
OUTPUT-SENSITIVE CONSTRUCTION OF CONVEX HULLS

By

TIMOTHY MOON-YEW CHAN

B.A., Rice University, 1992

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

THE FACULTY OF GRADUATE STUDIES

DEPARTMENT OF COMPUTER SCIENCE

We accept this thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

October, 1995

© Timothy Moon-Yew Chan, 1995

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be ‘granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed withoót my written

permission;

(Signature)

Department of Comput-r cne

The University of British Columbia
Vancouver, Canada

Date October 4, 1995

DE-6 (2)88)

Abstract

The construction of the convex hull of a finite point set in a low-dimensional Euclidean

space is a fundamental problem in computational geometry. This thesis investigates

efficient algorithms for the convex hull problem, where complexity is measured as a

function of both the size of the input point set and the size of the output polytope.

Two new, simple, optimal, output-sensitive algorithms are presented in two dimen

sions and a simple, optimal, output-sensitive algorithm is presented in three dimensions.

In four dimensions, we give the first output-sensitive algorithm that is within a poly

logarithmic factor of optimal. In higher fixed dimensions, we obtain an algorithm that

is optimal for sufficiently small output sizes and is faster than previous methods for

sublinear output sizes; this result is further improved in even dimensions.

Although the focus of the thesis is on the convex hull problem, applications of our

techniques to many related problems in computational geometry are also explored, in

cluding the computation of Voronoi diagrams, extreme points, convex layers, levels in

arrangements, and envelopes of line segments, as well as problems relating to ray shoot

ing and linear programming.

11

Table of Contents

Abstract ii

Table of Contents iii

List of Tables v

List of Figures vi

Acknowledgements vii

1 Introduction 1

1.1 The Convex Hull Problem 1

1.2 The Number of Faces of the Convex Hull . . . 4

1.3 Output-Sensitive Algorithms 6

1.4 Previous Convex Hull Algorithms 8

1.5 Results in This Thesis 11

2 Two- and Three-Dimensional Convex Hulls 14

2.1 A Simplified “Ultimate Planar Convex Hull Algorithm” 14

2.1.1 The prune-and-divide algorithm in the plane 15

2.1.2 Analysis of the prune-and-divide algorithm in the plane . . 18

2.2 An Optimal Convex Hull Algorithm in Two and Three Dimensions . . . 20

2.2.1 The group-and-wrap algorithm in the plane 21

2.2.2 The group-and-wrap algorithm in three dimensions 23

2.2.3 Refinements of the group-and-wrap method 27

2.3 Application: Lower Envelopes of Line Segments in the Plane 29

111

3 Four-Dimensional Convex Hulls 32
3.1 Preliminaries on the Divide-and-Conquer Construction of Convex Hulls 33

3.1.1 The upper hull 33
3.1.2 Facets and their duals 34

3.1.3 Cuttings for divide and conquer 36
3.2 A Prune-and-Divide Convex Hull Algorithm in Four Dimensions . 36

3.2.1 Primal dividing 38
3.2.2 Dual pruning 41

3.2.3 Converting from dual to primal 42

3.2.4 Specializing for d = 4 43

3.2.5 The prune-and-divide algorithm in four dimensions . . . 46

3.2.6 Analysis of the prune-and-divide algorithm in four dimensions . 48

3.3 Application: Three-Dimensional Voronoi Diagrams 51

4 Higher-Dimensional Convex Hulls 54

4.1 Ray Shooting Queries 55
4.2 Linear Programming Queries 62

4.3 A Convex Hull Algorithm and an Extrema Algorithm

in Any Fixed Dimension 66
4.4 Application: Convex Layers and Depths 70
4.5 Further Applications: Levels in Arrangements and

Linear Programming with Violations 74
4.6 The Prune-and-Divide Convex Hull Algorithm in Even Dimensions . 80
4.7 Appendix: Using Randomization in Linear Programming Queries . . 84

5 Conclusion 87

Bibliography 91

iv

List of Tables

4.1 Known data structures for ray shooting queries in polytopes and linear

programming queries 57

5.2 Summary of output-sensitive results for the convex hull problem 88

v

List of Figures

1.1 The boundary of the convex hull of a planar point set 2

2.2 Pairing and pruning points in the plane 16

2.3 Wrapping a set of rn/mi convex polygons of size m 22

2.4 The lower envelope of a set of line segments 30

3.5 (a) The upper hull of a point set in E3 and (b) the vertical projection of

its facets 34

3.6 A simple region S of the point set in Figure 3.5 38

3.7 (a) The region S and (b) the intersection of its interior with the interior

of the simple region S from Figure 3.6 43

3.8 Tracing a boundary component (d = 3) 45

3.9 The Voronoi diagram of a planar point set . . 52

4.10 The convex layers of a planar point set 71

4.11 The boundary of the 1-level in an arrangement of lines 75

vi

Acknowledgements

I wish to thank my research supervisor, Jack Snoeyink, for providing many helpful

comments on various drafts of this work, sharing many enlightening discussions, and

introducing me to the exciting subject of computational geometry. His guidance, en

couragement, and friendship are invaluable to me. I am also much indebted to David

Kirkpatrick and Nick Pippenger for their advice and support. I would also like to thank

my University Examiners, Maria Klawe and Maurice Queyranne.

To the entire Computer Science Department, I would like to extend my gratitude for

providing a wonderful environment for my graduate study at the University of British

Columbia. The financial support of the Killam Trusts and the Natural Sciences and

Engineering Research Council of Canada is gratefully acknowledged.

Finally, I am deeply thankful to my parents for their love, patience, and encourage

ment, and for all that they have done for my sake; this work is dedicated to them.

vii

Chapter 1

Introduction

Computational geometry [Ede87, Mu193, O’Ro94, P585] studies the design and analysis

of algorithms for solving geometric problems. One central problem that has received

considerable attention in the area is the problem of constructing convex hulls. The

importance of the problem stems not only from its many applications (such as to pattern

recognition, statistics, and image processing) but also from its usefulness as a tool for

solving a variety of problems in computational geometry. The concept of convex hulls is

well-studied in mathematics and is appealing both mathematically and intuitively: given

a point set, its convex hull is simply the smallest convex set that encloses it.

In the following section, we define the convex hull problem in more precise terms.

In Section 1.3, we describe the type of algorithms seeked in this thesis, namely, output-

sensitive algorithms. Section 1.4 gives a brief review of previous convex hull algorithms.

Finally, in Section 1.5, we outline the results obtained in this thesis.

1.1 The Convex Hull Problem

Let P = {pi,. . . , p} be a set of n points in d-dimensional Euclidean space Ed, where

d 2 is a small fixed constant. An assumption we make throughout the thesis is that the

input points are in general position. This means that no d+ 1 points of P lie in a common

hyperplane; in certain places, we also require that no d points of P lie in a vertical hyper

plane. (In this thesis, the terminology “vertical,” “above/below,” “upward/downward,”

Chapter 1. Introduction 2

Figure 1.1: The boundary of the convex hull of a planar point set.

and “highest/lowest” are always with respect to the last coordinate.) There are general

perturbation methods [EM9O, EC92] to cope with point sets not in general position. The

idea behind these methods is to eliminate degenerate configurations by applying an ar

bitrarily small perturbation to the input; the perturbation is done only conceptually, so

each primitive operation on the perturbed input has to be simulated.

Recall that a set S ç Ed is convex if for every p, q 5, the line segment is

contained in S. The convex hull of F, denoted by conv(P), is the “smallest” convex set

containing F, that is, the intersection of all convex sets containing P. Equivalently, it can

be defined as the intersection of all halfspaces containing P. Alternatively, it is the set

of all convex combinations of F: conv(P) = {D cp2 : > c = 1, a, . . . , > O}.

An intersection of a finite set of (closed) halfspaces is called a polytope. By a well

known fact [Grü67, MS71], conv(P) is a polytope. For example, if d = 2, it is a convex

polygon (see Figure 1.1). We can represent the boundary of the polygon by its sequence

of edges in, say, counterclockwise order.

In higher dimensions, we can describe the boundary of the polytope by its faces:

Chapter 1. Introduction 3

Suppose that P E’ is a polytope with a non-empty interior. If h is a hyperplane that

intersects the boundary of P but not its interior, then h fl P is a face of P. A face is

a i-face (0 j < d) if it has dimension j—that is, if it is contained in some j-flat but

not in a (j — 1)-flat. A (d — 1)-face is called a facet, a (d — 2)-face is called a ridge, a

1-face is called an edge, and a 0-face is called a vertex. The faces of P, together with

the empty set 0 and P itself, form a lattice under inclusion, and the union of the facets

is the boundary of P. Thus, we can represent the boundary of P by the Hasse diagram

corresponding to this lattice of faces.

The vertices of conv(P) belong to the point set P and are also called the extreme

points of P. The following statements are equivalent given a point p F: (i) p is

extreme in P; (ii) p conv(P— {p}); (iii) conv(P— {p}) conv(P); and (iv) there exists

a vector e E’ such that p > q for all q e P (q p). In (iv), we say that p is

extreme/maximal along direction (or minimal along —c). The convex hull of P is the

same as the convex hull of the extreme points.

“Constructing the convex hull of F” then means producing a complete representation

of the boundary of conv(P)—the ordered sequence of edges if d 2, or the facial lattice

structure if d > 2. This construction problem is the main topic of this thesis.

A closely related and equally important problem is the computation of an intersection

of a set of halfspaces H = {h1, . . . , h,}. Denote this intersection by fl H. The well-known
linear programming problem seeks a point in fl H that is maximal along a given direction.

In contrast, the halfspace intersection problem asks for a complete representation of fl H.

(In the context of linear programming, each halfspace in H is called a (linear) constraint,

a point in fl H is called a feasible solution, and the intersection fl H is called the region

of feasibility.)

To solve the halfspace intersection problem, we can first find a point in the interior

of fl H (if the intersection is non-empty), using linear programming techniques [Meg84].

Chapter 1. Introduction 4

By translation, we can move this point to the origin o so that each halfspace h is of

the form {x e Ed : x < 1} for some vector tj e Ed. Then there is a one-to-one

correspondence [Ede87] between the j-faces of fl H and the (d
—

j — 1)-faces of the

convex hull conv({i,. . . , }). This shows that computing intersections of halfspaces

and computing the convex hulls are in fact equivalent problems.

Notice that we have just applied a form of duality (or polarity) when we map a

halfspace {x e Ed : • x < 1} to a point e Er’. Duality [CGL85, Ede87] is extremely

important in computational geometry as it allows one to transform a problem involving

points to a problem involving halfspaces/hyperplanes and vice versa. Sometimes we may

gain more insight into the geometry of a problem by examining the problem in both its

primal and dual setting.

For a more in-depth exposition of the concepts discussed so far, we refer the reader

to the standard computational geometry textbooks [Ede87, Mu193, O’Ro94, PS85].

1.2 The Number of Faces of the Convex Hull

Given a set P of n points in Ed, how many faces can conv(P) have? For d 2, the

number is clearly at most 2n, since conv(P) is a polygon with at most n vertices and

at most n edges. For d = 3, Euler’s formula implies that the number of edges and

facets relate linearly to the number of vertices, so the total number of faces is also 0(n).

However, for d = 4, 5, the number can be quadratic in n, and for d> 6, it can be as high

as e(nld/2i), as the following theorem shows.

Theorem 1.2.1 Let d be a fixed constant and n be any number.

(i) Every n-point set P ç Ed in general position has at most 0(n[°/2J) faces in its

convex hull.

Chapter 1. Introduction 5

(ii) There exists an n-point set P C Ed in general position that has (nL”/2i) faces in

its convex hull.

Proof: We first prove the upper bound in (i). Since the number of faces of the convex

hull is at most 2d times the number of facets, it suffices to bound the number of facets in

conv(P). Since the number of j-faces is at most (‘4) = O(n’) (as a j-face is incident

to j + 1 vertices), it suffices to bound the number of facets in terms of the number of

([d/2J — 1)-faces in conv(P). If we dualize points to halfspaces as described in Section 1.1,

then our task is to bound the number of vertices in terms of the number of Id/21 -faces

in an intersection fl H of n halfspaces. This is done by charging vertices to Ed/21 -faces

in fl H as follows.

Consider a vertex v of fl H. By the general position assumption, there are precisely

d edges incident to v. Orient the edges in an upward direction. Then we can find either

Ed/21 edges oriented towards v, or Fd/21 edges oriented away from v. In the former case,

these Ed/21 edges define a Ed/21-face a that has v as its highest vertex. In the latter

case, the Ed/21 edges define a Ed/21-face a that has v as its lowest vertex. In either

cases, we charge v to a. Since each face has a unique highest/lowest vertex (assuming

no degeneracies), at most two vertices are charged to a Ed/21-face. Thus, the number of

vertices is no more than twice the number of Ed/21 -faces, and (i) is proved.

To prove the lower bound in (ii), we choose a point set P on the moment curve:

P = {M(t1),. . . , M(t,j}, where t1,. . . , t, are n distinct real numbers and M(t) =

(t,t2,.. .
, td) é EE for any t. Observe that a hyperplane can pass through at most d

of the points in P, since a function that is linear in t, t2,. . .
, is a polynomial in t

of degree < d and thus has at most d distinct zeroes. Therefore, the points in P are

in general position. We now show that there are at least ([d22j)
= (nLd/2i) faces in

conv(P). In fact, we prove a stronger property (the [d/2J -neighborly property) about

Chapter 1. Introduction 6

the polytope conv(P): every [d/2J-subset Q of P defines a ([d/2J — 1)-face of conv(P).

The proof of this property is not difficult. Given a subset Q P with IQ [d/2j,

we need to show that there is a hyperplane h such that all points of Q lie on h and all

points of P
— Q lie strictly on one side of h. This follows if we define the function

F(t)= fi (t-t)2
M(t1)Q

and observe that F is linear in t, t2,. . .
, td, F(t) = 0 for all M(t) e Q, and F(t) > 0

for all other ti’s. U

For the point set P used in the above lower-bound argument, conv(P) is called a

cyclic polytope. Using a tighter upper-bound analysis, McMullen [McM7O, MS71] in fact

showed that the cyclic polytopes (or more generally, the [d/2J-neighborly polytopes)

attain the maximum number of j-faces among all d-dimensional, n-vertex polytopes, for

any 0 <j <d. This result is the celebrated Upper Bound Theorem in polytope theory.

1.3 Output-Sensitive Algorithms

Since the number of faces of the convex hull can be as large as e(nLd/2i)by Theorem 1.2.1,

any algorithm for constructing the convex hull needs to spend at least (nLd/2i) time in the

worst case just to write out a representation of the hull. Hence, 2(nL’/2i) is automatically

a lower bound for the convex hull problem.

However, for point sets that occur in practice, the convex hull has usually a small

number of faces. For example, if the points in P are chosen independently at random from

a uniform distribution on a convex r-gon in E2, then the expected number of faces of the

convex hull is O(rlogn) [RS63]. For points chosen uniformly and independently from the

interior of a d-dimensional hypercube, the expected number of vertices of the convex hull

Chapter 1. Introduction 7

is 0(logd_l n) [BK+78]. For points from the interior of a d-dimensional ball, the expected

number of faces is O(n(d_1)/(1)) [Ray7O], which is far from the pessimistic 0 (n1d/2J)

bound. Even when the points are chosen on the surface of the unit paraboloid so that

all points are extreme (which is the case in applications to Voronoi diagrams [Aur9l]),

the expected number of faces in the convex hull is still 0(n) if the points are lifted from

a uniformly distributed point set in the interior of a (d — 1)-dimensional ball [Dwy9l].

In analyzing the performance of convex hull algorithms, it is therefore desirable to

take into account the number of faces of the convex hull. From now on, this number will

be denoted f (although in a few occasions f is also used to denote a facet; this should

be clear from the context). Our goal is to develop efficient algorithms for constructing

convex hulls, where the measure of efficiency is asymptotic worst-case running time as a

function of both n (the input size) and f (the output size). In general, algorithms with

complexity measured in terms of not only the input size, but also the output size, are

said to be output-size sensitive, or output-sensitive for short. Ideally, one should need to

spend less work when the output size is small.

Besides the number of faces f, a related parameter one could use to measure the

complexity of convex hull algorithms is the number of hull vertices or extreme points.

This is denoted by h (when it does not represent a hyperplane or halfspace; again, this

should be clear from the context). While the number f ranges from 0(1) to 0(nL°/2i),

the number h ranges from 0(1) to n. For d < 3, f and h are asymptotically equivalent,

so for historical reasons, we will use h instead of f. For d 4, we will return to using f.

Remark: As stated in the beginning of Section 1.1, we frequently need to assume that

the input points are in general position for our algorithms to work properly; when this

assumption does not hold, we have to rely on perturbation methods [EM9O, EC92].

However, perturbing the input points may cause the output size to increase, so we need

Chapter 1. Introduction 8

to redefine f to be the maximum number of faces of conv(P’) over all “perturbations” F’

of P. For d < 3, we can simply redefine h to be the number of input points on the

boundary of the convex hull (since these are the only points that can become a vertex

after perturbation). These redefinitions are important only when there are a large number

of degeneracies. For our two- and three-dimensional convex hull algorithms, we are able

to handle degenerate cases directly, so redefining h is unnecessary.

1.4 Previous Convex Hull Algorithms

The convex hull problem has had a long history going back to the beginning of compu

tational geometry and has been an intensively studied subject even up to the present

day. Early papers dealt primarily with the planar case d = 2. The first O(nlogn)-time

algorithm in E2 was given by Graham [Gra72] and is commonly known as Graham ‘s scan.

In terms of n alone, Graham’s algorithm is (asymptotically) optimal, since an i2(n log n)

lower bound for the convex hull problem can be obtained by a reduction from sorting.

Using more complex arguments [Ben83, Yao8l], the (nlogn) lower bound applies also

to the weaker problem of identifying the vertices of convex hull (the extreme points).

However, all of these lower bound arguments assume that the number of hull vertices h

is at least a fraction of n, so it is conceivable that there is an algorithm that beats Gra

ham’s scan if h is substantially smaller than n. This was indeed shown by Jarvis [Jar73],

who gave a simple O(nh)-time algorithm, dubbed Jarvis ‘s march. This algorithm is thus

output-sensitive.

After the publication of Graham’s and Jarvis’s algorithm, a number of different convex

Chapter 1. Introduction 9

hull algorithms (as well as variants on previous algorithms) were proposed in E2. We men

tion here two divide-and-conquer algorithms [PS85]—”MergeHull” and “QuickHull”—

modeled after the sorting algorithms MergeSort and QuickSort. The former divide-and-

conquer algorithm, due to Preparata and Hong [PH77], runs in O(nlogn) time. The

latter algorithm, discovered independently by several researchers around the late 1970s,

runs in O(nh) time in the worst case, but is usually faster in practice (as its name sug

gests). At the time, no asymptotic improvement to the original bounds by Graham and

Jarvis was known, so the true complexity, in terms of n and h, of the convex hull prob

lem in E2 remained unresolved. Finally, in 1986 Kirkpatrick and Seidel [KS86] gave the

definitive answer in a paper entitled “The Ultimate Planar Convex Hull Algorithm?”

by giving an output-sensitive Ofri log h)-time algorithm and providing a matching lower

bound. It would appear that Kirkpatrick and Seidel’s optimal algorithm is thus the

“ultimate” convex hull algorithm for d = 2—or is it?

The convex hull problem in its three-dimensional setting (d = 3) has also been studied

intensively. Preparata and Hong [PH77] presented the first O(nlogn)-time algorithm

in E3, based on divide-and-conquer. The first output-sensitive algorithm is the gift

wrapping method of Chand and Kapur [CK7O], which works in arbitrary dimensions and

is a generalization of Jarvis’s march in two dimensions (although historically, Chand and

Kapur’s method appeared before Jarvis’s). As analyzed by Swart [Swa85], the method

runs in O(nh) time.

For a long time the gift-wrapping method was the only output-sensitive algorithm

known for three-dimensional convex hulls Then, in their seminal work on randomization

techniques in computational geometry [CS89], Clarkson and Shor gave an algorithm with

an optimal O(n log h) expected running time, where the expectation is based solely on the

random choices made by the algorithm [Mu193]. Afterwards, Edelsbrunner and Shi [ES91]

Chapter 1. Introduction 10

proposed a deterministic algorithm with an O(n log2 h) running time, by following the

paradigm of Kirkpatrick and Seidel. An optimal 0 (n log h)-time deterministic algorithm

was finally obtained when Chazelle and Matouek [CM95] applied recently-developed

derandomization techniques to Clarkson and Shor’s convex hull algorithm. (A different

randomized 0(n log h) algorithm was recently reported by Clarkson [C1a94] and, accord

ing to his paper, can also be derandomized.) The resulting algorithm is not very practical,

since derandomization techniques tend to be complicated, using tools like the method

of conditional probabilities. The problem of finding a simple optimal output-sensitive

algorithm for computing convex hulls in E3 thus remained.

