “response FIFO 1 full), is true. The
corresponding code is in figure 4.8.

The application program will look like:
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______X:§§E£> Rfl

NOT Rfl

read NEWDATA
status

read
data

read

status

1

RECEIVED

Rf1 = Result FIFO stage 1 is full

Figure 4.7: State Diagram for the Retiring of a Command

<< state = START >> * (
<< NQT Rf1 >> * ReadStatus()
+ << Rf1l >> * << state := NEWDATA >>

)
+ << state = NEWDATA -> state := RECEIVED >> * ReadData()
+ << state = RECEIVED -> state := START >> * ReadStatus()

Figure 4.8: ST code for the retire cell
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dispatchCell()
| retireCell()

This allows the client to perform split-transaction operations —i.e., the client
may dispatch a new command while one or more previous commands are still out-
stahding; the client is guaranteed to have the commands retired in the order they
were dispatched.

4.3 Summary

After reviewing some of the problems that the co-design community is faced with,
we are proposing the use of Synchronized Transitions as a specification language for
co-design. The language has been extensively used for hardware design by other
research groups, and the book published about ST [18] mentions the possibility of
using it for co-design. We enumerate the features of ST that make it suitable for
embedded system design, and give examples of the use of ST’s synchronous and
asynchronous combinators. The use of both combinators in the same design model
has not been applied in previous research with ST. We explain the advantages of
removing this limitation (i.e., not being able to mix the two types of combinators)
by giving examples of how we apply this new method to our train-bus controller
design.
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Chapter 5

The Design

The bus controller is an interface between two buses running at different speeds
and having different clocking methodologies and protocols. It consists essentially of
buffers and logic to control the buffering so that the two protocols are respected.

5.1 ST model design

5.1.1 The FIFO Buffers

Sending commands to the train-bus

As described in chapters 3 and 4, the train-bus can be logically split into train-data,
train-address and train-command. Sending a command means sending the three
components; data and address are optional and the order of sending them does not
matter (as shown in figure 4.5). Because the two buses run at different speeds — the
ISA bus goes 84 times faster than the train bus — FIFOs are used to temporarily
store the information until it can be sent out to the trainbus. A new command can
only be sent if the FIFO is not full. The commands that are implemented so far are
of type read, write and idle.

A register view of the bus controller

The PC sees the bus controller as a collection of registers it can write to/ read from.
The four registers are Data, Address, Command and Status, and their addresses are
(in hexadecimal) 0x300, 0x304, 0x308, 0x30C.

A register view of the bus controller is given in figure 5.1. The number
of stages for each FIFO is shown there as well: 3 for Address and Command, 4
for Data-Write, 2 for Data-Read and Status-Read. A write to the Status register
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causes a reset of the whole controller; the picture shows the two stages of the counter
generating the clocks (see section 4.2.3, figures 4.2 and 4.3), which have all outputs
set to “0” on reset. The data-write FIFO has an additional stage compared to the
address and command ones, because of the four-phase clock - this FIFO is being
read at a different clock edge.

—| 1 =

(in) DATA - READ

DATA - REGISTER

A e N N N R

DATA - WRITE (W)

ADDRESS - REGISTER ‘ |

ADDRESS - WRITE (R)

N

COMMAND - WRITE ©)

— [ =

(in) STATUS - INFO ®
STATUS - REGISTER

ow)
resct

COUNTER

COMMAND - REGISTER

Figure 5.1: Bus Controller - Register View

The top stages of the Address (A) and Command (C) FIFOs are being read
at tbEdgel, while the top stage of the Data-Write (W) FIFO is being read at
tbEdge3. The A and C FIFOs advance when the shiftCf (shift Command FIFO)
signal is high, and that signal goes high whenever the last C-FIFO stage is empty.
But that stage could be empty when the last W stage is not. On the other hand,
new commands may be sent by the application to the controller if the C-FIFO is
not full. That means we could send a new data component to the W-FIFO when
the W-FIFO is still full, if it doesn’t advance on the same signal. This is why an.
additional W stage was added, to buffer the delay from thEdgel to tbEdge3. In

39




other words, this is in order to avoid the situation illustrated in figure 5.2, where we
risk overwriting the write-data. For a better understanding see also figure 5.3; the
signals names are explained in the following section and in appendix A. Since it is
an ST cell instantiation diagram, it does not explicitly show the clock signal. The
VHDL code has a clock signal (the controller operates on the ISA clock) input for
every buffer showed in the figure (each square represents one FIFO buffer, the names
and stages of the FIFOs are printed beneath the buffer-cells). The buses carrying
the information to be stored in the latches (buffers) are shown as horizontal lines
entering the left side of each buffer, while the FIFO control signals are shown as
connected to the top side of each buffer (these are usually load or chip-select or
outpu‘t—enable signals; the command buffer, stage 2, is the special buffer described
in section 5.1.2).

