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Abstract 

This thesis is about chance and choice, or decisions under uncertainty. The 

desire for creating an intelligent agent performing rewarding tasks in a realis

tic world urges for working models to do sequential decision making and plan

ning. In responding to this grand wish, decision-theoretic planning (DTP) 

has evolved from decision theory and control theory, and has been applied to 

planning in artificial intelligence. Recent interest has been directed toward 

Markov Decision Processes (MDPs) introduced from operations research. 

While fruitful results have been tapped from research in fully observable 

MDPs , partially observable M D P s (POMDPs) are still too difficult to solve 

as observation uncertainties are incorporated. Abstraction and approxima

tion techniques become the focus. 

This research attempts to enhance P O M D P s by applying A l techniques. 

In particular, we transform the linear P O M D P constructs into a structured 

representation based on binary decision trees and Bayesian Networks to 

achieve compactness. A handful of tree-oriented operations is then devel

oped to perform structural belief updates and value computation. Along 
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ABSTRACT iii 

with the structured representation, we explore the belief space with a heuris

tic online search approach, in which best-first search strategy with heuristic 

pruning is employed. 

Experimenting with a structured testbed domain reveals great potentials 

of exploiting structure and heuristics to empower P O M D P s for more prac

tical applications. 
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The following abbreviations list the keywords and the related contexts of this 

thesis work. 
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Notations 

For lacking of a systematic and intuitive notational construct, we have cus

tomized various conventions of notations used in the literature and introduced 

some new notations for the structured represenation. They are summarized 

as follows. 

General 

n Set of Real Numbers 
V Set of Probabilities 
P[\ Probability Function 
AO Probability Distribution 

k horizon; stages-to-go; search depth 
5 discounting factor 
e error tolerance; threshold for convergence 

xiii 



NOTATIONS xiv 

Classical Model 

s Set of States 
s a generic state 
i current state 
3 next state 

A Set of Actions 
a a generic action 

O Set of Observations 
o a generic observation 

R Reward Function: R(i) G 71 
R Expected Reward Function: R(b) G 71 

T Transition Function: T(i, a, j) G V 

0 Observation Function: 0(i, a,o) G "P 

B Set of Belief States 
b current belief state: b(i) G V 
b' updated belief state 
B[b, a, o) Belief Update Transformation 

V F O M D P Value Function: V(i) G 71 
V P O M D P Value Function: V(b) G 71 
yk Value Function with fc-horizon 
v* Optimal Value Function 

n F O M D P Policy Function: U(i) G A 
n P O M D P Policy Function: 11(6) G A 
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Structured Representation 

X 
X 

X+ 
x-

c 
c\=X+ 
c\=X~ 

B D T Specific 

b 
b' 
R 
T-Tree[X|a] 
BT-Tree[a] 
O-Tree [o| a] 
0-Tree[a] 
BO-Tree[a] 

leaf(v) 
node(X, L, R) 

IsLeaf(T) 
value(T) 
reward (T) 

prob(T) 

effect(T) 

XT 
TL 

TR 

prefix(T) 
card{T) 

Set of prepositional Varaibles 
a generic propositional variable 

variable X assigned true 
variable X assigned false 

a generic context 
c subsumes X+ 

c subsumes X~ 

b-Tree for current belief state 
b-Tree for updated belief state 
R-Tree for Reward Function 
T-Tree for X e X given a e A 
BT-Tree for a G A 
O-Tree for o G O given a e A 
Combined O-Tree for a £ A 
b x 0-Tree[o|a] 

leaf node with value v 
internal node labeled X 
with left subtree L and right subtree R 
T is a single leaf tree 
installed value if IsLeaf(T) 
installed reward if IsLeaf(T) 
and T is a R-Tree 
installed probability if IsLeaf(T) 
and T is a b-Tree, T-Tree or O-Tree 
installed effects if IsLeaf(T) 
and T is a BT-Tree 
variable at root of T 
left subtree of T 
right subtree of T 
prefix context of T 
cardinality of T 
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Introduction 

Life is a sequence of decisions (and acts). A better life involves planning, 

or simply put, thinking ahead. Creating a thinking machine, or intelligent 

agent, has been the grand wish of Artificial Intelligence. Computer scientists 

take this as a task of devising computational models to capture intelligence. 

With a practical computational model for decision making and planning, 

we can build an automated controller that drives the decision process in an 

intelligent agent's mind to perform rewarding tasks. This thesis is about an 

exploration in empowering the existing numerical models in decision-theoretic 

planning with structured and heuristic methods. 

1 
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1.1 Decision-Theoretic Planning 

Decision- Theoretic Planning (DTP) provides a more realistic view than clas

sical planning in Artificial Intelligence, in which a perfect world model is as

sumed. Inspired by decision theory, planning can be perceived as sequential 

decision making under uncertainties arising from a partially controlled world 

model. 

1.1.1 Decision Theory 

Decision theory is based on belief, desire and expectation. In a sense, it is 

the result of probability theory and utility theory combined. 

Belief 

Knowledge is built on belief. And a more realistic world model should con

sider the uncertainties implied by belief. Decision theory employs probabili

ties as a measure of belief. Probabilities sit in the interval [0,1] and offer a 

more general decision logic than propositional logic, in which everything is 

true or false. In particular, the core of the kind of decision theory that we are 

referring to is Bayesian decision theory. Applied to a world with stochastic 

transitions and imperfect observations, the belief in a state is measured by a 

posterior probability, the belief in a transition is measured by a conditional 

probability, and the updated belief given an observation is obtained by the 

Bayes' Rule. 
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Desire 

An intelligent agent has goals, or tasks to perform, implanted by its de

signer. With a goal, one situation may be more desirable than another. In 

utility theory, desirabilities, or preferences, are simply ranked by real num

bers. From the designer's point of view, the desirability of a particular state 

can be defined by a reward promised to the agent for being in that state. 

Expectation 

A rational decision is based on both belief and desire. Without belief, desire 

may encourage wishful thinking. Without desire, belief only supports aimless 

wandering. A realistic expectation takes both belief (probability) and desire 

(utility) into consideration. The principle of decision theory is to choose the 

alternative that has the maximum expected utility. 

1.1.2 Planning 

In classical planning, a plan is a sequence of actions to be performed in order 

to achieve a defined goal. Planning is to find an effective plan for a given 

goal. However, there are situations in which a definite goal is unclear and 

the action effects cannot be predicted with certainty. 

Goal-Directed vs Process-Oriented 

Classical planning is goal-directed. Typically, a given goal is specified by a list 

of conditions, and the action effects by preconditions and postconditions. A 
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qualified plan is a sequence of actions supposed to achieve the goal. It works 

fine in a fully observed and controlled world, but fails when action effects 

cannot be perfectly predicted. In addition, multiple goals induce redundant 

actions and conflicting actions, which are difficult to resolve. 

An alternate view on planning is moving the focus from the ultimate 

goal to the process of visiting good states. Instead of getting all or none, 

the successfulness is measured by the rewards obtained during the journey, 

possibly a recurring process. A plan is extended from a fixed agenda to a 

flexible policy. Basically, a policy is a function prescribing the action for each 

possible situation. With a policy function and a set of sensors observing 

the current state, an agent would act more optimally than performing a 

prescribed sequence of actions without sensing in a stochastic domain. In 

addition, multiple tasks can be handled implicitly by designing a reward 

function to define the goodness of being in each world state. 

Sequential Decision Making 

The link of planning and decision making is that a plan is a sequence of 

decisions. A "good" choice at the moment, which results in high immediate 

reward, may be a very bad one for the long run. A purpose of planning is 

to act optimally over a defined time period. This requires sequential deci

sion making, in which both the immediate reward and the expected future 

value are considered in each situation. The expected future value is typi

cally defined as the maximum total expected rewards accumulated over the 
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subsequent decision stages. 

In general, the longer the decision sequence we consider, the better the 

policy we can optimize. However, the longer the horizon, exponentially more 

subsequent decisions need to be made. In many cases, to think ahead a few 

steps is already not easy. Much of the research interest in sequential decision 

making focus on enhancing the existing models to plan with longer finite 

horizons and infinite horizons. 

1.2 Markov Decision Processes 

A family of formal models supporting decision-theoretic planning is Markov 

Decision Processes ( M D P s ) . It has been employed by Operations Research 

for a long time and recently utilized by A l for designing planning agents in 

stochastic domains. In particular, we will employ two main kinds of M D P s 
in this thesis work, namely Fully Observable Markov Decision Processes 

( F O M D P s ) and Partially Observable Markov Decision Processes ( P O M D P s ) 
They differ in the assumption of the observability of the current state in the 

world being modeled. F O M D P s can be considered as a simplified and ap

proximate model of P O M D P s . In the literature, F O M D P s are simply 

referred as M D P s in the context where fully observability is assumed. An 

introduction to P O M D P s will appear in Chapter 2 and the background of 

F O M D P s is given in Chapter 3 (Section 3.3). 



1. INTRODUCTION 6 

1.3 Exploiting Structure 

Classical M D P models are represented by linear and numerical constructs. 

Typically, they are formulated as numerical optimization problems and solved 

by applying Linear Programming and Dynamic Programming methods. Since 

MDPs have been brought to A l , they are often enhanced by Bayesian Net

works and Influence Diagrams for natural and compact representation, in 

which conditional independence is exploited. This thesis takes this approach 

a step further. Contextual independence and persistence are introduced along 

with conditional independence as general domain structural properties to of

fer a structured representation. While more natural and concise specification 

becomes possible, the structured representation also provides computational 

leverage. In addition, it opens new possibilities for informed approximation. 

Chapter 4 presents the structured representation and Chapter 5 describes 

possible approximation methods with it. 

1.4 Employing Heuristics 

While a classical M D P is typically formulated as a numerical optimization 

problem, it can be transformed to an online searching problem, where heuris

tic techniques can be applied. In particular, we employ FOMDPs as a 

heuristic to solve the more general POMDPs with online search. As op

posed to precomputing the optimal policy before the execution session, the 

online approach has execution and planning interleaved, and decision made 
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for the current situation with a feedback provided by observation. Chapter 

3 introduces the ideas of the online approach and heuristic searching. 

1.5 Overview 

This thesis is organized as follows: 

• Introduction 

Chapter 1 puts this thesis work into the contexts of computational 

intelligence, decision-theoretic planning and P O M D P s . 

• POMDPs 

Chapter 2 introduces P O M D P s as a conceptual and computational 

model for decision-theoretic planning. 

• Focus 

Chapter 3 lays out the framework of the structural and heuristic ap

proach pursued in this thesis. 

• Structure 

Chapter 4 presents the structured representation transforming the nu

merical P O M D P constructs into a compact model. 

• Approximation 

Chapter 5 describes possible approximation schemes with structured 

representation and heuristic searching. 
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• Conclusion 

Chapter 6 concludes the exploration with hindsights (summary), in

sights (discussion) and foresights (future research). 

• Algorithms 

Appendix A specifies the structural algorithms in PROLOG. 

• Testbed 

Appendix B specifies the testbed domain in PROLOG. 



2 

POMDPs 

Partially Observable Markov Decision Processes 

In a sense ... 

To think is to conceive. 

To compute is to model. 

P O M D P s provide a neat conceptual and computational model for decision-

theoretic planning. Devising such a model is an attempt to model a piece of 

world without perfect knowledge about it, and to compute rational decisions 

that are much better than blank wishes or blind choices. With P O M D P s , 

we are trying to formalize the notions of belief and value, which drive the 

decision processes in an intelligent being's mind. 

9 
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2.1 Conceptual Model 

Conceptually, with a P O M D P , we are modeling a piece of the world per

ceived by a rational agent. Essentially, we are searching for the rationality 

for acting wisely. 

2.1.1 Perceived World 

A simplistic yet practical view of the complex and dynamic world is to think 

of it as a state space. Each state in the state space represents a possible 

situation or state of the world. As time goes on, the world is changed, and 

moves from one state to another state continually. The dynamics of the world 

is revealed in the pattern of the state transitions caused by the performed 

actions or exogenous events. 

Imperfect Knowledge 

Without perfect knowledge, the effect of each possible action is uncertain. 

It depends on the situation in which the action is performed. It depends on 

the degree of success of the action. It depends on some external factors that 

we do not know yet. More uncertain is that we may even not be able to tell 

for sure what state the world is currently in, let alone the absolute certainty 

of the total history that determines the present and the future. 
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Decision Processes 

Facing those uncertainties, we are challenged to act intelligently. Whenever 

we are prompted to act, we are not making an independent decision, but a de

cision whose consequence will affect the decisions for the subsequent actions. 

To make wise decisions then is to consider opportunities, i.e., more decisions 

in the future. This sequential decision problem calls for the understanding 

of decision processes. 

Based on the incomplete information that we can access and the imperfect 

knowledge that we have acquired, we should be able to do something much 

more meaningful than acting arbitrarily as if we knew nothing at all. The 

quest is what kind of wisdom is needed, and how it can be achieved by 

computation. 

Markov Property 

Often, the history of the changing world does not seem to be significant or 

relevant to predicting the effect of the current action. It is only the current 

state and the action being taken that would determine the change. So maybe 

we can focus on here and now, and take the irrelevance of the past for granted. 

That means we use the current state, instead of the total history, to predict 

the effect of the current action. The decision process in which this assumption 

is valid is said to have Markov property.1 Such decision processes are referred 
1 This is named after the Russian statistician Andrei A . Markov. See RUSSELL-NORVIG 

[29, p.500] for a historical note. 
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as MDPs , Markov Decision Processes. 

Partial Observability 

Taking a step back, rather than pretending that we can always perfectly 

determine the current state, we would admit that the actual state is only 

partially observable. By taking observations, we can identify the current state 

to some degree, but probably never completely. This initiates the studies of 

P O M D P s , Partially Observable Markov Decision Processes. 

Perception, Decision and Action 

Intuitively, decision making is based on what has been determined and what 

will be desirable. To act intelligently is to observe the current situation, to 

interpret the observation with the perceived world model, and to apply the 

action that has the greatest chance to produce the most desirable change. 

These intelligent activities form the Perception-Decision-Action cycle in a 

control loop as shown in Figure 2.1. This is an ongoing process driven by 

belief and value. In the computational intelligence context, the growing 

interest drawn from P O M D P s in operations research is to use it as a rational 

model to build the decision controller embedded in an intelligent agent. 

2.1.2 Rational Agent 

Imagine that we are creating a rational agent and putting it in an interesting 

world. We make the agent perceive and act. More interestingly, we implant 
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Environment 

O Controller 

sensor actor 

Perception Decision Action 

Figure 2.1: The Perception-Decision-Action Cycle 

in the agent some knowledge, or belief, about the world. And finally, we 

grant it the wisdom to evaluate the value of being in each possible world 

state. The notions of belief and value deserve some more thoughts. 

Probabilistically, the agent's belief would tell itself 

• how probable it is in a state, 

• how probable a state would be reached after an action is performed in 

some state, and 

• how probable an observation would be obtained when an action is per

formed in one state and resulted in another state. 

Belief 
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In some sense, the belief system of the agent summarizes the past experience 

that drives the agent to the current state, the future expectation that predicts 

the next state, and the evaluation model that updates the agent's belief right 

after an action has produced the outcome observation. 

Value 

Rationally, the agent will choose an action believed to be leading to a state 

with the greatest value whenever possible. But the subtlety lies in how the 

states are evaluated, especially when the future is uncertain. One way to 

think about it is to introduce the concept of reward. Rewards are received 

along the journey that the agent travels in space-time. So the agent may 

evaluate each state with respect to the expectation of the overall reward that 

can be obtained eventually. 

Expectation depends on the agent's horizon, i.e., how far ahead in the 

future that the agent would consider. It also depends on whether the agent 

would weigh the value of a state differently according to how long the agent 

would take to gain the expected reward. Furthermore, there may be some 

objective constraints, such as the lifetime of the agent or the decision deadline 

that has to be met. After all, the decision is subject to the agent's will. 

Whether the agent tends to be conservative or risky would depend on the 

attitude built into its computational mind. 
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2.2 Computational Model 

Here we come to the question how we put all those intriguing concepts into a 

formal representation for finite computation. As an attempt to answer part 

of the question, this section introduces the building blocks of P O M D P s . 

2.2.1 Representation 

A P O M D P problem can be formulated as: 

Given a world model ( S, A, O, T,0,R) and the belief states 

space B, compute an optimal or a "good" policy function H, which 

depends on the value function V implicitly. 

The notations are explained as follows. 

States 

S is a finite set of states in which each state represents a possible world 

situation. Typically, states are indexed by natural numbers. As a conven

tion, we use i to denote the current state and j to denote the next state. 

Occassionally, s is also used to refer to a generic state in S. 

