
Multilevel Debugging of Parallel Message Passing Programs
by

Jan Baekgaard Pedersen

Cand. Scient. (M.Sc.)
Department of Computer Science

Institute of Mathematics
University of Arhus

Arhus, Denmark, 1997

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

in
THE FACULTY OF GRADUATE STUDIES

(Department of Computer Science)

We accept this thesis as conforming

The University of British Columbia
July 2003

© Jan Baekgaard Pedersen, 2003

In presenting this thesis/essay in partial fulfillment of the
requirements for an advanced degree at the University of British
Columbia, I agree that the Library shall make it freely available for
reference and study. I further agree that permission for extensive
copying for this thesis for scholarly purposes may be granted by
the Head of my department or by his or her representatives. It is
understood that copying or publication of this thesis for financial
gain shall not be allowed without my written permission.

c9l J u l y Zoo3
Date

Department of Computer Science
The University of British Columbia
2366 Main mall
Vancouver, BC
Canada V 6 T 1 Z 4

Abstract

"I am not young enough to know everything"
— James M. Barrie

"Errare humanum est" - To err is human (Hieronymus, Epistle 57, 12); this fact has been
known throughout t ime, and inevitably this means that humans writing computer programs are
bound to introduce errors. With computers operating in Frankenstein's Igor mode, 'Your wish
is my command', executing instructions without questioning their validity, errors introduced by
humans are carried out. When adding parallel programming with message passing an error in one
process can spread like a virus through message passing to other processes.

Much research has been done on debugging sequential programs, and most of these theories
and results apply directly to parallel programs, but the set of potential errors dramatically
increases in size when introducing parallelism and message passing. Not only can one process
fai l , but sets of processes can deadlock, computational errors can be propagated from process to
process, thus infecting otherwise correct programs. Correct programs can stop working because
of the underlying implementation of the message passing system.

We propose a framework for debugging parallel message passing programs: a multi level ap
proach that divides errors into separate groups at various levels from the wel l known sequential
errors, such as stray pointers and array out of bound, to deadlock caused by incorrect message
passing code, protocol errors and buffer allocation problems. We show the validity of this ap
proach by developing new debugging techniques and analyses, and by implementing these in
Millipede, a prototype multi level debugger written for C programs that use the PVM message
passing system.

