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Abstract 

With the increased significance of multimedia applications, the perfor­

mance of multimedia systems used in these applications becomes more impor­

tant. This thesis investigates the possibility to improve the throughput of a 

system serving multi-clip queries. A multi-clip query requests multiple video 

clips be returned as the answer of the query. In many multimedia applica­

tions, the order in which the video clips are to be delivered does not matter 

that much to the user. This thesis discovers that the throughput of a system 

can be improved significantly for queries if the display sequence can be re­

arranged using the "piggybacking" technique. It describes two optimization 

criteria: maximizing the number of piggybacked clips and maximizing the im­

pact on buffer space, to find an optimal display sequence. This thesis shows 

that the display sequences can be found using the bipartite matching. Two 

corresponding admission control algorithms, MaxPVC and MaxIBS, are pre­

sented. It further extends the technique to video clips of variable buffer size. 

Finally, it presents the MaxPP algorithm, which is used to generate display 
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sequences for queries of variable length video clips. Experimental results show 

that the piggybacking technique can improve the system throughput signifi­

cantly. Depending on the total number of available video clips, the throughput 

of the MaxPVC and MaxIBS algorithms can increase over 300%. The MaxPP 

algorithm can increase the throughput of the system to 30%. 
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Chapter 1 

Introduction 

With the current advancements of image processing, disk management 

and network management technologies, multimedia computing becomes a fea­

sible and popular field of study. Many multimedia applications, which could 

not be implemented in the past due to hardware and software limitations, can 

now be implemented. For example, an experimental video on-demand appli­

cation which provides access to 250 movies will be put into service in Orlando 

[FR94, RBE94]. In the near future, many multimedia applications will become 

an everyday tool to everyone. 

Multimedia applications can cover a large part of our everyday life. For 

example, the world wide web is one of the multimedia applications which has 

been used in many areas such as ordering consumer products, retrieving pub­

lic information and viewing images of different tourist places. In addition, it 

is an active area of research and development to deliver educational courses 
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through the Internet which allows people to attend a course from a remote 

location. This application is called "tele-learning". Advertisement and enter­

tainment industries are now exploring the full power of multimedia computing 

to introduce a new era of living style. 

Recently, Rogers Communications Inc. introduced pay per view movie 

for cable television. The idea of allowing subscribers to select their movie 

choice becomes more popular because business trend is moving towards a cus­

tomer driven oriented industry. Due to the high cost of delivering movie on-

demand service to subscribers, pay per view is only an intermediate solution. 

However, with the continuous development of new technologies, the movie on-

demand service will eventually arrive to every subscriber home in the future 

[FR94]. News on-demand is also another service which is quite similar to the 

movie on-demand. It allows subscribers to select when and what news to be 

shown. For example, subscribers can choose to watch the business news in the 

morning and all the sports news in the evening. These are some important 

multimedia applications which will affect our future living style significantly. 

1.1 Multi-clip Queries in Multimedia Systems 

In a multimedia system, a user request or query is defined as a user's 

request of one or more video clips. A video clip (or clip) is defined as the 

abstraction of a display unit by its content. If a query selects five pieces of 

news, this query will consist of five video clips. On the other hand, if a query 
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selects a movie, this query will be considered to have only one video clip. 

Multi-clip queries are queries returning two or more video clips. In 

returning the multiple clips to the user, the display order of the clips must be 

determined. There are three types of display order: fixed order, partial order 

and flexible order. A fixed order query specifies the display order of all clips. 

The specification of the order may be given by the user or by the system based 

on some information that the system keeps on the clips. A partial order query 

is a query which has specified some clips to be delivered in a specific order but 

other clips can be displayed in any order. In addition, if a partial order query 

specifies only the display order of the first few clips, the query is also called 

a prefix order query. A flexible order query is a query which does not specify 

the display order of the clips. 

The display order of a multi-clip query can be important because some 

display orders are not acceptable. For example, in a tele-learning application, 

suppose there are three concepts, A, B, and C, to be explained. If concepts 

B and C are built based on concept A, then the student will not be able to 

understand B or C unless A has been displayed earlier. Thus, A must be 

displayed first. Further, suppose that the display order of B and C does not 

matter because they are independent of each other. Considering all three 

video clips together, this query has a prefix order because concept A must be 

displayed first and the rest does not matter. 

Some applications have fixed order queries. For example, the display 

order of a series of shows about the same story cannot be changed; otherwise, 
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the viewer cannot understand the whole story. Another example can be found 

in the tele-learning application, because the display order of the lessons may 

not be logical if the order is reversed. 

There are some applications which have prefix order queries such as 

the advertisement application and the news on-demand application. In the 

advertisement industry, the advertiser may set different prices for different 

positions in the display order. If a company pays the most expensive price, 

the advertisement video clip of this company will be shown first. The display 

order of other advertisement video clips can then be shown in any order. The 

news on-demand application also has prefix order queries. For example, a 

subscriber may specify certain news to be shown first and then the display 

order of the rest does not matter. 

Finally, there are also some flexible order queries applications such as 

the news on-demand application and the world wide web application. Often 

times, a subscriber of the news on-demand application does not care about 

the display order of the news as long as all the news is shown. In a world wide 

web application, a browser may display the data on the screen when it has 

received all the data from the server. Sometimes, it may display some data in 

random order such as showing several different pictures. Therefore, the server 

can send the data in whatever order it finds the most efficient. 

For each query, the system constructs a schedule such that the disk and 

buffer requirements will not be exceeded during the display of the video clips. 

A schedule of a multi-clip query for a user defines which video clip is to be 
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displayed at what time after the query has been admitted to the system. The 

determination of a schedule of a multi-clip query is subject to the following 

two important constraints: 

1. No two clips for the same query can be shown simultaneously. If clip Ci 

is displayed at time and the length of the clip C, is li} then no other 

clip can be scheduled to be displayed within the tirrie interval [U, U + U\. 

This is the non-overlapping constraint. 

2. No gap exists between the two successive clips. If clip C, and clip Cj are 

two successive clips, and the display time and the length of Cj are and 

U respectively, then the display of clip Cj must start at the time ti + U. 

This is the continuity constraint. 

For a multi-clip query, the display sequence defines the display order of 

the video clips. If the display sequence of a query has been determined, the 

schedule of the query can also be established because of the non-overlapping 

and continuity conditions. Thus, throughout this thesis, we focus only on the 

display sequence of a multi-clip query. 

By definition,, a fixed order query has a single display sequence. How­

ever, many feasible display sequences are possible for a partial or flexible order 

query. Not all display sequences that meet the user specification are equal. 

A display sequence is better when it consumes fewer system resources. The 

following example shows that some display sequences are better than others. 
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Example 1.1 Considering a multimedia system which currently has one ac­

tive query displaying video clips in the sequence <A, B, C, D, E>, a new 

query which allows flexible order arrives with a request of clips {C, D, E, F, 

G}. At least two possible display sequences can be chosen. In Table 1.1, the 

Period 1 2 3 4 5 
Active Query Already in the System A B C D E 

First Display Sequence C D E F G 
Second Display Sequence F G C D E 

Table 1.1: Piggybacked Display Sequences 

second display sequence is better than the first one because the new query 

only requires buffer space and disk resources for two periods of time, while 

the first display sequence requires the buffer space and disk resources for five 

periods of time. With the second sequence beginning in the third period, the 

new query does not require any additional resource because the active query 

is requesting the same set of video clips, and thus these two queries can be 

delivered together. • 

In the paper [GLM95], the authors refer to the technique mentioned in 

Example 1.1 as "piggybacking." When more than one query can be delivered 

at the same time, the buffer and disk consumption can be reduced. This is 

possible because instead of using two units of buffer and disk resources, only 

one unit is required. In turn, the throughput of the system can be increased. 
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1.2 Problem Definition and Complications 

The goal of this thesis is to find a display sequence such that the 

throughput of a multimedia system serving prefix order and flexible order 

multi-clip queries can be optimized. Only constant bit rate video clips are 

considered. The negotiation of the quality of services is out of the scope of 

this thesis. 

One natural optimality condition is to maximize the total number of 

piggybacked clips. To find a display sequence which can maximize the total 

number of piggybacked video clips is not just to overlap the video clips sched­

uled to be shown in the system. For example, the video clips of a query can 

only be shown at one period. If there are two periods which this video clip can 

be shown, the assignment of the video clip to the period will directly affect 

the assignment of other video clips. Example 1.2 demonstrates the difference 

in choosing different periods. 

Example 1.2 A new query requests a set of video clips {A, D, E, F, G}. 

Table 1.2 shows a list of active queries. The video clip E can be chosen in either 

Period 1 2 3 4 5 
Active Query 1 A B C D E 
Active Query 2 C D E F G 

Table 1.2: Active Queries Display Sequence 

period 3 or period 5. If the video clip E is piggybacked at period 5 instead of 
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period 3, then the video clip G cannot be piggybacked because video clip G 

can be chosen at period 5 only. Therefore, a better clip display sequence needs 

to consider the display sequence as a whole instead of individual video clips. 

• 

Furthermore, even when a display sequence of maximum number of 

piggybacked video clips has found, it may still have other display sequences 

which can further improve the throughput of the system. 

Example 1.3 Consider two display sequences as shown in Table 1.3, both the 

Period 1 2 3 4 5 
Active Query 1 F B H G D 
Active Query 2 I F D E G 

First Display Sequence A (B) (D) (E) C 
Second Display Sequence A (B) C (E) (D) 

Table 1.3: Different Display Sequences Leading to Different Performance 

display sequences piggyback three video clips, which are enclosed in parenthe­

ses. But they have different effects on the system performance. If the multi­

media system does not have any buffer resource in period 5, the second display 

sequence is better than the first display sequence. The second display sequence 

piggybacks the video clip D such that no buffer resource is required because 

the active query 1 has already read the video clip D at period 5. On the other 

hand, if the system does not have any buffer resource in period 3, then the 

first display sequence is better than the second display sequence because the 

active query 2 has already read the video clip D at period 3. • 
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Therefore, not all display sequences which maximize the piggybacked 

video clips have the same effect on the throughput of the system. Another 

sensible optimality condition is to maximize the impact on the buffer space in 

each period. In addition, there are many other considerations before a display 

sequence can be determined. 

1. In general, video clips may not have a constant buffer requirement. For 

example, in a news on-demand application, queries may request a set of 

news clips which are stored in different forms such as still image, video 

or audio. As each clip has a different form of data, the display rate of 

the clip is also different. In addition, if some news video clips are stored 

using different compression methods, the display rate for these clips are 

also different. Because of the difference in display rates, the buffer re­

quirements for the clips may vary. If the system uses the maximum buffer 

requirement of all the video clips, it will waste a lot of resources because 

the buffer will not be fully utilized when displaying the video clips with 

lower buffer requirements. Therefore, in choosing the piggybacked video 

clips, the buffer requirements of video clips must also be considered. 