Actions 

A is a finite set of actions, one of which is chosen at each decision point in 

time. As with states, actions are normally indexed by natural numbers. We 

use a to refer to a generic action in A. 

\ 
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Observations 

O is a finite set of observations that can be obtained. Again, observations 

are indexed by natural numbers. We use o to refer to a generic observation 

in O. 

Transition Function 

Define A(5) to be the set of mappings P : S —> [0,1] such that Ylses P(s) ~ 

1. T is a state transition function mapping the current state and the current 

action to a discrete probability distribution over the possible next states: 

T : S x A —> A(5) 

We write T(i, a,j), or P[j | i, a], for the probability of making the transition 

from state i to state j by taking action a. In addition, the definition 

requires Y,jesT(i, a, j) = 1. 

Observation Function 

Define A(C) to be the set of mappings P : O —>• [0,1] such that Eoeo — 

1. O is an observation function2 mapping the current state, the current action 

and the next state to a discrete probability distribution over the possible 

outcome observations: 

O : S x A x S —> A(C) 
2 I t happens to have a name clash with the B ig -0 notation used in complexity analysis; 

however, the context of discussion should resolve the confusion well enough. 
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We write 0(i, a, j, o), or P[ o j z, a, j ' ], for the probability of observing observa

tion o from state j after action a has,taken in state i. In addition, the defi

nition requires £oee> 0 ( i , a, j , o) = 1. This gives us the most general observa

tion model. However, for simplicity, we assume that 0(i,a,j,o) = 0(i,a,o) 

as in BOUTILIER-POOLE[5], i.e., the observation is independent of the re

sulting state.3 Note that no observation is possible-when T(i,a,j) = 0, 

thus we only need to define those 0(i,a,j,o), or 0(i,a,o), probabilities if 

T(i,a,j)>0. 

Reward Function 

Let 1Z be the set of real numbers. R is a reward function mapping the current 

state to the real number specifying the immediate reward: 

R:S —> n 

We write R(s) for the immediate reward obtained by being in state s. Intu

itively, reward expresses the immediate benefit that the agent receives from 

being in a state. A penalty or cost is defined by a negative reward. 

Belief States 

B is the set of belief states, in which b is the current belief state defined as a 

discrete probability distribution over the possible current states: 

beB and B = A{S) 
3An alternative simplification used in the P O M D P literature is making the observation 

independent of the starting state, i.e., 0(i,a,j,o) — 0(a,j,o). 
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where A(<S) is the set of mappings P : S —• [0,1] such that Ylses P(s) = 1-

We use 6' to refer to the next belief state updated from b. And we write b(i) 

for the probability of being in state i under the belief state b. As required 

by the definition, S i e s ^ ) = 1-

Although we have a finite number of states in S, B is an infinite set. 

With the constraint J2i£S
 = 1> w e have |<S| — 1 degrees of freedom, hence 

a |«S —11-dimensional space. As each dimension lies in [0,1], the space of belief 

states is an |«S — l|-dimensional continuously infinite space. But for unifor

mity, we specify belief states by |<S|-vectors. Belief states are also referred as 

information states or information vectors in the P O M D P literature. 

Policy Function 

n is a policy, a function mapping the current belief state to a chosen action: 

We write 11(6) for the action of choice. 

In general, a policy depends on the history, the full record of the trajectory 

of the state transitions from the initial state to the current state. However, 

one can summarize the relevant information given by the history in a belief 

state. It is known that a belief state can serve as a sufficient statistic for 

making decision at a decision stage (SONDIK[33]). 

In decision-theoretic planning[16],4 a policy adopts a process-oriented[6] 
4 As an aside, Decision Theory = Probability Theory + Uti l i ty Theory. Utility here refers 

to the quality of being useful. 
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view in contrast to the goal-directed view of a plan. A plan is a fixed sequence 

of actions meant to achieve a definite goal in a deterministic environment. 

In contrast, given the current belief state, a policy returns a decision, i.e., 

the action of choice that is believed to get the most value during the process 

of acting in an uncertain world. With the policy function, the rational agent 

knows how to act in different situations accordingly. Actually, an optimal 

policy is determined not only by the belief system of the agent, but also by 

the agent's value system implicitly. 

Value Function 

V is a value function mapping a belief state to the real number specifying 

the value of being in that belief state: 

V : B —>TZ 

We write V(b) for the value of being in the belief state b. As opposed to 

reward, which is a given measure of the defined immediate benefit, value 

is a measure of the overall desirability or utility to be determined. In the 

simplest case, value can be the total expected reward obtained over a given 

time period. Under the P O M D P model, most of the decision efforts are due 

to computing this value function. 

2.2.2 Computation 

To live in a world full of uncertainties, perceiving, deciding and acting are 

the rational agent's life pattern. The essential computational activities in the 
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agent's mind are correspondingly devoted to belief updating, value estimation 

and policy construction. 

Belief Updating 

After each action has been taken, the previously current belief state should 

be updated according to the observation obtained. Formally, the updated 

belief state b' is a function of the current state b, the performed action a, and 

the outcome observation o: 

b' = B[b,a,o] 

where B performs the belief updating by applying Bayes' Rule: 

VjES b\j) = P[j\b,a,o] 

_ E< &(*) p[j\ha] P[o\i,a,J'. 
EkEib(i) P[k\i,a]P[o\i,a,k] 

_ E« b(i) T(i,a,j) 0{i,a,j,o) 
2Zkib(i) T(i,a,k) 0(i,a,k,o) 

When the observation model is simplified as 0(i,a,o), the belief update 

transformation becomes 

EfciK») T(i,a, k) 0(i,a,o) 
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Value Estimation 

To estimate the value of being in a belief state requires the agent to look 

ahead into the future. Assuming that rewards are simply additive, the value 

of being in a belief state can be formulated as the maximum total expected 

reward. 

However, the total expected reward depends on the end of the world, 

which is unexpected; or the lifetime of the agent, which may be indefinite; 

or the deadline of the task, of which we may or may not have control. One 

of the practical approaches to estimate the total expected reward then is 

to restrict the agent's attention to a finite horizon} That means the agent 

considers a fixed number of sequential decisions ahead. Let this number be 

k, and we write Vk(b) for the value of being in the belief state b with k stages 

to go, or k actions left to perform. Then Vk(b) can be recursively formulated 

as 

f R(b) < k = 0 
Vk{b) < 

R(b) + max { £ P[o\b,a] Vk-\B[b,a,o}) } <l k > 0 
o 

(2.2) 

where 

R(b) = £ b(i) R(i) (2.3) 

5 We would focus on finite horizon in this chapter and discuss the case of infinite horizon 
in the next chapter. 
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is the expected immediate reward given belief state b, 

P[o\b,a] = biJ) 0{i,a,o) (2.4) 
i 

is the probability of expecting observation o given action a is performed in 

belief state b, and B[b, a, o] is the updated belief state defined by Equa

tion 2.1. 

Intuitively, the recursive step estimates the sum of the expected imme

diate reward and the maximum expected future value with respect to the 

selected action based on the estimated value for the next decision stage with 

one less stage to go. 

A great challenge in computing the value function in general is that the 

domain of the function, i.e., the belief state space, is continuously infinite. 

This implies that the value function cannot be represented and computed 

explicitly. The signifcant breakthrough to get around this difficulty was due 

to SONDIK'S observation[33]: the value function for finite horizon P O M D P s 

is piecewise-linear and convex.6 Such a function property allows us to repre

sent Vk by a finite set of |5|-vectors, referred as a-vectors by SONDIK. Let 

this set of o>vectors be Vk. Then Vk(b) can be obtained by 

Vk(b) = max { b • a } 

Geometrically, each of these a-vectors represents a hyperplane7 composing 

the value function. Base on SONDIK'S insight, MONAHAN[24] presented a 
6 For a detailed illustration of this property, see CASSANDRA[10]. 
7 Line for \S\ = 2 and plane for \S\ = 3. 
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simpler method than SONDIK'S original algorithm for constructing Vk. In 

our notation, it is defined as follows. 

V° = {R} 

Vk = {V| ak(i)=R(i) + J2T(ha,j) -£0(2,(1,0) a'-'ij), 
jes oeo 

ieS, aeA, ak~l £ Vk~l } 

where R is a |«S|-vector representing the immediate reward function, and ak(i) 

is the 2-th component of the a-vector generated for a £ A and ak~l £ V f c _ 1 . 

That is, the value of being in state i as the sum of the immediate reward 

and the expected future value. The immediate reward is determined by the 

reward function and the expected future value is estimated by the transition 

function, observation function and V f c _ 1 . 

In this formulation, Vk is guaranteed to be finite. But the enumera

tion of o>vectors blows up very quickly as the possible trajectories grows 

exponentially with k on \A\ • \0\. Observe that some a-vectors may be dom

inated by others with respect to any belief state and hence can be removed. 

The development of more efficient algorithms since SONDIK[32] exploits this 

fact. Important landmark works include MONAHAN'S Linear Programming 

method[24], CHENG'S Relaxed Region and Linear Support Algorithms[12], 

and LITTMAN et al's Witness Algorithm[21][ll]. 

As it appears, computing the value function would be the essence of 

P O M D P s and substantial research has been involved in developing meth

ods to represent and construct value functions with abstraction and approx-
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imation techniques such as PARR-RUSSELL'S Differentiable Approximation 

[25]. 

Policy Construction 

Given the value function V, the choice of actions becomes clear: choose 

the one with the greatest expected value according to the possible outcome 

observations. With the current belief state b, that is 

n(6) = argmax { £ P[o\b,a] V(B[b,a,o]) } 

o 

As the space of belief states is continuously infinite, an optimal policy is 

usually constructed from the value function partially or on demand. 

2 . 2 . 3 A n a l y s i s 

Traditionally, the basic constructs of P O M D P s are represented linearly 

with vectors and matrices while dynamic programming and linear program

ming are the usual techniques to compute the value function and policy. A 

brief complexity analysis gives us an appreciation of the difficulty of solving 

P O M D P s . 

Space Complexity 

A belief state is a vector of size \S\ and so as the reward function. The 

transition function requires \S\ x \A\ x |«S| probability entries and can be 

represented by \A\ matrices of size \S\ x |<S|, one for each action. The general 

observation function requires |<S|x|.4.|x|«S|x|C?| entries while the simplified 
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model can be represented by \A\ matrices of size |<S| x \0\, in which the 

observation is independent of the resulting state. In theory, we would require 

a vector of size \B\ for each of the value function and the policy function. 

However, since B is continuously infinite, implicit methods are necessary. 

Time Complexity 

In a domain of size \S\, the time complexity for updating a belief state is 

0(|<S|2) for there are \S\ x |«S| possible state transitions for each j £ S in 

Equation 2.1 under the given action and observation. For a P O M D P with 

finite horizon k, computing the value of a particular belief state with Equa

tion 2.2 requires considering the values of the |.A| x \0\ possible situations in 

each recursive step. And in each of the projected situations, one belief update 

is performed. Hence, the overall complexity is 0((|*4| • \0\ • \S\2)K), which 

is globally exponential in k. Given a computed value function, a decision 

still requires 0(|.4| • \0\ • |«S|2) to be returned by projecting the next possible 

belief states one step ahead. While the complexity looks bad, it is even worse 

when we consider that |«S| is typically exponential in the number of problem 

variables or features modeling the world. We will discuss this issue further 

in Chapter 4, in which a structured representation is introduced to reduce 

the complexity. 
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2.3 Related Work 
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P O M D P s were introduced to the Artificial Intelligence (Al) community 

from Operations Research (OR). In particular, P O M D P s were general

ized from M D P s in Dynamic Programming (DP) after BELLMAN[2, 1957]. 

While much of the foundation has been built on SMALLWOODI-SONDIK[31, 

1973], SONDIK[33, 1978], MONAHAN[24, 1982] and LOVEJOY[23, 1991] con

tributed the more readable surveys. In A l , P O M D P s are found particu

larly interesting in Decision-Theoretic Planning (DTP) and Reinforcement 

Learning (RL). Remarkable works have been done by BROWN'S research 

group, e.g. CASSANDRA-KAELBLING-LITTMAN [11, 1994], and BERKELEY'S 

A l researchers, e.g. PARR-RUSSELL[25, 1995]. A comprehensive study of 

P O M D P s algorithms are recently found in LITTMAN'S Ph.D. thesis [22, 

1996]. CASSANDRA[10, 1994] provides an illustrative and relatively recent 

summary of P O M D P s including a brief development history of the algo

rithms. 

2.4 Summary 

P O M D P s has been introduced as a conceptual and computational model 

for decision-theoretic planning. In particular, it adopts the process-oriented 

world view and the perceive-decide-act life pattern for designing a rational 

agent. More specifically, we focus on the rationality based on the notions 

of belief and value in the decision agent's mind. Figure 2.2 and Figure 2.3 
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Notation • 

n Real Numbers 

V = [0,1] Probability 

A Distribution 

G S (finite) Set of States 

a G A (finite) Set of Actions 

0 G O (finite) Set of Observations 

Transition Function T : S x A —• A(<S) 
Observation Function 0 : S x Ax S — ^ A ( O ) 

Reward Function R : S —> ft 

b,b' G B = A(5) Set of Belief States 

Policy Function n : B—>A 
Value Function V : B —> U 

Figure 2.2: Notational Constructs of P O M D P s 

summarize the notational and computational constructs of P O M D P s re

spectively. In search of a useful and usable formalism, the quest reveals the 

need for powerful abstraction and approximation techniques. 
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P O M D P s : post-Perception, Decision and pre-Action 

Belief Updating 

b' = 

Vje s b'(j) = 

Value Estimation 

Vk(b) 

R(b) 

B[b, a,o] 

Ej b(i) T(i,a,j) Q(i,a,o) 
Efci^W T(i,a,k) 0(i,a,o) 

= < 

f R{b) < k = 0 

R(b) + max { p[o\b,a] V f c _ 1 (B[&,a,o]) } < k > 0 

o 

P[o |6 ,a ] = £ b (») ° ( * > a > ° ) 

Policy Construction 

n(6) = a r g m a x { £ P[o\b,a] V(B[b,a,o]) } 

Figure 2.3: Computational Constructs of P O M D P s 
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Focus 

An Online Search Approach to POMDPs 

In a sense ... 

To decide is to foresee. 

To see is to focus. 

When applying P O M D P s as a computational model for designing a ratio

nal agent to perform process-oriented tasks, the major difficulties of solv

ing P O M D P s are due to the continuously infinite belief state space and 

the infinite horizon. To avoid losing our focus in the infinity, we adopt 

an online search-oriented heuristic approach to our structured exploration 

of P O M D P s , in which we employ our seeing experience as a metaphor to 

visualize the decision processes in the mind's eyes. 

29 
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3.1 Bounded Scope 

When we define the current belief state as a discrete probability distribu

tion over the finite set of states, the space of the belief states is continuously 

infinite. Explicit representation of the value function then becomes impos

sible. One breakthrough technique to approach this problem has been the 

result from SMALLWOOD-SONDIK[31], in which the value function is approx

imated deliberately well by a piecewise-linear and convex function. While 

this method inherits the linear representation and numerical computation of 

the classical model, another practical alternative is to perform online search 

instead of precomputing and storing the whole value function. 

Starting with a particular belief state, there are only finite number of 

reachable belief states in the projected belief space with finite horizon. And 

in the case of infinite horizon, there are countably infinite number of those 

reachable belief states. This can be compared to the limited scope of our 

eyesight. With this bounded scope of discrete vision, we are projecting from 

the current belief state into the possible future belief states, and estimating 

the expected value of taking an action at the moment. 

3.1.1 Foresight: Belief Projection 

When we consider possibilities, we imagine. We foresee. We visualize. Es

sentially, we project our current belief into the future. More concretely, this 

belief projection can be viewed as a decision search tree rooted at the current 
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belief state and branching out from decision nodes and observation nodes 

alternately. The current belief state can then be compared to the viewpoint 

as we focus on a distant object. 

Decision Points 

A decision node in time, or decision point,1 is the point in time at which 

the decision has to be ready for implementing one of the alternative actions, 

including, possibly, doing nothing. Since a decision can be made well in 

advance before the action with planning, decision points actually represent 

the decision deadlines, but not the time at which the decision must be made. 

A decision node holds the updated belief state and branches out to the next 

possible actions. The initial decision point, from which the current belief is 

being projected, is the origin of the projection, or the viewpoint, whereas 

the most distant nodes merge into the horizon. Every 'decision node has one 

incoming observation and \A\ possible outgoing actions, except the origin 

does not requires an input observation, and the terminal nodes on the horizon 

have the output actions omitted. 

Observation Points 

An observation node in time, or observation point, is the point in time at 

which observation is being made. It comes right after an action has been 

taken and branches out to possible consequent observations. Without ex-
1 We use node when we refer to the data structure primarily whereas point refers to a 

point in time. 



