
Train Set Bus Controller

by

N a n a S. Kender

Diploma de inginer, Universi tatea Tehnica Timisoara , Romania , 1994

A T H E S I S S U B M I T T E D I N P A R T I A L F U L F I L L M E N T O F

T H E R E Q U I R E M E N T S F O R T H E D E G R E E O F

Master of Science

in

T H E F A C U L T Y O F G R A D U A T E S T U D I E S

(Department of Computer Science)

we accept this thesis as conforming
to the required standard

The University of British Columbia
December 1998

© Nana S. Kender, 1998

In presenting this thesis in partial fulfilment of the requirements for an advanced
degree at the University of British Columbia, I agree that the Library shall make it
freely available for reference and study. 1 further agree that permission for extensive
copying of this thesis for scholarly purposes may be granted by the head of my
department or by his or her representatives. It is understood that copying or
publication of this thesis for financial gain shall not be allowed without my written
permission.

Department of COMPUTER SlkhlCB

The University of British Columbia
Vancouver, Canada

Date

DE-6 (2/88)

Abstract

This thesis presents the design of a bus interface for a computer controlled train
set. Th i s design is useful for experiments in real-time control and embedded sys
tems. The design was based on an experimental methodology based on modeling
both hardware and software with programs in a guarded command language. The
successful completion of this design provides empirical support for this approach.

ii

Contents

A b s t r a c t i i

Contents i i i

L i s t o f Figures v i

1 In t roduc t ion 1
1.1 Train set project 2

1.2 Summary of thesis contributions 3

2 Co-Des ign 4
2.1 W h a t Is Co-Design ? 4
2.2 Current Issues in Co-Design 7

2.3 Models and Specification Languages for Co-design 8
2.4 System Mode l ing and Co-simulat ion 10

2.5 s u m m a r y 10

3 B u s Interface Specif icat ion 11
3.1 The train set 11

3.1.1 Acknowledgments and brief history of the project 11

3.1.2 Descript ion of train set components 12

3.2 The existing design 14

3.3 The proposed design 14

3.4 The train-bus 15

3.4.1 High-level design choices 16

3.4.2 Logical details 16

3.4.3 Elect r ica l details 16

3.4.4 Compar ison with other bus-schemes 20

3.5 T h e I S A to train-bus interface 20

3.6 Summary 24

i i i

4 Specification Language 25
4.1 W h y S T ? 25

4.2 Synchronized Transit ions 26

4.2.1 Combinators 26

4.2.2 Modu la r Designs 27

4.2.3 S T for Co-design 28

4.3 Summary 37

5 The Design 38
5.1 S T model design 38

5.1.1 The F I F O Buffers 38

5.1.2 T h e Con t ro l Logic 44
5.1.3 S T simulations 51

5.2 Implementation Decisions 51

5.3 F r o m S T to V H D L 52
5.3.1 Clock signal 52
5.3.2 Sensitivity lists 52
5.3.3 O n mix ing S T combinators 52

5.4 Summary 53

6 Evaluations and future work 54
6.1 Testing the train controller board 54

6.1.1 Problems I encountered while going through the whole design

process 58

6.2 S T for co-design 58

6.3 Conclusions 59

6.4 Future work 59

6.4.1 Comple t ing the train-bus design 59

6.4.2 Better C A D support for S T based design 60

Bibliography 61

Appendix A ST code for the controller 63

Appendix B ST cell instantiation diagrams 71

Appendix C V H D L code 75

Appendix D Board Schematics 82

iv

A p p e n d i x E B o a r d Des ign Detai ls

List of Figures

3.1 The track topology 13
3.2 The old architecture 14

3.3 The proposed architecture 15
3.4 Voltage shifts at imbalanced changes of signal lines 17

3.5 A 4-phased Tra in-Bus Pro toco l 18
3.6 The train-bus clocks 19
3.7 Standard ISA cycle 21

3.8 A write to a device on the train-bus 22

4.1 A direct mapping of the S T 3-bit counter to hardware 29

4.2 The counter modulo-21 32
4.3 The differential clock generator 33

4.4 Instantiations of the counter cells 33

4.5 State Diagram for the C o m m a n d Dispatcher 34

4.6 S T code for the dispatcher cell 35

4.7 State Diagram for the Ret i r ing of a C o m m a n d 36
4.8 S T code for the retire cell 36

5.1 Bus Control ler - Register View 39

5.2 The need for an addit ional data-write buffer 41

5.3 The "ou t -F IFOs" : C m d , A d d r and Data -Wri te 42

5.4 State Diagram for Modu le driver.sti 43

5.5 The state variable declaration 46

5.6 Funct ion definitions for the qcontroller cell 47

5.7 C o m m a n d F I F O control signals 48

5.8 Da ta -Wr i te F I F O control signals 48

5.9 Result F I F O control signals 49

5.10 Qcontroller module: forcing an idle train-bus cycle 49

5.11 The special buffer for C o m m a n d - F I F O stage 2 50

v i

6.1 Sample test application (in C + +) for the bus controller: constant

and function definitions 55

6.2 Sample test application (in C + +) for the bus controller: main func

tion body 56

B . l The "ou t -F IFOs" : C m d , A d d r and Data-Wri te 72
B.2 The " i n - F I F O s " : Status and Data-Read 73
B.3 The Cont ro l Logic Cells 74

D . l Boa rd schematic sheet 1 83

D .2 Board schematic sheet 2 84

D . 3 Board schematic sheet 3 85

E . l The controller board with components 87
E.2 A list of the components placed on the controller board 88

v i i

In memoria tatalui meu.
To the memory of my Dad.

vi i i

Chapter 1

Introduct ion

Embedded systems can be found everywhere from airplanes to doorknobs. A s em

bedded systems have become more widespread and more complicated, interest in

systematic approaches to their design has grown as well . A n embedded system dif

fers from a general purpose computer by its specialization for a particular group

of tasks; often the system has to deal wi th interfacing and communicat ion between

a wide variety of sensors (i.e. input devices) and actuators (i.e. output devices).

Design specification plays an important role in the design process.

Embedded systems are inherently concurrent. There are the sensors to be

monitored, the actuators for process control, and several software tasks may coordi

nate all these activities. If we take as an example the automatic control of trains on

the same track system, several trains move on the track at the same time; position

sensors need to be monitored, each train has its own set of geographic objectives

and time schedule. Th is raises a coordination problem: avoiding collisions and ful

filling the schedule requirements. Our model train set - a research project in the

Integrated System Design lab, see section 1.1 - includes several pieces of hardware,

each with its own notion of time: the host computer, the I S A bus, the train bus,

the switch controllers, the sensor interfaces, the signaling protocol on the track by

which commands are sent to the speed controllers in each t ra in . These all operate

concurrently.

Concurrency may introduce non-determinism. M o s t hardware description

languages (H D L s) generally have deterministic semantics to appeal to designer in

tui t ion and to simplify synthesis. Mul t i p l e notions of t ime, multiple clock-rates, and

non-determinism are hard or impossible to represent in such commonly used frame

works. Al though many H D L s prevent the designer from expressing non-determinism

in their models, this does not ensure that reality wi l l cooperate: events may occur

in the implementation in orders that were not considered by the H D L model. Such

1

incomplete modeling can lead to errors in the final design.
This thesis uses a concurrent programming language, Synchronized Transi

tions (ST) , for design specification. A n introductory description of the language is
given in chapter 4. It consists of a set of state variables and transitions; transitions
can be combined either synchronously or asynchronously. Considering the train set
example, we have components that operate synchronously but at different speeds
so there may not be a synchronous way to describe their interaction; also the soft
ware that controls the whole application can issue commands at its own pace, which
should not have to be predictable. Here, the concurrency and non-determinism
inherent in the S T language provide a natural way to model the design.

S T was originally proposed by R a v n and Staunstrup [14] and has been used
extensively for design and verification of both synchronous and asynchronous cir
cuits. M u c h of this work has been done by students at the Danish Technical Univer
sity in Lyngby. The S T compiler used allowed either synchronous or asynchronous
descriptions, but not both; mixing the two kinds of operators was not allowed. The
S T version used in this thesis removes this l imi ta t ion .

The mixing of combinators in U B C S T provides a natural way to express
concurrency and non-determinism encountered in co-design. The uti l i ty of this ap
proach is demonstrated by using it to design a bus interface for a computer controlled
train set. A more detailed description of the necessity and usefulness of mixing com
binators is given in chapter 4; chapter 5 shows in what way this feature affects the
translation from S T to V H D L .

1.1 Train set project

Chapter 3 presents the train set. The train set is a test bed for embedded system

design in the Integrated System Design lab in the Computer Science department at

the Universi ty of Br i t i sh Co lumbia . It consists of a model train set (with tracks,

engines and cars) connected to a computer v i a a parallel bus. The test bed is used

for s tudying and i l lustrat ing safe implementations (e.g. running the trains without

accidents) in an integrated software/hardware system.

The project was started in 1992 by two former graduate students, and al

though it has been operational, several factors have determined the decision for

important design changes. These are explained in detail in chapter 3. The main

concern are electrical problems (transmission line effects) and design modulari ty;

also the possibility to use the project for design verification studies.

2

1.2 Summary of thesis contributions

The research undertaken for this thesis included the design, implementation, and
test of a useful interface for real-time control and embedded system research. The
design is more modular than the previous design and it allows a standard computing
platform to be used for the controller. The thesis offers a documented design for
future verification projects.

Furthermore, this thesis proposes a methodology for hardware/software co-
design. The train bus controller represents a component of interest from a co-design
point of view: an interface between two buses with two different clocking method
ologies. Th is design process was an experiment to validate the design methodology.
The S T language provided the framework for co-simulation. The S T design model
was used - with manual translations - for board layout and component program
ming. Current ly, we do not have automatic synthesis and layout tools based on S T .
Instead, the detailed S T description was translated to V H D L . Al though this is not
an efficient design approach, it allowed a comparison of S T with V H D L .

Chapter 6 gives an evaluation of the chosen methodology and test results. It
summarizes the accomplishment of this thesis and suggests further work.

3

Chapter 2

Co-Design

2.1 What Is Co-Design ?

Co-design refers to a common framework for designing the hardware and software

architectures for an embedded system. "Embedded system" is a definition for a very

wide range of digi tal systems used mostly in dedicated applications, containing ana

log circuitry and often mechanical parts as well. Co-design has become a strategic

technology for systems as simple as household items like thermostats or answering

machines, as well as for complicated medical instrumentation, automobile control

systems, or "fly by wire" aircrafts.

Whi l e the design of general purpose computers aims at a solution which

minimizes cost while maximizing speed, storage capacity etc. for a broad range of

applications, embedded systems are very application specialized. The application

domain also dictates the co-design methodology for a particular embedded system.

A p a r t from cost constraints, these systems also often have power, weight, and phys

ical size l imits (Wolf [21]); embedded systems usually have to meet hard real-time

deadlines.

For general purpose computers, requirements are relatively well defined: the

instruction set determines the correct behaviour of the processor, and performance

targets for benchmarks give high-level t iming properties. For embedded systems,

specifications must describe the interaction of the system with its environment,

and producing a correct and complete specification can be much more challenging.

For example, consider the design of an ignition and fuel-injection controller for an

engine. The designer's intention may be in terms of performance and efficiency of

the engine wi th its controller. Thus, a specification for the controller must include

a detailed model of the engine. Such a model may not be available at early stages

in the design.

4

A d d i n g to the difficulty of the co-design problem is also the fact that in

embedded systems, as the name says, the computing part is embedded, therefore

hard to access for debugging. Tradi t ional break-point debugging is often infeasible

for embedded designs. Aga in , consider the example of the engine controller: the

embedded system operates in a real-time environment. The only way to test the

controller is when it is connected to an engine. If the software stops at a breakpoint,

the engine wi l l stop running.

Given the specification of a system which may include hardware, software,

analog and mechanical components, co-design represents the process of going from

the specification level to the implementation level. A typical co-design flow is hard

to give since co-design tools differ in how they delimit the design steps, but a generic

co-design methodology would include some key phases such as (see Ga j sk i et al . [5]):

• Specification: stat ing system requirements and building a model of the de
sign from these. If we take the engine control example, design specification
includes [9]: (a) identifying the tasks of the system - in this case providing the
correct amount of fuel and firing spark plugs at the right t ime, (b) identifying
the inputs to the controller, such as signals from the crank position sensor or
the manifold pressure sensor, (c) usually making abstraction of details, de
ciding how the system is going to fulfill its tasks. Th i s includes dealing wi th
deadlines, wi th obstacles to correct functioning - such as noise - , wi th power
constraints, safety requirements, etc. In other words, design specification gives
a description of the design as the outside world expects it to behave.

• Al loca t ion & Par t i t ioning: In general, a specification should describe what
the system is supposed to to, and an implementation describes how it does i t .

However, most work on specification for co-design has been done by the C A D

community wi th a goal of automatic design synthesis from the specification. To

make this goal practical , specifications for co-design tend to include top-level

design decisions. For example, a specification may be in terms of a collection of

communicat ing processes [15] or as a "control da ta f low graph" [11]. Each pro

cess can be implemented in either hardware or software, and the specification

describes the da ta and control interactions between these processes.

Al loca t ion is the process of choosing the type and number of components

for implementation, part i t ioning defines the mapping of functions and /or

processes from the specification onto the allocated components. M o s t often

allocation and part i t ioning constitute one step only since if the part i t ioning

is not satisfactory, a different allocation may be tr ied. M u c h work has been

done towards C A D tools for this step of co-design [7, 12, 11]. There is usually

5

no single opt imal solution to this allocation & part i t ioning problem; there are

trade-offs that need to be balanced. For example, one might want to put

all the functions into a general system processor to minimize cost. However,

such a processor may not be fast enough to handle everything. For the engine

controller, there may be one processor that computes the injector setting and

spark t iming. A second processor may handle the real-time interface with the

engine. A dedicated D S P may process some of the data that is sampled to

assess the engine's operation. A n A S I C may provide communicat ion between

these processors.

Scheduling: The operation of the embedded system is partit ioned to tasks,
and tasks have been assigned to various kinds of C P U s , A S I C s , etc. The
same hardware component may handle several tasks. Th i s is why scheduling
is needed. Taking the engine controller example, there are operations that
need to be done for every rotation of the crankshaft: actuating fuel injectors
and firing spark plugs. These have real-time constraints. There are operations
that can be done on a longer t ime scale, but st i l l must be fast compared to
human response time: computing the amount of fuel to be injected, setting
the throttle valve in the intake manifold. There are computations that can
be done on an even longer time scale: changing mode of operation based on
engine temperature, air temperature, oxygen content in exhaust, etc. These
processes need to be scheduled so that all deadlines are met.