2. Furthermore, video clips also may not have a constant length. With 

variable length video clips, piggybacking becomes extremely complicated 

because of the non-overlapping and continuity conditions of the schedule. 

For example, suppose there is an active query displaying <A, B, C, D> 

and a new query requests the {A, B, D, E} with the length of video clips 

specified in the Figure 1.1. 
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Ts 
I A | B I C I D I 

Active Query {A, B, C, D} | 1 1 1— 1 

New Query (A, B, D, E) 
I I B

 I A I | D I E I 
Infeasible Display Sequence | 1 1 1 )— 1 1 
<B, A, , D, E> 

Ts + 1 

i D | B i A | E i 
Display Sequence <D, B, A, E> | 1 1 1 

Length of Video Clips: 
A = 3 units D = 2 units 
B = 4 units E = 3 units 
C = 5 units 

Figure 1.1: Synchronization Problem 

The display sequence <B, A, _, D, E> has the maximum number of 

piggybacked video clips but it violates the continuity condition because 

E cannot fit in between the video clip A and D. But, the display sequence 

<D, B, A, E> is feasible. Determining the display sequence becomes 

much more complicated because the length of each video clip must be 

considered at the same time when the display sequence is constructed. 

In a real life application such as news on-demand, there are some video 

clips which are more popular than the others. The clips which have a 

higher probability of being chosen are called hot clips. If the total number 

of hot clips is small enough to stay in the cache at all times, then no 

piggybacking algorithm is required. In the other extreme, if the total 

number of hot clips is very large, then the probability of piggybacking 

video clips is very small. In this case, piggybacking is not effective. 

Therefore, the effectiveness of applying the piggybacking algorithm also 

depends on the distribution of the hot clips. 
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4. With any algorithm developed to piggyback video clips, the computa­

tional time of the algorithm must be reasonable due to the real time 

aspect of multimedia applications. 

1.3 Contributions of Thesis 

In this thesis, different algorithms are proposed to find a display se­

quence of multi-clip queries such that the throughput of a multimedia system 

can be optimized. The contributions of this thesis are as follows: 

1. As discussed in Section 1.2, finding the display sequence of which maxi­

mizes the total number of piggybacked video clips is not a simple task. 

In this thesis, we show that the maximum matching in a bipartite graph 

[MS91, HK73, CLR90, FT87] can be used to determine a display se­

quence with the maximum number of piggybacked clips. We show how 

to construct the appropriate bipartite graph. We also present a MaxPVC 

(Maximizing Piggybacked Video Clips) algorithm which can be used in 

the admission control of a multimedia server. 

2. As discussed in Section 1.2, another sensible optimality condition is to 

maximize the impact on the buffer space. In this thesis, we show that 

the maximum weight matching in a bipartite graph with an appropriate 

weighting scheme can be used to determine a display sequence following 

a set of preference rules such that the impact on the buffer space can 
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be maximized. We also develop MaxIBS (Maximizing the Impact on 

Buffer Space) algorithm which can be used in the admission control of a 

multimedia server. 

3. Since the buffer requirement of video clips varies as discussed in Section 

1.2 (1), we demonstrate that the maximum weight bipartite matching 

can be used to find an optimal display sequence for video clips with 

variable buffer requirement. 

4. The techniques mentioned so far are developed based on the assumption 

of constant length video clips. However, they cannot be used to find a 

display sequence for variable length video clips. In this thesis, we develop 

an efficient algorithm, which is called MaxPP (Maximizing Piggybacked 

Periods) algorithm, to find an optimal display sequence which can max­

imize the total number of piggybacked periods for variable length video 

clips. 

5. With the distribution of hot clips and the real time aspect of the mul­

timedia application as discussed in Section 1.2 (3) and (4), experiments 

are done to demonstrate the effectiveness of the MaxPVC, MaxIBS and 

MaxPP algorithms under a realistic environment. These experiments 

include: 

(a) queries selecting video clips using a C N N headline news distribu­

tion. 

(b) queries selecting video clips using a hot clips distribution. 
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(c) queries selecting video clips using a random distribution. 

(d) prefix order queries instead of flexible order queries. 

Our experimental results show that the throughput can increase sig­

nificantly. Furthermore, the computational time of finding a display 

sequence is negligible. 

1.4 Outlines of Thesis 

Chapter 2 describes related work. Chapter 3 describes the MaxPVC 

algorithm. Chapter 4 describes MaxIBS algorithm. Chapter 5 discusses the 

experimental results for MaxPVC and MaxIBS algorithms. Chapter 6 dis­

cusses how to deal with the variable buffer video clips. Chapter 7 discusses 

the MaxPP algorithm for variable length video clips. Chapter 8 concludes the 

thesis. 
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Chapter 2 

Related Work 

Many excellent studies have been conducted in the field of multimedia 

systems. These studies include the fundamental principles of implementing 

a multimedia system and their architectural design, the conceptual modeling 

of multimedia data, and different algorithms to increase and optimize the 

throughput of a multimedia system. 

2.1 Multimedia Systems and Their Architec­

tural Design 

There are many differences between handling multimedia data and tra­

ditional data. One of them is the delay sensitive property of the multimedia 

data. The multimedia data will no longer be useful if the data cannot be dis-
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played to users continuously. For example, when a video is watched, it is not 

acceptable to display the first few frames and then wait for several seconds 

before displaying the next few frames. Another difference is the size of the 

multimedia data. For example, a NTSC quality video with 640 x 480 pix­

els (8 bits/pixels) requires 8.7 megabytes/sec. Therefore^ the total disk space 

requirement of a 30 minute video is 8.7 megabytes/sec x 60 seconds x 30 

minutes = 15.66 gigabytes [GVKR95]. Even with the latest data compression 

technology, the difference of the size between multimedia systems and tradi­

tional database systems is still significant. Therefore, many techniques such 

as the flexible and adaptive buffer management [FNS95], hot set model [SS82], 

approximating block accesses technique [Yao77], and the flexible and predictor 

approach [CY89] which can be used by the relational datcibase systems cannot 

be used in multimedia systems. 

Because of the inapplicability of the traditional techniques, Gemmell 

and Christodoulakis present some principles on how to store and retrieve de­

lay sensitive multimedia data [GC92]. In their paper, they discuss the reading, 

the consumption, and the buffer functions of a multimedia system. They also 

demonstrate how these functions can be used to implement the system. Ran-

gan and Vin also present how to design file systems for multimedia data such 

as the digital video and audio data [RV91]. Anderson, Osawa and Govindan 

present a file system for continuous media [AOG92]. 

Another recent paper provides an overview of how to design multimedia 

storage servers [GVKR95]. Gemmell, Vin, Kandlur and Rangan describe the 

15 



architectures and the algorithms required in the implementation of multimedia 

storage servers. They present ideas for the placement of data in a single disk 

and in multiple disk configuration. They also present different disk scheduling 

algorithms and admission control algorithms which can be used in the imple­

mentation. In addition, Lougher and Shepherd present a paper on how to 

design a storage server for continuous media [LS93]. Neufeld, Makaroff and 

Hutchinson discuss how to design a variable bit-rate continuous media server 

for an A T M network [NMH96]. Rangan and Vin present some efficient storage 

techniques for multimedia data [RV93]. 

A multimedia system combines different areas of research in computer 

science such as database management, networking technology, compression, 

disk and image processing technology. To link these areas together requires 

both hardware and software architecture designs [RS91, LLW95]. 

Vin presents an overall architecture view of a multimedia system in 

[Vin94]. He divides the system into three subsystems: an information man­

agement subsystem, a storage subsystem and a network subsystem. The infor­

mation management subsystem provides the answers for queries generated by 

users. The storage subsystem is used to store and retrieve the multimedia data 

in devices such as disk arrays or optical jukeboxes. The network subsystem 

handles the transmission of the multimedia data to users in a timely manner. 

He discusses different issues of implementing each subsystem. 

In [FR94], Federighi and Rowe present a distributed hierarchical stor­

age manager which is used for a video library. They describe the hardware 
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architecture of the system as well as the software architecture. Instead of an 

overview paper, they discuss in detail on how the video data is loaded to a 

video file server from a tertiary storage. In addition, they also describe the 

storage organization and a distributed cache management algorithm. 

2.2 Conceptual Modeling and Indexing 

In order to fulfill the continuity requirement of user queries, the tradi­

tional database model is no longer applicable. In addition, the huge size of the 

multimedia data requires a new structure of representing the data. Further­

more, the characteristics of multimedia data complicate the indexing structure 

of the data during searching and retrieving of the data. 

Gibbs, Breiteneder and Tsichritzis present a new concept of represent­

ing the time-based data using "timed streams" as the basic abstraction for 

modeling the multimedia data [GBT94]. The conceptual model is still un­

der development. There are still many problems in implementing a database 

system which is capable of supporting the time-based representation. 

The complexity of the indexing structure for multimedia data is due to 

the information contained in the data. For example, a movie has numerous 

information that users may want to query. For example, the date of produc­

tion, the actors, a particular shot showing an explosion scene and many more 

pieces of information can be requested. In [RBE94], Rowe, Boreczky and Eads 

divide them into three types of indexes: bibliographic, structural and content. 
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They attempt to solve the problem of locating a video of interest in a video 

database. 

2.3 Performance Optimization 

Many research papers discuss how to improve or optimize the perfor­

mance of a multimedia system. In general, they are using two approaches: 

the data placement techniques, and the disk scheduling and buffer sharing 

algorithms. 

2.3.1 Data Placement Techniques 

The data placement approach divides the multimedia data into differ­

ent pieces and stores each piece of data in a different disk to increase the 

performance. This approach aggregates the total bandwidth of multiple disks 

to fulfill the continuity requirement of the multimedia system. As the data 

retrieval rate of a disk may not be capable of displaying high resolution mul­

timedia data continuously without disruptions, storing the data in multiple 

disks allows the data to be retrieved in parallel such that the display of the 

video will not be disrupted [GR93, BGMJ94, LL95]. 

In [VRG95], Vin, Rao and Goyal present two data placement policies: 

fixed-size block and variable-size block. They describe how to store video 

streams on the disk array such that either each block contains a variable num-
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ber of frames or a fixed numbers of frames. They present an analytical result 

showing that the fixed-size block placement policy is better than the variable-

size block placement policy if the application involves frequent creation, mod­

ification and deletion of multimedia data. However, the variable-size block 

placement policy is better if the application does not allow editing. 

2.3.2 Disk Scheduling and Buffer Sharing Algorithms 

In a conventional system, queries are completed in a relatively short 

period of time. For example, in a relational database, if a user requests a 

record, the record will be located and returned by the system very quickly. 