For dimensions d > 4, much attention was directed to devising efficient worst-case

convex hull algorithms. The gift-wrapping method by Chand and Kapur [CK7O] was

shown to run in O(n[d/2H1)time [Swa85] in the worst case. Seidel [Sei8l] improved this

time bound to O(nFd/21), using a different approach called the beneath-beyond method.

In a later paper [Sei86J, Seidel exploited a shelling order to obtain a second algorithm

with an O(nL4/2J log n) worst-case running time. The randomized incremental construc

tion technique of Clarkson and Shor [CS89] yields an algorithm with expected 0(nL/2i)

time, which is optimal for worst-case output. Another randomized algorithm with the

same complexity was given by Seidel [Sei9l]. A deterministic O(n[d/2i)-time algorithm

was finally obtained by Chazelle [Cha93bJ; his method is based on Clarkson and Shor’s

randomized solution combined with new ideas on derandomization.

Although Chazelle’s algorithm has settled the complexity of the convex hull problem

in arbitrary fixed dimension for worst-case output, the output-sensitive complexity is far

from resolved. Among the algorithms we have discussed, only the gift-wrapping method

and Seidel’s second deterministic algorithm are output-sensitive. For an f-face output

(recall that the number f is 2(1) and e(nLd/2i)), Swart proved an 0(nf)-time bound

Chapter 1. Introduction 11

for the gift-wrapping method, and Seidel proved an O(n2 + f log n)-time bound for his

algorithm. Note the substantial improvement of these bounds over Chazelle’s ofriLd/2i)

bound for small values of f.
In terms of n and f, Q(n log f + f) is the oniy lower bound known (the first term is

a consequence of Kirkpatrick and Seidel’s two-dimensional lower bound). It is suspected

that there is an algorithm with running time close to 0 (i-i log f + f), but finding one

appeared difficult and remained an outstanding problem, even for d = 4. There were

some improvements to the upper bound: Matouek [Mat93] showed that the running time

of Seidel’s method [Sei86] can be brought down to 0(n22/(Ld/2i+1)+e + f logn) if data

structures for linear programming queries are used. (Here and throughout this thesis,

> 0 denotes an arbitrarily small but fixed constant.) The n factor can even be reduced

to log°’ n using Matouek’s static structures. Further improvements seem to require

new ideas.

Remark: In this brief look at previous convex hull algorithms, we have not mentioned

results (e.g. [BS78, Dwy9l]) that assume a certain probability distribution on the input,

since we are not focussing on “average-case” complexity. Moreover, we have discussed

only sequential algorithms; see [AGR94] for a recent work on parallel convex hull algo

rithms in a fixed dimension. We have not examined the dynamic maintenance prob

lem [OvL8l], nor considered the construction of convex hull of geometric objects other

than point sets.

1.5 Results in This Thesis

In this thesis, we obtain new methods for the output-sensitive construction of convex

hulls. An outline of our results is as follows. In the planar case, we discover two simple

Chapter 1. Introduction 12

algorithms that compute the convex hull in optimal O(nlogh) time. The first one can

be viewed as a simplification of Kirkpatrick and Seidel’s “ultimate” algorithm and the

second one uses a grouping idea to speed up Jarvis’s march. Considering the long history

and the fundamental nature of the planar convex hull problem, it is surprising that

these two simple algorithms have been left undetected. The second algorithm is also

interesting from a practical viewpoint, as it does not require a linear-time subroutine for

finding medians, unlike Kirkpatrick and Seidel’s original solution. More importantly, this

algorithm can be extended to yield an optimal O(n log h)-time method for constructing

convex hulls in E3. This 3-d algorithm does not require the complex derandomization

tools used by Chazelle and Matouek’s optimal algorithm, and uses relatively simple

data structures, namely, Dobkin-Kirkpatrick hierarchies [DK83, DK9O]. These results

are described in Chapter 2.

Then in Chapter 3, we present what we regard as the central part of the thesis: an

output-sensitive convex hull algorithm in E4 that runs in O((n + f) log2 f) time. This

is the first algorithm in four dimensions that is within logarithmic factors of optimal

over the whole range of output sizes f. This result has an important consequence as

it immediately leads to an output-sensitive algorithm for computing three-dimensional

Voronoi diagrams, which have numerous applications [Aur9l, 0BS92]. Although our 4-d

convex hull algorithm is the most intricate algorithm we study, its guiding principle is

nevertheless the same simple divide-and-conquer strategy used by our first planar convex

hull algorithm.

In Chapter 4, we enter into higher-dimensional space. We observe that the gift

wrapping method can be improved using the data structures for ray shooting queries in

polytopes developed by Agarwal and Matouek [AM93] and refined by Matouek and

Schwarzkopf [MS93]. Together with the grouping idea from our second planar convex

hull algorithm, this ‘implies an O(n log f + (nf)11/(Ld/2J+1) log°’ n) time bound for the

Chapter 1. Introduction 13

construction of convex hulls in Er’. If f = O(nh/1d/2i / logK n) for a sufficiently large K,

then the O(ri log f) term dominates; hence, our method is optimal for small output sizes.

Furthermore, our time bound improves Matouek’s previous O(n22/(Ld/2H1) 1og°’ n +

flogn) bound for sublinear output size f, i.e., for f = O(n/1og’n). We manage to

improve this result further in even dimensions by combining these higher-dimensional

techniques with our 4-d divide-and-conquer algorithm. The running time obtained is

O((n + (f)l_l/[d/2]+fnl_211d/21)log° n).

Our techniques are not limited to the convex hull problem. We apply these to many

problems in computational geometry throughout the thesis. These applications include

Voronoi diagrams (as mentioned above), envelopes of line segments, enumeration of

extreme points, convex layers and depths of point sets, levels in arrangements of hy

perplanes, and linear programming with few violated constraints. We hope that these

“digressions” demonstrate the important role that convex hulls have in computational

geometry.

Chapter 5 summarizes our work and concludes with open problems and remarks on

directions for further research.

Remark: Most of the results of this thesis have been presented in conference papers, and

their full versions have been submitted for publication in journals. See [CSY95b] for the

simplification of Kirkpatrick and Seidel’s algorithm and its extension to four dimensions.

A dual version of the 4-d algorithm in the halfspace-intersection setting is described

in [CSY95a]. Most of our higher-dimensional results appear in [Cha95b]; specialization

to 2-d and 3-d can be found in [Cha95a].

Chapter 2

Two- and Three-Dimensional Convex Hulls

In this chapter, we present two O(n log h)-time convex hull algorithms in the plane E2,

the second of which is also extended to E3 with the same optimal time complexity.

Although algorithms with this time complexity were known, our methods are simpler

than the previous and also illustrate the basic ideas to be used in the rest of this thesis for

constructing convex hulls in higher dimensions. In particular, the first planar convex hull

algorithm we present, which can be considered as a simplification of the original optimal

method of Kirkpatrick and Seidel [KS86], serves as the basis of the four-dimensional

output-sensitive algorithm in the next chapter.

2.1 A Simplified “Ultimate Planar Convex Hull Algorithm”

This section describes a simple O(n log h) convex hull algorithm in the plane. Since our

algorithm can be viewed as a simplification of Kirkpatrick and Seidel’s planar convex

hull algorithm, we first sketch here their method for comparison.

Given an n-point set P C E2, we want to construct the convex hull of P. It suffices

to compute just the upper hull of F, consisting of the sequence of hull edges that have

an upward normal vector. Then the lower hull can be computed in a similar manner by

reflection and the convex hull can be obtained by joining these two hulls.

Kirkpatrick and Seidel’s algorithm constructs the upper hull of P as follows: (i) find a

point p E P with the median x-coordinate, (ii) compute the edge of the upper hull

14

Chapter 2. Two- and Three-Dimensional Convex Hulls 15

that intersects the vertical line through p (x[p1] < x[p’] < x[p2]), and (iii) recursively

compute the upper hull of all points left of (and including) Pi and the upper hull of all

points right of (and including) P2

To find the edge ij (the bridge) that intersects a given vertical line in step (ii),

Kirkpatrick and Seidel used a prune-and-search procedure, similar to the prune-and-

search linear programming algorithm of Dyer [Dye84] and Megiddo [Meg83b, Meg84].

(In fact, bridge-finding can be formulated as a linear program in dual space.) Here is a

high-level description what is involved in this prune-and-search procedure: First, points

are paired, the slope of the line through each pair is calculated, and the median slope m

is computed. Then the upper-hull vertex p with a supporting line of slope m is found.

A comparison involving Pm and the given vertical line is then performed, which allows

one point in half of the pairs be pruned. This step eliminates 1/4 of the points and the

procedure is repeated.

This ends our brief sketch of Kirkpatrick and Seidel’s algorithm. As a summary,

we can say that their algorithm has two levels: the lower level is a prune-and-search

procedure, and on top of that is a divide-and-conquer method. Our main observation is

that we can get a simpler algorithm if we combine these two levels into one, i.e., if we use

pruning directly for divide-and-conquer rather than for searching. As a result, we can

skip the step that computes the point p with median x-coordinate and avoid actually

searching for the bridge at each recursive step.

2.1.1 The prune-and-divide algorithm in the plane

We now give the details of our simplified planar convex hull algorithm. As in Kirkpatrick

and Seidel’s algorithm, only the upper hull of the given n-point set P ç E2 is computed.

We first pair the points of P arbitrarily and calculate the slope of the line through each

pair. We then find the median slope m and compute the upper-hull vertex Pm that has a

Chapter 2. Two- and Three-Dimensional Convex Hulls 16

slope=m

R

median slope m

Figure 2.2: Pairing and pruning points in the plane. Points marked L belong to P,
points marked R belong to Pr, and points marked X belong to neither sets.

supporting line of slope m; this vertex can be computed by taking the maximum along a

projection of P parallel to m. The x-coordinate of p is then used to divide P into two

parts: P, which contains p and all points to its left, and Pr, which contains pr-,., and all

points to its right.

Now, if a pair has slope less than m, then the right point in the pair cannot participate

in the upper hull of P and thus can be pruned from P. Similarly, if a pair has slope

greater than m, then its left point in the pair cannot participate in the upper hull of Pr

and can be pruned from Pr. Since half (n/4) of the pairs have slope less than the median

m and half have slope greater than m, pruning ensures that P and Pr each contain

at most 3n/4 points. We then recursively compute the upper hull of P and Pr. See

Figure 2.2 for an example.

L

upper hull,,

Chapter 2. Two- and Three-Dimensional Convex Hulls 17

The pseudocode of the algorithm is given below. For convenience, we assume that

the leftmost and rightmost points p and Pr of P have been identified and we let n be the

cardinality of the set P = P
—
{p, Pr } instead. In the interest of practical efficiency, line 1

has been added to the algorithm; it does not affect asymptotic worst-case performance.

Algorithm DivideHull2d(P, p, Pr)
[Given n-point set P C E2 and points P,Pr e E such that x[pj] <x[p] <X[Pr] for
all p P, return the sequence of edges of the upper hull of P = P U {p,pr}. I
1. discard points from P that lie below pp
2. if P = 0 then return (p)

if P’ = {p} then return (hp,
3. arbitrarily choose [n/2j disjoint pairs {{s1,t1},. . . , {Sn/2j, }} from F’

and order each pair so that x[s] <x[t2]
4. let m = (y[t] — y[Sj]) / (x[t] — x[s]), i = 1,..., [n/2J

and m median of (mi,.. . , m[n/2j)
5. let p = point in P that maximizes y[pm] — m X[Pm]

6. letP’={pEP:x{p]<x[pmj}—{tj:mjm}
P={pEP’:x[p]>x[pm]}—{sj:mj>m}

7. if p Pr then return DivideHu112d(Pi,p,pr)
if p Pe then return DivideHu112d(P,p,pr)
otherwise return the concatenation of

Dividellull2d(P7, p, p) and DivideHull2d(P, pm, Pr)

Remark: It is not difficult to modify Dividellull2d() to work for point sets P not in

general position. When there are more than one point in P that maximize ypm]—mx[pmj
in line 5, we simply pick the leftmost one. When two points in a pair share the same

x-coordinate, we can eliminate the bottom one.

Chapter 2. Two- and Three-Dimensional Convex Hulls 18

2.1.2 Analysis of the prune-and-divide algorithm in the plane

Let T(n, h) be the running time of algorithm Dividellull2d() on a point set with n + 2

points (i.e., n points excluding p and Pr) and h +1 upper-hull vertices (i.e., h upper-hull

edges). By noting that median-finding (line 4) can be done in linear time, we obtain the

following recurrence for T(n, h), where c denotes a constant:

c ifn<1

T(n h) < T(ne, h) + cn if Ti> 2 and h,- 0
— T(n,-, h) + cn if n> 2 and h 0

T(ri, h) + T(n,-, h,-) + cn if n> 2 and h, h,- 1

for some 0 <flj, n,- < f3n/41 and h, h,- > 0 with n + n,- <n and h + hr = h.

Using the concavity of the logarithm, one can then prove that T(n, h) = O(n log h) by

induction. Here, we observe an alternative proof that is perhaps simpler as it avoids the

use of induction. The proof is more general and provides better insight into recurrences

of this kind by examining their recursion trees.

Let T be a rooted tree in which each node v is assigned a cost c(zi’) e [0, oo). We say

that the cost function c is a-fading for a constant a e (0, 1) if c(i) < a c(v) for every

node 1 and its parent v. As part of the analysis of their 3-d output-sensitive convex

hull algorithm, Edelsbrunner and Shi [ES91, Lemma 3.1] proved that the total cost in

such a tree is asymptotically bounded by the per-level cost times the logarithm of the

number of nodes. Their proof uses a path compression operation that transforms T into a

balanced tree. We give a simple, short proof of their result that avoids path compression

altogether; we then improve the bound to depend on the number of leaves rather than

the number of nodes.

Lemma 2.1.1 In a recursion tree T with m nodes and £ leaves and an a-fading cost

function c, if the sum of the costs at each level is bounded by C, then the sum of the costs

of all nodes in T is (i) at most C(1og11,m+2) and (ii) at most C(log1/£+ 1 + 1/(1 — a)).

Chapter 2. Two- and Three-Dimensional Convex Hulls 19

Proof: Number the levels of the tree 0, 1, 2, . . . with the root at level zero. Let

k = [log11mj. The sum of the costs at levels 0, 1,. . . , k is bounded by C(k + 1)

C(log11 rn+ 1). Furthermore, by the o-fading property, each node on a level greater than

k has cost bounded by Cak <C/rn; hence, the sum of the costs at level k + 1, k + 2,

is bounded by C. Part (i) follows.

To prove part (ii), we choose k = [logia £] instead. As before, the sum of the costs

at levels 0, 1,. . . , k is bounded by C(k + 1) < C(log11£ + 1). Thus, we just have to

account for the costs of nodes at levels greater than k. Note that each node belongs to

some root-to-leaf path in T. By the o-fading property, the sum of the costs at levels

k + 1, k + 2,... along such a path is bounded by

__

C
Ca4 +Cac+2+...

1—ce (1—c

Since there are root-to-leaf paths in total, the sum of the costs at levels k + 1, k + 2,...

is bounded by C/(1 — ce). Part (ii) follows. 0

With Lemma 2.1.1, it is now easy to show that the running time of algorithm

Dividellull2d() is 0(nlogh). Consider the recursion tree generated by the calls to

Dividellull2dO. It ‘is clear that the sum of the costs at each level of the tree is bounded

by cn and that the cost function satisfies the (3/4)-fading property. Since the num

ber of leaves is at most h (as a new edge is discovered at every leaf), Lemma 2.1.1(u)

immediately implies that the total cost of the algorithm is bounded by cn log413 h + 0(n).

The storage requirement of the algorithm is clearly linear. We have thus shown:

Theorem 2.1.2 Algorithm Dividellull2d() computes the (h + 1)-vertev upper hull of

an (n + 2)-point set P ç E2 in 0(nlogh) time and 0(n) space.

Remarks:

1. Compared to the algorithm by Kirkpatrick and Seidel, Dividellull2d() is faster

Chapter 2. Two- and Three-Dimensional Convex Hulls 20

by a constant factor: if finding the median of n numbers takes bn time, then in the worst

case, Kirkpatrick and Seidel’s algorithm spends 3bn log2 h+ 0(n) time and our algorithm

spends bn log413 h + 0(n) 1.2bn log2 h + 0(n) time in median-finding (which is the

most costly operation in both algorithms).

2. Besides viewing DivideHull2d() as a simplification of Kirkpatrick and Seidel’s

algorithm, one can also view Dividellull2dQ as a variant of the “QuickHull” algo

rithm [PS85], since QuickHull recursively uses an extreme vertex to divide a convex hull

into two. But as pruning is not done in QuickHull, its worst-case complexity can be

e (nh). We learned recently that Wenger [Wen94] has proposed a randomized version of

QuickHull that performs pruning. His algorithm, with an 0(n log h) expected running

time, is similar to ours, except that finding the median slope in line 4 is replaced by

randomly selecting a slope. In the next section, we give another 0(nlogh) algorithm

that avoids median-finding but is deterministic.

2.2 An Optimal Convex Hull Algorithm in Two and Three Dimensions

We now give a different 0(n log h)-time convex hull algorithm in the plane, along with

its extension in three dimensions. In the worst case, this 2-d algorithm is faster than the

method from the previous section since this algorithm does not perform median-finding

operations. The extension in 3-d is also simpler than the previous optimal derandom

ization method of Chazelle and Matouek [CM95]. Our idea here is to improve Jarvis’s

march and the gift-wrapping method by applying a common grouping trick. This group

ing idea can be applied to other problems besides the construction of convex hulls, and

we will consider one example later in Section 2.3. Some variants of the method for convex

hulls are discussed in Section 2.2.3.

Chapter 2. Two- and Three-Dimensional Convex Hulls 21

2.2.1 The group-and-wrap algorithm in the plane

Let P C E2 be a set of n 3 points. The algorithm Jarvis’s march [Jar73, O’Ro94, PS85]

computes the h vertices of the convex hull one at a time, in counterclockwise (ccw) order,

by a sequence of h wrapping steps, as follows: if Pk—1 and Pk are the previous two vertices

computed, then the next vertex Pk+1 is set to be the point p e P that maximizes the

angle LPk_1PkP with p Pk. One wrapping step can obviously be done in 0(n) time by

scanning all n points; with an appropriate initialization the method constructs the entire

convex hull in 0(nh) time.

We observe that a wrapping step can be done faster if we preprocess the points.

Choose a parameter rn between 1 and n and partition P into rn/mi groups each of

size at most rn. Compute the convex hull of each group in 0(m log rn) time by, say,

Graham’s scan [Gra72]. This gives us rn/mi possibly overlapping convex polygons each

with at most rn vertices, after a preprocessing time of 0((mlogm)) = 0(nlogm).

Now, a wrapping step can be done by scanning all En/mi polygons and computing

tangents or supporting lines of the polygons through the current vertex Pk, as shown

in Figure 2.3. Since tangent finding takes logarithmic time for a convex polygon by

binary or Fibonacci search [CD87, PS85j (the dual problem is to intersect a convex

polygon with a ray), the time required for a wrapping step is then 0(log m). As

h wrapping steps are needed to compute the hull, the total time of the algorithm becomes

0(nlogm + h(logm)) = 0(n(1 + h/rn) logrn).

The following is the pseudocode of the algorithm just described. The procedure

always runs within 0(n(1 + H/rn) log m) time and successfully returns the list of edges

of conv(P) in ccw order when H> h.

Chapter 2. Two- and Three-Dimensional Convex Hulls 22

Algorithm GroupHull2d(P, m, H), where P C E2, 3 m n, and H 1
1. partition P into subsets F1,. .

. ,En/rn1 each of size at most m
2. for i = 1,..., rn/mi do
3. compute conv(P) by Graham’s scan and store its vertices in an array

in ccw order
4. P0 (0, —cc)
5. joi +— the rightmost point of P
6. fork=1,...,Hdo
7. for i = 1,..., rn/mi do
8. compute the point qj E P that maximizes7pklpkqj (qi pk)

by performing a binary search on the vertices of conv(P)
9. Pk+1 — the point q from {q1, . . . ,qn/m]} that maximizes Lpk_lpkq

10. ifpk+1 =p then return
..., Pk—lPk, PkP1)

11. return incomplete

Figure 2.3: Wrapping a set of rn/mi convex polygons of size m.