There are many approaches to solve this N P - h a r d problem. One that takes into

account non-determinism (the impossibil i ty to predict task execution times) is

the work of Gerber et al . [6]: an offline component checks if there is a possible

scheduling to meet all constraints and then produces a calendar that has lower

and upper bound functions for the start times of the tasks rather than absolute

numeric conditions. The online component then fills in the numeric values of

the parameters inside the functions as they become known (the parameters in

the bound functions of one task are start and execution times of other tasks).

Other approaches, as reviewed by R.Camposano et a l . in [4], are

- A S A P / A L A P (as soon as possible/as late as possible) scheduling;

- Lis t scheduling - the difference between the A S A P and A L A P times are

computed for all the tasks; this denotes the mobility of a task. The task

with the least mobil i ty has the highest priority. Other cr i ter ia for priority

can also be used.

- Force-directed - also starts from computing the A S A P / A L A P difference,

then the algori thm builds a model of "operation density" using the prob-

6

abilities of operations to fall into certain execution steps. F r o m here

there may be different variations of summing up these probabilities and

deciding on the actual scheduling.

- Path-based - each of the possible execution paths is scheduled, then the

path schedules are merged to form a single state transit ion graph.

- heuristic approaches: "percolation" scheduling, and scheduling by sim

ulated annealing or simulated evolution. These are based on an ini t ia l

(tr ivial or random) schedule from which better solutions are iteratively

generated using heuristics.

• Communica t ion Synthesis: components need to communicate with each other.
Th is communication can be implemented using shared memory, buses, special
serial l inks, etc. In the case of our t rain set, communicat ion happens through a
special network - a bus wi th an established protocol. For the engine controller
it is signal lines, that is serial ports, that connect the controller to sensors and
actuators.

Analys is and validation is necessary after every step. In our case, the bus
controller fits into the context of a bigger co-design research project, the train set
described in the next chapter. The enumerated design steps apply mostly only to the
train set as a whole. For the controller, the choices for allocation and part i t ioning
were quite straightforward, as described in chapter 5.

2.2 Current Issues in Co-Design

A good reference for the reader regarding current issues in co-design is an I E E E

roundtable [16] where seven designers were invited to express their views on the

definitions, characteristics and shortcomings of co-design. Th i s roundtable actually

shows how vaguely defined the term co-design st i l l is. For instance, Paul in sees

co-design as all-hardware, programmable or not, while Harr says designers start

from the premise that everything should be done in software and only the necessary

hardware should be included.

Nagasamy points out that the "co" in co-design should stand for "concurrent

and cooperative design", and that the real challenge lies in designing the software

along wi th the hardware. Agnew embraces this viewpoint too. Hav ing different

teams working independently on hardware and on software is not really co-design.

Erns t prefers call ing it computer-aided co-design because it is the C A D support that

unifies hardware and software development, but he further states that no decent

tools exist that go all the way down from specification to Register Transfer Level

7

(R T L) code, which is due the variety of target architectures. Wol f [20] also points
out pressing needs for C A D tools in several design phases such as co-simulation,
restructuring and part i t ioning of processes, system- and program-level evaluation.

In Paul in 's opinion [16], the main issue in co-design is compilers for the
diversity of processor architectures and the real-time constraints typical to embedded
systems. B u t Nagasamy sees a single pressing issue, which is the capture of the
design engineer's specification. Paul in and Har r agree this time that the design
process in most cases starts from an incomplete specification; such specifications are
assumed complete and accurate before design starts, in other words, this high-level
description is usually not "debugged". A n impressive percentage of the roundtable
article is taken by arguments for the need for good specifications. Yasuura comes
right out and says academics should focus on a new specification model.

2.3 Models and Specification Languages for Co-design

A s Staunstrup states in [19], the aim of high-level design techniques is to reduce

design t ime and effort by moving decisions upwards in the abstraction level of the

design models. A s designs become larger, the details are too many to be all grasped

by one designer. Models are necessary for design overview. A s electronic designs

become more complex they push the abstraction levels of models upwards, making

it common today to describe hardware circui t ry in a similar way to the abstraction

found in software.

In other words, designing hardware and software is not that much different

anymore. The delimitations of hardware and software components wi th in an appli

cation become less evident, and the designer needs to be able to model his design in

a manner general enough to cover both hardware and software, without any com

mitment from the start as to what should be implemented in hardware and what in

software. B u t most existing modeling tools and languages today start from either

pure hardware description (for example G u p t a and DeMiche l i ' s approach [7]), pure

software description (for example C O S Y M A [12]), or mixtures of both but clearly

delimited by using a different language for each (like C o W a r e [15] and Ptolemy [8]).

Vulcan [7] is a hardware-software cosynthesis system which performs au

tomated part i t ioning on an internal graph representation; init ially, the design is

specified in HardwareC, a subset of C . Vulcan starts from assuming an all-hardware

design and then performs repeated iterations of t ry ing to move parts of the design

to software; the cri teria are: (a) whether t ime constraints are s t i l l satisfied and (b)

minimiz ing communicat ion overheads. Vulcan can handle parallel processes: hard

ware and software components may run in parallel [11]. The method targets systems

8

consisting of A S I C s and a C P U to reduce A S I C size.

C O S Y M A [12] is quite similar to Vulcan , except it starts from an all-software
assumption of a design specified in C * . C * is a superset of C wi th added features
to allow for t iming constraints, task concepts and task communicat ion. C O S Y M A
targets systems consisting of one C P U and one A S I C for processor speed-up. A s
mentioned, it is a "software-oriented" approach; hardware is added only where nec
essary because t iming constraints are violated by the all-software solution. It is
an automated software-oriented part i t ioning tool with hardware extraction when
needed.

L Y C O S [11] is another automated part i t ioning tool . It also starts from trans
lating specifications to an internal graph representation, but it aims at not to l imi t
the designers in using the specification language they prefer; it currently supports
C and V H D L but the research group is working towards including other specifica
tion languages among the accepted ones - including Synchronized Transit ions. The
way it works is that based on the internal representation graph, L Y C O S generates
"Basic Bu i ld ing Blocks" which later can be moved between hardware and software.
The part i t ioning algori thm - P A C E - is based on elaborate methods for estimating
software execution time, hardware execution time and hardware area size.

CoWare [15] is a hardware-software co-design environment which aims at
integrating hardware and software components that were specified, implemented,
simulated in different languages and with different tools. A similar approach is
found in P to lemy [8]; part i t ioning and mapping is done at the very beginning of the
design process. C o W a r e uses notions such as processes, ports, channels, protocols,
communicat ion mechanisms - Ptolemy has blocks with portholes - the idea is that
after hardware and software components are produced by different tools, they need
to be interfaced correctly to result in the final system. These approaches do not
solve the problem of the separate design of hardware and software for an embedded
system, from the root of the problem, but a im at helping the designer "glue" the
components together in a correct and reliable way at the end.

The computat ional model of a design is a "delicate balance between abstract
and concrete" (Staunstrup [19]): if it is too concrete, the designer is constrained by
low-level decisions in early phases; if it is too abstract, it may become difficult at
later stages to make an efficient realization. However, it should be abstract enough
to describe computations in a range of technologies.

9

2.4 System Modeling and Co-simulation

A s mentioned above in section 2.1, the process of going through various levels of
abstraction of the design model requires simulation after the model for each level
has been established, to make sure the model st i l l respects the ini t ia l system require
ments. If design is actually co-design of hardware and software, then simulation has
to become co-simulation of hardware and software, since we want to simulate the
system as a whole and not just isolated components.

From the examples given in the previous section, we can conclude that
system-level specifications can be viewed as homogeneous - when a single language
is used, like in [7], [12] - or heterogeneous, where different languages are used for
hardware parts and software parts ([11], [8], [15]). Th is thesis uses and em
phasizes the benefits for the former, using S T as the single language for modeling
the design. A most common example for heterogeneous specifications on the other
hand is the mixed C - V H D L model. Heterogeneous specification approaches make
co-simulation more complex and difficult since they have to deal wi th interfacing,
translating protocols, etc.

2.5 Summary

Co-design is a relatively new field of computer science, and one in which designer's

efforts to cope wi th the difficulties of the moment have had to be "quick fixes" for

the simple reason that industry and market did not have time to wait for "elegant"

solutions. Al though much work has been done by academia to address the most

pressing needs in industry, some issues, as mentioned in section 2.2, are s t i l l not at

all addressed, or in our opinion not satisfactorily solved. Some of these issues, which

the present thesis addresses, are:

• high-level specification wi th possibilities for automatic verification;

• modeling concurrency and non-determinism inherent to embedded systems;

• providing a single specification language for both hardware and software -

modeling the design as a whole rather than spl i t t ing it into hardware and

software from the start .

10

C h a p t e r 3

Bus Interface Specification

3.1 The train set

A s mentioned in chapter 1, the t rain set is a model train set built and used in our

lab for real-time application experiments.

3.1.1 A c k n o w l e d g m e n t s a n d b r i e f h i s t o r y o f t he p r o j e c t

Since the train bus project was started several years ago and many students (and 2
faculty members) contributed to its design, I wi l l give a brief history of the work:

• 1992: F i r s t train-set built . The idea to do a train set was D r . C a r l Seger's based

on a similar set-up at the Univers i ty of Waterloo. The hardware was designed

and built by A n d y M a r t i n and E r i c B o r m . M i k e Donat and Nancy Day wrote

demonstration software (to move trains randomly without collisions).

• 1993: Train-set considered in class project in C p S c 513. A bus-based design

was chosen. The existing buses were evaluated and we chose our own design

for reasons of scalability and potential for verification (see section 3.4.4). The

original train-bus protocol was worked out in a project involving Catherine

Leung and Dwight Makaroff.

• 1994: D a v i d Weih wrote an S T model for the ISA to train-bus interface.

• 1995: M o h a m m a d Darwish designed hardware for the bus interface based on

David ' s code.

• 1996: D r . M a r k Greenstreet recognized the ground shift problem. His solution

to this (see section 3.4.3) involved changing the protocol from two-phase to

four-phase; also adding series resistors to drivers for signals other than the

11

clocks; using complementary signaling for clocks to improve robustness. It

appears that complementary signaling is not needed for other signals; doing

so would result in an unwieldy number of wires in the bus.

• 1996: I took over the project.

3.1.2 Description of train set components
Figure 3.1 is a diagram of the train track system; it shows tracks, switches (marked
wi th an "S") and position sensors (small circles). The train set has been working
with three trains in the past; they are shown in the start ing posit ion.

There are about 18 meters of track, 13 track switches and 60 position sensors.
The sensors are photo-darlington transistors that detect the shadow of a t rain as it
passes over the sensor. The train engines include decoder chips like the ones used
in infrared (IR) controllers for T V s , V C R s etc. Commands are sent to the trains by
pulsing the power supply that drives the track. Each such command has 9 bits: 5
bits specify a t rain, and 4 specify the speed. Each train has 8 forward and 8 reverse
speeds. There are 32 train addresses, but not enough room on the track for that
many trains. Typical ly , the t rain set has been operated with three trains.

The figure-8 type of track layout requires a polarity reverser. Trains may start
in the same direction and end up facing each other. This means that if ini t ia l ly both
had all the right wheels touching the positive rail and all the left wheels touching
the negative rai l , eventually one of them wi l l have all the right wheels negative;
that train went across a polarity reverser. Polar i ty reversal means there must be
electrical breaks in the rails. Furthermore, the engines draw current from all of their
wheels, which means that all of the wheels on one side of the engine are connected in
parallel. The polarity reverser is a segment of track that is electrically isolated from
the segments before and after i t . A s a train approaches this segment, the segment
is connected to the power supply in the same polarity as the segment that the train
is currently on. This allows the train to safely cross onto the reverser. W h e n the
train is fully on the reverser, the polarity of the reverser is flipped. Th is allows the
train to safely continue on to the next segment. The trains have bridge rectifiers in
them so they can accept power of either polari ty without changing direction. The
direction control is independent of the polarity of the tracks. The power is D C (a
reverser would s t i l l needed if A C power were used).

The difference between the existing and the proposed train set is in the
implementation of the controller. The existing train-set was implemented by two
former graduate students in 1992, as described in section 3.2. The necessity for a
more modular design which could better serve design and verification experiments

12

13

became evident later. A key piece of the new design is a bus interface, which is the

focus of this thesis.

3.2 The existing design

Figure 3.2: The old architecture

Figure 3.2 shows the existing train controller architecture. Programs are

writ ten and cross-compiled on the S U N workstat ion. Executables are then down

loaded over a serial link to the single board computer (S B C) . A M O T O R O L A 68010

based controller was used because U N I X doesn't provide real-time guarantees; the

simpler computer can respond to real time events. The 68010 S B C communicates

with the interface hardware using its parallel port . Th is involves using undocu

mented features of the parallel port to allow da ta to be read from the port .

The interface hardware consists of 31 T T L chips in addit ion to some discrete

components for the speed controller and to read the photo transistors. There is

a rats nest of wires under the track layout table, to connect to the switches and

sensors in the track. The design is monolithic and incompletely documented, which

makes any hardware modification difficult and unreliable.

3.3 The proposed design

To support more experimentation, we wanted a more modular design. A n

adequately documented design is also a prerequisite for verification. The key change

is to make the control and sensor hardware distr ibuted. Th i s wi l l allow individual

pieces to be replaced for design experiments.

14

train-
bus

switch control module

sensor control module

speed control module

Figure 3.3: The proposed architecture

Figure 3.3 presents the proposed architecture for the t rain set control . The

software wi l l run on a P C as the host computer; the train-bus controller wil l be

a P C - b o a r d . We chose a PC-based controller because P C s are readily available,

cheap, and provide a popular software development environment. Th is also means

we can further expand the design in the future - we can add other interfaces, such

as network cards to communicate wi th other computers during experiments. The

use of D O S makes it possible for an application to override all operating system

functionality, thus making real-time applications possible.

The separate modules for each control and sensor function allow the design

to be modified one piece at a time; they provide an alternative to the monolithic

rats nest of wires of the current design.

3.4 The train-bus

The decentralization of the design requires an organized means of communi

cation between the modules. Th is is the train-bus, which provides a simple interface

to sensor and actuator modules. The simple design should help teaching and verifi-

15

cation research.

