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Abstract

The relative ease with which it is possible to build inexpensive, high-performance

multicomputers using regular microprocessors has made them very popular in the last

decade. The major problem with multicomputers is the difficulty in effectively program

ming them. Programmers are often faced with the choice of using high level program

ming tools that are easy to use but provide poor performance or low level tools that

take advantage of specific hardware characteristics to obtain better performance but are

difficult to use. In general, existing parallel programming environments do not provide

any guarantee of performance and they provide little support for performance evaluation

and tuning.

This dissertation explores an approach in which users are provided with programming

support based on parallel programming paradigms. We have studied two commonly

used parallel programming paradigms: Processor Farm and Divide-and-Conquer. Two

runtime systems, Pfarm and TrEK, were designed and developed for applications that

fit these paradigms. These systems hide the underlying complexities of multicomputers

from the users, and are easy-to-use and topology independent. Performance models

are derived for these systems, taking into account the computation and communication

characteristics of the applications in addition to the characteristics of the hardware and

software system. The models were experimentally validated on a large transputer-based

system. The models are accurate and proved useful for performance prediction and

tuning.

Pfarm and TrEK were integrated into Parsec, a programming environment that

supports program development and execution tools such as a graphical interface, mapper,

loader and debugger. They have also been used to develop several image processing and

numerical analysis applications.
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Chapter 1

Introduction

Parallel processing is becoming popular with the advent of inexpensive, powerful mi

croprocessors made possible by advances in VLSI technology. Several kinds of parallel

computer architectures [Dun9Oj have been proposed and built. These parallel computers

have been used successfully to achieve remarkable performance for applications in several

areas including scientific computing, and signal and image processing. The domain of

parallel computer architectures includes Single Instruction Multiple Data (SIMD) ma

chines, and Shared memory and Distributed memory Multiple Instruction Multiple Data

(MIMD) machines {F1y72].

Distributed memory MIMD machines, generally known as multicomputers [AS88],

consist of a number of processors each with their own local memory, connected by

a message-passing network. Several research and commercial multicomputers such

as Hypercubes[Sei85], Transputer-based systems{Lim88] and iWARP[K+90j have been

available since the mid 1980s. Multicomputer architectures have several advantages.

These machines are able to take advantage of the latest and fastest microprocessor tech

nology making them cost-effective in comparison to other parallel architectures. They

are easily scalable compared to other architectures. In the case of reconfigurable ma

chines, it is possible to take advantage of the communication patterns of the problem to

improve performance. With these advantages, multicomputers are gaining importance

as general purpose parallel machines useful for applications in a wide range of areas

[FJL+88]. The focus of this research is on multicomputers and their effective use.

1



Chapter 1. Introduction 2

1.1 Motivation

The major stumbling block to the widespread use of multicomputers is the tremendous

difficulty in effectively programming them. Software development for multicomputers

has not kept pace with the advances in hardware technology [Kar87, KT88, CK91].

Message passing gives finer control over resources, but at the cost of added complexity.

Users must address difficult problems such as partitioning, mapping, communication,

synchronization, data distribution, and load balancing.

There are a few high level languages based on functional and logic programming

models [Kog85, Dav85, FT9O]. Those that are available provide high level abstractions

with universal interfaces to all applications, but their overall performance is generally

poor because of the difficulties in taking full advantage of the underlying structure of

the application and the architecture. Most of the recent work on parallelizing com

pilers [PW86, CK88, HKT91] has focussed on extracting loop level and lower levels of

parallelism. They are restricted to exploiting parallelism in certain loop structures and

thus can improve performance only for certain problems such as SPMD (single program,

multiple data) type programs that are data-parallel. Most of the commercial multicom

puters provide low level machine-dependent environments [Lim88, 1im87, Inc9l] that

can be used to achieve high performance. These environments provide very low level

programming abstractions that makes program design a complex process. This leads

to higher software development costs and programs that are not easily ported to other

machines.

Difficulties in parallel programming do not end with the design and development of

a working parallel program. The primary motivation for using parallel computers is to

obtain higher performance for application programs. In general, existing programming

environments do not provide any guarantee of performance, moreover they provide little

support for performance evaluation and tuning. In the case of parallel systems, per

formance depends on the computation and communication characteristics of a parallel

program in addition to the characteristics of the hardware and software system. Users

generally have very little knowledge about the performance of their programs until they
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are implemented and run. Even though one may think that using more processors will

improve performance, this is not always the case. Simple models [5to88] have shown

that using more than a certain number of processors for a given application may not

improve performance. In practice, it may actually degrade performance.

1.2 Methodology

Providing abstractions that are efficient and easy-to-use for programming multicomput

ers is a difficult problem. One recent approach to reconciling ease of use and reuse with

performance is the construction of software components (libraries, modules, templates,

skeletons) based on the parallel programming paradigms that have appeared in the liter

ature [K+87, Nel87, Co189, Pri9O]. These paradigms, taken together, represent the state

of the art of parallel programming. Software components based on these paradigms can

hide the complex distributed system code needed to implement the paradigm, thereby

allowing the application programmer to concentrate on the computationally intensive

code rather than parallelization and the coordination of the processors. Several projects

such as Chameleon [A1v90], PIE [RSV9O] and VMPP [Gab9O] have looked at providing

programming support for some of these paradigms on shared-memory machines.

It is difficult to obtain a single performance model that can be used for all ap

plications on a parallel system. Performance depends on the computation and com

munication characteristics of the algorithm, in addition to the characteristics of the

hardware and software system. There are some performance metrics, such as Amdahl’s

serial fraction [Amd67], experimentally determined serial fraction [KF9O] and average

parallelism [EZL89], which are based on simple characterizations of parallel systems.

Although, they can be used to obtain rough bounds on performance, it is not as easy

to use them for performance prediction and tuning. One approach to obtaining more

accurate models that could be used for prediction and tuning is to model simpler and

more restricted systems. Parallel programming paradigms are more restricted and suf

ficiently general to be of more general use. Models based on paradigms can take into

account the computation and communication characteristics of the applications and also

the characteristics of the hardware and software system.
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Abstraction and added functionality that diminishes performance leads to constant

re-design and re-implementation of the software component. Therefore, it is necessary

to formalize these paradigms to better understand their expressiveness, their limitations,

and most importantly their performance characteristics. It is important to understand

the effect of scaling the component to execute on a larger number of processors. It must

be possible to easily modify the behavior and performance characteristics of the compo

nent in order to take advantage of application specific optimizations (e.g., fixed versus

variable data packets). By understanding the behavior and performance characteristics

of the paradigm, it may be possible to guarantee performance and provide guidance to

the use and design of these paradigms on different topologies or systems with different

primitives. The challenge is to construct a system based on paradigms that is reusable

and achieves close to optimal performance.

In this dissertation, we consider two task-oriented parallel programming paradigms,

processor farm and divide-and-conquer. The processor farm paradigm is widely used in

parallelizing applications in several areas [CHvdV88, BTU88, CU9O, CCT93j. Divide-

and-conquer is a well-known problem solving strategy in both sequential and parallel

programming [AHU74, HZ83, GR88, Sto87J.

The principal contributions of this dissertation research are:

Development of performance models for two commonly used parallel programming

paradigms: processor farm and divide-and-conquer.

We have developed models that accurately describe the behavior and performance

characteristics of processor farm and divide-and-conquer applications on multicom

puters with the characteristics described in Section 3.2. These are realistic models

that can help in understanding the capabilities and limitations of these paradigms.

These models have been experimentally validated on a transputer-based system.

They provide guidance for system design, and can be used for performance predic

tion and tuning.

• Design and development of execution kernels for processor farm and divide-and

conquer applications.
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Execution kernels for both processor farm and divide-and-conquer have been de

signed and implemented on a transputer-based machine. The systems are topology

independent, i.e., they can be used on machines of any size and topology. They

have been integrated into a programming environment that includes supporting

tools such as a graphical interface, mapper, loader and debugger. Several applica

tions have been developed using these kernels.

1.3 Synopsis of the Dissertation

Chapter 2 provides an overview of the related literature that puts this dissertation work

in context. It includes a discussion on various existing parallel programming approaches,

highlighting their advantages and disadvantages, and comparing and contrasting our

approach to these approaches. Existing performance measures and models for parallel

systems are reviewed, emphasizing their applicability and limitations.

Chapter 3 describes the integrated approach we have taken to address the program

ming and performance modeling problems in multicomputers. This approach provides

programming support based on parallel programming paradigms to the application pro

grammers. We discuss the characteristics of processor farm and divide-and-conquer

paradigms that are studied in this thesis. We describe how these paradigms can be used

to parallelize several different applications.

In Chapter 4, we describe the design of Pfarm, a topology independent processor farm

runtime kernel, detailing the trade-offs involved to make it efficient. Pfarm implements

a distributed dynamic task scheduling strategy. The affect of process structure, schedul

ing, and buffering on performance has been investigated. We have developed a general

analytical framework that can be used to derive performance models for processor farms

on an arbitrary tree topology. For a fixed topology, we have shown that a breadth

first spanning tree provides maximum performance, and the steady-state performance

of all breadth-first spanning trees are equal. Since a processor farm system behaves

like a pipeline, we have also analyzed start-up and wind-down. The ideal architecture

for Pfarm is a balanced k-ary tree, where k is the number of links on each processor.
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Performance models for this case have been derived from the general framework. We

also describe how the models can be used in performance tuning and restructuring of

application programs.

The Pfarm system has been implemented on a 75 node transputer-based machine.

The performance models were experimentally validated as reported in Chapter 5. The

models are sufficiently accurate that they can be used to predict performance of this

design on any tree topology. The robustness of the model under our assumption of

average task size was tested for uniform and bimodal distributions. The model was

accurate for the uniform distribution. In the case of the bimodal distribution, we found

that the model remained accurate as long as the arrival pattern of the two task types

was mixed.

In Chapter 6, we extend the design of Pfarm to provide runtime system support for

divide-and-conquer applications. This system, called TrEK (Tree Execution Kernel), can

execute divide-and-conquer computations of any degree and depth on an arbitrary tree

topology. TrEK is designed to make use of intermediate processors for subtask processing

in order to increase the overall performance. We expanded the general analytical frame

work given for Pfarm to derive performance models for fixed degree divide-and-conquer

applications on an arbitrary tree topology. Experimentally, we found that performance

depends on the depth and number of leaves in the tree topology. Thus, on a fixed topol

ogy, a breadth-first spanning tree with a maximum number of leaves achieves maximum

performance. With a reconfigurable network, a g-ary balanced tree, where g is the num

ber of links on each node, provides maximum performance. We derived models that

can predict the performance of any fixed k-ary divide-and-conquer computation on any

g-ary balanced tree topology.

Chapter 7 describes the experiments conducted to validate the performance models

for divide-and-conquer. The experiments show that our framework performs well even

for applications that consist of a single large divide-and-conquer task in addition to

those with a flow of tasks. In some cases, it is possible to use the processor farm

strategy for divide-and-conquer applications. We found that TrEK outperformed Pfarm

for applications with larger tasks and for those applications that consist of a smaller
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number of tasks.

In order to make it easier for application programmers to use these paradigms on a

multicomputer system, a programming environment that supports all phases of program

development and execution is needed. In Chapter 8, we describe Parsec, an on-going

project at the University of British Columbia in developing an integrated programming

environment for the support of paradigms. Parsec provides Pfarm and TrEK with

supporting tools such as a graphical interface, mapper, loader, monitor and debugger.

We have also discussed applications that have been developed using Pfarm and TrEK.

Chapter 9 provides a summary of the dissertation with a discussion of topics for future

research.



Chapter 2

Background and Related Work

The relative ease with which it is possible to build inexpensive, high-performance mul

ticomputers using commodity microprocessors has made multicomputers very popular.

The major problem with multicomputers is the difficulty in effectively programming

them. Programmers must either use a high level programming tool that is easy to use

but provides poor performance or a machine dependent low level tool that can provide

high performance but is difficult to use.

To be successful, a parallel programming environment should address both the basic

issues, namely programming and performance. First, programmers should be provided

with easy-to-use programming abstractions that hide the complexities of the system.

Second, the environment should be able to assist programmers in obtaining the maximum

performance on a given parallel architecture for their applications.

In this chapter, we provide a overview of the related literature. Section 2.1 describes

various parallel programming approaches, emphasizing their advantages and disadvan

tages. In Section 2.2, a review of the literature on existing performance measures and

models for parallel computing is provided.

2.1 Parallel Programming Approaches

In this section, various parallel programming approaches are reviewed, highlighting their

advantages and disadvantages, and comparing and contrasting them with our approach.

8
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We also review the existing research on identifying parallel programming paradigms.

2.1.1 High Level Approaches

Parallelizing Compilers

Parallelizing compilers are aimed at extracting loop level and lower levels of parallelism

in a sequential program. Considerable research work is being done in developing com

pilers that automatically parallelize FORTRAN DO loops [PW86, CK88, HKT91J. The

programmers write sequential programs in standard FORTRAN, and the compiler an

alyzes data dependencies and uses parallelizing and vectorizing constructs to optimize

the program for a given parallel hardware.

With automatic parallelizing compilers, users need not be concerned with writing

explicitly parallel code. In some cases, users can provide compiler directives for program

partitioning and mapping. Compilers generally perform local optimizations which may

not always lead to an overall improvement in performance. They have to use conservative

values for data unknown at compile time. Parallelizing compilers have been successfully

used on multicomputers for certain classes of problems such as SPMD (Single Program

Multiple Data) programs.

In comparison, we have studied task-oriented paradigms on multicompnters. Our

approach concentrates on global optimizations that lead to overall improvement in per

formance of application programs. This is done by considering classes of applications

separately, and identifying their characteristics to decide on the necessary global opti

mizations to efficiently run them on a particular hardware system.

High-Level Languages

There is a group of researchers that advocate the use of high-level languages based on

functional, logical and data-flow models of computation [Kog85, Dav85, Den8O]. Using

these languages, the programmer needs only to write a high-level declarative description

of the algorithm, which is free of concurrency. The compiler and the runtime system

produce code suitable for a specific parallel system.
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The advantage of being able to write programs in a very high level is generally out

weighed by the resnlting poor performance. It is very unlikely that the standard imple

mentation decisions used by the compiler will be optimal for all situations. Programmers

who understand the specific structure of their algorithms can always do better optimiza

tions than the generalized transformations included in a compiler. In our approach,

different classes of applications are considered separately, and good optimizations for

each of them are obtained by understanding the structure of the underlying algorithms.

2.1.2 Low level Approaches

In multicomputers such as the transputer-based [1im87] and C40-based [Inc9l, 1nc92j

machines, the user is totally responsible for implementing parallelism. The program

ming environments provided in these cases consist of languages such as occam [Lim84]

or extended C that provide process creation and inter-process message passing. The pro

grammer is responsible for partitioning the work into processes and mapping them to

exploit the parallelism provided by the hardware. The programmer also has to manage

communication between processes.

It is possible to extract maximum performance out of the system if the programmer

has good knowledge of the underlying hardware architecture and how well it can be

used for a given application program. Even though high performance is achievable,

it is difficult since the programming environments provide minimal support for these

machines.

In our approach, the programming system provided to the users efficiently imple

ments parallelism on a given machine and manages communication among processors.

The user has to concentrate only on the application dependent sequential code.

2.1.3 Other Approaches

The Linda project advocates the use of a coordination language such as Linda in conjunc

tion with computational languages like C or FORTRAN to make parallel programming

easier [GC92]. A coordination language provides operations to create multiple execution

threads (or processes) and supports communication among them. Linda[CG89, ACG91]
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consists of a few simple tuple-space operations. Adding these tuple-space operations

to a computational language produces a parallel programming dialect such as C-Linda.

In this case, the programmers are responsible for creating and coordinating multiple

execution threads. Linda provides a shared memory paradigm independent of the un

derlying parallel architecture. The processes can communicate and synchronize using

the tuple-space, which is in fact a shared memory.

Implementation of the Linda tuple-space on a distributed memory machine is gener

ally difficult since the tuple space has to be distributed and replicated, which can lead

to poor performance. With our approach, the system takes responsibility for process

creation and coordination, rather than the user.

Foster and Overbeek[F090j propose an approach called bilingual programming. In

this approach, the key idea is to construct the upper levels of an application in a high-

level language, while coding the selected low-level components in low-level languages.

They argue that this approach permits the advantages of the high-level notation (ex

pressiveness, elegance, conciseness) to be obtained without the usual cost in performance.

They introduce a particular bilingual approach in which the concurrent programming

language Strand [FT9O] is used as the high-level language and C or Fortran is used to

code low-level routines. Strand provides a high level notation for expressing concurrent

computations.

With this approach, overall performance is determined by the decisions on how

to partition concurrent processes into tasks and map them onto various nodes. The

user is responsible for partitioning and mapping, although there are some tools which

can provide guidance. Our runtime systems take care of creatin5g concurrent processes

and communicating among them. Each system efficiently implements partitioning and

scheduling for a particular class of applications. The performance models can be used

for restructuring application programs to obtain better performance.

2.1.4 Parallel Programming Paradigms

There are several well-known programming paradigms such as divide-and-conquer,

branch-and-bound and dynamic programming techniques that are commonly used in
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designing sequential algorithms. These paradigms are not exactly algorithms, but they

are problem solving techniques or high level methodologies that are common to many

efficient algorithms.

We can find similar problem solving techniques that are commonly being used in

designing parallel algorithms. Identifying and analyzing useful parallel programming

paradigms will help the programmer in understanding parallel computation and in the

difficult process of designing and developing efficient parallel algorithms.

In general, programming paradigms encapsulate data reference patterns. In the

case of parallel programming paradigms, they encapsulate underlying communication

patterns. Since they identify useful communication patterns, they can help in designing

architectures that can effectively support commonly used communication patterns. The

analysis of these paradigms can provide guidelines for designing programming tools that

can assist application programmers in obtaining better performance on a given parallel

machine.

The following paragraphs summarize the related research on identifying and under

standing useful parallel programming paradigms.

In 1989, Kung et. al. [Kun89j identified several computational models based on

their experiences in parallel algorithm design and parallel architecture development.

These models characterize the interprocessor commnnication and correspond to different

ways in which cells in 1D processor arrays exchange their intermediate results during

computation. The models are:

1. Local computation 6. Recursive computation

2. Domain partition 7. Divide-and-conquer

3. Pipeline 8. Query processing

4. Multi-function pipeline 9. Task Queue

5. Ring

Fox [FJL88] and Karp [Kar87J have discussed SPMD paradigm for programming

shared and distributed memory multicomputers. In the SPMD model, the same program

is executed on all the processors. Processors communicate their intermediate results to
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their neighbors and synchronize at a barrier point. Fox and others[FJL+88] have success

fully used the SPMD model to solve a number of large applications on multicomputers.

Nelson [Ne187] has studied compute-aggregate-broadcast, divide-and-conquer,

pipelining and reduction paradigms for distributed memory parallel computers. He

has discussed how these paradigms can be used to develop algorithms for solving many

numerical and non-numerical applications. He has also studied the contraction problem,

the problem arising when an algorithm requires more processors than are available on a

machine, for algorithms based on these paradigms.

Cole{Co189] advocates an approach in which the users are presented with a selection

of “Algorithmic Skeletons” instead of an universal programming interface. Each skeleton

captures the essential structure of some particular problem solving style or technique.

To solve a particular problem, the user is required to select a skeleton which describes

a suitable problem solving method. The procedures and data structures are added to

the skeleton to customize it to the specific problem. Since each instance of these proce

dures will be executed sequentially, they can be specified in any sequential programming

language. He has discussed four different skeletons - Divide-and-conquer, Task Queue,

Iterative Combination and Cluster. He proposes to embed suitable topologies for var

ious skeletons on a grid architecture. In terms of performance, he has focussed on the

asymptotic efficiency with which a large grid of processors can implement a system with

respect to the performance of a single processor.

Pritchard and Hey [Pri9O, Hey9O] discuss three useful paradigms for programming

transputer arrays: Processor Farm, Geometric Array and Algorithmic Pipes. Processor

Farm uses a manager-workers setup to solve an application that consists of a large

number of independent tasks. Geometric Array is same as the SPMD model mentioned

earlier and Algorithmic Pipes is similar to the pipeline approach.

PIE project [RSV9O] uses parallel programming paradigms as an intermediate layer

of abstraction, called implementation machine (IM) level, between the application level

and the physical machine level for uniform memory access multiprocessors. Each TM has

two representations: an analytical representation and a pragmatic representation. The

analytical representation helps in predicting the performance of a class of applications
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using the TM. The model predicts the upper bound and lower bound on performance of

an application that uses this TM. A pragmatic representation of TMs is made available

in the form of modifiable templates. All necessary communication and synchronization

for the TM are correctly and efficiently implemented in the template. All the user needs

to do is to insert the application dependent code. With the help of the TM layer, the

user can write performance efficient parallel programs with relative ease. The aualytical

models help the user to select the most appropriate or efficient TM for a given application

and parallel machine. Two TMs, master-slave and pipeline, have been implemented on a

Encore Multirnax, a bus-based shared memory multiprocessor.

In this thesis, we explore an approach in which users are provided with program

ming support based on parallel programming paradigms for multicomputers. This ap

proach is similar to Cole’s proposal of Algorithmic Skeletons. In contrast to Cole’s

theoretical study of how various skeletons can be implemented on a grid architecture,

we have implemented runtime systems for two widely used paradigms, Processor Farm

and Divide-and-Conquer, that are topology independent. Performance models derived

in this thesis are analytical models, unlike Cole’s asymptotic models, and hence can be

used in performance tuning. Our approach is similar to that followed by PIE. It differs

in the underlying parallel architectures being considered and the apparent fact that we

can obtain accurate models on multicomputers.

2.2 Performance Modeling

In the case of sequential computation, performance can be adequately characterized by

the instruction rate of the single processor and the execution time requirement of the

software on a processor of unit rate. Predicting the performance of a parallel algorithm

on a parallel architecture is more complex. Performance depends on the computation

and communication characteristics of the algorithm, in addition to the characteristics of

the hardware and software system.

In order to use parallel systems effectively, it is important to understand the per

formance of parallel algorithms on parallel architectures. This can help in determining
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the most suitable architecture for a given algorithm. It can also help in predicting the

maximum performance gain which can be achieved. In this section, we summarize the

relevant research in understanding the performance behavior of parallel systems and

highlight the applicability and limitations of each.

2.2.1 Performance Measures and Models

It is a well known fact that the speedup for a fixed-size problem on a given parallel

architecture does not continue to increase with an increasing number of processors, but

tends to saturate or peak at a certain value.

In 1967, Amdahl [Amd67j argued that if s is the serial fraction in an algorithm, then

the speedup obtainable is bounded by 1/s even when an infinite number of processors

are used. For an N processor system, speedup is given by

1

s + (1 — s)/N

This observation, which is generally known as Amdahl’s Law, has been used to argue

against the viability of massively parallel systems.