ii

Contents

Abstract ii

Contents iii

List of Figures vii

List of Tables x

Acknowledgements xi

1 Introduction 1
1.1 The Debugging Problem 2

1.2 Problem Definition 4

1.3 Thesis Statement 6

1.4 Contributions 6

2 Background and Related Work 10
2.1 Background and Rationale 10

2.1.1 The Parallel Programming Domain 11

2.2 The Debugging Process 15

2.2.1 Iterative debugging 15

2.2.2 The Why, How and What of Errors 16

2.3 Related Work 20

2.3.1 Program Development Environments 20

2.3.2 Visualization Tools 22

2.3.3 Extension of Sequential Debuggers 23

2.3.4 Replay Tools/Debuggers 25

2.3.5 Relative Debuggers 26

2.3.6 Language Support for Communication 26

2.3.7 Summary of Related Work 26

iii

2.4 Top-down versus bottom-up debugging 27

2.5 Multi level Debugging 28

2.6 Error Classification 29

2.7 Tool Development 31

2.7.1 Automation 33

2.8 Tool Support for Parallel Program Development 34

3 Millipede - A Prototype Multilevel Parallel Debugger 36

3.1 Design Criteria 36

3.2 The legs of Millipede 37

3.2.1 Overview 38

3.2.2 Implementation 39

3.3 The Sound of Little Legs Running 40

4 Sequential Debugging of Parallel Processes 43

4.1 The Sequential Debugging Module 44

4.2 Limitations 4 5

4.3 Examples 47

4.3.1 Division by Zero Error 47

4.3.2 Memory Errors 48

4.4 Implementation Details for the Sequential Debugging Module 50

4.5 Summary 50

5 Message Debugging 51

5.1 Interactive Message Debugging 51

5.2 Message Queries 54

5.3 User Defined Queries 54

5.4 Built-in Message Queries 57

5.5 Discussion 60

5.6 Summary 61

6 Deadlock Detection and Correction 62

6.1 Deadlock Detection and Correction 62

6.2 Description of Problem 63

6.3 The Algorithm 63

6.4 Algorithm accuracy • 67

6.5 Message tags 82

6.6 Summary 83

iv

7 Protocol Conformance Checking 84
7.1 Between Testing and Verification 84

7.2 Protocol Checking and Verification 86

7.3 Protocol Constraint Specification 87

7.3.1 Protocol Contents 87

7.4 The PCSL Grammar and Semantics 88

7.5 Examples 9 1

7.5.1 The Simplest Protocol 92

7.5.2 Pipe-and-Roll Matrix Multiplication 93

7.5.3 A Partial Differential Equation Solver 95

7.6 Online Checking • • 98

7.6.1 Strictness 99

7.7 Offline Checking 99

7.8 Protocol Prediction 100

7.9 Implementation 100

7.10 Discussion 101

7.10.1 State Dependent Communication 102

7.11 Summary 1 0 3

8 Buffer Allocation in Message Passing Programs 104
8.1 Motivation and Related Work 105

8.2 Buffer Allocation Problems 107

8.3 The Non lock ing Buffer Allocation Problem 109

8.4 Approximations of BAP using NBAP 112

8.5 Discussion 116

8.6 Summary 117

9 Conclusion and Future Work 118
9.1 Conclusion 118

9.1.1 The Sequential Level 119

9.1.2 The Message Level 119

9.1.3 The Protocol Level 120

9.1.4 Summary 122

9.2 Future Work 123

9.2.1 Further Development 123

Bibliography 125

v

Appendix A A Complete Example of a Millipede Session 132

Appendix B The PCSL Grammar and Semantics 134

B.1 The PCSL Grammar and Semantics 134

B. 2 A Complete Example Using PCSL/MOPED 135

Appendix C The MQL Grammar 137

C. 1 The Mill ipede Query Language Grammar 137

Appendix D Millipede Screen Shots 139

Appendix E Theoretical Framework for The Buffer Allocation Problems 141

E.1 Definitions 141

E.1.1 The Graph Based Framework 142

E.1.2 Colouring the Communication Graph 143

E.2 Useful Lemmas 145

E.3 Buffer Allocation in Systems with Receive Side Buffers 147

E.3.1 The Buffer Allocation Problem 147

E.3.2 The Buffer Sufficiency Problem 149

E.3.3 The Nonblocking Buffer Allocation Problem 153

E.4 Proof of Correctness of the Nonblocking Buffer Allocation Algorithm 155

E.5 Buffer Allocation in Systems with Send Side Buffers 157

E.6 Buffer Allocation in Systems with Send and Receive Side Buffers 158

E.7 Buffer Allocation in Channel Based Systems 162

E.7.1 The Buffer Allocation Problem 163

E.7.2 The Buffer Sufficiency Problem 165

E.7.3 The Nonblocking Buffer Allocation Problem 169

E.8 Summary 169

vi

List of Figures

2.1 Using default buffers 12

2.2 Explicitly allocated buffers 14

2.3 The sequential versus the parallel programming domain 15

2.4 Top-down versus bottom-up debugging 27

2.5 Message passing widens the cause/effect chasm 30

3.1 Implementation of Millipede 39

3.2 Examples of redefined PVM functions 40

4.1 Example of the importance of logging PVM function return values 45

4.2 An application with communication library and Millipede 46

4.3 Sequential code with divide by zero 47

4.4 Using Gdb for sequential debugging 48

4.5 Source code with a memory error 49

4.6 Using Purify to locate a memory error 49

5.1 Missing value in a log file 52

5.2 Inspecting and changing message content 53

5.3 Executing the ma tch query 56

5.4 MQL code for the ma tch query 57

5.5 Executing the l o c a t e query 58

5.6 MQL code for the l o c a t e query 58

5.7 Executing the s t a t u s query 59

5.8 Executing the dump query 60

6.1 A simple Error 64

6.2 Executing the matching algorithm 67

6.3 Al l valid communication configurations in C 2 68

6.4 T h e s e t B (u i , l) 69

vii

6.5 Example of increasing B sets 70

6.6 Example of overlapping B sets 71

6.7 Configurations reachable in k steps from the configuration 0011 72

6.8 Intersections in C 2 ; 77

6.9 Failure rate for the deadlock correction algorithm 82

6.10 Introducing message tags 83

7.1 Adding elements to the symbol table 88

7.2 How to check a message against a protocol line 91

7.3 Semantics for a PCSL line 91

7.4 Example o f /? [] { } () - * /? [] { } () ; 92
7.5 Example of j8[]{i}()->i8[]{(t +!)%"}() " V i : 0 < i & & i < n - 1 ; 93

7.6 Algorithm for the master of the pipe-and-roll matrix multiplication 93

7.7 Algorithm for the slave of the pipe-and-roll matrix multiplication 94

7.8 The pipe-and-roll part of the matrix multiplication algorithm 95

7.9 Algorithm for the master algorithm for a differential equation solver 96

7.10 Algorithm for slave algorithm for a differential equation solver 96

7.11 P i - Version 1 of the protocol specification 96

7.12 V[- Extended version 1 of the protocol specification 97

7.13 Graphical representation of V2 98

7.14 7*2 - Version 2 of the protocol specification 98

7.15 V3 - Version 3 of the protocol specification 98

7.16 V3 - Extended version 3 of the protocol specification 99

7.17 The four different stages of the pipe operation 102

8.1 An unsafe communication graph 108

8.2 A general t-ring 109

8.3 Communication dependences . . 110

8.4 The NBAP algorithm 110

8.5 Communication graph for a 2 x 2 worker system 111

8.6 Executing the n b a p command in Millipede 112

8.7 Detailed information about buffer requirements using n b a p 112

8.8 Examples of worst and best case approximations 113

8.9 Introduction of epochs into a communication graph 114

8.10 Shortening the arrival intervals using epochs 115

8.11 Sub-epochs 116

8.12 Barriers using asynchronous communication 117

viii

A. 1 A complete sequential debugging session 133

B. 1 The PCSL BNF grammar 134

B.2 Semantics for the PCSL grammar 135

B. 3 A complete example using MOPED 136

C. 1 The MQL grammar 138

D. 1 The Millipede startup screen 139

D.2 Screen shot illustrating interactive message debugging 140

D. 3 Screen shot showing the status monitor 140

E. 1 Order of execution can cause deadlock 141

E.2 A communication graph with a 2-ring 143

E.3 Dependency cycle in G(S) 143

E.4 Construction of G 148

E.5 The construction of the'components 150

E.6 The disperser component 151

E.7 vi<c+k is communication dependent on viiC 154

E.8 Algorithm for nonblocking buffer assignment 154

E.9 A 2 x 2 worker process mesh 156

E.10 Nullifying send side token pools 159

E.11 Reduction from 3SAT to N B A P s r 160

E. 12 The clause representation in epoch j 164

E.13 Simulating m tokens by m components 166

ix

List of Tables

2.1 Dimension 1. Why is an error hard to find? 17

2.2 Dimension 2. How is an error found? 18

2.3 Dimension 3. What is the root cause of the error? 20

5.1 The Senders relation 54

5.2 The Receivers relation 55

5.3 The SentMessages relation 55

5.4 The ReceivedMessages relation 55

5.5 The built-in queries 60

6.1 Examples of the size of B(v,e) 73

6.2 Distances between valid configurations in V 3 C C 3 74

6.3 The rate of growth of c, 75

6.4 Number of valid configuration at different distances in Vn 76

6.5 Intersection sets for various values of k and k' in C 2 77

6.6 Sizes of intersecting B sets 78

7.1 The MOPED Strictness levels 99

7.2 Prediction table for the V'z protocol specification 100

9.1 Results for various buffer placements schemes 122

E.1 Results for various buffer placement schemes 170

x

Acknowledgements

"Kind words can be short and easy to speak, but their echoes are truly endless."
— Mother Theresa of Calcuta

I would like to thank Alex Brodsky for taking such an active interest in the buffer allocation aspect
of message passing programming. The work presented in chapter 8 is done in close collaboration
with h im-many thanks for the hard work on the proofs. I would also like to thank my supervisor,
Professor Alan Wagner, for his persistence in pushing the work on the buffer allocation problems,
and for his financial support and ability to balance practice and theory in my dissertation. In
addition, many thanks go to Professor Peter Welch from the University of Canterbury at Kent,
Professor Dyke Stiles at Utah State University in Logan, Utah, and WOTUG for conference support
on numerous occasions. I would also like to thank Doctor Bettina Speckmann for her help on
proof reading the material presented in section 6. In addition, many thanks are extended to
Yvonne Coady for always telling me that I was on the right track and to Chamath Keppitiyagama,
Joon Suan Ong and Dmitry Brodsky for everyday support in the DSG. Also thanks to Professor
Norm Hutchinson and Professor Kris De Voider for being on my committee. For financial support,
acknowledgments and thanks go to Forskningsradet (The Research Academy) in Denmark, and to
Randers Reb. Finally, I want to thank the most important people in my life, my parents, Karen
and Finn, and my sister Lisa, for always supporting me, never questioning my decisions to remain
in school, for what seems like forever, and for all those airline tickets home for Christmas, and
the motorcycle loan.

The University of British Columbia
July 2003

xi

Chapter 1

Introduction

"If debugging is the art of removing bugs,

then programming must be the art of inserting them."

— Unknown

One of the most interesting and fastest growing fields in parallel and distributed comput

ing is the field of grid computing-to provide on-demand computing. Tom Hawks, grid computing

general manager for IBM, states that businesses can improve util ization of their technology infras

tructures by 30 percent or more by taking advantage of Grid technologies to enable on-demand

computing [IBM02].

Hawk identifies five industries where Grids are likely to have the biggest near-term impact: Fi

nancial Services, which can harness Grids for derivative analysis, statistical analysis and portfolio

risk analysis; Life Sciences, for cancer research, new drug discovery, protein folding and protein

sequencing; Energy, for seismic analysis and reservoir analysis; Manufacturing, for mechanical

design, process simulation, finite element analysis, and failure analysis; and entertainment, for

digital rendering. In addition, Hawk adds: "Each of these industries, while different, shares

similar business challenges that can be addressed by the unique benefits that Grids can deliver,

including on-demand computing, business transformation, data sharing and IT optimization."

Linking computers through Grids to aggregate their power promises to deliver the immense

processing capabilities of supercomputers to new venues. For instance, a financial institution

could use Grid computing to offer higher levels of service to their best customers for risk man

agement or portfolio analysis. A pharmaceutical company could amalgamate the power of several

supercomputers and make the data available to researchers, who access the Grid to collaborate

in the development of new drugs. The use of Grid computing as an on-demand utility promises

to deliver computing power on a pay-as-you-go basis, as accessible as electricity.