The design simulation worked correctly with only 2 stages for the A and C
FIFOs and 3 stages for the W-FIFO, but several idle commands appeared on the
train bus in-between the useful ones, which meant that too much time was lost
waiting for the the first stage of the C-FIFO to become empty in order to send a
new command. (The controller issues idle train-bus cycles, identified by the idle-
command code, every time it does not have a command ready to be issued, or when
the result FIFO is full and it therefore cannot record the result for a new command.)
And since the ISA-bus runs at a higher frequency than the train-bus, it could provide
the useful commands at a much higher rate than the train-bus could process them;
this means the only problem were the insufficient FIFO stages, so I increased the
FIFO depth; currently, sending 10 or 20 commands works without idle train-bus
cycle insertion.

The buffer-cells used to model the FIFO are defined in the buffers.sti module
(see appendix A), and their instantiations are shown in appendix B. Different buffers
had to be used since some require load-signals, others are tristate buffers and require
output-enable signals; some are 4-bit wide (C-FIFO), some have 2-bit inputs (the 2
status bits Rfl and Cf0 in case of the Status-FIFQO), others are 8-bit wide. Because
of the ST syntax, declaring a general buffer and instantiating it in different ways
would have been complicated. Also for debugging purposes, I wanted to be able
to print different messages from inside different buffer cells, which would not have
been possible for different instantiations of the same ST cell.

Section 4.2.3 gave a detailed description of how the interfacing of the two bus
protocols is achieved (see especially figure 4.5). Figure 5.4 reminds the reader of the
steps for sending/retiring commands from the train-bus; this is a diagram that was
used as a sketch to write the ST-code for the module “driver.sti” (appendix A).
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FIFO status right before tbEdgel

(Command-
FIFO)

stage 0 stage 1

(Data-Write-

FIFO)
FIFO status between tbEdgel and tbEdge3
(Command-
FIFO)
stage 0 stage 1
(Data-Write-
FIFO)

\_/—I
both these FIFOs advance on the same
signal, determined by the C-FIFO status.

Figure 5.2: The need for an additional data-write buffer
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Reading the Status

At every clock cycle (every ST program step), the outputs CfO (command FIFO full)
and Rf1 (result FIFO has data available) from the queue controller are latched into
the first Status FIFO stage buffer. At any point the application decides to do a read
from the Status Register, this information is available within the same ISA-IOread
cycle .

Reading Response Data

Whenever the controller has result data available (Rfl=high), the application can
do a read from the Data Register, which will cause the controller to anable the
tristate outputs of the final stage of the Result FIFO to drive the ISA-data lines.

New response data from the train-bus is loaded on every tbEdge4 pulse into
the first FIFO stage when the current command is a read. Current command means
the last command that was sent out, i.e. the command sent out at the previous
tbEdgel pulse. The signals telling whether this was a read or a write are the
“isread” and “iswrite” outputs from the special buffer that makes the last C FIFO
stage. _

The control of the FIFOs to ensure the above described operation is presented
in the following section.

5.1.2 The Control Logic

Control logic actually means everything that’s not a FIFO buffer.

Address Decoding

The bus controller is I0-mapped. It needs to know when it is being accessed by the
program running on the PC, which is being done by first decoding the address - the
addrdec cell - and then looking whether it is a write to or a read from that address
- the readwrite cell.

The address decoder samples the ISA-address lines at the correct moment
(defined by the state of the ISA lines AEN, BALE) and decodes it for TrainData,
TrainAddress, TrainCommand or TrainStatus:

<< NOT aen AND ale >>
* (

<< addrIsTD :

+ << addrIsTA :

+ << addrIsTC :

BAToInt( addr )
BAToInt( addr )
BAToInt( addr )

trainData >>
trainAddr >>
trainCmd >>
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+ << addrIsTS := BAToInt( addr ) = trainStatus >>
)

BATolnt is an ST library function that takes an argument of type Boolean Array
and converts it into an integer.

The read/write cell uses these signals and [SA-iow, ISA-ior to generate
writeCmd, writeAddr, writeData, writeStatus, readData, and readStatus. Of the
four registers that constitute the interface of the controller to the outside world, two
may only be written (Cmd and Addr), two may be both written and read by the
master (Data and Status).

<< writeAddr := addrIsTA AND (NOT iow) >>

+ << writeData := addrIsTD AND (NOT iow) >>
<< writeCmd := addrIsTC AND (NOT iow) >>
<< writeSts := addrIsTS AND (NOT iow) >>
<< readData := addrIsTD AND (NOT ior) >>
<< readSts := addrIsTS AND (NOT ior) >>

+ 4+ + +

The Counters or Clock Dividers

Clock dividers are needed to generate the train-bus clocks from the ISA clock. This
is done by two ST counter cells, “count21” and “count4” (see also section 4.2.3).
This means the train-bus will run 84 times slower than the ISA-bus.

The counter modulo-4 is needed to generate 4 pulses, 21 ISA-clock cycles
apart; it outputs these on lines tbEdgel, tbEdge2, tbEdge3, tbEdge4. In other
words, these will be clock signals with a period equal to 84 ISA-clock cycles and with
a pulse width of one ISA-clock cycle. The train-bus only needs the two differential
clock signals thclkl, tbclk2 so that the slave devices can detect rising and falling
edges on these lines. But the controller also needs to take actions on certain edges
so we use the same cell to detect them. However, tbEdge2 is not used inside the
controller since only the slave devices act on this edge (see figure 3.5, section 3.4.3).

