
A COMPUTATIONAL THEORY OF DECISION NETWORKS

By

Nevin Lianwen Zhang

B. Sc. (Mathematics) China University of Elect. Sci. & Tech.

M. Sc., Ph. D. (Mathematics) Beijing Normal University

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

THE FACULTY OF GRADUATE STUDIES

COMPUTER SCIENCE

We accept this thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

December 1993

© Nevin Lianwen Zhang, 1994

In presenting this thesis in partial fulfillment of the requirements for an advanced degree

at the University of British Columbia, I agree that the Library shall make it freely

available for reference and study. I further agree that permission for extensive copying

of this thesis for scholarly purposes may be granted by the head of my department or by

his or her representatives. It is understood that copying or publication of this thesis for

financial gain shall note allowed without my written permission.

Computer Science

The University of British Columbia

2075 Wesbrook Place

Vancouver, Canada

V6T 1Z1

Date:
.O? (4

Abstract

This thesis is about how to represent and solve decision problems in Bayesian decision the

ory (e.g. Fishburn 1988). A general representation named decision networks is proposed

based on influence diagrams (Howard and Matheson 1984). This new representation

incorporates the idea, from Markov decision processes (e.g. Puterman 1990, Denardo

1982), that a decision may be conditionally independent of certain pieces of available

information. It also allows multiple cooperative agents and facilitates the exploitation

of separability in the utility function. Decision networks inherit the advantages of both

influence diagrams and Markov decision processes.

Both influence diagrams and finite stage Markov decision processes are stepwise

solvable, in the sense that they can be evaluated by considering one decision at a time.

However, the evaluation of a decision network requires, in general, simultaneous consider

ation of all the decisions. The theme of this thesis is to seek the weakest graph-theoretic

condition under which decision networks are guaranteed to be stepwise-solvable, and to

seek the best algorithms for evaluating stepwise-solvable decision networks.

A concept of decomposability is introduced for decision networks and it is shown that

when a decision network is decomposable, a divide and conquer strategy can be utilized

to aid its evaluation. In particular, when a decision network is stepwise-decomposable it

can be evaluated not only by considering one decision at a time, but also by considering

one portion of the network at a time. It is also shown that stepwise-decomposability is

the weakest graphical condition that guarantees stepwise-solvability.

Given a decision network, there are often nodes and arcs that can harmlessly removed.

An algorithm is presented that is able to find and prune all graphically identifiable

11

removable nodes and arcs.

Finally, the relationship between stepwise-decomposable decision networks (SD DN ‘s)

and Markov decision process is investigated, which results in a two-stage approach for

evaluating SDDN’s. This approach enables one to make use of the asymmetric nature

of decision problems, facilitates parallel computation, and gives rises to an incremental

way of computing the value of perfect information.

111

Table of Contents

Abstract ii

Table of Contents iv

List of Figures ix

List of Symbols xii

Acknowledgment xiv

1 Introduction 1

1.1 Synopsis 2

1.2 Bayesian decision theory 6

1.3 Decision analysis 7

1.3.1 Decision trees 8

1.3.2 Influence diagrams 11

1.3.3 Representing independencies for random nodes 12

1.4 Constraints on influence diagrams 13

1.5 Lifting constraints: Reasons pertaining to decision analysis 15

1.5.1 Lifting the no-forgetting constraint 15

1.5.2 Lifting the single value node constraint 18

1.5.3 Lifting the regularity constraint 19

1.6 Lifting constraints: Reasons pertaining to MDP’s 21

1.6.1 Finite stage MDP’s 22

1.6.2 Representing finite stage MDP’s 23

1.7 Computational merits 25

1.8 Why not lifted earlier 25

iv

1.9 Subclasses of decision networks 26

1.10 Who would be interested and why 28

2 Decision networks: the concept 30

2.1 Decision networks intuitively 30

2.1.1 A note 33

2.2 Bayesian networks 34

2.3 Decision networks 36

2.3.1 A general setup of Bayesian decision theory 36

2.3.2 Multiple-decision problems 37

2.3.3 Technical preparations 38

2.3.4 Deriving the concept of decision networks 39

2.3.5 An example 41

2.4 Fundamental constraints 42

3 Decision networks: formal definitions 45

3.1 Formal definition of Bayesian networks 45

3.2 Variables irrelevant to a query . . . 48

3.3 Formal definitions of decision networks 50

3.4 A naive algorithm 53

3.5 Stepwise-solvability 57

3.6 Semi-decision networks 59

4 Divide and conquer in decision networks 62

4.1 Separation and independence 63

4.2 Decomposability of decision networks 65

4.2.1 Properties of upstream and downstream components 66

v

4.3 Divide and conquer . 69

5 Stepwise-decomposable decision networks 71

5.1 Definition 72

5.1.1 Another way of recursion 74

5.2 Stepwise-decomposability and stepwise-solvability 75

5.3 Testing stepwise-decomposability 76

5.4 Recursive tail cutting 78

5.4.1 Simple semi-decision networks 79

5.4.2 Proofs 80

5.5 Evaluating simple semi-decision networks 82

5.6 The procedure EVALUATE 85

6 Non-Smooth SDDN’s 87

6.1 Smoothing non-smooth SDDN’s 87

6.1.1 Equivalence between decision networks 88

6.1.2 Arc reversal 88

6.1.3 Disturbance nodes, disturbance arcs, and disturbance recipients 90

6.1.4 Tail-smoothing skeletons 92

6.1.5 Tail smoothing decision networks 94

6.1.6 Smoothing non-smooth SDDN’s 95

6.1.7 Proofs 97

6.2 Tail and body 99

6.2.1 Tail and body at the level of skeleton 100

6.2.2 Tail of decision networks 101

6.2.3 Body of decision networks 103

6.3 The procedure EVALUATE1 105

vi

6.4 Correctness of EVALUATE1.

6.5 Comparison to other approaches

6.5.1 Desirable properties of evaluation algorithms

6.5.2 Other approaches

7 Removable arcs and independence for decision nodes

7.1 Removable arcs and conditional independencies for decision nodes

7.2 Lonely arcs

7.3 Pruning lonely arcs and stepwise-solvability

7.4 Potential lonely arcs and barren nodes

7.5 An algorithm

8 Stepwise-solvability and stepwise-decomposability

8.1 Normal decision network skeletons

8.2 Short-cutting

8.3 Root random node removal

8.4 Arc reversal

8.5 Induction on the number of random nodes

8.6 Induction on the number of decision nodes

8.6.1 An extension and a corollary

8.7 Lonely arcs and removable arcs

8.8 Stepwise-solvability and stepwise-decomposability

[27

128

130

135

138

142

145

147

148

150

9 SDDN’s and Markov decision processes

9.1 Sections in smooth regular SDDN’s

9.1.1 An abstract view of a regular smooth SDDN

9.1.2 Conditional probabilities in a section

107

109

109

112

118

119

121

123

124

125

157

158

160

161

vii

9.1.3 The local value function of a section. 161

9.1.4 Comparison with decision windows

9.2 Condensing smooth regular SDDN’s

9.2.1 Parallel computations

9.3 Equivalence between SDDN’s and their condensations

9.4 Condensing SDDN’s in general

9.4.1 Sections

9.4.2 Condensation

9.4.3 Irregular SDDN’s

9.5 Asymmetries and unreachable states

9.5.1 Asymmetries in decision problems

9.5.2 Eliminating unreachable states in condensations

9.6 A two-stage algorithm for evaluating SDDN’s

9.6.1 Comparison with other approaches

10 Conclusion

10.1 Summary

10.2 Future work

10.2.1 Application to planning and control under uncertainty

10.2.2 Implementation and experimentation

10.2.3 Extension to the continuous case

10.2.4 Multiple agents

Bibliography 186

• . . 162

163

165

166

• . . 168

168

170

172

172

172

173

175

176

179

• . . . 179

• . . . 181

181

• . . . 183

• . . 184

184

viii

List of Figures

1.1 Dependencies among the chapters 5

1.2 A decision tree for the oil wildcatter problem 10

1.3 An influence diagram for the oil wildcatter problem 11

1.4 An influence diagram for the extended oil wildcatter problem 13

1.5 A decision network for the extended oil wildcatter problem, with indepen

dencies for the decision node oil—sale—policy explicitly represented. . 17

1.6 A decision network for the extended oil wildcatter problem with multiple

value nodes. The total utility is the sum of all the four value nodes. . 18

1.7 The decision network obtained from the one in Figure 1.6 by deleting some

removable arcs. This network is no longer no-forgetting 20

1.8 A decision network for the further extended oil wildcatter problem. It is

not regular, “forgetting” and has more than one value node 21

1.9 A three period finite stage MDP 24

1.10 Subclasses of decision networks 27

2.11 A decision network skeleton for the extended oil wildcatter problem. . . . 31

2.12 Two Bayesian networks for the joint probability P(alarm, fire, tampering, smoke, leaving).

2.13 Two decision networks for the rain-and-umbrella problem 42

3.14 Bayesian network and irrelevant variables 46

3.15 A decision network whose evaluation may require simultaneous consider

ation of all the decision nodes 55

ix

4.16 The relationships among the sets Y, Y1, Y11, X1, X1, and lrd. The three

sets Yi, Y11 and lrd constitute a partition of Y — the set of all the nodes;

while X1, X11 and lrd constitute a partion of CUD — the set of all the

random and decision nodes. When the network is smooth at d, there are

no arcs going from Xii to 7Td 63

4.17 Downstream and upstream components: The downstream component is a

semi-decision network, where the prior probabilities for oil-produced and

oil-market are missing. In the upstream component, u is the downstream-

value node, whose value function is the optimal conditional expected value

of the downstream component 67

5.18 Step by step decomposition of the decision network in Figure 2.11 73

6.19 The concept of arc reversal: At the beginning the parent set of c1 is BUB1

and the parent set of c2 is BUB2U{ci}. After reversing the arcc1—*c2, the

parent set of c1 becomes BUB1UB2U{c2}and the parent set of c2 becomes

BUB2UB1.There are no graphical changes otherwise 88

6.20 A non-smooth decision network skeleton 91

6.21 The application of TAIL-SMOOTHING-K to the decision network skeleton

in Figure 6.20 with the input candidate node being d2: (a) after reversing

c6—*c4, (b) after reversingc6—*c5 93

6.22 The effects of applying SMOOTHING to the SDDN in Figure 1.7: (a)

after the arc from seismic—structure to test—result is reversed, (b)

the final SDDN, which is smooth 96

6.23 Tail and body for the non-smooth decision network skeleton in Figure 6.20

[FINAL CHECK]: (a) shows its body w.r.t d2 and (b) shows its tail w.r.t d2.100

x

7.24 Removable arcs and removable nodes 121

8.25 An abnormal decision network skeleton (1), and an normal equivalent

skeleton (2) 128

8.26 Short-cutting. The random node c in (1) is short-cut, resulting in the

decision network skeleton in (2) 130

9.27 A regular SDDN and its sections: t stands for test, d stands for drill,

and s stands for oil—sale—police 159

9.28 An abstract view of a smooth regular SDDN. Smoothness is indicated by

the fact that all the arrows from the are pointing downstream. . . . 160

9.29 The skeleton of the condensation of the SDDN in Figure 9.27 (a) 164

9.30 Sections in a non-smooth regular SDDN 169

10.31 Mobile target localization 182

xi

List of symbols

c, 3, ‘y: value of a variable or of a set of variables (nodes)

B, B1, B2: sets of nodes (variables)

C: the set of random nodes in a decision network

d, d: a decision node (variable)

a policy for a decision network, i.e a vector of decision functions

/.: policy space, the set of all policies

j, L: decision function space of d, d

6j, S: a decision function for a decision node d, d

60: optimal policy of a decision network

6., 6: optimal decision function for a decision node d, d

D: the set of decision nodes in a decision network

e(d, lrd): the evaluation functional of a simple semi-decision network

E[Jf]: the optimal expected value of a decision network Al

E[VS]: the optimal conditional expected value of a decision network Al given S

E5 [Al]: the expected value of a decision network Al under policy 6

Es[JVS]: the conditional expected value under policy 6

a decision network skeleton.

1C1(d, K), IC1: body of a decision network skeleton.

IC11(d, IC), ICE- : tail of a decision network skeleton.

: utility or value function

Al: a Bayesian network or a decision network.

Al1(d,Al), Al1: body of a decision network.

xii

J/11(d,J/), .iVi : tail of a decision network.

).C: condensation of a decision network.

J’f(d, d+i): section of a decision network.

jV: the Bayesian network induced from a decision network .iV by a policy 5.

: the frame of a variable or the Cartesian product of the frames of variables

a set of probabilities

F(cr): the conditional probability of random variable c given its parents 7r

F5, Fs(X): the joint probability induced by a policy S

F0: the multiplication of all the conditional probabilities in a simple semi-decision network

ir: the set of parents of node x in a network

S: a set of variables, usually related to separator

V: the set of value nodes in a decision network

X: the set of random and decision nodes in a decision network

X1: the set of random and decision nodes in upstream set

X11: the set of random and decision nodes in downstream set

Y: the set of all the nodes in a decision network

Y1,Y1(d,A1), Yi(d, sAC): upstream set

Yii, Yii(d,.iV), Y11(d, sAC): downstream set

- xlii

Acknowledgement

First, I would like to thank my thesis supervisor David Poole for his guidance, encour

agement, support, and friendship. David, it has been great fun being your student.

I am grateful to Runping Qi for stimulating discussions, his friendship, and his poem.

Members of the UBC reasoning group have been always the first to hear about and to

criticize my ideas. Besides David and Runping, other members of the group include Brent

Boerlage, Craig Boutillier, Mike Horsch, Keiji Kanazawa, Ying Zhang. Folks, thank you

all for bearing with me and for all your valuable comments and suggestions.

Thanks also go to Bruce D’Ambrosio, David Kirkpatrick, David Lowe, Alan Mack-

worth, Raymond Ng, Nicholos Pippenger, Martin Puterman, and Jim Zidek for serving

on my supervisory committee and/or my examination committee.

I thank the department staffs: Deborah, Everlyn, Gale, Grace, Jean, Joyce, Monica,

and Sunnie for their help and friendliness.

I thank my friends, office mates, lab-mates for sharing wonderful times, and for es

sential support during some not-so-wonderful times.

Finally, I would like to thank all my teachers from the past: Xinfu Zhang, Duangcai

Wang, Quanglin Hou, Peizhuang Wang, Sijian Yan, Glenn Shafer, Prakash Shenoy, and

David Poole, to name a few. Together, they have made an academice career possible for

a shabby boy from a remote and poor Sichuan village.

xiv

Chapter 1

Introduction

This thesis is about how to represent and solve decision problems in Bayesian deci

sion theory (e.g. Fishburn 1988). A general representation named decision networks is

proposed based on influence diagrams (Howard and Matheson 1984). This new represen

tation incorporates the idea, from Markov decision processes (e.g. Denardo 1982), that a

decision may be conditionally independent of certain pieces of available information. It

also allows multiple cooperative agents and facilitates the exploitation of separability in

the utility function.

Influence diagrams are stepwise-solvable, that is they can be evaluated by considering

one decision at a time (Shachter 1986). However, the evaluation of a decision network re

quires, in general, simultaneous consideration of all the decisions. The theme of this thesis

is to seek the weakest condition under which decision networks are stepwise-solvable, and

to search for the best algorithms for evaluating stepwise-solvable decision networks.

This introductory chapter provides a synopsis of our theory, and describes how and

why it differs from its two mother theories: the theory of influence diagrams and the

theory of Markov decision processes.

The synopsis in Section 1.1 below describes salient features of the following chapters.

Section 1.2 reviews Bayesian decision theory, and Section 1.3 reviews two methodologies

for decision analysis, namely decision trees and influence diagrams.

An influence diagram is a representation of a single agent’s view of the world as

relevant to a decision problem; it spells out information availability for each decision.

1

Chapter 1. Introduction 2

Several constraints follow from its semantics (Section 1.4). A decision network, on the

other hand, is a representation of a group of cooperative agents’ view of the world; it

indicates both information availability and dependency for each decision node. Some

constraints of influence diagrams do not apply to decision networks.

Syntactically decision networks are arrived at by lifting some of those constraints

(Section 1.4). Reasons for lifting the constraints originate from the demand of a more

general representation framework in decision analysis (Section 1.5), and from the effort to

provide Markov decision processes with a graph-theoretic language (Sections 1.6). More

importantly, the lifting of constraints also allows us to apply more techniques in solving

a problem and hence leads to better and more efficient algorithms (Section 1.7).

Section 1.9 echoes the synopsis by providing a description of all the subclasses of

decision networks we will encounter later. Finally, Section 1.10 suggests who might be

interested in this thesis, and why.

Li Synopsis

Our goal is to enable computers to help decision makers solve complex decision problems.

The first step in achieving this goal is to design a language or some kind of representa

tion framework so that decision makers and computers can communicate about decision

problems. Two frameworks exist previously, namely influence diagrams (Howard and

Matheson 1984, Shachter 1986) and Markov decision processes (MDP) (see, for example,

Denardo 1982).

MDP’s are a model of sequential decision making for the sake of controlling dy

namic systems; it is special-purpose. Influence diagrams are a general framework for

decision analysis; however they are always required to satisfy the so-called no-forgetting

constraint, which requires a decision node and its parents be parents to all subsequent

Chapter 1. Introduction 3

decision nodes.

There are at least three reasons that a decision maker would be interested in lifting

the no-forgetting constraint (details coming up in later in this chapter):

1. The decision maker may be able to qualitatively determine that a decision does not

depend on certain pieces of available information. As a matter of fact, one result

of MDP theory is that given the current state of the dynamic system, the optimal

current decision is independent of previous states and decisions, even though they

are known. Such conditional independence for decisions can-not be represented

in influence diagrams. The no-forgetting constraint is supposed to capture the

rationale that information available earlier should also be available later. In the

mean time, unfortunately, it also excludes the possibility of earlier information

being irrelevant later.

2. There may be several cooperative decision makers, each responsible for a subset

of decisions. When communication is not feasible or is too expensive, information

available earlier to one decision maker may not be available later to a different

decision maker. Furthermore, there may not be a predetermined ordering among

the decisions. This defeats not only the no-forgetting constraint, but also another

constraint — the so-called regularity constraint, which requires a total ordering

among the decisions.

3. It has been noticed that given an influence diagram, a decision node may turn out

to be independent of some of its parents. In such a case, the arcs from those parents

to the decision node can be harmlessly removed. It is a good idea to remove such

arcs at a preprocessing stage, since it yields a simpler diagram. However, removing

arcs from an influence diagram leads to the violation of the no-forgetting constraint.

Chapter 1. Introduction 4

In this thesis, we lift the no-forgetting constraint, together with two other constraints

previously imposed on influence diagrams, and make due semantic modifications to arrive

at decision networks (DN), a framework for representing decision problems that is more

general then both influence diagrams and finite stage MDP’s.

In both influence diagrams and finite stage MDP’s, a decision problem can be solved

by considering one decision at a time, while solving a decision problem in the framework

of general DN’s requires simultaneous consideration of all the decision nodes, even when

the structure of the problem is simple (Chapter 3). One of the themes of this thesis is to

investigate when a decision network can be solved by considering one decision node at a

time. We give a graph-theoretic criterion called stepwise-decomposability (Chapter 5);

and we prove that this criterion is the weakest graph-theoretic criterion that guarantees

stepwise-solvability (Chapter 8).

Another theme of this thesis is to develop algorithms for evaluating stepwise-decomposable

decision networks (SDDN’s). As a first step, we find a way to prune all the removable

arcs that are graph-theoretically identifiable (Chapters 7, 8). It is shown that pruning

removable arcs from SDDN’s does not destroy the stepwise-decomposability (Section 7.3).

A divide-and-conquer procedure named EVALUATE1 for evaluating SDDN’s is de

veloped (Chapters 4, 5, and 6). This procedure has several other advantages in addition

to embracing the divide and conquer strategy. It clearly identifies all the Bayesian net

work (BN) inferences involved in evaluating a SDDN. Consequently, it can be readily

implemented on top of any BN inference systems. The procedure does not require arc

reversals and induces little numerical divisions. Finally, the procedure explicitly exploits

independencies allowed by multiple value nodes (Section 6.5).

A two stage procedure named EVALUATE2 is also developed on the basis of EVAL

UATE1 (Chapter 9) as a result of our investigation on the relationship between MDP’s

and SDDN’s. EVALUATE2 inherits all the advantages of EVALUATE1. Furthermore,

Chapter 1. Introduction 5

background
a concepts

Chapters 1, 2

formal
definitions

Cha er3

evaluation:
divide and conquer
Chapters 4, 5, 6

preprocessing: goodness evaluation:

renovahie arcs theorems two—stage approach

Chapter 7 Chapter 8 Chapter 9

Figure 1.1: Dependencies among the chapters.

it enables one to exploit the asymmetric nature of decision problems1 and opens up the

possibility of parallel processing (Section 9.2.1). It also leads to an incremental way of

computing the value of information (Zhang et al 1993h).

There have been a number of previous algorithms for evaluating influence diagrams.

Since influence diagrams are special SDDN’s, there can also be evaluated by the algo

rithms developed in this thesis for evaluating SDDN’s. Our algorithms are shown to be

advantageous over the previous algorithms in a number of aspects (Sections 6.5, 9.6.1).

The dependency relationships among the nine chapters of this thesis are shown in

Figure 1.1.

The remainder of this chapter relates the background of this thesis, and gives a more

detailed account to the points put forward by the story. Let us begin with Bayesian

decision theory.

1This was first pointed out by Qi (1993).

Chapter 1. introduction 6

1.2 Bayesian decision theory

We make numerous decisions every day. Many of our decisions are made in the presence

of uncertainty. A simple example is to decide whether or not to bring the umbrella in

light of the weather forecast. If the weather man were an oracle such that his prediction

is always correct, then the decision would be easy. Bring the umbrella if the weather

man predicts rain and leave the umbrella home if he predicts no rain. However real life

forecasts are not as predictive as we wish. Instead of saying that it will rain, the weather

man says, for instance, that there is a sixty percent chance of precipitation.

We would be happy if we bring the umbrella and it rains, or if we leave the umbrella

at home and it does not rain. But we would regret carrying the umbrella around if it

does not rain, and we would regret even more not having the umbrella with us when

it rains. We have all made this decision many times in our lives, and did not find it

hard because we thought this particular decision is not significant. However, there are

decisions, such as buying a house or making a major investment in the stock market,

that are of significance to us. In such cases, we want to make rational decisions.

Understanding how to make rational decisions is also important for building intelligent

systems.

Bayesian decision theory provides a framework for rational decision making in the

face of uncertainty. One setup for Bayesian theory consists of a set S of possible states of

the world, a set 0 of possible observations, and a set Qd of decision alternatives. There

is a conditional probability distribution F(ols) describing how likely it is to observe o

when the world is in state s, and there is a prior probability distribution F(s) describing

how likely the world is to be in state s. There is also a utility function 14d, s), which

represents the reward to the decision maker if he chooses the decision alternative d C

and the world is in state & C S. The problem is to decide on a policy , i.e a mapping

Chapter 1. Introduction 7

from 0 to , which dictates the action to take for each observation.

In our example, the possible states of worlds are rain and no-rain. The observa

tions are all the possible forecasts, that is the set {“there is an x percent chance

of precipitation”I x E {0,. .. , 100}}. There are two possible decision alternatives:

take-umbrella or not-take-umbrella. The conditional probability of the forecast that

“there is an x percent chance of precipitation” given rain and the prior proba

bility of rain are to be assessed from our experience. Our utilities could be as shown in

the following table:

rain no-rain

take—umbrella 0 -10

not-take-umbrella -100 0

The problem is to decide whether or not to bring the umbrella in light of the weather

forecast.

The expected utility E6 induced by the policy 6: 0 —+ 1d is defined by

= P(s)F(os)i(6(o),s). (1.1)
sES,oEO

The principle of maximizing the expected utility (von Neumann and Morgenstein 1944,

Savage 1954) states that a rational decision maker choses the policy 6° that satisfies

E30 = max5E3, (1.2)

where the maximization is over all possible policies. The quantity max5E5is called the

optimal expected value of the decision problem.

1.3 Decision analysis

In the setup of Bayesian decision theory given in the previous section, there is only one

decision to make. Applications usually involve more than one decision (e.g. Hosseini

Chapter 1. Introduction 8

1968). This thesis is about how to apply Bayesian decision theory to problems that

involve multiple decisions and multiple variables.

There exist two methodologies that deal with multiple decisions, namely decision

analysis (e.g. Smith 1988) and Markov decision processes (e.g. Denardo 1982). Between

them, decision analysis is more general-purpose. It emphasizes exploring the structures

of complex problems. In a sense, it has a representation advantage. On the other

hand, finite stage Markov decision processes deal with decisions for controlling a dynamic

system (e.g. Bertsekas 1976). This class of multiple-decision problems have relatively

simple structures. Finite stage Markov decision processes emphasize problem solving by

using the technique of dynamic programming. In a sense, they have a computational

advantage.

One goal of this thesis is to combine the representational advantage of decision analysis

and the computational advantage of finite stage Markov decision processes.

This section gives a brief account of decision analysis. A latter section will touch on

finite stage Markov decision processes.

1.3.1 Decision trees

Within decision analysis, there are two frameworks for representing the structures of de

cision problems, namely decision trees (North 1968, Raiffa 1968) and influence diagrams

(Howard and Matheson 1984). Decision trees represent the structure of a decision prob

lem all at one level, while influence diagrams distinguish three levels of specification for

a decision problem.

Consider the following oil wildcatter problem taken from (Raiffa 1968). The oil wild

catter must decide either to drill or not to drill. He is uncertain whether the hole is dry,

wet or soaking. The prior probabilities (obtained from experts) are as follows.

Chapter 1. Introduction 9

dry wet soaking

.500 .300 .200

His utilities are given in the following table.

dry wet soaking

drill -$70,000 $50,000 $200,000

not—drill 0 0 0

At a cost of $10,000, our wildcatter could conduct a test on the seismic structure, which

will disclose whether the terrain below has no structure, closed structure, or open struc

ture. The conditional probabilities of the test result given the states of the hole are given

in the following table.

dry wet soaking

no structure .600 .300 .100

open structure .300 .400 .400

closed structure .100 .300 .500

The problem is whether or not the wildcatter should conduct the test? And whether or

not he should drill?

The decision tree for this problem is shown in Figure 1.2, where rectangles stand for

decision variables and ellipses stand for random variables. The values of the variables and

the corresponding probabilities appear on the edges. The tree is to be read as follows.

If our wildcatter decides not to test, he must make the drill decision based on no

information. If he decides not to drill, that is the end of the story. He does not make

nor lose any money. If he decides to drill, there is a 50 percent chance that the hole is

dry, in which case he loses $70,000; there is a 30 percent chance that the hole is wet, in

Chapter 1. Introduction 10

Figure 1.2: A decision tree for the oil wildcatter problem.

which case he makes $50,000; and there is a 20 percent chance that the hole is soaking,

in which case he makes $200,000.

If he decides to test, there is a 41 percent chance that there turns out to be no seismic

structure. The probability .41 is calculated by using Bayes’ rule from the prior and

conditional probabilities given. If he still decides to drill, there is a 73 percent chance

that the hole is dry, in which case he loses $80,000, for now the test has cost him $10,000

already. Again the probability .73 is calculated by using Bayes’ rule from the prior and

conditional probabilities given. There will be a 22 percent chance that the hole is wet,

in which case he makes $40,000; and there will be only a 5 percent chance that the hole

is soaking, in which case he makes $190,000. And so on and so forth.

An optimal policy and the optimal expected value of a decision tree can be found by

the so-called folding backing strategy (Raiffa 1968, Smith 1987).

yes

—$80

$40

—$80

$40

$190

—$80

$40

$190

no

$0

Chapter 1. Introduction 11

1.3.2 Influence diagrams

Decision trees came into being during the 1930’s and 1940’s (Shafer 1990). They were the

major framework for representing the structure of a decision problem until late seventies

and early eighties, when researchers began to notice the shortcomings of decision trees.

For one thing, decision trees are usually very complicated. According to Smith (1988),

the first thing to do in decision analysis is to find a large piece of paper. A more important

drawback of decision trees include that they are unable to represent independencies.

Influence diagrams were introduced by Howard and Matheson (1984) (see also Miller

et al 1976) to overcome the shortcomings of decision trees. They specify a decision prob

lem in three levels: relation, function, and number. The level of relation indicates that

one variable depends in a general way on others; for example test-result probabilisti

cally depends on test and seismic-structure; and utility deterministically depends

on test, drill and oil-underground. At the level of number, we specify numerical

probabilities for each conditional and unconditional event; and the numerical value of a

variable given the values of the variables it deterministically depends upon. The level

of function describes the form of dependencies, which is useful in arriving at the level of

number. Two examples: profit equals revenue minus cost; if a man is in his thirties, then

the probability distribution of his income is a normal distribution with mean $45,000 and

standard deviation 1000.

Figure 1.3: An influence diagram for the oil wildcatter problem.

Chapter 1. Introduction 12

Figure 1.3 shows the level of relation of the influence diagram for our oil wildcatter

problem. The diagram clearly shows that the test decision is to be made based on no

information, and the drill decision is to be made based on the decision to test and

the test-result. The random variable test—result directly depends on the decision to

test and the seismic-structure, and it is independent of oil-underground given test

and seismic-structure. The random variable seismic-structure directly depends on

oil-underground. Finally, the utility deterministically depends on test, drill, and

oil-underground.

At the level of number, we need to specify the prior probability of oil-underground,

the conditional probability of seismic-structure given oil-underground, and the con

ditional probability of test—result given test and seismic-structure. We need also

to specify the value of Utility for each array of values of test, drill and oil-underground.

In Howard and Matheson (1984), an influence diagram is transformed into a decision

tree in order to be evaluated to find an optimal policy and the optimal expected value.

Shachter (1986) shows that influence diagrams can be directly evaluated.

Before moving on, let us note that variables will be also called nodes when they are

viewed as members of an influence diagram. With that in mind, we can now say that

influence diagrams consists of three types of nodes: decision nodes, random node and a

single value node , where the value node represent utilities.

1.3.3 Representing independencies for random nodes

A quick comparison of the influence diagram in Figure 1.3 with the decision tree in Fig

ure 1.2 should convince the reader that influence diagrams are intuitive, as well as more

compact. They make numerical assessments easier (Howard and Matheson 1984). Fur

thermore, they serve better than decision trees to address the issue of value of information

(Matheson 1990).

Chapter 1. Introduction 13

The most important advantage of influence diagrams over decision trees, however, lies

their ability to represent independencies for random nodes at the level of relation.

This point could be illnstrated by using the oil wildcatter problem. For later conve

nience, consider extending the oil wildcatter problem by considering one more decision —

the decision of determining a oil-sale-policy based on oil quality and market-information.

The influence diagram for this extended oil wildcatter problem is shown in Figure 1.4. By

using the so-called d-separation criterion (Pearl 1988), one can read from the network that

market - information is marginally independent of test, test-result, seismic-structure,

oil-underground, drill, and oil-produced. Also, as mentioned in section 1.3.2,

test-result is independent of oil-underground given test and seismic-structure.

Those marginal and conditional independencies can not be represented in decision trees.

1.4 Constraints on influence diagrams

There are five constraints that one can impose on influence diagrams: namely the acyclic

ity constraint, the regularity constraint, the no-forgetting constraint, the single value

node constraint, and the no-children-to-value-node constraint. Before this thesis, only

influence diagrams that satisfy all those constraints have been studied 2 In this sense,

2With the exception of Tatman and Shacter (1990), who deal with one super value node. A super
value node may consist of many value nodes. See sections 1.5.2 and 1.6.2 for details.

Figure 1.4: An influence diagram for the extended oil wildcatter problem.

Chapter 1. Introduction 14

we say that the five constraints have always been imposed on influence diagrams. From

now on, we always mean an influence diagram that satisfies all those five constraints by

the term “influence diagram”.

The acyclicity constraint requires that an influence diagram does not contain any

directed cycles. The regularity constraint requires that there exists a directed path that

contains all the decision nodes. The no-forgetting constraint requires that each decision

node and its parents be parents to all subsequent decision nodes. The single value node

constraint requires that there be only one value node, and the no-children-to-value-node

constraint requires that the value node have no children.

The regularity constraint is due to the fact that an influence diagram is a repre

sentation of a single agent’s view of the world as relevant to a decision problem. The

no-forgetting constraint is due to the fact that in an influence diagram, arcs into decision

nodes are interpreted as indications solely of information availability. The constraint

follows if the agent does not forget information (Howard and Matheson 1984).

This thesis is about decision networks, a representation framework for multi-decision

problems that is more general than influence diagrams. Syntactically, decision networks

are arrived at by lifting the regularity, no-forgetting, and single value node constraints

from influence diagrams. Semantically, a decision network is a representation of the

view of the world of a group of cooperative agents with a common utility; and in decision

networks, arcs into a decision node indicate both information availability and dependency.

The idea of a representation framework for decision problems free of the regularity

and no-forgetting constraints is not new. Howard and Matheson (1984) have suggested

the possibility of such a framework. The next three sections conduct a close examination

on the reasons for lifting the regularity, no-forgetting, and single value node constraints

from influence diagrams. The reasons arise from decision analysis, from Markov decision

processes.

Chapter 1. Introduction 15

1.5 Lifting constraints: Reasons pertaining to decision analysis

1.5.1 Lifting the no-forgetting constraint

As mentioned in the synopsis, there are three major reasons for lifting the no-forgetting

constraints. The first reason is explained in detail in this subsection. The second and

third reasons will be addressed in the next two subsections.

Semantics for arcs into decision nodes and independencies for decision nodes

The no-forgetting constraint originates from the interpretation of arcs into decision nodes

as indications of only information availability (Howard and Matheson 1984). More specif

ically, there is an arc from a random node r to a decision node d if and only if the value

of r is observed at the time the decision d is to be made. The no-forgetting constraint

is to capture the rationale that people do not destroy information on purpose; thus in

formation available earlier should also be available later (Howard and Matheson 1984,

Shachter 1986).

The primary reason for lifting the no-forgetting constraint is that it does not allow the

representation of conditional independencies for decision uddes. However, there do exist

cases where the decision maker, from her/his knowledge about the decision problem,

is able to tell that a certain decision does not depend on certain pieces of available

information. In our extended oil wildcatter problem, for instance, it is reasonable to

assume that the decision oil—sale—policy is independent of test, test—result, and

drill given oil-produced.

Sometimes independence assumptions for decision nodes are made for the sake of

computational efficiency or even feasibility. In the domain of medical diagnosis and

treatment, for instance, one usually needs to consider a number, say ten, of time points.

To compute the diagnosis and treatment for the last time slice, one needs to consider all

Chapter 1. Introduction 16

the previous nine time points. In the acute abdomen pain example studied by Provan

and Clarke (1993), there are, for each decision node, 6 parent nodes that lie in the same

time slice as the decision node. This means that the decision node at the last time slice

has a total of 69 parents. In the simplest case of all variables being binary, we need to

compute a decision table of 269 entries; an impossible task. The same difficulty exists

for planning under uncertainty (Dean and Wellman 1992). One way to overcome this

difficulty is to approximate the decision problem by assuming that the decision in a time

slice depends only on the previous, say one time slice, and is conditionally independent

of all earlier time points. In this case, the decision table sizes are limited to 2’ = 8192;

still large but manageable.

Independence for decision nodes cannot be represented in influence diagrams. Going

back to our extended oil wildcatter problem, even though we have made the assump

tion that oil-sale-policy is independent of test, test-result, and drill given

oil—produced. But in Figure 1.4 there are still arcs from test, test—result, and

drill to oil—sale—policy.

Following Smith (1988), this thesis reinterprets arcs into decision nodes as indication

of both information availability and (potential) dependency. This new interpretation

enables us to explicitly represent conditional independencies for decision nodes. To be

more specific, the judgement that d is conditionally independent of r can be represented

by simply not drawing an arc from r to d, even when the value of a random node r is

observed at the time the decision d is to be made.

In our example, if we explicitly represent the assumption that oil—sale—policy is

independent of test, test-result, and drill given oil-produced, then the decision

network for the extend oil wildcatter problem becomes the one shown in Figure 1.5. We

notice that there are no arcs from test, test—result, and drill to oil-sale—policy;

the network is simpler than the one in Figure 1.4.

Chapter 1. Introduction 17

Figure 1.5: A decision network for the extended oil wildcatter problem, with indepen
dencies for the decision node oil—sale—policy explicitly represented.

