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Abstract

This dissertation studies a restricted form of the fundamental algebraic eigenvalue prob

lem. From the broad spectrum of eigenvalue problems and solution methods, it focuses

upon sequential direct methods for determining moderately large subsets of eigenvalues or

the complete spectrum of large sparse symmetric matrices. The thesis uses a combination

of theoretical analysis and experimentation with symbolic and numeric implementations

to develop generally applicable, reliable, efficient and accurate algorithms that are easily

applied by novice and expert practitioners alike. This dissertation’s approach is to reexam

ine eigenvalue methods based on the similarity reduction of matrices to tridiagonal form,

developing algorithms that more fully exploit matrix sparsity.

Using specially developed sparse reduction tools, the thesis identifies the deficiencies

and limitations of existing direct tridiagonalization methods, providing an improved un

derstanding of the underlying fill characteristics of sparse reductions. The best previ

ously published approach combines a bandwidth reducing preordering with Rutishauser

and Schwarz’s O(bn2) band-preserving tridiagonalization algorithm. This approach places

complete reliance upon the preordering to exploit sparsity, but it typically leaves the band

of the matrix relatively sparse prior to reduction. The thesis presents several novel sparse

reduction algorithms, including the hybrid tridiagonalization methods HYBBC and HYB

SBC, that rearrange the elimination of nonzero entries to improve band sparsity utilization.

HYBBC combines Bandwidth Contraction, a diagonally-oriented sparse reduction, with

Rutishauser and Schwarz’s column-oriented tridiagonalization. For a wide range of 70 prac

tical sparse problems the new algorithm reduces CPU requirements by an average of 31%,

with reductions as high as 63%. HYBSBC improves upon HYBBC’s successful techniques by

substituting the novel Split Bandwidth Contraction algorithm for Bandwidth Contraction.

The Split Bandwidth Contraction algorithm takes additional advantage of band sparsity to

significantly improve the efficiency of partial bandwidth contractions. In addition, HYB

SBC employs the Z-transition strategy to precisely regulate the transition between its two

reduction stages, permitting tridiagonalization in as little as 1/5 the time of Rutishauser and

Schwarz. Finally, to demonstrate the relative efficiency of sparse tridiagonalization based

eigenvalue methods, the thesis compares variants of the Lanczos algorithm to HYBSBC

using theoretical analysis and experimentation with leading Lanczos codes.
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Chapter 1

Introduction

This thesis studies a restricted form of the fundamental algebraic eigenvalue problem. Given

an n x m square matrix A values of the scalar A, called eigenval’ues, are sought for which

the following set of homogeneous linear equations has a nontrivial solution.

Ax=Az (1.1)

The nontrivial solution, x, corresponding to a particular A is referred to as its eigenvector.

Eigenvalue problems arise in many different areas of science and engineering. Applica

tions range from more traditional problems found in structural analysis, quantum physics

and chemistry, to problems in molecular dynamics, the analysis of electrical power systems,

and the modeling of tides and currents in oceanographic research. Numerical methods for

these eigenvalue problems are desired which are reliable, appropriately accurate, exhibit

efficient execution and require low levels of storage. Despite the simple formulation of the

basic eigenvalue problem, no single algorithm can provide an optimal balance of these goals

for all applications. Instead, there is a wide range of different numerical eigenvalue methods.

Each approach tries to exploit particular matrix properties, differing solution requirements

or special computing environment characteristics.

Important matrix properties influencing algorithm design include symmetry, real or

complex entries, the fraction of entries which are zero, and the presence of special sparsity

structures. Among the many solution requirements affecting algorithm design and selection,

answers to the following questions are fundamental.

1



CHAPTER 1. INTRODUCTION 2

• Are all eigenvalues required?

• Are a few of the largest or smallest eigenvalues needed?

• Is the identification of eigenvalue multiplicity required?

• Are all eigenvalues in a specified region required?

• Are eigenvectors needed?

Many characteristics of the computing environment also affect algorithm design and selec

tion. Is the algorithm targeted for a sequential or parallel architecture? Do the processing

units have scalar or vector capabilities? Finally, algorithm design is also affected by the

alternatives of a shared or distributed memory architecture, and cache memory implemen

tations.

From this broad spectrum of eigenvalue problems and solution methods, this thesis

focuses upon sequential direct methods for determining moderately large subsets of eigen

values or the complete spectrum, including eigenvalue multiplicities, of large sparse sym

metric matrices. Other than symmetry, no special assumptions are made of a matrix’s

sparsity pattern. Although sequential eigenvalue calculations are the primary objective of

this thesis, when appropriate we comment upon parallel implementation and eigenvector

computations.

A precise definition of the term sparse matrix is difficult to formulate. For the purposes

of this thesis, however, a matrix is considered sparse if few of its entries are nonzero.

Acceptable ranges of nonzero density could be proposed, but J. H. Wilkinson [GMS92]

suggested that a matrix is sparse if “it has enough zeros that it pays to take advantage of

them”. Similarly, classifying the size of a sparse matrix problem is also difficult. Typically,

the size of a large sparse problem is taken to be of order 1000 or greater, but matrices

of several hundred rows and columns may be included if the density of nonzero entries is

sufficiently high. Although the thesis only considers matrices with real valued entries, our

sparse matrix techniques are easily generalized to complex hermitian matrices.
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1.1 A General Introduction to Eigensolvers

As previously outlined, there are a wide range of eigenvalue methods. Each algorithm is

designed to exploit particular matrix characteristics, solution requirements, or properties

of the computing environment. In this section we provide a general overview of eigeuvalue

methods for symmetric matrices, identifying the existing algorithms best suited to the

solution of our particular sparse eigenvalue problem.

In general, eigenvalue methods for dense symmetric matrices can be grouped into two

broad classes of algorithms. Members of the first group are applied directly to the original

matrix, while algorithms in the second group work with an equivalent intermediate matrix

constructed from the original problem.

An example of the first algorithm class is the Jacobi algorithm [Wi165, GV89]. Histor

ically, the Jacobi algorithm was the method of choice for determining all the eigenvalues

of dense matrices, until superseded by more modern algorithms. (Recently, there has been

renewed interest in variants of the algorithm that are inherently parallel.) The Jacobi al

gorithm applies sweeps of orthogonal similarity transformations, constructed from plane

rotations, that systematically reduce the norm of a matrix’s off-diagonal entries. Typically,

the Jacobi algorithm requires O(n3)t fiops to diagonalize a dense matrix.

When large subsets or all the eigenvalues of a dense symmetric matrix are desired the

dominant method is the QR (or QL) algorithm. (See [GV89] or [Par8O] for a list of refer

ences.) Although the QR algorithm could be applied directly to the original dense matrix,

a costly QR factorization is required by each iteration of the algorithm. Consequently, the

QR algorithm is in the second class of eigenvalue methods that first reduce a matrix to a

simplier canonical form with the same eigenvalues. Typically, this reduction is effected by

Householder or Givens reductions, which use sequences of orthogonal similarity transfor

mations to reduce a matrix to tridiagonal form in 0(n3) flops. The QR algorithm requires

0(n2) flops to determine the complete spectrum of a tridiagonal matrix.

tg(n)
= Nf(n)) means that g(n) <Const.f(n) for sufficiently large n.

Following [GV89] a flop is defined to be any floating point arithmetic operation.
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Many other eigenvalue methods also use a two stage approach to avoid working

with the original matrix directly. For example, the Bisection and Multisectioning algo

rithms [Wi165, GV89] isolate eigenvalues of a symmetric tridiagonal matrix using Sturm

sequencing. Sequentially, the Bisection algorithm is typically used to find a few eigenvalues

in a specified region, but it can isolate all eigenvalues of a tridiagonal matrix in 0(n2) flops.

In addition, successful variants of both algorithms have been implemented on distributed

memory multiprocessors. (See [Jes89] for example.)

Another eigenvalue method for tridiagonal matrices is Cuppen’s [Cup8i] divide and

conquer algorithm. This approach recursively splits a tridiagonal matrix into smaller and

smaller tridiagonal subproblems using rank-i tearings. The recursive tearing process stops

when subproblems are on the order of a 2 x 2 matrix. The eigensystem of the original

problem is reconstructed by gluing the eigensystems of the lowest level, aild intermediate

subproblems, back together using rank-i modification techniques [Go173, BNS78]. This

divide and conquer approach requires 0(m2) flops to sequentially isolate all eigenvalues.

Several researchers have developed parallel versions of Cuppen’s algorithm. For example,

Dongarra and Sorensen [DS87] successfully implemented Cuppen’s algorithm on a shared

memory multiprocessor.

The four eigenvalue methods mentioned previously permit the efficient determination of

a dense symmetric matrix’s complete spectrum. Unfortunately, these approaches are unable

to meaningfully exploit matrix sparsity. If the Jacobi algorithm or Givens or Householder

reductions are applied to a sparse matrix, typically the orthogonal transformations used by

these algorithms produce overwhelming numbers of fill entries (new nonzeros) that quickly

destroy sparsity. In fact, for most sparse problems almost all zero entries experience fill

during the course of the diagonalization or tridiagonalization. As as result, these approaches

require 0(n3) flops and 0(n2)storage and sparse matrices might as well be treated as dense.

For several decades the Lanczos algorithm [Par8O, GV89I has attracted researchers in

terested in large sparse eigenvalue problems. This iterative algorithm performs an implicit

partial tridiagonalization of a sparse matrix using a three term recurrence relation to di-



CHAPTER 1. INTRODUCTION 5

rectly compute entries of the tridiagonal matrix. Lanczos leaves the original sparse matrix

intact and for the simple Lanczos iteration the core of the computation is a matrix-vector

product, which permits exploitation of matrix sparsity. When the iteration terminates, the

Ritz values of the partial tridiagonal matrix approximate a subset of the original matrix’s

eigenvalues. Unfortunately, the loss of orthogonality amongst Lanczos vectors complicates

the algorithm’s application. Although variants of the Lanczos algorithm have been con

sidered that attempt the computation of the complete spectrum of a sparse symmetric

matrix (See [ELT79J,[CW79], and [PR81] for example.), in practice Lanczos is best suited

to finding small subsets of a sparse matrix’s spectrum. As shown in Chapter 6, it appears

that none of the current Lanczos variants can reliably and economically find the complete

spectrum of most large symmetric sparse matrices, or even moderately large subsets of their

eigenvalues.

We complete our brief overview of symmetric eigenvalue methods with direct methods

designed to take advantage of sparse matrices in banded form. The first algorithm [MRW71]

is a variant of the QR algorithm intended for direct application to symmetric banded ma

trices. This method is implemented as routine BQR of EISPACK [GBDM77J. Because the

QR iteration is band-preserving, this approach avoids the extreme fill difficulties of previ

ous methods. Although BQR is intended for finding only a few eigenvalues, all eigenvalues

of a bandwidth1 b matrix can be isolated using O(b2n2) flops. When b is in the range

2 b < the banded QR approach is theoretically faster than using an 0(n3) flop

direct tridiagonalization and an 0(n2) tridiagonal eigenvalue method. The next algorithm

we consider, however, dramatically improves the tridiagonalization of banded matrices.

As previously mentioned, Givens or Householder reductions create many new nonze

ros, quickly filling the entries outside the band of the unreduced portion of the matrix.

Alternatively, the band-preserving algorithm of Rutishauser [Rut63] and Schwarz [Sch7l]

tridiagonalizes a symmetric banded matrix with O(bn2) flops and 0(bn) storage. The al

gorithm uses Givens transformations to zero band entries column by column. Between

the elimination of each band nonzero, fill entries created outside the band are chased off

Bandwidth (or semi-bandwidth) is defined as b = i
— .11 such that 0.
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the end of the matrix with bulge chasing transformations. The Rutishauser-Schwarz algo

rithm is implemented as EISPACK’s BANDR routine [GBDM77]. LAPACK’s [ABB92]

version of this routine, SSBTRD, is based on Kaufman’s [Kau84] vectorized version of the

Rutishauser-Schwarz algorithm. Recent work by Lang [Lan92] and Bischof and Sun [BS92]

presents parallel algorithms, closely related to Rutishauser-Schwarz, that investigate the

use of multiple elimination and delayed bulge chasing techniques.

These algorithms are primarily designed for the tridiagonalization of densely banded

matrices. There are many well-established heuristic algorithms [Cut72, GPS76a, CCDG82,

LewS2], however, for identifying bandwidth reducing preorderings of general symmetric

sparse matrices. (These preorderings are formulated as similarity transformations, avoid

ing changes to a matrix’s eigenvalues.) Combining such a preordering scheme with the

Rutishauser-Schwarz tridiagonalization and an 0(n2) tridiagonal eigenvalue method, is the

best published sequential direct method for finding the complete spectrum of a symmetric

sparse matrix. The popular numerical software system MATLAB [Mat92] includes this

approach for the solution of sparse eigenvalue problems. Although this scheme takes some

advantage of zero entries, for many problems sparsity exploitation is limited. This method

is almost completely dependent upon the bandwidth reduction algorithm to take maximum

advantage of sparsity, but typically the selected preordering leaves the band of the per

muted matrix relatively sparse. Unfortunately, the Rutishauser-Schwarz algorithm rapidly

fills the sparse band and further opportunity to exploit band sparsity is lost. If matrix

sparsity could be more fully exploited, the potential exists for dramatic improvements in

the efficiency of sparse tridiagonalization techniques.

1.2 Thesis Statement

Existing algorithms for determining the complete spectrum of sparse matrices, or moder

ately large subsets of their eigenvalues, are well suited for densely banded problems, but

are sub-optimal for symmetric matrices with more irregular sparsity structures. This dis

sertation develops sequential algorithms that more fully exploit the sparsity of symmetric
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matrices while determining their eigenvalues. The approach selected by this research is to

reexamine the reduction of symmetric matrices to tridiagonal form, developing novel sparse

tridiagonalization algorithms. The class of algorithms studied have the following generic

form,

A0:=A

FOR i:= 1, 2, .
.. ,k

A QA1Q

in which A is systematically reduced to tridiagonal form (Ak = T) using a sequence of k

carefully selected orthogonal similarity transformations QTA_iQ.

The following points outline this dissertation’s approach to the design and development

of new sparse tridiagonalization techniques.

• Representative sparse model problems conducive to formal analysis are not available

for many practical sparse problems. Consequently, we support algorithm development

using a combination of experimental and theoretical complexity analysis.

• We develop symbolic tridiagonalization tools to facilitate the use of experimental

evidence as a research tool.

• We characterize the underlying fill properties of sparse tridiagonalization and iden

tify the difficulties and limitations associated with existing direct tridiagonalization

methods extended for use with sparse matrices.

• Using formal complexity analysis, experimental results and insight gained from the

analysis of existing algorithms, we design and develop novel tridiagonalization algo

rithms which take better advantage of matrix sparsity.

The novel algorithms developed in this dissertation are assessed using both formal anal

ysis and experimental comparison to existing direct methods. Given the shortage of rep

resentative model problems, however, we emphasize experimentation with symbolic and
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numeric implementations of the new algorithms. An important goal of this work is to de

velop sparse tridiagonalization techniques that are generally applicable. Consequently, all

experiments are conducted using a large test suite of sparse problems drawn from a broad

range of applications.

To benchmark the success of our sparse tridiagonalization schemes relative to other

eigenvalue approaches, we investigate the ability of Lanczos type algorithms to solve our

sparse eigenvalue problem. Once again, comparison with our sparse tridiagonalization tech

niques employ both theoretical and experimental analysis.

1.3 Thesis Contributions

The primary contributions of this thesis’s research are:

• Development of a framework for the complexity analysis of algorithms employing

sequences of Givens transformations.

• An improved understanding of the fill properties associated with the reduction of

sparse symmetric matrices to tridiagonal form.

• An enhanced formal and experimental analysis of existing algorithms extended for

the tridiagonalization of general sparse symmetric matrices.

• Development of the symbolic sparse reduction tools Xmatrix and Trisymb and a

graph-theoretic model for symmetric sparse tridiagonalization and partial bandwidth

contraction.

• Development of the Bandwidth Contraction algorithm, demonstrating that sparsity

exploitation can be improved by rearranging the elimination sequence of nonzeros.

• Development of the Hybrid Bandwidth Contraction algorithm, which combines

sparsely and densely banded tridiagonalization algorithms to improve efficiency.

• Development of the Split Bandwidth Contraction algorithm to reduce bulge chasing

transformation costs and increase the efficiency of partial bandwidth contractions.
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• Development of the transition strategies based on formal analysis leading to the Hy

brid Split Bandwidth Contraction algorithm.

• Extensive experimental analysis demonstrating the efficiency of the new sparse tridi

agonalizations algorithms relative to existing direct methods.

• A theoretical and experimental comparison of sparse tridiagonalization based eigen

solvers to variants of the Lanczos algorithm, demonstrating the efficiency of the novel

sparse tridiagonalization algorithms.

1.4 Thesis Overview

The remainder of the thesis is organized in the following manner.

Chapter 2 provides an overview of relevant background material and introduces a num

ber of novel sparse tridiagonalization tools created to support the development and eval

uation of sparse reduction algorithms. The chapter begins with general definitions and

notations, followed by a brief description of a large test suite of sparse symmetric prob

lems, and a review of Givens and Householder transformations and their fill properties. It

then introduces a general analysis framework for algorithms employing sequences of Givens

similarity transformations. The following two sections of the chapter describe the newly

developed symbolic reduction tools Xmatrix and Trisymb that manipulate sparsity struc

tures to predict the computational requirements of sparse reductions. Finally, we introduce

a graph-theoretic model for the application of orthogonal transformations to sparse sym

metric matrices.

Using these sparse reduction tools, Chapter 3 explores existing direct tridiagonalization

approaches, analyzing their limitations and their potential extension to improve sparsity

exploitation. Employing two model problems and practical sparse matrices, we first charac

terize the fill properties of both standard and customized Givens Reduction algorithms. As

alternatives to these algorithms, we investigate the Rutishauser-Schwarz and Lang band

preserving tridiagonalization methods for banded matrices, which restrict the accumulation
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of fill entries to improve reduction efficiency. Chapter 3 concludes with the development of

algorithms generalizing these band-preserving techniques for the tridiagonalization of gen

eral sparse symmetric matrices, and analysis of the relative merits of the resulting sparse

reduction methods.

In response to the limitations of the previous sparse reduction algorithms, Chapter 4

develops alternative approaches to sparse tridiagonalization that also use bandwidth reduc

ing preorderings and band-preserving reduction techniques, but rearrange the elimination

of nonzero entries to more fully exploit internal band sparsity. Chapter 4 first describes the

development of the Bandwidth Contraction algorithm, or BC, whose diagonally-oriented re

duction allows it to significantly reduce the tridiagonalization costs of many practical sparse

problems. Employing theoretical analyses of the Rutishauser-Schwarz and Bandwidth Con

traction algorithms, we then guide the development of the effective hybrid tridiagonalization

algorithm HYBBC, which exploits the best characteristics of both algorithms to form a ver

satile and efficient two stage sparse reduction process. Following a discussion of key aspects

of the numerical implementation of BC and HYBBC, extensive experimentation with a

large test suite of practical sparse problems is used to evaluate the success of both sparse

tridiagonalization algorithms. The chapter’s final section investigates the relationship be

tween sparsity structures, preorderings and the performance of the Bandwidth Contraction

algorithm using additional experiments with practical sparse problems.

The algorithms developed in Chapter 4 demonstrate the ability of diagonally-oriented

reductions to take advantage of band sparsity. Chapter 5 expands upon these successful

techniques, developing second generation sparse algorithms for bandwidth contraction and

tridiagonalization. The chapter begins with the development of the Split Bandwidth Con

traction algorithm, or SBC, which employs bidirectional elimination techniques to enhance

band sparsity exploitation and potentially halve the computational requirements of each

diagonal’s reduction. To evaluate the efficiency of performing partial bandwidth contrac

tions with SBC, we provide an extensive experimental comparison of BC and SBC using

both symbolic and numeric implementations.
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Building on the success of SBC, the novel Hybrid Split Bandwidth Contraction algo

rithm, or HYBSBC, incorporates many aspects of HYBBC’s approach, but replaces the BC

stage with the Split Bandwidth Contraction algorithm. The new hybrid algorithm lends

itself to formal analysis, permitting the development of the A-transition strategy for precise

regulation of the transition between the algorithm’s two stages. Once again, a numerical

implementation of HYBSBC is described before using a wide variety of experiments with

practical sparse problems to evaluate the performance of HYBSBC and the optimality of

the A-transition strategy.

To investigate the relative efficiency of sparse tridiagonalization based eigenvalue meth

ods, Chapter 6 compares the resource requirements of variants of the Lanczos algorithm

with the Hybrid Split Bandwidth Contraction algorithm. The chapter starts with a brief

overview of the mathematics underlying the basic Lanczos iteration and then surveys differ

ent techniques employed by practical Lanczos implementations. The presentation of each

Lanczos approach includes a theoretical discussion of its ability to efficiently compute the

complete spectrum of a sparse symmetric problem. To support this analysis experiments

are conducted with two well regarded Lanczos codes and practical sparse problems. The

resource requirements of these codes to compute subsets of a sparse problem’s eigenvalues,

ranging in size from moderate fractions of its eigenvalues to its complete spectrum, are

compared to the requirements of HYBSBC and the TQLRAT routine from BISPACK.

Chapter 7 concludes the thesis by providing a summary of its major results and con

clusions, and identifying directions of possible future research.



Chapter 2

Background Material and Sparse
Tridiagonalization Tools

This chapter provides an overview of relevant background material and introduces a num

ber of sparse tridiagonalization tools developed to support the research presented in the

remainder of the dissertation. We begin the chapter with general definitions and notation.

The following section briefly describes the large test suite of sparse symmetric problems

used in the extensive experiments of later chapters. We then provide a review of Givens

and Householder transformations, emphasizing their relationship to sparsity structures and

fill production. Section 2.4 introduces a general analysis framework for algorithms using se

quences of Givens similarity transformations. The following two sections introduce Xmatrix

and Trisymb: symbolic reduction tools for small sparse and sparsely banded symmetric ma

trices respectively. Both tools manipulate sparsity structures to predict the computational

requirements of sparse reductions. Finally, Section 2.7 introduces a graph-theoretic model

for the application of orthogonal transformations to symmetric sparse matrices.

2.1 Notation and Definitions

This section outlines some general definitions and notation used in the remainder of the

dissertation.

12
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Symbol Conventions: Unless mentioned otherwise, an uppercase Roman letter repre

sents a matrix, while a lowercase Roman letter represents a vector or scalar value.

A, : The entry in row i and column j of matrix A is denoted by

Matrix Bandwidth: The bandwidth (sometimes called semi-bandwidth) of A is defined

as b = maxi,{l.fl}, i
— i such that 0.

flop: Following [GV89] a flop is defined to be any floating point arithmetic operation.

2.2 Sparse Symmetric Test Problems

As outlined in Section 1.2, experimentation with practical sparse problems plays a key role in

the development and evaluation of sparse tridiagonalization algorithms. Table 2.1 lists the

identifier and size of a suite of 115 test problems selected from the Harwell—Boeing sparse

matrix collection [DGLP82, GLD92j. The originating applications for Table 2.1 sparse

problems include: air traffic control, structural engineering, oceanic modeling and power

system networks. A description of each matrix’s characteristics is provided in [GLD92].

When the Harwell—Boeing collection only specifies a matrix’s sparsity pattern, we assign a

random value in the range (0.0, 1.0] to each nonzero entry.

By no means all problems in Table 2.1 originated as eigenvalue problems. In addition,

Table 2.1 also contains many small matrices, even though a primary theme of this dis

sertation is the tridiagonalization of large sparse problems. The test suite includes these

additional problems because we seek general reduction techniques that are suitable for a

broad range of sparsity patterns.

2.3 Orthogonal Transformations and Sparse Tridiagonal
ization

As discussed in Section 1.2, this dissertation studies the class of sparse tridiagonalization

and partial reduction algorithms that use a sequence of orthogonal similarity transforma

tions to eliminate unwanted nonzero entries. These algorithms could construct a similarity
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Problem n Problem n Problem_[__n Problem n

1138 BUS 1138 BCSSTK21 3600 DWT 59 59 DWT 2680 2680
494 BUS 494 BCSSTK22 138 DWT 66 66 ERIS1176 1176
662 BUS 662 BCSSTK23 3134 DWT 72 72 GR 30 30 900
685 BUS 685 BCSSTK24 3562 DWT 87 87 LSHP 265 265
ASH292 292 BCSSTK26 1922 DWT 162 162 LSHP 406 406
ASH85 85 BCSSTK27 1224 DWT 193 193 LSHP 577 577

BCSPWRO1 39 BCSSTK28 4410 DWT 198 198 LSHP 778 778
BCSPWRO2 49 BCSSTMO7 420 DWT 209 209 LSHP1009 1009
BCSPWRO3 118 BCSSTM1O 1086 DWT 221 221 LSHP127O 1270
BCSPWRO4 274 BCSSTM27 1224 DWT 234 234 LSHP1561 1561
BCSPWRO5 443 BLCKHOLE 2132 DWT 245 245 LSHP1882 1882
BCSPWRO6 1454 CAN 24 24 DWT 307 307 LSHP2233 2233
BCSPWRO7 1612 CAN 61 61 DWT 310 310 L5HP2614 2614
BCSPWRO8 1624 CAN 62 62 DWT 346 346 LSHP3O25 3025
BCSPWRO9 1723 CAN 73 73 DWT 361 361 LSHP3466 3466
BCSSTKO1 48 CAN 96 96 DWT 419 419 LUND A 147
BCSSTKO2 66 CAN 144 144 DWT 492 492 LUND B 147
BCSSTKO3 112 CAN 161 161 DWT 503 503 NOS1 100
BCSSTKO4 132 CAN 187 187 DWT 512 512 NOS2 237
BCSSTKO5 153 CAN 229 229 DWT 592 592 NOS3 957
BCSSTKO6 420 CAN 256 256 DWT 607 607 NOS4 960
BCSSTKO7 420 CAN 268 268 DWT 758 758 NOS5 468
BCSSTKOS 1074 CAN 292 292 DWT 869 869 NOS6 675
BCSSTKO9 1083 CAN 445 445 DWT 878 878 NOS7 729
BCSSTK1O 1086 CAN 634 634 DWT 918 918 PLAT1919 1919
BCSSTK11 1473 CAN 715 715 DWT 992 992 PLAT362 362
BCSSTK12 1473 CAN 838 838 DWT 1005 1005 SSTMODEL 3345
BCSSTK19 817 CAN 1054 1054 DWT 1007 1007 ZENIOS 2873
BCSSTK2O 485 CAN 1072 1072 DWT 1242 1242

Table 2.1: A Test Suite of Sparse Symmetric Matrices
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transformation using one of many different orthogonal transformations. Givens rotations,

G(i,j, 0), are often chosen for sparse matrix applications because they permit fine grained

control over the elimination of nonzeros and the introduction of fill entries. In fact rota

tions can be constructed to zero any entry of a matrix using any other entry in its row or

column as the zeroing entry. (In Figure 2.1, x1 is the zeroing entry.) The trivial example

cos0 —sinO x1 x x x x x x x x
-

sinO cosO x2 x x x 0 x x x x x

Figure 2.1: Sparsity Structure Unioning by a Givens Rotation

in Figure 2.1 illustrates an important property of rotations which impacts matrix sparsity.

If cancellation is ignored and x1 is nonzero, the sparsity structure of both modified rows is

the union of the structure of the two rows prior to the rotation’s application. In the special

cases of x2 or x1 zero, the rotation is either the identity or swaps the sparsity structure of

the two rows, avoiding the introduction of fill entries. It is advantageous to have a zero

zeroing entry. In addition to fill avoidance, swapping matrix rows to eliminate nonzero x2

requires no floating point computations.

Tridiagonalization algorithms can use Givens rotations to construct orthogonal similar

ity transformations of the form G(i,j,0)TAG(i,j,0), which modify both rows and columns

i and j of A. By exploiting the symmetry of sparse problems and of similarity transfor

mations, algorithms need only consider transformation modifications to either the upper

or lower triangular portion of each matrix. Without loss of generality we work with a

matrix’s lower triangular portion. From the wide selection of Givens rotations that can

be constructed to eliminate a particular nonzero entry, many algorithms presented in later

chapters use adjacent rotations exclusively. A rotation G(i, j, 8)T is considered adjacent if

li—il 1.

To assess the stability of Givens similarity transformations, suppose k transformations

of the form GBG are applied to matrix B. If the updated matrix B is calculated using

finite precision floating point operations, Wilkinson [Wi1651 shows that in the absence of
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roundoff

(2.1)

where E II2 cu B 112, constant c is dependent on n and k, and u is the machine

precision. In other words, B is exactly similar to a matrix close to B.

Another commonly used orthogonal transformation is a Householder transformation; an

n x n orthogonal matrix of the form

H = I — 2vvT/vTv,

where v E JR. In general, a Householder transformation can be constructed to reflect any

given vector onto any other vector of the same dimension and equall2-norm. Consequently,

we can construct a Householder transformation that simultaneously annihilates multiple

entries from a matrix’s column, when applied from the left.

Compared to Givens rotations, applying Householder transformations to sparse matrices

generally creates higher levels of fill. A Givens rotation applied to the left of sparse matrix

A to eliminate a single nonzero, unions the sparsity structure of two rows. In contrast, for a

Householder transformation simultaneously eliminating k entries of a matrix’s column, the

final structure of each modified row is the union of the sparsity structures of all modified

rows prior to the transformation’s application. Duff and Reid [DR75] show there exists a

sequence of k Givens rotations, Gk,... , G1, able to eliminate the same group of nonzeros

such that

sparsity.structure(Gk . . . G2G1A) sparsity_structure(HA).

2.4 A Complexity Analysis Framework for Sparse Tridiag
onalization Algorithms and Symbolic Reduction Tools

This section introduces a general framework for analyzing the complexity of algorithms

applying sequences of Givens similarity transformations to sparse symmetric matrices. This

framework guides the formal analyses of many partial reduction and tridiagonalization

algorithms presented in subsequent chapters. Examples of detailed analyses performed
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‘XX O[XXI
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kxio x x’x’x o X’XJ

t ‘XX X X ‘Xx x o X\

A”nonzero )( X 0 X X0 X 0 *
pair” XXXOXXO

0 X 0 X X X X

0 X

Figure 2.2: A Transformation Length Example.

using this framework are provided in [Cav93]. The general framework is also used by the

symbolic reduction tools Xmatrix and Trisymb (See Sections 2.5 and 2.6.) to coordinate

the gathering of flop count statistics.

To simphfy the resolution of each algorithm’s computational requirements, the frame

work directs each analysis to be split into two sub-tasks.

Task 1: Calculate the number of nontrivial transformations, Ttotai , employed by the
reduction.

Task 2: Calculate the total number of off-diagonal, lower triangular pairs of nonzero
entries modified by the reduction’s nontrivial transformations. We refer to
this value as the total transformation length or Ltotai

The first sub-task is self-evident but the second requires additional clarification. The length

of a single transformation is the number of pairs of lower triangular nonzero entries it

modifies, excluding those entries updated by both rotations constituting the transformation.

We consider a pair of modified entries nonzero if one or both entries are nonzero. As an

example, the length of the transformation modifying the highlighted entries of Figure 2.2’s

matrix is 7. (Section 2.4.3 considers a specialized variant of the analysis framework, for

densely banded matrices, that exploits the sparsity of a pair of entries creating a bulge.) We
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note that a transformation’s length is equal to the total number of pairs of nonzero entries

on both sides of the main diagonal affected by the application of G(i,j, o)T. As a result, it is

often easier to consider the number of pairs of nonzero entries modified by a single rotation

when symmetry is ignored, rather than apply the strict definition of transformation length.

Once an individual analysis has found Ttotai and Ltotai , we use the following general

formula to calculate the algorithm’s flop requirements.

TotaLfiops = (Ftrans )(Ttotai ) + (Fpair )(Ltotai ) + OTC (2.2)

Ftrans represents the number of flops required to construct a transformation and apply it to

the entries modified by both the transformation’s rotations. Fpair represents the number of

flops required to apply a rotation to a single pair of nonzero entries. OTC represents one

time costs that are not spread over individual transformations. The total flop count does

not include the cost of square roots, which are separately accounted for by the analysis

framework.

Section 2.3 introduced the standard Givens transformation. To reduce computational

requirements many algorithms actually employ a “root free” variant of the transformation,

with identical fill properties, often referred to as a fast Givens transformation [Gen73].

The specific values of Ftrans, Fpair, and OTC are dependent upon the type of Givens

transformation used by an algorithm. The following two subsections refine Equation 2.2 for

each transformation type. Finally, Section 2.4.3 provides a specialized analysis framework

for densely banded matrices reduced by band-preserving algorithms. (Band-preserving

reductions are introduced in Chapter 3.)

2.4.1 Standard Givens Transformations

Fpair

A standard 2 x 2 Givens rotation has the generic form [ —s ]• Applying this rotation
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to a typical pair of entries
c —s Yi 1

j [ Y2 j
requires

Ftrans

Fpair = 6 flops. (2.3)

The calculation of c and s requires 5 flops and one square root GV89]. The cost of updating

the 3 lower triangular entries modified by both rotations making up the transformation

requires more detailed consideration. By using the following scheme, we save 3 flops over

the most obvious approach.

au au

a a[ C S a c —s
—s c s c

c s ca + saui —sauu + ca
—s c ca + sa —sau + ca3

c2au + csa + csa +s2a —csa + c2au s2au + csa
—csau — s2a +c2au + csa s2auu — csau — csau +c2a

but au =

— c2a + 2csa +s2a (c2 —s2)a + cs(aj — auu)
2 4(c2 —s2)a + cs(a — a) s2a — 2csau +c2a . )

The total number of flops required to compute the final value of the twice modified entries

âj, âj, and is summarized in the following table. Each calculation is free to use those

values appearing to the left of it in the table.