Chapter 2. Two- and Three-Dimensional Convex Hulls 23

By choosing m = H, the complexity of the algorithm is then O(n(1 + H/rn) log m) =

O(ri log H). Since the value of h is not known in advance, we use a sequence of H’s to

“guess” its value as shown below (the same strategy is used in Chazelle and Matouek’s

algorithm [CM95]):

Algorithm Groupllull2d(P), where P ç E2
1. fort=1,2,... do
2. L +— Groupllull2d(P, m, H), where m = H = min{22t,n}
3. if L incomplete then return L

The procedure stops with the list of hull edges as soon as the value of H in the for-loop

reaches or exceeds h. The number of iterations in the loop is log log hi (using base-2

logarithms), and the t-th iteration takes 0(nlogH) = 0(n2t) time. Therefore, the total

running time of the algorithm is n2t) = O(n2El0l0I1)
= 0(n log h). The

storage requirement is clearly linear.

Theorem 2.2.1 Groupllull2d() computes the h-vertex convex hull of an n-point set P C

E2 in O(nlogh) time using 0(n) space.

Remark: We can handle point sets that are not in general position as follows: when

there are more than one point q that maximize the angle tp1pkq in line 9 of

GroupHull2d(P, rn, H), pick the point q that is farthest from pk; use the same rule to

break ties in line 8.

2.2.2 The group-and-wrap algorithm in three dimensions

Let P C E3 be a set of n 4 points. Assuming that the points are in general position,

we know (by Euler’s formula) that there are precisely 2h — 4 facets (triangular faces)

of the convex hull if there are h hull vertices. It suffices to construct these 2h — 4 hull

Chapter 2. Two- and Three-Dimensional Convex Hulls 24

facets; with the aid of a dictionary, we can easily generate the list of vertices and edges,

together with the facial lattice structure of conv(P), in additional 0(hlogh) time.

The higher-dimensional analogue of Jarvis’s march is Chand and Kapur’s gift

wrapping method [CK7O, PS85, Swa85], which computes the hull facets one at a time

as follows: from a given facet f, we generate its three adjacent facets f3 by performing

a wrapping step about each of the three edges e3 of f (j = 1, 2,3). Here, a wrapping

step about e3 is to compute a point Pj e P that maximizes the angle between f and

conv(e3 U {p3}) with P3 e3. Since such a step can be done in 0(n) time, we can find

the facets adjacent to f in 0(n) time. Assuming an initial facet f is given (which can

be found in two wrapping steps), a breadth-first or depth-first search can then generate

all facets of the convex hull. Using a dictionary to detect duplication, we can ensure

that each facet is processed once. This implies that the algorithm performs 3(2h — 4)

wrapping steps and thus runs in 0(nh) time.

We can use the same grouping idea from the previous subsection to improve the time

complexity to optimal 0(n log h) while maintaining linear space. The calls to Graham’s

scan (line 3 of GroupHull2d(P, m, H)) are now replaced by calls to Preparata and Hong’s

three-dimensional convex hull algorithm [PH77], which has the same complexity. To

extend line 8 to three dimensions, we need to calculate tangents or supporting planes of

3-dimensional polytopes through a given line. In order to obtain the same running time as

in the previous subsection, we need a method to perform each of these tangent operations

in logarithmic time. A data structure that can do precisely this is the polyhedral hierarchy

of Dobkin and Kirkpatrick [DK83, DK9O].

A polyhedral hierarchy can be defined as a monotone sequence of 3-dimensional poly

topes P1 C P2 C ... C P with the property that each connected component (or cap) of

— Pk is of constant complexity. Each Pk is called a level of the hierarchy. If P1 has

Chapter 2. Two- and Three-Dimensional Convex Hulls 25

constant size and P = 7’, then the sequence is said to be an inner hierarchical represen

tation of P. Similarly, if P1 = P and P has constant size, then it is an outer hierarchical

representation of P. For any 3-dimensional polytope P with m vertices, Dobkin and

Kirkpatrick showed that an inner/outer hierarchical representation of 0(log m) levels

exists and can be computed in 0(m) time. The polytope at each level is not explicitly

stored in the representation; instead, pointers between two adjacent levels are provided

so that one can easily traverse up or down the hierarchy.

The hierarchical representation provides a very useful data structure for manipulating

with polytopes in 3-space. For instance, by “walking up” the inner hierarchy, we can find

the tangent of a given polytope passing through a given line in 0(log m) time. (The

binary-search solution to the tangent-finding problem for convex polygons can be seen

as an implicit use of the hierarchy.) By “walking down” the outer hierarchy, we can also

solve the dual problem of intersecting a polytope with a ray in 0(logm) time. There are

many other applications of the Dobkin-Kirkpatrick hierarchy; for example, we mention

a polylogarithmic algorithm by Eppstein [Epp9l] for detecting whether three polytopes

in E3 have a common intersection.

We can now give the pseudocode of our three-dimensional convex hull algorithm. By

using the Dobkin-Kirkpatrick hierarchical representation to store the polytopes in line 3

(which require only linear-time preprocessing), we can perform line 11 in logarithmic

time for each polytope conv(Pj. The analysis of this algorithm is thus identical to that

of the two-dimensional algorithm.

Chapter 2. Two- and Three-Dimensional Convex Hulls 26

Algorithm GroupHull3d(P, m, H), where P C E3, 4 < m < n, and H 1
1. partition P into subsets Fi,. . . , .P1n/m1 each of size at most m
2. for i = 1,..., rn/mi do
3. compute conv(P) by Preparata and Hong’s algorithm and store it in

a Dobkin-Kirkpatrick hierarchy
4. F, Q {fo}, where fo is some initial facet of conv(P)
5. fork=1,...,2H—4do
6. ifQ=OthenreturnF
7. picksomefeQandsetQ—Q—{f}
8. let e3 be the edges of f (j = 1,2,3)
9. forj=1,2,3do
10. for i = 1,..., rn/mi do
11. compute the point qj e P that maximizes the angle between f and

conv(e3 U {qi}) by searching the hierarchy of conv(P)
12. P2 — the point q from {qi,.. . ,q1/]} that maximizes the angle between

f and conv(e3 U {q}) (q ç’ e)
13. f3 — conv(e3 U {p3})
14. if f3 ‘ F then
15. F-FU{f}, Q÷—QU{f}
16. return incomplete

We can use a queue or a stack to implement Q and a dictionary to implement F. As

there are only 0(h) dictionary operations, they can be carried out in 0(hlogh) time. In

fact, more clever implementations of the gift-wrapping method via a shelling order [Sei86]

replace the need for dictionaries with just a priority queue.

As before, we choose the group size m = H and guess the value of h with a sequence

of H’s:

Algorithm GroupHull3d(P), where P ç E3
1. fort=1,2,... do
2. L — Groupllull3d(P,m,H), where m = H = min{22t,n}
3. if L incomplete then return L

Chapter 2. Two- and Three-Dimensional Convex Hulls 27

Theorem 2.2.2 GroupHull3d() computes the h-vertex convex hull of an n-point set P ç

E3 in 0(nlogh) time using 0(n) space.

Remark: We can handle point sets that are not in general position as follows: In line 8,

let e3 = J6 with a3 and b3 oriented in a counterclockwise order around f. When there

are more than one point q that maximize the angle between f and conv(e3U{q}) in line 12

of GroupHull3d(P, m, H), pick the point q that maximizes the angle Lbjaq; and if there

are more than one q that achieve this maximum, pick the one farthest from a3. Use the

same rule to break ties in line 11. For degenerate point set, it is easier to keep track of

edges rather than facets, since facets can be convex polygons rather than triangles. So,

make F and Q sets of edges instead and in line 15, add the oriented edges bja and

to F and Q. Although we may not have a complete description of the facet incident to

these two edges, we know the equation of the plane containing the facet; this equation is

sufficient to perform wrapping about these edges.

2.2.3 Refinements of the group-and-wrap method

In this subsection, we suggest ideas on possible improvements that may make algorithms

Groupllull2d() and Groupllull3d() run even faster in practice.

Idea 1. First, points found to be in the interior of conv(P) in line 3 of

Groupllull2d(P, m, H) or GroupHull3d(P, in, H) can be eliminated from further con

sideration. This may potentially save work during future iterations of the algorithm,

although it does not affect the worst-case complexity.

Idea 2. In Groupllull2d(P) and Groupllull3d(P), we choose the group size m = H

so as to balance the 0(nlogm) preprocessing cost and the O(H(logm)) cost for the

Chapter 2. Two- and Three-Dimensional Convex Hulls 28

0(H) wrapping steps. Alternatively, we can choose m = min{H log H, n} or reversely

set H = rn/log m. This choice of m does not affect the first cost except in the lower-

order terms, but it reduces the second cost from 0(ri log H) to 0(n) and thus results in

a smaller constant factor overall.

Idea 3. With Idea 2, the dominant cost of algorithm Groupllull2d(P, m, H) lies in

the preprocessing, i.e., the computation of the convex hulls of the groups in line 3. To

reduce this cost, we may consider reusing hulls computed from the previous iteration

and merging them as the group size is increased. Suppose rn’ is the previous group

size. Since the convex hull of two convex polygons can be computed in linear time

(the dual problem is to intersect two convex polygons), we can compute the convex

hull of Frn/rn’l convex m’-gons in 0(m log(m/rn’)) time by the standard “MergeHull”

divide-and-conquer algorithm [PS85]. Thus, the rn/mi hulls in line 3 can be constructed

in 0(nlog(m/rn’)) rather than 0(nlogm) time. The same can be said for the three-

dimensional case, but merging two 3-dimensional polytopes, though possible in linear

time [Cha92], is more expensive.

Idea 4. In GroupHull2d(P), we use the sequence of group size m = 22, t = 1,2,..., to

guess h. The improvements from Ideas 2 and 3 in fact permit us to choose slower grow

ing sequences and still retain optimal 0 (n log h) complexity. For example, one possible

sequence is simply m = 2, t = 2, 3,..., which corresponds to doubling the group size

after each iteration. Note that a coarser sequence approximates h less well while a denser

sequence requires more iterations. We may try to optimize the worst-case constant fac

tor and lower-order terms using sequences with different growth rates. We suggest the

sequence m = 22, t = 2,3,...

Chapter 2. Two- and Three-Dimensional Convex Hulls 29

Idea 5. E. Weizi has observed that the binary search in line 8 of algorithm

Groupllull2d(P, m, H) can be replaced by a simpler linear search without changing the

time complexity of the algorithm. The following monotonicity property provides the jus

tification: during the course of the algorithm, the variable qj in line 8 can ollly advance

in the ccw direction along conv(P) for each fixed i. As a result, the h-vertex convex

hull of p convex polygons with a total of n vertices can be computed in O(n + hp) time

by gift-wrapping; the two-polygon (p = 2) version of the algorithm is in fact the dual of

an intersection algorithm by O’Rourke et al. [OC+82j (see also [O’Ro94, PS85]). The

total cost of Groupllull2d(P, m, H) can then be reduced to O(nlogm + H(n/m)) time,

which is a log m factor saving in the second term. Although the overall constant fac

tor is unaffected by the saving if Idea 2 is employed (as the first term is the dominant

one), the linear search is easier to implement. There does not seem to be an analogous

simplification in three dimensions.

2.3 Application: Lower Envelopes of Line Segments in the Plane

In the previous section, we have presented optimal output-sensitive convex hull algo

rithms in both E2 and E3. Besides simplicity, the approach of the previous section has

the advantage that it is applicable to a variety of other problems. This section gives one

application that illustrates this idea particularly well.

Consider the problem of computing the lower envelope £(S) of a set S of n line seg

ments in the plane, which we define as the boundary of U8ES where a is the trapezoid

formed by extending the segment s vertically to +00. See Figure 2.4 for an exam

ple. (Convex hulls correspond to lower envelopes of lines in the dual.) Let h be the

output size, i.e., the number of edges in the envelope; it is known that h is at most

O(nc(n)) [HS86]. Hershberger [Her89] has given a worst-case optimal algorithm that

Chapter 2. Two- and Three-Dimensional Convex Hulls 30

Figure 2.4: The lower envelope of a set of line segments. (Shown in dotted lines.)

computes lower envelopes in Ofri log n) time. We now describe how his algorithm can be

made output-sensitive with our technique.

First, observe that we can trace the h edges in £(S) from left to right by perform

ing h ray shooting operations, where a ray shooting operation is: given a ray p em

anating from a point on or beneath £(S), find the first trapezoid a (s e S) that p

crosses. As such an operation can be done in 0(n) time, this gives us a naïve O(nh)

method, like Jarvis’s march. To improve the running time, partition S into [n/rn] groups

each of at most m segments and compute the lower envelope of each group by Hersh

berger’s algorithm; this takes O(nlogm) time in total. Using knowil data structures such

as [CE+91, GH+87, HeS93], we can perform ray shooting under each of these [n/mi
envelopes in 0(log m) time after O(mc(m)) preprocessing (the ray shooting methods

can be simplified in our case since envelopes are monotone). This implies that the h ray

shooting operations on £(S) can be done in 0(h(log rn)) time. Choosing an appro

priate group size rn and guessing the output size h give us an optimal output-sensitive

Chapter 2. Two- and Three-Dimensional Convex Hulls 31

O(n log h) algorithm for computing the lower envelope.

Theorem 2.3.1 The h-edge lower envelope of a set of n line segments in E2 can be

constructed in O(nlogh) time.

Other applications of the same approach, including higher-dimensional ones, can be

found in Chapter 4. In many cases, our grouping technique, combined with appropriate

data structures, reduces 0 (n log n) terms in the running time to 0 (n log h), where h

represents output size.

Chapter 3

Four-Dimensional Convex Hulls

In the previous chapter, we have presented some optimal output-sensitive algorithms for

constructing convex hulls in two and three dimensions. Although there is not a drastic

difference between the 0(n log h) performance of these algorithms and the performance

of the 0(n log n) algorithms, in higher-dimensional space output-sensitivity can make a

real difference.

This chapter considers the four-dimensional space E4, where we give a near-optimal

output-sensitive convex hull algorithm with an 0((n + f) log2 f) running time. The al

gorithm is therefore quite efficient for the whole range of output sizes f from 0(1) to

0(n2). For example, when f = 0(n), the algorithm runs in O(nlog2n) time, which

is a significant improvement over the 0(n2) running time of a worst-case optimal algo

rithm {Sei8l]. (The previous output-sensitive method by Seidel [Sei86], combined with

Matouek’s improvement [Mat93], achieves O(n4/3log°1n) time in this case.)

The basic strategy behind our algorithm is divide-and-conquer. In order to obtain

an output-sensitive method, the subproblems we solve cannot have asymptotically more

faces than the original polytope. Therefore, we make each subproblem compute some

restricted portion of the original polytope. For each of the subproblems defined, we show

that sufficiently many input points can be removed without changing the subproblem.

As in quicksort-like recursions, the merge step is trivial once we have devised a parti

tioning scheme for dividing a problem into subproblems. We have already seen this type

32

Chapter 3. Four-Dimensional Convex Hulls 33

of recursion before, namely, in the planar algorithm of Section 2.1; in fact, our 4-d algo

rithm is an extension of this 2-d algorithm. Further extension of the method to higher

dimensions will be given in the next chapter in Section 4.6.

Our result on 4-d convex hulls has an important application, namely, to the compu

tation of Voronoi diagrams in 3-space. We will examine this application in Section 3.3.

3.1 Preliminaries on the Divide-and-Conquer Construction of Convex Hulls

Before we give our four-dimensional convex hull algorithm, we first set up notation,

introduce key concepts concerning the divide-and-conquer computation of convex hulls,

and then describe a tool that we need.

3.1.1 The upper hull

For the most part, our 4-d algorithm is described in an arbitrary constant dimension d.

In this setting, one can then tell when the four-dimensionality of the problem is used

so that extensions to higher dimensions can be described more easily later. Figures are

drawn for the case d = 3 only.

Given a set P c Ed of n points in general position, our goal is compute the facial

structure of the convex hull conv(P). Following the approach of Section 2.1, we focus our

attention only on the upper hull, consisting of faces of the convex hull with an upward

normal vector (see Figure 3.5(a)). The upper hull of P can be thought of as the bounded

faces of conv(P U {(O,.. . , 0, —oo)}). Once we have a method for computing the upper

hull of P, we can also compute the lower hull of P in a similar manner by reflection and

join the two hulls to form the convex hull of P.

Notation. Let F(P), R(P), and V(P) be the set of all facets, ridges, and vertices

(respectively) of the upper hull of P.

Chapter 3. Four-Dimensional Convex Hulls 34

/
X2 (a)

Figure 3.5: (a) The upper hull of a point set in E3 and (b) the vertical projection of its
facets.

To simplify representational issues, we require our algorithm to output only the set

F(P) of all facets of the upper hull of P. From this set, we can then generate all

faces and build the complete lattice structure of the faces (the Hasse diagram) using a

dictionary in O(F(P) log F(P)) time; this additional cost will be absorbed in the cost

of the algorithm. Our algorithm for computing F(P) is based on divide-and-conquer: to

compute all the facets in F(P), we partition F(P) into suitable subsets and recursively

compute these subsets of facets.

3.1.2 Facets and their duals

The following provides a simple characterization of the set of facets F(P). First by the

non-degeneracy assumption, F(P) consists only of (d 1)-dimensional simplices with

vertices all from P. Let f be such a simplex and let h(f) denote the unique hyperplane

x3

.
.

.

.
.

.

(b)

Chapter 3. Four-Dimensional Convex Hulls 35

containing f. Then f e F(P) if all points of P lie on or below h(f).

We now introduce some useful notation used throughout the chapter.

Notation. Let 4. denote the vertical projection operator: p. = (Xi,. . . , Xd_i) if p =

(xi,. . . , x), and P4. = {p. : p e P} for any P c Ed. Given P ç Ed and

S C Ed_i, let P15 = {p e P : pJ. E S} be the restriction ofF to S. Let ms denote

the interior of S and 8S denote the boundary of S.

Observe that the vertical projection of the facets in F(P) forms a collection of (d — 1)-

dimensional simplices in Ed_i that have disjoint interiors, that is, mt (ft) n mt (f’--) = 0
for any two distinct facets f, f’ e F(P). In fact, the vertical projection of all faces of

the upper hull forms a simplicial complex. For example, if d = 3, then {f: f e F(P)}
forms a triangulation in the plane, as shown in Figure 3.5(b). Thus, one possible divide-

and-conquer approach is to use these vertical projections to partition F(P).

An equally natural approach is to use the vertical projections of the facets’ duals to

partition F(P). For each f e F(P), we can define a point fD E Ed via the standard

duality transformation of [Ede87]: if the hyperplane h(f) is given by { (x1,. . . , Xd) : Xd =

21x1 + ... +2d_1Xd_
— d}, then we let fD = (‘,.. . ,d). The projection of the

dual fD4 = (ci,.. . , ed—i) is geometrically just the gradient of h(f) (ignoring the scalar

multiple 2); for example, if d = 2, then this is just the slope.

To allow us to speak about the two divide-and-conquer approaches more succinctly,

we make the following definitions:

Definition. Given sets 5, C E_i, let F5(P) = {f e F(P) : f1. C S} be the primal

restriction of F(P) to S and F’(P) = {f e F(P) : z} be the dual

restriction of F(P) to L.

Before we describe our divide-and-conquer algorithm, we first need to introduce a

general tool for geometric divide-and-conquer known as the (1/r) -cutting.

Chapter 3. Four-Dimensional Convex Hulls 36

3.1.3 Cuttings for divide and conquer

Let H be a set of ri hyperplanes. A cutting in Ed is a covering of Ed with closed

(possibly unbounded) simplices with disjoint interiors; the size of the cutting is the

number of simplices. A cutting is a (1/r)-cutting if any simplex of = intersects at

most n/r hyperplanes of H. The (1/r)-cutting and its relatives have recently become a

popular tool in the design of divide-and-conquer algorithms for many geometric problems;

see [AGR94, Cha93b] for examples in the context of convex hulls.

In [CF9O], Chazelle and Friedman showed that a (1/r)-cutting of size O(rd) exists

for any finite set of hyperplanes in Ed. Since then, many researchers, notably Ma

touek [Mat9lb, Mat9lc] and Chazelle ECha93a], have looked into the problem of how

such a cutting can be constructed deterministically. The following theorem is one of the

results that have been established, using derandomization techniques. We remark that

improvements to this theorem were known, but since we need it only for the special case

when r is constant, it is more than sufficient for our purposes.

Theorem 3.1.1 ([Mat9la, Theorem 6.1]) Given n hyperplanes in a fixed dimension

d, a (1/r)-cutting of size O(r’) can be computed in O(nrd) time.

3.2 A Prune-and-Divide Convex Hull Algorithm in Four Dimensions

We are now ready to provide the details of our four-dimensional convex hull algorithm,

which is an extension of the planar algorithm Dividellull2d() from Section 2.1. First,

here is a high-level description how the extension works.