In the recent years, researchers have realized that it is possible to obtain near-linear

speedup by executing large problems. In 1988, Gustafson and others at Sandia National

Lab [Gus88] were able to obtain near-linear speedup on a 1024-processor system by

scaling up the problem size. Gustafson argues that in practice, users increase the problem

size when a powerful processor is made available; hence, it may be more realistic to

assume runtime as constant instead of problem size. He introduced a new measure

called scaled speedup, defined as the speedup that can be achieved when the problem

size is increased linearly with the number of processors. For an N processor system,

scaled speedup is given by N + (1 — N) x s.

Karp and Flatt [KF9O] have used experimentally determined serial fraction as a metric

in tuning performance. The experimentally determined serial fraction, f is defined as

1/S — 1/N
1—1/N

where S is the speedup obtained on an N-processor system. If the loss in speedup is

only due to the serial component, that is, there are no other overheads, the value of f is
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exactly equal to the serial fraction s used in Amdahl’s law. With the help of experimental

results, they argue that this measure provides more information about the performance

of a parallel system. If f increases with N, then it is considered an indicator of rising

communication and synchronization overheads. An irregular change in f as N increases

would indicate load balancing problems.

Eager, Zahorajan and Lazowska[EZL89J use a simple measure called average paral

lelism to characterize the behavior of a parallel software system. The software system is

represented by an acyclic directed graph of subtasks with precedence constraints among

them. Average parallelism is defined as the average number of processors that are busy

during the execution time of the software system, given an unbounded number of avail

able processors. Once the average parallelism A is determined, either analytically or

experimentally, the lower bounds on speedup and efficiency are given by

NA A
(N+A-1)

and
(N+A-1)

respectively. This measure can be used only if the parallel system does not incur any

communication overheads or whenever these overheads can be easily included as part of

the tasks.

Kumar and Rao[KR87] have developed a scalability measure called the isoefficiency

function, which relates the problem size to the number of processors necessary for an

increase in speedup proportional to the number of processors used. When a parallel

system is used to solve a fixed-size problem, the efficiency starts decreasing with an in

crease in the number of processors as the overheads increase. For many parallel systems,

for a fixed number of processors, if the problem size is increased then the efficiency in

creases because the overhead grows more slowly than the problem size. For these parallel

systems, it is possible to maintain efficiency at a desired value (between 0 and 1) for

an increasing number of processors, provided the problem size is also increased. These

systems are considered to be scalable parallel systems. For a given parallel algorithm,

for different parallel architectures, the problem size may have to increase at different

rates with respect to the number of processors in order to maintain a fixed efficiency.

The rate at which the problem size is required to grow with respect to the number of

processors to keep the efficiency fixed essentially determines the degree of scalability of
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the parallel algorithm for a specific architecture. If the problem size needs to grow as

fz(P) to maintain an efficiency E, then fE(p) is defined as the isoefficiency function for

efficiency E.

If the problem size is required to grow exponentially with respect to the number of

processors, then the algorithm-architecture combination is poorly scalable since it needs

enormously large problems to obtain good speedups for a larger number of processors.

On the other hand, if the problem size needs to grow only linearly with respect to the

number of processors, then the algorithm-architecture combination is highly scalable.

Isoefficiency analysis has been used in characterizing the scalability of a variety of par

allel algorithm-architecture combinations [GK92]. Using isoefficiency analysis, one can

predict the performance of a parallel program on a larger number of processors after

testing the performance on a smaller number of processors.

Stone[Sto88] has used a simple model to determine how granularity affects the

speedup on a multiprocessor. The model considers an application program that consists

of M tasks and obtains the maximum speed with which this program can be executed

on an N processor system. It assumes that each task executes in T units of time.

Each task communicates with every other task at an overhead cost of T units of time

when the communicating tasks are not on the same processor, and at no cost when

the communicating tasks are on the same processor. The results of this model indicate

that the speedup is proportional to N up to a certain point. After this, as N increases,

the speedup approaches a constant asymptote which can be expressed as a function of

the task granularity. This model gives a general picture of how granularity and over

head affect the performance of a multiprocessor system. It also gives some indication

of the importance of minimizing overhead and selecting a suitable granularity. Stone’s

studies indicate that there is some maximum number of processors that is cost-effective,

and this number depends largely on the architecture of the machine, on the underlying

communication technology, and on the characteristics of each specific application.

Flatt and Kennedy[FK89] have derived some upper bounds on the performance of

parallel systems taking into account the effect of synchronization and communication

overheads. They show that if the overhead function satisfies certain assumptions, then
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there exists a unique value N0 of the number of processors for which the total execution

time for a given problem size is minimum. However, for this value, the efficiency of

the system is poor. Hence they recommend that N should be chosen to maximize the

product of speedup and efficiency and analytically compute the optimal values of N. A

major assumption in their analysis is that the per-processor overhead grows faster than

0(N), which limits the applicability of the analysis.

Performance metrics such as serial fraction (s and f) and average parallelism (A) are

simple measures that can be used to obtain rough bounds on performance. These cannot

be easily used for performance prediction and tuning, especially for multicomputers in

part because they neglect communication overheads. Also, the values of these parameters

often cannot be obtained easily. We have concentrated on considering the characteristics

of both the system and the applications in order to obtain accurate performance models

that can be used for performance prediction and tuning. Our models take into account all

the communication overheads involved in implementing different classes of applications

on multicomputers. The values of the parameters used in our models can be determined

in a relatively easy manner, and we discuss some of the techniques for obtaining them.

2.2.2 Integratioti

There has been very little work done in integrating performance tuning into program

ming environments to provide performance-efficient parallel programming. To make

best use of the underlying parallel architecture for an application program, in addi

tion to programming support, users must be provided with performance models that

can help in predicting how well their programs are going to perform. The environment

should be able to assist the programmers in restructuring their applications to improve

performance.

PIE[SR85] addresses the issues of integrating performance tuning into the program

ming environment through the support of specific implementation paradigms coupled

with a performance prediction model. The model provides performance trade-off infor

mation for parallel process decomposition, communication, and data partitioning in the

context of a specific implementation paradigm and a specific parallel architecture.
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Gannon[AG89] describes an interactive performance prediction tool that can be used

by the user to predict execution times for different sections of a program. This perfor

mance predictor analyzes FORTRAN programs parallelized by an automatic paralleliz

ing and vectorizing compiler targeted for the Alliant FX/8. Programmers can use the

predictor to estimate the execution time for a segment of the code produced by the

compiler. The predictor uses a database to estimate the total number of CPU cycles

needed for the segment. They also incorporate a simple model of memory contention

into the predictor to include the effects of caching. This predictor can be used only to

predict the execution time of a segment of the program; it does not give any specific

information about the overall performance of a parallel program.

Kennedy and Fox[BFKK91] have worked on an experimental performance estimator

for statically evaluating the relative efficiency of different data partitioning schemes for

any given program on any given distributed memory multiprocessor. The performance

estimator is aimed at predicting the performance of a program with given communication

calls under a given data partitioning scheme. This system is not based on a performance

model. Instead, it employs the notion of a training set of kernel routines that test

various primitive computational operations and communication patterns on the target

machine. The results are used to train the performance estimator for that machine. This

training set procedure needs to be done only once for each target machine, during the

environment or compiler installation time. Although the use of a training set simplifies

the task of performance estimation significantly, its complexity lies in the design of the

training set program, which must be able to generate a variety of computation and

data movement patterns to extract the effect of the hardware/software characteristics

of the target machine on the performance. The authors argue that real applications

rarely show random data movement patterns and there is often an inherent regularity

in their behavior. They believe that their training set program will probably give fairly

accurate estimates for a large number of real applications, even though it tests only a

small (regular) subset of all the possible communication patterns.

We have integrated the programming and performance tuning support into Parsec

(described in Chapter 8). Parsec is an on-going project at the University of British
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Columbia which is aimed at developing an integrated programming environment to sup

port several parallel programming paradigms. It includes supporting tools such as a

graphical interface, mapper, loader and debugger. The programmers can make use of

performance models to predict the performance of their applications, and also can ob

tain optimal values for system parameters such as the number of nodes and topology

that can lead to maximum performance. The environment allows programmers to easily

change the parameters and accordingly does the necessary mapping and loading. Some

of the techniques that can be used to determine the values of the application dependent

parameters are described in Chapter 8.



Chapter 3

Methodology

The diversity of parallel computing architectures and their underlying computation mod

els makes it particularly difficult to find universal techniques for developing efficient

parallel programs. Choosing an appropriate parallel machine for a given application

is a difficult process. Furthermore, in most of the existing programming environments

available on multicomputers, the user is responsible for managing both parallelism and

communication. As explained in Chapter 2, identifying and analyzing useful parallel

programming paradigms may help programmers in the difficult process of developing

efficient parallel algorithms. In this chapter, we present an approach based on parallel

programming paradigms for developing efficient programs for multicomputers.

Section 3.1 describes an integrated approach we have taken to address the program

ming and performance modeling problems on multicomputers. In Section 3.2, we ex

plain the multicomputer system model used in this dissertation. Section 3.3 describes

the transputer-based multicomputer system that is used as an experimental testbed in

this research. This approach has been used to develop programming support and per

formance models for two commonly used parallel programming paradigms, processor

farm and divide-and-conquer. In Section 3.4, we discuss the characteristics of these two

task-oriented programming paradigms and how these paradigms can be used for various

kinds of applications.

21
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3.1 An Integrated Approach

This approach provides application programmers with abstractions based on commonly

used parallel programming paradigms. The application programmers are provided with

a set of Virtual Machines (VMs), where each virtual machine corresponds to a parallel

programming paradigm. Each virtual machine consists of an analytical performance

model, and an efficient runtime system that can be used to run applications that fit into

the corresponding paradigm. The user has to choose one of the virtual machines that

corresponds to the paradigm that can be used to solve his application problem.

With this approach, the users are not responsible for implementing parallelism and

communication. Each runtime system implements parallelism and all the necessary

communication and synchronization needed for running the corresponding class of ap

plications in an efficient manner. It also implements other system dependent aspects

such as task scheduling and load balancing. Such a runtime system can be efficiently

implemented by a systems programmer who understands the complexities of the under

lying hardware and software system. The runtime system provides a simple interface

to the user. The user has to write only the application dependent code and execute

it with the runtime system. This approach eliminates the difficulties in programming

multicomputers and reduces the software development cost. Also, as the user code does

not contain any system dependent parts, it is portable across different machines and

systems on which the virtual machine implementations are available.

The analytical performance model helps in predicting the performance of application

programs that use the particular virtual machine. Some of the parameters of the model

are application program dependent and the others are dependent on the characteristics

of the underlying physical machine and software system. The values of the system

dependent parameters can be estimated once the rnntime systems are implemented.

The application dependent parameters are either estimated or measured (either from a

serial program or from a scaled down parallel program). Once these parameter values

are known, the model can be used to predict the actual performance of an application

program on a given parallel system. It can also be used in performance tuning, either to
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choose the optimal number of nodes to be used for a given application or to restructure

the application to maximize its performance.

Two virtual machines corresponding to commonly used parallel programming

paradigms, processor farm and divide-and-conquer, were developed. In Section 3.4,

we describe the characteristics of these two task-oriented paradigms.

3.2 System Model

In this thesis, we consider distributed memory parallel computers (multicomputers).

The system consists of processor nodes connected by an interconnection network such

as a chain, tree, mesh, hypercube etc. with the underlying support for point-to-point

communication. Each processor node consists of a CPU with its own local memory and

hardware support for communication links.

Execution kernel designs are based on the following assumptions on the characteris

tics of the underlying system. The kernels assume a reliable point-to-point communica

tion mechanism. Furthermore, it is assumed that the data can be transferred simulta

neously on all the links and that data transfer can be overlapped with the computation.

However, for each message, there is a CPU start-up cost that cannot be overlapped with

the computation. This time may include hardware set-up costs, context switch times,

and other system software overheads. Message start-up is an important overhead that

significantly affects performance. In addition, it is assumed that the system supports

concurrent processes on each processor with process scheduling and levels of priorities.

This support could be available either in hardware (as in nhansputers) or in software (as

in TI C40s).

Performance models are developed assuming homogeneous processors and links. A

linear cost communication model is assumed (i.e., for every message, there is a CPU cost

for starting the communication, and a transfer cost proportional to the message size).

The time for a processor node to send a message of length n-i to its neighbor is given by

+ rm, where j3 is the CPU start-up cost described in the previous paragraph and r is

the transfer rate of the communication links.
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3.3 Experimental Testbed

In this section, we describe the transputer-based multicomputer in the Department of

Computer Science at the University of British Columbia that is used as an experimental

testbed in this thesis. Performance models derived in Chapter 4 and 6 for processor farm

and divide-and-conquer are applicable for any multicomputer system that satisfies the

system model described in Section 3.2. In addition, the corresponding runtime system

designs can be implemented on any similar multicomputer system.

3.3.1 Hardware System

The transputer-based multicomputer consists of 75 T800 transputer nodes and 10 cross

bar switches. The system is hosted by a Sun-4 workstation via VME bus, with 4 ports

that connect the system to the host. There are 64 nodes with 1 MB of external memory

and 10 nodes with 2 MB. There is a special node that has 16 MB, and is used as the

manager node for both Pfarm and TrEK.

The INMOS T800 transputer is a 32 bit microprocessor with a 64 bit floating point

unit on chip. A T800 running at 20MHz has a sustained processing rate of 10 MIPS

and 1.5 Mflops. It has 4 KB of on-chip RAM and four bit-serial communication links.

These communication links allow networks of transputer nodes to be constructed by

direct point to point connections with no external logic. Each link runs at an operating

speed of 20 Mbits/sec and can transfer data bidirectionally at up to 2.35 MB/sec.

The T800 processor has a microcoded scheduler that enables any number of concur

rent processes to be executed together, sharing the processor time. It supports two levels

of priority for the processes: high and low. A high priority process, once selected, runs

until it has to wait for a communication, a timer input or until completion. If no process

with a high priority is ready to proceed, then one of the ready low priority processes is

selected. Low priority processes are time sliced every millisecond. A low priority process

is only permitted to run for a maximum of two time slices before the processor desched

ules it at the next descheduling point. Process context switch times are less than 1 s,

as little state needs to be saved. The transputer has two 32 bit timer clocks. One timer
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is accessible only to high priority processes and is incremented every microsecond, and

the other is accessible only to low priority processes and is incremented every 64 /ts.

Each C004 crossbar switch has 32 data links and a control link. These are pro

grammable through the control link and each can have 16 bidirectional connections.

Thus, the system is reconfigurable and an appropriate interconnection network for an

application can be chosen. As the system is not fully connected, there are some restric

tions on the possible configurations. For Pfarm and TrEK, we statically configure the

system into an appropriate interconnection network.

3.3.2 Software Environments

Pfarm and TrEK have been implemented using C on two different software environ

ments that are available on our multicomputer: Logical Systems and Trollius. The

Logical Systems environment [Moc88, Sys9O] includes a library of process creation and

communication functions. The environment has an utility called id-net that runs on the

host and downloads the executable programs onto a network of transputers.

In the Trollius environment [BBFB89, F+90], the programs are run on top of a kernel

on each transputer node. The Trollius kernel manages and synchronizes any number of

local processes. There are two levels of message passing in Trollius. The kernel level

allows communication between processes on the same node. The network level allows

communication between processes on different nodes, as well as between processes on

the same node. There are four sub-levels of message passing within the Trollius network

level, representing different functionality/overhead compromises. They are, in order of

increasing functionality and overhead, the physical, datalink, network and transport

sub-levels. Trollius provides both blocking and non-blocking communication functions.

It also includes a set of utility programs that run on the host, which can be used to load,

monitor and control the programs on transputer networks.
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3.4 Task-oriented Paradigms

In this section, we describe the characteristics of two task-oriented parallel programming

paradigms, processor farm and divide-and-conquer, that are considered in this thesis.

3.4.1 Processor Farm

Processor farm is one of the most widely used strategies for parallelizing applications.

There are a large number of scientific and engineering applications that consist of re

peated execution of the same code, with different initial data. In addition, there is

little or no dependency among the different executions of this code. These differ

ent executions can be considered as a set of tasks and can be executed in parallel.

When we use multiple processors to execute these tasks in parallel, even though all

the processors are executing the same code, they may not be executing the same in

struction at any given time as they execute different parts of the code depending on

the initial data. Therefore, it is not possible to use SIMD (Single Instruction Multi

ple Data) parallel machines to run these applications. These kind of applications can

be run efficiently on MIMD (Multiple Instruction Multiple Data) parallel computers.

Even though shared memory MIMD machines can be used for this class of applica

tions {A1v90], distributed memory MIMD machines are being widely used because they

are scalable and cost-effective. Processor farms are described in many transputer pro

gramming books [Lim88, Ga190, Cok9l]. This strategy has been used in parallelizing

applications in several areas [CHvdV88, BTU88, CU9O, SS91, CCT93, NRFF93].

The typical setup to run these applications is to use a “farm” of worker processors

that receive tasks from, and return results to, a manager processor. Each worker pro

cessor runs the same program and depending on the data received for individual tasks,

it may execute the same or different parts of the program. No communication is re

quired among the worker processors to execute the tasks. The manager processor has

to communicate with the worker processors to distribute the tasks and to receive the

results.

The ideal architecture for this “manager-workers” setup is one in which each worker
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Figure 3.1: Ideal Manager-Workers Architecture

processor is directly connected to the manager processor as shown in Figure 3.1. In

practice, this can not be realized as the processor nodes in distributed memory ma

chines generally have a fixed degree of connectivity (e.g., in the transputer case, each

processor has four links and a network of transputers can be configured using crossbar

links). It is possible to use crossbar switches to dynamically reconfigure the connection

between the manager and the worker processors such that every worker will be connected

to the manager directly for a certain period of time [Hom93]. The need for special hard

ware in addition to not being scalable makes this configuration less useful. Also, many

commercial machines use a fixed interconnection network such as mesh or hypercube

for interconnecting their processor nodes. Thus, one has to use an interconnection net

work in implementing processor farm applications, and the topology has to be chosen

with a view of minimizing the communication costs in distributing tasks and collecting

results. Since tree architectures that have a minimum possible number of hops to each

worker from the manager incur minimum communication costs, they are best suited for

implementing processor farm applications.

There are several variants of processor farm that increase in applicability. In the

generic description of a processor farm, the application program consists of a number

of independent tasks that have to be executed on a network of worker processors. All

the tasks may be of the same type in which case the workers execute the same code
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or different parts of the code depending on the initial data. The computation time

requirements might vary from task to task depending on their data. The manager might

have all the tasks readily available to start with, or there could be some computation

involved in producing these tasks. Also, in the case of real-time applications, the data

for individual tasks arrive in real time.

Processor farms can also be used to execute applications that consist of multiple

types of tasks. In this case, the worker processors have to be loaded with the code

needed to execute each type of task with the appropriate code chosen, according to its

type at runtime. Cramb and Upstill [CU9OJ discuss a processor farm implementation of

such an application.

It is also possible to use processor farms to execute application programs that consist

of multiple phases of computation [Son93]. In these applications, the tasks might have

some dependency. After a phase of computation, a new set of tasks for the next phase

are generated based on the results of the current phase. Also, some applications might

consist of a number of distinct phases of computations out of which some phases could be

executed efficiently using a processor farm [BTU88]. In this case, the processor farm acts

as a computational server that is called at different points in the application program to

execute a set of tasks.

Most of the processor farm designs discussed in the literature are overly simplistic

and hide the issues that affect their performance and reuse. Poor reuse of code is

a major problem in parallel programming and this remains the case in processor farm

applications. There is very little work done in understanding how the various parameters

such as the hardware topology, computation and communication requirements of the

tasks affect overall performance.

In addition to making it reusable and topology independent, the Pfarm system de

scribed in Chapter 4 was designed considering all the factors that affect the performance.

Performance models were derived from these realistic implementations of Ffarm. The

models have been experimentally validated and are found to be accurate. Thus, they

can be used in performance tuning to maximize performance.
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3.4.2 Divide-and-Conquer

Divide-and-conquer is a well-known problem solving strategy used in deriving efficient

algorithms for solving a wide variety of problems on sequential machines. Efficient

divide-and-conquer algorithms have been used for solving problems in several areas such

as graph theory, sorting, searching, computational geometry, Fourier transforms and

matrix computations [AHU74, HU79, Sed83, Ben8O]. It is also a useful strategy in

hardware design as mentioned by Uliman in [U1184].

The divide-and-conquer strategy can be briefly stated as follows: A large instance

of a problem is divided into two or more smaller instances of the same problem. The

results of smaller instances, called sub-problems, are combined to obtain the final result

for the original problem. Sub-problems are recursively divided until they are indivisible

and can be solved by a non-recursive method.

On uniprocessor systems, after dividing the original problem, sub-problems are solved

sequentially. Sequential divide-and-conquer results in a tree structure of sub-problems.

Several researchers have discussed the usefulness of the divide-and-conquer strategy in

parallel processing [HZ83, GM85, GR88, Sto87]. On parallel systems, sub-problems can

be solved concurrently provided that the system has sufficient parallelism. Problem

splitting and combining of results can also make use of the available parallelism. These

operations require interprocessor communication for distributing the data and for receiv

ing the corresponding results. As the sub-problems are independent, there is no need

for communication among the processors working on different sub-problems.

In its most general setting, a divide-and-conquer algorithm can be described as a

dynamically growing tree structured computation, where initially there is a single prob

lem and sub-problems are created as the problem is recursively divided. The number of

subproblems and the depth of the tree may depend on the data and thus known only at

runtime. For example, evaluation trees of functional and logic programs have the above

characteristics. In the case of applications such as matrix multiplication and FFT, the

degree of division and the depth of the computation tree is fixed. In some applications

such as Quicksort, the problems are not equally divided.
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There are real-time applications in areas such as vision and image processing, in which

there is a continuous stream of real-time data and each data set has to be processed with

a divide-and-conquer algorithm. Also, there are some non real-time applications in areas

such as numerical analysis that consist of a set of problems, each of which can be solved

using a divide-and-conquer algorithm.

In chapter 6, we describe the design of a runtime kernel called TrEK(Tree Execution

Kernel) that provides runtime system support for divide-and-conquer applications on

multicomputers. TrEK is designed such that it can execute divide-and-conquer compu

tations of any degree and depth on an arbitrary tree topology. To improve the overall

performance, TrEK makes use of the intermediate processors to process subproblems

in addition to splitting and joining. The task-oriented framework chosen here assumes

that there is a flow of divide-and-conquer tasks. This framework is well suited for ap

plications that consist of a number of divide-and-conquer tasks. It can also be used for

applications in which the problem consists of a single divide-and-conquer computation

tree with large degree and depth. In this case, when we run such an application on a

processor tree of smaller degree, the flow of tasks approximate the computation entering

the subtrees. This framework allows us to derive performance models that accurately

describe the behavior and performance characteristics of TrEK.

In the following paragraphs, we discuss how this work contrasts with the related

work in using divide-and-conquer for parallel processing.