3. FOCUS 32 

Figure 3.1: Reachable Belief States as a Decision Tree mapped on Time 

ception, every observation point has one incoming action and at most \0\ 

possible outgoing observations.2 The alternate layers of decision points and 

observation points conform to a decision tree structure, which captures the 

bounded scope of the belief state space. Figure 3.1 shows an upright deci

sion tree corresponding to a decision process with 2 actions, 2 observations 

and 2 decision stages to go. The progressive pattern resembles a viewing 

perspective. 
2 Technically, we need to include the feasible observations that have nonzero probability. 

Chances are the number of those observations is less than \0\ in many cases. 
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3.1.2 Hindsight: Backward Induction 

When we see things, we see the reflection of the light. When we make 

a decision, we do not merely project our belief into the future situations, 

but also reflect on the value in each of the possible final states back to 

the current states with a simulated hindsight. This backward process of 

evaluating the value of the current state is referred as backward induction by 

PUTERMAN[27]. In fact, the recursive definition introduced in Equation 2.2, 

repeated here, 

{ R(b) < k = 0 

R(b) + max { ]T P[o\b,a] Vk-\B[b,a,o]) } < k > 0 

(3.1) 

Vk(b) 

captures the backward induction for a P O M D P with a finite horizon. 

3.2 Infinite Horizon 

Even if we restrict our focus on a bounded scope of belief states, we are 

still challenged by an optimization problem requiring infinite computation 

when backward induction is applied to infinite horizon directly. When perfect 

optimization is out of sight, approximation techniques are developed to search 

for the decent or near-optimal solutions. Here we turn our attention to 

three of such ideas that can work together, namely discounting, focusing and 

pruning. 
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3.2.1 Discounting 

Discounting is to count less on the more distant rewards. It is a simple and 

intuitive technique well used to solve F O M D P s , Fully Obserable Markov 

Decision Processes, with infinite horizon, in which the value function is de

fined on finite state space as the resulting state is completely determined 

after each action.3 It was also an essential technique that SONDIK[33] incor

porated into his implicit representation of the belief state value function to 

solve P O M D P s with infinite horizon. 

Let 5 be the discount factor, where 0 < 5 < 1. This is the constant rate at 

which the future reward is discounted for each backup step in the backward 

induction. Typically, this discount factor is close to 1, e.g. 0.99 or 0.999. 

With the discount factor, the value function becomes 

f R(b) < k = 0 

R(b) + 5 max { £ P[o\b,a] Vk-\B[b,a,o]) } < k > 0 

(3.2) 

Vk(b) = 

The effect of the discount factor is that the expected total rewards for each 

action sequence would converge as the belief states are projected further and 

further. That means we do not need to project the belief state indefinitely 

before we can compare the values of different action paths. 

The discount rate is an adjustable parameter. The computation effort 

and solution quality can be tuned by varying this factor deliberately. A 
3 W e shall revisit F O M D P s in more details in the Section 3.3. 
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discount factor close to 1 makes a farsighted but slow decision agent while a 

quick but shortsighed agent is built with a smaller discount factor. 

When interpreted visually, the effect of 5 corresponds to the vanishing 

pattern in a perspective diagram. Although the motivation of introducing the 

discount factor is intuitive, it is not clear how we should choose an appropriate 

value for 5. Finding the optimal discounting rate indeed is part of the decision 

problem. 

3.2.2 Focusing 

P O M D P s with finite horizon can potentially be solved because the value 

of each belief state on the horizon is determined by the reward function 

immediately. Since there is no further action will be taken over there, we do 

not consider the future values beyond the horizon. However, while focusing 

on a finite depth, we would still like to get a gross picture of the future heading 

to infinity. In the finite horizon case, the reward function sets the base 

values of the recursive value function. If we can define the base values with 

a heuristic function that takes the future value beyond the finite depth into 

consideration, then we might approximate the infinite horizon value function 

more closely while cutting off the infinite computation sitting beyond our 

focus. A direct approach to obtain the base values is to use F O M D P s with 

infinite horizon as the heuristic. Symbolically, we are exploring the idea 

P O M D P 0 0 « P O M D P * + F O M D P 0 0 
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where 
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P O M D P 0 0 :: P O M D P with infinite horizon 

P O M D P f c :: P O M D P with finite ̂ -horizon 

F O M D P c F O M D P with infinite horizon 

Now the horizon defines the depth of view for the decision process and the 

values beyond the horizon are vaguely estimated by F O M D P 0 0 . To adopt 

this approximation, a slight refinement of the value function gives 

f £ b(i) V*(i) < k = 0 

Vk{b) = 
R(b) + 5 max { £ P[o\b,a] Vk-\B[b,a,o}) } < k > 0 

(3.3) 

where V*(i) is the optimal value function, defined on state, for the F O M D P 0 0 

reduced from the target P O M D P 0 0 to be approximated. Just like the dis

count factor, k is also an adjustable parameter to manipulate the tradeoff 

between the solution quality and the computational complexity. In the ex

treme case, F O M D P s are crude approximation of P O M D P s . 

3.2.3 Pruning 

While possibilities could be numerous, productive ones might be few. It 

would be wise to spend more time on exploring the better alternatives than 

the worse. Better still, the really bad choices should be ignored as soon as 

possible. The question here is how we can choose the better from the worse 
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and eliminate the really bad without considering every possibility towards 

the end. An answer to this is to use F O M D P s as a heuristic for pruning 

the decision search tree of the belief state space. Since F O M D P s assume 

complete observation, the maximum total expected reward evaluated by a 

F O M D P overestimates the one evaluated by the P O M D P modeling the 

same world. We will elaborate and exploit these ideas in Chapter 5. Since 

both focusing and pruning employ F O M D P s as a heuristic, an intuitive 

understanding on the traditional F O M D P formulation will be helpful in the 

subsequent discussions. 

3.3 FOMDPs 

F O M D P s , Fully Observable Markov Decision Processes, were developed 

in operations research and have deep root in mathematics and statistics. 

The foundation work was due to BELLMAN[2], who introduced the dynamic 

programming approach to solve sequential decision problems modeled by 

F O M D P s , or simply M D P s in the context where complete observability is 

assumed. Since we have introduced the constructs of P O M D P s in Chapter 

2, here we present F O M D P s as specialized models of P O M D P s . 

3.3.1 Representation 

A F O M D P problem can be formulated as: 
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Given a world model ( S, A,T, R ) compute the policy function 

IT, which depends on the value function V implicitly. 

where 

S :: finite set of states 

A :: finite set of actions 

T :: transition function 

R :: reward function 

V :: value function (on states) 

n :: policy function (on states) 

Since we assume complete observability, i.e., the current state can be deter

mined with certainty, we have a more simplified model with F O M D P s . The 

value function and policy function required now is defined on a finite set of 

states, as opposed to the infinite set of belief states with P O M D P s . 

Assume the component functions are represented by vectors and matrices 

explicitly. Specifically, T is represented by \A\ matrices of size x \S\, in 

which each element specifies the transition probability of taking action a € A 

in state i 6 <S and resulted in state j G S, that is T(i,a,j). R is simply a 

|»S|-vector of real numbers specifying immediate rewards. V is an |<S|-vector 

of real numbers specifying maximum total expected reward over a defined 

horizon, finite or infinite. IT is a |5|-vectors of indices identifying the decided 
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actions for each state i 6 S. 

3.3.2 Computation 

With the explicit representation, there are two main streams of approaches 

to solving F O M D P s , namely Value Iteration and Policy Iteration. We out

line the basic algorithms for the infinite horizon case with discounting in 

the following subsections. Corresponding methods for solving finite horizon 

F O M D P s follows the same structure. 

Value Iteration 

Value Iteration is a direct application of the following equation: 

' R(i) < k = 0 

R(i) + 5 max { £ T(i,a,j) Vk~l{j) } < k > 0 

(3.4) 

where 0 < 8 < 1 is the discount factor forcing the value function to converge. 

Algori thm 3.1 Value Iteration 

1. Initialize k = 0 and Vk = R. 

2. Iterate on k until Vk ~ Vk~l (Apply Equation 3.4)-

3. Return V* = Vk. 
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Commonly used stopping criteria for comparing Vk with Vk~l includes root 

mean square(rms) error and span difference.4 Once we obtain the optimal 

value function V*, we can construct the corresponding optimal policy by 

IT(i) = argmax { £ T(i,a,j) V*(j) } (3.5) 
a 

J 

Policy Iteration 

Under the F O M D P model, if the optimal policy function is the only final 

result that we want to obtain, we may take a slightly different view on the 

value function. Instead of using the value function as a measure of maximum 

total expected rewards, we can define the value function as a measure of 

total expected reward given a particular policy. Given a policy II, the value 

function with respect to II can be obtained by solving the linear system 

Vn(i) = R(i) + 5 £ T(i,a,j)Vu(j) (3.6) 
j 

directly. Or we can apply successive approximation similar to Value Iteration: 

f R(i) < k = 0 

R(i) + 5 £ T(i, n(i),j) v i? - 1 ^)} < k > 0 

(3.7) 

Vn

fc(») = 

until Vk ~ Vk~l. 

Algorithm 3.2 Policy Iteration 
4 Given vector v, span(w) = maxt>[i] —.minu[i]. 
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1. Initialize n = 0 and IP with Un(i) = argmaxa { Ylj T(i,a,j) R(j) }. 

2. Iterate on n 

(a) Determine Vn« (Apply Equation 3.6 or 3.7). 

(b) Improve II if3(i € S) such that 

maxa { Zj T{i,a,j) Vh»0') } > E ; rP(;),j) Vh»0')-

5. i2e*«rn H * = nn. 

Usually, Policy Iteration converges faster than Value Iteration because a 

policy function update in Policy Iteration is usually compared to a series 

of value function updates in Value Iteration. 

3.4 Online Search 

Integrating the ideas dealing with the infinite belief states and infinite horizon 

problems, we employ an online search approach to approximate P O M D P s 

with long finite horizon or infinite horizon. 

As opposed to dynamic programming and linear programming approach, 

in which the value function or the policy function are usually fully precom-

puted and installed in the decision agent, an online search approach would 

search for the best action with respect to the current belief state only. When 

discounting, focusing and pruning are employed, the search space becomes fi

nite and reduced. Given the current belief state, we are searching through the 
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projected decision search tree of the reachable belief states with a bounded 

depth, at which the future values are estimated by heuristics. While discount

ing future rewards ensures that the value function will converge, pruning can 

be applied at each level to reduce the search space dynamically. We will de

velop a heuristic online search algorithm to implement this idea in Chapter 

5, where approximation methods building on the structured representation 

and the online search approach are discussed. The structure representation 

is presented in the next chapter in detail. 

3.5 Related Work 

The focus of this chapter is to introduce a heuristic online search approach 

to approximate the optimal value function of P O M D P s with long finite 

horizon or infinite horizon. In particular, we apply F O M D P s as a heuristic, 

which is inspired by recent research in integrating Control Theory and A l 

techniques for Decision-Theoretic Planning based on F O M D P s . F O M D P s 

are more often referred as M D P s in the literature, where fully observability 

is assumed. 

The idea of applying online search using heuristic function for pruning 

was developed by DEARDEN-BOUTILIER[17], in which M D P s with large 

state space was the subject. A recent comparison and integration of A l 

techniques and Control Theory on real-time planning and learning with dy

namic programming are discussed in BARTO-BRADTKE-SINGH[1]. DEAN-
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WELLMAN[16] gives much of the background of bringing Control Theory to 

A l planning. For the fundamental results of M D P s with dynamic program

ming, PUTERMAN'S textbook[28] on M D P s has a comprehensive consolida

tion while RUSSELL-NORVIG[29, ch.17] provides an excellent intuitive intro

duction. Pioneer works in the field have been due to BELLMAN[2] and BERT-

SEKAS[3]. DEAN ET AL[14, 15] contributes the work on time-critical issues 

in computing M D P s with a decision deadline. Further interesting inspira

tional works include DEAN-BODDY'S Anytime Algorithms[13] and RUSSELL-

WEFALD'S Decision-Theoretic Metareasoning[30]. 

3.6 Summary 

By drawing insights from our seeing experience, P O M D P s can be inter

preted visually. The vision metaphors not only help us to visualize the de

cision processes, but also guides us to an intuitive approach to simplify the 

infinite belief states and infinite horizon problems. 

Firstly, we restrict our attention to a bounded scope to reduce the contin

uously infinite belief state space into a discrete search space consisting of all 

the reachable belief states with respect to the current belief state. Secondly, 

we cut off countably infinite number of distant belief states beyond a finite 

depth of the decision search tree by applying heuristic value estimation based 

on F O M D P s . Finally, we adopt an online search approach with best-first 

search strategy and dynamic pruning of the seemingly unproductive branches 
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in the decision search tree to compute the best action for the current belief 

state. 



4 

Structure 

In Search of Structured Abstraction for POMDPs 

In a sense ... 

To know is to believe. 

To understand is to structure. 

In the usual linear representation of P O M D P s , using vectors and matri

ces, the state space is an enumeration of unrelated states. It captures no 

structure information of the domain. Even if the search-based approach is 

adopted, there are way too many states in the search space. Only domains 

with small number of states and horizon seem to be tractable, preventing 

the use of P O M D P methods for many practical applications. However, sys

tem states are naturally identified by a number of variables, whose values 

45 
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reflect the preconditons and postconditions of the executed actions dynami

cally. For states sharing the same causal factors under the same action, they 

would share similar outcomes. From this intuition, we would like to design a 

structured representation for P O M D P s , not only for natural and compact 

specification, but also for computational leverage. The idea starts with tran

scending from the state level to a higher abstraction level, at which states 

are generalized into contexts. 

4.1 Structured Representation 

In an unstructured state space, a state is identified by an arbitrarily assigned 

index. But more meaningfully, a state can be identified by a set of variable 

assignments. Each assignment represents a domain feature possessed by 

the state and describes one aspect of a possible situation. To specify the 

preconditions and postconditions of the action to be performed, we need 

to identify the assignments to the involved variables only while leaving the 

irrelevant variables unspecified. This action representation, where irrelevant 

variables are not mentioned, is typically found in STRIPS[19][20]. 

4.1.1 Contexts as Abstract States 

While a state is a complete set of variable assignments, a context is a subset of 

that. It serves as a more general term to describe system dynamics. Instead 

of prescribing each state transition explicitly, it is more concise to say that 

an action taken in one context would result in another context. 
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In a sense, a context is an abstract state, or an aggregation of states shar

ing common variable assignments. In the special case of having all the domain 

variables assigned, the context specifies a state. On the other extreme, a null 

context with all the variables unbound refers to all states. 

By using context as a generalized unit, we can compactly specify the 

P O M D P components, namely the belief state, the reward function, the tran

sition function and the observation function. In particular, we can structure 

them as decision trees. For simplicity, we assume that the domain problem 

is specified by propositions, i.e., boolean variables. This allows us to focus 

on binary trees. 

Definition 4.1 Let X be a set of boolean variables with possible values in 

{true, false}, or { 0 , 1 } . A context of domain X is a truth assignment to a 

subset o /X. [A state is a truth assignment to all the variables in X. / g 

Notation 4.1 Let X be a propositional domain and X e X denotes a 

generic variable in X. We write X+ for X assigned true and X~ for X 

assigned false.1 Let c be a context of X. We write c f= X+, read as c sub

sumes X+, and c (= X~, read as c subsumes X~, for X is assigned true and 

X is assigned false in c respectively. To refer to assignment inclusion, we 

write c + X+ for cU{X+} and c + X~ for cU{X~}, whereasc — X refers to 

the exclusion of the assignment to X regardless of its truth value. The size 
1 Traditionally, the truth assignment to a boolean variable X is written as X and ->X, 

or X and X. The intention of using X+ and X~ here is to distinguish the variable X and 
the true-assignment to X. 
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of c, or the number of variables being assigned in c, is referred by \c\, whereas 

the size o/X is referred by |X|. g 

Example 4.1 Suppose X = {A, B,C} and c = {A+,B~}, or A+B~ for 

short. Then c \= A+ and c f= B~ with |c| = 2. The assignment inclusion, 

c + C+ gives A+B~C+, while the assignment exclusion c — B = {A+}. g 

4.1.2 Binary Decision Trees 

All the P O M D P components are functions of states in various form. Binary 

Decision Trees (BDTs) are structured representations of boolean functions. 

The marriage of the two is that a B D T can be used to partition the state 

space into complementary clusters of states, in each of which the member 

states share a common context. 

For our purpose, each non-leaf node in a B D T is associated with a boolean 

variable and each branch from the node represents a possible assignment. We 

adopt a convention that true branches on the left and false branches on the 

right. As a path from the root to a leaf represents a particular context, 

various kinds of information are installed at the leaf nodes for representing 

different P O M D P components. 