3.4.1 High-level design choices

A parallel bus was chosen for teaching and verification purposes. A l so , a protocol
for the bus had to be established: it should be synchronous, master-slave. Th is
should make it easier to teach to C S grad students with litt le hardware experience.
Bus operations are simple. There is a clear mapping of wires to functions (unlike
a serial bus where the same wire carries several different logical signals at different
times). We hope that this wi l l make formal verification easier as well.

F rom a mechanical point of view, the decision was for r ibbon cable. Devices
can be connected v ia cr imp connectors. The bus goes under most of the track so that
sensor and switch modules can be close to the devices that they sense or control . We
expect to use between 5 and 15 meters of ribbon cable. Th is makes it impract ical
to ensure tight control of electrical properties.

3.4.2 Logical details

The wires of the train-bus are split into logical groups as follows:

• 8 wires for data

• 8 wires for address

• 4 wires for command

The justification for choosing these numbers is as follows: for address, 4 bits pre

sented a risk for running out of device addresses if the design was successful. 8 bits

offer 256 distinct addresses, which seems large enough to be a safe choice (since slave

devices may be controllers that can handle several sensors/actuators). For data, an

8 bit bus is small enough to keep the bus from having too many wires and seems

adequate for typical control applications. The 4 bits for command offer 16 possible

commands, which means again flexibility for future extensions.

3.4.3 Electrical details

This section presents some issues that need to be considered when implementing a

long bus with many devices. The devices draw no D C power. The bus operates

at a relative low clock frequency, giving the signals t ime to settle to valid digital

values. However the low frequency does not mean we can completely ignore high-

frequency effects. Ringing, spurious triggering, etc. are all possibilities because the

logic devices can drive their outputs wi th small rise and fall-times, the ribbon cable

16

can transmit relatively high-frequency signals, and the logic devices can respond on
short time-scales. We have to make sure that this sensitivity to short-time scale
behaviour doesn't cause the system to malfunction.

Our concern is about reflections and about power voltage shifts that may
occur for imbalanced changes of the signals. Accord ing to Kirchhoff 's current law,
the current through the ground circuit must equal the current through the signal
wires. The signal wires each have their own impedance so it wi l l take a certain time
for the data/address lines to become low, during which the ground voltage level is
shifted upwards. A s a worst case example, let's see what happens if 8 address and 4
command wires happen to change in the same direction at the same time (later in
this section, figure 3.5 and the related explanation show why we are considering this
example). We get the voltage divider effect shown in figure 3.4, where V1/V2 = 2/3
and VI + V2 — 5, which means that the signal lines wi l l go to 2 V (instead of 5V)
and the 8 ground lines wi l l go to - 3 V .

Figure 3.4: Voltage shifts at imbalanced changes of signal lines

The signal lines of the train bus are very long and have to be analyzed as

transmission lines. Reflection along the cable lines causes the power lines to bounce

back and forth after such shifts, and since ground is the reference voltage, the circuit

behaves as if the signal lines would bounce. Even if power shifts would not be a

problem, reflection means that every t ime we have a transitions at the dr iv ing end

of a line, this voltage change wil l travel along the cable and get reflected at the other

end, which results in ringing on the signal lines.

We apply a strategy to deal wi th this problem:

1 7

• We use series resistors to l imit drive current for address, data, and command.

The impedance of the ribbon cable was measured (about 70 ohms). Using

680 ohm series resistors gives a total drive impedance of 680/12 = 56 ohms

(for the worst case considered, of 12 wires switching simultaneously). Ground

impedance is 70/8 = 9 ohms. Thus , we expect a worst-case ground shift of

about 1 volt .

• We use differential clocking, so clock signals should have minimal contribution
to ground shift. Also , wi th the 4-phase protocol, address and command lines
are changing at different times from data lines (less wires that may change
level at the same time). A t iming diagram of the new protocol is shown in
figure 3.5. The actions corresponding to the 4 marked clock edges are as

C L K l

CLK2

0 0

Figure 3.5: A 4-phased Tra in-Bus Pro tocol

follows:

- 1. controller sends address and command;

— 2. device reads address and command;

- 3. controller or device sends data (depending if it was a read or a write);

— 4. data received.

• We use Schmitt-triggers and C-element clock debouncers, as in figure 3.6.

The Schmit t triggers annihilate slight variations on the signal lines, while the

Mue l l e r -C element eliminates ringing. Tha t is, one signal can oscillate until

the other one changes, without causing problems.

A s a summary, we make the clock distr ibution robust and we only look at the

address, data, and command signals at times when they are guaranteed to have

settled.

18

a b c
A Mueller-C element

© ©

Figure 3.6: The train-bus clocks

1 9

3.4.4 C o m p a r i s o n w i t h o t h e r bus -schemes

• H P - I B : (Hewlett Packard Instrumentation Bus interface, or G P - I B or I E E E

488 standard) Th i s bus standard has similar bandwidth (also 8 bit parallel

data). It allows a l imited number of devices to connect (15). Devices present

a D C load, which l imits scalability.

• I IC: This is a serial, twisted pair interface standard for embedded controllers.
It would require less wir ing and we could use micro-controller chips that have
the interface hardware buil t- in. In that case however, all the design details
would be buried in those microcontrollers. We believe that it would be difficult
to write a satisfactory formal model for such a controller. Th is would be a
barrier to our verification efforts. Also , hiding all of the hardware would make
the design be of less pedagogical value

3.5 The ISA to train-bus interface

A s mentioned in section 3.3, the proposed design uses a controller between the host
P C and the train bus; the controller is the interface between the ISA-bus and the
train-bus.

The design of this interface is the subject of this thesis: the interface is
needed before other modules can be built and tested. A l so , interfacing between two
different bus protocols with two different sets of t iming requirements provides an
interesting design example.

T h e I S A b u s

We used the P C ' s Industry Standard Archi tecture (ISA) bus because it 's simple

and we do not need the higher performance of other P C buses. Fol lowing is a very

brief description of the ISA-bus, presenting only details relevant for our applicat ion.

More information can be found in [17].

A standard ISA 8-bit I / O cycle is given in figure 3.7.

The meanings of the signal names are:

• B C L K - bus clock: the ISA clock;

• A E N - address enable. Th is line is driven by the platform circui t ry as an

indication to I S A resources not to respond to the address and I / O command

lines when the D M A controller is the bus owner.

20

B C L K

C O M M A N D
(IOW / IOR)

D A T A (READ)

D A T A (WRITE)

Figure 3.7: Standard ISA cycle

• B A L E - bus address latch enable. Th is signal is driven by the platform C P U
to indicate when the address lines are valid. Th is signal is used to latch the
address lines.

• SA(0-9) - the address lines.

• I O W - I / O write: indicates a write cycle to an inpu t /ou tpu t port;

• I O R - I / O read: similar as above;

The cycle starts with a rising edge of B A L E . On the falling edge of B A L E , the
address is guaranteed to be valid (on lines SAO-9). O n the rising edge of BCLK3
we are guaranteed to have the correct value for the command lines. There are two
separate lines for read and for write: I O R and I O W , both active low. If neither is
driven low, this means the cycle is not an IO-access. If it is an IO-write cycle, the
data to be wri t ten is already valid at the falling edge of I O W . If it is an IO-read
cycle, the data must be valid on the fifth rising edge of B C L K after I O W goes low
(B C L K 7 in the figure).

The ISA-bus supports many other operations. For example, there are "early
read" and "early write" operations that can be performed if the device asserts the

21

appropriate signals. Alternatively, the device can signal that it is not ready and the

bus stalls until the device indicates that it is ready. We use the default t imings for

simplicity. There are also 16-bit transfer cycles for both 10 and memory operations,

but we do not need to use these.

R e a d and wr i te transactions on the train-bus

A t iming diagram for the 4-phase clocking was shown in figure 3.5. The train-bus
protocol operates on a master-slave basis; the controller is always the master of the
train bus, while the devices connected to it are the slaves. Regardless of the direction
of the transfer, it is always the master who initiates i t . The least significant bit of
the command specifies whether it is a command of type write or read, so there are
8 write commands and 8 read commands possible. The signal diagram for a write
command on the train-bus is shown in figure 3.8 (a write to a device connected
to the train-bus). On the rising edge of tbclki (clock-event #1) , the master (the

tb_clkl

tb_clk2

tb_addr,
tb_cmd

tb_data

/
\

/ 1
L
a / X

\

i i

master sends (' master drives
address and ' data lines
command i

device reads
address and
command

device reads
data

Figure 3.8: A write to a device on the train-bus

bus controller) sends the address of the device the command is intended for, and

the actual command. O n the following clock event (#2), the rising edge of tbclk2,
the devices decode the address and command lines. O n the falling edge of tbclki
(clock-event #3) the master drives the data lines with the information intended for

22

the addressed device, and on the falling edge of tbclk2 (clock-event #4) the device

that decoded its own address on event #2 wi l l read the data.

A read is quite similar except the direction of the data transfer is reversed

so on clock-event #3 the slave device (instead of the master) is the one who drives

the data lines with the requested data, and it is the master who reads the data lines

on clock-event #4.

T h e top-level control ler design

We can model the design as a F in i te State Machine (F S M) for the ISA bus on one
end, another F S M for the train-bus at the other end, and F I F O s in-between for
communicat ion.

The application running on the P C , i.e., performing write and read trans
actions on the ISA-bus, wil l see the controller as a collection of registers. We need
one for D a t a , Address and C o m m a n d each, and then we also need one for Status
because we need to know when the controller is ready to accept a new command;
and since the train-bus operates at a much lower frequency than the ISA-bus, this
means we must have a way to inform the application when there is requested data
available to read. So our Status register has two bits of information, CfO (Command
F I F O stage 0 is full) and R f l (Result F I F O stage 1 is full). The application must
also be able to reset the controller; this is done by performing a write to the Status
register. Every program running on the host computer for the train-set control wi l l
need to start by doing a write to this register. Note that the Status register may be
both read and wri t ten, as well as the D a t a register; but the Address and C o m m a n d
registers may only be wri t ten.

Before sending a command, the program has to check whether the controller
is ready for a new command, so it needs to read the Status register unti l the CfO bit
indicates the F I F O has room in its bot tom stage for a new command. The controller
guarantees that only the application can set this bit, so once it was read as empty, it
wi l l stay so until the application issues a new command, that is, performs a write to
the C o m m a n d register. The application may write to the Address and D a t a registers
without changing the status of the controller; only a write to the C o m m a n d register
changes that. A write to the C o m m a n d register wi l l cause the F I F O s to advance
even if there were not new values supplied to the D a t a and Address registers. Th is
means that if a new write command was issued for instance, the last values wri t ten
into those registers wi l l be used for the new command.

A s mentioned in the section above, the controller does not need to know
about the exact command, only about the transfer direction (read/wri te) . A write
command does not need to be retired, but a read command does, because when

23

issuing the command the application only asks for the data, and then it has to wait
unti l the device provides the requested data. To retire a command, the program
needs to read the Status register until the R f l bit indicates that the result F I F O
has new da ta available; then it may perform a read from the D a t a register to get
the actual da ta value. A s with CfO, the controller guarantees that once R f l became
high, it wi l l stay so until the program performs a read from the D a t a register, which
is the only way to reset this bit. The controller also guarantees that the da ta read is
always in the order the read commands were dispatched. Due to the F I F O s , we may
have several train-bus transactions outstanding at any time; however, the condition
for correct operation of the controller is that operations are completed in the same
order that they were issued by the program.

3.6 Summary

We presented the train-set - the history of the project, the description of its com
ponents, and the train-bus. For the train-bus we justified the choice for the type
of the bus (and the number of wires) as well as for the protocol. We explained
the electrical considerations that were the reason for changing the protocol from
two-phase to four-phase.

We further justified the choice for a PC-p la t fo rm for the bus-controller. The
circuit is an interface between the ISA bus on the P C and the train-bus on the
experimental t rain set up; we described the protocols used in each of these buses,
and the interaction between the two protocols.

24

C h a p t e r 4

Specification Language

4.1 Why ST ?

A n important issue in co-design is correct design specification capture (Nagasamy,

[16]; Wolf, [20]). Because of the complex application nature of embedded systems,

a clean and complete specification is both very important and hard to achieve. The

penalty of specification errors grows with the time unti l detection.

Embedded systems can contain hardware, software, analog circuits, and me

chanical parts. Interfacing them correctly is as important as it is challenging. The

components are working at the same time, often at different rates. This is why

wri t ing specifications in sequential programming languages may not be accurate.

Staunstrup [19] makes a strong case for the use of concurrent programming

languages in the design of embedded systems: for such systems, the order of external

events and computat ion systems cannot be known in advance or prescribed, so

sequential languages are not adequate since the operation sequence is unknown.

Concurrent models are more appropriate since they can model non-determinacy,

simultaneity, and multiprocessing, which arise in embedded systems.

Synchronized Transitions (ST) [18] is a concurrent programming language

that wi l l be described in section 4.2. It is easy to learn and use, yet very powerful

for modeling. Its advantages address many of the current co-design problems (some

cited above) and bottlenecks.

A major co-design bottleneck is in the design flow from specification to im

plementation (Nagasamy, [16]). In that respect, S T code is easy to translate to

either another programming language like C or a hardware description language like

V H D L . K e y areas of co-design like part i t ioning and co-simulation are also helped

by using S T . The same notation is used to model both hardware and software. A l

though we cannot claim we have practical synthesis techniques for going from an

25

arbitrary ST program to a hardware implementation or to an efficient software im
plementation, we do have techniques that work if the program is written in a certain
style. However, the styles that are suitable for hardware implementation are not
the same as the styles that are suitable for software implementation.

We also take a refinement based approach. The design starts with a high-level
program that models the key behaviours of the intended system. This program is
successively refined, adding more detail at each step, until we get something we can
implement. Although there may be little or no distinction between hardware and
software at the most abstract level, we tend to head towards hardware-specific or
software specific styles for different parts of the program in this refinement process.
Thus, partitioning is done by the designer as part of the refinement process.

Co-simulation is done naturally since everything, hardware and software, is
modeled in the same ST program.

Last but not least, verification, or rather co-verification, is well supported by
ST. It can even be done automatically [10, 13]

4.2 Synchronized Transitions

Synchronized Transitions (ST) is a concurrent programming language. In ST a
design is modeled as a set of independent t ransi t ions. Transitions consist of a
guard and a mult i -assignment . For example

< a AND b ->• c := d >
is read "a and b enables c gets d". "a A N D 6" is the guard of this transition; in
other words, the assignment c :— d can only be executed if the guard evaluates to
true. A transition is said to be enabled if the guard is satisfied.

Transitions are executed a tomical ly , i.e. the evaluation of the guard and
performing the multi-assignment is a single indivisible operation.

