
EFFICIENT MULTIMEDIA RETRIEVAL USING CUSTOM INDEXING METHODS

By

Malcolm W. Steenburgh

B.Sc. Honours, Queen's University at Kingston, 1996

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

T H E REQUIREMENTS FOR T H E DEGREE OF

MASTERS OF SCIENCE

in

T H E FACULTY OF GRADUATE STUDIES

COMPUTER SCIENCE

We accept this thesis as conforming

to the required standard

r

T H E UNIVERSITY OF BRITISH COLUMBIA

1998

© Malcolm W. Steenburgh, 1998

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

Department

The University of British Columbia
Vancouver, Canada

DE-6 (2/88)

Abstract

One of the largest problems associated with content-based indexing of multi-media docu­

ments is the inefficiencies associated with the process. These inefficiencies are witnessed in a

number of areas throughout the process, manifesting themselves in the form of high network

bandwidth and processor requirements. The following piece of work examines two novel con­

cepts which attempt to minimize these inefficiencies through the reduction in both bandwidth

and processor requirements.

Included in this work is a discussion related to the reduction of network bandwidth re­

quirements. The discussion focuses around the network bandwidth currently associated with

the development of indexing schemes. In order for developers to implement and test indexing

schemes, they currently have to download and index all of the media to which the new scheme

will be applied. In addition to this being time consuming and work intensive, the entire pro­

cess results in large amounts of network traffic. The proposed solution to this problem is a

software interface allowing developers to submit unique indexing schemes to remote servers for

processing. Upon receipt, the remote server applies the scheme to an arbitrary subset of its

indexed media, restricted only by a set of time constraints set by either the developer or server

administrator. Within the time constraints, the server will apply the given scheme and return

the best results to the user. The result is efficiencies that are orders of magnitude greater than

possible through current methodology.

The second concept discussed in the work focusses on the efficient application of known

indexing schemes in query by example format queries. The algorithm makes use of the triangle

inequality to reduce the number of media objects that actually have to be compared during

query processing.

In addition to a disussion of the aforementioned concepts, this work includes an examination

of an actual implementation of the concepts using the Java programming language. The ap­

plication shows the viability of both concepts, showing that they indeed reduce the inefficiency

currently associated with multi-media indexing systems.

ii

Table of Contents

S

List of Tables vi

List of Figures vii

1 Introduction 1

1.1 Indexing Multimedia Objects Over a Distributed Network 3

1.2 Deficiencies in Other Systems 4

1.3 Motivation and Contributions 5

1.4 Outline 6

2 Related Work 7

2.1 Interfacing with the Internet 7

2.1.1 Providing an Interface over the World Wide Web 8

2.1.2 Indexing World Wide Web Content 10

2.2 Indexing Scheme Design 12

2.2.1 Superficial Indexing Schemes 12

2.2.2 Content Based Indexing Schemes 13

2.3 Efficient Application of Indexing Schemes 17

2.4 Remote Processing 18

2.5 Summary 21

3 Applying Unique Indexing Schemes 23

3.1 The Interface 24

3.2 Flagging Problems 25

3.3 The IndexingScheme Base Class 27

iii

3.4 A Sample Scheme 28

4 Using the Triangle Inequality to Improve Efficiency 30

4.1 A Basic Application of the Triangle Inequality 30

4.2 An Optimized Version 34

4.3 An Example 36

4.3.1 The Query Conditions 36

4.3.2 Handling the Query 39

4.3.3 Completion 41

4.4 Extending the Algorithm 42

5 A Media Indexing System 45

5.1 Server 45

5.2 Client-Server Communication 46

5.3 Client 46

5.4 Design Decisions 47

5.4.1 The Java Programming Language 47

5.4.2 The MediaDocument and Related Classes 49

5.4.3 Query Interface 50.

6 Experimental Results 52

6.1 Operating Environment 52

6.2 Experiments 52

6.2.1 Media Library Size 52

6.2.2 Number of Key Documents 54

6.2.3 Indexing Scheme Complexity 56

6.2.4 Number of Results 58

6.3 Summary 59

iv

7 Conclusions and Further Developments 60

7.1 Conclusions 60

7.2 Further Developments 61

7.2.1 C/C++ Implementation 61

7.2.2 Larger than Memory Implementation 62

7.2.3 Additional Preprocessing -. 62

7.2.4 Duplicate Elimination 63

7.2.5 Distributed Cataloging 63

7.2.6 Improving Key Object Selection 64

7.2.7 Reducing the Search Space 65

Bibliography 66

A Definition of the Triangle Inequality 69

B Locations of Various Online Media Databases 70

v

List of Tables

4.1 Sample IDBMS image dimensions 38

4.2 Key-Query image similarity measures 39

4.3 Key-library image similarity and lower bounds on library-query image similarity. 40

vi

List of Figures

1.1 The Yahoo user interface 2

2.2 The WebSEEk colour histogram modification interface 9

2.3 The QBIC custom paint interface: A sample query and set of results 10

3.4 Java source code for BinToBinScheme. Java 29

4.5 Distribution of images involved with query over 2D pixel space 38

5.6 The MediaDocument Hierarchy 49
5.7 A sample user interface 51

6.8 Graph showing the effects of varying the number of library images 53

6.9 Graph showing the effects of varying the number of key images 55

6.10 Graph showing the effects of varying the metric complexity 57

6.11 Graph showing the effects of varying the number of results requested 58

vii

Chapter 1

Introduction

Originally a medium for communication, the Internet has evolved into an extremely large,

unsupervised and relatively unstructured multimedia database[l]. Early in this evolution it was

realized that in order for this data to be useful and accessible, variations on classic database

management system (DBMS) techniques would have to be implemented. In order for these

implementations to be successful, they would have to meet two very important requirements

- they would have to be both effective and efficient. With very little bandwidth, processing

power and time, a user would have to be able to locate data relevant to their requirements.

This realization resulted in several online solutions. These solutions manifested themselves

in one of two flavours - indices and search engines.

Indices, such as Yahoo1, originally attempted to index the Internet by manually or semi-

automatically classifying all documents into various categories.

. Users are presented with an interface similar to that shown in Figure 1.1 and are expected to

manoeuvre their way around a tree-like structure in search of content related to their search2.

This method presents many problems including the classification of sites based on a single

perception and the huge amounts of manual labour associated with doing so.

From the indices was born a second solution; the alpha-numeric search engine3. This solution

is more true to classic DBMS techniques. Search engines automatically crawl the Internet,

accessing and indexing all relevant documents. The result is an index which allows users to

post alpha-numeric queries, receiving results in the form of pointers to relevant documents.

'Yahoo can be accessed on the Internet at http://www.yahoo.com
2 It should be noticed that the current implementation of the Yahoo interface has been supplemented with

the ability to post alpha-numeric queries to the index.
3 F o r an example of an alpha-numeric search engine, see w w w . a l t a v i s t a . d i g i t a l . c o m .

1

http://www.yahoo.com
http://www.altavista.digital.com

Chapter 1. Introduction 2

Figure 1.1: The Yahoo user interface.

Currently, this paradigm arguably provides the most effective method for accessing alpha­

numeric data on the Internet.

Although alpha-numeric search engines provide an adequate means of searching for text

based media documents, demand is moving beyond text to richer mediums. Increases in storage

capabilities, processing power and network bandwidth have resulted in greater demand for and

provision of non-text media objects such as images, audio samples and video clips. Most

commercial Internet search engines claim to support various types of media objects4. The

problem is that this support is strictly alpha-numeric. In most of these cases, the fitness or

quality of a media object is based on superficial data such as the text that surrounds it in

an HTML document. Although this may provide sufficient results in some applications, it is

not reasonable to expect to be able to capture all perceptions of a multimedia object using

text alone. Beyond this, it is even more unreasonable to expect web designers, amateur and

4 F o r our purposes, a media object is any file containing user observable information including text documents,
images, audio samples and video clips

Chapter 1. Introduction 3

professional alike, to capture all perceptions of the object in the content that they provide.

This deficiency is not sufficient for the requirements of tomorrow's user. In order to provide

users with access to non-text media, on par with the alpha-numeric access with which they have

become accustomed, new content-based methods for indexing media objects must be developed.

The following work examines some of the major obstacles that have to be overcome in achieving

this goal. It discusses what has been achieved so far and contributes some insight into methods

which bring us closer to providing effective access to non-text media while concentrating on the

central issue of efficiency.

1.1 Indexing Multimedia Objects Over a Distributed Network

The realization that text based techniques alone are an insufficient means of indexing non-

alphanumeric data has lead to the start of a transition from alpha-numeric to content-based

indexing (CBI) techniques.

Until recently, the continued use of alpha-numeric indexing techniques was a result of re­

source based restrictions. Increases in micro-processor performance, storage capabilities and

network bandwidth have removed this once existent restriction, allowing systems to start mak­

ing use of various content-based techniques as a means of measuring media object fitness.

The removal of these resource based restrictions has resulted in the realization of several new

interesting problems. One of the more interesting of these problems involves the development

of indexing schemes. For our purposes, an indexing scheme is defined as a metric that measures

the fitness or quality of a given media object. This quality can either be an absolute measure

or a measure relative to another media object of the same type. One example of an indexing

scheme might be a face finding algorithm that takes an image as input and returns a percentage

chance that the image contains a human face.

Associated with this problem are questions such as: Given all of the required resources,

what is the best way to determine a multimedia object's fitness? Is there a single unifying

indexing scheme which will provide users with the ability to effectively access desired content?

Chapter 1. Introduction 4

This work does not attempt to provide an effective means of accessing multimedia data

through answers to questions such as these. Instead, the work focuses the elements of effec­

tiveness associated with efficiency. Due to the fact that media objects are so large, it is not

sufficient for a user to be able to effectively access relevant data - access must also be efficient.

In this case, efficiency is defined by two parameters; time and traffic requirements. Firstly, it

is important that a user be able to find relevant multimedia data in real or near to real time.

Secondly, efficient access requires that only a minimal amount of network traffic be generated

during both the indexing of media and the processing of queries. Even when dealing with the

indexing of text documents, the greatest cause of inefficiency arises from the need to access

and download each document[8]. The introduction of content-based indexing has resulted in

an exponential magnification of this problem as text documents are extremely small relative to

other media objects.

1.2 Deficiencies in Other Systems

Most current multimedia indexing systems address at least a subset of the problems illustrated

above with varying levels of success. Although there are many exceptions, in general, multime­

dia indexing systems make use of some form of content-based indexing, acknowledging the fact

that alpha-numeric indexing alone is insufficient.

Having recognized this, despite many efforts to address the issues of appropriate indexing

schemes and efficiency, all current implementations fall short in at least one primary area.

Current systems provide the user with a "static metric" application. Although the system

may allow the user to adjust and modify an inordinate number of parameters, it only allows the

application of a single, constant, metric when determining the fitness of a media object. That

is, although the user may be able to modify a given set of parameters, they are generally unable

to specify exactly how the quality of a media object is judged. In order to apply truly custom

indexing schemes on any significant number of media objects, the user would have to have

the local resources allowing them to download, store, process and index all candidate media

Chapter 1. Introduction 5

objects. This is highly inefficient, violating one of the primary requirements of a successful

media indexing system.

1.3 Motivation and Contributions

The primary motivation for the work that follows is based on observations made of existing

multimedia indexing systems. As previously mentioned, despite the existence of several CBI

systems, there are few systems that effectively deal with many of the problems related to

efficiency.

The work that follows does not directly attempt to solve the problem of developing optimal

indexing schemes for various multimedia formats. It does acknowledge the difficulty of the

problem and attempts to address several issues of efficiency associated with it. This is done

through the provision of an extensible, highly configurable system that allows for the efficient

application of metrics with a variety of different levels of uniqueness. The following is a list of

the contributions made by the work that follows:

• The work examines an implementation of the triangle inequality that allows for the effi­

cient application of static metrics, providing functionality similar to that available through

other systemsi (see Chapter 4).

• A methodology is developed allowing for the efficient application of customized metrics

where a customized metric consists of a programmable combination of mulitple static

metrics (see Chapter 4).

• Both the concept of the remote execution of truly unique metrics and its application are

investigated and shown to be a viable means of scheme development and application (see

Chapter 3) .

• In addition to the examination of a system developed in order to prove the viability of

various concepts examined throughout the work, all of the changes required to make the

same system a fully functional product are highlighted (see Chapters 5 through 7).

Chapter 1. Introduction 6

1.4 Outline

The remaining chapters are organized as follows: Chapter 2 discusses much of the related

work that has been done with regards to indexing multimedia databases. It examines an­

other implementation of the triangle inequality as well as several web based image DBMS's

and content-based indexing scheme implementations. Following this examination, Chapter 3

examines the concept of applying unique metrics to remote databases. Chapter 4 discusses how

the triangle inequality was implemented so as to allow users to efficiently apply both single

and multiple metrics to a large multimedia database. Following this, Chapter 5 examines an

implementation of the concepts discribed in previous sections. Chapter 6 then looks at the

performance of the system as it steps through several experiments that were performed on the

system. The final chapter, Chapter 7, makes several conclusions with regards to the work and

examines areas which require further investigation.