Definition 4.2 A B D T , Binary Decision Tree,2 is either a leaf node labeled 

with an associated value, or an internal node labeled by a boolean variable X 
2 B D T has a more generic notion in Machine Learning. Here we define and refer to a 

special instance of B D T as a structured representation for P O M D P s . 
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along with a left subtree denoting X+ and a right subtree denoting X~. Both 

of the left and right subtrees are BDTs . In a B D T , a node with no subtree 

is a leal while the only node that is not a subtree of others is the root. The 

non-leaf nodes, including the root, are called internal nodes. g 

Notation 4.2 Let b be a B D T . When b is a leaf, we write value(b) for the 

value associated to the single leaf tree b. When b is rooted by an internal 

node, the variable labeling b is referred by X\>. We write b^ and 6# for the 

left subtree and right subtree ofb respectively. The parent node ofb is referred 

by bP. a 

Definition 4.3 Let n be a node in a B D T b. The prefix context of n, 

denoted by prefix(n), is the context corresponding to the truth assignment 

following the path from the root to n. pj 

Definition 4.4 Let n be a node in a B D T b. The depth of n inb is defined 

recursively as: 

where np is the parent node of n. When n is a most distant leaf to the root, 

depth(n) is the depth of the B D T b. • 

Proposition 4.1 Let n be a node in a B D T b and cn be the prefix context 

0 
depth(np) + 1 

if b is the root 
otherwise 

of n. Then depth(n) = c , 
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Definition 4.5 Let n be a node in a B D T b for a propositional domain 

X. The cardinality of n, denoted by card(n), is the number of states that 

are consistent with prefix(n), the prefix context of n. We call a state falling 

under n a member state of n. g 

Proposition 4.2 Let n be a node in a B D T b for a propositional domain 

X and c^ be the prefix context of n. Then cardin) = 2l xl _lC nL B 

Definition 4.6 The size of a B D T b is defined recursively as: 

where br, and bR are the left and right subtrees of b respectively. That is the 

number of leaf nodes in b. g 

Proposition 4.3 Let b be a B D T and d be the depth of b. Then the max

imum total number of nodes in b is 2d+1 — 1, and the maximum number of 

leaf nodes, \b\, is 2d. | 

Proposition 4.4 Let d be the depth and I be the number of leaf nodes in a 

B D T b. Then the maximum total number of nodes in b is 21 — 1. g 

Example 4.2 Figure 4-1 illustrates the diagramatic representation and the 

basic properties of a BDT for the propositional domain X = {A, B,C}. g 

if b is a leaf 
otherwise 
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leaf node 

• abstract state (context) 

• concrete state 

Figure 4.1: Diagramatic Representation of Binary Decision Trees (BDTs) 
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[2 states] .24 

.05 [4 states] 

2(.24) + 2(.16) + 4(.05) = 1.0 

Figure 4.2: A b-Tree for X = {A, B, C} 

4.1.3 Belief State as b-Tree 

Recall that a belief state is a discrete probability distribution over states. To 

represent a belief state, probabilities are installed at the leaf nodes of a B D T . 

In particular, we store the per state probability at each leaf node. That is the 

probability for a member state of the leaf being the actual state. Such a B D T 

represents a set of of mutually exclusive and collectively exhaustive contexts 

covering the whole state space. We call this B D T a b-Tree. Formally, given 

a b-Tree, it determines a belief state as follows: P[s] = I, where I labels the 

unique leaf node whose prefix context subsumes state s. 

Example 4.3 Figure 4-2 shows an example b-Tree for X = {A, B,C}. • 
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3.0 

-2.0 

Figure 4.3: An example R-Tree for X = {A, B, C} 

4.1.4 Reward Function as R-Tree 

To specify the reward function, installed at each leaf node of a B D T is the 

immediate reward obtained for being in a member state of the leaf. We call 

this an R-Tree. 

Example 4.4 Figure 4-3 gives an specification for the reward function of the 

domain X = {A,B,C} with an R-Tree. It categorizes all states into three 

different desirabilities: the states with A+B+ get 3 regardless of the value of 

C; the states with A~B+ get 1 regardless of the value of C; and the states 

with B~ get —2 regardless of the values of A and C. g 



4. STRUCTURE 54 

4.1.5 Transition Function as T-Trees 

To specify the transition function, we use one 2-stage Temporal Bayesian 

Network (2TBN) for each action. A 2 T B N is a Bayesian Network with 

two sets of variables, one for the pre-action stage, 'and the other for the 

post-action stage. The two sets of variables are called precondition variables 

and postcondition variables as they are used to specify the preconditions and 

postconditions respectively. We assume that links are only viable from a 

precondition variable to a postcondition variable, which indicate conditional 

dependence.3 Associated with each postcondition variable, there is one Con

ditional Probability Table (CPT), By using a B D T , which we call T-Tree, to 

represent each of the CPTs, we are able to capture additional dependence 

or independence based on contexts, which is referred as context-specific in

dependence^), or contextual independence. 

The semantics of a T-Tree for the postcondition variable X G X given 

action a G A is as follows. Each internal node represents a precondition 

variable that influences X under action a. Again, left branches indicate t r u e -

assignments and right branches signify false-assignments. The probability 

installed at each leaf node specifies the probability that X becomes or remains 

t r u e when the action is taken in the prefix context of the leaf. For a full 

specification of the transition function, we then require \A\ x | X | T-Trees. 

The size of each T-Tree is bounded by 2fc, where k is the number of parents, 
3 A more sophisticated formulation may allow arcs between two postcondition variables. 
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or conditions, that influence variable X. 

Notation 4.3 We refer to a T-Tree for variable I e X given action a G A 

as T-Tree[X\a] and the probability installed at the leaf node I as P[X+\ci,a], 

where Ci is the prefix context of I, i.e., Ci = prefix(l). g 

Example 4.5 Figure 4-4 shows the evolution of T-Tree[B \ a] for the domain 

X = {A,B,C} from the state-based representation through the traditional 

C P T to a B D T specification with the 2TBN framework. With T-Tree[B | a], 

we can interpret the effect on B under action a structurally. When B was true 

before the action has taken, it remains true under the action with certainty. 

When B was false, it would become true with probability 0.9 or remain false 

with probability 0.1, provided A was true. When both A and B were false, B 

remains false with certainty. This structured interpretation of the transition 

model is the kind of domain structure that we would like to exploit in our 

B D T representation. And we believe that it occurs naturally in many real-

world domains. g 

4.1.6 Observation Function as O-Trees 

We assume that the observation to be obtained depends on the preconditions 

and the action only. For example, pushing a door (action) to see (observation) 

if it is locked (precondition). Then we can add one observation variable O to 

the set of postcondition variables in each 2TBN that we use to specify the 

transition function. However, we do not restrict O to be boolean. For each 
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S t a t e - b a s e d Spec i f i ca t ion for B 

5 A B C P[B\s, a] 

0 T T T 1.0 
1 T T F 1.0 
2 T F T 0.9 
3 T F F 0.9 
4 F T T 1.0 
5 F T F 1.0 
6 F F T 0.0 
7 F F F 0.0 

8 ent r ies 

Figure 4.4: T-Tree[B\a] for X = {A, B, C} in Evolution 
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action, we introduce one B D T , which we call O-Tree, in the 2TBN. That 

means we require \A\ O-Trees to specify the observation function. This time 

each leaf node does not contain a single value, but a vector representing the 

probability distribution over the set of observations O. 

Notation 4.4 We refer to a O-Tree for an action a £ A as 0-Tree[a]. 

When only a particular observation o £ O is concerned, we write 0-Tree[o\a] 

to denote the B D T conforming to 0-Tree[aJ with only the probabilities for 

observing o extracted. pj 

Example 4.6 Figure 4-5 depicts an 0-Tree[aJ for the domain X from the 

previous example. From 0-Tree[aJ, we can tell that when B was true, we 

would observe o = O[0] with probability 0.8 and o = 0[1] with probability 

0.2 under action a. When B was false, we would observe O[0] and 0[1] with 

probability 0.1 and 0.9 respectively. pg 

4.2 Structured Computation 

Recall that the value of being in a belief state with ft-horizon was recursively 

defined in Equation 2.2 as: 

f R(b) < k = 0 

R(b) + max { £ P[o \ b, a] Vk-\B[b, a, o]) } < k > 0 
o 

In our structured representation, this implies that the computation of Vh(b) 

requires computing R(b), P[o\b,a] and B[b, a,o] with BDTs structurally. 

Vk{b) = 
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4.2.1 Computing R(b) 

When the belief state and the reward function are represented by vectors, 

the expected immediate reward R(b) is the dot product of the two vectors. 

For computing R(b) with a b-Tree and the R-Tree for a domain, we develop 

an algorithm to perform the equivalent dot product of two BDTs. Given a 

b-Tree b and the R-Tree R, let us consider computing DotProduct(6, R) 

specifically. 

Graft-Prune-Evaluate 

To each leaf I in b, we graft one copy of the R-Tree and multiply all the 

reward values in the R-Tree copy by value(l), that is the probability installed 

at I. For there may be inconsistent or redundant branches resulted in the 

product tree, we then prune them all to keep the tree consistent and compact. 

The resulting tree can be compared to an expression tree in which each 

internal node is an average operation. Now we evaluate the tree and obtain 

the expected immediate reward per state.4 To get R(b), we multiply it by 

2 ' x l , that is the number of states in the domain. Figure 4.6 illustrates the 

process pictorially. Note that the whole subtree is removed along with an 

inconsistent branch while the subtree needs to be reconnected to the point of 

dissection when a redundant branch is pruned. This Graft-Prune-Evaluate 

strategy provides us an intuitive understanding of the operations to define 

the following recursive implementation of the algorithm. 
4 This is due to the per state representation of the b-Tree. 



4. STRUCTURE 60 

G i v e n X ={A,B,C} 

.24 .16 

b-Tree b R-Tree R 
-2 

G r a f t 

. . . A / ^ V A, 

Z \ ,24(-2) y \ -]6(-2) -05<-2) 

.24(3) .24(1) .16(3) .16(1) .05(3) .05(1) 

P r u n e 

^ inconsistent branch 

f redundant branch 

A f \ A \ A 

/ \ -24<-2> / \ G ^ y \ ^ 2 j ) 
( -24(3) ) .24(7) .76fj; .76(7) .05(3) ( .05(1) ) 

E v a l u a t e 

7.20 +(-.025)7/2 = .0<S75 W = .0875(8) 
= .7 

1.24(3) + .16(-2)]/2 = .20 S *\[.05(1) + .05(-2)]/2 = -.025 

.24(3) .16(-2) .05(1) .05(-2) 

Figure 4.6: The Graft-Prune-Evaluate process for computing R(b) 
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Concurrent Traversal 

While the Graft-Prune-Evaluate process seems to be an intuitive and direct 

approach to compute the dot product of two BDTs , it requires three kinds 

of tree traversals — one for traversing b to visit all the leaf nodes, one for 

traversing the grafted R-Tree copies for pruning inconsistent and redundant 

branches, and one for traversing the resulting tree for evaluating the expected 

reward per state. However, the three kinds of traversals need not be done 

separately in three phases. We can avoid revisiting the tree nodes more 

than necessary by traversing the two trees concurrently with recursion. We 

implement this idea in the following algorithm. 

Algorithm 

The complete algorithm, DotProduct that implements concurrent traversal 

is specified in Figure 4.7 along with the notations summarized in Figure 4.8. 

For tree and recursion are a perfect match, the algorithm looks surprisingly 

simple when defined recursively. 

In the base case, where we reach a leaf node of the given b-Tree, we 

take the probability value installed at the leaf, multiply it by the number 

of member states (that is, the cardinality of the leaf node), and the average 

reward determined by another recursive procedure Average. The result is 

the product of the probability and the reward with respect to the prefix 

context of the leaf. Al l Average does is to collect the appropriate rewards 
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subsumed by the given context and average them recursively.5 

In the case of Xf, = XR, we prune the inconsistent right branch along 

with its subtree in R and the redundant left branch for the left subtree of b 

by invoking DotProduct(&£,, RL)- Likewise, DotProduct(6^, RR) prunes 

the inconsistent left branch and the redundant right branch for bR. 

When prefix (b) (= X^, we discover that the right branch is inconsis

tent and the left branch is redundant for both bz and bR. Similarly, when 

prefix (b) \= XR, the left branch becomes inconsistent and the right branch 

becomes redundant for both &L and 6R. 

When no inconsistency or redundancy is found, we take the whole R-Tree 

for evaluating both bj, and bR in the next recursive calls. 

Note that the way we handle the per state notion of the B D T s is slightly 

different from the one in the Graft-Prune-Evaluate process. While in the 

Graft-Prune-Evaluate method we compute the dot product per state without 

worrying about determining the cardinality at each of the leaf nodes, the 

algorithm DotProduct determine the cardinality right at each leaf node 

without bothering to average the branch values at each internal node of 

the b-Tree and multiply the result by 2l xL Besides this, there should be 

no significant difference between the two interpretations of the B D T dot 

product. 

Figure 4.9 shows some snapshots of DotProduct with the b-Tree and 
5 Note that Average assumes c is a context in which all states have the same probability. 
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R-Tree given in Figure 4.6. 

Analysis 

Let db and dR be the maximum depths of. the given b-Tree b and R-Tree 

R respectively. More intuitively, db and dR denote the numbers of distinct 

variables appear in the longest paths from the root to the maximum depths 

of b and R respectively. By Proposition 4.3, we have |b| = 2db and \R\ - 2dR. 

In the worst case, when b and R share no common variables, the size of 

the product tree of b and R is 0(2db+dR). However, it will almost always be 

the case that they would share some common variables in a natural domain. 

Let the number of common variables be dc. Then the size of the product 

tree becomes 0(2db+dR~dc), with 0{2dc) inconsistent and redundant branches 

pruned. 

Proposition 4.5 Let L and R be two B D T s and d^, and du be their depths 

respectively. Suppose there are dc common variables occuring in L and R. 

Then the complexity for performing a concurrent traversal on L with R is 

0(2dL+dR~d°} n 

When comparing with the complexity of the counterpart dot product with 

vectors, which is of 0(2^), we would require db + dR — dc < |X| to pay off 

the B D T representation. However, in domains with rich structural regular

ities, we would get a better chance to have <4 <C |X| and dR <C |X|, and 

a signifcant dc. The depths db and dR essentially capture the description 
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Algorithm • 

A:2 DotProduct (6, R) 
:: Evaluate the dot product of B D T b and B D T R. 

if IsLeaf(b) then 
;; evaluate the expected reward with respect to b 
return card(b) x value(b) x Average(i?, prefix(b)) 

else if (XB = XR) then 
;; prune the inconsistent/redundant branches 
return DotProduct(bL, RL) + DotProduct(bR, RR) 

else if (prefix(b) \= XR) then 
;; prune the inconsistent right branch 
return DotProduct(6, RL) 

else if (prefix(b) \= XR) then 
;; prune the inconsistent left branch 
return DotProduct (b, RR) 

else 
;; no inconsistent/redundant branch to prune 
return DotProduct(&t,, R) + DotProduct(bR, R) 

A . l Average(R, c) 
:: Evaluate the average value w.r.t. context c of B D T R. 

if IsLeaf(R) then 
return value(R) 

else if (c |= XR) then 
return Average(RL, c) 

else if (c |= XR) then 
return Average(RR, c) 

else 
return [Averagec) + Average(i?R, c)] / 2 

Figure 4.7: Algorithm DotProduct 
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Notation • 
assignment X+ variable X is assigned true. 

X~ variable X is assigned false. 

context c (= X+ context c subsumes assignment X+. 
c\= X~ context c subsumes assignment X~. 

B D T IsLeaf(b) true if B D T b is a leaf. 
value(b) value associated to B D T b, where b is a leaf. 
Xb variable associated to the root of B D T b. 
bL left subtree of B D T b. 
bR right subtree of B D T b. 
card(b) cardinality of B D T b. 
prefix(b) prefix context of B D T b. 

Figure 4.8: Notations in Algorithm DotProduct 

lengths for representing the belief state and the reward function with the 

B D T representation respectively. The smaller the values for both rib and dR, 

the more the conditional independence can be exploited. In addition, there 

are many cases that we do not need the full depths for every leaf node in b 

and R, where contextual independence is another kind of structural property 

of the domain that we can exploit. 

In terms of the sizes of the b-tree and R-Tree, or the numbers of leaf 

nodes, the best case is that one tree subsumes the other, in which we have 

0(max{ \R\ }) for DotProduct(b,R), where |6| and \R\ are the sizes 

of the b-Tree and R-Tree respectively. The worst case however is 0(\b\ • 

\R\) when the b-tree and R-Tree share no Common context. In general, the 
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Figure 4.9: The Concurrent Traversal process for computing R(b) 
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complexity is domain dependent. 