The Queue Controller

The queue controller, or FIFO controller, generates the FIFO command signals and
also status information signals. FIFO command signals are

o shiftCf - shift Command FIFO
e shiftRf - shift Read FIFO

o shift Wf - shift Write FIFO
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STATIC
qcontroller: QCONTROLLER=

STATE
(* Cf1 = Command FIFO stage 1full;
* Rf0 = Result-data FIFO stage 0 full;

* WE2 = Write-data FIFO stage 2 full *)
Cf1, Rf0, Wf2: BOOLEAN;

Figure 5.5: The state variable declaration

e forceldle - force an idle command out on the bus if no new command has been
issued. This doesn’t actually affect the FIFO advancing, but the output of the
FIFO.

The shift-FIFO signals are generated based on space in the next FIFO stage;
for this, we need to keep track of the status of the FIFO stages (empty/full). Some
of these status variables are also necessary outside the queue controller cell, as
actual status information about the bus controller; they must be available to the
application sending the commands/reading the results, so that it knows when to
send/retire a command. Retiring a command means reading the result requested by
the command; the point at which the result is available is several ISA clock cycles
away, which means the status has to be checked to see if it arrived. The status
variables that tell the application program when the bus controller can accept new
commands or has new data available are:

e (f0 - Command FIFO stage 0 is full;
e Rf1 - Response FIFO stage 1 is full.

Since this cell is the most difficult to understand, I’'m going to list its defini-
tion code here, even though it is a bit longer, so that the reader may recognize the
above explanations in the code. The code is organized as follows:

e State-variable declarations: state variables indicating the state of some of the
FIFOs; see figure 5.5

e function definitions (figure 5.6): I defined some functions just to make the
cell body code easier to read. These functions are of type BoolFn0 (Boolean
Function) and their meaning is:

— “issuecmd” (issue command): we may only issue a new command - i.e.,
enable the outputs of the buffers connected to the train-bus — if there is
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STATIC
(* some functions to make the main cell body easier to read:*)
(* issue command: *)
issuecmd: BoolFnO = BEGIN Cf1 AND (NOT Rf0) END;
(* advance Command-FIFO: #)
advancefifoc: BoolFn0 = BEGIN CfO AND (NOT Cf1) END;
(* advance Result-FIFO (i.e. data-read-FIFQ): *)
advancefifor: BoolFn0 = BEGIN RfO AND (NOT Rf1) END;
(* data available *)
availdata: BoolFn0 = BEGIN isread AND tbEdge4 END;

Figure 5.6: Function definitions for the gcontroller cell

a new command sitting in the top C-FIFO stage and there is room in the
bottom R-FIFO stage to record the new result if necessary;

— “advancefifoc” (advance Command FIFO): if stage 0 is full and stage 1
is empty; '

— “advancefifor” (advance ResultFIFO): if stage 0 is full and stage 1 is
empty;

— “availdata” (data available): response data from the slave device is loaded
from the train-bus into the R-FIFO on tbEdge4 if the current command
on the train-bus is a read-command, i.e., if a read-command was issued
onto the train-bus on the last tbEdgel

e transitions for the Command-FIFO control (figure 5.7): If the C-FIFO is ad-
vancing and we are not writing to it, the bottom stage (0) becomes empty
(transition t1). It becomes full when there is a write to the Command reg-
ister (indicated by the “writecmnd” signal) (t2). If stage 0 is full, stage 1 is
empty (“advanceficoc”-function evaluates to true) and we are not writing to
the Command register, we can advance the FIFO (t4). Finally, if we issue the
content of the top C-FIFO stage to the train-bus, and we are not currently
advancing the FIFO, the top stage becomes empty (t5). (notations: Cf0 =
Command FIFO stage 0, Cf1 = stage 1, shiftCf = “shift Command FIFO”)

e transitions for the Data-Write-FIFO control (figure 5.8): On tbEdge3, write-
data is let out to the train-bus, and since the W-FIFO (write data-FIFO)
advances only on tbEdgel, the top stage (2) of this FIFO becomes empty
(transition t1). The following condition results from the fact that the W-
FIFO advances stage 0 to 1 synchronously with the C-FIFO, but stage 1 to
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BEGIN
<< reset OR ((NOT writeCmd) AND advancefifoc())
-> Cf0 := FALSE >> (* t1 %)
+ << (NOT reset) AND writeCmd -> CfO := TRUE >> (* t2 *)
+ << shiftCf := C£f0 AND NOT Cf1 >>
(* advance the FIFO: *)
+ << NOT reset AND advancefifoc() AND (NOT writeCmd)

-> Cf1 := Cf0 >> (* t4 *)
+ << reset OR (NOT advancefifoc() AND issuecmd() AND
tbEdgel) -> Cf1 := FALSE >> (* t5 *)