Chapter 2

Related Work

There are a variety of areas related to the content-based indexing of media objects that have

received varying degrees of attention. Those which have received the greatest attention involve

both the development and implementation of efficient indexing methods and the provision of

appropriate interfaces to the data once it has been indexed. The following chapter examines a

sample of the work done pertaining to the topic of content-based indexing of media objects. It

focuses on those areas with the highest relevance to the work which follows. Most importantly,

it examines areas such as interfacing with the Internet, indexing scheme development and

application and remote processing.

2.1 Interfacing with the Internet

As it continues to grow and permeate various aspects of society, the provision of Internet access

has become a necessity to the success and development of numerous products and services.

It has repeatedly shown that it is a medium appropriate for the exposure and distribution of

products and services.

The Internet, and all that it is comprised of, will be a major contributing factor to the

success of content-based indexing for two very important reasons. Firstly, in order for content-

based indexing systems to be useful, they have to provide users with robust service. That is,

service which gives users effective access to an extremely large, diverse body of data. Presently,

the only body of data that ultimately fits this description is the Internet. The second important

way that the Internet will contribute to the success of content-based indexing systems is through

the audience it provides. The sheer magnitude of the Internet's user base provides for demand

7

Chapter 2. Related Work 8

of services in even the smallest of niche markets. As a result of these two factors, one of the

major goals pertaining to the development of content-based indexing systems has been their

successful integration with the Internet.

2.1.1 Providing an Interface over the World Wide Web

One of the most important aspects of providing web based solutions is a successful user interface.

With the development of Internet "friendly" programming and scripting languages such as Java,

JavaScript, and Perl and the availability of standardized browsing software such as Netscape

Communicator and Internet Explorer, the development of such interfaces has become relatively

straight forward. Many interfaces have been developed using a variety of differing styles.

Most current interfaces force the user to make an alpha-numeric query prior to applying

any truly content-based indexing techniques[ll][21][22][23][24j. One such implementation is

the image DBMS developed at Columbia University by John Smith called WebSEEk[23]. The

interface is such that it initially allows the user to formulate a text-based description of an

image through the use of an index very similar to that implemented by Yahoo (see Figure 1.1).

The text-based description of the image is then used as a filter prior to the application of any

of the system's colour similarity based CBI techniques. Figure 2.2 shows an interesting element

of the WebSEEk interface. The figure shows the system's ability to take a sample image and

increase its relevance or fitness based on adjustments to levels in its colour histogram. Having

adjusted the histogram, the new image can then be resubmitted to the server following the

standard query-by-example paradigm.

Another system which makes use of an interface somewhat similar to that employed by

WebSEEk is the ImageRover system[21][22]. This system is similar in that it requires the

user to enter an alpha-numeric query. Based on textual relevance, a number of images are

returned to the user. These images are then used as part of a query-by-example mechanism.

This mechanism allows the user to select any subset of the displayed images and resubmit them

as a query to the server. This process can go on for as many iterations as the user desires,

Chapter 2. Related Work 9

l i n a g e Catalog
and Search Tool

lor the Web

149x325

Color Histogram Tweak Tool
Java Applet

Adjust Out histogram and make a new
si'aivh.

i t m i u — J \nw] (•'intii.ul.J

Figure 2.2: The WebSEEk colour histogram modification interface.

allowing them to constantly modify their query, including or discounting any previously selected

images. The interface is interesting from the point of view that it allows the user to constantly

refine their query while maintaining all of the images that were determined to have desirable

properties along the way. The main problem with the interface is that the user does not have

any access to the metrics being used to determine the fitness of the images.

One of the few systems which allows the user to make queries totally based on CBI tech­

niques is the QBIC system[18]. Developed by researchers at IBM's Almaden Laboratories, the

QBIC system has been applied to several application specific domains. Each implementation

has required slight modifications to fit the requirements of the given domain. In its generic,

demonstration version, the user is presented with a set of random images and several options as

to how they may refine or develop a query. Among these options are the abilities to formulate

custom colour queries, custom colour percentage queries, custom paint queries or to look at a

further series of random images. The most interesting of these interfaces is the ability to create

Chapter 2. Related Work 10

custom paint queries. This interface allows a user to paint a custom colour image and use it to

query the database. Figure 2.3 shows an example query with a blue area near the top and and

Query Results

find; 183

Cr*»n: 174

ftrtrto |

Suns to Back |

WW to Front |

Setocted *8»l<n* «0,133W38O,158Ul83,t7<(,39>

Figure 2.3: The QBIC custom paint interface: A sample query and set of results.

brown area near the bottom. As might be expected, the results show several images with blue

sky, a horizon and some ground area.

2.1.2 Indexing World Wide Web Content

The implementation of an appropriate user interface does not insure the success or effectiveness

of a CBI system. In order to make full use of the breadth of the Internet, users have to

have access to tools and services which provide them with efficient and effective methods for

querying a large portion if not all of the network's content. As mentioned before, there are

several systems that provide users with effective user interfaces to their media databases allowing

queries posted over the World Wide Web (WWW)[4][11][18][21][22][23][24]. Despite this faculty,

there are few implementations which actually provide the user with the ability to query any

substantial portion of the network's content. Instead, they provide the user with the ability to

query static image databases containing perhaps thousands of images rather than the millions

that are actually available[4][18j. Although this may be a sufficient solution for the interim, it

Chapter 2. Related Work 11

completely disregards the network as the resource it is.

Admittedly, the task of creating and maintaining an index of the multimedia content of

the Internet is daunting. Estimations have been made stating that a system containing a

complete index of the WWW would contain references to between 10 and 30 million images

amongst the 50 to 100 million total documents[22]. Despite these inordinate numbers, there

are several systems which are attempting to provide users access as extensive as that provided

by current text based search engines. Among those engines attempting provide such access are

WebSeer[ll][24], ImageRover[2l][22]WebSEEk[2% Yahoo's Image Surfer and the Lycos media

search tool.

Stan Sclaroff's ImageRover is one of the more interesting implementations. This system

claims to have been the first in a wave of content-based WWW image search engines, preceding

its peers[21][22]. In describing his system, Sclaroff breaks the process of indexing the image

contents of the Internet into three major challenges^]1.

The first major challenge is the collection of images. Based on an experimentally determined

gathering rate of approximately one image every 82 seconds, Sclaroff estimates that it would

take 25 years to collect all of the image content available on the net with the use of a single

robot. An implementation which allows for a high degree of parallelism provides performance

such that 32 robots are able to collect over 1 million images monthly.

The second major challenge was overcoming the hurdle of indexing all of the retrieved

content - image digestion as SclarofF refers to it[22]. Having addressed the problem of image

collection, it was found that a similar, highly parallel solution allows for images to be digested

at a rate on par with which they are collected.

The third major hurdle that had to be overcome in the implementation of ImageRover was

that of index navigation. Due to the fact that the index of a database is proportional in size to

that of the database, an index referencing the entire WWW would be extremely large. In order

'Sclaroff actually discusses four major challenges including image collection, image digestion, image index
and search and a user interface. The user interface is not discussed here because it does not present any Internet
specific challenges.

Chapter 2. Related Work 12

to process queries in a reasonable amount of time (i.e. less than a second) several constraints

had to be placed on the amount of processing required at run time. Sclaroff's solution involved

the implementation of several techniques that allowed for a large amount of precomputation to

be performed during the image digestion stage.

Overall, the three solutions, or at least variations of them, have become the generally ac­

cepted means of handling the immense size of the Internet. In fact, many of the techniques

implemented by Sclaroff are also used in implementations which access small and medium sized

databases. More importantly, the benefits gained from high degrees of parallelism and maximal

amounts of precomputation have been recognized and consequently applied throughout this

work.

2.2 Indexing Scheme Design

One of the most important and difficult problems to be addressed with regards to content-based

media indexing is the question of developing metrics to test the fitness of media objects. Perhaps

a result of the problem's difficulty, a number of differing approaches have been put forth. These

approaches can be classified into one of two abstract categories. These categories are based on

whether or not the content of a media object has to be analyzed during the application of the

scheme. The two classifications are superficial and content-based indexing schemes.

2.2.1 Superficial Indexing Schemes

For our purposes, the classification of an indexing scheme as being superficial requires that

the scheme is unaware of the contents of the media object - any indexing statistics that it

extrapolates are derived from information external to the actual file data. There are two basic

forms that superficial indexing schemes currently take. They can either make use of objective

or subjective media object features.

Perhaps the most rudimentary indexing schemes are those based on objective media ob­

ject features. Objective media object features are considered any quantitative data directly

Chapter 2. Related Work 13

associated with a file, external to the file body. This data can only be derived through the

examination of a file's header or its storage attributes. For example, Frankel et al.[ll][24]

make use of objective media object features (in particular image features) in their WebSeer

implementation[24]. The WebSeer implementation makes use of such attributes as whether or

not an image is colour or grayscale, the size of the image, the image format, the size of the file

containing the image and the date on which the file was created. With absolutely no image

analysis, all of these attributes can be derived and used as a means of indexing. These features

can be successfully used to filter undesirable media objects based on their qualities but are

limited in that they do not make any consideration for the true content of the object.

In addition to its recruitment of objective media object features, the WebSeer implemen­

tation makes use of the second type of superficial indexing scheme - subjective media object

features. Subjective media object features are those features that have been associated with

a media object as a result of someone or something's perception of the media object. These

features normally take the form of alpha-numeric data surrounding a media object.

WebSeer makes use of this data by applying an alpha-numeric filter to the text surrounding

images in their respective HTML pages prior to performing any content-based indexing. This

text filter approach is a good idea in that text processing can be done relatively quickly and

inexpensively. In fact, due to the shear size of the WWW, this method might suffice as long as

the user is looking for "any" related image and not "every" image or one image in particular.

The argument for the application of subjective features is based on the relevance of text

surrounding media objects. The problem with the idea is that although the text may be relevant,

it is difficult to consciously describe all perceptions of a media object let alone effectively describe

it solely with the content that surrounds it on a web page.

2.2.2 Content Based Indexing Schemes

The implementation of superficial indexing schemes was a natural step in the development of

media indexing systems. They provided a level of access to non-text media that was previously

Chapter 2. Related Work 14

unavailable. This access was provided through the re-use of many of the techniques used for

standard text indexing. In addition to the relative ease with which they were implemented,

they also maintained a relatively constant resource requirement. That is, aside from increased

storage requirements, the resources required to perform superficial indexing schemes is nearly

the same as that for indexing text documents.

Increases in storage capabilities, processing power and network bandwidth have provided

developers with the ability to move beyond the requirements of superficial indexing schemes to

content-based indexing schemes. Content-based indexing involves the examination and perhaps

interpretation of the actual content of a media object. In general, these schemes can be classified

into one of four areas based on their functionality. The four areas are Object Classification,

Structure Recognition, Region Discrimination and Comparative Analysis.

Object Classification

The process of object classification involves examining the content of a media object and placing

it in one of a number of discrete classifications. For example when dealing with a database of

audio samples, it might be useful to divide the elements into groups based on their content.

Some useful classifications might divide samples into those containing human voices, music or

other specialized sounds such as gun shots.

Another example is the classification algorithms utilized by WebSeer. Algorithms developed

by Vassilis Athitsos and Michael J. Swain allow WebSeer to classify images. The algorithms

are based on several statistical observations about images and allow the system to efficiently

and accurately classify images as being photographs or computer generated[3].

The usefulness of such classifications can vary widely depending on the users requirements.

In cases where the user is searching for images of a given class, however, the use of object

classification facilitates the discrimination between desired and unwanted objects with relatively

little runtime processor requirements.

Chapter 2. Related Work 15

Structure Recognition

The desire to determine the presence or absence of various structures in media objects gives

rise to a second type of indexing scheme. Differing from object classification in that it operates

at a finer level, the usefulness of structural recognition is obvious. It provides systems with the

ability to further discriminate media objects based on the structures they contain. There have

been many examples of structural recognition especially with respect to images. Two of the

more prominent structures recognized are human faces and landscape horizons.

• Human Face Location and Recognition in Images and Video: A large amount of work has

been done in the development[17][19][25] and application[4][11][24] of facial location and

recognition algorithms. The goal of the algorithms is to locate facial structures in images

and possibly attempt to match them with previously located faces. The applicability of

such indexing schemes is very wide spread. Aside from being useful for casually finding

both random and specific people from image DBMSs, there are many applications of such

algorithms especially in the area of security.

• Horizon Detection: Another popular structure recognition algorithm allows the user to

detect horizons in images. Horizon detection is often desirable in that it aids with the

ability to determine where a picture was taken. For instance was the picture taken indoors

or outside? There are several implementations that make use of horizon detection as part

of their indexing schemes[ll][24].

In general, it is possible to develop highly accurate, and consequently successful, structure

recognizers. The problem with the paradigm is that it is very difficult, if not impossible, to

develop a generic structure recognizer without developing individual recognizers for all struc­

tures.