However, in a multimedia system, the period in answering a query is com­

paratively longer than a traditional system. For example, if a user requests 

a two-hour movie, the query will not be completed until the whole movie has 

been shown. Therefore, the query remains active for two hours. At the same 

time, the disk can be used to serve other queries because the display rate of the 

query is slower than the data consumption rate. The disk can be optimized 

by serving multiple queries at the same time. In this situation, the movement 

of the disk head to retrieve data can be predicted in advance. 

On the other hand, the disk cannot serve too many queries all at the 

same time. Otherwise, when all the data stored in the buffer has been dis­

played and the disk has not yet read another set of data, the query will not have 

data to display. This is called the "starvation" problem. The disk scheduling 
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approach seeks opportunities to optimize the performance such as maximizing 

the disk utilization or reducing the I/O demand in a multimedia system with­

out the starvation problem. There are many papers presenting different disk 

scheduling algorithms to optimize the performance of a multimedia system. 

Many disk scheduling algorithms have been proposed. The pre-seeking 

sweep algorithm [Gem93] splits the data into sorting sets to reduce the disk 

latencies. The S C A N - E D F algorithm [RW93] combines the shortest seek time 

first algorithm and the earliest deadline first algorithm to improve the perfor­

mance of the disk. The grouped sweeping scheduling (GSS) algorithm [CKY94] 

re-orders the serving queries within the group so that a better performance 

can be obtained. A valuable resource in a multimedia system is the buffer 

space because the size of multimedia data requires a large amount of buffer 

space for storage. Ng and Yang present a buffer sharing scheme and propose 

two prefetching strategies: simple and intelligent [NY96]. The buffer sharing 

scheme allows multiple streams (or queries) to share buffers together. Makaroff 

and Ng present an implementation scheme of buffer sharing in multimedia 

servers [MN95]. 

In [GLM95], Golubchik, Lui and Muntz attempt to reduce the I/O 

operations using the techniques of "batching", "bridging" and "adaptive pig­

gybacking". Their idea is to group different queries together and thus the 

resources can be optimized. They use their idea on the movie on-demand 

application only. The "batching" technique is to delay a query in the hope 

that another query for the same video will arrive within the batching interval. 
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The "bridging" technique is to hold the data in the buffer such that a later 

query can be served without accessing the disk. The "adaptive piggybacking" 

technique groups queries in progress together by adjusting the display rates of 

the queries. 

2.4 Scheduling and Bipartite Matching 

Numerous research papers have been discussed in the previous sections. 

However, none of them considers multi-clip queries. With the multi-clip queries 

application, the flexibility of determining the display sequences provides an 

opportunity to improve the throughput of the system. 

To solve the display sequence, many sequencing and scheduling prob­

lems presented in [GJ79] are investigated. The sequencing and scheduling prob­

lems are to find out the best order of tasks which can be completed without 

violating other specified conditions. They include problems with one or multi­

ple processors, with weights and without weights on each task to be scheduled, 

with deadlines and constraints on resources and waiting queues. However, the 

problem discussed in this thesis is not one of the above problems because 

the constraints change with time. Therefore, the sequencing and scheduling 

problems investigated are not useful in solving the display sequence problem. 

However, the display sequence problem can be simplified as a bipartite match­

ing problem which will be shown in Chapter 3 and Chapter 4. As some parts 

of the problem in this thesis can be solved by the maximum bipartite matching 
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problem, a brief description about the bipartite matching problem is presented 

in the following paragraph. 

A bipartite graph is an undirected graph, G = (P,C,E), if and only if 

its vertex set can be partitioned into two subsets, P and C, such that each 

edge of the graph, e € E has one endpoint in P and the other in C [MS91]. 

Figure 2.1 shows an example of a bipartite graph. 

A 

B 

C 

D 

E 

Figure 2.1: A Bipartite Graph 

A matching, M in a bipartite graph is a subset of edges in which no two 

edges in M share an endpoint. A maximum bipartite matching is a matching 

with the maximum cardinality of M. In solving the maximum bipartite match­

ing, two approaches are commonly used. One is using the augmenting path 

[MS91] and the other is using the maximum flow method [CLR90]. 

The bipartite matching problem can be solved in (9(|£,|yjvrj) time [NU, 

HK73] where V is the total number of vertices and E is the total number of 

edges in the bipartite graph. In addition to the maximum bipartite matching, 

there is also maximum weight matching which is similar to the maximum 

bipartite matching except for the fact that it requires maximizing the weight 

of the edges instead of the total number of matched edges. This problem can 

be solved in 0(\E\ • \V\) time [NU, FT87]. Both of the above algorithms are 
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very useful in this thesis. The library used to solve the bipartite graphs in 

this thesis is L E D A library (Library of Efficient Data types and Algorithms) 

which is developed by Max-Planck-Institut fuer Informatik in Germany. 

However, the above algorithms cannot be used to handle the variable 

length video clips because the variable length video clip does not fit into the 

bipartite graph model. Therefore, a new algorithm has been developed to solve 

the variable length video clips case. 
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Chapter 3 

Maximizing the Total Number 

of Piggybacked Clips 

For a flexible or prefix order multi-clip query, the piggybacking tech­

nique may be effective if the display sequence is re-ordered such that a video 

clip can be delivered at the same time to multiple queries. This may lead to 

a higher throughput of a multimedia system. This chapter presents the Max­

P V C algorithm which uses the bipartite graph to find a display sequence with 

the maximum number of piggybacked video clips so that the sharing of buffer 

resources may be optimized. 

In this chapter, some assumptions are made in finding the display se­

quence because these assumptions can simplify the analysis. Furthermore, 

there are some applications which do not violate these assumptions. Assump­

tions used in this thesis are as follows: 
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1. Each video clip takes exactly one unit of time, or one period to display. 

2. Each video clip takes exactly one unit of buffer space resource. 

3. All queries are served in first come first serve discipline. 

4. The resource being considered in this thesis is the buffer resource only. 

As all proposed algorithms in this thesis do not affect the disk resource, 

algorithms proposed by other people such as [NY96] and [MN95] can be 

used to deal with the optimization of the disk resource. 

The assumptions 1 and 2 will be removed in later chapters when dis­

cussing queries with variable buffer and variable length requirements. 

This chapter will first describe the definitions of reading and candidate 

sets. It will then show how to construct an appropriate bipartite graph to find 

out a display sequence which has the maximum number of piggybacked video 

clips. A theorem is presented to show that the maximum matching from the 

constructed bipartite graph finds the maximum number of piggybacked video 

clips. The MaxPVC algorithm is presented at the end of this chapter. 

3.1 Reading and Candidate Sets 

The reading set of a period is defined as the set of video clips which will 

be read by the system in that period because of the requests of active queries. 

Only the video clips which are going to be read in a period is important to 
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solve the display sequence problem. But the information about which active 

query requesting which video clip at what time is not necessary. Table 3.1 

shows an example of the reading sets of periods 1 to 5. The set of video clips 

Period 1 2 3 4 5 
Active Query 1 A B C D E 
Active Query 2 C F G A D 
Active Query 3 A C K 

Reading Sets {A,C} {B,C,F} {C,G,K} {A,D} {D,E} 
Candidate Sets {A} {B} {G,K} {A} 0 

Table 3.1: Example of Reading and Candidate Sets 

of a new query in each period which can be piggybacked is called the candidate 

set. The candidate set of a new query can be found by intersecting the reading 

set in that period and the set of video clip requested by the new query. For 

example, a new query requests the set of video clips {A, B, G, I, K}. The 

candidate sets of all periods for the new query is shown in Table 3.1. 

3.2 Maximum Piggybacked Clips Display Se­

quence 

Three steps are used to find a display sequence with the maximum 

number of piggybacked video clips: 

1. Constructing the appropriate bipartite graph; 
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2. Running the bipartite matching algorithm; and 

3. Bu i ld ing the final display sequence. 

In the following, we consider these steps one by one. 

3.2.1 Constructing the Bipartite Graph 

In constructing the bipartite graph G = (P, C, E) to find the maximum 

number of video clips which can be piggybacked, each node in P represents a 

period, which is called a period node. Each node in C represents a video clip 

requested by the new query, which is called a clip node. The edge (p, c) G E 

jo ining a period node, p, and a clip node, c, represents that the cl ip, c, is one 

of the elements in the candidate set in the period p. 

Example 3.1 A new query requests { A , B , G , I, K } as in Table 3.1, the 

corresponding bipartite graph is shown i n Figure 3.1. The edge (1, A ) means 

Period Nodes Clip Nodes 

B 

G 

K 

Figure 3.1: A Bipart i te G r a p h Construction Example 
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that A is a video clip which is in the candidate set of period 1. The edges 

(3, G) and (3, K) mean that G and K are elements in the candidate set of 

period 3. • 

3.2.2 Running the Bipartite Matching Algorithm 

By running the bipartite matching algorithm, a maximum bipartite 

matching Max can be found. For example, the matching found for Exam­

ple 3.1 may be Max = {(2,B), (3,G), (4,A)}. Each edge in Max is the assign­

ment of the clip to the corresponding period. The edge (2, B) € Max means 

that the video clip B should be shown at period 2. Section 3.3 will prove that 

the maximum matching found using the bipartite matching algorithm will find 

the maximum number of piggybacked clips. 

3.2.3 Building the Final Display Sequence 

After running the bipartite matching, a list of piggybacked clips is gen­

erated. The edges in Max show the periods when the piggybacked video clips 

should be displayed. However, there are some unmatched nodes in the bi­

partite graph such as period 5 or period 1 if Max = {(2.B), (3,G), (4,A)} in 

Example 3.1. The rest of the unmatched video clips and periods can be as­

signed randomly to build a complete display sequence. For example, clip I can 

be displayed at period 5 and clip K can be displayed at period 1. Therefore, 
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the complete display sequence of the above new query is <K, B, G, A, I>. 

3.3 MaxPVC-Bipartite Theorem 

In this section, two definitions and one theorem are used to prove the MaxPVC 

- Bipartite Theorem. They are stated as below: 

An alternating path with respect to a matching M, in a bipartite graph 

G = (P, C, E), is a path which connects edges ei, e2, e 3 , . . . , en where e2k 6 M 

and e2fc+i £ M. For example, when n is 3, e\ and e^ are ̂  M and e2 is 

G M. An alternating path with respect to M can have even or odd number 

of edges. For example, the odd-edge path in Figure 3.2 begins with an edge 

(x,y) £ M, (x,c) 6 M and (x',c) £ M. The even-edge path begins with an 

edge (x,y) £ M, (x,c) € M, (x',c) <£ M and (x',c') e M. 

^ not in M £ in M ^ not in M £ 

Odd-Edge Path 

not in M * in M ^ not in M ^ in M ^ 

Even-Edge Path 

Figure 3.2: Odd-Edge Alternating path and Even-Edge Alternating Path 

An augmenting path with respect to a matching M, in a bipartite graph 

G = (P, C, E), is a path which meets the following conditions [MS91]: 

1. The first and the last edges, efirst and e/ast, of the path are not matched, 

that is efirst £ M and elast £ M. 
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2. Every second edge, e2n, on the path is matched, that is e 2„ € M. 