4.2.1 Combinators

ST offers three transition combinators, ||, * and +. If two or more transitions are
combined with the asynchronous combinator, ||, then at each step in program
execution, one is selected non-determinis t ica l ly from those that are enabled. For
example, if we have

< a ->• c := d >

|| < b->e:=f >

26

then if only one of a or b holds, the corresponding assignment will be executed; how
ever, if both hold, one of the transitions will be chosen, but the choice is not specified
by the program. This allows abstract models to describe a wide class of behaviours.
It also provides an opportunity for optimization when deriving an implementation.
For example, the implementation may choose which transition to execute to max
imize performance or minimize the amount of hardware required, or to optimize
some trade-offs. The final implementation is often completely deterministic.

The operands of the product combinator, *, are performed as a single,
atomic state transition.

<C a -> c := d >

* < 6 - > e : = / >

is equivalent to
< a A N D b c, e := d, f >

in other words the combined transitions are enabled only if both of their guards are
enabled.

For transitions combined with the synchronous combinator, +, at each step
during program execution all enabled transitions are executed as a single atomic
operation. For example, if we have:

< a —>• c := d >

+ < 6 - > e := / >

this means that if only one of a, b is true, then only the corresponding assignment
is executed, and if both a and b are true, then the two assignments are executed as
an atomic operation.

Any transition or combination of transitions that causes a write conflict is
illegal. A write conflict occurs when there is more than one assignment to the same
variable in the same atomic operation. A write conflict can occur if transitions
are erroneously combined with the + or the * operator, or even within a single
transitions if the same variable is used more than once on the left side of a multias-
signment: for example, if two array elements, a(i) and a(j) are on the left side, and
i = j holds when the transition is enabled.

4.2.2 Modular Designs

27

A solution to dealing with increasingly complex designs is making them mod
ular. A modular design can be flat, i.e. all modules communicat ing on the same
level, or hierarchical - a module can contain other modules in its internal structure.

Synchronized Transitions supports modular and hierarchical designs through
the use of cells - collections of state variables and transitions. In a hardware analogy,
cells are like subcircuits. One cell may have several different instantiations just like
a circuit may have many instances of the same subcircuit wi th different external
connections. Likewise, a cell may be composed of other cells just as a circuit design
may consist of a hierarchy of subcells. A n S T program has a top cell that is the
root of this cell hierarchy.

The interface of a cell to the outside world are its formal parameters. These
can be of type static or state. Formal parameters that have been declared as S T A T E
variables are bound to storage locations (like latches on a chip or memory locations
of a process) when the cell is instantiated. B o t h the cell and its parent can read
or write these parameters, which provides a mechanism of communicat ion between
cells. The values of S T A T I C parameters are bound when the cell is instantiated
and are typically used to control the size of data structures or control recursive
instantiations. The default for formal parameters is S T A T E .

S T also has arrays, records and functions, which have the usual interpreta
t ion. S T programs can be split into modules; each module consists of a definition
part (file .std) and an implementation part (file .sti). Th is eases the wri t ing and
maintaining of the program; however, a module can contain descriptions of several
cells, so program modules do not necessarily have a clear mapping to the design mod
ules (the cells); this depends on the programmer's way of organizing his program
files.

S T also allows a module to be wri t ten with the definition part in S T and
the implementation part in C . This is a way to refine an abstract S T description to
detailed code.

4.2.3 ST for Co-design

M o d e l i n g synchronous c i r cu i t ry w i t h +

Let 's take a three-bit synchronous counter. In S T , it would be described as follows:
< incr -> qo := NOTqO > (* i l *)

+ <C incr A N D qO -> ql := NOTql > (* t2 *)
+ < incr A N D gO A N D ql -> q2 := NOTq2 > (* £3 *)

A diagram of the digital c i rcui t ry to implement this is shown in figure 4.1.

"expr;" in this case mean just " N O T q ," , but they could be more complicated in

other examples (here we could just have taken them from the negated output of the

2 8

D-latch, but we wanted to illustrate an approach); "enable;" is high if transition i is
enabled and low otherwise. For example, if enablei is high, on the next clock cycle
the qO latch will load expri, otherwise it will keep its old value.

M U X

exprl

enablei

expr2

enable2

expr3

enable3

D Q|
qO

D-latch

M U X

, Q
qi

D-latch

M U X

D Q

q2

D-latch

exprl

expr2

expr3

enablei

enable2

enable3

combinational
logic

Figure 4.1: A direct mapping of the ST 3-bit counter to hardware

This hardware can be described in V H D L as follows:

e n t i t y counter i s
por t (e l k , i n c : i n s t d _ l o g i c ;

ent: out s td_ log ic_vec to r (2 downto 0)) ;
end counter;

a r ch i t ec tu re s t r uc t of counter i s
component mux

por t (inO, i n l , s e l e c t : i n s t d _ l o g i c ;
out: out s t d_ log i c) ;

end component;

component d_la tch
por t (d , e l k : i n s t d _ l o g i c ;

q: out s t d _ l o g i c) ;

29

end component;

component comb_logic
por t (i n l , i n 2 , i n 3 , i n4 : i n s t d _ l o g i c ;

o u t l , out2, out3, out4, out5, out6: out s t d_ log i c) ;
end component;

s i g n a l e x p r l , expr2, expr3: s t d _ l o g i c ;
s i g n a l e n a b l e l , enable2, enable3: s t d _ l o g i c ;
s i g n a l dO, d l , d2: s t d _ l o g i c ;
s i g n a l q: s td_ log ic_vec to r (2 downto 0) ;

begin
ml : mux(q (0) , e x p r l , e n a b l e l , dO);
m2: mux(q (l) , expr2, enable2, d l) ;
m3: mux(q (2) , expr3, enable3, d2);
qO: d_latch(dO, e l k , q(0)) ;
q l : d_latch(d l , e l k , q (l)) ;
q2: d_latch(d2, e l k , q(2)) ;
c: comb_logic(q (0) , q (l) , q (2) , i n c ,

e x p r l , expr2, expr3, enab l e l , enable2, enable3) ;
end s t r u c t ;

where the the multiplexer and the D-latch are regular multiplexers and D-latches

and the combinational logic performs the logic operations described in the S T code.

M i x i n g combinators : non-determinism to mode l mul t ip le clock domains

A s mentioned, the train-bus controller is an interface between two synchronous buses
operating at different clock rates. A description of this in S T would look like:

(isal + isa2 + isa3 + ...)
|| isaTOtrainbusFIFOQ

|| trainbusTOisaFIFOQ
|| [tbl + tb2 + m + ...)

where isal,isa2,... are transitions synchronous to the ISA-bus and tbl,tb2,... are
transitions synchronous to the train-bus. Note that this S T model does not state
the relative frequency of the ISA-bus and the train-bus and is robust to changes in
the train-bus frequency. In other words, we do not have to worry about frequency
details at this high-level description stage.

30

To refine this model for a particular clock frequency, even a specific clocking

protocol, we can write:
(isal + isa2 + isa3 + ...)

+ isaTOtrainbusFIFOQ

+ trainbusTOisaFIFOQ
+ trainbusClockGeneratorQ
+ < tbEdgel > *{tbla + tblb + tblc+ ...)

+ <£.tbEdge2^> *(tb2a + tb2b + tb2c+...)
+ <^tbEdge3^> *(tb3a + tb3b + tbZc + ...)
+ -C tbEdgeA > *(i64a + 4646 + tb4c + ...)

The asynchronous combinator || has disappeared and the synchronous combinator +
is used instead, since we went from a high-level description of components operating
at different speeds, to a refined (lower-level) description where we already decided
about the clocking methodology.

Note there are transitions without any actions in the example above (e.g.
<C tbEdgel >>); when combined wi th the product operator *, such transitions act
as guards for the transitions they are combined wi th . The execution of this code
looks as follows: at every execution step, the following group of transitions wil l be
executed as an atomic operation:

• every enabled transit ion from the isa-group;

• every enabled transit ion from the trainbusTOisaFIFO-group;

• every enabled transit ion from the isaTOtrainbusFIFO-group;

• the counter model is incremented; the counter divides the ISA-clock signal to

generate the clocking required for the train-bus. In our case, this is a 4-phase

clocking which means the events of interest are the rising and falling edges of

two differential clocks (tbEdgel to tbEdge4).

• whenever tbEdgei is true, every enabled transit ion from the group £6, is exe

cuted.

The train-bus clock generator is modeled in a similar fashion. It consists

of two cells, a counter modulo 21 and a counter modulo 4 that generates the two

delayed clocks p h i i , phi2 and the pulses corresponding to the 4 edges (rising and

falling for the two clocks).

The "counter21" cell (in figure 4.2) is a value of a C E L L type, its value is

given by the initializer expression, which is roughly a lambda expression. The type

definition for the C E L L type defines the types and storage classes of the parameters

31

STATIC
counter21: C0UNTER21 =

STATIC
max: INTEGER = 21;

STATE
count: INTEGER;

BEGIN
« reset -> count := 1 »
« NOT reset » *

(« count := (count+1) MOD m a x »
+ « inc := count=0 »
)

END;

Figure 4.2: The counter modulo-21

for the cell. The code is straightforward: it generates a positive pulse for inc every
21 execution steps.

The counter4-cell (see figure 4.3) uses the output of the modulo-21 counter
to toggle phi\\ and phi2 follows phi\ by a delay equal to the period of the signal
inc. Th is means that if we use the four events corresponding to the 4 edges of the
signals phi\ and phi2, they wi l l be separated by periods equal to the inc period, and
if we look at the set of 4 events, they wi l l repeat after a period of 4 * period(inc).

The two cells are connected in the main cell of the controller hierarchy as
shown in figure 4.4. The full code of this cell, wi th comments, can be found in
appendix A ; the purpose of the above fragment was just to illustrate that we need 3
of the 4 events to control the operations of some of the F I F O buffers, so we presented
these actions in a simplified way.

M i x i n g combinators : non-de te rmin ism to model the envi ronment

The non-determinism of S T can be used to model the environment for a design. For

example, the train-bus controller should work with any legal software running on the

P C , and we do not want to l imi t our model to describing one specific program. The

S T model for the ISA interface can perform any sequence of ISA reads and writes

that correspond to legal transactions with the bus controller. Figure 4.5 gives a

state diagram of a "dispatcher" cell - a cell modeling the legal actions a train-set

control software may take to send commands to the train-bus. Note that from state

S T A R T , several actions may be taken without any condition specified on the arrows

32

STATIC
counter4: C0UNTER4 =

STATE
p h i l , phi2: BOOLEAN;

BEGIN
« reset -> p h i l , phi2 := FALSE, FALSE »

+ « (NOT reset) AND inc » * (
« p h i l := NOT phi2 »

+ « phi2 := p h i l »
)

+ « evl := inc AND (NOT reset) AND p h i l AND (NOT phi2) »
+ « ev2 := inc AND (NOT reset) AND p h i l AND phi2 »
+ « ev3 := inc AND (NOT reset) AND (NOT phil) AND phi2 »
+ « ev4 := inc AND (NOT reset) AND (NOT phil) AND (NOT phi2) »
END;

Figure 4.3: The differential clock generator

STATIC
bcCell: BCcell = (* the model for the bus controller *)

(* ... declaration of internal signals *)
BEGIN

counter21(reset, inc)
+ counter4(reset, inc, p h i l , phi2, tbEdgel, tbEdge2,

tbEdge3, tbEdge4)
+ « tbEdgel » * (

AdvanceAddressFIFOO
+ AdvanceCommandFIFOQ
)

+ « tbEdge3 » * WriteTrainDataO
+ « tbEdge4 » * ReadTrainDataO

(*+...*)

Figure 4.4: Instantiations of the counter cells

33

read
status

CfO

CfO = Command FIFO stage 0 is full

Figure 4.5: State Diagram for the C o m m a n d Dispatcher

34

« state = START » * (
ReadStatusO

I| WriteAddress()
I | WriteDataQ
I I WriteCmdO * « state := ISSUED »
)

+ « state = ISSUED -> state := NEXT » *
ReadStatus()

+ « state = NEXT » * (
« CfO » * ReadStatusO

+ « NOT CfO » * « state := START »
)

Figure 4.6: S T code for the dispatcher cell

towards these actions; this means that from state S T A R T , any of "read status",

"write address", and "write data" can be done without advancing to the following

state; only wr i t ing a command advances the state machine to I S S U E D . After we

issued a command, we cannot issue the'next before we know the controller is ready

to accept a new command, which is signaled by the CfO status bit being false. CfO is

an acronym for "Command F I F O , stage 0"; CfO being true indicates that the stage

that accepts a new command is full . So the state machine stays in the intermediary

state " N E X T " until the status bit CfO indicates a new command can be dispatched,

and the state machine moves back to S T A R T . Also note that since we have a choice

of actions in the S T A R T state, it means the order of sending the data and address

components is not specified; what 's more, we can dispatch a new command without

providing new data and/or address values; in that case, the last wri t ten data and

address values wi l l be the ones sent onto the train-bus.

The S T code for such a cell is presented in figure 4.6. The non-determinism of

the choice between the actions that can be taken from the S T A R T state is modeled

by using the asynchronous combinator ||.

We also need a model of a cell that can retire data requested by a previous

read command. The state diagram for such a "retire" cell is given in figure 4.7. It

is similar to the one for the dispatcher, but simpler because there is not a choice

of actions that can be done from a certain state. A new response can only be read

if another status bit, R f l (which stands for "response F I F O 1 full), is true. The

corresponding code is in figure 4.8.

The application program wi l l look like:

35

Rfl

NOT Rfl

read
status

read
status

read
data

Rfl = Result FIFO stage 1 is full

Figure 4.7: State Diagram for the Ret i r ing of a C o m m a n d

« state = START » * (
« NOT R f l » * ReadStatusO

+ « R f l » * « state := NEWDATA »
)

+ « state = NEWDATA -> state := RECEIVED » * ReadDataO
+ « state = RECEIVED -> state := START » * ReadStatusO

Figure 4.8: S T code for the retire cell

36

dispatchCell{)
|| retireCellQ

This allows the client to perform split-transaction operations - i.e., the client

may dispatch a new command while one or more previous commands are st i l l out

standing; the client is guaranteed to have the commands retired in the order they

were dispatched.

4.3 Summary

After reviewing some of the problems that the co-design community is faced wi th ,
we are proposing the use of Synchronized Transitions as a specification language for
co-design. The language has been extensively used for hardware design by other
research groups, and the book published about S T [18] mentions the possibility of
using it for co-design. We enumerate the features of S T that make it suitable for
embedded system design, and give examples of the use of S T ' s synchronous and
asynchronous combinators. The use of both combinators in the same design model
has not been applied in previous research with S T . We explain the advantages of
removing this l imitat ion (i.e., not being able to mix the two types of combinators)
by giving examples of how we apply this new method to our train-bus controller
design.