1

1.1. The Debugging Problem 1

A similar system, the NetSolve client-server system [Net] enables users to solve complex

scientific problems remotely. This system allows users to access both hardware and software

computational resources distributed across a network. NetSolve searches for computational

resources on a network, chooses the best one available, solves the problem using retry for fault

tolerance, and returns the answers to the user.

If we turn our attention to more tightly coupled systems, such as large clusters, yet another set

of problems become tractable. In 1991, the US Congress passed the High Performance Computing

Act of 1991 (Public Law 102-194), which authorized The Federal High Performance Computing

and Communications (HPCC) Program. One class of problems developed in conjunction with the

HPCC Program was dubbed 'Grand Challenge Problems' by Dr. Ken Wilson of Cornell University,

a physicist and Nobel laureate. Since then, various committees and government agencies have

added others to the original list. These problems are characterized as 'fundamental problems in

science and engineering that have broad economic and/or scientific impact and whose solution can

be advanced by applying high performance computing techniques and resources'. They address

issues of great societal impact, such as biomedicine, the environment, economic competitiveness,

and national security.

One of the Grand Challenge problems includes weather prediction, a task that relies heavily

on the availability of computing power; tomorrow's weather report must be available before

tomorrow arrives. To obtain such computing power many systems make use of large clusters

tightly coupled by a fast network. If we look at the Top 500 list of the fastest computers in the

world [Top], an interesting trend appears: many of the fastest machines in the world today are

indeed clusters made up of (fairly) ordinary PCs connected by a fast network.

Whether dealing with a system of loosely coupled home PCs or a tightly coupled cluster

of high performance PCs in a research lab, the same important question arises: how do we

program these large parallel systems, since they do not share any memory, and information must

migrate from one process to another through the network? The most widely used technique for

exchanging data on such systems is message passing. Message passing involves a sender explicit ly

sending a message to a receiver containing the data to be exchanged. Some of the most used

message passing systems include PVM (Parallel Virtual Machine) [Gei94] and MPI (Message Passing

Interface) [Don94]. Many of the fastest computers in the world today use some dialect of MPI,

combined with Fortran or C.

1.1 The Debugging Problem

The need for debugging is present in any software development project. Programs have errors

and bugs, and these need to be located and corrected. Many approaches have been suggested

in the literature, but in practice, the following two approaches are most used. The first is the

1.1. The Debugging Problem 3

traditional and well known debugging-by-print-statements. This approach involves inserting print

statements, which display information to the screen or write to a file, into the program being

debugged.

This approach is stil l widely used. In [Pan93c], it is estimated that up to 90% of programmers

stil l rely exclusively on print statements in their code as the only means of debugging.

Logging, or tracing is a more pragmatic approach; instead of printing to the screen, log files

are created. The programming language Java has classes for creating such log files or traces.

The tracing can be switched on for debugging purposes, and when debugging has finished, can

be turned off; thus the programmer does not have to go through the source code to delete the

print statements. The same effect can be achieved with C/C++ by using # i f d e f . . . # e n d i f

constructions, and setting flags on the compiler command line.

The second approach uses debugging tools. Traditional sequential debugging tools are designed

to easily and efficiently provide needed information to debug a sequential program: they provides

key views into the different components of such programs and allows the programmer to alter

the state of the running program. Examples of such views are stack traces, variable values, and

break points. One of the key features of any sequential debugger is the ability to view and alter

variable values. That is, the state of the program; the variables of a sequential program can

be considered the key players-the core-o f the program. Much time is spent verifying whether

variables have the correct values, and that the correct branches of i f and s w i t c h statements

are taken based on expressions that contain variables among others.

Research such as [Eis97] has shown that one important reason errors are hard to find is because

the cause and effect are often separated by great distance in the code; the errors are most often

found through print statements or similar debugging techniques, and the root cause often turns

out to be a memory problem, that is, pointer errors or other forms of memory corruption. This

research is based on sequential programs, but as we discuss later, the cause/effect chasm widens

significantly when introducing message passing.

A number of tools for parallel debugging have been proposed throughout the years, but in

general, these tools are not widely used [Pan93b, Pan93a, Pan93c]. Some complain that the tools

are hard and tedious to use, and fail to provide the information users really need and want.

One major problem is the information overload that many of these tools suffer from [Pan99].

Too much information is presented to the programmer, thus making the debugging task difficult.

Often, this information overload is caused by the tool trying to give the user a global view of

the program. That is, taking a top-down approach to debugging without providing the correct

views and filtering functions for the user to easily find the information necessary to complete the

debugging task.

Al l the problems and issues mentioned so far arise in the sequential programming domain.

1.2. Problem Definition A

Once parallelism is introduced, not only do these problems become even more prevalent, but

new problems are introduced. Not only does the programmer have to deal with asynchronously

executing processes on multiple machines, but the message passing increases the distance be

tween the cause of an error and its effect, that is, the location where the error is exhibited.

Incorrect variable values may be communicated between processes, making an otherwise correct

process behave incorrectly. This increase is not only in the distance in the code as experienced in

the sequential domain with, for example, function or procedure calls. When multiple processes

execute simultaneously, the cause of an error can originate in one process but the effect man

ifests in another, thus increasing the distance in the code. Another aspect is t ime; when data

values propagate from one process to another, the amount of t ime that passes from the cause to

the effect of an error also increases.

One example of the cause/effect chasm in t ime is deadlock. Consider a number of processes

in a ring topology, each receiving from its left neighbour and sending to its right. If one of these

processes sends its message to a wrong process, eventually all the processes block in receive

calls, and the system deadlocks. Not only is the cause and the effect spread far apart in the

code, but the time that elapses from the wrong send to the deadlock might be significant.

In summary, the amount of information available to the programmer when debugging n con

currently running processes is magnified, thus making the debugging task even more daunting.

1.2 Problem Definition

In this dissertation we show the following:

• By decomposing the debugging task of parallel message passing programs according to a

number of different levels, each specifically concerned with one type of error (sequential,

message content, protocol etc.), it is possible to provide tools specifically tailored to finding

these types of errors. At the same time, the amount of useless information given to the

user is reduced. We refer to this technique as Multilevel Debugging.

• By extracting information about the messages and the protocol from the parallel program,

we can focus on specific debugging problems. This has led to a number of new techniques,

analyses and algorithms, that can assist the programmer greatly. Many of these can be

incorporated into a multilevel debugging tool, such as Millipede.

We have implemented Millipede, a prototype multilevel debugger, that implements the algo

rithms and analyses described in this thesis. In addition, a multi level debugging strategy provided

in Millipede is closely coupled with the development cycle of a parallel program, whether it is

written from scratch or adapted from an existing sequential program.

1.2. Problem Definition 5

Millipede follows the model 'You must crawl before you can walk' , which in the parallel pro

gramming world translates into 'You must fix your pointer errors before you can pass messages'.