Figure 5.7: Command FIFO control signals

+ << reset OR tbEdge3 -> Wf2 := FALSE >> (* t1 *)
+ << NOT reset AND shiftWf AND NOT shiftCf

-> Wf2 := TRUE >> (* £2 *)
+ << shiftWf := Cf1 AND NOT Wf2 >> (* t3 *)

Figure 5.8: Data-Write FIFO control signals

2 separately, depending on the state of W-stage 2; so the W-FIFO advances:
stage 0 to 1 when shiftCf is true, stage 1 to 2 when shift Wf is true. It is okay
to advance stage 1 to 2 if we are not currently writing to stage 1 (transition
t2). For the shift Wf assignment, Cf1 indicates the same as a supposed variable
Wf1; that is, the state of stage 1 of the C-FIFO is the same as the state of
stage 1 of the W-FIFO since for stage 0 to 1 the W-FIFO is synchronous with
the C-FIFO (transition t3).

e transitions for the Result-FIFO control (figure 5.9): If the R-FIFO (result, or
data-read FIFO) advances and there is not new data to be loaded, stage 0
becomes empty (transition t1). It becomes full when new data is written to
the bottom stage (0), on tbEdge4 if the current command, i.e., the one that
was issued to the train-bus on the previous tbEdgel, is a read (t2). If the
current ISA-IO-read cycle is one from the controller DATA register, and the
R-FIFO is not currently advancing, the top stage, 1, becomes empty (t4). If
stage 0 is full, stage 1 is empty, and we are not writing to stage 0, it is okay
to advance the FIFO (t5).

e transitions for forcing an idle train-bus cycle (figure 5.10): If the conditions for
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+ << reset OR (NOT (tbEdge4 AND isread) AND advancefifor())

-> Rf0 := FALSE >> (*x t1 *)
+ << NOT reset AND isread AND tbEdge4
-> Rf0 := TRUE >> (* t2 %)

+ << shiftRf := RfO AND NOT Rf1 >>
+ << reset OR (readData AND NOT advancefifor())

-> Rf1 := FALSE >> (* t4 *)
+ << NOT reset AND advancefifor() AND NOT(tbEdge4
AND isread) -> Rf1l := RfO >> (* t5 *)

Figure 5.9: Result FIFO control signals

+ << reset OR (NOT issuecmd() )
-> forceldle := TRUE >>
+ << (NOT reset) AND issuecmd() -> forceldle := FALSE >>

Figure 5.10: Qcontroller module: forcing an idle train-bus cycle

issuing a new command are not met (see “issuecmd”-function), the controller
issues an idle command out on the train-bus.

Forcing an idle command on the train-bus is achieved by controlling the
special buffer that makes the last C-FIFO stage, with this “forceldle” signal from
the queue controller — figure 5.11 presents the ST-code for the buffer. This buffer
is also the one that generates the isread and iswrite signals used as inputs in the
gcontroller cell. It generates these signals by just looking at (a) the least significant
bit of the command code it contains, which indicates a read or a write, (b) whether
it had to force an idle or not, in which case none of the signals is true. “IntToBA()”
is a function that takes an Integer and translates it into a Boolean Array with a
specified number of bits (in our case 4, the bit-width of the train-command lines)

The contrlogic cell

This is not the most proper name for this cell, since it is not the only control logic
component, but it is not specialized on certain things either like the others. 1t is
just combinational logic generating the reset signal and output enable signals. The
output enable signals are for the buffers with outputs connected to the ISA-data
lines. When the board is not addressed by the ISA bus, it should not be driving the
ISA data lines at all. The two buffers with outputs connected to the ISA data-bus
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buf2c: Bufferdspec =
STATE
cmdIdle: INTEGER = 3;
STATIC
(* the least significant bit of the command, in(0),
* indicates a read or a write command *)
iswritefn: BoolFnO =
BEGIN NOT force AND NOT in(0) ) = cmdWrite) END;
isreadfn: BoolFnO =
BEGIN NOT force AND in(0) ) = cmdRead) END;

BEGIN (* forces idle when force is TRUE x*)
<L ¢cs >> * ‘

( << NOT force -> out := in >>
+ << force -> out := IntToBA( cmdIdle, 4) >>
+ << iswrite := iswritefn() >>
+ << isread := isreadfn() >>
)

END;

Figure 5.11: The special buffer for Command-FIFO stage 2
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are the second (or final) stages of the Status and the Reply-Data FIFOs.

5.1.3 ST simulations

In order to test the ST program, a driver module was necessary to simulate the
master application; that is, to send commands to devices and retire them (read
response data if any). This module was built according to the state diagram from
figure 5.4. We also needed an ISA-bus simulator (modules isa and IO, the latter
containing the inByte and outByte cells that model the communication between the
application and the ISA-bus).

Another necessary component was a module simulating a slave device con-
nected to the train-bus. This is the device module; all it needs to do is detect
whether it is being addressed (by comparing the information on the train-address
lines to its own identification information) and respond to the different commands
(provide a response in case it was a read).