Chapter 2. Related Work 16

Region Discrimination

Yet another method of distinguishing media objects is through various regions that they may

contain. In terms of image and video indexing, this area has benefited tremendously as a result

of related work done in the field of computer vision[5]. Region discrimination with images is

generally based on qualities such as their colour, texture, and shape[9][ll][24].

Another area where region discrimination techniques are applied is in the digital video

domain. Regions have been segmented and classified based on shot boundaries[2][7][16], camera

motion[2] [20], object motion[2], DCT coefhcients[2] and frame features[2].

One example of region discrimination has been demonstrated by Drew Saur et al.[20]. Due

to the difficulty associated with generic content-based video indexing, the group has concen­

trated on the annotation and analysis of basketball video. The goal of the project was to extract

meaningful, high level information from given M P E G sequences of basketball video. Using var­

ious techniques based on estimated camera motion, they were able to successfully discriminate

amongst regions containing "fast-breaks"2, attempted shots, steals or loose balls.

Comparative Analysis

Also referred to as query-by-example[l][18][22], relevance feedback[23], like-this[10] or distance

measures[6] the fundamental concept of comparative analysis is that a media object's fitness

is judged based on its similarity to another of the same type. In terms of our definition of an

indexing scheme the comparative analysis paradigm is really a meta-indexing scheme. That is,

most indexing schemes can be applied using comparative analysis methodology. Consider the

concept of region discrimination discussed earlier. Given two media objects, it is possible to

apply various region discrimination techniques to them and then make some judgement of their

similarity based on the results of the region discrimination techniques.

Very quickly, we can see how this methodology can be useful in the formulation of queries.

One example of an interaction with an image indexing system that utilizes comparative analysis

2 In basketball, a "fast-break" refers to the rapid movement of the ball from one end of the court to the other.

Chapter 2. Related Work 17

might be as follows.

For whatever reason, a user desires images of landscapes. They have an image that is close

but not quite what they are looking for. The user formulates a query to the image indexing

system using the image that they have in conjunction with a description of what properties of

make it desirable (i.e. the blue colour of the sky). The system then accepts the query, applies

various content-based techniques to the submitted image and responds with a list of images.

There are several systems that provide this functionality along with other variations of it.

For example, the QBIC system allows users to create queries in several ways based on colour,

texture, and image layout[18]. As discussed earlier (See 2.1.1), the QBIC system also allows the

user to create queries based on custom colour(s) and user defined images essentially allowing

the user to paint their own images and submit them to the query mechanism.

Yet another system worth examining is the EXQUISI project. This system, developed by

Dwi Faulus [10] shows an implementation of a query interface language that allows the user to

make like-this and like-this-in-what queries to large image databases. The system is interesting

in that it allows the user to make queries to databases of similar images, based on sub-image

level features.

2.3 Efficient Application of Indexing Schemes

As important as the development of indexing schemes is their efficient application. The reason

that this is important is that despite continuous advances, processor cycles and speed remain

finite. Due to the high dimensionality of media objects, runtime processing of individual media

objects is unreasonable. In order to meet the requirement that a user receive a response in

real or near to real time a great deal of work has been done on optimized indexing structures

and algorithms. Two of the more interesting discussions on the efficient application of indexing

schemes can be found in papers by White[26] and Berman[6].

White and Jain's work [26] focuses efforts on the Vector Space Model - a model which

reduces all objects to fixed dimensional vectors. The application of the Vector Space Model

Chapter 2. Related Work 18

to the domain of media objects, in general, is difficult. This difficulty is a direct result of the

high dimensional vectors required in order to accurately represent media objects. The paper

discusses how this hindrance can be handled through the implementation of optimized R-trees

and k-d trees. Included in the paper are several similarity retrieval algorithms including an

algorithm which operates optimally when used with a combination of an inexpensive primary

filter and a more expensive secondary filter.

Berman describes an image indexing system that makes use of the triangle inequality (See

Appendix A). In addition to its library of images, the implementation uses several key images

and various comparative analysis techniques which Berman refers to as distance measures.

The basic principle behind the system is that the distance measures are used to determine

the distance between each of the key images and the library images. Having calculated these

distances, it is possible to determine a lower and upper bound on the distance of query images

to library images. The result of this is a significant reduction in the number of images that have

to be examined in order to find the closest matching library image. Most importantly, these

techniques are not restricted to the image domain. Changing the actual fitness metrics allows

them to be applied to all types of media. The results of this work are fairly impressive despite

the fact that Berman has missed out on several key optimizations. These optimizations are a

key element of this work and will be examined later in chapter 4.

2.4 Remote Processing

One of the largest problems associated with content-based indexing over a distributed network

is the traffic associated with the transfer of media objects from one system to another. Both

clients and servers contribute to this problem but a much larger percentage of the traffic is

generated by the servers as they create and maintain their indices.

The general principle on which these servers work is based on what will be referred to as

the Internet robot paradigm. The concept of Internet robots has been around for a while. The

general idea behind them is that they automatically scour the web indexing its content. Thus,

Chapter 2. Related Work 19

given a starting point, they recursively traverse all of the possible links available, processing

all interesting data. Usually, the result of a robot's actions is an index of all of the locations

that it has visited and the media it has found there. These robots have reached a state where

they have become very successful. They are powerful enough to generate and maintain indices

spanning substantial portions of the World Wide Web.

There are many systems which implement this robot' paradigm as a means for indexing

World Wide Web content[l][ll][21][22][24]. All of them face one common problem - the amount

of traffic resulting from the generation and maintenance of their index. In order to perform

indexing, all of the systems require all media to be downloaded from the remote server. The

result is inordinate amounts of network traffic and local CPU requirements.

The obvious answer to the problem is the avoidance of any significant downloads. The

more difficult question is how to avoid them. One possible solution can be found in the idea

of remote processing. There may be many different definitions of remote processing, but for

the purposes of our work, the idea of remote processing involves the packaging and shipment

of jobs for processing at a remote machine.

The generally accepted model for remote processing is RPC (remote procedure calls). This

model, developed in the 1970's, allows for a machine to call procedures located on a remote

machine. The paradigm involves the client packaging up arguments, sending them to the server

for processing and receiving a result. This model is advantageous in that it provides a viable

mechanism for distributed computing. The main hindrance of the RPC paradigm is that the

interaction has to conform to a strict protocol. Each procedure's arguments and results must

be agreed upon prior to any interaction.

More recently, there have been developments that attempt to overcome the shortfalls wit­

nessed with RPC. Most applicably are General Magic's Odyssey API[12] and classes associated

with the Java programming language.

The Odyssey API is a set of Java class libraries which allow the user to implement Mo­

bile Agents[12]. The Mobile Agent concept is discussed in Jim White's Mobile Agents white

Chapter 2. Related Work 20

paper[27]. In describing them, White discusses how they implement the remote program­

ming paradigm. Remote programming differs from remote procedure cads in that computer-to-

computer communication is no longer limited to sending arguments to procedures which already

exist on a remote machine. Remote programming requires that a language be defined in such a

way as to allow for entire state variant procedures to be sent from one machine to another for

remote processing. A Mobile Agent is defined as both the procedure that is being sent and the

state that it contains. More specifically, it is defined as "a process that acts autonomously on

behalf of a person or organization...[with] its own thread of execution so that it can perform

tasks on its own initiative"[12]. According to the documentation, the Odyssey API is an agent

system, available from General Magic which allows users to define Mobile Agents.

Similar functionality is provided by the Java programming language. Newer versions of

the programming language provide two alternatives for remote programming. Firstly, there is

Java's Remote Method Invocation (RMI). This part of Java is similar in many ways to RPC

and other RMI systems except that it has been optimized for the Java environment. That is,

it is able to take advantage of the Java object model as a result of its assumption that it is

working in a homogeneous system[15].

The second, more relevant, ability of Java comes from a combination of its ability to serialize

objects[14] and reflect upon them[13]. Java provides programmers with the ability to serialize

objects, and then send or receive them along a data channel. The only stipulation that is placed

on serialized objects is that the receiver has to be aware of the object's class. This interface

provides a great deal of functionality and is extremely useful for tasks such as storage and

communication amongst machines.

The requirement that the receiving machine must be aware of the class from which an object

was instantiated initially seems to be quite limiting. Further investigation, however, reveals the

Reflection API[13] which provides us with some insight into avoiding this limitation. The

Reflection API provides developers with the functionality required to examine all elements of a

given class including attributes such as superclass, fields, methods and constructors. Chapter 3

Chapter 2. Related Work 21

discusses the importance of this capability, showing how it was applied in a system that allowed

for the submission of truly unique indexing schemes.

This shows an implementation combining both serialization and reflection. The implemen­

tation allows for the users to apply unique indexing methods across a distributed network. The

methodology is interesting in that it has the ability to virtually eliminate the traffic problems

associated with current distributed indexing systems.

2.5 Summary

The work reviewed above, although not complete, is certainly a representative sample of that

directly related to this work. It illustrates the fact that the problems of context-based indexing

are well recognized and considered relevant to study. We can see that many advances have been

made away from alpha-numeric systems towards a viable content-based solution and yet there

are still a number of problems which need to be solved before a viable system is developed.

The following problems illustrated by previous implementations are dealt with in the work

to follow:

• Static Query Mechanism: Although many of the systems provide interfaces which are

available over the World Wide Web, most if not all of them are static. The following

system attempts to define an architecture which allows for a variety of interfaces to act

as the front end for the same database. The advantage of such a system is that the

interface can be implementation dependent, providing a variety of options dependent on

user requirements.

• Indexing Scheme Application: All of the systems address the application of indexing

schemes. Some of them allow for combinations of multiple schemes[6] but, in general,

only one, hidden scheme is applicable. This work addresses this issue by providing a

mechanism to allow for the application of indexing schemes varying in uniqueness with

variable levels of efficiency.

Chapter 2. Related Work 22

• Internet Robot Inefficiencies: Finally, a suggestion is made that may help avoid the

traffic generated by current implementations of Internet robots. The^solution discussed

is similar to the Mobile Agent[27] paradigm and allows for a significant decrease in the

traffic associated with indexing.

Chapter 3

Applying Unique Indexing Schemes

An indexing scheme is said to be unique if the media server applying it has no knowledge of it

prior to query submission. One of the primary deficiences of current media indexing systems are

the restrictions that they place on the application of unique indexing schemes. Currently, there

is not a single system that allows a user to submit, in addition to their query, a unique means

by which media object fitness should be measured. There are some systems that attempt to

address the problem through the implementation of configurable metrics. Such systems provide

interfaces that allow the user to "tune" their query through the alteration of various parameters

associated with a single metric. Other systems address the problem through the provision of

a variety of different metrics. For the most part, however, media indexing systems are quite

limited in terms of the variety of metrics that they can apply. Most systems only provide the

user with the ability to submit standard queries for processing via a completely static method.

This lack of functionality is significant for a number of reasons. Perhaps the most significant

is its effect on the progress and efficiency of indexing scheme development. The overhead

currently associated with the development of indexing schemes is costly enough to inhibit

progress in the general area of CBI. Currently, in order to develop, test and apply new and

unique indexing schemes a user must first develop an entire media indexing system of their own.

From the point of view of efficiency, this is not acceptable at all. In addition to development

time, in order to make the system useful, a great deal of traffic is generated as the user downloads

and indexes all of the media to be included.

One of the primary goals of this work was to overcome this problem, effectively decreasing

the overhead associated with scheme development, removing the deficiencies associated with

23

Chapter 3. Applying Unique Indexing Schemes 24

current systems and improving overall efficiency. This goal was met through the provision of a

software interface. The interface allows users to develop and package their own unique metrics in

the form of a Java class and submit them to a server. No longer are users constrained to toggling

parameters of fixed metrics located on remote machines. The system allows the user to submit

and apply unique indexing schemes located on any Web server. The only predetermined aspect

of the submitted scheme is the interface and naming conventions with which it must comply.

In addition to the various other steps associated with standard queries, the general process of

applying unique schemes simply involves notifying the server of the location of the scheme in

question via the client interface.

3.1 The Interface

In order for the media server to successfully access and apply the correct methods contained

within a given class, the class must conform to a specific interface. This interface is simple,

well defined and yet non-restrictive. Aside from the fact that they must be written in Java,

unique schemes need only conform to at most four major guidelines in order to comply with

the interface.

The first stipulation of the interface is that all unique schemes must be subclasses of the

IndexingScheme class. In Java syntax, they must extend the IndexingScheme class. This is

done to insure that the functionality provided by the IndexingScheme class is available during

both development and application.

Secondly, the user has to implement a s t a t i c method named index. The intent of this

method is to contain the actual metric expressed by the class. As illustrated below, this method

can be implemented in one of two flavors.

p u b l i c s t a t i c Double index(MediaDocument)

p u b l i c s t a t i c Double index(MediaDocument, MediaDocument)

The first implementation of the method takes a single object which is a member of the

I
J

Chapter 3. Applying Unique Indexing Schemes 25

MediaDocument1 class and returns a Double - the Java class representing double precision

floating point numbers. The lower the value of returned, the more desirable the object. An

implementation of the first type is intended to determine media object quality based on a non-

comparative calculation. For example, a scheme of this type could return how close the average

magnitude of motion vectors contained in a video clip are to a given value. This differs from

the second format which is intended for use when implementing comparative IndexingSchemes.