In general, Millipede considers the various parts of a parallel message passing program as separate

levels of the program. Each level has a specific type of information needed to find errors and

correct them. The information useful to the programmer to locate and correct errors in the

sequential code might not be the most useful for tracking down errors in the communication

patterns of the overall program. The three major levels that we propose, to which the multi

level debugging technique should adhere, arise from our definition of a parallel message passing

program: A parallel message passing program consists of a number of sequential processes bound

together by messages according to a protocol. Thus the three levels are these:

• Sequential code - the code executed by each process. This can be different pieces of code

(e.g., a data driven pipeline computation where data passes from process to process) or

a number of instances of the same piece of code (e.g., an SPMD program—Single Program

Multiple Data, a number of processors executing the same program-such as a processor

farm, for example).

• Messages - the individual messages passing from one sender to one receiver. A typical

message passing program consists of a number of such messages; each message originates

at a send event (or in some cases a multicast or broadcast event) and ends up at a receive

event in another (possibly the same) process.

• Protocols - The collection of messages and the pattern in which they are exchanged makes

up the protocol of the program.

Each level can be decomposed into a number of sublevels. As we illustrate, the protocol level

contains several interesting analyses and algorithms that all deal with the protocol level of a

parallel message passing program.

. The levels can be viewed as a broadened view of the program, as we 'cl imb up' the levels.

The main focus of the sequential level is the sequential code executed within one process. The

message level is concerned with the communication between two processes, while the protocol

level focuses on the entire program, and the overall pattern according to which messages are

exchanged. While the levels may overlap, the type of information needed at each level expands

to include more and more processes as the view expands.

In addition to correcting errors after they have occurred and potentially crashed the program,

the added information that can be collected about the protocol and the message passing patterns

can also be used for preemptive debugging purposes. An example of such extra information is the

protocol and message passing pattern, which can be used to predict deadlocks due to insufficient

buffers.

1.3. Thesis Statement 6

The multi level debugging strategy is a bottom-up approach; that is, the programmer uses tools

specifically tailored to finding sequential errors in the straight line code of his program before

moving on fixing message content errors and protocol errors.

1.3 Thesis Statement

The points from the previous sections can be summarized in the following four points:

1. A decomposition of the parallel programming domain into three levels (sequential, mes

sages, and protocol) leads to the multi level methodology for debugging parallel message

passing programs. This methodology also provides a guide and framework for developing

and integrating new tools into the debugging system.

2. Extracting the information present in parallel message passing programs, such as message

content and protocol information, facilitates the design of tools tailored to specific error

types at different levels of the parallel programming domain, which further allows automa

tion of a number of analyses that can not easily be performed otherwise.

3. Such tools map errors back to the source code, and sometimes suggest how to correct them.

4. Such tools can be implemented with a simple command-line interface and require minimal

configuration. In addition, no translation or rewriting of the source code is necessary, which

makes them directly applicable to the source code.

1.4 Contributions

The literature suggests that tools are not widely used in the parallel programming community.

Reasons for this include wrong abstraction, complicated interfaces, and lack of focus on the

problem at hand. This means that many programmers stil l rely on print statements as their only

debugging tool. After reviewing many of the faults and shortcomings of tools in general and more

specifically tools for debugging parallel message programs we formulate a bottom-up debugging

strategy, referred to as multilevel debugging. This strategy not only offers a methodology for

debugging parallel message passing programs, but also serves as a design and implementation

framework for new tools.

Using details about the three level decomposition of the parallel domain (sequential, mes

sages, and protocol) and error types, we derive a number of general design goals for tools.

Examples of these goals are navigation tools at different levels, views for key players, state

displayed on request, and relations computed by the tool. In addition a number of specific goals

for debugging tools are derived. Examples include the support for finding and correcting specific

1.4. Contributions 7

types of errors, applicability to source code with a mapping back to the error in the source, as

wel l as providing tools that do not require any rewriting or transformation of the code.

We present the Millipede Debugging System, a prototype of a mult i level debugger for parallel

message passing systems, and show how such a system can be implemented for message passing

systems such as PVM and MPI. With the basic framework in place, we implement a number of

specific tools, al l tailored in accordance to our design goals. These tools target different different

levels of the parallel programming domain, and are specifically tailored to an error type at one of

the three levels of the domain. We show how a specific error types can be located and mapped

back to the source code.

One of the most important criticisms of existing tools is that the wrong granularity or ab

straction often makes the tool either useless for a specific debugging task or create information

overload. Information overload is an excess amount of information presented to the user at one

t ime, which in turn makes the debugging task daunting and unnecessarily more complicated. The

granularity and level of abstraction of each of the tools we present is set in accordance with the

specific error type that the tool is tailored for, thus eliminating much of the excess information

not related to the specific debugging task.

We start at the lowest level, the sequential level, where we show how a sequential process can

be extracted and debugged using existing sequential debugging tools. This allows the programmer

to debug the sequential code of one process at a t ime, and thus not have to worry about a number

of processes running at the same time. In addition, it enables the use of existing debuggers like

Gdb [Gdb], and other tools such as purify [Pur] and program profilers. By providing the user

with the ability to use well known sequential tools on the sequential code of a parallel program,

we provide a way of matching the abstraction of the tool to the abstraction of the debugging

task. In addition, no rewriting of the code is needed to make use of these sequential tool. We

demonstrate the usefulness of this tool by showing how a number of different sequential errors

are located and corrected by extracting the process and using Gdb and Purify. We have provided

a translation of the sequential level of the parallel programming domain into the sequential

domain, thus covering all types of sequential errors by allowing the user to deploy any sequential

tool at this level.

At the message level, we present two techniques related to debugging messages and their

content. The first, referred to as interactive message debugging, allows the user to inspect and

change the value of messages as they are sent or received. This technique, coupled with the

sequential debugging module, allows for the debugging of one process from a parallel system

while having the ability to inspect and correct the content of the messages, and also allows the

user to perform unit testing of each of the processes during the development cycle. This means

that separate parts of the system can be tested independently, which allows for hypothesis testing

1.4. Contributions 8

that includes the message content to take place, without the rest of the parallel system running.

The second technique is a query language referred to as MQL (Millipede Query Language) that

allows the user to write queries using a simple database language and a number of relations

containing information about the messages. This provides structured access to the messages and

their content, and allows for the computation of relations. Access to messages is considered

important as these are 'key players' at this level. In addition, these relations contain information

that map the content of the messages back to the source code, that is, lines where data was

packed/unpacked and messages sent and received. We demonstrate how to write simple queries

to compute a number of useful relations.

At the last level, the protocol level, we implement three different tools. The first tool is an

implementation of an algorithm for correcting deadlocks in message passing systems. We show

that if a deadlock is caused by a small number of typographical errors in the send or receive

calls, the presented algorithm can, with high probability, suggest the correct way of removing

the deadlock. We formally argue for the validity and the accuracy of the algorithm by proving an

upper bound for the error rate. By focusing on the 'deadlock error type' we have raised the level

of abstraction such that an automatic analysis can be performed, and in addition, the algorithm

wil l provide a way to correct the program to remove the deadlock. Again, information mapping

the error back to the source is provided, as well as information about which lines to change and

what changes to make.

The second tool at this level is a protocol conformance checking tool. We introduce a tool

that allows the programmer to specify a number of constraints on a communication protocol of

a parallel system in as much detail as he wants. The tool is used to specify constraints on the

message passing pattern of the communication protocol, as opposed to both the temporal and

spatial aspects. The runtime system of Millipede reads the protocol specification and checks

each message against the specification, and reports any errors. The constraint specification can

start out very general, and become increasingly complex as the program, or as the debugging

effort evolves. This tool serves as a debugging tool that can be used in connection with iterative

hypothesis testing as wel l as a tool that can be deployed during the development cycle. One main

argument for this tool is the ability to bridge the gap between a protocol specification (verified

or not) and an actual implementation; even if a protocol has been verified using verification

tools, when implementing it, the risk of making mistakes stil l prevails. This tool provides a way

to subject an implementation of a protocol to a number of constraints that are automatically

checked by the runtime system.