Note that a user may be wrong in assuming that a decision is independent of a certain

piece of information. To prevent such a case from happening, one can run the algorithm

in Chapter 7 to graph-theoretically verify the user’s independence judgements. If the

algorithm is not able to verify, the user should be informed, and the user should abandon

the independence assumption by adding an arc.

Another advantage of the new interpretation of arcs into decision nodes is that it

provides uniform semantics to both arcs into decision nodes and arcs into random nodes;

namely they both indicate dependence. This was first mentioned by Smith (1988).

It is evident that the no-forgetting constraint is not compatible with the new inter

pretation of arcs into decision nodes. It needs to be lifted.

Limited memory

Another reason for lifting the no-forgetting constraint is that the agent, say a robot,

that executes decisions (actions) may have limited memory. There may be cases where

the agent has only a few bits of memory. Even in the case when the agent has a fair

amount of memory, it can not remember things forever. Because if so, the memory

will run out sooner or later. Even if the agent has unlimited memory, remembering too

much information would lead to inefficiency. We human being seem to remember only

Chapter 1. Introduction 18

Figure 1.6: A decision network for the extended oil wildcatter problem with multiple
value nodes. The total utility is the sum of all the four value nodes.

important things.

1.5.2 Lifting the single value node constraint

As pointed out by Tatman and Shachter (1990) and by Shenoy (1992), the total utility

of a decision problem can sometimes be decomposed into several components. In our

extended oil wildcatter problem, for instance, utility can decomposed into the sum

of four components, namely test—cost, drill—cost, sale—cost, and oil—sales. In

such a case, we assign one value node for each component of the total utility, with the

understanding that the total utility is the sum of all the value nodes. Figure 1.6 shows

the resulting decision network after splitting the value node utility in Figure 1.4.

A major advantage of multiple value nodes over a single value node is that multiple

value nodes may reveal independencies for decision nodes that are otherwise hidden. As

the reader will see later in the thesis, there is a way for one to graph-theoretically tell

that in Figure 1.6 oil—sale—policy is independent of test, test-result, and drill

given oil-produced. The same can not be done for the network in Figure 1.4.

In the last subsection, we said that from her/his knowledge about the extended oil

wildcatter problem, the decision maker may be able to say that oil-sale—policy is

independent of test, test-result, and drill given oil-produced. Here we see that

Chapter 1. Introduction 19

when multiple value nodes are introduced, those independencies can actually be read

from the network itself, even if the decision maker fails to explicitly recognize them.

Independence for decision nodes and removable arcs

The next two paragraphs briefly revisit the third reason for lifting the no-forgetting

constraint as listed in the synopsis. In Section 7.1, we shall formally define the concept

of a decision node being independent of a certain parent and prove that when it is the

case, the arc from that parent to the decision node is removable, in the sense that its

removal does not affect the optimal expected value of the decision problem. It is a

good idea to remove such arcs at a preprocessing stage, since it yields simpler diagrams.

However, removing arcs from an influence diagram leads to the violation of the no-

forgetting constraint.

Consider the no-forgetting decision network in Figure 1.6. Since from the network

itself it can be determined that oil—sale—policy is independent of test, test—result,

and drill given oil—produced, the arcs from test, test—result, and drill to oil—sale-policy

are removable. Removing those arcs results in the network in Figure 1.7, which is no

longer no-forgetting. This shows that in order to prune removable arcs from influence

diagrams, we need to consider decision networks that do not satisfy the no-forgetting

constraint.

1.5.3 Lifting the regularity constraint

The regularity constraint requires that there be a total ordering among the decision

nodes. It is also called the single decision maker condition (Howard and Matheson 1984).

When there are more than one decision maker who cooperate to achieve a common goal,

the regularity constraint is no longer appropriate.

Chapter 1. Introduction
20

Figure 1.7: The decision network obtained from the one in Figure 1.6 by deleting some

removable arcs. This network is no longer no-forgetting.

Consider further extending our oil wildcatter problem so that that there is not only

oil but also natural gas. In this case, a gas-sale-policy also needs to be set. Suppose

the company headquarter makes the test and drill decisions, while the oil department

sets the oil—sale—policy and the gas department sets the gas-sale—policy. Then it

is inappropriate to impose an order between oil-sale-policy and gas-sale-policy,

since there is no reason why the gas department (or the oil department) should reach its

decision earlier than the other department. A decision network for the further extended

oil wildcatter problem is shown in Figure 1.8. We notice that there is no ordering between

oil-sale-policy and gas-sale-policy.

Even in the case of one decision maker, the regularity constraint may be over-

restrictive. From her/his knowledge and experience, the decision maker may be able

to conclude that the ordering between two decision nodes is irrelevant; one has the same

optimal expected value either way. In our further extended oil wildcatter problem, it

may be reasonable to assume that it makes no difference whether gas-sale-policy or

oil—sale—policy is set first.

Even when the ordering between two decision matters, the decision maker may not

know the ordering beforehand. Suppose our oil wildcatter determine, on the first day a

every month, the gas-sale-policy and oil-sale-policy for the coming month, based

Chapter 1. Introduction 21

Figure 1.8: A decision network for the further extended oil wildcatter problem. It is not
regular, “forgetting” and has more than one value node.

on the policies for the last month and market information. In this case, we are uncertain

as to which one of those two decisions should be made first.

Let us now briefly revisit the second reason for lifting the no-forgetting constraint

as listed in the synopsis. Together with the regularity constraint, the no-forgetting con

straint says that information available when making an earlier decision should also be

available when making a later decision. In the further extended oil wildcatter problem,

we do not know before hand whether oil-sale-policy comes first or gas-sale-policy

comes first. In such a case, the no-forgetting constraint can not be enforced. This is why

we said in the synopsis that the existence of unordered decisions not only defeats the

regularity constraint, but also the no-forgetting constraint.

1.6 Lifting constraints: Reasons pertaining to MDP’s

Like decision analysis, finite stage Markov decision processes (MDP) are also a model for

applying Bayesian decision theory to solve multiple-decision problems. Recent research

has shown application promise for a combination of MDP’s and influence diagrams in the

Chapter 1. Introduction 22

form of temporal influence diagrams in planning under uncertainty (Dean and Weilman

1991) and in diagnosis and treatment/repair (Provan and Clarke 1993). One goal of this

thesis is to provide a common framework for both of finite stage MDP’s and influence

diagrams. Doing so necessitates the lifting of the no-forgetting and the single value node

constraint.

1.6.1 Finite stage MDP’s

This subsection briefly reviews finite stage MDP’s; and the next subsection will explain

why it is necessary to lift the two constraints.

Finite stage MDP’s are a model for sequential decision making (Puterman 1990,

Denardo 1982, Bertsekas 1976). The model has to do with controlling a dynamic system

over a finite number of time periods. There is a finite set T of time points. At time t,

if the decision maker observes the system in state st E S, s/he must choose an action,

d, from a set of allowable actions at time t, . This choice may also depend all the

previous states of the system. There are two consequences of choosing the action d when

the system is in state s; the decision maker receives an immediate reward vt(st, d) and

the probability distribution P(s+i 1St, d) for the state of the system at the next stage

is determined. The collection {P(st+ilsj,dj)},vt(st,dt)) is called a finite stage

Markov decision process (Puterman 1990). The problem is how to make the choice d

at each time point t so as to maximize the decision maker’s total expected reward. The

function which makes this choice is called decision rule and a sequence of decision rules

is called a policy.

A classic example of finite stage MDP is the problem of inventory control. Consider

a ski retailer (Denardo 1982). From September to February, he makes an order from

the wholesaler at the first day of the month. The amount of the order depends on his

31n general, Qd can vary according to st. Here we assume it does not.

Chapter 1. Introduction 23

current stock. His stock at the beginning of next month depends probabilistically on

his current stock and how large the order is. This conditional (transition) probability

can be estimated since the number of customers who arrive at a service facility during a

period has, typically, a Poisson distribution. The profits our retailer makes during each

month is computed from the number of pairs of skis sold and the difference between the

wholesale and retail prices.

The standard way to find optimal decisions in a finite stage Markov decision process

is by means of dynamic programming. In this approach, one begins with the last period

and works backward to the first period. An optimal policy for the last period is found

by maximizing the reward for that period. Then the whole last period is replaced by one

value node, which is counted as reward in the next last period. This results in a finite

stage MDP with one less period. One keeps repeating the procedure on the new process,

till all the periods have been accounted for. This is very similar to the folding-back

strategy for evaluating decision trees.

For the above model, one can show that an optimal decision rule depends only on the

state st of the dynamic system at time t and is independent of the previous states and

decisions.

1.6.2 Representing finite stage MDP’s

This thesis achieves a common framework for decision analysis and finite stage MDP’s

by representing the MDP’s as decision networks.

Since we have reinterpreted arcs into decision nodes as indications of both information

availability and potential dependency, finite stage MDP’s can be naturally represented

as decision networks. Figure 1.9 (1) depicts a three stage MDP in the graph-theoretical

language of decision networks. We notice that there are no arcs from and d1 to d2

even though s and d1 will be observed at the time the decision d2 is to be made. The

Chapter 1. Introduction 24

Figure 1.9: A three period finite stage MDP.

reason is that the optimal decision rule for 4 is independent of .sl and d1 given

However if we insist, as in influence diagrams, on interpreting arcs into decision nodes

as indications of only information availability, then it is cumbersome to represent finite

stage MDP’s. Figure 1.9 (2) depicts the influence diagram that represents the three

stage MDP (Tatman and Shachter 1990). One can see that there is a number of extra

no-forgetting arcs, namely arcs from and d1 to 4 and 4, and from 2 and 4 to 4.

The presence of those arcs not only complicates the network, but also fails to reflect

one important conclusion of MDP, namely that the current decision is independent of

previous states and decisions given the current state.

Tatman and Shachter’s algorithm is able to detect that 4 does not depend on s

and d1, and that 4 does not depend on i, d1, 2, and 4. So, the extra no-forgetting

arcs makes no difference to the decision problem after all. They were introduced only

because there was no concept of a decision network that does not satisfy the no-forgetting

constraint.

In a finite stage MDP, there is a reward in each period. This can be naturally

(1)

Chapter 1. Introduction 25

represented by assigning one value node for each period, as shown in Figure 1.9 (1).

Note that 83 separates the last period from all the previous periods. If we insist, as in

influence diagrams, on the single value node constraint, then we need to connect v1, v2,

and v3 into a “super node” (Tatman and Shachter 1990), as shown in Figure 1.9 (2). One

notices that no longer 33 separates the last period from all the previous periods. This is

another reason for lifting the single value node constraint.

1.7 Computational merits

The lifting of the no-forgetting, regularity, and single value node constraints allows us

to discover stepwise-decomposable decision networks (SDDN). SDDN’s are more general

than both influence diagrams and finite stage MDP’s. Moreover when evaluating SDDN’s

we can prune removable arcs, while the same cannot be done when evaluating influence

diagrams since pruning arcs leads to the violation of the no-forgetting constraint. To put

it more abstractly, SDDN’s relax constraints imposed by influence diagrams and thus

allow us to apply more techniques in solving a problem, and hence to solve the problem

more efficiently. See Sections 6.5 and 9.6.1.

1.8 Why not lifted earlier

Howard and Matheson (1984) have hinted that in the case of multiple decision mak

ers, the regularity and no-forgetting constraints may be violated. Smith (1987) has also

mentioned that it is possible that a decision maker may choose or be compelled to “for

get”. Yet, no one before has studied decision networks that are not regular and/or are

“forgetting”. Why?

Chapter 1. Introduction 26

Howard and Matheson (1984) deal only with regular and no-forgetting decision net

works (influence diagrams), because for evaluation, decision networks are first trans

formed into decision trees, and the transformation is possible only for regular no-forgetting

decision networks. Even though new algorithms for evaluating influence diagrams have

been developed after Howard and Matheson (1984) (see, for example, Shachter 1986), the

correctness of all those algorithms relies on the regularity and no-forgetting constraints.

This is probably why those constraints have always been imposed on influence diagrams.

In this thesis, we shall show that one can evaluate a decision network, even if it is not

regular and no-forgetting. This opens up the possibility of working with general decision

networks.

1.9 Subclasses of decision networks

The lifting of the no-forgetting, the regularity, and the single value node constraints

from influence diagrams leaves us only with the acyclicity and no-children-to-value-node

constraints. In Chapter 2, we shall argue that those two constraints are fundamental and

can not be lifted.

The acyclicity and no-children-to-value-node constraints define the concept of decision

network. This section previews subclasses of decision networks we will encounter in this

thesis.

Influence diagrams and finite stage MDP’s are two existing subclasses of decision net

works, which have been studied for many years. It is known that both of those subclasses

of decision networks are stepwise-solvable, i.e they can be evaluated by considering one

decision node at a time.

The most important subclass of decision networks introduced in this thesis is stepwise

decomposable decision networks (SDDN). They include both influence diagrams and

Chapter 1. Introduction 27

Figure 1.10: Subclasses of decision networks.

finite stage MDP’s as special cases. See Figure 1.10. SDDN’s are also stepwise-solvable.

As a matter of fact, regular SDDN’s4 are the subclass of decision networks that can

be evaluated by conventional dynamic programming (Denardo 1982, Chapter 9), and

SDDN’s in general constitute the subclass of decision networks that can be evaluated by

non-serial dynamic programming (Bertelè and Brioshi 1972, Chapter 9).

The decision networks that are not stepwise-decomposable can be of various degrees

of decomposability. To evaluate them, one needs to simultaneously consider two or

more decision nodes. The number of decisions one need to consider simultaneously is

determined by the degree by which the network is decomposable. The divide and conquer

strategy spelled out in Chapter 4 can be utilized to explore the decomposability of a given

decision network.

Smooth decision networks are introduced for technical convenience. They are con

ceptually simple and thus easy to manage. They are used extensively in this thesis to

introduce new concepts and to prove theorems. Non-smooth decision networks can be

4To be more precise, the term decision network should be replace by the term decision network
skeleton in this section.

abnegj. noitial
decisiondecision

network. networks

Chapter 1. Introduction 28

be transformed into equivalent smooth decision networks when necessary.

Finally normal decision networks are introduced so that the equivalence between

stepwise-decomposability and stepwise-solvability can be established. We conjecture that

abnormal decision networks can be transformed into equivalent normal decision networks.

1.10 Who would be interested and why

Generally speaking, if you anticipate a solution to your problem by Bayesian decision

theory, you should find this thesis interesting. Because it provides, in a sense, the most

general framework decision networks — for applying Bayesian decision theory. Prob

lems representable as MDP’s can be solved in (stepwise-decomposable) decision networks

in the same way as before. Problems representable in influence diagrams can be solved

in (stepwise-decomposable) decision networks at least as efficiently as, and usually more

efficiently, than in influence diagrams. The reason for this efficiency improvement is that

working with SDDN’s relaxes the constraints imposed by influence diagrams, and allows

one to apply more operations, such as pruning removable arcs, than previously allowed.

If you are a decision analyst, you might appreciate the ability of decision networks

to represent independencies for decision nodes, to accommodate multiple cooperative

decision makers, and to handle multiple value nodes. You might find it a relief that you

do not have to completely order the decision nodes beforehand. Furthermore, you might

appreciate the efficiency and other advantages of our algorithms.

If your problem falls into the category of MDP’s, you might find the concept of

decision networks helpful in assessing the transition probabilities and rewards. In the

ski retailer problem (Section 1.6), many factors may affect the transition probabilities

and rewards, for example deterioration of stock, delivery lag, payment upon delivery by

the retailer and by customers, refusal to enter backlog by customers (Denardo 1982).

Chapter 1. Introduction 29

Within MDP, one needs to figure out the dynamic programming functional equation

for each combination of the factors, which may be complicated. In decision networks,

consideration of one more factor simply corresponds to the addition of one more node.

This allows one to consider more factors than before. The representation advantage of

decision networks may benefit control theory in general.

AT researchers who are concerned with planning, and diagnosis and treatment/repair

should also find this thesis interesting.

Planning is a process of constructing courses of action in response to some objective.

Since the planner might not have complete knowledge about the environment and about

the effects of actions, planning are usually performed under uncertainty. Being a the

ory for rational choice of actions under uncertainty, Bayesian decision theory naturally

comes into play. Preliminary research (Dean and Wellman 1992) has indicated that suc

cessful application of Bayesian decision theory in planning under uncertainty calls for a

framework that combines characteristics of influence diagrams and and those of MDP’s.

Research on diagnosis and treatment (Provan and Clarke 1993) has pointed to the same

direction. The concept of decision network introduced in this thesis may prove to be a

good combination of influence diagrams and MDP’s. Also, the ability of decision net

works to represent conditional independencies for decision nodes may be computationally

essential for those areas.

Chapter 2

Decision networks: the concept

This chapter introduces the concept of decision networks and addresses some of the

foundational issues. Formal definitions will be provided in Chapter 3.

The concept of decision networks is intuitively illustrated through an example in sec

tion 2.1. Section 2.2 exposes the way by which other authors develop the concept of

Bayesian networks from joint probabilities by means of the chain rule of probabilities,

and by using the concept of conditional independencies. Section 2.3 derives the concept

of decision network, through the concept of Bayesian networks, from the Bayesian deci

sion theory setup by considering multiple decision problems. Section 2.4 discusses the

fundamental constraints that decision networks need to satisfy and argues that decision

networks are the most general representation framework for solving multiple-decision

problems in Bayesian decision theory.

2.1 Decision networks intuitively

In this section, we illustrate the concept of decision networks through an example.

Decision networks can be understood at two levels: relation and number. At the

level of relation, decision networks are directed graphs consisting of three types of nodes:

decision nodes, random nodes and value nodes; and they are used to graphically represent

the structures of decision problems. This directed graph is called a decision network

skeleton. Consider the further extended oil wildcatter problem:

30

Chapter 2. Decision networks: the concept 31

Figure 2.11: A decision network skeleton for the extended oil wildcatter problem.

An oil wildcatter is deciding whether or not to drill in a new area. To aid

his decision, he can order a seismic structure test. His decision about drill

will depend on the test results if a test is ordered. If the oil wildcatter does

decide to drill, crude oil and natural gas will be produced. Then, the oil

wildcatter will decide his gas sale policy and oil sale policy on the basis of the

quality and quantity of crude oil and natural gas produced, and on the basis

of market information.

The structures of this decision problem can be represented by the decision network skele

ton shown in Figure 2.111, where decision nodes are drawn as rectangles, random nodes

as ovals, and value nodes as diamonds.

Briefly, here are the semantics of a decision network. Arcs into random nodes indicate

probabilistic dependencies. A random node depends on all its parents, and is independent

1The figure is the same as Figure 1.8. The duplication is to save the reader from flipping back and
forth.

Chapter 2. Decision networks: the concept 32

of all its non-descendants given the values of its parents. In the extended oil wildcatter

problem, test-result, for instance, probabilistically depends on seismic-structure

and the decision to test, but is independent of gas-underground and oil-underground

given seismic-structure and test.

Arcs into decision nodes indicate both information availabilities and functional de

pendencies. In our example, the arc from oil-produced to oil-sale-policy means that

the oil wildcatter will have learned the quantity and quality of crude oil-produced when

he decides his oil-sale-policy, and he thinks that the quantity and quality of oil-

produced should affect his oil-sale-policy. There is no arc from oil-underground to

oil-sale-policy because information about oil-underground is not directly available.

There is no arc from test-result to oil-sale-policy, because the oil wildcatter figures

that the information about the test-result should not affect his oil-sale-policy since

that he will already have learned the quality and quantity of crude oil-produced at the

time the policy is to be made.

Arcs into value nodes indicate functional dependencies. A value node is characterized

by a function of its parents; the function take real number values, which represent the

decision maker’s utilities. In the extended oil wildcatter problem, oil-sales is a function

of oil-produced, oil-market and oil-sale-policy. It depends on no other nodes. For

each possible values of oil-produced, of oil-market, and of oil-sale-policy, the value

of this function stands for the corresponding expected oil-sales. The total utility is the

sum of all the value nodes; namely the sum of test-cost, drill-cost, oil-sale and

gas-sale.

At the level of number, a decision network specifies a frame, i.e a set of possible

values, for each variable. For example, the frame of drill my be {YES, NO}, and the

frame of oil—sales may be the set of real numbers.

There is also a conditional probability for each random node given its parents and prior

Chapter 2. Decision networks: the concept 33

probability of each random node that does not have any parents. In our example, we need

to specify, for instance, P(oil-uriderground), P(oil-produced I oil-underground), and

etc.

Further, we need to specify a utility function for each value node. In our example,

the utility function for oil—sales is a real function of oil—produced, oil—market, and

oil—sale—policy.

In summary, a decision network consist of (1) a skeleton which is an directed graph

with three type of nodes, (2) a frame for each node, (3) a conditional probability for each

random node, and (4) a utility or value function for each value node.

In a decision network, the decision about a decision node is made knowing the values

of the parents of the node. Optimal decisions are decisions that maximize the expected

total utility. The goals of decision analysis are to find the optimal decisions and to

determine the optimal expected total utility.

2.1.1 A note

Note that the term “decision network” has been previously used in Hastings and Mello

(1977). The meaning of the term in this thesis is different. In this thesis, the nodes in

a decision network are variables, while nodes in a Hastings and Mello decision network

are states, or values of variables. In a sense, one can say that we are working at a higher

level of abstraction than Hastings and Mello. The relationship between our decision

networks and Hastings and Mello’s decision networks is the same as the relationship

between influence diagrams and decision trees.

As observed by Smith et al (1993), influence diagrams gain much of their advantages

over decision trees from the fact that they graphically capture conditional independencies

at the level of relation (among variables). The same can be said for our decision networks

and Hastings and Mello’s decision networks. As the reader will see, the efficiency of our

Chapter 2. Decision networks: the concept 34

algorithms heavily depends on the fact that nodes in our decision networks are variables,

instead of values of variables.

2.2 Bayesian networks

One way to understand decision networks is to think of them as developed from the

standard Bayesian decision theory setup. We shall explain this in the next section.

As a preparation, this section develops the concept of Bayesian networks from joint

probabilities by means of the chain rule of probabilities and the concept of conditional

independency (Howard and Matheson 1984, Pearl 1988).

Let X be a set of random variables. Let P(X) be the joint probability of the variables

in X. It is usually difficult, if possible at all, to assess the joint probability directly. One

way to assess the joint probability indirectly is first to choose an ordering over the variable

set X, say x1, x2, ..., x, then to expand the joint probability by the chain rule as follows:

x2,. . . , x,) = P(xi)P(x2lxi) . . . P(xxi,. . . , xfl..1). (2.3)

We shall refer to the ordering as an expansion ordering . Because of equation (2.3),

to assess the joint probability P(X), it suffices to assess F(x:Ixi,. . . , x..i) for each

i{1,...,n}.

Often a decision maker is able to determine a proper subset 7rr of {x1,.. . , x_} that

are “directly related” to x such that other variables in {xi, . . . ,x_1} are only “indirectly

related” to x via Translating into the language of the probability theory, this means

that x is independent of other variables in {x1,...
,
x} given ir. Formally that is

P(xx1,. . .,x_1)= P(xIir). (2.4)

This equation further reduces the assessment task.

Chapter 2. Decision networks: the concept 35

tariperin fire

(1)

Figure 2.12: Two Bayesian networks for the joint probability
P(alarm, fire, tampering, smoke, leaving).

Given an expansion ordering x1,.. . , x and the irs, we construct a directed graph

by the following rule:

For any x and x, draw an arc from x to x2 if and only if xEir.

The acyclic directed graph such constructed, together with the conditional probabilities

P(xIir), is called a Bayesian network for the joint probability P(X).

As an example, consider the following decision scenario which is borrowed from (Poole

and Neufeld 1991). The scenario involves five variables: alarm, fire, tampering, smoke,

and leaving, denoting respectively the following propositions: the alarm is on, there

is a fire, somebody is tampering; there is smoke and people are leaving. An expansion

ordering for the joint probability P(alarm, fire, tampering, smoke, leaving) could be

(fire, tampering, alarm, leaving, smoke). Suppose it is reasonable to set7rtajnperjng =

0, = {fire,tampering}, irleaving = {alarin}, and 7rsmoke = {fire}. Then we get

the Bayesian network shown in Figure 2.12 (1). Another expansion ordering could be

(leaving, alarm, smoke, fire, tampering). Suppose it is reasonable to set ira1m

{ leaving}, lrsmoke = {alarm}, ir ire = {alariu, smoke}, and irtampering = {f ire, alarin}.

Then we get the Bayesian network shown in Figure 2.12 (2). This network has more arcs

than the one in (1).

(2)

Chapter 2. Decision networks: the concept 36

How should one choose an expansion ordering? The answer provided by Howard

and Matheson (1984) is that the ordering should be chosen such that the decision

maker would feel natural and comfortable in assessing the 7r1’s and the P(x[7r)’s.

For example, it probably is easier to assess P(alarmfire,tampering) than to assess

P(tauiperingfire, alarm). Smith (1989) says that one should choose the ordering to

minimize the number of arcs in the resulting directed graph. In our example, the net

work in Figure 2.12 (1) is preferred to the network in (2). Pearl (1988, pp. 50-51) claims

that when there are cause-effect relationships among the variables, the structure of a

Bayesian network can be directly determined from the cause-effect relationships. For

example, tampering and fire cause alarm, fire causes smoke, alarm causes leaving.

2.3 Decision networks

In this section, decision networks are developed as a way to represent of the knowledge

(beliefs) and utilities that are needed in order to solve multiple-decision problems in

Bayesian decision theory. Let us begin with a standard setup of Bayesian decision theory.

2.3.1 A general setup of Bayesian decision theory

Here is a setup of Bayesian decision theory (Gärdenfors et al 1988b, Fishburn 1988) that

is more general than the one given in Section 1.2:

1. There is a set X of (random and decision) variables, which are relevant to a decision

problem;

2. there is a set L of policies and for each possible policy 6e, there is a corresponding

probability Ps(X);

Chapter 2. Decision networks: the concept 37

3. and there is a utility function (X), which specifies the decision maker’s preferences

about the possible states of affairs.

The problem is to decide on a policy 6° that maximizes the expected utility, that is

Pso(X)1u(X) = maxô{Pô(X)1i(X)}, (2.5)
x x

where Zx means summation over all the possible values of X.

The setup given in Section 1.2 can be fitted into the setup given here by letting

X = {o,s,d}, and for each policy 6: O—*Zd setting

F(s)P(ols) if d = 6(o)
P5(o,s,d) = (2.6)

otherwise

In equation (2.5), summation is used instead of integration because we deal only with

discrete variables in this thesis. However, most of our results can be easily extended to

the case of continuous variables.

2.3.2 Multiple-decision problems

In applications, the decision maker usually needs to set the values for a number of vari

ables d1, ..., dk. Let OBS(d) denote the set of all the variables whose values will be

observed by the decision maker at the time of decision d is to be made.

Sometimes, as in MDP’s, the decision maker is able to qualitatively tell that some

of those observed variables are irrelevant to d. On other occasions, the decision maker

may be forced, for instance by computational complexity, to approximate the world by

by making such irrelevance assumptions. Let ir be a subset of OBS(d), such that the

variables in OBS(d) — ir. are, according to the decision maker, irrelevant to the decision

d given r.

Chapter 2. Decision networks: the concept 38

Before one can solve a problem, one needs first to clearly state the problem. The

concept of multiple-decision problems is introduced as a way to pose a decision problem.

A multiple-decision problem is a set V = {< > 1 i k}, where the d1’s are

decision variables and for each i, is the set of variables depending upon whose values

the decision maker is to choose a value for d1.

The further extended oil wildcatter problem (Figure 2.11) is a multiple-decision prob

lem. The decision maker needs to decide on a value for each of the following vari

ables: test, drill, gas-sale-policy, and oil-sale-policy. The r0’s are as follows:

est = , riii = {test-result}, 7tassa1epo1icy = {gas-produced, gas—market},

and 7ti1_saie_po1icy = { oil—produced, oil—market }.
Given a multiple-decision problem V, define a partial ordering among its variables as

follows: for any two variables x and y, we say that x precedes y if xE7r, or if there is

another variable z such that xEir and z precedes y.

The fundamental constraint that a multi-decision problem must obey is the so-called

acyclicity constraint, which require that there do not exist two variables x and y such that

both x precedes y and y precedes x. The reason for this constraint is that the precedence

relationship defined above implies time precedence. More explicitly, if x precedes y, then

the value of x is observed or determined before the value of y.

2.3.3 Technical preparations

Given a multiple decision problem V, let X be the set of all the variables in V and other

variables that are relevant to the problem. For the further extended oil wildcatter prob

lem, X also contains oil-underground, gas-underground, and seismic-structure in

addition to the variables appeared in the problem statement, namely test, drill, gas

sale-policy, oil-sale-policy, test-result, gas-produced, gas-market, oil-produced,

and oil-market.

Chapter 2. Decision networks: the concept 39

For any variable xEX, let ! be the frame of x, i.e. the set of all possible values of

x. For any subset B X, let fZB = lJaEB Zr.

To determine a value for d based on the values of the variables in is to choose a

function 6: : —* c. Such a function is called a decision function (table) for d:. Let

L, denote the set of all the decision functions for d. The policy space is the Cartesian

product L = fl An element of L is called a policy.

2.3.4 Deriving the concept of decision networks

One needs to have the necessary knowledge to solve a problem. This subsection develops

decision networks as a framework for specifying the knowledge (beliefs) and utilities that

are required in order to solve a multiple-decision problem.

If the decision maker wants to solve a multiple-decision problem V in the setup given

in Subsection 2.3.1, then s/he needs, according to the second item of the setup, to come

up with a probability Ps(X) for each policy 6. When obtained, P5 would contain more

information than is conveyed by V and 6. The portion of information conveyed by P5

that is not conveyed by V and 6 should originate from the decision maker’s knowledge

and beliefs about the uncertainties involved in the decision situation. Equipped with

Bayesian networks, we are able to explicitly spell out this portion of information, as

demonstrated in the following.

Assume P5(X) were somehow obtained. An expansion ordering for P5(X) conforms

to V if for each clj, variables in precede d in the ordering. One can easily verify that

such an ordering is possible since V must be acyclic.

Given an expansion ordering p: x1, ..., x that conforms to V, we could, as in the

previous section, expand P5(X), determine the 7rr’s, and construct a Bayesian network.

Denoted by .iV5, this Bayesian network would contain the following information:

Chapter 2. Decision networks: the concept 40

1. For each decision node d, the conditional probabilityP6(dI?rd) and the fact that

(Facti:) d is independent of all the variables that come before d in p given the

variables in 7rd; and

2. for each random node c, the conditional probability P5(cr) and the fact that

(Fact2:) c is independent of all the variables that come before c in p given the

variables in 7r.

Since 7rd and have the same semantics, we have 7rz,=ir.. Hence Facti would have

come from the problem statement V; and the conditional probability Fs(dI7rd1)would

have come from the policy 6.

One the other hand, Fact2 and the conditional probability Fs(cIir) do not follow from

either V or 6, and hence must have come from the decision maker. They represent the

decision maker’s knowledge and beliefs about the uncertainties involved in the decision

situation and need to be elicited before the decision problem V can be solved in Bayesian

decision theory.

We now turn to utility. According to item 3 in the setup of Subsection 2.3.1, the

decision maker needs also to express his preferences about the possible state of affairs by

a utility function 1z(X). 1z(X) can sometimes be decomposed into the sum of a number

of components, each of which depends only on a number of variables. Suppose t(X)

decomposes into m components pi(Zi) + ... + gUm(Zm), where Z: is the set of variable

of which ,u depends upon. Introduce a value variable v for each ,ij, and attach v to

the Bayesian network .iV5 by drawing arcs from each of the variables of Z1 to v. In the

following, we shall write Z as and t(Z) as

To summarize the discussions above and in Subsection 2.3.2, the decision maker needs

to do the following in order to solve a multiple-decision problem in Bayesian decision

theory:

Chapter 2. Decision networks: the concept 41

1. specify the decision variables whose values are to be to determined, and the random

variables and value variables that are related to those decision variables;

2. for each decision variable d, specify the set of observed variables whose values

are relevant to cli,

3. determine an ordering p among all the variables such that p conforms to the problem

statement {< d, ir > }. Let p[< xl denote the set of nodes that come before x

in the ordering p.

4. for each random variable c, specify a subset 7r of p[< c] such that c is P(clp[< c]) =

P(cr), and specify the conditional probability P(cIr);

5. for each value variable v, specify the subset i, of variables in p[< v] that v depends

upon and specify the utility function ,u (ir).

We call the collection of all the information specified in items 1, 2, 4, and 5 a decision

network . Thus, a decision network represents the decision maker’s knowledge (beliefs)

and preferences (utilities) that are needed in order to solve a multiple-decision problem in

Bayesian decision theory. The ordering p is not included as part of the decision network

because it can be arbitrary as long as it conforms to {< d, ir > Ii}
Smith (1989) presents a way of developing the concept of influence diagrams (decision

networks) in terms of the so-called third part semantics. In this section, the concept of

decision networks has been developed directly from a standard setup of Bayesian decision

theory without using the third part semantics.

2.3.5 An example

As an example, consider a decision scenario where a decision maker needs to decide

whether to bring-umbrella in light of weather forecast. An additional variable, rain,

Chapter 2. Decision networks: the concept 42

urbj

(1) (2)

Figure 2.13: Two decision networks for the rain-and-umbrella problem.

which takes the value “yes” if it does turn out to rain and “no” otherwise, is believed

to be relevant to the decision and hence is included in our analysis. For each decision

function 6 : fforecast “ bring—uinbre11a, the decision maker needs to come up with a

joint probabilityP3(rain, forecast, bring — umbrella). The expansion ordering rain,

forecast, bring-umbrella conforms to the decision problem. If the decision maker’s

utility — satisfaction — is a function of rain and bring—umbrella, then the decision

network is as shown in Figure 2.13 (1). To complete the specification of this network, one

needs to assess the prior probability of rain and the conditional probability for forecast

given rain. One also needs to assess the utility function.

The expansion ordering forecast, rain, bring-umbrella also conforms to the deci

sion problem. It gives rise to the decision network shown on Figure 2.13 (2). The reader

will see later that one can go between those two networks by reversing the arc between

forecast and rain using Bayes’ theorem (see Howard and Matheson 1984 and Section

5.5).

2.4 Fundamental constraints

In the introduction we have seen that among the five constraints that define influence di

agrams, the regularity, the no-forgetting, and the single value node constraints should be

lifted. This short section considers the remaining two constraints, namely the acyclicity

Chapter 2. Decision networks: the concept 43

and the no-children-to-value-node constraints.

In the derivation of decision networks in the previous section, we first had a Bayesian

network iV3 consisting of decision and random nodes. Then each value node v was

attached to .iV by drawing arc from those nodes in .iV that v depends upon. Thus, the

value nodes do not have children. In other words, decision networks always satisfy the

no-children-to-value-node constraint.

There is one issue that needs to be addressed. In the last section, we have assumed

the set of value nodes does not intersect with the set of random and decision nodes. This

may not be the case sometimes; there may be nodes that are value nodes and decision

or random nodes at the same time. For example, the amount of money x one spends

the next month is a value variable. In the meantime, x is also a decision variable, and

it affects how much one will be willing to spend the month after. In such a case, we

will have two copies of x: one copy xd functions as a decision node, while the other x

functions as a value node. Since Xj is a decision node, one can set its value at his will

and this value affects later decisions. On the other hand, the value node x depends

on xd and it does not affect any other nodes. By appropriately introducing copies of

variables, we can always ensure that the set of value nodes does not intersect with the

set of random and decision nodes.

We now turn to consider the acyclicity constraint. Decision networks must always be

acyclic because multiple-decision problems are acyclic (subsection 2.3.2) and Bayesian

networks acyclic. In the derivation of the last section, we began with a joint probability

P3(X) which one must have in order to solve the multiple-decision problem V in Bayesian

decision theory. Because V is acyclic, we were able to have an expansion ordering p for

P5(X) that conforms to V. The ordering p led to a Bayesian network)s. For any arc

x—*y in the Bayesian network, x comes earlier than y in the ordering p. Therefore

must be acyclic. A decision network was obtained from by adding value nodes. Since

Chapter 2. Decision networks: the concept 44

the value nodes do not have any children, the decision network must also be acyclic.

The acyclicity and the no-children-to-value-node constraints are the only two con

straints we impose on decision networks. We have just argued that those two constraints

are fundamental and are indispensable to decision networks. In this sense, we say that

decision networks are the most general representation framework for solving multiple

decision problems in Bayesian decision theory.