Horowitz and Zorat [HZ83] have outlined how appropriately designed multiproces

sors whose logical structure reflect the tree structure of divide-and-conquer can be used

to efficiently execute divide-and-conquer algorithms. They discuss the data movement

problem in hardware configurations that have local memory, global memory via common

bus and global memory augmented by local caches. Their proposal of a local memory

architecture consists of processors with local memory connected as a full k-ary tree for

executing k-ary divide-and-conquer problems. In contrast with their model, TrEK makes

use of intermediate processors in addition to leaf processors for processing of subproblems

to improve overall performance. Also, TrEK can execute divide-and-conquer problems

of any degree and depth on distributed memory machines with any given topology.
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Stout [5to87] has discussed the usefulness of the divide-and-conquer strategy ou dis

tributed memory parallel computers for solving image processing problems. He has

presented a divide-and-conquer algorithm for the connected components problem. He

has analyzed some of the requirements of this problem, and outlined some of the implica

tions for machine architectures and software. Nelson [Nel87] has studied how the divide-

and-conquer paradigm can be used in designing parallel algorithms. He has discussed

and presented parallel algorithms based on sequential divide-and-conquer algorithms for

Batcher’s Bitonic Sort, Matrix Multiplication, and Fast Fourier Transform(FFT) prob

lems. Contraction of these algorithms on a binary n-cube show that different algorithms

required different contractions to obtain good results. Our work focuses on developing

efficient programming support for divide-and-conquer applications on multicomputers

to hide the underlying complexities of the parallel machine from the programmer.

McBurney and Sleep [M588] have done experimental work on implementing divide-

and-conquer algorithms on a transputer-based system. Their ZAPP architecture is a

virtual tree machine that is capable of dynamically mapping a process tree onto any

fixed, strongly connected network of processors. Each processor runs a ZAPP kernel that

implements the divide-and-conquer function. Each processor performs a sequential depth

first traversal of the process tree, constructing sub-problems. Parallelism is introduced by

allowing immediate neighbor processors to steal sub-problems. It is difficult to obtain

any performance model for this framework. The task distribution strategy in TrEK

differs from that used in ZAPP. Unlike ZAPP, TrEK does not allow a node to grab

subtasks from its output queue for processing. This restriction allows us to model the

system and does not degrade performance.

Cole, in his algorithmic skeletons [Co189], has studied how well a divide-and-conquer

skeleton can be implemented on a grid architecture. He proposes to use an H-tree layout

to map tree processors to mesh processors, but has not implemented the system. In

terms of performance, he has focussed on the asymptotic efficiency with which a large

grid of processors can implement the system with respect to the performance of a single

processor. In contrast, the TrEK design can work on multicomputers with any topology

and has been implemented on a transputer-based multicomputer. Performance models
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derived in this thesis are analytical models, unlike Cole’s asymptotic models, and hence

can be used for performance tuning.

3.5 Chapter Summary

In this chapter, we have described an integrated approach for addressing programming

and performance modeling problems on multicomputers. We have discussed the charac

teristics of two task-oriented paradigms, processor farm and divide-and-conquer, that are

considered in this thesis. The following chapters describe the design and implementation

of runtime systems, development of performance models and their experimental valida

tion on a 75-node transputer based multicomputer. An integrated programming envi

ronment that includes programming tools such as graphical interface, mapper, loader,

monitor and debugger in addition to virtual machines would make programming these

machines much easier. Such an environment is described in Chapter 8.



Chapter 4

Processor Farm: Design and
Modeling

In this chapter, we describe a processor farm and detail the trade-offs involved in its

design. We derive models that accurately describe the behavior and performance char

acteristics of the system. We give the limitations and assumptions on which the models

are based and describe how the models were used in the design process. The models are

sufficiently general that they can be used to predict performance of our design on any

topology. Providing independence from both size and topology while maintaining the

ability to tune the performance strongly supports reuse.

In Section 4.1, we classify different types of processor farms and present our pro

cessor farm system, Pfarm. We compare and contrast our design with that of others

at appropriate places within this section. In Section 4.2, we derive general analytical

models that describe the start-up, steady-state, and wind-down phases of the execution

on any tree topology. As balanced tree topologies provide maximum performance among

all topologies of the same size, we apply this modeling technique to derive expressions

for balanced tree topologies. We close by discussing how our models can be used in

performance tuning and restructuring of application programs.

33
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4.1 Pfarm: Design and Implementation

We begin by listing some of the important design issues and goals that must be addressed

while designing and developing a system to execute applications efficiently using the

processor farm strategy.

1. The system should fully exploit all the available parallelism in the hardware, such

as the ability to simultaneously communicate on all links.

2. System overheads should be minimized.

3. The system should be topology independent, that is, it should scale and run on

any processor topology.

4. The system should support reuse and provide an easy-to-use interface to the ap

plication programmer.

In a processor farm, control may either be centralized or distributed. In the case

of centralized control, requests for work are sent to a central manager processor that

assigns the tasks. Usually, as in Hey [Hey9Oj, these requests are routed through the

network back to the manager. However, it is also possible to dynamically reconfigure

the links, with the use of crossbar switches, so that the manager can load and drain

tasks directly from each worker [Hom93]. In the case of distributed control, there is a

manager on each processor. In this case, the tasks flow into the system and the local

manager either schedules an incoming task to the local worker process or forwards it

to a child processor. Distributed control processor farms are common and have been

described by many authors (for example see Cok [Cok9lJ).

Processor farms may be control driven or demand driven. A control driven scheme

is useful when the work can be statically partitioned and assigned to the workers. A

demand driven scheme, however, has the advantage that it can dynamically adjust to

different sized tasks. Also, in a distributed processor farm, only neighbor to neighbor

communication is necessary.

Pfarm implements a distributed demand-driven processor farm.
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4.1.1 Process Structure and Scheduling

When implementing a distributed demand-driveu processor farm, each worker processor

consists of at least two processes: a task mauager process and a worker process. Since

intermediate processors in the network distribute tasks and collect results in addition to

processing, from the performance point of view, it is important to overlap communication

with computation. It affects the rate at which tasks can be forwarded, which, as shown

in Section 4.2, limits the performance of the system. Although the processor farm

implementations that have appeared in the literature [Cok9l] mention the importance

of overlapping communication with computation, most do not fully implement it.

In order to overlap communication with computation, it is necessary to have multiple

processes on each worker processor. As a result, Pfarm has one InLink and one OutLink

process for each hardware link in the processor, in case of transputers, there will in total

be 4 InLink and 4 OutLink processes. The process structure of a worker with three

children is shown in Figure 4.1. This figure depicts a single worker in the system. The

entire system consists of a collection of these workers, organized in a tree structure,

which logically corresponds to the ideal processor farm structure given in Figure 3.1.

The result manager process in Figure 4.1 coordinates the collection and forwarding of

results to the manager processor (or root) of the system. Pfarm takes advantage of the

transputer’s ability to use the links and the CPU simultaneously, and makes it possible

to overlap computation with the transfer of tasks and results. Note that there is still a

non-overlapped message start-up time associated with each communication.

Another important design consideration is the scheduling of local processes. In order

to keep the worker processors busy processing tasks, it is important to forward the tasks

as quickly as possible. Therefore, all the processes that distribute tasks should be run

at high priority. Pfarm uses the hardware scheduler provided on the transputer chip.

In Pfarm, all the task communicating link processes and the task manager process are

run at high priority, whereas the worker process is run at low priority. In addition, link

processes that forward results and the result manager are also run at high priority. As

described in Section 4.2.3, this is important whenever system throughput is bound by

the rate at which the manager receives the results. Also, this returns the results to the
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Figure 4.1: Process Structure on a Worker Processor in Pfarm

manager as quickly as possible which is important when there are dependencies among

the tasks.

4.1.2 Task Scheduling

Since Pfarm distributes the control, there is a task manager process on each worker

processor. The local manager gives priority to the local worker process while allocating

an incoming task. If the local worker process is busy, the manager attempts to forward

the task to one of its children using a round robin strategy among the free OutLink

processes. The order in which the tasks are assigned to the OutLink processes depends

on the underlying topology and affects the start-up time of the system. An analysis

of the affect of round robin scheduling of tasks to OutLink processes during start-up is
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given in Section 4.2.

In Pfarm, we initially flood-fill the system with tasks. However, once fnll, the system

is demand-driven with new tasks entering the system as tasks are completed. This

scheme works well for start-np and steady-state bnt is not as effective for the wind-down

phase. Dnring wind-down, there are no longer any incoming tasks and workers closer to

the root may idle since remaining tasks are still being forwarded towards the workers

farthest from the root.

4.1.3 Buffering

The nnmber of task bnffers to be allocated to each processor is an important design

issne. In Pfarm, each process in the task distribntion path shown in Fignre 4.1 can have

only one task. This provides snfficient buffering so that a process never idles waiting

for a task. For example, when the worker process finishes, there will be another task

available at the manager process. If the manager process was not there and the worker

received the task directly from the InLink, then it would have to wait whenever the

InLink process was in the midst of a communication. We call the task bnffer in the

manager process, an additional bnffer since it is there for synchronization purpose only.

It is important to minimize the number of buffers because the wind-down time increases

prop ortiojially with the number of buffers. This occurs because more tasks end up on the

workers at the leaves of the tree, resulting in workers closer to the root idling (a complete

analysis of wind-down is given in Section 4.2.1). The number of buffers adversely affects

start-up as well, as we show in Section 4.2.1. However, the number of buffers does not

affect steady-state performance.

At any given time, each processor can be viewed to have four tasks assigned to it,

one each to the task manager process, local worker process, local InLink process and

OutLink process of the parent processor. Thus, in total there are 4N active tasks in any

N processor system, irrespective of the topology.

We dO not restrict the number of result buffers as this does not affect the overall

performance. But, at any given time, the number of active result buffers on any processor

is small as the result forwarding communication processes and the result manager are
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run at high priority.

In contrast, the amount of buffering required in a centralized scheme depends on the

task size and message latency for receiving a new task. Unlike Pfarm, as N increases,

message latency also increases and therefore the number of buffers per processor has

to increase. In the centralized scheme, there is also the extra overhead of sending and

receiving task request messages.

4.1.4 Topology Independence

Pfarm system is designed to be topology independent. For processors and links that

satisfy the assumptions described in Section 3.2, the observations about the Pfarm design

remain true, independent of the topology. Besides transputers, there are other machines

such as iPSC hypercubes [Arl88] and TI C40 [Inc9l] with similar behavior. Moreover,

as we show in the next section, accurate performance models can be derived for Pfarm

on any tree topology. For a given fixed interconnection, by taking a spanning tree, it is

possible to use Pfarm and derive a model to predict its performance.

4.2 Performance Modeling

In summary, as a consequence of the design, Pfarm has the following characteristics:

1. The hardware system is a distributed memory message passing architecture with

linear message cost model.

2. There is a continuous flow of tasks into the farm.

3. All tasks originate from a single source and results are returned to the source.

4. Tasks are dynamically distributed to the workers.

Our objective is to find a distribution of the load to all the worker processors so

as to minimize the total execution time, where load consists of both the computational

requirements of the tasks and the associated overheads for forwarding and executing the

tasks.
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The system can be either computation bound or communication bound. When it

is computation bound, the system acts as a pipeline, with three phases to be analyzed:

start-up, steady-state and wind-down. The start-up phase begins when the first task

enters the system and ends when all the worker processors have received at least one

task. After start-up, the system is in steady-state where it is assumed that the processors

do not idle. Finally, the wind-down phase begins when the last task enters the system

and ends when all the results have reached the source. The total execution time is given

by,

Ttotai = Tsu+T8s+Twd (4.1)

where is the start-up time, TSS is the steady-state time and Td is the wind-down

time. For a sufficiently large number of tasks, steady-state time dominates the remaining

two phases. However, to better understand the limitations of processor farms with a

smaller number of tasks, it is important to analyze start-up and wind-down. When the

system is communication bound, the total execution time is determined by the rate at

which either the tasks can be distributed to the worker processors or the results can be

received from them.

In Sections 4.2.1 and 4.2.2, we derive performance models for the case in which the

system is computation bound. In Section 4.2.1, we present a general analytical frame

work to analyze the steady-state performance of processor farms on any tree topology.

We argue that, under reasonable assumptions, Pfarm obtains optimal performance on

any topology. Later in this section, upper bounds for start-up and wind-down time are

also derived. In Section 4.2.2, we derive steady state, start-up and wind-down models

for balanced complete trees using the general analytical framework. Balanced complete

trees are interesting because they provide maximum performance among all topologies

of the same size. In Section 4.2.3, we analyze the performance of processor farms when

they are communication bound.

4.2.1 General Analytical Framework

Let T be a tree architecture with processors p1,... ,PN. Let C(i) =

{j pj is a child of p} denote the children of p in T. Let a = Te + lie be the processing
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time plus associated overhead to execute a task locally, and let /3 be the processor over

head for every task forwarded to a child processor. [3r includes all the CPU overheads

involved in receiving a task, forwarding it to a child processor, receiving the correspond

ing result and forwarding it to the parent processor. Let d and r be the average data

and result size per task, respectively, and let T be the communication rate of the links.

Steady-state Analysis

The steady-state phase begins once all the processors have a task to execute and ends

when the last task enters the system. It is assumed that no processor idles during

steady-state; a processor is either processing a task or busy forwarding tasks and results.

Suppose that M tasks are executed during this phase and let V denote the number of

tasks that visit p. Then, the following condition holds for all the processors in T,

T88 — c(Vj— /)+/3f (4.2)
jEC(i) jC(i)

= + (/3 - (4.3)
jEC(i)

That is, the steady-state execution time (T5) equals the processing time with the asso

ciated overhead (cr) for all the tasks executed locally plus the overhead (/3) for all the

tasks that were forwarded.

For a fixed T8, c, and 13f, these N conditions form a system of linear equations on N

unknowns; Vi, V2, . . . VN. By ordering the equations so that the parent of a processor in

T appears before its children, it is easy to see that the system is in an upper triangular

form. Thus, the N equations are linearly independent and there is a unique solution.

At the root of T, V = M. Furthermore it is easily verified, by back substitution,

that V1 is a linear function of T8. Thus T88 can be expressed in terms of M, a and /3f,

which implies that given M, a and
,

we can solve for T55 and V1 to VN. We can also

solve for fj, the fraction of the M tasks executed by the ith processor,

).jEC(z)
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In addition, we can obtain the steady-state throughput, the rate at which tasks can be

processed by the system. An example of this analysis for an arbitrary architecture is

given in Figure 4.2.

a /3f—a /3f—a V1
a V2 T8

a /3f—a /3f—a V3 T88
a V4 T88

a V5 T33

a3M
T88

— 5a2 — 6af +

Figure 4.2: An example of the steady-state analysis

This analysis gives the execution time of the steady-state phase in terms of parame

ters that can be determined prior to execution. The total number of tasks, M, is usually

known. a can be estimated or measured by using the techniques that are described in

Chapter 8. The Pfarm system is designed such that the two overheads 13e and /3j’ are

application and topology independent. Therefore, they need only be determined once

for a particular implementation of Pfarm. In Section 5.1, we describe how the values of

these overhead parameters can be determined.

As explained above, we can determine T88 for a given arbitrary tree, T. However,

for an arbitrary topology there remains the question of which spanning tree to use for

Pfarm. We show that all shortest-path, demand-driven distribution schemes with the

same overheads (/3e and /3) are equivalent. Let T58(S) be the execution time of a

shortest-path, demand-driven distribution scheme S.
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Theorem 1 For any topology G, T55(S) equals T(Pfarm(T)) where Pfarm(T) is

Pfarm executing on T, a breadth-first spanning tree of G rooted at the source of the

tasks.

Proof:

Let L(i) of G denote the set of processors that are at distance i from the source of

the tasks. Since S and Pfarm(T) are both shortest-path distribution schemes, tasks

executed at a processor in L(i) must have been forwarded from processors in L(i—1). Let

si(S) and s(T) denote the combined throughput of all the processors in L(i) for scheme

S and Pfarm(T), respectively. We claim that for all i, si(S) = s(T). It is initially true

for n, the last level, since in both schemes the processors in L(n) do not idle and can

only execute tasks. In general, by induction on the level, the fact that processors do not

idle and si(S) = s(T) implies that both schemes must execute the same number of tasks

on processors in L(i — 1). Thus s_1(S) = s_1(T) and, in particular, se(S) so(T).

Therefore for a fixed M, since the throughput for both the schemes are the same,

T58(S) =T85(Pfarm(T)).

0

It follows from Theorem 1 that for a fixed M, there is only one value of T88 that

ensures that processors do not idle. This does not exclude the possibility that there

exists some non-shortest path scheme or a scheme that introduces idle time that would

perform better. However, since this either increases the overhead to forward a task to

a worker or reduces the computational power of a processor, it would be surprising if it

outperformed the work efficient scheme we have analyzed.

Start-up and Wind-down Analysis

Start-up and Wind-down costs depend on the task distribution strategy and the hard

ware topology. For analyzing start-up and wind-down costs, we consider the structure of

the underlying process graph. Given a tree architecture, the process graph of the system

can be constructed by replacing each processor by the process structure given in Fig-
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ure 4.1. We remove the processes that gather the results and only consider the processes

that are involved in task distribution, that is, the worker process, the manager process

and the link processes. The process graph of the architecture given in Figure 4.3(a) is

shown in Figure 4.3(b). Notice that there are two types of edges in Figure 4.3(b): edges

that represent the inter-processor communication and the intra-processor communica

tion.

Figure 4.3: (a) node graph (b) process graph (c) subtree decomposition

Let T be the process graph of an N node architecture. We will add, as part of T, an

initial OutLink process which we take as the root of T. In total, T has 4N processes or

alternatively T can be viewed as consisting of N subtrees (or nodes) of the type depicted

in Figure 4.3(c).

Start-up

Start-up begins when the first task enters the system and ends when all the processors

OutUnk

0 InUnk

O Manager

O Worker

e split
(a) (b) (c)
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have received at least one task. The duration of the start-up phase depends on how the

tasks are distributed to the processors. As mentioned in Section 4.1, the manager pro

cess gives priority to the worker process over the OutLink processes while allocating the

tasks. Thus, when a worker process becomes free, it will receive the next available task.

The OutLink processes, when free, receive tasks from the manager process; if more than

one OutLink process is free, the manager allocates the tasks in a round robin ordering of

the OutLink processes. Thus, as the tasks start entering the system, a processor keeps

the first task it receives and then, as long as the worker process has not completed the

current task, distributes the incoming tasks to its children.

In order to obtain an upper bound on start-up time, we discretize the start-up into

a sequence of steps. On each step, a task is transferred from an OutLink process of one

processor to either the worker process, or an OutLink process, or, when they all have

tasks, to the last process along the path without a task. Furthermore, it is assumed that

during the start-up phase, no worker process finishes its first task. This is a reasonable

assumption since the task forwarding link processes run at high priority while the worker

process runs at low priority. Assuming that there is a continuous flow of tasks into the

system, we seek to bound the number of steps required before every worker process has

a task.

For analysis purposes, we use a collapsed process graph like the one shown in Fig

ure 4.3(c). This graph is identical to the original architecture graph except that each

node consists of the InLink, the manager, and the worker process of a processor plus

the corresponding OutLink process of its parent processor. In this tree, all the tasks

are initially at the root and on each step every node with more than one task forwards,

in round robin order, the last task it received to a child. In order to analyze the worst

case, we assume that the tasks can be buffered at the manager process and thus each

subtree has an infinite capacity to absorb tasks. We first obtain an upper bound on the

number of steps to distribute at least one task to every node. This is equivalent to the

procedure described above, except that it takes one additional step at the end to ensure

that a leaf node forwards its task to the worker process.

Given a rooted oriented tree T, with child nodes numbered from left to right starting
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at one, let c(v) be the child number of node v with respect to the parent of v, p(v). Let

p(v) denote the uth ancestor of node v in T, and let deg(v) be the down-degree of node

V.

Definition 1 Let d(v) equal fl0 deg(p(v)).

Lemma 1 For any rooted oriented tree T, the first task received by node v is the

n—2

1 + c(p1(v)) +
j=o

task at the node p(v), the root of T.

Proof:

Let s(v, i) be the number of the ith task received by node v. Using the fact that the

child c(v) receives every deg(p(v)) task arriving at p(v), except for the first which is kept

by p(v), we obtain the following recurrence

s(v, i) = s(p(v), 1 + c(v) + (i — 1)deg(p(v))).

In general,

s(v, i) s(p’(v), 1 + c(p°(v)) + (i — 1)do(p(v)))

= s(p(p(v)), 1+ c(p(v)) + [1+ c(v) + (i - 1)do(p(v)) - 1]do(p(p(v)))

= s(p2(v), 1 + c(p’(v)) + c(v)do(p2(v)) + (i — 1)do(p’(v))do(p2(v)))

= s(p2(v),1 + c(p(v)) + (i — 1)d(p(v)))

s(v,i) = s(p(v)),1 +c(p(v)) + (i — 1)d_i(p(v)))

At the root, s(v,i) = i. Thus, when p(v) is the root,

s(v, 1) = 1 + c(p’(v)) (4.4)

D
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Example:

Let us derive the task number of the first task that arrives at node 5 in the graph shown

in Figure 4.3(a) using equation (4.4). For node 5, n = 2. Thus,

s(5, 1) = 1 + c(p1(v)) + c(p°(v))do(p2(v))

= 1+2+2x2

=7.

The time step at which the worker process on node v receives task s(v, 1) is n + s(v, 1).

This follows from the fact that task s(v, 1) leaves the root after s(v, 1) — 1 steps, and

it takes n + 1 more steps for this task to reach the worker process on node v as this

task gets forwarded in every step because s(p”(v), 1) < s(v, 1). The next theorem follows

from these remarks.

Theorem 2 For any tree structured process graph, after

max {n+s(v,1)}
v a leaf

steps, every worker process has a task to execute.

The time required for each step is determined by the communication cost to transfer

a task from a processor to its child and the associated CPU overhead. The average

communication time needed to transfer a task from one processor to its child is given

by Td = d/T. The associated overhead is /3f/2 since /3 includes the overheads for both

transferring a task to a child node and returning the corresponding result to the parent.

Therefore, the time required for each step is given by Td + 3j/2.

From Theorem 2 it follows that

T8 = (Td+/3f/2) max {m+s(v,1)} (4.5)
v a leaf

For the tree shown in Figure 4.3(a), the start-up time is determined by the time

required for node 5 to receive its first task. As derived earlier, s(5, 1) = 7 and m = 2.
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Thus, the start-up time for this example is given by

= 9(Td +/3f/2) (4.6)

The upper bound on the number of steps required for every worker process to have

a task to execute can be exponential in N. Consider for example a tree with a long

path where each node on the path has large degree but all nodes off of the path are

leaves. The sum of products in s(v, 1) grows exponentially with respect to N. This is a

result of our assumption that subtrees can always accept tasks. In practice, the upper

bound cannot exceed the number of buffers in the tree, 4N. But it is possible to come

arbitrarily close to 4N. As the upper bound is proportional to the number of buffers, for

start-up, ideally the number of buffers should be minimized. This is one of the reasons

we chose to have only one additional buffer on every worker processor.

Although the degree and depth of the tree is fixed, it is possible to change c(v).

Theorem 2 provides a means for determining an orientation of the tree that minimizes

start-up time.

Example:

Earlier, for the tree shown in Figure 4.3(a), we found that s(5, 1) 7. If we change

the orientation of the tree by interchanging nodes 2 and 3, the start-up time is still

determined by the time required for node 5 to receive its first task. Now, however

s(5, 1) = 6.