The motivation for the last tool at this level is the problem of guaranteeing fc-safety, (i.e., the

problem of determining the buffer requirements for message passing systems). We investigated k-

safety for four buffering schemes, and in all cases showed that the problem remained intractable.

1.4. Contributions 9

We showed that the related problem of computing the number of buffers needed to avoid deadlock

and blocking sends is tractable. This algorithm provides an upper bound that can be used in

combination with techniques for inserting synchronization points into the code to ensure A;-safety

for any k.

We show a number of results for different buffer placement schemes (sender side buffers, re

ceiver side buffers, etc.), some of which are proven intractable, and some are proven tractable.

We develop an algorithm for computing the number of buffers needed to avoid deadlock and

blocking in a system with receive side buffers only. The original fc-safety problem for all buffer

schemes is intractable. Using the algorithm we developed to avoid blocking, we describe tech

niques to approximate solutions to the fc-safety problem.

The decomposition of the parallel programming domain into three levels and the study of

error types induces a multi level debugging strategy; a bottom-up approach where the error type

determines what type of tool should be applied. Furthermore, it states that errors at lower levels

should be attended to before turning to errors at higher levels. That is, pointer errors and array-

out-of-bound errors should be corrected before turning to debugging the protocol. In addition,

this decomposition, based on levels, and error types provides a framework for developing new

tools, which again drives the debugging process.

We showed that it is possible to develop tools according to the multi level debugging method

ology. As described in the following chapters we have provided a number of such tools at al l three

levels. The tools all have simple user interfaces, and no rewriting of the source code is necessary

to deploy the tool. In addition each tool maps the errors in question directly back to the source

code, and in some cases suggest how to remove the error.

The work in Chapters 4, 6, 7 and 8 has been published as conference papers in the parallel

programming community (the sequential debugging module, presented in Chapter 4, has been

published in [BWOO]). The deadlock detection and correction work, described in Chapter 6,

appears in [BW01a]. The protocol checking tool has been published in [BW01b] and finally, parts

of the joint work with Alex Brodsky on the buffer allocation problems, found in Chapter 8, has

been published in [BBW02].

Chapter 2

Background and Related Work

"The power of accurate observation is commonly called cynicism

by those who have not got i t . "

- George Bernard Shaw

"If we begin with certainties, we wi l l end in doubt.

But if we begin with doubts and bear them patiently,

we may end in certainty."

— Francis Bacon

2.1 Background and Rationale

Debugging sequential programs can be a tedious and time consuming task. The time required can

be greatly reduced by using some of the many different tools developed for this task. Some of

the more well known debugging tools include Gdb [Gdb] and purify [Pur], and various integrated

development environments accompanying programming languages. Unfortunately, these tools

are not as readily available in the parallel programming domain.

To better understand the lack of tools and the limited use of existing tools, the next section

briefly introduces some of the problems encountered when working in the parallel programming

domain and some of the observations made about debugging in general.

10

2.1. Background and Rationale 11

2.1.1 The Parallel Programming Domain
Parallel programming involves a set of components that must each be considered when develop

ing a parallel system. This set, which we regard as the parallel programming domain, includes,

among others, the following aspects of the code: sequential code, interprocess communication,

synchronization, and processor uti l ization. Understanding the issues involved with the compo

nents of this domain makes understanding the source and manifestation of errors easier. This

understanding is useful for determining the approach needed to efficiently debug parallel pro

grams. In addition, it helps determine where to focus the debugging effort, depending on which

component of the domain the programmer looks for errors in.

In [Fos95] a four stage model for constructing a parallel program, referred to as PCAM,

representing the parallel programming domain is suggested. The four components are:

1. Partitioning. The computation to be performed and the data which it operates on are

decomposed into small tasks.

2. Communication. The communication required to coordinate task execution is determined,

and the appropriate communication structures and algorithms are defined.

3. Agglomeration. The task and communication structures defined in the first two stages of a

design are evaluated with respect to performance requirements and implementation costs.

4. Mapping. Each task is assigned to a processor in a manner that attempts to satisfy the

competing goals of maximizing processor util ization and minimizing communication costs.

The two last components, agglomeration and mapping, are mostly concerned with perfor

mance issues which, while important, are outside the scope of this dissertation.

For the first two components, partitioning and communication, we propose the following

breakdown:

1. Algorithmic changes. Most parallel programs begin life as a sequential program. If parallel

algorithms are based on, or derived from, existing algorithms and/or programs, then a

transformation from the sequential to the parallel domain must occur. The transformation

of a sequential program into a parallel program typically consists of inserting message

passing calls into the code and changing the existing data layout; for example, shrinking the

size of arrays as data is distributed over a number of processes. However, if the sequential

algorithm is not suitable for parallel implementation, a new algorithm must be developed.

For example, for the pipe-and-roll matrix multiplication algorithm [FJL+88] does not have

a sequential counterpart.

1. Background and Rationale 12

2. Data decomposit ion. When a program is re-implemented, the data is distributed according

to the algorithm being implemented. Whether it is the transformation of a sequential

program or an implementation of a parallel algorithm from scratch, data decomposition

is a nontrivial task that cannot be ignored when writing parallel programs, as not only

correctness, but efficiency also greatly depends on it.

3. Data exchange. As parallel programs consist of a number of concurrently executing pro

cesses, the need to exchange data inevitably arises. This problem does not exist in the

sequential world of programming where al l the data is available in the process running the

sequential program. However, in parallel programs, the need for data exchange is present.

On a shared memory machine, the data can be read directly from memory by any process.

There is still the problem of synchronized access to shared data to consider, but no sending

and receiving of data is needed. When working with a cluster of processors, each having a

separate memory, message passing becomes necessary.

When message passing systems like PVM and MPI are used, the programmer is responsible for

a number of different tasks: specifying the correct IDs of the involved processes, packing

messages into buffers, using the correct functions to pack the data depending on the type,

and assigning tags to the message. In part, the difficulty of using a message passing library

like PVM is the low level of the interface of the message passing system. Figure 2.1 shows

an example of the minimal number of steps that are needed to perform a send and a receive

of 2 integers (stored in variables a and b) , respectively.

Figure 2.1: Simple PVM program that exchanges two values using default buffers.

As Figure 2.1 illustrates a number of low level message passing library function calls must

be performed to send a message. Line 1 initializes the message passing system to use the

default send buffer with default data encoding. Line 2 packs the integer a into the send

buffer according to the encoding scheme specified in the pvm_initsend cal l . pvm_pkint
can be used to pack arrays of integers as wel l ; the second parameter is the number of

Sender:

2:
3:
4:

pvm_initsend(PvmDataDefault);
pvm_pkint(&a, 1, 1) ;
pvm_pkint(&b, 1, 1) ;
pvm_send(Receiver, 22);

Receiver:
5: pvm_recv(Sender, 22);
6: pvm_upkint(&myA, 1, 1);
7: pvm_upkint(&myB, 1, 1);

Background and Rationale 13

integers to pack, and the third is the stride. In this example, only one value is packed, thus,

the number of values to pack and the stride are 1. Finally, line 4 sends the message to a

process with task ID Receiver with message tag 22. The message tag is an integer number

that allows the message passing system to differentiate message types. A typical use of

the message tag is to use different values for different message types; this also allows the

receiver to specify a specific type of message in receive calls, thus allowing messages to

overtake each other in the message buffer queues at their destination.