Chapter 3

Decision networks: formal definitions

The previous chapter has introduced the concept of decision networks. This chapter

gives the exact definitions. We first formally define Bayesian networks (Section 3.1) and

give two properties of Bayesian networks that will be useful later in a number of places

(Section 3.2). Then we present the formal definitions of decision networks and of their

evaluation (Section 3.3). A naive algorithm for evaluating decision networks is provided

in Section 3.4. This algorithm is very inefficient because it simultaneously considers all

the decision nodes. A decision network is stepwise-solvable if it can be evaluated by

considering one decision node at a time (Section 3.5). Obviously, stepwise-solvability is

a desirable computational property. In the next three chapters, we shall discuss when

a decision network is stepwise-solvable and how to evaluate a stepwise-solvable decision

network. For that purpose, we need the auxiliary concept of semi-decision networks

(Section 3.6).

Starting from this chapter, we shall introduce various mathematical symbols. To help

the reader to keep track of them, we have listed all the major symbols at the beginning

of the thesis.

3.1 Formal definition of Bayesian networks

Before getting started, let us note that in this thesis, standard graph theory terms such

as acyclic directed graphs, parents (direct predecessors), children (direct successors),

predecessors, descendants (successors), leaves (nodes with no children), and roots (nodes

45

Chapter 3. Decision networks: formal definitions 46

Figure 3.14: Bayesian network and irrelevant variables.

with no parents) will be used without giving the definitions. The reader is directed to

Lauritzen et al (1990) for exact definitions. We shall use w to denote the set of parents

of a node x in a directed graph.

A Bayesian network1 (Pearl 1988) .4’ is a triplet Al = (X, A,?), where

1. X is a set of random nodes (variables); each xEX has a frame Q — the set of

possible values of x;

2. A is a set of arcs over X such that (X, A) is an acyclic directed graph; and

3. 2 is a set {F(xIir)Ix C X}2 of conditional probabilities of the variables given their

respective parents3.

Figure 3.14 show a simple Bayesian network neti with seven variables a, b, c, d, e,

f, and g. The network contains the following prior and conditional probabilities: F(a),

F(f Ia), F(bla), F(clb), F(dIb), F(elc,d), and F(gif,e).

networks are also known as belief networks, Bayesian belief networks, and probabilistic
influence diagrams.

2A conditional probability F(xIir) is a mapping P(xI7r) {}u7 —. [0, 1] such that
wEfl P(x=wir=j3) = 1 for each value fi of ir2,.
3When x is a root, 7r is empty. When it is the case, F(x17r3,) stands for thç prior probability of x.

neti net2 net)

Chapter 3. Decision networks: formal definitions 47

The prior joint probabilityP1r(X)4 of a Bayesian network .V = (X, A, 2) is defined

by

PAr(X) = H F(xir). (3.7)
rEX

In words, 1(X) is the pointwise multiplication of all the conditional probabilities in iV.

For any subset B X, the marginal probability P(B) is defined by

P(B) = P(X), (3.8)
X-B

where Zx —B means summation over all. the possible values of the variables in the set

X-B.

A note about notation usage: In equation (3.7) the range of the multiplication is spec

ified by the sign “e”; xEX means x ranges over X. In equation (3.8) there is no “e” sign.

As a convention, we use X—B P(X) as an abbreviation of
BEB P(wB,ix_B),

where wx_B stands for a general member of cZX_B, WB stands for a general member

of fZB, and (WB, wX -B) is thus a general member of x• We shall always follow this

convention about notation usage throughout this thesis.

For any two subsets B1,B2 Y of variables, the conditional probability P(B1IB2)is

a function that satisfies

P(B1=/31,B2=32)=P(B2=/2)P(Bi=/3iIB2=/32)V/31EB1,V/32EB2. (3.9)

For technical convenience, we also introduce the auxiliary concept of semi-Bayesian

networks. A semi-Bayesian network is a Bayesian network except that the prior prob

abilities of some of the root nodes are missing. More precisely, a semi-Bayesian net

work is a quadruplet Al = (X, A, P IS), where (X, A) is a acyclic directed graph, P =

{F(xI7r)IxEX—S} is set of conditional probabilities, and S is the set of root nodes whose

prior probabilities are missing.

4A function from f2x to [0, 1].

Chapter 3. Decision networks: formal definitions 48

It follows from the definition that Bayesian networks are semi-Bayesian networks.

As in Bayesian networks, we can define Pg(X) as follows,

P(X)
= fJ P(xr). (3.10)

Unlike in Bayesian networks, here P(X) usually is not a probability; it may not sum

to one. Thus, it is called the prior joint potential instead of the prior joint probability.

Marginal and conditional potentials can be defined from the joint potential in the same

way as marginal probabilities are defined from joint probabilities.

Note that since there are no arcs from X—S to S, the prior joint potential P#(X) is

nothing but the conditional probability of the variables in X—S given variables in S. For

example, net3 in Figure 3.14 is a not Bayesian network if we have only P(clb), P(dlb), and

P(ec, d) but not P(b). In this case, net3 is a semi-Bayesian network. The multiplication

of all the conditional probabilities yields the conditional probability P(c, d, eb).

3.2 Variables irrelevant to a query

Given a (semi-)Bayesian network ./V, one can pose a query ?P(BiIB2). It is often pos

sible to graphically identify certain variables being irrelevant to the query ?PAr(Bl B2).

This issue is addressed in Geiger et al (1990), Lauritzen et al (1990), and Baker and Boult

(1990). The materials in the reminder of this section are extracted from those papers.

To remove a node x from a semi-Bayesian network .A[= (X, A, PS) is to: (1) remove

x from X, (2) remove from A all the arcs that contain x, (3) remove from P all the items

that involve x, and (4) those nodes that were not roots and become roots because of the

removal are added to S.

We notice that removing a node from a Bayesian network may create root nodes

which do not have prior probabilities. This is why we need the concept of semi-Bayesian

network.

Chapter 3. Decision networks: formal definitions 49

A leaf node is barren w.r.t a query ?PK(BlB2),if it is not in B1UB2. In neti (Figure

3.14), g is barren w.r.t ?Pneji(elb). The following proposition says that if a leaf node

is barren w.r.t a query, then it is irrelevant to the query, and hence can be harmlessly

removed.

Lemma 3.1 Suppose Al is a semi-Bayesian network, and x is a leaf node. Let Al’ be

the semi-Bayesian network obtained from Al by removing x. If x is barren w.r.t to the

query ?P.,(BiB2), then

PAr(B1IB2)= P’(BiIB2). (3.11)

Consider computing Fneti(elb). The node g is barren w.r.t the query and hence

irrelevant. According to Lemma 3.1, g can be harmlessly removed. This creates a new

barren node f. After the removal of g and f, neti becomes net2. Thus the query

?Fneti(eb) is reduced to the query ?Pt2(eIb = b0).

Let An(B1UB2)be the ancestral set ofB1UB2,i.e the set of nodes in B1UB2 and the

ancestors of those nodes. By repeatedly applying Lemma 3.1, we get

Proposition 3.1 All the nodes outside An(B1UB2)are irrelevant to the query ?P(B1IB2).

Let G = (X, A) be a directed graph. An arc from x to y is written as an ordered pair

(x, y). The moral graph m(G) of G is an undirected graph m(G) = (X, E) whose edge

set E is given by

B = {{x,y}(x,y) or (y,x) E A, or z such that (x,z) and (y,z) E A}.

In words, {x, y} is an edge in the moral graph if either there is an arc between the two

vertices or they share a common child. The term moral graph was chosen because two

nodes with a common child are “married” into an edge (Lauritzen and Spiegehalter 1988).

Chapter 3. Decision networks: formal definitions 50

In an undirected graph, two nodes x and y are separated by a set of nodes S if every

path connecting them contains at least one node in S. In a directed graph C, x and y

are rn-separated by S if they are separated by S in the moral graph m(G)5. Note that

any node set separates itself from any other set.

Proposition 3.2 Suppose .iV is a semi-Bayesian network. Let IV’ be the serni-Bayesian

network obtained from J’f by removing all the nodes that are not in B2 and are rn-separated

from B1 by B2. Then

PAr(BlB2)= Pp(BiB2). (3.12)

In our example, since a is rn-separated from e by b in net2, the query can be further

reduced to Fne,a(eIb). Note that a is not rn-separated from e by bin net 1.

It can be proved (Lauritzen et al 1990 and Geiger et al 1990) that all the nodes

irrelevant to a query ?Pj(Bi 1B2) can be recognized and removed by applying Proposition

3.1 and Proposition 3.2.

3.3 Formal definitions of decision networks

A decision network skeleton is an acyclic directed graph K = (Y A), which consists of

three types of nodes: random nodes, decision nodes, and values nodes; and where the

value nodes have no children.

A decision network skeleton describes a decision problem at the level of relation. It

contains the set of parents lrd for each decision node d, the set of parents 7r for each

random nodes, and the set of parents ir for each value nodes. See Subsection 2.3.4.

A decision network iV is a quadruplet .V=(Y A, 2, F) where

5To relate rn-separation to d-separation (Pearl 1988), Lauritzen et al (1990) have shown that S
d-separates B1 and B2 if and only if S rn-separates B1 and B2 in the ancestral set An(B1USUB2).

Chapter 3. Decision networks: formal definitions 51

1. (Y, A) is a decision network skeleton. Let us use C to denote the set of random

nodes, D to denote the set of decision nodes, and V to denote the set of value

nodes.

2. Each yeY has a frame , — the set of possible values of y.

3. P is a set {P(cr)IcEC} of conditional probabilities of the random nodes given

their respective parents.

4. F is a set {, : fZ—R1IveV} of value (utility) functions for the value nodes,

where R1 stands for the real line.

A decision network is obtained from a decision network skeleton by providing nu

merical information, i.e by specifying a frame for each variable, providing a conditional

probability of each random node, and a value function for each value node. We say that

(Y, A, P, F) is a decision network over the skeleton (Y A) , and that (}‘ A) is the skeleton

of the decision network (Y A, 7’, F).

A decision function (table) for a decision node d is a mapping S —f

The decision function space LS., for d1 is the set of all the decision functions for d1. Let

D = {d1,. . . , dk} be the set of all the decision nodes. The Cartesian product L fl /

is called the policy space for .iV, and a member S=(S, . . . , dk) E L is called a policy

Note that while a decision function S is a function, a policy S is a vector of decision

functions.

The relationship between a decision node d and its parents 1rd ‘as indicated by a

decision function S : —f ftj is equivalent to the relationship as represented by the

conditional probability P (d 1rd) given by

(i if &(i3)=c
PS:(di=aIrdg=/3) = (3.13)

I. 0 otherwise,

Chapter 3. Decision networks: formal definitions 52

for all cEfd, and/9Ed.

Since 6=(6,.. . , Sk), we sometimes writeP5(dj7rd) for F6(dj-d). Because of equation

(3.13), we will abuse the symbol 6 by letting it also denote the set {P6(dIird)Idj€D} of

conditional probabilities of the decision nodes.

In a decision network .‘V=(Y, A, P, :F), let X=CUD. Let Ax be the set of all the

arcs of A that lie completely in X. Then the triplet (X, A, PUS) is a Bayesian network,

where S denotes a set of conditional probabilities of the decision nodes. We shall refer to

this Bayesian network the Bayesian network induced from ./V by the policy 6, and write

it as jV. The prior joint probability P5(X) of .iV5 is given by

F5(X) = JJ F(xIr) [J Ps(xIir). (3.14)
rEC ED

We shall refer to P3(X) as the joint probability over X induced by S

Because the value nodes do not have children, for any value node v, 7r contains no

value nodes. Hence The expectation Es[v] of the value function (ir) of v under

P3 is given by

Es[v] =
x

= (3.15)

The expected value E3[] of .JV under the policy S is defined by

Es[V] = Es[vJ (3.16)
VEV

= P5(X)E/V(7rV). (3.17)
X vEV

Let us point it out again that and Zx mean summation over all the possible values

of and X respectively, while means summation over the set V. See Section 3.1

for a note about notation usage.

Chapter 3. Decision networks: formal definitions 53

The optimal expected value E[J’/] of .,V is defined by

E[.A/] = maxoEE6[.A/]. (3.18)

The optimal value of a decision network that does not have any value nodes is zero. An

optimal policy 5°=(Sç,.. .
, 6) is one that satisfies

E50[V] = E[A/]. (3.19)

We call an optimal decision function (table) of d. For a decision network that does

not have any value nodes, all policies are optimal.

In this thesis, we shall only consider variables with finite frames. Hence there are only

finitely many possible policies. Consequently, there always exists at least one optimal

policy.

To evaluate a decision network is to

1. find an optimal policy, and

2. find the optimal expected value.

3.4 A naive algorithm

A straightforward approach to the evaluation of decision networks is to simply follow

the definitions of optimal policy and of optimal expected value, and exhaustively search

through the policy space /1 This idea is made explicit by the following algorithm.

Procedure NAIVE-EVALUATE:

• Input: .iV a decision network.

• Output: An optimal policy and the optimal expected value of A/.

Chapter 3. Decision networks: formal definitions 54

Let z be the policy space of Al.

1. Pick one policy from L and denoted it by 6°. Set /. =

2. Compute E50[A’].

3. While L 0, do

• Pick one policy from z and denoted if by 6. Set =

• Compute E6 [V].

• If Es[.iV] > E30[.Vj, set 80 = 6.

end-while

4. Output 60 and Eso[JV1.

Though simple, this naive algorithm is very inefficient. The main reason is that it

simultaneously considers all the decision nodes. This results in an exhaustive search

through the policy space , which can be computationally prohibitive. Suppose there

are k decision nodes, each has 1 parents, and suppose all the variables are binary. Then

for each decision node d, the cardinality of fZd is 2’; hence there are
2(2i)

possible decision

functions for d. Consequently there are (2(21))1v policies in Zi. The procedure NAIVE-

EVALUATE computes the expected value of Jl for each of the (2(2))/ policies!

There are decision networks whose evaluation necessitates simultaneous considera

tion of all the decision nodes. As an example, consider the decision network (skeleton)

in Figure 3.15. Enemy movements may be observed by both agenti and agent2. An

agent decides whether or not to report enemy movements according to the instructions

established beforehand by the intelligence office. If an agent reports, there is a chance

that s/he may be exposed.

Chapter 3. Decision networks: formal definitions 55

Figure 3.15: A decision network whose evaluation may require simultaneous consideration
of all the decision nodes.

For the sake of illustration, assume all the variables either take the value YES or

NC, except for the variable value, which takes real numbers. To complete the speci

fication, we need to give the following (conditional) probabilities: P(enemy-movement),

P(observed-by-agentl lenemy-movement), P(observed-by-agent2 I enemy-movement),

P(agentl-exposedlagent 1-reports), and P(agent2-exposedlagent2-reports). We

need also to give value function Lv&iue(enemym0vement, agent 1-exposed, agent2-exposed).

There are four possible instructions (decision functions) for agentl:

1. If observed-by-agent 1 =YES, then agent 1 -report s=YES;

If observed-by-agentl=NO, then agentl-reports=YES.

2. If observed-by-agent 1=YES, then agent 1-reports=YES;

If observed-by-agent i=NO, then agent 1-reports=NO.

3. If observed-by-agent 1=YES, then agent 1-report s=NO;

If observed-by-agentl=NO, then agentl-reports=YES.

Chapter 3. Decision networks: formal definitions 56

4. If observed-by-agent i=YES, then agent 1-report s=NO;

If observed-by-agent i=NO, then agent 1-report s=NO.

Similarly, there are four possible instructions for agent2. The policies (instructions

for both agents) for the problem are given as follows:

1. If observed-by--agentl=YES, then agentl-reports=YES;

If observed-by-agentl=NO, then agentl-reports=YES.

and

If obs erved-by-agent2=YES, then agent 2-report s=YES;

If observed-by-agent2=NO, then agent2-reports=YES.

2. If observed-by-agent i=YES, then agent 1-report s=YES;

If observed-by-agentl=NO, then agentl-reports=NO.

and

If observed-by-agent2YES, then agent2-reports=YES;

If observed-by-agent2=NO, then agent2-reports=YES.

3. and so on

One can easily see that the policy space consist of (2(2’))2 = 4 * 4 = 16 possible policies.

In assessing his utilities, the intelligence office needs to keep both agents in mind. For

example, it may be the case that information about an particular enemy movement is

important enought to risk one agent but not both. The instructions for such a situation

should allow one and only one agent to report. The instructions can require, for instance,

agenti to report when the information is deemed important enough to risk one agent,

and require agent2 to report only when the information is deemed important enough to

risk both agents. Such instructions can be arrived at only by considering the two agents

Chapter 3. Decision networks: formal definitions 57

simultaneously. In Chapter 8, we shall formally prove that with appropriate probabilities

and value functions, optimal policies for the decision network in Figure 3.15 can be found

only by considering the two decisions at the same time.

On the other hand, however, there are decision networks which allow more efficient

algorithms than NAIVE-EVALUATE. The best case is when a decision network can

be evaluated by considering one decision node at a time. This leads to the concept of

stepwise-solvability.

3.5 Stepwise-solvability

Let .iV be a decision network. Let d1, d2, ..., dii, be all the decision nodes in .A[, and let

8=(6, 62,.. . ,
6) be a policy of .A1, where 63 is a decision function of d3. The expected

value Es[iVl = E(sl,52,...,sk)[.A/] is a function of 6, 82 ..., and 6k.

For any iE{1, 2,..., k}, if we fix the value of 8 for all j{1, 2,... , k} such that ji,

then E(5,,...,s_l,5,s+l,...,sk)[JV] becomes a function of 6. Rank all the possible values of Sj,

i.e all the possible decision functions of d, according to the value E(51

If the decision function (for d) that is ranked the highest remains the same regardless of

the values of the Si’s (ji), then we say that d is a stepwise-solvability candidate node

or simply an SS candidate node of .iV.

A deterministic node is a random node whose conditional probability takes the value

either 0 or 1. To replace a decision node d3 by a deterministic node characterized by a

function 63 : — ! (Shachter 1988) is to replace d3 by a deterministic node with the

same frame, and to set P(d317rd3)to be the conditional probability that represents 8 in

the sense of equation (3.13).

If d1 is an SS candidate node, then an optimal decision function 8 can be found

as follows. For all jE{1, 2,. .. , k} such that ji, replace the decision node d, by a

Chapter 3. Decision networks: formal definitions 58

deterministic random node characterized by an arbitrary decision function 6j, resulting

in a decision network with only one decision node d. Then find a policy S,° of d1 that

satisfies

[iV] = maxs1eE(61
,6,6i+i 6k) [Al]. (3.20)

Proposition 3.3 If d is an SS candidate node of a decision network Al, then an decision

function 6’ that satisfies equation (3.20) is an optimal decision function of d.

Proof: Let (6,.. . ,
6, 6, 6,.. . , 6) be an optimal policy of Al. Since d is an SS

candidate node and &? satisfies (3.20), we have

5)[Al].

Therefore, (6,...
,
6, 6,?, ,...

,
6) must also be an optimal policy of Al. Conse

quently, 6 must be an optimal decision function of d. The proposition is proved.

A decision network is stepwise-solvable if it contains no decision nodes, or if

1. there exists an SS candidate node d,, such that

2. if d is replaced by a deterministic node characterized by an optimal decision func

tion of d, the resulting decision network (with one less decision node) is stepwise

solvable.

A decision network skeleton is stepwise-solvable if all the decision networks over the

skeleton are stepwise-solvable.

If a decision network Al is stepwise-solvable, then it can be evaluated as follows. Find

an SS candidate node d and find an optimal decision function 6’ of d in the way as

specified in equation (3.20). Replace d1 by a deterministic node characterized by 6,,

resulting in another stepwise-solvable decision network Al’ with one less decision node.

Chapter 3. Decision networks: formal definitions 59

Then recursively apply the procedure to .Af’, an so on so forth. We see here that A/ is

evaluated by considering one decision node at a time.

Suppose ./V is a stepwise-solvable decision network with k decision nodes. Suppose

each decision node has 1 parents, and suppose all the variables are binary. Then to

evaluate V, we need to compute the expected values of jV for (2(2)) * k policies, instead

of(2(21))k policies as in the case of NAIVE-EVALUATE.

Note that the aforementioned evaluation method is not the best. The term can

easily be prohibitively large. We shall show that when a decision network is stepwise

solvable, it can be solved not only by considering one decision node at a time, by also

by considering one, usually small, part of the network at a time. The complexity can be

reduced to that of computing no more than 2k + m marginal probabilities of no more

than K + 1 variables or computing no more than (2k + m)2 numbers, where m stands

for the number of value nodes.

So, stepwise-solvability is a very desirable property for a decision network to possess.

In the next three chapters, we shall investigate when a decision network is stepwise

solvable and what is the best way to evaluate a stepwise-solvable decision network. For

this purpose, we need the technical concept of semi-decision network.

3.6 Semi-decision networks

The reader has seen that removing nodes from a Bayesian network may create root nodes

which do not have prior probabilities. This is why we need the concept of semi-Bayesian

network. We shall also be discussing removing nodes from decision networks, which

necessitates the concept of semi-decision networks.

A semi-decision network is a decision network except that the prior probabilities of

some of the root random nodes are missing. We use .V = (Y A, 2, FIS) to denotes a

Chapter 3. Decision networks: formal definitions 60

semi-decision network, where S is the set of root random nodes whose prior probabilities

are missing.

As before, let X = C U D be the set of random and decision nodes. Similarly to the

case of decision networks, a policy 6 induces a semi-Bayesian network (X, A, PU6S),

which will be referred to as the semi-Bayesian network induced from .A/ by the policy 6

and which will be written as .iV5. Let P3(X) be the prior joint potential of .iV5.

For any value node vEV, irX. The expected value E3[V] of .,V under the joint

potential P5(X) is defined by

E5[iV] = P5(X) t,(ir). (3.21)
X vEV

The optimal expected value E[.A/] of / is defined by

E[iV] = maxsEAES[JV].

An optimal policy 6° is one that satisfies

Unlike in the case of decision networks, we also define the concept of conditional

expected value for semi-decision networks. Th conditional expected value E5[VS] of iV

given S is defined by

E6[VS] = P5(X) (ir). (3.22)
X-S vEV

Obviously Es[Ji9S} is a function of S.

We chose the term “conditional expected value” because that the prior joint potential

FAr(X) is nothing but the conditional probability of the variables in X—S given S (see

the note at the end of Section 3.1)

The optimal conditional expected value E[VIS] of .iV’ given S is defined by

Chapter 3. Decision networks: formal definitions 61

E[J’f IS] = maxoEEs[JVIS].

An optimal conditional policy 6° is one that satisfies

Eso[AIS] = E[A’S],

for all possible values of S.

Proposition 3.4 A conditionally optimal policy of a semi-decision network, if exits, is

always an optimal policy.

Proof: From equations (3.21) and (3.22), we have

= Es[VIS].
S

Let 6° be a conditional optimal policy and let 6 be an arbitrary policy of .iV. Then

= E5[S] Es[S] = E5[Aq.
S S

Therefore

E50[V] maxsE6[V].

In words, 6° is an optimal policy of jV. C

For a semi-decision network, there always exists at least one optimal policy. But there

may not necessarily exist any conditional optimal policies.

Given a semi-decision network .iV, if every optimal policy of .iV is also a conditionally

optimal policy, then we say that .A1 is uniform.

We shall investigate when a semi-decision network is uniform later.

Chapter 4

Divide and conquer in decision networks

This chapter and the next two chapters constitute the heart of this thesis; they introduce

and study one subclass of decision networks, namely stepwise-decomposable decision

networks (SDDN’s). SDDN’s are important because they are stepwise-solvable, and as

we shall show in Chapter 8 stepwise-decomposability is the weakest graph-theoretical

criterion that guarantees stepwise-solvability.

This chapter investigates when and how a decision network can be decomposed into

two subnetworks such that the optimal expected value and an optimal policy of the

decision network can be computed by evaluating the two subnetworks. The next two

chapters are concerned with how to evaluate decision networks that can be decomposed

into ii — the number of decision nodes — subnetworks such that the optimal expected

values and optimal policies of the decision networks can be computed by evaluating the

n subnetworks.

The organization of this chapter is as follows. Section 4.1 discusses the relationship

between independence in a decision network and separation in the underlying decision

network skeleton. Section 4.2 defines a concept of decomposability for decision networks,

and Section 4.3 shows that this concept of decomposability implies a divide and conquer

evaluation strategy.

Since manipulation of decision networks gives rise to semi-decision networks and deci

• sion networks are special semi-decision networks, exposition in this chapter will be carried

out in terms of semi-decision networks.

62

Chapter 4. Divide and conquer in decision networks 63

Figure 4.16: The relationships among the sets Y, Y1, Y11, X1, X11, and id. The three
sets Y1, Y1 and 7Td constitute a partition of Y — the set of all the nodes; while X1, X11
and lrd constitute a partion of CUD — the set of all the random and decision nodes.
When the network is smooth at d, there are no arcs going from X11 to ire.

4.1 Separation and independence

The main goal of this chapter is to prove Theorem 4.1, one of the most important theo

rems in this thesis. In preparation, this section exposes the relationship between graph-

theoretic separation and probabilistic independence in the context of decision networks.

Suppose AC = (Y A) is decision network skeleton and d is a decision node in AC. Let

Y1(d, K;), or simply Y1 be the set of all the nodes that are rn-separated from d by 7rd, with

the nodes in 7rd itself excluded. Let Y11(d, K;), or simply Y11 be the set of all the nodes

that are not rn-separated from d by ?rd. We observe that Yi, lrd, and Y11 forms a partition

of Y. Let X1(d,K;) =Y1(d,K;)fl(CUD) andX11(d,K;) =Y11(d,AC)fl(CUD).

The relationships among the sets are illustrated in Figure 4.16. In the following, we

shall refer to Y1 as the upstream set of ire, Y11 as the downstream set of irj. We shall also

refer to X1 as the set of random and decision nodes in the upstream of ire, and X11 as

the set of random and decision nodes in the downstream of

Consider a semi-decision network .iV = (Y A, 2, .9S). Let S be a policy of .jV. As

pointed out by Lauritzen et al (1990), m-separation in the skeleton (Y A) implies con

ditional independence for P5(X) — the joint potential over X induced by 6. Since 7rd

Chapter 4. Divide and conquer in decision networks 64

rn-separates Xj and we have that Fo(Xn (Xi, irt) = Ps(XiIjlrd). Therefore

F5(X1,7rd, X11) = F5(X1,Kd)Fs(XIIIXI, Ird)

= F3(X1,lrd)F6(Xii(lrd). (4.23)

The rest of this section seeks an explicit representation ofF5(Xj, lrd) and Fs(XIIjlrd)

in terms of conditional probabilities.

A decision network is smooth at the decision node d, if there are no arcs going from

the downstream set Y11 of irj to nodes in irj. In other words, arcs between irj and Y1

only go from 7rd to Y11.

As an example, consider the decision network skeleton for the further extended oil

wildcatter problem (Figure 2.11). The downstream set of lroilsale..policy consists of

oil—sale—policy and oil—sales. There are no arcs from oil—sales to nodes in

Koilsalepolicy. So, the skeleton is smooth at oil—sale—policy. One the other hand,

the downstream set of 7r11 contains all the nodes except test-cost and the nodes

in ir&j11. In particular, the downstream set contains the node seismic-structure.

Because of the arc from seismic—structure to test—result (e Rcjrjll), the decision

network skeleton is not smooth at drill.

Let d1, ..., d be all the decision nodes in XIUKd and ..., 4 be all the decision

nodes in X11. Note that d C {d1, ..., dk}. For a policy S = (6k,... ,Sk), let S =

(6k,. . . , Sj) and = (Si+i,. . . ,

Suppose the semi-decision network .1%! is smooth at d. It follows from Proposition 3.1

that

Fs(XI,wd)= fi F(xI)flFo1(dI(Kd1). (4.24)
xECfl(XzUlrd) i=1

• And it follows from Proposition 3.2 that

k

Ps(XII(2rd) = II F(xIK) [J F51(dIIlrd1)). (4.25)
xECflX11 i=j+1

Chapter 4. Divide and conquer in decision networks 65

Those two equations give us the following lemma.

Lemma 4.1 IfV is smooth at d, then P8(XI,lrd) only depends on 5, and Ps(XII1rd)

only depends on 5ii. From now on, we shall writeP5(X1,lrd) asF31(X1,Ird), and Fs(XIIIlrd)

as P311(XII7rd).

4.2 Decomposability of decision networks

Also in preparation for Theorem 4.1, this section introduces a concept of decomposability

for decision networks and shows how to divide a decomposable decision network into two

subnetworks.

A decision network skeleton AC=(Y A) is decomposable at a decision node d if the

number of decision node in Yij(d, K) is less than the number of decision nodes in K. A

semi-decision network is decomposable at a decision node d if the underlying skeleton is.

When a decision network skeleton K is decomposable and smooth at d, we define

the downstream component of JC w.r.t d, denoted byK11(d,K) or simply K, to be the

decision network skeleton obtained by restricting K to 7rdUYII and then removing those

arcs that connect two nodes in 7rd.

Also, we define the upstream component of AC w.r.t d, denoted by 1C1(d, AC) or simply

K1, to be the decision network skeleton obtained by restricting AC to YJUlrd and then

adding a node u and drawing an arc from each node in ird to u. The node u is to be used

to store the value of the downstream component, and is thus called the downstream-value

node.

Figure 4.17 shows the downstream and upstream components, w.r.t oil-sale-policy,

of the decision network skeleton in Figure 2.11.

Note that while Yi and YH are sets of nodes, AC1 and ACH are decision network skele

tons. AC1 and AC11 contain the nodes in ird, while Y1 and Y11 do not.

Chapter 4. Divide and conquer in decision networks 66

Let iV be a decision network over K, and suppose .iV (or PC) is decomposable and

smooth at d. The downstream component of .iV w.r.t d, denoted by .A/11(d, .iV) or simply

by Ni1, is a semi-decision network over PC11. The value functions for all the value nodes of

JV remain the same at in .A[. The conditional probabilities of the random nodes of N11
that lie outside ir also remain the same as in N. The nodes in 7rj, random or decision,

are viewed in J’/ii as random nodes whose prior probabilities are missing.

The upstream component of .,V’ w.r.t d, denoted by N1(d,A1) or simply by N1, is a

semi-decision network over PCi. The conditional probabilities of all the random nodes

remain the same as in .iV. The values functions of the value nodes other than u also

remain the same as in N. The value function [L(7rd) of the downstream-value node u is

the optimal conditional expected value E[NIIrd] of the downstream component N11.

Since the decision node d is not in the upstream component N1, the number of decision

nodes in N1 is less than the number of decision nodes in N. Since the decision nodes

in rd, if any, are treated as random nodes in N11 and since the .iV decomposes at d, the

number of decision nodes in NH is also less than the number of decision nodes in N.

Furthermore the number of decision nodes in N1 plus the number of decision nodes in

Nj-i equals the number of decision nodes in .,V.

We shall later define the concepts of downstream and upstream components for the

case when PC and N are not smooth at d.

4.2.1 Properties of upstream and downstream components

This subsection gives several properties of upstream and downstream components of

decomposable decision networks. Those properties will be useful in the proof of Theorem

4.1.

Given a policy S = . , Sk), the downstream component N11 is a semi-Bayesian

network. Let P.kr11,611(wd,XI1) denote the prior joint potential of this semi-Bayesian

Chapter 4. Divide and conquer in decision networks 67

Figure 4.17: Downstream and upstream components: The downstream component is a
semi-decision network, where the prior probabilities for oil-produced and oil-market
are missing. In the upstream component, u is the downstream-value node, whose value
function is the optimal conditional expected value of the downstream component.

network. From the definition of the downstream component, one can see that if .iV is

smooth at d, then

k

Pj.r11,o11(1rd,XII) = fJ P(xr) fJ Ps(d1rdj),
xECflX11

which is the same as the right hand side of equation (4.25). Therefore we have

Lemma 4.2 Suppose a semi-decision network ./V is decomposable and smooth at decision

node d. Let P311(XJzIlrd) be as in Lemma 4.1. Then

FAr11,s11(rd,Xii) =F511(XIIIlrd). (4.26)

Similarly, given a policy Si = (Si,. ..
, So), the upstream .iV1 is a Bayesian network. Let

P.&r1,51(Xi, S) denote the joint probability of this Bayesian network. From the definition

upstream component

Downst ream component

of the upstream component, one can see that if .IV is smooth at d, then

Chapter 4. Divide arid conquer in decision networks 68

Fr1.51(Xj,S) = fl P(xI)HPö(djI),
XECfl(XIUlrd)

which is equal to the right hand side of equation (4.24). Therefore we have

Lemma 4.3 Suppose a semi-decision network .jV is decomposable and smooth at decision

node d. Let P51(XI,rd) be as in Lemma .1. Then

Pg1,61(X1,lrd) = P51(X1,lrd). (4.27)

The following proposition is especially important to the proof of Theorem 4.1.

Proposition 4.1 Suppose a semi-decision network .iV is decomposable and smooth at

decision node d. Let Ps11(XIIIrd) and P31(XI,lrd) be as in Lemma 4.1. Let V1 and V11

be the set of value nodes in A11 an JV11 respectively. Then the conditional expected value

of A11 under policy Sii satisfies

E311[./V’III7rd] =P511(XIIJrd) L,(7r), (4.28)
X11 uEV11

and the expected value of Al’1 under policy 6 satisfies

E51[.1V1]= P51(X1,1rd){ iV(rV)+E[JVIiI1rd]}. (4.29)
Xj,lrd vEV1

Proof: By definition, we have

E511[Al’IIllrd] = Pg1,11(ir,X11)
X11

Thus equation (4.28) follows from equation (4.26).

Again by definition, we have

Es1[V’i] = Pg1,51(XI,lrd){ r) + E[.JV’IIIlrd]}.
XI,lrd VEV1

Thus equation (4.29) follows from equation (4.27).

Chapter 4. Divide and conquer in decision networks 69

4.3 Divide and conquer

This section shows how decomposability of (semi-)decision networks leads to a divide

and conquer evaluation strategy.

Theorem 4.1 Suppose a (semi-)decision network .,V is decomposable and smooth at deci

sion node d. Let Ar11 be the downstream component of Ar w.r.t d, and Ar1 be the upstream

component. If Ar11 is uniform, then

1. If 6 is an optimal policy for Ar11 and 6 is an optimal policy for Ar1, then 30
=def

(Sq, I) is an optimal policy for Ar.

2. The optimal expected value E[Ar1] of the body Ar1 is the same as the optimal expected

value E[Ar] of Ar.

The theorem divides the task of evaluating a (semi-)decision network Ar into two sub-

tasks: the task of evaluating the downstream component Ar11 and the task of evaluating

the upstream component Ar1.

Applying the theorem to the decision network in Figure 4.17, we get that optimal

decision functions for oil-sale-policy can be found in the downstream component,

which is much smaller than the original network. The optimal decision functions for all

the other decision nodes can be found in the upstream component, which is also smaller

than the original network. Furthermore, we can repeatedly apply the theorem to the

upstream component.

The following mathematical proof may test the reader’s patience, but it is the key to

understanding the correctness of our later algorithms.

Proof: For any policy S of Ar, we have

E3[Ar] = P6(X1,rd, X11) pv(7r,) (By definition)
XI,lrd,XII veV

Chapter 4. Divide and conquer in decision networks 70

= F&(Xi, rd)Psij(XIII7rd) (ir,) (By equations 4.23 and Lemma 4.1)
X1,lrd ,X11 vEV

= P31(X1,lrd){ r) > P511(XJIIlrd) + P11(Xir) tu(irv)}

XI,lrd X11 X11 uEV

= >Z Ps1(Xz,wi){ + ES11[JVIJwd]} (By equation 4.28). (4.30)
XI,lrd vEV

Since 6 is an optimal policy for JV11 and Jii is uniform,

E511[NIrd] Esy[JViiiri] = E[.jVIIIirdj. (4.31)

Noticing that P31 (X1,7rd) is non-negative, we have

= P3(Xi, d){ ii() +E311[Id]} (By equation 4.30)
XI,lrd VEV1

P6(X, 7rd){ 1,(1rv) +E31[./ViIIrd]} (By equation 4.31)
XJ,lrd vEV1

= P5(X1,lrd){ i(irv) + E[JV’IIIlrdj} (By equation 4.31)
XI,lrd vEV1

= E51[.A11] (By equation 4.29)

E6 [Jf] (Optimality of 6)

= Po(XI,wd){E ,Lv(lrv)+E[.A(uLwd]} (By equation 4.29)
XI,Trd VEV1

= P3(X, 7rd){ ii(r) +E51[.ViI7rd]} (Optimality of 6)
XJ,7rd vEV1

= E60[/]. (By equation 4.30)

Therefore, 60 is indeed an optimal policy for Al. The first statement of the theorem is

proved.