Recall that in line 4 of algorithm Dividellull2dQ, the median of a set of n/2 numbers

is computed. Since the median can be thought of as a one-dimensional (1/2)-cutting from

Section 3.1.3, we extend this step to d dimensions by computing the (1/2)-cutting of a set

Chapter 3. Four-Dimensional Convex Hulls 37

of n/2 hyperplanes in Ed_i. In line 5, a vertex p, used for dividing the hull, is computed

by taking the maximum of a set of numbers formed by projecting the input points along

a direction of slope m. Of course, the maximum of a set of numbers can be interpreted

as the upper hull of a one-dimensional point set. In d dimensions, Pm then becomes a

collection of ridges computed by projecting the input points along certain directions and

taking the upper hulls of the resulting (d — 1)-dimensional point sets. For d = 4, these

upper hulls are 3-dimensional and are therefore of linear size.

In the 2-d algorithm, Pm divides the upper hull of P into two parts: the portion of

the hull to the left Of pm and the portion to the right Of p. Observe that the left hull is

also the portion with slope less than m, and similarly the right hull is the portion with

slope greater than m. We have thus used Pm to partition the upper hull in two ways:

(i) by x-coordinate and (ii) by slope. The restriction of the upper hull with x-coordinate

inside a given interval is just primal restriction, in the terminology of Section 3.1.2, and

the restriction of the upper hull with slope within a given interval is just dual restriction.

In our extension to 4-d, we adopt the same strategy of using both primal and dual

restrictions to partition the upper hull.

In the planar case, dividing the point set by x-coordinate ensures that the two sub-

problems do not share any input points except for the vertex Pm, and pruning by slope

ensures that each of the two subproblems has at most 3/4 of the input points. In the same

manner for E4, dividing by primal restrictions controls the sum of the sizes of the sub

problems and pruning by dual restrictions guarantees that no subproblem receives more

than a fixed fraction of the input. Subproblems can now share more than one input point,

but we argue that the number of points shared is proportional to the size of the output.

The analysis then follows from an application of the general cost lemma (Lemma 2.1.1)

from Section 2.1.2: primal dividing bounds the per-level cost of the recursion tree and

dual pruning ensures the of-fading property.

Chapter 3. Four-Dimensional Convex Hulls 38

Figure 3.6: A simple region S of the point set in Figure 3.5.

3.2.1 Primal dividing

Our convex hull algorithm computes the primal restrictions of F(P) to certain regions

in Ed_i recursively. The regions are not arbitrary but are of a special form that we call

simple regions.

Definition. A set S C E’ is a simple region of P if it is the vertical projection of a

union of facets in F(P).

Figure 3.6 shows an example of a simple region. A simple region S may be discon

nected. There may even exist a non-empty open (d — 1)-ball centered on OS, of an arbi

trarily small radius, whose intersection with mt S is not homeomorphic to any (d— 1)-ball.

This intersection cannot be empty however, as S is a union of full-dimensional simplices;

in particular, this rules out “spikes,” e.g., (d — 2)-simplices that are attached to the

boundary.

The following lemma lists some useful properties concerning simple regions and primal

restrictions. Part (a) is an identity that follows from definition and is important for

Chapter 3. Four-Dimensional Convex Hulls 39

proving other parts of the lemma. Parts (b) and (c) discuss when poillts can be removed

without changing the primal restriction. Parts (d) and (e) provide bounds on the number

of vertices and ridges restricted to a simple region. Finally, (f) and (g) describe properties

of the boundary of a simple region.

Lemma 3.2.1 Let S be a simple region of P. The following statements are true:

(a) UfEFS(P) f = S. (The projection of the facets of the primal restriction to S covers

the region S.)

(b) If Q C P contains all vertices of the facets inF8(P), then S is a simple region of

Q and Fs(P) =F8(Q). (Points that do not contribute to facets inF8(P) can be

removed from P without affectingF8(P).)

(c) S is a simple region of the restricted point set P1s and the restricted facets F8 (Pis) =

F8(P).

(d) V(P8) < dF8(P). (The number of facets in the primal restriction gives a bound

for the number of vertices.)

(e) {r E R(P) : r4. c S}j < dF8(P). (The number of facets in the primal restriction

gives a bound for the number of ridges.)

(f) 3S is the vertical projection of a union of ridges in R(P). Thus, we can represent

OS as a set of at most d F8(P) ridges.

(g) Ps = {v : v is a vertex of some ridge r in OS}, and IFas < dFs(P). (The

number of vertices in the boundary OS is bounded.)

Proof: Recall that {int (ft) : f E F(P)} are disjoint. Then (a) is immediate from the

definition of the primal restriction F8 (F).

Chapter 3. Four-Dimensional Convex Hulls 40

To prove (b), first note that Fs(P) C Fs(Q) follows directly from the hypothesis.

This implies that S is a simple region of Q. Now, (a) says that UfEFS(P) f4. = S =

UfEFs(Q) f4.. We therefore must have equality: Fs(P) = Fs(Q).

Statement (c) is a direct consequence of (b).

To prove (d), let p be a point in V(F1s). Since the projection p4. E 5, by (a) we have

p4. e f4. for some facet f Fs(P). Since p e V(P15), p must be a vertex of f. Then (d)

follows as each facet has d vertices incident on it (by the non-degeneracy assumption).

To prove (e), observe that each ridge r with r4. C S is incident on some facet in

Fs (F), by (a). Then (e) follows as each facet has d ridges incident on it.

The first part of (f) is immediate from the definition of a simple region. The cardinality

bound is just a consequence of (e).

The first part of (g) follows from (f) and the non-degeneracy assumption. In particu

lar, this implies that P105 C V(P) and consequently, Pos V(P15). So the second part

follows from (d). U

To compute the primal restriction F5(P) for a simple region S of F, our divide-

and-conquer algorithm first subdivides S into smaller simple regions {S} with disjoint

interiors and then recursively computes F5 (F) for each of the Si’s. In computing

F5 (P) we may consider only those input points that belong to P5 =
F1mts1 U

by Lemma 3.2.1(c). Since mt S are disjoint, the points shared between subproblems

are points restricted to the boundary of the Si’s and we can bound the size of these

boundaries in terms of the number of output facets by Lemma 3.2.1(f,g).

Note that when d = 2, the boundary of a connected simple region consists of just two

points. In higher dimensions, the boundary becomes more complex and its manipulation

demands more care.

Chapter 3. Four-Dimensional Convex Hulls 41

3.2.2 Dual pruning

To find a good strategy for subdividing a simple region, we switch to dual space. We

show how to partition Ed_i into a constant number of simplices such that in computing

the dual restriction of F(P) to each of the simplices, a fraction of the points of P can be

pruned.

Lemma 3.2.2 In O(P) time, one can find closed simplices L,. . . , z.k C Ed_i and

P1,. . . , P C P such that (i) uL1 = E”1 and {int z.} are disjoint, (ii) F(P) =

F’(P), and (iii) PZ < a P, for all i = 1,. . . , k. Here, k and 0 < a < 1 are both

constants depending only on d (assuming that P exceeds a certain constant).

Proof: A proof of this lemma in the dual setting can be found in Edelsbrunner’s ex

position [Ede87J of Megiddo’s linear programming algorithm [Meg84]. The algorithm is

based on the prune-and-search paradigm, and this lemma represents its “prune step.” In

Megiddo’s original approach, the constant k is quite large and a is very close to 1. We

observe an alternative solution using results on cuttings.

Let = n. First, form the set H of dual hyperplanes by mapping each point

p=(pi,...,pd) ofPtothehyperp1ane{(1,...,d) :d=2pii+...+2pd_id_i—pd}.

Then each facet f of the upper hull of P corresponds to a vertex of the lower envelope

of H. (The lower envelope of H consists of faces of the polytope P = { e

is below every hyperplane of H}.) Furthermore, if L C Ed_i, then a facet f in the

dual restriction F’(P) corresponds to a vertex of the lower envelope that has vertical

projection in /i.

Arbitrarily pair the n hyperplanes in H, compute the intersection of each pair, and

vertically project these intersections. This gives us n/2 hyperplanes in Ed_i. Compute

a constant-sized (1/2)-cutting {} of these (d — 1)-dimensional hyperplanes by The

orem 3.1.1. Consider a simplex /. from the cutting. Half of the n/2 pairs have an

Chapter 3. Four-Dimensional Convex Hulls 42

intersection whose vertical projection lies completely outside For such a pair, one of

the two hyperplanes cannot participate in the restriction of the lower envelope of H to

/. and is thus redundant. Therefore, in computing the dual restriction F(P), n/4 of

the points can be pruned. This proves the lemma with ci = 3/4. 0

3.2.3 Converting from dual to primal

In this subsection we show how to convert the partitioning {z} of the dual space obtained

from Lemma 3.2.2 into a partitioning in the primal space. Specifically, we show that for

any simplex / ç Ed_i, we can define a region S = S(P) Ed_i such that the

primal restriction of F(P) to S is the same as the dual restriction of F(P) to z (i.e.,

F8(P) = F’(P)).

We start with the case when L is just a halfspace. By a transformation of coor

dinates, we can make L the halfspace {(, . . . , d_1) : < O}. Define a projection

Ed
_

Ed_i that sends a point (x1,. . . , Xd) to (x2,. . . , Xd). Consider the upper

hull of the (d — 1)-dimensional point set ir(P): its facets are projection of ridges in

the upper hull of F, that is, F(ir(P)) C {r(r) : r e R(P)}. Let “boundary” B be

the union of all r4. with 7r(r) e F(ir(P)). Then B is monotone in the first coordi

nate: given any . . , _) e Ed_i, there is at most one point (a,.. . , e
with 2 = , ..., = We define S to be the region right of B, that is,

= {(,.. . : (, . , d—1) e B for some < }, as in Figure 3.7(a).

The following lemma can now be established for a halfspace / by verifying definitions.

Lemma 3.2.3 F5(P) = F(P).

Chapter 3. Four-Dimensional Convex Hulls 43

> x1

(a) (b)

Figure 3.7: (a) The region S and (b) the intersection of its interior with the interior of
the simple region S from Figure 3.6.

Remark: In the dual setting, as described in the proof of Lemma 3.2.2, the (d — 1)-

dimensional upper hull of the projected point set 7rx(P) corresponds to the (d — 1)-

dimensional intersection of the lower envelope of H with Thus, ridges appearing in

B correspond to edges of the lower envelope of H that intersect 8L.

We now extend the definition of S. to the case when L is a simplex rather than

a halfspace: Since Li is a simplex, write / as an intersection of a constant number of

halfspaces {ö}. Then define S to be a region with interior fl3 mt Sc,. It is not difficult
to see that Lemma 3.2.3 holds for simplices z as well.

3.2.4 Specializing for d = 4

We now show that the region S as defined in the previous subsection satisfies some nice

computational properties if d = 4. We first coilsider the case in which L is a halfspace.

Chapter 3. Four-Dimensional Convex Hulls 44

For d = 4, the projected point set ir(P) is 3-dimensional. We can compute the facets

of the upper hull F(7r(P)), and thus, the boundary B, in O(P log V(P)) time by

Theorem 2.2.2. This permits computations involving the region S to be done efficiently,

such as deciding if a point lies in the interior of S.

Lemma 3.2.4 Suppose that d = 4. Then the restricted point set P mt s. can be computed

in O(PlogV(P)) time using O(P) space.

Proof: Compute the facets of the 3-dimensional upper hull F(’ir(P)) and store {ir(r):

ir (r) e F(r (F)) }, which is a set of 0 (V(P)) triangles in E2 with disjoint interiors, in a

planar point location structure [EGS86, Kir83, Pre9O, ST86]; this takes O(P logV(P))

time. For each p E F, we can then test whether p4. E mt S in logarithmic time by finding

a facet ir(r) of F(r(P)) with ir(p). e ir(r)j. and then determining which side of rj.

the point p.j.. lies on. C

Another operation on the region S that we need is that of intersecting S with

a simple region (see Figure 3.7(b)). To ensure that the resulting region is simple, we

intersect their interiors only. We represent a simple region S by its boundary, which is a

set ofO(F8(P)) ridges by Lemma 3.2.1(f). We assume that each ridge r of 8S is given

an orientation to indicate which side of r. the region S lies on.

Lemma 3.2.5 Suppose that d = 4. Given the boundary t9S for a simple region S of

F, one can construct the boundary aS’ for a new simple region S’ of F with mt 5’ =
intS fl intS in 0((P + Fs(P))logV(P)) time using O(F + F8(F)) space.

Proof: Call a subset of S a subregion if it is the closure of a connected component of

Ed
— (8S U Ba). A subregion is a simple region, so we can define the new simple region

5’ to be the union of all subregions contained in S. The boundary OS’ is made up of

Chapter 3. Four-Dimensional Convex Hulls 45

boundary components, which are connected components of the boundary of subregions.

To decide whether a given boundary component B contributes to OS’, take a point q near

B but inside the region bounded by B (this requires an examination of the orientation

of a ridge in B), and then test if q E mt S using the point location method from the

previous lemma. Therefore, to compute OS’, it suffices to produce all the boundary

components. This is done using depth-first search as follows.

We first record the ridges of the boundaries OS and B in a dictionary; as the

(d — 1)-dimensional upper hull F(ir(P)) and the boundary B can be computed in

O(P log jV(P)) time for d = 4, this takes O((P + IFs(P)) log jV(P)) time. We make

two copies of a ridge to represent the two “sides” of a ridge and assign different orien

tations to them. We then generate all the (d — 3)-subfaces of these ridges, and for each

such (d — 3)-face u, we create the list of ridges incident to a in sorted order and store

a in a dictionary for (d — 3)-faces. The ordering of these ridges is based on the angles

made by their vertical projections with a fixed hyperplane through a.j. in Ed—i.

Then, given an (oriented) ridge in a boundary component B, we can identify its d — 1

adjacent ridges in B in constant time by following pointers. (Here, two oriented ridges

Figure 3.8: Tracing a boundary component (d = 3).

Chapter 3. Four-Dimensional Convex Hulls 46

r1 and r2 are adjacent in B if there is a common (d — 3)-subface a incident on both

ridges and there is no other ridge r’ in B that a is incident on, such that r’. lies within

the angle range defined by r1j. and r2. around at.) Using a depth-first search to visit

the adjacent ridges recursively, we can then trace all ridges that belong to the same

boundary component B, as indicated in Figure 3.8. All boundary components can then

be generated by ensuring that all ridges in OS are visited. The time required by the

depth-first search is proportional to the number of ridges in OS and B and is therefore

only O(F8(P) + V(P)j).

Note: if both sides of a ridge appear in the boundary OS’, then the ridge can be

removed. D

It remains to extend the above lemmas to the case when L is a simplex rather than

a halfspace. Recall that we have defined S such that mt S = fl3 mt S, if L is written

as an intersection of a constant number of halfspaces {S3}. By applying Lemmas 3.2.4

and 3.2.5 to each halfspace 3j individually, we see that the lemmas are also true for the

simplex L.

3.2.5 The prune-and-divide algorithm in four dimensions

We now have all the pieces needed for an output-sensitive convex hull algorithm in

E4. Let Dual—Partition(P) represent a dual partitioning {(P, z)}1 obtained from

Lemma 3.2.2. Let Restrict—Interior(P, z) represent the restricted point set P1int

as computed by Lemma 3.2.4 and let Restrict—Boundary(P, B,) be the boundary of

the simple region 5’ returned in Lemma 3.2.5 for B = OS. The following provides an

outline of our recursive algorithm.

Chapter 3. Four-Dimensional Convex Hulls 47

Algorithm DivideHull4d(P, B)
[Given P = mts and B = 8S for a simple region S of a point set P E4 where
B 0 is represented as a set of (oriented) ridges, return the set of facets F5(F).
1. P+—PU{v:visavertexofsomeridgerinB}
2. if P < n for a constant n0 then returnF5(P) in constant time
3. {(P, L)}L1 +— Dual-Part ition(P) by computing a (1/2)-cutting (Lemma 3.2.2)
4. fori=1,...,kdo
5. P’ — P fl P fl Restrict—Interior(P, by computing a 3-d upper hull

and performing 2-d point location (Lemma 3.2.4)
6. B — Restrict-Boundary(P, B, by computing a 3-d upper hull and

performing depth-first search on the boundary ridges (Lemma 3.2.5)
7. return U {DivideHull4d(F, B) : B O}

We first argue that the algorithm indeed computes the primal restriction F5(F). In

the first line of the algorithm, we reset P to the point set P1ms U PI8 = Pis, according

to Lemma 3.2.1(g); the justification is provided by Lemma 3.2.1(c): F5(P) =F5(P15).

Line 2 provides the base case. Line 3 gives us a constant number of simplices {z}
with disjoint interiors, covering Ed_i; for each /j, we are also given a subset P of F, of

cardinality at most P, such that F’(P) = F(P).
Let S denote the simple region with interior mt S fl mt S. Since F5.(F) FZXi (F)

by Lemma 3.2.3, we know that the Si’s have disjoint interiors and that their union is

S. Furthermore, asF5(P) CF5.(P) = F(P) = F(P), all facets in Fs(F) have

vertices from Pj, which implies thatF5(P) =F5(P) by Lemma 3.2.1(b).

In line 5 we set P’ = Pfl F’ fl its = Piints and in line 6 we let B be the

boundary of S. Then line 7 returns lJ Fs(F) = IJF5(P) =F5(P), as claimed.

Having argued that DivideHull4d() correctly computes the primal restrictionF5(P),

we can use the algorithm to compute the set F(P) of all facets of the upper hull. The

initial simple region S we use is just the convex hull of P, which can be computed

using the 3-dimensional algorithm from Section 2.2. Thus, by letting F’ = {p e F

Chapter 3. Four-Dimensional Convex Hulls 48

pj. is not a vertex of So} and B = OS0, a call to Dividellull4d(P, B) then returns F(P),

as desired.

3.2.6 Analysis of the prune-and-divide algorithm in four dimensions

We now analyze the running time of the algorithm. We do so by counting the cost of the

recursion tree produced by the calls to Dividellull4dQ, in a way similar to our analysis

of Dividellull2d() in Section 2.1.2. Let n be the number of input points and f be the

number of facets of the upper hull. Let P and S denote the input point set and the

simple region associated with a node v of the recursion tree. Let n = and

f =

By Lemmas 3.2.2, 3.2.4, and 3.2.5, the non-recursive part of the algorithm (lines 1—6)

requires O((P + = O((P + fV)logfM) time at node v, since

= V(Ps,) < dFs(P) by Lemma 3.2.1(d). To get the total running time,

we just have to sum this cost over all nodes in the recursion tree.

We first analyze the cost contributed by the O(P logf) term. By Lemma 3.2.2(iii),

this cost is n-fading, so we can apply Lemma 2.1.1. To sum the costs on a given level

of the tree, we write = intS, + P < n1, + df by Lemma 3.2.1(g). Since

the Sn’s have disjoint interiors over all nodes ii of one level, we have n, < n and

, f1, = f for each level of the recursion tree. This gives us an 0((n + f) log f) bound
on the cost-per-level. The tree has 0(f) leaves, as each leaf discovers at least one facet

(note thatF8(P) = 0 only if 8S = 0 by definition of a simple region). Lemma 2.1.1(u)

says that the total contribution is O((n + f) log2 f).
Next we analyze the cost contributed by the O(f log f) term. This cost may not be

of-fading, so we cannot apply Lemma 2.1.1. But since f = f and the recursion tree

has depth at most logj, n by Lemma 3.2.2(iii), we can bound the sum of these costs by

0(flogflogn), which never dominates 0((n + f)log2f).

Chapter 3. Four-Dimensional Convex Hulls 49

We conclude that the total running time of the algorithm is O((n + f) log2 f). Total
space is O(n + f) as long as we free up the space used to store the boundary B before

we make the recursive calls in line 7.

Theorem 3.2.6 Algorithm Dividellull4d() computes the f-face upper hull of an n-point

set P C E4 in O((n + f) log2 f) time and O(n + f) space.

Remarks:

1. Algorithm DivideHull4d() can be considered as a primal-based divide-and-

conquer algorithm since it recursively computes the primal restriction of F(P) to a simple

region. Alternatively, one may consider an algorithm that computes the dual restriction

of F(P) to a simplex recursively. This dual-based approach is perhaps less complex since

simplices are easier to handle than boundaries of simple regions. However, the problem

with this approach is that the dual analogue of Lemma 3.2.1(b) is not true in general:

one can construct a point set P ç E3 and a triangle C E with F(P) F’(Q) for

Q = {v : v is a vertex of some facet f F’(P)}.