The second part of Figure 2.1 is the code necessary to receive the message. Line 5 issues a

receive cal l , which requests a message from a sender with the task ID Sende r and message

tag 22. This receive call is blocking. If no message is available from the correct sender with

the correct tag, the receive call simply blocks until such a message arrives. The sender task

ID and the tag can be specified as wild cards that match anything, but for reasons, such as

the ability to read and understand a program, wildcards should be used with care. More

importantly, the quality of some of the analyses we introduce later wi l l increase when the

use of wild cards is reduced.

There exist nonblocking, or timer controlled, versions of the receive cal l , but these add

further complications to the code. Once the message has been passed to the process by

the underlying message passing system, it must be unpacked into the destination variables.

The pvm_upkint is the exact opposite of the packing cal l , it unpacks values into variables.

Again, the number of values and the stride can be specified. The low level nature of

a message passing library, such as PVM or MPI (MPI does support packing complex data

structures in one cal l , but sender, receiver, tags, and variables must stil l be specified),

increases the risk of introducing errors: a wrong sender or receiver may be specified, wrong

variables are packed, or values are packed or unpacked in the wrong order.

These are problems that can occur when the default buffers are used. If the programmer

allocates buffers explicitly, instead of using the default buffer, the issues of buffer manage

ment arise. One single send buffer is not always sufficient, the prototype debugger that we

implemented in connection with this work makes heavy use of allocated buffers. Figure 2.2

shows an example using an allocated buffer.

Only one send buffer can be active at any time during execution. This means that if a process

uses more than one send buffer, explicit buffer handling is necessary. When creating a new

send buffer, the old one must be saved so it can be restored later. Line 1 creates the new

send buffer, line 2 stores the old buffer and activates the new. Line 3 and 4 pack the data

stored in variables a and b, and line 5 sends the message to Receiver with tag 22. Line 6

restores the previous send buffer and finally, line 7 deletes the newly allocated send buffer.

The receiver in Figure 2.2 is identical to the one in Figure 2.1. The pvm_recv cal l returns

2.1. Background and Rationale 14

Sender:
1 newSendBuffer = pvm_mkbu£(PvmDataDefault);
2 oldSendBuffer = pvm_setsbuf(newSendBuffer);
3 pvm_pkint(&a, 1, 1) ;
4 pvm_pkint(&b, 1, 1) ;
5 pvm_send(Receiver, 22);
6 pvm_setsbuf(oldSendBuffer);
7 pvm_freebuf(newSendBuffer) ;

Receiver:
8 pvm_recv(Sender, 22);
9 pvm_upkint(&myA, 1, 1) ;
10: pvm_upkint(&myB, 1, 1);

Figure 2.2: PVM code for sending and receiving two values using explicit ly allocated
buffers.

the identifier of the new active receive buffer; this is a buffer created by the underlying

system. If the receiving process works with multiple buffers simultaneously, pvni_setrbuf
can be used in a manner similar to pvm_setsbuf. The added complexity of managing send

or receive buffers naturally increases the risk of introducing errors, and further complicates

the use of the message passing libraries. Data exchange is concerned with the point to

point communication of data between two processes, and not the overall communication

structure of the entire program. Thus, for every data exchange, there is one send operation

and at least one receive (if broadcast or multicast is used there can be multiple receivers).

4. Protocol specif icat ion. The protocol for a parallel system is defined as the content, order,

and overall structure of the message passing between communicating processes. Along with

the data exchange, the communication protocol of the program is a new concept that has

been introduced by parallelizing the algorithm.

Figure 2.3 shows a stylized representation of a sequential and a parallel program. As shown, a

sequential program is depicted as a single box, representing the sequential code of the program.

The parallel program is represented as a number of boxes, each consisting of three nested boxes.

The innermost of these boxes represents the sequential program that each process in the parallel

program executes. The sequential code of the parallel program can either be an adaption of the

existing sequential program, or a completely rewritten piece of code. The middle box represents

the messages being sent and received in the system (the data exchange), and the outer box

represents the protocol that the communicating processes must adhere to.

2.2. The Debugging Process 15

Sequential Program Sequential
Program Transformation Program

1 Program Messages
Communication Protocol

N Programs

Figure 2.3: In the sequential programming domain we work with one (sequential)

program, whereas in the parallel domain we encounter a number of parallel processes

making up a parallel program. These parallel processes each execute a sequential

program, but in addition, send messages to other processes while adhering to a commu

nication protocol. The messages and the protocol are represented as boxes enclosing

the sequential program as new levels.

2.2 The Debugging Process

In this section we introduce the debugging problem/process, briefly present ideas about how to

debug in general, describe the problems with current approaches, look at the purpose of our

research, and explain how it differs from existing systems.

2.2.1 Iterative debugging

A well known approach to debugging was proposed by Araki, Furukawa and Cheng [AFC91]. They

describe debugging as an iterative process of developing hypotheses and verifying or refuting

them. They proposed the following four step process:

1. Initial hypothesis set. The programmer creates a hypothesis about the errors in the pro

gram, including the locations in the program where errors may occur, as wel l as a hypothesis

about the cause, behaviour, and modifications needed to correct them.

2. Hypothesis set modif icat ion. As the debugging task progresses, the hypothesis changes

through the generation of new hypotheses, refinement, and the authentication of existing

ones.

2.2. The Debugging Process 16

3. Hypothesis select ion. Hypotheses are selected according to certain strategies, such as

narrowing the search space and the significance of the error.

4. Hypothesis ver i f icat ion. The hypothesis is verified or discarded using one or more of the

four different techniques: static analysis; dynamic analysis (executing the program); semi-

dynamic analysis (hand simulation and symbolic execution) and program modification.

If the errors have not been fixed after step four, the process is repeated from step two. In the

above model, step four, hypothesis verification, is the focus of our research.

2.2.2 The Why, How and What of Errors

M. Eisenstadt describes in [Eis97] a 3-dimensional space in which sequential errors are placed

according to certain criteria. This classification shows some interesting results, which we briefly

summarize. 51 programmers were asked to participate in a study in which programming errors

are placed into a 3-dimensional space. The 3 dimensions are:

• Dimension 1: Why is the error difficult to find?

• Dimension 2: How is the error found?

• Dimension 3: What is the root cause of the error?

We briefly describe the results of the survey, with respect to each of the dimensions.

Dimension 1: Why is an error hard to find?

This first dimension is concerned with the difficulty of locating the problem, and is further divided

into 5 subcategories:

1. Cause/effect chasm. Often the symptom of the error is far removed in space and time

from the root cause, and this makes the cause hard to detect. Specific instances can

involve timing or synchronization problems, bugs which are intermittent, inconsistent, or

infrequent, and bugs which materialize 'far away' (e.g., thousands of iterations) from the

actual place they were spawned.

2. Tools inappl icable or hampered. These are the so called 'Heisen bugs' [Gra86]. This covers

bugs that go away when switching on the debugging tool. Another type of bug in this category

are referred to as 'context precludes', and covers the cases where memory constraints or

other configuration issues make it impractical or impossible to use the debugging tool.