Proposition 4.6 Let L and R be two BDTs and \L\, and \R\ be their 

number of leaf nodes respectively. Then the complexity 0(Traverse(L, R)) 

for performing a concurrent traversal on L with R is (9(max{ \L\, \R\ }) < 

0{Traverse(L,R)) < 0(\L\ • \R\). u 

4.2.2 Computing P[o \ b, a] 

From Equation 2.4, 

P[o\b,a] = YI 6(») 0{i,a,o) 

i 

is the dot product of the belief state vector and the vector obtained by se

lecting action a and observation o in the observation function. The method 

for computing P[o\b, a] is essentially the same as the one used for com

puting R(b). In particular, P[o \ b, a] = DotProduct(6, 0-Tree[o|a]), where 

O-Tree [o | a] denotes the B D T that conforms to O-Tree [a] with the probabili

ties for observation o at its leaf nodes selected. The complexity for computing 

P[o | b, a] hence follows the complexity of the Algorithm DotProduct given 

previously. 

4.2.3 Computing B[6,a,o] 

Given the current belief state 6, the performed action a and the obtained 

observation o, B[b,a,o] updates the belief state according to the predefined 
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transition function and observation function, which are specified by the T-

Trees and O-Trees in our structured representation. As oppose to the lin

ear representation, which computes B[b,a,o] by applying Bayes' Rule in a 

statewise fashion, here we develop the counterpart algorithm that updates 

the b-Tree structurally. 

Precomputing BT-Trees 

While each of the T-Trees specifies the effect on each variable under a par

ticular action, we may merge all the |X| T-Trees to summarize the overall 

effect. We call this summary tree a Belief Transition Tree, or BT-Tree. We 

write BT-Tree[a] to denote a BT-Tree for action a e A. 

To generate a compact BT-Tree, a general domain property that we can 

exploit is persistence. A variable is persistent under action a if its value 

remains the same under a with certainty. In a T-Tree for variable X, persis

tence is observed by having the probability 1.0 under the true-branch from a 

internal node labeled X, and the probability 0.0 under the false-branch. As 

persistence occurs quite often, it would be a powerful domain property that 

we would like to exploit in our structured belief updates. 

Definition 4.7 Variable X is persistent under action a if for all leaf nodes I 

in T-Tree[X\a], {prefix{l) (= X+) (value(l) = 1.0) and [prefix(l) (= X~) => 

(value(l) = 0.0), where value(l) is the probability labeling I. g 

To capture persistence, a BT-Tree can be implemented as a B D T with 
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each of its leaf nodes installed a set of (X,p) pairs, where X is a nonpersistent 

variable with probability p to be assigned true in the postcondition. 

Notation 4.5 Let I be a leaf in a BT-Tree. We refer to the set of (X, p) pairs 

installed at I as effect(l). We write en for effect(l) = 0. The inclusion and 

exclusion of a (X,p) pair are denoted by e + (X,p) and e— (X,p) respectively, 

where e is a generic set of (X, p) pairs. g 

In essence, the BT-Tree represents effects in a manner somewhere in be

tween a conditional STRIPS representation and the Bayes Net representa

tion. As in STRIPS, the effects of the action under any condition are speci

fied together rather than distributed across different nodes as in a Bayes Net. 

But unlike STRIPS, BT-Tree still exploit independence of action effects by 

specifying the probability of individual effects separately. The idea is to con

vert the 2 T B N for each action into a BT-Tree which will be easier to use in 

the structural belief update process. 

To obtain the BT-Tree for a particular action, we initialize a BT-Tree as 

a leaf node labeled with e0 (the empty effect) and merge it with the T-Trees 

incrementally. Figure 4.11 gives the algorithm for merging a T-Tree with 

the evolving BT-Tree, which closely follows the concurrent traversal strategy 

used in DotProduct. Figure 4.10 summarizes the notations and Figure 4.12 

shows an example BT-Tree generated from its 2 T B N specification of T-

Trees. 
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Notation • 
assignment X+ variable X is assigned t r u e . 

X~ variable X is assigned f a l s e . 

context c j= X+ context c subsumes assignment X+. 
c j= X~ context c subsumes assignment X~. 

B D T IsLeafiT) t r u e if B D T T is a leaf. 
XT variable at the root of B D T T. 
TL left subtree of B D T T. 
TR right subtree of B D T T. 
prefix(T) prefix context of B D T T. 
leaf(v) leaf node with value v. 
node(X, L, R) internal node labeled X 

with left subtree L and right subtree R. 

T-Tree prob(Tx) probability at single leaf T-Tree Tx. 
persistent(c, X,p) t r u e if c |= X+ and p = 1.0, 

or c (= X~ and p = 0.0, 
where c is the prefix context 
of a leaf node in the T-Tree 
for variable X, 
and p is the probability 
installed at the leaf. 

BT-Tree eo empty set of {X,p) pairs. 
effect(T*) set of (X,p) pairs 

at a single leaf BT-Tree T*. 

Figure 4.10: Notations in Algorithm Merge 
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Algorithm • 

A.3 Merge(T*, Tx) 
:: Merge T-Tree Tx with the (evolving) BT-Tree T*. 

if IsLeaf(T*) then 
return SubMerge(pre/i2:(T*), effect(T*),Tx) 

else if (XT* = XTx) then 
return node(XT*, Merge(T£,T£), Merge(T£,T$)) 

else if (prefix(T*) (= X+ x ) then 
return Merge(T*,Tf) 

else if (prefix(T*) (= X ~ x ) then 
return Merge(T*,T£) 

else 
return node(XT., Merge(T£,Tx), Merge(TR,Tx)) 

A.3 

SubMerge(c,e,Tx) 
:: Generate the subtree w.r.t. context c, effect e and T-Tree Tx. 

HIsLeaf(Tx) then 
if persistent(prefix(Tx), X, prob(Tx)) then 

return leaf(e) 
else 

return leaf(e+ (X, prob(Tx))) 
else if (c (= X+ x ) then 

return SubMerge(c, e, T*) 
else if (c (= X ^ x ) then 

return SubMerge(c, e, Tg) 
else if (SubMerge(c,e,Tf) = SubMerge(c,e,T^)) then 

return SubMerge(c, e, T*) 
else 

return node(XTx, SubMerge(c, e,Tx), SubMerge(c, e, Tjf)) 

Figure 4.11: Algorithm Merge 
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Figure 4.12: An example BT-Tree generated from the T-Trees 



4. STRUCTURE 73 

Updating b-Trees 

Let T* be the precomputed BT-Tree for action a, O be 0-Tree[o|a], and b 

be the current b-Tree. To update b with T* and O, we perform a product 

operation on b and O followed by a concurrent traversal on T* with the 

product tree to generate the updated b-Tree b'. 

The tree product, with a spirit much like the cross product, of b and 

O essentially captures the updated belief state based on the observation 

function and the obtained observation without considering the transition 

model.6 This is because the observation is a function of the original state. 

Let the product tree, or BO-Tree, be b x O. The algorithm for obtaining 

bxO from b and O is given in in Algorithm Product (Figure 4.13). Again, it 

employs the concurrent traversal strategy, but without the backup evaluation 

process. 

For simplicity, we use 0-Tree[o|a], with single value leaf nodes, in our 

algorithm description to refer to the probabilities relevant to observation o 

in 0-Tree[a], which has a probability distribution at each of its leaf nodes in 

general. Note that o G O is not restricted to boolean observations. 

Given the BT-Tree T* and the BO-Tree b x O, we can generate the up

dated b-tree b' by applying yet another concurrent traversal on bx O with T*. 

The forward process of the recursion generates partial trees that correspond 

to the possible postconditions with their probabilities, which is equivalent 
6 When the observation function is defined on the action and the resulting state, this 

tree product will be performed on b' and O instead. 
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Algorithm • 

A.6 Product(6, O) 
:: Generate the product tree of B D T b and B D T O. 

if IsLeaf(b) then 
return SubProduct(pre/w;(&), prob(b), O) 

else if (Xb = Xo) then 
return node(Xb, Product^, OL), Product(6#, OR)) 

else if (prefix(b) \= XQ) then 
return Product(b, OL) 

else if (prefix(b) f= XQ) then 
return Product (b, OR) 

else 
return node(Xb, Product^, O), Product(&#, 0) 

SubProduct(c, p, O) 
:: Generate from the O-Tree 0 the subtree w.r.t. context c 
:: with each leaf multiplied by probability p. 

if IsLeaf(0) then 
return leaf(p x prob(0)) 

else if (c |= A ^ ) then 
return SubProduct(c, p, OL) 

else if (c (= A ^ ) then 
return SubProduct(c, p, OR) 

else 
return node(SubProduct(c, p, OL), SubProduct(c, p, OR)) 

Figure 4.13: Algorithm Product 
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to the term b(i) T(i,a,j) 0(i,a,o) in the statewise Bayes' Rule. The back

ward process merges all the partial trees to form a summation tree with each 

of its leaves abstracts the term VJi T(i,a,j) 0(i,a,o), representing the 

unnormalized updated belief state. Finally, b' is obtained by perfoming a 

normalization on this summation tree. See Figure 4.14, Algorithm Update, 

in which the procedure Sum, defined in Figure 4.15, performs a summa

tion of two partial trees. The procedure for normalizing a b-Tree is given in 

Appendix A.5. 

Figure 4.16 illustrates the update process. First, we take the b-Tree b (the 

current belief state) and 0-Tree[o|a] (the observation model for observation 

o under action a) from the upper left corner to generate the BO-Tree on 

the right by Algorithm Product. Then we combine the BO-Tree with the 

precomputed BT-Tree[a] to form the unnormalized b-Tree b' (the updated 

belief), using Algorithm Update. 

The dotted arrow lines trace the update process in part for the context 

A+B~, which captures the states A+B~C+ and A+B~C~. With repsect 

to A+B~, the leaf value is .16(.l) (0.16 from the b-Tree b and 0.1 from 

0-Tree[o|a]) in the BO-Tree, whereas the leaf value in the BT-Tree is the 

set {(A, 0.8), (B, 0.9)}, capturing the action effect. Considering this action 

effect with the leaf value with prefix context A+B~ in the BO-Tree, we 

obtain one of the partial trees specifying the possible postconditions, which 

is highlighted in the middle of the figure. The associated probability for each 
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leaf in the partial tree is computed by multiplying .16(.l) by the probabilities 

with respect to the prefix context of that leaf in {(A, 0.8), (.B,0.9)}, which 

implies {(A+, 0.8), (A~, 0.2), (B+, 0.9), (B~, 0.1)}. Summing, superimposing 

visually, all the four partial trees together produces the unnormalized b-Tree 

b'. Note that, since only the highlighted partial tree has a leaf with prefix 

context A+B~, the probability (.0013) for the leaf node with prefix context 

A+B~ in b' is solely contributed by the corresponding leaf, with probability 

.16(.l)(.8)(.l), in the highlighed partial tree. In general, it would be the sum 

of the probabilities associated with the same prefix context from multiple 

partial trees as in the other three leaf nodes. ^ 

Algorithm 

Given the transition function defined by a 2 T B N specification of T-Trees, 

the observation function defined by a collection of O-Trees, the current b-

Tree b, the performed action a, and the obtained observation o, the overall 

algorithm for updating b structurally is summarized as follows. 

Algorithm 4.1 Structured (Bayesian) Belief Update 

0. Precompute BT-Trees f Algorithm Merge,). 

1. Select BT-Tree[a] and 0-Tree[o\aJ. 

2. Compute BO-Tree b x O (Algorithm Product/ 

3. Generate the unnormalized updated b-Tree f Algorithm Update/ 
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Algorithm • 

A.8 U p d a t e d x 0, T*) 
:: Generate the updated b-Tree with BT-Tree T* and BO-Tree 0 x 6 . 

if IsLeaf(b x 0) then 
return SubUpdate(pre/u;(& x O), prob(b x 0), T*) 

else if (X(bxo) = XT*) then 
return Sum(Update((b x 0)L, Tl), Update((6 x 0)R T*R)) 

else if (prefix(b x 0) \= X^,,) then 
return Update((6 x 0)Ll T*) 

else if (prefix(b x 0) \= X^*) then 
return Update((6 x 0)R, T*) 

else 
return Sum(Update((6 x 0)L, T*), Update((& x 0)R T*)) 

SubUpdate(c , p, T*) 
:: Extract from the BT-Tree T* the partial tree w.r.t. context c 
:: and probability p. 

if IsLeaf(T*) then 
if IsEmpty(effect(T*)) then 

if IsEmpty(c) then 
return leaf(p) 

else 
choose a variable X £ c 
if X+ then 

return node(X, SubUpdate (c - X, p, T*) leaf (0.0)) 
else [ X- ] 

return node(X, leaf (0.0), SubUpdate(c— X,p, T*)) 
else 

extract an (X, q) £ effect(T*) 
return node(X, SubUpdate (c — X, pq, T*), 

SubUpdate (c - X, p(l - q), T*)) 
else if (c |= Xjt„) then 

return SubUpdate(c , p, T£ ) 
else if (c |= X^T) then 

return SubUpdate(c , p, TR) 
else 

return Sum(SubUpdate (c + XT*, p, T £ ) , SubUpdate (c + X T * , p, TR) 

Figure 4.14: Algorithm Update 
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Algorithm • 

A.7 S u m ( T \ T 2 ) 
:: Generate the summation Tree of the partial trees T 1 and T 2 . 

if IsLeafiT1) then 
return SubSum(pre^a;(T 1), prob(Tl), T2) 

else if (XTi = XT2) then 
return TreeUnion(X T i , Sum(TJ, Tf), Sum(TR,TR)) 

else if (prefix (T 1) |= X+2) then 
return S u m f T 1 , Tf) 

else if (prefix(Tl) \= XZ2) then 
return S u m f T 1 , T | ) 

else 
return TreeUnion(X T i , Sum(T2, T 2 ) , Sum(T^, T 2)) 

A.7 

SubSum(c, p, T) 
:: Generate the summation subtree w.r.t. partial subtree T, 
:: context c and probability p. 

\HsLeaf(T) then 
return leaf (p + prob(T)) 

else if (c |= X£) then 
return SubSum(c, p, T/j,) 

else if (c |= Xp) then 
return SubSum(c, p, TR) 

else 
return TreeUnion(Xx, SubSum(c, p, TL) SubSum(c, p, TR)) 

A.7 

TreeUnion(X, L, R) 
:: Return a union tree of BDTs L and R, 
:: using variable X for merging if L ^ R. 

if (L = R) then 
return L 

else 
return node(X, L, R) 

Figure 4.15: Algorithm Sum 
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b-Tree b A 

/ \ 
v 0.05 

0.24 0.76 

0-Tree[o\a] B 

0.8 0.1 

BO-Tree 

/ A 

.24(.8) \j6(.l.r .05{.8) .05(.l) 

.16(.1)(.8)(.9) O" 

.16(.1)(.8)(.J) ~a~ 

.16(.1)(.2)(.9) ^~ 

.16(.1)(.2)(.J) -a-

' (unnormalized) 

.1651 \0013J .0813 .0053 

\ 

Figure 4.16: Updating b-Tree structurally 
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4- Normalize the updated b-Tree. 

where Step 0 can be precomputed once for all execution sessions. g 

Analysis 

When the transition model is stationary, i.e., the same transition function 

applies to every decision stage, the \A\ BT-Trees can be precomputed from 

the \A\ x |X| T-Trees. With the persistent branches pruned, each BT-Tree 

is potentially more compact than the corresponding |X| T-Trees. 

While the BT-Trees can be precomputed off-line, the complexity for up

dating the b-Tree with the selected BT-Tree and O-Tree with respect to 

action a and observation o would be more crucial in our online approach. 

Since all the procedures developed for performing the structured belief state 

updates adopt the concurrent traversal strategy, which exploits the struc

tural properties of the domain, it would be more appropriate to evaluate its 

performance for each domain individually and experimentally. 

However, a rough estimate from Proposition 4.6 implies that the concur

rent tree traversal operations developed for computing B[b,a,o] are between 

0(max{ \L\, \R\ }) and 0( \L\ • \R\), where \L\ and \R\ are the numbers of 

leaves in the two trees involved in each operation. The sizes of the trees 

depends on how much structural regularity is available in the domain. The 

best case is when the contexts overlap completely and the worst case is when 

they share no variables. Naturally, those common contexts would occur and 

provide a great computational advantage. 
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4.2.4 Computing Vk(b) 

Armed with the algorithms for computing R(b), P[o\b,a] and B[b,a,o] 

structurally, Vk(b) can be computed recursively with Equation 2.2, repeated 

here: 

f R(b) < k = 0 

R(b) + max { £ P[o\b,a] Vk-\B[b,a,o)) } < k > 0 

for the finite horizon case. With infinite horizon, approximate Algorithm 5.4 

can be employed. We will focus on the finite case in this chapter and discuss 

approximation with the structured representation in the next chapter. 