Calculation c2 cs 2 2csau ãjj âju ToFJ
Flops 1 1 1 2 4 4 5 18

Finally, it is not necessary to calculate the updated value of the eliminated entry, saving 3

flops for each transformation. Thus for standard Givens transformations

OTC

Ftrans = 5 + 18 — 3 = 20 flops. (2.5)

There are no one time costs associated with tridiagonalization algorithms using standard

Givens transformations.
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Standard Givens Flop Formula

For standard Givens transformations Equation 2.2 becomes

Total_flops_SG = 20(Ttotai ) + 6(Ltotai ) (2.6)

In addition to this flop count, the reduction requires Ttotai square roots.

2.4.2 Fast Givens Transformations

In this section we assume that the reader is familiar with the fast Givens transformation

presentation of [GV89]. Suppose that a series of fast Givens transformations are accumu

lated in a single similarity transformation QTAQ. In this case Q is equivalent to the product

of a series of standard Givens rotations. The novel idea behind the fast Givens approach

is to represent Q as the product of two matrices MD’/2. D is a diagonal matrix that is

initially set to the identity. As the reduction proceeds the effects of each transformation

are accumulated in D

7KT-‘-‘new — ivi 2.7

and this portion of the transformation is finally applied to the tridiagonal matrix at the

end of the reduction.

Tfinal =D”2TD”2 (2.8)

On the other hand, each M is applied to A immediately to effect the elimination of nonzero

entries. Following the presentation of [GV89], and using a 2 x 2 example for simplicity, M

can take one of two forms. We assume that MT is applied to to zero X2.
X2

i3 1 1 a21v11= 1142=
1-32 1

where a1 = ‘- = —a1(-) where a2 = /32 = —a2(-)

Fpair

Applying M1 or M2 to a typical pair of entries

1
T

or
1 a2

T
Yi (2.9)

1 a1 Y2 /32 1 112
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requires

Fpair = 4 flops. (2.10)

Ftrans

We consider the cost of updating the 3 lower triangular entries modified by both MT and

M in detail. The cost of updating these entries using transformations constructed from

either M1 or M2 is identical. Without loss of generality the following analysis considers

M1.

âjj âij — 1 /3 1
âji âjj — 1 c1 1 a

— /3i 1 [31a+ + aia
— 1 a /3ia + + cia

— 13?aii + /3ia + i3ia + /3a + J3iaia + +c1a
— /3ia + + /3icia + aia + + aia +

but =

— /3?aii + 2i3ia + 13ia + /3icia + + Uia
2 11

— + + thaia + + 2ia + a?ajj ( . )

The total number of flops required to compute the final value of the twice modified entries

jj, and àj, is summarized in the following table. Each calculation is free to use those

values appearing to the left of it in the table.

Calculation /3ja 13ia 2(/3ia) /3i(/31a) ci(/3ia) cia
L Flops 1 1 1 1 1 1

[iaji ai(aiajj) âj àj ãj Total

“H 2 1 2 2 3 16

The next component of Ftrans is the cost of updating the diagonal matrix D. For the

moment we assume the first fast Givens transformation type has been selected.

[ ] =

— d(1
—

cii3i) 0
2 12

— 0 d(1
—

aith)
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In this case, the calculation of and requires a total of 4 flops.

Determining the cost of constructing a fast Givens transformation is complicated by

the required choice between two transformation types. The normal procedure is to first

calculate and /3 using 3 flops. To check the stability of this first transformation, the

magnitude of (1
— i/3i) is evaluated. (The cost of computing (1 — c,Bi) is included in the

cost of updating D.) If (1 — cri/3i) is too large, the second fast Givens transformation type

must be used and computing a2 and /32 requires 3 additional flops. Assuming the value of

crj/3i is saved, the new scaling factor (1
— c2/32) can be computed from —(1 —

using one additional flop. If we assume that 1/2 of the transformations employed are type

2, constructing the average fast Givens transformation requires

+ 3 + 1) + (3) = 5flops. (2.13)

Finally, it is not necessary to calculate the updated value of the eliminated entry, saving

2 flops for each transformation. Thus for fast Givens transformations

Ftrans = 16 + 4 + 5 — 2 = 23 flops. (2.14)

OTC

When A has been reduced to tridiagonal form, the fast Givens process is completed as

shown by equation 2.8. The calculation of D’12 requires N square roots. The following

equation illustrates the modifications made to the tridiagonal matrix by entry d”2.

d”2 b a b1 d112

b+

(2.15)

By exploiting symmetry this update requires 3 flops. Generalizing this result to the cost of

the entire update

OTC = 3n flops. (2.16)
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Fast Givens Flop Formula

For fast Givens transformations Equation 2.2 becomes

Total_fiopsYG = 23(Ttotai ) + 4(Ltotai ) + 3Ti. (2.17)

In addition to this flop count, n square roots are required by the reduction.

As discussed in [GV89], fast Givens transformations require periodic rescaling to avoid

overflow problems. Rescaling costs are difficult to predict and are not included in the

analysis leading to Equation 2.17. Fortunately, in Section 4.3.4 we demonstrate that rescal

ing costs are typically insignificant when sparse tridiagonalization algorithms are applied to

large problems. Recently, Anda and Park [AP94] presented new fast plane rotations that do

not require periodic rescaling. To facilitate direct comparison with existing code, however,

the implementations developed for this thesis employ standard fast Givens transformations.

2.4.3 An Enhanced Framework for Densely Banded Matrices

In the general framework described above we increment transformation length if one or

both entries iii a modified pair are nonzero. For densely banded matrices, those transfor

mations creating a bulge modify a single entry pair with only one nonzero. (As described in

Chapter 3, a bulge is a fill entry created outside the current band.) The zero entry in this

pair is filled by the bulge. If the sparsity of this modified pair is exploited, each fast Givens

transformation creating a bulge saves 3 flops, while a standard Givens transformation save

4 flops. If CR is the total number of nontrivial bulge chasing transformations used by

a band-preserving reduction, then the enhanced flop formulas are given by the following

equations.

Total_flops_SG’ = 20(Ttotai ) + 6(Ltotai ) — 4CR (2.18)

TotaLflopsFG’ 23(Ttotai ) + 4(Ltotai ) + 3fl — 3CR (2.19)
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2.5 Xmatrix

Xmatrix is an interactive symbolic sparse matrix reduction tool. It assumes exact numerical

cancellation does not occur and manipulates the sparsity structures of symmetric matrices

to model the application of sequences of Givens similarity transformations.

An example of Xmatrix’s mouse driven graphical interface, written for the X Window

System using the Athena widget set, is illustrated in Figure 2.3. The dominant feature of

the interface is the matrix situated in the top left corner of the Xmatrix window. The size

of this matrix is specified by the user at start-up. Due to the physical constraints of the

interface, however, the order of the largest matrix that can be easily manipulated is 50.

Each entry of the matrix is a button that can be selected by different mouse buttons with

varying effects. The menu to the right of the matrix provides the user access to Xmatrix’s

different features. For example, the Load, Dump, Permute and Movie buttons activate pop

up windows, which are also displayed in Figure 2.3. Finally, the area below the matrix

records statistics for the current reduction.

Xmatrix assumes that all sparse matrices are symmetric and that their main diagonal

is nonzero. Otherwise, a user is completely free to construct an arbitrary sparsity pattern

with one of two mechanisms. First, a user can interactively construct a sparse matrix by

toggling the nonzero status of entries selected with the middle mouse button. Alternatively,

existing sparsity structures can be loaded from files in Harwell—Boeing or Xmatrix format

using the Load pop-up window. Generally, Xmatrix marks nonzero entries with an “X”, but

in keeping with the band-preserving reduction algorithms of Chapters 3, 4 and 5, a nonzero

entry lying outside the current band is marked by a “B”.

Once the desired sparsity structure has been establlshed, a user can model the effects of

applying a sequence of standard or fast Givens similarity transformations. Each transfor

mation is interactively specified with the mouse. First, the nonzero entry to be eliminated

is selected from the lower or upper triangular portion of the matrix. Using the mouse to

select the zeroing entry (see Section 2.3) completes the similarity transformation’s defini

tion, causing Xmatrix to automatically update the sparsity of the modified pair of rows and
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Figure 2.3: The Xmatrix Interface
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columns, and zero the target entry. On completion of these updates another transformation

may be selected.

The statistics area of the Xmatrix window displays the matrix’s current bandwidth and

the nonzero density of the outermost diagonal and band. In addition, Xmatrix summarizes

trivial and nontrivial transformation totals, and estimates the flop requirements associated

with the applied sequence of Givens transformations using the general analysis framework

of Section 2.4.1 or 2.4.2.

Additional features of Xmatrix include:

• Xmatrix permits modeling of both sparse and dense band transformations. Xinatrix
assumes a dense band when computing the lengths of dense transformations.

• The user may select automatic bulge chasing up or down the band. (See Chapters 3,
4 and 5.)

• The current sparse matrix can be permuted using a user specified permutation vector
or by GPS, RCM, GK, MDA, ND or reverse reordering algorithms.

• The current sparsity structure can be saved to a file in Harwell—Boeing, Xmatrix or
mtxps format. Using the mtxps filter on the latter type of file creates a postscript
image of the saved sparse matrix.

• The “movie” feature permits the recording and playback of a series of Givens trans
formations.

As shown in this brief introduction, Xmatrix is a versatile tool, useful for the design and

evaluation of sparse algorithms employing sequences of Givens transformations. Xinatrix

was used extensively during the development of algorithms presented in Chapters 4 and 5.

2.6 Trisymb

Trisymb is a symbolic sparse matrix reduction tool for sparsely (or densely) banded sym

metric matrices. Assuming exact cancellation does not occur, Trisymb manipulates sparsity

structures to model the application of a sequence of Givens similarity transformations to

sparsely banded symmetric matrices.
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Trisymb provides an efficient internal data structure for a banded matrix’s sparsity

structure and a set of basic routines for its manipulation. For example, Trisymb provides

routines for applying row and column exchanges or nontrivial transformations to the stored

sparse matrix. Using this basic platform, sparse reduction algorithms are easily imple

mented in Trisymb. Currently, Trisymb provides the following five algorithms: sparse R—S,

BC, SBC, HYBBC and HYBSBC. (The many unfamiliar terms and acronyms used in this

section will be fully explained in later chapters.)

A user must supply Trisymb with a sparse symmetric matrix in Harwell—Boeing format

and a permutation vector, which typically specifies a bandwidth reducing preordering of

the sparse problem. Unlike Xmatrix, Trisymb is suitable for the symbolic reduction of both

small and large symmetric sparse matrices. The availability of resources on a particular

machine places the only restrictions on problem size. Once appropriate data structures have

been initialized with a sparse problem, Trisymb executes the requested symbolic reduction

by calling routines to manipulate the stored sparsity structure.

Throughout each reduction Trisymb gathers a wide range of statistics, producing a gen

eral reduction report and separate reports tailored to highlight special features of individual

algorithms. The general report summarizes the extent of the executed reduction, and pro

vides separate transformation and flop counts for each stage of the algorithm. Trisymb

estimates flop requirements using the general analysis framework of Section 2.4.1 or 2.4.2.

To permit the application of different variants of the five implemented algorithms, a

user may select from several command line arguments specifying the following modeling

options.

• Trisymb can model either standard or fast Givens transformations.

• Trisymb permits modeling of both sparse and dense band transformations. When
computing the lengths of dense transformations Trisymb assumes a dense band, but
does not modify the underlying manipulation of sparsity structures.

• For appropriate algorithms, users may request either a partial bandwidth contraction
or a complete tridiagonalization.
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Trisymb provides fixed, , nosplit and density thresholded transition and termination
strategies.

Trisymb predicts the computational requirements and sparsity characteristics of reduc

tions without the aid of a matrix’s nonzero entries. Despite working solely with spar

sity structures, Trisymb’s no cancellation assumption provides relatively accurate analyses.

Trisymb is especially useful when comparing a problem’s reduction using several different

algorithms or when assessing the effectiveness of a single algorithm applied to many differ

ent problems. The development and experimental evaluation of algorithms in subsequent

chapters uses Trisymb extensively.

2.7 A Bipartite Graph Model for Sparse Tridiagonalization

This section introduces a graph-theoretic model for the tridiagonalization or partial reduc

tion of symmetric sparse matrices. We begin with basic graph theory notation for bipartite

graphs and establish their connection to symmetric sparse matrices. Using bipartite graphs,

we then model the application of orthogonal transformations used in sparse reductions. This

section’s discussion assumes familiarity with basic graph-theoretic terminology. (A general

graph theory reference is [Har69]).

2.7.1 Bipartite Graphs and Sparse Matrices

Bipartite graphs can be used to describe the nonzero structure of sparse matrices. The

bipartite graph BA of matrix A’s sparsity structure consists of two sets of vertices or nodes

V’ and V, and a set of edges E. For an n x m matrix both vertex sets consist of the first n

integers, with instances and variables of V’ differentiated from those of V using primes. To

model a sparse matrix we assume node i’ e V’ corresponds to row index i of A, while the

members of V correspond to A’s column indexes. Each edge in E consists of an ordered

pair of vertices < v’, v >, satisfying v’ e V’ and v E V. Sparse matrix A’s bipartite graph

BA has an edge <i’,j > for each entry 0.

Figure 2.4 illustrates a small symmetric sparse matrix and its corresponding bipartite
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Figure 2.4: A Sparse Matrix and its Bipartite Graph

graph. Assuming the matrix’s main diagonal is nonzero, there is a one-to-one correspon

dence between the edges of BA and the nonzero entries of A. If the labels of vertices in sets

V’ and V of BA are arranged in sequence, and v’ and v are horizontally aligned, off-diagonal

nonzero entries further from A’s main diagonal correspond to steeper edges in the bipartite

graph. In graphical terms, the ultimate goal of a tridiagonalization algorithm is to reduce

BA to a bipartite graph whose edges <i’,j > (i’ E V’,j e V) satisfy I — ii 1.

One of the most efficient and convenient schemes for mathematically representing a

bipartite graph uses adjacency sets. Two nodes x’ E V’ and y E V are adjacent if

y >e E. The adjacency set of node x’ E V’ is defined by

AdjBA(x’) = {z é V <x’,z >e E},

and similarly the adjacency set of node y e V is

AdjBA(y) = {z’ e V’I <z’,y >e E}.

As examples, the adjacency sets of nodes 8’ and 4 in Figure 2.4 are {5, 8, 9} and {l’, 4’, 7’}

respectively. The adjacency sets for all nodes in either V or V’ completely defines E. For

a symmetric matrix A,

BA

Vv E V, AdjBA(v) = (AdjBA(v’))’.
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(We interpret the “priming” of a set as applying prime to each of its members.)

2.7.2 Modeling Givens Transformations

Using bipartite graphs we can model the changes to matrix sparsity structures resulting

from the application of orthogonal similarity transformations. Suppose the Givens transfor

mation G(i,j, O)TAG(i,j, 0) eliminates nonzero entries A,k and Ak, (i z k), or equivalently

eliminates edges < j’, k > and < k’, j > from BA. We will investigate the application of

the two halves of this transformation independently.

First, consider the application of rotation G(i, j, 0)T to the left of A, eliminating nonzero

or edge <j’, k >. As discussed in Section 2.3, the precise implementation of the Givens

rotation depends on the nonzero status of the zeroing entry A,k. When A,k is nonzero (or

<i1, k >E E), a nontrivial Givens rotation is applied. Except for the eliminated entry A,k,

the sparsity structures of rows i and j both become the union of their sparsity structures

just prior to modification. The corresponding modification of BA adds the minimal set of

edges to E that make AdjBA(i’) = AdjBA(j’), and then removes edge < j’, k > from E.

Figure 2.5 more formally outlines the modifications to BA’S adjacency sets resulting from

G(i,j, 0)T application.

1. (a) U := AdjBA(i’) U AdjBA(j’)

(b) AdjBA(i’) := U

(c) AdjBA (j’) U

2. FOREACHzU

(a) AdjBA(z) := AdjBA(z) U {i’,j’}

3. (a) AdjBA(j’) := AdjBA(j’) — {k}

(b) AdjBA(k) := AdjBA(k)
—

{j’}

Figure 2.5: Updating BA to Reflect G(i,j,0)TA.

As an example, Figure 2.6 illustrates the effects of eliminating entry A4,1 (or edge
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Figure 2.6: A411 is Eliminated by G(3,4,01)T.

< 4’, 1 >) from Figure 2.4’s example, using the adjacent rotation G(3, 4, Oi)’ (or Gf)

applied to the left of A. The zeroing entry is A31. Each fill entry is marked by an F and

each fill edge in BA is highlighted.

To complete the similarity transformation, G(i, j, 61) is applied to the right of A, elim

inating nonzero Ak and unioning the sparsity structnres of columns i and j. The corre

sponding modification of BA adds the minimal set of edges to E that make AdjBA (i) =

AdjBA (j), and then removes edge < Ic’, j > from E. Exchanging V’ and V variables for

their V and V’ counterparts in Figure 2.5 creates a more formal specification of Bs modifi

cations. Figure 2.7 illustrates the effects of completing the Givens similarity transformation

begun in Figure 2.6, by eliminating entry A14 and edge < 11,4 > with adjacent rotation

G(3, 4, 81). In this case the zeroing entry is A13.

Once again, suppose a Givens transformation G(i, j, 8)TAG(i, j, 6) is constructed to

eliminate nonzero entries A,k and Ak, (i 0 Ic) from the symmetric sparse matrix A, but

now assume A,k = Ak = 0. As discussed in Section 2.3, in the special case that the zeroing

entries A,k and Ak, are zero, or edges < i’, Ic >, < Ic’, i >0 E, the transformation simply

swaps rows and columns i and j. In graphical terms, exchanging a pair of rows or columns

corresponds to relabeling a pair of nodes in V’ or V. In this case nodes i’ and j’ switch
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Figure 2.7: Completing the Nontrivial Transformation G(3, 4,01)TAG(3, 4, Ui).

labels, as do nodes i and j. More formally, the row and column swaps precipitated by the

transformation require modifications to BA’S adjacency sets as outlined in Figure 2.8.

Continuing our example of Figures 2.4, 2.6 and 2.7, Figure 2.9 completes the reduction

of column 1 by eliminating nonzero entries A3,1 and A1,3, using an adjacent transformation

swapping rows and columns 2 and 3. In terms of the bipartite model, we simply exchange

the labels of nodes 3’ and 4’, and nodes 3 and 4. Finally, we envisage moving the relabeled

nodes, with their edges attached, to reestablish sequential order of V’ and V. The affected

nonzero entries and edges are highlighted in the figure.

2.7.3 Modeling Householder Transformations

As mentioned in Section 2.3, another commonly used orthogonal transformation is a House

holder transformation. Unlike a Givens rotation, a Householder transformation can simul

taneously eliminate multiple nonzero entries from a single row or column. Suppose the

Householder transformation H is applied to the left of A as the first half of a similar

ity transformation. Further assume it modifies rows i, i + 1,... , + 1, eliminating entries

Ai+1,k, Ai+2,k,.. . , Ajj. Except for these entries, the sparsity structure of each modified

row becomes the union of the sparsity structures of all modified rows just prior to the
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Figure 2.8: Updating BA to Reflect a Trivial
Columns i and j.
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Figure 2.9: Completing the Reduction of Column and Row 1 to Tridiagonal Form with a
Row and Column Exchange.

1. FOR EACH z e AdjBA(i’) — AdjBA(j’)

(a) AdjBA(z) := (AdjBA(z) — {i’}) U {j’}
(b) AdjBA(z’) := (AdjBA(z’) — {i}) U {j}

2. FOR EACH z e AdjBA(j’) — AdjBA(i’)

(a) AdjBA(z) := (AdjBA(z)
— {j’}) U {i’}

(b) AdjBA(z”) : (AdjBA(z’)
— {j}) U {i}

3. /* Switch adjacency sets.*/

(a) S : AdjBA (i’)

(b) AdiBA(i’) := AdjBA(j’)

(c) AdjBA(j’) := S

(e) S := AdjBA(i)

(f) AdjBA(i) := AdjBA(j)

(g) AdjBA(j) := S
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Figure 2.10: Reduciug Column 1 to Tridiagonal Form With a Householder Transformation.

eliminations. The corresponding modification of BA adds the minimal set of edges to E so

that

AdjBA(i’) = AdjBA((i + 1)’) = ... = AdjBA((i + 1)’),

and removes edges < (i + 1)’, Ic >,. . . , < (i + 1)’, Ic > from E. Completing the similarity

transformation by applying H to the right of A, results in similar sets of nodes being added

and removed from the adjacency sets of nodes i, I + 1,... , I + 1.

In two stages Figures 2.10 and 2.11 illustrate the application of a Honseholder similarity

transformation to the sparse example in Figure 2.4. The first figure illustrates the effect of

applying a Householder transformation to the left of the sparse matrix to eliminate entries

A4,1 and A3,1 or edges < 4’, 1 > and <3’, 1 >. The second figure illustrates the modifica

tions made to both the matrix and its associated bipartite graph by the complete similarity

transformation. The application of this transformation and the application of the two

Givens transformations leading to Figure 2.9 both result in the elimination of two nonzeros

from both the first row and column. We note that the use of Givens transformations has

resulted in 12 fewer fill entries than for the Householder transformation.
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Figure 2.11: Completing the Reduction of Column and Row 1 with a Householder Similarity
Transformation.

2.7.4 Concluding Remarks

The bipartite graph model presented in this section is intended for describing, understanding

and providing insight into the sparse reduction algorithms described in subsequent chapters.

Often symmetric sparse matrices are modeled using undirected graphs with a single node

for each entry of the main diagonal and a single edge for each symmetric pair of off-diagonal

nonzero entries. Using undirected graphs, however, it is more difficult to model the nonzero

status of main diagonal entries and the fill they may create. Undirected graphs could be

augmented with self-loop edges. Alternatively, bipartite graphs represent a diagonal entry

as an edge between two distinct nodes, providing a more easily understood and natural

modeling of diagonal entries. In addition, bipartite graphs can separately model the effects

of applying each half of an orthogonal similarity transformation. The bipartite graph model

is also easily extended to unsymmetric matrices or non-congruent transformations. Finally,

bipartite graph models are conducive to describing sparse reduction algorithms using se

quences of orthogonal similarity transformations. For example, the unioning of row and

column sparsity structures corresponds to the unioning of adjacency sets. As we will see in

the following chapter, the bipartite graph model provides a natural graphical interpretation
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of band-preserving reduction algorithms artifacts such as bulge chasing sequences.



Chapter 3

Existing Algorithms and Their
Extension for Sparse
Tridiagonalization

This chapter explores existing direct tridiagonalization approaches, analyzing their limi

tations and their potential extension to improve sparsity exploitation. For evaluating the

relative success of presented algorithms, we first introduce two simple sparse model problems

that lend themselves to formal analysis. Employing these model problems, as well as other

sparse matrices, we then characterize the fill properties of Givens Reduction, identifying the

inefficiencies associated with this direct dense matrix approach. If we attempt to improve

sparsity exploitation by changing the elimination order of each column and the planes of ze

roing rotations, the next section shows even these customized Givens Reductions experience

overwhelming levels of fill. In the following section we explore alternative band-preserving

tridiagonalization approaches for banded matrices, which restrict the accumulation of fill

entries to improve reduction efficiency. The chapter’s final section considers the extension

of these algorithms for the tridiagonalization of general sparse symmetric matrices, and

demonstrates the relative efficiency of the sparse Rutishauser-Schwarz algorithm.

37
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Figure 3.1: The 5-Point Model Problem

3.1 Sparse Model Problems

38

In practice the density and nonzero structure of sparse symmetric eigenvalue problems vary

widely. To provide a common basis for the formal comparison of reduction algorithms,

this section presents two families of sparse model problems that lend themselves to formal

analysis.

The first family of model problems consists of densely banded symmetric matrices of

bandwidth b and order n. We define the bandwidth b (or semi-bandwidth) of matrix A as

max,E{1...fl}, i
— j such that 0.

The second family of model problems is the 5-point problems. The symmetric sparse

matrices associated with 5-point problems arise from discretizing partial differential equa

tions on a square uniform grid of dimension b x b, using Dirichlet boundary conditions

and a 5-point differencing molecule. The resulting matrices are of order n = b2 and us

ing a standard lexicographic ordering, consist of five nonzero diagonals, as illustrated in

Figure 3.1.
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These families of model problems were selected because they are scalable and exhibit

important features also found in many practical sparse symmetric problems. In addition,

the simple and highly regular nature of their sparsity structures makes formal algorithm

analysis feasible. Ultimately, however, we are interested in the tridiagonalization of general

sparse symmetric matrices. Unfortunately, our sparse model problems do not show all the

significant characteristics exhibited by sparse matrices. For example, many sparse matrices

are much more irregular than our model problems. Consequently, we often augment for

mal analysis results for our model problems with experimentation using sparse symmetric

problems from Section 2.2’s test suite.

3.2 A Naive Approach to Sparse Tridiagonalization

One approach to sparse tridiagonalization is to simply enhance a successful dense matrix

algorithm, such as Givens reduction, with basic sparse matrix operations. Using 0(m3)

flops and 0(m2) storage, the standard Givens reduction tridiagonalizes a dense symmetric

matrix column by column, as shown in Figure 3.2. Within each column nonzero entries

are eliminated from the bottom up using the column’s subdiagonal entry as the zeroing

FOR col:r= 1 TO n-2 DO
FOR row:= n DOWNTO col+2 DO

A := G(col + 1, row, O)T A G(col + 1, row, 0)

Figure 3.2: Givens Reduction

entry. We suggest two modifications to this basic algorithm in an attempt to exploit

matrix sparsity. First, we can obviously avoid constructing and applying transformations

to eliminate entries that are already zero. In addition, we need to apply a transformation

to only those lower triangular entries in the unioned sparsity structure of the two modified

rows and columns.

To evaluate the potential of this modified form of Givens reduction, we first consider its
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application to densely banded model problems. Unfortunately, for nontrivial bandwidths

Givens reduction quickly overwhelms the banded nature of these sparse matrices with fill

entries. In fact, after the reduction of the first

[n—i 1 n—i Mod(n_l,b)*

b H — b

columns the remaining (n — r) x (n — r) submatrix is completely filled in. Table 3.1 provides

estimates of the computational requirements for this densely banded reduction computed

using the analysis framework of Section 2.4. The analysis assumes the reduction employs

standard Givens transformations, and FgGR and TDBGR refer to flop and transformation

counts respectively. In addition to FaQR, the construction of each transformation requires

FaGR

(2_+i)n3+O(n2)

1Mod(n—1,b) — Mod(n—1,b)
\ 2 1” b

Table 3.1: Tridiagonalization Costs of Givens Reduction for a Densely Banded Matrix

one square root. For comparison, Table 3.2 provides formula for the tridiagonalization

costs of reducing a dense symmetric matrix with Givens reduction. FgGR and T00 are

L I TGR

___

2n3+n2_17n+141c_y+i

Table 3.2: Tridiagonalization Costs of Givens Reduction for a Dense Matrix

very close to their dense matrix counterparts and the densely banded reduction takes little

advantage of matrix sparsity. In addition, due to overwhelming levels of fill, the sparse

reduction also requires 0(n2) storage.

The overwhelming levels of fill produced by Givens reduction are not restricted to

densely banded model problems. Despite the additional sparsity of the 5-pt problems,

their tridiagonalization by Givens reduction also suffers from high levels of fill. After
ModQc y) is the remainder from the division of integer x by integer y.
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Problem I’ Initial Off-Diagonal # of columns (rows) eliminated
Nonzero Density before remaining matrix is dense.

b(2n—b—1) n—j. Mod(n—1 b)Dense Band n
— b

5-Pt Problems b2 ‘- 4/ba 2b — 3
PLAT1919 1919 0.83% 36

NOS3 960 1.62% 23
BCSSTKO8 1074 1.03% 7

Table 3.3: Fill Characteristics of Givens Reduction

r = 2b — 3 columns of a 5-pt problem have been reduced to tridiagonal form the re

maining (n — r) x (n — r) submatrix is dense. As for the densely banded model problems,

the tridiagonalization of this remaining submatrix dominates reduction costs and sparsity

exploitation is limited.

The speed with which Givens reduction fills our model problems is typical of most

sparse symmetric problems. Table 3.3 summarizes the fill characteristics for both families

of model problems and also provides data for three additional sparse symmetric problems

from Section 2.2’s test suite. To determine the fill characteristics of each Harwell—Boeing

problem, we used the basic sparse reduction platform of Trisymb to implement the sparse

Givens reduction algorithm. The resulting symbolic reduction code was applied to each

sparse problem. In each case, Givens reduction produces overwhelming numbers of new

nonzeros, quickly filling the unreduced portion of each matrix despite extremely low initial

nonzero densities.

This section’s results clearly demonstrate that a naive approach to tridiagonalization

using Givens reduction is unable to significantly exploit matrix sparsity. The fill created by

these reductions so quickly overwhelms matrix sparsity that the original matrix might as

well have been treated as dense. There is no evidence to suggest that other dense matrix

tridiagonalization algorithms, for example Householder’s reduction, offer any significant

advantage. In fact, as shown in Section 2.3, Householder transformations generally create

higher levels of fill.
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3.3 Customized Sparse Givens Reductions

The unsuccessful sparse tridiagonalization algorithm of Section 3.2 did not change the basic

form of Givens reduction. It eliminates each column’s nonzeros in the same order as the

standard Givens reduction, using the same subdiagonal zeroing entry. The sparse algorithm

places complete reliance on exploiting matrix sparsity at the transformation level, without

regard for the position and number of fill entries produced. Moreover, no attempt is made

to utilize the fine grained control over the elimination of nonzeros, and the introduction of

fill entries, provided by Givens transformations.

The flexibility of Givens rotations permits both the order in which a column is zeroed,

and the plane of each zeroing rotation, to be modified. (See Section 2.3.) These variable

elements of the basic algorithm can be used to construct customized sparse Givens reduc

tion algorithms which attempt to further improve sparsity exploitation. Unfortunately, the

experimentation of Duff and Reid [DR75] shows that, independent of rotation plane selec

tion and the elimination order of each column’s nonzeros, adaptations of Givens column

by column reduction for large sparse matrices generally experience overwhelming levels of

fill, and matrix sparsity is quickly destroyed. In fact Duff and Reid conclude that if a

Givens reduction approach is taken, typically little advantage is made of sparsity and it is

preferable to treat the matrix as dense.

3.4 The Tridiagonalization of Banded Matrices

If tridiagonalization algorithms are to effectively utilize matrix sparsity it appears essential

to restrict the accumulation of fill entries to some maintainable substructure of the matrix.

Suppose that a symmetric matrix A of bandwidth b, is to be reduced to tridiagonal form.

In addition, for the remainder of this subsection assume that the band is dense. We have

shown that applying a column by column Givens reduction to this model problem leads to

overwhelming levels of fill outside the band, quickly destroying matrix sparsity. Alterna

tively, the algorithm of Rutishauser [Rut63] and Schwarz [Sch7l] (subsequently referred to
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as the Rutishauser-Schwarz, or simply R-S, algorithm) controls the encumbering effects of

fill by actively preserving a matrix’s banded structure throughout tridiagonalization. Af

ter exploring this algorithm in detail, we briefly describe a closely related algorithm due

to Lang [Lan92]. This algorithm is primarily intended for parallel implementation and

sequentially is less efficient than the Rutishauser-Schwarz approach.

3.4.1 The Rutishauser- Schwarz Algorithm

The pseudocode in Figure 3.3 outlines the Rutishauser-Schwarz algorithm. Once again,

Givens transformations are used by this band-preserving tridiagonalization algorithm to

provide fine grained control over the elimination process. Globally the effect is that the

FOR col:= 1 TO n-2 DO
FOR diag:= min(b,n-col) DOWNTO 2 DO

/*Zero

A := G(col + diag, col + diag — 1, O)T A G(col + diag, col + diag — 1,0)
IF bandwidth(A) > b THEN

Annihilate bulges with additional adjacent Givens transformations.

Figure 3.3: The Rutishauser-Schwarz Algorithm

banded matrix is reduced column by column. Indeed, within each column adjacent trans

formations eliminate the nonzeros from the outside in. The key difference from Givens

reduction is that R-S immediately removes fill created outside the band of the original ma

trix. The symmetric elimination of a band nonzero produces a pair of fill entries, or bulges,

outside the band as illustrated by the Bi entries in Figure 3.4. Before eliminating the next

band nonzero R-S chases the bulges off the end of the matrix with an additional sequence

of adjacent transformations. (See Figure 3.4.) In this fashion the algorithm maintains the

banded structure of the unreduced portion. During the reduction of a typical column k, the

elimination of band entry A,k requires E bbi+ll bulge chasing transformations. Adjacent

transformations are used exclusively by the algorithm because nonadjacent rotations create

triangular bulges, consisting of several nonzero entries, which require a larger number of
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Figure 3.4: Bulge Chasing to Preserve Bandwidth

bulge chasing transformations.

The graph-theoretic model of Section 2.7 provides an alternative view of the bulge

chasing process. In terms of our bipartite graph model, the steepest edge in the graph

indicates the bandwidth of the corresponding sparse matrix.

b= max li—il
<i’,j)’EE

Consequently, if a reduction algorithm creates a bulge lying outside the original matrix’s

band, the corresponding bulge edge <x’, y> satisfies jx
—

y > b.

As a working example, BA1 of Figure 3.5 is the bipartite graph corresponding to the

densely banded example of Figure 3.4. Without impacting subsequent discussion, we omit

many edges corresponding to interior band nonzeros to avoid cluttering the illustrations.

BA1 highlights two paths of edges connecting nodes (4’, 7, 10’, 13, 16’) and (4,7’, 10, 13’, 16).

Each pair of neighboring nodes in these lists are connected by an edge < i’, j > satisfying

b = i
— ii. We refer to these edge sequences as bulge chasing paths for edges <4’, 1 > and

< 1’, 4 >. The constituent edges of each path are ancestors of the bulge edges created by

bulge chasing sequences accompanying R-S’s elimination of nonzeros A41 and A1,4.
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Figure 3.5: The Bulge Chasing Path

Prior to the elimination of a band nonzero, identifying its associated bulge chasing path

in the bipartite graph is straightforward. More generally, suppose R-S will eliminate edge <

i’,j > using an adjacent rotation that unions adjacency sets AdjBA1(i’) and AdjBA1 ((i—i)”).