2.2. The Debugging Process 17

3. WYSIPIG (What You See Is Probably Illusory, Guv'nor) . A piece of code is misconceived;

it does not give the result that it looks like it should produce. An example could be the

number 010 which in Tel does not equal the decimal value 10 (ten), but the octal value 8

(eight). The preceding 0 makes the Tel interpreter treat the value as octal.

4. Faulty assumption/model. The programmer does not understand the underlying system,

model or the environment. An example is assuming the stack grows up rather than down.

5. Spaghetti (unstructured) code. The code is hard to read. This is typically reported as a

reason when programmers work with code they did not write themselves.

Table 2.1 shows how the 51 answers are placed in the above categories for dimension 1.

Category No. of answers Percentage
Cause/effect chasm
Tools inapplicable or hampered
WYSIPIG
Faulty assumption/model
Spaghetti code
No answer

15 29.4%
13 23.5%
7 13.7%
6 11.8%
3 5.9%
8 15.7%

Table 2.1: Dimension 1. Why is an error hard to find?

It is notable that over 50% of the cases are caused by the two first categories. As we see later

on, the first category, the cause/effect chasm is greatly amplified in the parallel programming

domain, and the second category is, as we have already pointed out, one of the problems we are

researching.

Dimension 2: How is an error found?

This dimension is concerned with how an error can be found, and it is divided into four categories:

1. Gathering data. The programmer discovers more using methods such as print statements

and breakpoints. This category includes a number of subcategories:

• Step-and-study, which includes single stepping through the code using a debugger.

• Wrap-and-profile, where profiling information is collected by enclosing the suspect

function inside another function that does the information collecting.

• Print-and-peruse, the most wel l known of the sub categories, involves inserting print

statements and observing the output.

• Dump-and-diff involves comparing different versions of large amounts of information

gathered (e.g., a true core dump).

2.2. The Debugging Process 18

• Conditional break and inspect, which includes the use of breakpoints.

• Specialist profile tool, which includes using standard tools, such as purify to locate

memory leaks.

2. ' Inspeculat ion' . This term covers inspection of the code, hand simulation, and speculation.

Speculation involves leaving the code to think about the problem, then later returning to

try to correct it.

3. Expert recognized c l iche. The programmer receives assistance from other people.

4. Control led exper iments. Once the cause of the error is better understood, specialized

tools or approaches can be applied.

The placement of the answers in dimension 2 can be seen in Table 2.2.

Category No. of answers Percentage
Gather data
'Inspeculation'
Expert recognized cliche
Controlled experiments
No answer

27 53%
13 25.5%
5 9.8%
4 7.8%
2 3.9%

Table 2.2: Dimension 2. How is an error found?

An interesting, but not surprising, result is that data gathering (e.g., print statements) and

hand simulation account for almost 78% of the techniques reported in locating errors. This

result corroborates the result of Pancake [Pan94]: up to 90% of al l debugging is done using print

statements.

While the use of print statements is straightforward when working with sequential programs,

their use in parallel programs is often more complicated. Often, processes run on remote proces

sors, which makes redirecting output to the console difficult. Even when output can be redirected

to the console, al l processes are writing to the same window, thus making the interpretation of

the output a challenging task. This is an example of the information overload theory mentioned

earlier. Furthermore, the order of the output (i.e., the debugging information from the concur

rently executing processes) is not the same for every run, as the processes execute asynchronously

and only synchronize through message passing. A possible solution is to have each process write

its output to a disk file. However, this introduces the problem of nonflushed file buffers; if a

process crashes, the buffer might not be flushed, thus missing output written by the program.

Of course this can be solved by inserting calls to flush the I/O buffers, but if these are missing,

the programmer ends up spending time on debugging the code he added for debugging purposes!

2.2. The Debugging Process 19

In the worst case this can lead the programmer to believe that the process crashed somewhere

between the last print statement that appears in the file, and the first one that does not. A lot

of t ime can then be wasted looking for an error in a place where no error can be found.

Dimension 3: What is the root cause of the error?

This last dimension contains nine categories:

1. Memory: Memory is 'clobbered' or used up. This includes overwriting a reserved portion of

the memory causing the system to crash, and array subscripts out of bounds.

2. Vendor: Compilers generate wrong code or the hardware is faulty (logic boards do not

adhere to specifications or are broken).

3. Design logic: The logic design of the algorithm is wrong. Examples include cases forgotten

or overlooked by the programmer.

4. Initialization: Covers wrong types, redefinition of the meaning of system keywords, or

incorrectly initialization of a variable.

5. Variables: Wrong use of operators or variables.

6. Lexical: Lexical problem, bad parse or ambiguous syntax. These are trivial problems such

as typographical errors.

7. Unsolved: As yet undetermined.

8. Language: Language, semantic ambiguities or misunderstandings. For example, 250K is not

250,000, but rather 256,000 (250*1,024).

9. Behaviour: Unanticipated behaviour by the user that makes the program behave in a

unanticipated way.

Table 2.3 shows that nearly 50% of the errors are caused by the first two categories. This

also perfectly agrees with previous studies where tools and runtime systems are described as

a source of errors [Pan94]. The classification used in dimension 3 is a mixture of deep plan

analysis [Joh83, SSP85] and phenomenological analysis [Knu89]. Deep plan analysis states that

many bugs can be accounted for by analyzing the high level abstract plans underlying specific

programs, and by specifying both the possible fates that a plan component may undergo (i.e.,

missing or misplaced). An alternative phenomenological taxonomy can be found in [Knu89] where

the root causes are divided into nine categories, all very similar to the ones in Table 2.3.

2.3. Related Work 20

Category No. of answers Percentage
Memory 13 25.5%
Vendor 9 17.7%
Design logic 7 13.7%
Initialization 6 11.8%
Variables 4 7.8%
Lexical 3 5.9%
Unsolved 3 5.9%
Language 2 3.9%
Behaviour 2 3.9%
No answer 2 3.9%

Table 2.3: Dimension 3. What is the root cause of the error?

2.3 Related Work

In this section we describe some of the existing approaches to parallel debugging and parallel

system development. We try to point out any shortcomings these tools might have, and compare

them with the theory of errors and debugging presented earlier.

2.3.1 Program Development Environments

One approach to writing programs is to use an integrated development environment (IDE). Some

well known examples in the sequential world include Visual C/C++, Visual Basic from Microsoft,

and the Eclipse and the NetBeans IDEs for Java. Not only do these environments offer support

for program development, but they come with built-in debuggers. The idea of developing pro

grams and complicated systems through a development environment also extends to the parallel

programming domain.

One of the most important tasks of a program development tool is to allow the user to develop

programs in a structured way using some high-level abstraction, such as graphs. An important

side effect of the structure and high-level abstraction is a lowered risk of introducing certain

error types. For instance, certain tools, such as the P V M b u i l d e r tool [BB97], always create

deadlock free message passing code by ensuring that all send calls are matched with receive

calls and that the corresponding communication graph does not have cycles. This abstraction

allows the user to concentrate on higher levels of the program design, for example, function

or control, or data decomposition of the program, depending on which abstraction is adopted

by the environment. However, this high level of abstraction restricts the user in which types of

programs he can develop using P V M b u i l d e r . Programs with dynamic communication cannot be

implemented.