5.2 Implementation Decisions

As justified in chapter 3, we are using a PC as the host computer; the bus controller
is implemented as an ISA-board. The general idea was to use programmable logic
on such a board. This implied translating the ST-code into VHDL-code that could
automatically be synthesized by available CAD tools.

For previous versions of the bus controller, Progammable Array Logic (PAL)
integrated circuits were used (AMD PAL22V10 - see databook [1]). For a more ele-
gant design we initially decided to use the MACH-4 family Complex Progammable
Logic Devices (CPLDs), MACH445 [2]. That is, we wanted to use more powerful
chips and the choice was for the mentioned ones because at that point the depart-
ment already had licenses for the necessary CAD tools to program those.

Since the download program was using around 80% of one device’s resources,
we decided to use two and forced the CAD-software to partition the design onto 2
chips. We took this decision in order to leave room for further changes in the design;
since the controller is a hardware piece for an experimentation project, it will almost
certainly be further modified in the future. Debugging also needs to be kept in mind.
However, the MACH-4 family has a reputation for being hard to reprogram with the
same pinout. Although I tried out the procedure succesfully with a minor change,
reprogramming it later with a much different code did not succeed. Also, in the
meantime partitioning is not supported anymore, so every time we would need to
re-program the chip, we would have to do manual partitioning. This is why recently
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we decided to change the implementation from using the MACH445’s to using only
one Xilinx Spartan chip [22].

5.3 From ST to VHDL

After successfully simulating the ST program, the next step is to translate the ST
code into VHDL. Several things have to be taken into consideration here:

5.3.1 Clock signal

First of all, for a program, the clock is implicit: it is the rate at which instructions
are executed. In ST, at every execution step, one or more transitions are picked for
execution. When going from ST to VHDL, the clock has to be explicitly specified
as a signal connecting all components (the equivalent of the cells in ST).

5.3.2  Sensitivity lists

Another problem is raised by the sensitivity lists of VHDL processes. Sensitivity
list means a list of signals to which a process is sensitive ( [3]). When any of these
signals change value, the process resumes execution of the sequential statements;
after executing the last statement, the process suspends again until a new change
occurs on one of the sensitivity list signals.

Now when going from ST to VHDL, one would be tempted to include all
formal parameters of a cell into the sensitivity list for the VHDL component rep-
resenting that cell. But this is not how the ST program executes: in ST, at every
timestep, one or more transitions have their guards evaluated and are executed:
This rather corresponds to having only the global clock signal on the sensitivity list
of any VHDL process. The decision about what should be included on the sensi-
tivity list depends on how cells are executed in ST; this issue is addressed in the
following section.

5.3.3 On mixing ST combinators

In all previous work where ST has been used, mixing synchronous and asynchronous
combinators has been considered illegal by the compiler ( [18]). The ST version used
in this thesis allows mixing synchronous and asynchronous combinators.

The need and advantages of mixing the synchronous and asynchronous com-
binators has been shown in chapter 4. Suppose we have an ST program where
we model subcircuits working at the same clock rate; in this case, we use the syn-
chronous combinator +. Within each cell however we may be using the asynchronous
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“bar” combinator, ||. From the definition of the + combinator, it results that at
every time step, all transitions combined with 4+ whose guards are enabled, will be
executed in one atomic operation. The question arises here whether to regard the
cell as a transparent hull for the transitions it groups together, or as an indivisible
body of transitions. In the former case, it can be represented as

(€ action >
|| € action >>)
+ (€ action >
|| € action >>)

and the way to interpret it is to non-deterministically pick one transition from every
cell and execute all of them that have their guards satisfied, in one atomic step.

In the latter case, if we view the cells as indivisible action bodies, then once
a cell is “fired”, it is like a spawned process, meaning its enabled transitions — the
ones combined with || — execute repeatedly until no more are enabled; we could say
we let the whole cell “settle down”, before we fire it again. (this is from a discussion
with Joergen Staunstrup, the author of [18], this last summer (1998) at the Danish
Technical University in Lyngby, Denmark).

The convention used in the UBC ST compiler is to view cells like transparent
hulls of the transitions grouped in its body. In other words, we do not let the cells
“settle down”, but, if there are transitions combined with ||, we pick some transition
each time the subcell is “called” in the top cell.

This convention is the reason why, when I went from ST to VHDL, I only
included the clock signal on the sensitivity lists of most of the processes (except
combinatorial logic and some components that use other signals for latching values).
This is because in our version of ST, we do not spend more than one clock cycle in
a cell at a time, so the next time we pick a transition of that cell, we will have all
the updated information about all the other signals that are input parameters to
the cell.

5.4 Summary

I described the process of refining the high-level specification of the controller, some
issues I encountered and how solving them affected decisions about implementation
details — e.g. FIFO depths. I further described the process of translating the simu-
lated ST version to VHDL; the decisions I took, based on the conventions we made
in order to be able to apply the mixing of ST combinators.
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Chapter 6

Evaluations and future work

This project had two main purposes, as presented in the introduction: to produce a
hardware piece necessary for further development of a model train set for real-time
experiments, and to experiment with a new hardware-software codesign methodol-
ogy.