3. The first and the last vertices on the path are unmatched which means 

that no edge in M is connected to these vertices. 

Theorem 3.1 (Augmenting Path Theorem [Ber57]) 

A matching is of the maximum cardinality if and only if the graph has 

no augmenting path with respect to the matching. • 

Theorem 3.2 ( M a x P V C - B i p a r t i t e Theorem) 

The maximum bipartite matching of the bipartite graph constructed in 

Section 3.2.1 finds the maximum number of piggybacked clips of the query. • 

Proof: 

Suppose that Max C E is the maximum bipartite matching of the 

constructed bipartite graph, and P' = {p : (p, c) G Max} and C = {c : 

(p,c) € Max}. Assume that there exists a clip y which can be piggybacked 

and will increase the total number of piggybacked video clips, but y £ C. 

Since y can be piggybacked, there must be a corresponding period x such that 

y is in the candidate set of the period x. Based on the construction of the 

bipartite graph in Section 3.2.1, (x,y) will be one of the edges in the bipartite 

graph. If (x, y) £ Max, there are two possibilities: 

1. The period x is matched with another clip, c. If this is the case, an 
i 

alternating path can be constructed. 

• If the alternating path has even number of edges, adding (x, y) into 

Max will at least remove one edge in Max such that the total 
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number of piggybacked clips will not be increased. Therefore, it 

contradicts the assumption that the addition of (x, y) will increase 

the total number of piggybacked clips. 

• If the alternating path has odd number of edges, the first and the 

last vertices of the path will not in P' and C because the first 

and the last edges are not in Max. By the definition of the aug­

menting path, this alternating path is an augmenting path. By the 

Augmenting Path Theorem, Max cannot be a maximum bipartite 

matching which contradicts to the above assumption that Max is 

a maximum bipartite matching. 

2. The period x is not matched. If this is the case, adding (x,y) into Max 

will result in a matching with a greater cardinality, which contradicts 

the maximum bipartite matching. 

Combining the above two cases and by contradiction, the theorem is proved. 

• 

3.4 M a x P V C Algorithm 

Previous sections show how to find the maximum number of piggy­

backed video clips using bipartite graph. This section describes the full Max­

P V C algorithm. 
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Algor i thm 3.1 ( M a x P V C Algorithm) 

1. All new queries are appended to a queue. 

2. Find the candidate set of each period for the query at the head of the 

queue. 

3. Check the candidate set in each period. If the candidate set is empty 

and all the buffer spaces have been allocated in that period, the query is 

put back to the head of the queue. The algorithm will be invoked again 

after the last period which the candidate set is empty and all the buffer 

spaces have been allocated. 

4. Construct a bipartite graph as shown in Section 3.2.1. 

5. Invoke the maximum bipartite matching algorithm. A maximum match­

ing Max is generated. 

6. Complete the display sequence as discussed in Section 3.2.3. 

7. Check the display sequence to see whether it will exceed the maximum 

buffer space allowed in each period. If any one period exceeds the buffer 

space limit, the query will be put back to the head of the queue. The 

algorithm will be invoked again in the following period. Otherwise, the 

query will be activated and buffer space will be allocated for this query. 

• 
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The purpose of step 3 is to find out whether it is possible to generate a 

display sequence of the query or not. For example, suppose that the candidate 

set of a new query at period 3 is empty and that all the buffer resources 

at period 3 have been allocated to other active queries. In this case, it is 

impossible to generate any feasible display sequence for the query before the 

time period 3. Therefore, the remaining steps need not be carried out. 

The purpose of step 7 is used to verify that the final display sequence 

of a query will not violate the buffer resource constraint. This is important 

although step 3 has done the checking because there are cases where a display 

sequence can pass through step 3 but it may violate the buffer resource con­

straint. For example, a new query requests {A, B, C, D, E}. The candidate 

set of the query at all period is {C}. In this case, it may be able to generate a 

feasible display sequence. Therefore, it passes the checking of step 3. However, 

if there are two periods which have allocated all the buffer resource to other 

active queries, the generated final display sequence will definitely violate the 

buffer resource constraint. Therefore, step 7 is to confirm the feasibility of the 

final display sequence of the query. 

3.5 Summary 

The MaxPVC algorithm has been discussed in detail in this chapter. 

The MaxPVC-Bipartite theorem shows that the maximum number of piggy­

backed video clips can be obtained by finding the maximum bipartite matching 

33 



of an appropriate bipartite graph. A full detail of the complete MaxPVC al­

gorithm has also been presented. 

However, the MaxPVC algorithm has a problem when the buffer re­

quirement is considered together. Chapter 4 describes the MaxIBS algorithm 

which is used to handle the above problem. Chapter 5 will compare the ex­

perimental results of MaxPVC and MaxIBS algorithms. 
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Chapter 4 

Maximizing the Impact on 

Buffer Space 

The display sequence of a query which maximizes the total number 

of piggybacked video clips can be found by using the MaxPVC algorithm 

described in Chapter 3. As mentioned in Example 1.3, the buffer resource 

for each active query will directly affect the system performance. However, 

the MaxPVC algorithm does not take the effect of the buffer resources into 

consideration. In view of the insufficiency of MaxPVC algorithm, MaxIBS 

algorithm is developed in the hope that the throughput of the system can be 

further improved. 

This chapter begins with the description of the buffer consumption 

graph. It discusses the criteria for choosing the piggybacked periods and 

lists the order of preference for the piggybacked periods. It then describes 
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how to find a display sequence, which chooses the piggybacked periods ac­

cording to the order of preference, using the maximum weight bipartite graph 

with an appropriate weighting scheme. It shows that the maximum weight 

bipartite matching finds the display sequence which selects the piggybacked 

periods according to the order of preference. The complete MaxIBS algorithm 

is described at the end of this chapter. 

4.1 Buffer Consumption Graph 

A general system buffer consumption graph is shown in Figure 4.1. The 

Buffer 
Maximum Available Buffer, MAB 

3 Time 

Figure 4.1: General Buffer Consumption Graph 

maximum available buffer, MAB, is the maximum amount of buffer space 

available to the system. The maximum allocated buffer, MRB, is the total 

amount of buffer which has been allocated by queries in each period. For 

example, the maximum allocated buffer for period 3 is five units in Figure 4.1. 

The buffer consumption graph can be divided into three different types of 
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periods. 

1. Type I periods are periods in which the buffer allocated has already 

reached the maximum allocated buffer MRB. 

2. Type II periods are periods which meet the following two conditions: 

(a) They are not Types I periods; and 

(b) For all later periods ti > t, the amount of buffer space required in 

periods t\ are less than or equal to that needed in t. 

3. Type III periods are periods t where there exists a later period t\ > t 

such that the buffer reserved at t\ is greater than the buffer reserved at t 

and they are not Type I or Type II periods. 

Based on the above classification, the type of each period of a general buffer 

consumption graph is shown in Figure 4.2. 

Buffer • Type I 

• Type II 

• Type III 

Time 

Figure 4.2: Classification of Periods in Buffer Consumption Graph 
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4.2 Order of Preference for Piggybacked Pe­

riods 

If a video clip can be piggybacked at periods of either Type I, II or III, 

which periods should be chosen? The MaxPVC algorithm described in Chap­

ter 3 can choose anyone because they will all lead to the maximum number of 

piggybacked video clips. However, in consideration of the buffer requirement, 

some choices are better than others. 

Example 4.1 A new query arrives at period 1 and requests eight video clips 

which has only one video clip that can be piggybacked at either period 2 or 

period 8 as shown in Figure 4.3, the display sequence which piggybacks at 

period 2 is not a feasible schedule. The maximum available buffer in period 2 

Buffer T 

Maximum Available Buffer, M A B 

III 
iiii 

1 
III 
iiii 

1 

1 2 3 4 5 6 7 8 9 10 Time 

Figure 4.3: Choosing Different Piggybacked Periods 

is equal to the maximum allocated buffer in period 2 which means that no 

more buffer resource is available at period 2. Therefore, the display sequence 
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which chooses to piggyback at period 8 is a better display sequence than the 

one which chooses to piggyback at period 2 because the query can be admitted 

into the system earlier. Thus, the throughput of the system may be increased. 

• 

If a video clip can be piggybacked at more than one period, the choice of 

selecting the period will directly affect the throughput of the system as shown 

in Example 4.1. Therefore, an order of preference for piggybacked periods 

should be determined such that the generated display sequence will optimize 

the throughput of the system. The proposed order of preference is as follows: 

1. Select periods of Type I from right to left in the buffer consumption 

graph. 

2. Select the maximum number of periods of Type II from left to right 

in the buffer consumption graph after selecting all possible periods of 

Type I. 

3. Select periods of Type III after selecting all possible periods of Type I 

and II. 

In formulating the above order of preference, the maximum allocated 

buffer is taken into consideration. As the period reaches the maximum avail­

able buffer, if it cannot be piggybacked with any video clip, the query must 

wait after this period has passed. Therefore, it is more important to keep the 

maximum allocated buffer as minimum as possible so that new queries can be 

admitted regardless of the display sequences. 
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Another consideration is the future buffer allocation. If two periods of 

the same maximum allocated buffer can be piggybacked, it may be better to 

choose the one on the right hand side because the effect of the piggybacking 

lasts longer and more queries may be benefited. For example, if either period 1 

or period 10 can be piggybacked and they both have the same maximum al­

located buffer, it is better to choose period 10 because all queries requested 

during the period 2 to period 10 are benefited by this piggybacking. However, 

if period 1 is chosen which means that period 10 requires to increase the max­

imum allocated buffer, all queries arrive after period 2 will suffer the increase 

of the maximum allocated buffer at period 10. 

The following are all possible cases when choosing the piggybacked pe­

riods of different types. 

1. When there are two periods of Type I which can be piggybacked, the one 

in the right side will be chosen according to the above order of preference 

because of the future buffer allocation benefit. 

2. When there are one period of Type I and one period of either Type II or 

Type III, the period of Type I is chosen because it has larger maximum 

allocated buffer over the others. 

3. When there are two periods of Type II, the one in the left side is chosen 

because it has the larger maximum allocated buffer. 

4. When there are three periods of Type II which two periods can be piggy­

backed if one is not chosen, it is better to piggyback two periods instead 
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of one even though the one is in the left side of the other two periods. 

5. When there are one period of Type II and one period of Type III, and the 

Type III period is left of the Type II period, the Type II period is chosen 

because of the future buffer allocation benefit. If the Type III period is 

right of the Type II period, the Type II period is chosen because it has 

larger maximum allocated buffer. 

6. When there are two periods of Type III, no order of preference is set for 

the simplicity of the algorithm. 