2. Although the cutting techniques used for dual pruning in our algorithm have

been well-studied, our strategy for primal dividing appears new. This strategy provides

a simple way to guarantee that the total problem size at any level of the recursion is

O(n+f); it would be difficult to obtain such a bound using the existing cutting techniques

alone. Previously, primal dividing was used only in two and three dimensions, notably in

the algorithms of Kirkpatrick and Seidel [KS86] and Edelsbrunner and Shi [ES91], and

our algorithm can be regarded as an extension of these approaches. In fact, the three

dimensional version of our algorithm simplifies Edelsbrunner and Shi’s algorithm in the

same way as our two-dimensional algorithm Dividellull2d() simplifies Kirkpatrick and

Seidel’s (see the first remark after Theorem 2.1.2). The “contour”-based approach used

in a recent parallel 3-d convex hull algorithm by Amato, Goodrich, and Ramos [AGR94]

Chapter 3. Four-Dimensional Convex Hulls 50

can also be interpreted as a form of primal dividing. There, contours play a role similar

to the lower-dimensional upper hulls of 7r(P) in Section 3.2.3 and are used to ensure

that the total problem size at any level of the recursion remains 0(n); but since they

describe their method in the dual setting, its geometry is less apparent in some places.

3. Dividellull4d() can return not only F(P) but also a point location structure for

the set {fJ. : f 6 F(P)} of tetrahedra in E3. We simply maintain the recursion tree

and store the planar point location structures from Lemma 3.2.4 at every node; this

requires O((n + f) log f) space. Then we can find a facet of which the vertical projection

contains our given query point by just following a path down the recursion tree. Since

the tree has depth at most log11 n, the query time is O(log2n). For small output size f,
we can further reduce the space and query time bound to O(f log f) and 0(log2f) by

first calling DivideHull4d() to identify the vertices V(P) and then building the point

location structure for V(P) instead of P (as F(V(P)) = F(P)). We thus achieve the

same performance as Goodrich and Tamassia’s 3-d point location structure [GT91].

4. Some practical issues. With no additional work, Dividellull4d() can return the

incidence structure between facets and ridges; this fact can be used to reduce the number

of dictionary operations needed. Moreover, with an appropiate choice of coordinate

system, it is not necessary to compute the upper and lower hulls separately; we choose

to do so here merely because vertical projections are easier to visualize. In Section 3.2.3,

a transformation of coordinates is used to define the projection ir for an arbitrary

halfspace ; this is used only to simplify presentation and such a transformation needs

not be carried out explicitly. Finally, we should mention that degeneracies may occur in

the projected point set ir(P) even though the point set P is itself non-degenerate; in

such a situation, we may wish to apply a perturbation to L.

5. In the next chapter, we describe one way that algorithm DivideHull4d() can be

extended to higher dimensions. Since this extension requires higher-dimensional data

Chapter 3. Four-Dimensional Convex Hulls 51

structures for ray shooting and linear programming queries, we postpone its discussion

until we come to Section 4.6. See that section for the difficulties that arise when the

dimension is beyond 4.

3.3 Application: Three-Dimensional Voronoi Diagrams

In this section we discuss one important application of our four-dimensional convex hull

algorithm, namely the output-sensitive computation of Voronoi diagrams in three dimen

sions. Let P be a set of n point sites in Ed. The Voronoi region of a site p E P consists

of all points q E Ed such that q is closer to p than to any other point in P (with respect

to Euclidean distance). The Voronoi diagram of P is the collection of all Voronoi regions

(see Figure 3.9). The Voronoi diagram is an extremely useful structure in computational

geometry, since it is a powerful technique for dealing with problems related to proximity,

such as answering nearest neighbor queries. Furthermore, the dual of the Voronoi dia

gram is the Delaunay triangulation, another fundamental geometric structure with many

applications. See the survey by Aurenhammer [Aur9l] or the book by Okabe, Boots, and

Sugihara [0BS92] for more on these and other applications.

We first describe how an algorithm for constructing convex hulls automatically yields

an algorithm for constructing Voronoi diagrams in one dimension lower by “lifting” the

sites. The connection between convex hulls and Voronoi diagrams is well known: it was

first noted by Brown [Bro8O] and further developed by Edelsbrunrier and Seidel [ES86].

We also describe how to get an output-sensitive algorithm for computing a portion of the

Voronoi diagram clipped to a polytope.

For a given site p = (p’,. . . ,pd) E F, we can use a “lifting map” [Ede87, ES86]

to define a halfspace p’ in E1: p = {(x1,. . . ,xj) : Xd+1 2p1x1 + ... +2Pdxd —

p . p}. It is well known that the Voronoi regions are just the vertical projection of

Chapter 3. Four-Dimensional Convex Hulls 52

Figure 3.9: The Voronoi diagram of a planar point set. Bold lines indicate edges of the
diagram clipped to the polygon W.

w

Chapter 3. Four-Dimensional Convex Hulls 53

the facets of the polytope fl2,pp*. Thus, the computation of a Voronoi diagram in

Ed is reduced to the computation of an intersection of halfspaces in E’. Since the

computing an intersection of halfspaces is equivalent to the computing convex hulls by

duality (Section 1.1), Theorem 3.2.6 has the following consequence:

Theorem 3.3.1 The Voronoi diagram of 71 point sites in E3 can be computed in

O((n + f) log2 n) time and O(n + f) space, where f is the size of the Voronoi diagram

((n) = f = Q(n2)).

In certain applications, only the portion of a Voronoi diagram lying in a given area

is needed, and the size of this portion may be much smaller than the size of the entire

Voronoi diagram. What we want is then an output-sensitive algorithm to compute the

Voronoi diagram of P clipped to a region W, defined simply as the collection of all non-

empty intersections of the Voronoi regions with W (see Figure 3.9).

Suppose that W is a k-dimensional polytope (fl F) fl F, where F is a set of m halfspaces

and F is a k-fiat in Ed. Lift each halfspace -y e F to a vertical halfspace denoted by ‘y and

lift the k-fiat to a vertical (k + 1)-flat denoted by F*. Then the clipped Voronoi diagram

is just the vertical projection of the facets of the polytope flpEpp* fl fly* fl F*.

Thus, the clipped Voronoi diagram can be computed by constructing the intersection of

the halfspaces {p* n F* : p P} U {7* fl F* : -y e F} inside the (k + 1)-flat F*. If

k = 3, we can use Theorem 3.2.6 to compute the intersection of these n + m halfspaces

of dimension k + 1.

Theorem 3.3.2 Let d > 4 be a constant. The Voronoi diagram of n point sites in

Ed clipped to a 8-dimensional polytope defined by m halfspaces can be computed in

O((n + m + f) log2 f) time and O(n + m + f) space, where f is the size of the clipped

Voronoi diagram ((1) = f = 0(n2)).

Chapter 4

Higher-Dimensional Convex Hulls

In this chapter, we consider the convex hull problem in Ed where the dimension d is

any fixed constant. We begin by generalizing the two- and three-dimensional convex hull

algorithms in Section 2.2. Recall that these algorithms are based on the gift-wrapping

method. Since one can interpret a wrapping step as performing a ray shooting query in

dual space, we recast the grouping technique of Section 2.2 in a more general setting in

terms of ray shooting queries (Section 4.1). With a little more work, the same technique

can actually be applied to linear programming queries as well (Section 4.2). Data struc

tures for answering ray shooting and linear programming queries are then our main tools

in higher-dimensional space.

Using known data structures for ray shooting queries in polytopes by Agar

wal, Matouek and Schwarzkopf [AM93, MS93J, we obtain an O(nlogf +

(nf)’/(L”/2H4)log°1n)-time convex hull algorithm in Ed. Using known data structures

for linear programming queries by Matouek [Mat93], we also obtain an O(n log°1 h +

(nh)l_h/([d/2Hl)log°’ n)-time algorithm for identifying the extreme points (i.e., the ver

tices of the convex hull) of a set of n points in Ed. (Recall that f = O(nLd/2i) is the

number of hull faces and h < n is the number of hull vertices/extreme points.) These

output-sensitive results are described in Section 4.3.

Ray shooting and linear programming queries turn out to have numerous applications,

and we examine how our techniques lead to improved results in some of these applications

in Sections 4.4 and 4.5. Finally, using ray shooting and linear programming queries in our

54

Chapter 4. Higher-Dimensional Convex Hulls 55

4-d divide-and-conquer convex hull algorithm from Chapter 3, we obtain an extension

of the algorithm that computes d-dimensional convex hulls in O((ri + (nf)’h/E0/2l+
fnl2IFd/21)1og°’ n) time for any even d> 4 in Section 4.6.

4.1 Ray Shooting Queries

We first investigate the problem of ray shooting in a convex polytope. Given a collec

tion H of n (closed) halfspaces in Ed, where each halfspace contains a known point, say,

the origin o, a ray shooting qnery is to determine the first bounding hyperplane h of fl H

that is crossed by a query ray originating from fl H (a ray crosses a hyperplane h if it

intersects h but is not contained in h).

In two dimensions, the ray shooting problem can be solved as follows: first compute

the polygon fl H and store its vertices in an array in counterclockwise order; then a query

can be done by a simple binary search. Observe that computing the intersection fl H is

equivalent to computing a convex hull in the dual space, and thus takes O(n log n) time

by Graham’s scan for example [Gra72]; and the binary search takes 0(log n) time. Hence,

this method requires 0(nlogn) preprocessing time, 0(n) space, and 0(logn) query time.

The same preprocessing time, space, and query time can be obtained in three dimen

sions: in the preprocessing, compute the polytope fl H by the dual of Preparata and

Hong’s convex hull algorithm [PH77] and construct its Dobkin-Kirkpatrick hierarchical

representation [DK83, DK9O]; then a query can be answered in logarithmic time (see

Section 2.2.2).

Our first observation is that a preprocessing time/query time tradeoff is possible using

the grouping idea from Section 2.2. Using this observation, we can perform q queries in

0(nlogq) time rather than 0(nlogn) time for small q’s.

Chapter 4. Higher-Dimensional Convex Hulls 56

Lemma 4.1.1 There is a (static) data structure for ray shooting in a polytope defined

by a set H of n halfspaces in E orE3 with 0(nlogm) preprocessing time, 0(n) space,

and 0((n/m) logm) query time, where m is a parameter between 1 and n.

Proof: Partition H into rn/mi subsets (“groups”) H1,.
.. ,Hn/mi, each of size at

most m and build the above structures for each H. The total preprocessing time is

0((mlogm)) = 0(nlogm), and the space complexity remains 0(n). Now, ray shoot

ing is a decomposable problem [BS8O], i.e., the answer to a query on H’ U H” can be

computed from the answers to the queries on H’ and H” in constant time. Therefore,

a query on H can be computed directly by querying on each H, taking 0((n/m) log m)

time. El

Corollary 4.1.2 An (online) sequence of q ray shooting queries in a polytope defined by

a set H of n halfspaces in E2 or E3 can be performed in 0(nlogq + qlogn) time and

0(n) space.

Proof: By Lemma 4.1.1, the total time needed to answer q queries is 0(nlogm +

q(logm)), where 1 < m < n. Choose m = q when q < n and choose m = n when

q>n. El

For d-dimensional polytopes with d > 3, Agarwal and Matouek [AM93] were the

first to obtain efficient ray shooting data structures. Subsequently, Matouek and

Schwarzkopf [MS93] proposed a simpler and slightly faster approach, with the results

shown in Table 4.1.

Structure 1 in the table originates from a data structure by Matouek [Mat92] for the

problem of preprocessing an n-point set P ç E” for halfspace range queries. (A halfspace

range query on P is to report all points of P that lie in a given query halfspace.)

Chapter 4. Higher-Dimensional Convex Hulls 57

preprocessing update time ray shooting linear programming
Structures time, space (amortized) query time [M593] query time [Mat93]

1 nlogn, n N/A l_h/Lo/2jlog°’n nl/Ld/2i1og°1n
2 m1og°’ n N/A

m1/I2i ml/[Z/2J 1og2’logn
3 n/i 1og°’ n N/A log n log’ j
1’ nlogn, n log2 n 1_h/Ld/2j nl_l/Ld/2i+E

2’ m’ m’/n mh/[d/2i mh/Ld/21
log2dnlogn

3’ nLdh/2i+E n[d/2Jl+ logn log j

Table 4.1: Known data structures for ray shooting queries in polytopes and linear pro
gramming queries. For Structures 2 and 2’, m is a parameter between n and n[d/2i. The
bounds are all deterministic, with the big-Oh notation omitted.

A collection {(P1,si), . . . , (Pk, Lk)} is called a simplicial partition of size k if

(i) U P = F, (ii) the Pj’s are disjoint, and (iii) L\ is a simplex containing P for

each i. The key behind Matouek’s structure is the following Partition Theorem:

given 1 < r < n/2, there exists a simplicial partition {(P, z)} of size 0(r), with

n/r I P < 2n/r, such that any hyperplane with fewer than n/r points of P on one

side crosses at most O(r’’/L°/2i+logr) of the simplices A method for constructing

such a simplicial partition is described in [Mat92]. This theorem suggests a data struc

ture for storing the point set P called the partition tree: the simplices zX are stored at

the root of the tree, and a subtree is generated in a recursive fashion for each of the point

sets Ps’s.

Matouek and Schwarzkopf [MS93] observed that the partition tree can be used to an

swer ray shooting queries on the polytope fl H if we dualize the halfspaces in H to points

and augment each node of the partition tree with a (1/r)-net [HW87, Mat9lc]. Choosing

r = n7 for a suitable constant 7> 0, they then obtained a linear-space structure that can

Chapter 4. Higher-Dimensional Convex Hulls 58

be built in O(n log n) time and can answer ray shooting queries in O(nl_h/L/2i iog°’ n)

time.

Structure 3 in Table 4.1 is obtained in a different manner. Here, the key concept is

a shallow cutting. A 0-level shallow cutting for H is a covering of fl H with simplices

with disjoint interiors; the size of is the number of simplices. Furthermore, is a

0-level shallow (1/r)-cutting if any simplex of intersects at most n/r of the bounding

hyperplanes of H. In [Mat92], it is shown that a 0-level shallow (1/r)-cutting of size

O(r[d/2i) exists.

Following an earlier randomized algorithm of Clarkson {C1a87] for the polytope mem

bership problem, Matouek and Schwarzkopf defined the following tree-like structure: a

0-level shallow (1/r)-cutting for H is stored at the root of the tree, and for each simplex L

in the cutting, a subtree is generated recursively for the set of halfspaces that do not com

pletely contain zS. If one sets r = n7, such a structure can be built in Q(nl.d/2i log°’ n)

time. It was shown by Matouek and Schwarzkopf [MS93] that a ray shooting query can

be answered in logarithmic time with this structure.

Finally, a combination of the linear-space approach used in Structure 1 and the large-

space approach used in Structure 3 yields a continuous tradeoff between preprocessing

and query time: with O(m logO(1) n) preprocessing, one can answer a ray shooting query

in O((n/m1/[d/21)logn) time, for any n m < Ld/2J This is named Structure 2 in

Table 4.1.

We observe here that the grouping scheme used in Lemma 4.1.1 can in fact be used

to obtain further preprocessing time/query time tradeoffs for Structure 1.

Lemma 4.1.3 There is a (static) data structure for ray shooting in a polytope defined

by a set H of n halfspaces in Ed (d> 3) with O(nlogm) preprocessing time, 0(n) space,

and O((n/m’/1-’/2i)1og°’ m) query time, where m is a parameter between 1 and n.

Chapter 4. Higher-Dimensional Convex Hulls 59

Proof: By partitioning H into rn/mi groups as in Lemma 4.1.1 and using Structure 1

to store each group, the preprocessing time becomes O((m log m)) O(n log m) and

query time becomes O((ml_h/1d/2ilog°’ m)) = 0(mh//2J 1og°’’ m). E]

Corollary 4.1.4 A sequence of q ray shooting queries in a polytope defined by a set H

of n halfspaces in Ed (d> 3) can be performed in O(nlogq + (nq)1_h/(L/2i+1) log°’ n +

qiogn) time (using O(n + (nq)l_h/(Ld/2H)1og° n) space).

Proof:

CASE I. q < nh/Ld/2i/logK n, where K is a sufficiently large constant. Use

Lemma 4.1.3’s modification of Structure 1 with m = (q1og’ q)Ld/2] (1 <m < n). Then

the running time is

o (nlogm + 1d/2j logO(1) m) = O(nlogq).

CASE II. nh/Ld/2j < q < n’’2. Use Structure 2 with m = (nq)’’/(1/2H4)(n m

nL°V2i). Then the running time is

o (mlog0 n + 1d,2j logn) = O((nq)’’2’1og°’ n).

CASE III. q> nld/2J 1og’ n. Use Structure 3. Then the running time is

0 (nLd/2J log°’ n + qlogn) = 0(qlogn).

Remark: In some applications, the number of queries q may not be known in advance.

In that case, the parameter m cannot be set directly. This problem can be avoided by

breaking the q queries into k clusters of q, . . . , q, queries, where q1,q2,... is a known

sequence and q + . .. + <q q1 + . . . + q,. For example, in Case I of the proof of

Chapter 4. Higher-Dimensional Convex Hulls 60

Corollary 4.1.4, if we choose the sequence q = 22t (i = 1, 2, . . .), then the total running

time is 0(Z nlogq) = 0(ZPoo1 n2) = 0(nlogq), as before. (Logarithms are in

base 2.) Similarly, in Case II, we see that the complexity remains unchanged by choosing

the sequence qj = nu/Ld/2j2z (i = 1,2,. . .). This method of guessing the value of q using

an increasing sequence is analogous to the method used in Section 2.2 for guessing the

output size.

We now discuss dynamic ray shooting in polytopes, where halfspaces may be inserted

or deleted. In two dimensions, a data structure by Overmars and van Leeuwen [OvL8l]

has 0 (n log n) preprocessing time, 0(n) space, 0 (log2 n) update time, and 0 (log n) query

time; the data structure uses a balanced binary search tree and concatenable queue

operations to maintain the dual convex hull. It is straightforward to extend Lemma 4.1.1

to get a method with 0 (n log rn) preprocessing time, 0(n) space, 0 ((n/rn) log2 rn) update

time, and 0((n/m) logrn) query time (1 <rn < n). We can then obtain a dynamic planar

version of Corollary 4.1.2:

Lemma 4.1.5 A sequence of q ray shooting queries in a polygon defined by a dynamic

set H of at most n halfplanes in E2, and q insertions/deletions on H can be performed

in 0(nlogq+qlog2ri) time and 0(n) space.

Proof: By the above method, the total time needed to perform q queries and updates is

0(nlogm + q(log2m)), where 1 <rn n. Choose rn = qlogq when q < n/logn and

choose m = n otherwise.

In higher dimensions, Matouek and Schwarzkopf [MS93] have provided dynamic ver

sions of their data structures, as shown in the bottom half of Table 4.1. Structure 1’ uses

the dynamic partition trees from Agarwal and Matouek [AM91] and is similar to the

static Structure 1, except that (1/r)-nets are replaced by more robust simplicial partitions

Chapter 4. Higher-Dimensional Convex Hulls 61

and the parameter r is set to a large enough constant rather than the number n7. This

causes the polylogarithmic factor in the query time to increase to an nE factor. Struc

ture 3’ is based on Structure 3 and again uses dynamization techniques from [AM91].

Higher-level shallow cuttings are used, and the parameter r is also set to a constant; as a

result, space and preprocessing time is now O(m) instead of O(m1og°’ n). Finally,

Structure 2’ combines the approaches in the other two dynamic structures to yield a

continuous tradeoff.

We can apply our grouping scheme to get a preprocessing time/query time tradeoff for

Structure 1’. This modification is easily shown to have 0(nlogm) preprocessing time,

0(n) space, 0((n/m) log2 m) amortized update time, and 0(n/mh/14/2J_6) query time

(1 <m < n). As a consequence, we get the following:

Lemma 4.1.6 A sequence of q ray shooting queries in a polytope defined by a dynamic

set H of at most n halfspaces in Ed (d> 2) can be performed in

(i) 0(nlogq + (nq)’_h/(Ld/2H)+qnl_2/(Ld/2H1)) time, if the number of inser

tions/deletions is 0(q);

(ii) 0(n log2 n+ (nq) 1/([d/2]+1)+6 + q log n) time, if the number of insertions/deletions

is 0(n).

Proof: For (i), we consider three cases:

CASE I. q nh/L/2j_E. Use the above modification of Structure 1’ withm””2= q

(1 <m <n). Then the running time is

0 (nlogm+ qlog2m + 1/L2J_E) 0(nlogq).

CASE II. nh/Ld/2J < q < n. Use Structure 2’ with m = (nq)l_h/(Ld/2H) (n m

n [d/2J). Then the running time is

0 (mi+6 +
qm

+ 1d/2j logn) = 0((nq)’112’).

Chapter 4. Higher-Dimensional Convex Hulls 62

CASE III. q n. Use Structure 2’ with m =n22/(Ld/2i+l) (n < m < n[/21). Then

the running time is

o (m1 + + 1/[d/2J lOn) =O(qnh_2/2i+1)+2E).