6.1 Testing the train controller board

The PC-board, as tested so far, now corresponds to the requirements. Although it
was not possible yet to test it with the train-bus connected to the board and devices
connected to the train-bus, I ran a few tests by sending write and read commands
and looking at the train-bus outputs with an oscilloscope. The testing applications
were written in DJGPP, a version of the Unix C++ compiler for the PC. One of
the test programs is presented in figures 6.1 and 6.2

These tests included:

‘e Doing sequences of writes to the train-bus, alternating the values for address
and data (I used values 0x00 and Oxff). This works correctly; I checked by
using the oscilloscope to see the transitions on the train-bus lines.

e Doing long sequences of write commands works without idle train-bus cycles
inserted by the controller; this shows that the FIFO depth was chosen big
enough (see section 5.1.1).

e Inserting (forcing) an idle command in a sequence of useful read/write was
checked by looking at how the train-command lines change

e Executing a program that takes the following actions:
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#include <stdio.h>
#include <pc.h>
#define TDATA 0x0300
#define TADDR 0x0304
#define TCMD 0x0308
#define TSTATUS 0x030C
#define DATAOQ 0x00
#define DATA1 OxFF
#define ADDRO 0x00
#define ADDR1 OxFF

void reset_controller( void )
{
outportb( TSTATUS, O ); /* doesn’t matter what we write,
just a write to the Status Register
resets the controller */

X

void getstatus( unsigned char *cf_full, unsigned char *rf_empty)
{

unsigned char status;

status = inportb(TSTATUS);

*cf_full = (unsigned char)(status && 0x01);

*rf_empty = (unsigned char) (!(status && 0x02));
}

void issuecmd( unsigned char addr, unsigned char cmd,
unsigned char data )
/* addr, data are optional here */
{
outportb( TADDR, addr );
outportb( TDATA, data );
outportb( TCMD, cmd );
}

Figure 6.1: Sample test application (in C++) for the bus controller: constant and
function definitions
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void main(){
unsigned char data;
unsigned char cf_full=0, rf_empty=1;
int i;
reset_controller();
printf("\n controller reset'");
for (i=0; i<20; i++) {
do {
getstatus(&cf_full, &rf_empty);
} while (cf_full);
issuecmd( ADDR1, 0x04, DATA1 );
do {
getstatus(&cf_full, &rf_empty);
} while (cf_full);
issuecmd( ADDRO, 0x04, DATAO );
}
}

Figure 6.2: Sample test application (in C++) for the bus controller: main function
body

— write 0xff;
— read data;
— write 0x00;
— read data;
also works, where “data” always returns the previously written value, which is

because the controller sees the train-bus as a big capacitor. This feature was
seen in the following experiments:

e when writing Oxff and no action afterwards, the train-data lines go to logic
“1” for a short pulse then gradually fall towards “0”.

e also for the read-after-write experiment, if I had the probe on train-data line
0, I read Oxfe instead of 0xff, because the data-write buffer connected to it was
tristated and touching the line with the probe discharged it.

I have tried several different sequences of alternating read and write commands and
I believe the controller works according to the specification; however, testing read
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commands really requires a device providing responses from the other end of the
train-bus. This is addressed in section 6.4.

For testing the correct generation of the train-bus clock signal I did not need
any application program; just inserting the controller card into the ISA connector
and programming the FPGA is what it takes to get the clock signals at the train-
bus connector pins. All lines thclk1, tbclk2, plus the signals that are internal to the
controller but essential to the correct functioning, evi, ev3, and ev{, look correct.

[ made a header (2x15 pins) geometry that I used to connect all the unused
pins of the FPGA, so that if I needed to test or debug the board I could add
internal signals to the outputs of the FPGA and thus observe their behaviour on
the oscilloscope. (Because of the very small dimensions of the FPGA package, it is
extremely difficult and probably not very reliable to attach an oscilloscope probe to
its pins.) To test evl, evd, evf I connected these to some of the 2x15-header pins.

These test pins were very helpful for some of the problems I encountered:

e | first programmed the device only with the code for generating the clock
signals for the train-bus and the event detection of the 4 edges of those two
clocks. The two clock lines did not look correct at all, and from the oscilloscope
display I saw it was because of erroneous pulses that were about one ISA-
clock cycle long. This made me follow the advice of a colleague and use the
VHDL condition “clk’event”; even though I thought it was redundant if clk
was included on the sensitivity list of the process. It was the only thing [ could
think of trying because this part of the code had looked perfectly correct when
I simulated it. It works correctly now, with “clk’event”.

e The PC ceased to accept keyboard input when the FPGA on my board was
fully programmed. The only way for my board to interfere with the PC was
by driving the ISA-data lines, so I connected this observation with the fact
that the synthesizing CAD-tools gave a warning: “Unknown port type for
isadata”, although T used the correct syntax. I also remembered that when I
previously used a Synopsys product for compiling VHDL code (when trying to
program the MACH445s), I was not able to use two different tristate buffers
to alternatively drive the same line; at that time I had to rewrite the code so
that in one of my components I was multiplexing the two internal buses. So
now I did the same: I inserted a multiplexer so that only one tristate buffer
was connected to each output ISA-data port. This worked correctly.

e When trying to issue write commands, I did not see the correct behaviour on
the train-bus lines at first. Then I added all necessary debugging information
- signals indicating the states of the Command FIFO, etc — as output port
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connections so that I could see how their values changed. This is how I realized
that in the translation from ST to VHDL, at some point I had omitted a
“NOT” in the code for the queue controller. Once I corrected that too, all the
tests I did (as mentioned above) were satisfactory.