In summary, to minimize start-up, the tree should be oriented so that the longest path

appears on the left (that is, on start-up, tasks are forwarded first along the longer paths).

Wind-down

Wind-down begins when the last task enters the system and ends when the last result

leaves the system. The Wind-down phase can be broken into two parts: the time to

complete the remaining tasks in the system and the time to return results that are in

the system after all the tasks have been executed.

Consider the state of the process graph when the last task enters the system. As

given in Section 4.1, there are 4N tasks. In order to derive an upper bound, let us
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assume that all the remaining tasks have just started to execute. We will bound the

maximum number of tasks executed by a single processor during the wind-down phase.

This gives an upper bound on the time taken to complete the 4N tasks.

If all of the tasks have just begun execution, then after time c, each processor has

executed one task. Since priority is given to distributing the tasks, some of the tasks

buffered in each processor will be forwarded to the child processors. In the worst case,

when c greatly exceeds
,

the tasks will be forwarded as far as possible towards the

leaves.

A worker process at a leaf can only execute those tasks available at its ancestor

processes in the process graph. Therefore, we should consider the longest path from

the root to a leaf in the tree (this is at most 3N + 1, for example see Figure 4.3(c)) to

derive an upper bound. Let m be the number of ancestor processes of the leaf process

in the longest path, each of which initially contains a task. Starting at the root, every

third process along the path is adjacent to a worker process. Therefore, after time o,

when each of the worker processes have finished executing a task, each worker process

adjacent to the path will receive a task from a manager along the path. The remaining

tasks on the path shift down towards the leaves filling as many buffers as possible. This

results in the following recurrence for p(m), the length of the path,

p(O) =

p(m) p(n-l)-
.

Solving this recurrence for p(m) 1 shows that after log312 ml + 1 steps, all tasks have

been processed. Thus, the time taken for the first part of the wind-down phase is given

by c(log312m1 + 1).

The second part of the wind-down cost is determined by the time required to forward

the last result from the leaf process to the root. If r is the average result size per task,

the communication time needed to transfer a result from one processor to its parent is

given by Tcr = r/-r. The associated overhead per transfer is /3/2 since f3 includes the

overheads for both transferring a task to a child node and returning the corresponding

result to the parent node. Therefore, the second part of the wind-down cost is given by
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m/3 x (Tc,. +/3f/2) since there are m/3 processors in the path. If m is the length of the

longest path, the wind-down cost is given by

Td = (log312rn1 +l)+(Tcr+f/2). (4.7)

In the tree shown in Figure 43(a)), there are two longest paths, the path from the

root to node 4 and the path from the root to node 5. In this example m = 9 and the

wind-down time is given by

Td 7a+3(Tcr+/3f/2). (4.8)

This analysis depends only on the depth of the tree and therefore gives the same

bound for all breadth-first spanning trees of the topology. Note, however, that the

analysis is overly pessimistic since subtrees along a path from the root to a leaf also

receive tasks from managers on the path. The actual wind-down time also depends on

the number of nodes along the path with down degree greater than one. The fewer the

number of nodes of degree one, the smaller is Td. Because of our round robin scheduling

policy, any node of degree greater than one can only forward at most one task towards

the leaf of the chosen path out of every three tasks that arrive at the node. Therefore,

the number of tasks on the path decreases more quickly and if every processor on the

longest path has at least two children, then the number of tasks executed by a leaf is

bounded by max{ log3 ml + 1, 4}. Leaves must execute at least 4 tasks, namely those

in their local buffers.

For the example topology shown in Figure 4.2, the total execution time for processing

M tasks is given by

a3(M — 20)
Ttotai 9(Tcd +/3f/2)+ 52

—

6c3 + 2i3
+ 7c + 3(Tcr +/3f/2). (4.9)

4.2.2 Balanced Tree Topologies

In this section, we analyze the performance of processor farms on balanced tree topologies

using the framework given in the previous section. Balanced tree topologies are of interest

because (a) a k-ary balanced tree topology, where k is the number of links on each node,
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provides optimal performance, and (b) for balanced trees, it is possible to obtain closed

form solutions for system throughput and speedup.

For processor farms, a k-ary balanced tree topology provides optimal performance

among all the topologies of the same size for the following reasons:

1. From Theorem 1, we know that the best topology for processor farms is a breadth

first spanning tree. As a k-ary balanced tree is a spanning tree with minimum

possible depth among all degree k graphs, it provides a steady state performance

that is as good as any possible spanning tree.

2. As explained in Section 4.2.1, start-up cost is proportional to the length of the

longest path in the graph. It also depends on the ordering of the children, and can

increase when the graph is unbalanced. The length of the longest path in a k-ary

balanced tree topology is minimum among all the graphs with the same number of

nodes. The symmetry in balanced tree implies that the orientation of the tree does

not affect the start-up cost. Thus, a balanced k-ary tree topology has minimum

possible start-up time among all trees with the same number of nodes.

3. As shown in Section 4.2.1, wind-down cost is proportional to the length of the

longest path in the graph. The wind-down cost also decreases as the number of

children at processors in the longest path increases since these children steal tasks

from the path. As a result, this decreases the number of tasks forwarded to the leaf

processor in the longest path. As mentioned earlier, the length of the longest path

in a k-ary balanced tree is minimum among all trees of the same size. In addition,

all the non-leaf nodes in a balanced k-ary tree have the maximum possible number

of children and thus reduce the number of tasks forwarded to any particular leaf.

Thus, a complete k-ary tree has minimum possible wind-down time among all the

trees with the same number of nodes.

As defined in Section 4.2.1, let o be the average processing time plus the overhead

to execute a task locally and let /3f be the overhead for every task forwarded to a child

processor. Consider a D level balanced k-ary tree with k processors on level i. Figure 4.4

shows binary and ternary tree topologies with D = 4 and 3 respectively.
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Figure 4.4: Binary and Ternary Trees with D = 4 and 3

We begin by analyzing the steady-state phase, followed by an analysis of start-up

and wind-down.

Steady-state Analysis

Let M be the total number of tasks processed during the steady-state phase. Assuming

that no processor idles during the steady-state, all the processors at a particular level of

the tree execute the same number of tasks. We can then express the steady-state time

(T85) for each processor in terms of the number of tasks processed and forwarded and

their associated costs and overheads. From the general analysis in Section 4.2.1, we have

T8 = ci(Vj — ) + /3 (4.10)
jEC(i) jEC(i)

Since all the processors on a level execute same number of tasks, by summing equa

tion (4.10) over all the processors on level i, we have

= )+3
i i jC(i) i jEC(i)

= (4.11)
i+1

Let

L, = Vj

(a) Binary Tree (b) Ternary Tree
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be the number of tasks that visit a processor on level i.

Therefore,

T58 = oL+(/3f—o)kL+l.

By rearranging the above, we have

k(c — = oL
—
T55 (4.12)

and L0 M.

The above recurrence is of the following form described in Chapter 2 of Knuth’s

Concrete Mathematics [GKP89].

an = k(c—/3f)

=

= —T8

Sn

Solving the recurrence, we obtain

i 1—
L M

[k f)] [ 1—
k(-f)

Let

a=

Then

L = Ma —

(i — 1/a

c 1—1/a

=
MazT/1. (4.13)

SinceL=Ofori=D,

mID
MaD — —

- (1-1/a)

T
— MQ(1 — 1/a)

SS
— (1_i/aD)
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By substituting for a, we obtain

— M[a—k(o—31)]
T5

—

— (k(f))D
(4.14)

Discussion

From the steady-state execution time given by equation (4.14), we can derive expressions

for throughput and speedup. The steady-state throughput of a D level balanced k-ary

tree is given by

M
SD =

I

1 1(k(_f)
(415)

a—k(ci—/3f) )

The steady-state speedup of a D level balanced k-ary tree is given by

SPD=I

=
— k(a

—

D

(4 16)
k(3)

Here, speedup* is defined as the ratio of the execution time of the parallel algorithm on

a single processor (execution time includes the associated overhead in addition to task

processing time) to the total execution time of the algorithm on the parallel system.

We can also determine the fraction of the total number of tasks that are executed

on each processor. For a processor on level i, it is given by

— L—kL1
417

M

By substituting equation (4.14) for T5 in equation (4.13),

Maz
— M(a — 1)

[a 1]’

L aD
= a —(a —1)

aD_i

aD
— a

=

*This is different from the usual theoretical measure of speedup, the time of the most effective serial
algorithm divided by the time of the parallel algorithm.
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By substituting the above in equation (4.17),

aD — a a’ —

= a3 — 1
— k

a’ — 1
— aD(l_k)+ai+l_ai

418
— aD_i

Now consider the affect of 13 on the overall performance. Let g be equal to the

ratio /3f/a. This is the inverse of granularity which is generally defined as the ratio of

computation to communication overhead. The speedup given in equation (4.16) can now

be expressed in terms of g as follows:

a

_____

SPD = 1j
a—k(a—/3f) a

-

_______

— 1—k(1—g)
=

[k(1 -

When g —* 0, we have

1 — kD
SPD

= 1-k
=N,

the total number of processors (i.e., when overhead I3j is negligible compared to a,

speedup is proportional to the number of processors in the system).

When g —* 1 (i.e., when overhead /3 is almost equal to a), SPD = 1. For the case

0 < 1
— g < 1, (1 — g) is the factor by which the processing capacity of a processor is

reduced due to the overheads involved in dynamically distributing the work. Figure 4.5

shows how overhead /3f affects the efficiency.

In case of a linear chain of N nodes, speedup is given by

N 1 1_N

N= (.)1—(1—g) g g

For large N,

SPN=
9

as the second term in equation (4.19) becomes negligible. Thus l/g gives an upper

bound on speedup on a linear chain.
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Efficiency

0.

0.

Figure 4.5: The affect of /3 on efficiency

The analytical results derived here for k-ary balanced trees are similar to those ob

tained in [Pri87, Pri9O, TD9Oj. The difference is in the way the overhead parameters are

included in the model. With proper substitutions, it is possible to obtain their through

put expressions from our model. Pritchard has analyzed processor farm on a linear

chain and his model [Pri87, Pri9O] is an abstract one which uses the characteristics of

the machine as the overhead parameters to the model. As a result, it does not take into

account the scheduling strategy and the associated software overheads. Tregidgo and

Downton [TD9O] have extended Pritchard’s analysis for balanced binary and ternary

trees. Again, these models only considered the hardware characteristics as the overhead

parameters. Tregidgo and Downton have validated their model using a simulator. Con

trary to statements in [TD9O], the model they derived also holds for distributed farms

as well as small centralized farms.

In comparison, we have provided a general framework to derive the performance

models for processor farms on any topology. These models assume a realistic dynamic

scheduling strategy, and account for all the associated software overheads. Also, we have

analyzed start-up and wind-down phases, which are significant for applications consisting

0.2 0.4 0.6 0.8

granularity
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of a smaller number of tasks. The models have been experimentally validated and are

accurate as discussed in Chapter 5.

Start-up Analysis

The start-up analysis presented in Section 4.2.1 for arbitrary tree topologies can be used

to obtain start-up costs for balanced tree topologies. The start-up cost for an arbitrary

topology is given by equation (4.5), which is reproduced below,

T8 = (Td+13f/2) max {m+s(v,1)}. (4.20)
v a leaf

In a balanced tree, the rightmost leaf node will be the last among all the nodes to receive

its first task. Thus, the start-up time is determined by the number of steps required for

the rightmost leaf node to receive its first task. For a D level, k-ary tree, n. = D — 1. For

the rightmost leaf node, s(v, 1) can be obtained using equation (4.4), and is given by

kD
— 1

k—i

the total number of nodes.

Thus, for a balanced k-ary tree of D levels, the start-up cost is given by

T8 = (N + D
— 1)(Tcd + /3/2). (4.21)

Wind-down Analysis

In this section, we use the wind-down analysis presented in Section 4.2.1 for arbitrary

tree topologies to derive the wind-down time for balanced trees. The wind-down time is

given by equation (4.7) which is reproduced below:

Td a(rlog312 ml + 1) + +/2). (4.22)

where m is the length of the longest path in the process graph. For a N node linear

chain topology, the wind-down analysis presented in Section 4.2.1 holds with m = 3N.

The wind-down time is given by

Td = (log312 3N1 + 1) + N(TCr +/3f/2). (4.23)
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As explained in Section 4.2.1, in a balanced tree with degree greater than one, the

number of tasks in the longest path decreases more quickly. For this case, the number

of tasks executed by the leaf node on the longest path is given by max{1og3ml + 1, 4}.

For a D level k-ary balanced tree, m = 3D, and wind-down cost is given by

Td = (rlog33D1 +1)+D(Tcr+/3f/2). (4.24)

The total execution time for processing M tasks on a D level k-ary balanced tree is

given by

Ttotai = + T88 + Td

= (N + D
- 1)(Tcd +

+ (M - 4N)[ - k(- )]
1 — (k(a_/3f))

+€(rlog33D1 + 1) + D(Tcr + /3/2).

4.2.3 Communication Bound

The performance models derived in Sections 4.2.1 and 4.2.2 are applicable only when

the system is computation bound. If the system is communication bound, it may never

reach steady-state and processors may idle. In this section, we analyze the performance

of processor farms, when the system is communication bound.

There are two cases in which the performance of a processor farm system might be

communication bound. The first corresponds to the actual transfer portion of the com

munication; the second corresponds to the CPU overhead required for communication.

Here, we assume that the links are homogeneous.

Case (1)

In the first case, throughput is limited either by the the rate at which the farm can

receive tasks or the rate at which it can transfer results to the manager, whichever is

smaller. Let

T = max{Tcd,Tcr}.

The system throughput corresponding to this limit is

Scorni
= T±’

(4.25)
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where [3 is the processor overhead required to receive a task from a parent or to send a

result to the parent. [3c includes the overheads required to make the newly arrived task

available for processing (or forwarding), to allocate a new buffer for the Inlink process

to receive the next task and to initiate the communication. It also represents the corre

sponding time required to initiate the transfer of a new result after the communication

of a previous result to the parent node is completed. In addition, overhead /3 can be

estimated by /3 /3/4 as /3f is the total processor overhead for receiving a task, for

warding it to a child processor, receiving the corresponding result and forwarding the

result to the parent node.

Case (ii)

The second factor that limits throughput is the CPU overhead in transferring the tasks

and results. Since the first worker processor in the farm has to incur an overhead of at

least /3 for every task received from the manager and forwarded to a child processor,

the overall throughput is limited by

Scorn2 < , (4.26)

irrespective of the number of workers in the farm.

The communication bound on the throughput of the system is the smaller of the two

bounds obtained from equations (4.25) and (4.26).

4.3 Discussion

In this section, we discuss how the performance models derived in Section 4.2 can be

used in performance tuning.

4.3.1 Optimal N and Topology

Our models can be used to determine the optimal N and topology to maximize perfor

mance for a given application program.

If 3j < (Tc + J3c), then the intersection of equations (4.15) and (4.25) gives the

optimal number of processors to use to maximize throughput. Beyond this optimal
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number, overall performance of the system does not increase. For this case, ignoring

start-up and wind-down, the optimal level of a k-ary processor tree, is given by

— log [i
—

_(I3f)]

D0
— rk(—!3f) ( .2 )

bogL

If /3 > (T + j3), then the optimal number of processors is given by the intersection

of equations (4.15) and (4.26). For this case, D0 is given by

— log [i
— c_k_I3f)]

D0
—

. ( .28)
log
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Figure 4.6: Plot of throughput curves for a linear chain (with Te = lOms, /3e 4821Us,

13e = 453its)

For a linear chain of N nodes, steady-state throughput is given by

SN
= 1[((cf))N]

(4.29)

In Figure 4.6, we have plotted the three throughput equations (4.25), (4.26) and (4.29)

for a linear chain with a set of typical parameter values. As /3 < (T + /3) in this

example, optimal N can be obtained from equation (4.27) which gives a value of 20.

60
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Equation (4.28) is not applicable for linear chain even if [3 > (T + i3). For this case,

As N —÷ oo, throughput reaches the limit l/3. But from Figure 4.6, we can observe that

after a certain value of N, the increase in throughput with an increase in the number

of processors is very small. This value of N can be determined by iteratively evaluating

the throughput for increasing N using equation (4.29).

6000
Ternary Tree

Throughput E

_

Number of processors, N

Figure 4.7: Comparison of processor farm throughput on linear chain, binary tree and
ternary tree configurations

In Figure 4.7, we have plotted throughput as a function of the number of nodes for

three different topologies: linear chain, binary and ternary tree. As expected, we can

observe that for any particular N, the ternary tree configuration gives better throughput

than the other two, as long as the system has not reached one of the two communica

tion bounds. This shows that with a k-ary tree topology, it is possible to achieve the

same throughput with fewer number of nodes. It also shows the dramatic increase in

throughput possible by using a binary tree rather a chain. The increase in throughput

from binary to ternary tree is much smaller.

If the total number of processors available in the system is less than the optimal

number and it is not possible to have a complete k-ary tree, it is better to use a topology
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in which all the levels except the last are complete k-ary with the remaining nodes

balanced at the last level. If it is not possible to obtain a k-ary tree due to system

configuration restrictions, it is better to use a tree with the next possible larger degree.

If the total number of processors available in the system is larger than the optimal

number of nodes for a given application program, then one can use multiple k-ary tree

topologies to improve performance. This is possible only if there are multiple links from

the manager to the worker farm. The manager could be a host workstation or one of

the multicomputer nodes. In the first case, the number of k-ary tree topologies one can

use is limited by the number of available host links. In the second case, it is possible to

have up to k k-ary tree topologies. For both cases, overall throughput of the system is

given by the sum of the throughput of each of the individual tree topologies, provided

the manager can keep up a continuous flow of tasks to all the worker trees.

In practice, throughput can decrease as N exceeds the optimal value. ‘vVe have

observed this phenomenon in the validation experiments and the reasons are discussed

in Section 5.3.

4.3.2 Problem Scaling

Our models can be used to determine how well the speedup scales with problem size.

In the processor farm case, an application can be scaled in two different ways. One way

to scale the problem is to increase the total number of tasks, M. It follows from equa

tion (4.16) that steady-state speedup is independent of M. Thus, scaling the problem

size by increasing M does not lead to any increase in the steady-state speedup. However,

it may lead to a small increase in the overall speedup because wind-down and start-up

now represents a smaller portion of the total execution time.

•The second way to scale a problem is to increase the granularity of the tasks by

increasing Te. In Figure 4.8, we have plotted steady-state speedup of a linear chain

topology for different values of Te. Figure 4.8 shows that steady-state speedup increases

with increasing values of Te as long as the system does not reach either of the two

communication bounds. Thus, to increase speedup, it is better to increase Te rather

than M.



Chapter 4. Processor Farm: Design and Modeling 62

4’

Te = 20 ms
3’

Speedup

2 Te=lOms

1 Te=5ms

Te = 1 ms

Figure 4.8: Measured speedup for processor farm on linear chain

4.3.3 Granularity

There are many applications in areas such as nnmerical analysis and image processing

in which it is possible to decompose a problem of fixed size in several ways. The com

putation requirements of the tasks and the total number of tasks may vary from one

case to another. Also, some programs may be easily restructured to produce tasks of

different computation requirements. Granularity of the tasks is given by the computa

tion requirements of the tasks. Performance models can be used to determine the best

granularity to be used for an application to obtain maximum performance.

It can be observed from Figure 4.8 that for a fixed N, steady-state speedup increases

with an increase in Te. Also, the optimal value of N increases with increasing Te. For a

problem of fixed size, increasing the granularity reduces the total number of tasks, M. In

addition, it may increase data and result sizes which leads to increased communication

costs. Both small M and larger communication costs will add to start-up and wind-down

costs.

Figure 4.9 shows a graph of speedup, with the effect of start-up and wind-down

included, as a function of granularity and N for a processor farm running on a linear

10 20 30 40 50 60
Number of processors, N
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4,

Speedup 2’

Granularity

Figure 4.9: The affect of granularity on speedup

chain for a problem of fixed size. Here, granularity is defined as the ratio of new Te to an

original smaller Te. Notice that, up to certain point, speedup increases with granularity,

and then starts decreasing. Therefore, one can not use an arbitrarily large granularity,

rather the optimal operating point of the system must be calculated as a function of N,

Te and the values of the overhead parameters.

4.4 Chapter Summary

In designing an efficient processor farm system, many trade-offs have to be considered.

In this chapter, we have described the design of Pfarm, detailing the factors that af

fect the overall performance of the system and how they have to be addressed in the

processor farm design. We have presented a general analytical framework that can be

used to determine the performance of a processor farm system on any topology. The

40

Number of processors, N
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interaction between the design and modeling phases have been discussed throughout the

chapter. We have outlined how the models can be used in restructuring applications

and in determining the optimal number of nodes and topology to be used to maximize

performance.

In Chapter 5, we experimentally validate the performance models derived in this

chapter on a large transputer-based multicomputer. The research results described in

this chapter along with the experimental validation presented in the next chapter were

published in [SCW92, WSC93].



Chapter 5

Processor Farm: Experiments

In this Chapter, we validate the performance models derived in Chapter 4 for processor

farms. The models are experimentally validated using a Pfarm implementation on the

multicomputer described in Section 3.3. Pfarm was validated using the Logical Systems

version of the software.

We used a syllthetic workload in all of the validation experiments. The application

program consisted of a set of tasks, each of which executed an empty loop. The number

of iterations of this loop determines the task execution time Te for the particular exper

iment. By running the ioop at high priority, it was possible to determine the number

of iterations necessary to produce a task size of 1 ms. Multiples of this value were then

used to obtain the different Te’5.

In Section 5.1, we describe the experiments conducted to determine the values of

the system overhead parameters. In Section 5.2, we validate the performance models

for arbitrary tree topologies, and in turn show that Pfarm works on an arbitrary topol

ogy. Performance models for balanced tree topologies are validated in Section 5.3. We

describe the results of the experiments to test the robustness of our models in Section 5.4.

5.1 Determining System Overheads

In order to compare the analytical model with the actual execution, it is first necessary

to determine the values of the system overhead parameters, /3e and /3f As explained in

65
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Section 4.2, /3e is the processor overhead to execute a task locally and /3 is the processor

overhead for every task forwarded to a child processor. These overheads depend only

on the implementation of Pfarm and are independent of the application program. Also,

they do not depend on the underlying topology because the software paths in Pfarm that

constitute these overheads are the same for any topology. Therefore, these overheads

have to be determined only once for a particular Pfa’rm implementation. In some ap

plications, it may be difficult to distinguish between what constitutes the computation

time of a task (Te) and the associated overhead (/3e). For these cases, we can measure

o (the sum of Te and /3e) and use it in the models. The techniques for measuring the

values of o are discussed in Section 8.2.

The values of the overhead parameters, /3 and
,

can be determined by running a

few experiments on configurations with one and two worker processors (see Figure 5.1).

These experiments were first conducted with the Logical Systems implementation of

Pfarm.