37

C h a p t e r 5

The Design

The bus controller is an interface between two buses running at different speeds
and having different clocking methodologies and protocols. It consists essentially of
buffers and logic to control the buffering so that the two protocols are respected.

5.1 ST model design

5.1.1 The F I F O Buffers

Sending commands to the train-bus

A s described in chapters 3 and 4, the train-bus can be logically split into train-data,

train-address and train-command. Sending a command means sending the three

components; da ta and address are optional and the order of sending them does not

matter (as shown in figure 4.5). Because the two buses run at different speeds - the

ISA bus goes 84 times faster than the train bus - F I F O s are used to temporari ly

store the information until it can be sent out to the trainbus. A new command can

only be sent if the F I F O is not full . The commands that are implemented so far are

of type read, write and idle.

A register view of the bus controller

The P C sees the bus controller as a collection of registers it can write t o / read from.

The four registers are Data, Address, Command and Status, and their addresses are

(in hexadecimal) 0x300, 0x304, 0x308, 0x30C.

A register view of the bus controller is given in figure 5.1. The number

of stages for each F I F O is shown there as well: 3 for Address and C o m m a n d , 4

for Da ta -Wri te , 2 for Data-Read and Status-Read. A write to the Status register

38

causes a reset of the whole controller; the picture shows the two stages of the counter

generating the clocks (see section 4.2.3, figures 4.2 and 4.3), which have all outputs

set to "0" on reset. The data-write F I F O has an addit ional stage compared to the

address and command ones, because of the four-phase clock - this F I F O is being

read at a different clock edge.

(in)

D A T A - REGISTER

(out)

ADDRESS - REGISTER

C O M M A N D - REGISTER

D A T A • R E A D

D A T A - WRITE (W)

ADDRESS - WRITE (R)

C O M M A N D - W R I T E (C)

(in)

REGISTER

STATUS - INFO (S) (in)

REGISTER

(out)
reset

count21 count4 -

Figure 5.1: Bus Control ler - Register V iew

The top stages of the Address (A) and C o m m a n d (C) F I F O s are being read

at t b E d g e l , while the top stage of the Da ta -Wr i te (W) F I F O is being read at

tbEdge3. The A and C F I F O s advance when the shif tCf (shift C o m m a n d F I F O)

signal is high, and that signal goes high whenever the last C - F I F O stage is empty.

B u t that stage could be empty when the last W stage is not. O n the other hand,

new commands may be sent by the application to the controller if the C - F I F O is

not full . T h a t means w,e could send a new da ta component to the W - F I F O when

the W - F I F O is s t i l l full, if it doesn't advance on the same signal. Th is is why an.

addit ional W stage was added, to buffer the delay from t b E d g e l to tbEdge3. In

39

other words, this is in order to avoid the situation illustrated in figure 5.2, where we
risk overwrit ing the write-data. For a better understanding see also figure 5.3; the
signals names are explained in the following section and in appendix A . Since it is
an S T cell instantiation diagram, it does not explicit ly show the clock signal. The
V H D L code has a clock signal (the controller operates on the ISA clock) input for
every buffer showed in the figure (each square represents one F I F O buffer, the names
and stages of the F I F O s are printed beneath the buffer-cells). The buses carrying
the information to be stored in the latches (buffers) are shown as horizontal lines
entering the left side of each buffer, while the F I F O control signals are shown as
connected to the top side of each buffer (these are usually load or chip-select or
output-enable signals; the command buffer, stage 2, is the special buffer described
in section 5.1.2).

The design simulation worked correctly with only 2 stages for the A and C
F I F O s and 3 stages for the W - F I F O , but several idle commands appeared on the
train bus in-between the useful ones, which meant that too much time was lost
wait ing for the the first stage of the C - F I F O to become empty in order to send a
new command. (The controller issues idle train-bus cycles, identified by the idle-
command code, every time it does not have a command ready to be issued, or when
the result F I F O is full and it therefore cannot record the result for a new command.)
A n d since the ISA-bus runs at a higher frequency than the train-bus, it could provide
the useful commands at a much higher rate than the train-bus could process them;
this means the only problem were the insufficient F I F O stages, so I increased the
F I F O depth; currently, sending 10 or 20 commands works without idle train-bus
cycle insertion.

The buffer-cells used to model the F I F O are defined in the buffers.sti module
(see appendix A) , and their instantiations are shown in appendix B . Different buffers
had to be used since some require load-signals, others are tristate buffers and require
output-enable signals; some are 4-bit wide (C - F I F O) , some have 2-bit inputs (the 2
status bits R f l and CfO in case of the S ta tus -F IFO) , others are 8-bit wide. Because
of the S T syntax, declaring a general buffer and instantiat ing it in different ways
would have been complicated. Also for debugging purposes, I wanted to be able
to print different messages from inside different buffer cells, which would not have
been possible for different instantiations of the same S T cell.

Section 4.2.3 gave a detailed description of how the interfacing of the two bus
protocols is achieved (see especially figure 4.5). Figure 5.4 reminds the reader of the
steps for sending/ret ir ing commands from the train-bus; this is a diagram that was
used as a sketch to write the ST-code for the module "driver.st i" (appendix A) .

40

FIFO status right before tbEdgel

FIFO status between tbEdgel and tbEdge3

Figure 5.2: The need for an addit ional data-write buffer

41

-4H

I T

e
•2 X

Figure 5.3: The "out-FIFOs": Cmd, Addr and Data-Write

42

>

Figure 5.4: State Diagram for Modu le driver.sti

43

Read ing the Status

A t every clock cycle (every S T program step), the outputs CfO (command F I F O full)

and R f l (result F I F O has data available) from the queue controller are latched into

the first Status F I F O stage buffer. A t any point the application decides to do a read

from the Status Register, this information is available wi th in the same ISA-IOread

cycle .

Read ing Response D a t a

Whenever the controller has result da ta available (Rf l=h igh) , the application can
do a read from the D a t a Register, which wi l l cause the controller to anable the
tristate outputs of the final stage of the Result F I F O to drive the ISA-da ta lines.

New response data from the train-bus is loaded on every tbEdge4 pulse into
the first F I F O stage when the current command is a read. Current command means
the last command that was sent out, i.e. the command sent out at the previous
t b E d g e l pulse. The signals telling whether this was a read or a write are the
"isread" and "iswrite" outputs from the special buffer that makes the last C F I F O
stage.

The control of the F I F O s to ensure the above described operation is presented
in the following section.

5.1.2 The C o n t r o l L o g i c

Cont ro l logic actually means everything that 's not a F I F O buffer.

Address Decod ing

The bus controller is IO-mapped. It needs to know when it is being accessed by the

program running on the P C , which is being done by first decoding the address - the

addrdec cell - and then looking whether it is a write to or a read from that address

- the readwrite cell .

The address decoder samples the ISA-address lines at the correct moment

(defined by the state of the ISA lines A E N , B A L E) and decodes it for Tra inDa ta ,

TrainAddress , T r a i n C o m m a n d or TrainStatus:

« NOT aen AND ale »
* (

« addrlsTD := BAToInt(addr) = trainData »
+ « addrlsTA := BAToInt(addr) = trainAddr »
+ « addrlsTC := BAToInt(addr) = trainCmd »

44

+ « addrlsTS := BAToInt(addr) = trainStatus »
)

B A T o I n t is an S T l ibrary function that takes an argument of type Boolean A r r a y
and converts it into an integer.

The read/wri te cell uses these signals and ISA-iow, ISA-ior to generate
wr i t eCmd, wr i t eAddr , wr i teData , writeStatus, readData, and readStatus. O f the
four registers that constitute the interface of the controller to the outside world, two
may only be writ ten (C m d and A d d r) , two may be both wri t ten and read by the
master (Data and Status).

« writeAddr := addrlsTA AND (NOT iow) »
+ « writeData := addrlsTD AND (NOT iow) »
+ « writeCmd := addrlsTC AND (NOT iow) »
+ « writeSts := addrlsTS AND (NOT iow) »
+ « readData := addrlsTD AND (NOT ior) »
+ « readSts := addrlsTS AND (NOT ior) »

The Counters or Clock Dividers

Clock dividers are needed to generate the train-bus clocks from the ISA clock. Th i s

is done by two S T counter cells, "count'21" and "count4" (see also section 4.2.3).

Th is means the train-bus wi l l run 84 times slower than the ISA-bus .

The counter modulo-4 is needed to generate 4 pulses, 21 ISA-clock cycles

apart; it outputs these on lines t b E d g e l , tbEdge2, tbEdge3, tbEdge4. In other

words, these wi l l be clock signals with a period equal to 84 ISA-clock cycles and wi th

a pulse width of one ISA-clock cycle. The train-bus only needs the two differential

clock signals t b c l k l , tbclk2 so that the slave devices can detect rising and falling

edges on these lines. B u t the controller also needs to take actions on certain edges

so we use the same cell to detect them. However, tbEdge2 is not used inside the

controller since only the slave devices act on this edge (see figure 3.5, section 3.4.3).

The Queue Controller

The queue controller, or F I F O controller, generates the F I F O command signals and

also status information signals. F I F O command signals are

• shiftCf - shift C o m m a n d F I F O

• shiftRf - shift Read F I F O

• shift Wf - shift Wri te F I F O

45

STATIC
qcontroller: QC0NTR0LLER=
STATE
(* C f l = Command FIFO stage l f u l l ;
* RfO = Result-data FIFO stage 0 f u l l ;
* Wf2 = Write-data FIFO stage 2 f u l l *)

C f l , RfO, Wf2: BOOLEAN;

Figure 5.5: The state variable declaration

• forceldle - force an idle command out on the bus if no new command has been

issued. This doesn't actually affect the F I F O advancing, but the output of the

F I F O .

The sh i f t -FIFO signals are generated based on space in the next F I F O stage;
for this, we need to keep track of the status of the F I F O stages (empty/ful l) . Some
of these status variables are also necessary outside the queue controller cell, as
actual status information about the bus controller; they must be available to the
application sending the commands/reading the results, so that it knows when to
send/retire a command. Ret i r ing a command means reading the result requested by
the command; the point at which the result is available is several I S A clock cycles
away, which means the status has to be checked to see if it arrived. The status
variables that tell the application program when the bus controller can accept new
commands or has new data available are:

• CfO - C o m m a n d F I F O stage 0 is full;

• Rfl - Response F I F O stage 1 is full .

Since this cell is the most difficult to understand, I 'm going to list its defini

tion code here, even though it is a bit longer, so that the reader may recognize the

above explanations in the code. The code is organized as follows:

• State-variable declarations: state variables indicating the state of some of the

F I F O s ; see figure 5.5

• function definitions (figure 5.6): I defined some functions just to make the

cell body code easier to read. These functions are of type BoolFnO (Boolean

Function) and their meaning is:

— "issuecmd" (issue command): we may only issue a new command - i.e.,

enable the outputs of the buffers connected to the train-bus - if there is

46

STATIC
(* some functions to make the main c e l l body easier to read:*)
(* issue command: *)
issuecmd: BoolFnO = BEGIN C f l AND (NOT RfO) END;
(* advance Command-FIFO: *)
advancefifoc: BoolFnO = BEGIN CfO AND (NOT Cfl) END;
(* advance Result-FIFO (i . e . data-read-FIFO): *)
advancefifor: BoolFnO = BEGIN RfO AND (NOT Rfl) END;
(* data available *)
availdata: BoolFnO = BEGIN isread AND tbEdge4 END;

Figure 5.6: Funct ion definitions for the qcontroller cell

a new command si t t ing in the top C - F I F O stage and there is room in the

bot tom R - F I F O stage to record the new result if necessary;

- "advancefifoc" (advance C o m m a n d F I F O) : if stage 0 is full and stage 1

is empty;

- "advancefifor" (advance R e s u l t F I F O) : if stage 0 is full and stage 1 is

empty;

- "availdata" (data available): response data from the slave device is loaded
from the train-bus into the R - F I F O on tbEdge4 if the current command
on the train-bus is a read-command, i.e., if a read-command was issued
onto the train-bus on the last t b E d g e l

• transitions for the C o m m a n d - F I F O control (figure 5.7): If the C - F I F O is ad

vancing and we are not wri t ing to i t , the bot tom stage (0) becomes empty

(transition t l) . It becomes full when there is a write to the C o m m a n d reg

ister (indicated by the "wri tecmd" signal) (t2). If stage 0 is full , stage 1 is

empty ("advanceficoc"-function evaluates to true) and we are not wr i t ing to

the C o m m a n d register, we can advance the F I F O (t4). F inal ly , if we issue the

content of the top C - F I F O stage to the train-bus, and we are not currently

advancing the F I F O , the top stage becomes empty (t5). (notations: CfO =

C o m m a n d FIFO"stage 0, C f l = stage 1, shif tCf = "shift C o m m a n d F I F O ")

• transitions for the D a t a - W r i t e - F I F O control (figure 5.8): O n tbEdge3, write-

da ta is let out to the train-bus, and since the W - F I F O (write da t a -F IFO)

advances only on t b E d g e l , the top stage (2) of this F I F O becomes empty

(transition t l) . The following condition results from the fact that the W -

F I F O advances stage 0 to 1 synchronously wi th the C - F I F O , but stage 1 to

47

BEGIN
« reset OR ((NOT writeCmd) AND advancefifoc())
-> CfO := FALSE » (* t l *)

+ « (NOT reset) AND writeCmd -> CfO := TRUE » (* t2 *)
+ « shiftCf := CfO AND NOT C f l »

(* advance the FIFO: *)
+ « NOT reset AND advancefifoc() AND (NOT writeCmd)

-> C f l := CfO » (* t4 *)
+ « reset OR (NOT advancefifoc() AND issuecmdO AND

tbEdgel) -> C f l := FALSE » (* t5 *)

Figure 5.7: C o m m a n d F I F O control signals

+ « reset OR tbEdge3 -> Wf2 := FALSE »
+ « NOT reset AND shiftWf AND NOT shiftCf

-> Wf2 := TRUE »
+ « shiftWf := C f l AND NOT Wf2 »

Figure 5.8: Da ta -Wri te F I F O control signals

2 separately, depending on the state of W-stage 2; so the W - F I F O advances:

stage 0 to 1 when shiftCf is true, stage 1 to 2 when shiftWf is true. It is okay

to advance stage 1 to 2 if we are not currently wr i t ing to stage 1 (transition

t2). For the shiftWf assignment, C f l indicates the same as a supposed variable

W f l ; that is, the state of stage 1 of the C - F I F O is the same as the state of

stage 1 of the W - F I F O since for stage 0 to 1 the W - F I F O is synchronous wi th

the C - F I F O (transition t3).