For example, in the case where a user wished to determine the similarity of two images based on

the qualities of their respective color histograms, this would be the desirable implementation.

An important feature of the system is that the methodology of the IndexingScheme does

not have to be constrained to the index method or the class in which it is contained. That is,

the system's design allows the index () method to make reference to other methods within the

current class as well as external methods contained in other classes as long as the other classes

are located at the same code base.

Any IndexingScheme conforming to the above restrictions will pass all compliance tests

implemented by the server. In order for a scheme to be maintained on a server, taking advantage

of the efficiencies provided by the triangle inequality, it must also conform to two additional

restrictions. Firstly, all values returned from the index methods must be within the range from

O'.O to 1.0. Again, the lower the value returned, the more desirable the object is assumed to be.

In addition to this, as will be discussed in Chapter 4 comparative schemes implementing the

second interface must calculate linear distances between objects.

3.2 Flagging Problems

A common problem associated with any client-server architecture is compliance. It is often very

difficult to insure that the information being shared between both the client and server meet

certain standards. In terms of providing a user with an interface that allows the submission of

unique indexing schemes these problems generally manifest themselves in the form of naming

' T h e MediaDocument class encapsulates all of the properties associated with the various types of media objects.
A full description is provided in section 5.4.2

Chapter 3. Applying Unique Indexing Schemes 26

errors. In some cases, the IndexingScheme class is valid and will compile but gets rejected by

the server. This rejection is a result of the fact that the methods contained within the class do

not comply with the naming conventions defined by the server.

One possibility for handling these types of errors is to abort the query and return a mean­

ingless response. Instead, this system has implemented a series of checks that insure that any

submitted classes are valid IndexingSchemes prior to attempting to apply them. If they are not

void, a meaningful error is returned to the user. There are many advantages to implementing

such a system. The most important advantage is the ease with which it is possible to debug

otherwise functional schemes.

All of the error checking is done using the Java Reflection Application Programming Inter­

face (API). A standard part of the Java programming language, this API allows the runtime

examination of classes. Functionality is provided allowing access to all aspects of a given class

including all of the fields, methods and constructors. Basically, Java supports several key classes

which are required to represent classes. Among these are the C lass , Constructor , F i e l d and

Method classes. Each of these classes support methods which, when combined, provide all of

the functionality required to determine the exact interface of a class.

Currently, several, fairly strict, checks are made by the server to insure that submitted classes

are compliant. Upon retrieving a remote class, several of its properties are checked using the

IndexingScheme s t a t i c , f i n a l class method boolean checkCompliance(Class scheme).

The method has been declared a s t a t i c member of the IndexingScheme class to insure

that all scheme developers have the ability to check the compliance of their schemes prior to

submitting them to a server. Secondly, the method has been declared as f i n a l to prevent it

from being overridden by any sub-class. Having defined the method in such a way, it takes a

Java C lass object as its only argument and performs a number of tests verifying appropriate

subclassing and the presence of several key fields and methods.

Chapter 3. Applying Unique Indexing Schemes 27

3.3 The IndexingScheme Base Class

All of the indexing scheme functionality discussed thus far is actually contained in the form of

s t a t i c methods in the IndexingScheme base class. This next section discusses the additional

properties of the class, including member variables and other, user accessible, methods.

Firstly, the IndexingScheme class contains two p u b l i c member variables as shown below.

p u b l i c s t a t i c S t r i ng name

p u b l i c s t a t i c S t r i n g d e s c r i p t i o n

The first, name, has been implemented to allow for the storage of a name free of any Java

context. The second, d e s c r i p t i on , contains a meaningless default value but was designed to

store a detailed description of the workings of the scheme. All subclasses should override these

member variables with meaningful values. They become important when the scheme is made

publicly available and users are deciding whether or not it meets their requirements.

In addition to the member variables, the class contains several p u b l i c s t a t i c f i n a l meth­

ods.

i n t checkCompliance(Class)

S t r i n g getName(Class)

S t r i n g ge tDesc r ip t ion (C lass)

double applyScheme(Class, MediaDocument)

double applyScheme(Class, MediaDocument, MediaDocument)

The checkCompliance(Class) method, as discussed earlier (see section 3.2), can be ac­

cessed by the user to make sure that a scheme complies with the server's requirements. In the

case that the given scheme does not comply, the method will throw a SchemeComplianceException

containing information regarding the compliance violation. It should be noted that this is the

same function used by the server to check compliance before applying the scheme to any Medi-

aDocuments. Both the getName (Class) and ge tDesc r ip t ion (C lass) have been implemented

for easy access to both the name and d e s c r i p t i o n member variables respectively. Finally, both

flavors of the applyScheme () return the result of applying the given IndexingScheme to the

Chapter 3. Applying Unique Indexing Schemes 28

provided MediaDocuments. Again, it is important to note that, in addition to allowing the user

to test developmental schemes locally, it is the same method used by the server when applying

IndexingSchemes.

3.4 A Sample Scheme

The following section discusses a sample IndexingScheme called BinToBinScheme. The BinToBinScheme

encompasses a metric that takes two images and determines their similarity based on the val­

ues contained in their RGB color histograms. The measure is based on a sum of the binwise

absolute differences for each of the red, green and blue bands indexed by the histogram.

In terms of its implementation, BinToBinScheme is quite simple. It illustrates an implemen­

tation of an IndexingScheme that conforms to all of the restrictions discussed earlier. The source

code for the scheme can be seen in Figure 3.4. The implementation of the actual metric is encom­

passed in the ColourHistogram class's method double binToBinDiff erence (ColourHistogram).

In order to access the metric, the scheme's index method accesses the appropriate method in

one of the image's ColourHistogram objects and returns the result in the form of a Double.

This scheme is a good example because it illustrates several important points while hiding

unnecessary details. Firstly, it illustrates how to override both the name and description

member variables. Additionally, it illustrates an implementation of the index method in its two

argument format. Finally, the ability to access methods available in other classes is displayed via

the call made to the binToBinDiff erence method contained in the external ColourHistogram

class. The only restriction that it does not directly illustrate is the fact that the values returned

by the index method are constrained between 0.0 and 1.0. The constraint is implicit in that the

binToBinDiff erence method is defined such that it returns values in the appropriate range.

Chapter 3. Applying Unique Indexing Schemes

package thesis.schemes;

import java.awt.Color;
import thesis.media.ColourHistogram;
import thes is.media.ImageDocument;

/**
* This <CODE>IndexingScheme</CODE> operates on a pair of images determining
* how close they are in terms of their colouring. This is done by taking a
* bin-to-bin difference of their RGB colour histograms.
* The <CODE>index</CODE> method returns a number between 0 . 0 and 1 . 0 where
* 0 . 0 indicates an exact match and 1 . 0 indicates a complete dissimilarity.
*/

public class BinToBinScheme extends IndexingScheme {
/**
* This meaningful name of this indexing scheme
*/

public static String name = "BinToBinScheme";

/**
* This string stores a description of how the <C0DE>IndexingScheme</C0DE>

* operates.
*/

public static String description = "This IndexingScheme operates on a "+
"pair of images and determines how close they are in terms of their "+
"RGB colour histograms";

/**
* This method takes two <C0DE>ImageDocument</C0DE>s and determines how
* similar they are based on their RGB colour histograms. The result is
* returned as a < C 0 D E>Double< / C 0 D E > value between 0 . 0 and 1 . 0 . Simply
* stated, i t applies the <C0DE>binToBinDifference()</CDDE> method
* implemented by the <C0DE>ColourHistogram</C0DE> class.
*
* Cparam imageA The f i r s t of two <C0DE>ImageDocument</C0DE>s to compare.
* Cparam imageB The second of two <C0DE>ImageDocument</C0DE>s to compare
* Creturn A < C 0 D E>Double< / C 0 D E > indicating how similar these image
* are based on their average colours;
*/

public static Double index(ImageDocument imageA, ImageDocument imageB){
return new Double(

imageA.colourHistogram.binToBinDifference(imageB.colourHistogram));
}

}

Figure 3.4: Java source code for BinToBinScheme. Java

Chapter 4

Using the Triangle Inequality to Improve Efficiency

One of the primary goals specified in the design of the media indexing system was that it had

to be efficient. This efficiency was required of various aspects of the system related to both the

creation and querying of an index of a large database of media objects. The provision of such

efficiency is an important requirement in that it allows for a large number of users to access an

even larger database. This chapter examines a method for providing efficient handling of user

queries to a very large media database. It discusses an application of the triangle inequality

optimized for handling best-n queries. Best-n queries are those queries which require the n best

matches in the database to be returned as a result of the query. These results are generally

sorted with respect to how closely they match the query requirements.

As discussed in Appendix A the triangle inequality states that the distance between any two

objects cannot be greater than the sum or less than the absolute difference of their individual

distances to a third object. The following is a description of a method which uses this law as a

means of facilitating efficient queries to large media databases. Before continuing, it is important

to note that all metrics should be commutative. That is, \AB\ = \BA\. If this requirement is

not met, then there can be problems with the application of the triangle inequality.

4.1 A Basic Application of the Triangle Inequality

The first step in the application of the triangle inequality is the assumption of the Vector

Space Model (VSM). As mentioned earlier, the VSM reduces all objects to fixed dimensional

vectors. That is, various attributes and properties of the objects are quantized and stored as

the dimensions of their associated vector. The methods by which this reduction is performed

30

Chapter 4. Using the Triangle Inequality to Improve Efficiency 31

are important in that they determine the effectiveness of any indexing to follow. It determines

what information and attributes, originally possessed by the object, shall contribute to the

indexing process. More importantly, this step determines the amount of high level information

to be derived from the object.

Perhaps the most interesting aspect of the object reduction process is that it can encompass

a variety of different measures providing further indexing with access to both high and low level

object attributes. For example, one dimension of the vector could be a low-level attribute of

the object like the number of pixels in an image. Similarly, another dimension might represent

a higher level attribute of the object such as the number of human faces stored in the same

image. This capacity is interesting in that it will help facilitate the implementation of custom

queries. Again, it should be noted that it is not a goal of the system to provide the user with a

robust set of metrics, but rather to provide them with the capabilities to implement and apply

arbitrarily complex indexing schemes as they require.

Having assumed the Vector Space Model, we can now examine how the definition of in­

dexing schemes fit with the model. Earlier, indexing schemes were defined as metrics which

measure the fitness or quality of given media objects. This definition fits in with the VSM on

a number of different levels. Firstly, indexing schemes are used to process and interpret the

raw data contained within media objects. They extract and synthesize the information to be

stored in each dimension of the object vectors. Similarly, the definition of an indexing scheme

can be applied at a higher level of abstraction. Having reduced a media object to its represen­

tative vector through the application of various indexing schemes, higher level schemes can be

designed. These higher level schemes indirectly measure a media object's fitness through the

interpretation of the meta-data stored in its representative vector. That is, they indirectly mea­

sure an object's fitness through various permutations and combinations of the data contained

in the vector.

The assumption of the VSM facilitates the implementation of comparative indexing schemes.

Again, a comparative indexing scheme is a scheme that, given two MediaDocument objects,

Chapter 4. Using the Triangle Inequality to Improve Efficiency 32

judges the quality of one of the MediaDocuments based on its similarity or dissimilarity to the

other. As we move towards an implementation of the triangle inequality, these comparative

schemes will become important, acting as distance measures, providing an estimate of how

similar various media objects are.

We define I(a, b) as the value returned when the comparative indexing scheme I is applied

to the MediaDocuments a and b. This value is between 0 and 1 where 0 indicates a perfect

match between object a and b and 1 indicates complete dissimilarity. Next we define the three

different types of MediaDocument objects that will exist and interact with the database. Library

documents (/) are defined as all MediaDocument objects contained within the media database.

These are the objects that query results will be drawn from. Their defining property is the fact

that they are available prior to the submission of any queries. This is important in that it allows

for preprocessing to be performed. Key documents (k) are defined as a representative subset

of the library documents. The goal for the selection of Key documents is to have as small a

number of them as possible while maintaining an accurate representative sample of the library

documents. In the ideal case, they are evenly distributed amongst the vector space of the library

documents as defined by the VSM. Finally, Query documents (q) are defined as any document

that is being submitted as part of a comparative analysis query. The important characteristic of

Query documents is that the system has no prior knowledge of their existence. This deficiency

makes it impossible to perform any sort of preprocessing. Without the triangle inequality

this would result in unreasonable runtime processing requirements thus limiting access to the

database.

Having defined the various types of objects associated with the system we shall consider a

media database that consists of a set of library objects L — {/i,/^}, a set of key objects1,

K = {ki,fcjvf}, and, for now, a single indexing scheme I. Prior to the submission of any

queries, the objects are reduced to a single dimensional vector through the pre-calculation of

I(kv,lw)V{l < v < M} and {1 < w < TV}.