6.1.1 ProblemsIencountered while going through the whole design
process

One conclusion from my experience is that the time it took me to write and debug the
ST code for the controller, or the VHDL code, was noticeably smaller in comparison
to the time it took me to design a PC-board and successfully program the device
on the board. This is partly because it was the first time I ever undertook such a
project. After deciding to change the board, in other words when I was forced to go
through the same process once again, it went much faster. I was then stuck with a
Xilinx download cable/software bug (Xilinx web solution record #3701) which took
me one week to find and solve (with technical support help). I found the reason for
this experience (similar to the one programming the MACHs) to be the fact that
CAD-tools have to be marketed very fast because of the fierce competition, and thus
bugs are detected and fixed after the software is already in use.

The solution to the Xilinx ddwnloadiﬁg tools bug - the software patch in-
dicated on the web did not solve the problem — was to disconnect the PROG wire
of the download cable from the board; and to solder a pull-up resistor (2.2 KOhm
is what I used) for that pin. I also needed a pull-up resistor for the DONE pin; in
the current state, I just soldered a wire to the pull-up I had for the “response” line
of the train-bus, because we are not currently using it anyway. This needs to be
changed if we will actually connect the train-bus.

6.2 ST for co-design

I started work on this design virtually without any previous experience either in ST
or in VHDL. That is, I had learned about hardware description languages (including
VHDL) during my undergrad courses and I had used Verilog in a course project, but
I never actually went all the way to implement a design in any HDL. At least I had
had some exposure to VHDL, while ST was a totally new programming environment.
However I did not find it difficult to adjust to it. A few simple homework exercises
I did in the Formal Verification course where I learned about ST were enough to
help me understand this new notion of non-determinism in a program. Once I
grasped the concept, [ came to think it is essential in correctly modeling real-time
applications.
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Since ST is not supported by any automated synthesis tool, I had to model
my design in ST, simulate it and debug it; after | was happy with the behaviour
of the model, I had to translate this into VHDL. This means the final version was
totally deterministic. But the modules I used to simulate the controller (the ISA-
bus model, application program model, train-bus device model) did make use of the
possibility to model non-determinism in ST. This I believe to be a strong argument to
use ST for co-design: the ability to make good and reliable simulations by correctly
modeling the real-time environment that the design has to interact with.

I firmly sustain this viewpoint since I also had to simulate and debug the
VHDL version of my design (since the translation is not done automatically, this
process is prone to errors). The worst problem I had with VHDL was the way in
which different ways of describing things that should essentially synthesize to the
same hardware, resulted in such different behaviours after synthesizing (see also the
problems I had to correct, section 6.1).

6.3 Conclusions

I used Synchronized Transitions to design a bus controller — a PC-ISA board with
a XILINX Spartan FPGA - without having had any previous hardware experience
(although several course projects in the past included designing some piece of hard-
ware, | have never actually implemented and tested anything). I found ST very
helpful in this process and I was finally able to see that the implemented design, the
actual hardware, works correctly.

I think ST is a good choice for a co-design specification language since the
specification that one can simulate does not depend on whether the model will be
implemented in hardware or in software. It can therefore also provide a means
of communication between hardware and software teams that would work on the
same project. For my particular design case, I found it very helpful in dealing with
interfacing between two components running at different speeds, which I believe is
due to the possibility of expressing non-determinism in ST.

6.4 Future work

6.4.1 Completing the train-bus design

As mentioned in section 6.1, a complete test of the device requires another device
to be present at the other end of the train-bus, to respond to commands sent by
the application on the host PC. A first step would be to program a few simple
Programmable Array Logic devices (like the 22V10 [1]) and connect them to the
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train-bus connector on the controller board. This way it would be possible to test
the Result-FIFO.

The next step, after making sure the controller works correctly, would be to
actually connect the train-bus itself (several meters of ribbon cable). This is in order
to test if the 4-phase protocol we proposed is a reliable communication protocol. We
further need to design the devices that will be connected to the train-bus — speed
controller, position controller, track switch controller —in the same modular manner
and responding to the new protocol.

The final task will be to write the software for controlling the trains. Here
ST would be a way to model the application before implementing it.