The foregoing derivation has also shown that

E3[E3[Al1] E50[.

Letting 6 be 6°, we get

=

Therefore E[Al] = E[Al1]. The proof is completed. 1J

Chapter 5

Stepwise-decomposable decision networks

This chapter introduces and studies the most important concept of this thesis, namely

stepwise-decomposable decision networks (SDDN). Roughly speaking, a SDDN is a deci

sion network that can be decomposed into n — the number of decision nodes — subnet

works such that each subnetwork contains only one decision node and that the original

network can be evaluated through the evaluation of those subnetworks (Section 5.4). A

first reason why SDDN’s are computationally desirable is that the subnetworks may be

substantially smaller than the original network.

A second reason why SDDN’s are computationally desirable is that each of the sub-

networks is a semi-decision network with only one decision node. Single-decision-node

semi-decision networks can be evaluated by enumerating the values of the parents of the

decision node instead of enumerating all the possible policies or decision functions (see

Section 5.5). Suppose that the decision node has n parents and that all the variables are

binary. Then, the parents can assume 2’ possible values, while there are 2(2) decision

functions!

The organization of this chapter is as follows. The definition of SDDN’s is given in

Section 5.1, and Section 5.2 shows that smooth SDDN’s are stepwise-solvable. The issue

of testing stepwise-decomposability is addressed in Section 5.3. In Section 5.4, we discuss

how to evaluate a smooth SDDN by using the divide and conquer strategy outlined in

the previous chapter. An algorithm is presented in Section 5.6, which makes use of the

subroutine given in Section 5.5 for evaluating simple semi-decision networks.

71

Chapter 5. Stepwise-decomposable decision networks 72

Non-smooth SDDN’s are treated in the next chapter.

5.1 Definition

This section defines stepwise-decomposable decision networks.

In a decision network skeleton PC, a decision node d is a stepwise-decomposability

candidate node or simply an SD candidate node if ir1 rn-separates d from all other

decision nodes and their parents. A decision node is an SD candidate node in a decision

network ,V if it is an SD candidate node in the skeleton of .,V.

As an example, consider the decision network skeleton in Figure 2.11). Both oil-sale—policy

and gas-sale-policy are SD candidate nodes, while drill and test are not. The de

cision nodes oil-sale-policy and gas-sale-policy are not rn-separated from drill

(test) by idri11 (irtest).

Lemma 5.1 Suppose d is am SD candidate in a decision network skeleton PC. Then the

downstream set Y11(d, PC) contains only one decision node, which is d itself. So, if PC

contains more than one decision node, then it is decomposable at d. 1

When d is an SD candidate node in decision network V and .iV is smooth at d, the

upstream component JV of iV w.r.t d is called the body of .iV w.r.t d, and the downstream

component of Al w.r.t d is called the tail of Al w.r.t d. Moreover, the downstream

value node in 1V1 will be referred to as the tail-value node.

A decision network skeleton PC is stepwise-decomposable if either it contains zero or

one decision node, or

1. There exists an SD candidate decision node d, and

2. The body AC1 of AC w.r.t d is stepwise-decomposable.

Chapter 5. Stepwise-decomposable decision networks 73

(2)

(3)

Figure 5.18: Step by step decomposition of the decision network in Figure 2.11.

A (semi-)decision network is stepwise-decomposable if its underlying skeleton is. The

term “stepwise-decomposable decision network” will be abbreviated to SDDN.

Suppose a decision network .iV is stepwise-decomposable. If .iV contains more than

one decision node, then it has at least one candidate node d. According to Lemma 5.1, .iV

is decomposable at d and it decomposes into a body .A11 and a tail. ./V1 is again stepwise

decomposable. If .A11 contains more than one decision node, we can again decompose

into a body and a tail, an so and so forth, till there is only one decision node left in the

body. In other words, we can decompose an SDDN into a series of subnetworks (tails) in

a step-by-step fashion. This is why the term “stepwise-decomposable” was chosen.

As an example, let .iV be the decision network in Figure 2.11. .A/ is stepwise

decomposable. The node oil-sale-policy is an SD candidate node in .JV, and ./V

(1)

(4)

decomposes at oil-sale-policy into a body .,Vj and at tail, as shown in Figure 4.17.

Chapter 5. Stepwise-decomposable decision networks 74

The node gas-sale-policy is an SD candidate node in .iV1, and .iV1 decomposes at

gas-sale-policy into a tail and a body. The body is shown in Figure 5.18 (1), and the

tail Figure 5.18(2). In Figure 5.18 (1), drill is an SD candidate node, and the network

decomposes at drill into a body as shown in Figure 5.18 (3) and a tail as shown in

Figure 5.18 (4).

The decision network skeleton in Figure 3.15 contains two decision nodes, but no SD

candidate nodes. So, it is not stepwise-decomposable.

5.1.1 Another way of recursion

In the definition of decomposability, the number of decision nodes is recursively reduced

by cutting tails that contain a single decision node. Another way to recursively reduce

the number of decision nodes is to replace them one by one with deterministic random

nodes. Let us first prove a lemma.

Lemma 5.2 Let d be an SD candidate node in a decision network skeleton AC. Let AC

be the body of 1C w.r.t d, and let AC’ be the decision network skeleton obtained from AC by

replacing d by a deterministic node. Then AC1 is stepwise-decomposable if and only if AC’

is.

Proof: We prove this lemma by induction on the number of decision nodes in AC. When

d is the only decision node in AC, both AC1 and AC’ contain zero decision nodes, and hence

both are stepwise-decomposable.

Suppose the lemma is true for the case of k — 1 decision nodes. Consider the case of

k decision nodes. One can easily verify that a decision node is an SD candidate node in

AC1 if and only if it is an SD candidate node in AC’.

Suppose a decision node d’ (d) is a SD candidate node in AC1 (hence in AC’). There

are two cases depending on whether or not d is in the downstream set of lrd’ in AC. When

Chapter 5. Stepwise-decomposable decision networks

d is in the downstream set of lrd’, the body of K1 w.r.t d’ is the same as that of K’; hence

Ki is stepwise-decomposable if and oniy if K;’ is. When d is not in the downstream set

of 7rd’, let K; be the body of K1 w.r.t d’, and K;* be that of K;’. Then K;* is the body of

K w.r.t d. By the induction hypothesis, K;* is stepwise-decomposable if and only if K;

is. Therefore, K’ is stepwise-decomposable if and only if K is. The lemma is proved. 1J

This lemma leads directly to the following proposition.

Proposition 5.1 A decision network skeleton is stepwise-decomposable if and only if

either it contains no decision nodes or

1. There exists an SD candidate decision node d, and

2. If d is replaced by a deterministic node, the resulting decision network skeleton (with

one less decision node) is stepwise-decomposable.

One can view Proposition 5.1 as an alternative definition of stepwise-decomposability.

The original definition is based an recursive construct that will be used directly in the

algorithms, while the recursive construct of this alternative definition is the same as

that of the definition of stepwise-solvability, which makes it convenient to study the

relationship between stepwise-decomposability and stepwise-solvability, as the reader will

see in the next section.

5.2 Stepwise.-decomposability and stepwise-solvability

A decision network is smooth if it is smooth at every decision node.

Theorem 5.1 A smooth decision network is stepwise-solvable if it is stepwise-decomposable.

Proof: Let .,V be a smooth decision network and d be a decision node. Because of

Proposition 5.1, it suffices to show that if d is an SD candidate node, then it is also an

SS candidate node.

Chapter 5. Stepwise-decomposable decision networks 76

Suppose d is an SD candidate node. Let X1 be the set of random and decision nodes

in the upstream of 7rd; let Jf and Jv11 be respectively the body and tail of .A/ w.r.t d; let

Vi be the set of value nodes .iV1; let 6 be a policy of An; and and let be a policy of

JV11, i.e a decision function of d. By equation (4.30) we have that

= F31(X, lrd){ iiv(rv) +E511[JV11)lrd]}.
X1,lrd vEV1

Fixing Si, we can rank all the possible policies Sji of.A/11 according to the valueE(51,511)[An].

Since P61 (X1,7rd) is non-negative, this ranking does not depend on the value of Si. There

fore d is an SS candidate node. The theorem is proved.

We shall show later that the theorem is true also for non-smooth decision networks,

and that under “normal” conditions stepwise-solvability implies stepwise- decomposability

as well (Chapter 8).

The remainder of this chapter is devoted to the following two questions: How can one

test stepwise-decomposability? How can one evaluate a smooth SDDN?

5.3 Testing stepwise-decomposability

In a decision network, we say that a decision node d precedes another decision node d’

if there is a directed path from d to d’. Decision nodes that precede no other decision

nodes are called leaf decision nodes.

We say d weakly precedes another d’ if d’ is in the downstream set of irs. Decision

nodes that weakly precede no other decision nodes are called weak leaf decision nodes

The following lemma follows from the definition of SD candidate node and the definition

of downstream sets.

Lemma 5.3 In a decision network, if node is an SD candidate decision node, then it is

a weak leaf decision node.

Chapter 5. Stepwise-decornposable decision networks 77

Proof: Straightforward.

Lemma 5.4 Let d and d’ be two decision nodes in a decision network. If d precedes d’,

then d weakly precedes d’.

Proof: Since d precedes d’, there is a directed path from d to d’. No nodes in this path

can be in lrd, because otherwise there would be a cycle in the network. Hence, d’ is not

m-separated from d by ire. Consequently, d’ is in the downstream set of d. The lemma is

therefore proved. D

Combining the forgoing two lemmas, we get

Proposition 5.2 In a decision network, an SD candidate decision node must be a leaf

decision node. In other words, if a node is not a leaf decision node, then it cannot be a

candidate node.

Proof: Suppose d is a decision node but not a leaf decision node. Then there exists

another decision node d’ such that d precedes d’. By Lemma 5.4, d weakly precedes d’,

hence d is not a weak leaf decision node. By Lemma 5.3, d cannot be a candidate node.

C

This proposition leads to the following algorithm for testing if a decision network

skeleton is stepwise-decomposable.

Procedure TESTSTEPWISEDECOMPOSABILITY(,AC):

• Input: K — a decision network skeleton.

• Output: “YES” or “NO” depending on whether K is stepwise-decomposable.

If there are no decision nodes in AC, return “YES”.

Else

Chapter 5. Stepwise-decornposable decision networks 78

1. Find a leaf decision node d of IC.

2. Check if d is an SD candidate decision node.

• If d is not, find another leaf decision node d’ and go to 2 with d’. If

there are no more leaf decision nodes, return “NO”.

• If d is an SD candidate decision node, compute the body K of K;

w.r.t d, and recursively call TEST-STEPWISE-DECOMPOSABILITY(K;1).

What is the running time of TEST-STEPWISE-DECOMPOSABILITY? Let n be

the total number of nodes in K;, k be the number of decision nodes, a be the number of

arcs, e be the number of edges in the moral graph of K;. Finding a leaf decision node

takes at most 0(a) time. Testing if a decision node is an SD candidate node and the

computation of a body are of the same order complexity as testing the connectivity of

the moral graph of K;, which is 0(n + e) by either breadth-first search or depth-first

search. In worst case, all the decision nodes are leaf nodes and there is only one SD

candidate node. If the only candidate node is always tested the last, then the complexity

of TEST-STEPWISE-DECOMPOSABILITY is0(k2(n+e--a)) = 0(k2(n+e)). On the

other hand, if every leaf decision node tested is an SD candidate node, the complexity is

0(k(n + e)).

5.4 Recursive tail cutting

In Section 5.6, we shall give an algorithm for evaluating smooth SDDN’s. In preparation,

this section shows that an optimal policy for a smooth SDDN can be computed by

recursively evaluating tail semi-decision networks, and the next section studies how to

evaluate a tail semi-decision network.

Theorem 5.2 Let V be a SDDN and d be an SD candidate node. Let .N11 be the tail

of!’! w.r.t d, and JJj be the body. Let S be an optimal policy for .iV11, i.e an optimal

Chapter 5. Stepwise-decomposable decision networks 79

decision function of d, and let and 6 be an optimal policy for A/i. If.A/ is smooth at d,

then

1. 8° def (6, 6) is an optimal policy for .A/.

. The optimal expected value E[.iV1] of the body A/j is the same as the optimal expected

value E[Ar] of Al.

The proof is postponed to the end of this section. The theorem implies the following

strategy of evaluating a smooth SDDN Al: first compute and evaluate a tail JV1 of .iV,

then compute and evaluate a tail of Al1, and so on so forth. We shall refer to this strategy

as recursive tail cutting

5.4.1 Simple semi-decision networks

This subsection introduces the concept of simple semi-decision networks. The concept is

important to the proof of Theorem 5.2, as well as to our later algorithms.

A semi-decision network Al = (Y A, 1’, .FIS) is simple if it contains only one decision

node d and lrd=S.

Proposition 5.3 Suppose Al is a smooth SDDN and d is an SD candidate. Then

1. The tail A/si of Al w.r.t d is a simple semi-decision network, and

2. The body Al1 of Al w.r.t d is again a smooth SDDN.

Proof: The proof is straightforward. 1

Suppose Al = (Y A, 2, XIS) is a simple semi-decision network. Let 6d be a decision

function of the only decision node d of Al.

The conditional expected value Esd[AIS] depend on S and 8d. Since 6d is a function

from to !d, Esd[.IVIS=/3] may depends possible on Sd(/3) for all /3Es.

Chapter 5. Stepwise-decomposable decision networks 80

Lemma 5.5 For any value/3Efs, Esd[JVS=/3] depends only on the value Sd(/3) of the

decision function 6d at 3, in the sense that fixing Sd(/3)fixes Esd[.AIIS=/3], no matter what

the &C8’) ‘s (/3’Efs, 3’3) are.

The proof is postponed till the end of this section. The implication of this lemma is

that Esd[.IVIS=/9] is really a function of 3 and the value Sd(/9) of 6d at /3. To make this

more explicit, let6d(/3)=a, then Es5[.NIS/3] is a function of /3 and . To signify this

fact, we shall sometimes write Esd[JV1S=/31 as

The following proposition will also be proved at the end of this section.

Proposition 5.4 Simple semi-decision networks are uniform.

The corollary below follows from Theorem 5.2 and Lemma 5.5

Corollary 5.1 Let .A[= (YA,P,FIS) be a simple semi-decision network and let d be

the only decision node. Then an optimal decision function & for d is given by

= arg maxaEOdEsd:sd(,a[JViS/3]. (5.32)

5.4.2 Proofs

Proof of Theorem 5.2: Because of Theorem 4.1, it suffices to show that JV11 is uni

form. By Proposition 5.3, the tail .iV11 is a simple semi-decision network. According to

Proposition 5.4, must be uniform. The theorem is therefore proved. U.

Proof of Lemma 5.5: Since rd=S, we can write Pod(dIS) for PSd(dllrd). Let C and V

be the set of random and value nodes respectively. The joint potential Psd(C, d) is given

by

= Psd(dIS=/3)]J P(crc).
cEC

Chapter 5. Stepwise-decomposable decision networks 81

Therefore

Esd[JVIS=/3] = Pod(dIS=/3) fl P(cir) pv(rv). (5.33)
Cu{d}—S cEC vEV

The only term that contains Sd is Psd(dIS=/3),which only depends on the value of 6d at

3 according to equation (3.13). Thus, the lemma is proved. D

Proof of Proposition 5.4: Suppose N = (Y, A, P, FIS) is a simple semi-decision

network. Let d be the only decision node. We need to show that for any decision

function S of d, if

E8dQ[A] = max5dEtdE5d[JV], (5.34)

then for any value /3Efls

Esdo[.JVIS=/9] = maxsdEsdEd[AuIS=/31. (5.35)

For the sake of contradiction, assume there were a decision function S that satisfies

(5.34) which did not satisfy (5.35). Then, there must exist another decision function 6

and a value /3 E s such that

E5d0[J\/1S/3] <E5[J’.fS/3].

Construct a new decision function 6 which is the same as S. at /3 and which is the

same as 6 at all other values 3’ of S. By Lemma 5.5, E32 [NIS=/3] = Es[.A/IS=/3j, and

E52[JVIS/3’] = E[NIS=/3’] for any /3’EJs such that /3’/3. Hence, we have

E52[V] =

= E5[NIS=/3J + >
> E5[NIS=/3] +

= E5[NIS=/3’]

=

Chapter 5. Stepwise-decomposable decision networks 82

A contradiction. Therefore, it must be the case that (5.34) implies (5.35). The proposi

tion is proved.

5.5 Evaluating simple semi-decision networks

This section presents an algorithm for evaluating simple semi-decision networks.

Let .,‘V = (Y,A,P,.FS) be a simple semi-decision network, and let d be the only

decision node.

Let .iV be the semi-Bayesian network obtained from .iV by removing all the value

nodes, and by deleting all the arcs into d and treating d as a root random node without

prior probability. Let P0 be the joint potential of .M, i.e the product of all the conditional

probabilities in Al.

For any value node v of jV, all its parents—all the nodes in 1r—are in .M. Thus,

we can compute the marginal potential Po(7r, S, d). We define the evaluation functional

e(d,S)ofAlby

e(d, S) = Po(ir.,, S, d)t(ir). (5.36)
v€V rv—SU{d}

Theorem 5.3 Let A/ = (Y A, 2, FIS) be a simple semi-decision network; let d be the

only decision node; and let e(d, S) be the evaluation functional of I’!. Then

1. An optimal decision function 6 can be found by

63) = arg maxEcDe(d=o., S=i3), V3 E 1s, (5.37)

. The conditional optimal expected value E[AIIS] is given

E[VS=i3] = maxQEc2de(d=cr, S=/3), V E fZs. (5.38)

The proof is postponed to the end of this section.

Chapter 5. Stepwise-decomposable decision networks 83

The theorem suggests the following procedure for evaluating simple semi-decision

networks.

Procedure S-EVALUATE(V):

• Input: iV — A simple semi-decision network.

• Output: An optimal decision function for the only decision node d, and

the optimal conditional expected value of .A/.

1. Construct the semi-Bayesian network .M3.

2. Compute the marginal potential Po(ir, S, d) for each the value nodes v.

3. Obtain the evaluation functional e(d, S) by equation (5.36).

4. Compute the optimal conditional expected value by equation (5.38) and

an optimal policy by equation (5.37).

Note 1). For those who are familiar with Bayesian network inferences, the clique tree

propagation approach (Jensen et al 1990, Lauritzen and Spiegehalter 1988, and Shafer

and Shenoy 1988) can be used to compute all marginal potentials Po(7r, 8, d)’s. All the

marginal potentials can be computed by traversing the clique tree twice. When there is

only one value node, there is only one marginal potential to compute, which can be done

by traversing the clique tree only once.

Note 2). Relating back to the point made in the introduction of the chapter about the

evaluation of single-decision-node semi-decision networks, we see from Equation (5.37)

that S-EVALUATE does indeed evaluate a simple semi-decision network by enumerating

the values of the parents of the only decision node, rather than enumerating all the

decision functions, as the procedure NAIVE would do.

Chapter 5. Stepwise-decomposable decision networks 84

An interesting question is: Can we do the same for (semi-) decision networks with

more than one decision node? The answer is no, unless all the decision nodes have the

same parents. Essentially, what goes on in S-EVALUATE is that for any /3E!wd, we

instantiate the parents rd of the only decision node d to 3 and figure out the value for

d that maximizes the expected value of the simple decision network. When there are at

least two decision nodes, say d1 and d2, with different parents, we can not do the same

because instantiating the parents of d1, for instance, would mean that all the parents of

d1 are observed at the time the decision d2 is to be made. This may not be true at all.

Proof of Theorem 5.3: Let 6d be a decision function of d. Let Psd(X) be the potential

over the set X of all the random and decision nodes of .iV under policy 6d• We have

Psd(X) = Po(X)Psd(dIS). (5.39)

Therefore, we have

Esd[Jf IS] = F6(X) i(ir) (By definition)
X-S vEV

= > Psd(dIS)Fo(X) > (By equation (5.39))
X-S vEV

= EPsd(dIS) Po(X)it(ir)
uEV d X—(Su.(d})

= EP6d(dIS) Po(X)(r)
vEV d ir X—(irUSU{d})

= Psd(dIS) Po(ir, S, d)it(r) (Marginal potential)
vEV d 7rv

From equation (3.13), we see that given S, Psd(dIS) is the characteristic function

x{dld=od(s)}(d) of the set {dld = Sd(S)}. Therefore

Esd[.Af IS] = > Po(7r, S, Sd(S))U(7r). (5.40)
uEVlrv

Chapter 5. Stepwise-decomposable decision networks 85

Hence,

= e(d=, S=). (5.41)

The first item of the theorem follows from Corollary 5.1 and equation (5.41). The

second item follows from the first item. The theorem is proved. Li

5.6 The procedure EVALUATE

We are now ready to present our algorithm for evaluating smooth SDDN’s. The correct

ness of the algorithm is guaranteed by Theorem 5.2 and Proposition 5.3.

Procedure EVALUATE(JV):

• Input: .iV — a smooth SDDN.

• Output: An optimal policy for and the optimal expected value of .,V.

If there are no decision nodes, Call N-EVALUATE(.A1) to compute the ex

pected value, and stop.

Else

1. Find an SD candidate decision node d,

2. Compute the tail JV11 of J’f w.r.t d,

3. Call S-EVALUATE(.A111)to compute an optimal policy for and the op

timal conditional expected value E[.A[IIIlrd] of V11,

4. Compute the body J/i of iV w.r.t d (E[J’fIIrd] is used here), and

5. Recursively call EVALUATE(iV1).

In EVALUATE, the subroutine N-EVALUATE is a procedure for evaluating decision

networks that contain no decision nodes, which is given below.

Chapter 5. Stepwise-decomposable decision networks 86

Procedure N-EVALUATE(iV):

• Input: N — a decision network with no decision nodes.

• Output: the optimal expected value of .iV.

If there are no value nodes in N, return 0.

Else

1. Let v1, ..., V be all the value nodes. Compute P(7r1) for all the vi’s.

2. Return

i=1 1rv

Note that in EVALUATE, there is the subtask of finding an SD candidate node, which

is also in the TEST-STEPWISE-DECOMPOSABILITY. In implementation, one should

avoid doing this twice.

Also note that in N-EVALUATE one can, as in S-EVALUATE, compute the marginal

probabilities P(K) by using the clique tree approach. All those marginal probabilities

can be computed by traversing the clique tree only twice. When there is only one value

node, one pass through the clique tree is enough.

Finally, no complexity analysis of EVALUATE is carried out here because a more

general version of EVALUATE will be given in the next chapter.

Chapter 6

Non-Smooth SDDN’s

The previous chapter has discussed how to evaluate a smooth SDDN. This chapter deals

with non-smooth SDDN’s. We extend the concepts of tail and body to the non-smooth

case in such a way that, as in the smooth case, optimal policies of the tail and optimal

policies of the body together form optimal policies of the original network (Section 6.2),

and thereby obtain a procedure called EVALUATE1 that is very similar to EVALUATE

(Section 6.3). The correctness of EVALUATE1 is proved in Section 6.4. Both the pre

sentation and the proof of EVALUATE1 rely upon the preparatory Section 6.1, which

discusses how to transform a non-smooth SDDN into an equivalent smooth SDDN by a

series of arc reversals.

Several algorithms have been previously developed for evaluating influence diagrams.

Being special SDDN’s, influence diagrams can also be evaluated by EVALUATE1. Sec

tion 6.5 compares EVALUATE1 with the previous algorithms for evaluating influence

diagrams.

6.1 Smoothing non-smooth SDDN’s

An algorithm for evaluating non-smooth SDDN’s will be given in Section 6.3. In prepara

tion, this section shows how to transform a non-smooth SDDN into an equivalent smooth

SDDN by a series of arc reversals.

87

Chapter 6. Non-Smooth SDDN’s 88

Figure 6.19: The concept of arc reversal: At the beginning the parent set of c1 is BUB1
and the parent set of c2 is BUB2U{ci}. After reversing the arcc1—*c2, the parent set of
c1 becomes BUB1UB2U{c2}and the parent set of c2 becomes BUB2UB1.There are no
graphical changes otherwise.

6.1.1 Equivalence between decision networks

Two decision networks are equivalent if

1. They have the same decision nodes, the same policy space, and

2. For each policy, they have the same expected value.

Lemma 6.1 If two decision networks are equivalent, then they have the same optimal

policies and the same optimal expected value. 1

Note that a decision node can have the same decision function space in two different

decision networks even when its parents vary from one network to the other. For example,

consider the case where a decision node d has only one parent x in one decision network,

while two parents Yl and Y2 in the other. If the frame of x is the same as the Cartesian

product of the frames of Yi and of Y2, then d has the same decision function space in

the two networks. This is why, in the foregoing definition of equivalence between two

decision networks, we do not require that a decision node have the same parents in both

networks. This note will be useful in Chapter 9.

(1) Before arc reversal (2) After arc reversal

6.1.2 Arc reversal

Chapter 6. Non-Smooth SDDN’s 89

Arc reversal is an operation that transforms one decision network into another differ

ent but equivalent decision network (Howard and Matheson 1984, Shachter 1986). We

introduce arc reversals at two levels: first the level of skeleton, and then the level of

number.

Let c1 and c2 be two random nodes in a decision network skeleton K. Suppose there

is an arc from c1 to c2. When there is no other directed path from c1 to c2, we say that

the arcc1—*c2 is reversible

Let B=ir1flir2,Biir1—ir2,andB2=7r2—fr1U{ci}). In a decision network skele

ton, to reverse a reversible arc c1—+c2 is to delete that arc, draw an arc from c2 to c1,

an arc from each node in B2 to c1, and an arc from each node in B1 to c2. Figure 6.19

illustrates this concept.

Let JC’ be the decision network skeleton resulting from reversingc1—*c2 in K. Let ir

denote the set of parents of a node x in K’. Thenir1=BUBiUB2U{c2}andir2=BUB2UB1.

Let .iV be a decision network and K be the underlying skeleton. To reverse a reversible

arc c1—*c2 in ./V is to reverse that arc in the underlying skeleton K, and to set the

conditional probabilities P(ciIir1)and P(c2ir2)to be as follows:

P(c2Iir2)= P(ciIB,Bi,B2,c2)=def P(ci,c2B,Bi,B2), (6.42)

P(ciIir1)= P(c2tB,Bi,B2) def
P(ci,c2IB,Bi,B2)

(6.43)

where P(ci,c2IB, B1,B2)=P(ciI’r1)P(c2Iir2),and F(ciIir1)and P(c2Iir2)are in turn the

conditional probabilities of c1 and c2 in .IV respectively. In (6.43), P(c2IB,B1,B2) may

be zero. When it is the case, P(ciIB,Bi,B2,c2)is defined to be constant 1.

Note that arc reversals at the level of skeleton do not involve numerical computations,

while arc reversals in decision networks do. The following lemma reveals some properties

of arc reversals in decision networks, which will be useful later.

Chapter 6. Non-Smooth SDDN’s 90

Lemma 6.2 Suppose an arcc1—*c2 in a decision network .IV is reversible. Let .iV’ be the

decision network resulting from reversing c1—*c2 in Jf. Let ir denote the set of parents

of a node x in ./V”, and let P’(cIr) denote the conditional probability of a random node

c in Jf’. Then

1. For any node x that is not a random node, =

2. For any random node c other than c1 and c2,

= 7r and P’(cir) P(cIir);

3. And

P’(cl1r1)F’(c2I7r2)= F(ciI7ci)P(c2h7lc2).

Proof: The lemma follows directly from the definition of arc reversal. C

Proposition 6.1 Let .iV be a decision network. Let Al’ be the decision network obtained

from .Al by reversing a reversible arc. Then Al’ and Ar are equivalent.

Proof: According to Lemma 6.2 (1), Ar and Al’ have the same decision nodes, and that

each decision node has the same parents. So, Ar and Ar’ have the same policy space. By

Lemma 6.2 (2) and (3), we have that E5[Al] = E3[Ar’] for any policy S. The proposition

is thus proved. C

6.1.3 Disturbance nodes, disturbance arcs, and disturbance recipients

Consider a decision network skeleton K. Suppose d is a decision node in 1C. If K is not

smooth at d, then there are arcs from the downstream set Y11(d, K) to nodes in A

disturbance node of d is a node in Y11 from which there is a directed path to at least one

node in 7rd. The arcs on such a path are called disturbance arcs of d, because they go

Chapter 6. Non-Smooth SDDN’s 91

Figure 6.20: A non-smooth decision network skeleton.

against the “stream”. The nodes in ird that are pointed to by disturbance arcs are called

disturbance recipients of d.

As an example, let K be the decision network skeleton in Figure 6.20. The downstream

set Y11(d2,JC) consists of d2, c6 and v2. The node c6 is a disturbance node of d2, the arcs

c6—*c4 andc6—+c5 are disturbance arcs of d2, and c4 and c5 are disturbance recipients of

d2.

Lemma 6.3 Let K be a decision network skeleton and d be an SD candidate decision

node. Let X11 be the set of random and decision nodes in the downstream set Y11(d, IC).

1. For any cEX11, 7r ç XIIU7rd.

2. For anyc2EX11 and any ClElrd, if ftC contains the arcc2—.c1, then c2 and c1 are

both random nodes. So are the ancestors of c2 in X11.

Proof: The first part follows immediately from the definition of downstream set.

We now prove the second part. First of all, c1 cannot be a value node since value

nodes have no children and ci has the child d. Also since ir does not separate d from c2

and c2 is a parent of c1, c1 can not be decision node either, for this would contradict the

fact that d is an SD candidate node of ftC. Therefore ci must be a random node.

Following a similar line of reasoning, one can show that c2 and its ancestors in X11

are all random nodes.

Chapter 6. Non-Smooth SDDN’s 92

Corollary 6.1 Suppose d is an SD candidate decision node of a decision network skele

ton. Then all the disturbance nodes and disturbance recipients of d are random nodes.

6.1.4 Tail-smoothing skeletons

Let d be an SD candidate node in a decision network skeleton K. Suppose AC is not

smooth at d. This subsection presents a procedure for smoothing AC at d.

A leaf disturbance node of d is a disturbance node of d such that none of its children

are disturbance nodes of d.

Let c be a leaf disturbance node of d. Let c—*c1, c—.c2, ..., c—+c be all the distur

bance arcs emitting from c. An disturbance arc c—*c is the most senior if there is no

other disturbance arc c—c3 such that c3 is an ancestor of cj.

Since AC is acyclic, if there are disturbance arcs emitting from c, then one of them must

be the most senior. Since c is a leaf disturbance node of d, the most senior disturbance

arc c—*cj is reversible.

Procedure TAIL-SMOOTHING-K(AC, d)

• Input: AC — an SDDN skeleton,

d — an SD candidate of AC.

• Output: An SDDN skeleton that is smooth at d.

Whilel there are disturbance nodes of d, find a leaf disturbance node c, break

ties arbitrarily.

while2 there are disturbance arcs of d emitting from c, pick and

reverse a most senior one, break ties arbitrarily. end-while2

Chapter 6. Non-Smooth SDDN’s 93

Figure 6.21: The application of TAIL-SMOOTHING-K to the decision network skeleton
in Figure 6.20 with the input candidate node being d2: (a) alter reversing c6—c4, (b)
after reversingc6—+c5.

end-whilel.

As an example, let IC be the decision network skeleton in Figure 6.20. Figure 6.21

shows the working of TAIL-SMOOTHING-K(AC, d2). The node c6 is a leaf disturbance

node of d2. There are two disturbance arcs emitting from c6: c6—*c4 andc6—*c5, among

whichc6—*c4 is the most senior. So, the arcc6—+c4 is first reversed, resulting in the deci

sion network skeleton in Figure 6.21 (a). The arc c6—*c5 is reversed thereafter, resulting

in the decision network skeleton in Figure 6.21 (b), which is smooth at d2.

Proposition 6.2 The procedure TAIL-SMOOTHING-K terminates and is correct.

A proof can be found at the end of this section.

Let IC’ be the output decision network skeleton of TAIL-SMOOTHING-K(IC, d). For

any disturbance recipient r of d (in IC), the set of parents of r in IC’ is different from

the set of parents 7rr of r in IC. In our example, ir — {d1,c4}, while 7r5 = {c4,c6}. The

following lemma gives us some idea about what nodes consists of. The lemma is useful

in presenting EVALUATE1.

Lemma 6.4 Let and ir,. be as in the previous paragraph and let d be the set of parents

of d in IC. Then rrflrdc1rc7rd, and each xE7r—7r is not a descendent of r in IC.

(a) (b)

Chapter 6. Non-Smooth SDDN’s 94

A proof can be found at the end of this section.

6.1.5 Tail smoothing decision networks

The arc reversals in TAIL-SMOOTHING-K are at the level of skeleton. There are no

numerical computations whatsoever. The following algorithm for smooth a decision net

work at a decision node is the same as TAIL-SMOOTHING-K, except now numerical

computations are involved.

Procedure TAIL-SMOOTHING(A’, d)

• Input: J’/ an SDDN,

d — an SD candidate of .A/’.

• Output: An equivalent SDDN that is smooth at ci.

Whilel there are disturbance nodes of d, find a leaf disturbance node c, break

ties arbitrarily.

while2 there are disturbance arcs of d emitting from c, pick and

reverse a most senior one, break ties arbitrarily. end-while2

end-whilel.

As an example, let .iV be a decision network over the skeleton in Figure 6.20. Consider

the working of TAIL-SMOOTHING(.Af, c12). As in the case of TAIL-SMOOTHING-K,

the arc c6—*c4 is first reversed, resulting in a decision network with underlying skeleton

• as in Figure 6.21 (a). The conditional probabilities of c4 and c6 in the resulting network

are as follows:

P(c4Idi) = P(c4Idi,c6)P(c6), (6.44)

Chapter 6. Non-Smooth SDDN’s 95

F(c4Idi,c6)P(c)
P(c6di,c4)= . (6.45)

P(c4di,c6)P(c6)

Then the arcc6—*c5 is reversed, resulting in a decision network with underlying skeleton

as in Figure 6.21 (b). The conditional probability of c5 in the resulting network is as

follows:

P(c5di,c4)
-P(c5c4,c6)F(c6Idi,c4)= (6.46)

Note that no complexity analysis of TAIL-SMOOTHING is carried out because it

will be used only in proofs, never in evaluation algorithm.

6.1.6 Smoothing non-smooth SDDN’s

This subsection is for the benefit of Chapter 9; it gives an algorithm that smooths non-

smooth SDDN’s.

Procedure SMOOTHING(H)

• Input: H — an SDDN.

• Output: A smooth SDDN that is equivalent to H.

If H contains no decision node, return J.f.

Else

1. Find an SD candidate decision node d of H.

2. Call TAIL-SMOOTHING(H, d). Let Let H’ denote the resulting deci

sion network.

3. In H’, treat d as a random node’. (Thus Al’ contains one less decision

nodes than H.) Recursively call SMOOTHING(H’).

Chapter 6. Non-Smooth SDDN’s 96

Figure 6.22: The effects of applying SMOOTHING to the SDDN in Figure 1.7: (a) after
the arc from seismic-structure to test-result is reversed, (b) the final SDDN, which
is smooth.

As an example, consider the SDDN in Figure 1.7. The network is smooth at oil-sale-policy,

so SMOOTHING does nothing in the first recursion. In the second recursion, oil-sale-policy

is treated as a random node, rendering drill an SD candidate node. The SDDN is not

smooth at drill. So TAIL-SMOOTHING will enter its while loops. There is oniy

one leaf disturbance node of drill, namely seismic-structure. Thus the arc from

seismic—structure to test-result is reversed, introducing an arc from oil-underground

to test-result and an arc from test to seismic-structure. See Figure 6.22 (a). Now,

oil-underground becomes a leaf disturbance node of drill. The arc from oil-underground

to test-result is reversed, introducing an arc from test to oil-underground. The final

SDDN is shown in Figure 6.22 (b), which is smooth.

Note that no complexity analysis of SMOOTHING is carried out because it will be

used only in proofs, never in evaluation algorithm.

‘The decision node d is treated as a random node only within the scope of SMOOTHING. It is treated
again as a decision after the termination of SMOOTHING.

(a)

(b)

Chapter 6. Non-Smooth SDDN’s 97

Theorem 6.1 The procedure SMOOTH terminates and is correct.

A proof will be provided in the next subsection.

6.1.7 Proofs

Proof of Proposition 6.2: To prove that the procedure TAIL-SMOOTHING-K termi

nates, we need to show that the procedure does not get trapped in the while-loops. The

procedure will eventually exit the inner while-loop, because the number of disturbance

arcs emitting from the lea! disturbance node c is reduced by one during each execution

of the ioop.