4.3 Finding a Display Sequence with the Or­

der of Preference 

As the bipartite matching used in MaxPVC algorithm chooses the 

matching randomly as long as it finds the maximum number of piggybacked 

video clips, it cannot be used in choosing a display sequence with the above 

order of preference. However, the maximum weight bipartite matching algo­

rithm can be used to find a matching which matches the periods with the 

above order of preference if an appropriate weighting scheme is used. 

The procedure to find a display sequence with the order of preference 

for piggybacked periods is as follows: 

1. Constructing the bipartite graph as described in Section 3.2.1; 
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2. Assigning the weight to each edge; 

3. Running the maximum weight bipartite matching algorithm which is 

similar to the step described in Section 3.2.2 except that the maxi­

mum weight bipartite matching algorithm is used instead of the bipartite 

matching algorithm; and 

4. Building the final display sequence as described in Section 3.2.3. 

4.3.1 Weighting Scheme 

The weighting scheme used must be able to show the order of preference 

for the piggybacked periods. That is, the higher the order of preference, the 

greater the weight is. In addition, three constraints are required. 

1. To guarantee all the periods of Type I chosen before any periods of 

Type II or Type III requires the total weight of all periods of Type II 

and Type III smaller than any weight of any period of Type I. 

2. To guarantee all the periods of Type II chosen before any periods of 

Type III requires the total weight of all periods of Type III smaller than 

any weight of any period of Type II. 

3. If there are two periods of Type II which can be piggybacked if one 

period of Type II is not chosen, it is better to piggybacked two periods 

instead of one period. This requires the total weight of any two periods 

of Type II larger than any one period of Type II. 
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The following weight scheme is used to assign the weight according to 

the order of preference discussed in Section 4.2. 

1. The weight of periods of type III is 1. 

2. The weight of periods of type II is assigned in the following way. If 

there are k periods of type II and m periods of type III, the weight for 

rightmost period is: 

k if k > m 

m + 1 if k < m 

and the rest from the right to left is W2 = Wx + 1, W3 = Wx + 2, • • • . In 

this case, the total weight of all periods of type II is: 

i:wi=±(2w1+k-i). 

3. The weight assignment for periods of type I from the left to right is 

2fc, 2 f c + 1, • • •, 2k+i where 2h > £ WtypeII + £ WtypeII1. 

Figure 4.4 shows an example of assigning the weight to periods of dif­

ferent types. All periods of type III are assigned to 1 as described in step 1. 

There are nine periods of type III and three periods of type II. Therefore, the 

starting weight for periods of type II is equal to (9 + 1) as shown in step 2. 

Based on the equation stated in step 2, the £ Wtyveii — |(2 x 10 + 3 — 1) = 33. 

The starting weight for periods of type I is equal to 28 = 64 because 64 > 33+9 

as described in step 3. 

43 



Buffer 

64 128 256 512 

1 111 
11111 11 

mm 
1 ft 

ijlll 1 1 
sip 111 111 

illll 111 IBl 
IBl -

12 

11 

I Type I 

U Type II 

• Type III 

10 

Time 

Figure 4.4: Weight Assignment for Different Types of Periods 

4.3.2 Assigning Weight 

The weight of the edges in the constructed bipartite graph is assigned 

based on the above weighting scheme. The weight of all the edges connected 

to the period will be assigned to the value calculated based on the above 

weighting scheme. For example, the weight of all the edges connected to the 

period 5 in Figure 4.4 is 128. 

4.4 MaxIBS-Maximum Weight Bipartite The­

orem 

Theorem 4.1 ( M a x I B S - M a x i m u m Weight Bipartite Theorem) 

The maximum weight bipartite matching of the bipartite graph con­

structed in Section 3.2.1 with the weighting scheme described in Section 4.3.1 

finds the piggybacked periods of the query according to the order of preference 
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stated in Section 4.2. • 

Proof: 

Suppose that Max C E is the maximum weight bipartite matching of 

the constructed bipartite graph, P' = {p : (p, c) G Max} and C = {c : (p, c) G 

Max} and W is the total weight of the matching Max. Assume the followings: 

1. There exists a period x which has a higher order of preference than one 

of the periods, say x' G Max; and 

2. x can replace x', and x ^ P'. 

As x can be piggybacked, there must exist at least one video clip y such 

that y is in the candidate set of the period x. Based on the construction of the 

bipartite graph in Section 3.2.1, (x, y) will be one of the edges in the bipartite 

graph. If (x, y) £ Max, there are two possibilities: 

1. The video clip y is unmatched with any other period. As (x,y) G E 

and all edges has a positive value in weight according to the weighting 

scheme described in Section 4.3.1, the addition of the edge (x,y) to the 

matching Max will have a total weight greater than W. This contradicts 

the assumption of the maximum weight bipartite matching Max which 

has the maximum weight. 

2. The video clip y is matched with another period. An alternating path 

as defined in Section 3.3 can be constructed. If x can replace the period 

x', x' must be on one of these paths. Otherwise, they are independent 

to each other and cannot replace each other. 
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If the alternating path has an odd number of edges, the last edge of 

the path must be unmatched. By choosing all the unmatched edges 

instead of the matched edges, it actually matches all the periods 

on the path. Therefore, the total weight by removing the matched 

edges from Max and adding all the unmatched edges to Max will 

be increased by the weight of the edge (x,y) which is greater than 

zero. This contradicts the assumption that Max has the maximum 

weight. 

If the alternating path has an even number of edges, the last edge 

of the path must be matched. The edge connecting to the period 

x' must be the last one on the path because all periods on the path 

will still be matched. If all unmatched edges are chosen, then x' is 

replaced by x. 

(a) If x and x' are periods of Type I, x must be on the right side of 

x'. According to the weight scheme, the weight for x must be 

greater than the weight of x'. By replacing x' with x, the total 

weight of the matching Max will be increased which contradicts 

to the assumption that Max has the maximum weight. 

(b) If a; is a period of Type I and x' is a period of either Type II or 

Type III, the weight of x will always be greater than the weight 

of x'. Similarly, it contradicts the maximum weight matching 

assumption. 

(c) If x is a period of Type II, then x' must be either a period of 
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Type II which is on the right side of £ or a period of Type III. 

According to the weighting scheme, the weight of x will be 

greater than the weight of x'. Therefore, it also contradicts the 

maximum weight bipartite matching assumption, 

(d) If x is a period of Type III, there is no preference in choosing 

x or x'. Therefore, it contradicts that x has a higher order of 

preference than x'. 

Combining the above two cases and by contradiction, the theorem is proved. 

• 

4.5 MaxIBS Algorithm 

Algori thm 4.1 (MaxIBS Algorithm) 

The MaxIBS algorithm is almost exactly the same as the MaxPVC al­

gorithm as described in Section 3.4 except that the edges in bipartite graph 

will be assigned weights according to the above weighting scheme before run­

ning matching algorithm and the maximum weight bipartite matching is used 

instead of the bipartite matching. • 
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4.6 Summary 

The MaxIBS algorithm has been discussed in detail in this chapter. 

The MaxIBS-Maximum Weight Bipartite Theorem shows that the maximum 

weight bipartite matching finds the piggybacked periods of a query according 

to the order of preference stated in Section 4.2. In theory, both algorithms 

may improve the throughput of a system. Furthermore, the MaxIBS algorithm 

is better than the MaxPVC algorithm because MaxIBS algorithm takes the 

buffer requirement and the future buffer allocation into consideration. Chap­

ter 5 tries to investigate the effectiveness of both algorithms through several 

experiments. 
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Chapter 5 

Experimental Results 

The MaxPVC and MaxIBS algorithms described in Chapter 3 and 

Chapter 4 may potentially improve the throughput of a multimedia server 

with multi-clip queries. Experiments must be carried out to simulate the real 

life environment in order to test the effectiveness of these algorithms. This 

chapter begins with the discussion about the simulator and the parameters 

used in the simulation. It then shows and analyzes the results of the experi­

ments. 

5.1 Simulator 

The simulator used in the experiments is written in C++. It uses the 

L E D A library (Library of Efficient Data types and Algorithms) written by 
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Max-Planck-Institut fuer Informatik in Germany. Both the bipartite graph 

algorithm and the maximum weight bipartite graph algorithm have already 

been implemented by L E D A . 

The simulator creates 64 users when it starts running. Each user gen­

erates queries requesting different video clips. Each query is then processed 

by the server in a first come first serve basis. A display sequence is gener­

ated based on the specified algorithm such as MaxPVC or MaxIBS algorithm. 

If there is no specified algorithm, the display sequence generated will be the 

same order as the query requests. Once the query has been admitted to the 

system, the user will generate another new query until the total number of 

queries for this simulation have been generated. The simulator stops running 

after completing all the requested queries. 

5.2 Simulation Parameters 

There are many parameters which can be set up during the simulation. 

As the buffer size and the length of each video clip in the following experiments 

are constant, their values are set to one. Each simulation generates 5,000 

queries. The number of video clips requested per each query is ranged from 

5 to 20. In order to generate reliable statistical results, each simulation is 

running with 10 trials with 5 different seed values for the random number 

generator. 
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5.3 Experiments 

There are three sets of results for each experiment. One set of results is 

generated without using any algorithm to serve as the baseline for comparison. 

The other two sets of results are generated using MaxPVC and MaxIBS algo­

rithms. Each experiment varies the values of maximum available buffer and 

the total number of available video clips to observe the effect of the algorithms 

in different situations. 

Although the throughput of a system is measured by how many queries 

are processed per unit time, it can also be modified to measure how many 

periods are required to process a fixed number of queries without affecting 

the analysis of the result. The raw data obtained by the simulation is the 

total number of periods required to process 5,000 queries. Therefore, further 

processing of the raw data is not necessary. All results are shown as throughput 

ratios to the baseline data to simplify the analysis. 

In order to find out the effectiveness of MaxPVC and MaxIBS algo­

rithms under different types of queries, four experiments have been carried 

out with the following types of queries: 

1. Queries with video clips from a C N N distribution; 

2. Queries with video clips from a hot clips distribution; and 

3. Prefix order queries. 

4. Queries with video clips from a random distribution; 
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5.3.1 Experimental Result for Queries with Video Clips 

from a C N N Distribution 

In this experiment, the distribution of clips chosen by each query follows 

the C N N Headline News. The distribution is quite close to a Zipf's distribu­

tion. That is, if clips are organized in descending order of appearance or 

requested frequencies, the frequency curve shows an exponential decay. The 

effectiveness of the MaxPVC and MaxIBS algorithms for C N N distributed 

queries is shown in Figure 5.1. The result is generated with 12 maximum 
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Figure 5.1: MaxPVC and MaxIBS Throughput Ratio for Queries with C N N 
Distributed Video Clips 

available buffer in the server. Based on the above result, both algorithms, 

MaxPVC and MaxIBS, increase the throughput of the server from over 350% 
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to around 50% when the total number of video clips available to be chosen 

ranges from 50 to 200. Even when the total number of video clips available 

is 450, the increase in throughput is still over 20%. As the total number of 

video clips available to be chosen increases, the effectiveness of the algorithms 

decreases because the number of video clips which can be piggybacked de­

creases. When the queries choose the video clips using the C N N distribution, 

the MaxIBS algorithm performs better than the MaxPVC algorithm when the 

total number of video clips is below 200. When the throughput ratio between 

MaxPVC and MaxIBS is calculated, it ranges from 40% to less than 10% when 

the total number of video clips available ranges from 75 to 150. 