For (ii), we perform a similar analysis. We use Structure 1’ when q <

Structure 2’ with m = (nq)’’/(L’/2i)when nh/1d/2j < q < Ld/2i and Structure 3’ when

q > nLd/2j+6. E

4.2 Linear Programming Queries

In this section, we apply similar techniques to those of the previous section to answer

linear programming queries. Given a collection H of n halfspaces in Ed, each containing

the origin o, a linear programming query is to determine the vertex v of the polytope

fl H that maximizes • v for a query vector e Er’.

We begin by extending the grouping technique of Lemmas 4.1.1 and 4.1.3 to handle

linear programming with a small number of queries. This is not trivial because linear

programming, unlike ray shooting, is not a decomposable problem.

Lemma 4.2.1 There is a dynamic data structure for linear programming queries on

a set H of n halfplanes in E2 with O(nlogm) preprocessing time, 0(n) space, and

0((n/m) log2 m) update and query time, where m is a parameter between 1 and

Proof: We consider the static case first. Partition H into rn/mi groups H1, . . . , HEn/mi,

each of size at most m, compute the convex polygon H fl H for each i, and store

each of them in an ordered array. The total preprocessing time is then 0 ((m log m)) =

0(nlog m), while space is linear. Reichling [Rei88a] showed that in 0(k log2 m) time, one

can detect whether the intersection of k convex m-gons is empty, and if not, report the

Chapter 4. Higher-Dimensional Convex Hulls 63

point in the intersection that is extreme in a given direction ; his method is based on

Megiddo’s prune-and-search technique. Using Reichling’s algorithm on the k = rn/mi

polygons
.
H En/mi, we can answer a linear programming query in O((n/m) log2 m)

time.

The dynamic part can be proved using Overmars and van Leeuwen’s data struc

ture {OvL8l] to store each of the Hi’s, which requires O((n/m) log2 m) update time;

Reichling’s time bound still applies. 0

As a result of this lemma, q linear programming queries in the plane can be answered

in 0 (n log q) time for q < n/log n.

Corollary 4.2.2 A sequence of q linear programming queries and q insertions/deletions

on a dynamic set H of at most n halfplanes in E2 can be performed in O(nlogq+qlog2n)

time and 0(n) space.

In higher dimensions, Matouek [Mat93] obtained data structures for linear program

ming queries achieving the complexities shown in Table 4.1. His approach is as follows:

He first showed how a multidimensional parametric search technique can reduce the prob

lem of answering linear programming queries to that of answering halfspace-emptiness

queries with witness. (In the dual setting, a halfspace-emptiness query on H is to de

termine whether a given query point p belongs to fl H, and if not, provide a witness

halfspace h e H that does not contain p.) Then he obtained data structures for the

halfspace-emptiness problem using techniques completely analogous to those used in the

ray shooting problem. (In fact, the halfspace-emptiness is a special case of ray shooting.)

We now show how to obtain a preprocessing time/query time tradeoff for Structure 1

in the case of linear programming queries. The bounds we get are similar to those

Chapter 4. Higher-Dimensional Convex Hulls 64

obtained in Lemma 4.1.3, except for an extra polylogarithmic factor in n in the query

time; this causes an additional O(nloglogn) term in the overall time bound.

Lemma 4.2.3 There is a (static) data structure for linear programming queries on a set

H of n halfspaces in Ed (d > 2) with 0(nlogm) preprocessing time, 0(n) space, and

0((n/m’IL°V2J)log°’ m logd n) query time, where m is a parameter between 1 and n.

Proof: In this proof, we assume that the reader is familiar with Matouek’s tech

nique [Mat93].

We consider the halfspace-emptiness queries first. Partition H into In/mi groups

H1,. . . , Hnm1, each of size at most m. For each of the Hi’s, we build a data

structure [Mat93] with 0(mlogm) preprocessing time and 0(m) space, so that each

halfspace-emptiness query on H, can be answered in 0(logm) parallel steps using

0(m1_h/1d/2Jlog°’ m) processors. The total preprocessing time is then 0((m logm)) =

0(n log m) and the space requirement remains linear. Since the halfspace-emptiness

problem is decomposable, a query on H can be performed in r(n, m) = 0(log m) parallel

steps using r(n, m) = 0((m1/L’/2Jlog°’ m)) = 0(m1/’d/2j log° m) processors; or

sequentially, in t(n, m) = 0((ml_h/Ld/2ilog°’ m)) = 0(m1/d/2j log°’ m) time.

Matouek has shown that any data structure for halfspace-emptiness queries (sat

isfying some reasonable conditions) can be used to answer linear programming queries

by a multidimensional version of Megiddo’s parametric search method [Meg83a]. The

resulting query time is given by 0(t(n,m)T(n,m)dlogdK(n,m)), which, in our case, is

0(mh//2j log°’m logdn). El

Corollary 4.2.4 A sequence of q linear programming queries on a set H of n halfspaces

in Ed (d > 2) can be performed in 0(nloglogn + nlogq + (nq)1_/(Ld/2H1)logO n +

q1ogd n) time.

Chapter 4. Higher-Dimensional Convex Hulls 65

Proof: The proof is as in Corollary 4.1.4, except that for Case J (q < i/ [d/2] / logK n)

we use Lemma 4.2.3 with m = (qlog’ n)Ld/2i (1 <m < n). The running time for Case I

now becomes

o (nlogm + 1d/2J log°1m logd n) = O(nloglogn + nlogq).

Remark: Again, the complexity remains the same even if the value of q is not known in

advance. (Use the sequence qj = (logn)2 (i = 1, 2,...) for Case I.)

Since Matouek’s data structures can be made dynamic (see Table 4.1), the following

analogue of Lemma 4.1.6 is straightforward:

Lemma 4.2.5 A sequence of q linear programming queries on a dynamic set H of at

most n halfspaces in E° (d> 2) can be performed in

(i) O(nloglogn + nlogq + (nq)l_h/(Ld/2H4)+ qn 2/(L0V2H4)) time, if the number

of insertions/deletions is 0(q);

(ii) O(nlog2n + (nq)l_h/(Ld/2H) + qlog4n) time, if the number of inser

tions/deletions is 0(n).

Finally, we observe that for the semidynamic case, where there are no deletions,

Lemma 4.2.5(u) may be improved somewhat.

Lemma 4.2.6 A sequence of q linear programming queries and n insertions on

an initially empty set of halfspaces in E’ can be performed in O(nlog2n +

(nq)11/([0/2H4)log°’ n + qlog°’ n) time.

Proof: As in the proof of Lemma 4.2.3, we consider the halfspace-emptiness problem

first. Since, this problem is decomposable, the techniques by Bentley and Saxe [BS8O]

Chapter 4. Higher-Dimensional Convex Hulls 66

may be applied to convert a static structure to a semidynamic one (which increases build

ing time and query time by a logarithmic factor). We then apply Matouek’s parametric

search to use this structure for answering linear programming queries. The resulting time

bound is only a polylogarithmic factor increase on the static bound in Corollary 4.2.4. 0

In Section 4.7, we show how to eliminate the log n factors in Lemma 4.2.3, and thus re

move the nloglogn term from both Corollary 4.2.4 and Lemma 4.2.5(i), if randomization

is allowed.

4.3 A Convex Hull Algorithm and an Extrema Algorithm

in Any Fixed Dimension

In this section, we apply the results from Sections 4.1 and 4.2 to obtain output-sensitive

algorithms for the problem of constructing convex hulls and the related problem of enu

merating extreme points, in any fixed dimension.

We first show that the f-face convex hull of an n-point set in Ed can be constructed by

performing 0(f) ray shooting queries in a d-dimensional polytope defined by n halfspaces.

The algorithm that we use is just the well-known gift-wrapping method [CK7O, PS85,

5wa85] dualized, since a wrapping step (recall Section 2.2) corresponds to shooting a ray

in the dual polytope. If the ray shooting queries are performed directly by scanning the

halfspaces, then we get an 0(nf)-time bound. We observe that this can be improved

using the data structures from Section 4.1.

Theorem 4.3.1 The convex hull of a set P of n points in Ed can be constructed in

0(nlogf + (nf)1_u/(Ld/2H4)1og°’ n) time (and 0(n + (nf)1_h/(Ld/2H1)log°’ n) space),

where f is the number of hull faces.

Chapter 4. Higher-Dimensional Convex Hulls 67

Proof: In the dual setting, our problem becomes computing an intersection of a set H

of n halfspaces in Ed (assumed to be in general position), each containing the origin o.

It suffices to compute the vertices of the intersection fl H, from which one can easily

generate the complete facial lattice structure of fl H in 0(f log f) time by a dictionary.

First, an initial vertex v0 can be found by performing d ray shooting queries in fl H,
since shooting a ray from o gives a point in a (d — 1)-face, and shooting a ray from a

point in a j-face inside its affine hull (i.e., inside the j-fiat containing the face) gives a

point in a (j — 1)-face (1 <j < d). Furthermore, given a vertex v, the vertices adjacent

to v in the 1-skeleton (the graph formed by the vertices and edges of fl H) can be found

by performing d ray shooting queries: if h1, . . . , hd are the hyperplanes defining v, then

shoot a ray from v along each of the d lines formed by intersecting d — 1 hyperplanes

from {h1,. ..,hd}.

Since the 1-skeleton is connected, we can use a depth-first search or a breadth-first

search to visit all vertices of fl H; we can ensure that each vertex is visited only once by

using a dictionary to detect replication (as in the 3-d algorithm in Section 2.2.2). This

shows that the vertices of fl H can be computed by performing 0(f) ray shooting queries

in fl H. The theorem then follows by applying Corollaries 4.1.2 and 4.1.4 (recall that

f=O(nld/2J)). D

Next, we consider the problem of finding the h extreme points of an n-point set P in

Ed. Although in two and three dimensions this problem has the same complexity as the

convex hull problem, the extreme point problem in higher dimensions is generally a less

demanding problem, since we are required to output only the vertices of the convex hull,

not the entire facial lattice structure.

Determining whether a given point is extreme is reducible to solving a linear program

on a set of n dual halfspaces. By testing all n points in F, we can find all the extreme

Chapter 4. Higher-Dimensional Convex Hulls 68

points in n linear programming queries. Since Megiddo [Meg84j showed that a linear

program can be solved in linear time for any constant d, the extreme point problem

can be solved in quadratic time, as is well known. Using the data structures from

Section 4.2 (Corollary 4.2.4), the n linear programming queries can in fact be solved

in O(n2_2/(Ld/2i+1) 1og°’ n) time, which implies a subquadratic bound for enumerating

extreme points, as Matouek [Mat93] has observed. We now show that the bound can

be improved to an output-sensitive one (i.e., one that depends on both n and h).

As we have noted, n linear programming queries on n halfspaces are sufficient to solve

the extreme point problem. We observe that the number of queries or the number of

halfspaces can be reduced if h is small. Specifically, we give a simple algorithm that

finds the extreme points using h queries on n halfspaces together with n queries on

h halfspaces. Using Megiddo’s linear programming algorithm, this leads to an O(nh)

time extrema algorithm which was also discovered recently by Clarkson [C1a94] and

Ottmann et al. [0SS95]. We observe that the time bound can be further improved using

the results from Section 4.2.

Theorem 4.3.2 The h extreme points of a set P of n points in E° can be identified in

O(nlog’ h + (rih)l_h/(Ld/2Hl)) time or in O(nlog°’ h + (nh)’’/(L’1/2H’)1og°’ n)

time.

Proof: Without loss of generality, assume that the origin o is in the interior of conv(P).

Consider the following incremental algorithm, which is essentially the same as Clarkson’s

algorithm [C1a94] and the algorithm by Ottmann et al. [0SS95}:

Chapter 4. Higher-Dimensional Convex Hulls 69

Algorithm Extrema(P)
1. Q-O
2. for each p e P (in any order) do
3. ifp Q and p ‘ conv(Q U {o}) then
4. if p is an extreme point of P then
5. Q—QU{p}
6. else find the facet f of conv(P) that intersects ray
7. let v be a vertex of f that is not in Q
8. Q÷-QU{v}
9. return Q

Observe that v must exist in line 7, because otherwise all vertices of f would be in Q;
since p e conv(f U {o}), this would imply that p E conv(Q U {o}): a contradiction with

line 3. It is then clear that the algorithm correctly returns the set of extreme points of

P.

We now analyze the cost of the algorithm. Note that line 3 can be done by solving

a linear program on Q in the dual and lines 4 and 6 can be done by solving a linear

program on P in the dual. (Line 7 takes constant time since each facet has d vertices

by the general position assumption.) Observe that although line 3 is executed n times,

lines 4—8 are executed only h times since each execution adds a new point to Q. Thus,

the algorithm requires h linear programming queries on P, a static set of size n, and n

linear programming queries on Q, a semidynamic set of size at most h.
By Corollary 4.2.4, the h queries on P can be done in O(nloglogn + nlogh +

(nh)1_h/(Ld/2H4)log°’ n) time. By Lemma 4.2.5(u), the n queries and h insertions on Q
can be done in O((nh)l_h/(Ld/2H)+nlog’ h) time. The total running time is then

O(nloglogn + nlog’1h + (nh)l_h/(Ld/2H4)+E).

Notice that when h < n for a constant o < (1/[d/2J)2,the number of hull faces is

so we can compute the entire convex hull in optimal O(nlogh) time and

Chapter 4. Higher-Dimensional Convex Hulls 70

0(n) space by Theorem 4.3.1. This allows us to remove the 0(nloglogn) term in the

time bound. The first part of the theorem is thus proved, and the second part follows

similarly, using Lemma 4.2.6 instead of Lemma 4.2.5(u) for Q. D

Theorem 4.3.2 has an interesting corollary: the h-vertex convex hull of an n-point set

in d dimensions can be constructed in 0(n1og°’ h + hLd/2i) time. In terms of n and h,

this bound is within a polylogarithmic factor of optimal in the worst case for the convex

hull problem, since (n log h+h1d/2J) is a lower bound. This bound is not output-sensitive

though, since the output size f can range anywhere from (h) to e(hLd/2i).

Corollary 4.3.3 The convex hull of a set P of n points in Ed can be constructed in

0(n1og°’ h + hL”2i) time, where h is the number of hull vertices.

Proof: Compute the extreme points by Theorem 4.3.2 and then construct the convex

hull of these h points by Chazelle’s algorithm [Cha93b] in 0(hL”12i) time (note that when

h = l(n1I1’1/2J), we have hL°121 = 2((nh)l_h/(Ld/2H4))). D

4.4 Application: Convex Layers and Depths

We now discuss an application of the output-sensitive convex hull and extrema algorithms

from the previous section. Let P C Ed be a n-point set. The convex layers (or “onion”

layers) of P are defined iteratively as follows: layer 1 is convex hull of F, and if layer i is

non-empty, then layer i + 1 is defined as the convex hull of the points of P that are not

vertices of the previous layers i,. . . , i (see Figure 4.10). If P denotes the vertices of the i

th layer, then P+’ can be expressed recursively as the extreme points of P— (P1U. . .UPZ).

Every point p e P is a vertex of exactly one layer; that is, there is an unique i for which

p E P. This index i is called the depth of p.

Chapter 4. Higher-Dimensional Convex Hulls 71

Two problems come to mind: (i) computing the facial structure of each of the convex

layers, and (ii) computing just the vertices of the convex layers. The convex layers problem

here refers to the first problem. We call the second problem the depth problem, because

it is equivalent to finding the depths of all the points. As Preparata and Shamos [PS85]

described, one motivation of these problems is from robust estimation in the area of

statistics.

For d = 2, Chazelle [Cha85] gave an optimal O(nlogn)-time algorithm for the convex

layers problem (and thus, the depth problem as well). For d = 3, a near-optimal O(n’j

time method was provided by Agarwal and Matouek [AM93]. For d> 4, the problems

have been less well studied. As the total number of faces over all convex layers can range

from e (n) to 0 (n Ld/2i), the output size of the convex layers problem can be huge in

higher dimensions. In applications where we only need to know which point lies in which

layer, the depth problem is therefore of more interest.

Since an O(n3)-time solution to the depth problem in any constant dimension d can

be easily derived using linear programming, Edelsbrunner [Ede87, Problem 10.3(c)] asked

Figure 4.10: The convex layers of a planar point set.

Chapter 4. Higher-Dimensional Convex Hulls 72

whether there is an o(n3)method for d> 4. By repeatedly computing extreme points and

removing points, one can solve the depth problem in 0(n2) linear programming queries

and 0(n) deletions on n halfspaces, which by Lemma 4.2.5(u), take 0(n3_3/(Ld/2i+1))

time. However, as Ottmann et al. [OSS95j have pointed out recently, a simpler and

better solution is to apply an 0(nh)-time extrema algorithm (like the one in Section 4.3)

to compute the vertices of each layer. Since the sum of the number of extreme points

over all layers is just n, the vertices of all layers are identified in only 0(n2) time.

Here, we show how a hybrid of the convex hull and extrema algorithms from Sec

tion 4.3 leads to an improved subquadratic solution to the depth problem for any d; for

example, the time bound obtained is 0(n8/5)for d = 4 or d = 5. We then show how

this result implies an output-sensitive algorithm for the convex layers problem.

Theorem 4.4.1 The depth of all points in a set P of n points in Ed can be computed

in 0(n2jtime, where = 2/([d/2J2+ 1).

Proof: We iteratively compute the vertices of the i-th layer (i = 1, 2,...) as follows. We

use the convex hull algorithm in Theorem 4.3.1 to construct the i-th layer, but as soon

as more than n vertices are discovered in the layer, we stop the computation and switch

to the extrema algorithm in Theorem 4.3.2 to compute the vertices of the layer. We then

remove the vertices of the i-tb layer from P and proceed to the (i+ 1)-st layer. At the end,

we will have the depths of every point in P. For the calls to the convex hull algorithm, we

will use a dynamic ray shooting data structure instead of a static one so that structures

don’t have to be rebuilt as points are removed from P after each iteration; for the calls

to the extrema algorithm, however, we will leave the data structures unchanged.

Let h, denote the number of vertices of the i-tb layer (h = n). We first analyze the

cost of the calls to the convex hull algorithm in Theorem 4.3.1, which involve a number of

ray shooting queries and n deletions on a dynamic set of at most n halfspaces; the number

Chapter 4. Higher-Dimensional Convex Hulls 73

of queries is proportional to the number of facets discovered. Since we stop the compu

tation in a layer when n vertices are found, we make at most O(min{h’2,/3Ld/2i })
queries for the i-th layer. The total number of queries is then asymptotically bounded

by

+
[d/2J nd/2j) (h) + (Ld/2i-1) (h<nI3 h>ni3 h<nI h>n3

< -i3(Ld/2i1) h, < nH3(Ld/2j_l)

By Lemma 2.6(u), we see that the cost of these queries is o((n2(Ld/2i_1))1—h/(Id/2i+1))

= O(n2°) by our choice of 3 (where c is an appropriate constant).

Next, we analyze the cost of the calls to the extrema algorithm in Theorem 4.3.2.

Note that the extrema algorithm is called only for the layers i with h > n, and the

number of hi’s with h > is at most n’ (since h = n). Ignoring logarithmic

factors, the cost is then

(n + (nh)1_h/(Ld/2i+1)) < (1) + nl_l/([d/2]+l) (h_h//2i+1))

/ \ 1—1/(d/2j+1) / \ 1/([d/2j+1)

< n (n1) + 1—1/(ld/2]+l) (> h) (1
\h>n1 J \h2>n13

< ,2—/3 + 1_1/(Ld/2]+1) (nl_l/(Ld/2i+l)) (fll_/3)1/(Ld/2J+1)
= O(n2),

by Holder’s inequality. Therefore, the entire method runs in O(n2)time. 0

Corollary 4.4.2 The convex layers of a set P of n points in Ed can be constructed in

O(n23 + flogn) time, where /3 = 2/([d/2J2+ 1) and f is now the total number of

faces in all convex layers.

Proof: Let P be the vertices of layer i (i.e., the points of depth i) and let h and f be

the number of vertices and faces of the layer (Z h = n, > f2 = f). We first compute

Chapter 4. Higher-Dimensional Convex Hulls 74

P for all i in O(n213) time by Theorem 4.4.1 and then construct the convex hull of

each P using Seidel’s algorithm [Sei86j with Matouek’s improvement [Mat93]. The total

time needed is O(n2+(h21 /2]+1)+ + f log hi)) = O(n2’+f logn). 0

Remarks:

1. A worst-case optimal convex layers algorithm for d 4 is not difficult to get:

just use an O(nh)-time extrema algorithm to compute the vertices of each layer and use

Chazelle’s convex hull algorithm [Cha93b] to construct the layers; then the running time

is 0(n2 + Ld/2i)

2. For a more direct output-sensitive convex layers algorithm, we can simply do

the following: iteratively use the convex hull algorithm in Theorem 4.3.1 to construct

the i-th layer (i = 1, 2,.
. .) and delete points from P that are vertices of a layer after

each iteration. This method is the same as the one by Agarwal and Matouek [AM93]

(proceedings version) for the three-dimensional case. It requires 0(f) ray shooting queries

and ii deletions, and by Lemma 4.1.6(u), takes 0((nf)1_h/(Ld/2H1)) time, which is

superior to the bound in Corollary 4.4.2 only when the output size f is near linear (recall

(n) = f = O(nLd/2J)).