Figure 5.1: Configurations for determining 13e and /3f

For the configuration shown in Figure 5.1(a), the total execution time is given by

Ttotai M(Te+13e). (5.1)

Experiments were run on this configuration with Te 1, 5, 10, 20 and 40 ms and a

large value of M 10000. The value of /3e was obtained by substituting the measured

(a)

(b)
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execution time in equation (5.1) for each of the five cases. As expected, for different Te’S,

/3e remained constant, varying by less than 3is. The average value of 13e was 482 is.

For the configuration shown in Figure 5.1(b), we can express the total execution

time in terms of the number of tasks processed (M1) and forwarded (M2) by Workerl.

Workerl spends (Te + /3e) for every task it processes, and /3 for every task it forwards.

Thus,

Ttotai Mi(Te+/3e)+M213f. (5.2)

The same set of experiments were run on configuration 5.1(b). We measured Ttotai, M1

and M2 and solved for /3. by substituting these values into equation (5.2). Again, the

variation between the values obtained for 13r for different cases was within 3ps. The

average value of /3 was 453 1us.

The same set of experiments were run with the Trollius version of Pfarm, using

physical layer communication. For this case, /3e was 570 is and /3 was 1.3 ms. Even

though the design is the same for both Logical Systems and Trollius versions of Pfarm,

the implementations are slightly different. The overheads are higher in Trollius because

of the higher costs of memory allocation and deallocation, and process management. For

the validation experiments, the Logical Systems version of Pfarm was used.

5.2 Arbitrary Topologies

The analytical framework described in Section 4.2.1 was used to determine the perfor

mance of Pfarm on arbitrary topologies. To test the general model, we conducted several

experiments on three different breadth-first spanning trees of the 8 x 3 and 8 x 8 mesh

topologies.

Table 5.1 shows the predicted and measured total execution time for the different

breadth first spanning trees (shown in Figure 5.2) of an 8 x 3 mesh. For each case,

the total number of tasks is 10000 and time is given in seconds. Note that because

of the large number of tasks, steady-state time dominates the execution time, so the

experiments are generally testing the accuracy of the steady-state model. Although the

distribution of tasks to processors is different for different breadth first spanning trees,
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BFST1 BFST3

Figure 5.2: Three breadth-first spauuiug trees of the 8 x 3 mesh.

as predicted by Theorem 2, the overall executiou time remaius the same (neglecting the

very small experimental errors).

Results for two differeut breadth-first spanuiug trees of the 8 x 8 mesh topology

(similar to the first two BFSTs of 8 x 3 shown in Figure 5.2) are given in Table 5.2.

Again, the total number of tasks used is 10000 and time is in seconds. As Tables 5.1

and 5.2 show, the maximum error between the predicted and measured total execution

time is less than 1.5%.

For comparison purposes, in Tables 5.1 and 5.2 we have included the results of using

a chain rather than a breadth first spanning tree. Note that the speedup obtained by

using the spanning trees is significantly higher than that obtained by using the chain.

The minimum value of Te used in the experiments is 10 and 30 ms for’ the 8 x 3

and 8 x 8 mesh, respectively. For smaller Te, system throughput reaches the second

communication bound given by equation (4.26). This scenario can be easily identified

by using the analytical technique described in Section 4.2.1. If, in solving the equations,

BFST2
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a processor executes a negative number of tasks, the system is communication bound.

In this case, it is better to use a smaller topology. An optimal subtree can be found

by removing, one by one, the leaf nodes that are farthest from the root and solving the

system of equations until a feasible solution is obtained (i.e., all processors execute a

positive number of tasks).

The models for start-up and wind-down were validated by running a separate set of

experiments on both of the configurations. The start-up model was validated by running

a number of experiments with different Te and M and observing the task number of the

first task processed by each processor. In all the cases, the task number of the first task

executed at a node was same as that predicted by the model given in Section 4.2.1. The

wind-down model was validated by running experiments with M = 4N and observing

the number of tasks executed by the leaf node in the longest path. For all the cases, this

leaf node executed as many or fewer tasks compared to that predicted by the wind-down

analysis given in Section 4.2.1. These experiments were performed with a varied Te on

both the 8 x 3 and 8 x 8 mesh.

5.3 Balanced Tree Topologies

In this section, we validate the performance models derived in Section 4.2.2 for balanced

tree topologies. Table 5.3 gives the range of experiments conducted to validate the

steady-state, start-up and wind-down models.

Model Topology N M Te(ms)
Steady-state Chain 1 to 64 10000 1,5,10,20,40

Binary tree 1 to 63 100000
Ternary tree 1 to 40

Start-up and Chain 1 to 64 4N 1,5,10,20,40
wind-down Binary tree 1 to 63

Ternary tree 1 to 40

Table 5.3: Range of processor farm experiments

To validate the steady-state model, experiments were run using a large M so that,
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in comparison start-up and wind-down was negligible. The minimum value of T6 chosen

for these experiments is 1 ms because in order for Pfarm to make use of more than one

worker, T must be greater than /S, where /3 453jts. We validated the start-up and

wind-down analysis separately by performing experiments with M = 4N. For this value

of M, the total execution time consists of only the start-up and wind-down phases since

the system never reaches steady state.

5.3.1 Steady-state Validation

First, we present the results of the validation experiments in which data and result sizes

were small, and (T + /3) < /3. This ensured that the communication bound given

in equation (4.25) was not reached for any of the experiments. Table 5.4 shows the

percentage error between the predicted and measured execution time for a linear chain

configuration. Table 5.4 shows that the percentage errors are within 3%. Also, for a

fixed 7’s, the total execution time continues to decrease up to a certain value of N. After

this point, there is no considerable decrease in the execution time as the throughput

approaches the asymptotic communication limit of l//S. For example, for T = 1 and 5

ms, the decrease in execution time is small after 8 and 32 nodes, respectively.

Tables 5.5 and 5.6 show the percentage error between the predicted and measured

execution time for binary and ternary tree topologies, respectively. From the tables,

observe that the percentage error again does not exceed 3% until the system reaches

the asymptotic bound, i//3. Unlike in the linear chain case, the measured execution

time may begun to increase as N increases after the optimal point. For example, in

the ternary tree case, for Te = 1 ms the optimal N is 13 corresponding to the number

of nodes in a 3-level tree. However, performance degrades significantly when another

processing level is added. For N larger than the optimal number, the total processing

capacity of the system exceeds the rate at which tasks can flow into the system, which

is i//Sj. But, any demand-driven dynamic scheduler continues to forward tasks to the

workers farther down the tree as long as these workers have free buffers and there are

unprocessed tasks. Thus, the workers closer to the manager execute fewer tasks since

most of the time they are busy forwarding tasks. This in turn, leads to poor utilization
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of these workers in terms of the number of tasks locally processed, especially the root

worker which only ends up processing the first task it receives. When this phenomenon

occurs, the time spent by the root processor to forward all the tasks, except the first

one, generally exceeds the total time taken by this processor for the cases in which the

processor topology had not reached the asymptotic limit. This causes the total execution

time to increase when the size of the processor topology is increased. Even though this

phenomenon occurs in the linear chain case, it does not lead to any appreciable increase

in the total execution time because the flow of tasks down the topology is smaller. The

affect of this phenomenon for tree topologies would becomes even worse when the number

of buffers on each processor was increased.

Te10ms Te20ms
N Predicted Measured % Error Predicted Measured %Error

Exec Time Exec Time Exec Time Exec Time

1 104.881 104.868 0.012 204.941 204.915 0.013
3 36.014 36.027 -0.036 69.369 69.370 -0.001
7 15.970 15.974 -0.025 30.261 30.267 -0.020

15 7.753 7.742 0.142 14.431 14.410 0.146
31 4.829 4.828 0.021 7.158 7.138 0.279
63 4.776 4.632 3.015 4.846 4.706 2.889

______

Te4Oms

_____

N Predicted Measured % Error
Exec Time Exec Time

1 405.061 405.029 7.900e-3
3 136.102 136.096 4.408e-3
7 58.876 58.855 0.036

15 27.820 27.788 0.115
31 13.663 13.618 0.329
63 6.864 6.820 0.641

Table 5.5: Comparison of Predicted and Measured Total Execution Time for Processor
Farm running on Binary Tree.

In Tables 5.7 and 5.8 we have tabulated the percentage error between the predicted

and measured total execution time on linear chain and binary tree configurations for

experiments with larger data and result sizes. Both the data and result size used in

these experiments are 1000 bytes per task. This leads to a larger communication time
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Te = 1 ms Te 5 ms
N Predicted Measured % Error Predicted Measured %Error

Exec Time Exec Time Exec Time Exec Time

1 14.827 14.808 0.128 54.851J 54.832 0.035
4 4.811 4.809 0.042 14.628 14.633 -0.034

13 4.793 4.555 4.966 4.854 7.080 -45.859
40 4.749 6.016 -26.679 4.773 6.730 -41.001

TelOfflS Te=2Oms
N Predicted Measured % Error Predicted Measured %Error

Exec Time Exec Time Exec Time Exec Time

1 104.881 104.868 0.012 204.941 204.915 0.013
4 27.116 27.133 -0.063 52.135 52.134 0.000

13 8.682 8.677 0.058 16.383 16.376 0.043
40 4.803 6.324 -31.668 5.471 5.460 0.201

Table 5.6: Comparison of Predicted and Measured Total Execution Time for Processor
Farm running on Ternary Tree.

for forwarding tasks and results, and /3f < (T + /3). In this case, the rate of task

processing will be limited by the communication latency time. The system reaches the

communication bound given by equation (4.25) after an optimal value of N. This value

of N depends on the computation size of tasks, Te. From the tables, we can observe that

for Te = 5 ms, the system reaches its communication bound at N 12 and 15 for linear

chain and binary tree respectively. While the system remains in steady-state, the error

is within 3%, however, once the communication bound is reached, the error is around

10% and remains almost constant as N increases. In this case, measured execution time

does not increase with an increase in N. This is because it takes longer to forward

a task to a child node and thus tasks do not get forwarded to the nodes farther from

the manager for both chain and tree topologies. The errors obtained when the system

is communication bound are larger compared to the steady-state error because of the

difficulties in obtaining an accurate value for T. The value of r changes depending on

the utilization of the link in both the directions. We have used an optimistic value for r

that leads to a slightly larger value for optimal N. This is reasonable as the performance

of the system does not decrease in this case even when a larger N is used.
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Te = 5 ms
N Predicted Measured %Error

Exec Time Exec Time

1 54.845 55.183 -0.616
2 28.604 28.873 -0.940
4 15.532 15.795 -1.693
8 9.092 9.341 -2.739

12 7.464 8.327 -11.562
16 7.464 8.320 -11.468
24 7.464 8.312 -11.361
32 7.464 8.301 -11.214

Te = 5 ms
N Predicted Measured %Error

Exec Time Exec Time

1 54.845 55.183 -0.616
3 19.347 19.585 -1.230
7 8.844 9.009 -1.865

15 7.464 8.172 -9.485
31 7.464 8.169 -9.445

Table 5.8: Comparison of Predicted and Measured Total Execution Time for Processor
Farm running on Binary Tree under Communication Bound

Table 5.7: Comparison of Predicted and Measured Total Execution Time for Processor
Farm running on Linear Chain under Communication Bound
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TelOms Te=2Oms
N Predicted Constant Uniform Predicted Constant Uniform

Exec Time %Error %Error Exec Time %Error %Error

1 104.880 0.010 -0.400 204.941 0.013 -0.453
2 53.602 0.000 -0.396 103.625 0.000 -0.458
4 27.986 0.000 -0.382 52.978 -0.028 -0.525
8 15.225 -0.110 -0.512 27.677 -0.188 -0.755

16 9.020 0.610 0.455 15.235 0.407 -0.217
32 6.047 0.496 -0.050 9.018 0.044 0.011
48 5.186 0.174 -0.116 7.019 -0.527 -1.225
64 4.828 -0.249 1.263 6.068 -0.906 -1.269

Table 5.10: Comparison of Predicted and Measured Total Execution Time for uniform
task distribution for Processor Farm running on Linear Chain

5.4 Robustness

In all the experiments discussed so far, we have used a constant value for Te. However, in

practice, Te may vary from one task to another. In order to test the robustness of using

average values for prediction under this condition, we experimented with two common

distributions for task sizes: uniform and bimodal. Experimental results are compared

with those predicted by the model using the average value for Te.

We ran several sets of experiments with uniform distribution of task sizes. For all

the experiments, the total number of tasks used was 10,000. Table 5.10 shows the

percentage error between the predicted and measured total execution time for two sets

of experiments on a linear chain configuration. The task execution time varies from 1 to

19 ms (average Te = 10 ms) for the first set, and from 1 to 40 ms (average Te = 20 ms)

for the second set. As Table 5.10 shows, the errors are all within 3%.

Several sets of experiments were conducted with bimodal distribution of task sizes.

In these experiments M was 10000, and the values of Te were 1, 5, 10, 20 and 40 ms.

Here, we describe a set of experiments in which we used 5,000 tasks of 1 ms duration and

another 5,000 of 20 ms duration. In the bimodal distribution case, the order of arrival

of the tasks into the system also affects the performance. Experiments were conducted

with four different arrival patterns:
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1. Both 1 ms and 20 ms tasks arrive with equal probability.

2. 20 ms tasks arrive at a probability of 0.75, until all 5,000 of them are processed.

3. 1 ms tasks arrive at a probability of 0.75, until all 5,000 of them are processed.

4. All the 1 ms tasks arrive before any 20 ms tasks.

10

0
-0- Casel
-- Case 2

% Error -a- Case 3

-10
0- Case 4

-20
0

Figure 5.3: Error graph for processor farm on linear chain with tasks of bimodal distri
bution

In Figure 5.3, we have plotted the percentage error between the predicted and mea

sured total execution times for these experiments on a linear chain topology. For predic

tion, we have used an average value of T = (1 x 5000 + 20 x 5000)/10000 10.5 ms in

the model. As we can observe from the figure, the errors are within 3% for all the four

cases, when N is less than 8. For larger N, the prediction is accurate for the first case

but the error increases for the other three cases. The maximum error observed varies

from around 6.5% in the second case to around 10.25% in the third case, and is highest

at around 15.0% for the fourth case.

The errors depend on the extent to which the average Te reflects the actual com

putation requirements of the tasks. As long as N is smaller than the optimal value

corresponding to the smaller Te of the two, the average value works well for all the cases.

20 40 60 80

Number of Processors, N
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However, for larger values of N, the average value works well only wheu the two kinds

of tasks are well mixed with respect to arrival order, as in the first case with equal

probability. Among the other three cases, tasks are mixed for a larger portion of the

total execution time in the second case compared to the third case, aud there is no mix

at all in the fourth case. In these cases, there is a correspondiug increase in the error,

with the largest errors occurring for the fourth case. Obviously the average value is not

appropriate for the fourth case since there is no task mixing at all. One can view the

execution as occurring in two distinct phases of computation, the first consisting of all

the 1 ms tasks and the second with all the 20 ms tasks. For this case, it is better to

use the model twice, predicting the execution time for 1 and 20 ms tasks separately and

adding them together for the total time.

There is a theoretical possibility of finding a distribution of tasks with a particular

arrival pattern that could lead to arbitrarily poor performance. This is due mainly to

the possible failure of the task scheduling strategy to balance the load among all the

processors. However, it is very difficult to come up with this distribution as the system

is dynamic and events happen in a nondeterministic order. We believe it to be unlikely

for any application program to consist of tasks with such a distribution.

5.5 Chapter Summary

In this Chapter, we experimentally validated the performance models derived in Chapter

4 using a Pfarm implementation on a large transputer-based system. Experimentally we

showed that on a fixed topology, the performance obtained by Pfarm is the same for any

breadth-first spanning tree, as predicted by Theorem 2 in Chapter 4. We also discussed

the experiments conducted to determine the values of the system overhead parameters,

/e and /l.

Chapter 8 describes how Ffarm can be integrated into a programming environment

that includes other programming tools such as a graphical interface, mapper and debug

ger. We describe the user interface for Pfarm and discuss how the models can be used

for performance tuning.



Chapter 6

Divide-and-Conquer: Design and
Modeling

In this chapter, we describe the design of TrEK (Iee xecution kernel) that provides

runtime system support for divide-and-conquer applications. TrEK is designed such that

it can execute divide-and-conquer computations of any fixed degree and depth on any

tree topology. We derive models that accurately describe the behavior and performance

characteristics of TrEK or any similar system that satisfies the assumptions outlined.

Section 6.1 describes the design and implementation of TrEK. In Section 6.2, models

that describe the start-up, steady-state, and wind-down phases of the computation on

any tree topology are derived. We use this modeling technique to derive performance

models for balanced tree topologies. We close this chapter by discussing how these

models can be used in performance tuning and restructuring of application programs.

6.1 TrEK: Design and Implementation

As described in Section 3.4, TrEK assumes that there is a flow of tree structured com

putations that enter the root processor. Each of these tree structured computation

corresponds to a divide-and-conquer task and tasks are assumed to have a known fixed

degree and depth.

TrEK is a runtime kernel that runs on each worker node. In order to execute an

application, TrEK has to be provided with three application dependent functions, split,

80
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join and compute. The split function takes a task as input, splits it and outputs two

or more subtasks. The join function takes two or more results as input, joins them and

outputs a single result. Finally, the compute function takes a task as input, processes it

and returns the result. An example of the task graph corresponding to an instance of a

divide and conquer task is shown in Figure 6.1.

Figure 6.1: Divide-and-Conquer Task Structure

Processor farm can be viewed as a degenerate case of divide-and-conquer. Thus, it

is possible to extend the Pfarm design to that of TrEK. In addition to the design issues

and goals addressed by Pfarm, TrEK should also be able to execute divide-and-conquer

tasks of any fixed degree and depth on any arbitrary processor topology. In this section,

we explain the design modifications and extensions for TrEK from that of Pfarm.

As in Pfarm case, TrEK is designed as a set of cooperating processes in which each

link is controlled by a separate process. Figure 6.2 shows the process structure of TrEK
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— —I— — —

Figure 6.2: TrEK Process Graph on an Intermediate Worker Processor

on an intermediate worker node in the processor tree. In the task distribution path,

there is an InLink process that receives tasks and a number of OutLink processes that

forward subtasks to the children. In the result forwarding path, there are InLink pro

cesses that receive results of subtasks from the children, and an OutLink process that

forwards results onto the parent. There is a task manager process that controls the task

distribution, and there is a result manager process that controls the collection and for

warding of results. In addition to these system processes, there are three user processes

on each intermediate node. The split process receives tasks from the task manager and

calls the split function to split the tasks into two or more subtasks. The join process

receives the results of subtasks from the children and calls the join function to com

bine the results. There is a local worker process on each leaf processor as well as on

intermediate processors that receives tasks from the task manager and processes them

——4—
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to completion.

As explained in the design of Pfarm, to overlap communication with computation, the

communication processes and both manager processes execute at high priority, whereas

the worker process executes at low priority. As the split process is in the critical path

of task distribution, it must also execute at high-priority. The join process is also run

at high priority as it decreases the response time which is important if there is any

dependency among tasks.

In an idealized parallel implementation of divide-and-conquer algorithms on tree

processors, such as those discussed in [HZ83, Col89], intermediate processors execute

only split and join functions. This leads to an inefficient use of intermediate processors

as they idle while waiting for the results. In TrEK, we allow the intermediate processors

to do the processing of tasks in addition to executing split and join functions. This is

possible only if the application consists of either a flow of divide-and-conquer tasks or a

single divide-and-conquer task of large degree.

TrEK uses a distributed demand-driven scheduling in which children processors,

whenever they have free task buffers, greedily steal subtasks from their parents. When

an intermediate processor gets a new task, there are two scheduling choices. The first

choice is to split the task and put the subtasks on the output queue from which children

processors get their tasks. The second choice is to allocate the task for local processing.

A task allocated for local processing is executed until completion by recursively solving

subproblems and joining the results as in the case of uniprocessor execution of divide-

and-conquer. At intermediate processors, priority is given to splitting the task and

forwarding the subtasks over allocating it for local processing. The scheduling is demand

driven since all the subtasks are stored in a single output queue from which the children

with a free task buffer compete for tasks.

This task scheduling strategy is similar to the one used in the ZAPP [MS88] system.

However, in the case of TrEK, there is an important difference, a processor cannot grab

subtasks from its own output queue. As shown in Section 6.2, this restriction allows us

to model the system and does not degrade performance.
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In TrEK, we initially flood-fill the system with tasks. However, once full, the system is

demand-driven with new tasks entering the system as the current tasks are completed. As

in the case of Pfarm, the advantage of this scheduling strategy is that it opportunistically

takes advantage of varying loads.

As in the Pfarm case, the number of additional task buffers to be allocated is an

important design issue. On a worker processor, each link process in the task distribution

path holds an active task (or subtask) and the local worker process has an active task

that is being executed. Aside from these active tasks, there is an additional task buffer

in the task manager for the reasons explained in the Pfarm case. In addition, each

intermediate processor in TrEK has an output queue that holds the subtasks produced

by the split process before forwarding them to the children processors. The output

queue consists of as many buffers as the number of subtasks produced from a task. If

this output queue was not present, the children processors could wait for subtasks when

the parent is busy doing a split. As in Pfarm, we only restrict the number of task

buffers, whereas we freely allocate result buffers. As results are also collected, joined

and forwarded at high-priority, at any given time, the number of result buffers on a node

is small.

In order to be topology independent, TrEK should be able to execute divide-and-

conquer tasks of any degree on any topology. In TrEK, a parent processor does not

predetermine the child to which a particular subtask is going to be forwarded. Subtasks

produced by splitting a task are put in a single queue, and all the children processors

get their tasks from this queue. Thus, the number of children that execute the subtasks

of a particular task depends on the load, and it is possible for all the subtasks of a task

to be forwarded to the same child. The Result manager on the parent node joins the

appropriate subresults of a task. Therefore, it is possible to execute tasks of any degree

on any topology. Each TrEK kernel has to be provided with the number of children of

the processor on which it runs and the degree of task either at runtime or at compile

time.
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6.2 Performance Modeling

In this section, we derive performance models for application programs running with

TrEK or any other system that satisfies the following assumptions. The main charac

teristics of the system are:

1. The hardware system is a distributed memory message passing architecture de

scribed in Section 3.2 with a linear message cost model.

2. There is a flow of fixed degree divide-and-conquer tasks into the system.

3. The depth of the tasks is equal to or greater than the depth of the underlying

processor topology.

4. Tasks originate at a single source and the results are returned to the source.

5. Intermediate processors are also allowed to process the tasks in addition to exe

cuting split and join.

6. Tasks are dynamically distributed to the worker processors.

We assume that at each step, tasks are split into subtasks of equal computation.

With a fixed degree divide-and-conquer task in which at each step, the work is divided

into k equal parts, we have

W(n) = split(n) + join(ri) + kW(n/k), (6.1)

where W(n) is the total amount of work of a task with an input data size of n, split(n) is

the work of splitting a task of size m and joiri(ri) is the work of joining the corresponding

k subresults. Later in Section 7.3.5, we show experimentally that the models derived

with this assumption also work well for applications in which tasks are split into subtasks

of unequal computational requirements.