• transitions for the R e s u l t - F I F O control (figure 5.9): If the R - F I F O (result, or

data-read F I F O) advances and there is not new data to be loaded, stage 0

becomes empty (transition t l) . It becomes full when new data is wri t ten to

the bot tom stage (0), on tbEdge4 if the current command, i.e., the one that

was issued to the train-bus on the previous t b E d g e l , is a read (t2). If the

current ISA-IO-read cycle is one from the controller D A T A register, and the

R - F I F O is not currently advancing, the top stage, 1, becomes empty (t4). If

stage 0 is full , stage 1 is empty, and we are not wr i t ing to stage 0, it is okay

to advance the F I F O (t5).

• transitions for forcing an idle train-bus cycle (figure 5.10): If the conditions for

(* t l *)

(* t2 *)
(* t3 *)

48

+ « reset OR (NOT (tbEdge4 AND isread) AND advancefifor())
-> RfO := FALSE » (* t l *)

+ « NOT reset AND isread AND tbEdge4
-> RfO := TRUE » (* t2 *)

+ « shiftRf := RfO AND NOT R f l »
+ « reset OR (readData AND NOT advancefifor())

-> R f l := FALSE » (* t4 *)
+ « NOT reset AND advancefifor() AND N0T(tbEdge4

AND isread) -> Rfl := RfO » (* t5 *)

Figure 5.9: Result F I F O control signals

+ « reset OR (NOT issuecmdO)
-> forcel d l e := TRUE »

+ « (NOT reset) AND issuecmdO -> forcel d l e := FALSE »

Figure 5.10: Qcontroller module: forcing an idle train-bus cycle

issuing a new command are not met (see "issuecmd"-function), the controller

issues an idle command out on the train-bus.

Forcing an idle command on the train-bus is achieved by controlling the

special buffer that makes the last C - F I F O stage, wi th this "forceldle" signal from

the queue controller - figure 5.11 presents the ST-code for the buffer. Th is buffer

is also the one that generates the isread and iswrite signals used as inputs in the

qcontroller cell . It generates these signals by just looking at (a) the least significant

bit of the command code it contains, which indicates a read or a write, (b) whether

it had to force an idle or not, in which case none of the signals is true. " I n t T o B A () "

is a function that takes an Integer and translates it into a Boolean A r r a y with a

specified number of bits (in our case 4, the bi t -width of the t rain-command lines)

T h e contrlogic cell

This is not the most proper name for this cell, since it is not the only control logic

component, but it is not specialized on certain things either like the others. It is

just combinational logic generating the reset signal and output enable signals. The

output enable signals are for the buffers wi th outputs connected to the ISA-da ta

lines. When the board is not addressed by the ISA bus, it should not be dr iv ing the

ISA data lines at a l l . The two buffers wi th outputs connected to the ISA data-bus

49

buf2c: Buffer4spec =
STATE

cmdldle: INTEGER = 3;
STATIC

(* the least s i g n i f i c a n t b i t of the command, in(0),
* indicates a read or a write command *)
iswritefn: BoolFnO =

BEGIN NOT force AND NOT in(0)) = cmdWrite) END;
isreadfn: BoolFnO =

BEGIN NOT force AND in(0)) = cmdRead) END;

BEGIN (* forces i d l e when force i s TRUE *)
« cs » *

(« NOT force -> out := i n »
+ « force -> out := IntToBA(cmdldle, 4) »
+ « iswrite := iswritefnQ »
+ « isread := isreadfnQ »
)

END;

Figure 5.11: The special buffer for Command-FIFO stage 2

50

are the second (or final) stages of the Status and the Rep ly -Da ta F I F O s .

5.1.3 S T simulations

In order to test the S T program, a driver module was necessary to simulate the
master application; that is, to send commands to devices and retire them (read
response data if any). Th is module was built according to the state diagram from
figure 5.4. We also needed an ISA-bus simulator (modules isa and 10, the latter
containing the inByte and outByte cells that model the communicat ion between the
application and the ISA-bus) .

Another necessary component was a module simulat ing a slave device con
nected to the train-bus. Th is is the device module; all it needs to do is detect
whether it is being addressed (by comparing the information on the train-address
lines to its own identification information) and respond to the different commands
(provide a response in case it was a read).

5.2 Implementation Decisions

A s justified in chapter 3, we are using a P C as the host computer; the bus controller

is implemented as an ISA-board . The general idea was to use programmable logic

on such a board. This implied translat ing the ST-code into V H D L - c o d e that could

automatical ly be synthesized by available C A D tools.

For previous versions of the bus controller, Progammable A r r a y Logic (P A L)

integrated circuits were used (A M D P A L 2 2 V 1 0 - see databook [1]). For a more ele

gant design we ini t ial ly decided to use the M A C H - 4 family Complex Progammable

Logic Devices (C P L D s) , M A C H 4 4 5 [2]. Tha t is, we wanted to use more powerful

chips and the choice was for the mentioned ones because at that point the depart

ment already had licenses for the necessary C A D tools to program those.

Since the download program was using around 80% of one device's resources,

we decided to use two and forced the CAD-sof tware to part i t ion the design onto 2

chips. We took this decision in order to leave room for further changes in the design;

since the controller is a hardware piece for an experimentation project, it wi l l almost

certainly be further modified in the future. Debugging also needs to be kept in mind.

However, the M A C H - 4 family has a reputation for being hard to reprogram with the

same pinout. Al though I tried out the procedure succesfully wi th a minor change,

reprogramming it later wi th a much different code did not succeed. Also , in the

meantime part i t ioning is not supported anymore, so every t ime we would need to

re-program the chip, we would have to do manual part i t ioning. This is why recently

51

we decided to change the implementation from using the M A C H 4 4 5 ' s to using only

one X i l i n x Spartan chip [22].

5.3 From ST to V H D L

After successfully simulating the S T program, the next step is to translate the S T
code into V H D L . Several things have to be taken into consideration here:

5.3.1 Clock signal

Fi r s t of al l , for a program, the clock is implici t : it is the rate at which instructions
are executed. In S T , at every execution step, one or more transitions are picked for
execution. When going from S T to V H D L , the clock has to be explici t ly specified
as a signal connecting all components (the equivalent of the cells in S T) .

5.3.2 Sensitivity lists

Another problem is raised by the sensitivity lists of V H D L processes. Sensitivity
list means a list of signals to which a process is sensitive ([3]). W h e n any of these
signals change value, the process resumes execution of the sequential statements;
after executing the last statement, the process suspends again unti l a new change
occurs on one of the sensitivity list signals.

Now when going from S T to V H D L , one would be tempted to include all
formal parameters of a cell into the sensitivity list for the V H D L component rep
resenting that cell. B u t this is not how the S T program executes: in S T , at every
timestep, one or more transitions have their guards evaluated and are executed.
This rather corresponds to having only the global clock signal on the sensitivity list
of any V H D L process. The decision about what should be included on the sensi
t iv i ty list depends on how cells are executed in S T ; this issue is addressed in the
following section.

5.3.3 O n mixing S T combinators

In all previous work where S T has been used, mixing synchronous and asynchronous

combinators has been considered illegal by the compiler ([18]). The S T version used

in this thesis allows mixing synchronous and asynchronous combinators.

The need and advantages of mixing the synchronous and asynchronous com

binators has been shown in chapter 4. Suppose we have an S T program where

we model subcircuits working at the same clock rate; in this case, we use the syn

chronous combinator +. W i t h i n each cell however we may be using the asynchronous

52

"bar" combinator, ||. F rom the definition of the + combinator, it results that at

every time step, all transitions combined with + whose guards are enabled, wi l l be

executed in one atomic operation. The question arises here whether to regard the

cell as a transparent hull for the transitions it groups together, or as an indivisible

body of transitions. In the former case, it can be represented as

(< C action 3 >

|| < C action ^>)

+ (< C action ^>

|| < C action ~^>)

and the way to interpret it is to non-deterministically pick one transit ion from every
cell and execute all of them that have their guards satisfied, in one atomic step.

In the latter case, if we view the cells as indivisible action bodies, then once
a cell is "fired", it is like a spawned process, meaning its enabled transitions - the
ones combined with || - execute repeatedly until no more are enabled; we could say
we let the whole cell "settle down", before we fire it again, (this is from a discussion
with Joergen Staunstrup, the author of [18], this last summer (1998) at the Danish
Technical Universi ty in Lyngby, Denmark) .

The convention used in the U B C S T compiler is to view cells like transparent
hulls of the transitions grouped in its body. In other words, we do not let the cells
"settle down", but, if there are transitions combined with ||, we pick some transit ion
each time the subcell is "called" in the top cell.

Th is convention is the reason why, when I went from S T to V H D L , I only
included the clock signal on the sensitivity lists of most of the processes (except
combinatorial logic and some components that use other signals for latching values).
Th i s is because in our version of S T , we do not spend more than one clock cycle in
a cell at a t ime, so the next time we pick a transit ion of that cell, we wil l have all
the updated information about all the other signals that are input parameters to
the cell.

5 . 4 Summary

I described the process of refining the high-level specification of the controller, some

issues I encountered and how solving them affected decisions about implementation

details - e.g. F I F O depths. I further described the process of translat ing the simu

lated S T version to V H D L ; the decisions I took, based on the conventions we made

in order to be able to apply the mixing of S T combinators.

53

C h a p t e r 6

Evaluations and future work

This project had two main purposes, as presented in the introduction: to produce a

hardware piece necessary for further development of a model train set for real-time

experiments, and to experiment with a new hardware-software codesign methodol

ogy.

6.1 Testing the train controller board

The P C - b o a r d , as tested so far, now corresponds to the requirements. Al though it
was not possible yet to test it wi th the train-bus connected to the board and devices
connected to the train-bus, I ran a few tests by sending write and read commands
and looking at the train-bus outputs wi th an oscilloscope. The testing applications
were writ ten in D J G P P , a version of the U n i x C + + compiler for the P C . One of
the test programs is presented in figures 6.1 and 6.2

These tests included:

• Doing sequences of writes to the train-bus, alternating the values for address

and data (I used values 0x00 and Oxff). Th is works correctly; I checked by

using the oscilloscope to see the transitions on the train-bus lines.

• Do ing long sequences of write commands works without idle train-bus cycles

inserted by the controller; this shows that the F I F O depth was chosen big

enough (see section 5.1.1).

• Inserting (forcing) an idle command in a sequence of useful read/wri te was

checked by looking at how the train-command lines change

• Execut ing a program that takes the following actions:

54

tinclude <stdio.h>
#include <pc.h>
ttdefine TDATA 0x0300
#define TADDR 0x0304
#define TCMD 0x0308
#define TSTATUS 0x030C
ttdefine DATAO 0x00
#define DATA1 OxFF
ttdefine ADDRO 0x00
ttdefine ADDR1 OxFF

void reset_controller(void)
i
outportb(TSTATUS, 0); /* doesn't matter what we write,

just a write to the Status Register
resets the controller */

>

void getstatus(unsigned char * c f _ f u l l , unsigned char *rf_empty)
•c
unsigned char status;
status = inportb(TSTATUS);
* c f _ f u l l = (unsigned char)(status && 0x01);
*rf_empty = (unsigned char)(!(status && 0x02));

}

void issuecmd(unsigned char addr, unsigned char cmd,
unsigned char data)

/* addr, data are optional here */
•c
outportb(TADDR, addr);
outportb(TDATA, data);
outportb(TCMD," cmd);

}

Figure 6.1: Sample test application (in C + +) for the bus controller: constant and
function definitions

55

void main(){
unsigned char data;
unsigned char cf_full=0, rf_empty=l;
int i ;
rese t _ c o n t r o l l e r () ;
p r i n t f (" \ n controller reset");
for (i=0; i<20; i++) {
do {

getstatus(&cf_full, &rf_empty);
} while (c f . f u l l) ;

issuecmd(ADDR1, 0x04, DATA1);
do {

getstatus(&cf_full, &rf_empty);
> while (c f . f u l l) ;

issuecmd(ADDRO, 0x04, DATAO);
}

}

Figure 6.2: Sample test application (in C++) for the bus controller: main function
body

- write Oxff;

- read data;

- write 0x00;

- read data;

also works, where "data" always returns the previously written value, which is
because the controller sees the train-bus as a big capacitor. This feature was
seen in the following experiments:

• when writing Oxff and no action afterwards, the train-data lines go to logic
" 1 " for a short pulse then gradually fall towards "0".

• also for the read-after-write experiment, if I had the probe on train-data line
0, I read Oxfe instead of Oxff, because the data-write buffer connected to it was
tristated and touching the line with the probe discharged it.

I have tried several different sequences of alternating read and write commands and
I believe the controller works according to the specification; however, testing read

56

commands really requires a device providing responses from the other end of the
train-bus. Th i s is addressed in section 6.4.

For testing the correct generation of the train-bus clock signal I did not need
any application program; just inserting the controller card into the ISA connector
and programming the F P G A is what it takes to get the clock signals at the t rain-
bus connector pins. A l l lines t b c l k i , tbclk2, plus the signals that are internal to the
controller but essential to the correct functioning, evl, ev3, and ev4, look correct.

I made a header (2x15 pins) geometry that I used to connect all the unused
pins of the F P G A , so that if I needed to test or debug the board I could add
internal signals to the outputs of the F P G A and thus observe their behaviour on
the oscilloscope. (Because of the very small dimensions of the F P G A package, it is
extremely difficult and probably not very reliable to attach an oscilloscope probe to
its pins.) To test evl, ev3, ev4 I connected these to some of the 2xl5-header pins.

These test pins were very helpful for some of the problems I encountered:

• I first programmed the device only with the code for generating the clock
signals for the train-bus and the event detection of the 4 edges of those two
clocks. The two clock lines did not look correct at al l , and from the oscilloscope
display I saw it was because of erroneous pulses that were about one ISA-
clock cycle long. Th i s made me follow the advice of a colleague and use the
V H D L condition "clk'event"; even though I thought it was redundant if elk
was included on the sensitivity list of the process. It was the only thing I could
think of t ry ing because this part of the code had looked perfectly correct when
I simulated i t . It works correctly now, wi th "clk'event".