The computation time of the MaxPVC algorithm per each query is 

about 1.3 milliseconds running on a Sun Sparc workstation while the computa­

tion time of the MaxIBS algorithm is about 1.6 milliseconds. The computation 

time of both algorithms are negligible. 

When the maximum available buffer increases, the throughput ratio 

increases as shown in Figure 5.2. The graph shows that when the total number 

of video clips increases to 1,000, the increase in throughput is still over 20% if 

the maximum available buffer doubles from 12 to 24 units. 

5.3.2 Experimental Result for Queries with Video Clips 

from a Hot Clips Distribution 

In this experiment, the total number of hot clips is set to 50 for all the 
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Figure 5.2: MaxIBS Throughput Ratios for Queries with C N N Distributed 
Video Clips with Different Maximum Available Buffer 

simulation. The probability of choosing the hot clips is expressed as a ratio. 

For example, 1:4 means that there is four times higher chance in choosing 

the hot clips than choosing non-hot clips. The effectiveness of the MaxPVC 

and MaxIBS algorithm for queries with a hot clips distribution is shown in 

Figure 5.3. The result shows that when the probability of choosing the hot clips 

increases, the MaxIBS algorithm performs better than the MaxPVC algorithm. 

However, the difference is still minimal. When the probability of choosing the 

hot clips increases, the graph is shifting to the right side as shown in Figure 5.4. 

The ratios used in the graph are 1:1, 1:2, 1:4, 1:6, 1:8, 1:12, and 1:16. If 

the hot clips probability increases from 1:1 to 1:16, the throughput ratio of 

the MaxIBS can maintain 20% when the total available video clips increases 

from 300 to 900. 
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Figure 5.3: MaxPVC and MaxIBS Throughput Ratio with hot clip ratio 1:1 
and 1:16 
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Figure 5.4: MaxIBS Algorithm with Queries Generated from a Hot Clips Dis­
tribution 
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5.3.3 Experimental Result for Prefix Order Queries 

In this experiment, the display order of the queries is fixed in a certain 

percentage ranging from 0% to 100%. The effectiveness of the MaxPVC and 

MaxIBS algorithm for prefix order queries is shown in Figure 5.5 and Fig­

ure 5.6. The result shows that when 20% of the display order of the queries 

is fixed and the total number of video clips available is 150, the increase in 

the throughput ratio is over 20% in both MaxPVC and MaxIBS algorithms. 

However, when the percentage of prefix portion increases, the effectiveness of 

both algorithms decreases because the possibility of piggybacking decreases. 

5.3.4 Experimental Result for Queries with Video Clips 

from a Random Distribution 

The effectiveness of the MaxPVC and MaxIBS algorithms for randomly 

distributed queries is shown in Figure 5.7. The result shows that both algo­

rithms, MaxPVC and MaxIBS, increase the throughput of the server from over 

400% to 50% when the total number of video clips available to be chosen ranges 

from 50 to 150. Even when the total number of video clips available is 300, 

the increase in throughput is still over 20%. As the total number of video clips 

available to be chosen increases, the effectiveness of the algorithms decreases 

because the number of video clips which can be piggybacked decreases. 

This experiment also finds out that the effectiveness of both algorithms 
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Figure 5.5: MaxPVC Throughput Ratios for Prefix Order Queries 
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Figure 5.6: MaxIBS Throughput Ratios for Prefix Order Queries 
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Figure 5.7: MaxPVC and MaxIBS Throughput Ratio for Queries with Random 
Distributed Video Clips 

are very similar. When the total number of video clips available increases over 

150, the difference of the throughput ratios is insignificant. The performance 

improvement of MaxIBS algorithm over the MaxPVC algorithm is less than 

4% with less than 100 total available video clips. 

5.4 Result Analysis 

With the results of the experiments on the flexible order queries, the 

throughput of a multimedia server has increased significantly especially when 

the total number of the video clips available to be chosen is small. As the 

total number of clips available to be chosen increases, the effectiveness of the 
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algorithms decreases because the total number of clips which can be piggy­

backed decreases. However, even with a large number of video clips available, 

the throughput improvement is still significant if queries choose video clips 

from a C N N distribution or from a hot clip distribution. In general, queries 

are seldom with video clips from a random distribution. 

The MaxPVC algorithm performs as well as the MaxIBS algorithm 

especially when the total number of available video clips increases. As the 

total number of available video clips increases, the possibility of any video 

clip which can be matched with more than one period decreases. Therefore, 

the matching found by the algorithms is likely to be identical. Therefore, the 

MaxIBS algorithm has the same performance as the MaxPVC algorithm. 

The prefix order queries will decrease the effectiveness of the Max­

P V C and MaxIBS algorithms because it minimizes the choice of piggybacking. 

When the percentage of the prefix portion increases, the effectiveness of the 

throughput decreases. 

The increase in the computational time of finding a display sequence 

using MaxPVC and MaxIBS algorithms is in the order of milliseconds. Even 

though the increase in throughput is 10%, the algorithms are still worth to 

run because the cost of gaining the additional 10% is so insignificant. 

As the experiments demonstrate that the MaxPVC and MaxIBS algo­

rithms increase the throughput of a multimedia server significantly, the con­

sideration of removing the constant buffer and constant length video clips 

limitation is worth to investigate. Chapter 6 and Chapter 7 will discuss how 
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to handle video clips of different buffer requirement and video clips of different 

length. 
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Chapter 6 

Variable Buffer Video Clips 

As discussed in Section 1.2 (1), video clips may have different forms of 

data. Thus, each video clip has different buffer requirement. In this thesis, 

a variable buffer video clip is considered as a video clip requiring multiple 

units of buffer. For example, video clip A and B may require one kilobyte and 

four kilobytes of buffer space respectively. If one unit of buffer is set to one 

kilobyte, video clip A and B will require one and four units of buffer space 

respectively. This chapter investigates how to generate a display sequence for 

variable buffer video clips which can improve the throughput of a multimedia 

system. 
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6.1 M a x P V C Algorithm and MaxIBS Algo­

rithm 

As the MaxPVC algorithm only considers to maximize the total number 

of piggybacked video clip, this algorithm can also be used to handle variable 

buffer video clips. When the final display sequence is built, the original Max­

P V C algorithm does not care about the assignment order of the unmatched 

clips because all of them will increase the buffer unit by one. However, when 

the video clips have different buffer requirement, the assignment order affects 

the feasibility of the display sequence. For example, if period 1 and period 2 

have one buffer unit and three buffer units available to be used respectively, 

and there are two unmatched video clips A and B which require one and three 

buffer units respectively, the display sequence <B, A> will be considered as 

infeasible but the display sequence <A, B> will be considered as feasible. 

Therefore, it is important to assign the unmatched video clips in the order 

from clips with the maximum buffer requirement to the minimum and from 

the earlier periods to the later periods. The order of assignment is called the 

buffer order assignment. The MaxPVC algorithm described in Section 3.4 can 

be used for variable buffer video clips except that the assignment order of the 

unmatched clips is changed from the random order to the buffer order. 

The MaxIBS algorithm uses a weighting scheme to maximize the impact 

on buffer space. When the variable buffer video clips are considered, the buffer 
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allocated in each period does not only depend on the type of the piggybacked 

periods, but it also depends on the buffer requirement of the piggybacked video 

clips. Therefore, the weighting scheme used in Section 4.3.1 is insufficient to 

handle the variable buffer video clips. 

To find a display sequence which takes the buffer requirement of video 

clips, the maximum impact on the buffer space of the system and the total 

buffer requirement altogether into consideration is difficult because all these 

parameters are interdependent. The weighting scheme which incorporates all 

the above parameters will be very complicated. However, as the buffer re­

source is scarce in every multimedia server, if video clips with a high buffer 

requirement can be piggybacked, the throughput of the servers may be in­

creased. Therefore, for simplicity, the buffer weighting scheme is used. The 

buffer weighting scheme is to assign the buffer requirement as the weight to 

each video clip. The MaxIBS algorithm described in Section 4.5 can be used for 

variable buffer video clips except that the weighting scheme used is changed to 

the buffer weighting scheme and the assignment order of the unmatched clips 

is changed from the random order to the buffer order. The display sequence 

found by running the MaxIBS algorithm using the buffer weighting scheme 

shares the maximum number of buffer units for each query. 
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6.2 Experimental Result 

An experiment has been carried out to investigate the effectiveness of 

the MaxPVC algorithm and the MaxIBS algorithm using the buffer weighting 

scheme. The experiment runs for 5 trials with 5 different seeds for the random 

number generator. The buffer requirement of the video clips ranges from 1 to 

3 units in a random distribution. The maximum available buffer is 12 units. 

Queries request video clips from a random distribution. The result is shown 

in Figure 6.1. Based on the result, both algorithms increases the throughput 
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Figure 6.1: MaxPVC and MaxIBS Throughput Ratio for Variable Buffer Video 
Clips 

of the server from 210% to 20% when the total number of video clips available 

to be chosen ranges from 50 to 350 respectively. The MaxPVC and MaxIBS 
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algorithms perform almost the same when the total number of video clips 

increases to 350. The increase in throughput of MaxIBS over the MaxPVC 

is over 10% when the total number of video clips available is 50 and over 4% 

when the total number of video clips available is 75. Therefore, MaxPVC 

algorithm is a very effective algorithm to improve the throughput of a server. 

The computation time of the MaxPVC algorithm per each query is 

about one millisecond running on a Sun Sparc workstation while the com­

putation time of the MaxIBS algorithm is also about one millisecond. The 

computation time of both algorithms are negligible. 
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Chapter 7 

Variable Length Video Clips 

As discussed in Section 1.2 (2), video clips may also have different 

lengths. When the video clips have different lengths, the MaxPVC and Max­

IBS algorithms cannot be used because they assume that all video clips have 

the same length. A variable length video clip can be considered as a video clip 

of multiple units of length. For example, if a video clip is 15 minutes long and 

the unit length of the system is 5 minutes, then the video clip is considered to 

have 3 units of length. If another video clip is 10 minutes, then this video clip 

has 2 units of length. This aggregation can simplify the analysis without the 

loss of generalization. In fact, actual multimedia applications generally have 

video clips in multiple units of length. For example, the advertisement video 

clips shown on the television have lengths of 15 seconds or 30 seconds. 