4.2.5 Computing 11(6) 

To compute, or search for, the best action with respect to the current belief 

state b, n(6), we project from b to each of the \A\ x \0\ possible belief 

states b' in the next stage and compute its value with Vk(b'). The action 

corresponding to the one with the maximum value will be the optimal choice. 

Once an action is performed and the observation is obtained, the belief 

state will be updated to one of the \A\ x \0\ possible belief states we have 

foreseen. Since the belief states projected from this belief state b' have already 

been determined when Vk(b') was computed, the subsequent decision stage 

can be speeded up by caching the search tree of belief states rooted at b'. 

Then in the next decision stage, we do not need to generate the depth-A; 

search tree from scratch. Instead, we only need to project one step further 
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at the frontier of the cached search tree and back up the values from there 

to determine the best action. 

4.3 Experiments 

To test out the effectiveness of the structured representation, we have per

formed several experiments with a testbed domain. The main objective is 

to compare the compactness of the structured representation with the per

formance in traditional linear representation. The domain is designed with 

common structural properties in mind so that structural advantages can po

tentially be exploited. 

4.3.1 Testbed Domain 

Consider a simplified client-server scenario. There are two servers, A and 

B, serving a client C. Server A is remote to client C, but it has all the 

resources that may provide C s needs. B is a local server to C, who has 

fewer resources to satisfy C. However, after a service has been provided by 

A, resources would normally be cached in B so that B would has a better 

chance to be able to satisfy client C in the next request for service. Since B 

is local to C, it is more likely to deliver service promptly whenever it is still 

keeping the resources in its temporary cache. With this general picture in 

mind, we want to design a decision agent D, helping client C to make decision 

on requesting service from server A or server B from time to time. The task of 

agent D hence is to keep client C satisfied in the service with minimal remote 
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communication. With agent D, server A and server B becomes transparent 

to C. 

Essentially, this is a process-oriented planning problem that can be nicely 

modeled by P O M D P . With the structured representation, we formulate 

the problem as a P O M D P with 3 variables, 3 actions and 3 observations. 

Figure 4.17 specify this testbed domain schematically. 

4.3.2 Results 

The performance of the structured representation has been compared with 

the corresponding linear representation's test run. Two versions of comput

ing the value function with a fixed horizon are implemented in PROLOG. 

While both of them, especially the linear representation, are not optimally 

implemented, it would not be appropriate to compare the two representations 

having the same horizon directly. However, our interest is in seeing how the 

space and time complexities grow with a longer horizon in each case. For the 

purpose of our empirical studies, we initialize both systems with the same 

initial belief state and project it to various horizons. The number of proba

bility entries in the projected belief space are counted and the C P U time for 

the test runs are recorded. The results are summarized in Table 4.1. Note 

that the poor computation times for the linear representation is probably 

due to inefficient implementation as direct array representation of vectors is 

not available in PROLOG. 

The implication of the growth in sizes over the horizon is that for each 
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Server 

Agent 

Client 

Remote A B Local 

D 

C 

Action 

Observation 

Variables 

A :: true if Server A can meet Client Cs need. 
B :: true if Server B can meet Client Cs need. 
C :: true if Client C is satisfied. 

Actions 
a_A :: send request to Server A. 
a_B :: send request to Server B. 
a_C :: send reply to C. 

Observations 

o_A .: received reply from Server A. 
o_B :: received reply from Server B. 
o_C :: received request from Server C. 

Reward Function R 

Keep Client C served with minimal traffic. 

C 

2.0 3.0 1.0 4.0 

Action a A Action a B Action a_C 

AO „ 0. 

i.o c 0. 

1.0 0.5 

-0 
o_A 0.49 0.09 
o_B 0.01 0.01 
o_C 0.50 0.90 

o_A 0.10 0.10 
o_B 0.60 0.40 
o_C 0.30 0.50 

o_A 0.49 0.29\ 
o_B 0.01 0.01 
o C0.50 0.70\ 

Figure 4.17: Structured Specification for the Client-Server-Agent domain 



4. STRUCTURE 85 

k yk 
Linear Representation Structured Representation 

S/L k yk Size L CPU Time/s Size S CPU Time/s S/L 
0 -5.00 8 0.00 4 0.00 50 % 
1 -5.04 80 1.10 49 0.05 61 % 
2 -3.93 728 66.22 499 1.00 69 % 
3 -2.50 6560 6693.64 4828 60.70 74 % 
4 -0.92 59048 > 36000.00 45787 5031.50 78 % 

Table 4.1: Computing Vk: Linear vs Structured Representation 

belief update during the belief projection, the complexity depends on how 

many probability entries need to be multiplied during the updates and this 

depends on the number of belief states in the stage currently considered. 

More precisely, this growth is in 0((|A||O|) f c). In the structured represen

tation, the number of probability entries is the total number of leaf nodes 

in the projected belief space, which is locally reduced in each of the belief 

states. As we projected the belief further, the S/L column in Figure 4.1 

shows that the potential computational saving is decreasing while the hori

zon gets longer. This agrees with the intuition that belief becomes weakened 

and diversified as we attempt to project further into the future, where there 

are fewer structural properties that the b-Trees can capture. This motivates 

the research in approximation methods presented in the next chapter. 

Since both versions are implemented in PROLOG, in which numerical 

computation are not optimized, it would not be fair to compare the time 

across the table in Figure 4.1. However, the growth trends within their own 

columns indicate that structured representation does help in suppressing the 
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k Caching: CPU Time/s Tc No Caching: CPU Time/s Tnc I'c/Tnc 
0 0.00 0.00 100 % 
1 0.50 0.05 100 % 
2 0.72 1.00 72 % 
3 43.02 60.70 71 % 
4 3764.77 5031.50 75 % 

Table 4.2: Computing Vk: Caching vs No Caching 

exponential blow up over the horizon. This agrees with the growth in the 

size columns. 

We also repeated the test run with caching installed in the structured 

computation, the results are given in Figure 4.2. Even though the caching 

strategy is not necessary optimized in our PROLOG implementation, the sig

nificant savings reveal that projecting with a scope or window of belief states 

is much more efficient than projecting the current belief states from scratch 

in each decision stage. 

4.4 Related Work 

Tree-oriented structured representation in F O M D P s was introduced by BOUTILIER-

DEARDEN-GOLDSZMIDT[7] and BOUTILIER-DEAN-HANKS[4]. The first ex

tension to P O M D P s has been investigating by BOUTILIER-POOLE[5]. Ap

plying Bayesian Networks and exploiting conditional independence have been 

widely discussed in the Probabilistic Reasoning. Discussions on contextual 

independence, or context-specific independence, in Bayesian Networks can 
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be found in BOUTILIER-FRIEDMAN-GOLDSZMIDT-KOLLER[8]. BOUTILIER-

GOLDSZMIDT[9] examines persistence in Bayesian Networks in the Knowl

edge Representation context. Much of the spirit of the tree-oriented struc

tured belief updates introduced here is closely related to POOLE[26]. 

4.5 Summary 

When the domain is specified by propositions, a P O M D P can be nicely 

structured in terms of contexts and represented by Binary Decision Trees 

(BDT) uniformly. Structural properties, such as conditional independence, 

contextual independence and variable persistence, can then be exploited nat

urally. Based on the B D T representation, a set of BDT-oriented algorithms 

have been developed to compute R(b), P[o\b,a] and B[b,a,o] structurally. 

Vk(b) and 11(6) can then be computed on demand with the online search 

approach. Caching the search tree of projected belief states from the current 

decision stage provides speedup for the subsequent decision stage. 



5 

Approximation 

Approximating POMDPs with Structure and Heuristic 
Information 

In a sense ... 

To imagine is to abstract. 

To realize is to approximate. 

Even with the structured representation and online search approach, our 

intuition as well as the experimental results suggest that exact methods for 

computing the optimal value function still cannot go very far. For making 

decisions with a longer horizon, we may trade off correctness for simplicity to 

compute a near-optimal value function. In this chapter, we examine two kinds 

88 
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of approximation methods: one exploits the structured framework presented 

in Chapter 4 to make the BDT-based P O M D P components more compact 

(b-Trees and R-Trees in particular); the other employs a heuristic search 

strategy to explore the belief state space more selectively. In a sense, both 

of them are pruning methods. 

5.1 Pruning b-Trees and R-Trees 

When we think further into the future, our belief in each particular possibility 

becomes less certain and exact classification of states into contexts becomes 

less possible. The experimental results given in the last chapter confirm this 

intuition. The longer the horizon, the more diversified the probabilities in 

each of the projected belief states becomes. Eventually, each state probability 

in a belief state would take one leaf node in a fully-grown b-Tree containing all 

the variables. To keep the structured representation compact over a longer 

horizon, reducing the size of b-Trees becomes necessary. Here we develop 

a simple algorithm to reduce the size of a b-Tree by reordering nodes and 

averaging leaves in a B D T . Since the method is applicable to any B D T , it 

can be employed to approximate the R-Tree as well in order to speed up the 

value computation further. 

5.1.1 Reordering Nodes 

In the structured belief update algorithm (Algorithm 4.1) presented in the 

last chapter, the variable ordering of each path from the root to a leaf in 
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A B 

/\ / \ 
o - / 

1.0 \ 
1.0 2.9 1.0 3.0 2.9 3.0 

Figure 5.1: Compacting a BDT by Reordering Nodes 

the updated b-Tree is quite arbitrary. Chances are that we may reduce the 

size of the b-Tree a bit by reordering the variables. Figure 5.1 illustrates a 

situation that we may reduce the size of a B D T , in which same values are 

installed at the two leaf nodes that can be reduced to one by reordering the 

variables in the tree. Procedurally, it can be done by the following algorithm. 

Algorithm 5.1 Compact(b,c,X.) returns b' 

b :: BDTto be compacted 
c :: prefix context of the compact B D T being constructed 
X initialized as set of variables; reduced in subsequent calls 
b' :: compacted B D T optimized in number of leaf nodes 
Average :: see Algorithm A.I 
Tree :: defined subsequently 

If (X = {X}) then 
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1. Get leaf value I w.r.tb and ( c + X+) 

[ I = Average(b, c + X+) ] 

2. Get leaf value r w.r.tb and ( c + X~) 

[ r = Average(b, c + X") ] 

3. Return Tree(X, leaf(l), leaf(r)) 

1. Get and remove I e X such that there are the 

least number of distinct leaf values under X 

w.r.t. b and c. 

e 

2. L := Compact(b, c + X+, X ) 

3. R : = Compact(b, c + X , X ) 

Return Tree(X,L,R) 
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Algorithm 5.2 Tree(X, L, R) returns T 

92 

X 
L 
R 
T 

variable labeling the current node 
left subtree consistent with X+ 

right subtree consistent with X~ 
averaged tree w.r.t. 6 to be returned 

If (L = R) then 

Return L 

else 

Return node(X, L, R) 

Note that in Algorithm 5.2, the reduction of node(X, L, R) into L (or R) 

if (L = R) is generally happens when L and R are leaf nodes, but not often 

when they are subtrees. 

5.1.2 Averaging Leaves 

It becomes less likely that states can be classified into clusters sharing the 

contexts with the same probabilties in the belief states as they are projected 

further and further into the future. Therefore optimizing the b-Trees by 

reordering nodes would become ineffective. However, although there may 

be few leaf values that are identical, we may classify leaves with common 

contexts into clusters if their values are close enough. We trade off correctness 

for simplicity. For example, given two leaf nodes leaf (I) and leaf(r) under the 

same internal node labeled by X, node(X, leaf (I), leaf(r)), if the difference 

of their leaf values jZ — 7™ | are within a defined tolerance 9, then we may 
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reduce the internal node into a leaf node leaf((l + r)/2) by averaging the leaf 

values. To implement this idea, Algorithm Tree(5.2) can be replaced by the 

following algorithm. 

Algorithm 5.3 AverageTree(X, L, R,9) 

X :: variable labeling the current node 
L :: left subtree consistent with X+ 

R :: right subtree consistent with X~ 
9 :: defined tolerance for averaging leaves 
T :: averaged tree w.r.t. 9 to be returned 

If (L = leafil) and R = leaf(r) and \l — r\ < 9) then 

Return leaf((l + r)/2) 

else 

Return node(X, L, R) 

More sophisticated ideas for approximating the b-Trees may look into 

Step 1 of the else case in Algorithm 5.1, where variable selection criteria can 

be defined approximately. 

5.1.3 Experimental Results 

Applying to the same Client-Server-Agent testbed domain used in Chapter 4, 

we perform the b-Tree compaction algorithms, with and without averaging 

leaf values, after each belief state has been updated. Belief states visited 

are cached in each case. The results are summarized in Table 5.1. Results 

for structured representation with b-Tree caching given in Chapter 4 are 
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k 
Structured + Reordering Nodes + Averaging Leaves 

k yk Size Time/s yk Size Time/s yk Size Time/s 
0 -5.0000 4 0.00 -5.0000 4 0.00 -5.0000 4 0.00 
1 -5.0400 49 0.05 -5.0400 40 0.19 -5.0521 34 o:i5 
2 -3.9344 499 0.72 -3.9344 397 2.16 -3.9748 314 2.02 
3 -2.4983 4828 43.02 -2.4983 3787 37.94 -2.5721 2940 33.95 
4 -0.9184 45787 3764.77 -0.9184 35176 1718.10 -1.0254 27132 1536.97 
D> Size/lea: " nodes CPU Time/seconds Tolerance 9 = 0.01 

Table 5.1: Compacting b-Trees by Reordering Nodes and Averaging Leaves 

repeated in the table for comparisons. Values, Vh, are computed for a fixed 

horizon with an initial belief state setting P[A+B~C~] = 1.0. Note that the 

longer time required with horizon 0 to 2 reflects the overhead cost of doing 

b-Tree compaction. This overhead is easily seen to be worthwhile when 

the horizon is extended longer. In general, b-Tree compaction during belief 

updates helps reducing the number of probability entries, or total number of 

leaf nodes, significantly. 

5.2 Pruning Decision Search Tree 

In a sense, the b-Tree compaction with node reordering and leaf averaging 

prunes the local structures of the projected belief space. However, viewing 

the global picture, we can think of the projected belief space as a decision 

search tree branching from actions and observations iteratively along with 

the horizon as the search depth. As described in Chapter 3, we can prune 

the decision search tree evenly at the bounded depth and estimate the bound 
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values by the value function of the corresponding F O M D P model with the 

belief states sitting there. More aggressively, we can prune the decision 

search tree asymmetrically by using the F O M D P value function again as 

a heuristic. This heuristic search strategy saves the effort to further explore 

seemingly unproductive belief states for searching deeper in the promising 

ones. 

5.2.1 Heuristic 

Although F O M D P is a less accurate model comparing to P O M D P when 

the perfect observation assumption fails, it serves as a rough and quick 

(over)estimate of the problem. With information given by the optimal value 

function of F O M D P , we can explore the belief state space more intelli

gently. Specifically, given an optimal F O M D P value function V*, we define 

a heuristic function on belief sate H(b) as follows. 

The applicability of this heuristic function is based on the following propo

sition and the subsequent conjecture. 

Proposition 5.1 Given a P O M D P and its counterpart F O M D P with fi

nite horizon k, 

H(b) £ 6(0 y*(i) (5.1) 

vk(b) < £&w no 
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where Vk(b) is the P O M D P value function, defined on belief states, Vk(i) 

is the F O M D P value function, defined on states, and b is a generic belief 

state in the belief state space. 

Reasoning When k = 0, 

• V°{b) = R(b) 

= E 6(0 m 
i 

• V°(i) = R(i) 

^v°(b) = J2b(z)v°(i) 
i 

When k > 0, consider F O M D P represented by the P O M D P constructs. 

Since complete observability is assumed, the observation function 0(i,a,o) 

conforms to the transition function T(i,a,j) when o and j are co-dependent 

with certainty. The belief state would have probability 1.0 in one and only 

one of the state under any belief updates. With more certainties, the value 

function, formulated as the maximum total expected reward, is likely to be 

overestimated. A more speculative conjecture is that this proposition can 

be generalized to the model with infinite horizon given V*(b) and V*(i) are 

the converged optimal value function of the P O M D P value function and 

F O M D P value function respectively. g 

Proposition 5.2 Given a P O M D P and its counterpart F O M D P with in

finite horizon, 
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where V*(b) is the P O M D P optimal value function, defined on belief states, 

V*(i) is the F O M D P optimal value function, defined on states, and b is an 

generic belief state in the belief state space. 