The first edge in the associated bulge chasing path connects node i’ with node k = (i + b) e
V. Similarly, the next edge in the bulge chasing path is <1’, k >e E, where 1 = k + b. The

construction of the bulge chasing path continues in this fashion until the an edge in this

sequence is absent from E. For a densely banded reduction, the node, x or x’, terminating

each bulge chasing path satisfies x + b > m.

Continuing our example in Figure 3.5, consider the effects of R-S’s elimination of edges

< 4’s, 1 > and < 11,4 > from BA1. Using the modeling techniques of Section 2.7.2, the

elimination of these edges unions the adjacency sets of nodes 4’ and 3’, and 4 and 3, creating

the two bulge edges < 3’, 7 > and < 7’, 3 > shown in bipartite graph BA2. To preserve

the bandwidth an adjacent transformation eliminates these bulge edges, creating two new

bulge edges < 6’, 10 > and < 10’, 6 > in BA3. The bulge chasing process continues until the

8A1 B B% B
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last bulge edges are eliminated from BA5. The net effect of the bulge chasing sequence is to

duplicate all edges in the original bulge chasing paths and drag the endpoints of a copy of

each edge up one node in the graph. We duplicate bulge chasing path edges, because R-S

uses nontrivial transformations for densely banded reductions.

Table 3.4 provides formula for the tridiagonalization costs of the Rutishauser-Schwarz

algorithm, computed using the analysis framework of Section 2.4. A comprehensive de

scription of this analysis is presented in [Cav93]. The analysis assumes 2 < b (n/2 — 1)

and CR_S is the nonanalytic term Mod(n — 1, b)(Mod(ri. — 1, b) — b), which typically can be

safely ignored without incurring large errors. and TRS refer to flop and transformation

counts respectively. In addition to F5 , the construction of each transformation requires

Fs TRS

I (6b — + 2)n2 — (6b2 + 5b — + 5)n

L+2b3 + 4b2 — b — +3 + ( + 3)CR_S
(b-1)(n-1)2+CR_S

Table 3.4: Tridiagonalization Costs of the Rutishauser-Schwarz Algorithm for a Densely
Banded Matrix

one square root. Although TRS is comparable to the number of transformations used by

Givens reduction on the same densely banded problem, in general the band-preserving

approach modifies fewer nonzero entries with each transformation. As a result, for matri

ces of moderate bandwidth F5 is smaller than the floating point requirements of Givens

reduction given by FGR.

EISPACK’s [GBDM77] implementation of the R-S algorithm, BANDR, does not use

standard Givens transformations. Instead it employs a “root free” variant of the trans

formation, with identical fill properties, often referred to as a fast Givens transforma

tiori [Gen73j. (See Sections 2.3 and 2.4.2.) In this case the computational requirements of

the band-preserving tridiagonalization are reduced to

= (4b — + 6)n2 — (4b2 + 3b — + lO)n

4b3 5b2 5b 10 10
(3.1)
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and n square roots. The analysis leading to FK?S ignores the cost of periodic rescaling and

assumes that a reduction uses the two types of fast Givens transformations in equal pro

portion. For either variant of the band-preserving R-S algorithm O(bn) storage is required.

We note that the Rutishauser-Schwarz algorithm will not be faster for all bandwidths

than the best dense matrix algorithm, Householder’s reduction. Assuming that the House

holder reduction requires n3 flops [GV89], while R-S requires 4bn2, the dense matrix

algorithm requires fewer floating point operations for bandwidths larger than . The se

lection of a tridiagonalization algorithm, however, is often strongly influenced by the lower

storage requirements of the Rutishauser-Schwarz algorithm.

3.4.2 Lang’s Algorithm

Lang’s column-oriented tridiagonalization algorithm [Lan92J for symmetric banded matri

ces is closely related to the Rutishauser-Schwarz approach. Like the R-S algorithm, Lang’s

algorithm restricts the accumulation of fill to a maintainable substructure of the original ma

trix using bulge chasing. Unlike R-S, however, Lang’s algorithm uses Householder similarity

transformations to simultaneously eliminate multiple nonzero entries. Implementations of

Lang’s algorithm exploit the symmetry of sparse problems and similarity transformations,

only considering transformation modifications to the lower triangular portion of each ma

trix.

Lang’s algorithm begins by reducing the first column of our densely banded model

problem to tridiagonal form, using a single Householder similarity transformation. This

elimination creates a pair of (b—i) x (b—i) triangular bulges, as shown for the small example

in Figure 3.6. Rutishauser {Rut63] points out that the cost of chasing the entire triangular

bulge off the end of the matrix is unacceptably high. Alternatively, Lang eliminates only

the first column of the lower triangular bulge, using an additional Householder similarity

transformation. As shown by Figure 3.7, this elimination creates a second set of triangular

bulges. Lang’s algorithm continues the reduction by eliminating the first column of the

second bulge, creating a third pair of bulges if n/b is sufficiently large. When the first column
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of each triangular bulge has been eliminated, Lang’s algorithm reduces the band’s next

nonzero column to tridiagonal form and chases the first columns of its associated triangular

bulges. Continuing in this fashion the algorithm completes a matrix’s tridiagonalization.

Lang’s modified bulge chasing procedures do not reestablish the matrix’s original banded

form between the elimination of successive columns of the band. Chasing the first column

of each triangular bulge, however, prevents bulges from growing beyond their original (b —

1) x (b — 1) size and gradually marches them off the end of the matrix.

Lang’s algorithm is primarily intended for parallel implementation. Its use of House

holder transformations allows almost all computation to be performed using level 2

BLAS [DDHD9O, DDHH88, LHKK79]. As a result, Lang’s algorithm is more conducive

to parallel implementation than R-S, which uses level 1 BLAS type operations exclusively.

Unfortunately, Lang’s algorithm reqnires almost twice the storage of R-S to handle its

sequence of large triangular bulges. In addition, Lang reports that the computational re

quirements of his algorithm are approximately 6bn2 flops. Although these requirements are

close to Fg5 , Lang’s algorithm requires 50% more flops than the fast Givens variant of

R-S. As a result, theoretically the Rutishauser-Schwarz tridiagonalization is sequentially

more efficient than Lang’s algorithm. Despite increased flop requirements, Lang reports

sequential experiments in which his algorithm runs faster than EISPACK’s BANDR on a

single node of an iPSC/860 hypercube parallel computer. It appears this discrepancy is

a machine dependent anomaly in which the cache of an iPSC node is able to exploit the

improved data locality of level 2 BLAS. In addition, Lang’s implementation is based on

optimized assembly-coded BLAS routines.

More recently, work by Bischof and Sun [BS92] generalizes Lang’s algorithm, developing

a novel framework for the tridiagonalization of symmetric banded matrices. Bischof and

Sun’s approach reduces the band of the matrix to tridiagonal form in one or more band

width reducing stages. Each stage of their algorithm eliminates the outer d (1 d < b)

subdiagonals of the current band using a Lang type algorithm. The only difference between

a partial reduction and Lang’s algorithm is the number of nonzeros eliminated from each

column of the band. By cleverly selecting sequences of partial band reductions, Bischof
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and Sun are able to reduce tridiagonalization storage requirements to R-S levels or im

prove algorithm complexity by 10—25% relative to Lang. Despite these improvements, the

complexity of the R-S algorithm remains minimal and of these algorithms R-S is the best

generally applicable sequential densely banded tridiagonalization algorithm.

3.5 Generalization of Band-Preserving
Tridiagonalization Techniques

The discussion of Section 3.4 explored the tridiagonalization of densely banded matrices.

For general sparse symmetric matrices we can extend the band-preserving techniques of

Rutishauser and Schwarz to form the following two stage sparse tridiagonalization algo

rithm.

1. A : PTAP, where P is a bandwidth reducing permutation matrix.

2. Tridiagonalize A using an enhanced form of the R-S algorithm.

We begin this section with a short introduction to bandwidth reducing reorderings and

successful heuristics for their computation. The following subsection describes an enhanced

variant of the Rutishauser-Schwarz algorithm and explores the reduction characteristics of

the two stage sparse tridiagonalization algorithm. Finally, we briefly explore a similar two

stage sparse reduction based on Lang type algorithms.

3.5.1 Bandwidth Reducing Sparse Matrix Preorderings

To reduce the bandwidth of symmetric sparse matrices we use orthogonal similarity trans

formations of the form PTAP, where P is a carefully selected permutation matrix. The

problem of minimizing the bandwidth of a matrix by permuting rows and columns is

NP-hard [Pap76] and is known to remain so even for symmetric sparse matrices whose

associated undirected graph is a tree with all vertices of degree 3 [GGJK78j. Many

heuristic algorithms have been suggested for the identification of bandwidth reducing pre

orderings [Cut72, CCDG82]. Two of the most widely accepted algorithms are the reverse
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GPS Bandwidth RCM Bandwidth GPS and RCM
Smaller Smaller Bandwidths Equal

# of Problems 91 11 13

Table 3.5: Comparing GPS and RCM Preorderings for the Harwell—Boeing Test Suite

Cuthill-McKee (or RCM) [GL78b] and Gibbs-Poole-Stockmeyer (or GPS) [GPS76a, Lew82]

algorithms. The experience of Gibbs et al [GPS76b] suggests that GPS most frequently

provides the smallest bandwidth preorderings over a wide range of problems. Our experi

mentation with Section 2.2’s test suite of 115 Harwell—Boeing test problems, summarized in

Table 3.5, supports this conclusion. Consequently, for experimentation we typically select

GPS and often reference it as the bandwidth reducing preordering in subsequent discussion.

3.5.2 The Sparse Rutishauser-Schwarz Algorithm

The two stage tridiagonalization algorithm takes limited advantage of matrix sparsity if

R-S treats the band of the preordered matrix as dense. In this case complete reliance is

placed upon the preordering algorithm to exploit sparsity, but for many problems the band

of the preordered matrix is relatively sparse prior to reduction. (See Table 3.6.) To take

advantage of band zeros, three modifications could be made to the basic band-preserving

tridiagonalization algorithm.

1. Avoid constructing and applying transformations to eliminate band or bulge entries

that are already zero.

2. Exploit zeroing entries (see Section 2.3) that are zero by performing row and column

exchanges instead of using the general form of the Givens transformation.

3. Apply each nontrivial transformation to only those lower triangular entries whose

column(row) index is in the unioned sparsity structure of the two modified

rows (columns)
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Both Schwarz’s code [Sch7l] and EISPACK’s BANDR [GBDM77] check if the bulge or

band entry is already zero before performing an elimination. These codes, however, are

primarily intended for densely banded matrices and neither incorporates the second or third

modification. Enhancing the two stage tridiagonalization algorithm by all three sparsity

modifications produces a new algorithm subsequently referred to as the sparse Rutishauser

Schwarz algorithm or simply sparse R-S.

When the band of the permuted matrix is sparse, sparse R-S enjoys an additional

computational advantage. As shown in Section 3.4.1, we can identify the bulge chasing

path associated with a particular band nonzero Ak prior to its elimination. A,k’s bulge

chasing path consists of edges in the sequence

<i1, (i + b) >, < (i + 2b)’, (i + b) >, < (i + 2b)’, (i + 3b) >,...

and terminates when the next edge in the series is absent from E. The Rutishauser

Schwarz algorithm uses one bulge chasing transformation for each edge in the path during

A,k ‘s elimination.

For a densely banded reduction a bulge chasing path always terminates at a node, x

or x’, satisfying x + b > n. When the band is sparse, however, the bulge chasing path

may terminate before this condition is satisfied, reducing bulge chasing requirements. For

example, consider R-S’s elimination of A4,1 from the small sparsely banded matrix (b = 3)

in Figure 3.8. The bulge chasing path in the associated bipartite graph starts with edge

<41,7>. Because < 101,7 > E, the bulge chasing path terminates at node 7 and A4,1’s

elimination requires a single bulge chasing transformation. In contrast, the elimination of

the same entry from a densely banded matrix of equal dimension and bandwidth requires

four bulge chasing transformations.

Although the R-S algorithm removes fill created outside the band with bulge chasing

transformations, it allows fill entries within the band to accumulate. Unfortunately, the

unreduced portion of a typical sparse matrix’s band fills quickly during band-preserving

tridiagonalization and there is little opportunity for enhancements exploiting band sparsity.

As an example, consider applying sparse R-S to the 5-point model problems of Section 3.1.
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:Ex!
12 X

X X13 XX

14

X 15X

X X16

A

Figure 3.8: A4,1’s Truncated Bulge Chasing Path

After b— 1 columns of a 5-point problem have been reduced to tridiagonal form, the remain

der of the band is completely filled in. The preponderance of fill within the band is largely

due to the seqnences of bulge chasing transformations required by the elimination of band

nonzeros. Once the matrix’s band has been filled there is no further opportunity to exploit

sparsity beyond the densely banded form of the remaining submatrix. Consequently, the

flop and transformation requirements of a 5-point problem’s reduction are identical in the

highest order terms to FR°s and TR5 for a densely banded matrix of equivalent order and

bandwidth.

The speed with which the band of a 5-point problem fills is typical of most large sym

metric problems. Table 3.6 provides fill data for three additional sparse problems, from

Section 2.2’s sparse matrix test suite, preordered by GPS and tridiagonalized by Trisymb’s

symbolic implementation of sparse R-S. Despite starting with relatively sparse bands, the

unreduced portion of each problem’s band is completely filled well before b columns are

BA
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Problem n bandwidth Initial # of columns (rows)
Off-Diagonal eliminated before band is
Band Density full.

5-Pt Problems b2 b ‘—‘ 2/b b-i
PLAT1919 1919 80(GPS) 10.1% 31

NOS3 960 65(GPS) 12.4% 19
BCSSTKO9 1083 95(GPS) 8.8% 18

Table 3.6: Band Filling Characteristics of Sparse R-S

reduced to tridiagonal form.

Not all sparse symmetric problems can be permuted to obtain a relatively small band

width. As for densely banded matrices, a computational trade-off exists between the dense

Givens or Householder and the band-preserving sparse R-S reduction algorithms. Given the

speed with which a typical sparse band fills, the transition point for most sparse problems

must be close to the b = m/3 value observed for densely banded matrices. Once again,

however, the lower storage requirements of sparse R-S may influence algorithm selection.

In summary, typically high levels of fill severely limits the number of opportunities for

sparse R-S to utilize band sparsity. In general, sparse R-S is almost completely reliant on

bandwidth reducing preorderings to exploit sparsity and the second stage of the algorithm

is only slightly superior to a densely banded R-S tridiagonalization approach.

3.5.3 Sparse Band Extensions of Lang’s Algorithm

Section 3.4.2 describes Lang’s reduction algorithm for the tridiagonalization of densely

banded matrices. This section explores the potential of extending Lang’s techniques to

create a sparse R-S like two stage reduction algorithm for general sparse symmetric matrices.

Once again, the algorithm’s first stage preorders the sparse matrix to reduce bandwidth,

while the second stage of the tridiagonalization employs a modified form of Lang’s algorithm

that attempts to exploit band sparsity. To improve the construction and application of

Householder transformations for a sparse band, we envisage modifying Lang’s algorithm

with changes analogous to the first and third enhancements of R-S made in Section 3.5.2.
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To overcome its inherently higher algorithmic complexity, the sparse Lang algorithm

must significantly improve the exploitation of band sparsity relative to R-S. Discussion in

Sections 2.3 and 2.7.3, however, has shown that a Householder transformation generally

produces more fill entries than equivalent sequences of Givens transformations. As a result,

the sparse Lang algorithm typically produces fill in the unreduced portion of the band

even more rapidly than sparse R-S. Figure 3.9 illustrates two partial reductions of a small

sparse matrix, A, which we assume has been preordered to reduce bandwidth. Matrix B

illustrates the relatively sparse band remaining after R-S has reduced the first two columns

of the band to tridiagonal form. The unreduced portion of the band does not become dense

until R-S eliminates the third band nonzero from column 5. In contrast, reducing the first

two columns of the band with Lang’s algorithm completely fills the remainder of the band

and there is no further opportunity to exploit band sparsity.

The results of this small example generalize to large practical sparse problems. Although

sparse R-S has difficulty exploiting band sparsity, sparse extensions of Lang’s algorithm

exhibit more prolific fill characteristics and take even less advantage of band sparsity. In

the following chapter we introduce an alternative to sparse R-S, which more successfully

utilizes band sparsity to significantly improve reduction efficiency.



Chapter 4

Bandwidth Contraction
Algorithms for Sparse
Tridiagonalization

As shown in the previous chapter, attempts to adapt Givens Reduction for the tridiagonal

ization of sparse symmetric matrices are confronted with overwhelming levels of fill entries

that quickly destroy matrix sparsity. Alternatively, the sparse R-S algorithm accepts the

inevitability of fill entries, but actively restricts their accumulation to the band of a per

muted matrix. Unfortunately, the band typically fills quickly and sparse R-S places almost

complete reliance on the preordering algorithm to exploit matrix sparsity. This chapter

presents alternative approaches to sparse tridiagonalization. They also use bandwidth re

ducing preorderings and band-preserving reduction techniques, but reorder the elimination

sequence to more fully exploit internal band sparsity.

We begin this chapter with the development of our Bandwidth Contraction algorithm for

the tridiagonalization of symmetric sparse matrices. Combining this successful algorithm

with the sparse R-S algorithm, we then produce an effective hybrid tridiagonalization algo

rithm. The following section describes key aspects of the numerical implementations of both

algorithms. Using these implementations, the chapter’s final section describes extensive ex

perimentation with the Bandwidth Contraction and hybrid tridiagonalization algorithms.

In comparison to the Rutisbauser-Schwarz approach, both algorithms are shown to dra

57
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matically reduce the computational requirements of sparse tridiagonalization.

4.1 Bandwidth Contraction

The sparse Bandwidth Contraction algorithm, or BC, is similar in many respects to sparse

R-S. Both algorithms employ bandwidth reducing preorderings and constrain the accumu

lation of fill entries to a maintainable substructure of the original matrix. The Bandwidth

Contraction algorithm, however, improves the efficiency of sparse tridiagonalization by re

arranging the elimination of nonzeros to exploit a commonly observed characteristic of

sparsely banded matrices.

4.1.1 Motivation

The sparse tridiagonalization techniques explored in this section are motivated by the fol

lowing observation. A bandwidth reducing preordering frequently produces a permuted

matrix whose profile consists of varying length spikes of nonzeros extending from the main

diagonal. The longest spike defines the bandwidth of the permuted matrix, as shown in

Figure 4.1. For many practical problems the spikes of the permuted matrix are of dra

matically different length. As an example, the black dots in Figure 4.2’s plot illustrate the

nonzero sparsity structure of the Harwell—Boeing problem CAN 268 preordered by GPS.

The new sparse tridiagonalization approach attempts to exploit variation in spike length.

Although fill cannot be avoided, the bandwidth of the matrix could be significantly reduced

with relatively few transformations, if the ends of the longest spikes could be clipped off at

low cost before the contracted band becomes dense.

4.1.2 The Sparse Bandwidth Contraction Algorithm

There are a number of ways that the ends of the profile’s longest spikes could be clipped

off with Givens transformations. One way to approach the clipping process is to rearrange

the elimination order of a band-preserving tridiagonalization so that the matrix is reduced

to tridiagonal form diagonal by diagonal (outermost diagonal first), rather than column
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Figure 4.1: Matrix Bandwidth and Spike Length

0 50 100 150 200 250
nz = 3082

Figure 4.2: The Sparsity Structure of CAN 268 with a GPS Preordering
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1. A : PTAP, where P is a bandwidth reducing permutation matrix.

2. b := bandwidth(A)

3. FOR b : b DOWNTO 2 DO /*Tridiagonalize A.*/

FORcol:=lTOn-bDO
IF A01+01 0 THEN /*ZeroA0i+0i.*/

IFA =OTHEN
col+b—1,col

Exchange rows/columns (col + b) and (col + b — 1) in A.
ELSE

A := G(col+,coi+_1,9)T AG(col+,col+b— 1,0)
(Exploit band sparsity of modified rows and columns.)

IF bandwidth(A) > b THEN
Chase bulges with additional adjacent Givens
transformations or row/column exchanges.

ENDIF /*Outermost IF*/

Figure 4.3: The Sparse Bandwidth Contraction Algorithm

by column as in sparse R-S. A diagonally-oriented band-preserving tridiagonalization for

densely banded symmetric matrices has been previously considered [Sch63, Wi165], but was

superseded on sequential machines by the Rutishauser-Schwarz’s column-oriented reduc

tion [Rut63, Sch7l]. (See Section 4.2.1 for a detailed comparison of algorithm complexity.)

To our knowledge, however, no one has considered the relative merits of the two reduction

paradigms extended for general application to sparse symmetric matrices. (For densely

banded matrices, the LAPACK [ABB92] project considered the relative merits of these

two algorithms implemented on vector machines.)

As shown in Figure 4.3, our sparse Bandwidth Contraction algorithm (BC) uses the

diagonally-oriented spike clipping process to completely tridiagonalize a sparse symmetric

matrix. To exploit band zeros, the three modifications made to the basic R-S algorithm in

Section 3.5.2 are also incorporated into the Bandwidth Contraction algorithm.

The Bandwidth Contraction algorithm begins by symmetrically permuting the matrix

to reduce bandwidth. Then, starting with Ab+1,1, the band’s outermost diagonal is scanned
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for its first nonzero entry. This entry is eliminated using either an adjacent Givens trans

formation or a row/column exchange, depending upon the nonzero status of the zeroing

entry. If a nonzero entry is created beyond the current bandwidth, the bulge is chased off

the end of the matrix as described in Section 3.4.1. The scanning and reduction of the

outermost diagonal continues until all nonzeros have been eliminated. At this point the

current bandwidth of the matrix is reduced by one and the reduction process continues

with the next diagonal.

As for the sparse R-S algorithm, Bandwidth Contraction uses adjacent transformations

exclusively, avoiding the creation of multiple entry bulges and the concomitant extra bulge

chasing transformations. The additional bulge chasing transformations not only increase

computational costs, they also accelerate the introduction of fill entries into the band. An

added complication for a diagonally-oriented tridiagonalization is that nonadjacent transfor

mations may reintroduce fill entries in previously zeroed positions of the diagonal, severely

restricting the utility of this transformation class.

The small example in Figure 4.4 demonstrates some of the potential difficulties as

sociated with nonadjacent transformations. When the Bandwidth Contraction algorithm

eliminates entry A5,1 and chases the associated bulge, it uses one row/column exchange and

two nontrivial adjacent transformations, producing matrix B. Alternatively, suppose we

decide to eliminate A5,1 with the nonadjacent transformation G(2, 5, O)TAG(2, 5, 0) to avoid

having to eliminate a nonzero from column 1, and chase its associated bulge, during the

next diagonal’s reduction. Application of this transformation creates a three entry bulge

as shown in intermediate matrix C. Chasing this multiple entry bulge off the end of the

matrix to regain the matrix’s original banded form requires 11 additional nontrivial trans

formations. As shown by matrix D, these transformations completely fill the band beyond

row and column 5. Consequently, using a nonadjacent transformation in this manner is

definitely not cost-effective.

This discussion is not intended to completely rule out the use of nonadjacent trans

formations. There are special sparsity patterns for which nonadjacent transformations are
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Dt

Figure 4.4: A Nonadjacent Transformation Example
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beneficial. Future study will explore the potential role of nonadjacent transformations in

more sophisticated or special purpose bandwidth contraction algorithms.

4.1.3 A Demonstration of Bandwidth Contraction

To illustrate the potential effectiveness of Bandwidth Contraction, we have manipulated the

small contrived example in Figure 4.5 with the symbolic reduction tool Xmatrix. The top

matrix in Figure 4.5 shows the original sparse matrix, A, with its nonzero entries indicated

by “X”s and the numbered diagonal. It is assumed that A has already been permuted

to reduce its bandwidth to 6. Two additional matrices, C and D, illustrate A after a

Non-adjacent
transformation

A=

B=

1X X

X2 X

3 X

4 - X

X 5XXXX

X X6 X

X X 7 X

XX 8 X

X 9 X

X 10 X

X 11

X 12

X 13

X 14

One step of BC.

,,

1X X0

X2 X

3 X

X 4 XXX

0 5 XX

X X 6 X

XX 7 X

XX 8X X

X X9 XX

X 10 X

X 11

XX 12X

X X13

X 14

1X 0

X2 XXBBB

3 X

4 X

OX 5XXXX

X X6 X

BX X 7 X

B XX 8 X

B X 9 X

X 10 X

X 11

X 12

X 13

X 14

Chase the multiple
entry bulge.

1X 0

X2 XX

XX

4 XXX

OX 5XXXX

XXXX 6 XXXX

XXXX 7 XXXX

XXXX 8XXXX

XXXX9 XXXX

X X X X 10 X X X X

X X X X 11 X X X

X X X X 12 X X

X X X X 13 X

X X X X 14
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partial reduction by sparse R-S or Bandwidth Contraction. In both C and D a “0” marks

the positions of eliminated band nonzeros. Finally, reported flop counts assume that both

reductions employ fast Givens transformations.

Matrix C illustrates A after sparse R-S has reduced its first three columns to tridiagonal

form. Despite the highly sparse nature of the original problem, the remainder of the band

is almost completely filled. The entire tridiagonalization uses 8 row/column exchanges and

132 nontrivial transformations, requiring a total of 7232 flops.

Matrix D illustrates A after the Bandwidth Contraction algorithm has eliminated the

three outermost nonzero diagonals and contracted the bandwidth to 3. Although the elim

ination of nonzeros once again produces fill entries within the band relatively quickly, the

algorithm is able to efficiently exploit the sparsity of the band away from the main diagonal.

For example, the Bandwidth Contraction algorithm eliminates the entire 6th and 5th sub-

diagonals of the band at the relatively low cost of 216 flops, using 7 row/column exchanges

and 4 nontrivial transformations. The complete tridiagonalization uses 12 row/column

exchanges and 163 nontrivial transformations, requiring a total of 6537 flops. For this ex

ample, the computational requirements of tridiagonalization with Bandwidth Contraction,

as measured by flop counts, are approximately 9.6% lower than for the sparse R-S approach.

It is important to note that the number of nontrivial transformations used by a tridiag

onalization is a misleading metric of algorithm performance. The Bandwidth Contraction

algorithm requires more transformations, but generally fewer nonzeros are modified by each

nontrivial transformation, permitting a lower total flop count.

The key to the success of the Bandwidth Contraction algorithm is the elimination of

the outermost diagonals at low cost. As the result of several contributing factors, Band

width Contraction is able to exploit and prolong the advantages of sparsity in the outermost

subdiagonals. First, when BC requires nontrivial adjacent transformations, they are often

applied to well separated pairs of rows and columns, insulating the effects of fill from one

transformation sequence to the next. In contrast, sparse R-S’s initial band zeroing transfor

mations and associated bulge chasing transformations are applied to groups of neighboring
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Figure 4.6: Cascading Fill Entries

rows and columns. These initial transformations produce a cascade of fill entries, typically

not observed for BC, which quickly fills the band despite a matrix’s initial sparsity.

As an example, bipartite graphs BA1 through BA5 in Figure 4.6 model the sparsity

structures of Figure 4.5’s example just before sparse R-S symmetrically eliminates nonzeros

A8,2, A7,2, A6,2, A52, and A4,2 respectively from column 2. The final bipartite graph,

BA6, models A’s sparsity structure after the completion of column 2’s reduction. Graphs

BA1 to BA5 each highlight the edges corresponding to the band nonzero pair selected for

elimination, their bulge chasing paths, and the pairs of nodes modified by the associated

band zeroing and bulge chasing transformations. We observe that in neighboring bipartite

graphs the pairs of highlighted nodes share a common node. Consequently, nonzeros are

BA1 BA2 BA3 BA4 BA5 B
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carried from one transformation sequence to the next, either through adjacency set union

or exchange, producing a cascade of fill entries. Comparing BA1 and BA6, the elimination

of column 2 substantially reduces band sparsity, introducing 48 new band nonzeros.

In addition to reducing instances of fill cascading, BC’s diagonally-oriented reduction

requires fewer bulge chasing transformations for initial band nonzero eliminations. As BC

eliminates the outermost diagonal, bulge chasing sequences must shorten, while the length

of the sequences used by sparse R-S remains relatively constant as it reduces the first few

columns. Consequently, the initial stage of the Bandwidth Contraction algorithm produces

fewer band fill entries.

Avoiding fill entries prolongs the survival of sparsity in the outermost diagonals and

improves the efficiency of BC’s reduction in several ways. First, BC must eliminate fewer

band nonzeros to effect each diagonal’s reduction. In addition, the sparsity of the outer

most diagonals permits Bandwidth Contraction to cheaply eliminate many band nonzeros

and associated bulges, without fill, using row/column exchanges. Finally, the sparsity of

the outermost diagonals often produces truncated bulge chasing paths (see Section 3.5.2),

reducing transformation requirements and fill production.

In summary, the advantages of BC’s sparse reduction outlined in the preceding dis

cussion often allow it to perform a partial tridiagonalization that significantly contracts a

matrix’s bandwidth at low cost before producing a densely banded intermediate matrix. In

general, the relative success of the sparse tridiagonalization algorithms depends on problem

specific sparsity structures. The extensive experimental analysis of Section 4.4 confirms the

relative advantage experienced by the Bandwidth Contraction algorithm for many practical

sparse problems.

4.2 A Hybrid Tridiagonalization Algorithm

The goal of this dissertation is to produce generally applicable sparse eigenvalue routines.

Unfortunately, the computational requirements of sparse Bandwidth Contraction are not

smaller than those of sparse R-S for every problem’s banded sparsity structure. In this
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section we combine the individual strengths of each reduction algorithm to produce the

versatile Hybrid Bandwidth Contraction tridiagonalization algorithm, or HYBBC*, which

is suitable for the rednction of a broad range of sparse symmetric matrices.

4.2.1 Motivation

Two metrics of tridiagonalization algorithm cost are flop and transformation counts F and

T. As demonstrated in the previous section, the Bandwidth Contraction algorithm may be

able to significantly reduce the bandwidth of a sparsely banded matrix at relatively low cost.

Consequently, for sparsely banded matrices Bandwidth Contraction flop counts are smaller

than for sparse R-S, despite larger transformation counts. If the band of a matrix is dense,

however, Rutishauser and Schwarz’s column-oriented band-preserving tridiagonalization is

superior in both measures of work.

Table 4.1 provides formulae for the tridiagonalization costs for the fast Givens Band

width Contraction variant applied to a densely banded, symmetric matrix of bandwidth

b. Using Section 2.4’s analysis framework, we provide a comprehensive analysis leading

H pFG I
BC TBC

(4b_4+lozt_2(f))n2+(22_16b_3&2)n

2 ‘5 (1—(b--1) +b £uc
L.dk=2kk)

2
L4k2 k

Table 4.1: Tridiagonalization Costs of the Bandwidth Contraction Algorithm for a Densely
Banded Matrix.

to these results [Cav93]. The analysis assnmes that b < (n + 1)/2 and that an equal

proportion of the two types of fast Givens transformations are employed. The analysis

ignores the potential cost of the periodic rescaling required by fast Givens transformations.

CBC is the nonanalytic term Mod(n, k)(k — Mod(n, k)). When b << m the Mod(n, Ic) terms

can be safely ignored without incurring significant errors. Comparison of FK and FL,

from Equation 3.1, shows that the flop reqnirements of the Bandwidth Contraction algo

rithm are larger than for the R-S algorithm applied to the same problem. To demonstrate
*Jn [Cav94j we also refer to this algorithm with the acronym BANDHYB.
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(BC flops)/(R-S flops) (BC trans.)/(R-S trans.)

1.05

1
100 200 300 400 1

100 200 300 400

Bandwidth Bandwidth

Figure 4.7: The Flop and Transformation Requirements of BC relative to R-S for a Densely
Banded Matrix, n=1000.

the potential difference in tridiagonalization costs, the first graph in Figure 4.7 plots the

flop requirements of Bandwidth Contraction, normalized by F9 , against bandwidth for a

densely banded matrix.

While FB is typically 10 to 25% larger than F9 , for problems with nontrivial band

width the difference between TBC and TRS can be much greater, as shown by the second

graph in Figure 4.7. At first glance there may seem to be an inconsistency in our analysis.

As mentioned in Section 4.1.3, however, generally transformation counts are a misleading

metric of tridiagonalization costs. F9 and FB are closer than predicted by TBC and TRS

because as Bandwidth Contraction reduces a matrix’s bandwidth, the number of nonzeros

modified by each transformation generally declines. The computational effort of applying

later transformations is reduced, while for the R-S algorithm the cost of each transformation

remains relatively constant.

As an aside to our discussion of sequential algorithms, vector machines complicate the

relative efficiency analysis of tridiagonalization algorithms. In general, vector machines

put more weight on T relative to F. During the development of LAPACK’s [ABB92]

replacement for BANDR, SSBTRD, several band-preserving tridiagonalization algorithms

were tested on vector machines [DC92J. In very general terms, for small n (less than 50) or

matrices with moderate bandwidth (20 < b < 50), it was found that vectorized code based
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on a diagonally-oriented elimination is the fastest approach. For other densely banded

matrices, variants of a column-oriented tridiagonalization are more efficient. Emphasizing

the importance of good performance for large n and small bandwidth, SSBTRD is based

on the column-oriented, vectorized algorithm of Kaufman [Kau84j.

4.2.2 The Hybrid Bandwidth Contraction Algorithm

The observations of the previous subsection suggest a hybrid tridiagonalization algorithm.

While the band of the intermediate reduction matrix remains sufficiently sparse, the hybrid

algorithm employs the sparse Bandwidth Contraction scheme. When it is found that BC

can no longer efficiently exploit band sparsity, the reduction switches to sparse R-S to

complete the tridiagonalization. To avoid redundant elimination of band nonzeros, the

hybrid algorithm always completes a nonzero diagonal’s reduction before switching to sparse

R-S.

The most sensitive design issue for this hybrid algorithm is the selection of a generally

applicable strategy to govern the transition between the algorithm’s two stages. Ideally the

hybrid algorithm should switch to sparse R-S at the transition bandwidth, bt, minimizing

the following problem dependent cost function.