1 Although it is not necessary, this set of objects is generally a small subset of the library objects.

Chapter 4. Using the Triangle Inequality to Improve Efficiency 33

Upon the submission of a query image, q, the values of I(kv,q) are calculated. Based on

the triangle inequality it is then possible to place a bound on both the minimum and maximum

distance between the query object and any library object, /.

maxi<v<M\I{kv, I) - I(kv, q)\ < 1(1, q) < mini<v<M(I{kv, I) + I(kv, q)) (4.1)

Equation 4.1 shows how the maximum and minimum bounds on library-query object dis­

tances can be efficiently calculated based on pre-calculated key-library object distances. It

shows that the maximum value of 1(1, q) is less than or equal to the minimal sum of the dis­

tance between the library object, /, and any key object, kv and the query object, q and the

same key object. More importantly, it shows that a lower bound can be placed on library-query

distances. This lower bound is the maximal value that can be obtained from the absolute value

of the difference between the distances separating the library object, /, and any key object, kv,

and the query object, q and the same key object.

Based on these bounds, finding the library object that best matches the query object ac­

cording to the indexing scheme can be done in a manner similar to Berman's[6] as follows. First,

Bi is defined as a variable that will be used to store the distance between the query object, q,

and its current best match in the library, /'. By its nature, Bi will always be less than or equal

to its value on the previous iteration.

Having defined Bi, we can move linearly through the index, calculating /(/, q), the distance

between the library and query objects only when the minimum possible distance between them,

as defined by equation 4.1, is less than the current value of B\. During this process, the library

object associated with the current value of B\ is maintained and then returned as the best

match upon completion of the traversal.

Ideally, at least one of the key objects shares properties identical to those of the query

image. The result of such a condition would be that the value of the distance lower bound

illustrated by equation 4.1 would perfectly represent the actual distance between the query

object and the library object. Although that situation does not insure a minimal number of

Chapter 4. Using the Triangle Inequality to Improve Efficiency 34

distance calculations, it does prevent any calculations resulting from poor lower bound values.

Accurate representation such as this, however, is rarely the case. The fact that query objects

do not generally share properties which are identical to the key objects provides for a very

inefficient worst case scenario. This scenario involves the runtime calculation of all of the

distances between the query object and each of the library objects - obviously an unacceptable

situation when dealing with large numbers of media objects and computationally expensive

metrics.

Even in the best scenario, the minimum possible distance between all but one library object

and the query object must be examined. Although this comparison is relatively inexpensive,

the potential magnitude of the database requires all possible optimizations to be made.

Finally, this algorithm does not perform very well under time or computational restrictions.

That is, in the case where restrictions have been placed on the amount of time or compute

cycles allowed to handle a query, the algorithm makes no effort to examine the best candidates

first. In order to circumvent all of these problems and allow for best-n queries to be processed,

several modifications have been made to the algorithm.

4.2 An Optimized Version

The following section examines several modifications that have been made to the previous

algorithm allowing for more efficient query handling. The most important modification to the

algorithm affects pre-calculation. In this case, not only are I(kv, lw) calculated for all key and

library objects, the results are also sorted. The results of measuring the distance from each

library object to each key object are sorted so that the library object most similar to the key

object has the lowest index and the most dissimilar object has the highest. The results of

these calculations are stored in an array of doubly sorted vectors. That is, each key object

has a vector of library object-distance pairs sorted by both the object and the distance value

associated with it. The nice property of this amendment is that, in addition to assisting with

a solution to the problems mentioned above, no further requirements are placed on runtime

Chapter 4. Using the Triangle Inequality to Improve Efficiency 35

resources.

Having made the modification, the submission of a query requiring the best n library objects

to be returned is handled by, again, calculating the actual distances from all of the key objects

to the query objects: I(kv,q) for {1 < v < M}. Based on this calculation, the theoretically

best possible candidates are those library objects that are the same distance from any of the

key objects as the query object.

The next step of the algorithm involves the placement of the best candidates according to

each key object onto a sorted queue. Again, the quality of the candidates is determined by

the lower bound on their distance to the query object. The sorted queue was designed such

that elements are always inserted in sorted order, lowest values near the front of the queue and

removed from the front. As elements are removed from the queue any of their neighbors from

their associated key vectors are added.

Having placed the library candidates with minimal lower bound distances to the query object

on the queue, we begin to process. Elements are continuously removed from and added to the

queue until the lower bound on the library object currently being processed is higher than Bn,

the actual distance from the query object to the nth best element found thus far as measured

by the applied indexing scheme. Once the lower bound of the first object on the queue exceeds

this value, the search is complete. This is a valid indication of completion because we know, as

a result of maintaining the objects in sorted order, that no object is closer to the query object

than those that have already been examined.

Although the above method avoids a great deal of redundant calculations, it doesn't make

optimal use of the information made available through the lower bounds pre-calculations. The

naive method that accompanies the above sorted queue model would simply pull objects from

the queue and calculate the actual distance between the library object and the query object.

This method can be improved through further exploitation of the pre-calculation described

earlier. Theoretically, the library objects that are being added to the queue are those which are

closest to any particular key object. The advantage of having multiple key objects is that the

Chapter 4. Using the Triangle Inequality to Improve Efficiency 36

lower bound on the distance between a library object and the query object calculated relative to

one key object is not necessarily the lower bound relative to all of the key objects. Consequently,

a further reduction in the number of actual library-query object comparisons can be made. This

reduction can be made by finding the maximal lower bound on the distance between the library

and query objects in question and only calculating the actual distance if this maximal bound

is less than the nth best. Thus, library objects are removed from the sorted queue and if their

maximal lower bound has a value less than the nth best actual distance calculated so far, the

actual distance between it and the query object is calculated. If this value is better than the

nth best, the object is inserted into the results list R. Again, once the lower bound for any

library object in the queue is greater than the nth best, the query has been completed and the

results are returned.

Not only does this algorithm avoid the redundant runtime calculations and comparisons

of Berman's method, it also provides a better solution to the resource restriction problem

discussed earlier. The algorithm attempts to examine the best possible candidates first and in

doing so provides better results in time or processor limited situations. In addition to this, it

also provides for query extensions. If the user initially asks for the n-best matches, the query

can be extended to provide results for the n + z-best matches without having to reprocess the

initial query elements.

4.3 An Example

4.3.1 The Query Conditions

The following example is a simple illustration of the method described above. For simplicity,

we will consider a very small image database where the set of key images, K, are distinct from

the set of library images, L. Our example will consider an image database management system

(IDBMS). The system will consist of a set of three key images, K = {ko, k\, k2}, ten library

images, L = {lo, l\, l2,13,14,15, fet hi l&, h} and a single indexing scheme, I. The query to be

submitted will consist of a query image, q and a request for the best 2 matching images from

Chapter 4. Using the Triangle Inequality to Improve Efficiency 37

the image library.

The indexing scheme, 7, will be very simple. It will judge image similarity based on the

number of pixels contained in both the x and y dimensions of the images.

Equation 4.2 shows the formula that will be implemented. The value of the divisor is 1000

purely for the sake of cosmetics, it resulted in a set of proximity values ranging between 0.0

and 1.0 as required by the indexing scheme definition. When this scheme is applied to a pair

of images, the closer two images are in terms of the number of pixels they contain in each

dimension, the lower the value that will be returned. This scheme was selected for a number

of reasons. Firstly, it is really just a Euclidean distance measure with a scaling factor. This

makes it both easy to comprehend and express mathematically. Secondly, it encompasses a

two-dimensional problem space. This is advantageous in that two dimensional problem spaces

are easy to visualize.

Table 4.1 shows the actual dimensions of all of the images to participate in the example

query. The images were arbitrarily selected from the images that were members of a larger

IDBMS used during the actual implementation and testing of the system described earlier.

They range in size from approximately 100 to 400 pixels in both the x and y dimensions.

Figure 4.5 shows how all of the images, key, library and query are distributed over the

two dimensional space of x and y pixels. We can see that despite the fact that they were

selected randomly, the distribution of the key images is somewhat even over the problem space.

Similarly, the library images are also well distributed. Visually, they are clustered around the

key images. In fact, they can be clustered into three groups each relatively close to a distinct

key image. This is a nice feature in that it will allow for the key images to accurately represent

members from the various groups. Finally, and most importantly, the query image, q, is located

very close to ki. This is a highly desirable feature in that the closer the key images represent

the query image, the faster the algorithm should, theoretically, be able to find the best match.

Chapter 4. Using the Triangle Inequality to Improve Efficiency 38

Image Set Width Height

Key Images
k0 308 209
ki 195 270
k2

142 195
Library Images
lo 388 160
h 399 187

h 282 187
h 141 109
h 150 144
h 172 251
h 108 150
h 226 282
Is 361 239
h 208 255
Query Images
q 188 265

Table 4.1: Sample IDBMS image dimensions.

300

280

260

240

a 220 a
•P 200
X
? 180
B

160

140

120

100 4

• Library Images

• Query Image

• Key Imuges

50 100 ISO 200 250 300 3S0 400 450

lmtgt Width (pixeli)

Figure 4.5: Distribution of images involved with query over 2D pixel space

Chapter 4. Using the Triangle Inequality to Improve Efficiency 39

4.3.2 Handling the Query

Upon the submission of the query image, q, all of the key-query similarities are calculated.

These similarities are calculated through the application of I{kv,q) for each of the key images,

0 < v < 2. Table 4.2 shows the results of this application.

Image l{kv,q)
k0 0.132
ki 0.009
k2

0.084

Table 4.2: Key-Query image similarity measures.

The calculation of all of the key-query distances, combined with the pre-calculated key-

library distances allow for lower bounds to be placed on all of the query-library similarities.

These lower bounds are calculated through the application of the triangle inequality. More

specifically, as shown by equation 4.3, the similarity of the query object, q, and any library

image, lx, is no less than the absolute value of the maximum difference between the distance

from any key image to the library image and the same key image to the query image.

I{lw,q) > max0<v<2\I{kv,lw) -I(kv,q)\ (4.3)

Given that the distances between all of the key and library images have been pre-calculated

and sorted, for each key image, a library image is selected as the candidate with the best

possibility of matching the query image. These candidates are selected based on their distances

to the key images. A key image's best candidate is that image that has been shown to have a

similarity to the key image that most closely matches that of the query image. More specifically,

the best candidate for each key image is m m o < „ < 9 | / (^ , / u ,) — I(kv,q)\.

Table 4.3 shows both the pre-calculated and sorted key-library image distance measures

and the lower bounds on library-query distances for each key image. Based on calculations

involving the key images, {k0, k\, k2}, the table shows that the best candidates to match the

query image, are {h,l$,h} respectively.

Chapter 4. Using the Triangle Inequality to Improve Efficiency 40

l2 Is h lo h h h U **3 k
I(ko, lx) 0.034 0.061 0.094 0.094 0.110 0.110 0.142 0.171 0.195 0.209

\I(ko,lx)-I(k0,q)\ 0.098 0.072 0.039 0.039 0.023 0.022 0.010 0.038 0.062 0.076

/ 9 h h h h k h / 3 lo
I(ki,lx) 0.020 0.030 0.033 0.120 0.134 0.148 0.169 0.170 0.220 0.222

1/(^,^-/(^,9)1 0.011 0.021 0.025 0.112 0.125 0.140 0.160 0.161 0.212 0.214

U Is h h h h l2 Is lo k
I{k2,lx) 0.052 0.056 0.064 0.086 0.089 0.121 0.140 0.223 0.248 0.257
\I(k2,lx)-I(k2,q)\ 0.032 0.027 0.020 0.002 0.005 0.037 0.056 0.140 0.165 0.173

Table 4.3: Key-library image similarity and lower bounds on library-query image similarity.

Based on their similarity to the key images, these three will be the initial images to be

placed on the sorted queue, Q. Using the notation, lx-xxx where x.xxx indicates the library

images distance measure to the key image and y identifies the library image, the queue will

initially have the following order Q = { Z 0 0 0 2 , Z 0 0 1 0 , Zg011}.

Since the result list, R, is empty, the first element on the queue is automatically removed

for inspection. Given the above order, Zg 0 0 2 is removed from Q, / (Z 3 , q) is calculated yielding

a distance measure of 0.1629, leaving R = {Z0 1 6 2 9}. As per the method described earlier, both

Z 5 0 2 0 and Zg 0 0 5 are placed on the queue. They are placed on the queue as a result of the fact

that they are neighbors of Z3 in the k2 list of proximities. Thus, Q = {Zg-005, Zg 0 1 0 , Zg 0 1 1 , Z0/0 2 0}.

As will be seen, the fact that both Z5 and Z 9 are on the queue in two different positions doesn't

matter.