• The P C ceased to accept keyboard input when the F P G A on my board was

fully programmed. The only way for my board to interfere with the P C was

by dr iv ing the ISA-da ta lines, so I connected this observation wi th the fact

that the synthesizing C A D - t o o l s gave a warning: "Unknown port type for

isadata", although I used the correct syntax. I also remembered that when I

previously used a Synopsys product for compil ing V H D L code (when t ry ing to

program the M A C H 4 4 5 s) , I was not able to use two different tristate buffers

to alternatively drive the same line; at that t ime I had to rewrite the code so

that in one of my components I was mult iplexing the two internal buses. So

now I did the same: I inserted a multiplexer so that only one tristate buffer

was connected to each output ISA-da ta port . Th i s worked correctly.

• W h e n t ry ing to issue write commands, I d id not see the correct behaviour on

the train-bus lines at first. Then I added all necessary debugging information

- signals indicat ing the states of the C o m m a n d F I F O , etc - as output port

57

connections so that I could see how their values changed. This is how I realized

that in the translation from S T to V H D L , at some point I had omitted a

" N O T " in the code for the queue controller. Once I corrected that too, all the

tests I did (as mentioned above) were satisfactory.

6.1.1 P r o b l e m s I e n c o u n t e r e d w h i l e g o i n g t h r o u g h the w h o l e de s ign
process

One conclusion from my experience is that the time it took me to write and debug the
S T code for the controller, or the V H D L code, was noticeably smaller in comparison
to the time it took me to design a PC-boa rd and successfully program the device
on the board. This is part ly because it was the first time I ever undertook such a
project. After deciding to change the board, in other words when I was forced to go
through the same process once again, it went much faster. I was then stuck wi th a
X i l i n x download cable/software bug (Xi l inx web solution record #3701) which took
me one week to find and solve (with technical support help). I found the reason for
this experience (similar to the one programming the M A C H s) to be the fact that
C A D - t o o l s have to be marketed very fast because of the fierce competi t ion, and thus
bugs are detected and fixed after the software is already in use.

The solution to the X i l i n x downloading tools bug - the software patch in
dicated on the web did not solve the problem - was to disconnect the P R O G wire
of the download cable from the board; and to solder a pull-up resistor (2.2 K O h m
is what I used) for that p in . I also needed a pull-up resistor for the D O N E pin; in
the current state, I just soldered a wire to the pull-up I had for the "response" line
of the train-bus, because we are not currently using it anyway. This needs to be
changed if we wi l l actually connect the train-bus.

6.2 ST for co-design

I started work on this design vir tual ly without any previous experience either in S T

or in V H D L . T h a t is, I had learned about hardware description languages (including

V H D L) during my undergrad courses and I had used Veri log in a course project, but

I never actually went all the way to implement a design in any H D L . A t least I had

had some exposure to V H D L , while S T was a total ly new programming environment.

However I did not find it difficult to adjust to i t . A few simple homework exercises

I did in the Formal Verification course where I learned about S T were enough to

help me understand this new notion of non-determinism in a program. Once I

grasped the concept, I came to think it is essential in correctly modeling real-time

applications.

58

Since S T is not supported by any automated synthesis tool , I had to model
my design in S T , simulate it and debug it; after I was happy with the behaviour
of the model, I had to translate this into V H D L . This means the final version was
totally deterministic. B u t the modules I used to simulate the controller (the ISA-
bus model, application program model, train-bus device model) did make use of the
possibility to model non-determinism in S T . This I believe to be a strong argument to
use S T for co-design: the abil i ty to make good and reliable simulations by correctly
modeling the real-time environment that the design has to interact wi th .

I firmly sustain this viewpoint since I also had to simulate and debug the
V H D L version of my design (since the translation is not done automatically, this
process is prone to errors). The worst problem I had with V H D L was the way in
which different ways of describing things that should essentially synthesize to the
same hardware, resulted in such different behaviours after synthesizing (see also the
problems I had to correct, section 6.1).

6.3 Conclusions

I used Synchronized Transitions to design a bus controller - a P C - I S A board wi th
a X I L I N X Spartan F P G A - without having had any previous hardware experience
(although several course projects in the past included designing some piece of hard
ware, I have never actually implemented and tested anything). I found S T very
helpful in this process and I was finally able to see that the implemented design, the
actual hardware, works correctly.

I think S T is a good choice for a co-design specification language since the
specification that one can simulate does not depend on whether the model wi l l be
implemented in hardware or in software. It can therefore also provide a means
of communication between hardware and software teams that would work on the
same project. For my particular design case, I found it very helpful in dealing wi th
interfacing between two components running at different speeds, which I believe is
due to the possibility of expressing non-determinism in S T .

6.4 Future work

6.4.1 Completing the train-bus design

A s mentioned in section 6.1, a complete test of the device requires another device

to be present at the other end of the train-bus, to respond to commands sent by

the application on the host P C . A first step would be to program a few simple

Programmable A r r a y Logic devices (like the 22V10 [1]) and connect them to the

59

train-bus connector on the controller board. Th is way it would be possible to test

the R e s u l t - F I F O .

The next step, after making sure the controller works correctly, would be to

actually connect the train-bus itself (several meters of ribbon cable). Th is is in order

to test if the 4-phase protocol we proposed is a reliable communicat ion protocol. We

further need to design the devices that wi l l be connected to the train-bus - speed

controller, position controller, track switch controller - in the same modular manner

and responding to the new protocol .

The final task wi l l be to write the software for controll ing the trains. Here

S T would be a way to model the application before implementing i t .

6.4.2 Better C A D support for S T based design

From my current experience, I believe that from the information contained in the S T

model of the design, much of the final design can be generated automatically. M o r e

precisely, after deciding how to implement the design (i.e. part i t ioning decisions),

most of the schematic could be generated automatically - in our case, the connec

tions between the F P G A and the ISA-bus on one side, the F P G A and the train-bus

on the other side, are all described in the S T code. (Of course the analog parts are

not included there - like amplifiers or current limiters for some of the train-bus lines,

or decoupling capacitors for the F P G A .) Also , all the information for generating the

download file for the programmable device (the F P G A) is included in the S T .

The most useful tool would therefore be an automatic S T - t o - V H D L transla

tor, or better yet, S T - t o - E D I F . Th i s may constitute a future research objective.

Another very useful feature would be to be able to see simulation results of

hardware modeled in S T , as waveforms. Currently, the way to simulate S T code is

by inserting "Wri teStr ing" (a function that writes a string to the standard output)

in places of interest in the code, which seems rather awkward. For instance, if I

wanted to see how a certain digi tal signal behaved, I had to make the program write

out the value of the signal every t ime it changed.

I think that the availability of such support tools would make S T a very

convenient co-design tool that would offer a reliable specification language, easy

to learn and use, wi th high modeling power for real-time applications; and the

possibility of going through a safer stepwise refinement process from specification

to implementation.

60

Bibl iography

Advanced M i c r o Devices, Inc. PAL Device Data Book, 1992.

Advanced M i c r o Devices, Inc. Mach 3 and 4 Family Data Book, 1994.

Peter J . Ashenden. The Designer's Guide to VHDL. Morgan Kaufmann Pub
lishers, San Francisco, 1992.

R . Camposano, D . K n a p p , and D . M a c M i l l a n . Hardware/Software Co-Design.

Kluwer Academic Publishers - N A T O A S I , 1997.

Daniel D . Ga j sk i , J ian wen Zhu, and Rainer Doemer. Hardware/Software Co-
Design: Principles and Practice, chapter Essential Issues in Co-Design. Kluwer

Academic Publishers, 1997.

R . Gerber, W . Pugh , and M . Saksena. Parametr ic dispatching of hard real-time

tasks. IEEE Transactions on Computers, 44(3), 1995.

R . G u p t a and G . DeMiche l i . Hardware-software co-synthesis for digi tal systems.

IEEE Design & Test, 10, September 1993.

Asawaree Kalavade and Edward A . Lee. A hardware-software codesign method

ology for D S P applications. IEEE Design & Test, 10, September 1993.

E d Lansinger. Developing an engine control system. Circuit Cellar INK,
September 1995.

Trevor W . S. Lee, M a r k Greenstreet, and Car l - Johan Seger. Au tomat i c verifi

cation of asynchronous circuits. IEEE Design & Test, 12, Spring 1995.

J . Madsen, J . Grode, P . V . Knudsen, M . E . Petersen, and A . Haxthausen. Lycos:

the lyngby co-synthesis system. Design Automation for Embedded Systems,

2(2), 1997.

61

[12] A c h i m Oesterling, Thomas Benner, Ro l f Erns t , D i r k Hermann, Thomas Scholz,

and Wei Ye . Hardware/Software Co-Design: Principles and Practice, chapter

The C o s y m a System. Kluwer Academic Publishers, 1997.

[13] Tarik Ono-Tesfaye, Chr is toph K e r n , and M a r k R . Greenstreet. Verifying a

self-timed divider. In Proc. International Symposium on Advanced Research
in Asynchronous Circuits and Systems. I E E E Computer Society Press, A p r i l

1998.

[14] Anders P . Ravn and J0rgen Staunstrup. Synchronized Transitions. Techni

cal Report D A I M I P M - 2 1 9 , Computer Science Department , Arhus University,

Arhus, Denmark, January 1987.

[15] K . Rompaey, D . Verkest, I. Bolsens, and H . D . M a n . Coware - a design en
vironment for heterogenous hardware/software systems. In Proceedings of the
European Design Automation Conference, Geneve, September 1996.

[16] D & T Roundtable . Hardware-software codesign. IEEE Design & Test of Com

puters, january-march 1997.

[17] Edward Solari . ISA & EISA - Theory and Operation. Annabooks , 1992.

[18] Joergen STaunstrup. A formal approach to hardware design. Kluwer Academic

Publishers, Boston, 1994.

[19] Joergen Staunstrup. Hardware/Software Co-Design: Principles and Practice,

chapter Design Specification and Verification. Kluwer Academic Publishers,

1997.

[20] Wayne Wolf. Lessons from the design of a pc-based private branch exchange.

Design Automation for Embedded Systems, 1, 1996.

[21] Wayne Wolf. Hardware/Software Co-Design: Principles and Practice, chap

ter Hardware/Software Cosynthesis Algor i thms . Kluwer Academic Publishers,

1997.

[22] X i l i n x , Inc. Spartan and SpartanXL Families Field Programmable Gate Arrays,

1998.

62

A p p e n d i x A

ST code for the controller

The S T code presented is a refined specification version. Its refinement degree
corresponds to the point where this project took over a class project started by
another student. Changes were made to adapt the design to a more reliable protocol
as described in section 3.5.

(*
* the d e f i n i t i o n module for the counter modulo-21
*
*)
DEFINITION MODULE counter2i;
FROM useful IMPORT BoolArray;
EXPORT counter21;

TYPE
C0UNTER21 = CELL(reset: BOOLEAN; q: BoolArray;

countmax: BOOLEAN);

STATIC
counter21: C0UNTER21;

END.

63

64

a OJ

H 10 Dl
0) W 4-1

u ta i
O ol

X) -
TJ

Q> <0

C U CL. U
te i aj
g O J U n

4J TJ e a rd -
• O 41 l l '

q 3 ro TJ Q

1 U OlTJ i
: > w ro c

CJ — U a> o i
i ai BL,

I U OS
H O Cl- O

C l-l C

3 *—i I '—'
Z 0 JJ O

UJ 3 O O
O X) JJ C

ro JJ i c bu
1 JJ C C 0 >"*

(U -H o
- TJ ra TJ o
j io u cu ca
> 01 3 JJ 3

- S m o
CJ > t

ro Tj Q

— OJ aj i

a m (DO
E 3 u 2
aj n — -a nj
w C > Q HI C CJ Q

IH U
UJ ro QJ ~

- — O X! ~
J « OJ U
J U > HI O
J [J C Cnuj
•i D ai TJ ra H
J n- JJ c JJ UJ
u H C ro w ai

6 5 A
0 o
fJU U (- Cl)
IH JJ O
l i O Z J
1 Xi" <

CJ — 6u
QJ

OJ Qu ll

u a 3 c a> ro -
! Z W 3 Dl>

2 UJ t0 TJ

C OJ 01
-H rj 01
ro C E
ti ro o
4.) > u

TJ CU
0> (0 X)

JJ — O
O tu

0 M
JJ M U.

u.
q ro -H
o u r
u -O
QJ UJ
<-t 0) o
01 - H QJ
•rl u cn

3 ro

•d [L. a
I H o
0) [l. JJ

r J J TJ A
JJ I QJ ro

c x: u
QJ -H U t" ID
3 ro O J

lu QJ u •

• C

i a cj TJ AJ .c
0) u QJ u

I TJ MJ 01 «4
C -n O O UJ

) -H j ; tt o

FH Bl QJ /
o DI ai /

1 2 rO ro Ol

l> Q 10 01 U U.

j OJ O UJ f

ro > 3 O X
OJ HiTJ XI G
Ol C o'

j .. ns o i i oi o
) >iO tJ S U £ t,
J JJ JJ C

ai ai III v
: E c
) 0) w E- JJ JJ O f

O JJ

• £ r l I
Q> JJ QI •

0> II TJ /

: a x i

233
J Q oi x cu UJ

B 2, QJ JJ Xj CJ

: Q as i JJ JJ

; O T J 2 < HI d

K J J h «
-i c < >

O fjt Q TJ

"5^ ro CJ JJ

rO 01 0) C
TJ £, JZ t.

u u QJ a

I C 0) Q> O QJ U-
J JJ d M-Q,

' O P E
' U U QI

65

66

U) TJ r
ai ai u

ca —

U TJ OiTJ
> JJ -

OV <D 01 01
tn Ui ui

ni D tt)
TJ -C U

ai JJ u v

•H O M

IJ H O

C <

a. oi B: ZOO

.c 3 3 c
• H UH HH o
M (U 0) U

to 3 3 E-i
E E E O O O O P. cd CC CC E

ll, Cu k. H

j O to
) D 3

3 -a v j TJ u. -

> ca m u u ti

i n ci ai
: c c c

J O O 4J
1 -i m c o

E-> OJ < cj
f- u

~ T J • - -w ro u < X J 2 ui H H

C X C TJ TJ 3 ro <u TJ TJ o E ro ro ic

r— m u o < ro

OJ ty u
1-1 $ ro j?