Cost_BC(b —* bt) + Cost_R-S(bt—* 1)

The matrix’s original bandwidth is b and functions Cost_BC() and CostR-S() represent

the computational requirements of BC and sparse R-S performing the indicated reduction

in bandwidth. Using fill level monotonicity arguments, it is not difficult to see that a

transition strategy could minimize this function by comparing the following reduction costs

before each diagonal’s elimination. (bC represents the bandwidth of the reduction’s current

intermediate matrix.)

Cl = Cost_BC(bc (bC — 1)) + Cost_R_S((bc
— 1) 1)

C2 = Cost_RS(bc 1)

As long as Cl < C2 the hybrid algorithm should continue the reduction with the sparse

Bandwidth Contraction algorithm.
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When the band of the intermediate matrix is dense, we can determine the flop compo

nents of Cl and C2 exactly using the analysis results of Sections 3.4.1 and 4.2.1. While zero

entries remain in the band, however, these analyses do not apply and accurate resolution

of the cost comparison is difficult. The computational requirements of BC and sparse R-S

are influenced by both the nonzero density of the band and problem specific sparsity struc

tures. The design of transition strategies that take into account a band’s particular sparsity

structure is hindered by a lack of model problems that exhibit all significant sparsity char

acteristics of practical problems. In addition, a formal analysis of BC or R-S’s reduction of

problems with general sparsity patterns is not feasible. Alternatively, we consider transition

strategies that provide an approximate solution to the comparison of costs Cl and C2 by

thresholding some measure of band density or “fullness”.

There are many possible metrics for measuring the fullness of the contracted band. The

most obvious choice is to directly monitor the number of nonzero entries. Maintaining such

detailed knowledge of the band’s sparsity pattern, however, may require significant levels

of overhead. Instead, we suggest regulating the transition between Bandwidth Contraction

and sparse R-S by a threshold on the number of nonzero entries in the outermost nonzero

subdiagonal. The transition is made when the number of nonzeros is greater than some

fraction of the subdiagonal’s length. As shown below, monitoring the number of nonzeros

in the next subdiagonal can be cheaply integrated into Bandwidth Contraction. Equally

important, this transition regulation technique provides a good approximation of measuring

true band density. As shown in Section 4.3.2, sparsity within the band is best exploited at

the transformation level, which is controlled to a large extent by the number of zeros in the

outermost diagonal. In addition, if BC continues the reduction once the outermost diagonal

is full, or nearly so, each successive subdiagonal eliminated will have a similar density and

the band will quickly fill.

The pseudocode in Figure 4.8 describes the Hybrid Bandwidth Contraction tridiagonal

ization algorithm (HYBBC). The second stage of the hybrid algorithm is identical to the

description of sparse R-S in Section 3.5.2, except it does not perform an addition preorder

ing. Let threshold be the fraction of the outermost diagonal that must be nonzero before the
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1. A : PTAP, where P is a bandwidth reducing permutation matrix.

2. b bandwidth(A)

3. /Initialize nzcnt for the outermost diagonal.*/
mzcnt := 0
FOR i:= 1 TO n-b DO

IF A+b, 0 THEN nzcnt:== nzcnt+l

4. (a) b’H=b

(b) /*While the matrix is not tridiagonal and the threshold has not been*/

/ *met, eliminate the outermost nonzero diagonal.*/
WHILE ( (bC > 2) AND (nzcnt < (threshold * (n — bC))) ) DO

i. rizent 0

ii. FOR col := 1 TO n — bC DO
IF AQl+bc,0j 0 THEN /*Zero Acoz+bc,col.*/

IF Acol+bc_1,col = 0 THEN
Exchange rows/columns (col + b’) and (col + bC

— 1) in A.
ELSE

A := G(col+bc,col +bc — i,8)T A G(col+bc,col + if — 1,0)
(Exploit band sparsity of modified rows and columns.)

IF bandwidth(A) > bC THEN
Chase bulges with additional adjacent Givens
transformations or row/column exchanges.

ENDIF /*Outermost IF*/
IF AQl+bc_1,01 0 THEN nzcnt:= nzcnt+1

iii. IF A,_bc+1 0 THEN nzcnt:= nzcnt+1
iv. bC bC

— 1

(c) IF bC> 1 THEN complete tridiagonalization with sparse R-S.

Figure 4.8: The Hybrid Bandwidth Contraction Tridiagonalization Algorithm
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transition to sparse R-S is made and let nzcnt be the number of nonzeros in the next sub-

diagonal. The algorithm is able to check the nonzero status of entry Acol+bc_1,cQl after the

elimination of entry AcQl+bc,coj because the entries of row (bC + col — 1) will not be modified

again during the reduction of the current outermost diagonal. The resource requirements

of the band density metric are minimal—one additional integer variable, and during each

diagonal’s reduction n — bC comparisons and at most n — bC + 1 integer operations.

4.2.3 Performance of the Hybrid Tridiagonalization Algorithm

Consider the application of the Hybrid Tridiagonalization algorithm to matrix A of Fig

ure 4.5 with a threshold of 0.85. In the first stage of the tridiagonalization BC reduces

the three outermost nonzero subdiagonals, producing matrix D of Figure 4.5. The Hybrid

Tridiagonalization algorithm then transfers control to sparse R-S to complete the reduc

tion to tridiagonal form. Table 4.2 summarizes the computational requirements of all three

sparse tridiagonalization algorithms, assuming the use of fast Givens transformations. The

Row/ColumnMethod Nontrivial Transformations Flops
Exchanges

Sparse R-S 8 132 7232
Bandwidth Contraction 12 163 6537
Hybrid Tridiagonalization 12 136 5880

Table 4.2: Tridiagonalization Summary for a Small Sparse Example

hybrid algorithm requires approximately 19% and 10% fewer floating point operations than

sparse R-S and Bandwidth Contraction respectively. It is interesting to note that the total

number of nontrivial transformations required by the Hybrid Tridiagonalization algorithm

is significantly lower than for Bandwidth Contraction and only marginally higher than for

sparse R-S.

The test problem of Figure 4.5 is obviously a trivial example. The experiments described

in Section 4.4, however, show that the Hybrid Tridiagonalization algorithm dramatically

reduces the computational requirements of sparse tridiagonalization for a wide range of
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sparse problems.

4.3 Numerical Implementations of BC and HYBBC

This section describes features of numerical implementations of the Bandwidth Contrac

tion and Hybrid Bandwidth Contraction tridiagonalization algorithms. Following a general

description of both implementations, we study the ability of individual nontrivial Givens

transformations to exploit band sparsity. The outcome of this study influences the sparsity

techniques employed by both implementations and dictates the form of the banded data

structure used by the routines. Finally, we outline new rescaling techniques for implemen

tations using fast Givens transformations to effect diagonally-oriented reductions.

4.3.1 Implementation Basics

The first stage of both BC and HYBBC preorders a sparse problem to reduce bandwidth.

We rely upon existing preordering algorithm implementations to conduct this phase of the

reduction and concentrate upon the implementation of each tridiagonalization algorithm’s

second stage. The implementation of the Bandwidth Contraction algorithm was created

by rewriting EISPACK’s FORTRAN routine BANDR (an R-S code) to perform a sparse,

diagonally oriented, band-preserving tridiagonalization. Using this new routine, we imple

mented the Hybrid Bandwidth Contraction algorithm by augmenting the BC routine with

the described thresholding strategy, and a transition to a modified version of BANDR that

omits initializations. The hybrid algorithm switches to a column-oriented scheme when the

band is dense, or nearly so. Given the speed with which a typical sparse band fills during

an R-S reduction (see Section 3.5.2), using a sparse R-S code for this portion of HYBBC

is not warranted. Otherwise the implementations of BC and HYBBC closely follow the

algorithms in Figures 4.3 and 4.8 with one exception. That is, based on the outcome of the

following section’s study, we implement the Bandwidth Contraction algorithm with oniy

two of the three sparse algorithm modifications listed in Section 3.5.2.
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4.3.2 Dense Versus Sparse Band Trmsformations

Unlike the first two sparsity modifications listed in Section 3.5.2, exploiting the sparsity of

a pair of rows or columns during the application of a transformation requires significant

overhead. To determine if the potential savings are worthy of the increased overhead, we

conduct experiments with the symbolic reduction tool Trisymb. For 15 larger problems,

Table 4.3 compares the flop requirements of a HYBBC variant that fully exploits the unioned

sparsity structure of modified rows and columns, with a second HYBBC variant that treats

the band as dense while applying a nontrivial transformation. Accounting procedures differ

between the two simulations, but sparsity structures of the intermediate reduction matrices

are identical. The simulated reductions model fast Givens transformations exclusively. The

bandwidth of the original matrix preordered by GPS is given by bGPS and bt is the transition

bandwidth.

Going from dense to sparse transformations, savings of 12—21.5% in the Bandwidth

Contraction portion of the reduction are observed for 3 problems, but for the remaining

matrices savings are less than 5%. Considering the cost of the entire hybrid tridiagonaliza

tion, the potential savings of sparse transformations are very small. The largest reduction

is 1.1% and for the remaining problems the potential savings are 1% or lower. If stan

dard Givens transformations replace fast Givens transformations, the results are essentially

unchanged.

This study clearly shows band sparsity is best exploited at the transformation level by

identifying entries that are already zero or that the algorithm can eliminate with an adjacent

row/column exchange. Considering the storage and computational overhead required by a

sparse data structure, performing sparse transformations is not beneficial to BC or HYBBC

performance, and will not be pursued by the sparse tridiagonalization implementations

described in this dissertation. In future work, however, sparse transformations will be

reevaluated for the special case in which a partial bandwidth contraction is the end goal.
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4.3.3 A Densely Banded Data Structure

As a consequence of the preceding section’s study, our implementations of BC and HYBBC

keep the densely banded data structure of BANDR. By exploiting the symmetry of sparse

problems and similarity transformations, these algorithms need only consider transforma

tion modifications to the lower triangular portion of each matrix. The main diagonal and

each subdiagoual of the band’s lower triangular portion is stored in a separate column of

an n x (b + 1) double precision array. The storage of bulge entries does not necessitate an

additional column of storage. Because the storage requirements of BANDR are essentially

identical to those of the BC and HYBBC implementations, the experimental analysis of

Section 4.4 concentrates on the CPU requirements of each routine.

4.3.4 Rescaling and Fast Givens Transformations

To improve efficiency BANDR and our implementations of BC and HYBBC use fast Givens

transformations in place of classical Givens transformations. As shown in Equation 2.7,

each fast Givens transformation applied to the matrix under reduction must also update

a diagonal matrix, D, associated with the reduction. At the end of the reduction D up

dates the tridiagonal matrix to complete the sequence of fast Givens transformations. (See

Equation 2.8.)

If the fast Givens transformation MTAM modifies rows and columns i and j of A, the

updated diagonal matrix, 13, takes the following form. Assuming D = Diag(di,... ,

D=MTDM

= (4.1)

As shown in Section 2.4.2, M can take one of two forms. By carefully selecting the appropri

ate fast Givens transformation type, we can ensure each transformation’s “growth factor”

(1 + 7) is bounded by 2. Of course, modifying one of D’s diagonal entries by s transfor

mations may result in its growth by a factor of 2S• For reductions requiring large numbers

of transformations, periodic rescaling of D is necessary to avoid overflow. The remainder
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of this subsection provides a general outline of the rescaling techniques employed by the

R-S, BC and HYBBC implementations. As discussed in Section 2.4.2, to permit direct

comparison of our codes to BANDR we do not employ the recently developed fast plane

rotations {AP94] that avoid explicit periodic rescaling. Implementing BC and HYBBC and

algorithms of subsequent chapters using Anda and Park’s fast plane rotations with dynamic

scaling is an interesting task for future research.

All three implementations avoid difficulties with overflow by carefully restricting the

worst case growth between rescaling episodes and by selecting an appropriate rescaling con

stant for entries that experience too much growth. During R-S’s column-oriented reduction,

monitoring the potential growth of D’s entries is straightforward. When R-S eliminates one

column from the band, at most two transformations modify each of D’s diagonal entries.

Thus if the maximum permissible growth between rescalings is 264, we should schedule

rescaling episodes after the elimination of each block of 32 columns. Suppose D’s entries

must always remain less than 2128 to avoid overflow. If during each rescaling all entries

with IDi,j > are rescaled by 264, D’s entries cannot overflow before the next rescaling.

The diagonally-oriented reduction of Bandwidth Contraction requires a complete refor

mulation of BANDR’s rescaling techniques. To simplify the rescaling process we ignore

band sparsity and assume BC eliminates each entry with a nontrivial transformation. If bC

is the current bandwidth, during the elimination of a contiguous block of bC entries from

the outermost nonzero diagonal, at most 2 transformations modify each diagonal entry of

D. In a similar fashion to BANDR’s techniques, monitoring the number of blocks of bC

entries eliminated permits appropriate scheduling of rescaling episodes. This monitoring

procedure is complicated by the completion of a diagonal’s reduction, but these aspects

of the implementation will not be detailed at this time. It is important to note, however,

that as the reduction contracts the band and bC grows smaller, the frequency of rescaling

episodes increases. As a result, BC typically requires more rescaling episodes than BANDR.

This result is not surprising considering BC uses significantly more transformations.

The implementation of HYBBC inherits the rescaling techniques of its constituent algo
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rithms with one modification. Just before switching from BC to R-S, the hybrid algorithm

applies an extra rescaling episode to ensure a successful transition between the two rescaling

procedures.

For all three implementations the cost of monitoring D’s growth and the scheduling of

rescaling episodes is insignificant. The cost of the rescaling procedures is dominated by

the actual rescaling itself. During a rescaling episode each implementation scans D and

rescales those entries that could potentially overflow before the next rescaling. In addition,

the corresponding row and column of the intermediate reduction matrix are also rescaled

to maintain the integrity of the similarity reduction. Even though BC and HYBBC may

require significantly more rescaling than BANDR, Section 4.4’s extensive experimentation

with practical sparse problems shows rescaling accounts for a very small portion of the

total computational requirements of tridiagonalization. For three problems HYBBC spends

between 1 and 2% of its total reduction time rescaling, but for the remaining 112 problems

the relative cost of rescaling is less than 1%.

4.4 Experimentation

This section describes extensive experimentation with implementations of the Bandwidth

Contraction and Hybrid Bandwidth Contraction algorithms. After briefly describing the

testing environment and the selection of HYBBC’s threshold value, we analyze test results

comparing our implementations to EISPACK’s BANDR. The section concludes by investi

gating the correlation between preorderings and tridiagonalization performance.

4.4.1 The Testing Environment

To compare the computational requirements of our implementations to BANDR (an R-S

code), all three routines are applied to the 115 symmetric sparse problems in the Harwell—

Boeing test suite of Section 2.2. Unless otherwise specified, each problem is preordered to

reduce bandwidth using Lewis’s implementation of GPS [Lew82].

All testing was conducted on a Sun SPARCstation 2 with 16 MBytes of main memory.
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All routines were compiled by the standard Sun FORTRAN compiler with full object code

optimization requested. The reported CPU second timings, produced using the system

routine etime, include both the user and system time for tridiagonalization, excluding the

preordering stage.

4.4.2 Threshold Selection for HYBBC

HYBBC uses a transition strategy that thresholds the number of nonzeros in the outer

most diagonal of the current band. For our experimentation we want to identify a value of

the constant threshold (see Figure 4.8) that provides acceptable transition bandwidths for

a broad spectrum of problems. Our research of effective threshold selection techniques is

inconclusive, however, and for these experiments the transition to a column-oriented tridi

agonalization is made when the outermost subdiagonal is full. With specialized knowledge

of a particular problem’s sparsity structure other values of threshold may be preferred.

In our experience, threshold values less than 1.0 can improve the performance of HYBBC

for some sparse problems. For example, with thresholdrrrl.0 HYBBC chooses a transition

bandwidth of 11 for PLAT362. As shown by Figure 4.9, this problem’s tridiagonalization

would profit from an earlier transition at bandwidth 24. (The flop requirements of Fig

ure 4.9’s reductions were provided by the symbolic reduction tool Trisymb.) Despite the

discrepancy between these transition bandwidths, HYBBC still comes within 3.1% of the

optimal reduction using a threshold of 1.0.

Even with threshold set to 1.0, the transition strategy may also direct HYBBC to switch

to R-S when continued bandwidth contraction would benefit the reduction. For example,

HYBBC makes an early transition for large 5-point problems. In some sense the reduction

of 5-point problems provide a worst case example of an early reduction transition. With a

standard lexicographic ordering, the outermost diagonal of a 5-point problem is dense, but

the remainder of the band is zero except for the main diagonal and its adjacent subdiagonal.

Consider HYBBC’s reduction of the 5-point problem with b = 30 (m = 900). Despite a

relatively sparse band, HYBBC immediately switches to R-S at bandwidth 30, independent
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C’)
ci
0
IJ

Figure 4.9: The Variance of PLAT362’s Tridiagonalization Cost with Transition Bandwidth

of the value of threshold. As shown by Figure 4.10, the ideal transition bandwidth is 23.

HYBBC’s transition strategy, however, still allows the reduction to be within 3% of the

optimal tridiagonalizatiori.

These two examples demonstrate that HYBBC may make both an early transition when

the band remains relatively sparse or a late transition when the outermost diagonal is not

full but the band is relatively dense. Choosing a threshold of 1.0 seems to be an appropri

ate compromise. As described in Section 4.2.2, formal analysis of HYBBC’s transition for

general sparse problems is very difficult. Chapter 5 introduces a second hybrid tridiagonal

ization algorithm that lends itself to formal transition analysis, permitting the development

of more precise transition strategies. Despite HYBBC’s rudimentary transition strategy,

this chapter’s extensive experimentation shows that in the worst case HYBBC is almost

always comparable to BANDR, but typically it is significantly more efficient.

20 25
Transition Bandwidth

35
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Cl,

0
U-

Figure 4.10: The Variance of Tridiagonalization Cost with Transition Bandwidth for a
5-Point Problem, b 30

4.4.3 Numerical Testing Results

The implementations of BC and especially HYBBC are very successful relative to ETS

PACK’s BANDR. For 98 of the 115 problems tested the hybrid tridiagonalization algorithm

significantly reduces CPU requirements. For this group of problems, reductions in CPU

time range from a low of 6.6% to a high of 63.3%. For the 70 test problems with more

than 400 nodes, HYBBC requires on average 31.1% fewer CPU seconds than BANDR. The

histogram in Figure 4.11 summarizes the distribution of CPU time reductions achieved by

HYBBC for this group of 70 problems.

Table 4.4 summarizes the tridiagonalization of 20 test problems for which HYBBC is

especially successful. The table provides tridiagonalization times for each implementation,

with the CPU requirements of HYBBC’s two reduction phases given in parentheses. For

future reference the table also includes transformation totals. The two values in parentheses

below each transformation total provide the number of bulge chasing transformations and

row/column exchanges included in the total count. The symbols bGPS and bt refer to the

Transition Bandwidth
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Figure 4.11: The Distribution of HYBBC’s Improved Reduction Performance for Problems
with n > 400

bandwidth of the GPS preordering and HYBBC’s transition bandwidth respectively. The

final column of the table reports the reduction in CPU time achieved by HYBBC relative

to BANDR. For this group of problems HYBBC exhibits a mean reduction in CPU time of

44.2%.

Of the 17 test problems for which HYBBC shows little or no improvement, 14 are

very small problems, but 3 matrices have between 400 and 1000 nodes. As shown by

Figure 4.11, HYBBC is actually slower than BANDR for 2 problems with n > 400. For

one problem, DWT 992, HYBBC is only 1.3% slower than BANDR, but for NOS6 HYBBC

requires approximately 7% additional CPU seconds. Of all 115 test problems, NOS6 is the

only problem for which HYBBC significantly increases CPU requirements. The HYBBC

reduction of a few very small matrices also shows a small increase in CPU requirements

relative to BANDR. When the computational requirements of these reductions are checked

with Trisymb, however, we find HYBBC requires fewer flops and timing discrepancies are

due to the clock’s granularity.
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Tridiagonalization Times (sec)
r Name n bGPS BANDR BC HYBBC % CPU Reduction

BANDR—*HYBBC
DWT..361 361 14 3.29 3.94 3.14 4.6 1

Table 4.5: DWT 361 Thdiagonalization Summary

Although the performance of BC is similar to HYBBC for most of the problems listed

in Table 4.4, for some problems BC is substantially slower than BANDR. As an exam

ple, consider the tridiagonalization times of DWT 361 given in Table 4.5. BC requires

significantly more CPU time than does BANDR. Such a performance degradation is un

derstandable given the theoretical analysis of densely banded tridiagonalizations provided

in Sections 3.4.1 and 4.2.1. Although initially 74% of the permuted problem’s band entries

are zero, BC’s reduction of the first nonzero diagonal dramatically fills the band, resulting

in a nonzero band density of .95. As a result, the band is dense for most of the reduction by

the Bandwidth Contraction algorithm. In contrast, HYBBC only reduces 2 diagonals with

BC before detecting the absence of band sparsity and switching to R-S to complete the

reduction. Except for NOS6, the hybrid routine always has comparable CPU requirements

to BANDR in the worst case; for the majority of sparse problems it is significantly faster.

For 40 of the 115 problems tested, HYBBC with a threshold of 1.0 uses the Bandwidth

Contraction algorithm for the entire tridiagonalization process. The band of many of these

problems becomes quite dense towards the end of the reduction and the tridiagonalization

might have benefited by a earlier switch to BANDR. As an extreme example, once again

consider the reduction of NOS6 by HYBBC. The initial steps of the Bandwidth Contraction

algorithm reducing the bandwidth from 16 to 12 fills most of the permuted band’s entries.

Due to idiosyncrasies of the sparsity structure of NOS6, however, the outermost diagonal

never completely fills. Consequently, HYBBC conducts the entire reduction using BC, even

though the band is essentially dense for the majority of the reduction. These results confirm

the observations of Section 4.4.2. Although HYBBC’s transition regulating criterion works

well for most problems, there is room for improvement using problem specific threshold
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Figure 4.12: Examples of Sparsity Structures Effecting Bandwidth Contraction Performance

values or employing more sophisticated transition strategies.

4.4.4 Sparsity Structures, Preorderings and Bandwidth Contraction Per
formance

As shown previously, the performance of BC and HYBBC is dependent on problem specific

sparsity structures. In general, the class of sparsity structures ideally suited to Bandwidth

Contraction concentrates nonzeros near the main diagonal and exhibit increased sparsity

towards the outermost diagonals. We have seen that BC and HYBBC can dramatically

reduce tridiagonalization requirements by exploiting sparsity away from the main diagonal.

For example, Figure 4.12 plots the sparsity structure of CAN 1054 with a GPS preordering.

HYBBC is able to exploit this problem’s increased sparsity away from the main diagonal,

and reduce tridiagonalization requirements by 37.8% relative to BANDR.

In contrast, sparsity structures that concentrate nonzeros in the band’s outermost di

agonals hamper the spike clipping techniques of Bandwidth Contraction. For this class of

problems the outermost diagonals cannot be reduced at low cost and nontrivial transforma

tions rapidly fill the band. The plot of sparse matrix DWT 307 in Figure 4.12 provides an

0 200 400 600 800 1000 0 50 100 150 200 250 300
nz=12196 nz=2523

CAN 1054 DWT 307
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example of this sparsity structure class. The initial band nonzero density for this problem

is a relatively sparse 9.24%. Unfortunately, the GPS preordering concentrates nonzeros in

the band’s outermost diagonals, making it difficult for HYBBC to exploit band sparsity.

For this problem HYBBC shows a more modest reduction in CPU requirements of 10%

relative to BANDR.

Of course, not all matrices can be permuted to simultaneously reduce bandwidth and

produce sparsity structures conducive to Bandwidth Contraction. Whenever possible, how

ever, the ideal preordering algorithm would concentrate sparsity near the main diagonal

without sacrificing bandwidth. As a consequence of its preordering techniques using rooted

level structures, GPS has a propensity to position nonzeros away from the main diagonal.

Barnard et al [BPS93] demonstrate that spectral preorderings can exhibit complementary

characteristics, concentrating nonzeros tightly about the main diagonal. Currently this

preordering algorithm is designed to minimize matrix profile, not bandwidth. Pothen sug

gests, however, the possibility of using a local reordering strategy to refine preorderings

for bandwidth reduction, without significantly altering the preordering characteristics ben

eficial to Bandwidth Contraction [Pot93]. Continuing the investigation of the relationship

between this ordering scheme, and others, and Bandwidth Contraction performance will be

an interesting avenue for future research.

Although HYBBC implements efficient techniques for clipping the longer spikes ex

Tridiagonalization Times (sec)
BANDR HYBBC

Name b’ &ND GPS ND GPS ND
n (bt) (bt)

BCSSTKO9 95 980 234.3 964.4 150.8 375.6
1083 (57) (33)

DWT 1007 34 894 72.2 715.3 50.2 137.4
1007 (12) (22)

PLAT1919 80 1891 706.7 6877.0 424.6 2729.0
1919 (10) (72)

BCSSTK27 45 778 140.4 1145.7 113.7 264.6
1224 (25) (31)

Table 4.6: Sparse Tridiagonalization, GPS versus Nested Dissection
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Preordering Method b BANDR Time HYBBC Time
GPS 27 43.1 34.4
RCM 46 70.0 36.3
GK 40 59.8 34.7

Table 4.7: The Effects of a Poor Preordering on DWT 878

tending from the main diagonal, it is important to reiterate that the primary objective of

preordering must be to reduce bandwidth. It is not beneficial to search for preorderings

with long spikes or a wide variation in spike length as the first priority. For example, nested

dissection [GL78a] permutations of sparse matrices often produce spikes of widely varying

length, with the longest spikes towards the bottom of the matrix. But the bandwidth of

such preorderings is much larger than for GPS. Although HYBBC takes good advantage

of the increased sparsity away from the main diagonal for Nested Dissection preorderings,

Table 4.6 demonstrates that it is much better to choose bandwidth reducing preorderings.

More direct examples of banded-like ordering are given by considering the tridiagonal

ization of DWT 878 using GPS, RCM [GL78b], and Gibbs-King (or GK) [Gib76, Lew82]

preorderings summarized in Table 4.7. GK and RCM are likely to have longer spikes (higher

bandwidth) but better profile than GPS. They are exactly the kinds of orderings one might

use to get longer spikes. Switching from a GPS ordering to either RCM or GK, the CPU

requirements of BANDR closely mirror the large increase in bandwidth. The “spike clip

ping” process of HYBBC, however, is able to efficiently exploit the increased band sparsity

presented by RCM and GK, resulting in only marginal increases in CPU requirements.



Chapter 5

Split Bandwidth Contraction
Algorithms for Sparse Symmetric
Matrices

In Chapter 4 we demonstrated the ability of Bandwidth Contraction’s diagonally-oriented

reduction to exploit band sparsity and dramatically reduce tridiagonalization costs for a

wide range of practical sparse problems. In addition, we combined BC with the Rutishauser

Schwarz algorithm to produce the versatile hybrid sparse tridiagonalization algorithm

HYBBC. This hybrid algorithm exploits the differing reduction characteristics of BC and

R-S to further improve the reduction of a typical sparse matrix and in the worst case

guarantee reduction costs comparable to R-S. This chapter expands upon these successful

techniques, developing second generation sparse algorithms for bandwidth contraction and

tridiagonalization.

We begin with the development of the Split Bandwidth Contraction algorithm (or SBC),

which enhances band sparsity exploitation using bidirectional elimination techniques. The

novel Hybrid Split Bandwidth Contraction algorithm (or HYBSBC), described in the fol

lowing section, incorporates many aspects of HYBBC’s approach. To improve sparsity ex

ploitation, however, HYBSBC replaces the BC stage with the Split Bandwidth Contraction

algorithm. As a result, the new hybrid algorithm lends itself to formal transition analysis,

permitting the development of the -transition strategy for precise regulation of the algo

88
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rithm’s transition bandwidth. The chapter’s next section outlines implementations of both

the SBC and HYBSBC algorithms. Finally, extensive experimentation demonstrates that

SBC can dramatically reduce the cost of partial sparse bandwidth contractions, while HYB

SBC substantially reduces sparse tridiagonalization costs relative to HYBBC and BANDR.

5.1 The Split Bandwidth Contraction Algorithm

For most sparse problems the requirements of bulge chasing transformations dominate the

tridiagonalization costs of the Bandwidth Contraction algorithm. For example, on av

erage 96.2% of the transformations employed by the 20 Bandwidth Contraction reduc

tions in Table 4.4 eliminate bulge entries. This section introduces a novel band-preserving,

diagonally-oriented reduction similar to BC. To improve reduction performance, however,

the Split Bandwidth Contraction algorithm modifies the sequence of transformations used

to eliminate each sparse diagonal. These bidirectional elimination techniques dramatically

reduce bulge chasing requirements by taking additional advantage of band sparsity.

5.1.1 Row and Column-Oriented Adjacent Transformations

Two types of adjacent transformations are necessary for SBC’s diagonally-oriented reduc

tion. Consider the elimination of nonzero T from Figure 5.1’s sparse matrix. Assuming

the zeroing entry must be within the current band, only two adjacent transformations,

G1(8, 9,01)TAG1(8,9, 8) and 02(5,6,02)TAG2(5,6,02), can be constructed for T’s elimina

tion. The zeroing entries for these transformations are marked by Z1 and Z2 respectively.

We choose to classify both similarity transformations according to which of their rotations

eliminates T from the the lower triangular portion of the matrix. The first transformation

eliminates T from the lower triangle by modifying rows 8 and 9 with rotation G(8, 9, 01)

applied to the left of the matrix. Consequently, we classify this transformation as a row

oriented adjacent transformation. In contrast, the second transformation eliminates T from

the lower triangular portion by applying G2(5, 6,02) to the right of the matrix. Because

this rotation modifies a pair of columns, we classify the second transformation as column-
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Figure 5.1: Row and Column-Oriented Transformations

oriented.

Applying either transformation to Figure 5.1’s small example creates bulge entries. As

expected, the bulge entry pair associated with the row-oriented transformation lies further

down the band from T in positions A1315 and A8113. The bulges created by the column-

oriented transformation, however, lie above T in positions A6,1 and A1,6.

5.1.2 Bidirectional Elimination

The Bandwidth Contraction algorithm eliminates each nonzero diagonal from top to bottom

using row-oriented adjacent transformations exclusively. Alternatively, we propose starting

the reduction in the middle of each diagonal, eliminating nonzeros in both directions, as

depicted by Figure 5.2, using both nontrivial Givens transformations and row/column ex

changes. This bidirectional elimination annihilates band nonzeros below the midpoint with

row-oriented transformations and chases their bulge entries off the end of the matrix in the

usual fashion. To eliminate the nonzeros of the diagonal’s top half, however, a bidirectional

elimination employs column-oriented transformations. The bulges created by these elimina

tions are chased off the top of the matrix with additional column-oriented transformations.
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As a result, bulge chasing sequences associated with the nonzeros above the diagonal’s mid

point are significantly shortened. In fact, relative to BC these techniques potentially halve

the total number of bulge chasing transformations required for each diagonal’s reduction.

Unfortunately, cyclic elimination dependencies prevent the use of bidirectional elimina

tion techniques for dense diagonals. Rather than develop a formal proof of this intuitive

result, we manipulate the fragment of a lower triangular dense diagonal in Figure 5.3 to

demonstrate the insurmountable difficulties associated with initiating its bidirectional elimi

nation. For this example we assume the exclusive use of nontrivial adjacent transformations,

but similar demonstrations permitting row/column exchanges reach the same conclusions.

Without loss of generality suppose the reduction begins above the midpoint by eliminating

T with a column-oriented transformation. This elimination creates a bulge as illustrated

by the second band fragment in Figure 5.3. At this point the reduction could proceed in

one of two ways. The elimination of the dense diagonal could continue above the midpoint,

but first we must eliminate the bulge to avoid its growth. As shown in Figure 5.3, however,

zeroing B with either a column or row-oriented transformation reestablishes the diagonal’s

Figure 5.2: Bidirectional Elimination
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Figure 5.3: Cyclic Dependencies of a Dense Diagonal

original nonzero structure. Alternatively, we could attempt to initiate the elimination be

low the midpoint without removing the bulge. Although the row-oriented transformation

eliminating X2 does not cause bulge growth, it recreates a nonzero in the previously zeroed

entry above the midpoint. Continuing the reduction below the midpoint requires the elimi

nation of the bulge, which once again reproduces the diagonal’s original sparsity structure.

Although this is not an exhaustive example, it turns out there is no practical technique

for starting a bidirectional elimination that circumvents the cyclic dependencies of a dense

diagonal.

The bidirectional elimination of a sparse diagonal does not experience cyclic depen

dencies if the reduction appropriately exploits the diagonal’s zero entries. The key to a

successful bidirectional elimination is a region of a sparse diagonal we refer to as a split-

point. A split-point is a block of 1 or more zero entries in the outermost nonzero diagonal

of the current band. If a bidirectional elimination begins above and below a split-point, the

diagonal’s reduction can proceed in both directions with complete independence. The zero

start elimination
above midpoint

eliminate
the bulge



ChAPTER 5. SPLIT BANDWIDTH CONTRACTION 93

Th

B1X 7 Z10r - — -

X 9 X

0 Z2 11 0 B:

\J
X 13 X

—L
0 15 X

E

AB2X

xJkJ
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entries of the selected split-point prevent the inappropriately positioned bulges that created

the cyclic reduction dependencies for a dense diagonal. In addition, transformations applied

above and below the split-point modify independent subsets of band entries. For example,

in Figure 5.4 there is no overlap between the dashed rectangles outlining the extent of the

row and column-oriented transformations eliminating T2 and T1.

When a sparse diagonal contains a single contiguous block of zero entries the split

point is fixed. Other sparse diagonals may have many split-points to choose from. The

optimum split-point that minimizes their reduction costs is dependent on problem specific

sparsity structures and may be difficult to determine. Section 5.1.4 explores four spht-point

selection strategies that attempt to minimize the reduction costs associated with a sequence

of bidirectional eliminations.
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5.1.3 A Formal Presentation of SBC

The Split Bandwidth Contraction algorithm is similar in many respects to BC and inherits

all the advantages enjoyed by its predecessor for a sparse band. To exploit band nonzeros,

for example, SBC incorporates the three techniques for exploiting band sparsity included in

Section 4.1.2’s description of BC. As detailed in Figure 5.5, however, SBC also employs the

bidirectional elimination techniques of Section 5.1.2 to take additional advantage of band

sparsity and reduce the bulge chasing requirements of each diagonal’s reduction.