Again, since \R\ < n the first element, Zg 0 0 5 , is removed, / (Z 9 , q) = 0.0224 is calculated,

its neighbor Z ? 0 3 7 is placed on the queue. Now, R = {Zg 0 2 2 4, Z0 1 6 2 9}, Bn = 0.0224, and Q =

r/0.010 /0.011 /0.020 ; 0 . 0 3 7 \
1*5 ' '9 >'5 ' J 7 / •

It is at this point, when \R\ = 2, that the algorithm becomes interesting. The next element

on the queue is Z 0 0 1 0 . This element is pulled off of the queue. Its actual proximity to q has

never been calculated, therefore, its maximum lower bound on the distance to q is determined

to be 0.021 (as indicated by the k\ proximity list). Since this value is less than S n , we calculate

/(Z5, q) = 0.0213. This iteration is finished by placing Zg 0 2 2 and Z 0 0 3 8 on to the queue. The result

Chapter 4. Using the Triangle Inequality to Improve Efficiency 41

list now contains R = {Z° 0 2 1 3,Z°- 0 2 2 4}, Bn = 0.0213 and Q = {Z°-0 1 1,Z°-0 2 1,Z°-0 2 2,Z°-0 3 7,Z0 0 3 8}.

As a result of the fact that 7(Z9, q) has already been calculated, Z 0, - 0 1 1 is now removed from the

queue and its neighbor /j?0 2 1 is added without any further calculation. This process continues,

for three iterations, removing elements that have already been calculated and placing their

neighbors on until a state is reached where the queue is Q = {Z?0 2 3, J?-025,if027, Z°'037Z7, Z° 0 3 8 }.

4.3.3 Completion

At this point, the algorithm finishes. Completion is realized due to the fact the lower bound

on the next element in the queue, Z 7

- 0 2 3 , is higher than the current value of Bn = 0.0213.

We know that we have examined all of the documents required due to the fact that, all of

the best candidates were initially placed on the queue. That is, the images with the lowest

lower bounds from each of the key images. As these elements were processed, elements with

continuously poorer lower bounds were placed onto the queue, maintaining their sorted order

and always processing the candidate with the minimal lower bound. This process insures that

the best candidate will always be at the head of the queue, thus insuring that no candidates

are overlooked.

Having returned the n-best elements, it is very easy to see that through maintenance of the

queue, we could extend the results to include the n + a:-best elements without any re-calculation

of the initial n-best.

If we examine the overall process, we see that despite the fact that we placed 11 elements

(5 unique elements) onto the we queue, distance measures were only calculated for {/3,/g, Z5}.

This is excellent considering that the optimal case requires 2 elements be compared. In terms

of quality, the results of the query were Rjinai = {Zs,^}- Closer inspection will reveal that,

indeed, these two images are the best matches to the query object as both differed from the

original by at most 20 and 14 pixels in the respective dimensions. This verification can be done

by either calculating the distances to all of the other images or through inspection of the graph

shown in Figure 4.5. " ' '

Chapter 4. Using the Triangle Inequality to Improve Efficiency 42

4.4 Extending the Algorithm

The previous example shows an implementation of the triangle inequality that allows the user

to apply a single indexing scheme to a large body of data. This method has shown excellent

results in terms of its efficiency but is lacking in at least one key area. This deficiency is

spawned from the fact that it requires prior knowledge of the metric. This requirement makes

the method quite limiting in terms of query formulation. It effectively limits the user to the

same constraints exhibited by most current multimedia indexing systems. That is, it allows the

user to submit a wide range of queries to the database but does not provide any control over

the metric by which object similarity is measured.

The following section suggests an algorithm that still maintains the efficiency provided by

the method described earlier while allowing the user more freedom in terms of object similarity

metrics. Although it does not allow the user complete autonomy in metric formulation, it does

allow for arbitrarily complex polynomialcombinations of known schemes. Again, the idea is

similar to that proposed by Berman[6]. Several optimizations have been made to aid with the

application of the algorithm to large databases.

The general algorithm is similar to that presented in the previous section except that object

similarity calculations have been extended and made more flexible. This improvement in the

similarity calculations allows for an arbitrary number of indexing schemes to be combined.

They are combined through a series of multipliers and exponents creating, what will be referred

to as, a meta-indexing scheme, lM(a,b).

IM{a,b) = mili(a,b)ei + • • • + m „ / n (a , 6) e " (4.4)

Equation 4.4 shows one method for combining an arbitrary sized series of schemes to form a

single metric. It shows that the meia-distance between any two objects can be calculated via the

application of a series of indexing schemes. Before being added to the total meia-distance, the

result of applying the current scheme, In, has an exponent, en, applied and then is multiplied

by another factor, mn. The advantage of this type of a calculation is that it allows for iterative

Chapter 4. Using the Triangle Inequality to Improve Efficiency 43

refinement of the final value.

A query to a system that implemented this method would, in addition to the query image

required of the previous algorithm, consist of a series of real valued multipliers and exponents.

Having received a query of this type, the first step of its processing involves the ordering of

the various schemes. Firstly, any schemes that have zero valued multipliers or exponents are

ignored as they will contribute a constant value of either -1, 0, or 1 to the similarity measure

between all objects in question. Having disregarded any irrelevant schemes, the second step

involves ordering the schemes. This ordering explains the reason for requiring that indexing

schemes return a value constrained to be a real value between 0.0 and 1.0. Ordering involves

the determination of the maximal or minimal possible contributions to the meta-distance of

each of the individual indexing schemes.

d™ax - mt* if. m > 0
(4.5)

= -1 x \m%x\ if m < 0

For each multiplier-exponent pair, we calculate dmax, the maximal possible value that an

individual scheme can contribute to the sum. Having made this calculation, an ordered list of

the schemes is created. This ordering indicates the order in which the schemes will be applied.

The ordering is as follows. The first half of the list consists of all of those indexing schemes with

dmax < 0 from smallest to largest. The second half consists of those schemes with dmax > 0

sorted from largest to smallest.

IM(a, b) = -3/3(a, b)2 - 3/5(a, 6) 0 5 + 4/6(a, b)2 + 2h(a, b)3 + 3/ 4(a, b)3 + 4/2(a, 6)5 (4.6)

Equation 4.6 shows an example combination with the schemes listed in the order in which

they will be applied.

Based on this ordering, it is now possible to iteratively calculate the distance between two

objects, refining the value at each step. The reason for sorting the schemes based on their

dmax values as described above is that it ensures that, for every application of a scheme with

Chapter 4. Using the Triangle Inequality to Improve Efficiency 44

a dmax > 0, the total value of JAf(a, &) will only increase. Further, schemes with higher dmax

values are applied first due to the fact that they have a higher potential to increase the value

of the distance between the two objects in question beyond the current value of B N . This is

advantageous in that, if it any point during the calculation of the similarity between a library

image and a query image, IM{IX,O), the current value of the distance exceeds BN we can stop

calculation. Stopping calculation via this method is valid as a result of the fact that on each

iteration, we are adding a positive value to the distance, making it more positive.

Chapter 5

A Media Indexing System

In order to demonstrate an application of the ideas discussed in Chapter 3 and Chapter 4, a

content based image indexing system was implemented. The following chapter examines this

implementation. It describes a number of the system's features as well as several of the design

decisions that were made both prior to and during its implementation.

The approach taken during the implementation of the image indexing system was similar

to that taken by Lycos and other first generation text-based search engines. These engines

parsed HTML documents, extracting keywords and using standard statistical based algorithms

to determine text document fitness. These first generation algorithms provided a tool very

similar to the UNIX Grep tool. Given a query, they attempted to return a document with

similar .words or phrases without attempting to attach any meanings or biases to words and

phrases. Similarly, the following implementation provides the user with the ability to calculate

and access statistical measures on images without attaching any meaning to the statistics.

The system consists of both a client and server that communicate via a protocol based on the

exchange of data objects.

5.1 Server

The server is a stand alone implementation that handles two major classifications of queries.

The first type of query is based on the model discussed in Chapter 3. It allows the user to submit

and apply unique indexing schemes to the database of images recognized by the server. The

second type of query implements the model discussed in Chapter 4. It provides functionality

allowing for the efficient application of server resident indexing schemes. This application, as

45

Chapter 5. A Media Indexing System 46

discussed earlier, makes use of the triangle inequality.

In order to support both types of queries, the system maintains three lists. It maintains a

list of library images, a list of key images and a list of known indexing schemes. Both image

lists contain the Internet locations of a series of GIF and JPG formatted images. In addition

to this series of lists, the server maintains a matrix of sorted vectors. This matrix is indexed

by each possible key image and indexing scheme pair. It contains the pre-calculated distances

from each key image to each of the library objects based on the respective distance measure.

The server provides a number of methods through which it can be made aware of the images

that it will be dealing with. In addition to methods which allow the user to submit both key

and library images individually, the server provides funtionality allowing for HTTP references

to HTML documents containing images. Upon submission, these documents are parsed and

any relevant images are indexed.

5.2 Client-Server Communication

Access to the server is provided through a client interface. This interface defines a communi­

cation protocol which supports the exchange of objects between the client and server. There

are two types of objects exchanged between the client and server. The client submits a query

object to the server and the server responds with a Response object. The query object contains

all of the information required for the server to process the query and produce Response object.

Similarly, the Response object contains all of the information pertaining to the results of the

query including any relevant error messages.

5.3 Client

Unlike the server, the client is not defined beyond the communication interface it shares with

the server. A Java Client class has been defined but it only contains the functionality required

to create a connection and interact with the server. It makes certain assumptions in terms of

the functionality of an attached user interface. For instance, it assumes that the user interface

Chapter 5. A Media Indexing System 47

will provide all of the necessary information required to create the Query object. This type of

implementation was chosen in order to allow implementation specific interfaces to be added as

required.

5.4 Design Decisions

Prior to the implementation of the system as described above, several design decisions were

made. These decisions focused on the development of an implementation that could demonstrate

both the validity and effectiveness of the theory discussed in previous chapters. The decisions

were influenced by three dominant factors; time and effort, portability and expandability.

5.4.1 The Java Programming Language

The first decision that was made with regards to the system's implementation was the choice

of an appropriate development environment. Having examined a set of alternatives, the system

was implemented using the Java programming language. The following list summarizes the

features of the language that contributed to it being chosen.

• Thread Library: An important factor involved in the choice of Java as the implementation

platform was its high level, standardized thread library. The functionality provided by the

library assists with both the speed at which indexing will occur and the system's expand­

ability. Due to amounts of traffic, bandwidth restrictions and server response times, delays

can often be witnessed during the transfer and indexing of media objects. Multi-threaded

implementations can diminish the effects of these delays through context switching. In

addition to the performance improvements observed as a result of context switching, multi­

threaded applications can witness drastic performance improvements when run on larger

machines. More specifically, they demonstrate greater perfomance improvements when

run on multi-processor hardware architectures than their single threaded counterparts.

Chapter 5. A Media Indexing System 48

• Internet Connectivity: One of the factors that contributed to the choice of Java as the

implementation languages was its ability to interface with the Internet. The language is

equipped with the full suite of high level Internet protocols. The capabilities provided

by the protocols aid in the speed and ease with which applications can be developed and

integrated with the Internet. This attribute was highly desirable during the selection due

to the close relationship the system has with the Internet.

• Portability: The Internet consists of a diverse collection of hardware architectures. Java

reduces the problems associated with this heterogeneity through its ability to operate

seamlessly over a variety of architectures. This ability is important for a number of rea­

sons. Most importantly it insures that both client and server software will be executable

on different systems, maintaining seamless interaction over a wide range of hardware

combinations.

• Object Oriented Paradigm: One of the most important features of Java is the fact that it

strictly adheres to an object oriented paradigm. This feature was important during the

design of the system for a number of reasons. Firstly, one of the most important properties

of the system was that it had to be extensible. Adhering to strict object oriented design

principles aided in insuring that this would be possible due to the fact that it allowed for

abstract interfaces to be defined.

In addition to the fact that the object oriented paradigm aided in the system's extensibil­

ity, it also provided a great deal of functionality which allowed for the system's distributed

design. Java version 1.1 provides the user with the ability to serialise objects. Object

serialisation is the process of converting an object into a form that can be transmitted

to a data sink. That is, a form that can be saved to a file or transmitted to a remote

destination. This functionality was useful during the implementation of index persistence

and various aspects of communication.

Chapter 5. A Media Indexing System 49

• Acceptance: In addition to all of the previously mentioned attributes, one of Javas

strongest is its acceptance. Although it is still at the point where it is supported to

varying degrees, most popular Internet browser software including Netscape Navigator,

Internet Explorer and the HotJava browser claim to support Java. It should be noted that

one of the major problems encountered during development was a result of this varying

support. For example, at the time of this writing, Netscape Navigator 4.0 supported only

portions of version 1.1 of the Java AWT (Abstract Windowing Toolkit). This toolkit is

responsible for all graphical displays - one can imagine the difficulty of implementing an

acceptable GUI that will operate over multiple platforms with varying degrees of support.

Despite this drawback, all major operating systems provide native Java support which

allowed us to circumvent the browsers where ever necessary.

5.4.2 The MediaDocument and Related Classes

MediaDocument

TextDocument SoundDocument VisualDocument HybridDocument

ImageDocument VideoDocument

Figure 5.6: The MediaDocument Hierarchy

Having chosen a language in with which to develop the system, a representation for the

various different types of media had to be developed. This representation had to be simple

and extensible allowing for a variety of different media all sharing some common attributes.