Our objective is to find a distribution of the load to all the processors so as to

minimize the overall execution time, where load consists of both the computational

requirements of the tasks and the associated overheads for splitting, forwarding and
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executing them. As in the processor farm case, the system can be either computation

bound or communication bound. When it is computation bound, the system acts as a

pipeline with three phases to be analyzed: start-up, steady-state and wind-down. In the

case of TrEK, start-up phase ends when all the leaf processors have received at least one

subtask. At the end of the start-up phase, intermediate processors may or may not have

any tasks for local processing, but they will be busy with splitting and forwarding. The

definitions of steady-state and wind-down phases are same as that in the processor farm

case, and the total execution time is given by,

Ttotai T8u+T38+Td (6.2)

First, we derive performance models for the case in which the system is computation

bound. In Section 6.2.1, we present a general analytical framework to analyze the

steady-state performance on arbitrary tree topologies. We also derive upper bounds

for start-up and wind-down costs on arbitrary tree topologies. In Section 6.2.2, we use

this analytical approach to derive models for the special case of fixed degree divide-and-

conquer computations running on balanced tree topologies. We discuss the limits on

performance for the communication bound case in Section 6.2.3.

6.2.1 Arbitrary Tree Topologies

Let T be a tree architecture with processors pi,•• ,PN And let C(i)

{i I pj is a child of p} denote the children of p in T. Let k be the degree of the

divide-and-conquer tasks to be processed.

Let = Te(j) + e, where Te(i) is the time required for processing a subtask locally

by the ith processor and /3e is the associated overhead. Te(i) is given by W(n) in

equation (6.1), where n is the input data size of a task that arrives at the ith processor.

Let O = T8(i) + Tj(1) + /3f, where T5(i) and Tj(i) are the split and join time at the

ith processor, and are given by split(n) and join(ri) respectively. /3 is the associated

overhead for every task split and forwarded to the children processors. /3f includes all

the CPU overheads involved in receiving a task, splitting and forwarding the subtasks

to the children processors, receiving the corresponding subresults and joining them, and
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forwarding the result to the parent. Unlike in the processor farm case, /3f is not a

constant because the overheads involved in forwarding subtasks and receiving results is

proportional to the number of subtasks. /3f can be expressed as

I3f = !3f1 + k/3f2, (6.3)

where /3f1 and /3f2 are constants. /3f includes the overheads required to receive a task

from the parent and to send the result back, and thus, it is independent of the number

of subtasks. /3f2 is the overhead required for forwarding a subtask to a child processor

and to receive the corresponding result. Thus, Oj = T5(i) + Tj(i) + /3i + k/3f2.

Steady-state Analysis

The steady-state phase begins once all the leaf processors have a subtask to execute

and ends when the last task enters the system. It is assumed that no processor will be

idle during the steady-state. Leaf processors will be busy processing the subtasks, and

the intermediate processors will be busy either splitting the tasks (or subtasks), joining

the results or processing the tasks (or subtasks). Suppose that M divide-and-conquer

tasks of degree k are executed during this phase and let V denote the number of tasks

(or subtasks) that visit pj. Then, we can express steady-state execution time (T8) in

terms of the number of tasks executed locally and the number of tasks forwarded along

with their associated costs. T38 is given by the following equation that holds for all the

processors in T,

T35 = cj(Vj— y)+8j > (6.4)
jEC(i) jEC(i)

= Vj+(O-cj) (6.5)
jC(i)

The factor 1/k appears because of the fact that for every k subtasks that are forwarded

to the children, there is only one original task, and split and join are done only once for

these k subtasks.

This system of equations is similar to that of Pfarm and, for tree topologies, also has

a unique solution. The major differences from the processor farm case are, we have cj’s
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and O’s that vary from one processor to another unlike in the processor farm case, and

the degree (k) of divide-and-conquer tasks appears in these equations. Given M, oj’s

and O’s, we can solve for T5 and Vi to VN. An example of this analysis is shown in

Figure 6.3.

(a) Task Graph (b) Architecture Graph[ v1\ /T88\
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Figure 6.3: An example of the steady-state analysis

This analysis gives the execution time of the steady-state phase in terms of parame

ters, whose values can be determined prior to the execution. The total number of tasks

(M) and the degree of division (k) are usually known. Te(i),Ts(i) and Tj(i) can be

estimated or measured experimentally by the techniques described in Section 8.2.1.
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The processor overheads e, /3f1 and /3f2 are dependent on the TrEK implementa
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tion and hardware processor characteristics, but are independent of the application and

the hardware topology. Therefore, they need only be determined once for a particular

implementation of TrEK.

We have experimentally found that on a fixed topology, a breadth-first spanning tree

with maximum number of leaves provides maximum performance. The experiments are

discussed in Section 7.2.

Start-up and Wind-down Analysis

As in the processor farm case, start-up and wind-down analysis depend on the underlying

topology and the task scheduling strategy. We construct the process graph of the system

by replacing each processor by the process structure given in Figure 6.2. Again, we ignore

the processes that are not in the task forwarding path. The process graph of the topology

given in Figure 6.4(a) is shown in Figure 6.4(b).

Figure 6.4: (a) node graph (b) process graph (c) subtree decomposition

OutLink

o
• Manager

• Worker(a) (b) (c)

Start-up and wind-down time depends on the number of task buffers in the system.
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Notice that the tasks in processors at different levels are different in terms of their work.

In TrEK, on every intermediate processor, there is one task on each of the following

processes: the task receiving InLink, the task manager, and the worker. The split

process produces /c subtasks per task, which are put into a single output queue that

can hold only k subtasks. Each task forwarding OutLink process has a single buffer

to hold an outgoing subtask on that particular link. If we count this subtask towards

the particular child processor to which it is getting forwarded, then every intermediate

processor has five task buffers. Each leaf processor has four task buffers since the leaves

do not have a split process. Thus, the total number of active tasks at any given time is

given by

where m is the number of processors at the ith level when the levels are numbered 1 to

D from the root. In case of k-ary divide-and-conquer tasks running on a k-ary D level

balanced tree, the total number of active tasks at any time is 5D — 1.

Start-up

Start-up begins when the first task enters the system and ends when all the leaf processors

have at least received one subtask. As explained in Section 6.1, the scheduling strategy

in TrEK gives priority to splitting the task and forwarding the subtasks to children

processors over allocating the task for local processing. When the first task enters

a processor, the manager passes it on to the split process which splits the task into

k subtasks that are kept in a single output queue controlled by the manager. Task

forwarding OutLink processes, when free, receive a subtask from the manager process.

For analysis purposes, we use the collapsed process graph like the one shown in

Figure 6.4(c). Here, we are interested in obtaining an upper bound for the start-up

time. In an arbitrary tree, start-up time is given by the maximum time taken for a leaf

to receive its first task. First, we will obtain an expression for the task number of the

first task received by a processor. Then, we will determine the time required for a leaf

processor to receive its first task. The technique used here is similar to that described

in Chapter 4 for the start-up analysis for the processor farm case.

Given a rooted oriented tree T, with children nodes numbered from left to right
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starting at one, let c(v) be the child number of node v with respect to the parent of v,
p(v). Let p(v) denote the nth ancestor of node v in T and let deg(v) be the down-degree

of node v. Let k be the degree of the divide-and-conquer tasks.

Ti

deg(p(v))
Definition 2 Let d(v) equal fl0 k

Lemma 2 For any rooted oriented tree T, the first task received by node v is the

(r(i)rc(pn—1(v))1 + k 1 — d__2(p2(v))

task at node pTi(v), the root of T.

Proof:

Let s(v, i) be the number of the ith task received by node v. The first task to arrive

at a child node v is the subtask of F1th task that arrives at the parent node p(v).
r deg(p(v))1 tasks arriving at p(v).From then onwards, node v receives a subtask for every k

Thus, we obtain the following recurrence

deg(p(v)) 1
s(v,i)=s(p(v), +(i-1) E k

In general,

Ec(pO(v))
s(v,i) = s(P1(v),

k 1 + (i
- 1)do(P(v)))

F c(p(v))
= s ((p(v)), rci

+ ( k 1 + (i - 1)do(p(v)) _i) do(p(p(v))))

(p2(v)

rc(p(v))1 rrc(p(v))1

k + U k
do(p2(v)) + (i - 1)dO(p1(v))dO(p2(V)))

(p2(v)

Ec(Pl(v))1
+

(FC1 d22(p2(v)) + (i
-

1)dl(P(v)))=

‘ k

c(pTi (v)) 72—2

s(v,i)
= s(PTi(v)E 1+H k

i)d2(p2(v)) + (i
-

At the root, s(v,i) = i. Thus, when p72(v) is the root

rc(pn—1(v))1
n—2 1s(v, 1)

= k
+

k
— 1]d72__2(p2(v)) (6.6)

j=O L



Chapter 6. Divide-and-Conquer: Design and Modeling 92

The time required for the task s(v, 1) to arrive at node v is given by

T8(v) = s(v, 1) (TCd(D) +T8(D) + + kf2))+ (Td(i) + T8(i) + + kf2)),

where the first part of the equation represents the time after which the root node p(v)

sends a subtask to p’(v), and Td(D) and T8(D) represent the communication time

needed to receive a task and the split time respectively at the root node. The second part

of the equation gives the time it takes for the node v to receive its first task after node

p(v) starts forwarding the corresponding task to its child. Td(i) and T8(i) represent

the communication time needed to receive a task and the split time respectively at node

p (v).

Start-up time for any arbitrary tree topology is given by

T8 — max {T8(v)}
v a leaf

In an arbitrary topology, if the down-degree of every node is less than the degree of

divide-and-conquer tasks (k), then s(v, 1) = 1 for every node. For this case, start-up

time is determined by the longest path in the topology and is given by

[TCd(i) + T8(i) + (i + kf2)] (6.7)

where n is the length of the longest path. If the topology has nodes with down-degree

greater than k, then s(v, 1) has to be evaluated for every leaf node to calculate the

start-up cost. For this case, s(v, 1) is proportional to the number of buffers present on

each node. If the topology is an unbalanced one, start-up time increases as the number

of buffers increases as in the case of Ffarm. Start-up costs for balanced tree topologies

are discussed in the next section.

Wind-down

The wind-down phase begins when the last task enters the system and ends when the last

result reaches the manager. In comparison to Pfarm, the wind-down analysis of TrEK

is complicated by the fact that the computation requirements of tasks at different levels

are different. Tasks at the root processor have maximum computational requirements.
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Here, we derive an expression for the wind-down time for an arbitrary topology using an

estimate for the number of tasks executed by the root processor. In the following section,

we derive an upper bound for the more interesting case, k-ary divide-and-conquer tasks

on k-ary balanced tree topology.

The total number of tasks at the beginning of the wind-down phase in a tree ar

chitecture is given by the number of active tasks at any given time. As derived in the

beginning of this section, it is given by

mj mD
= + (6.8)

where D is the number of levels in the topology and m is the total number of processors

at ith level.

Assume that the processors are all identical and that they all do the same amount

of work. Also, we neglect the overhead in forwarding tasks. Given these assumptions,

an estimate on the number of tasks executed by the root processor is given by

F MM1=1---

where N is the total number of processors. In any tree architecture, the value of this

varies from 1 to 4 based on the number of processors.

Thus, an estimate for the wind-down time is given by

Td Mi(T(D) + /3e)

6.2.2 Balanced Tree Topologies

In this section, we analyze the performance of balanced divide and conquer computations

on balanced tree topologies using the general framework. We hypothesize that a g-ary

balanced tree topology (where g is the number of links on each node) achieves optimal

performance for divide-and-conquer applications for the following reasons:

1. Experimentally, we have found that on a fixed topology, a breadth-first spanning

tree with maximum number of leaves provides maximum steady-state performance.
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As a g-ary balanced tree is a breadth-first spanning tree with maximum number

of leaf nodes among all the topologies with the same number of nodes, it provides

maximum steady-state performance.

2. As explained in the previous section, start-up cost is proportional to the length of

the longest path in the topology. Balanced tree topologies have minimum length

longest path among all topologies with the same number of nodes. As a result, by

the analysis given in Section 6.2.1, it also minimizes start-up time.

3. Wind-down cost is also proportional to the length of the longest path in the topol

ogy. Once again, the minimal path length and the symmetry of the balanced tree

also minimizes wind-down time.

First, we analyze the steady-state performance of divide-and-conquer tasks of any

degree and depth on balanced tree topologies of any degree and depth. Then, we derive

corresponding start-up and wind-down costs using the analyses given in the previous

section for arbitrary topologies.

Steady-state Analysis

Consider a flow of 1 level k-ary divide-and-conquer tasks. Let g be the degree and D the

number of levels of the balanced tree topology. Notice that the levels are numbered from

1 to D starting from the leaves rather than the root since this simplifies the derivation

of the recurrence formula.

Assuming that there is no idle time, steady state time (T88) can be expressed in terms

of the number of tasks processed and the number of tasks split and forwarded along with

their associated costs and overheads. From the general framework, the steady-state

execution time is given by equation (6.4), which is reproduced below.

T88 = (6.9)
jC(i) jC(i)

where V is the number of tasks (or subtasks) that visit a processor at the ith level, and

T(i) + /3e and eu = T(i) + Tj(i) + /3f1 + k/3f2.

Let M be the number of divide-and-conquer tasks processed during the steady-state

phase. Let f represent the fraction of the total number of tasks (M) processed by all
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the processors at the ith level (assuming that the corresponding splits and the joins for

these tasks are executed by the nodes from levels i + 1 to D). Then, the number of

subtasks processed by a processor at the ith level is given by

(E7) fM,

since there are gD_i processors at the ith level, and they have to execute k’3 subtasks

to finish a single original task. The number of tasks forwarded by a processor at the ith

level is given by
i—i

D_i)fiM.
g j=i

By substituting the above in equation (6.9),

= () fM+ () (fi) MO.

Let

=

j=1

where F represents the fraction of the total number of original tasks (i.e., tasks entering

at the root) executed by all the processors in levels 1 through i.

Rewriting T88 in terms of F and

= (:::) (F -F1)Ma
+ (.)F1M6

=
(:::)

+
(::) FM(O

-

By rearranging the above,

= F_1 ( 0i)
+ ). (6.10)

Let

MF
Si = -i——, (6.11)
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where S represents the throughput of a subtree consisting of the processors from levels

1 to i (again assuming that the corresponding splits and joins were executed at levels

i + 1 to d), and S0 = 0. By substituting (6.11) into (6.10) and solving for Si, we obtain,

/ 1s ( ) +
k1 ) (6.12)

(—:_:T) cE
9

We are unable to obtain a closed form solution to this recurrence. Therefore, steady-state

throughput of a D level balanced tree (SD) is obtained by recursively evaluating the Sj’s

up to level D. In evaluating the Si’s, if Si > 5i+1, then the intermediate processors at

levels i + 1 to D can not split and forward the tasks at the rate at which the processors

in levels 1 to i can process them. The throughput limit corresponding to this case is

given by equation (6.18).

Once we obtain the steady-state throughput using equation (6.12), we can derive

other performance metrics such as steady-state execution time and speedup. Steady-

state execution time for M tasks is given by

M
T88—

D

Steady-state speedup is given by

MaD
SFD= QDSD,

where c is the execution time plus the associated overhead for each task at the root

processor.

Start-up Analysis

Start-up time for a balanced tree is derived from the analysis given in Section 6.2.1 for

arbitrary tree topologies. In the case of a balanced tree topology, start-up cost is given

by the time required for the last leaf (the rightmost) to receive its first task. For a D

level g-ary balanced tree topology, the task number of the first task received by the last

leaf node is given by equation (6.6) with n = D — 1.

1) ri + : (Eii — i) dD_3(p2(last)) (6.13)
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If g k, s(last, 1) = 1. For this case, start-up time is given by

D

[TCd(i) + T8(i) + + kf2)] (6.14)

If g> k, s(last, 1) > 1 and start-up time is given by

s(last, 1) [TCd(D) +T8(D) + + kf2)]

+
[TCd(i) + T8(i) + + kf2)] (6.15)

For example, given a 6-level 4-ary tree topology executing binary divide-and-conquer

tasks,

s(last, 1) = 2 + d3_(p+2(last))

2+16+8+4+2

rr32

Wind-down Analysis

We derive an upper bound on the wind-down time Td for the case of k-ary divide-and-

conquer tasks executed on balanced k-ary topologies. The total number of tasks in the

system at the start of the wind-down phase (Mmd) is 5D — 1, where D is the number of

levels of the topology.

We discretize the wind-down phase into a number of steps, where a step is the time

to execute a subtask at a leaf in the tree. Note that each leaf has 4 subtasks and all

the remaining processors have 5 tasks (or subtasks). An upper bound is obtained by

determining the number of steps required for each processor to contain at most one task.

Let us derive the number of steps required to reduce the number of tasks at the root

to one, the task being executed. Consider a D-level tree (D > 2), which consists of

a root and two D — 1 level subtrees. Assume that at the end of a step, tasks at the

root are split and forwarded as far as possible towards the leaves. This is an optimistic

assumption since when the tasks are not transferred to the leaves, there is less overhead

and the load is better balanced. In particular, at the end of the first step, once the
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leaves have finished a task, it indirectly reduces the number of tasks at the root by one.

At the end of the second step, two tasks at the bottom two levels finish, and only two

tasks remain at the root. After the third step, the root contains only one task (the task

being executed). Thus, after three steps, there are Ic subtrees each with a maximum of

(5(D — 1) — 1)/k tasks (this is an upper bound on the total number of tasks as some

tasks at intermediate levels in the tree have been partially processed). Note that the

root is still executing a task.

By recursively applying the above argument to the roots of each of the Ic subtrees,

after 3(D — 2) steps, there remain only 2-level trees. In the trees that remain, the root

has 5 tasks and each leaf has 4 tasks. After one step, the leaves finish one task which

reduces the number of tasks at the root to 4. At the end of the second step, in addition

to the leaves, the root also finishes a task reducing the total number of tasks to two.

After three steps, only the leaf processors will be left with four complete tasks each.

Thus, after 3D steps, each processor has only one task that it is executing or no task at

all.

The wind-down time (Td) also depends on the time it takes to execute a single task

at the root. Therefore,

Td max{(3D + 1)(Te(1) + /3e), (Te(D) + /3€)} (6.16)

where Te(1) is the execution time of a subtask at the leaf level and T(D) is the execution

time of a subtask at the root. For larger D (D > 5, small /3), the execution time of a

single task at the root dominates the wind-down time.

6.2.3 Communication Bounds

The performance models derived in Sections 6.2.1 and 6.2.2 are applicable only when

the system is computation bound. In this section, we discuss the performance of the

system when it is communication bound. In this case, processors may idle as the system

never reaches steady-state.

There are two factors that may cause the system to be communication bound.
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Case (1)

As in the processor farm case, overall performance of the system can be bound by the

transfer costs whenever the data and result sizes are sufficiently large. In a divide-and-

conquer task, the data and result sizes generally decrease towards the bottom of the

tree. Thus, overall throughput of the system is bound by

Scorni
= T±’

(6.17)

where T = max{Tcd(D),Tcr(D)}. As in the processor farm case, /3 is the processor

overhead to receive a task from a parent or to send a result to the parent. As the link

processes are identical in both Pfarm and TrEK, the value of /3 is also the same.

Case (ii)

In the second case, CPU time in transferring the tasks and results can limit the overall

throughput. An intermediate processor at the ith level has to incur a CPU cost of

T8(i) + Tj(i) + 13.R + k/3f2 for every task that is split and forwarded. In any divide-

and-conquer application, the sum of split and join costs is maximum at the root of the

computation. Thus, overall throughput of the system is limited by the rate at which the

root processor can split and forward the tasks independent of the number of processors.

This bound is given by

Scorn2
= T8(D) + (D) + f1 + kf2

(6.18)

6.3 Discussion

In this section, we discuss how the performance models derived in Section 6.2 can be

used for performance tuning.

6.3.1 Optimal N and Topology

Performance models can be used to determine the optimal topology and the number

of nodes to be used to obtain maximum performance for a given divide-and-conquer

application.

In Figure 6.6, we plotted throughput as a function In Figure 6.5, we have plotted
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Figure 6.5: Plot of throughput curves for Binary Divide-and-Conquer Tasks on Binary
Tree

the three throughput equations (6.12), (6.17) and (6.18) for a binary tree topology

with a set of typical parameter values. The optimal number of processors is given by the

intersection of the equations (6.12) and (6.17) or (6.18) which ever leads to the minimum

throughput. Beyond this optimal value, there will be no increase in the performance

with an increase in N.

In Figure 6.6, we plotted throughput as a function of N for balanced binary and

ternary tree topologies executing 4-ary divide-and-conquer tasks. As mentioned in the

Section 6.1, TrEK is topology independent and hence can be used to run any k-ary

divide-and-conquer computation on any topology. As expected, for any particular N, a

ternary tree topology achieves better throughput than the binary tree case. In general,

it is always better to use a g-ary tree topology, where g is the maximum number of links

available on each node. If the number of nodes available is less than the optimal for

a given application, and it does not lead to a complete g-ary tree, it is better to use

a topology in which all the levels, except the last one, are complete g-ary tree and the

remaining nodes are balanced in the last level.
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Figure 6.6: Comparison of divide-and-conquer throughput on
tree topologies
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binary tree and ternary

As in Pfarm case, if the number of nodes available is larger than the optimal number

of nodes to be used for a given application, one case use multiple g-ary trees to increase

the overall performance.

6.3.2 Problem Scaling

As in the case of Pfarm, the most effective way to scale the problem is by increasing

the granularity of the tasks. In Figure 6.7, we have plotted the steady-state speedup

for a binary tree topology for different values of Te(D). As shown in Figure 6.7, the

steady-state speedup increases with increasing values of Te(D) as long as the system

does not reach any of the two communication bounds.

6.4 Chapter Summary

In this chapter, we have described the design of TrEK, a runtime kernel for executing

divide-and-conquer applications. We described how the Pfarm design was modified and

80

Number of processors, N
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Figure 6.7: Measured speedup for divide-and-conquer on binary tree

extended for TrEK. We developed a general analytical framework that can be used to

analyze performance of divide-and-conquer applications using TrEK. This framework

was used to derive performance models for fixed degree divide-and-conquer problem on

balanced tree topologies. In the next chapter we describe our experimental results.

100

80

Speedup
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Te = 2 ms
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Chapter 7

Divide-and-Conquer:
Experiments

The performance models derived in Chapter 6 for divide-and-conquer applications were

experimentally validated using TrEK implemented in C on Logical Systems environment.

The application program used in the validation experiments consists of a set of divide-

and-conquer tasks with a synthetic workload. As in the Pfarm case, the application

program executes empty loops corresponding to split, join and compute functions. The

number of iterations of the empty loops determine the values of T8, Tj and Te used in a

particular experiment. In this chapter, each divide-and-conquer task is represented by

the following parameters: degree (k), number of levels (1), base case computation time

(Te), split time (T5(i)) and join time (Tj(i)). The base case computation time represents

the time needed for solving a leaf subtask of a divide-and-conquer task.

The experiments for determining the system overhead parameters are described in

Section 7.1. In Section 7.2, we validate the performance models for arbitrary tree topolo

gies. Performance models for balanced tree topologies are validated in Section 7.3.