Once again, SBC begins by symmetrically permuting the sparse matrix to reduce band

width. Beginning with the outermost nonzero diagonal of the lower triangular portion of

the band, SBC then searches for an appropriate split-point with the routine find_split-point.

If the outermost diagonal is dense this routine returns 0, causing SBC to skip step 3b and

revert to a standard BC reduction. Otherwise find_split-point returns the column index of

a zero in the selected block of zero entries. The specific split-point selection algorithm used

by this routine is detailed in Section 5.1.4, which explores split-point selection strategies

that attempt to minimize reduction costs.

With the split-point assigned, SBC scans the diagonal for its first nonzero entry above

the split-point. This entry is eliminated using an adjacent column-oriented row/column

exchange or nontrivial transformation, depending upon the nonzero status of the zeroing

entry AcQl+bccQj+1. If this transformation creates a nonzero beyond the limits of the current

band, the bulge is chased off the top of the matrix with additional column-oriented trans

formations, as described in Section 5.1.2. The scanning and reduction process continues

until the portion of the diagonal above the split-point has been eliminated. The algorithm

then switches to a more familiar diagonally-oriented reduction using row-oriented transfor

mations to eliminate nonzeros below the split-point. Upon completion of the diagonal’s

elimination, SBC decrements the current bandwidth, bc, and begins the bidirectional elimi

nation of the next diagonal. As defined in Figure 5.5, SBC is a tridiagonalization algorithm.

Although it efficiently tridiagonalizes sparse matrices, SBC also effectively exploits band

sparsity while performing partial bandwidth contractions. The final bandwidth of SBC’s
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1. A PTAF, where P is a bandwidth reducing permutation matrix.

2. b := bandwidth(A)

3. FOR b’ b DOWNTO 2 DO /*Tridiagonalize A.*/

(a) sp find_split-poirbt(A, bC)

(b) FOR col — 1 DOWNTO 1 DO /*Eliminate above the splitpoint*/
IF Ac01+bc,col 0 THEN /*Zero Acoj+bccoz.*/

IF Acoj+bc,col+1 = 0 THEN
Exchange rows/columns (col) and (col + 1) in A.

ELSE
A := G(col,col +l,O)T A G(col,col+ 1,0)

IF bandwidth(A) > bC THEN
Chase bulges with additional column-oriented adjacent
Givens transformations or row/column exchanges.

ENDIF /*Outermost IF*/

(c) FOR col := sp + 1 TO n — bC DO /*Eliminate below the splitpoint*/
IF A0i+oc,0i 0 THEN /*Zero Aco1+bccQI.*/

IFA0j+b_,0j= 0 THEN
Exchange rows/columns (col + bC) and (col + bC

— 1) in A.
ELSE

A := G(col+bc,col+bc — 1,9)T A G(col+bc,col +bc
— 1,0)

IF bandwidth(A) > bC THEN
Chase bulges with additional row-oriented adjacent
Givens transformations or row/column exchanges.

ENDIF /*Outermost IF*/

Figure 5.5: The Split Bandwidth Contraction Algorithm



CHAPTER 5. SPLIT BANDWIDTH CONTRACTION 96

Fc1 TSBC1

(4+%)n2—(+6b+8m+10)n
+(1O+-)m2±(6b-+8)m+2b2+3b+%- +(1-)m+--if 1 < m < b
+ 2CSBC(5 + 2b

— CSBC(2 + )) +
—

± 2CSBC(5 + b — CSBC(1 + )) + --(1
—

(4 + )n2
—( + 6b + 8m + 1O)n

if b < m + (8 + )m + (8b — + 12)m + 2b2 + b + 3 Unchanged
+ (% + 2)(Csc(b — CSBC) + CSBC(b — CSBC))

Table 5.1: The Cost of SBC Eliminating the Outermost Nonzero Diagonal of a Banded
Model Problem

reduction can be freely selected from the range 1 b < b.

Formal analysis of the SBC algorithm is confronted by the same difficulties as an anal

ysis of Bandwidth Contraction when considering the reduction of matrices with general

symmetric sparsity patterns. We can obtain useful complexity results, however, for a spe

cial family of bandwidth b, order n symmetric problems. The bands of the problems are

densely populated except for a single zero entry, a split-point, in both the upper and lower

outermost nonzero diagonals of the band. The third parameter defining each matrix in this

family of model problems is the column index, m, of the zero in the lower triangular portion

of the band.

After SBC reduces the outermost diagonal of a problem in this class, the contracted

band is completely dense and inaccessible to bidirectional elimination techniques. The elim

ination of this single diagonal, however, provides a worst case analysis for SBC’s reduction

of the outermost diagonal of identically sized sparse problems using a split-point in column

m. Table 5.1 provides flop and transformation count formulas for this reduction, F1C1 and

TSBC1 computed using the enhanced analysis framework of Section 2.4.3. Without loss of

generality, the analysis assumes 1 m To apply the analysis to a model prob

lem with its split-point in the diagonal’s bottom half, simply consider the computationally

equivalent problem found by reflecting the split-point’s position about the diagonal’s mid

point. Due to difficulties with operation count summations, we actually performed one
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TBC1
zFG
‘BC1

2M(b)1±)Md( b)) () (n(n - b) + Mod(n, b)(b - Mod(n, b)))

Table 5.2: The Cost of BC Eliminating the Outermost Nonzero Diagonal of a Densely
Banded Problem

analysis when the split-point is in the first b columns of the diagonal and a separate anal

ysis when b < m In addition, the analysis assumes b < n/3 and that an equal

proportion of the two types of nontrivial fast Givens transformations are employed. The

analysis also ignores the potential cost of the periodic rescaling required by fast Givens

transformations. Finally, CSBC1 and GSBC1 are the nonanalytic terms Mod(m — 1, b) and

Mod(n — m, b).

For comparison Table 5.2 provides flop and transformation counts for the reduction

of one diagonal of a densely banded symmetric matrix using the Bandwidth Contraction

algorithm. (These results were extracted from BC’s tridiagonalization analysis detailed

in [Cav93].) It is difficult to compare these results to the complicated formulas for F° and

TSBC1. Alternatively, the graphs in Figure 5.6 plot SBC’s flop and transformation counts,

normalized by FBF’8 and TBC1, against m for a model problem with ii = 1000 and b = 100.

When the split-point is close to the center of the diagonal (m=450) SBC dramatically re

duces computational requirements and, as expected, BC requires almost twice as many

flops and transformations. As the split-point is moved towards the top of the diagonal,

however, the relative advantage of SBC gradually diminishes and eventually the computa

tional requirements of SBC converge to those of BC. For a dense diagonal the SBC and BC

reductions are identical. The general trends exhibited by these plots are largely insensitive

to changes in the relative size of m and b.

5.1.4 Split-Point Selection Strategies

The bidirectional elimination of a sparse diagonal may have many alternative split-points

to choose from. Surprisingly, it is often difficult to choose the split-point that minimizes
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(SBC1 flops)/(BC1 flops) (SBC1 trans.)/(BC1 trans.)
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Figure 5.6: The Flop and Transformation Requirements of SBC relative to BC for n=1000
and brrrlOO.

the cost of reducing a sparse problem’s outermost nonzero diagonal. A simple selection

strategy chooses the split-point with minimum displacement. A split-point’s displacement

is defined as mid — sp), where sp and mid are the column indexes of a split-point and the

diagonal’s midpoint respectively. As shown in the previous subsection, the bidirectional

reduction costs of a diagonal with a single zero entry are minimal when the split-point

is at the diagonal’s midpoint. For diagonals with multiple split-points, however, choosing

the split-point with minimal displacement may not always be optimal. For example, the

outermost diagonal in the band of the small sparse problem in Figure 5.7 has two split-

points. The minimum displacement selection strategy chooses the centered split-point in

column 9. With this split-point the diagonal’s bidirectional elimination uses 11 nontrivial

fast Givens transformations, requiring 553 flops. In contrast, the bidirectional elimination

using the split-point in column 4 requires 7 transformations and 345 flops.

In general a diagonal’s optimum split-point depends on several contributing factors.

1. The distribution of nonzeros in the diagonal.

2. The distribution of nonzeros in the remainder of the band.

3. Problem specific sparsity structures of the sparse band.

Unfortunately, these factors interact in a very complex manner, and without potentially
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Figure 5.7: Reduction Performance and Split-point Selection

expensive modeling of a diagonal’s reduction, it is difficult to consistently improve npon

the minimum displacement approach. For example, without modeling it is generally not

known to what extent a diagonal will fill during its reduction. Choosing the minimum

displacement split-point, however, minimizes reduction costs in the worst case when the

diagonal under reduction experiences high levels of fill. In our experience Figure 5.7’s

example is an exceptional case. The minimum displacement split-point selection strategy is

generally applicable and typically finds the optimal or near optimal split-point for a single

diagonal’s reduction.

The Split Bandwidth Contraction algorithm, of course, typically reduces a sequence of

nonzero diagonals. In this case the split-point selected for one diagonal’s elimination may

impact the quality of split-points available for the reduction of subsequent diagonals. To

perform an efficient bandwidth contraction, we seek a sequence of split-points that globally

minimizes reduction costs. Many different factors affect the sparsity of reduction inter

mediates and the location of their split-points. The remainder of this subsection briefly

investigates four global selection strategies, which explore trade-offs between the displace-
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____

100

Problem n bGPS Problem n__[ bGPS_E__Problem n bGPS

DWT 361 361 14 CAN 1054 1054 112 BCSSTK12 1473 62
LSHP 577 577 25 BCSSTKO9 1083 95 BCSPWRO8 1624 108
GR 30 30 900 49 1138 BUS 1138 126 PLAT1919 1919 80

NOS3 960 65 ERIS1176 1176 100 SSTMODEL 3345 82
DWT 1007 1007 34 DWT 1242 1242 91 BCSSTK28 4410 323

Table 5.3: Test Problems for Splitpoint Selection Experimentation

ment of selected split-points, the position of future split-points, fill, and reduction costs.

Because it is difficult to theoretically determine the relative importance of factors affecting

coiltraction performance, we evaluate the merits of each approach using Trisymb exper

imentation with the subset of 15 problems from the Harwell—Boeing test suite listed in

Table 5.3.

5.1.4.1 Minimum Displacement Split-Point Selection

Our first global split-point selection strategy simply applies the minimum displacement

selection criterion to each intermediate matrix, relying upon its efficient elimination of

each diagonal to approximate a global minimization of reduction costs. As a typical split

bandwidth contraction proceeds, a block of nonzeros builds in the center of the outermost

diagonal of successive intermediate matrices, forcing split-points away from the midpoint.

For the moment when the two split-points bordering this central nonzero block have equal

(minimal) displacement, the selection strategy breaks ties arbitrarily. We use this version

of the Split Bandwidth Contraction algorithm, referred to simply as SBC, to benchmark

each of the three remaining global selection strategies.

5.1.4.2 Unidirectional Split-Point Selection

While experimenting with a Trisymb implementation of SBC, we observed that a few prob

lems experience higher levels of band fill with SBC than BC. The largest discrepancies

in the band density of corresponding intermediate matrices are often associated with ex
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tended periods of split-point flipping. During an episode of split-point flipping SBC selects

split-points from alternating sides of the growing block of nonzeros straddling the midpoint

of the outermost diagonal of successive intermediate matrices. Without going into great

detail, split-point flipping can increase intermediate fill levels by

1. changing the orientation of transformations eliminating nonzeros from particular re

gions of the band.

2. modifying the order in which the outermost diagonal’s entries are eliminated.

If we curtail split-point flipping, perhaps fill could be reduced and reduction performance

improved. To investigate the relationship between split-point flipping, fill and reduction

performance, we propose a second global strategy, the unidirectional split-point selection

strategy. (The corresponding version of the reduction algorithm is referred to as USBC.)

The unidirectional selection strategy chooses minimal displacement split-points sub

ject to the following constraint. After selecting its first off-centre minimum displacement

split-point, the strategy must choose split-points from the same side of the midpoint for

the reduction of subsequent diagonals. When the selection process encounters a diagonal

without a split-point in this region, it may consider split-points from the remainder of the

diagonal.

To compare the relative merits of USBC and SBC, we performed partial bandwidth con

tractions for each of the 15 problems in Table 5.3, using Trisymb symbolic implementations

of both algorithm variants. In isolation from other reduction factors, eliminating split-point

flipping may reduce fill production, but the unidirectional selection strategy typically forces

USBC to select split-points of significantly higher displacement, increasing bulge chasing

requirements. The fill accompanying these extra transformations typically neutralizes the

potential band fill savings of unidirectional split-point selection. Consequently, USBC does

not reduce the contraction costs of any problem relative to SBC. In fact, for 5 problems:

CAN 1054, DWT 1242, GR 30 30, SSTMODEL and 1138 BUS, USBC increases flop re

quirements by 11—76%. For these problems USBC frequently chooses split-points with 3 to 4

times the displacement of SBC’s split-point selection for the corresponding reduction inter-
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mediate. Because fill and band nonzeros interior to the band of the original matrix reduce

the sparsity of the contracted band’s outermost diagonal, there is little chance of USBC

exhausting the split-points on one side of the midpoint and finding small displacement

split-points remaining in the other half of the diagonal. In conclusion, these experiments

clearly demonstrate that selecting minimum displacement split-points is more cost effective

than attempting to avoid flipping with a unidirectional scheme.

5.1.4.3 Damped Split-Point Selection

The difficulties of the unidirectional split-point selection strategy result from dramatic

increases in split-point displacement. The unidirectional strategy, however, is one extreme

of a range of selection strategies. This section reexamines the trade-offs between fill, flipping

and split-point displacement using a generalization of the unidirectional strategy that damps

the frequency of split-point flipping incidents to varying degrees. With this scheme we seek

a compromise between the unidirectional and minimum displacement split-point selection

strategies that improves reduction performance.

The damped split-point selection strategy controls the selection of each diagonal’s split-

point using the hysteretic process defined by the following conditional statement. (The cor

responding version of the Split Bandwidth Contraction algorithm is referred to as DSBC.)

IF (DF * IDssI) < Dosi THEN

select split-point SS
ELSE

select split-point OS

88 and OS are the minimum displacement split-points on the same side and opposite

side of the midpoint as the split-point chosen for the previous diagonal’s reduction. The

displacement of split-points 88 and 08 is given by D55 and D05. The roles of opposite

and same side split-point are undefined when

• SBC is reducing the outermost diagonal of the original band.

• a centred split-point is available in the current diagonal.
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Flops

Figure 5.8: Desirable DSBC Reduction Characteristics

• the previous diagonal was eliminated using a centred split-point.

• split-points are unavailable in one half of the current diagonal.

In these special cases the diagonal’s minimum displacement split-point is chosen.

The damping factor, DF, regulates the amount by which the displacement of the selected

split-point may exceed the minimum displacement to avoid flipping. (0 DF 1) For

example, if DF = 0.5 then IDssI must be more than twice IDosi before split-point OS

is selected. When DF = 0 the damped split-point selection strategy degenerates into the

unidirectional scheme, while at DF = 1 it is equivalent to the minimum displacement

strategy.

Once again, we explored the relative merits of DSBC by performing partial bandwidth

contractions of Table 5.3’s 15 sparse problems with a Trisyrnb symbolic implementation

of the algorithm. The goal of the DSBC algorithm is to damp split-point flipping, re

ducing or delaying the introduction of band fill to improve contraction efficiency. Al

though the unidirectional selection strategy increases flop requirements, we pursue the

possibility that partially damping flipping results in flop savings, as depicted in Figure 5.8.

Unfortunately, extensive experimentation did not reveal any consistent improvements in

contraction performance independent of the damping factor. In fact, the contractions of

.0. DF .1(unidirectional) (minimum
displacement)
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most problems were unchanged or showed slight increases in flops for moderate damping

factors (0.5 DF 1.0) relative to SBC. Further reduction of the damping factor causes

significant increases in flop requirements for the four problems on which USBC performed

the most poorly, while the remaining problems were largely unaffected. No problem ex

hibits a trend towards reduced contraction costs. In conclusion, these experiments clearly

demonstrate that amongst the split-point selection alternatives presented by DSBC, choos

ing split-points with minimum displacement must be the paramount objective.

5.1.4.4 Induced Split-Point Selection

As discussed earlier in Section 5.1, to improve the efficiency of sparse bandwidth contraction,

it is important to reduce bulge chasing requirements. The damped split-point selection

strategy tried to reduce bulge chasing by restricting split-point flipping to control band

fill. Alternatively, induced split-point selection techniques ignore potential increases in

band density and focus directly upon the development and use of small displacement split-

points. In fact, the induced split-point selection strategy encourages split-point flipping

in the hope of producing a set of smaller displacement split-points for the reduction of

subsequent diagonals.

There are several factors motivating the investigation of induced split-point selection

techniques. First, we hope this scheme will distribute bulge chasing more evenly, encourag

ing a balanced distribution of nonzero entries and future split-points across the midpoints

of a band’s outermost diagonals. As observed for applications of the damped split-point

selection strategy, unevenly distributed split-points can result in unidirectional split-point

selection behavior.

In addition, while the bands of intermediate matrices remain relatively sparse, split-

point flipping can reduce the displacement of split-points available for the reduction of

subsequent diagonals. Consider the reduction of the outermost nonzero diagonal from a

sparsely banded matrix of bandwidth b, and for the moment ignore the original nonzero

structure of diagonal b — 1. As diagonal b is reduced using adjacent nontrivial transforma
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tions and row/column exchanges its nonzero entries, and possibly split-points, are generally

mapped into neighboring positions in column b — 1. In special circumstances split-points

available in diagonal b — 1 will have a smaller displacement than their ancestors in diag

onal b. For example, an unused split-point in the current diagonal may also exist in the

next diagonal, but with a smaller displacement, if a split-point from the opposite side of

the midpoint is chosen for the current diagonal’s reduction. The following discussion out

lines several circumstances under which split-points are shifted by SBC’s elimination of one

diagonal.

As for previous selection strategies, we assume the split-point selected for each diagonal’s

reduction is best chosen from the pair of minimal displacement split-points straddling the

diagonal’s midpoint. We refer to this pair of split-points as:

SPA - The smallest displacement split-point above the midpoint of the outermost diagonal.

SPB - The smallest displacement split-point below the midpoint of the outermost diagonal.

The evolution of SPA and SPB’s displacements is closely related to the following problem.

• As SBC contracts the bandwidth of a sparse matrix, does the length of the con

tiguous nonzero block encompassing the midpoint of the outermost diagonal grow

monotonically?

Although growth in the central block of nonzeros is a dominant reduction trend, there are

special situations in which the nonzero block can shrink slightly. Figure 5.9 illustrates a

small example in which reducing the bandwidth from 3 to 2 with SBC decreases the length

of the central nonzero block by one and moves SPA closer to the midpoint.

In this example, the reduced length of the nonzero block, and part of SPA’s reduced

displacement, results from the elimination of the second band nonzero above the split-point

with a row/column exchange. As illustrated in Figure 5.10, application of this transfor

mation switches diagonal 3’s fourth nonzero above the split-point into position A5,3, thus

avoiding its own explicit reduction and separating it from what remains of the central

nonzero block.
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Let NBL be the length of the central nonzero block in the outermost diagonal of a band

width b sparse matrix. In general, when NBL < b there is no opportunity of reducing

a split-point’s displacement in this fashion. However, if NBL b then once the central

block has been reduced to length b by the diagonal’s partial reduction, a split-point shift

can occur if the next nonzero in the central block is reduced with a row/column exchange.

Of course, these conditions are not sufficient to guarantee a split-point shift. Fill entries

or nonzero entries already existing in the (b — i)th subdiagonal could disrupt the shifting

process.

The previous discussion describes why SPA moves one row towards the midpoint in

Figure 5.9, but what about the other half row of the reported shift? Consider a more

general case in which SPB is used to reduce the current diagonal and SPA is at least

two zero entries in length. In this case if SPA is not destroyed by fill entries, or existing

nonzeros in the neighboring subdiagonal, it will move at least 0.5 rows closer to the midpoint

in adjacent diagonal, as shown in Figure 5.11, independent of the type of column-oriented

transformations employed. Given this result it might be tempting to choose a series of split-

Figure 5.11: The Normal Reduction Shift of a Lower Triangular Split-Point

points from one side of center to move split-points on the other side closer to the center. As

shown in Sections 5.1.4.2 and 5.1.4.3, however, split-point selection schemes with a strong

unidirectional flavor are unsuccessful.

When NBL > b bulge chasing row/column exchanges may also shift split-points in a

similar fashion to shifts resulting from row/column exchanges eliminating band nonzeros.

bandwidth = b bandwidth = b-i
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Figure 5.12 demonstrates the mechanism by which a bulge chasing rotation shifts a split-

point. The elimination of the first nonzero above the split-point creates a bulge entry

as shown in matrix A of Figure 5.12. When this entry is chased with a row/column ex

change, the transformation switches A7,4 off the main diagonal and moves SPA closer to

the midpoint, creating matrix B.
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Figure 5.12: Multiple Split-Point Shifts

Continuing this reduction illustrates the potential of distinct shifting events combining

to shift a split-point multiple positions during the reduction of a single diagonal. As the

result of a bulge chasing shift, a band elimination shift and the normal half row shift

of a diagonal’s reduction, SPA’s displacement reduces from 3 in matrix A to 0.5 in the

bandwidth 2 intermediate matrix C.

It is important to reiterate, however, that the location in the neighboring diagonal

to which a split-point is shifted may already have nonzero entries or fill may destroy the

split-point during the first diagonal’s reduction. As the separation of SPA and SPB grows

beyond the current bandwidth, there are more opportunities for fill to destroy split-points

during shifting. In addition, appropriate positioning of zero entries is essential to permit

the use of the row/column exchanges needed for bulge chasing and band elimination shifts.

Having demonstrated several circumstances under which split-point SPA (SPB) can be

shifted closer to the midpoint by using SPB (SPA), we are ready to consider the form of the

induced split-point selection strategy more closely. Given the difficulties encountered by

sc

apply a
bulge chaain

row/cd
exchange

complete
reduction

to b=2
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unidirectional schemes, encouraging split-point flipping seems a reasonable way to exploit

split-point shifting. For example, suppose SPA and SPB are single zero split-points of equal

displacement, and SPA is used to reduce the current subdiagonal, b. In diagonal (b — 1) the

new SPA must have a larger displacement, so it seems reasonable to use SPB for diagonal

(b — 1)’s reduction. Assuming SPA is not destroyed during (b — 1)’s reduction, it will be

available for the elimination of diagonal (b — 2) with a potentially reduced displacement.

This example does not imply, however, that the induced strategy should select split-points

from strictly alternating sides of the midpoints of a sequence of diagonals. Unlike this case,

there may be a wide discrepancy between the displacements of SPA and SPB. If split-points

are chosen in an alternating fashion, a split-point with an unacceptably large displacement

might be chosen over a split-point of significantly smaller displacement. A solution to these

difficulties is to promote split-point flipping with careful regulation of the selection process

to avoid split-points with excessively large displacements.

In a similar fashion to the damped selection strategy, the induced split-point selection

strategy controls the selection of each diagonal’s split-point with the following hysteretic

process. (We refer to the corresponding version of the Split Bandwidth Contraction algo

rithm as ISBC.)

IF (IF * IDosi) IDssI THEN

select split-point OS
ELSE

select split-point SS

Once again, SS and OS are the minimum displacement split-points on the same side and

opposite side of the midpoint as the split-point chosen for the previous diagonal’s reduction.

D8 and D0 represent the displacements of split-points SS and OS. In the special cases

when the roles of opposite and same side are undefined (see page 102), the diagonal’s

minimum displacement split-point is chosen.

The inducement factor, IF, regulates the amount by which the displacement of OS may

exceed the minimum displacement and still permit split-point flipping. (0 IF 1) When
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IF = 1 the induced split-point selection strategy is equivalent to the minimum displacement

strategy, while if IF = 0 split-points are selected from alternating sides of the midpoint.

As for previous selection strategies, we explored the relative merits of ISBC by per

forming partial bandwidth contractions of Table 5.3’s 15 sparse problems with a Trisymb

symbolic implementation. Each problem was contracted to a predetermined bandwidth

using a variety of inducement factors in the range 0 < IF 1 and compared to SBC’s

contraction of the same problem.

Independent of the inducement factor and test problem, however, we did not observe

significant reductions in the computational requirements of Split Bandwidth Contraction

using ISBC. In fact, even with reasonably large inducement factors, ISBC significantly

increased the bandwidth contraction costs of some problems relative to SBC. For example,

contracting NOS3 to bandwidth 40 using ISBC and IF = 0.7 increases the flop count

by 36% relative to standard SBC. The flop count totals of ISBC, however, are typically

within 1% of SBC’s costs when 0.80 IF < 1. Large flop count increases are usually

restricted to smaller inducement factors for which ISBC permits the selection of much

higher displacement split-points to enable flipping. Small inducement factors do not always

result in dramatic increases in computational requirements. In fact, BCSSTK12, DWT

1007, LSHP 577 and PLAT1919 are relatively immune to inducement factor variation.

The goal of the induced split-point selection strategy is to reduce bulge chasing require

ments by choosing a sequence of split-points with minimal total displacement. To meet

this goal it encourages split-point flipping to exploit shifting and to bulge chasing balance

across the midpoints of the outermost diagonals. Split-point shifting was observed during

the reduction of a majority of the test problems. In most cases, however, displacement

savings resulting from the selection of shifted split-points just managed to offset the extra

displacement of split-points chosen to provide split-point flipping. In other cases the extra

displacement sacrificed to induce a split-point flip far exceeds any reduction in the displace

ment of subsequent split-point selections. Similarly, induced split-point selection improved

the balance bulge chasing for many problems, but its impact on the contraction of practical
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problems was lower than anticipated.

In conclusion, exploring the induced split-point selection strategy has clearly demon

strated, once again, that the paramount concern of split-point selection must be to choose

split-points of local minimum displacement. Although the induced split-point selection

strategy was not successful, through these investigations we have learned much about the

dynamics of the Split Bandwidth Contraction algorithm.

5.1.4.5 The Final Form of the Split-Point Selection Strategy

The introduction to Section 5.1.4 identified several factors affecting the performance of split

bandwidth contractions. The four global selection strategies investigated in previous subsec

tions explored trade-offs between these factors from the perspective of split-point selection.

Among the presented alternatives, these studies have clearly shown that selecting a mini

mum displacement split-point for each diagonal’s elimination is the best overall strategy. It

might be possible to design special selection strategies to more fully exploit common spar

sity structure characteristics of specific classes of matrices, but the minimum displacement

split-point selection strategy results in an efficient, generally applicable method.

As described in Section 5.1.4.1, the minimum displacement strategy currently arbitrar

ily breaks ties between two split-points of equal (minimal) displacement. Alternatively,

we propose resolving these equivocal selections with either damped or induced split-point

techniques. Neither technique improves upon the minimum displacement strategy when

employed as a global strategy, but the damped split-point selection strategy generally de

grades the performance of a contraction less than the induced approach. Consequently,

the final version of SBC’s find_split-point routine (see Section 5.1.3) employs the minimum

displacement selection strategy and in the case of ties selects the split-point on the same

side of the midpoint as the split-point chosen for the previous diagonal.
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Split Bandwidth Contraction Bandwidth Contraction

Figure 5.13: A Partial Bandwidth Contraction

5.1.5 Performance of the Split Bandwidth Contraction Algorithm

To illustrate the effectiveness of the Split Bandwidth Contraction algorithm we performed

experiments with the symbolic reduction tools Xmatrix and Trisymb, comparing SBC’s flop

and transformation requirements to those of BC, as well as sparse R-S and HYBBC. All

results assume the use of fast Givens transformations and sparsity exploitation as described

by each algorithm’s definition.

Consider SBC’s reduction of the small sparse example discussed in Sections 4.1.3 and

4.2.3, and illustrated by matrix A of Figure 4.5. Figure 5.13 illustrates the intermediate

reduction matrix resulting from SBC’s elimination of the three outermost nonzero diagonals

of the band using the lower triangular split-points in columns 7, 9 and 8, as chosen by SBC’s

routine find_split-points. For comparison, Figure 5.13 also illustrates the corresponding

intermediate matrix from BC’s reduction of the same problem. For this partial contraction

BC uses 12 row/column exchanges and 16 nontrivial transformations, requiring 736 flops.

Bidirectional elimination techniques, however, enable SBC to more fully exploit the sparsity

of the band away from the main diagonal. SBC uses 10 row/column exchanges and 12
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Method
Row/Column

Nontrivial Transformations Flops
Exchanges

Sparse R-S 8 132 7232
BC 12 163 6537
HYBBC 12 136 5880
SBC 12 130 5026

Table 5.4: Tridiagonalization Summary

nontrivial transformations, reducing computational requirements by 24% to 560 flops. In

addition, Table 5.4 compares the transformation and flop requirements tridiagonalizing this

small example with SBC, sparse R-S, BC and HYBBC. The Split Bandwidth Contraction

algorithm requires 30.5%, 23.1% and 14.5% fewer floating point operations than sparse

R-S, BC and HYBBC respectively. Finally, we note SBC requires even fewer nontrivial

transformations than sparse R-S.

As demonstrated by the previous example, SBC effectively exploits band sparsity to

efficiently tridiagonalize sparse matrices. However, we envisage SBC’s most important con

tribution will be as a partial bandwidth contraction technique used by the first half of a

hybrid tridiagonalization algorithm (See Section 5.2.), and as a preprocessing technique for

sparse linear systems solvers and other banded eigenvalue routines such as BQR [GBDM77]

or parallel implementations of Lang’s densely banded tridiagonalization [Lan92]. To gauge

the potential of SBC in this role, we conducted an extensive comparison of partial BC

and SBC contractions using Trisymb implementations and the practical problems of Sec

tion 2.2’s test suite of Harwell—Boeing sparse problems. For each problem, both partial

bandwidth contractions continue until reaching the L-transition bandwidth of the Hybrid

Split Bandwidth Contraction algorithm to be discussed in Section 5.2.2. All problems were

preordered with GPS.

These symbolic experiments confirm that relative to BC the Split Bandwidth Contrac

tion algorithm significantly reduces the flop requirements of partial reductions. For the 70

test problems of order 400 or greater, SBC requires on average 17% fewer floating point

operations than BC. From this subset of problems SBC reduces the flop requirements of
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Transformation Totals
(bulee chasg row/coiexch.)

Flops (xlO°)

Name BC SBC BC SBC %Flop
n, b°, b- Reduction

NOS5 21031 14360 7.5415 4.5001 40.3%
468, 88, 49 (14121,3308) (7694,3146)
BCSSTK19 365696 197039 27.731 15.118 45.5%
817, 18, 3 (358087,1185) (189348,248)
DWT 1007 76910 21554 14.064 3.9477 71.9%

1007, 34, 19 (71201,2682) (17952,70)
CAN 1072 289032 180585 145.15 86.232 40.6%

1072, 156, 48 (239795,17051) (128192,16221)
1138 BUS 733720 482193 135.36 90.61 33.1%

1138, 126, 11 (679001,71770) (422750,60327)
ERIS1176 1304873 627337 201.04 72.857 63.8%

1176, 100, 4 (1251204,19457) (575732,70193)
BCSPWRO6 1319287 646685 269.94 121.35 55.1%

1454, 100, 12 (1254062,92591) (583013,68994)
BCSSTK11 354180 184820 119.62 61.780 48.4%
1473, 62, 33 (326338,1397) (157859,1074)
PLAT 1919 889023 540000 309.76 193.76 37.5%
1919, 80, 30 (828261,30884) (480506,8813)
BCSSTK25 16171900 10273284 22543 13838 38.6%

15439, 238, 162 (15611226,484692) (9668324,519577)

Table 5.5: Selected Partial BC and SBC Contraction Summaries

20 sparse problems by more than 35% relative to BC, and reductions of 40—50% are com

mon. These results are consistent with the theoretical analysis of Section 5.1.3, which

predicted that a well centred split-point permitted SBC to eliminate a nonzero diagonal

from the special model problem with approximately half the computational effort of BC.

This theoretical result, however, does not bound the maximum flop count reductions for

these practical problems, which range as high as 71.9% for DWT 1007. SBC’s reduction of

this problem is able to take extra advantage of band sparsity to further shorten the length

of bulge chasing sequences and dramatically improve performance.

Table 5.5 summarizes the computational requirements of partial BC and SBC contrac

tions for 10 select test problems. The symbols bGPS and b refer to the bandwidth of the

GPS preordering and the final bandwidth of the partial contraction respectively. The two

values in parentheses below each transformation total provide the number of bulge chasing

transformations and row/column exchanges included in the total count. The final column
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Figure 5.14: The Sparsity Structure of LSHP 265 with a GPS Preordering

of the table reports the reduction in flop counts achieved by SBC as a percentage of BC’s

costs.

SBC does not improve the efficiency of partial bandwidth contractions for all sparse

problems. For example, the BC and SBC reductions of an L-shaped problem (LSHP 265,

LSHP 406, ...) are equivalent, because of their special sparsity structures under GPS pre

orderings. As demonstrated by the plot of LSHP 265’s sparsity structure in Figure 5.14,

the envelope encompassing the nonzeros of the band is bow shaped. Its outermost nonzero

diagonal consists of a single contiguous block of nonzeros straddling the midpoint. Conse

quently, when SBC chooses the split-point at the top end of this nonzero block, all entries

above the split-point are zero and the diagonal’s reduction reverts to a unidirectional elim

ination. Similarly, SBC’s reduction of subsequent diagonals cannot exploit bidirectional

techniques and the SBC and BC contractions use identical sequences of transformations.
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With different preordering, such as GK, SBC is able to take better advantage of band

sparsity than BC.