The solution to this problem resulted in the definition of an abstract Java class referred

Chapter 5. A Media Indexing System 50

to as the MediaDocument class. This class is the super class of all media objects to be in­

dexed or involved with the system. The class contains information and methods common

to all media objects such as location, size and name. Figure 5.6 shows the relationship be­

tween the various MediaDocument subclasses. Document specific information is stored at the

highest applicable level of the hierarchy. For example, colour histogram information is stored

in the ImageDocument class. Dimensional information, on the other hand, is stored in the

VisualDocument class. The reasoning behind this organizational paradigm is that it allows

for the possibility of indexing schemes being applied to a variety of different MediaDocument

sub-classes.

MediaDocumentObserver

This interface is defined as a means of monitoring the status of media objects. Similar in func­

tionality to the Java ImageObserver interface, when implemented, this interface allows a class

to monitor the status of registered MediaDocument objects. The implementation of this inter­

face provides developers with a key element of functionality when dealing with MediaDocument

objects. It allows for the downloading of media to be done asynchronously. The interface

makes use of the documentUpdate functions in order to notify the main thread of execution

that downloading is either complete or an error has occured. Without this functionality, a great

deal of time could be wasted waiting for the initialization of MediaDocuments to complete. The

implementation of the. interface allows MediaDocument object creation to occur inline with the

current thread of execution and the actual downloading and indexing to occur elsewhere. This

effectively masks any waiting that may occur, allowing the application to perform other tasks.

In the case where an error occurs, the application is notified via the interface it has implemented.

5.4.3 Query Interface

One of the most important aspects of any media indexing system is the query interface. In

order for a system to be used, it must have an intuitive, simple-to-use interface. The definitive

Chapter 5. A Media Indexing System 51

qualities of such an interface are hard to quantify. Requirements change from application to

application.

Figure 5.7: A sample user interface

Figure 5.7 shows one of the client side user interface used with the media indexing system.

It is a very simple system that allows the user to select a single scheme and easily manipulate

various parameters. This interface worked well for the experimentation associated with this

work. It may, however not work so well in other applications.

In order to accomodate this constant variability, the Client object has been defined without

a user-interface. Instead, it defines a class on which a user interface can easily be added. Thus,

it is possible to define custom user interfaces on a per application basis.

Chapter 6

Experimental Results

One of the most important questions with regards to the methods contained within this work

is how well they perform under "real world" conditions. The following chapter examines the

performance of the implementation described earlier. Due to the speed at which hardware

performance is currently advancing, system performance is judged based on the number of direct

library-query object comparisons that have to be made for a given query. The examination is

done through a series of experiments which test various aspects of the system showing exactly

how well the methodology performs under a variety of conditions.

6.1 Operating Environment

All of the experiments illustrated in the following sections were performed on a single processor

Intel, Pentium II running at 300MHz under RedHat Linux Version 5.0. The system had 500Mb

of RAM and 9.0Gb of hard drive space. As mentioned earlier, the software system was developed

entirely using the Java programming language. More specifically, using the Java Development

Kit version 1.1.5 (jdkl.1.5).

6.2 Experiments

6.2.1 Media Library Size

Due to a lack of both time and resources, it was not possible to develop an index of the

entire media content of the Internet. Instead, a very small subset of images from the network

were downloaded and indexed. This first experiment was designed to estimate how the system

behaves as the media library grows. It is believed that the portion of the database required to

52

Chapter 6. Experimental Results 53

be examined in order to fulfill the query requirements will decrease as the library size increases.

During this experiment, a total of 1610 distinct queries were made to the system using a

single, 16 dimensional indexing scheme and a variety of different key images, number of images

to be returned and library sizes. 5 sets of 23 queries were made requesting 5, 10, 20, 30, and 40

results with both 1 and 2 key images. These queries were made to a variety of different libraries

containing 89, 190, 276, 522, 623, 809 and 913 distinct images respectively.

Figure 6.8: Graph showing the effects of varying the number of library images

Figure 6.8 shows a summary of all of the results obtained. The figure shows the percentage

of images that are required to be examined under the various different library sizes. These

percentages were obtained by calculating the average percentage of images compared under

each of the conditions listed above. Thus, the percentage of comparisons made for the library

with a size of 89 was obtained by taking the average of the number of images actually compared

when 5, 10, 20, 30 and 40 images were requested using both 1 and 2 key images.

Chapter 6. Experimental Results 54

Examination of the graph shows a distinct trend indicating a decrease in the percentage of

library images that have to be compared as the library size grows. Moreover, the graph appears

to indicate an almost logarithmic relationship between the percentage of comparisons and the

size of the library.

6.2.2 Number of Key Documents

One of the factors that contributes to the effectiveness of the triangle inequality is the number

of key documents involved. It is believed that an increase in the number of key documents will

result in changes to both the number of lower bounds checks and the number actual document

comparisons made.

Firstly, a marked decrease in the number of actual similarity calculations or document

comparisons that will be required to retrieve the best library documents is expected. Secondly,

it is expected that as the number of key documents is increased, the number of lower bounds

checks that will be made will increase relative to the number of actual comparisons. That is,

the difference in the number of lower bounds checks and the number of comparisons made will

become larger. The reasoning behind these hypotheses is as follows. As the number of key

images increases, so does the accuracy with which they represent the data base. In terms of the

algorithm itself, it would be expected that as the number.of key documents was increased, the

accuracy of the maximal lower bounds on the distance between the library and query document

would also increase. This increase in accuracy will result in a decrease in the necessary library-

query comparisons and a subsequent increase in the number of checks required to find the

maximal lower bound.

In order to test the above hypothesis, a library of 522 images was compiled and indexed

using an indexing scheme that encompassed 16 dimensions and a variable number of randomly

selected key images ranging from 1 to 20. 1 A series of queries were then submitted to the

server. The queries varied in both the query image and the number of images to be returned.

'These images were randomly selected to help illustrate a "real-world" situation where a set of keys will be
used with a variety of differing indexing schemes.

Chapter 6. Experimental Results 55

Requests for 5, 10, 20, 30 and 40 images were made to the server for each of 23 different query

images.

Figure 6.9: Graph showing the effects of varying the number of key images

Figure 6.9 shows a graphical summary of the results of all of the queries. Again, the values

plotted on the graph represent the average values for all of the different queries made under

the varying numbers of key images.

Inspection of the graph appears to show two definite trends that correspond with the original

hypotheses. Firstly, it can be seen that, in general, as the number of key images is increased,

the number of comparisons required to fulfill a query decreases. Closer examination reveals

that the use of 9 key images resulted in a decrease in comparisons by 45% and the use of 15

resulted in a reduction of 65% over the case where only a single key image was used.

Contrary to the decreasing trend, there are also several peaks in the graph. These peaks

can be noticed at the forth, tenth and twentieth key images. Upon initial inspection, one

Chapter 6. Experimental Results 56

might be lead to believe that these are examples showing that the initial theories were wrong;

additional key images do not aid in the efficiency of the triangle inequality. In fact, what it

does show is that although the addition of key images generally improves the performance of

the methodology, poor selection of keys can result in degenerated performance.

6.2.3 Indexing Scheme Complexity

Another element that contributes to the efficiency of the triangle inequality is the dimensional­

ity of the space in which it is being applied. In the domain of this system, dimensionality is a

property of the indexing scheme. It is defined by the number media attributes encompassed by

the metric. That is, for each element of a given media object encompassed by the calculation,

another dimension is incurred. It is believed that, in general, the higher an indexing scheme's

dimensionality, the less effective the triangle inequality will be at reducing the number of re­

quired comparisons. This hypothesis is derived from the fact that the higher the dimensionality

of the problem space, the lower the chance that the lower bound generated is a good approxima­

tion of the actual distance. The intuition bethind this is that every dimension involved with the

metric provides another "direction" that can contribute to the distance between two objects.

As the dimensionality rises, the chance that two objects are located in the same direction at

the same distance from a third decreases exponentially.

Figure 6.10 summarizes the results obtained by making 920 queries to the system. The

same set of 230 queries were made to each of 4 different metrics that encompassed 2, 3, 16

and 48 dimensions. The figure displays how the percentage of the library images that must be

compared to any given query image varies with the complexity of the metric.

As expected, increasing the indexing scheme's dimensionality increases the percentage of

the library that has to be examined. Quite unexpectedly, however, the trend seems to indicate

that dimensionality has less and less of an effect as it continues to increase. That is, increasing

from 5 to 10 dimensions will show a greater detriment to performance than the increase from

20 to 25 dimensions.

Figure 6.10: Graph showing the effects of varying the metric complexity

Chapter 6. Experimental Results 58

6.2.4 Number of Results

The following experiment examines how varying the number of results returned to the user

affects the number of comparisons that have to be made between the query and library images.

It is expected that an increase in the number of comparisons required to return the best images

will be witnessed in conjunction with an increase in the images being requested.

A library of approximately 800 images was used for this experiment. A 16 dimensional

indexing scheme and 2 key images were used as 23 distinct query images were submitted to the

server with requests made for the best 1, 2, 4, 8, 16, 24, 32, 48 and 96 matches.

50 1

0 i : : , :

0 20 40 60 80 100
Images Requested

Figure 6.11: Graph showing the effects of varying the number of results requested.

Figure 6.11 shows the relationship between the number of images requested and the number

of images that were compared. The graph shows a very rapid increase in the number of com­

parisons required as the number of images requested increases initially. In addition, it shows

that this trend is not maintained as the request size continues to grow. Instead, the number of

Chapter 6. Experimental Results 59

comparisons flattens out to what appears to be an almost linear relationship.

6.3 Summary

All of these experiments have displayed that there are four key factors that affect the perfor­

mance of the system; the number of elements in the media library, the number and quality

of the keys used during the indexing process, the complexity of the indexing scheme, and the

number of results requested by the user. In all cases, it was witnessed that the more that was

demanded of the system, the greater the number of comparisons required to fulfill the query.

Chapter 7

Conclusions and Further Developments

7.1 Conclusions

Recently, there has been a great deal of work in the area of content based media indexing. This

work has been motivated by the need to have effective and efficient access to the large bodies of

media data available today, in particular, the data contained throughout the Internet. Despite

all of the work that has been done, all current systems fall short in several areas. This thesis

has tried to recognize and perhaps contribute to the process of overcoming these shortcomings.

Where an indexing scheme was defined as a metric that measures either the absolute or relative

quality of a given multimedia object. It explains and demonstrates an application of two pivotal

concepts related to the efficient application of indexing schemes.

The application of unique indexing schemes is currently very inefficient. Generally, in order

for a user to apply a unique scheme, they must, at some point, download and index all of the

media that the metric will be applied to. The main problem with this is that it is inefficient in

terms of time, storage and most importantly network bandwidth. The first concept discussed

by the work examined the possibility of decreasing this inefficiency. The idea was that a large

portion of the inefficiency could be eliminated through the provision of a software interface that

allowed for the submission of unique indexing schemes for remote processing.

The second concept examined by the work attempted to improve the efficiency of applying

indexing schemes from another angle. It examined an application of the triangle inequality,

optimized for use with large multimedia databases. It examined methods which allowed the

application of resident indexing schemes, both static and custom. Unlike static schemes which

60

Chapter 7. Conclusions and Further Developments 61

encompass only a single metric, custom indexing schemes were defined as the polynomial com­

bination of several distinct schemes.

The application of these two concepts were demonstrated through the implementation of

a multi-threaded image indexing system developed using Java. The system implemented a

software interface that allowed users to develop and submit their own, unique indexing schemes.

The two major requirements placed on the schemes were that they had to be written in the

Java programming and implement the interface defined by the IndexingScheme class. The

system demonstrated the viability of this technique, allowing users to submit queries to a large

database of images. Although the response time was highly dependent on the complexity of

the scheme, responses were generally posted within 2 seconds of submission requiring orders

of magnitude lower bandwidth requirements. Secondly, the system demonstrated that the

described application of the triangle inequality decreases the number of comparisons required

to determine optimal matches in large databases.

7.2 Further Developments

Originally, the design and implementation of the system associated with this work concentrated

more on testing and data collection than on the production of a usable product. Statistics

derived from the experiments performed in Chapter 6 show that there is definite room for

improvement. This section discusses several modifications that would be required in order for

the system to reach its full potential and develop into a fully functional product.

7.2.1 C/C++ Implementation

The entire implementation of the image indexing system was done using the Java programming

language. Java was selected as the development environment of choice for a number of reasons

that have already been discussed in section 5.4.1. Despite its many advantages, however, there

are several drawbacks to using the Java development environment.

One of the most important drawbacks that accompanies the language is a result of the fact

Chapter 7. Conclusions and Further Developments 62

that it is portable. All applications written in Java can, theoretically, be compiled once and

run on any hardware and software platform. This portability is a result of the implementation

of Java's just-in-time (JIT) compiler. Initially, Java source code is compiled into byte code.