It is often possible to execute a divide-and-conquer application using processor farm

paradigm. In Section 7.4, we compare the performance of Pfarm and TrEK.

103
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7.1 Determining System Overheads

For experimental validation purposes, it is necessary to determine the values of the

system overhead parameters, /3e and /3f• As explained in Section 6.2, /3 is the processor

overhead to execute a task locally and /3j’ is the processor overhead for every task that

is split and forwarded to the children, its value depends on the degree of the divide-

and-conquer tasks. As defined in Chapter 6, /3f = /3f1 + k/312, where k is the degree of

divide-and-conquer tasks. The overhead parameters, e, /3.f 1 and /3f2 are constants as

they correspond to the software costs to execute particular parts of the TrEK program.

Also, these values do not depend on the topology being used. This is due to the fact

that subtasks are put into a single output queue. As a result, the overhead to forward

a task is a function of the cost of adding and deleting from a queue, both constant time

operations. In addition, values of these overheads do not depend on the characteristics of

the application program. However, they are dependent on the implementation of TrEK,

and the underlying processor characteristics. Thus, values of these parameters have to

be determined only once for a particular implementation of TrEK. Once these values

have been determined, it is possible to predict the performance of an application that

fits the model.

The overheads e, /3fi and 13f2 are determined by conducting several experiments on

simple configurations shown in Figure 7.1.

The value of /3e is determined by solving for /3e in the expression

Ttotai = M(Te+/3e), (7.1)

where Ttotai is the execution time for the configuration shown in Figure 7.1(a). Exper

iments were run on configuration 7.1(a) with Te = 5, 10, 20 and 40 ms and a large

M = 10000. By using M, Te and measured Ttotai, one can solve for /3e. As expected,

for different Te’5, /3e remained constant, varying by less than 3 s. Changing M had no

effect on the value of /3e The average value of /3e was 560 its.

To determine the values of /3f1 and /3f2, experiments were conducted on the config

urations shown in Figure 7.1(b) and (c). For these configurations, total execution time

can be expressed in terms of the number of tasks processed (M1) and forwarded (M2) by
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Manager

Worker

(a)

Figure 7.1: Configurations for determining /3e and /3f

Workerl. Workerl spends Te+/3e for every task locally processed, and T+Tj+/3fl+k/3f2

for every task that is split and forwarded. On the configurations in Figure 7.1(b) and

(c), experiments were run with divide-and-conquer tasks of degree (k) 2 and 3, respec

tively, with the number of levels (ci) equal to 2. By choosing a sufficiently large M, we

can neglect the effect of start-up and wind-down. For sufficiently large M, the total

execution time for configuration in Figure 7.1(b) is given by

Ttotai M1(T€ + i3) + M2(T8 + Tj + f1 +2/3f2), (7.2)

and for configuration in Figure 7.1(c), it is given by

Ttotai Mi(Te + 3) + M2(T + Tj + !3f1 + 3!3f2) (7.3)

For each configuration, we ran several experiments with base case Te equal to 5, 10,

20 and 40 ms. In all experiments, the split and join time was held constant at 1 ms,

and M 10000. For each experiment, we measured the Ttotai, and M1 and M2. These

values were then used in equations (7.2) and (7.3) to obtain the values of /3f and /3f2

The variation observed between the values obtained for /3f1 and /3f2 for different values

of Te was within 5 ps. The average values obtained for /3f 1 and /f2 were 520 s and 420

is, respectively.

(b) (c)
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7.2 Arbitrary Topologies

In this section, we validate the general analytical framework described in Section 6.2.1

and show, experimentally, that on a fixed topology, a breadth-first spanning tree (BFST)

with maximum number of leaves outperforms other BFSTs. As described in Chapter

6, by splitting a task, we can increase the amount of parallelism and make better use

of the available parallelism in the hardware, but every split increases the total amount

of work because of its associated overhead. In the case of a flow of divide-and-conquer

tasks, ignoring start-up, it is better to reduce the number of splits since the application

consists of a number of divide-and-conquer tasks. Thus, on a fixed topology, a BFST

that does the minimum number of splits obtains the best performance since the overall

overhead in this case is smaller compared to other BFSTs. Since splits have to occur at

internal nodes, a BFST with a minimum number of internal nodes or maximum number

of leaves does minimum number of splits. Experiments were conducted on three different

breadth-first spanning trees (shown in Figure 7.2) of an 8 x 3 mesh topology.

Measured Total Execution Time
Te BFST1 BFST2 BFST3

(3 leaves) (16 leaves) (9 leaves)

0.001 101.675 70.922 90.889
0.002 130.038 92.097 120.634
0.003 188.199 113.763 159.948
0.004 208.821 135.700 186.049
0.005 229.898 157.455 211.225

Table 7.1: Performance Comparison of three different BFSTs of the 8 x 3 mesh.

Table 7.1 shows the measured execution time with the percentage error from the

corresponding predicted execution time for three breadth-first spanning trees of the

8 x 3 mesh. In the table, times are given in seconds. For each case, a total of 1000

binary divide-and-conquer tasks with 10 levels were used. The value of T shown in the

table is the base case computation time. A value of 1 ms was used for split and join

costs at each level. Tasks of 10 levels were chosen for these experiments because the

number of levels of tasks has to equal or exceed the number of levels of the topology,
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BFST1 BFST3

Figure 7.2: Three breadth-first spanning trees of the 8 x 3 mesh.

9 in this example. In order to achieve steady state, the computation time of a subtask

at any node has to be greater than the sum of split and join times at the parent node

plus the associated overhead /3f. Therefore, for the values of split and join times chosen

in these experiments, base case Te must be at least 1 ms. As Table 7.1 shows, the

measured execution time for BFST2 is small compared to the other two BFSTs for all

cases. Experimentally, this supports our claim that on a fixed topology, a BFST with

maximum number of leaves provides better performance compared to other BFSTs.

7.3 Balanced Tree Topologies

In this section, we experimentally validate the performance models for TrEK, derived in

Section 6.2.2 for balanced tree topologies. The experiments were conducted to test the

models for steady-state, start-up and wind-down for k-ary divide-and-conquer tasks on

g-ary balanced tree topology, variable split and join costs, and communication bound.

The parameter values were chosen to satisfy the following conditions:

BFST2
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1. the number of levels of tasks has to be equal to or greater than the number of

levels of the topology.

2. the computation time of a subtask at any node has to be greater than the sum of

split and join time at the parent node plus the associated overhead /3.

7.3.1 Steady-State

Table 7.2 gives the range of experiments conducted to validate the steady-state model.

Steady state performance models were validated by experiments with a sufficiently large

Model Topology N M — — Tasks
ki Te TTj

Steady-state Binary tree 1 to 63 10000 2 6 5,10,20 1 1
7 1,2,5 1 1

Ternary tree 1 to 40 10000 3 4 5,10,20 1 1
5 1,2,5 1 1

Table 7.2: Range of Divide-and-Conquer steady-state Experiments

M(10000) so that start-up and wind-down time can be ignored. For all experiments, a

value of 1 ms was used for both T and Tj at each level. Experiments with variable split

and join costs are described separately. A value of 1 ms was chosen for both split and

join costs as larger values either limit the overall throughput (also discussed later) or

require very large divide-and-conquer tasks to be in steady-state.

Tables 7.3 and 7.4 show the percentage difference in predicted and measured exe

cution time for binary and ternary tree cases respectively. In these experiments, divide

and-collquer tasks of 7 and 4 levels were used on binary and ternary tree respectively.

As can be observed from the tables, the errors are within 7%.

7.3.2 Start-up and Wind-down

In the case of k-ary divide-and-conquer tasks running on k-ary balanced tree topologies,

there will be 5D — 1 tasks in the system at any given time, where D is the number of

levels of the hardware topology. Start-up and wind-down models were validated with
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M 5D — 1 so that the system never reaches steady-state and the total execution time

consists only of start-up and wind-down.

Tables 7.5 and 7.6 show the percentage error between the predicted and measured

total execution time for these experiments. In these experiments, the values used for the

base case computation (Te) were 10 and 20 ms. The errors observed are large, especially

for larger topologies because the predicted wind-down costs are upper bounds. We have

calculated the wind-down cost based on the number of tasks that are predicted to have

been executed on the root processor. For larger topologies, the model uses an upper

bound of two tasks on root processor. If in the actual execution, the root processor

executes only one task, then the error can be as large as 40%, because there are only a

few large tasks and each task contributes considerably to the total execution time.

T10ms Te=2Oms
N Upper Bound Measured % Error Upper Bound Measured %Error

Exec Time Exec Time Exec Time Exec Time

3 1.546 1.338 13.45 2.826 2.459 12.99
7 1.171 0.954 18.53 2.132 1.755 17.68

15 0.795 0.573 27.92 1.435 1.053 26.62
31 0.803 0.461 42.59 1.444 0.781 46.20
63 0.812 0.477 41.25 1.452 0.781 46.21

Table 7.5: Start-up and Wind-down Performance Comparison for Divide-and-Conquer
running on Binary Tree.

TelOms Te=r20ms
N Upper Bound Measured % Error Upper Bound Measured %Error

Exec Time Exec Time Exec Time Exec Time

4 1.201 0.793 33.97 1.717 1.513 11.88
13 0.913 0.635 30.45 1.163 0.695 40.24
40 0.634 0.365 42.43 1.174 0.635 45.91

Table 7.6: Start-up and Wind-down Performance Comparison for Divide-and-Conquer
running on Ternary Tree.

As the divide-and-conquer tasks are generally large, it is important to validate the

models for the cases in which the total number of tasks is not very large. Thus, we
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conducted several experiments with M 1000. Tables 7.7 and 7.8 show the percentage

error between the predicted and measured total execution time for these experiments on

binary and ternary tree topologies. As Tables 7.7 and 7.8 show, the errors are within

7%.

Te = 5 ms Te = 10 ms
N Predicted Measured % Error Predicted Measured %Error

Exec Time Exec Time Exec Time Exec Time

1 222.674 222.694 0.000 382.754 382.786 0.000
3 74.728 74.788 -0.080 128.013 128.325 -0.144
7 32.576 32.436 0.429 55.236 55.358 -0.221

15 15.641 15.581 0.384 26.406 26.193 0.806
31 8.165 7.911 3.110 13.487 13.086 2.973
63 4.708 4.693 0.319 7.407 7.372 0.472

Table 7.7: Comparison of Predicted and Measured Total Execution Time for Divide-
and-Conquer running on Binary Tree with M 1000.

Te=lms TeSms
N Predicted Measured % Error Predicted Measured %Error

Exec Time Exec Time Exec Time Exec Time

1 161.640 161.662 -0.013 296.708 296.740 -0.010
4 41.053 41.003 0.122 74.883 74.758 0.167

13 13.294 13.308 -0.105 23.779 24.811 -4.340
40 4.996 4.990 0.120 8.365 8.613 -2.965

Table 7.8: Comparison of Predicted and Measured Total Execution Time for Divide
and-Conquer running on Ternary Tree with M =1000.

7.3.3 k-ary Tasks on g-ary Balanced Topologies

The experiments discussed in the previous sections tested binary and ternary divide

and-conquer tasks which exactly match the underlying topologies. In order to validate

the models for cases in which the task structures does not match the underlying topolo

gies, we conducted experiments in which binary divide-and-conquer tasks were run on

ternary tree topologies. Table 7.9 shows the percentage error between the predicted and
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measured total execution time for these experiments. The errors are within 7%.

TelOms Te=2Oms
N Predicted Measured % Error Predicted Measured %Error

Exec Time Exec Time Exec Time Exec Time

4 96.351 96.292 0.061 176.630 176.436 0.110
13 30.165 31.422 -4.167 55.086 56.077 -1.780
40 10.458 10.084 3.576 18.945 19.678 -3.869

Table 7.9: Comparison of Predicted and Measured Total Execution Time for Binary
Divide-and-Conquer tasks running on Ternary Tree

We claim in Chapter 6 that the models can also be used for single divide-and-conquer

problem with large degree and depth. To substantiate this claim, several experiments

were run, each with a single large divide-and-conquer task.

In the first example, a 5-ary 9-level divide-and-conquer task with base case com

putation time of 5 ms was run on a 40-node ternary tree. For prediction purposes, we

evaluated the throughput excluding the root worker because in TrEK, with a single task,

the root worker does not process any subtasks as it splits the task and forwards all the

subtasks to its children. The model predicted a total execution time of 275.581 seconds

whereas the TrEK execution took 316.478 seconds. As a second example, a 6-ary 8-level

divide-and-conquer task with base case computation time of 5 ms was run on a 40-node

ternary tree. For this case, the model predicted a total execution time of 232.683 ms,

and the TrEK execution took 252.117 ms. The errors are larger than 7% because the

processors closer to the manager (especially the root) can idle as the number of subtasks

arriving at these processors is small.

7.3.4 Variable Split and Join Costs

In all the previous experiments, split and join costs were kept constant at all levels of the

computation. We conducted several experiments to verify the validity of the models for

the cases in which the split and join costs are different at different levels of computation.

Results of two sets of experiments are tabulated in Tables 7.10. These experiments

were conducted with 1000 binary divide-and-conquer tasks of 6 levels with base case
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computation of 10 ms on a binary tree.

In the first set of experiments, a variable split cost was used where as the join cost

was kept constant at all levels. The split cost was varied from 1 to 5 ms, and a value

of 1 ms was used for the join cost. The second set of experiments were conducted with

variable join costs (varying from 0.5 to 2.5 ms) with a constant value of 1 ms for split

cost. Both the split and join costs were varied in the third set of experiments. Once

again, the errors observed in these experiments are within 79bo.

Variable Split & Constant Join Constant Split & Variable Join
N Predicted Measured % Error Predicted Measured %Error

Exec Time Exec Time Exec Time Exec Time

1 408.764 408.923 -0.038 369.745 369.889 -0.038
3 136.688 136.980 -0.217 123.679 124.019 -0.275
7 58.962 59.107 -0.246 53.381 53.587 -0.386

15 28.185 28.011 0.617 25.550 25.483 0.262
31 13.989 14.020 -0.222 12.708 12.844 -1.070
63 7.852 8.250 -5.069 6.830 7.151 -4.700

Variable Split & Join
N Predicted Measured %Error

Exec Time Exec Time

1 434.777 434.854 -0.018
3 145.363 145.736 -0.257
7 62.688 62.851 -0.260

15 30.014 29.774 0.800
31 14.939 15.129 -1.272
63 11.363 11.797 -3.819

Table 7.10: Comparison of Predicted and Measured Total Execution Time for Divide
and-Conquer Tasks with Variable Split & Join Costs

When split and join costs are large, the system performance is bound by the rate at

which the root processor can split the tasks and join the results and throughput is given

by equation (6.18). Several experiments were conducted to test the performance of the

system for this case. Table 7.11 shows the predicted and measured execution time for

a set of experiments in which 1000 binary divide-and-conquer tasks of 6 levels were run
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on binary trees. The split and join costs were varied from 1 to 5 ms, with base case

computation being 10 ms.

Variable Split & Join
N Predicted Measured % Error

Exec Time Exec Time

1 548.834 548.930 -0.017
3 183.388 183.769 -0.208
7 79.045 79.213 -0.216

15 37.815 37.434 1.008
31 21.370 24.534 -14.806
63 21.370 27.656 -29.415

Table 7.11: Comparison of Predicted and Measured Total Execution Time for Binary
Divide-and-Conquer Under Split and Join Bound

Table 7.11 shows that the system performance reaches the limit for a 31 node bi

nary tree topology. For larger topologies, system performance degrades as the dynamic

demand-driven scheduling strategy keeps forwarding tasks towards the leaf nodes caus

ing the nodes closer to the manager to idle. This phenomenon is similar to that observed

in the processor farm case and shows the importance of determining the right number

of nodes and topology to be used for a given application.

7.3.5 Robustness

In all the experiments discussed above, it is assumed that the tasks are split into subtasks

that take equal amount of computational time. In general, tasks may not always be

divided into equal sized tasks. To test the robustness of using the average value of Te, we

experimented with tasks which were split into k randomly unequal subtasks. Table 7.12

show the percentage error between the predicted and measured total execution time for

experiments in which binary divide-and-conquer tasks were run on binary tree topologies.

Two sets of experiments were conducted with tasks in which the sum of all the base case

computations per task were 256 and 512 ms. It was assumed that the split and join

costs are proportional to the computational requirements of the task. The percentage
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errors in this case are slightly larger, but are still around 10%. The measured execution

time is always larger than the predicted execution time because some of the subtasks

are smaller than the overhead required to forward them, causing additional work.

Te256ms T=512ms
N Predicted Measured % Error Predicted Measured %Error

Exec Time Exec Time Exec Time Exec Time

1 297.668 297.696 -0.009 605.037 605.123 -0.014
3 99.658 103.279 -3.634 202.149 209.926 -3.847
7 43.091 45.878 -6.465 87.061 92.855 -6.655

15 20.713 22.156 -6.966 41.488 45.067 -8.626
31 10.391 11.162 -7.420 20.420 22.458 -9.980
63 5.655 6.217 -9.938 10.747 11.834 -10.114

Table 7.12: Comparison of Predicted and Measured Total Execution Time for Binary
Divide-and-Conquer Tasks with Subtasks of Unequal Size

7.4 Comparison of Divide-and-Conquer with Processor
Farm

As both divide-and-conquer and processor farm are task-oriented paradigms, it is pos

sible to execute divide-and-conquer applications using the processor farm paradigm.

Performance of divide-and-conquer applications executed with Pfarm compared to that

using TrEK depends on the values of the application parameters such as the execution

time per task and the total number of tasks. In the following paragraphs, we compare

the performance of TrEK and Pfarm for various values of the parameters. In Table 7.13,

we have tabulated the measured total execution time for binary divide-and-conquer ap

plications executed with TrEK and Pfarm on a binary tree topology.

Divide-and-Conquer strategy performs better compared to processor farm for appli

cations with larger computation time per task. Computation time per task includes all

the split and join times in addition to the time required for processing all the subtasks.

As shown in Table 7.13, the total execution time taken by TrEK is smaller than that

taken by Pfarm when the computation time per task is greater than 0.766 seconds. This

cut-off value depends on the values of the various parameters of the system. This can
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Mz== 1000 M100
Te (D) TrEK Pfarm TrEK Pfarm

7.169 117.980 136.315 14.670 21.531
3.072 49.792 58.425 6.475 9.233
1.535 25.175 29.204 3.403 4.620
0.766 13.251 14.585 1.863 2.311
0.190 4.541 3.634 0.632 0.582
0.126 4.769 2.418 0.470 0.390

Table 7.13: Comparison of Total Execution Time for Binary Divide-and-Conquer Ap
plications with TrEK and Pfarm

be obtained by using the models to calculate and compare the performance of the ap

plication using Pfarm and TrEK. The percentage difference in the total execution time

is large when the M is small (see Table 7.13, M 100). Processor farm takes longer

for these cases because the wind-down phase is longer in Pfarm compared to that of

TrEK. In Pfarm, the wind-down phase begins when there are 4N tasks left in the sys

tem compared to only 5D — 1 in TrEK, where N is the total number of processors and

D is the number of levels of the hardware topology. As the affect of wind-down becomes

considerable for applications with fewer tasks, the difference in the total execution time

between Pfarm and TrEK increases.

From the table, it is evident that Pfarm works better for applications in which the

computation time per task is smaller (less than 0.190 seconds). This is because the

overheads involved in splitting and joining in TrEK (overheads not present in Pfarm)

become considerable compared to the execution time per task leading to a larger total

execution time compared to that of Pfarm. Also, TrEK can not be used for applications

with small computation time per task (e.g., smaller than 0.126 seconds for a 64-node

binary tree topology). This is because the number of levels of the tasks should be

greater than the number of levels of the topology, and the base case computation should

be greater than the overhead 13f to make use of all the processors effectively.

The only way to use Pfarm for executing a single divide-and-conquer problem is

for the manager to split the task to obtain a sufficiently large number of independent
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subtasks. However, since the manager must do a large number of splits and joins, it can

quite easily become the bottleneck. In contrast, since in TrEK, the internal nodes do

some of the splitting and joilling, it is not necessary for the manager to perform as many

splits. Note that the manager still must do some splits since otherwise the nodes near

the root may idle.

7.5 Chapter Summary

Performance models for divide-and-conquer applications derived in Chapter 6 have been

experimentally validated using TrEK implementation on a 75-node transputer-based

multicomputer. We have described the experiments conducted to determine the values

of the system overhead parameters, /3e, /3f1 and /3f2. For a fixed topology, we have exper

imentally shown that it is better to use a breadth-first spanning tree with a maximum

number of leaves. We have validated the models for balanced tree topologies with a

large number of experiments varying the values of all the parameters that affect overall

performance. As processor farm strategy can be used for some divide-and-conquer ap

plications, we have discussed and compared the performance of using TrEK and Pfarm

for various cases.



Chapter 8

System Integration and
Applications

In order to make programming and performance tuning easier, users have to be provided

with an integrated environment that includes tools that support all phases of program

development and execution, in addition to runtime systems such as Pfarm and TrEK.

In Section 8.1, we briefly describe Parsec, an integrated programming environment that

provides Pfarm and TrEK with supporting tools such as a graphical interface, mapper,

loader and debugger on our transputer-based system. We discuss how this integrated en

vironment supports reusability, reconfigurability and performance tuning. In section 8.2,

we discuss the techniques that can be used to obtain the values of application dependent

parameters in order to use the models for performance tuning. Finally, we describe two

applications that have been developed using Pfarm and TrEK.

8.1 Parsec: An Integrated Programming Environment

Pfarm and TrEK provide programming templates to efficiently execute applications that

fit into processor farm and divide-and-conquer paradigms, respectively. In order to

make it easier for application programmers to use these templates on a multicomputer

system, it is important to provide a programming environment that supports all phases

of program development and execution. Such a programming environment should not

only have a variety of tools that help programmers in developing, executing, debugging

118



Chapter 8. System Integration and Applications 119

and tuning a parallel program, but must support their cooperative functioning through

close integration. The following facilities should be present in an integrated programming

environment to effectively support Pfarm and TrEK on a multicomputer:

• an interface that hides both the system hardware and software complexities,

• support for reusability,

• support for easy reconfigurability of the system,

• support for loading and executing of programs,

• performance monitoring and tuning facilities based on the performance models,

and

• program debugging tools.

Initial work in developing an integrated programming environment that addresses

the above requirements on a large transputer-based system has been reported in

[CGJ91, FSWC92]. Farsec is an on-going project at UBC to support creating tem

plates or applications, and includes tools for building, mapping and loading the program

onto the system. Ffarm and TrEK have influenced the design of Parsec. In order to

make performance tuning easier for applications using Ffarm or TrEK, Parsec supports

parameterized process graphs. A parameterized process graph is a family of intercon

nection networks with one or more parameters that control structural properties. In

addition, Parsec allows users to change these parameters in an easier way. Thus, a user

can easily run an application on its optimal N and topology, once they are determined

from the models.