For 8 of the 115 test problems SBC actually requires more floating point operations than

BC. For 7 problems from this group, SBC exhibits moderate increases in flop requirements

ranging from 2—12%. Although SBC generally requires fewer transformations for these

matrices, peculiar characteristics of their sparsity structures result in a lower proportion

of row/column exchanges than in BC’s reduction. As a result, SBC may actually require

more nontrivial transformations than BC, causing higher flop requirements. The tendency

of SBC to trade row/column exchanges for nontrivial transformations also affected problems

for which SBC significantly reduces flop requirements. In these cases, SBC does not meet

performance improvement expectations that are based solely on the displacement of each

diagonal’s split-point. Currently, we do not have a general understanding of this complex

phenomenon, and must deal with each problem on an individual basis.

For the final problem of this group, BCSSTKO9, SBC increases flop requirements by

a factor of more than 2.5 relative to BC. To understand this dramatic increase we exam

ine the distinctive sparsity structure of BCSSTKO9 illustrated in Figure 5.15. As SBC

reduces the first few nonzero diagonals from the band, split-points are available close the

midpoint of each diagonal. Consequently, band nonzeros in region B are eliminated with

column-oriented transformations, producing band fill in region A. This increases the lo

cal bandwidth of region A, gradually forcing nonzeros outwards to meet the edge of the

contracting band. During BC’s elimination of the same diagonals, transformations do not

impinge upon region A and fill in this region is avoided until the bandwidth has been further

contracted. As the effects of SBC’s fill in region A cascade into the remainder of the band,

however, SBC exhibits significantly higher intermediate band densities. For example, once

the bandwidth of BCSSTKO9 has been reduced from 95 to 76, SBC’s intermediate reduction

matrix has 1.87 times as many band nonzeros as BC’s corresponding reduction intermedi

ate. Consequently, each diagonal requires more band zeroing transformations and longer

bulge chasing sequences, employing a dramatically higher proportion of nontrivial transfor

mations. When BCSSTKO9 is reduced by the numeric implementation of SBC discussed
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Figure 5.15: The Sparsity Structure of BCSSTKO9 with a GPS Preordering

in Section 5.3, the discrepancy between the SBC and BC contractions is less pronounced,

because row/column exchanges are no longer without cost. In this case, SBC requires only

16.5% more CPU seconds than BC.

With the exception of the previous groups of problems, the bidirectional elimination

techniques of SBC generally reduce transformation requirements significantly. As the re

sult of fewer nontrivial transformations, we anticipated, but did not observe, comparable

reductions in intermediate band densities. This apparent inconsistency is due to transfor

mation saturation. During a typical reduction, SBC updates particular pairs of rows and

columns in the band with many nontrivial transformations. Only a few of these transfor

mations, however, may actually produce fill entries within a row/column pair. Suppose a

nontrivial transformation unions the sparsity structure of a pair of rows and columns. Sub

sequent transformations applied to the same pair will not affect their sparsity structures

0 200 400 600 800 1000
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unless between transformations the sparsity of one of the rows or columns in the pair has

been unioned with a third row or column. As a result, significantly lower transformation

levels may not be accompanied by similar reductions in the band density of intermediates

matrices. Despite reduced numbers of transformations, there may still be a sufficient variety

of transformations to saturate the band and produce similar levels of band fill.

This section has evaluated the Split Bandwidth Contraction algorithm by manipulating

sparsity structures with symbolic implementations. Discussion in Section 5.4.1 confirms the

general characteristics of these results with numerical routines for SBC.

5.2 The Hybrid Split Bandwidth Contraction Algorithm

Chapter 4’s Hybrid Bandwidth Contraction algorithm, HYBBC, combines the BC and

R-S algorithms to produce an effective two stage tridiagonalization. HYBBC’s first stage

employs BC, to exploit its efficient contraction of a sparse band, but switches to R-S once the

contracted band becomes too dense and the costs of completing the tridiagonalization with

BC overtake those of R-S. As shown in Section 5.1, however, partial bandwidth contractions

using the bidirectional elimination techniques of the Split Bandwidth Contraction algorithm

are often dramatically more efficient than BC’s unidirectional elimination. This observation

suggests replacing BC with SBC to create a second generation tridiagonalization algorithm,

the Hybrid Split Bandwidth Contraction algorithm or HYBSBC.

To produce an efficient and versatile tridiagonalization algorithm, HYBSBC must also

switch to R-S when band fill reduces the effectiveness of the SBC contraction and R-S can

more efficiently complete the reduction. Consider SBC’s reduction of a special family of

symmetric model problems with n=1000 and various bandwidths. Each matrix is densely

banded, but we assume under an SBC reduction that a single split-point in column rn of

the lower triangular portion is available for each diagonal’s elimination. Of course, this

is an unlikely sequence of sparsity structures for SBC to encounter, because it is only

possible if numerical cancellation provides the appropriately positioned split-points. Using

the complexity results for R-S and SBC in Tables 3.4 and 5.1, the first graph in Figure 5.16
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Figure 5.16: The Tridiagonalization Flop Requirements of SBC Relative to R-S for a
Densely Banded Model Problem. n=1000

plots the tridiagonalization flop requirements of SBC with centred split-points, normalized

by the cost of R-S, against the bandwidth of the model problem. As expected, this plot

shows that as long as SBC finds a well centred split-point for each diagonal’s reduction,

it provides tridiagonalizations with significantly lower flop requirements than R-S. These

densely banded model problems, however, provide a worst case analysis. If SBC finds a

well centred split-point for each diagonal while tridiagonalizing a sparsely banded problem,

it typically enjoys even lower flop requirements relative to It-S.

For the reduction of practical problems SBC cannot expect to always find a well centred

split-point for the elimination of each diagonal. Like BC, SBC must also contend with fill

entries inside the contracting band. As discussed in Sections 5.1.4.1 and 5.1.4.4, during

SBC’s reduction of a typical sparse problem an expanding block of nonzeros, straddling

the centre of the outermost diagonal of successive intermediate matrices, forces split-points

away from the midpoint. For example, Figure 5.17 plots the displacements of the split-

points used by SBC during its reduction of BCSPWR08 from bandwidth 108 to 12. As

predicted by the analysis of Section 5.1.4.4, split-point displacements decrease occasionally

during the reduction, but split-points of higher and higher displacement is the dominant

u 50 100 150 200 250
m

Each Diagonal is eliminated by a split-
point in column m. b=150
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Figure 5.17: Split-Point Displacements of SBC’s Partial Contraction of BCSPWR08

trend. The speed with which split-points are forced away from the midpoint is a measure

of SBC’s relative success.

If split-points are sufficiently far from the midpoint, the cost of using SBC to complete

the tridiagonalization may rise above that of R-S. For example, the second graph in Fig

ure 5.16 plots the tridiagonalization flop requirements of SBC, normalized by the costs of

R-S, as a function of split-point positioning for the special model problem with b=150.

Each SBC reduction assumes the lower triangular split-point for each diagonal’s elimina

tion is in the same column, m. It is not surprising that for sufficiently small m SBC’s flop

counts exceed those of R-S, considering SBC converges to the BC algorithm as split-points

with larger and larger displacement are employed. In fact, Figure 4.7 demonstrates that

when each diagonal’s split-point is in column 1, and SBC is equivalent to BC, SBC may

require more than 20% additional flops relative to R-S for select densely banded problems.

Consequently, if the Hybrid Split Bandwidth Contraction algorithm is to be efficient and

generally applicable, it must be able to detect SBC’s inability to effectively reduce the

current intermediate matrix and switch to R-S to complete the tridiagonalization.

The remainder of this section provides a formal description of the HYBSBC algorithm

before developing the A-transition strategy, which precisely regulates the transition between

the algorithm’s SBC and R-S stages.
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5.2.1 An Algorithmic Framework for HYBSBC

To formalize the previous discussion, Figure 5.18 provides a pseudocode framework

defining the Hybrid Split Bandwidth Contraction algorithm. Once again, HYBSBC begins

by symmetrically permuting the sparse matrix to reduce bandwidth. While the matrix

is not in tridiagonal form and the transition condition has not been met, the algorithm

then contracts the band diagonal by diagonal using the bidirectional elimination techniques

of SBC. The column index, sp, of the lower triangular split-point used for a diagonal’s

elimination is returned by the function findsplit-point defined in Section 5.1.4.5. Once the

transition bandwidth bt identified by the function transition has been reached, sparse R-S

completes the tridiagonalization if bt > 1. This second stage of the algorithm is identical to

Section 3.5.2’s description of sparse R-S, except HYBSBC does not perform an additional

preordering.

As for the HYBBC algorithm, a sensitive design issue is the selection of an appropriate

transition strategy. For example, suppose we apply HYBSBC to the small sparse problem

in Figure 4.5 and use a transition strategy that chooses bt = 3. In this case HYBSBC’s

tridiagonalization uses 11 row/column exchanges and 127 nontrivial transformations, in

creasing the cost of tridiagonalization relative to SBC by 9% to 5473 flops. To avoid such

inefficiencies and to take full advantage of SBC, the following subsection develops the -

transition strategy, which is shown to select optimal transition bandwidths for practical

sparse problems.

5.2.2 The Li-Transition Strategy

The design of transition strategies for the HYBBC algorithm was hindered by our inability

to cheaply estimate the cost of eliminating a single diagonal with BC from a general sparsely

banded matrix. Consequently, HYBBC employs a relatively unsophisticated transition

scheme based on density measures of the outermost nonzero diagonal. In contrast, HYBSBC

lends itself to formal analysis. By exploiting characteristics of a typical SBC reduction,

the Li-transition strategy is able to use complexity analyses of SBC and R-S to precisely
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1. A PTAP, where P is a bandwidth reducing permutation matrix.

2. b := bandwidth(A)

3. (a) bc:=b

(b) sp = fimd_split-point(A, bC)

(c) /*While the matrix is not tridiagonal and the transition condition has*/

/*not been met, eliminate the outermost nonzero diagonal with SBC.*/
WHILE ( (b’ 2) AND (NOT transition(n, bED, sp)) ) DO

i. FOR col := sp — 1 DOWNTO 1 DO /*Eliminate above the splitpoint*/
IFA0l+bc,c0j 0 THEN /*Zero AcQl+bc,coj.*/

IF Acol+bc,o1+1 = 0 THEN
Exchange rows/columns (col) and (col + 1) in A.

ELSE
A G(col,col+ l,e)T A G(col,col + 1,6)

IF bandwidth(A) > b’ THEN
Chase bulges with additional column-oriented adjacent
Givens transformations or row/column exchanges.

ENDIF /*Outermost IF*/

ii. FOR col := sp + 1 TO n — bC DO /*Eliminate below the splitpoint*/
IF A0I+b,01 0 THEN /*Zero Acol+&c,col.*/

IF Aco1+bc_1,co1 = 0 THEN
Exchange rows/columns (col + bC) and (col + bC

— 1) in A.
ELSE

A := G(col+bc,col+bc — 1,0)T A G(col+bc,col+bc
— 1,0)

IF bandwidth(A) > bC THEN
Chase bulges with additional row-oriented adjacent
Givens transformations or row/column exchanges.

ENDIF /*Outermost IF*/

iii. b’ = bC
— 1

iv. sp =find_split-point(A, bED)

(d) bt = bC /*Record the transition bandwidth.*/

(e) IF bC> 1 THEN complete tridiagonalization with sparse R-S.

Figure 5.18: The Hybrid Split Bandwidth Contraction Tridiagonalization Algorithm
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regulate HYBSBC’s transition bandwidth and minimize computational requirements. After

detailing the s-transition strategy, this section assesses its potential using a subset of the

Harwell—Boeing test suite and symbolic reduction tools.

5.2.2.1 A Theoretical Basis

As demonstrated in the introduction to Section 5.2, the Rutishallser-Schwarz algorithm

is clearly superior to bandwidth contraction schemes for the tridiagonalization of matrices

with a dense band. When applying HYBSBC to a band with entries that are zero, however,

Figure 5.16 demonstrates that continuing the SBC stage of the reduction is cost-effective

while a split-point exists near enough to the midpoint of the outermost nonzero diago

nal. Unfortunately, as a typical reduction proceeds the best split-points available for each

diagonal’s elimination generally exhibit larger and larger displacements. At a particular

intermediate bandwidth, allowing SBC to continue one extra step using an off-centre split-

point before switching to R-S may be more costly than switching to R-S immediately. The

job of HYBSBC’s transition strategy is to identify the optimal transition bandwidth bt that

minimizes the following cost function.

Cost_SBC(b bt) + Cost_R-S(bt—÷ 1) (5.1)

Cost_SBCQ and CostR-S() are problem dependent functions representing the computa

tional requirements of SBC and R-S performing the indicated reductions. To permit the

development of a generally applicable transition scheme, we simplify Equations 5.1’s min

imization by assuming that the displacement of split-points selected by an SBC reduction

increase monotonically with contracting bandwidth. Although SBC violates this assump

tion for several sparse problems, decreases in split-point displacements are typically small

local anomalies, overwhelmed by the dominant trend towards progressively larger displace

ments. (See Figure 5.17.)

If we assume monotonic increases in split-point displacement, it is also reasonable to

assume that the flop requirements of eliminating each successive diagonal increase as the re

duction progresses. A dominant factor governing the cost of SBC’s elimination of a diagonal
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Figure 5.19: The Cost of Eliminating the Outermost Nonzero Diagonal of a Densely Banded
Matrix (n=1000) Using a Split-Point of Displacement 100.

from a sparse band is the displacement of its best split-point. Increasing the split-point’s

displacement generally increases the cost of a diagonal’s elimination. In addition, if split-

point displacement is held constant as we lower the bandwidth of the intermediate matrix

from which the diagonal is eliminated, elimination costs also generally rise. Figure 5.19

demonstrates this characteristic of SBC reductions for a family of densely banded matrices

with a single split-point of displacement 100 in their outermost diagonal. Finally, we also

assume the cost of completing a sparse tridiagonalization with R-S essentially decreases at

a constant rate as the bandwidth contracts. This is a practical assumption, considering the

speed with which R-S typically fills the band of a sparse matrix and that the dominant term

of the densely banded flop analysis of R-S, FK, is (4b + 6)n2. Using the full FR analysis,

Figure 5.20 plots the flop requirements of R-S, as a function of b, for the tridiagonalization

of densely banded matrices of order 1000.

Given these assumptions, the transition strategy can approximate the minimization of

Equation 5.1’s cost function by comparing the following costs before the elimination of each
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Figure 5.20: R-S Tridiagonalization Costs of Densely Banded Matrices. n=1000

diagonal. The bandwidth of the reduction’s current intermediate matrix is given by bc.

C3 Cost_SBC(lf —, (b’ — 1)) + Cost_R-S((bt— 1) 1)

C4 = Cost.RS(bC 1)

(5.2)

(5.3)

As long as C3 < C4 HYBSBC should continue eliminating diagonals with SBC. Once C3

grows larger than C4, however, the reduction switches to R-S to complete the tridiagonal

ization.

Although our assumptions have greatly simplified the optimization of Equations 5.1’s

cost function, predicting C3 and C4 exactly for general sparsity structures is difficult with

out unacceptably expensive modeling. The z-transition strategy avoids the difficulties of

exact analysis by employing the results of two theoretical analyses, L’3S and F11$C1 from

Sections 3.4.1 and 5.1.3, to approximate components Cost_SBC() and Cost_RSQ of C3 and

C4. Throughout the following discussion we assume HYBSBC employs fast Givens trans

formations, but a completely analogous scheme could be developed for implementations

based on standard Givens transformations.

100 150 200
Initial Bandwidth
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FK’ and F1 estimate the flop requirements of specific densely banded reductions,

but the L-transition strategy will be applied during the tridiagonalization of matrices

with a wide variety of sparsely banded structures. A number of factors make the use

of FK and FC1 an acceptable compromise. First, without having detailed knowledge

of a banded intermediate’s sparsity structure both analyses provide an upper bound on

the flop requirements of a corresponding sparsely banded reduction. For example, given

the triple of values (n, bc, m) and no additional knowledge of the band’s sparsity structure,

F°C1 approximates the cost of eliminating the outermost nonzero diagonal by assuming

the worst case in which all band entries except the split-point are nonzero. As the reduction

proceeds the band suffers from fill and split-points are forced away from the midpoint. This

makes the predicted flop counts more and more accurate, because information about the

outermost diagonal’s sparsity structure is implicitly represented by the minimum displace

ment split-point selected by SBC. We know, for example, there is a contiguous block of at

least 2(1 r(--)1 — mI + 1) nonzeros straddling the midpoint. Once split-points are suffi

ciently far from the midpoint to perhaps warrant a transition, this nonzero block typically

comprises a large majority of the sparse diagonal’s entries. As discussed in Section 4.3.2,

band sparsity is best exploited at the transformation level. Thus during the critical period

of HYBSBC’s reduction, Fc1 provides progressively more accurate approximations of the

outermost diagonal’s reduction costs. FK also provides good approximations of the true

cost of tridiagonalizing the contracted band of intermediate matrices, because of the speed

with which R-S typically fills the band of a sparse band. Once again, the longer the reduc

tion remains in the SBC stage of the algorithm producing fill within the band, the better

FK’s approximation becomes.

Using the results of these analyses we define the s-transition function, (n, bc, m), as

the difference between costs C4 and C3.

(n,bc,m) = FK(n,bc) — [FKi(n,bc,m) +F (n,bc —1)] (5.4)

Each of the three flop counts in this formula incorporate the one time costs, given by

Equation 2.16, of applying the transformation D”2TD”2at the end of a reduction



CHAPTER 5. SPLIT BANDWIDTH CONTRACTION 127

employing fast Givens transformations. The z\-transition strategy should not consider

these costs, and they are nullified by adding 3n to the right hand side of Equation 5.4.

A(n, be, rn) = FL(m, b’) — [F(3-1(m, b’, m) + FK(n, b’ — 1)] + 3n (5.5)

To employ the z\-transition strategy, HYBSBC checks the value of (n, be, m) before

SBC eliminates each diagonal of the band. While (n, be, m) > 0, the transition strategy

confirms the cost-effectiveness of continuing the band’s contraction with bidirectional elim

ination techniques. When (n, b’2, m) drops below zero, however, HYBSBC switches to R-S

to complete the tridiagonalization. Because the storage costs of HYBSBC are independent

of the transition bandwidth, the zX-transition strategy is based solely upon the prediction

of computational requirements.

The following subsection presents explicit formulas for (n, b’, m) and investigates their

practical application.

5.2.2.2 A Practical /.\-Transition Strategy

We explicitly form the z\-transition function A(n, be, m) by inserting the complexity results

FK and FK1 from Sections 3.4.1 and 5.1.3 into Equation 5.5. Operation count summa

tion difficulties encountered during SBC’s analysis forced Fc1 to be separated into two

independent results, each valid for a specific range of split-point displacements. Corre

spondingly, we construct the two formulas for (n, be, m) shown in Figures 5.21 and 5.22.

Both formulas assume that the column index m of the split-point refers to an entry in

the top half of the lower triangular diagonal under elimination. In those cases when the

split-point lies in the diagonal’s bottom half, in is simply assigned the column index of the

entry in the diagonal’s upper half with identical displacement. When 1 in bD, we use

/bc(n, b, in) to compute the value of the z-transition function, while if b < in

we employ mjd(m, b, in). Figure 5.23 plots the z-transition function for matrices with

n = 1000 and bandwidths of 10, 50, 150 and 300.

Each formula has been simplified to reduce its evaluation cost, but both remain relatively
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Figure 5.21: The X-Transition Function for 1 m
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Figure 5.22: The Li-Transition Function for b <m
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Figure 5.23: Variance of (n, bc, m) with Split-Point Positioning. n = 1000, bC = 10, 50, 150,
and 300

complicated and lengthy. Many of the encumbering terms result from the nonanalytic

correction terms involving ModQ. As discussed in Sections 3.4.1 and 5.1.3, these terms

can be safely ignored under many circumstances. When the value of bC is large relative

to n, however, omitting these terms can shift the value of m at which (n, b”, m) is zero

and significantly alter the behavior of the Li-transition strategy. Fortunately, the cost

of evaluating (n, bc, m) in its entirety before the reduction of each diagonal is minimal.

Table 5.6 summarizes the total number of floating point and Mod() operations required to

compute16c(n,bc,m) or mjd(n,bD,m). Although many terms of the formulas could be

evaluated using integer operations, we assume all calculations are conducted using floating

point. Assuming a Mod() operation is equivalent to approximately 3 flops, bc and amid

require 66 and 62 flops respectively. These costs are insignificant in comparison to the cost

of reducing a typical diagonal from a moderately large practical problem. In fact, the cost

1.5 10

1. 10

50000(

m
0 200 300 400 500

n=1000, b=l50
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Flops ModQs

bc 54 4

mid 50 4

Table 5.6: (n, bED, m) Evaluation Cost Summary

Name m bGPS

BCSSTKO1 48 25
BCSSTKO2 66 65
BCSSTKO4 132 46
BCSSTKO8 1074 475
CAN 73 73 27
CAN 256 256 86
CAN 268 268 101

Table 5.7: Sparse Problems with bGPS > fl/3.

of evaluating either formula is essentially equivalent to the cost of applying two fast Givens

transformations to a penta-diagonal symmetric matrix.

The L-transition functions bc(n,bc,m) and /mid(fl,b’,m) are only valid when bC <

n/3, because of assumptions underlying the SBC analysis. While the current bandwidth

of a sparse matrix lies outside this range, the transition strategy must take an alternative

approach. For several reasons, however, we do not feel that accommodating this special

case warrants the expenditure of much effort. In our experience this class of problem is rare.

Of the 115 problems in the Harwell—Boeing test suite, only 7 problems have bGPS > n/3.

(See Table 5.7.) In addition, we note that the reduction of a diagonal from a matrix with

a relatively large bandwidth generally requires fewer bulge chasing transformations than a

similar elimination from a matrix of lower bandwidth. In fact, when bC > n/2 SBC creates

no bulge entries while eliminating the outermost diagonal. As a result, the cost of a generic

diagonal’s reduction decreases as the current bandwidth gets larger. (For an example see

Figure 5.19.) Thus if HYBSBC selects a poor transition bandwidth bt > n/3, which is a

few diagonals from the optimal transition, the penalty incurred is very small relative to the
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FUNCTION transition(n, bc, sp)
IF (sp> ((n — bC)/2)) THEN

m = n — bC
— sp + 1

ELSE
m = sp

IF (bC> n/3) THEN
IF ((no split-point) OR (n —

— 2m threshold *(n — bC))) THEN
return TRUE

ELSE
return FALSE

ELSE IF ((split-point exists) AND ((n, bc, m) > 0)) THEN
return FALSE

ELSE
return TRUE

END

Figure 5.24: HYBSBC’s z-Transition Strategy

cost of HYBSBC’s entire reduction.

The s-transition strategy can adequately regulate the reduction of sparse matrices

with large bandwidths by simply adopting the density thresholding transition techniques

of HYBBC while b’ > m/3. In this case if (bC > n/3) and (nzcnt < (threshold * (m —

then HYBSBC eliminates the next diagonal with SBC. (nzcnt and threshold are defined in

Section 4.2.2.) Rather than explicitly counting the number of nonzeros in the diagonal,

however, we propose approximating nzcnt using the sparsity information implicit in the

position of the chosen split-point. By definition all entries closer to the diagonal’s midpoint

than the selected split-point in column sp must be nonzero. Recall m is the column index

of the split-point normalized to lie in the top half of the matrix’s lower triangular diagonal.

If we assume all entries in the first and last m columns of the diagonal are zero, nzcnt=

m — bC
— 2m. Of course, in general m —

— 2m is a lower bound on mzcnt. Using n — bC
— 2m

to approximate nzcnt, Figure 5.24 provides a pseudocode framework for the s-transition

strategy by defining the boolean function transition used in Figure 5.18’s description of
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Name n bGPS mo-split transition s-transition % flop reduction
bandwidth bandwidth no-split —

CAN 445 445 74 7 33 5.8%
CAN 634 634 100 14 57 6.7%
BCSSTKO8 1074 475 1 159 8.1%
BCSSTK11 1473 62 1 33 13.0%
BCSSTK23 3134 351 10 66 2.0%
BCSSTK25 15439 238 1 162 5.8%

Table 5.8: Sparse Problems with Widely Varying no-split and Li-Transition Bandwidths

the HYBSBC algorithm. We assume (n, bc, m) represents the form of the Li-transition

function, bc(n,bc,m) or mid(n,bc,m), appropriate for the specific values of m and bc.

5.2.2.3 Evaluation of the Li-Transition Strategy

A general formal analysis of the optimality of the s-transition strategy, suitable for all

sparse symmetric matrices, is not possible. To gauge the success of the s-transition strat

egy for practical problems, we conduct two sets of experiments with Trisymb symbolic

implementations of HYBSBC and the Harwell—Boeing test suite. For these experiments

the s-transition strategy uses a threshold of 1.0.

To benchmark the success of the s-transition strategy, our first set of experiments

compares a symbolic implementation of HYBSBC to an almost identical implementation

that replaces the Li-transition strategy with a much simpler approach. This alternative

transition strategy directs the hybrid algorithm to continue the SBC phase of the reduction

until the matrix is in tridiagonal form or its outermost nonzero diagonal is void of split

points. For 46 problems in the Harwell—Boeing test suite, the La-transition strategy chooses

a higher transition bandwidth than the no-split scheme. Table 5.8 presents examples of

problems for which the Li-transition strategy suggests a dramatically large increase in the

transition bandwidth. For a majority of the problems, however, the difference between

the two schemes’ transition bandwidths is much smaller relative to the problem’s initial

permuted bandwidth.



CHAPTER 5. SPLIT BANDWIDTH CONTRACTION 133

S
ci,
.0
0

0

0
.0
S
0
z

Figure 5.25: Distribution of the LI-Transition Strategy’s Flop Reductions

In comparison to the no-split approach, the LI-transition strategy successfully reduces

the flop requirements for each of the 46 problems with an earlier transition. Reductions in

flop requirements range from 0.5 to 20%, but average 8.1% over all 46 problems. Figure 5.25

summarizes the distribution of flop reductions achieved by the LI-transition strategy. As

expected, the flop reductions attained by the LI-transition strategy are comparable to the

differences between the complexity of BC and R-S for densely banded problems observed

in Section 4.2.1.

As predicted in Section 5.2.2.2, the cost of evaluating LI(m, bc, m) before SBC’s reduction

of each diagonal is an insignificant fraction of the entire tridiagonalization cost. For Harwell—

Boeing problems with n > 100, the cost of evaluating the LI-transition function is at

most 0.2% of the total reduction costs. Typically, the fraction of the total reduction cost

attributable to the LI-transition strategy is at least an order of magnitude lower than this

value.

The previous experiments clearly show that the LI-transition strategy is superior to the

rudimentary no-split transition bandwidth approach, but how well does it predict optimal

% Flop Reduction
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transition bandwidths? To determine the precision with which the &transition strategy

regulates the transition bandwidth, we investigate more closely the tridiagonalization costs

of two representatives from each of the following general classes of sparse Harwell—Boeing

problems.

1. Problems with very little difference between their no-split and s-transition band
widths, but for which HYBSBC provides a very efficient tridiagonalization.

2. Problems for which there is a large difference between the no-split and s-transition
bandwidths.

ERIS1176 and 1138 BUS are chosen to represent the first class of problems, while BC

SSTK11 and CAN 445 are selected from the second class.

Using Trisymb we examine the change in tridiagonalization flop requirements of each

problem as transition bandwidths are perturbed from the &transition bandwidth bt. J

addition to the HYBSBC reduction, we attempt 16 tridiagonalizations with fixed transition

bandwidths of bt+ offset, where offset= —8, —7,... , —1, +1,... , +7, +8. For each problem,

Figure 5.26 plots the cost of these reductions normalized by the flop requirements of HYB

SBC (offset= 0). Offsets —8, —7,..., and —4 produce invalid transition bandwidths for

ER151176 (bt = 4) and are not included in its plot. In addition, it is riot possible to select

a transition bandwidth for 1138 BUS lower than 11, the &transition bandwidth, because

the outermost nonzero diagonal of the corresponding intermediate matrix is full. Although

these plots only consider a small subset of possible transition bandwidths, expanding the

number of reductions conducted for each problem does not change the exhibited general

trends in tridiagonalization cost.

The s-transition strategy clearly chooses the optimal transition bandwidth for both

BCSSTK11 and 1138 BUS. During the reduction of ERIS1176 HYBSBC transfers to R-S

one diagonal prematurely, but HYBSBC’s cost is within 0.63% of the optimal symbolic

reduction’s flop requirements. Technically, HYBSBC also transfers control of CAN 445’s

reduction to R-S one diagonal too soon. The difference between the cost of the HYBSBC

and optimal reductions, however, is an insignificant 0.0015%. The general characteristics
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Figure 5.26: Variation in Tridiagonalization Flop Counts with the Transition Bandwidth
Offset from the Li-Transition Bandwidth, bt.

of the Z-transition strategy exhibited by the plots of these four problems’ reduction costs

are typical of the hybrid algorithm’s reduction of other Harwell—Boeing problems. With

respect to flop requirements, these results demonstrate that in practice the Li-transition

strategy selects optimal transition bandwidths for practical sparse problems. The optimality

of the &transition strategy will be further investigated in Section 5.4.3 using numerical

implementations of the Hybrid Split Bandwidth Contraction algorithm.

5.3 Numerical Implementation of SBC and HYBSBC

This section provides an overview of implementations of the Split Bandwidth Contraction

and Hybrid Split Bandwidth Contraction algorithms. The following discussion relies on

Section 4.3’s description of aspects of these implementations inherited from the BC and

HYBBC implementations, while concentrating upon the implementation of features unique
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to SBC and HYBSBC.

5.3.1 Implementation Basics

Once again, we rely upon existing preordering algorithm implementations to conduct the

preordering phase of both SBC and HYBSBC, and direct our attention to the implemen

tation of each reduction algorithm’s second phase.

The numerical implementation of HYBSBC consists of two FORTRAN modules. The

first module is a completely redesigned group of routines implementing SBC’s bidirec

tional elimination techniques using fast Givens transformations. Within this module, the

find_split-point routine identifies minimum displacement split-points by starting at the mid

point of each diagonal and searching in both directions simultaneously for the closest zero

entry. When two split-points of equal minimal displacement are found, it uses a global

variable indicating the region from which the last diagonal’s split-point was selected to

choose the best split-point with damped tiebreaking. The cost of conducting this sequen

tial search before the elimination of each diagonal is insignificant relative to the cost of

the entire reduction. To permit meaningful comparison of numeric and symbolic HYBSBC

reductions, the find_split-point routine was carefully implemented to ensure the symbolic

and numeric versions of SBC select the same split-point sequence for an identical series

of sparsity structures. Of course, numerical cancellation is not modeled by Trisymb and

for some practical problems the structure of the intermediate matrices encountered by the

symbolic and numeric routines may differ despite equivalent split-point selection routines.

HYBSBC’s LI-transition strategy was implemented as a separate subroutine closely

following Figure 5.24. It uses a threshold of 1 for problems whose permuted bandwidth

is greater than n/3. As predicted in Sections 5.2.2.2 and 5.2.2.3, the fraction of the total

tridiagonalization time spent in the LI-transition routine is insignificant. As an example,

ERIS 1176 requires 96 calls to transition(n, bc, sp), but the total number of CPU seconds

used by these calls is below the precision of the built-in FORTRAN timing routine etime.

Artificially increasing the number of calls by 500, transition(n, b’, sp) requires a total of
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0.01 second. This represents less than 0.02% of the total CPU reqnirements of ERIS1176’s

tridiagonalization.

Using its implementation of the Li-transition strategy, HYBSBC regulates the transition

to routines in the second module implementing the column-oriented phase of the reduction.

The central routine in this module is a modified version of BISPACK’s FORTRAN routine

BANDR (an R-S code) employed by HYBBC. Once again, the speed with which a typical

sparse band fills during an R-S reduction makes it impractical to use a sparsely banded R-S

code for this portion of HYBSBC.

We also developed a separate implementation of SBC capable of partial bandwidth

contractions and complete tridiagonalizations. It is essentially identical to HYBSBC’s SBC

module, but eliminates the switch to R-S using the L\-transition strategy. Alternatively, it

continues the contraction until reaching the desired final bandwidth. If it encounters a dense

outermost diagonal during the reduction, control transfers to a special implementation of

BC, which omits initializations, to complete the reduction.

As defined in Sections 5.1.3 and 5.2.1, SBC and HYBSBC incorporate the three tech

niques listed in Section 3.5.2 for exploiting band sparsity during the elimination of individ

ual nonzero entries. The experimental study described in Section 4.3.2, however, clearly

demonstrates that band sparsity is best exploited at the transformation level by identi

fying entries that are already zero or that the algorithm can eliminate with an adjacent

row/column exchange. Performing sparse transformations, however, is shown to be with

out benefit for BC or HYBBC implementations, considering the storage and computational

overhead required by a sparse data structure. This analysis applies equally well to both

the SBC and HYBSBC algorithms, and neither algorithm’s implementation pursues sparse

transformations.

Without the need for a special data structure to accommodate sparse transformations,

the SBC and HYBSBC implementations both use the densely banded data structure de

scribed in Section 4.3.3. As a result, the storage requirements of SBC and HYBSBC are

essentially equivalent to the BANDR, BC, and HYBBC implementations, allowing the ex
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perimental analysis of Section 5.4 to concentrate upon the CPU requirements of SBC and

HYBSBC.

5.3.2 Rescaling Techniques for SBC and HYBSBC

As discussed in Section 4.3.4, the use of fast Givens transformations necessitates periodic

rescaling of the diagonal matrix, D, associated with the reduction. As for previous im

plementations, the SBC and HYBSBC implementations avoid difficulties with overflow by

carefully restricting the worst case growth of D’s entries between rescaling episodes and by

selecting an appropriate rescaling constant for entries experiencing too much growth. Once

again, for accounting purposes the rescaling schemes assume all entries above and below

the split-point are nonzero.