4.5 Further Applications: Levels in Arrangements and

Linear Programming with Violations

This section describes some more applications of the results in Sections 4.1 and 4.2.

Problems considered here include the output-sensitive construction of an interesting ge

ometric structure known as the k-level [Ede87], and also a variant of the familiar linear

programming problem.

We first consider the construction of a k-level in a hyperplane arrangement. Given a

Chapter 4. Higher-Dimensional Convex Hulls 75

set H of n hyperplanes in Ed, the k-level in the arrangement A(H) is defined as the set of

all points in Ed that have at most k hyperplanes of H above it (0 < k <ri). The 0-level

(the upper envelope) is just the dual of a convex hull. Figure 4.11 shows an example of

a k-level with k = 1. Let f denote the size (combinatorial complexity) of the k-level.

In the plane, an output-sensitive algorithm for constructing the k-level was given

by Edelsbrunner and Welzl [EW86]. We improve its running time from 0 (n log n +

flog2n) to O(nlog f + flog2 n). (Alternatively, Cole, Sharir, and Yap [CSY87] gave an

algorithm that runs in 0(n log n+(n+f) log2 k) time.) In higher dimensions, Agarwal and

Matouek [AM93] proposed a depth-first search method based on ray shooting queries,

which runs in O(nlogn+f1)time ford = 3 (actually they state a weaker O((n+f)nE)

bound). We improve this to 0(nlog f +f16) and analyze the running time in higher

dimensions. Tight worst-case bounds on the size f of a k-level is currently not known

even for d = 2; thus, achieving output-sensitivity is particularly important here.

Theorem 4.5.1 A k-level in an arrangement A(H) of n hyperplanes in E’ can be con

structed in

Figure 4.11: The boundary of the 1-level in an arrangement of lines. (Shown in bold.)

Chapter 4. Higher-Dimensional Convex Hulls 76

(i) O(nlog f + flog2n) time, if d = 2;

(ii) 0(n1ogf+f’) time, if d= 3;

(iii) 0(nlogf + (nf)l_h/(Ld/2J)+fn2/(L(/2J+l)+6) time, if d 4;

where f is the output size.

Proof: The depth-first search algorithm by Agarwal and Matouek [AM93] (proceedings

version) constructs the k-level using 0(f) polytope ray shooting queries and 0(f) inser

tions/deletions on two dynamic sets of at most n halfspaces. (In two dimensions, their

algorithm is the same as Edelsbrunner and Welzl’s [EW86].) Hence, the theorem follows

from Lemmas 4.1.5 and 4.1.6(i). D

Next, we consider the following problem: given a set H of n hyperplanes in Ed, a

direction and a number 0 < k <n, find a point in the k-level of A(H) that is minimal

along ; in other words, find a minimal point that lies on or above all but at most k of

the hyperplanes in H. This is the feasible case of the linear programming problem with at

most k violated constraints. If k = 0, it is just an ordinary linear programming problem

and can be solved in 0(n) time by Megiddo’s algorithm [Meg84]. We are interested in

the case when k > 0 is a small integer; that is, we allow only a few violations of the

constraints.

For this k-violation problem, Matouek [Mat94] has devised a method that not only

finds the minimum but also enumerates all 0(kd) local minima in the (< k)-levels. His

method is a depth-first search procedure that uses linear programming queries. It runs in

0(n log n + k2 log2 n) time if d = 2 and 0(nlog ii + k) time if d = 3; the running time

is 0(nlogn) if d 4 and k is sufficiently small. We show how the 0(nlogn) terms in

these bounds can be reduced to 0(nlogk) in two dimensions or to 0(nloglogn+nlogk)

Chapter 4. Higher-Dimensional Convex Hulls 77

in higher dimensions. As we will see in Section 4.7, the extra O(nloglogn) term can

even be removed using randomization.

Theorem 4.5.2 The linear programming problem on n constraints in Ed with at most

k violations for the feasible case can be solved in

(i) O(n log k + k2 log2 n) time, if d = 2;

(ii) O(nloglogn + nlogk +k3) time, if d = 3;

(iii) O(nloglogn+nlogk) time, ifd 4 andkd <nl/Ld/2J_E.

Proof: The depth-first search algorithm by Matouek [Mat94] solves this problem using

O(kd) linear programming/membership queries and O(kd) insertions/deletions on two

dynamic sets of at most n halfspaces. (A membership query is just a special case of

a ray shooting query.) Hence, part (i) of the theorem follows from Lemma 4.1.5 and

Corollary 4.2.2, and parts (ii) and (iii) follow from Lemmas 4.1.6(i) and 4.2.5(i). D

Remark: As Roos and Widmayer [RW94] observed, the planar feasible linear program

ming problem with at most k violated constraints can be solved in O(n log2 n) time, if

one uses an O(nlogn) slope selection algorithm [CS+89] and performs binary search.

Roos and Widmayer also studied a related but different planar problem, which in our

terminology corresponds to finding the y-maximum point on the boundary of the k-level.

They give a slightly improved O(nlogn + klog2 k)-time method for this problem; how

ever, this method does not seem to apply to our k-violation linear programming problem.

The techniques here may also be applicable to the infeasible case of linear program

ming with k violated constraints (which has applications to separation and transversal

Chapter 4. Higher-Dimensional Convex Hulls 78

problems [ERvK93]), or to the smallest k-enclosing circle problem; see Matouek’s pa

per [Mat94].

As we now show, Matouek’s approach on linear programming with violations can in

fact be used to improve an output-sensitive algorithm by Mulmuley [Mul90] for construct

ing (< k)-levels——i.e., the i-level for all i = 0, 1,. . . , k—of a non-redundant arrangement

A(H) of n hyperplanes in Ed. Here, A(H) is non-redundant if for every h E H, the

upper envelope of H — {h} coincides with the upper envelope of H.

Mulmuley’s algorithm can be regarded as a generalization of Seidel’s output-sensitive

convex hull algorithm [Sei86]. While Seidel’s algorithm constructs convex hulls in O(n2+

f log n) time, Mulmuley’s algorithm constructs (k)-levels in O(n2kd_l + flog n) time.

In both cases, f denotes output size. Matouek [Mat93] had already shown how to reduce

the first term of the running time of Seidel’s algorithm to O(n2_2/(Ld/2H1)) (actually,

O(n2_2/(1d/21+l) log°1n)). Here, we show how to reduce the first term of the running

time of Mulmuley’s algorithm to O(n2_21(Ld/21)+Ekd_l). Using the lifting map from

Section 3.3, this result can be used in the construction of Voronoi diagrams of order

0, 1,.. . . , k in one dimension lower; see [ES86, Mu190].

Theorem 4.5.3 We can compute i-levels in a non-redundant arrangement A(H) of n

hyperplanes in Ed for all i = 0,1,. . . , k inO(n22/(Ld/21+l)k_l + flogn) time, where

f is the output size.

Proof: Let L,(H) denote the boundary of the i-level in A(H) and let f be its size

= f). For each h e H, let Hh = {hn h’ : h’ E H — {h}}, which is a set of

(d — 1)-dimensional hyperplanes.

Mulmuley [Mu190] gave an algorithm which constructs the facial structure of L (H)

in O((f + f_) log n) time, given the following information:

1. the local minima in L (H) — L_1(H) (along some predefined direction),

Chapter 4. Higher-Dimensional Convex Hulls 79

2. the local minima in L(Hh) — L_l(Hh) for each h E H, and

3. the facial structure ofL1(H).

Matouek [Mat94] has shown that the local minima of all i-levels in A(H) (i =

0, 1,. . . , k) can be enumerated by performing O(kd) linear programming/membership

queries and O(kd) insertions/deletions on two dynamic sets of at most n halfspaces.

Similarly, the local minima of all i-levels in A(Hh) (i = 0 1,. . . , k) can be computed using

O(k’1) linear programming/membership queries and O(kd_l) insertions/deletions, for

each h E H. Observe that we do not need separate structures to store each Hh as the data

structures from Section 4.2 can perform linear programming queries restricted to any j
fiats [Mat93]. The total number of queries and updates is then O(kd+rjkd_l) = O(nkd_l).

By Lemmas 4.1.6(i) and 4.2.5(i), this takesO(n2_2/(Ld/2H1)k(_l) time.

Thus, items 1 and 2, for all i = 0, 1,.. . , k, can be computed in O(n2_2/(Ld/2i+1)kd_1)

time. Now, Mulmuley’s algorithm can be used to construct the facial structure of

L0(H),L1(H),. . . , Lk(H) incrementally, in additional O(flogn) time. D

Remark: In the worst case, the total size f of the (< k)-levels can be as large as

e(nLd/2ikld/21) and this bound is tight [CS89]. Currently, algorithms for constructing

the (k)-levels that are optimal for worst-case output are known in dimension 2 by

Everett et al. [ERvK93] and in dimensions > 4 by Mulmuley [Mu191]. The latter result

of Mulmuley is randomized.

Before we close this section, we remark that further applications of our ideas are

possible. For example, Theorem 4.3.1 can be extended to compute the intersection of

a convex hull with a j-fiat in an output-sensitive manner; in the dual, this corresponds

to computing projections (shadows) of an intersection of halfspaces. More generally, we

can obtain output-sensitive bounds for computing skeletons in a halfspace intersection, or

Chapter 4. Higher-Dimensional Convex Hulls 80

with the known methods for ray shooting in a collection of hyperplanes {AM93], skeletons

in a hyperplane arrangement; see [Ede87, Chapter 9]. With suitable data structures, this

applies to arrangements of different objects as well, such as line segments in the plane.

4.6 The Prune-and-Divide Convex Hull Algorithm in Even Dimensions

In this section, we return to the convex hull problem. We show that Theorem 4.3.1 can

be further improved in even dimensions. The method is an extension of the divide-and-

conquer algorithm Dividellull4d() given in Chapter 3. To describe the extension, let us

first recall the terminology and notation from Chapter 3 and particularly, Sections 3.2.3

and 3.2.4. It suffices to provide higher-dimensional analogues of Lemmas 3.2.4 and 3.2.5

from Section 3.2.4, since other parts of the algorithm work in any fixed dimension. As

in Section 3.2.4, we may assume that LI is a halfspace.

Recall that in the algorithm in Chapter 3, the facets F(P) of the upper hull of a

point set P C Ed are constructed by recursively computing the primal restrictionF8(P)

to various simple regions S of P. To divide a simple region into smaller simple regions,

(d — 1)-dimensional upper hulls of the projection ir(P) Ed_I for certain halfspaces z

are used.

The main difficulty that arises when d > 4 is that we do not have control on the

size of these (d — 1)-dimensional upper hulls, i.e., the number of facets in F(ir,(P)).

For d < 4, the size is O(V(P)), which we can bound by O(F8(P)) if P.4. C S by

Lemma 3.2.1(d). For d > 4, we can only bound the size by O(F(P)) and this can be

much larger than the actual output size jF5(P), since there may exist facets in F(P)

with vertical projection outside S even if P4. C S. To overcome this difficulty, we do not

construct all the hull facets in F(ir(P)) but instead apply the results in Sections 4.1

and 4.2 to perform queries on F(ir(P)).

Chapter 4. Higher-Dimensional Convex Hulls 81

Lemma 4.6.1 Suppose that d> 4. Then the restricted point set can be computed

in O((jPI + (P v(p)Dl_l/rd/21) log°’ P) time.

Proof: As in the proof of Lemma 3.2.4, we can test whether p4. E mt S for a given point

p e P by finding a facet ir1(r) of F(r(P)) with ir(r).I. e r(r). and then determining

which side of r4. the point p4. lies on. This facet can be found by performing a linear

programming query on a polytope P defined by P dual halfspaces in Ed_i corresponding

to the P points in the projected point set ir(P) C Ed_i. As we need P queries for

each point p e P, the cost is O(P2—21Fd/21 log0 P) by Corollary 4.1.4.

To further reduce the running time, we first identify the vertices ir(v) of V(ir(P))

(v e V(P)); using the extrema algorithm from Section 4.3, this requires at most O((P +

(P v(p))1_i/rd/21) 1og°’ V(P)) time by Theorem 4.3.2 (remember that the point set

ir(P) is just of dimension d — 1). Because F(ir(P)) = F(V(r,(P))), we only need

the halfspaces corresponding to these < V(P) vertices to define our polytope P. The

cost of the P queries is then no more than O((P + (P {V(P)I)i_uIFd/21) log0 P)

according to Corollary 4.1.4. D

Lemma 4.6.2 Suppose that d > 4. Given 88 for a simple region S of F, one can

construct 8S’ for a new simple regionS’ ofF with jutS’ = intS fl intS in O((P +

F5(P) + (P jF5(P) Fd/21) log0 P) time.

Proof: As in the proof of Lemma 3.2.5, it suffices to compute all the boundary com

ponents. Then we can select which boundary components contribute to the bound

ary OS’—that is, which boundary components correspond to a subregion inside S—

by the techniques of the previous lemma. This requires at most O(IFs(P)D lin

ear programming queries on P halfspaces in Ed_i, and thus can be done within

O((P + F5(P) + (PjF5(P)I)1_uIFd/21) log0 P) time.

Chapter 4. Higher-Dimensional Convex Hulls 82

The boundary computation is again based on depth-first search, but now we cannot

generate all the ridges of the boundary B in advance as we cannot afford to compute

all the facets in F(ir(P)); rather, a ridge is generated when it is needed.

As before, we store the ridges in OS (but not B) and their (d — 3)-subfaces in a

dictionary and sort these ridges around each (d — 3)-face u. Suppose B is a boundary

component and we are given a ridge r in B (with its orientation). We first describe how

we can generate the d — 1 ridges that are adjacent to r in B.

These adjacent ridges can be classified into two types: (i) ones that are in OS, and

(ii) ones that are in the boundary B. We deal with the adjacent ridges that are in OS

first. A ridge adjacent to r must share a common (d — 3)-subface, so let us consider one

(d — 3)-subface o of r. Look up the dictionary to see if a is a (d — 3)-face of OS. If so,

by performing a binary search on the list of ridges that a is incident on, we can identify

a candidate ridge in OS that r may be adjacent to. Repeating this procedure for every

(d — 3)-subface a of r, we get all the ridges in OS that r may be adjacent to.

Next we deal with the adjacent ridges that are in the boundary B. Again we consider

a (d — 3)-subface a of r. Determine whether ir(a) is a ridge of R(ir(P)); this test can

be reduced to a linear programming query on a (d — 1)-dimensional polytope defined

by P dual halfspaces. If the test is true, the linear programming query can be used

to get a facet ir(r’) of F(7r(P)) (r’ e R(P)) that r(u) is incident on. Then a ray

shooting query in dual space can be used to find (if it exists) the other facet ir (r”) of

F(ir(P)) (r” e R(P)) that ir(a) is also incident on. These ridges r’ and TI’ in B give

two possible candidates for the adjacent ridges of r. We repeat this procedure for every

(d — 3)-subface a of r.

We now have a list of possible candidates for ridges that may be adjacent to r in

B. By performing some local tests, we can deduce which of these ridges are actually

adjacent. As in the proof of Lemma 3.2.5, we can then trace the complete boundary

Chapter 4. Higher-Dimensional Convex Hulls 83

component B by visiting the adjacent ridges recursively in a depth-first manner. To

compute all boundary components, we ensure that all ridges in OS are visited.

To evaluate total time needed by this computation, observe that the number of ridges

visited by the depth-first search is O(IFs(P)) by Lemma 3.2.1(e) since we only generate

ridges r with r. C S. The work is then dominated by O(jF5(P)) linear programming

and ray shooting queries in Ed_i, which, by Corollaries 4.1.4 and 4.2.4, require no more

than O((P + F5(P) + (P Fs(P))l_u1’’2l)1og0 PD time. 0

To get a convex hull algorithm in Ed, we just have to replace Lemmas 3.2.4 and 3.2.5

by Lemmas 4.6.1 and Lemma 4.6.2 in the algorithm outline for Dividellull4d() from

Section 3.2.5. We follow the same notation from Section 3.2.6 to analyze the running

time.

By Lemmas 4.6.1 and 4.6.2, the non-recursive part of the algorithm now takes

O((PI + FsjP) + (V(P) + Fs(P)D)l_h/rdI21)logO(1) P) = O((P + f,, +

(PV f)u/rd/21) log° n) time at node 11, if we recall that V(P11) = V(PII is)

djFs(P)j by Lemma 3.2.1(d).

To sum this cost, we recall, from Section 3.2.6, that , n, < n and >, f,, = f
over every level of the recursion tree. Since P = P lint s + P n, + df, by

Lemma3.2.1(g), we also have , PV <n + df. Using Holder’s inequality, we obtain the

following cost-per-level bound, ignoring polylogarithmic factors:

(jpj + f + (IPVI f)1_i/rd/21) = o (+ f + i-2/Fd/21 (jp 1/Ed/2 fi_1/rd/21))

= O(ri + f + 1—2/Ed/21(+ f)d/21f11’1V21)

= O(n + (nf)’21 +fi-2/fd/21)

Summing over all O(1og11n) levels, we get O((n + (nf)i_1114/21+fnl_2/Ed121)log° n)

as the total running time.

Chapter 4. Higher-Dimensional Convex Hulls 84

Theorem 4.6.3 Let d > 4 be a constant. The convex hull of an n-point set in Ed can

be computed in O((n + (nf)1_h/Ed/21+fnl_211d/21)log°’ n) time.

For odd dimensions d, this method is of no use since it is more complicated and not

better than the convex hull algorithm in Section 4.3; however, for even dimensions d,

we do obtain improvement over previous results for a certain range of f. For example,

when f = e(n), our previous method (and also Matouek’s method [Mat93]) achieves

O(n2_2/(Ld/2H4)log°1n) time; the method here achieves O(n22/rd/211og°’ n) time. In

general, if the output size is linear or sublinear, Theorem 4.6.3 provides the best upper

bound currently known for the convex hull problem, ignoring polylogarithmic factors.

4.7 Appendix: Using Randomization in Linear Programming Queries

In this appendix, we describe how randomization can be used to improve the results from

Section 4.2.

Consider the following linear programming problem: given k preprocessed convex

polytopes Hi,. . . , ilk C Ed, each defined by m halfspaces containing the origin o, compute

the vertex v of fl fl. . . n fI, that maximizes . v for a given E Ed. Suppose that linear-

space static structures (Structure 1) from Table 4.1 are used to store these polytopes. As

is demonstrated in the proof of Lemma 4.2.3, a direct application of Matouek’s multi

dimensional parametric search technique would yield an O(k ml/L0/2j 1og°’ m logd k)

time solution. Here we describe how the loge’ k factor can be eliminated by using Sharir

and Welzl’s randomized algorithm for generalized linear programming [SW92] (which is

based on Seidel’s linear programming algorithm [Sei9l]). This in turn improves the query

time in Lemma 4.2.3.

We first observe that the problem of finding an extremum in a non-empty intersection

of k convex objects in E’ belongs to the class of LP-type problems of combinatorial

Chapter 4. Higher-Dimensional Convex Hulls 85

dimension d as defined by Sharir and Weizi [SW92]. Sharir and Weizi presented a simple

randomized algorithm for solving LP-type problems of fixed combinatorial dimension that

requires an expected number of 0(k) primitive operations. The primitive operations, in

our case, are: (i) to test whether a given point lies inside one of the objects (violation

tests), and (ii) to find the extremum in an intersection of d + 1 of the objects (basis

computations).

For our application, the objects are polytopes. A violation test is simply a membership

query and costs O(m1_h/Ld/2Jlog°1m) time. A basis computation involves solving our

linear programming problem on d + 1 of the polytopes; since the number of polytopes

is now constant, we can apply our previous method, via Matouek’s parametric search,

to solve this problem in 0(m’’/L”/2Jlog°’ m) time. Because 0(k) violation tests and

basis computations are expected to be performed by Sharir and Welzl’s algorithm (the

expected number of basis computations is actually only 0(logd k) [We191j), we obtain a

randomized 0(k ml_l/Id!2]log°1m)-time solution to our linear programming problem

on k polytopes.