The procedure will also exit the outer while-loop since reversing all the disturbance

arcs emitting from a leaf disturbance node c does not produce any new disturbance nodes,

and c is no longer a disturbance node thereafter. Therefore the number of disturbance

nodes is reduced by one during each execution of the outer while-loop. Since there are

only a finite number of disturbance nodes, the procedure will eventually leave the outer

while-loop.

TAIL-SMOOTHING-K changes neither the downstream set nor the upstream set of

Rd. So, the resulting decision network is also stepwise-decomposable.

Since the procedure exits the outer while-loop only when there are no more distur

bance nodes of d, the resulting network produced by the procedure is smooth at d. The

proposition is proved, C

Proof of Lemma 6.4: Let rr(t) be the set of parents of r at time step t during the ex

ecution of TAIL-SMOOTHING(K, d). We show by induction on t that (1) lrrfllrdclrr(t),

(2) irr(t)flYi(1.C, d) 0, and (3) each XE(irr(t)fl7rd)—lrr is not a descendant of r in K.

At the beginning, irr(O) = lrr. So (1) and (3) are trivially true. (2) is true because at

Chapter 6. Non-Smooth SDDN’s 98

least one node in 7rr is in Y11(IC, d), since r is a disturbance recipient of d. Hence none of

the nodes in ir,. can be in the upstream set Y1.

Suppose (1-3) are true at time step t. Consider time step t+1. Suppose at this time

step, the disturbance arc reversed is c—*r’. If r’r, then irr(t + 1) = 7Tr(t), hence (1-3)

are true. When r’ = r, let x be a node in irr(t + 1)—Tr(t). Then x must be parent of C

that is not a parent of r. Since the arc c—ir is reversible, x cannot be a descendant of r.

So x does not lead to the violation of (3). Since c is in the downstream set Y11 of lrd, x

can only be either in rd or in Y11. In both case, x does not lead to the violation of any

of (2). By the definition of arc reversal, irr(t) — rr(t + 1) = {c}. Again because c is in

Y11, (1) remains true. In other words, (1-3) are true for the case of t + 1. Consequently,

(1-3) are true for all t’s.

At the end of the execution of TAIL-SMOOTHING(K, d), tr(t) = ir. Since K’ is

smooth at d, none of the nodes of ir are in the downstream set Y11, hence 7rflrd = ir.

Consequently, it follows from (1-3) that Krfl7rdC7rc1rd, and each xEr — lrr is ancestor

ofrinK. 1

We prove the correctness of SMOOTHING by induction on the number of decision

nodes. When there are no decision nodes, SMOOTHING is trivially correct. Suppose

SMOOTHING is correct in the case of k—i decision nodes. Now consider the case of k

decision nodes.

Let d be an SD candidate node of .iV. Let .iV’ be the output network of TAIL

SMOOTHING(.iV, d). According to Proposition 6.2, d remains an SD candidate node in

.iV’ and V’ is smooth at d and equivalent to .iV.

Treating d as a random node in .N’, we let d’ be an SD candidate node of Let

be the output network of SMOOTHING(.iV’). Then P* is equivalent to .A/’ with d

regarded as a random node. Consequently, iV is also equivalent to iV’ when d is treated

Chapter 6. Non-Smooth SDDN’s 99

as a decision node.

By the induction hypothesis, .iV is a smooth and stepwise-decomposable when d is

regarded as a random node. By proposition 5.1, what remains to be proved is that when

treated as a decision node, d is an SD candidate node of and .,V is smooth at d.

Let Ar” be the output network of TAIL-SMOOTHING(iV’, d’). Since .iV’ is smooth

at d, the tail of .iV’ w.r.t d is not touched in the execution of TAIL-SMOOTHING(V’,

d’). Thus, d is an SD candidate node in 1V” and .iV” is smooth at d.

Suppose d” becomes an SD candidate node of .iV” if both d and d’ are treated as ran

dom nodes. Let .iV” be the output network of TAIL-SMOOTHING(V”, d”). Repeating

the argument in previous paragraph, we can show that d is an SD candidate node in

and .iV” is smooth at ci. Continuing the argument, we can eventually show that d is an

SD candidate node in .iV and .IV* is smooth at d. The theorem is proved. Li

6.2 Tail and body

The procedure TAIL-SMOOTHING suggests the following approach for evaluating a non-

smooth SDDN .IV: Find an SD candidate node d, use TAIL-SMOOTHING to smooth

Al’ at d, decompose .iV at d into a tail and a body, find an optimal decision function for

d in the tail, and repeat the process for the body. An disadvantage of this approach

is that TAIL-SMOOTHING demands a series of arc reversals, which may be inefficient

(Shenoy 1992, Ndilikilikesha 1991). The motivation behind EVALUATE1 is to avoid arc

reversals. This section paves the way to EVALUATE1.

Let .iV be a decision network and d an SD candidate node in dV. In Sections 5.1

and 4.1, we have defined the concepts of tail (or downstream component) and body (or

upstream component) for the case when Al’ is smooth at d. In this section, we extend

the concepts of tail and body to the case when Al’ is not smooth at d.

Chapter 6. Non-Smooth SDDN’s 100

Figure 6.23: Tail and body for the non-smooth decision network skeleton in Figure 6.20
[FINAL CHECK]: (a) shows its body w.r.t d2 and (b) shows its tail w.r.t d2.

6.2.1 Tail and body at the level of skeleton

When IC is smooth at d, there are no disturbance recipients of d. When IC is not

smooth at d, some of the nodes in ‘ird are disturbance recipients. Disturbance recipients

require special attention when extending the definition of tail and body to the non-smooth

case.

Suppose d is an SD candidate node of IC. The tail of IC w.r.t d, denoted by IC11(d, IC)

or simply by IC11, is the decision network skeleton obtained from IC by restricting IC onto

YIIU’rd and removing all those arcs among nodes in ‘1d that do not point at disturbance

recipients of d.

As an example, let IC be the decision network skeleton in Figure 6.20. Figure 6.23

(b) shows the tail of IC w.r.t d2. The restriction of IC onto Y11(d2,IC)Urd2 contains the

following three arcs among nodes in lrd2: d1—*c3,d1—c4, and c4—*c5. The arc d1—*c3,

which is removed because c3 is not a disturbance recipient of d2. On the other hand, the

arcs d1—+c4 and d4—*c5 are retained because both c4 and c5 are disturbance recipients of

In the definition of tail, why do we need to handle disturbance recipients of a decision

node d in a different manner from other parents of d? Consider, for instance, the dis

turbance recipient c4 of d2 in Figure 6.20. The conditional probability P(c4Idi, c6) of c4

(a) (b)

Chapter 6. Non-Smooth SDDN’s 101

involves the node c6. Since c6 is in the downstream set Y11(d, K;), P(c4Idi,c6) is placed in

the tail (Subsection 6.2.2). Consequently, the arcd1—*c4 has to be retained. On the other

hand, c3 is not a disturbance recipient of d2. Its conditional probability P(c3di) does

not involve nodes in the downstream set Y11, is hence placed in the body (see Subsection

6.2.2). So, we delete the arc d1—*c3 from the tail.

To extend the concept of body to the non-smooth case, let K;’ be the output decision

network skeleton of TAIL-SMOOTHING-K(K;, d). Since K;’ is smooth at d, its body K

w.r.t d is defined (Sections 4.1 and 5.1). We define the body of K; w.r.t d to simply be

the body K; of K;’ w.r.t d, and we denote it by K;1(d, K;) or simply by K;j.

As an example, let K; be the decision network skeleton in Figure 6.20. Figure 6.21

(b) shows the output decision network skeleton of TAIL-SMOOTHING-K(K;,d2), from

which we obtain the body K;1 of K; w.r.t d2. K;1 is as shown in Figure 6.23 (a).

The reader is encouraged to verify that the general definitions of tail and body (at the

level of skeleton) given in this subsection are consistent with the corresponding definitions

for the smooth case given Sections 4.1 and 5.1. In doing so, s/he needs to keep in mind

that in the smooth case there are no disturbance recipients.

6.2.2 Tail of decision networks

Having defined tail at the level of skeleton, we can now define tail for decision networks

by providing the necessary numerical information. Suppose d is an SD candidate node

in a decision network Al. Let K; be the underlying skeleton. The tail of N w.r.t d,

denoted by N11(d, .iV) or simply by is a semi-decision network over K;11(d, K;). The

value functions of all the value nodes in Al11 remain the same as in N. The conditional

probabilities of random nodes outside lrd also remain the same as in A/. Since d is an

SD candidate node, Corollary 6.1 assures us that the disturbance recipients of d are all

random nodes. The conditional probabilities of the disturbance recipients of d again

Chapter 6. Non-Smooth SDDN’s 102

remain the same as in .N. The nodes in S =def{xElrd x is not disturbance recipient of

d} are all viewed as root random nodes without prior probabilities.

As an example, let .iV be a decision network over the skeleton shown in Figure 6.20.

Then the tail .iVjj(d2,.A/) is a semi-decision network over the skeleton shown in Figure 6.23

(b). .iV contains conditional probabilities P(c4Idi,c6),F(c5c4,c6),and F(c6) of random

nodes c4, c5, and c6, which are respectively the same as the conditional probabilities of

C4, c5, and c6 in H. H11 also contains a value function 1(d2,c6) of v2, which is the

same as the value function of v2 in ./V. The root random node c3 does not have prior

probability. The node d1 is treated as a root random node without prior probability.

Let X11 be the set of random and decision nodes in the downstream set Y11(d, H). Let

P0(X11,7rd) be the product of all the conditional probabilities in A/11. For any subset B of

XJIU?rd, F0(B) is obtained fromP0(X11,7rd) by summing out the variables in XIIU7rd—B.

Define the evaluation functional e(d, lrd) of H11 as follows:

e(d,d)
= p d

(6.47)
o(7rd,) VEVI%lrV—lrdU{d}

where V11 stands for the set of value nodes in Al11.

To continue our example,Y11(d2,Af) = {d2,c6,v2}. So X11 = {d2,c6}. Po(XII,lrd2)is

given by

Po(XII,lrd2)=Po(d2,c6,di,c3,c4,c5)=P(c4Idi,c6)P(c5Ic4,c)F(c6).

So, the evaluation functional e of A/H is given by

e(d2,d1,c3,c4, C5) =
P(c4ldi)F(c5Ic4,)P(c6)

P(c4jdi,)F(c5Ic4,)P(c6)2(d2,c6).

A note about consistency in the definition of evaluation functional. According to the

note at the end of Section 3.1, when A/ is smooth at d, P0(X11,lrd) is the conditional

Chapter 6. Non-Smooth SDDN’s 103

probability P(XII—{d} 7rd, d). Thus Fo(rd, d) = Ex11—{d} P(XII—{d}rd, d) = 1. Conse

quently, when .A1 is smooth at d, the definition of evaluation functional given here is the

same as the definition given in Section 5.5.

Theorem 6.2 Suppose d is an SD candidate node in a decision network Jif. Let e(d, lrd)

be the evaluation functional of the tail .A/i1(d,J/). The optimal decision functions 6 of

ci can be found through

= arg maxcyEc2de(d=a,lrd=/3),V/3 E lrd. (6.48)

A proof will be provided in Section 6.4.

6.2.3 Body of decision networks

As in the case of tail, the body of a decision network A/ w.r.t to an SD candidate node

d is obtained from the body of its underlying skeleton w.r.t d by providing the necessary

numerical information. Let C be the skeleton underlying .JV. The body of iV w.r.t ci,

denoted by .,‘V1(d, .iV) or simply by .A[1, is a semi-decision network over 1C1(d, ,AC). The

value functions of all the value nodes other than u remain the same as in The value

function j of the tail-value node u is defined by

= maxaec2de(d=c,1rd=/3),V/3 (6.49)

The conditional probabilities of random nodes that are not disturbance recipients of

d also remain the same as in .V.

What remain to be provided are the conditional probabilities of the disturbance re

cipients of d. Let us first note that a disturbance recipient of d has different parents in

the body 1C1 from in the original skeleton K. For example, the parents of c5 in Figure

6.20 are c4 and c6, while in Figure 6.23 (a) the parents of c5 are d1 and c4. For any

Chapter 6. Non-Smooth SDDN’s 104

disturbance recipient r of d, let be the set of the parents of r in 1C. In Figure 6.23

(a), for instance, ir = {dj,c4}, while = {c4,c6}.

Let V’ be the output decision network of TAIL-SMOOTHING(.iV, d), and let r be a

disturbance recipient of d. We want to define the conditional probability P(rI7r?!) of r in

A1 to be the conditional probability of r in .Al’, but the sake of computational efficiency

we do not wish to explicitly compute .iV’. The following definition resolves our dilemma.

The conditional probability P(rr) of r in J is defined by

Fo(ir’ r)
P(rI7rf) def

r
(6.50)

rOklr)

where F0 is as in the previous subsection.

We shall show in Section 6.4 that F(rI7r) as defined by equation (6.50) is indeed

the conditional probability of r in j%f’. Here is an example. Recall that c4 and c are

the only two disturbance recipients of d2 in Figure 6.20. Let us compute the conditional

probabilities of c4 and c5 in Figure 6.23 (a).

Fo(c4,di)
F(c4lit-4)= P(c4di)

d

= F(c4Idi)
=F(c4Idi,c6)F(c6), (6.51)

—

— Po(c5,d1,c4) — F(c4Idi,c6)F(csIc4,c6)F(c6)
F(c5r5)

— F(c51 1,c4) — — . (6.52)
Po(di,c4) F(c4Idi,c6)P(ce)

A comparison between equations (6.51) and (6.52) with equations (6.44) and (6.46)

reveals that the conditional probabilities of c4 and c5 obtained through equation (6.50)

are indeed the same as the conditional probabilities of c4 and c5 in .1V.

According to Lemma 6.4, ir,f d for any disturbance recipient r of d. This observa

tion about r,f leads to the following formula for computing P(rr):

F(rIir) = d1rUJ{} Fo(lrd)
(6.53)

ira—irrU{r} Fo(d)

Chapter 6. Non-Smooth SDDN’s 105

In words, in order compute P(rr), we can compute Po(lrd) fromP0(X11,lrd) by summing

out the nodes in XIIU7rd—7rd and obtain P(rIir) through equation (6.53).

Theorem 6.3 Suppose d is an SD candidate node in a decision network Jf. Then the

optimal decision functions for decision nodes other than d are the same in .A/ as in the

body A11(d, .iV).

A proof will be provided in Section 6.4.

6.3 The procedure EVALUATE1

Theorems 6.2 and 6.3 lead to the following procedure for evaluating SDDN’s, smooth or

non-smooth.

Procedure EVALUATE1(V):

• Input: ./V — an SDDN, smooth or non-smooth.

• Output: An optimal policy and the optimal expected value of .iV.

If there are no decision nodes, call N-EVALUATE(.Af) to compute the ex

pected value, and stop.

Else

1. Find an SD candidate node d,

2. Compute the tail JV1 of .iV w.r.t d. Let P0 denote the product of all the

conditional probabilities in iVii.

(a) Compute the marginal potentials Po(lrd) and Po(rd, d), and the

marginal potential Po(rd, d, ir,) for each value node v in .Nrj.

Chapter 6. Non-Smooth SDDN’s 106

(b) Compute the evaluation functional e(d, rd) by

1
e(d,lrd)

= d
Po(rU,1rd,d),u(1rU). (6.54)

OIrd,)

where V11 is the set of value nodes in JV11.

(c) Compute an optimal decision function 6 of d by

63) = arg maxaE2de(d=, lrd=/3),VI3EfZird. (6.55)

(d) Compute the body .N1 of .iV w.r.t d (equation (6.53) is used here).

3. Recursively call EVALUATE1(.A11).

What is the running time of EVALUATE1? Let n be the total number of nodes in

iV, k be the number of decision nodes, a be the number of arcs, e be the number of edges

in the moral graph of According to the complexity analysis of TEST-STEPWISE

DECOMPOSABILITY, the time EVALUATE1 spends on finding candidate nodes and

computing tails and bodies is O(k2(n + e)).

If we use the clique tree propagation approach to compute the marginal potentials

in step (a), we need only to traverse the clique tree twice. If there are 1 cliques and the

maximum number of nodes in a clique is q, the runing time is O(lA), where A stands for

the maximum number of values a variable can assume. So, EVALUATE1 spends O(klA)

time computing marginal potentials.

The time for computing the evaluation functional and optimal decision functions from

the evaluation functional is dominated by the time for computing marginal potentials,

except for the numerical divisions. For each (candidate) node d, the factor Po(lrd, d) is

divided from an expression to arrive at the evaluation functional e(7rd, d). Numerical

divisions also happen once for each disturbance recipient in the computation of body2.

2This can be avoided via a subtle technical trick.

Chapter 6. Non-Smooth SDDN’s 107

6.4 Correctness of EVALUATE1

To prove the correctness of the procedure EVALUATE1, it suffices to show that Theorems

6.2 and 6.3 are true.

Proof of Theorem 6.2: Let A/’ be output network of TAIL-SMOOTHING(V, ci).

Then d is also an SD candidate node of Al’ and iV’ is smooth at d.

Let P be the product of the conditional probabilities in the tail .iV1(d, Al’). According

the Theorem 5.3, optimal decision functions & for d can be found through

= arg maxE1de(d=a,7rd=/3),VI3E (6.56)

where the evaluation functional e’(d, lrd) of JV is given by

e(c,/3) = P(7r,7rd,d)1t(7r) Va e Qd,V/3 E 1Td, (6.57)
UéVH lrV—lrdU{d}

where V11 stands for the set of value node in Jv7.

Let P0 be the product of all the conditional probabilities in the tail .iV11(d,JV). By

Lemma 6.2, we conclude that arc reversals do not change joint probabilities. Hence they

do not change conditional probabilities either. Consequently, for each value node v in

Al,1 (or in .A71) we have

Po(rI1rd,d) = P(1rVI1rd,d).

Since .A/’ is smooth at d, we have

P(7rIrd,d) =

Therefore

= Po(1rIrd,d). (6.58)

Chapter 6. Non-Smooth SDDN’s 108

Consequently,

e’(d,lrd) = Fo(irVI7rd,d)iV(7rV)
vEV lrt,—lrdU{d}

=

d EPo(7rV,1rd,d)(?rV)Po(lrd,) v’11 ir

= e(d, rd), (6.59)

where e(d, lrd) is the evaluation functional of J’/ri. This proves Theorem 6.2.

Proof of Theorem 6.3: Let .A/’ be the output network of TAIL-SMOOTHING(iV, d).

Then d is also an SD candidate node of J’/’ and V’ is smooth at d. Let ir. be the set

of parents of a node x in .A/’ and let F’(cIir) be the conditional probability of a random

node c in Jv”.

Let RC be the skeleton underlying ,‘V. Recall that in the definition of A/1, we executed

TAIL-SMOOTHING-K(K, d). Suppose the ties were broken in the same way in both the

execution of TAIL-SMOOTHING-K(AC, d) and the execution TAIL-SMOOTHING(V,

d). Then for any node x in JV, other than the tail-value node, ir = ir. In particular, for

any disturbance recipient r of d in V, = ir.

Because of Theorem 5.3, it suffices to show that the body .iV1(d, .iV) of .iV is the same

as the body .iV(d, A1’) of .Af’.

First of all, because of equation (6.59) the value function of the tall-value node in ./f
is the same as the value function of the tail-value node in JVE.

What remains to be proved is that for any disturbance recipient d of d,

P’(rIir) = F(rir). (6.60)

Let R be the set of all the disturbance recipients of d in .A[. Let C11 be the set

of random nodes in the downstream set Y11(d,iV). Consider the product of all the

conditional probabilities of nodes in C11 U R. According to Lemma 6.2, this product is

Chapter 6. Non-Smooth SDDN’s 109

not changed by the arc reversals in TAIL-SMOOTHING(d, .iV). Thus

H P(cIir) = H P’(cI7rj.
cEC11UR cEC11UR

Summing out all the nodes in C11 from both sides of the equation, we get

PO(lrd) = II P’(cr).
céR

Thus for any rER, we have

F’(rIir) = 1rd—({r}u1r) Po(rd)
= P(rIr).

Z7d—l. Po(lrd)

Theorem 6.3 is therefore proved.

6.5 Comparison to other approaches

Influence diagrams are special SDDN’s and hence can be evaluated by EVALUATE1.

This section compares EVALUATE1 with previous approaches for evaluating influence

diagrams. We identify a list of desirable properties and examine EVALUATE1 and each

of the previous approaches with regard to those properties.

6.5.1 Desirable properties of evaluation algorithms

A list of desirable properties of algorithms for evaluating influence diagrams is given in

the first row of Table 6.1. Due explanations follow.

Chapter 6. Non-Smooth SDDN’s 110

Table 6.1 Comparisons among approachs for evaluating influence diagrams.

facilitating divide separating multiple reversing

arc and BN value arcs

removal conquer inference nodes

EVALUATE1 yes yes yes yes no

Shachter 86 no no no no yes

Ndilikilikesha 92 no no no no no

Tatman and no no no yes yes

Shachter 90

Shachter 88 no no yes no no

Shenoy 90 n/a no no no no

Shenoy 92 n/a no no yes no

Facilitating the pruning of removable arcs

In a decision network, an arc into a decision node is removable if its removal does not

affect the optimal expected value of the network. In Chapter 7, we shall present an

algorithm that prunes from an influence diagram all the removable arcs that can be

graphically identified.

There are a couple of advantages to pruning removable arcs: it results in a simpler

network, and it reduces the sizes of the decision tables. Thus a desirable property for an

evaluation algorithm to possess is to be able to facilitate the pruning of removable arcs.

It will be shown in Chapter 7 that pruning graphically identifiable removable arcs

from influence diagrams results in SDDN’s. Since EVALUATE1 is designed for evaluating

SDDN’s, it facilitates the pruning of removable arcs from influence diagrams.

Chapter 6. Non-Smooth SDDN’s 111

Divide and conquer

It is desirable to decompose, prior to evaluation, an influence diagram into (overlapping)

portions such that each portion corresponds to a decision node and optimal decision

functions of a decision node can be computed in its corresponding portion. This is an

application of the standard divide and conquer idea.

Suppose the influence diagram to be evaluated has been put through a preprocessing

stage such that removable arcs have been pruned. Let .iV be the resulting SDDN. The

procedure EVALUATE1 evaluates .iV recursively. At the first step of the recursion,

EVALUATE1 finds an SD candidate node d and cuts .iV into two portions: the tail jVii

and the body JVj’. EVALUATE1 computes an optimal decision function of d in J’f, and

then repeats the process for the body .A11. In this sense, we say that EVALUATE1 works

in a divide and conquer fashion.

Separating Bayesian network inference

When evaluating an influence diagram, it is desirable to separate Bayesian network (BN)

inference from other computations. There have been intensive research on BN inference,

and systems have been built. If an influence diagram evaluation approach can clearly

separate BN inference from other computations, then it can be implemented on top of

any system for BN inference. This is an application of the principle of separation of

concern and the modularity principle.

EVALUATE1 clearly separates BN inference from other computations; all the BN

inference tasks — the tasks of computing the marginal potentials Po(?rd), PoQrd, d), and

Po(lrd, d, 7r) — are collected in step (a). We have been suggesting to use the clique tree

propagation method to compute the marginal potentials. However, other methods can

be used as well.

Chapter 6. Non-Smooth SDDN’s 112

Arc reversals and numerical divisions

Numerical divisions are slower than additions and multiplications; they should be avoided

when possible. Arc reversal implies numerical divisions; they should also be avoided if

possible.

The procedure EVALUATE1 does not require arc reversals. Furthermore, the only

times EVALUATE1 does numerical divisions are when computing the evaluating func

tional e(d, Trd) and the conditional probability P(rIir) of a disturbance recipient r of

some decision node.

Multiple value nodes

When the decision maker’s utility function can be separated into several components

(Tatman and Shachter 1990), it is important to take advantage of the separability by

having multiple value nodes. This may imply substantial speed up of computation.

EVALUATE1 is designed for dealing with multiple value nodes.

6.5.2 Other approaches

This subsections examines the approaches by Shachter (1986), Ndilikilikesha (1992), Tat-

man and Shachter (1990), Shachter (1988), Shenoy (1990), Shachter and Peot (1992), and

Shenoy (1992). The approaches by Howard and Matheson (1984), and Cooper (1989)

will be discussed in Chapter 9.

Things that can be said for all

Until now, influence diagrams have always been assumed to be no-forgetting; there have

been no methods for dealing with influence diagrams that violate the no-forgetting con

straint. Even though several authors (Shachter 1988, Tatman and Shachter 1990, and

Chapter 6. Non-Smooth SDDN’s 113

Shenoy 1992) have noticed and to some extent made use of the fact that some decision

nodes may be independent of some of their parents, no one has proposed to prune remov

able arcs at the preprocessing stage. The reason is that pruning arcs from an influence

results leads to the violation of the no-forgetting constraint.

Shenoy (1990) and (1992) proposes a new representation for decision problems, namely

valuation-based systems. In this representation, the issue of removable arcs does not

occur. We will come back to this point later.

Probably because they do not prune removable arcs by preprocessing, none of the

previous approaches work in a divide and conquer fashion. The method by Shenoy

(1990, 1992) does not work in a divide and conquer fashion either. The adoption of a

divide and conquer strategy is the most important advantage of EVALUATE1 has over

the previous approaches.

The rest of this subsection examines the previous approaches with regard to the three

remaining properties: separating BN inference, multiple value nodes, and arcs reversals.

Shachter (1986), Ndilikilikesha (1992), and Tatman and Shachter (1990)

Before Shachter (1986), influence diagrams are evaluated in two stages—first transform

them into decision trees, and then evaluate the decision trees (Howard and Matheson

1984). Shachter (1986) shows that influence diagrams can be evaluated without the

transformation into decision trees, and presents an approach that evaluates an influence

diagram by properly applying four operations: barren node removal, arc reversal, random

node removal, and decision node removal.

As shown in the third row of Table 6.1, the approach by Shachter (1986) does not

separate BN inference, does not deal with multiple value nodes, and requires arcs rever

sals.

By generalizing influence diagram into potential influence diagrams, the approach

Chapter 6. Non-Smooth SDDN’s 114

by Ndilikilikesha (1992) is able to evaluate an influence diagram by using only three

operations: barren node removal, random node removal, and decision node removal. The

operation of arc reversal is avoided. However, this approach still does not separate BN

inference and does not deal with multiple value nodes (see the fourth row of Table 6.1).

Tatman and Shachter (1990) generalizes influence diagrams in another direction for

the sake of dealing with multiple value nodes. The evaluation approach is very much like

Shachter (1986), except that it has one more operation, namely the operation of merging

value nodes. This approach does not separate BN inference, and it requires arc reversals

(see the fifth row of Table 6.1).

Shachter (1988)

Let d be an SD candidate node in an influence diagram Al, and let v be the only value

node in A/. Shachter (1988) and (1990) has noticed that optimal decision functions

8° : —f of d can be obtained through

8(/3) = arg maxOEcdE[vI7rd = /3, d = a], (6.61)

for each 3 E 1rd.

Further in this direction, Shachter and Peot (1992) (first half) proposes a way to scale

the value function and change v into a observed random node, denoted by u (see also

Cooper 1989). Formula (6.61) is transformed into

= arg maxaeczdP(7rd = /3 d = alu = 1). (6.62)

Thus, this approach separates BN inference.

Even though Shachter (1990) points out the possibility that the conditional expec

tation E[v7rd = /3, d = a] can be computed in one portion of the original network, the

algorithm proposed by this paper does not work in a divide and conquer fashion. After

Chapter 6. Non-Smooth SDDN’s 115

the optimal decision function for d is computed, the decision node d is replace by a de

terministic random node characterized by the optimal decision function. The resulting

influence diagram contains one less decision nodes, but has the same number of nodes as

the original network.

Finally, this approach deals with only one single value node. See the sixth row of

Table 6.1.

Shenoy (1990), (1992), and Shachter and Peot (1992)

Shenoy (1990), (1992) propose a new representation for Bayesian decision problems,

namely valuation-based systems. While a decision network consists of an acyclic directed

graph, a set of conditional probabilities, and a set of value functions, a valuation-based

system consists of an (undirected) hypergraph graph with a precedence relation, a set of

potentials, and a set of valuations. The no-forgetting constraint is enforced by requiring

the precedence relation to be transitive.

- Influence diagrams can be readily represented as valuation-based systems.

Shenoy (1990) develops an approach for evaluating a valuation-based system by mod

ifying the clique tree propagation algorithm for BN inference. No arc reversals are re

quires in this approach. The approach was developed for the case of multiple value nodes.

However, there is an error. The paper concludes that the combination operation is com

mutative, but it is not. Consequently, the approach works only for the case of one single

value node. Also, the approach does not separate BN inference (see the seventh row of

Table 6.1).

Shachter and Peot (1992) (second half) present an algorithm for evaluating influence

diagrams that is very similar to Shenoy (1990).

Shenoy (1992) proposes a node removal approach for valuation-based systems. This

Chapter 6. Non-Smooth SDDN’s 116

approach deals with multiple value nodes. It requires no arc reversals. However, numer

ical divisions become necessary when removing a random node that appears in at least

one valuation, but not in all valuations. Thus the approach requires more numerical

divisions than EVALUATE1, when there are at least two value nodes. When a random

node to be removed appears in all the valuations, the valuations are combined into one

single valuation. Thus, the approach makes less use of separability in the utility function

than EVALUATE1.

This approach does not separate BN inference (see the eighth row of Table 6.1).

In a decision network, a decision is presumably to be made based on the values of

the parents of the decision node. When a decision d is independent of a certain parent d,

then the arc c—d is removable (Chapter 7). Thus arises the issue of removable arcs. In

a valuation-based system, on the other hand, the set of variables that a decision depends

upon is not explicitly specified. It is up to the evaluation algorithm to find it out. Thus,

there is no issue of removable arcs here. This is why in Table 6.1 we state the issue of

removable arcs does not apply to Shenoy (1990) and Shenoy (1992).

An overhead of our approach

Our approach has an overhead. Before doing any numerical computation, we need to

identify removable arcs, and figure out the tail and the body. On the other hand, most

previous approaches go directly to numerical computations after little graphical prepro

cessing.

According to the complexity analysis at the end of Section 6.3, the overhead takes

O(k2(ri + e)) time. Our believe is that in many case, this overhead may help us cut

down the time O(l)) for numerical computations, which is usually of higher order than

O(k2(ri + e)).

As a final note, let us point out the previous algorithms for evaluating influence

Chapter 6. Non-Smooth SDDN’s 117

diagrams can possibly be modified to evaluate SDDN’s.

Chapter 7

Removable arcs and independence for decision nodes

Given a decision network, there are often nodes and arcs that can be harmlessly removed,

in the sense that their removal does not affect the optimal expected value of the network.

It is a good idea to prune such nodes and arcs at the preprocessing stage because doing

so simplifies the network. It is well known that barren (random and decision) nodes are

removable (Shachter 1986). This chapter addresses the issue of removable arcs in the

setting of SDDN’s.

We begin by establishing the equivalence between removable arcs and independencies

for decision nodes (Section 7.1), which is of fundamental importance to this chapter.

Section 7.2 introduces lonely arcs a class of removable arcs that can be graphically

identified. In Section 7.3, we show that deleting lonely arcs from an SDDN does not

destroy its stepwise-decomposability. Section 7.4 introduces the concepts of potential

lonely arcs and of potential barren nodes to deal with the interaction between lonely

arcs and barren nodes. Finally, a pruning algorithm is given in Section 7.5. In the

next chapter, we shall show that this algorithm prunes all the removable arcs that are

graphically identifiable.

Before starting the exposition, let us point out that the issue of removable arcs cannot

be addressed in influence diagrams, since deleting arcs from an influence diagram may

lead to the violation of the no-forgetting constraint.

118

Chapter 7. Removable arcs and independence for decision nodes 119

7.1 Removable arcs and conditional independencies for decision nodes

In a decision network, an arc into a decision node is removable if its removal does not

affect the optimal expected value of the network. In a decision network skeleton SAC, an

arc into a decision node is removable if it is removable in every decision network over K.

A decision table is a decision function represented in the form of a table. In a decision

table of a decision node d, there is one dimension in correspondence to each parent of

d. One particular dimension b is irrelevant to d if fixing the values of all the other

dimensions, no matter which value b takes, the value for d remain the same.

In a decision network, a decision node d is independent of one particular parent b

given all the other parents of d if there exists an optimal decision table of d in which the

b-dimension is irrelevant. When it is the case, we shall write Id(d, bI7r), where ir stands

for lrd—{b}. In a decision network skeleton K, a decision node d is independent of one

particular parent b given all the other parents of d if it is so in every decision network

over PC.

The following proposition reveals the relationship between removable arcs and condi

tional independencies for decision nodes, which is the corner stone of this chapter.

Proposition 7.1 Let .A/ be a decision network, d be a decision node and b a parent of

d. Then the arc b—*d is removable if and only zf d is independent of b given all the other

parents of d.

Proof: Let d1, d2, ..., dk be all the decision nodes in jV. Suppose d is d. We shall write

for 7rd—{b}.

We first show that if b—*d is removable, then Id(d, bIir). Let Al’ be the decision

network obtained from Al by removing the arc b—i.d. Since b—d is removable, E[Al] =

Chapter 7. Removable arcs and independence for decision nodes 120

Let 6’=(6,. . . , 6) be a policy for ./f’. Let 6 be the decision function of d, in 6’. Then

6 is a mapping 6 : f —2d• Construct a policy 6 for .V from 6’ by extending 6 to be

the mapping Sj !Zrd —1d, such that

6(7rd) =

Then we have

Es[V] = Esi[V’J.

Now letting 6’ be an optimal policy of .,V’, we get

E5[= E5[iV’] = E[iV’] = E.

Therefore 6 is an optimal policy for .iV. Noticing that 6 is independent of b, we get

Id(d, bI7r.).

We now show that if Id(dI, b[?r.), then b—*d is removable. Since Id(d, bI7r), there

exists an optimal policy 6 for V such that the decision function 6j of d is independent of

b. Construct a policy 6’ for .Ai’ as follows: let the decision functions of all decision nodes

other than d be the same as in 3; and let the decision function 6’ : !. —*fd of d be

such that

6(ir) =

This definition is valid because S(7rd) is independent of b. It follows from the definition

of 6’ that E5 [V’] = E5 [.A/j. Consequently,

E[V’] E5i[V’] = = E[V].

On the other hand, we have shown in the first part of the proof that for any policy 6’

for ./V’, there is a policy S for .jV such that E6 [iV] = E6[iV’]. Hence E [.iV’} E [N].

Therefore E[JV’j = E[.A/]. Consequently, the arc b—*d is removable. C

Chapter 7. Removable arcs and independence for decision nodes 121

Figure 7.24: Removable arcs and removable nodes.

7.2 Lonely arcs

This section introduces lonely arcs — a class of removable arcs that can be graphically

identified.

Suppose IC is a decision network skeleton. Let d be a decision node in IC, and let b

be a parent of d. The arc b—d is said to be accompanied if there exist at least one edge

in the moral graph m(IC) of IC that connects & and some nodes in the downstream set

Y11(d, ,AC). When it is the case, we say that such edges accompany the arc b—+d. The

arc b—*d is lonely if it is not accompanied. In a decision network .,V, an arc b—.d into a

decision d is lonely if it is lonely in the underlying skeleton.

For example, in the decision network skeleton shown in Figure 7.24 (1), the down

stream set Yji(d3,IC) is the singleton {v2}. Since the arcc2—v2 is in IC, there is the edge

(c2,v2) in m(IC), which accompanies the arcc2—d3. However, the arcc3—d3 is lonely.

The following two lemmas exhibit some basic properties of lonely arcs.

Lemma 7.1 Suppose IC is a decision network skeleton, and d is an SD candidate node

in IC. An arc b—+d is accompanied if and only if b is

(1) (2)

(3) (4)

Chapter 7. Removable arcs and independence for decision nodes 122

• a parent to a random node in the downstream setY11(d,,kC), or

• a parent to a value node in the downstream setY11(d,K), or

• a disturbance recipient in d, OT

• a parent to a disturbance recipient in 7rd.

Lemma 7.2 Suppose K is a decision network skeleton. Let d and d’ be two different

decision nodes in JC. Suppose d’ is an SD candidate node. Then an arc b—d is a lonely

arc in K if and only if it is a lonely arc in the bodyK1(d’,!C). E

Theorem 7.1 Suppose K is an SDDN skeleton. If an arc b—d into a decision node d

is lonely, then d is independent of b. Consequently, the arc b—pd is removable.