In Parsec, a “template implementor” describes a template in terms of a parameterized

process structure which is then turned into a system module. Users of a template do not

have to understand the details of its implementation. They simply instantiate a copy of

the template and provide any necessary parameters and code. Parsec creates all the files

(makefiles, configuration files, and load scripts) necessary for running the application.
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Pfarm and TrEK templates have been incorporated into Parsec and they make use

of the parameterized graph structure to simplify scaling and restructuring of the system.

Within this programming environment, currently oniy Trollius is available to the pro

grammers. The following discussion focuses on how the various tools in the environment

support programming of applications that use the Pfarm template under Parsec.

In Parsec, programmers are provided with an easy-to-use graphical interface to Pfarm

and TrEK, and to the system in general. The interface, developed by Feldcamp [FW93]

is an X windows application utilizing the OpenLook GUI. Figure 8.1 shows the graph

ical interface provided to application programmers when Pfarm template is selected.

Programmers can easily modify the template by including the files that contain the

application dependent code. Parsec supports system reconfigurability in an easier way

through the graphical interface. The user can change the parameters (such as degree

and depth) that define the topology to be used for executing an application with Pfarm.

Then, the programmer can build the object files needed to execute the application by us

ing the makefiles generated by Parsec. These makefiles remove the concerns of choosing

the right compiler and libraries from the user. Users can easily include any additional

libraries, if necessary. To execute a Pfarm application, two different object codes have

to be built, one for the manager and another for all the workers.

After choosing the topology to be used, the user must map this topology onto the 75-

node transputer based hardware system. The mapping tool [Mu193] inputs a description

of the hardware, processors and crossbars, and outputs a crossbar setting, a process to

processor assignment, and a configuration file. The mapping tool uses a greedy algorithm

to do the mapping. In the case of Pfarm and TrEK, a different notion of mapping is

needed. Pfarm and TrEK need one-to-one mapping of workers on to the processors,

without any dilation. Also, on a fixed interconnection network, the mapper should be

able to map the workers onto a breadth-first spanning tree.

Parsec includes a loader tool {Mu193] that builds the network configuration file based

on the mapping obtained by the mapping tool. In addition, the loader generates a script

that is used to execute the application program. This script includes the Trollius com

mands to boot the network and to load the appropriate programs onto the transputer
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Figure 8.1: Graphical Interface to Pfarm in Parsec
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nodes. Users execute the application program by running this load script. The loader al

lows users to choose either the network or physical level of communication. The network

level is slower compared to the physical level, but unlike the physical level, users are able

to print from any node and to monitor the state of the processes on each node. This

allows users to choose network level during the program development and debugging

phases, and then use physical level to obtain better performance.

8.2 Performance Tuning

In this section, we describe how the programmer can use models for performance pre

diction and tuning.

8.2.1 Parameter Measurements

In order to use the models for performance prediction and tuning, one has to determine

the input parameters to the model. The user must supply the values for all the param

eters other than the system overhead parameters (/3e and /‘3f in case of Pfarm, and e,

/3f1 and /3f2 in case of TrEK). The values of these overhead parameters are obtained

once using the techniques described in Sections 5.1 and 7.1 for Pfarm and TrEK respec

tively. Here, we explain the techniques that are useful in determining the values of the

application dependent parameters.

Processor Farm

In the processor farm case, the application dependent parameters that affect the overall

performance are: the average execution time per task(Te), the total number of tasks

(M), the data size (d) and result size (r) per task. An application programmer generally

knows the values of M, d and r for an implementation, otherwise these values can be

easily obtained. Obtaining the value of Te is not so straightforward as it depends on the

nature of the application program in addition to the implementation. Here, we briefly

describe the different techniques that can be used to obtain Te.
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1. In the case of application programs that consist of tasks, each of which require the

same amount of computation, the easiest way to measure Te is to scale down the

program to a single task or a small number and execute it with Pfa’rm on a single

worker node. Then, Te can be obtained from the expression Ttotai = M(Te + ISe)

using the measured total execution time and the value of ,6.

This technique can also be used for application programs that consist of tasks with

varied computation requirements. In this case, one can determine average Te by

finding 72 for a representative set of tasks. If it is difficult to choose right set of

tasks, then, the third technique can be used.

If the application program consists of multiple phases, where all the tasks in a

phase belong to the same type, then as explained in the robustness section 5.4, it

is necessary to calculate a separate Te for each phase.

2. If there is a direct relationship between the input data size of a task and its

computation requirement, then, by determining Te for a certain data size, one can

estimate T for a new data size based on the relation.

3. If Te cannot be obtained by either of the previous techniques, then it can be

determined by executing Pfarm on a smaller number of processors and using the

model (with known N and T) to calculate If the performance obtained is not

equal to that of the communication bounds, then, models can be used to obtain

the average value of T by plugging in the total number of tasks and the measured

total execution time.

Divide-and- Conquer

In the case of TrEK, the application dependent parameters that affect the performance

are: the execution, split and join times (T(i),T3(i), andTj(i)) at each level of the divide

and-conquer task, the total number of tasks (M), the data size (d), and the result size

(r) per task. As in the Pfarm case, an application programmer generally knows the

values of M, d and r for an implementation. Obtaining the values of the execution, split

and join times is not so straightforward.
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As explained in Section 6.2, the computational requirement of a fixed degree divide-

and-conquer task (or subtask) with an input data size of n can be expressed as

W(n) split(ri) + join(n) + kW(n/k), (8.1)

where split(m) is the splitting cost for a task with size n, join(n) is the joining cost

to produce a result of size n and k is the degree of the divide-and-conquer tasks to be

processed. Te(i),Ts(i) and Tj(i) are given by W(n), split(m) and join(n), respectively,

depending on the data size (n) of the tasks at the ith level. Thus, in order to use

the performance models, one has to determine W(n), split(ri) and join(n) for the given

application program.

In general, W(n) can be expressed by the time complexity of the algorithm such as

(9(nlogm) or O(m2 logn). Thus, we have to find the constants underlying these time

complexities to get the value of W(m), the time needed to execute the task on a processor.

This can be determined by executing a scaled down version of the problem as in the first

technique outlined for measuring Te in the processor farm case. This experiment can

be repeated with few different input sizes to verify the values of the constants. Similar

measurements can be used to obtain the values for the constants to be used for split and

join times.

8.2.2 Performance Analysis Library

To make it easier to use the models for prediction and tuning, application programmers

are provided with a set of performance analysis library functions for both Pfarm and

TrEK. These functions accept the values of application dependent parameters and output

the predicted performance metrics such as throughput, speedup and total execution time.

8.3 User Interface

Pfarm and TrEK were designed to hide the underlying complexities of the multicomputer

system from the user. All the system dependent code is in the execution kernels and the

user has to concentrate oniy on the application dependent code. The kernel can be used

for application programs that fit the corresponding parallel programming paradigms.
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Both Pfarm and TrEK are run time kernels where the user code is linked with the

system code to produce a single executable object for each processor node. In the

manager, the user invokes the system routines to submit tasks and receive back results.

In the workers, program control lies within the system code and the system invokes the

user code at the appropriate times.

8.3.1 Pfarm

In the case of Pfarm, there are two different executables, one for the manager node

and the other for the worker nodes. The user part of the manager code consists of the

following functions:

1. master_mit 0 - The system code calls this function at the beginning of the ex

ecution. This function consists of the initialization part of the user code, such as

reading data from an input file, etc.. Also, if there is any global data to be broad

cast to all the worker nodes, the user code can initiate the system call, bc_send()

to do the broadcast.

2. data_generator() - This function consists of the part of the user code that gener

ates the tasks. In real-time applications, it could receive data from some device and

generate the corresponding tasks. The tasks are passed to Pfarm for processing

by the system call do_task 0.

3. result_receiver() - This function consists of the part of the user code that

collects the results. The system call get_result 0 returns the next available result.

This function could also include any processing of the results.

Both data_generator() and resultreceiver() are called by low priority system

processes. These functions are called in the beginning of the execution after creating all

the processes and are run concurrently until they finish their respective jobs. In the case

of applications in which later tasks depend on the results of the initial tasks, the user

program could consist of only one function, data_generator 0. This function performs

both the system calls, do_task 0 and get_result 0.
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•The user part of the worker code consists of the following two functions:

• s].ave_init() - This function consists of any initialization part of the user code

needed on each worker node. Also, if there is any broadcast of the global data,

this function can do the system call, bc_receive() to receive the broadcast data.

• comp_fn() - This function contains the user code to process a task. It is called by

the worker process and takes a pointer to the task data and returns a pointer to

the result and the size of the result.

Ffarm provides the following system calls:

1. do_task(task_type, task_size, task_ptr)

2. result_ptr get_resu].t()

3. bc_send(bc_dat a_size, bc_data_ptr)

4. bc_data_ptr bc_receive()

8.3.2 TrEK

TrEK provides the same system calls to the user as in the Pfarm case. The user part

of the manager code to be run in the TrEK case is similar to that in the Ffarm case.

The user part of the worker code includes the following two functions in addition to the

comp_fn() described in the Pfarm case.

• split_fn() - This function consists of the user code that splits a task and is called

by the split process in the TrEK. It takes a pointer to the task as input and returns

the pointers to the subtasks.

• join_fn() - This function consists of the user code that combines the results of

subtasks and is called by the join process in the TrEK. It takes the pointers to the

subresults as input and returns a pointer to the combined result.

As an example, of the user code for an FFT implementation that uses TrEK has

been included in the following section.
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8.4 Applications

Several applications have been developed using Pfarm and TrEK on our transputer-based

system by other graduate students and myself. In this section, we discuss two interesting

cases where the models were used to understand the performance of applications. Results

reported here are for Logical systems versions.

8.4.1 Cepstral filtering

Pfarm was used to parallelize a vision application that performs Cepstral filtering for

motion analysis [BL93]. It takes two images of the same subject at different instances of

time and determines the motion of the subject. The user code on the manager consists of

two parts, a data-generator and a result-receiver. The data generator function partitions

the images into small blocks and puts two corresponding blocks, one from each of the two

images, into a single task. The result-receiver collects the results of the partial motion

analysis and assembles them. In the following paragraph, we discuss how the models

were used for performance tuning.

Initially, the program was tested using two smaller images of 64 x 64 bits. The task

execution time (Te) for images divided into blocks of 16 bits was measured by executing

the program on a single worker node. For this case, the value of T was 178.048 ms.

We were interested in using the program with larger images of 512 x 512 bits. The

performance model was used to determine the best topology and the number of nodes

to run this application for larger images. The model predicted that a 63-node balanced

binary tree gives maximum performance with the total execution time of 3.141 seconds.

We executed the application program on a 63 node binary tree and found that it took

4.492 seconds, which was considerably larger than the predicted value. To investigate

the reasons for the large error, we ran the program on a linear chain and a ternary tree.

The model predicted that on a 64 node linear chain, it would take 4.743 seconds and on

a 40 node ternary tree 4.813 seconds. For these cases, the prediction was accurate since

the measured total execution times were 4.517 and 4.756 seconds for chain and ternary

tree cases respectively. Then, the program was executed on a 32 node binary tree and
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the prediction was found to be accurate.

To investigate the reasons for the large error in the prediction for the 63-node binary

tree case, we recorded the number of tasks executed on each node. We found that the

leaf nodes executed a fewer tasks than the intermediate nodes. This occurs only when

the system is communication bound, but according to the models, the system should

not have reached the communication bound (based on the data and result sizes of the

tasks). The only explanation for this scenario is that the system violated one of the

assumptions in the model. On examination, we hypothesized that the data generator

may not be generating the tasks at the rate at which the system can receive and process

them. Therefore, we ran several experiments to measure the rate at which the data gen

erator was generating the tasks, and found that the rate was 248.32 tasks/sec. However,

according to the model, a 63-node binary tree for this application program can process

tasks at the rate of 349.06 tasks/sec. This confirmed our suspicion that the large error

occurred because the data generator was unable to keep up a continuous flow of tasks

into the farm. For chain, ternary tree and smaller binary tree topologies the predictions

were accurate because the task processing rate of these topologies were smaller than the

rate at which tasks were generated.

8.4.2 Fast Fourier Transform (FFT)

Divide-and-conquer strategy has been used to design efficient sequential FFT algorithms.

In this example, we have used TrEK to parallelize a sequential algorithm that uses FFT

for multipoint evaluation of a polynomial over a field [Sed83]. For this implementation,

execution time starts increasing for binary trees with more than 4 levels as the through

put reaches the communication bound given by equation (6.18) between levels 3 and

4.

The sequential FFT algorithm {Sed83] is reproduced below:

Algorithm FFT(N, a(x), w, A)
if N = 1 then

a0;
else

/* split */
n := N/2;
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b(x) Zril
ajxZ;

c(x) : Z’
/* recursive calls */

FFT(n,b(x),w2,B);
FFT(m, c(x), w2,C);
/* combine */

for Ic := 0 to ri — 1 do

Ak := Bk + wkCk;

Ak+n := Bk —

endfor
endif

In order to show the interaction between TrEK and the user code, the user code that

implements this FFT algorithm has been included.

data_generator 0
{
for (i=1; i<TotalJobs; i++) {
/* prepare the data for a task */
/* send the task to TrEK by calling do_task */

do_task(task_type, user_data_size, ptr);

}}

result_receiver()

{
user_result *ptr;

for (i1; i<=TotalJobs; i++) {
1* get the next available result */

ptr = (userresult *) get_resultO;
/* process the result */

}}

comp_fn(user_data *ptr, mt *ur_size, char **ur_ptr)

{
/* call the fft function */

fftl(N, fptr, A);
/* set the argument values to be returned*/
*ur_sjze = user_result_size;
*ur_ptr = (char*) p;

}



Chapter 8. System Integration and Applications 130

split.in(ptr, split_datasize, ptrs)
user_data *ptr;

mt *split_datasize;

char *ptrs [1;

{
/* split the task */
/* set the argument values to be returned*/

ptrs[0] (char *) ptrl;

ptrs[1] = (char *) ptr2;
*split_datasize = user_data_size;

}

join_fn(jb_userres, jres_size, ptr)
char *jb_userres [TASK_DEGI;
mt *jres_size;

char **ptr;

{
/* join the results */
/* set the argument values to be returned*/
*ptr = (char *) p;
*jres_size = user_result_size;

}

After parallelizing this algorithm using TrEK, we ran the program on a single node

with smaller N (32 and 64), and used the technique described in Section 8.2 to determine

the values of the application dependent parameters. As the sequential algorithm is an

0(NlogN) algorithm, we set

Te(N) aN + bNlogN.

Because the split and join costs in this algorithm are 0(N), we set

T3(N)+Tj(N) c+dIV.

We calculated the values of the constants (a, b, c and d) for this implementation using the

measured execution times for smaller N. The values of these constants are: a = 0.000330,

b 0.000091, c = 0.001695 and d = 0.000082.

The models were used to predict the performance of this implementation for larger

N (128, 256, 512 and 1024). From the models, we found that the throughput for any N
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Problem Size Lower bound Measured Measured
N Time Time Speedup

128 13.55 16.841 7.32
256 24.05 28.620 9.46
512 45.06 52.864 11.13
102 87.06 102.820 12.42

Table 8.1: Experimental results for FFT on a 16-node binary tree

reaches the communication bound given by equation (6.18) for binary trees of 4 levels

and ternary trees of 3 levels. The system reaches this bound because of the split and

join costs at the root processor. If a larger tree is used, the root processor would be

unable to split and forward the tasks at the rate in which the rest of the processors can

process the tasks. The only way to improve the performance in this case is to optimize

the code for split and join functions.

We verified these predictions by experimenting with larger N (see Table 8.1). As

predicted, the measured total execution time did not decrease when we increased the

size of a binary topology from 4 levels to 5 levels. Actually, the measured execution time

increased because of the reason described in Section 7.3.4.
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Conclusions

This dissertation has explored a parallel programming approach that addresses the need

of providing a programming environment that is easy to use, efficient and supports per

formance tuning on multicomputers. In this approach, users are provided with program

ming support based on parallel programming paradigms. We have studied two commonly

used parallel programming paradigms: processor farm and divide-and-conquer. Runtime

system support for these two paradigms are designed such that they are easy-to-use and

can maximize the performance for applications that fit these paradigms. Performance

models are derived for these systems taking into account the computation and com

munication characteristics of the applications that fit the paradigm in addition to the

characteristics of the hardware and software system. The models determine the parame

ters that affect the performance and can be used for performance prediction and tuning.

This work has contributed to our understanding of these systems and their limitations.

In designing reusable and efficient runtime systems, many trade-offs have to be con

sidered. In Chapter 4 and 6, we have described the trade-offs involved in the design

of Pfarm and TrEK respectively. Hiding the complexities of the underlying hardware

and software system is the major consideration in the design of these runtime systems.

These systems include all the necessary code for the system dependent issues such as

communication, synchronization, task scheduling, and load balancing. Thus, users can

concentrate on the application dependent compute intensive code. In order to be effi

cient, runtime systems are designed to make use of all the available parallelism in the

132
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hardware system such as the ability to simultaneously communicate on all the links.

The system overheads that limit the overall performance of the applications are kept

to a minimum. Both systems implement distributed dynamic task scheduling strategies

so that they can work well even for applications that can be decomposed into tasks

with varying computational requirements. The systems are designed such that they are

topology independent, i.e., they can scale and run on any processor topology.

It is difficult to obtain a single performance model that can be used for all the

applications on a parallel system. However, it is possible to derive good performance

models for each of the virtual machines as every paradigm is a restricted model of

parallel computation. Performance models for processor farm and divide-and-conquer

virtual machines have been derived in Chapter 4 and 6 respectively. These models take

into account the computation and communication characteristics of the applications that

fit the paradigm in addition to the characteristics of the hardware and software system.

General analytical frameworks that can be used to predict the performance on any tree

topology have been presented for both of these paradigms. As both of these task-oriented

systems behave like a pipeline, it is important to analyze start-up and wind-down.

For the processor farm case, we have shown that, on a fixed topology, a breadth-

first spanning tree provides maximum performance and steady-state performance of all

breadth-first spanning trees are equal. As balanced tree topologies provide maximum

performance in the case of reconfigurable systems, we have derived performance models

for these topologies using the general analytical framework.

TrEK can execute divide-and-conquer computations of any degree and depth on any

arbitrary tree topology. Unlike idealized parallel implementations of divide-and-conquer

algorithms on tree processors [HZ83, Co189], TrEK allows intermediate processors to do

subtask processing to make use of all the available parallelism in the hardware system.

The analytical framework assumes a flow of divide-and-conquer tasks. As explained

in Section 3.4, this framework works well even for applications that consist of a single

divide-and-conquer computation with large degree and depth compared to the underlying

hardware topology. Experimentally, we have found that, on a fixed topology, a breadth

first spanning tree with maximum number of leaves obtains maximum performance. As
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balanced tree topologies provide maximum performance in the case of reconfigurable

systems, we have derived models that can predict performance of any fixed k-ary divide-

and-computations on any g-ary balanced tree topology.

Pfarm and TrEK have been implemented on a 75 node transputer-based multicom

puter. They are implemented using C on two different software environments: Logical

Systems and Trollius. As Pfarm and TrEK provide standard interfaces to the user code

irrespective of the environment they are implemented on, the user code is portable from

one system to the other. Performance models have been experimentally validated using

Pfarm and TrEK. The models are found to be accurate as reported in Chapters 5 and 7.

In order to use the models, it should be possible to determine the values of the param

eters in an easy way. We have explained the techniques that can be used to determine

the values of the system dependent and application dependent parameters. We have

discussed how the models can be used in predicting and tuning the performance.

It is possible to use the processor farm strategy to parallelize some divide-and-conquer

applications. Divide-and-conquer strategy performs well compared to the processor farm

strategy for applications with larger tasks and for those that consist of a smaller number

of tasks. Performance models can be used to determine the strategy to be used for a

given application.

In order to make it easier for application programmers to use runtime systems on a

multicomputer, they must be provided with a programming environment that supports

all phases of program development and execution. In Chapter 8, we have described such

an integrated programming environment, Parsec, developed on our transputer-based

multicomputer. In addition to providing Pfarm and TrEK templates to application

programmers, Parsec supports tools such as a graphical interface, mapper, loader and

debugger We have discussed how Pars cc supports reusability, reconfigurability and per

formance tuning.
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9.1 Future Directions

This research can be continned in several directions to further explore the usefulness of

this approach for parallel programming.

We have mentioned that the same design can be used for implementing Ffarm and

TrEK on any distributed memory parallel computer that has the characteristics detailed

in Chapter 3. Also, the performance models derived here can be used for any system that

satisfies the assumptions used in the models. By implementing Pfarm and TrEK on two

different software environments, Logical Systems and Trollius, we have shown that the

user programs are portable and the same models can be used for both implementations

using appropriate parameter values. The claims of being able to use the same design

and modeling on any multicomputer system in addition to user programs being portable

can be further strengthened by implementing the rnntime systems on other hardware

platforms, such as C40 based machines. Developing more application programs with

these runtime systems in several application areas could further support the usefulness

of these runtime systems.

It is interesting to research the expressiveness of the task-oriented paradigms, pro

cessor farm and divide-and-conquer, i.e., whether these paradigms and the associated

implementations can be modified or enhanced to make use of them for applications that

may not exactly fit the underlying computational models.

Pfarm system can be used for applications with differing characteristics as discussed

in Chapter 8. It is possible to modify the same design to develop a runtime system that

can be used for the Task Queue paradigm. The applications that fit the Task Queue

paradigm consist of an initial set of tasks, which could be allocated to various processors

in the system. These tasks may generate new tasks that have to be processed. Unlike

in the case of divide-and-conquer, the results of these new tasks need not be joined by

the parent. In this case, the task scheduling and load balancing has to be different from

that of Pfarm. Each processor can keep a local task queue to which all the new tasks are

added. It can exchange the load information with its neighbors and transfer the tasks to

the lightly loaded neighbors, if necessary. Deriving performance models for such systems
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may need probabilistic models that reflect the task generation.

It is possible to expand this approach to develop virtual machines that support

applications that fit other parallel programming paradigms such as Compute-Aggregate

Broadcast, Systolic and Dynamic Programming. Also, in practice, some applications

may consist of several phases each of which may need different programming paradigms.

This work can be expanded by developing programming environment that supports

such applications. There are many issues to be considered here such as how the different

systems exchange the data and results, whether they can be co-existent on the system

or they should be interleaved.
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Glossary

Average processor overhead for a locally processed task.

Average processor overhead for a forwarded task.

r Communication rate of the links.

The fraction of the total number of tasks executed by a processor i.

M Total number of tasks in an application program.

N The total number of processors in the system.

SD Throughput of a D-level tree.

SPD Speedup of a D-level tree.

Td Average communication time required to transfer a task from

a processor to its neighbor.

Td Average communication time required to transfer a result from

a processor to its neighbor.

T Average processing time per task in the processor farm case.

Te(j) Average processing time per task or subtask at the ith level

of the hardware topology in the divide-and-conquer case.

Tj (i) Average result joining time at the ith level

of the hardware topology in the divide-and-conquer case.

T8(i) Average task splitting time at the ith level

of the hardware topology in the divide-and-conquer case.

T88 Steady-state execution time.

T3 Start-up time.

Ttotai Total execution time.

Td Wind-down time.

Number of tasks or subtasks that visit processor i.