SBC’s implementation modifies the rescaling procedures in BC’s implementation to re

duce the number and scope of rescaling episodes by exploiting the decreased bulge chasing

requirements of bidirectional elimination techniques. Specifically, SBC’s rescaling proce

dures attempt to exploit the isolation of the shortened bulge chasing sequences above and

below the split-point. For example, suppose SBC’s procedures monitoring rescaling record

that a diagonal’s elimination modifies individual main diagonal entries above and below

the split-point with at most abv and blw nontrivial transformations respectively. At the

start of the next diagonal’s elimination, the monitoring procedure assumes that in the

worst case a single entry of D has been modified by max(abv, blw) transformations since

the last rescaling. In contrast, during a BC reduction its monitoring procedure would be

forced to assume that in the worst case an entry of D had been modified by approximately

abv+blw transformations. In addition, after the first rescaling during a diagonal’s reduction

by SBC, subsequent rescalings before the diagonal’s elimination is complete are restricted

to smaller and smaller regions above and/or below the split-point. In these cases SBC

experiences shorter rescaling sequences during which fewer of D’s entries are checked and

possibly rescaled. Given these savings, the cost of SBC’s rescaling procedures are never

more than for BC and are typically substantially less.
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The HYBSBC implementation inherits the rescaling techniques of its constituent aF

gorithms with one modification. Just before transferring from SBC to R-S, the hybrid

algorithm invokes a rescaling episode to ensure a successful transition between the rescal

ing procedures of the two modules.

5.4 Experimentation with Numerical Implementations

This section describes extensive testing of Section 5.3’s implementations of the Split Band

width Contraction and Hybrid Split Bandwidth Contraction algorithms. Unless otherwise

specified, each problem is preordered to reduce bandwidth using Lewis’s implementation

of GPS [Lew82], and tridiagonalized in the same testing environment described in Sec

tion 4.4.1. For future reference we also note that the Sun workstation used for testing has a

64 KByte external cache in addition to 16 MBytes of main memory. For these experiments

the La-transition strategy uses a threshold of 1.0. After analyzing test results compar

ing our numerical implementations of SBC and HYBSBC to BC, HYBBC, and BANDR,

we coilciude by investigating the precision with which the z-transition strategy regulates

HYBSBC’s transition bandwidth for practical numerical reductions.

5.4.1 SBC Numerical Testing Results

The ability of SBC to efficiently execute a partial bandwidth contraction of a sparsely

banded problem is crucial to the success of HYBSBC. As discussed previously, efficient

partial SBC reductions can also play an important role as a preprocessing technique for

other banded eigenvalue routines, such as BQR, or parallel implementations of Lang type

tridiagonalizations, or sparse linear systems solvers. Consequently, we first analyze the

partial bandwidth contraction performance of SBC relative to BC. The final bandwidth for

each problem’s contraction is the .-transition bandwidth chosen by the numerical imple

mentation of HYBSBC.

Theoretical analysis predicts that SBC can at least halve the computational require

ments of a single diagonal’s elimination when split-points are well centred, but split-points
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in the outermost nonzero diagonal have increasingly higher displacements as a typical reduc

tion proceeds. Despite this tendency the numerical SBC implementation executes partial

bandwidth contractions very efficiently. In fact, the numerical SBC routine performs par

tial contractions even more successfully relative to BC than the substantial improvements

predicted by similar experiments with symbolic implementations of BC and SBC in Sec

tion 5.1.5.

For the 70 problems from the Harwell—Boeing test suite with ii > 400, SBC requires

on average 24% fewer CPU seconds than BC to perform the partial reductions. From this

subset of problems SBC reduces the CPU requirements of 22 problems by more than 35%

and reductions of 45 to 55% are common. Reductions ranged as high as 76% for the sparse

problem DWT 1007.

Table 5.9 summarizes the transformation and CPU second requirements of 10 selected

partial BC and SBC contractions. The table’s columns provide similar information to Ta

ble 5.5’s summaries of symbolic reductions, except the final three columns summarize CPU

second requirements instead of flop counts. Comparison of Tables 5.5 and 5.9 reveals that

the symbolic codes provide relatively accurate assessments of SBC’s actual computational

requirements relative to BC.

As the symbolic routines predict, however, SBC does not provide a faster partial con

traction than BC for all test problems. For example, the numerical SBC and BC reductions

of the “LSHP” problems are essentiafly identical. The symbolic analysis predicts that for 8

of the 115 test problems the computational requirements of SBC should be higher than BC.

Using the numerical routines, however, SBC’s performance degradation is lower than antic

ipated for these problems and fewer of them remain in this category. Although the symbolic

implementations typically predict the actual computational requirements very closely, their

flop counts do not encompass all reduction costs. For example, they do not include the cost

of performing row/column exchanges. When these additional costs are taken into consid

eration by the timings of numerical routines, SBC is significantly slower than BC for only

3 problems, DWT 918, BCSSTK28 and BCSSTKO9.
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Transformation Totals Time (sec)
(bulge chasing, row/col. exch.)

Name BC SBC BC SBC %CPU
n, bGPS, b Reduction

NOS5 21006 14285 4.29 2.77 35.4%
468, 88, 49 (14109,3319) (7663,3204)
BCSSTK19 364569 195902 13.3 6.41 51.8%
817, 18, 3 (357001,1255) (188242,281)

DWT 1007 76908 21553 7.1 1.7 76.1%
1007, 34, 19 (71200,2686) (17952,70)
CAN 1072 283858 178412 77.6 43.4 44.0%

1072, 156, 48 (235492,16888) (126802,16194)
1138 BUS 770172 498302 80.5 49.3 38.8%

1138, 126, 10 (715203,71691) (438850,60228)
ERIS1176 1295336 620025 110.5 44.0 60.2%

1176, 100, 4 (1241984,19140) (569094,69630)
BCSPWRO6 1299517 636455 154.4 62.2 59.7%
1454, 100, 12 (1234992,90699) (573608,67932)
BCSSTK11 354157 184806 63.1 28.3 55.2%
1473, 62, 33 (326321,1402) (157849,1078)
PLAT 1919 887007 537775 173.6 91.7 47.2%
1919, 80, 30 (826386,31693) (478445,9523)
BCSSTK26 3983410 3105826 907.6 579.3 36.2%
1922, 245, 12 (3730049,151257) (2871728,91367)

Table 5.9: Selected Partial BC and SBC Reduction Timing Summaries

The symbolic routines predict that due to peculiar sparsity characteristics of DWT 918

SBC requires 13.8% more flops than BC. Although the symbolic analysis correctly predicts

nontrivial transformations and row/column exchanges, SBC needs only 9.0% additional

CPU seconds. Similarly, the symbolic routines correctly predict that special characteristics

of BCSSTK28 result in higher transformation totals for SBC and a shift from row/column

exchanges to nontrivial transformations, resulting in a 6.8% increase in CPU seconds for

SBC relative to BC.

Finally, the symbolic analysis of BCSSTKO9 predicts SBC requires more than 2.5 times

as many flops as BC’s partial contraction of the same problem. As discussed in Section 5.1.5,

this large discrepancy in requirements is due to a moderate increase in transformation

totals for SBC with a dramatically lower proportion of row/column exchanges. When

BC’s large number of row/column exchanges are no longer without cost in the numerical
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implementations, the discrepancy in CPU seconds is reduced to 16.5%.

5.4.2 HYBSBC Numerical Testing Results

The z-transition strategy permits numerical implementations of HYBSBC to effectively

exploit SBC’s bidirectional elimination techniqnes and significantly improve upon both

HYBBC and BANDR tridiagonalizations.

Relative to HYBBC, HYBSBC provides additional savings in CPU time, ranging as high

as 52%, for 98 of the 115 test problems. HYBSBC achieves the largest timing reductions on

problems which the SBC phase is especially efficient and comprises a significant proportion

of the complete reduction cost. For the 70 problems with more than 400 nodes, HYBSBC

requires on average 12.7% fewer CPU seconds than HYBBC. HYBSBC tridiagonalizations

have significantly higher timings than HYBBC for only 5 sparse problems, which require

between 2 and 10.6% additional CPU seconds. The worst offenders in this gronp are

DWT 918, BCSSTKO9 and BCSSTK28, which were previously identified as problems with

peculiar sparsity structures resulting in sub-optimal partial SBC contractions. Thus, there

remain problems for which HYBBC remains the optimal reduction. At present, however,

we have not discovered easily identifiable characteristics common to the few problems for

which HYBBC is superior and must analyze each problem’s characteristics individually.

The additional gains enjoyed by HYBSBC relative to HYBBC make it an impressive

alternative to EISPACK’s BANDR. In fact, for every test problem of order greater than

100 HYBSBC’s tridiagonalization requires fewer CPU seconds than BANDR. HYBSBC

tridiagonalizes one problem, ERIS1176, in 1/5 of BANDR’s time. For the 70 problems in

the test suite with n > 400, HYBSBC requires on average 38.7% fewer CPU seconds than

BANDR. In comparison, HYBBC’s mean reduction is 31.1% for the same problem set.

The histogram in Figure 5.27 illustrates the wide distribution of CPU reductions HYBSBC

achieves for this group of 70 problems.

Table 4.4 in Chapter 4 summarizes the computational requirements of 20 test problems

for which HYBBC is especially successful. For the same group of problems Table 5.10 snm
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Figure 5.27: The Distribution of HYBSBC’s Improved Reduction Performance Relative to
BANDR for Problems with n > 400

marizes the tridiagonalization requirements of HYBSBC, as well as BANDR and HYBBC

to facilitate comparison. The value of bt listed for each problem is the bandwidth selected

by HYBSBC’s L\-transition strategy. Table 4.4 provides HYBBC’s transition bandwidth.

The final column of Table 5.10 reports the reduction in CPU time HYBSBC achieves rel

ative to BANDR. For this group of 20 problems HYBSBC exhibits an impressive mean

reduction in CPU time of 52.2%, or on average is 2.09 times faster than BANDR.

As discussed during this chapter, the performance of SBC, and consequently HYBSBC,

is dependent upon problem specific sparsity structures. As for BC, the class of sparsity

structures particularly suited to the Split Bandwidth Contraction algorithm concentrates

nonzeros near the main diagonal and exhibits increased sparsity towards the outermost

diagonals. In addition, SBC ideally prefers nonzeros to be evenly distributed across the

midpoint of each diagonal and concentrated towards its two ends.

As discussed in Section 4.4.4, GPS cannot always preorder a problem to simultaneously

reduce bandwidth and produce desirable sparsity structure characteristics in the permuted
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matrix. In addition to the GPS—HYBSBC experimentation previously discussed, we also

conducted HYBSBC tridiagonalizations using RCM and GK preorderings. Although SBC

efficiently exploits the increased peripheral sparsity often presented by these preorderings,

the typically higher initial bandwidths they produce does not permit HYBSBC’s overall per

formance to improve. As for the Bandwidth Contraction algorithm the primary preordering

objective remains the reduction of bandwidth. As outlined in Section 4.4.4 for BC, investi

gating the ability of preorderings to produce small bandwidth sparsity structures conducive

to SBC reductions is an interesting avenue of future research.

In conclusion we note one additional advantage of the HYBSBC algorithm. The -

transition strategy and bidirectional elimination techniques both contribute towards the

lower transformation totals observed for HYBSBC relative to HYBBC. On average HYB

SBC requires 1.4 times as many transformations as R-S, while HYBBC requires 2.25. Re

ducing transformation totals is of interest if we replace fast Givens transformations with

standard Givens transformations, which have higher fixed costs associated with each trans

formation. In addition, it is desirable to reduce transformation totals if we want to ac

cumulate transformations to find eigenvectors. Future research will investigate transition

strategies that attempt to provide efficient reductions while minimizing transformation us

age.

5.4.3 A-Transition Optimality

Using Trisymb symbolic implementations, Section 5.2.2.3 thoroughly investigated the pre

cision with which the A-transition strategy regulates a reduction’s transition bandwidth. In

particular, Figure 5.26 examines the change in tridiagonalization flop requirements of four

representative problems as their transition bandwidths are perturbed from the A-transition

strategy’s selection. These experiments rely completely upon the symbolic analysis of flop

requirements to predict tridiagonalization performance. In this section we confirm this

favorable analysis by conducting similar experiments with a special numerical implementa

tion of the Hybrid Split Bandwidth Contraction algorithm that permits the user to specify

the transition bandwidth.
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Figure 5.28: Variation in Tridiagonalization Time with the Transition Bandwidth Offset
from the s-Transition Bandwidth

Once again we study the effects upon tridiagonalization timings of perturbing the tran

sition bandwidth of the four Harwell—Boeing problems ERIS1176, 1138 BUS, CAN 445 and

BCSSTK11. Figure 5.28 plots the cost of each problem’s perturbed reductions normalized

by the CPU second requirements of HYBSBC using the /.-transition bandwidth (offset=0).

The reduction time of each problem with a particular transition bandwidth is actually the

mean of 3 or more reduction timings.

These plots clearly show that the Li-transition strategy selects the optimal transition

bandwidth for ER151176 and 1138 BUS. As expected, the plots of these problems are

relatively smooth and follow the same general trends as their symbolic counterparts. The

plots of the other two problems, however, are not smooth and tridiagonalization times often

fluctuate wildly from one transition bandwidth to the next. Despite these irregularities the

s-transition strategy chooses a near optimal transition bandwidth for BCSSTK11, while for
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Figure 5.29: Tridiagonalization Flop Counts for CAN 634

CAN 445 the zX-transition bandwidth is within 5.6% of the optimal reduction time. If SBC

had been allowed to eliminate one additional diagonal from CAN 445, the optimal transition

bandwidth would have been used. These results demonstrate that the tX-transition strategy

successfully picks optimal or near optimal transition bandwidths, but the irregular nature

of CAN 445 and BCSSTK11’s plots warrants further investigation.

To understand the source of the irregularities in Figure 5.28’s plots, we chose to study

more closely the tridiagonalization costs of a fifth sparse problem, CAN 634, as a function

of transition bandwidth. Figure 5.29 plots the relative flop requirements of CAN 634’s

tridiagonalization against a large range of transition bandwidths offsets. As expected,

the plot is smooth and the almost linear curves emanating from the origin indicate the

tX-transition bandwidth is computationally optimal. The nature of this plot is radically

different from its numeric counterpart in Figure 5.30. Although this plot is smoother than

the plot for CAN 445, the magnitude of the timing fluctuations is even larger. According to

this plot the tX-transition bandwidth results in a tridiagonalization whose reduction time

is 10% higher than optimal. Although the tX-transition strategy is foiled by the timing

irregularities of CAN 634 and CAN 445, the tX-transition strategy does not usually have

this much difficulty picking the optimal transition bandwidth. These two pathological cases
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Figure 5.30: FORTRAN Tridiagonalization Timings for CAN 634 on a SPARCstation 2
with a 64KByte External Cache

are representative of less than 7 problems in the Harwell—Boeing test suite.

Fluctuations in integer and floating point operation counts do not change rapidly enough

with transition bandwidth to account for these wild timing oscillations. We hypothesize

that data access patterns are influencing reduction performance and producing the dramatic

changes in CPU requirements. The densely banded data structure of HYBSBC stores each

subdiagonal of the band’s lower triangular portion in a separate column of a two dimensional

double precision array. As we reduce a problem’s transition bandwidth, the portion of the

banded data structure referenced by the R-S phase shrinks. The elimination of one extra

diagonal before switching to R-S means that R-S accesses 8n fewer bytes of memory. If

eliminating one column of storage results in more of the data remaining in the cache during

the R-S stage of the reduction, the performance of the tridiagonalization could dramatically

increase as cache hits rise. As lower and lower transition bandwidths are considered data

access patterns may change yet again, resulting in more cache misses and higher reduction

times. In this fashion the effectiveness of the cache may change with different transition

bandwidths, leading to the observed oscillatory nature of tridiagonalization timings.

To confirm this hypothesis we conducted different experiments with CAN 634 on ma-
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Figure 5.31: C Tridiagonalization Timings for CAN 634 on a SPARCstation 2 with a
64KByte External Cache

chines with different caching capabilities. For example, when the same reductions are

performed on a SUN SPARCstation 10 with a 36 KByte on-chip cache and a 1 MByte ex

ternal cache, the general characteristics of CAN 634’s relative timings plot do not change,

but the period of the oscillations is larger than for the smaller cache SPARCstation 2.

This result is consistent with our hypothesis, but to be certain of its validity we need

to eliminate the effects of caching on timing altogether. Unfortunately, the SUN hard

ware does not permit users to turn off the cache. Alternatively, we conducted a series of

experiments on a 50 MHz i486, with both an 8 KByte on-chip cache and a 256 KByte

external cache, running release 2.5 of the Mach operating system. Due to the unavailabil

ity of a FORTRAN compiler on this machine, we created a C version of HYBSBC using

the program fc [FGMS93j. To ensure this conversion process did not change the general

characteristics of tridiagonalization performance, we experimented with the C code version

on a SUN SPARCstation 2, producing Figure 5.31. Although the magnitude of the oscilla

tions have changed, the general trends of Figure 5.31’s plot are identical to its FORTRAN

counterpart.

Figure 5.32 plots normalized tridiagonalization times against transition bandwidth off-
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Figure 5.32: C Tridiagonalization Timings for CAN 634 on a 50 MHz i486 with a 8 KByte
On-Chip Cache and a 256 KByte External Cache

sets for the C version of the code run on the i486 machine with caching enabled. The plot

differs from Figure 5.31 significantly, but still exhibits the familiar erratic nature. Finally,

Figure 5.33 plots normalized timings from the same machine with caching disabled. This

plot is very close to the plot of normalized symbolic flop counts in Figure 5.29. It clearly

shows that the erratic tridiagonalization performance is due to caching effects and that the

z\-transition strategy selects the computationally optimal transition bandwidth.

If a user desires to have the fastest possible tridiagonalization of a particular problem

on a specific sequential architecture, the zX-transition strategy may not always provide the

optimal transition bandwidth. One might be able to fine-tune the &-transition strategy by

creating a detailed cache model and analyzing the data access patterns of the Hybrid Split

Bandwidth Contraction algorithm. Even if this difficult task is tractable, the approach is

both machine and problem dependent. In addition, cache effects are sensitive to machine

load. In fact, with more than one compute intensive process running during tridiagonaliza

tion testing, the erratic performance behavior will largely disappear as each plot approaches

Figure 5.33. Thus, although fine-tuning the L\-transition strategy is possible, it is not gen

erally applicable. The s-transition strategy, however, provides a general scheme, which

always selects an optimal or near optimal transition bandwidth for use in any sequential
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Figure 5.33: C ‘ftidiagonalization Timings for CAN 634 on a 50 MHz i486 with Caching
Disabled

computing environment. It is the best possible transition strategy with general applica

bility and, as the testing results of Section 5.4.2 demonstrate, it effectively contributes to

HYBSBC ‘s highly efficient tridiagonalizations.



Chapter 6

A Comparison of the Lanczos
Algorithm with Direct Sparse
Tridiagonalization

There continues to be widespread interest in the use of Lanczos-type algorithms {Lan5O]

for the solution of sparse eigenvalue problems. Lanczos algorithms are certainly well suited

to finding a few eigenvahies from either end of the spectrum of a sparse symmetric matrix.

This chapter, however, explores the ability of Lanczos algorithms to economically find mod

erately large subsets of eigenvalues or identify the complete spectrum, including eigenvalue

multiplicities, of a sparse symmetric problem. To evaluate the relative success of applying

Lanczos to these tasks we compare its resource requirements to the cost of isolating a sparse

matrix’s complete spectrum with HYBSBC and EISPACK’s tridiagonal eigenvalue routine

TQLRAT [SBD+76].

We begin the chapter with a brief overview of the mathematics underlying the basic

Lanczos iteration and identify the difficulties associated with the implementation of Lanc

zos in this simple form. (For a rigorous discussion of the Lanczos method consult [GV89]

or [Par8Oj.) With a general understanding of the Lanczos iteration, we then survey the

different techniques employed by practical Lanczos implementations. Although this survey

is far from exhaustive, it attempts to touch upon the techniques of the dominant Lanc

zos methods. The presentation of each Lanczos approach includes a theoretical discussion

152
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of its ability to compute efficiently the complete spectrum of a sparse symmetric problem.

Finally, the chapter’s last section summarizes experiments applying two well regarded Lanc

zos codes to practical sparse problems from the Harwell—Boeing test suite. We analyze the

resource requirements of these codes to compute a sparse problem’s complete spectrum, or

moderately large subsets of its eigenvalues. For these sparse eigenvalue problems, direct

methods based on HYBSBC tridiagonalizations compare very favorably to iterative Lanczos

techniques.

6.1 Lanczos Basics

Using a three term recurrence, the Lanczos algorithm directly computes tridiagonal matri

ces whose eigenvalues approximate some of the original matrix’s eigenvalues. Essentially

following the notation of Parlett [Par8O], the simple form of the Lanczos algorithm for an

n x n matrix A, and arbitrary starting vector TO, is described by the following iteration.

Let q be the zero vector and /3o .
All vectors are of length n.

For j = 1,2,...

1. qj =

2. uj = Aq2
—

3. ci.j = qu

4. r3 =
— iqi

5. ‘3j = II II

Each iteration of the Lanczos algorithm produces a new Lanczos vector q3 and scalars j3

and c. It is not difficult to understand why the Lanczos iteration is attractive to sparse

matrix researchers. Lanczos does not modify the original matrix and sparsity can be easily

exploited during the formation of the matrix-vector products Aq3.

Assume that all Lanczos vectors are collected into a single matrix

= {ql,q2,...,qi} (6.1)
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and that the scalars a and are used to form the tridiagonal matrix T.

al th
T

/3j-1

/3j a

It can be shown that

AQ — QTj = rjej, (6.2)

where 4 = (0,... , 0, 1). If exact arithmetic is used to perform the computations of each

Lanczos iteration, the Lanczos vectors are by definition orthogonal. Thus QJQ = Ii and

QJrj = 0, and it can be shown that

T,=QTAQ,. (6.3)

Using the Rayleigh-Ritz procedure, the tridiagonal matrix T can be used to find approx

imations to the eigenvalue-eigenvector pairs of A from the snbspace {qi,... , qj }. Suppose

that eigenvalue-eigenvector pairs of Tj are (O, si), i = 1,... ,j. The Ritz vectors y =

and corresponding Ritz values O approximate eigenpairs of A. Ti’s eigenvalues tend to

exhibit the quickest convergence to the extremal eigenvalues of A, making the Lanczos

algorithm particularly well suited to finding eigenvalues at either end of A’s spectrum.

With exact arithmetic, the Lanczos algorithm continues until for some Ic n = 0

and the orthogonal Lanczos vectors {q,... , qk} span the invariant subspace of A containing

the starting vector. Equivalently, the iteration continues until Ic = rank(K(A, q,
))*. At

this stage the Ritz pairs (O, y), i = 1,.. . ,k, form an exact subset of A’s eigenpairs. If

Ic <n, one can restart the iterative process by choosing a starting vector orthogonal to all

previous Lanczos vectors.

In practice, when using finite precision arithmetic Lanczos encounters difficulties related

to the loss of orthogonality between Lanczos vectors, resulting from numerical cancellation

during the computation of r3. This phenomenon complicates the algorithm’s termination

and the relationship between Ritz pairs and the eigenvalne-eigenvector pairs of A. For

*K(Aqin) is the Krylov subspace spanned by {qi,Aqi,... ,A’qi}.
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example, in practice a straightforward implementation of the basic Lanczos algorithm does

not terminate. It keeps producing duplicates of previously converged Ritz values indefi

nitely. In fact, the algorithm may even duplicate eigenvalues before all other eigenvalues of

A have been identified by a converged Ritz value. In addition, without modifying the simple

iteration, Lanczos is theoretically able to find at most a single eigenvector for each distinct

eigenvalue. The eigenvector computed by Lanczos is the projection of the starting vector

onto the invariant subspace of the corresponding eigenvalue. As a result, in its simplest

form Lanczos is unable to determine the multiplicity of eigenvalues.

Many researchers have suggested modifications of the Lanczos algorithm to overcome

these difficulties. The following subsections provide brief overviews of the most popular of

these techniques. We evaluate each variant of the Lanczos algorithm in terms of its ability

to isolate efficiently the complete spectrum of a sparse problem.

6.2 Lanczos With Full Reorthogonalization

The first technique resolving the difficulties of the simple Lanczos algorithm actively main

tains strict orthogonality among the Lanczos vectors. As each new Lanczos vector is con

structed it is orthogonalized with respect to all previously computed Lanczos vectors.

= — (6.4)

Using n iterations of this modified Lanczos method creates an n x n tridiagonal matrix

whose n Ritz values provide good approximations to all of A’s eigenvalues with correct

multiplicity. Of course, to successfully complete n iterations the Lanczos algorithm must

be restarted with an orthogonal starting vector whenever /3k = 0.

Unfortunately, the costs of employing full reorthogonalization are very high. Indepen

dent of the sparsity of A, the reorthogonalization of Equation 6.4 alone requires 2n3+ 0(n2)

flops over n iterations and 0(n2) storage. Although in practice full reorthogonalization is

not often implemented precisely as shown in Equation 6.4 (see [GV89]), the economies of

these alternative schemes do not change the leading term of the operation count. Clearly
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this variant of the Lanczos algorithm cannot isolate the complete spectrum of a sparse

problem with the efficiency of a HYBSBC+TQLRAT combination.

6.3 Selective or Partial Reorthogonalization Techniques

In response to the overwhelming cost of full reorthogonalization, researchers have proposed

augmenting the simple Lanczos iteration with selective reorthogonalization [PS79] or partial

reorthogonalization [Sim84]. Rather than insisting upon strict preservation of orthogonality,

these schemes attempt to maintain semi-orthogonality amongst the Lanczos vectors. Both

the selective and partial reorthogonalization schemes use clever techniques to monitor the

loss of orthogonality and when necessary reorthogonalize Lanczos vectors against either

converged Ritz vectors or a subset of the Lanczos vectors produced by previous iterations.

Parlett and Scott [PS79] claim that an eigenvalue’s multiplicity can be found by Lanczos

schemes with selective reorthogonalization, but they appear to be relying upon rounding

errors to sufficiently perturb an eigenvalue problem.

Either reorthogonalization technique allows the Lanczos iteration to successfully isolate

a few of a problem’s eigenvalues without incurring the excessive computational require

ments of a complete reorthogonalization approach. If we use these variants of the Lanczos

algorithm to isolate all the eigenvalues of a sparse symmetric matrix, however, the reorthog

onalization costs of either scheme could approach those of full reorthogonalization. As an

example, we consider the potential costs of selective reorthogonalization in more detail.

The selective orthogonalization scheme reorthogonalizes each new Lanczos vector

against all Ritz vectors that have converged to an eigenvector of A, because the loss of

orthogonality between Lanczos vectors goes hand in hand with convergence [PS79]. As

a result, once this Lanczos algorithm detects the convergence of a Ritz vector, it must

compute and store the Ritz vector even if the eigenvectors of A are not desired. During

the algorithm’s identification of a few eigenvalues, there are usually far fewer converged

Ritz vectors than Lanczos vectors. This allows the algorithm to enjoy substantial savings

in comparison to full reorthogonalization approaches. If all of A’s eigenvalues are sought
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using n Lanczos iterations, however, the number of converged Ritz vectors may eventually

approach n. Suppose on average a newly converged Ritz vector must be computed after

each Lanczos iteration. During the th iteration, the cost of computing the matrix-vector

product Qs to form Ritz vector y is 2jn flops. Thus the calculation of all m converged

Ritz vectors requires

n /2nn+1)n 3 22jn
= 2

= (n + m ) flops. (6.5)
j=1

This result is a lower bound on the cost of computing the n Ritz vectors. Typically, the

convergence of many Ritz vectors is delayed until much later in the Lanczos process than

assumed by this analysis, forcing their computation from matrix-vector products of higher

dimension.

Independent of A’s sparsity structure, just the cost of calculating the Ritz vectors is

potentially very high, but this operation count does not even include the significant com

putational requirements of the following portions of the Lanczos algorithm.

1. The cost of computing Tj ‘s eigensystem when the selective reorthogonalization variant

of the Lanczos algorithm pauses to assess the convergence of Ritz vectors.

2. The cost of the actual reorthogonalization process.

3. The cost of forming the matrix-vector products for the basic Lanczos iteration.

Even though the partial reorthogonalization approach does not require the computation

of Ritz vectors, Simon [Sim84] reports that the costs of selective and partial reorthogonal

ization are comparable. Thus, it is unlikely that either of these Lanczos algorithms can

compete with HYBSBC+TQLRAT when computing the complete spectrum of sparse ma

trices of moderate bandwidth. In addition to reorthogonalization that may approach 0(n3),

both methods potentially require 0(n2) storage to record Lanczos vectors and converged

Ritz vectors in the case of selective orthogonalization.

Because the rate of convergence of Ritz vectors is problem dependent, this section’s

analysis could not be as precise as the discussion of full reorthogonalization. Section 6.6.2
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reports on experiments with a Lanczos code employing variants of both reorthogonalization

techniques while identifying the complete spectrum of sparse problems.

6.4 Lanczos With No Reorthogonalization

As mentioned in Section 6.1’s discussion of the simple Lanczos iteration, without the re

orthogonalization of Lanczos vectors, Tj may have duplicate Ritz values corresponding to

many of A’s simple eigenvalues. At any particular stage of the Lanczos process dupli

cate Ritz values have converged with varying degrees of success to one of A’s eigenvalues.

Much effort has gone into the development of Lanczos type algorithms using no reorthog

onalization, which can identify these ghost or spurious eigenvalues and deal with their

existence. This section briefly outlines two spurious eigenvalue approaches by Cullum and

Willoughby [CW79, CW8O] and Parlett and Reid [PR81]. These algorithms are intended

for the isolation of many or all distinct eigenvalues of a large sparse matrix. When A’s

eigenvectors are not required, both algorithms enjoy the distinct advantage of being able

to discard Lanczos vectors once they are no longer required by the three term recurrence

of the simple Lanczos iteration.

The two algorithms use different techniques to identify and manage spurious eigenvalues.

Cullum and Willoughby’s approach executes the simple Lanczos algorithm a user specified

number of iterations m (> m), creating a large tridiagonal matrix Tm. They identify spurious

or unconverged Ritz values by comparing the eigenvalues of Tm to a second tridiagonal

matrix of order (m — 1), produced by deleting the first row and column of Tm. If the

number and accuracy of the good eigenvalues identified is satisfactory the routine exits.

Otherwise, a preset increment is added to m and the Lanczos iteration continues until the

larger tridiagonal matrix Tm is found. Once again, the algorithm compares the eigenvalues

of Tm and Tm_i to identify eigenvalues of A. The algorithm continues in this fashion until

satisfying the eigenvalue request or reaching the maximum number of Lanczos iterations

preset by the user. Cullum and Willoughby report that some problems may require more

than iOn iterations to find all distinct eigenvalues.



CHAPTER 6. THE LANCZOS ALGORITHM 159

Parlett and Reid’s algorithm approaches the isolation of nonspurious eigenvalnes using

different techniques, which do not require the direct computation of the eigenvalues of large

tridiagonal matrices. Once again, the algorithm executes the simple Lanczos iteration, but

it uses a heuristic test for termination. Parlett and Reid’s algorithm monitors the con

vergence of eigenvalues using recurrences on sets of points within and near the requested

portion of the spectrum. To determine the actual positions of A’s eigenvalues it employs

rational interpolation procedures at these points. When all distinct eigenvalues are sought

this technique typically requires far more than n simple Lanczos iterations. In the lim

ited experimentation presented by Parlett and Reid, one problem required more than Sn

iterations to identify all eigeuvalues.

A number of difficulties are represented by both algorithms. First, there is no way

to predict the final number of iterations required to find a problem’s complete spectrum

without executing the algorithms. In both cases, the computational requirements depend

upon the distribution of eigenvalues within the spectrum of a particular sparse problem. In

general, without the use of reorthogonalization both algorithms have difficulty with regions

of a problem’s spectrum in which the eigenvalues are not well separated. Secondly, nei

ther algorithm can guarantee to find all distinct eigenvalues, because the algorithms may

terminate before all eigenvalues are identified. In the Cullum and Willoughby approach

there is no mechanism for deciding the number of iterations to use unless n nonspurious

eigenvalues are identified. Despite encouraging practical experience, the heuristic termina

tion techniques of Parlett and Reid cannot be guaranteed to succeed. In addition, both

algorithms rely upon the assumption that the user-selected starting vector has a nontrivial

projection onto the invariant subspace of all requested eigenvalues. If one uses a starting

vector deficient in a particular eigenvalue’s invariant subspace, the algorithms may never

find this eigenvalue independent of the number of iterations taken.

Finally, both algorithms are designed to find eigenvalues without regard to multiplicity.

Augmenting these methods with multiplicity checking would be unrealistic. For example, in

the Cullum and Willoughby algorithm the multiplicity of eigenvalues could be determined

by looking at the dimension of the subspace spanned by the eigenvectors corresponding to
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converged eigenvalues. If the approach uses m Lanczos iterations it would require O(mn)

storage for the Lanczos vectors and at least 0(n3) flops to compute the Ritz vectors. Alter

natively, the multiplicity of each eigenvalue could be checked by using an LDLT factoriza

tion of A — Al [BK77]. The cost of these factorizations are prohibitive considering the fill

levels experienced during a typical sparse LDLT factorization. Even if all A — Al matrices

were banded and positive definite, each Cholesky factorization would require O(b2n) flops,

which translates into O(b2n2)flops for all factorizations in the worst case.

In summary, these spurious eigenvalue approaches cannot economically determine eigen

value multiplicity and guarantee to find all distinct eigenvalues, and only very rough esti

mates of their resource requirements are possible prior to execution. Despite these difficul

ties, many researchers suggest the use of these algorithms for the practical computation of

a problem’s complete set of distinct eigenvalues. Section 6.6.1 reports on experiments com

paring the efficiency of HYBSBC+TQLRAT to an implementation of Parlett and Reid’s

algorithm, which we selected to represent the spurious eigenvalue Lanczos codes.

6.5 Block Shift and Invert Lanczos

The spurious eigenvalue approaches discussed in the previous section are unable to provide

the multiplicity of eigenvalues. The block Lanczos algorithm is a generalization of the

single vector Lanczos iteration that overcomes these limitations. Rather than computing a

single Lanczos vector, each iteration of block Lanczos produces a block of Lanczos vectors.