Proof: Let .IV be a decision network over K. We need to show that d is independent of

b in .Ai.

By Lemma 7.2, we can assume, without losing generality, that d is an SD candidate

node. Let JV11 be the tail of .A/ w.r.t d. Let P0 denote the joint potential over the

random and decision nodes in .JV11, i.e the product of the conditional probabilities of all

the random nodes in the downstream set Y11(d, .V) and of the disturbance recipients in

Since the arc b—+d is lonely, by Lemma 7.1 b can be neither a disturbance recipient,

nor a parent to a disturbance recipient in 1rj, nor a parent to random node in Y11(d, N).

Thus, P0 is independent of b.

Again because b—.d is lonely, by Lemma 7.1 b cannot be a parent to any value nodes

in Y11(d, N). Hence, all the value functions in JV11 are independent of b.

Putting those two points together, we get that the evaluation functional e(d, 7rd) (see

equation (6.47)) is independent of b. According to equation (6.55), the optimal decision

function of d is independent of b. The theorem is proved.

Chapter 7. Removable arcs and independence for decision nodes 123

In Figure 7.24 (1), the arcc3—d3 is lonely, hence removable. The removal ofc3—*d3

gives us the decision network skeleton in Figure 7.24 (2).

The following corollary is obtained from the proof of Theorem 7.1.

Corollary 7.1 Suppose b—+d is a lonely arc in an SDDN .,/. Let .iV’ be the decision

network obtained from .N’ by removing the arc b—*d. Then, .N’ and A/ have the same

optimal decision tables for all the decision nodes other than d. Furthermore, the optimal

decision tables for d in .,V’ can be obtained from the optimal decision tables for d in .iV

by shrinking the irrelevant b-dimension. C

7.3 Pruning lonely arcs and stepwise-solvability

In order to repeatedly apply Theorem 7.1, we need the following theorem.

Theorem 7.2 The decision network skeleton resulted from pruning a lonely arc from an

SDDN skeleton is again stepwise- decomposable.

Proof: Let AC be an SDDN skeleton and b—>d be a lonely arc. Let AC’ be the resulting

skeleton after removing b—÷d from AC. We prove that AC’ is stepwise-decomposable by

induction on the number k of decision nodes in AC. When k=J, AC’ also contains only one

decision node; hence is stepwise-decomposable.

Suppose AC’ is stepwise-decomposable if k=m—1. Now consider the case of k=m. Let

d’ be a candidate node of AC. There are two cases depending on whether d’=d. Let us

first consider the case when d’d. According to Lemma 7.2, b—+d is also a lonely arc

in the body AC1(d’, AC). Let AC’S be the resulting decision network skeleton after removing

b--*d from AC1. By the induction hypothesis, AC is stepwise-decomposable. It is easy to

see that AC is the body of AC(d’, AC’). By Lemma 5.2, AC’ is also stepwise-decomposable.

Chapter 7. Removable arcs and independence for decision nodes 124

Now consider the case when d’td. Since there are no edges in m(K) that connect b

and nodes in the downstream set Y1(d,K), the set Y11(d,,AC’) is the same as Y11(d,K).

So, d is also a candidate decision node of K’.

The body K(d, K;’) is different from the body K;1(d, K:) only in that in K there

is no arc from b to the tail-value node u, while there is in K1r. Since K is stepwise

decomposable, so must be K’s,. By Lemma 5.2, K:’ is also stepwise-decomposable.

7.4 Potential lonely arcs and barren nodes

In a decision network skeleton, a barren node is a random or decision node that does

not have any children. In the following, we shall distinguish decision barren nodes and

random barren nodes. The node c3 in Figure 7.24 (2) is a random barren node.

Proposition 7.2 (Shachter 1986) A barren node may be simply removed from a decision

network. If it is a decision node, then any decision function is optimal.

Now we recursively define potential lonely arcs and potential barren nodes. A potential

lonely arc is a lonely arc or an arc that becomes lonely after the removal of some barren

and potential barren nodes, and the removal of some lonely and potential lonely arcs. A

potential barren node is a barren node or a node that becomes barren after the removal

of some lonely and potential lonely arcs, and the removal of some barren and potential

barren nodes.

Going back to our example, after the removal ofc3—*d3, the the node c3 becomes

barren, and hence can be removed. After the removal of c3,c1—*d2 becomes lonely. After

the removal ofc1—*d2 , c1—*d1 becomes lonely.

Here is a corollary of Theorem 7.1.

Chapter 7. Removable arcs and independence for decision nodes 125

Corollary 7.2 Suppose IC is an SDDN skeleton. If an arc b—*d into a decision node

d is a potential lonely arc, then d is independent of b. Consequently, the arc b—d is

removable.

7.5 An algorithm

This section presents the algorithm PRUNE-REMOVABLES, which prunes all the po

tential lonely arcs and potential barren nodes in an SDDN skeleton.

Procedure PRUNE-REMOVABLES(IC)

• Input: IC an SDDN skeleton.

• Outputs: An SDDN skeleton that does not contain potential arcs and

potential barren nodes.

1. If there is no decision node in IC, output IC and stop.

2. Else

• Find and remove all the barren nodes;

• Find a candidate node d of IC, and compute the downstream set

Y11(d,IC) of lrd.

• Find and remove all the lonely arcs among the arcs from rj to d.

Let IC’ be the resulting skeleton.

• In IC’, treat d as a random node1 (thus IC’ contains one less decision

node than IC) and recursively call PRUNE-REMOVABLES(IC’).

As an example, consider the SDDN skeleton in Figure 7.24 (1). There are no barren

nodes at the beginning; and d3 is the only candidate node. The downstream set IC11(d3,IC)

1The node d is treated as a random node only within the scope of PRUNE-REMOVABLES.

Chapter 7. Removable arcs and independence for decision nodes 126

is the singleton {v2}. One can see that c3—*d3 is the only lonely arc. After the removal

ofc3—>d3, the skeleton becomes as shown in Figure 7.24 (2), where C3 is a barren node.

After the removal of c3, we get the skeleton in Figure 7.24 (3). Since d3 is now treated

as a random node, d2 becomes a candidate node. The arcc1—*d2 is lonely, and hence is

removed. Thereafter, d2 is also treated as a random node, rendering d1 a candidate node.

The arc c1—*d1 is lonely and hence removed. The final skeleton is shown in Figure 7.24

(4).

Let K;’ be the output decision network skeleton of of PRUNE-REMOVABLES(K;).

How is K;’ related to K; in terms of decision tables? Let V and .,V’ be decision networks

over K; and K;’ respectively such that in both Al and Al’ each variable has the same frame,

each random variable has the same conditional probability, and each value node has the

same value functions. By repeatedly applying Corollary 7.1, we can conclude that the

optimal decision tables for Al’ can be obtained from those for Al by deleting irrelevant

dimensions.

Finally, let us consider the complexity of PRUNE-REMOVABLES. Let n be the total

number of nodes in K;, k be the number of decision nodes, a be the number of arcs, e

be the number of edges in the moral graph of K;, and p be the maximum number of

parents of a decision node. Finding all the barren nodes takes 0(a) time. According

to the complexity analysis of TEST-STEPWISE-DECOMPOSABILITY, finding an SD

candidate node and computing its downstream set takes 0(k(n + e)) time. To find lonely

arcs, we need to check, for each node z in if x is connected to at least one node in the

downstream set Y11(d, K;), which can be done in O(pn) time. So, the total complexity of

PRUNE-REMOVABLE is 0(k(k(e + n) + pn)) = O(k2e+ k2n + kpn).

Chapter 8

Stepwise-solvability and stepwise-decomposability

We have shown in Section 5.2 that if a smooth decision network is stepwise-decomposable,

then it stepwise-solvable. In this chapter, we go further to prove that if a decision net

work skeleton, smooth or non-smooth, is stepwise-decomposable, then if it is stepwise

solvable. More importantly, we show that under “normal” circumstances if a decision net

work skeleton is stepwise-solvable, then it is stepwise-decomposable (Section 8.8). Thus,

stepwise-decomposability is the weakest graphical criterion that guarantees stepwise

solvability.

According to Corollary 7.2, potential lonely arcs are removable. In this chapter, we

also show that potential lonely arcs are all the removable arcs that can be graphically

identified (Section 8.7).

The proof technique is induction on the number of random nodes and on the number

of decision nodes. In order to do induction on the number of random nodes, we need

three operations on decision network skeletons, namely short-cutting (Section 8.2), root

random node removal (Section 8.3), and arc reversal (Section 8.4). Section 8.5 shows how

those three operations fit together. An induction apparatus on the number of decision

node is given in Section 8.6. Let us begin with the concept of normal decision network

skeletons.

127

Chapter 8. Stepwise-solvability and stepwise-decomposability 128

Figure 8.25: An abnormal decision network skeleton (1), and an normal equivalent skele
ton (2).

8.1 Normal decision network skeletons

A decision network skeleton AC is normal if for any decision node d, there is a directed

path from d to each value node in the downstream set Y11(d, AC) of A decision network

is normal if its underlying skeleton is.

As an example, let AC be the decision network skeleton in Figure 8.25 (1). Y11(d1,AC)

contains all the nodes except c1. In particular, v2EY11. But there is no directed path

from d1 to v2. So AC is abnormal. On the other hand, the decision network skeleton in

Figure 8.25 (2) is normal.

What is the intuition behind this concept of normality? Consider a decision node d

and a value node v in a decision network A/. Given any policy 6 of .jV, let P3 be the joint

probability 6 induces over all the random and decision nodes of .A/. The expected value

E3[v] of v is given by

E3[v] =

where 1u, stands for the value function of v. According Proposition 3.1, if there is no

directed path from d to v, then d is irrelevant to P(r) and hence to E5[v]. In other

words, d can influence v only when there exists a directed path from d to v.

(1) (2)

Chapter 8. Stepwise-solvability and stepwise-decomposability 129

Intuitively a normal decision network is one where each decision node d can influence

all the value nodes that are not rn-separated from ci by the parents of d. In other words,

all those value nodes that d can not influence are rn-separated from d by 7rd.

An abnormal decision network skeleton can be stepwise-solvable even when it is not

stepwise-decomposable. For example, the decision network skeleton in Figure 8.25 (1)

is not stepwise-decomposable. However it is stepwise-solvable. To see this, let iV be an

arbitrary decision network over the skeleton. Construct a decision network .iV’ over the

skeleton in Figure 8.25 (2) such that c has the same frame and conditional probability

as c2. For any policy 6, let P5 be the joint probability 6 induces over all the random and

decision nodes in jV, and P be the joint probability 6 induces over all the random and

decision nodes in .A/’. By Proposition 3.1, we have that

= Ps(c2,c3)= P(c2,c3)=

Thus the expected value of v1 under 6 in A/ is the same as that in .AP. By the same

line of reasoning, we can show that the expected value of v2 under S in ./V is the same as

that in .iV’. Therefore .iV and A/’ are equivalent. Since .,V’ is stepwise-decomposable, it

is stepwise-solvable. Therefore iV is also stepwise-solvable.

The main goal of this chapter is to show that a normal decision skeleton with no

barren nodes and no lonely arcs is stepwise-solvable only if it is stepwise-decomposable.

We also show that a normal SDDN skeleton with no barren nodes contains removable

arcs only if it contains potential lonely arcs.

The reader may ask: what about abnormal decision network skeletons? We conjecture

that abnormal decision network skeletons can always to transformed into “equivalent”

normal skeletons. For example, the decision network skeleton in Figure 8.25 (1) can be

transformed into the one in Figure 8.25 (2). However, we have not been able to precisely

formulate and prove the conjecture.

Chapter 8. Stepwise-solvability and stepwise-decomposability 130

/C

A A
(1)

Figure 8.26: Short-cutting. The random node c in (1) is short-cut, resulting in the
decision network skeleton in (2).

8.2 Short-cutting

This sections introduces the operation of shorting cutting random nodes from a decision

network skeleton. The properties of the operation with regard to induction are explored.

Short-cutting is the first of the three operations that are needed to facilitate induction

on the number of random nodes.

Before getting started, however, let us make a note about notation usage in this

chapter. Applying the operation of short-cutting, or any other operation, on a decision

network skeleton AC results in another decision network skeleton AC’. We shall let tr and

7t to denote the set of parents of x in AC and in AC’ respectively. Let N and N’ be decision

networks over AC and AC’. We shall denote the conditional probability in N of a random

node c by P(cr) and the value function in N of a value node v by ir1,). Similarly, we

use F’(cIir) and 4(ir) to denote the conditional probability of c and the value function

of v in N’ respectively.

Let AC be a decision network skeleton. Let c be random node in AC such that c has

at least one parent. To short-cut c is to delete c from AC, and draw an arc from every

parent of c to each child of c. Figure 8.26 illustrates this concept. We see that after the

short-cuting, every child of c inherit all the parents of c.

(2)

Chapter 8. Stepwise-solvability and stepwise-decomposability 131

The main task of this section is to prove Propositions 8.1 and 8.2, which are con

structing blocks of our induction mechanism. We first present two lemmas.

Lemma 8.1 Let IC be a decision network skeleton and c be a random node in IC that

has at least one parent. Let K;’ be the decision network skeleton obtained from K; by

short-cutting c. If c is not a barren node, then for any two nodes x and y in K;’,

1. There is a directed path PATHI from x to y in K;’ if and only if there is a directed

path from x to y in K; that consists of the same nodes as PATHJ with the possible

addition of the node c.

2. There is a path PATH2 between x and y in the moral graph rn(AC’) if and only if

there is a path between x and y in the moral graph m(K;) that consists of the same

nodes as PATH2 with the possible addition of the node c.

Proof: The lemma follows directly from the definition of short-cutting. EJ

Lemma 8.2 Let K; be a decision network skeleton and c be a random node in K; that

has at least one parent. Let K;’ be the decision network skeleton obtained from K; by

short-cutting c. Let d be a decision node in K; (or equivalently in K;’).

1. If c is in the upstream set Y1(d,K;), then ir = lrd, and Y11(d,K;’) =Y11(d,K;).

2. If c is in the downstream setY11(d,K;), then rr = 7rd, andY11(d,K;’) = Yii(d,K;)—{c}.

9. If cElrd, then = (7rd—{c})U1r. Furthermore if none of the parents of c are

Y11(d,IC) , thenY11(d,K;’) =Y11(d,K;).

Proof: The lemma follows directly from Lemma 8.1 and the fact the the downstream

set Y11(d, K;) consists of all the nodes in K; that are not rn-separated from d by ire. U

Chapter 8. Stepwise-solvability and stepwise-decomposability 132

Proposition 8.1 Let 1C be a decision network skeleton, and let c be a random node

which has at least one parent. Let K’ be the decision network skeleton obtained from /C

by short-cutting c.

1. If IC does not contain any barren nodes, neither does IC’.

2. If IC normal, so is IC’.

3. If/C stepwise-decomposable, so is IC’.

. Suppose JC is stepwise-decomposable and contains no barren nodes, and suppose

that if cir for some decision node d, then none of the parents of c are in the

downstream set Y11(d,IC). Then when IC does not contain any lonely arcs, neither

does IC’.

Proof: To show item 1, suppose a decision or random node x is not barren in IC. Then

it has at least one child y. If y = c, then the children of c in IC become the parents of x.

Otherwise, y remains a child of x in IC’. In either case, x has at least one child; hence IC’

contains no barren nodes.

By Lemma 8.2, we have that for any decision node d,

Y11(d,IC’) Y11(d,IC). (8.63)

Together with Lemma 8.1, this proves item 2.

To show item 3, we notice that because of equation (8.63), if a decision node d is an

SD candidate decision node of IC, then it is also an SD candidate decision node of AC’.

First consider the case when cEY11(d, IC). In this case the body K(d, IC’) of K’ w.r.t

d is the same as the body JC1(d, AC) of IC w.r.t d. If IC is stepwise-decomposable, then so

is AC1, and hence IC. By Lemma 5.2, IC’ is also stepwise-decomposable.

On the other hand, when cYji(d, IC), then ICr is the same as the resulting decision

network skeleton after short-cutting c from ICE. If AC is stepwise-decomposable, so is

Chapter 8. Stepwise-solvability and stepwise-decornposability 133

K;1. Consequently we can assume, as an induction hypothesis, that K; is stepwise

decomposable. By Lemma 5.2, K;’ is also stepwise-decomposable. Item 3 is therefore

proved.

To show item 4, let d be an arbitrary decision node. We need to show that the arcs

from nodes in to d are accompanied in K;’. There are three cases:

Case 1). If cYi(d,AC), by Lemma 8.2 we have ir = lrd and Y11(d,K;’) = Y11(d,K;).

Thus, the arcs from nodes in to d are accompanied in K;’ by the same edges as in K;.

Case 2). If cEYri(d, K), by Lemma8.2 we have = ir and Y11(d, K;’) = Yii(d, K;)—{c}.

Since the arcs from nodes in ir to d are accompanied in K;, and since K; contains no barren

nodes, by Lemma 8.1 the arcs from ir to d remain accompanied in K;’.

Case 3). If cElrd, 7r = (lTd — {c})Uir. The arcs from node in lrd—{c} to d are

accompanied in K; and remain accompanied in K’. We need only show that an arc from

a node YE7Tc to d are not lonely in K’.

Since K; contains no lonely arcs and none of the parents of c are in the downstream set

Y11(d,K;), either there is an arc c—*x to a node x in Y11(d,K;), or there exists a random

node bElrd and a node xYjj(d,K;) such that the arcs c—.b and x—+b appear in K;.

In the first case, the arc y—x appears in K;’. Hence the edge (y, x) appears in m(K;’)

which accompanies the arc y—*d. In the second case, y—+b appears in K;’, and hence

the edge (y, x) appears in m(K;’), which accompanies the arc y—d. This proves that AC’

contains no lonely arcs. The proof is complete. D

Proposition 8.2 Let AC be a decision network skeleton, let c be a random node which

has at least one parent. Let K;’ be the decision network skeleton obtained from AC by

short-cutting c. Then for any decision network .iV’ over K;, there is a decision network

.iV over K; that is equivalent to .iV’.

Proof: Given .iV’, construct .t/ as follows. Let all the nodes in .,V, excluding c, have the

Chapter 8. Stepwise-solvability and stepwise-decomposability 134

same frame as the corresponding nodes in .iV’. Let c be a compound variable consisting

of a copy of each node in We set the conditional probability P(cIir) of c to be

Ii ifc=7r
P(cI7r) = (8.64)

(0 otherwise

For any child of y of c, ir, = (r—{c})U7r. Noticing c = !, we set

F(yI7r) = P’(yir—{c},ir) = F’(yI7rj.

The conditional probabilities of all other random nodes in .A/ are the same as in N’.

For any value node v, there are two cases depending on whether cE1r. When

we have 7r = In this case, we set

1(7rv) =

On the other hand, when cEir, we can assume that 7rflr, = 0, i.e v has no parents in 1r.

Because if v has parents in 1r, we can always set the value function of v to be independent

of those nodes. Consequently we have ir,=(ir—{c})Uir. Noticing = we set

= 1t,(7rv—{c},7rc) =

To show that N and N’ are equivalent, we first notice that they do have the same

policy space. Let 6 be a policy, and let P5 be the joint probability 6 induces over all the

random and decision nodes of N, and let P be the joint probability 6 induces over all

the random and decision nodes of N’.

Let B be a set of random and decision nodes of N. It follows from the definition of

the conditional probabilities of N that

I P(B) if cB
P5(B) (8.65)

(P(B—{c}, ire) if cB and Bflir = 0

Chapter 8. Stepwise-solvability and stepwise-decomposability 135

For any value node v such that cØ, we have

=

On the other hand, for any value node u such that cE?r we have

=

lrv—{c},lrc -

=

Therefore

E5[V] =

That is J’/ and V’ are equivalent. D

8.3 Root random node removal

This section investigates the operation of removing root random nodes from decision net

work skeletons. The properties of the operation with regard to induction are of particular

interest. Root random node removal is the second of the three operations that are needed

to facilitate induction on the number of random nodes.

Proposition 8.3 Let K be decision network skeleton, and let c be a root random node,

i.e a random node without parents. Let K’ be the decision network skeleton obtained from

K by removing c and the arcs originating from c.

1. JfK contains no barren nodes, neither does K’.

2. JfK is normal, then so is K’.

3. If K is stepwise-decomposable, then so is K’.

Chapter 8. Stepwise-solvability and stepwise-decomposability 136

4. Suppose AC is normal and stepwise-decomposable, and contains no barren nodes.

Suppose that for any decision node d such that cEYij-(d, AC), none of the children of

c are in lrd. Then when AC does not contain any lonely arcs, neither does AC’.

Proof: The first item is straightforward.

To prove second item, we notice that for any decision node d,

Y11(d,AC’) çY11(d,AC). (8.66)

Together with the fact that c is a root random node, this equation entails item 2.

Because of equation (8.66), an SD candidate decision node d of AC is also an SD

candidate decision node for AC’. Moreover, when c is not in the downstream set Y11(d, AC),

then the body AC(d, AC’) of AC’ w.r.t d can be obtained from the body ACj(d, AC) of AC w.r.t

d by removing c. Hence item 3 can be proved in the same way as the third item of

Proposition 8.1.

To show item 4, let d be an arbitrary decision node. We need to show that the arcs

from nodes in to d are accompanied in AC’. There are three cases:

Case 1). If cEY1(d, AC), then ir = 7rd and Y1(d, AC’) = Y11(d, AC). In this case, the arcs

from nodes in to d are accompanied in AC’ by the same edges as in AC.

Case 2). If cY11(d, AC), then ir = rcj and Y11(d, AC’) = Y11(d, AC)—{c}. For any xEr,

the arc x—.d is accompanied in AC by, say, the edge (jx, y) in rn(AC). There are two subcases

depending on whether or not y=c.

Case 2.1) y=c. Since c is a root, there must exist another node z such that the arcs

x—z and c—*z appear in AC. Since none of the children of c are in)rd, zEYi(d, AC). There

are three subsubcases depending on whether z is a random node, a decision node, or a

value node.

Case 2.1.1). z is a random node. Since AC contain no barren nodes, there exists a

value node v such that there is directed path from z to v. Since AC is normal, there must

Chapter 8. Stepwise-solvability and stepwise- decomposability 137

be a directed path from d to v. Hence zEY11(d,K:’). Therefore in K:’ the arc x—*d is

accompanied by the edge (x, z) of m(K:’).

Case 2.1.2). z is a a value node. Since K: is normal, there exists a directed path from

d to v. Hence, z must be in the downstream set Y11(d, K:’). Therefore in K:’ the arc

is accompanied by the edge (x, z).

Case 2.1.3). z is a decision node. In this case, there must be at least one value node

in the downstream set Yj-i(z, K:), because K: contains no barren nodes. Since K: is normal,

there exists a direct path, say PATH, from d to v. Since K: is stepwise-decomposable,

7Tz m-separated v from d. Therefore z must be in PATH. Consequently zEY11(d, K:’).

Therefore in K:’ the arc x—*d is accompanied by the edge (x, z).

Case 2.2) y5c. There are again three subsubcases depending on whether y is a random

node, a decision node, or a value node. The proof for this subcase can be carried out in

the same way as in case 2.1), except with z replaced by y.

Case 3). If cElrd, then ir = lrd—{c}. For any node xEir, the arc x—*d is accompanied

in K:. Hence either there is an arc connecting x and a node z in the downstream set

Y11(d, K:), or there exists another node YEd and a node zEYii(d, K:) such that the arcs

x—*y and z—y appear in K:.

In the first case, z cannot be c. Hence the arc that connects x and z in K: is also in

K:’, hence x—*d is accompanied in K:’. In the second case, y cannot be c because c is a

root random node; and z cannot be c either because cElrd. Hence the arcs x—*y and z—y

also appear in K:’. Consequently, the arc x—*d are also accompanied in K:’. The proof is

complete.

Proposition 8.4 Let K: be decision network skeleton, and let c be a root random node.

Let K:’ be the decision network skeleton obtained from K: by removing c and the arcs

originating from c. For any decision network .A[’ over AC’, there is a decision network iV

Chapter 8. Stepwise-solvability and stepwise-decornposability 138

over K: that is equivalent to iv”.

Proof: Given N’, construct .,V as follows. Let all the nodes in N, excluding c, have

the same frames as in N’. Let c take only one value, say 1. For a random node r such

that c7rr, set the conditional probability of r the same as in N’. If a random node r is

such that cenr, then yr,. = irU{c}. In this case, set its conditional probability P(rllrd)

as follows:

where P’(rIir) stands for the conditional probability of r in N’. This definition is valid

because c takes only one value.

For any value node v such that set the value function of v to be the same as in

.iV’. If a value node v is such that cE7r, then 7r = 7rU{c}. In this case, set

1rv) =

where ‘(v[w) stands for the value function of v in N’. This definition is valid because

c takes only one value.

We now show that N is equivalent to .iV”. For any decision node d such that c7rd,

then = r; d has the same decision function space in both .A(and Al’. If a decision

node is such that cErd, then ir = lrd—{c}. Since c only take one value, d still has the

same decision function space in both N and .,V. So, N has the same policy space as N’.

It is evident that given a policy 6, E5[N] = E5[N’]. Therefore, N and N’ are

equivalent. The proposition is proved. C

8.4 Arc reversal

This section revisits the operation of reversing arcs in decision network skeleton, with an

eye on its induction properties. Arc reversal is the third of the three operations that are

Chapter 8. Stepwise-solvability and stepwise-decomposability 139

needed to facilitate induction on the number of random nodes.

Proposition 8.5 Suppose K is a decision network skeleton. Let b and c be two random

nodes such that the arc c—*b appears in K and is reversible. Let K’ be the decision network

skeleton obtained from K; by reversing the arc c—*b.

1. Suppose c has at least two children. Then if K does not contains any barren nodes,

neither does K’.

2. Suppose c is a root. Then if K is normal, so is K’.

3. Suppose c is a root. Then if K is stepwise-decomposable, then so is K’.

4. Suppose c is a root. Then if K does not contains any lonely arcs, neither does K’.

Proof: Item 1 is straightforward.

When c is a root, the moral graph m(K’) of K’ is the same as the moral graph m(K)

of K. Hence, items 3 and 4 follow.

To show item 2, let d be an arbitrary decision node. It follows from m(K’) = m(K)

that Y11(d, K’) = Y11(d, K). Let v be a value node in the downstream set Y11(d, K’) =

Y11(d, K). Since K is normal, there must be a directed path, say PATH1, in K from d to

v. Since c is a root, the arc c—*b cannot be in PATH1. Thus PATH1 is also a path in K’.

Therefore K’ is also normal. The proposition is proved. C

Proposition 8.6 Let K be a decision network skeleton, let b and c be two random nodes

such that the arc c—*b appears in K and is reversible. Let K’ be the decision network

skeleton obtained from K by reversing the arc c—*b. If c is a root, then

= lrb—{c} and ir = {b}Uir.

Furthermore for any decision network Jsf’ over K’ such that

Chapter 8. Stepwise-solvability and stepwise-decomposability 140

1. c is a compound variable consisting a copy of each node in ir,

2. the conditional probability P’(cIir) is given by

1 1 ifc=ir’
F’(cjt’r) =

C

(8.67)
0 otherwise

3. and if a value node is a descendent of c, then it is also a descendent of b,

there exists an decision network %/ over K that is equivalent to Al’.

Proof: Given jV’, construct Al’ as follows. Let all the variables have the same frames as

in H’. Noticing that c is the compound variable consisting a copy of each node in ir, we

set

• the conditional probability F(bllrb) = F(blc, irk) of b to be

1 F’(bir) if c=vr’
P(blc, ir) =

C
(8.68)

0 otherwise

• and the prior probability of c to be the the uniform distributions, i.e F(c) =

where id stands for the number of possible values of c.

The conditional probabilities of all other random nodes are set to be the same as in Al’.

For any value node v, ir=ir. If v is not a descendent of c, we set

=

and if v is a descendent of c, we set

= IcI,%(ir).

Chapter 8. Stepwise-solvability and stepwise-decomposability 141

To show that .iV and .iV are equivalent, we first notice that for any decision node d,

= 7r; hence K: and K’ have the same policy space. Let S be a policy, and let P be the

joint probability 6’ induces over all the random and decision nodes of V, and let P be

the joint probability S induces over all the random and decision nodes of iV’. It suffices

to show that for any value node v,

= (8.69)

If v is not a descendent of c, then it cannot be a descendent of b. By Proposition

3.1, both c and b are irrelevant to P5(7r), as well as to P4(7rd). Hence P3(lrd) =

Consequently equation 8.69 is true.

Now if v is a descendent of c, then it is also a descendent of b. Consider P5(b, cI7r)

and F(b, cIir). Noticing that ir={b}Uir, we have

P3(b,cIir) = P(c)P(bIc,r)
=

J” jF’(bIir) if c=(b,7r)

(0 otherwise

and

P(b, cIir) = P’(bir)P’(cIb, ir)

= J P’(bIir) if c= (b,7r)

0 otherwise

Hence we get

P5(b, cIir) = 1—1.P(b, cr).

Since v is a descendent of both b and c, we have

F5(ir) =

Chapter 8. Stepwise-solvability and stepwise-decomposability 142

Therefore

= v)Ic(irv) = F(ir)14(ir). (8.70)

The proof is completed. 0

8.5 Induction on the number of random nodes

is a decision node

This section shows how the three operations discussed in the last three sections fit

together to form an induction strategy on the number of random nodes. This induction

strategy allows us to, in a certain sense, get rid of all the random nodes in the downstream

set Y11(d, K) for any d, as shown by the following proposition.

Proposition 8.7 Let K be a normal SDDN skeleton without barren nodes and without

lonely arcs. Let dr be a decision node in IC. Then there exists another decision network

skeleton AC’ such that

• COND1: IC’ is normal and stepwise-decomposable, and contains no barren nodes

and no lonely arcs;

• COND2(AC): The upstream component Ki(dr,AC’) of PC’ w.r.t dr is the same as

Ki(dr, AC);

• COND3: In AC’, there are no random nodes in the downstream set Yii(dr,IC’) of

r; and

• COND4(AC): For any decision network J’/’ over AC’, there exits a decision network

over AC that is equivalent to JV’.

Chapter 8. Stepwise-solvability and stepwise-decomposability 143

Proof: We prove this lemma by induction on the number k of random nodes in the

downstream set Yii(dr, K) of lrdr. When k 0, the lemma is trivially true. Suppose the

lemma is true for the case of k = rn—i. Now consider the case of k = rn.

Let d be a decision node in Yii(dr, K) such that there are random nodes in Y11(d, K),

and that either there are no decision nodes in Y11(d, AC) or for any decision node d’EY11(d, K)

there are no random nodes in Y11(d’,AC).

Since IC contains no barren nodes, there can only be three cases:

1. There exists a random node c in the Y11(d, K) that has at least one parent; or else

2. There exists a root random node c in Y11(d, K) whose children are either value

nodes or decision nodes in Yii(d,K); or else

3. Every a random node in Y11(d, AC) is a root and has at least one child in 7rd.

Case 1): In this case, we short-cut c from K, resulting in K. According to Propo

sitions 8.1, AC is also a normal SDDN without barren nodes and lonely arcs.

Since there are only rn—i random node in Y11(d, K*), there exits, by the induction

hypothesis, a decision network skeleton AC’ that satisfies COND1, COND2(K*), COND3,

and COND4(AC*).

It is easy to see that AC* satisfies COND2(AC). By transitivity, AC’ also satisfies

COND2(AC).

To see that AC’ satisfies COND4(AC), let .Af’ be a decision network over AC’. Since

AC’ satisfies COND4(AC*), there exist an decision network .iV over AC* that is equivalent

to Al’. Because of Proposition 8.2, there must be a decision network .Al over IC that

is equivalent to .iV. By transitivity, Al is also equivalent iV’. So, K’ also satisfies

COND4(AC). Therefore, the lemma is correct in this case.

Chapter 8. Stepwise-solvability and stepwise-decomposability 144

Case 2): In this case, we simply remove c from K, resulting in K. One can show

that the lemma is also true in this case by using Propositions 8.3 and 8.4 and by following

the same line of reasoning as in Case 1.

Case 3): In this case, letc be a random node in the downstream set Y11(d,K).

Then c is a root and has at least one child in Let bErd be a child of c such that

(COND5:) there is no other b’E7rd that is a child of c and a parent of b. Since IC is

stepwise-decomposable, b has to be a random node. Because of COND5, the arc c—pb is

reversible. Reverse the arc c—*b in IC, resulting in IC. By Propositions 8.5, K is normal

and stepwise-decomposable, and it contains no barren nodes and no lonely arcs.

There are also m random nodes in Y11(d, IC*). However in Y11(d, IC*) there is a ran

dom node, namely c, that has at least one parent b. According to Case 1), there must

be a decision network skeleton IC’ that satisfies COND1, COND2(IC*), COND3, and

COND4(AC*).

Since IC’ satisfies COND2(IC), so does IC’.

To see that IC’ satisfies COND4(IC), let .iV’ be a decision network over IC’. Since IC’

satisfies COND4(IC*), there exist an decision network .iV over AC* that is equivalent to

Ar’.

From the proof of Proposition 8.2, we can have Ar such that

1. c is a compound variable consisting of a copy of each node in ir, where ir is the

set of parents of c in IC*. Since c is a root in IC, r’ = {b}U(7rb—{c}) = {b}U4.

2. The conditional probability F*(cr) p*(cb, ‘rg) is given by

1 1 ifc=*=(b,4)
p*(cIb ir) =

c
(8.71)

1 0 otherwise

Chapter 8. Stepwise-solvability and stepwise-decomposability 145

Moreover since céYji(d,) and is normal, if a value node is a descendent of c, then it

must be a descendent of d, and hence b. So Proposition 8.6 applies and gives us that there

is a decision network .iV over PC that is equivalent to .iV, and hence to .,V’. Therefore PC’

also COND4(PC). Thus the lemma is true in this case also. The proof is complete. D

8.6 Induction on the number of decision nodes

This section shows how to carry out induction on the number of decision nodes. First,

let us define two properties of value functions that we will do induction with.

Let .iV be a decision network whose random and decision variables (nodes) are all

binary. Let A be a subset of nodes of JV. For any value node v of jV, its value function

i(irv) is said to have property Q(A) if

• itv(ir) is independent of nodes in irflA, and

• = q (some real number) when all the nodes in ir—A take the same value,

regardless what this value is. When the nodes in ir—A do not all take the same

value, iiv(irv) is strictly smaller than q.

The value function is said to have property Q1(A)

• 1(7rv) is independent of nodes in irflA, and

• 1(lrv) = q (some real number) when all the nodes in ire—A take the value 1.

When there is at least one node in ir—A that does not take the value 1. i(ir) is

strictly smaller than q,.

Proposition 8.8 Suppose JV is a normal SDDN with no barren nodes and no lonely

arcs. Suppose all the random and decision variables (nodes) of .,V are binary. Let d be

an SD candidate decision node of Jeef, and let A be a set of nodes in .V. Suppose there are

Chapter 8. Stepwise-solvability and stepwise-decomposability 146

no random nodes in the downstream set Y11(d,.V) of ir. Then if all the value functions

in V have property Q(A) (orQ1(A)), so do all the value functions of the bodyAt1(d,.Ai).

Proof: Let u be the tail-value node in JV1. It suffices to show that ,u(7rd) has property

Q(A) (or Q1(A)).

First of all, since there are no barren nodes, there must be at least one value node in

Y11(d,.A/). Let v1, ..., Urn be all the value nodes in Yji(d,V).

Let V11 be the tail of .iV w.r.t d. Since there are no random nodes in Yjj(d,V),

Y11(d,iV) consists of only value nodes. So we have

/1U(Wd) = E[J’/IIj7rd] (8.72)

= maxdEVfrV1). (8.73)

Since all the are independent of nodes in Afl7rd, so must be iLu(lrd).

Suppose all the value functions in .A/ have property Q(A). Since .iV is normal, d is

a parent of every u. Thus when all the nodes in 7rd—A take the same value, say a, the

value of [L(7rd) is q, which is achieved when d = a.

Now consider the case when there are two nodes x and y in ir — A such that x take

the value 0 and y takes 1. Since .iV contains no lonely arcs, and there are no random

nodes in Y11(d, .iV), there must be at least one value node, say v, which is a child of x and

another value node, say v2 (may be the same as vi), which is a child of y. Because the

value functions and have property Q(A), we have that if d = 0, (ir,,) < and

if d = 1, r) < q. Therefore, t(rd) < q. This shows that p has property

Q(A).