•a ro H Ed QJ cu

•H O 1
II TJ C

ro

B J 3 U -r

TJ XJ • • c
r-t x> ra 1 S S 4-J m E

: Q Q 3 — u TJ • j ^ w U H c E «i
JfDQJiJ H (J J->

u ro TJ oi
C 3 Ul Oi C O

H - r i O V-

'—i w -H jn —
<D u I I .
CJ TJ 10

-H C O

SSI S3
-H o to p 3 CJ ro TJ

Xi J-> — vi ai ui u 3 QJ x ^

T J U I

£) T J i
• U U -TJ TJ -

J CO CO TJ TJ TJ TJ "
£ u u • < < • c

I 0)

-HUT! - - JJ
J W O T J U H ro
C cC in < u u Q J 3 0) u Oi0)
J . 1J U W TJ tl HO CO -H -H Cd -H
: u 4J u £ J 3 in

u 3 ai u cj OJ u LI mai u oi U-i xu XJ U u-i TJ -H -H LO "H -H Ld
J : . C J J U n

U IJ Ul U>TJTJTJTJTJ'tJ'tJ C

« CJ •-* JQ TJ
. — OJ 4J

dd
r,

• * IcH O . a> uj ui [S
Aa

« HTj< * 0 L0 • M W H PQ
- C « O - TJ * U - Ui « - ra i !

c
* 3 M |
* Jj o<
* £ CO . 1) SH
* £ - —

IS
A

sc

II * Li * MM
* O0)

-TJ
>! u

C 3 H O
* OJ a) <u V
• <-H CJ PiTJ

SI
< L0

TJ
* TJ U U O * Q U * £ 0 OJ <L>

o o -CQ QJ

C D J= tl
14 QJ O id
OJ .C W Ui •DSHil
a Ul QJ

o -H M x:
Ul 0)

QJ H T)
J J x; 0) C

(J EH O TJ
XI CC - C TJ

O 3 (0 ui a. m
• J E

B"rf -
OH
E P CJ TJ

UJ U S Z J) Jj U
O f
M 3 E-

M a u u -
OJ DS < < Q)
TJ O *-H #—• *—I

u o o ni
OJ u o o

EH — TJ
< CQ U
EH EH X3

. 5

3 L0 Cd

H Z W

CJ •—l TJ EH TJ

OJ TJ c u u c -
TJ ro p c O" o TJ
U <D O P CJ r-H

TJ M U O EH «-l
CJ TJ CJ DS EH 3 jq ro EH EH O <X. n n; oi EH CL, O

L O E H O O C C E A - E H

Z) O E E 0- H O

a CL, M M E u a.

O E H m u E OOJUiOJQJUinHH HT33LILI1JUQ) EiUDCCCum
E H T J O J O O U O P

g i u n u u c T u j j
E E E E E E E E

u o o o o o o o
JcCKCtlCCCdPio:

o o o,
E- CL, O. E
CC E E M

E E E E o o o o
tc CC CC CC
UJ UJ I", [Li

67

6 8

Appendix B

ST cell instantiation diagrams

71

•o — «
TIT -7fT

iV

-a \
S

U

•a
<

i/i a , T J n M

Figure B . l : The "ou t -F IFOs" : C m d , A d d r and Data -Wri te

72

T 3 rt (j a

IF

tU

rt

3
rt 7rT

p

t/3
3

-4—*

o
c

8
u oi

E a
o 5

o
IT1

o
tu
00
rt cn
c/3
3 •a

rt <D u-
1i

bO
rt

rt
•

rt
-O
_>>
a,

p

rt [\

xi

tu
rt

rt
-a a,
tu

rt C . " O r t - ^ r t

Figure B .2 : The " i n - F I F O s " : Status and Data-Read

73

Figure B . 3 : The Cont ro l Logic Cells

74

Appendix C

V H D L code

. . . i O O O O t-t O >HH

X. M X. M

U a U U

W TS O T> TJ
tH w 2 u u
ta oi S ui w

H • [/] . .
to to to

>,[U >W fj

: u u H
> — u
J w c

! dl II O II

: ii c i
1 V 3 \) o
I CT U t

11) O U tJ

3 M O TJ TJ Tj U

>, >, W [il W

^ i—I r-

u mi

1 nl TJ TJ
: c c
1 u (0 ro

aj C r-\ O) x J£ ̂

OJ <a OJ G
4J c u - H It-
•ri En C O Ov-

76

- c
O dl
II 4J

o

d
C 0)
0) -C

01

> u o —

U Ol ^ £

O ""l u > .-J TJ
TJ UI

C

5 ^ o i !

TJ o C UJ
ro U

TJ

U iJ

- TJ

II C
M rO - o ^
r-i O UJ -

O TJ
TJ - II II E II
C M V V U V
TO TJ Ol

JJ u
C 0)
Oi u

c

JJ 01 -UJ
01 U O -H
01 o u ui

UI — 0)
OJ C UI
O DI-H OJ
V-i 0>
ax>

o
TJ
c

O

TJ C

O

U

u-t O

-H a
TJ
C uj
0) H

d OJ TJ
"5 c

II
- U TJ
O UJ ro

U II (fl
JJ TJ o M d
C UJ ro

C -H OJ -
x: II

TJ
c

V UJ

U V
UJ U

TJ
0) UI

>
0)

3

O C
TJ
C

U

uj s
TJ "H c x:
OJ in

TJ
a
(0

o

QJ U u II O JJ O «n - O TJ JJ C UJ JJ
ii d d o u o
•-t ro d TJ d

II TJ 11

O U o
SJ •!-* VJ

TJ
C •
(0 -

d II n
• - T 3 •- o v - JJ
- d O UJ rjj
O rfl U4 U QJ ll J£ U)

U --IV -HO)
TJ TJ U U

tl -IJ \J V TJ Vj Ij

— 01 TJ ui TJ
d UJ ,-t d

OJ -H 0) 0)

J u
H O

3 TJ u

o
i
o TJ

o
• - u
u a>

•rt >
Ol I

o u
U I Ol

•HTJ O
O UI I

1—I TJ I C JJ TJ -"-I ul

W ,-< 3
d C O

w TJ' H •• - UI
W JJ fNJUO i J
WW UJ .—I d 3
M - 3 U -H O •-

W X) CN
>i W — UJ
U W >, JJ 3
10 h-t U U XI
Vj 'H O

xi OJ JJ a TJ 'H Ul d c »—I 3 QJ 0)

- d II -J.

U ^

— U

TJ -
d a
m d

C II
QJ O
> -
QJ

-H d

Vj 0?
to XJ

0) c

CJ -H UJ
O Oi-rt
VJ 0)
axi

j<: v ui
ĵ .-aj

u ui UJ u JJ -H o
— 3 VJ -

O T3 UJ C JJ
0) TJ t-t

77

78

79

4J -H O

— JJ TJ I
U T J O

g Hi 3 M £ U JZ ro W O — - H m m u .-> JJ a - r o n
WW Ul E u r o a - r a QlEVirrj H C M rOOJJJl

E O W I - H a T j u au-ira Q, ra o. ro JJ TJ a«-» TJ G Q I T J a E u
ID-H u . 'o ni H <-• ll A O C N A JJ -rt » III io U > M M UJ U) H JJ id rO rO 1 O U V 4 ro U ra T J ra ra U V- ra 3 U O U rOUta
6 A rO JJ rO - TJ U Q > A II "-J U II H U - QJTJ JJ l-l -H Q) — - JJ U 3 D U 1 E O J T J S U 01 E D E 01 TJ E U H E U 0) JJ OJ £ 0J TJ

A I I J J T J M u 3 ra ro a 01 TJ H U 3 O 3 u J J ^ X l O O J3 U a o G V J J J J J O) J J I O U-IJJ - JJ u r a UJ JJ W U U - " J J N 3

u n <aE o r o o a i T J E «*-< ^ a tu u ui JJ c a m e m u-i-H o ro c JJ " • H M JJ -H C U - H C J J - H O I U ^ C J J - H C O ro C J J - H W
U V H T J U a T j - H J J T j V l A U T j l - i A A U - U) O -H E u ftU-H t j l j - H V* , C - I V J > - H H l-l -H U J Z U SZ -H U > - H H lu-H
o 111 Tl H H H u -H m aj II a> ro JJ II II JJ u ui 01 a A O J O I A A U> A o 3 O U) O Q) o 3 O UI O U I OJ O 3
a>-i TJUMQI aiojinvjaj *—i JJOJUJ. u-i - H J J U A H U O H A LI A II OJ A II a A a A a A a A a A U A QI A a A

ra ro Ul Ul JJ Ul -H 3 U .-I -H -H U -M o tN -H Cn Ul TJ ll rO TJ 11 U U O A II A l l A H A II A II A l l A li O A II A II
U -H O > li H ^ U I U J : C O • H 111 ^->TJ O U 1 0 O I I U 1 T J I I T j l l T j l l TJl l TJII TJ N TJ II TJl l
QI U M I U 3 - r t l l l U 3 l 0 H l U i ! U) Ul C O CO U) U O 1J W U) JJ Ul Ul U l - H U l ") Ul .-I Ul U l ^ H Ul

TJ 3 JJ luOJ^ O U - H H * i C C D 3 0 J C a W T J C C O T J G C O T J C r o T J C r j 3 T J C O 3 T J C C O T J C ^ T J C

8 0

Appendix D

Board Schematics

82

ACCESSC0:22XO>-
X O > T B C L K 1

» T B C M O (0 : 3 >

T B I R Q »

I S A I R O S <4

W R I T E D A T A « —

URITEADDR « — r

WRITECMD<<

R E A D D A T A <<

R E A D S T S <<

C C L K < 0 >

_ | _ D C 1

I d c a p
J_DC2 JJJC3
J d c a p

D C 1
•i.luF
leap

Figure D . l : Board schematic sheet 1

83

A C C E S S (Q : 2 2 X O >

U R I T E D A T A » -
U R I T E A D O R » -
W R I T E C M D » -
R E A D D A T A » -
R E A D S T S » -

N i l

HI
HEADERI5x2

2 1 2
3 1
5 6
7 7 o 9 13
11 12
13 H
15 18
17 18
19 20
21 22
23 21
25 26
27 28
29 30

3

I
0IN<O>-

C C L K <o:
I N I T - « ^ > — L
DONE < e > >

ui
ISxIOho les

U5
SPROM

DATA SER_EN*
CLK CEO-
RESET.OE
CE"

I

Figure D.2: Board schematic sheet 2

84

T B C L K 2 »

2 N 2 9 0 5 A - N D
04

T B C L K 1 » -

hexfet,

0 ohn
- A A A —

R6

I R L Z 2 4 - N D
Q2

T B C M D (0 : 3) » -

T B A D D R (0 : 7) » -

T B D A T A (Q : 7 X O > -

v c c

5<
A /
R2

RP1

resnet

^ ^ ^ ^ 1 4

12_

hexfet,

B P 3

5.

0
9

DATAO

TBIRQ « -

S 2 N 2 9 Q 5 A - N D
Q3

I R L Z 2 4 - N D
01

3SL

22

23

_21

• 5 m 39
14 12 0

13 13 31
12 1? 13
11 11 32 o
IQ m 14
9 9 33

is:
34
16,

3sr

D837R

Figure D.3: Board schematic sheet 3

85

Appendix E

Board Design Details

A view of the board with the component geometries is shown in figure E . l .
The list of the components, as generated by the P C - b o a r d layout tools (Men

tor Graphics) , is given in figure E .2 .
The train-bus wil l have 8 wires for ground, and 7 spare wires for future

expansions and/or experiments. These include probably 1 wire for response (the
one labelled D A T A D in the schematics, figure D . l) , to allow bus-repeaters to be
used in large designs; and probably one wire for interrupt requests (one of the
trainbus lines is connected to the F P G A on the board because I also planned a
connection from the F P G A to I S A - I R Q 5 , so that if we later want to implement this,
we may do it wi thout hardware changes. Unfortunately I noticed I forgot this last
connection, which was not necessary for the current version.

Also , the board currently has the pin holes for a configuration E E P R O M to
keep the data for programming the F P G A , so that it wi l l not be necessary to always
use the download cable to program the F P G A after power shutdown. The actual
memory device is not soldered on, but the schematics were conceived having this
operating mode in mind (the current version has the M O D E - p i n of the F P G A bent
up, i.e., unconnected). The device I was planning to use is A T M E L ' s A T 1 7 C 2 5 6 A
(application note on " F P G A Configuration E E P R O M Programming Specification",
A t m e l , 1998).

86

O S © 8 8 © 9
a © a a • 9

8 © 9 9 ©
© 9 a ©

a a © © 9 9 ©
a s © a © © 9 o

|Q5£D

5 0 4
^ a

Rf?3 R i ? 2

• s s :
03 •

O

(?Vl

o

L E E S

o i
i

11 OCT

o o o i I

r g c n °

O e o e e s
© a © © a

e o e e o ©
© a e e a © o

© e o e a e e a a l
l a e e o e a a e e o
9 9
a •
o e
a a

6 9 6 8 9,
e a e • a
© 9 k « e
W_&-/© a a

© 9 9
9 8 9
tt 9 9
© a ©

[E H

e e a t t a a e a s
9 9 9 9 9 9 0 9 9

| 9 © © 8 © 8 © © 9 9

Figure E . l : The controller board with components

8 7

Reference Part. .number Symbol Geometry Properties
DC1 dcap dcap rcl206 (VALUE, "O.luF")
DC2 dcap dcap rcl206 (VALUE,"O.luF")
DC3 dcap dcap rcl206 (VALUE,"O.luF")
DC4 dcap dcap rcl206 (VALUE,"O.luF")
HI headerl5x2 HEADER15x2 headerl5x2
H2 header5x2 HEADER5x2 header5x2
PI tbconn DB37R db37r
QI nhexfet n-hexfet to220ab (VALUE,"IRLZ24-ND")
02 nhexfet n-hexfet to220ab (VALUE,"IRLZ24-ND")
Q3 pnp pnp to39 (VALUE,"2N2905A-ND")
04 pnp pnp to39 (VALUE,"2N2905A-ND")
RI res r e s i s t o r rcl206 (VALUE,"IK")
R2 res r e s i s t o r rcl206 (VALUE,"5K")
R3 res r e s i s t o r rcl206 (VALUE,"2.2K")
R4 res r e s i s t o r rcl206 (VALUE,"2.2K")
R5 res r e s i s t o r rcl206 (VALUE,"0 ohm")
R6 res r e s i s t o r rcl206 (VALUE,"0 ohm")
R7 res r e s i s t o r rcl206 (VALUE,"IK")
RP1 resnet resnet soml6
RP2 resnet resnet soml6
RP3 resnet resnet soml6
Ul 10x10 lOxlOholes lOxlOholes
U3 isaconn ISACONN isaconn
U4 spartan30 SPARTAN30 vqlOO
U5 sprom SPROM dip8

Figure E .2 : A list of the components placed on the controller board

88