This chapter investigates how to handle variable length video clips. It 

describes a MaxPP algorithm which is used to find a display sequence for 
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which the total number of periods for the selected piggybacked video clips is 

the largest. At the end of the chapter, it shows the experimental results of 

using the MaxPP algorithm. 

7.1 Insufficiency of Bipartite Matching 

To find a display sequence using the MaxPVC or MaxIBS algorithms, 

a bipartite graph is created as described in 3.2.1. However, when the length of 

video clips is greater than one, the bipartite graph constructed can no longer 

represent the actual situation. 

Example 7.1 Suppose that a query has five video clips which have a different 

length. Figure 7.1 shows the length of each video clip. If (1, A) is chosen, then 

Period Nodes Clip Nodes 

1 A (Length = 3 units) 

2 • B (Length = 2 units) 

3 « ^ • G (Length = 1 unit) 

4 9 ^ ^ ^ ^ • I (Length = 1 unit) 

5 • K (Length = 2 units) 
Figure 7.1: Insufficiency of Bipartite Matching for Variable Length Video Clips 

the edges (1, B), (3, G) and (3, K) are invalid because the video clip A requires 

three periods. The bipartite graph fails to show this relationship. • 

67 



Example 7.2 Suppose that supplementary edges are added to Figure 7.1 

which is shown in dash lines. Although the supplementary edges show the 

Period Nodes Clip Nodes 
1 A (Length = 3 units) 

Figure 7.2: Insufficiency of Bipartite Matching for Variable Length Video Clips 

information that clip A is related to periods 1, 2 and 3, the bipartite match­

ing only deals with one edge per each node. There are no way to represent 

the information that they have to be chosen together. For example, if the 

edge (1, A) is chosen, the supplementary edges, (1, B) and (1, C), have to be 

chosen together. In addition, the supplementary edge, for example, (2, A), 

cannot be chosen alone without choosing (1, A) and (3, A) because it is only 

a pseudo-edge. • 

In general, the bipartite matching only deals with one choice per node. 

It cannot represent the relationship that if an edge is chosen, there are some 

edges which cannot be chosen. Nor it cannot represent the case to choose 

a set of node associated with only one edge. Therefore, a new model will 

be discussed in the following section to find out the maximum number of 

piggybacked periods. 

68 



7.2 Finding the Maximum Number of Piggy­

backed Periods 

To find a feasible display sequence with the maximum number of piggy­

backed periods requires two steps. First, a set of the piggybacked clips which 

has the maximum number of periods should be identified. Second, with the 

piggybacked periods, a feasible display sequence should be built which will be 

discussed in Section 7.3. 

This section begins with the description of how to find the maximum 

number of piggybacked periods by iterating all edge combinations. It then 

further refines the iteration method such that the total number of iterations 

can be reduced. Based on Example 7.1, the total number of iterations can be 

reduced from 32 iterations to 6 iterations. 

7.2.1 Iterating All Edge Combinations 

One way to find a display sequence with maximum piggybacked periT 

ods is to iterate all edge combinations in the bipartite graph. Although the 

computational time is 0(2^) where \E\ is the total number of edges in the 

bipartite graph, this strategy is still useful as long as the actual computational 

time is not significant. In Example 7.1, because the total number of edges is 5, 

the total number of iterations required is 25 = 32. 
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7.2.2 Iterating All Possible Video Clip Combinations 

Since each video clip can only be chosen once, some of the above combi­

nations are irrelevant. For example, if there are three edges connected to the 

same video clip, the combination of any two of these edges is invalid because 

the video clip can only be displayed in a period. Therefore, the computational 

time of iterating only the possible combination is better than 0(2^). Assume 

that there are n periods with e total number of edges and m number of video 

clips. Let the total number of edges connected to each video clip c i , . . . , cm be 

e i , . . . , em. Then, the possible combination for clip Cj is e,j + 1 because c\ may 

not be chosen at all for the final matching. Therefore, the computational time 

of iterating the only possible video clip combinations is 0 ( n £ L i ( e i + 1)). The 

worst case is 0((^ + l ) m ) when e i , . . . ,em = ^ . In Example 7.1, the total 

number of edges connected to clips A,B,G,K are 2, 1, 1, and 1 respectively. 

Therefore, the total number of iterations is equal to 3 x 2 x 2 x 2 = 24. As all the 

edge combinations removed from the iteration are invalid edge combinations, 

the optimal edge combinations is not discarded. 

7.2.3 Iterating All Possible Edge Combinations 

In Example 7.1, when the edge (1, A) is chosen, three edges, (1, B), (3, 

G) and (3, K) become invalid because periods 1, 2 and 3 are now allocated 

for displaying video clip A. Instead of iterating all combinations of edges per 
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video clip, only the possible edge combinations are tested. This technique can 

prune away some of the invalid combinations across different clips because 

each period in the display sequence can only assigned to a video clip. Thus, 

hopefully, the computational time can be further reduced. In this case, a 

feasibility matrix is set up to represent the possible edge combinations. 

The feasibility matrix shows the possible edge combinations associated 

with a particular edge. Each row or column in the matrix represents the 

possible edges which can be chosen together. The entries in the matrix have 

a value of either 1 or 0. If the value is 1, it means that these two edges can be 

chosen together. If the value is 0, these two edges cannot be chosen together. 

The matrix itself is a symmetric matrix as shown in Example 7.3. 

Example 7.3 The feasibility matrix of the Example 7.1 is shown as follow: 

1A IB 3G 3K 4A 

1A 1 0 0 0 0 

IB 0 1 1 1 1 

3G 0 1 1 0 1 

3K 0 1 0 1 0 

AA 0 1 1 0 1 

Each row represents the possible edge combinations of the edge. For example, 

the fifth row in the feasibility matrix shows the possible edge combinations of 

the edge (4, A). The edge (4, A) can be chosen with either (1, B) or (3, G). 

The edge (4, A) cannot be chosen with the edge (1, A) because the video clip A 

can only be displayed at either period 1 or 4. The edge (4, A) also cannot be 
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chosen with the edge (3, K) because the video clip K requires period 3 and 4 

to display. • 

The feasibility matrix only represents the possible combinations of two 

edges. But, it also shows all possible combinations of edges using the logical 

A N D of two rows instead of the transitive closure of the matrix. The result 

obtained by doing a logical A N D of two rows represents the possible edge 

combinations with the two edges. In Example 7.3, the result of logical A N D 

the (1, A) and (1, B) row is [ 0 0 0 0 0 ] which means that (1, A) and (1, B) 

cannot be chosen together. However, the result of logical A N D the (3, G) row 

and (4, A) row is [ 0 1 1 0 1 ]. Besides (3, G) and (4, A) columns have a value 

of one, the (1, B) column also has a value of one which means that (1, B), (3, 

G) and (4, A) can be chosen together. 

The possible edge combinations can be obtained by iterating from the 

first row to the last row in the feasibility matrix. As the edge combination is 

a set of edges, it is not necessary to count the edges which has already been 

considered. 

Example 7.4 Considering the feasibility matrix in Example 7.1, the first row 

of the matrix is (1, A). There is no other edge which can be selected with (1, 

A). Therefore, the first edge combination is only (1, A). When the second row 

of the matrix is considered, (1, B) is one of the edge combinations. As (1, B) 

can be selected together with (3, G), (3, K) or (4, A), there are three more 

edge combinations which are {(1, B), (3, G)}, {(1, B), (3, K)}, and {(1, B), 

(4, A)}. However, the logical A N D result of (1, B) and (3, G) is [ 0 1 1 0 
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1 ] which means that there is another additional edge combination. That is 

{(1, B), (3, G), (4, A)}. When (3, G) is considered, the edge (1, B) does not 

need to be included as it has been considered when the edge (1, B) is iterated. 

Therefore, only the edge (4, A) is left which leads to two edge combinations, 

{(3, G)} and {(3, G), (4, A)}. The process continues until all edges have been 

considered. • 

The optimal edge combinations is not discarded because the edge com­

binations removed are those which are invalid. Using the feasibility matrix 

to exclude the infeasible edge combinations can reduce the total number of 

iterations. In Example 7.1, only 10 iterations is required. 

7.2.4 Iterating All Possible Edge Combinations Leading 

to Maximum Piggybacked Periods 

As the goal of iterating all the possible combinations is to find the 

maximum number of piggybacked periods, there are also cases which can be 

discarded earlier. This can also reduce the total number of iterations required. 
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Example 7.5 In Example 7.3, the possible maximum piggybacked periods 

for each row is shown under the column PM below: 

1A IB 3G 3K 4A PM 

lA 1 0 0 0 0 3 

IB 0 1 1 1 1 8 

3G 0 1 1 0 1 6 

3K 0 1 0 1 0 4 

4A 0 1 1 0 1 6 

Example 7.4 shows an order of iterating different edge combinations. In this 

example, the same order is being considered. When the edge (1, A) has been 

chosen, the total number of piggybacked periods is three. When the maxi­

mum possible piggybacked periods of the second row is greater than the edge 

combination (1, A), there is a possibility to obtain an edge combination with 

higher number of piggybacked periods. Therefore, the iteration of the row (1, 

B) is continued. The total number of piggybacked periods obtained in iterat­

ing the row (1, B) is six which is generated by the edge combination {(1, B), 

(3, G), (4, A)}. As the maximum possible piggybacked periods of the follow­

ing rows are less than or equal to six, no more iteration is required because 

no edge combination in the following rows will generate a higher number of 

piggybacked periods. Therefore, the iteration can be terminated. • 

As the edge combinations removed by comparing the possible maxi­

mum cannot generate any higher number of possible piggybacked periods, the 

optimal edge combinations are not pruned away. By removing the edge com-
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binations which cannot obtain the maximum number of piggybacked periods, 

further iteratioins can be reduced. In Example 7.5, only six iterations are 

required. 

7.3 Building the Final Display Sequence 

When a list of piggybacked periods and clips is generated, the unas-

signed periods are required to be filled up to complete the final display se­

quence. However, this time the task is more complicated than for constant 

length video clips because some video clips may not be able to fill in the holes, 

which are defined as the contiguous unassigned periods after filling in all the 

piggybacked periods. 

Example 7.6 There are six video clips, A, B, C, D, E, and F which have 

lengths of 2, 1, 3, 2, 1, and 3 respectively. The video clips A and B can be 

piggybacked at period 5 and period 12 respectively. There are two holes which 

are from period 1 to period 4 and from period 7 to period 11. The partly filled 

display sequence is shown as follows: 

Period: 1 2 3 4 5 6 7 8 9 10 11 12 
Video Clip: A A B 

The unassigned clips cannot be put in the display sequence randomly 

as described in Section 3.2.3 because some of the choices may violate the non-

overlapping and continuity conditions stated in Section 1.1. In Example 7.6, 
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the video clips D and E cannot be displayed at period 2 and at period 4 

respectively because there is not enough space to fit in both clip C and clip F 

from the period 7 to period 11. Therefore, this is more complicated than 

building a display sequence for constant length video clips. • 

To assign the remaining clips to the unassigned periods for variable 

length video clips, the longest video clip is chosen to fit into the holes first. 