To prove the proposition for Q1(A), suppose all the value functions in .A/ has property

Q1(A). When all the nodes in lrd—A take the value 1, ILu(lrd) = q, which is achieved

when d = 1.

Chapter 8. Stepwise-solvability and stepwise-decomposability 147

Now consider the case when there is one node xElrd, whose value is 0 instead of 1.

There is a value node v inY11(d,A1) that is a child of x. Because has property Q1(A),

< q,. Hence, Ilu(lrd) < E q. This shows that j has property Q1(A). The

proposition is proved. D

8.6.1 An extension and a corollary

Let d be a decision node in an SDDN Jf. We can extend the concept of a downstream

component from the case when .iV is smooth at d to the case when .iV is not smooth at

d in the same way as we did for the concept of as tall in Section 6.2. Let .A/11(d,.A/)

stand for the downstream component of iV w.r.t d. As in Section 3.6, we can define the

conditional expected value E[.N11(dr, iV) I ?tdrj

Proposition 8.9 Suppose .V is a normal SDDN with no barren nodes and no lonely

arcs. Suppose all the random and decision variables (nodes) of JV are binary. Let dr be a

decision node .Af, and let A be a set of nodes in .A/. Suppose there are no random nodes

in the downstream set Y11(d,J’.f). Then if all the value functions in V have property

Q(A) (orQ1(A)), so does the conditional expected value E[AnJI(dr,JV)Ilrdr].

Proof: This proposition can proved by repeatedly use Proposition 8.8.

Combining Proposition 8.9 and Proposition 8.7, we get the following corollary.

Corollary 8.1 Let K be a normal SDDN skeleton without barren nodes and lonely arcs.

Let 4 be a decision node in IC. For any subset Acrd, there exists a decision network

K over IC such that E[KJI(dr,J/)I7rdr] has property Q(A) (or Q1(A)).

Proof: Let K’ be an SDDN skeleton as in Proposition 8.7. There are no random nodes

in Yii(dr, IC’). Construct a decision network K’ over K’ as follows. Let all the random

Chapter 8. Stepwise-solvability and stepwise-decomposability 148

and decision variables be binary. For any value node v, set

1 1 if all the variable in 7r—A take the same value
t(7rv) = . (8.74)

(0 otherwise

Then all the value function in .iV’ have property Q(A). By Proposition 8.9, E[J/ii(dr,Jf’)Iir]

also has property Q(A). According to Proposition 8.7, there is a decision network .iV over

AC that is equivalent to .iV’. Since the upstream Component Ki(dr, AC) of AC is the same as

Ki(dr,AC’), lrdr = 7T. Thus we have E[.iVII(dT,J1)I7rd.j = E[.A1ii(drA1’)I7r1. Therefore

E[A1ii(dr , V) 7rj has property Q(A).

The Q1(A) part can be proved in the same way.

8.7 Lonely arcs and removable arcs

We are now ready to prove a theorem about the relationship between removable arcs and

lonely arcs.

Theorem 8.1 Let AC be a normal SDDN skeleton without barren nodes. If AC contains

no lonely arcs, then it contains no removable arcs.

Before proving this theorem, let us point out an important implication.

Corollary 8.2 In a normal SDDN skeleton, an arc into a decision node is removable if

and only if it is a potential lonely arc.

To put the corollary in another way, in a normal SDDN, potential lonely arcs are

all the removable arcs that can be graphically identified without resorting to numerical

computations.

Chapter 8. Stepwise-solvability and stepwise-decomposability 149

Proof of Theorem 8.1: Let dr be a decision node of AC. Let c be an arbitrary node in

lrdr. We need to show that the arc C4dr is not removable.

Because of Proposition 8.7, we can assume that there are no random nodes in the

downstream set Yii(dr,AC).

Let .iV be an SDDN over AC. Assume all the random and decision nodes are binary.

Let A = lrdr—{c}. For any value node v in iV, set p, to be

1 1 when all the variables in 7r—A take the same value
= (8.75)

0 otherwise

Then the value functions have property Q(A).

We find an SD candidate decision node d, computes its body .iV1(d,) w.r.t d. It is

easy to verify that .iV’1(d, .iV) is also stepwise-decomposable and normal, and it contains

no barren nodes and no lonely arcs. According to the Proposition 8.8, all the value

functions .iV have property Q(A).

We then find an SD candidate decision node of .A/1(d,.V), computes its body, and so

on so forth. Eventually, we will obtain a normal SDDN, denoted by in which dr is

an SD candidate, and which contains no barren nodes and no lonely arcs. Furthermore,

all the the value functions in .iV have property Q(A).

Since .iV contains no lonely arcs, and there are no random nodes in the downstream

set Yii(dr,.iV), there must be at least one value node vEY11(dr,J’/) that is a child of c. In

the mean time, V,. is also normal, so this value node v is also a child of dr. All the value

functions of .iV. have the Q(A) property. Since A = lrdr—{c}, all the value functions in

the tail .A1ii(dr, .M.) depend only on dr or v or both. Therefore when c=0, the optimal

decision for dr is 0, and when c=1, the optimal decision for dr is 1. Thus dr depends on

c and hence the arc c—*d,. is not removable. The theorem is proved. 0

Chapter 8. Stepwise-solvability and stepwise-decomposability 150

8.8 Stepwise-solvability and stepwise-decomposability

This section proves the following theorem about the relationship between stepwise

decomposability and stepwise-solvability.

Theorem 8.2 Suppose K is a normal decision network skeleton with no barren nodes

and no lonely arcs. Then K is stepwise-solvable if and only if it is stepuise-decomposable.

A decision network skeleton in Figure 3.15 is not stepwise-decomposable, hence it is

not stepwise-solvable. Consequently, as we predicted in Section 3.4, with appropriate

probabilities and value functions, optimal policies can be found only by considering the

two decisions simultaneously. -

The remainder of this section is to prove Theorem 8.2. In a decision network, a

decision root node is a root node that is also a decision node.

Lemma 8.3 Suppose K is a normal decision network without barren nodes. Suppose d

is a decision node in K. If there are decision root nodes in the downstream set Y11(d, K),

then d cannot be an SS candidate node.

Proof: Let K’ be the decision network skeleton obtained from K by replacing with

deterministic nodes those decision nodes that are different from d and have at least one

parent. It suffices to show that (Statementl:) d is not an SS candidate node in K’.

Let be the set of parents of a node x in K’. We show Statement 1 by induction on

the number k of random nodes, including deterministic nodes, in Y11(d, K’). When k = 0,

all the nodes in Y11(d, K’) are either decision root nodes or value nodes; and there exists

at least one decision root node. By the definition of Y11(d, K’), there must be one decision

root node d’eY1(d,K’) such that d’ has a value node child v. Since AC is normal, so is

K’. Hence, there exits a directed path from d to v. Because all the nodes in Y11(d, K’)

are either decision nodes or value nodes, d must be a parent of v.

Chapter 8. Stepwise-solvability and stepwise-decomposability 151

Construct a decision network Al’ over K:’ as follows. Let all the random and decision

variables be binary; let the value functions of the value nodes other than v all be zero;

and set

Ii if d=d’
1u@v) = (8.76)

1 0 otherwise

We see that if d’ = 1, the optimal decision for d is d = 1; and if d’ = 0, the optimal

decision for d is d = 0. Therefore the optimal policy for d depends on the policy for d’’.

Consequently d is not an SS candidate node. So, Statementi is true in the case k = 0.

Assume Statementi is true for the case of k = rn—i. Consider the case of k = m.

There are -three subcases.

Subcase 1). There is a random node cEY11(d, K:’) that has at least one parent. In this

case, we can short-cut c from K:’, resulting in K:*. According to Proposition 8.1, K:* is

also normal and contains no barren nodes. Since there are only rn—i random nodes in

Y11(d, K:*), by the induction hypothesis, d is not an SS candidate node in K:K. Through

Proposition 8.2, this implies that ci is not an SS candidate node in K:’.

Subcase 2). There is random node cEYn(d, K:’) whose children all are value nodes.

In this case, we can simply remove c from K’, resulting in K:*. Using Propositions 8.3

and 8.4 and following the same line of reasoning as in Subcase 1), we can show that

Statementi is true in this subcase.

Subcase 3). Every random node cEY11(d, K:’) is a root, and it has at least one child

in Let bE7r a a child of c such that there is no other b’E7r that is a child of c and a

parent of b. By the definition of K:’, b is a random (maybe deterministic) node. By the

choice of b, the arc c—pb is reversible. We reverse the arc c—b in K:’ to get K:”.

1 For later convenience, let us remark that this conclusion follows for any value function p, of v that
has property Q({d, d’}).

Chapter 8. Stepwise-solvability and stepwise-decomposability 152

By Proposition 8.5, K” is also normal and contains no barren nodes. There are m

random nodes in Y11(d, K:”), one of which, namely c, has parents. As in Subcase 1),

we short-cut c from K:”, resulting K:”. By the induction hypothesis, there is a decision

network .,V over K:* in which the optimal decision function of d depends on the decision

policy of some other decision node d’.

By Proposition 8.2, there exists a decision network .jV” over K:” that is equivalent to

JV*; and by the proof of Proposition 8.2, we conclude that .jV” can be such that

1. c is a compound variable consisting of a copy of each node in where ir’ is the

set of parents of c in K:”. Since c is a root in K’, ir’ = {b}U(r—{c}) = {b}U7r’.

2. The conditional probability P”(cIr’) = F”(clb, 7r’) is given by

Ii ifc=ir”=(b,ir’)
P”(cb, ir’) =

C

(8.77)
(0 otherwise

Moreover, since cY,j(d, K:’) and K:’ is normal, if a value node is a descendent of c, then

it must be a descendent of d, and hence b. So, Proposition 8.6 applies, and gives us

that there is a decision network .jV’ over K: that is equivalent to .A/”, and hence to .iV’.

Therefore in .Af’, the optimal decision function of d depends on the decision function of

some other decision node. Consequently, d is not an SS candidate node in K:’. The proof

is complete.

Lemma 8.4 Let K be a normal decision network skeleton with no barren nodes. Suppose

d is a decision node in K:, and suppose there are no decision root nodes in the downstream

set Y11(d,K:). If there exists at least one decision node, other than d, in Y11(d,K:), then

d is not an SS candidate node.

Chapter 8. Stepwise-solvability and stepwise-decomposability 153

Proof: Let d’ d be a decision node in Y11(d, K;). Let IC’ be the decision network

skeleton obtained from AC be replacing all the decision nodes other than d and d’ by

deterministic nodes. It suffices to show that (Statementi:) d is not an SS candidate node

in AC’.

We prove Statementl by induction on the number k of random nodes, including

deterministic nodes, in Y11(d, AC’). When k = 0, Y11(d, IC) consists of d, d’, and value

nodes. By the definition of Y11(d, AC), there must exist a value node v that is a child of

d’. Since AC is normal, so is IC’. Hence, d there is a directed path from d to v. There are

two cases: either d is a parent of v, or d is a parent of d’.

It has been shown in the proof of Lemma 8.3 that when both d and d’ are parents

to v, d is not an SS candidate node. Now consider the case when d is a parent of d’.

Construct a decision network H’ over AC’ as follows. Let all the random and decision

variables be binary; let the value functions of all the value nodes other than v be zero;

and let

1 1 ifd’=l
= (8.78)

1 0 otherwise

Noticing we have that when the decision function 6’ of d’ is such that 6’(iri) = d,

the optimal decision for d is d = 1; and when the decision function 6’ of d’ is such that

= 1—d, the optimal decision for d is d = 0. Therefore, the optimal decision

function for d depends on the decision function of d’ 2• Thus, d is not an SS candidate

node, and Statementl is true for the case of k = 0.

Assume Statementi is true for the case of k = m — 1. We can prove that Statementi

is true for the case of k = m by following the same line of reasoning as in the proof of

Lemma 8.3. There is only one issue that demands special attention. In Subcase 3), we
2 For later convenience, let us remark that this conclusion follows for any value function p,, of v that

has property Q1({d’}).

Chapter 8. Stepwise-solvability and stepwise-decomposability 154

need to reverse the arc c—+b. This can only be done when c is a random node and not

a deterministic node. Since there are no root decision nodes in Y11(d, K;), there are no

deterministic root nodes in Y11(d, K;’). Thus, c can not be a deterministic node. The

lemma is proved. E

Lemma 8.5 Suppose K; is a normal decision network skeleton with no barren nodes. Let

d be a decision node in IC. Suppose there are no decision nodes in the downstream set

Yj(d,K;). If there is a decision node d’Elrd such that at least one of the parents of d’ are

in Y11(d,K;), then d is not an SS candidate node.

Proof: Let K;’ be the decision network skeleton obtained from K; be replacing all the

decision nodes other than d and d’ by deterministic nodes. It suffices to show that

(Statementl:) d is not an SS candidate node in K;’.

We prove Statementl by induction on the number k of random nodes, including

deterministic nodes, in Y11(d, K;’) — When k=O, Y11(d, K;’) consists of the parents of

d’, and value nodes. By the definition of Y11(d, K;’), there must be at least one parent c

of d’ that has a value node child v. Since K; is normal, so is K;’. Thus, d must also be a

parent of u.

Construct a decision network jV’ over K;’ as follows. Let all the random and decision

variables be binary; let the value functions of the value nodes other than v all be zero;

and set

Ii ifd=c
= (8.79)

(0 otherwise

Noticing cEir, and d’Eir, we have that if the decision function 8’ for d’ is such that

= c, then the optimal decision function 6° of d is such that 6°(ir) = d’; and if the

decision function 6’ for d’ is such that 8’(ir,) = 1—c, then the optimal decision function

Chapter 8. Stepwise-solvability and stepwise-decomposability 155

6° of d is such that 6°(ir) = 1—d’. That is, the optimal decision function of d depends

on the decision function of d’ . Consequently d is not an SS candidate node in K’;

Statementi is true for the case of k = 0.

Assume Statementi is true in the case of k = rn—i. We can prove that Statementi

is true in the case of k = m in the same way as in the proof of Lemma 8.3. The lemma

is thus proved.

Proposition 8.10 Suppose K: is a normal decision network skeleton with no barren

nodes. Let d be a decision node in K:. If d is an 55 candidate node, then it is also

an SD candidate node.

Proof: Since d is an SS candidate node, by Lemmas 8.3 and 8.4, there cannot be decision

nodes in the downstream set Y11(d, K:). By Lemma 8.5, there cannot be decision nodes

which have parents in Y11(d, K:). Therefore, 7Td m-separates d from all other decision

nodes and their parents; i.e d is an SD candidate node.

Corollary 8.3 Let K: be a normal decision network skeleton with no barren nodes. Let

d be a decision node in K:. Suppose the downstream component K:11(d, K:) is stepwise

decomposable and contains no lonely arcs. Then in the upstream component K:1(d, K:), a

decision node is an SD candidate node if it is an SS candidate node.

Proof: One can prove this corollary in the same way as we prove Proposition 8.10. The

only issue that demands special attention is that in K:1, there is a downstream-value node

u. We may not be able to arbitrarily set the value function of U; it has to be the

optimal conditional expected value /=E[.iVfI7rdj of a decision network JV over K:11. As

we mentioned in Footnotes 1, 2, and 3, we need only to be able to set such that it has

For later convenience, let us remark that this conclusion follows for any value function p of v that
has property Q({d’, c}).

Chapter 8. Stepwise-solvability and stepwise-decomposability 156

property Q({x, y}) for some x, y E 7rd, or has property Q1({x}) for some x E 7rd. Since

PC11 is normal and stepwise-decomposable, and contains no barren nodes and lonely arcs,

this is possible according to Corollary 8.1. D

In a decision network skeleton PC, a decision node d is a potential SD candidate node

if either it is an SD candidate node, or there exists an SD candidate node d’(d) such

that d is a potential SD candidate node in the body PC1(d’, PC). It is easy to see that a

decision network skeleton is stepwise-decomposable if and only if every decision node is

a potential SD candidate node.

A potential SD candidate node d is the oldest, if there is no other potential SD can

didate node that is an ancestor of d.

Proof of Theorem 8.2: Let us first show stepwise-decomposability implies stepwise

solvability. Suppose PC is stepwise-decomposable. Let A/ be an arbitrary decision network

over PC. We need to show that .// is stepwise-solvable. Let iV’ be the output network

of SMOOTHING(V). Then, N’ is a smooth SDDN. According to Theorem 5.1, Af’ is

stepwise-solvable. Since ,%f’ and N is equivalent, N is also stepwise-solvable.

To prove that stepwise-solvability also implies stepwise-decomposability, it suffices to

show that if there exist decision nodes in PC that are not potential SD candidate nodes,

then PC is not stepwise-solvable.

For simplicity, let us assume that there is only one oldest potential candidate node d°.

Then none of the decision nodes in the upstream component AC1(d°, PC) are SD candidate

nodes. By Corollary 8.3, none decision nodes in PC1 can be SS candidate nodes. Therefore

PC is not stepwise-solvable. The theorem is proved. C

Chapter 9

SDDN’s and Markov decision processes

In the introduction, we have shown how finite stage Markov decision processes (MDP’s)’

can be represented as SDDN’s. This chapter shows that an SDDN can be condensed into

an equivalent MDP.

This practice is interesting for two reasons. Conceptually, it reveals the close rela

tionships between SDDN’s and MDP’s: MDP’s are special SDDN’s and SDDN’s can be

condensed into MDP’s.

Computationally, the concept of condensation opens up the possibility of parallel

computation in evaluating SDDN’s (Section 9.2); it enables us to exploit the asymmetric

nature of decision problems (Section 9.5); and it also leads to an incremental approach

for computing the values of information (Zhang et al 1993b).

The organization of this chapter is as follows. The concept of sections in smooth

regular SDDN’s is introduced in Section 9.1. Section 9.2 gives the definition of conden

sation of smooth regular SDDN’s, and points out the possibility of parallel computation.

Section 9.3 shows that a smooth regular SDDN is equivalent to its condensation. Non-

smooth regular and irregular SDDN’s are treated in Section 9.4. Section 9.5 exploits the

asymmetric nature of decision problems to minimize the number of states of the vari

ables in condensations. On the basis of condensation, Section 9.6 proposes a two stage

approach for evaluating SDDN’s, which is compared to the approaches by Howard and

Matheson (1984) and Cooper (1989) in Section 9.6.1.

11n this chapter, when talking about Markov decision processes we always mean finite stage Markov
decision processes.

157

Chapter 9. SDDN’s and Markov decision processes 158

9.1 Sections in smooth regular SDDN’s

The first step toward the concept of condensation is to introduce the concept of sections

for smooth regular SDDN’s. Let .A/ be a smooth regular SDDN. Let d1, d2, ..., di be

all the decision nodes. Since .V is regular, there is a total ordering among the decision

nodes. Let the total ordering be as indicated by the subscriptions. More explicitly, let us

assume that d directly precedes d1+1 in the sense that there is no other decision node d3

such that d precedes d3 and d3 precedes d+1. In this case, we also say that d+1 directly

succeeds d.

For any i€{1, 2,... , k — 1}, the section of.!V from 7rd to denoted by J/(d, d+1),

is the subuetwork of .iV that consists of the following nodes:

1. the nodes in 7rj U

2. the nodes that are in both the downstream setY11(d,.A1) of 1rd and the upstream

setY1(d+1,.Ar) of lrd1+1.

The graphical connections among the nodes remain the same as in the V except that

all the arcs among the nodes in 7rd1U{d} are removed. The nodes outside rdU{d} are

either random nodes or value nodes; their conditional probabilities or value functions

remain the same as in jV. The nodes in rdU{d} are either decision nodes or random

nodes. There are no conditional probabilities associated with random nodes in lrd1U{d:}.

The initial section iV(—, d1) consists of the nodes in rd1 and the nodes in the upstream

set Y1(d1,.iV) of It consists of only random and value nodes, whose conditional

probabilities or value functions remain the same as in ./V.

Value nodes in the initial section do not affect the optimal policies, even though they

do contribute to the optimal expected value. From now on, we shall assume there are

no value nodes in the initial section, with the understanding that they, if any, are taken

Chapter 9. SDDN’s and Markov decision processes

__

159

Figure 9.27: A regular SDDN and its sections: t stands for test, d stands for drill,
and s stands for oil—sale—police.

care of by some preprocessing measure.

The terminal section H(dk, —) consists of the nodes in the lrdk and the nodes in the

downstream set YII(dk, N) of The graphical connections, the conditional probabili

ties, and the value functions in the terminal section are specified in the same way as in

the case of ordinary sections.

As an example, consider the decision network in Figure 9.27 (a), which is a repro

duction of Figure 6.22 (b). The network is smooth, regular and stepwise-decomposable.

(a)

Test
cest

Test
Test Result

market
formation

9’L(d, s)
(b)

Chapter 9. SDDN’s and Markov decision processes 160

upstreaz of dowOstream of

Figure 9.28: An abstract view of a smooth regular SDDN. Smoothness is indicated by
the fact that all the arrows from the 4s are pointing downstream.

Let us denote this SDDN by .,‘V. Let us also denote the variable test by t, drill by d,

oil—sale—policy by s, drill—cost by dc, test—result by tr, oil—produced by op,

and market-information by mi.

There are four sections in Al: .A1(—, t), .A1(t, d), Al(d, s), and .iV(s, —). The initial

section .Al(—,t) contains no nodes. All the other sections are shown in Figure 9.27 (b).

At this point, we wish to emphasize that in each section .iV(d1,d1), all the decision

nodes are in 1rdU{d}. Since ./V is smooth, in .A/(d, d+1) there are no arcs pointing

toward those decision nodes. Thus, they can be regarded random nodes with no prior

probabilities. Consequently, .iV(d, d+1) can be viewed as a semi-Bayesian network with

value nodes.

9.1.1 An abstract view of a regular smooth SDDN

The concept of sections provides us with a proper perspective for viewing smooth regular

SDDN’s. A regular smooth SDDN iV can be thought of as consisting of a chain sections

.Al(—,d1), %/(di,d2), . . ., .Af(dk....l,dk), Jf(dk,—).

Two neighboring sections A’(d1_1,d) and .A1(d, d+1) share the nodes in which m

separate the other nodes in .A1(d...1,d) from all the other nodes .A1(d, d+1). Figure 9.28

shows this abstract view of a regular SDDN.

Chapter 9. SDDN’s and Markov decision processes 161

9.1.2 Conditional probabilities in a section

In each section .A/(d, d+1), one can compute PJ.r(d,d+1)(7rd+17rd, d) — the conditional

probability of the 7T1 given and d in .iV(d,d1). In the initial section .A/(—, d1),

one can compute P.v(_,d1)(lrd1)— the marginal probability ir1 in .A[(—, d1).

Lemma 9.1 Let .iV be a smooth regular SDDN and d and d+1 be two consecutive deci

sion nodes. For any policy 6 for .A1, let P6 denote the joint probability determined by 6

over all the decision and random nodes. Then we have

Ps(7rd, ir1, d) = [irj, di), (9.80)

and

P5(lrd1) PK(_,d1)(lrd1). (9.81)

Proof: According to Proposition 3.1, all the nodes in the downstream set of ir1 are

irrelevant to P3(1rd+lI1rd, di). Hence, they can be harmlessly pruned from .iV. Accord

ing to Proposition 3.2, all the nodes in the upstream set of ir are also irrelevant to

Ps(7rd+1 ir1, di). Hence, they can also be harmlessly pruned from .iV. After pruning the

nodes in the downstream set of ‘)rdi+l and those in the upstream set of 7rd, what is left of

.A[is exactly .iV(d, d+1). The lemma is therefore proved. C

In words, this lemma says that the conditional of probability of 7td,÷1 given 7rd and

d is independent of the policy 6 and can be computed locally in the section .iV(d, d+1).

9.1.3 The local value function of a section

We now turn to value functions. For a value node vjj in .,V(d, d+1), one can compute

the conditional probability F,v(d ,d1)(ir di).

Chapter 9. SDDN’s and Markov decision processes 162

Lemma 9.2 Let iV be a smooth regular SDDN and d and d+1 be two consecutive deci

sion nodes. For any policy 6 for jV, let P5 denote the joint probability determined by 6

over all the decision and random nodes. For any value node v13 in the section .iV(d,d1+1),

we have

P5(r1 ir, d) = di). (9.82)

Proof: The same as the proof of Lemma 9.1.

Define a function f : X —* R’ by

f. d) = PAr(d,d+1)(7rvI I 7rd1,d1)f(ir,) (9.83)
1r1 —fr u{d})

where f, is the value function of in Jf.

Let v1, ..., Vjmj be all the value nodes in the section J/(d, d+1). The local value

function f : X —b R’ of the section .Af(d,d1+1) is defined by

m

= (9.84)
j=1

Note that if there are no value node in the section, then f is the constant 0. In

particular, the local value function of the initial section is zero since it is assumed to

contain no value nodes.

9.1.4 Comparison with decision windows

The concept of decision windows is introduced by Shachter (1990) as a way to understand

information arcs—arcs into decision nodes2. The window W consists of those random

nodes that are observed for the first time between the decision maker’s choice for d1

and her/his choice for d.

2pcajl that in influence diagrams arcs into decision nodes are interpreted indication of information
availability.

Chapter 9. SDDN’s and Markov decision processes 163

The major difference between sections and windows is that sections correspond to

graphical separation, while windows do not. A section .Af(d_1,d) can be compared to

an interval on the real line: the “left end point” is lrd1_1, and the “right end point” is d•

Two neighboring sections are separated by their common “end point”; two sections that

are not neighbors are separated by the sections in between.

On the other hand, a node in a window W1 can be connected to a node in any other

window Wj; and there is no concept of “end points”. Consequently, with windows we do

not have the the two lemmas given in the previous two subsections.

9.2 Condensing smooth regular SDDN’s

Intuitively, condensing a smooth regular SDDN .iV means doing the following in each

section .iV(d, d+1) of Al: (1) delete all the random nodes that are neither in the 7rd nor

in (2) combine all the value nodes into one single value node v, and (3) group the

nodes in 7rd into one compound variable x. What results is a Markov decision process

(MDP). Now the formal definition.

The condensation of .iV, denoted by J/’, is an MDP given as follows:

1. It consists of the following nodes:

• Random nodes x (1 i k), where x is the compound variable consists of

all the nodes in 7rd when rdO. When 7rd=O, x is a variable that has only

one possible value;

• The same decision nodes d1 (1 i < k) as in ./V; and

• Value nodes v (1 k).

2. The graphical connections among the nodes are as follows:

Chapter 9. SDDN’s and Markov decision processes 164

Figure 9.29: The skeleton of the condensation of the SDDN in Figure 9.27 (a)

• For any i E {1, 2,..., k}; there is an arc from X: to d, an arc from x to v,

and an arc from d1 to v.

• For any i E {1, 2,..., k — 1}, there is an arc from x to Xj and an arc from

d to xj1.

3. The conditional probabilities and value functions are as follows:

• The conditional probability PD(x+ilx, d) (i E {1,... , k— 1}) is defined to be

F.,v(d+1,d)(7d1+j di).

• The prior probability Pc(xi) is defined to be F.,e.f(_,d1)(7rd1).

• The value function f for v1 (i E {l,.. . , k}) is defined to be the local value

function f.

Since the condensation ,\fc is an MDP, we shall sometimes refer to Pc(x+i lxi, d) as

the transition probability from x, to x1.

Figure 9.29 depicts the skeleton of the condensation of the SDDN in 9.27 (a). Since

test has no parent, x1 is a degenerate variable with only one value. The variable x2

stands for the compound variable consisting of test and test-result, and x3 stands

for the compound variable consisting of oil-produced and oil-market.

The prior probability of x1 is trivially defined, the transition probability Pc(x2lxi, t)

Chapter 9. SDDN’s and Markov decision processes 165

is set to be PJf(t,d)(t, tnt), and the transition probability Pc(xax2,d) is set to be

Pv(d,s)(op, inilt, tr, d).

The value function f for the value node z4 is a representation of test—cost, f is a

representation of drill—cost, and f is a representation of the summation oil-produced

and sale-cost.

The SDDN in Figure 9.27 (a) is not in the form of an MDP. However, its condensation,

as shown in Figure 9.29, is a Markov decision process. In particular, each random node

separates the network into two parts.

The condensation of a smooth regular SDDN is usually not a homogeneous MDP

(Denardo 1982). The frames of the xi’s are different from one another.

9.2.1 Parallel computations

In the process of condensation, the following numerical computations are carried out in

each section .Af(d, d+i):

• The calculation of the conditional probabilities Fg(d1,d11)(7rd11 di), and

(for each value node and

• The summations as indicated by equations (9.83, 9.84).

Those conditional probabilities can be obtained from the marginals PK(d1,d11)(rd, di),

1td, d:), and Pg(d1,d11)(1rV, 7td, d) (for each value node v); and the

marginals can in turn be computed by using clique tree propagation, so that all the

marginals can be computed by visiting each clique at most twice.

An important observation is that the numerical computations in different sections

can be carried out in parallel.

Chapter 9. SDDN’s and Markov decision processes 166

9.3 Equivalence between SDDN’s and their condensations

This section shows the following theorem.

Theorem 9.1 A smooth regular SDDN is equivalent to its condensation.

Proof: Let Al be a smooth regular SDDN and JV be its condensation. Let 7rd denote

the set of parents of d in .‘V. Let denote the set of parents of d in .iV. We know

that = {xj. Since

lrd. = (9.85)

we will sometimes abuse symbols to use and x interchangeably.

Because of equation (9.85), a policy for Al is also a policy for .iV, and vice versa. In

other words, .iV and J/ have the same policy space.

So, what remains to be proved is that for any policy S

= Es[Alc]. (9.86)

Let P5 and P denote the joint probability induced by S over the set of random and

decision nodes of Al and J/c respectively. This following lemma will be proved shortly.

Lemma 9.3 For any decision node d,

= Pg(w.) and P5(1rd,d) =

Suppose d1, ..., dk are all the decision nodes in Al. For each i, let vii, ..., Vjm be

all the decision nodes in the section Al(d,d1+1). We have

Es[v] = (By definition)

=

Chapter 9. SDDN’s and Markov decision processes 167

= dj,di)fvjj(vjj) (By Lemmas 9.3 and 9.1)
1rd.,d

= > P9(ir, d) > d)f(ir) (9.87)

Consequently, we have

k mj
=

i=1 j=1

k mj

= P(r,d) (By equation (9.87))
i1 j1 Wd ,d 7rv..

k m

= d) Pv-(d,d1+l)(1rVf ir,
i=1 lTd ,d j=1 1rv

k

= (By equations (9.83) and (9.84))
=1 1rd,d

k

= P(x, d)f(x, d) (x and 7rd are interchangeable.)
i=1

= E5[.iV9. (By definition)

The theorem is therefore proved. U

Proof of Lemma 9.3:

We now prove this lemma by induction on i. By Lemma 9.1, this lemma is true for

the case when i=1. Suppose the lemma is true for the case of i. Consider the case of

i+1:

=

= P(7rj, d)FJr(d,d+l)(7rd1÷lI1td, d) (Lemma 9.1)
1rdU{d}_1rd+l

=

lrd.

=

Chapter 9. SDDN’s and Markov decision processes 168

Moreover, since Ps(dI7rd) and P(dj1rd) are completely determined by 8, they are

equal. Consequently, we have

P6(rd+l, d+i) = P5(rd+1)Ps(d+1 d+1)

r)cf ncr3
= F5 Jr5 jU1 d+i

flcDI
=

The lemma is therefore proved.

9.4 Condensing SDDN’s in general

This section extends the concept of condensation to cover all SDDN’s. Let us first

consider regular SDDN’s in general. Irregular SDDN will be dealt with in Subsection

9.4.3.

9.4.1 Sections

Let .Af be a regular SDDN, smooth or non-smooth. Let d1, d2, ..., dk be all the decision

nodes in ./V. For any i e {1,2,. . . — 1}, the section of J’f from ir to 7rd+1 , denoted

by .i’./(d,d1), is the subnetwork of Al that consists of the following nodes:

1. the nodes in 7rd1Ud+,,

2. the nodes that are in the downstream set Y11(d1,N) of ir and in the upstream set

Y1(d+1,Al) of 7rd+1, and

3. the disturbance nodes of d+1, (which are in the downstream set Y11(d+1,.V) of

The graphical connections among the nodes in the section .A/(d, d÷1), remain the same

as in Al, except that all the arcs pointing to nodes in 1rd1U{d} that are not disturbance

recipients of d are removed.

Chapter 9. SDDN’s and Markov decision processes 169

Figure 9.30: Sections in a non-smooth regular SDDN.

The nodes outside rd1U{d} are either random nodes or value nodes. The value

functions of all the value nodes remain the same as in .,V.

The conditional probabilities of the random nodes outside rd1U{d1}remain the same

as in .,V. If a random node CEtdgU{dj} is a disturbance recipients of d, then its conditional

probability is the same as in .iV. The decision nodes in 7rdU{d} and the random nodes

in U { d } that are not disturbance recipient of d are viewed as root random nodes

without prior probabilities. Compare this definition with the definition of tail for the

non-smooth case (Section 6.2).

The initial section .V(—, d1) consists of the nodes in 7rd1, the nodes in the upstream

set of it-, and the disturbance nodes of d1 (which are in the downstream set of 7rd1).

This section consists of only random and value nodes, whose conditional probabilities or

value functions of those nodes remain the same as in jV.

The terminal section J’f(dk, —) is defined in the same way as in the smooth case.

9(d, s)

Chapter 9. SDDN’s and Markov decision processes 170

Figure 9.30 shows the sections of the non-smooth regular SDDN in Figure 1.7. Un

like the case of smooth regular SDDN’s (Figure 9.27), the sections .iV(t, d) and .IV(d, s)

not only share the node in 1r11, but also two other nodes — oil-underground and

seismic-structure.

The reader is encouraged to verify that if a regular SDDN is smooth, then its sections

as defined here are the same as those defined in Section 9.1. To do so, one only need to

keeps in mind that in a smooth SDDN, there are no disturbance recipients.

9.4.2 Condensation

As in the smooth case, in each section ./V(lrd2,ir1) we can compute the conditional

probability (7-d.) I d:). We can also compute) (v d) for

each value node vj in ./V(7rd, 7rd+1), and hence the local value function f.
Thecondensation of .iV is defined from the PJrd.,lT.d.+l)(1rdj+l d1)’s and the f’s in

the same way as in Section 9.2.

Theorem 9.2 A regular SDDN, smooth or non-smooth, is equivalent to its condensation.

Proof: Let Al be a regular SDDN, let j’f” be the output network of SMOOTHING(.A/).

Then JV* is smooth and equivalent to Al. According to Proposition 9.1, which comes up

next, the condensation of Al is the same as the condensation of .A/*. Thus is equivalent

to the condensation Alc of Al or equivalently of Al*. Consequently, Al is equivalent to

Afc.

Proposition 9.1 Let Al be a non-smooth regular SDDIV and let Al* be the output net

work of SMOOTHING(Al). Let d1 and d1 be two consecutive decision nodes. Then

PK.(d1,d+1)(7rd+1 d) = P(d,d÷1)(1rd+1114, di), (9.88)

Chapter 9. SDDN’s and Markov decision processes 171

and

= PAr(—,d1)(rrd1). (9.89)

Furthermore, for any value node v in .iV(d, d+1),

Fp.r.(d,d11)(7r1 d1) = F,%r(d,d÷l)(Tvq d3). (9.90)

Proof: Given any policy 6 of .iV, let P5 be the joint probability 6 induces over all the

random and decision nodes of .AI. Then 6 is also a policy of .,V. Let P be the joint

probability 6 induces over all the random and decision nodes of Since arc reversals

do not change the joint probability, we have

P = P5. (9.91)

In particular, we have

P4K(lrdl) =

P(7d+,l7rd,d) =

d) = di).

Consequently, we have

Pj...r.(_,d1)(ird1)= P’(7rd1)= P5(rd1)= Pj.r(_,d1)(7rd,),

PJ(d,d+1)(7rd÷1Rd, d) = P(7rd41 I7rd, d)

= P5(7rd+1I1rd1,d)

= d,d+1)(7d1+1lir, di),

and

d) d)

=

=

Chapter 9. SDDN’s and Markov decision processes
172

The proposition is therefore proved. C

9.4.3 Irregular SDDN’s

The generalization of concept of condensation to irregular SDDN’s is straightforward.

The only issue that demands special attention is that there may be more than one

decision node that directly succeeds a given decision node. Thus, one will not be able to

speak of the section from d to d+i; one can only speak of the section starting at d.

The condensation of an irregular SDDN is not a (linear) MDP since the decision nodes

are not totally ordered. It is an MDP over a rooted tree.