The above method carries through if the polytopes are stored in linear-space dynamic

structures (Structure 1’ from Table 4.1); we simply replace the log°’ m factors with

m6. With slightly more effort, we can even remove the assumption that the polytopes

all contain the origin; the method can detect whether k preprocessed polytopes have a

common intersection.

Note that in the two-dimensional case both violation tests and basis computations can

be performed in O(log m) time. Thus, Sharir and Welzl’s algorithm achieves expected

O(k log m) time, which is an improvement over the previous O(k log2 m) algorithm by

Reichling [Rei88aj, as used in our proof of Lemma 4.2.1. It is also interesting to com

pare the techniques here with those used in the previous deterministic and randomized

methods by Reichling [Rei88b] and Eppstein [Epp9l] for the three-dimensional problem.

Chapter 4. Higher-Dimensional Convex Hulls 86

The (expected) query time in Lemma 4.2.3 can now be improved to

O((n/mL/2i)logO m) since it uses k = En/mi. As a consequence, the O(nloglogn)

term in Corollary 4.2.4 can be eliminated; the same is true for the dynamic case

(Lemma 4.2.5(i)), which leads to corresponding improvements in Theorem 4.5.2.

Chapter 5. Conclusion 88

rdimension running time references

2 O(nlogh) [KS86]

3 O(nlogh) [CM95]

4 O(rif) [CK7O, Swa85]
O(n4/3log°1n + f log n) [Mat93, Sei86]

d> 4 O(nf) [CK7O, Swa85}
O(n2_21(Ld/2H4) 1og°’ n + flogn) [Mat93, Sei86]

2 O(nlogh) Theorems 2.1.2 and 2.2.1

3 O(n log h) Theorem 2.2.2

4 O((n + f) log2 f) Theorem 3.2.6
O(nlogf + (nf)2/3iog° n) Theorem 4.3.1

d> 4 O(nlogf + (nf) 1/([d/2j+1) iog°’ n) Theorem 4.3.1

O((ri + (nf)1_111d/21+fn1_2/E/2l)1og°’ n) Theorem 4.6.3

Table 5.2: Summary of output-sensitive results for the convex hull problem. The top
half of the table shows the best running time achieved by previous algorithms, and the
second half shows the running time achieved by the algorithms of this thesis.

Chapter 5. Conclusion 89

In trying to answer the question of whether e(nlogf + f) is the true complexity

of the convex hull problem, we may consider some special cases, for instance, when

output size is very small or very large. For sufficiently small values of f, we do indeed

attain optimal 0(nlogf) time in arbitrary dimension (Theorem 4.3.1). A theoretically

interesting question is whether 0(f) time can be achieved for sufficiently large values

of f. The method by Seidel [Sei86} achieved 0(f log n) time for f super-quadratic.
A result not listed in Table 5.2 that is worth mentioning here is that we can construct

the h-vertex convex hull in Ed in O(nlog°’ h + hL”/2J) time (Corollary 4.3.3). Thus,

there is a near-optimal convex hull algorithm if the output polytope is of the worst kind,

i.e., if f = e (h1d/2i). Unfortunately, polytopes of this kind are rare in practice, so this

result is more of a theoretical nature. (Unlike Chazelle’s method [Cha93b], this is at least

sensitive to the number of hull vertices.)

Note that all the algorithms listed in Table 5.2 are deterministic. Can randomization

lead to faster or simpler output-sensitive algorithms for higher-dimensional convex hulls?

Most of our new algorithms in Table 5.2, especially the four- and higher-dimensional

algorithms, assume general position in the input. To what extent can this assumption

be removed?

This thesis has explored new techniques for solving the convex hull problem. Along

the way, we have also touched on applications to many related problems. For instance,

we have obtained output-sensitive algorithms for computing Voronoi diagrams (Theo

rems 3.3.1 and 3.3.2), extreme points (Theorem 4.3.2), convex layers (Corollary 4.4.2),

k-levels (Theorems 4.5.1 and 4.5.3), and even envelopes of line segments (Theorem 2.3.1).

We have also obtained improved algorithms for non-constructive problems such as com

puting depths in a point set (Theorem 4.4.1) and linear programming with few violated

constraints (Theorem 4.5.2). Theorem 4.4.1 on depths provides a nice example on how

Chapter 5. Conclusion 90

output-sensitive algorithms can be used to produce better worst-case algorithms for cer

tain problems not requiring output-sensitivity.

Our discussion on these related problems raises more interesting questions. For one, is

our extrema algorithm (Theorem 4.3.2) close to optimal? A weaker question is: in terms

of n alone, is e(n2_2/(Ld/2H1)) near the true complexity of the extreme point problem?

We do not know of even an Q(n’+E) lower bound on the problem. Obtaining nontrivial

lower bounds for problems of this type may be a topic of future research. Another open

question is: can the depth problem be solved in close toO(22/(Ldh/2i+1)) time, like the

extreme point problem? One can also consider improving our results on convex layers

and k-levels; for example, can we construct four-dimensional k-levels in O((n + f)+)

time, as we can for convex hulls? Our result on linear programming with violations may

also be improved; for example, can one get an O(n log k)-time algorithm for all 0 k <n

in the planar (feasible) case?

Bibliography

[AM91] P. K. Agarwal and J. Matouek. Dynamic half-space reporting and its appli
cations. Technical Report CS-1991-43, Duke University, 1991.

[AM93] P. K. Agarwal and J. Matouek. Ray shooting and parametric search. SIAM
Journal on Computing, 22:764—806, 1993. Also in Proceedings of the 2th
Annual ACM Symposium on Theory of Computing, pages 517—526, 1992.

[AGR94] N. M. Amato, M. T. Goodrich, and E. A. Ramos. Parallel algorithms for
higher-dimensional convex hulls. In Proceedings of the 35th Annual IEEE
Symposium on Foundations of Computer Science, pages 683—694, 1994.

[Aur9l] F. Aurenhammer. Voronoi diagrams: a survey of a fundamental data struc
ture. ACM Computing Surveys, 23:345—405, 1991.

[Ben83] M. Ben-Or. Lower bounds for algebraic computation trees. In Proceedings of
the 15th Annual Symposium on Theory of Computing, pages 80—86, 1983.

[BK+78] J. L. Bentley, H. T. Kung, M. Schkolnick and C. D. Thompson. On the
average number of maxima in a set of vectors. Journal of the Association for
Computing Machinery, 25:536—543, 1978.

[BS8O] J. L. Bentley and J. Saxe. Decomposable searching problems I: static-to-
dynamic transformations. Journal of Algorithms, 1:301—358, 1980.

[BS78] J. L. Bentley and M. I. Shamos. Divide-and-conquer for linear expected time.
Information Processing Letters, 7:87—91, 1978.

[Bro8O] K. Q. Brown. Geometric transforms for fast geometric algorithms. PhD thesis,
Carnegie—Mellon University, Pittsburg, Penn., 1980.

[Cha95a] T. M. Chan. Optimal output-sensitive convex hull algorithms in two and three
dimensions. Submitted to Discrete é4 Computational Geometry.

{Cha95b] T. M. Chan. Output-sensitive results on convex hulls, extreme points, and
related problems. Submitted to Discrete é4 Computational Geometry. Also in
Proceedings of the 11th Annual ACM Symposium on Computational Geometry,
pages 10—19, 1995.

91

Bibliography 92

[CSY95a] T. M. Chan, J. Snoeyink, and C.-K. Yap. Output-sensitive construction of
polytopes in four dimensions and clipped Voronoi diagrams in three. In Pro
ceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 282—291, 1995.

[CSY95b] T. M. Chan, J. Snoeyink, and C.-K. Yap. Primal dividing and dual prun
ing: output-sensitive construction of 4-d polytopes and 3-d Voronoi diagrams.
Submitted to Discrete é4 Computational Geometry.

[CK7O] D. R. Chand and S. S. Kapur. An algorithm for convex polytopes. Journal
of the Association for Computing Machinery, 17:78—86, 1970.

[Cha85] B. Chazelle. An optimal algorithm for computing convex layers. IEEE Trans
actions on Information Theory, IT-31:509—517, 1985.

[Cha92] B. Chazelle. An optimal algorithm for intersecting three-dimensional convex
polyhedra. SIAM Journal on Computing, 21:671—696, 1992.

[Cha93a] B. Chazelle. Cutting hyperplanes for divide-and-conquer. Discrete é4 Com
putational Geometry, 9:145—158, 1993.

{Cha93b] B. Chazelle. An optimal convex hull algorithm for point sets in any fixed
dimension. Discrete é4 Computational Geometry, 10:377—409, 1993.

[CD87] B. Chazelle and D. P. Dobkin. Intersection of convex objects in two and three
dimensions. Journal of the Association for Computing Machinery, 34:1—27,
1987.

[CE+91] B. Chazelle, H. Edelsbrunner, M. Grigni, L. Guibas, J. Hershberger, M. Sharir,
and J. Snoeyink. Ray shooting in polygons using geodesic triangulations. In
Proceedings of the 18th International Colloquium on Automata, Languages,
and Programming, Lecture Notes in Computer Science, volume 510, Springer-
Verlag, pages 661—673, 1991.

[CF9O] B. Chazelle and J. Friedman. A deterministic view of random sampling and
its use in geometry. Combinatorica, 10(3):229—249, 1990.

[CGL85] B. Chazelle, L. J. Guibas, and D. T. Lee. The power of geometric duality.
BIT, 25:76—90, 1985.

[CM95] B. Chazelle and J. Matouek. Derandomizing an output-sensitive convex hull
algorithm in three dimensions. Computational Geometry: Theory and Appli
cations, 5:27—32, 1995.

Bibliography 93

[C1a87] K. L. Clarkson. New applications of random sampling in computational ge
ometry. Discrete é1 Computational Geometry, 2:195—222, 1987.

[C1a94] K. L. Clarkson. More output-sensitive geometric algorithms. In Proceedings
of the 35th Annual IEEE Symposium on Foundations of Computer Science,
pages 695—702, 1994.

[CS89] K. L. Clarkson and P. W. Shor. Applications of random sampling in compu
tational geometry, II. Discrete é4 Computational Geometry, 4:387—421, 1989.

[CS+89] R. Cole, J. Salowe, W. Steiger, and E. Szemerédi. An optimal-time algorithm
for slope selection. SIAM Journal on Computing, 18:792-810, 1989.

[CSY87] R. Cole, M. Sharir, and C.-K. Yap. On k-hulls and related problems. SIAM
Journal on Computing, 16:61—77, 1987.

[DK83] D. P. Dobkin and D. G. Kirkpatrick. Fast detection of polyhedral intersection.
Theoretical Computer Science, 27:241—253, 1983.

[DK9O] D. P. Dobkin and D. G. Kirkpatrick. Determining the separation of prepro
cessed polyhedra: a unified approach. In Proceedings of the 17th International
Colloquium on Automata, Languages, and Programming, Lecture Notes in
Computer Science, volume 443, Springer-Verlag, pages 440—413, 1990.

[Dwy9l] R. A. Dwyer. Higher-dimensional Voronoi diagrams in linear expected time.
Discrete é.4 Computational Geometry, 6:343—367, 1991.

[Dye84] M. E. Dyer. Linear time algorithms for two- and three-variable linear pro
grams. SIAM Journal on Computing, 13(1):31—45, 1984.

[Ede87] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag,
Berlin, 1987.

[EGS86] H. Edelsbrunner, L. Guibas, and J. Stolfi. Optimal point location in a mono
tone subdivision. SIAM Journal on Computing, 15:317—340, 1986.

[EM9O] H. Edelsbrunner and E. P. Mücke. Simulation of simplicity: a technique to
cope with degenerate cases in geometric algorithms. ACM Transactions on
Graphics, 9(1):66—104, 1990.

[ES86} H. Edelsbrunner and R. Seidel. Voronoi diagrams and arrangements. Discrete
é4 Computational Geometry, 1:25—44, 1986.

[ES91] H. Edelsbrunner and W. Shi. An O(nlog2h) time algorithm for the three
dimensional convex hull problem. SIAM Journal on Computing, 20:259—277,
1991.

Bibliography 94

[EW86] H. Edelsbrunner and E. Weizi. Constructing belts in two-dimensional arrange
ments with applications. SIAM Journal on Computing, 15:271—284, 1986.

[EC92] I. Emiris and J. Canny. An efficient approach to removing geometric degenera
cies. In Proceedings of the Eighth Annual ACM Symposium on Computational
Geometry, pages 74—82, 1992.

[Epp9l] D. Eppstein. Dynamic three-dimensional linear programming. In Proceedings
of the 32nd IEEE Symposium on Foundations of Computer Science, pages
488—494, 1991.

[ERvK93] H. Everett, J.-M. Robert, and M. van Kreveld. An optimal algorithm for
computing (< k)-levels, with applications to separation and transversal prob
lems. In Proceedings of the Ninth Annual ACM Symposium on Computational
Geometry, pages 38—46, 1993.

[GT91J M. Goodrich and R. Tamassia. Dynamic trees and dynamic point location.
In Proceedings of the 23rd Annual ACM Symposium on Theory of Computing,
pages 523—533, 1991.

[Gra72] R. L. Graham. An efficient algorithm for determining the convex hull of a
finite planar set. Information Processing Letters, 1:132—133, 1972.

[Grü67] B. Grünbaum. Convex Polytopes. John Wiley & Sons, London, 1967.

[GH+87] L. J. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan. Linear-
time algorithms for visibility and shortest path problems inside triangulated
simple polygons. Algorithmica, 2:209—233, 1987.

[HS86] S. Hart and M. Sharir. Nonlinearity of Davenport-Schinzel sequences and of
generalized path compression schemes. Combinatorica, 6:151—177, 1986.

[HW87] D. Haussler and E. Welzl. Epsilon-nets and simplex range queries. Discrete
Computational Geometry, 2:127—151, 1987.

[Her89] J. Hershberger. Finding the upper envelope of n line segments in O(n log n)
time. Information Processing Letters, 33:169—174, 1989.

[HeS93] J. Hershberger and S. Sun. A pedestrian approach to ray shooting: shoot a
ray, take a walk. In Proceedings of the Fourth Annual A CM-SIAM Symposium
on Discrete Algorithms, pages 54—63, 1993.

[Jar73] R. A. Jarvis. On the identification of the convex hull of a finite set of points
in the plane. Information Processing Letters, 2:18—21, 1973.

Bibliography 95

[Kir83] D. Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal on
Computing, 12:28—35, 1983.

[KS86] D. Kirkpatrick and R. Seidel. The ultimate planar convex hull algorithm?
SIAM Journal on Computing, 15:287—299, 1986.

[Mat9la] J. Matouek. Approximations and optimal geometric divide-and-conquer. In
Proceedings of the p3rd Annual ACM Symposium on Theory of Computing,
pages 505—511, 1991.

[Mat9lb] J. Matouek. Cutting hyperplane arrangements. Discrete é4 Computational
Geometry, 6:385—406, 1991.

[Mat9lc] J. Matouek. Efficient partition trees. In Proceedings of the Seventh Annual
ACM Symposium on Computational Geometry, pages 1—9, 1991.

[Mat92] J. Matouek. Reporting points in halfspaces. Computational Geometry: The
ory and Applications, 2:169—186, 1992.

[Mat93] J. Matouek. Linear optimization queries. Journal of Algorithms, 14:432—448,
1993. Also with 0. Schwarzkopf in Proceedings of the Eighth Annual ACM
Symposium on Computational Geometry, pages 16—25, 1992.

[Mat94] J. Matouek. On geometric optimization with few violated constraints. In
Proceedings of the Tenth Annual ACM Symposium on Computational Geom
etry, pages 312—321, 1994.

[MS93] J. Matouek and 0. Schwarzkopf. On ray shooting in convex polytopes. Dis
crete é4 Computational Geometry, 10(2):215—232, 1993.

[McM7O] P. McMullen. The maximal number of faces of a convex polytope. Mathe
matika, 17:179—184, 1970.

[MS71] P. McMullen and G. C. Shephard. Convex Polytopes and the Upper Bound
Conjecture. Cambridge University Press, 1971.

[Meg83a] N. Megiddo. Applying parallel computation algorithms in the design of serial
algorithms. Journal of the Association for Computing Machinery, 30:852—865,
1983.

[Meg83b] N. Megiddo. Linear time algorithm for linear programming in R3 and related
problems. SIAM Journal on Computing, 12:759—776, 1983.

[Meg84] N. Megiddo. Linear programming in linear time when the dimension is fixed.
Journal of the Association for Computing Machinery, 31:114—127, 1984.

Bibliography 96

[Mu190] K. Mulmuley. Output sensitive construction of levels and Voronoi diagrams
in Rd of order ito k. In Proceedings of the 22rd Annual ACM Symposium on
Theory of Computing, pages 322—330, 1990.

[Mu191] K. Mulmuley. On levels in arrangements and Voronoi diagrams. Discrete é4
Computational Geometry, 6:307—338, 1991.

[Mu193] K. Mulmuley. Computational Geometry: An Introduction Through Random
ized Algorithms. Prentice-Hall, Englewood Cliffs, N.J., 1993.

[0BS92] A. Okabe, B. Boots, and K. Sugihara. Spatial Tessellations: Concepts and
Applications of Voronoi Diagrams. John Wiley & Sons, Chichester, England,
1992.

[O’Ro94] J. O’Rourke. Computational Geometry in C. Cambridge University Press,
1994.

[OC+82] J. O’Rourke, C.-B. Chien, T. Olson, and D. Naddor. A new linear algorithm
for intersecting convex polygons. Computer Graphics and Image Processing,
19:384—391, 1982.

[0SS95] T. Ottmann, S. Schuierer, and S. Soundaralakshmi. Enumerating extreme
points in higher dimensions. To appear in Proceedings of the 12th Symposium
on Theoretical Aspects of Computer Science, 1995.

[OvL8i] M. H. Overmars and J. van Leeuwen. Maintenance of configurations in the
plane. Journal of Computer and System Sciences, 23:166—204, 1981.

[Pre9O] F. P. Preparata. Planar point location revisited. International Journal of
Foundations of Computer Science, i(i):7i—86, 1990.

[PH77] F. P. Preparata and S. J. Hong. Convex hulls of finite sets of points in two
and three dimensions. Communications of the Association for Computing
Machinery, 20:87—93, 1977.

[PS85] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduc
tion. Springer-Verlag, New York, 1985.

[Ray7O] H. Raynaud. Sur l’enveloppe convexe des nuages des points aléatoires dans
RTh, I. Journal of Applied Probability, 7:35—48, 1970.

[Rei88a] M. Reichling. On the detection of a common intersection of k convex objects
in the plane. Information Processing Letters, 29:25—29, 1988.

Bibliography 97

[Rei88b] M. Reichling. On the detection of a common intersection of k convex poiy
hedra. In Computational Geometry and its Applications, Lecture Notes in
Computer Science, volume 333, Springer-Verlag, pages 180—186, 1988.

[RS63] A. Rényi and R. Sulanke. Uber die konvexe Hülle von n zufällig gerwähten
Punkten I. Z. Wahrsch. Verw. Gebiete, 2:75—84, 1963.

[RW94] T. Roos and P. Widmayer. k-Violation linear programming. Information
Processing Letters, 52:109—114, 1994.

[ST86] N. Sarnak and R. E. Tarjan. Planar point location using persistent search
trees. Communications of the Association for Computing Machinery, 29:669—
679, 1986.

[Sei8l] R. Seidel. A convex hull algorithm optimal for point sets in even dimen
sions. Technical Report 81-14, Department of Computer Science, University
of British Columbia, Vancouver, B.C., 1981.

[Sei86] R. Seidel. Constructing higher-dimensional convex hulls at logarithmic cost
per face. In Proceedings of the 18th Annual ACM Symposium on Theory of
Computing, pages 404—413, 1986.

[Sei9l] R. Seidel. Small-dimensional linear programming and convex hulls made easy.
Discrete Computational Geometry, 6:423—434, 1991.

[SW92] M. Sharir and E. Welzl. A combinatorial bound for linear programming and
related problems. In Proceedings of the Ninth Symposium on Theoretical As
pects of Computer Science, Lecture Notes in Computer Science, volume 577,
Springer-Verlag, pages 569—579, 1992.

[Swa85] G. F. Swart. Finding the convex hull facet by facet. Journal of Algorithms,
6:17—48, 1985.

[We191] E. Welzl. Smallest enclosing disks (balls and ellipsoids). In H. Maurer (Ed.),
New Results and New Trends in Computer Science, Lecture Notes in Com
puter Science, volume 555, Springer-Verlag, pages 359—370, 1991.

[Wen94] R. Wenger. Randomized quick hull. Manuscript, 1994.

[Yao8l] A. C. Yao. A lower bound to finding convex hulls. Journal of the Association
for Computing Machinery, 28:780—787, 1981.