The hole, which is large enough to fit the longest clip, can fit shorter clips 

but not vice versa. Therefore, it is important to give higher priority for longer 

video clips. However, it is also important to keep the holes as large as possible 

to serve other longer video clips. Therefore, the remaining video clips are 

assigned in descending order to the ascending order of the holes. In that case, 

it can generate a feasible display sequence if there is any. 

Example 7.7 In Example 7.6, there are four unassigned clips, namely C, D, 

E and F. The longest clips are C and F. There are two separate holes as 

mentioned in Example 7.6. One hole has a length of four periods and another 

one has a length of five periods. In order to best fit the longest clip, say 

clip C, the hole of four periods should be used. Therefore, clip C should begin 

at period 1. After clip C has been assigned, the display sequence still has two 

holes; one of them is five periods in length and another one is only one period 

in length. To best fit the second longest clip which is clip F, the periods 7, 8 

and 9 are assigned to clip F. There are still two holes in the display sequence. 

The assignment continues on until all the clips have been assigned. The steps 

of filling the display sequence are shown in Table 7.1. • 
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Period 1 2 3 4 5 6 7 8 9 10 11 12 
Step 1 A A B 
Step 2 C C C A A B 
Step 3 C C C A A F F F B 
Step 4 C C C A A F F F D D B 
Step 5 C C C E A A F F F D D B 

Table 7.1: Steps to Fill in the Holes 

7.4 MaxPP Algorithms 

Section 7.2 describes how to find the maximum number of piggybacked 

periods by iterating all the possible edge combinations. Section 7.3 shows 

how to generate a final display sequence. This section describes the MaxPP 

algorithm in detail. 

Algor i thm 7.1 ( M a x P P Algor i thm with No-Retry) 

1. All new queries are appended to a queue. 

2. Find the candidate set of each period for the query at the head of the 

queue. 

3. Check the candidate set in each period. If the candidate set is empty 

and all the buffer spaces have been allocated in that period, the query is 

put back to the head of the queue. The algorithm will be invoked again 

after the last period which the candidate set is empty and all the buffer 

spaces have been allocated. 
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4. Construct the feasibility matrix as described in Section 7.2.3. 

5. Iterate all feasible choices of edge combinations to find the maximum 

number of piggybacked periods as described in Section 7.2. 

6. Build the final display sequence as described in Section 7.3. If the con­

struction of the final display sequence fails, the query will be put back 

to the queue and the algorithm will be invoked in the next period. 

7. Check the display sequence to see whether it will exceed the maximum 

buffer space allowed in each period. If any one period exceeds the buffer 

space limit, the query will be put back to the head of the queue. The 

algorithm will be invoked again in the following period. Otherwise, the 

query will be activated and buffer space will be allocated for this query 

whenever the buffer space is required. 

• 

The MaxPP (No-Retry) algorithm generates only one feasible display 

sequence to test for the admission of the query. However, there are many 

possible alternatives generated when the algorithm iterates all possible edge 

combinations. The MaxPP (Retry) algorithm is developed in the hope that 

other alternatives may be able to generate a feasible display sequence which 

allows the query to be admitted into the system. 

Algor i thm 7.2 ( M a x P P Algor i thm with Retry) 

The MaxPP (Retry) algorithm is similar with the MaxPP (No-Retry) 

algorithm except that it saves all the inspected edge combinations during the 
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iteration in Step 5 and it checks other possible display sequence using the 

alternative edge combinations saved when it fails in Step 7. These two steps 

are rewritten as follow: 

5'. Iterate all feasible choices of edge combinations to find the maximum 

number of piggybacked periods. During each iteration, all the inspected 

edge combinations are stored in a list. 

7'. Check the display sequence to see whether it will exceed the maximum 

buffer space allowed in each period. If any one period exceeds the buffer 

space limit, repeat step 6 with another edge combination chosen in the 

stored list in step 5' with higher number of piggybacked periods until 

the stored list is exhausted. If no display sequence can be used, then 

the query will be put back to the head of the queue. The algorithm will 

be invoked again in the following period. Otherwise, the query will be 

activated and buffer space will be allocated for this query whenever it 

requires. 

• 

Example 7.8 This example is used to demonstrate how Step 7' works. Con­

sider the Example 7.5 with the six iterations which are shown in Table 7.2. If 

the edge combinations {(1, B), (3, G), (4, A)} cannot formulate a feasible dis­

play sequence, the edge combination {(1, B), (4, A)} will be used to formulate 

an alternative display sequence even though it has less number of piggybacked 

periods. Each edge combination is tested in the descending order of the total 
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Edge Combinations Total Piggybacked Periods 

{(1, A)} 3 
{(1, B)} 2 
{(1, B), (3, G)} 3 
{(1, B), (3, G), (4, A)} 6 
{(1, B), (3, K)} 4 
{(1, B), (4, A)} 5 

Table 7.2: Possible Edge Combinations 

number of piggybacked periods. If there is no feasible display sequence, the 

query is waited. Otherwise, the query will be activated. • 

7.5 Experimental Result 

An experiment has been carried out to investigate the effectiveness of 

the MaxPP algorithms. The experiment runs for 5 trials with 5 different seeds 

with the random number generator. The length of video clips ranges from 

1 to 3 units in a random distribution. The maximum available buffer is 12 

units. Queries request 5 to 15 video clips from a random distribution. The 

total number of video clips available ranges from 75 to 1000. The result is 

shown in Figure 7.3. In general, the throughput of using MaxPP is over 20% 

when the total number of video clips available is 150. When the total number 

of video clips available is 75, the MaxPP (No-Retry) algorithm only has over 

30% increase in throughput while the MaxPP (Retry) algorithm has more 

than 35% increase in throughput. As the total number of video clips available 
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Figure 7.3: Throughput Ratio for Variable Length Video Clips 

increases, the difference between these two algorithms is negligible. 

The computational time of the MaxPP algorithm in an experiment is 

about 24 milliseconds per query depending on the total number of video clips 

available. 

7.6 Result Analysis 

The throughput improvement for the variable length video clips is not 

as significant as the one for constant length video clips. One of the reasons may 

be the change of the maximum number of clips chosen per query. Due to the 

implementation constraint, the maximum number of clips chosen per query 

is reduced from 20 to 15. This leads to the reduction of the total number 
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of possible piggybacked periods. Therefore, the algorithm seems to be less 

effective than applying to constant length video clips. Another reason is the 

complication of generating a feasible display sequence. Even though a list of 

piggybacked periods is found, a feasible display sequence may be unable to 

formulate. Therefore, the performance of the algorithm also decreases. 

The major difference between the MaxPP (No-Retry) algorithm and 

the MaxPP (Retry) algorithm is the retry mechanism. When one display 

sequence fails to be admitted into the system, other possible display sequences 

are generated until none can be admitted. When the total number of video 

clips available is small, many alternative display sequences can be generated 

because of more edge combinations. This increases the possibility of admitting 

the query. As the number of video clips available increases, the number of 

edge combinations decreases. The possibility of admitting the query decreases. 

Thus, the effectiveness of the retry mechanism decreases. 

The computational time per query is in the order of tens of milliseconds 

depending on the total number of video clip available. With this small amount 

of processing time, the MaxPP algorithm is useful to improve the throughput 

of the multimedia server. 
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Chapter 8 

Conclusion 

To improve the performance of a multimedia system which serves multi-

clip queries, the "piggybacking" technique is used. This technique re-arranges 

the display sequence of flexible or prefix order queries. In this thesis, three 

different algorithms are proposed to improve the performance of the system. 

The MaxPVC algorithm is developed to generate a display sequence for 

multi-clip queries with constant buffer and constant length video clips. The 

display sequence obtained has the maximum number of piggybacked video 

clips such that less buffer resource is required to deliver the queries. The 

MaxPVC-Bipartite theorem shows that the maximum number of piggybacked 

video clips can be obtained by running the bipartite graph algorithm. 

However, when the buffer requirement is considered, the MaxPVC seems 

to be insufficient. The MaxIBS algorithm is developed to generate a display 

sequence for multi-clip queries with constant buffer and constant length video 
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clips. The display sequence generated maximizes the impact on buffer space 

in each period. The MaxIBS-Maximum Weight Bipartite theorem shows that 

the piggybacked video clips can be obtained by running the maximum weight 

bipartite graph algorithm. In addition, both algorithms can be used to gen­

erate a display sequence for multi-clip queries with variable buffer with some 

modifications. 

The MaxPP algorithm is developed to generate display sequences for 

multi-clip queries with variable length. Instead of iterating all possible combi­

nations to find a display sequence which piggybacks the maximum number of 

periods, it discards many infeasible combinations in order to reduce the num­

ber of iterations. Furthermore, it also needs to put the unassigned clips into 

the display sequence in an intelligent way such that a feasible display sequence 

can be obtained. 

Finally, the MaxPVC, MaxIBS and MaxPP algorithms are very useful in 

increasing the throughput of a multimedia system as shown in the experimental 

results. The throughput of the system increases significantly in using the 

MaxPVC, MaxIBS and MaxPP algorithms. Experimental results show that 

MaxPVC algorithm and MaxIBS algorithm can increase the throughput of a 

. system from over 350% to 20% when the total number of available video clips 

is from 50 to 450. The MaxPP algorithm increases the throughput of the 

system by 20% to 30% depending on the total number of available video clips. 

Although there are significant increases in the throughput of the system, the 

computational time of these algorithms is negligible. 

84 



8.1 Future Work 

To further improve the performance of a multimedia system, further 

investigation in the following areas may have a positive outcome. 

1. All the display sequences of queries are assumed to be fixed once the 

queries have been admitted to the system. However, as the users do not 

care about the order of the display sequence, the display sequence can 

be changed even after it has been admitted into the system. In this case, 

when a new query arrives, all the display sequences of active queries can 

also be changed in such a way that it benefits the system the most. The 

complication of dynamically changing the display sequence is to maintain 

the non-overlapping and continuity conditions for each query. 

2. As all queries are admitted based on first come first serve discipline, 

the earlier the query can be admitted into the system, the better the 

throughput is. Since all queries are lined up in a queue, if the information 

of several queries can be obtained and display sequences can be generated 

together, this may increase the throughput of the system because there 

may be a possibility that the second query in the queue can be accepted 

to the system while the first query cannot. In this case, the complication 

of this "pre-planning" is to maintain the fairness for every query. 

3. All queries are considered for admission when they arrive. Although a 

query can be admitted at period 1, it may generate a better display 
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sequence at period 2 instead of period 1 such that the number of piggy­

backed video clips can be increased. Therefore, the delay of admission 

may actually share more buffer resources and hopefully, may increase 

the overall throughput of the system. 
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