9.5 Asymmetries and unreachable states

This section investigates how to make use of the asymmetric nature of decision problerrwz

to cut down the number of states for nodes in condensations. The basic idea is due t—----- -

Qi (1993).

9.5.1 Asymmetries in decision problems

In the oil wildcatter examples, if the test is not performed, there is no test—resu -

_
_
_
_
_
_
_

The meaningfulness of the variable test-result depends on the decision made ab. —
_

test. This phenomenon is called asymmetry.

Asymmetries are readily represented in decision trees. In Figure 1.2, we see that ---

-_

decision to test leads the decision maker to the upper branch of the tree, where

will observe the test-result upon which to make the drill decision. One the z -

hand, the decision not to test leads the decision maker to the lower branch of the

where there is no test-result. S/he has to make the drill decision without

anything about the seismic-structure. The lower branch is much smaller tha._.

Chapter 9. SDDN’s and Markov decision processes 173

upper branch because of asymmetries.

Influence diagrams (and decision networks) are appreciated for compactness, intu

itiveness and the ability to reveal independencies. However they cannot represent asym

metries. Artificial states have to be introduced to render the decision problems “sym

metric”. The oil wildcatter problems are made “symmetric” by introducing the artificial

value no-result for the variable test—result.

Artificial states may bring about unnecessary computations. In the oil wildcatter

example, both test and test-result are parents of drill. Thus, a decision for drill

has to be computed for all possible combinations of values of test and test-result, even

though some of those combinations, for instance test=no and test-result=open-structure,

are impossible. Such unnecessary computations lead some to doubt the efficiency of in

fluence diagrams (Lawrence 1990, Shafer 1993).

Fung and Shachter (1990), Covaliu and Oliver (1992), Smith et al (1993) , and Shenoy

(1993) deal with the asymmetric nature of decision problems by generalize influence di

agrams to explicitly represent asymmetries. This section shows that in SDDN’s, asym

metries can uncovered even when they are not explicitly represented. We still need to

introduce artificial states; but we are able to eliminate the unnecessary computations

brought about by those artificial states.

9.5.2 Eliminating unreachable states in condensations

In the condensation shown in Figure 9.29, x2 is a compound variable consisting of test

and test-result, which are respectively shorthanded as t and tr. The variable t has two

possible values — yes or no, while tr has four — no-structure (ns), open—structure

(os), closed-structure (cs) and no-result (nr). Thus, X2 has eight possible values.

Since x2 is a variable in a condensation, which is a MDP, we shall refer to its possible

values as states.

Chapter 9. SDDN’s and Markov decision processes 174

Due to the asymmetric nature of the oil wildcatter problem, four of the eight states

of x2, namely (t=no, tr=ns), (t=no, tr=os), (t=no, tr=cs), and (t=yes, tr=nr), are

unreachable, in the sense that their probabilities are zero. By pruning those states of

we avoid the unnecessary computation due to the introduction of the artificial state

no-result.

We now define the concept of unreachable state more rigorously. Suppose .iV is a

regular SDDN and .IVC is its condensation. Let d be a decision node and let x be its

unique parent in Jfc As before, we shall use x, 7Td, and ir. interchangeably.

Any policy S of induces a joint probability P over all the random and decision

nodes of .jVc. A state 3 of x is unreachable under S if P(x=3) = 0. A state of x1 is

unreachable if it is unreachable under all the policies of

One interesting question is: How can one identify unreachable states?

For any state ,6 of x1, F(xi=i3) is independent of S and equals PJf(_,d1)(7rl=/3). So,

it is unreachable if and only if

= 0.

When i > 1, the state {x=/3} is unreachable if and only if the following is true: for

any policy 6’ and for any oE!d1_1 and any 7E!1_1,either

1. P(x...1=7)= 0, or

2. = 0.

By Lemma 9.1, we have:

F(x=/3Ix.1=7,d_i=a) = PK(d_1,d)(7rd,=I@Iird_, =,d_1=o).

Therefore, we have

Chapter 9. SDDN’s and Markov decision processes 175

Theorem 9.3 Suppose V is a regular SDDN.

1. A state {xi = /3} is unreachable if and only if

PAr(_,d1)(7rd1/3)= 0.

2. When i > 1, the state {x1=3} is unreachable if and only if for any c e d_1 and

any 7 E 11rd 1
either

(a) {Kd_1=7} is unreachable, or

(b) P(d_1,d)(d =/3Id1_1=,d_1=) = 0.

This theorem suggests an obvious top-down procedure of constructing the condensa

tion of regular SDDN’s that eliminates unreachable states along the way. One begins

by computing PV(_,d1)(7rd1=/3)for each state 3 of x1, and deletes those states with zero

probability. One then computesP(d1,d2)(7rd2=/3I1rd1=7,di=c) for each state /3 of x2 given

each reachable state of x1 and each value o of d1, and deletes all the states /3 whose

conditional probabilities are always zero. And so on and so forth.

So far in this section, our exposition has been in terms only regular SDDN’s. However,

the idea can be extended to irregular SDDN’s in a straightforward way.

This approach constructs condensations that do not contain any unreachable states.

However, it also excludes the possibility of the parallel computations we mentioned in

Subsection 9.2.1.

9.6 A two-stage algorithm for evaluating SDDN’s

The concept of condensation leads to the following two-stage approach for evaluating

regular SDDN’s.

Procedure EVALUATE2(V)

Chapter 9. SDDN’s and Markov decision processes 176

• Input: .Af an SDDN.

• Output: The optimal policy and the optimal expected value of .iV.

1. Compute the condensation .jV of iV.

2. Evaluate).fc by the folding back strategy.

The procedure EVALUATE2 can be viewed as a modification of EVALUATE1, where

all the Bayesian network inferences (BNI’s) are grouped into one stage, i.e the stage of

condensation. EVALUATE2 is better than EVALUATE1 in terms of modularity. As a

matter of fact, EVALUATE2 can be implemented in three modules: one for managing

sections of SDDN’s, one for doing BNI’s, and one for evaluating MDP’s. MDP’s have

been studied in Dynamic programming for a long time, BNI’s have also been under

extensive investigation during the last decade. Good algorithms exist for both MDP’s

and BNI’s. This leaves us with only the module for managing sections of SDDN’s.

Besides modularity, a more important of advantage of EVALUATE2 over EVALU—

ATE1 is, as pointed out in Section 9.5, that EVALUATE2 enables us to exploit the

asymmetric nature of decision problems. Also EVALUATE2 facilitates parallel process

ing (Section 9.2.1). As we pointed out Section 9.5, one can only have one of those two

advantages; they do not co-exist.

Zhang et al (1993b) presents yet another advantage of EVALUATE2, namely EVAL

UATE2 also leads an incremental method of computing the value of perfect information.

9.6.1 Comparison with other approaches

Two two-stage algorithms for evaluating influence diagrams have been proposed by

Howard and Matheson (1984) and Cooper (1989).

To evaluate an influence diagram, Howard and Matheson (1984) first transforms the

Chapter 9. SDDN’s and Markov decision processes 177

diagram into a decision tree, and then evaluate the decision tree. Our approach transform

an SDDN into an MDP, instead of a decision tree. In Howard and Matheson’s trans

formation, every random node in the influence diagram corresponds to one level in the

decision tree, while in our approach all the random nodes, except for those that are ob

served at some point, are summed out in the condensation process. Also, condensing an

SDDN into an MDP does not lose independencies for decision nodes, while transforming

an SDDN into a decision tree would.

To understand the approach by Cooper (1989), consider an influence diagram .A1. Let

v be the only one value node and let the decision nodes be d1, d2, ..., dk. Given a policy

6, let P6 be the joint probability 6 induces over all the random and decision nodes. It is

implicit in Cooper (1989) that P5(7rd+1 d:) does not depend on 6; and hence can be

written as P(7rd+1I7td, di).

Recursively define a series of functions gj (1ik) by

gk(rd) =jf maxdk > fV(1rV)P(7rV7rdk,dk), (9.92)
lrdk —lrt,

f is the value function for v; and for any i<k

g() def maxd di). (9.93)
lrd+l

The following proposition is given by Cooper (1989).

Proposition 9.2 For any iE{1, 2,. . . , k}, the optimal policy 6° for d: is given by

= argmax > g+1(7rd11)P(7rd11I7r, d:).
1Td÷l 1rd

The optimal expected value E[JV] is given by

E[JV1 g1(7rd1).

Chapter 9. SDDN’s and Markov decision processes 178

Proof: Consider the condensation Jfc of .A[. The probability F(lrd1+1 d2) is the same

as P’(7rd1+1 d:). The function gi is the value function of v, and the value functions

of all the other value node in .A/c are zero. The proposition thus follows from the fact

that Jv” is an MDP. Q

To make a comparison, it has been pointed out in this thesis that the conditional

probability P(7rd1 ir, d) can be computed locally in the section .iV(d, d÷1). More

importantly, we have generalized Proposition 9.2 from influence diagrams to SDDN’s

(Theorems 9.1 and 9.2).

Chapter 10

Conclusion

10.1 Summary

This thesis has been about how to use Bayesian decision theory to solve decision prob

lems that involve multiple decisions and multiple variables. Here is a summary of our

contributions.

First of all, the concept of a decision network has been developed from a general way

for stating decision problems and a standard Bayesian decision theory setup. A decision

network is a representation of a decision problem together with knowledge (belief) and

utilities necessary for its solution. We have argued that decision networks are the most

general representation framework for the purpose of solving what we call multiple-decision

problems in Bayesian decision theory. In particular, decision networks are more general

than influence diagrams.

The evaluation of a decision network requires, in general, an exhaustive search through

the whole policy space. A concept of decomposability has been introduced for decision

networks and it has been shown that this decomposability leads to a divide and conquer

strategy.

From a computational point of view, it is most desirable if a decision network is

stepwise-solvable, i.e if it can be evaluated by considering one decision node at a time.

We have introduced stepwise-decomposable decision networks (SDDN’s) and have shown

they can be evaluated not only by considering one decision node at a time, but also by

179

Chapter 10. Conclusions 180

considering only one portion, usually a small portion, of the network at time.

We have also shown that stepwise-decomposability is the weakest graphical criterion

that guarantees stepwise-solvability.

The problem of evaluating SDDN’s has been studied in detail. A number of important

concepts, such as simple semi-decision networks, body, tail, and smoothness have been

identified. A procedure named EVALUATE1 has been proposed. The advantages of this

procedure include the adoption of the divide and conquer strategy, a clear separation of

Bayesian network inferences, and minimal numerical divisions.

We have introduced the concept of decision nodes being conditionally independent of

part of available information, and have shown its equivalence to the concept of removable

arcs. An algorithm has been designed that is able to find and prune all the removable

arcs in an SDDN that can be identified graphically without resorting to numerical com

putations.

Finally, we have investigated the relationship between SDDN’s and Markov decision

processes. Finite stage Markov decision processes are special SDDN’s, and SDDN’s can

be condensed into Markov decision processes. This relationship leads to a two-stage

approach for evaluating SDDN’s. Besides providing an even cleaner interface between

decision network evaluation and Bayesian network inferences than EVALUATE1, this

approach is able to make use of the asymmetric nature of decision problems, facilitates

parallel computation, and gives rise to an incremental way of computing the value of

perfect information.

Chapter 10. Conclusions 181

10.2 Future work

10.2.1 Application to planning and control under uncertainty

High on our list of future research is to apply the theory of decision networks to the area

of planning and control under uncertainty, and thereby further develop the theory.

The history of influence diagrams is short (Matheson and Howard 1984, Miller et

al 1976); and using influence diagrams to represent dynamic systems for the purpose

of planning and control is a development over the last three or four years (Dean and

Weliman 1991). Many issues remains to be addressed.

To get a feeling about some of the issues, let us consider the mobile target localization

problem taken from Dean et al (1990) with some minor changes. As shown in Figure

10.31, there is a mobile target, and there is a robot that tracks the target. The target

location as observed by the robot may be different from the actual target location. At

each time point, the robot makes a decision as to what location to report based on the

observed target location. There is a payoff depending on how accurate the report is; the

overall payoff is the sum of the payoffs of all the time points. The robot also makes a

tracking decision according to its own location and the observed target location. The

location of the robot at the next time point depends on its location and the tracking

decision made at the current time point.

In this example, the decisions at time point t2, for instance, depend on the observed

target location at time point ti, because it helps the robot to better estimate the actual

target location at time point t2. The decisions at time point t20 depend on the observed

target locations at all the previous time points, as indicated by the dotted arcs. So,

the decision nodes at time point t20 have 21 parents, and their decision table have n21

entries, where n stands for the number of possible locations. A decision table of such a

size can neither be computed nor be stored.

Chapter 10. Conclusions 182

Trkh,g

di.Ion

Rb

loto

ob.erved
tr

IotIOn

tgt

otio,

pOrt

t3 L20 t21

Figure 10.31: Mobile target localization.

As we mentioned in the introduction, a reasonable thing to do here is to assume de

cision at any time point depends on only, for instance, two previous time points, while

being independent of all the other time points. This kind of independence assumptions

for decision node can be make in decision networks because they are able to represent

independencies for decision nodes. One important issue in applying the theory of deci

sion network to planning and control is how can one guarantee that those independence

assumptions yield decisions with acceptable bounds from the optimal?

When evaluating decision alternatives at a certain time point, one looks into the

future to see what states of affairs each of the alternative may result in and with what

certainties. Another issue in applying the theory of decision network to planning and

control is how many time points should one looks into the future? How should one

discount the importance of future time points that are far from the present?

The above two issues are about reducing the complexities of planning and control

problems in the time dimension. Another dimension in which one can explore the op

portunities for reducing complexities is the dimension of problem structure. The graph

theoretical language of decision networks allows us to capture, at the level of relation, the

Chapter 10. Conclusions 183

dependence and independence relationships among nodes. A step further is to explore

the so-called inter-causal indepedencies (e.g. Heckerman 1993), which basically says that

several caused independently contribute to an effect. Inter-causal independence is at the

numerical level.

Let k be the number of parents of a random node c. Suppose all variables are binary.

Then, the conditional probability of c requires 2’’—l numbers to specify. Assessing

those numbers and using them in inferences is hard when k is large. However, if the

conditional probability of c satisfies the so-called noisy OR-gate model — an inter-causal

independence model — then we need only k numbers to specify the conditional prob

ability (Pearl 1988). There is a growing research interest in making use of inter-causal

models to reduce the complexities of knowledge acquisition and inference in Bayesian

networks and Influence diagrams (e.g. Heckerman 1993). Much work remain to be done

in this direction.

One specific idea we have is to treat the noisy OR-gate model in Dempster-Shafer

theory. Dempster-Shafer theory is a theory about combining evidence from independence

sources, and is thus closely related to the concept of inter-causal independence.

10.2.2 Implementation and experimentation

Another thing to do in the future is implementation. The procedure EVALUATE1 can

probably be implemented on top of IDEAL, a software package for analysis of influence

diagrams developed by Srinivas and Breese (1990). For the sake of TEST-STEPWISE

DECOMPOSABILITY and PRUNE-REMOVABLES, it is a good idea to keep the skele

ton of a decision network separate from its numerical components, namely its condi

tional probabilities and value functions. The implementation of EVALUATE2 may be

more involved if the functionalities of parallel processing, exploitation of asymmetries

and incremental computation of value of information are all to be materialized.

Chapter 10. Conclusions 184

In the thesis, we have argued the that EVALUATE1 and EVALUATE2 are advan

tageous over all the previous algorithms for evaluating influence diagrams. Experiments

need to be performed to substantiate this claim.

10.2.3 Extension to the continuous case

This thesis has only dealt with discrete variables. It would be interesting to extend our

theory so that it can also handle continuous variables. To achieve this extension, the

following three issues need to be addressed.

The first issue is the existence of an optimal policy. This is not an issue in the

discrete case. Since there are only finitely many possible policies, one of them must be

optimal. In the continuous case, however, there may be infinitely many possible policies;

the existence of an optimal policy is not obvious.

The second issue is integration. In the discrete case, we sum out variables. In the

continuous case, we need to integrate out variables. While summation is provided in

most programming languages, integration is not.

The third issue is the operation of finding the maxima of a function. This can be done

by exhaustive enumeration in the discrete case. In the continuous case, more advanced

techniques need to be used.

10.2.4 Multiple agents

We have said that decision network is able to represent multiple cooperative agents

with a common goal. We have also given two examples in this regard. However, much

foundational work remains to be done to ensure that the optimal decision policies as

defined in this thesis is indeed optimal in particular applications.

One can also consider game theory situations where agents are adversaries of each

other. One may come out with some kind of game network based on game trees in a way

Chapter 10. Conclusions 185

similar to how decision networks grew out of decision trees.

Bibliography

[1] M. Baker and T. E. Boult (1990), Pruning Bayesian networks for efficient computa
tion, in Proceedings of the Sixth Conference on Uncertainty in Artificial Intelligence,
July, Cambridge, Mass. , pp. 257 - 264.

[2] K. Basye, T. Dean, and J. S. Vitter (1989), Coping with uncertainty in map learning,
in Proceedings IJCAI 11, pp. 663-668.

[3] D. E. Bell, H. Raiffa, and A. Tversky (1988), Decision Making: Descriptive, Nor
mative, and prescriptive interactions, Cambriage University Press.

[4] U. Bertelè and F. Brioschi (1972), Nonserial dynamic programming, Mathematics in
Science and Engineering, Vol. 91, Academic Press.

[5] D. P. Bertsekas (1976), Dynamic Programming and Stochastic Control, Mathematics
in Science and Engineering, Vol. 125, Academic Press.

[6] J. Breese (1991). Construction of belief and decision networks, Technical Report,
Rockwell International Science Center.

-

[7] K. Chang and R. Fung (1990). Refinement and Coarsening of Bayesian networks, in
Proceedings of the Sixth Conference on Uncertainty in Artificial Intelligence, July,
Cambridge, Mass. , pp. 475-482.

[8] J. R. Clarke and G. M. Provan (1992), A dynamic decision-theoretic approach to
the management of GVHD, in Proc. AAAI Spring Symposium on Al and Medicine.

[9] G. F. Cooper (1989), A method for using belief networks as influence diagrams,
in Proceedings of the fifth Conference on Uncertainty in Artificial Intelligence, pp.
55-63.

[10] G. F. Cooper (1990) The computational complexity of probabilistic inference using
Bayesian belief networks, Artificial Intelligence, 42, pp. 393-405.

[11] G. F. Cooper (1990), Bayesian belief-network inference using recursive decompo
sition, Report No. KSL 90-05, Knowledge Systems Laboratory, Medical Computer
Science, Stanford University.

[12] Z. Covaliu and R. M. Oliver (1992), Formulation and solution of decision problems
using decision diagrams, Working paper, University of California at Berkeley.

186

Bibliography 187

[13] T. L. Dean and K. Kanazawa (1989), A model for reasoning about persistence and
causation, Computational Intelligence, 5(3), pp. 142-150.

[14] T. L. Dean and M. P. Weliman (1991), Planning and Control, Morgan Kaufmann.

[15] E. V. Denardo (1982), Dynamic Programming: Models and Applications Prentice
Hall.

[16] P. Dagum and R. M. Chavez (1993), Approximating probabilistic inference in
Bayesian belief networks, Pattern Analysis and Machinr Intelligence, VoL 15, 3,
pp. 246-255.

[17] J. W. Egar and M. A. Musen (1993), Graph-grammar assistance for Automated gen
eration of influence diagrams, in Proceedings of the Ninth Conference on Uncertainty
in Artificial Intelligence, pp. 235-243.

[18] K. J. Ezawa (1986), Efficient evaluation of influence diagrams, Ph.D. Thesis, Dept.
of Engineering-Economics Systems, Stanford University.

[19] K. J. Ezawa (1992) Technology planning for advanced telecommunication services:
a computer-aided approach, Telematics and Informatics, 19, No. 2.

[20] P. C. Fishburn (1988), Normative theories of decision making under risk and under
uncertainty, in Bell et al 1988.

[21] K. W. Fertig and J. Breese (1993), Probability intervals over influence diagrams,
Pattern Analysis and Machinr Intelligence, Vol. 15, 3, pp. 280-287.

[22] R. M. Fung and R. D. Shachter (1990), Contingent Influence Diagrams, Advanced
Decision Systems, 1500 Plymouth St., Mountain View, CA 94043, USA.

[23] P. Gördenfors and N. Sahlin (1988a), Decision, Probability, and Utility: Selected
Readings, Cambridge University Press.

[24] P. Gördenfors and N. Sahlin (1988b), Introduction: Bayesian decision theory — foun
dations and problems, in P. Gördenfors and N. Sahlin (1988)a.

[25] D. Geiger, T. Verma, and J. Pearl (1990), d-separation: From theorems to algo
rithms, in Uncertainty in Artificial Intelligence 5, pp. 139-148.

[26] R. P. Goldman and E. Cherniak (1993), A language for construction belief networks,
Pattern Analysis and Machinr Intelligence, Vol. 15, 3, pp. 196-208.

[27] M. Goldzsmith, P. Morris, and J. Pearl (1993), A maximum entropy approach to
nonmonotonic reasoning, Pattern Analysis and Machinr Intelligence, Vol. 15, 3, pp.
220-232.

Bibliography 188

[28] I. Good (1961), A causal calculus (I). British Journal of Philosophy of Science, 11,

pp. 305-318

[29] N. A. J. Hastings and J. M. C. Meflo (1977), Decision networks, John Wiley & Sons.

[30] D. Heckerman (1993), Canal indepedence for knowledge acquisition and inference,
in Proceedings of the Nitth Conference on Uncertainty in Artificial Intelligence, pp.
122-127.

[31] D. Heckerman and E. Horvitz (1990), Problem formulation as the reduction of a
decision model, in Proceedings of the Sixth Conference on Uncertainty in Artificial
Intelligence, July, Cambridge, Mass. , pp. 82-89.

[32] M. Henrion (1987), Some practical issues in constructing belief networks, in L. Kanal,
T. Levitt, and J. Lemmer (eds.) Uncertainty in Artificial Intelligence, 3, pp. 161-174,
North- Holland.

[33] M. Horsch and D. Poole (1991), A dynamic approach to probabilistic inference
using Bayesian networks, in Proceedings of the Sixth Conference on Uncertainty in
Artificial Intelligence, July, Cambridge, Mass. , pp. 155-161.

[34] J. Hosseini (1968), Decision analysis and its application in the choice between two
wildcat oil ventures, Interfaces, 16, pp. 75-85.

[35] R. A. Howard, and J. E. Matheson (1984), Influence Diagrams, in The principles
and Applications of Decision Analysis, Vol. II, R. A. Howard and J. E. Matheson
(eds.). Strategic Decisions Group, Menlo Park, California, USA.

[36] R. A. Howard (1990), From influence to relevance to knowledge, in [50].

[37] F. V. Jensen, K. G. Olesen, and K. Anderson (1990), An algebra of Bayesian belief
universes for knowledge-based systems, Networks, 20, pp. 637 - 659.

[38] Kanazawa (1991), A logic and time nets for probabilistic inference, In Proceedings
AAAI-91.

[39] J. Kim and J. Pearl (1983), A computational model for causal and diagnostic reason
ing in inference engines, in Proceedings of the Eigth International Joint Conference
on Artificial Intelligence, Karlsruhe, Germany, pp. 190-193.

[40] U. Kjrulff (1990), Triangulation of Graphs - Algorithms giving small total state
space, R 90-09, Institute for Electronic Systems, Department of Mathematics and
Computer Science, Strandvejen, DK 9000 Aalborg, Denmark.

Bibliography 189

[41] P. Klein, A. Agrawal, A. Ravi, and S. Rao (1990), Approximation through multi-
commodity flow, in Proceedings of 31st Symposium on Foundations of Computer
Science, pp. 726-737.

[42] S. L. Lauritzen and D. J. Spiegehalter (1988), Local computations with probabilities
on graphical structures and their applications to expert systems, Journal of Royal
Statistical Society B, 50: 2, pp. 157 - 224.

[43] S. L. Lauritzen, A. P. Dawid, B. N. Larsen, and H. G. Leimer (1990), Independence
Properties of Directed Markov Fields, Networks, 20, pp. 491-506.

[44] T. S. Levitt, T. 0. Binford, G. J. Ettinger, and P. Gelband (1988), Utility-based
control for computer vision, Proceedings of the Fourth Conference on Uncertainty in
Artificial Intelligence, pp. 245-256.

[45] T. S. Levitt, J. M. Agosta, and T. 0. Binford (1989), Model-Based influence di
agrams for machine vision, Proceedings of the Fifth Conference on Uncertainty in
Artificial Intelligence, pp. 233-244.

[46] A. C. Miller, M. W. Merkhofer, R. A. Howard, J. E. Matheson, and T. R. Rice
(1976), Development of automated computer aids for decision analysis, Technical
Report 3309, SRI International, Menlo Park, Calif.

[47] J. E. Matheson (1990), Unsing influence diagrams to value information and control,
in [50].

[48] W. W. North (1968), A tutorial introduction to decision theory, reprinted in [75].

[49] P. Ndilikilikesha (1991), Potential Influence Diagrams, Working Paper No. 235, Busi
ness School, University of Kansas.

[50] R. M. Oliver and J. Q. Smith eds. (1990), Influence Diagrams, Belief Nets and
Decision Analysis, John Wiley and Sons.

[51] J. Pearl (1988), Probabilistic Reasoning in Intelligence Systems: Networks of Plau
sible Inference, \organ Kaufmann Publishers, Los Altos, CA.

[52] L. D. Phillips (1990), Discussion of From Influence to Relevance to Knowledge by
R. A. Howard, in [50].

[53] D. Poole and E. Neufeld (1991), Sound probabilistic inference in Prolog: An exe
cutable specification of Bayesian networks, Department of Computer Science, Uni
versity of British Columbia, Vancouver, B. C., V6T 1Z2, Canada.

Bibliography 190

[54] D. Poole (1992), Search for Computing posterior probabilities in Bayesian networks,
Technical Report 92-24, Department of Computer Science, University of British
Columbia, Vancouver, Canada.

[55] 0. M. Provan (1991), Dynamic network updating techniques for diagnostic reason
ing, in Proceedings of the Seventh Conference on Uncertainty in Artificial Intelli
gence.

[56] G. M. Provan and D. Poole (1991), The utility of consistency-based diagnostic tech
niques, in The Proc. of the 2ns Conference on the principles of Knowledge represen
tation.

[57] G. M. Provan and J. R. Clarke (1993), Dynamic network construction and updating
techniques for the diagnosis of acute abdominal pain, Pattern Analysis and Machine
Intelligence 15, pp. 299-307.

[58] M. L. Puterman (1990), Markov decision processes, in D. P. Heyman and M. J. Sobel
(eds.), Handbooks in OR é4 MS., Vol. 2, pp. 331-434, Elsevier Science Publishers.

[59] R. Qi and D. Poole (1992a), Two algorithms for decision tree search, PRICAI’92,
Seoul, Korea, pp. 121-127.

[60] R. Qi (1993), Decision graphs: algorithms and applications, Ph.D Thesis, Depart
ment of Computer Science, University of British Columbia, under preparation.

[61] H. Raiffa, (1968), Decision Analysis, Addison-Wesley, Reading, Mass.

[62] D. J. Rose (1970), Triangulated graphs and the elimination process, Journal of
Mathematical Analysis and Applications, 32, pp 597-609.

[63] L. J. Savage (1954), The foundations of statistics, Wiley, New York.

[64] R. 0. Schlaifer (1967), Analysis of decisions under uncertainty (preliminary edition),
McGraw-Hill.

[65] R. Shachter (1986), Evaluating Influence Diagrams, Operations Research, 34, pp.
871-882.

[66] R. Shachter (1988), Probabilistic Inference and Influence Diagrams, Operations Re
search, 36, pp. 589-605.

[67] R. Shachter (1990), An ordered examination of influence diagrams, Networks, Vol.
20, 5, pp. 535-564.

Bibliography 191

[68] R. D Shachter, S. K. Andersen, and P. Szolovits (1992), The equivalence of exact
methods for probabilistic inference in belief networks, Department of Engineering-
Economic Systems, Stanford University.

[69] R. D. Shachter, B. D’Ambrosio, and B. A. Del Favero (1990), Symbolic Probabilistic
Inference in Belief Networks, in AAAI-90, pp. 126-131.

[70] Shachter and Peot (1992), Decision making using probabilistic inference methods, in
Proc. of 8th Conference on Uncertainty in Artificial Intelligence, July 17-19, Stan
ford University, pp. 276-283.

[71] G. Shafer (1988), Savage revisited, in Bell et al 1988.

[72] G. Shafer and P. Shenoy (1988), Local computation in hypertrees, Working Paper
No. 201, Business School, University of Kansas.

[73] C. Shafer (1990), Decision making: introduction to Chapter 3 of [75].

[74] G. Shafer (1993), Probabilistic Expert Systems, to be published by SIAM.

[75] G. Shafer and J. Pearl (1990), Reading in uncertainty reasoning, Morgan Kaufmann
Publishers, San Mateo, California.

[76] P. P. Shenoy, (1990), Valuation-Based Systems for Bayesian Decision Analysis,
Working Paper No. 220, Business School, University of Kansas.

[77] P. P. Shenoy, (1992), Valuation-Based Systems for Bayesian Decision Analysis, Op
erations research, 40, No. 3, pp. 463-484.

[78] P. P. Shenoy, (1993), Valuation network representation and solution of asymmetric
decision problems, work paper No. 246, Business School, University of Kansas.

[79] J. E. Smith, S. Holtzman, and J. E. Matheson (1993), Structuring conditional rela
tionships in influence diagrams, Operations Research, 41, No. 2, pp. 280-297.

[80] J. Q. Smith (1988), Decision Analysis: a Bayesian Approach, Chapman and Hall.

[81] J. Q. Smith (1989), Influence Diagrams for Statistical Modeling, Ann. Stat., 17, pp.
654-672.

[82] T. P. Speed (1991), Complexity, calibration and causality in influence diagrams, in
[50].

[83] S. Srinivas and J. Breese (1990), IDEAL: A software package for analysis of influ
ence diagrams, in Proceedings of the Sixth Conference on Uncertainty in Artificial
Intelligence, July, Cambridge, Mass. , pp. 212-219.

Bibliography 192

[84] J. A. Tatman and R. Shachter (1990), Dynamic programming and influence dia
grams, IEEE Transactions on Systems, Man, and Cybernetics, Vol. 20, pp. 265-279.

[85] J. von Neumann and 0. Morgenstein (1944), Theory of games and economic be
haviours, Princeton University Press. 2nd eed., 1947, 3rd ed., 1953.

[86] M. Weilman (1990), Formulation of Tradeoffs in Planning under Uncertainty, Pit-
man, London.

[87] M. Weilman, J. Breese, and R. Goldman (1992), From knowledge bases to decision
models, Knowledge Engineering Review, 7(1).

[88] L. Zhang (1993), Studies on hypergraphs (I): Hyperforests, Discrete Applied J’vlath
ematics, 42, pp. 95-112.

[89] L. Zhang and D. Poole (1992) Sidestepping the triangulation problem in Bayesian net
computations, in Proc. of 8th Conference on Uncertainty in Artificial Intelligence,
July 17-19, Stanford University, pp. 360-367.

[90] L. Zhang and D. Poole (1992), Stepwise-Decomposable Influence Diagrams, in The
Proc. of the 3rd Conference on the Principles of Knowledge Representation, Cam
bridge, Mass. USA, October 26-29, 1992.

[91] L. Zhang, Runping Qi and D. Poole (1993a), Minimizing Decision Tables in In
fluence Diagrams, in The Proc. of the Fourth International Workshop on Artificial
Intelligence and Statistics, Ft. Lauderdale, Florida, January 3-6, 1993.

[92] L. Zhang, Runping Qi and D. Poole (1993b), Incremental computation of the value
of perfect information in stepwise-decomposable influence diagrams, in Proc. of 9th
Conference on Uncertainty in Artificial Intelligence, pp. 400-409.

[93] L. Zhang, Runping Qi and D. Poole (1993c), A computational theory of decision
networks, accepted for publication on International Journal of Approximate Rea
soning.

Index

accompanied arc, 121

acyclicity constraint, 38

arc reversal in decision network, 89

arc reversal in skeleton, 89

arc: accompanied, 121

arc: lonely, 121

arc: potential lonely, 124

arc: removable, 110, 119

arc: reversal in decision network, 89

arc: reversal in skeleton, 89

arc: reversible, 89

asymmetry, 172

barren node, 124

Bayesian network, 35, 46

Bayesian network: induced from a deci

sion network by a policy, 52

Bayesian network: semi-Bayesian network:

induced from a decision network

by a policy

network by a policy, 60

Bayesian network: semi-Bayesian networks,

47

body of decision network, 103

body of decision network skeleton, 101

body: of decision network, 72

compexity, 59

complexity, 78, 106, 126

condensation, 163, 170

constraint: acyclicity constraint, 14

constraint: no-children-to-value-node con

straint, 14

constraint: no-forgetting constraint , 14

constraint: regularity constraint, 14

constraint: single value node constraint,

14

decision function (table), 39, 51

decision function (table): optimal, 53

decision function space, 51

decision network, 4, 14, 41, 50

decision network skeleton, 50

decision network skeleton: stepwise-solvable,

58

decision network: evaluation, 53

decision network: over a skeleton, 51

decision network: decomposable, 65

decision network: equivalent, 88

193

Index 194

decision network: normal, 128 equivalent decision networks, 88

decision network: semi-decision network, evaluation functional, 82, 102

59 expansion ordering of a joint probability,

decision network: simple semi-decision net- 34

work, 79 expansion ordering: conforms to a multiple-

decision network: stepwise-decomposable, decision problem, 39

72 expected utility: induced by a policy, 7

decision network: stepwise-solvable, 58 expected utility: principle of maximizing

decision node: directly precedes another, the expected utility, 7

158 expected value, 52

decision node: directly succeeds another, expected value: conditional: in semi-decision

158 network, 60

decision node: independent of a parent, expected value: in semi-decision network,

119 60

decision node: replace, 57 expected value: optimal, 53

decision root node, 150 expected value: optimal conditional: in

disturbance arc, 90 semi-decision network, 60

disturbance arc: most senior, 92 expected value: optimal: in semi-decision

disturbance node, 90 network, 60

disturbance recipient, 91
frame, 39

downstream component of decision net

work skeleton, 65 influence diagram, 2

downstream component: of decision net- initial section, 158, 169

work, 66 irrelevant parent of decision node, 119

downstream set, 63 .joint probability: by a policy, 52
downstream-value node, 65

Index 195

joint probability: of a Bayesian network,

47

leaf disturbance node, 92

local value function, 162

lonely arc, 121

rn-separation, 50

Markov decision processe, 2

moral graph, 49

multi-decision problem: precedence in, 38

multiple-decision problem, 38

barren, 49, 124

decision, 50

decision nodes, 12

deterministic, 57

downstream-value, 65

leaf decision node, 76

leaf decision node: weak, 76

one decision node precedes another,

76

node: one decision node weakly precedes

another, 76

node: potential barren, 124

node: random,50

node: random node, 12

node: remove from a semi-Bayesian net

work, 48

node: stepwise-decomposability (SD) can

didate node, 72

node: stepwise-solvability (SS) candidate

node, 57

node: tail-value, 72

node: value, 50

node: value node, 12

normal decision network, 128

optimal expected value, 7

policy, 6, 39, 51

policy space, 39, 51

policy: optimal, 53

policy: optimal conditional: in semi-decision

network, 61

policy: optimal: in semi-decision network,

potential barren node, 124

potential lonely arc, 124

potential SD candidate node, 156

potential: prior joint, 48

probability: conditional probability, 47

probability: marginal probability, 47

property Q(A), 145

node:

node:

node:

node:

node:

node:

node:

node:
60

Index 196

property Q1(A), 145 uniformity of semi-decision networks, 61

• • unreachable state, 174
recursive tail cutting, 79

upstream component: of decision network,
removable arc, 110

66
removable removable, 119

• upstream component: of decision network
reversible arc, 89

skeleton, 65
root decision node, 142

upstream set, 63

SDDN, 72

section, 168
value (utility) function, 51

section in a SDDN, 158

separation, 50

set: ancestral, 49

shor-cutting random node, 130

simple semi-decision network, 79

smoothness, 64

smoothness: of decision networks, 75

stepwise-decomposability (SD) candidate

node, 72

stepwise-decomposable decision network,

72

tail of decision network, 101

tail of decision network skeleton, 100

tail-value node, 72

tail: of decision network, 72

terminal section, 159, 169

transition probability, 164