This byte code is then submitted to the the JIT which actually compiles the code just prior to

execution. Although it has improved tremendously since it was first released, the compiler still

doesn't provide the performance provided by native implementations in C/C++.

This lack of performance was not a limiting factor during the implementation of the proto­

type system described in this work. If, on the other hand, this system were to be implemented

to its fullest extent, attempting to provide indices to millions of media documents of varying

formats, the inefficiencies associated with Java would be considerable. Thus, at the cost of

further development time, a useful extension to the system would be a native C/C++ server

implementation that could communicate with Java clients.

7.2.2 Larger than Memory Implementation

Currently, the system was designed so that all of the data is stored in memory. The machine

used during implementation and testing had 500Mb of RAM allowing for several up to one

thousand images to be stored at a time. Again, in order to expand the size of the system so

that it encompasses larger, real world environments, it would be necessary to develop a larger

than memory implementation. That is, an implementation that automatically stored various

portions of the data to disk.

7.2.3 Additional Preprocessing

One means of increasing the performance of the system is to perform additional preprocess­

ing. Currently, the image implementation keeps track of rudimentary properties of images.

Additional preprocessing such as orientation analysis, texture measures, and face detection

would enhance both the performance of the system and the ease with which additional indexing

schemes could be developed.

Chapter 7. Conclusions and Further Developments 63

7.2.4 Duplicate Elimination

As has been observed by others [1], there a large number of images and other media that exist

in a variety of locations across the WWW. There are two main problems with the existence

of duplicates in the system. First, it is undesirable for a user to obtain multiple copies of the

same media object as a result of their query. In addition to this, the existence of duplicates is

expensive in terms of space and processing time. A desirable extension to the existing system

might be to add some functionality to help avoid indexing the same object multiple times.

In order to implement such a system, three basic cases would have to be handled. The first

type of duplication witnessed involved multiple references a single media document located

at a single location on the network. This case, in fact, has been handled already. One of the

attributes of the MediaDocument object is location. This attribute stores the original location

of the document allowing for the prevention of further indexing.

The second and third cases are not so trivial and it is not so clear as to whether or not

duplicates of this type should be eliminated. The second case involves multiple references to

a single media document located in multiple locations. That is, the same file is located in

different locations on the network. The third case involves the existence of similar documents

in a variety of locations on the network.

The solution implemented by Agnew et al.[l] involves the local storage of thumbnails. Im­

ages are considered duplicate if their thumbnails are identical. This method has several short­

comings and questions could be posed as to how it would extend to non-image media. It does,

however, present a good starting point for work that may follow.

7.2.5 Distributed Cataloging

As mentioned earlier in Section 1.2, one of the primary contributors to Internet traffic associated

with media indexing is the production of global catalogs. In order for a system to maintain an

index of remote media, it must constantly index and download media. This paradigm is highly

inefficient in terms of the amount of network traffic that it generates and could be aided through

Chapter 7. Conclusions and Further Developments 64

the implementation of a distributed cataloging system. Such a system might implement a set

of protocols that allowed for media to be indexed locally as required and uploaded to a central

server. The advantage of this is the elimination of useless downloads of media that hasn't

changed and avoids the transmission of the media objects themselves. Only the indexed form

of the object would now be transmitted.

An extension to this system might allow for the distributed processing of queries. For

example a user could submit a query to a central server which would relay the query to a

number of known servers each of which would process and return the results of the query. The

advantage of such a system is lower processor requirements on systems as well as even lower

network traffic as only media objects selected by the user as being desirable would ever have to

be transmitted across the network.

7.2.6 Improving Key Object Selection

The experiments in Chapter 6 demonstrated that four main factors affect the number of com­

parisons required to process a query. Of these four, properties associated with only two of these

factors can be altered without affecting the services provided to the user. The first of these is

the process of selecting key objects.

Performance of the system is highly dependent upon the quality of the key objects selected.

Currently, key object selection is done arbitrarily. This was done as it is very difficult to

select keys that are applicable under a variety of different indexing schemes. One possibility

for improving the system would be to implement an automatic key selection algorithm to be

executed after all of indexing schemes have been selected. Another, perhaps better solution,

might be to remove the existence of actual keys all together and replace them with generated

keys. These generated keys would only possess the properties associated with selected schemes.

A method for generating these keys could be implemented as follows. Objects could be grouped

in to any number of clusters based on the qualities by which they are being indexed. Keys could

then be generated based on the average values of the attributes of the elements contained in

Chapter 7. Conclusions and Further Developments 65

the clusters. Generating keys in this fashion would insure their appropriate distribution and

aid in providing closer to optimal performance.

7.2.7 Reducing the Search Space

As observed in Section 6.2.1, the second factor that can be altered without the end user being

directly affected is the size of the media library. Although the relationship between library size

and the number of comparisons is less than a linear relation, if the system were to index a body

the size of the Internet, the increase in the number of required comparisons would be significant.

Consequently, methods for reducing the search space would have to be installed. One possible

method for reducing the space would be through the implementation of object clustering as

discussed earlier. Having created the clusters, the result candidates could be reduced from the

entire database to a subset based on the clustering. For example, candidates may have to meet

the criteria of being at most one cluster away from the cluster which most closely represents

the query object.

Another solution might be a hierarchical clustering system. Such a system might have

several levels of clusters; each level containing a more specific set of elements than its parent

and each cluster containing a representative (perhaps generated) key. Thus, with only a few

comparisons to keys, the algorithm could reduce the size of the cluster to a reasonable size prior

to applying the triangle inequality.

Bibliography

[1] Brent Agnew, Christos Faloutsos, Zhengyu Wang, and Don Welch. Multi-media indexing
over the web. In Storage and Retrieval for Image and Video Databases, volume 5, pages
72-83, San Jose, California, February 1997.

[2] G. Ahanger and T.D.C. Little. A survey of technologies for parsing and indexing digi­
tal video. Technical Report MCL Technical Report 11-01-95, Department of Electrical
and Computer Systems Engineering, Boston University, 44 Cummington Street, Boston
University, Boston Massachusetts 02215, USA, November 1995.

[3] Vassilis Athitsos and Michael J. Swain. Distinguishing photographs and graphics on the
world wide web. In IEEE Workshop on Content-Based Access of Image and Video Li­
braries, Chicago, Illinois, March 1997.

[4] Jeffrey R. Bach, Chris Fuller, Amarnath Gupta, Arun Hampapur, Bradley Horowitz,
Rich Humphrey, Ramesh Jain, and Chiao fe Shu. The virage image search engine: An
open framework for image management. In Storage and Retrieval for Image and Video
Databases, volume 4, pages 76-87, San Jose, California, February 1996.

[5] Dana H. Ballard and Christopher M. Brown. Computer Vision. Prentice Hall, 1982.

[6] Andrew Berman and Linda Shapiro. Efficient image retrieval with multiple distance mea­
sures. In Storage and Retrieval for Image and Video Databases, volume 5, pages 12-21,
San Jose, California, February 1997.

[7] John S. Boreczky and Lawrence A. Rowe. Comparison of video shot boundary detection
techniques. In IS&T/SPIE 1996 International Symposium on Electronic Imaging: Science
and Technology, San Jose, CA 94720, February 1996.

[8] C. Mic Bowman, Peter B. Danzig, Darren R. Hardy, Udi Manber, Michael F. Schwartz,
and Duane P. Wessels. Harvest: A scalable, customizable discovery and access system.
Technical Report CU-CS-732-94, University of Colorado - Boulder, March 1995.

[9] C.Faloutsos, W. Equitz, M. Flickner, W. Niblack,"D. Petkovic, and R. Barber. Efficient and
effective querying by image content. Journal of Intelligent Information Systems, 3:231-262,
1994.

[10] Dwi Faulus. Design and implementation of an expressive query interface/language for
image database. Master's thesis, The University of British Columbia, 1996.

[11] Charles Frankel, Michael J. Swain, and Vassilis Athitsos. Webseer: An image search engine
for the world wide web. Technical Report TR-96-14, The University of Chicago, Computer
Science Department, 1100 East 58th Street, Chicago, Illinois 60637, August 1996.

66

Bibliography 67

[12] General Magic Inc. Introduction to the odyssey api. API Documentation
http://www.genmagic.com/agents/odysseyIntro.ps, General Magic, Inc., General Magic,
Inc., 420 N. Mary Avenue, Sunnyvale, GA, 94086, USA, 1997.

[13] Sun Microsystems Inc. Java Core Reflection: API and Specification. Sun Microsystems
Inc., 2550 Garcia Avenue, Mountain View CA 94043 U.S.A., January 1997.

[14] Sun Microsystems Inc. Java Object Serialization Specification. Sun Microsystems Inc.,
2550 Garcia Avenue, Mountain View CA 94043 U.S.A., February 1997.

[15] Sun Microsystems Inc. Java Remote Method Invocation Specification. Sun Microsystems
Inc., 2550 Garcia Avenue, Mountain View CA 94043 U.S.A., February 1997.

[16] Jianhao Meng, Yujen Juan, and Shih-Fu Chang. Scene change detection in a mpeg com­
pressed video sequence. In IS&T/SPIE Symposium Proceedings, volume 2419, San Jose,
CA, February 1995.

[17] Baback Moghaddam, Wasiuddin Whaid, and Alex Pentland. Beyond eigenfaces: Proba­
bilistic matching for face recognition. Technical Report 443, MIT Media Laboratory, 20
Ames St. Cambridge, MA 02139, USA, April 1998.

[18] Wayne Niblack, Ron Barber, Qill Equitz, Myron Flickner, Eduardo Glasman, Dragutin
Petkovic, Peter Yanker, and Christos Faloutsos. The qbic project: Querying images by
contenet using color, texture and shape. Research Report RJ 9203 (81511), IBM Research
Division, IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose,
California, 95120-6099, February 1993.

[19] Henry A. Rowley, Shumeet Baluja, and Takeo Kanade. Rotation invariant neural network-
based face detection. Technical Report CMU-CS-97-201, Carnegie Mellon University, Pitts­
burgh, PA 15213, December 1997.

[20] Drew D. Saur, Yap-Peng Tan, Sanjeev R. Kulkarni, and Peter J. Ramadge. Automated
analysis and annotation of basketball video. In Storage and Retrieval for Image and Video
Databases, volume 5, Princeton, NJ 08544, February 1997.

[21] Stan Sclaroff. World wide web image search engines. In NSF Workshop on Visual Infor­
mation Management, Boston, MA, June 1995.

[22] Stan Sclaroff, Leonid Taycher, and Marco LaCascia. Imagerover: A content-based image
browser for the world wide web. In IEEE Workshop on Content-based Access of Image
and Video Libraries, Boston, MA, June 1997.

[23] John R. Smith and Shih-Fu Chang. An image and video search engine for the world-wide
web. In Storage and Retrieval for Image and Video Databases 5, pages 84-95, San Jose,
California, February 1997.

[24] Michael J. Swain, Charles Frankel, and Vassilis Athitsos. Webseer : An image search
engine for the world wide web. Technical report, The University of Chicago, Computer
Science Department, llOOEast 58th Street, Chicago, Illinois 60637, August 1996.

http://www.genmagic.com/agents/odysseyIntro.ps

Bibliography 68

[25] Matthew Turk and Alex Pentland. Eigenfaces for recognition. Journal of Cognitive Neu­
roscience, 3:71-86, 1991.

[26] David A. White and Ramesh Jain. Algorithms and strategies for similarity retrieval.
Technical Report VCL-96-101, Visual Computing Laboratory, University of California,
San Diego, 9500 Gilman Drive, Mail Code 0407, La Jolla, CA 92093-0407, July 1996.

[27] Jim White. Mobile agents white paper. White Paper
http://www.genmagic.com/agents/Whitepaper/whitepaper.html, General Magic, 420 N.
Mary Avenue, Sunnyvale, CA 94086, 1996.

http://www.genmagic.com/agents/Whitepaper/whitepaper.html

Appendix A

Definition of the Triangle Inequality

The triangle inequality states that the distance between any two points cannot be greater tha

the sum or less than the difference of their individual distances to a third point.

Thus, given three points A, B, and C.

\AC\ - \BC\ < \AB\ < \AC\ + \BC\

69

Appendix B

Locations of Various Online Media Databases

QBIC: Created by a group of researchers at IBM's Almaden Laboratory, this system can

be accessed via its home page at http://wwwqbic.almaden.ibm.com/.

ImageRover: Stan Sclaroff developed the ImageRover at Boston University. There are a

number of papers and a working demonstration that can be accessed at http: //www. cs . bu. edu/group:

There is a number of things available from this link including access to related

papers as well as the online demonstration.

WebSEEk: Based at Columbia University, this system was developed by John R. Smith

and Shih-Fu Chang and is accessible at http://disney.ctr.columbia.edu/webseek/.

WebSeer: Originally based at the University of Chicago and implemented by Michael J.

Swain, Charles Frankel, and Vassilis Athitsos, the WebSeer project is no longer accessible.

70

http://wwwqbic.almaden.ibm.com/
http://disney.ctr.columbia.edu/webseek/