6.4.2 Better CAD support for ST based design

From my current experience, I believe that from the information contained in the ST
model of the design, much of the final design can be generated automatically. More
precisely, after deciding how to implement the design (i.e. partitioning decisions),
most of the schematic could be generated automatically — in our case, the connec-
tions between the FPGA and the ISA-bus on one side, the FPGA and the train-bus
on the other side, are all described in the ST code. (Of course the analog parts are
not included there - like amplifiers or current limiters for some of the train-bus lines,
or decoupling capacitors for the FPGA.) Also, all the information for generating the
download file for the programmable device (the FPGA) is included in the ST.

The most useful tool would therefore be an automatic ST-to-VHDL transla-
tor, or better yet, ST-to-EDIF. This may constitute a future research objective.

Another very useful feature would be to be able to see simulation results of
hardware modeled in ST, as waveforms. Currently, the way to simulate ST code is
by inserting “WriteString” (a function that writes a string to the standard output)
in places of interest in the code, which seems rather awkward. For instance, if I
wanted to see how a certain digital signal behaved, I had to make the program write
out the value of the signal every time it changed.

I think that the availability of such support tools would make ST a very
convenient co-design tool that would offer a reliable specification language, easy
to learn and use, with high modeling power for real-time applications; and the
possibility of going through a safer stepwise refinement process from specification
to implementation.
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Appendix A

ST code for the controller

The ST code presented is a refined specification version. Its refinement degree
corresponds to the point where this project took over a class project started by
another student. Changes were made to adapt the design to a more reliable protocol
as described in section 3.5.

(e ek ke ok ok ook ok ok ok sk ok ok o ok ok ok K ok ok ook o ok ok ok ok o ok 3 ok ok o ok ok 3 ok 3 ok K ok Kk ok k)
(*

* the definition module for the counter modulo-21

*

*)

DEFINITION MODULE counter2i;
FROM useful IMPORT BoolArray;
EXPORT counter2i;

TYPE
COUNTER21 = CELL( reset: BOOLEAN; q: BoolArray;
’ countmax: BOOLEAN );

STATIC
counter21: COUNTER21;

END.
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Appendix B

ST cell instantiation diagrams
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VHDL code
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Board Schematics
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Figure D.1: Board schematic sheet 1
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Figure D.2: Board schematic sheet 2
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Figure D.3: Board schematic sheet 3
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Appendix E

Board Design Detalils

A view of the board with the component geometries is shown in figure E.1.

The list of the components, as generated by the PC-board layout tools (Men-
tor Graphics), is given in figure E.2.

The train-bus will have 8 wires for ground, and 7 spare wires for future
expansions and/or experiments. These include probably 1 wire for response (the
one labelled DATAD in the schematics, figure D.1), to allow bus-repeaters to be
used in large designs; and probably one wire for interrupt requests (one of the
trainbus lines is connected to the FPGA on the board because I also planned a
connection from the FPGA to ISA-IRQ5, so that if we later want to implement this,
we may do it without hardware changes. Unfortunately I noticed I forgot this last
connection, which was not necessary for the current version.

Also, the board currently has the pin holes for a configuration EEPROM to
keep the data for programming the FPGA, so that it will not be necessary to always
use the download cable to program the FPGA after power shutdown. The actual
memory device is not soldered on, but the schematics were conceived having this
operating mode in mind (the current version has the MODE-pin of the FPGA bent
up, i.e., unconnected). The device I was planning to use is ATMEL’s AT17C256A
(application note on “FPGA Configuration EEPROM Programming Specification”,
Atmel, 1998).
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Figure E.1: The controller board with components
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# Reference Part_number Symbol Geometry Properties

DC1 dcap dcap rc1206  (VALUE,"O.1uF")

DC2 dcap dcap rcl1208 (VALUE,"0.1uF")

DC3 dcap dcap rc1206  (VALUE,"O.1uF")

DC4 dcap dcap rcl1206 (VALUE,"0.1uF")

H1 header15x2 HEADER15x2 header15x2

H2 headerb5x2 HEADERS5x2 headerbx2

P1 tbconn DB37R db37r

Qi nhexfet n-hexfet t0220ab (VALUE,"IRLZ24-ND")
Q2 nhexfet n-hexfet t0220ab (VALUE,"IRLZ24-ND")
Q3 pnp pnp to39 (VALUE, "2N2905A-ND")
Q4 pnp pnp to39 (VALUE, "2N2905A-ND")
R1 res resistor rc1206 (VALUE,"1K")

R2 res resistor rc1206 (VALUE, "5K")

R3 res resistor rcl1206 (VALUE,"2.2K")

R4 res resistor rcl1206 (VALUE,"2.2K")

R5 res resistor rc1206 (VALUE,"0O ohm")

R6 res resistor rc1206 (VALUE, "0 ohm")

R7 res resistor rc1206 (VALUE,"1K")

RP1 resnet resnet soml16 '

RP2 resnet resnet soml16

RP3 resnet resnet soml6

U1 10x10 10x10holes 10x10holes

U3 isaconn ISACONN isaconn

U4 spartan30 SPARTAN30 vq100

Us sprom SPROM dip8

Figure E.2: A list of the components placed on the controller board
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