Similarly, in place of tridiagonal matrices, the block Lanczos algorithm computes a sequence

of block tridiagonal matrices whose eigenvalues approximate eigenvalues of A. The block

Lanczos algorithm is able to compute the multiplicity of eigenvalues, as long as the block

size is larger than the dimension of the invariant subspace of each requested eigenvalue.

Without prior knowledge of a matrix’s spectrum, however, the selection of an appropriate

block size is difficult. The efficiency of block Lanczos algorithms may suffer from the

selection of an overly large block size, because the algorithm’s overhead is quadratic in the

block size [5co83, GL594].
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Another difficulty with algorithms based on the simple Lanczos iteration is their poten

tially slow convergence for poorly separated eigenvalues. For many eigenvalue applications

the simple Lanczos iteration isolates eigenvalues efficiently from only one end of the ma

trix’s spectrum. To overcome this difficulty Grimes, Lewis, and Simon [GLS94] combine the

block Lanczos algorithm with the spectral transformation Lanczos method of Ericsson and

Ruhe [ER8O]. The goal of this sophisticated block shift and invert Lanczos algorithm is to

provide a “black box” extraction routine for the generalized symmetric eigenvalue problem,

Hx = AMx. (6.6)

Spectral transformations permit the block Lanczos algorithm to quickly isolate eigen

values in any part of the spectrum of a generalized eigenvalue problem. Of course, this

approach applies equally well to the ordinary eigenvalue problem, Ax = Ax, examined by

this dissertation. In terms of this simpler problem, the spectral transformation works in

the following manner. Suppose we want to find a group of A’s eigenvalues near , which

are poorly separated. If we invert the shifted eigenvalue problem (A — ul) using a sparse

factorization, then the eigenvalues of interest are transformed into the largest and most

well-separated eigenvalues of the following eigenvalue problem.

(A — I)’x ix (6.7)

The shift and invert transformation does not change the eigenvectors, but the eigenvalues

p. associated with Equation 6.7 are related to those of A by p. =

When more than a few eigenvalues close to a single shift are sought, a sequence of shifts

can be used to speed up the convergence of the isolation process. Grimes et al provide a

robust strategy to regulate the selection and use of shifts. With the selection of each new

shift o, the algorithm performs a sparse factorization of (A — I) and initiates a new block

Lanczos iteration.

In general, finite precision arithmetic implementations of block Lanczos algorithms suf

fer from the same difficulties as the simple Lanczos iteration, resulting from the loss of

orthogonality amongst Lanczos vectors. To cope with the loss of orthogonality, Grimes,
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Lewis and Simon’s algorithm employs a novel combination of three reorthogonalization

schemes.

1. Local Reorthogomalization

At each iteration of the block shift and invert Lanczos algorithm, a local reorthogo
nalization is performed between the newest block of Lanczos vectors and the set of
Lanczos vectors created by the previous step of Lanczos.

2. Partial Reorthogonalization

To correct the global loss of orthogonality amongst Lanczos vectors, the algorithm
uses a block version of Simon’s partial reorthogonalization [5im84].

3. External Selective Reorthogonalization

External selective reorthogonalization keeps the current sequence of Lanczos vectors
orthogonal to eigenvectors computed with previous shifts, preventing the recomputa
tion of eigenvalues already identified. This novel scheme is motivated by the standard
selective orthogonalization approach of Parlett and Scott [PS79].

Unlike local reorthogonalization, the second and third reorthogonalization techniques are

used oniy when the algorithm’s models of orthogonality loss indicate that their applica

tion is warranted. As discussed in Section 6.3, when seeking moderately large numbers

of a problem’s eigenvalues the introduction of reorthogonalization schemes may degrade

algorithm efficiency to unacceptable levels.

The techniques outlined in this section form the basis of a robust Lanczos algorithm,

which is capable of isolating groups of eigenvalues from any portion of a matrix’s spectrum

or computing a problem’s complete spectrum, including eigenvalue multiplicities. Sec

tion 6.6.2 reports on experiments comparing the efficiency of HYBSBC+TQLRAT to an

implementation of Grimes, Lewis and Simon’s shift and invert block Lanczos algorithm.

6.6 Experimentation With Lanczos Codes

To complement the previous discussion, this section presents experimentation with the

two well-known Lanczos codes. EA15D is a double precision implementation of Parlett

and Reid’s spurious eigenvalue Lanczos algorithm [PR81] from the Harwell Subroutine
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Library [Har9O]. Boeing Computer Services provided access to an implementation of the

block shift and invert Lanczos algorithm [GLS94] from the Boeing Extended Mathematical

Subprogram Library (BCSLIB-EXT) [Boe89]. We selected these implementations, because

their capabilities appropriately match the eigenvalue problems addressed by this thesis and

the codes use contrasting techniques to cope with the difficulties resulting from the loss of

orthogonality amongst Lanczos vectors.

Applying these codes to practical sparse symmetric problems from the Harwell—Boeing

test suite, we conduct two types of experiments. First, we investigate the costs of using

Lanczos to isolate the complete spectrum of sparse problems. In addition, we explore

the resource requirements of identifying subsets of eigenvalues, ranging in size from 12.5

to 100% of a sparse problem’s complete spectrum. In all cases, we compare the resource

requirements of the Lanczos codes to the costs of using HYBSBC and TQLRAT to compute

a problem’s entire spectrum, including eigenvalue multiplicities.

As for the majority of experimentation in Chapters 4 and 5, testing was conducted on a

Sun SPARCstation 2 with 16 MBytes of main memory. All routines were compiled by the

standard Sun FORTRAN compiler with full object code optimization requested. Prior to

Hybrid Split Bandwidth Contraction tridiagonalizations, each problem was preordered to

reduce bandwidth using Lewis’s implementation of GPS [Lew82]. The CPU second timings

of HYBSBC+TQLRAT and EA15D were produced using the built-in system routine etime,

while the reported timings of the block shift and invert Lanczos code are provided by

BCSLIB-EXT’s own statistic gathering routines. The timings of HYBSBC+TQLRAT do

not include the requirements of GPS, which are typically insignificant relative to CPU

second totals for the entire process.

6.6.1 Harwell’s EA15

EA15D provides the user with several variable parameters to control the Lanczos code’s

execution. Using these parameters we requested EA15D to provide the starting vector

for the Lanczos iteration and to skip eigenvector computations. EA15D’s parameter ACC
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permits the user to request the precision, relative to the matrix’s largest eigenvalue, to

which the routine computes all eigenvalues. The user can assign AUG a specific relative

accuracy or a negative value, which directs EA15D to find all requested eigenvalues to

as much accuracy as the working precision reasonably allows. We chose to perform all

experiments with EA15D twice, once requesting full accuracy and a second time with the

relatively low accuracy of i0.

The user must provide EA15D with a routine for the computation of u + Ày, where A

is the sparse matrix under analysis and u and v are vectors. To maximize the efficiency of

computing the matrix-vector product Av, we chose to store A’s nonzero entries in a row-

oriented data structure using full adjacency lists. During a typical application of EA15D,

we found that on average the computation of u + Av at each iteration makes up 10—15% of

the total CPU requirements, but ranges as high as 40% for specific eigenvalue problems and

levels of accuracy. If storage is a paramount concern, we could easily exploit the symmetry

of A by representing it with a lower adjacency data structure, requiring approximately half

the storage. Consequently, when computing the storage requirements of EA15D we assume

a lower adjacency structure is in use.

Unfortunately, the user must predict the total storage requirements of EA15D prior

to its execution of an eigenvalue task. If allocations are too small, EA15D exits without

reaching its goal and must be restarted with higher allocations of storage. In practice we

found it very difficult to assess EA15D’s storage requirements. In contrast, HYBSBC has

the distinct advantage of knowing its storage requirements prior to commencing a reduction.

In subsequent discussion of EA15D experimentation, we report the minimum storage needed

by EA15D to successfully complete an eigenvalue task.

The EA15D code is designed for the isolation of a symmetric problem’s complete spec

trum, without regard to multiplicity. For 11 sparse problems from the Harwell—Boeing

collection, Table 6.1 summarizes the costs of complete spectrum determination using HYB

SBC+TQLRAT and EA15D with full accuracy requested. The table’s first column records

the problem’s name, order and preordered bandwidth, as well as indicating if the Harwell—



CHAPTER 6. THE LANCZOS ALGORITHM 165

HYBSBC + TQLRAT EA15D
Name Time Storage Time Storage Eigenvalues Lanczos
n,bS,val/noval (CPU sec) (KBytes) (CPU sec) (KBytes) Found Iterations

ERIS1176 65.9 969.02 4335.1 647.52 1176 23071
1176,100,noval

BCSPWR06 130.9 1198.1 6413.9 676.94 1455 27412
1454,100,noval

BCSSTKO5 0.74 31.824 17.4 47.472 153 887
153,23,val

BCSSTKO9 159.9 849.07 >8181.6 >677.68 812 >25825
1083,95 ,val

CAN.1054 121.3 969.68 1134.2 339.41 1054 8598
1054,112,noval

DWT.1005 88.8 876.36 1278.2 329.00 1005 9662
1005,106,noval

NOS3 87.6 522.24 >3039.5 >538.68 695 >19201
960,65 ,val

BCSSTK19 14.7 137.26 >3101.2 >271.60 56 >8171
817,18,val

1138.BUS 84 1174.4 >12234 >429.98 69 >15249
1138,126,val

BCSSTK26 705.0 3813.3 >109022 >1070.1 15 >38441
1922, 245 ,val

PLAT1919 361.9 1274.2 >21571.6 >889.16 10 >28786
1919,80,val

Table 6.1: The Computational Cost of Complete Spectrum Determination with HYB
SBC+TQLRAT and EA15D (Full Accuracy)

Boeing collection supplies the problem’s nonzero values. As discussed in Section 2.2, if only

the matrix’s sparsity pattern is available, we assign a random value in the range (0.0, 1.0]

to each nonzero entry. During our testing we did not observe a correlation between EA15D

performance and the use of randomly assigned or provided values. The next two columns

of the table summarize the CPU seconds and storage requirements 8n(bG + 3) bytes)

of HYBSBC+TQLRAT. The table’s final columns report EA15D’s CPU and storage usage,

the number of eigenvalues found, and the total number of Lanczos iterations executed. The

convergence of EA15D is very slow for many problems. In fact, for some problems we gave

up restarting EA15D with more storage before the isolation of all eigenvalues was complete.

For these problems EA15D’s resource requirements are preceded by the “>“ symbol, mdi-
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HYBSBC + TQLRAT EA15D
Name Time Storage Time Storage Eigenvalues Lanczos
n,bS,va1/nova1 (CPU sec) (KBytes) (CPU sec) (KBytes) Found Iterations

ERIS1176 65.9 969.02 589.6 397.72 1080 7459
1176,100,noval

BCSPWRO6 130.9 1198.1 444.1 333.34 1446 5937
1454,100,noval

BCSSTKO5 0.74 31.824 3.8 39.376 152 381
1 53,23,val

BCSSTK09 159.9 849.07 417.1 401.94 711 8591
1083,95 ,val

CAN.1054 121.3 969.68 251.9 258.8 1054 3560
1054,112,noval

DWT.1005 88.8 876.36 193.1 222.7 1004 3018
1005, 106,noval

NOS3 87.6 522.24 247.6 299.92 953 4279
960,6 5 ,val

BCSSTK19 14.7 137.26 71.9 192.92 155 3253
817,18,val

1138.BUS 84 1174.4 1505.5 442.75 452 16047
1 138,126,val

BCSSTK26 705.0 3813.3 4532.6 1054.8 492 37487
1922 ,245,val

PLAT1919 361.9 1274.2 146.3 461.71 684 2070
1919,80,val

Table 6.2: The Computational Cost of Complete Spectrum Determination with HYB
SBC+TQLRAT and EA15D (ACC = 10)

cating that additional Lanczos iterations are required to successfully solve the eigenvalue

problem.

EA15D successfully isolates all the distinct eigenvalues of 5 problems, but in doing

so requires dramatically higher CPU second totals than HYBSBC+TQLRAT. For these

problems the CPU requirements of EA15D range from 9.4 to 66 times those of HYB

SBC+TQLRAT, while the storage requirements of the two approaches are comparable.

For the remaining 6 problems EA15D requires between 34 and 212 times the CPU seconds

of HYBSBC+TQLRAT and sllbstantially higher levels of storage, without successfully com

pleting the eigenvalue tasks. Even with these extraordinary timings, EA15D isolates very
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few eigenvalues for some of these problems.

Table 6.2 summarizes similar experiments with ACC set to i0. In this case, EA15D

successfully isolates all the distinct eigenvalues of each problem to an accuracy of i0

relative to their largest eigenvalue. Despite dramatically reducing the requested accu

racy, for 10 of the 11 problems EA15D still uses substantially more CPU seconds than

HYBSBC+TQLRAT, which finds all eigenvalues to full accuracy and identifies their mul

tiplicities as well. For PLAT1919 EA15D’s running time actually drops below that of

HYBSBC+TQLRAT. The efficiency of EA15D in this case is a consequence of the low

accuracy requested. Except for a single eigenvalue at zero, all of PLAT1919’s eigenvalues

have a multiplicity of 2 and the magnitude of the smallest and largest eigenvalues differ by a

factor of 1013. Consequently, to satisfy the eigenvalue request EA15D needs to isolate only

a small number of eigenvalues relative to the matrix’s order. Finally, the storage require

ments of EA15D and HYBSBC+TQLRAT for the table’s 11 problems are comparable. For

some problems EA15D requires significantly less storage, while for others its requirements

exceed those of HYBSBC+TQLRAT.

We are also interested in the potential use of HYBSBC based methods for the isolation

of moderately large subsets of eigenvalues. To investigate the efficiency of this approach

relative to EA15D, we requested EA15D to find all the eigenvalues of BCSSTKO5 and

ERIS1176 in smaller and smaller intervals including the right end point of their spectra.

The fraction of each problem’s spectrum EA15D isolates ranges from 0.25 to 1.0. The

graphs in Figure 6.1 plot EA15D timings, normalized by the time for complete spectrum

determination with HYBSBC+TQLRAT, against the fraction of the spectrum isolated by

EA15D. HYBSBC+TQLRAT costs could be reduced if TQLRAT sought the subset of

eigenvalues found by EA15D, but HYBSBC dominates the computational requirements

and the timings would only change marginally. Once again, for both problems we conduct

EA15D experiments with full accuracy and ACCrr i0. As shown by these plots, EA15D

has dramatically higher CPU requirements than HYBSBC+TQLRAT for the identification

of all but the smallest subsets of eigenvalues. Even when the requested accuracy is sig

nificantly lowered, EA15D still requires much higher CPU requirements for the isolation
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of all subsets of ERIS1176’s eigenvalues. For BCSSTKO5, EA15D timings oniy manage

to drop below those of HYBSBC+TQLRAT during the isolation of the smallest subset of

eigenvalues with ACC= iO.

These experiments clearly demonstrate the efficiency of our novel hybrid tridiagonal

ization techniques. Although it may be possible to improve the efficiency of EA15D, it is

unlikely to significantly change the dramatic advantage enjoyed by HYBSBC+TQLRAT.

For many sparse problems, EA15D’s difficulties appear to arise from the isolation of

eigenvalues in regions of the spectrum that are poorly separated. The shift and invert

Lanczos code of the following subsection is especially suited to isolating eigenvalues from

such poorly separated regions of the spectrum. A distinct advantage of our efficient hybrid

tridiagonalization approach, however, is that it can isolate blocks of eigenvalues from well

and poorly separated regions equally well.

6.6.2 BCS’s Block Shift and Invert Lanczos

We conducted all experimentation with the block shift and invert Lanczos algorithm using

a test program, HLANCZOS_TEST, provided by John Lewis of Boeing Computer Services.

This program uses BCSLIB-EXT routines to input the sparse matrix’s structure and values,

preorder it with the minimum degree algorithm [TW67, GL89] and perform a symbolic

factorization, before calling the double precision eigenvalue extraction routine HDSEEX to

compute the requested eigenvalues.

As for Harwell’s EA15D, the user must predict the maximum level of storage required by

HDSEEX, and its accompanying BCSLIB-EXT routines, before the eigenvalue extraction

begins. When isolating the eigenvalues of an ordinary eigenvalue problem, Ax = x, with

NZLA nonzeros in the strictly lower triangular portion of A, BCSLIB-EXT documentation

suggests allocating the main working storage as a double precision array of length (200 +

(3NZLA + 20m)/2). If storage levels are underestimated, the code halts with an error

message and must be restarted with a longer array. To reduce the in-memory storage

requirements of intermediate results such as eigenvectors, the BCSLIB-EXT code also uses
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input/output files for additional storage. The BCSLIB-EXT code may use many MBytes

of file space for large eigenvalue problems.

HDSEEX provides a variety of mechanisms for the user to specify which eigenvalues

are desired. For each experiment we chose to provide an interval within which the routine

is requested to extract all eigenvalues. The user must also provide HDSEEX with the

maximum block size for its Lanczos iterations. The block size used for our experments will

be specified shortly. Finally, the user must specify an accuracy tolerance for HDSEEX’s

eigenvalue computations. This value is provided to HDSEEX by HLANCZOSJEST and

evaluates to 2.31 x lO in our testing environment.

All reported timings of the BCSLIB-EXT Lanczos code include the requirements of

symbolic factorization and HDSEEX’s eigenvalue extraction. To be consistent with the

HYBSBC experiments, however, they do not include the time to conduct the preorder

ing, to input the sparse problem, and to check the computed eigenvalues. The CPU second

timing of each extraction is actually the average timing for 2 identical extractions. HLANC

ZOSJ7EST performs the timings using the BCSLIB routines HDSLT1 and HDSLT2. Based

on comparisons with shell level timing routines, it appears these BCSLIB routines only re

port user time, and do not account for the system time or any idle time. Consequently,

the high levels of file I/O HDSEEX often requires may cause the reported timings to differ

significantly from elapsed time. The system time and I/O latency are highly dependent

upon the computing environment. In our testing environment, the system time for some

extractions comprises more than 10% additional CPU seconds and the elapsed time may

differ from user time by more than a factor of 1.4. In contrast, HYBSBC+TQLRAT does

not require high levels of file I/O, and timings include both the user and system time.

The focus of this thesis is the computation of eigenvalues, but HDSEEX always computes

the eigenvector(s) corresponding to each requested eigenvalue. The cost of constructing

eigenvectors cannot be removed completely from our timings, because the code’s external

selective reorthogonalization techniques reorthogonalize Lanczos vectors against subsets of

the converged eigenvectors. By subtracting the time for computing eigenvectors, however,
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we get a range into which the performance of a block shift and invert Lanczos code tuned

for eigenvalue extraction might fall.

To investigate the relative efficiency of the block shift and invert Lanczos code we ex

perimented with three Harwell—Boeing problems: PLAT362, BCSSTK19 and NOS3. The

Harwell—Boeing collection provides both the sparsity pattern and values of each problem.

The eigenvalues of these problems have a maximum multiplicity of 2 and we chose to use

a block size of 3 for all HDSEEX extractions. Because the eigenvalues of each problem

are all positive, the eigenvalues at the left end of each spectrum are generally more poorly

separated, relative to the difference between the largest and smallest eigenvalues, than

those at the right end. We performed two sets of experiments to explore the ability of the

BCSLIB-EXT code’s shift and invert techniques to isolate eigenvalues from both regions

of the spectrum. These experiments request HDSEEX to extract contiguous subsets of

eigenvalues from either the left or the right extreme of each problem’s spectrum. The frac

tion of a problem’s eigenvalues isolated by each extraction ranges from 0.125 to 1.0. The

graphs in Figure 6.2 plot Lanczos timings, normalized by the time for complete spectrum

determination with HYBSBC+TQLRAT, against the fraction of the eigenvalues isolated.

The solid and broken lines in each plot connect data points whose Lanczos timings include

or exclude the computation of eigenvectors respectively. As previously discussed, the per

formance curve of a shift and invert Lanczos code tuned for eigenvalue extraction would lie

between this pair of lines. Table 6.2 of Section 6.6.1 summarizes the cost of determining the

complete spectrum of BCSSTK19 and NOS3 with HYBSBC+TQLRAT, while Table 6.3

provides similar information for PLAT362.

L bGPS Time (CPU sec.)
54 8.96

Table 6.3: HYBSBC+TQLRAT Summary for PLAT362

As shown by the three pairs of plots in Figure 6.2, the Lanczos code exhibits very

similar performance characteristics while extracting eigenvalues from opposite ends of a
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problem’s spectrum. The shift and invert Lanczos code, however, has substantially higher

CPU requirements than HYBSBC+TQLRAT for the identification of all but the smallest

subsets of eigenvalues. Because the Lanczos timings do not account for the potentially

substantial cost of performing file I/O, it is difficult to pinpoint the size of the eigenvalue

subset for which computing the complete spectrum with HYBSBC+TQLRAT becomes

slower than with the Lanczos code. For PLAT362 the crossover point is close to 10 or

12%, while for BCSSTK19 it appears to be significantly lower. For NOS3 the Lanczos

code is relatively more efficient, moving the crossover point slightly higher. Finally, we

note that the magnitude of the relative advantage enjoyed by HYBSBC+TQLRAT in these

experiments is comparable to the EA15D experiments with ACC = ion.

This chapter’s experiments with BCSLIB-EXT Lanczos and EA15D clearly demonstrate

the efficiency and versatility of eigenvalue algorithms based on our novel hybrid tridiagonal

ization techniques relative to Lanczos-type algorithms. HYBSBC+TQLRAT significantly

out performs either Lanczos code when all eigenvalues are requested, and maintains its

advantage until we reduce the requested number of eigenvalues to surprisingly relatively

small subsets of the entire spectrum.



Chapter 7

Conclusions and Future Research

This dissertation has studied a restricted form of the fundamental algebraic eigenvalue

problem, focusing upon generally applicable methods for determining a significant fraction

of the eigenvalues of a large sparse symmetric matrix or its complete spectrum. The ap

proach taken by this research was to reexamine techniques for reducing symmetric matrices

to tridiagonal form with carefully selected sequences of orthogonal similarity transforma

tions. Using a combination of theoretical analysis and extensive testing with symbolic and

numerical implementations, we have developed novel sequential eigenvalue methods that

more fully exploit the sparsity of symmetric matrices than previously published methods.

This chapter concludes the thesis by providing a summary of its major results and

conclusions, and briefly outlining directions of future research.

7.1 Summary and Conclusions

Without sparse model problems that are both conducive to formal analysis and represen

tative of the characteristics of a broad spectrum of practical sparse problems, we chose to

support the development and evaluation of sparse reduction algorithms using a combination

of theoretical and experimental analysis. This successful approach was greatly assisted by

the group of novel sparse reduction tools described in Chapter 2. A key role in the research

this thesis was played by our general framework for analyzing the complexity of algorithms

applying sequences of Givens similarity transformations to sparse symmetric matrices. This

174
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framework was used by our research to facilitate the precise analysis of the BC, SBC and

R-S algorithms for special model problems. The new symbolic reduction tools Xmatrix

and Trisyinb also use this analysis framework to predict the computational requirements of

their simulated reductions. Xmatrix provides an interactive graphical X Windows interface

for modeling the reduction of small sparse matrices with sequences of Givens transforma

tions. In contrast, Trisymb provides a platform for the symbolic implementation of sparse

reduction algorithms using sequences of Givens transformations to reduce large sparsely

or densely banded symmetric matrices. While conducting the research of this thesis both

symbolic reduction tools were indispensable, but without the encumbering influence of the

computing environment Trisymb was especially important for the accurate analysis of algo

rithms and the confirmation of conclusions drawn from experiments with numerical codes.

Finally, we developed a bipartite graph model for the application of orthogonal transfor

mations to sparse symmetric matrices, which is useful for the description and analysis of

sparse reduction algorithms.

Using these tools we explored the deficiences and limitations of previously published

tridiagonalization methods and considered their potential extension to improve sparsity ex

ploitation. By characterizing the high levels of fill associated with standard and customized

Givens reduction algorithms using formal and experimental analysis, we demonstrated that

it is essential to restrict the accumulation of fill entries to some maintainable substruc

ture of the matrix to effectively utilize matrix sparsity. Alternatively, we extended the

band-preserving tridiagonalization algorithm of Rutishauser and Schwarz for application to

general sparse symmetric matrices by introducing an initial bandwidth reducing preorder

ing stage and techniques to exploit band sparsity during the application of transformations.

Although the sparse R-S algorithm is a significant improvement, we demonstrated that it

suffers from instances of fill cascading that quickly fill the band of a permuted matrix,

placing almost complete reliance on the preordering to exploit matrix sparsity. The densely

banded algorithm of Lang can be similarly extended for use with general sparse matrices,

but its Householder transformations exhibit more prolific fill characteristics.

In response to the limitations of these algorithms we proposed the Bandwidth Con-
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traction algorithm. It also employs bandwidth reducing preorderings, band-preserving

reduction techniques, and adjacent Givens transformations, but reorders the elimination

sequence to prolong and more fully exploit internal band sparsity. Several contributing

factors permit the diagonally-oriented reduction of BC to perform a partial reduction that

significantly contracts the bandwidth of a permuted sparse matrix at low cost before produc

ing a densely banded intermediate matrix. This allows BC to reduce the tridiagonalization

costs of many practical sparse problems relative to R-S. Using detailed complexity analyses

of the Rutishauser-Schwarz and Bandwidth Contraction algorithms, however, we showed

that the tridiagonalization costs of BC are typically 10—25% more than those of R-S for a

densely banded matrix. These observations led to the development of the Hybrid Band

width Contraction algorithm. Using a transition strategy thresholding the density of the

outermost diagonal of the intermediate band, HYBBC combines a partial bandwidth con

traction and R-S to exploit their specific reduction characteristics and improve reduction

efficiency.

Extensive experiments were conducted with implementations of the Bandwidth Con

traction and Hybrid Bandwidth Contraction algorithms, and a large test suite of practical

sparse problems. Both implementations were shown to dramatically reduce the computa

tional requirements of tridiagonalization relative to the EISPACK BANDR routine, an R-S

implementation. In fact, for a wide range of 70 practical sparse problems HYBBC reduces

CPU requirements by an average of 31%, with reduction as high as 63% for certain prob

lems, but unlike BC it is always comparable to BANDR in the worst case. The improved

efficiency of these algorithms was accomplished without increasing storage requirements.

With additional experimentation we also investigated the relationship between preorder

ings, sparsity structures and HYBBC performance. The class of sparsity structures ideally

suited to bandwidth contraction techniques concentrates nonzeros near the main diagonal

and exhibits increased sparsity towards the outermost diagonals of the band. These experi

ments clearly demonstrated, however, that the primary objective of a preordering algorithm

must be to reduce bandwidth.
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Typically, bulge chasing requirements dominate the costs of applying the Bandwidth

Contraction algorithm to most sparse problems. During a sparse tridiagonalization with

BC, more than 96% of the transformations may eliminate bulge entries. In response to this

observation we developed the diagonally-oriented Split Bandwidth Contraction algorithm,

which inherits all the advantages enjoyed by its predecessor for a sparse band. The bidirec

tional elimination techniques of SBC, however, take additional advantage of band sparsity

to dramatically shorten bulge chasing transformation sequences and potentially halve the

computational reqnirements of partial bandwidth contractions.

The snccess of SBC is dependent npon the position of the split-point at which a sparse

diagonal’s bidirectional elimination commences. We demonstrated that for many sparse

problems the split-point selected for a diagonal’s elimination may significantly influence the

efficiency of the remainder of the reduction. Using the symbolic reduction tools Xmatrix

and Trisymb, we investigated four global split-point selection strategies. Experimental

evidence demonstrated that the minimum displacement split-point selection strategy with

damped tiebreaking is preferable.

To evaluate the efficiency of performing partial bandwidth contractions with SBC, we

conducted an extensive experimental comparison of BC and SBC using both symbolic and

numeric implementations. SBC was found to substantially rednce the computational re

quirements of partial bandwidth contractions of most problems. Reductions of 45—55% were

common, but ranged as high as 76% for one sparse problem. SBC’s efficient partial contrac

tions make it an ideal replacement for HYBBC’s Bandwidth Contraction stage in a second

generation hybrid tridiagonalization algorithm, and a valuable preprocessing technique for

other banded eigenvalue routines and sparse linear systems solvers.

Chapter S’s novel Hybrid Split Bandwidth Contraction algorithm incorporates many

aspects of HYBBC, but replaces its BC stage with SBC and improves upon the techniques

for transition bandwidth selection. Using formal analyses of SBC and BC, we showed that

as long as SBC finds a well centred split-point for each diagonal’s reduction, it provides

tridiagonalizations with significantly lower flop requirements than R-S. If split-points are
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forced sufficiently far from the midpoint of a diagonal, however, the costs of completing a

tridiagonalization with SBC may rise above those of R-S. To select the transition bandwidth

at which HYBSBC switches between its SBC and R-S stages, we developed the s-transition

strategy. By exploiting characteristics of a typical SBC reduction, the Li-transition strat

egy is able to use complexity analyses of SBC and R-S to precisely regulate HYBSBC’s

transition, selecting close to optimal transition bandwidths that minimize computational

requirements for practical problems.

Once again, extensive experimentation was conducted with a numeric implementation

of the Hybrid Split Bandwidth Contraction algorithm. The /.-transition strategy permits

HYBSBC to effectively exploit SBC’s bidirectional elimination techniques and significantly

improve upon both HYBBC and BANDR tridiagonalizations. Relative to HYBBC, HYB

SBC substantially reduces transformation totals and provides additional savings in CPU

time of 20—40% for many sparse problems. Savings of more than 50% were observed for

select problems. These additional gains make HYBSBC a very impressive alternative to

BANDR, with one problem tridiagonalized in 1/5 of BANDR’s time. For the 70 test prob

lems with m> 400, HYBSBC requires on average 39% fewer CPU seconds than BANDR.

To demonstrate the relative efficiency of sparse tridiagonalization based eigenvalue

methods, we compared variants of the Lanczos algorithm with the Hybrid Split Bandwidth

Contraction algorithm. We used both theoretical and experimental analysis to explore the

ability of Lanczos algorithms to economically extract moderately large subsets of eigenval

ues or identify the complete spectrum of sparse symmetric problems. Experiments with

the BCSLIB-EXT Lanczos code and Harwell’s EA15D clearly demonstrate the efficiency

of HYBSBC based eigenvalue methods relative to Lanczos-type algorithms. In conjunction

with TQLRAT, HYBSBC significantly out performs either Lanczos code when all eigen

values are requested, and maintains its advantage for the typical sparse problem until the

requested number of eigenvalues is reduced to a surprisingly small subset consisting of

10—20% of the entire spectrum’s eigenvalues.

From these results we conclude that eigenvalue methods based on the novel hybrid tridi
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agonalization algorithms introduced in this dissertation provide the most reliable, versatile

and efficient techniques for isolating subsets of a sparse symmetric matrix’s eigenvalues

ranging in size from moderate fractions of the entire spectrum to all eigenvalues, including

their multiplicities. Although HYBSBC is slower than HYBBC for a small number of our

test matrices, HYBSBC significantly outperforms HYBBC for the majority of problems and

is recommended as the best algorithm for general implementation.

7.2 Future Research

This section briefly outlines some areas of possible future research resulting from the work

of this thesis. Each topic belongs to one or more general categories of research including

symbolic reduction tools, the enhancement of sparse bandwidth contraction techniques, the

generalization of sparse tridiagonalization techniques, and parallel sparse tridiagonalization

algorithms.

• Continue the development of Xmatrix to create an interactive teaching tool, permit

ting the symbolic modeling, manipulation and demonstration of a wide variety of

sparse matrix techniques and algorithms.

• Extend our sparse reduction methods with new techniques facilitating eigenvector

computation. If one wants to compute eigenvectors by accumulating the transforma

tions applied during a sparse tridiagonalization, it is important to carefully regulate

transformation totals to minimize flop requirements. The development of new tran

sition strategies founded in complexity analysis are needed to optimize HYBSBC’s

reduction in this situation. Alternatively, when only a few eigenvectors are desired,

we propose investigating the trade-offs associated with applying a banded inverse

iteration algorithm to intermediate matrices from the SBC stage of HYBSBC tridi

agonalizations.

• Continue to investigate the relationship between preorderings and the performance of

sparse bandwidth contraction techniques. One approach of particular interest is the
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possibility of using a local reordering scheme to refocus spectral preordering meth

ods [BPS93] for bandwidth reduction without significantly altering the characteristics

of spectral preorderings beneficial to BC and SBC reductions.

• For the special case in which a partial bandwidth contraction is the end goal of a re

duction, develop a sparsely banded data structure and reevaluate the implementation

of SBC with sparse band transformations.

• Explore the potential role of nonadjacent transformations in special variants of our

sparse bandwidth contraction algorithms designed for problems with specific sparsity

pattern characteristics.

• Investigate the trade-offs associated with the use of rank-i tearing and modification

techniques [0o173, BNS78] to create split-points and prolong the efficient Split Band

width Contraction stage of HYBSBC’s reduction.

• Extend our successful sparse tridiagonalization techniques to develop sparse bidiago

nalization algorithms for both symmetric and unsymmetric sparse matrices.

• Explore the potential of creating a sparse, symmetric generalized eigenvalue method

by extending Crawford’s banded algorithm [Cra73, Kau84] with our sparse reduction

techniques.

• Use the knowledge of sparse tridiagonalization gained during the investigations of

this thesis to guide the development of novel parallel sparse eigenvalue algorithms. A

primary focus of this research would be parallel hybrid tridiagonalization algorithms

combining the bidirectional elimination of SBC with densely banded Lang-type algo

rithms [Lan92, B592], which employ multiple elimination and delayed bulge chasing

techniques to provide efficient parallel implementations. Although SBC’s sparse bidi

rectional elimination enhances the parallelism of sparse bandwidth contractions, one

could also consider the introduction of other techniques to improve the parallel im

plementation of SBC including split-point creation with rank-i tearings and modifi

cations, delayed bulge chasing, and modified split-point selection methods permitting
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the simultaneous elimination of multiple sparse diagonals in a pipelined fashion.
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