Reasoning As V* = l i i m ^ Vk, if V*(b) > EiKi)V*'(i), 3k Vk(b) > 

J2i V*(i) > E i Ki)y f c(0> which contradicts Proposition 5.1. • 

5.2.2 Algorithm 

Assuming our conjecture is approximately correct and can be applied as 

a heuristic, we developed an algorithm for exploring the belief state space 

where we search a decision search tree using a best-first strategy. 

The idea is to use Equation 5.1 as a heuristic to determine the value of 

being in a belief state, and hence the value of taking an action. Obviously, 

we would like to explore the seemingly "best" action first. When it turns 

out to be "not good enough" after a more detailed examination, we may 

want to continue to explore the "second best" and so on. However, if we 

believe that we have already explored the "best" or "good enough" option, 

we do not bother to investigate the unexplored options on our list. In our 

algorithm, V m a x, the best value that can be obtained and known currently, 

sets the "good enough" standard. 
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Algorithm 5.4 Explore(b, k, 5, V*) returns (V m a x , a m a x ) 

b current belief state 
k horizon / search depth 
5 discounting factor 
V* optimal F O M D P value function 
Kiax the currently best value 
^max the currently best action 

= 0) then 

I- ^rnax • = Zi b(i) V*W 

2. a m a x := none 

3. Return {Vmm, a m a x ) 

else [k > 0] 

1. Project b to B[b, a, o] one step ahead 

for each a G A and o G O. 

2. Order HQ(b, a) = £c P[o | 6, a] H(B[b, a, o]) in a 

with the greatest in the front for each a G A, 

where H(B[b,a,o\) = B[b,a,o](i) V*(i). 

3. Set a m a x to any a G A arbitrarily. 

4. Set V m a x = HQ(b, a m a x ) . 

5. Get an item HQ(b,a) from the queue to explore 

Repeat 

Q(b, a) := E 0 P[o I B[b, a, o], a'mJ V m a x 
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where [V^x, a'max) = Explore{B[b, a, o], k - 1,5, V*). 

Vmax := max { Vmax, Q(b, a) } 

If (Knax = Q(b, a)) then a m a x := a 

until (HQ(b, a) < VmAX) or queue is empty. 

6. Knax := R{b) + 6 V m a x 

7. Return (Vmax, a m a x) 

5.2.3 Experiments 

To test the heuristic online search approach, we run it in the Client-Server-

Agent testbed domain. This time we approximate the value function with 

infinite horizon by discounting and focusing on a bounded depth, at which 

the future values are estimated by the F O M D P value function. The ex

periment is set up with a precomputed F O M D P value function converged 

in 757 iterations by Value Iteration with discount factor 0.99 and conver

gent threshold 0.001. Both belief state caching and b-Tree compaction are 

employed. The control experiment is performed by pruning the belief state 

space at the bounded depth evenly. The results are summarized in Table 5.2. 

The control online search algorithm with discounting and focusing only is ti

tled as Complete Search; whereas the heuristic online search using Algorithm 

Explore is titled as Best-First Search (to depth k). 

The results look appealing. The belief state space is trimmed down 

tremendously while errors in the value computed are virtually unobserv-
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k 
Complete Search Best-First Search 

k V* Size Time/s V* Size Time/s 
0 187.5531 4 0.00 187.5531 4 0.00 
1 188.5235 34 0.14 188.5235 34 0.17 
2 189.4419 314 1.86 189.4419 135 0.68 
3 190.3320 2940 38.96 190.3321 408 2.31 
4 191.1989 27132 2221.24 191.1989 1217 10.86 
5 — — — 192.0451 3645 72.50 
6 — — — 192.8718 10969 580.50 
> Size/leaf nodes (CPU)Time/second s Discount 5 = 0.99 

Table 5.2: Heuristic Online Search: Complete vs Best-First 

State i V*(T) 
A+B+C+ 199.9007 
A+B+C~ 191.1725 
A+B~C+ 195.0930 
A+B~C~ 187.5531 
A-B+C+ 369.5441 
A-B+C- 387.3797 
A~B~C+ 399.8014 
A-B-C- 387.9797 
Value Iteration: 757 iterations; discount 0.99; threshold 0.001. 

Table 5.3: The precomputed F O M D P Vaiue Function 



5. APPROXIMATION 101 

able with small horizons. The small errors imply that the heuristic function 

guides the search to the best path nicely. The effectiveness of the heuristic 

search in the Client-Server-Agent domain may also be attributed to its rich 

structural properties. Performance reduction is expected if more randomness 

is imposed in the testing domain. It is suspected that the selection of the 

first currently best action in Algorithm Explore may play a role; however, 

similar results are obtained even when the actions are shuffled. In short, 

applying heuristics in structured domains seems to be promising. 

5.3 Related Work 

The idea of applying pruning in structured representation framework was in

troduced to decision-theoretic planning by DEARDEN-BOUTILIER[18]. Par

allel line of work in approximation techniques with a functional model is 

found in PARR-RUSSELL[25}. UTGOFF[35] discusses methods for restructur

ing decision tree efficiently. 

5.4 Summary 

When exact computation fails to meet an acceptable decision deadline, ap

proximation methods are applied. Within the structured representation 

framework and the online search approach, near-optimal value for a belief 

state can be computed more efficiently with tree prunings. 

Locally, a b-Tree or R-Tree can be restructured and/or pruned by aver-
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aging leaves with close enough values. Globally, the belief state space repre

sented by a decision search tree can be pruned symmetrically at a bounded 

depth and/or asymmetrically by a heuristic guided search. In particular, we 

may employ the counterpart F O M D P model as a heuristic for the original 

P O M D P concerned. With a quick heuristic and rich structural properties, 

significant improvement in computing the value for the current belief state 

with the heuristic online search strategy is observed. 



6 

Conclusion 

In a sense ... 

T o a c t i n t e l l i g e n t l y is t o o b s e r v e t h e c u r r e n t s i t u a t i o n , t o i n t e r p r e t t h e 

o b s e r v a t i o n w i t h t h e p e r c e i v e d w o r l d m o d e l , a n d t o a p p l y t h e a c t i o n t h a t 

h a s t h e g r e a t e s t c h a n c e t o p r o d u c e t h e m o s t d e s i r a b l e c h a n g e . 

Bringing Decision Theory, Control Theory and A l Planning together, Decision-

Theoretic Planning has evolved as a distinct line of interesting research to be 

explored. In search of a working model, Partially Observable Markov Deci

sion Processes (POMDPs) borrowed from Operations Research has drawn 

much interests. However, like most interesting research problems, P O M D P s 

are extremely difficult to solve in general. The state of the art can only deal 

with small domains with at most tens of states. Compact representations 

and approximation strategies are needed to empower the formal model for 

103 
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practical applications. Recently, tree-oriented structured representation have 

emerged as an new attempt to solving both fully observable and partially ob

servable MDPs . In this thesis, we have explored a structured representation 

based on binary decision trees, on which approximation strategies can be 

employed along with a more A l flavored heuristic online search approach ap

plied to pruning the decision search tree of the belief state space. It seems 

that trees has been the coherent theme of this thesis work. 

6.1 Hindsight 

To respond to the challenging problem of solving P O M D P s more efficiently, 

we have designed a uniform structured representation transforming P O M D P 

component constructs into binary decision trees. A handful of binary tree-

oriented algorithms have been develped to perform belief updates and value 

computation structurally. 

Based on the structured framework, tree restructuring and pruning have 

been applied as optimization and approximation techniques to reduce the size 

of the belief state trees (b-Trees). Significant improvements in computation 

time have been observed as fewer probability entries need to be computed 

with belief update operations. 

Along with the structured representation, the belief state space has been 

structured as a decision search tree forming the global tree with the b-Trees 

stored at its nodes locally. By applying pruning symmetrically or asym-
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metrically with the optimal value function of F O M D P as a quick heuristic 

measure, remarkable performance boosts have been observed in the testbed 

domain with rich structural properties. Specifically, this computational ad

vantage is attributed to exploiting the conditional independence, contextual 

independence and persistence abundantly found in the domain. So it is ex

pected that the sturctured representation would be less appealing when it is 

applied to domains with scarce structural properties. 

6.2 Insight 

While the Markov property and partial observability are model assumptions 

built into P O M D P s , several additional simplying assumptions and general 

domain properties have been exploited in our structure and heuristic explo

ration in this thesis work. 

First of all is the propositional domain assumption. For simplicity, we 

assume the domain is specified by propositions, or boolean variables, so that 

we can make the binary decision tree representation possible. This makes 

the algorithms for the structured representation a lot easier to understand 

and develop. In a sense, this is an integrated approach to bring numeri

cal planning models handling uncertainties into classical A l planning with 

propositional representation. While this propositional domain assumption 

may restrict the usability of the structured representation, the idea of classi

fying states into clusters sharing same contexts and similar probabilities (or 
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values) should still be valid beyond prepositional domains. 

To make the structured representation compact, several structural prop

erties are exploited. In particular, they are conditional independence, con

textual independence and persistence. Speculatively, we strongly believe that 

these properties are frequently found in natural domains. 

Yet another powerful idea that we have exploited is using F O M D P value 

function as search heuristic to guide the exploration of the belief state space 

in the right track approximately. By applying best-first online search with 

heuristic pruning, the belief state space can be greatly reduced. In a sense, 

this heuristic search strategy encapsulates the heuristic function. When bet

ter heuristic functions are devised, we can just replace the heuristic function 

within the same search framework. 

6.3 Foresight 

Following the train of thought explored in this thesis, several immediate 

ongoing and future research directions are in focus. 

Immediately, further empirical and analytical studies of the developed 

algorithms are in need. To test the algorithms with larger domains and longer 

horizons, the current P R O L O G programs may need to be ported to more 

efficient implementations. Meanwhile, more rigorous complexity analyses are 

always necessary. To justify the application of the F O M D P value function as 

heuristic, more formal proofs showing the optimal P O M D P value function is 



6. CONCLUSION 107 

bounded by the F O M D P value function need to be constructed. To enhance 

the usability of the structured representation, formal specification techniques 

need to be developed to model different kinds of domains effectively. This 

may require more experimental studies with great varieties of domains to 

discover the useful pattern. 

Future research directions include: extending the propositional represen

tation to handle numerical and continuous domains; devising better and in

formed heuristic functions for the online search algorithm; adopting heuristic 

sensing strategy and plan execution; considering multi-agent environments; 

and the list goes on. 



A 

Algorithms 

The BDT-Oriented Algorithms in P R O L O G 

This appendix chapter gives a catalogue of the main algorithms along with 

the supporting data structures specified in PROLOG for our BDT represen

tation of P O M D P s described in Chapter 4. In particular, SICStus Prolog 

2.1 Release 9[34] has been used as the platform for implementation. 

108 
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A.O Preliminary 

Variables 
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Domain variables are specified as names in lower case letters, e.g. a, b, c, 

is_raining, lights_on etc. 

Assigments 

Assignments are represented by (X,0) or (X,l) pairs, where X is a domain 

variable. 0 and 1 denote false and true respectively. 

Contexts 

Contexts are represented by unordered lists of assignments, e.g. the context 

A+B~C+ may be specified as [(a, 1), (b,0), (c , l ) ] or [(b,0), ( a , l ) , 

(c, 1)] . The essential operations defined on contexts are given in the follow

ing PROLOG predicates. 

Subsumes 

'/, subsumes (+C, ?A) : -
'/, ?A is an assignment in context +C. 

subsumes(C, A) : -
member(A, C). 

member(X, [XI_]). 
member(X, [_|L]) : -

member(X, L ) . 

Exclude 

'/. exclude(+CO, +X, ?C1) : -
'/, ?C1 is context +C0 with the assignment to variable +X excluded, 
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'I. r e g a r d l e s s o f t h e v a l u e o f +X. 

e x c l u d e ( C O , X, C l ) : -

r e m o v e ( C 0 , ( X , _ ) , C l ) . 

r e m o v e ( L 0 , X , L I ) : -

removeCLO, [ ] , X , L I ) , ! . 

r e m o v e ( [ ] , L , _X, L ) . 

r e m o v e ( [ X I L O ] , L , X , L I ) : -

r e m o v e ( L O , L , X , L I ) , 

r e m o v e ( [ Y I L O ] , L , X , L I ) : -

r e m o v e ( L O , [ Y | L ] , X , L I ) . 

Persistent 

•/. p e r s i s t e n t ( + C , +X, +P) : -

7, T r u e i f c o n t e x t +C subsumes a s s i g n m e n t ( + X , 1 ) and p r o b a b i l i t y 

'/, +P = 1 . 0 , o r c o n t e x t +C subsumes a s s i g n m e n t ( + X , 0 ) and p r o b a b i l i t y 

•/. +P = 0 . 0 . 

p e r s i s t e n t ( C , X , 1 . 0 ) : -

s u b s u m e s ( C , ( X , l ) ) . 

p e r s i s t e n t ( C , X , 0 . 0 ) : -

s u b s u m e s ( C , ( X , 0 ) ) . 
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A.1 Average 

'/. a v e r a g e ( + T , +C , ?V) : -

•/. ?V i s t h e a v e r a g e v a l u e o f BDT +T w . r . t . c o n t e x t +C. 

a v e r a g e ( l e a f ( V ) , _ C , V ) . 

a v e r a g e ( n o d e ( X , L , _R) , C, V) : -

s u b s u m e s ( C , ( X , D ) , 

a v e r a g e ( L , C, V ) . 

a v e r a g e ( n o d e ( X , _ L , R ) , C, V) : -

s u b s u m e s ( C , ( X , 0 ) ) , 

a v e r a g e ( R , C, V ) . 

a v e r a g e ( n o d e ( _ X , L , R ) , C, V) : -

a v e r a g e ( L , C, V L ) , 

a v e r a g e ( R , C, V R ) , 

V i s (VL + V R ) / 2 . 
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A.2 DotProduct 
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*/. dotproduct(+Tl, +T2, ?V) :-
*/. ?V i s the dotproduct of BDT +T1 and BDT +T2. 

d o t p r o d u c t ( T l , T2, V) :-
num_variables(NX), 
d o t p r o d u c t ( T l , [ ] , NX, T2, V), !. 

•/. dotproduct (+T1, +C1, +H1, +T2, ?V) :-
'/. ?V i s the dotproduct of BDT +T1 and BDT +T2, 
'/. where +T1 has p r e f i x context +C1 and rank(+Tl) = exp(2, +H1) . 

d o t p r o d u c t ( l e a f ( V I ) , CI, HI, T2, V) :-
average(T2, CI, V2), 
V i s exp(2, HI) * VI * V2. 

dotproduct(node(X, L I , R l ) , CI, HI, node(X, L2, R2), V) :-
dotproduct(LI, [ ( X , l ) ICI], Hl-1, L2, VL), 
d o t p r o d u c t ( R l , [(X,0)|C1], Hl-1, R2, VR), 
V i s VL + VR. 

d o t p r o d u c t ( T l , CI, HI, node(X2, L2, _R2), V) :-
subsumes(Cl, ( X 2 , D ) , 
d o t p r o d u c t ( T l , CI, HI, L2, V). 

d o t p r o d u c t ( T l , CI, HI, node(X2, _L2, R2), V) :-
subsumes(CI, (X2,0)), 
d o t p r o d u c t ( T l , CI, HI, R2, V). 

dotproduct(node(XI, L I , R l ) , CI, HI, T2, V) :-
dotproduct(LI, [(XI,1) ICI], Hl-1, T2, VL), 
d o t p r o d u c t ( R l , [ ( X I , 0 ) I C I ] , Hl-1, T2, VR), 
V i s VL + VR. 
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A.3 Merge 

'/. merge. p i 

'/, Merge o p e r a t i o n f o r precompiling BT-Tree. 

% merge(+T1, +T2, +T2X, ?T) :-

7. ?T i s the BT-Tree r e s u l t e d from merging BT-Tree +T1 with T-Tree +T2 
7. f o r p o s t c o n d i t i o n v a r i a b l e +T2X. 
merge(Tl, T2, T2X, T) :-

merge ( T l , [] , T2, T2X, T ) , ! . 

7. merge (+T1, +C1, +T2, +T2X, ?T) :-
7. ?T i s the BT-Tree r e s u l t e d from merging BT-Tree +T1 with T-Tree +T2 
7. f o r p o s t c o n d i t i o n v a r i a b l e +T2X, where +T1 has p r e f i x context +C1. 

m e r g e ( l e a f ( E l ) , C l , T2, T2X, T) :-
sub_merge(Cl, E l , T2, T2X, T ) . 

merge(node(X, L I , Rl) , C l , node(X, L2, R2), T2X, node(X, TL, TR)) :-
merge(Ll, [(X,1)|C1], L2, T2X, TL), 
merge(Rl, [(X,0)IC1], R2, T2X, TR). 

merge(Tl, C l , node(X2, L2, _R2), T2X, T) :-
subsumes(Cl, ( X 2 , l ) ) , 
merge(Tl, C l , L2, T2X, T ) . 

merge(Tl, C l , node(X2, _L2, R2), T2X, T) :-
subsumes(Cl, (X2,0)), 
merge(Tl, C l , R2, T2X, T ) . 

merge(node(X, L I , R l ) , C l , T2, T2X, node(X, TL, TR)) :-
merge(Ll, [(X,1)|C1], T2, T2X, TL), 
merge(Rl, [ ( X , 0 ) I C l ] , T2, T2X, TR). 

7. sub_merge(+Cl, +E1, +T2, +T2X, ?T) :-
7. ?T i s the subtree of type BT-Tree generated by e x t r a c t i n g 
7. the c o n s i s t e n t branches from T-Tree +T2 w.r.t. context +C1, 
7. d e p o s i t i n g the e f f e c t +E1 i n t o the c o n s i s t e n t l e a f nodes, 
7. and pruning the p e r s i s t e n t branches. 

sub.merge(Cl, E l , l e a f ( P 2 ) , T2X, l e a f ( E l ) ) :-
p e r s i s t e n t ( C l , T2X, P2). 

sub.merge(.Cl, E l , l e a f ( P 2 ) , T2X, leaf([(T2X.P2)I E l ] ) ) . 

sub.merge(Cl, E l , node(X2, L2, _R2), T2X, T) :-
subsumes(Cl, ( X 2 , l ) ) , 
sub.merge(Cl, E l , L2, T2X, T ) . 

sub_merge(Cl, E l , node(X2, _L2, R2), T2X, T) :-
subsumes(Cl, (X2,0)), 
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sub.merge(Cl, E l , R2, T2X, T ) . 

sub_merge(Cl, E l , node(X2, L2, R2), T2X, T) :-
sub_merge([(X2,l)ICI], E l , L2, T2X, T ) , 
sub_merge([(X2,0)ICI] , E l , R2, T2X, T ) . 

sub.merge(Cl, E l , node(X2, L2, R2), T2X, node(X2, TL, TR)) 
sub_merge([(X2,l)ICI] , E l , L2, T2X, TL), 
sub_merge([(X2,0)ICI] , E l , R2, T2X, TR). 
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A.4 Multiply 

% multiply(+T, +N, TNT) :-. 
•/. ?NT i s BDT +T m u l t i p l i e d by value +N f o r each of the l e a f v a l u e s . 

m u l t i p l y U e a f (V), N, leaf(NV)) :-
NV i s N * V. 

multiply(node(X, L, R), N, node(X, NL, NR)) :-
m u l t i p l y ( L , N, NL), 
multiply(R, N, NR). 
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A. 5 Normalize 

'/. n o r m a l i z e ( + T , ?NT) : -

'/. ?NT i s BDT +T n o r m a l i z e d t o 1 . 0 . 

n o r m a l i z e ( T , NT) : -

n o r m _ f a c t o r ( T , N ) , 

N_INV i s 1 / N, 

m u l t i p l y C T , N . I N V , N T ) . 

'/. n o r m _ f a c t o r ( + T , ?N) : -

'/. ?N i s t h e n o r m a l i z i n g f a c t o r f o r BDT + T , 

% i . e . t h e sum o f t h e v a l u e s f o r a l l s t a t e s . 

n o r m _ f a c t o r ( T , N) : -

n u m _ v a r i a b l e s ( N X ) , 

n o r m . f a c t o r ( T , NX, N ) , ! . 

'/. n o r m . f a c t o r ( + T , + H , ?N) : -

'/. ?N i s t h e n o r m a l i z i n g f a c t o r f o r BDT + T , 

'/. f o r w h i c h r a n k ( + T ) = e x p ( 2 , + H ) . 

n o r m . f a c t o r ( l e a f ( V ) , H, N) : -

N i s e x p ( 2 , H) * V . 

n o r m _ f a c t o r ( n o d e ( _ X , L , R ) , H, N) : -

n o r m _ f a c t o r ( L , H - l , N L ) , 

n o r m . f a c t o r ( R , H - l , N R ) , 

N i s NL + NR. 
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A.6 Product 

•/. product (+T1, +T2, ?T) :-
'/. ?T i s the t r e e product of BDT +T1 and BDT +T2. 

p r o d u c t ( T l , T2, T) :-
p r o d u c t ( T l , • , T2, T ) , !. 

'/. product (+T1, +C1, +T2, ?T) :-
'/, ?T i s the t r e e product of BDT +T1 and BDT +T2, 
'/, where +T1 has p r e f i x context +C1. 

p r o d u c t ( l e a f ( V I ) , C l , T2, T) :-
sub_product(Cl, VI, T2, T ) . 

product(node(X, L I , R l ) , C l , node(X, L2, R2), node(X, L, R)) :-
pr o d u c t ( L I , [ ( X . l ) I C l ] , L2, L ) , 
p r o d u c t ( R l , [(X,0)|C1], R2, R). 

p r o d u c t ( T l , C l , node(X2, L2, _R2), T) :-
subsumes(Cl, ( X 2 , l ) ) , 
p r o d u c t ( T l , C l , L2, T ) . 

p r o d u c t ( T l , C l , node(X2, _L2, R2), T) :-
subsumes(Cl, (X2,0)), 
p r o d u c t ( T l , C l , R2, T ) . 

product(node(X, L I , R l ) , C l , T2, node(X, L, R)) :-
p r o d u c t ( L l , [ ( X . D I C l ] , T2, L ) , 
p r o d u c t ( R l , [(X,0)|C1], T2, R). 

'/. sub.product(+Cl, +V1, +T2, ?T) :-
'/, ?T i s BDT +T2 pruned to make c o n s i s t e n t with context +C1 and 
'/, with each of i t s l e a f values m u l t i p l i e d by value +V1. 

sub_product(_Cl, VI, l e a f ( V 2 ) , l e a f ( V ) ) :-
V i s VI * V2. 

sub.product(Cl, VI, node(X, L, _R), T) :-
subsumes(Cl, ( X , D ) , 
sub_product(Cl, VI, L, T ) . 

sub_product(Cl, VI, node(X, _L, R), T) :-
subsumes(Cl, (X,0)), 
sub_product(Cl, VI, R, T ) . 

sub.product(Cl, VI, node(X, L I , R l ) , node(X, L, R)) :-
sub_product(Cl, VI, L I , L ) , 
sub_product(Cl, VI, R l , R). 
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A.7 Sum 

'/. sum(+Tl, +T2, ?T) :-
7. ?T i s the summation t r e e of the p a r t i a l BDTs +T1 and +T2. 

sum(Tl, T2, T) :-
sum(Tl, [ ] , T2, T ) , !. 

'/. sum(+Tl, +C1, +T2, ?T) :-
'/. ?T i s the summation t r e e of the p a r t i a l BDTs +T1 and +T2, 
'/, where +T1 has p r e f i x context +C1. 

s u m ( l e a f ( V l ) , CI, T2, T) :-
sub_sum(Cl, VI, T2, T ) . 

sum(node(X, L I , R l ) , CI, node(X, L2, R2), T) :-
sum(Ll, [ ( X . l ) I C l ] , L2, L ) , 
sum(Rl, [(X,0)IC1], R2, R), 
treeUnion(X, L, R, T ) . 

sum(Tl, CI, node(X2, L2, _R2), T) :-
subsumes(Cl, ( X 2 , D ) , 
sumCTl, CI, L2, T) . 

sum(Tl, CI, node(X2, _L2, R2), T) :-
subsumes(CI, (X2,0)), 
sum(Tl, CI, R2, T ) . 

sum(node(X, L I , R l ) , CI, T2, T) :-
sum(Ll, [ ( X . l ) I C l ] , T2, L ) , 
sum(Rl, [(X,0)|C1], T2, R), 
treeUnion(X, L, R, T ) . 

•/. sub_sum(+Cl, +V1, +T2, ?T) :-
7. ?T i s BDT +T2 pruned to make c o n s i s t e n t with context +C1, 
7. and with value +V1 added to each of the l e a f v a l u e s . 

sub.sum(.Cl, VI, l e a f ( V 2 ) , l e a f ( V ) ) :-
V i s VI + V2. 

sub.sum(Cl, VI, node(X2, L2, _R2), T) :-
subsumes(Cl, ( X 2 , l ) ) , 
sub.sum(Cl, VI, L2, T ) . 

sub.sum(Cl, VI, node(X2, _L2, R2), T) :-
subsumes(CI, (X2,0)), 
sub.sum(Cl, VI, R2, T ) . 

sub.sum(Cl, VI, node(X2, L2, R2), T) :-
sub.sum(Cl, VI, L2, L ) , 
sub.sum(Cl, VI, R2, R), 
treeUnion(X2, L, R, T ) . 

7. treeUnion(+X, +T1, +T2, ?T) :-
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'/. BDT ?T i s BDT +T1 (or BDT +T2) i f +T1 == +T2; 
'/. otherwise ?T i s +T1 and +T2 merged with v a r i a b l e 

treeUnion(_X, T, T, T ) . 

treeUnion(X, L, R, node(X, L, R ) ) . 
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A.8 Update 

'/, update.pl 
'/. 
"/, Update op e r a t i o n f o r performing updates with BO-Tree and BT-Tree. 

'/. update(+B0, +BT, ?B) 
'/. ?B i s the updated b-Tree obtained from BO-Tree +B0 and BT-Tree +BT. 

update(BO, BT, B) :-
update(BO, • , BT, B), ! . 

'/, update(+BD, +C, +BT, ?B) :-
'/, ?B i s the updated b-Tree obtained from BO-Tree +B0 and BT-Tree +BT, 
7, where +B0 has p r e f i x context +C. 

u p d a t e ( l e a f ( P ) , C, BT, B) :-
sub_update(C, P, BT, B). 

update(node(X, B0_L, B0_R), C, node(X, BT.L, BT.R), B) :-
update(B0_L, C(X,1)IC], BT.L, B_L), 
update(B0.R, C(X,0)IC], BT.R, B.R), 
sum(B_L, B.R, B). 

update(B0, C, node(X.BT, BT.L, .BT.R), B) :-
subsumes(C, (X_BT,1)), 
update(B0, C, BT.L, B). 

update(B0, C, node(X_BT, .BT.L, BT.R), B) :-
subsumes(C, (X.BT.O)), 
update(B0, C, BT.R, B). 

update(node(X.BO, BO.L, BO.R), C, BT, B) :-
update(BO.L, [(X.BO,1)IC], BT, B.L), 
update(BO_R, [(X.BO.O)|C], BT, B.R), 
sum(B_L, B.R, B). 

7. sub_update(+C, +P, +BT, ?T) :-
7, ?T i s the p a r t i a l t r e e generated from BT-Tree +BT w.r.t. context +C 
7. and p r o b a b i l i t y +P. 

sub_update([], P, l e a f ( [ ] ) , l e a f ( P ) ) . 

sub.update([(X,l)|C] , P, l e a f ( [ ] ) , node(X, L, leaf(O.O))) :-
sub_update(C, P, l e a f ( [ ] ) , L ) . 

sub_update([(X,0)IC], P, l e a f ( [ ] ) , node(X, l e a f ( 0 . 0 ) , R)) :-
sub_update(C, P, l e a f ( [ ] ) , R). 

sub_update(C, P, leaf([(X,Q )IE]), node(X, L, R)) :-
exclude(C, X, NC), 
PI i s P * Q, 
PO i s P * (1.0 - Q), 

http://update.pl
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sub_update(NC, PI, l e a f ( E ) , L ) , 
sub.update(NC, PO, l e a f ( E ) , R). 

sub_update(C, P, node(X, L, _R), T) :-
subsumes(C, ( X , l ) ) , 
sub_update(C, P, L, T ) . 

sub_update(C, P, node(X, _L, R), T) :-
subsumes(C, (X , 0 ) ) , 
sub_update(C, P, R, T ) . 

sub_update(C, P, node(X, L, R), T) :-
sub_ u p d a t e ( [ ( X , l ) I C ] , P, L, TL), 
sub_update([(X , 0 )IC], P, R, TR), 
suraCTL, TR, T ) . 



B 

Testbed 

The Client-Server-Agent Testbed Domain Specification 

For experimental studies, a 3-variable, 3-action and 3-observation testbed 

domain is devised. It makes up a 8-state domain with a branching factor 

9 in the decision search tree projecting the belief states. Rich structural 

properties, such as conditional independence, contextual independence and 

persistence, are frequently found in the domain. The specification in P R O L O G 

predicates is given in the following page. 
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The Client-Server-Agent Testbed 

v a r i a b l e s ( [ a , b, c ] ) . 
7. a :: TRUE i f Server A (Remote) can provide C l i e n t C's need. 
*/. b :: TRUE i f Server B (Local) can provide C l i e n t C's need. 
'/. c :: TRUE i f C l i e n t C i s s a t i s f i e d . 

a c t i o n s ( [ a _ C , a_B, a_A]). 
"/• a_A :: Send request t o A. 
'/, a_B :: Send request t o B. 

a_C :: Send r e p l y to C. 

observations([o_A, o_B, o_C]). 
'/. o_A :: Received r e p l y from A. 
"/. o_B :: Received r e p l y from B. 
'/. o_C :: Received request from C. 

"/, Reward Function 
'/. - Try to keep C s a t i s f i e d while u s i n g l e a s t remote s e r v i c e from A 
rew(node(c, node(b, node(a, l e a f ( 2 . 0 ) , 

l e a f ( 3 . 0 ) ) , 
node(a, l e a f ( 1 . 0 ) , 

l e a f ( 4 . 0 ) ) ) , 
l e a f ( - 5 . 0 ) ) ) . 

7, T r a n s i t i o n F u n c t i o n 
act(a_A, a, node(a, l e a f ( 1 . 0 ) , 
act(a_A, b, node(b, l e a f ( 1 . 0 ) , 
act(a_A, c, node(c, l e a f ( 1 . 0 ) , 

l e a f ( 0 . 0 ) ) ) . 
l e a f ( 0 . 2 ) ) ) . 
node(a, l e a f ( 0 . 8 ) , l e a f ( 0 . 0 ) ) ) ) . 

act(a_B, a, node(a, l e a f ( 1 . 0 ) , 
act(a_B, b, node(b, l e a f ( 0 . 7 ) , 
act(a_B, c, node(c, l e a f ( l . O ) , 

l e a f ( O . O ) ) ) . 
l e a f ( 0 . 0 ) ) ) . 
node(b, l e a f ( 0 . 9 ) , l e a f ( 0 . 0 ) ) ) ) . 

act(a_C, a, node(a, 
act(a_C, b, node(b, 
act(a_C, c, node(c, 

l e a f ( l . O ) , l e a f ( 0 . 0 ) ) ) . 
l e a f ( l . O ) , l e a f ( 0 . 0 ) ) ) . 
l e a f ( l . O ) , l e a f ( 0 . 5 ) ) ) . 

7. Observation Func t i o n 
obs(a_A, o_A, node(c, l e a f ( 0 . 4 9 ) , l e a f ( 0 . 0 9 ) ) ) 
obs(a.A, o.B, node(c, l e a f ( 0 . 0 1 ) , l e a f ( 0 . 0 1 ) ) ) 
obs(a_A, o_C, node(c, l e a f ( 0 . 5 0 ) , l e a f ( 0 . 9 0 ) ) ) 

obs(a_B, o_A, node(c, l e a f ( 0 . 1 0 ) , l e a f ( 0 . 1 0 ) ) ) 
obs(a_B, o_B, node(c, l e a f ( 0 . 6 0 ) , l e a f ( 0 . 4 0 ) ) ) 
obs(a_B, o_C, node(c, l e a f ( 0 . 3 0 ) , l e a f ( 0 . 5 0 ) ) ) 

obs(a_C, o_A, node(c, l e a f ( 0 . 4 9 ) , l e a f ( 0 . 2 9 ) ) ) 
obs(a_C, o.B, node(c, l e a f ( 0 . 0 1 ) , l e a f ( 0 . 0 1 ) ) ) 
obs(a_C, o_C, node(c, l e a f ( 0 . 5 0 ) , l e a f ( 0 ; 7 0 ) ) ) 

7. I n t i t i a l B e l i e f State 
bel(node(c, l e a f ( 0 . 0 ) , 

node(b, l e a f ( 0 . 0 ) , 
node(a, l e a f ( 1 . 0 ) , 

l e a f ( 0 . 0 ) ) ) ) ) . 
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