Often, the structure and abstraction level offers relatively easy debugging of certain types

2.3. Related Work 21

of errors within the environment, which of course, is a very desirable quality from a debugging

point of view. Unfortunately, the concepts that make development environments desirable also

have their disadvantages. An environment structured around a high level of abstraction is a good

tool for program development, only if the abstraction of the task at hand matches that of the

environment. For example, if the environment is structured around the data flow model and the

program being implemented is structured according to the control flow model, then implementing

such an algorithm becomes complicated and cumbersome. A concrete example of this problem

emerges when trying to write a program that makes use of explicit message passing using a tool

that supports the data flow model. That is, entire blocks of data flow between functional units

in the program representation of the tool. Even if it is possible to implement the program, it

wi l l be conceptually difficult and artificially structured. The problem with the structure and the

abstraction of the tool not fitting that of the program being implemented is one of the most

common reasons for not using such tools [Pan94].

Another reason is that users are often conservative and hesitant to learn new environ

ments [Pan94]. The nature of the generated code can contribute to a programmer's hesitation. If

the tool supports a source to source transformation, for example, from the tool abstraction to C

source code, this code can be hard to read or illogically structured because of the automated code

generation. Even worse, sometimes no source code is available, and that limits a programmer's

ability to apply other tools for further development and maintenance. This problem is apparent

with the P V M b u i l d e r tool. Since the tool generates all the communication code when the user

compiles the application, this code is often extremely hard to read. Debugging such code, or

code produced by rewriting tools, is a daunting task. In the worst case, the generated code is

virtually unreadable. Furthermore, data structures and functions not implemented by the user

might be used by the generated code, adding yet another level of complication to the debugging

task.

Some examples of environments specific to developing parallel applications are described

in the following. Examples of environments that have adopted the data flow model as a main

abstraction are Code [NC92, NY93] and HeNCE [Don]. The abstraction is based on data flowing

between functional units or entire processes of the system. Trapper [Hei97] is a CSP based too l -a

Trapper procedure contains channel communication calls to read and write to the channels. The

underlying implementation is hidden, however, there is stil l a need for the programmer to directly

specify what to send and receive. It is the graphical user interface's task to link channels together,

thus making sure there are no disconnected channel ends. Trapper is comparable to programming

libraries like JCSP [WAF02] without a graphical user interface. However, such interfaces are

currently being developed for JCSP

Like Code, HeNCE, and Trapper, graphs are also used to represent programs by P V M b u i l d e r

2.3. Related Work 22

and VPE [ND94]. However, these two tools both allow explicit message passing. In these cases

the abstraction adopted leans more towards the control flow model than the data flow model.

Tools like Enterprise [SSS90] and Frameworks [SSG91] take a template-based approach to

generating distributed applications. Programs are written as sequential procedures enclosed in

templates. The templates hide all the distributed computing implementation details, such as

communication and synchronization. The procedures themselves contain only a small amount of

information as to how they interact with the rest of the system. Most of it is specified separately

via templates.

Al l of the tools strive to make parallel programming easier, that is, to reduce the number of

errors, and take away much of the work with respect to explicit message passing from the user.

Unfortunately, when this is the goal, the user's freedom and expressiveness is reduced; the safer

the development tool is required to be the more restrictive it becomes, and the more limited the

expressiveness becomes. In other words, the higher the level of abstraction and the more rigid

the structure of a tool, the smaller the set of easily implementable programs. The greater the set

of programs the user wishes to implement, the more general the environment must be. At one

end of the spectrum, tools are specifically designed for a certain type of program with a very rigid

structure. At the other end, 100% manually coded programs exist where the programmer himself

supplies message passing calls using, for example, PVM or MPI. Many of the tools described fall

in between these two extremes. However, the problem of picking the correct tool or trying to

util ize familiar tools to solve the problem at hand remains. Picking the right tool might involve

having to learn a new abstraction and a new tool.

2.3.2 Visualization Tools

One class of tools that can be used not only for performance tuning, but also for debugging is the

family of visualization tools. Visualization tools are categorized by their ability to provide the

user with information about a program's behaviour.

A typical tool offers a fixed set of views, each displaying different information about the

system in various ways, such as graphs and charts. A visualization tool that supports message

passing views can be used when the programmer searches for errors involving stray messages or

simply erroneous protocol specifications. Such tools are also excellent if the programmer is trying

to obtain a global view of the entire system.

However, often global views are much too vast for a programmer to easily locate errors. These

types of tools are faced with the very difficult task of providing a vast amount of information in

an easy to understand way. This problem has been addressed by Pancake [Pan99], and some of

the more serious issues pointed out include not only the difficulty with presenting large amounts

of data, but also the inability to zoom into views, to extract lower level information, and to map

2.3. Related Work 23

these displays/views back to the source code which created the error.

This is similar to having gathered data as in dimension 2, but the data is not directly under

standable, which is caused by the inapplicability of the tool (dimension 1). In addition, there are

also problems associated with the amount of data that can be displayed, the type of displays, and

at least for tuning, the problem of perturbing the execution of the program. The last problem can

appear in any tool based on a software monitoring and runtime collection of information; however,

it is more crit ical in the case of performance tuning and identifying performance problems.

Another problem is the lack of user defined views. Many visualization tools support a limited

preprogrammed set of views. We believe that this directly contradicts one of the design goals set

by Eisenstadt in [Eis97]: the possibility of a tool that offers a view of what the user wants, when

she wants it, not just the information that the programmer of the tool thinks might be useful to

the user.

Examples of such tools are Paradyn [MHC94], Vampir [NAW+96], and ParaGraph [HE93]. One

visualization tool specific to PVM is XPVM [KG96], which uses the tracing facil it ies available in

PVM 3.4, and offers a graphical user interface to dynamically visualize network status, util ization,

message queues, and much more. These tools all use graphical representations to display program

behaviour.

2.3.3 Extension of Sequential Debuggers

In this section we look at the family of debuggers that are extensions of well known sequential

debuggers. We divide this class of tools into two categories: debugging environments and N-

version sequential tools.

Debugging Environments

A number of debugging environments exist that support parallel debugging. These environments

are typically extensions of sequential debuggers. As a result, the set of operations available in

these tools are wel l known because of familiarity with standard sequential debuggers. These

include stepping, breakpoints and variable inspection. The biggest di f ference-and greatest

strength-is that these tools operate on several processes at a t ime, thus allowing collective

breakpoints over multiple pieces of source code and macro stepping, which allow several pro

cesses to step through one line of program code at the same time. The strength of these tools is

their ability to control multiple processes at the same time. This can be a problem for the user;

keeping track of a large number of processes simultaneously blurs the focus of the debugging

task. Even though these tools support the common set of debugging activities, they all require

the user to learn a new environment with its own graphical interface. Furthermore, the focus

is on the sequential code, not on the entire parallel system. That is, the granularity cannot be

2.3. Related Work 24

varied, but is set to 'fine grained'; only the sequential debugging task is supported. In a sense,

these parallel debugging environments can be said to suffer from the opposite problem as the

visualization tools: the granularity is too fine and the focus is always on the source code. Such

tools, therefore, get placed into the 'tool inapplicable or hampered' category of dimension 1.

Examples of such debugging environments include DIWIDE [KLK99] and TotalView [Pal99]. The

DIWIDE debugger is a parallel debugger that implements collective breakpoints and macro steps

(collectively stepping over program parts). It allows the programmer to treat a collection of

processes as one, and allows the user to easily issue global commands and set global breakpoints.

TotalView, a commercial product, is a multiprocess, multithreaded tool for online source code

debugging.

N-version Debuggers

A naive approach to parallel debugging involves the use of N copies of a sequential debugger

like Gdb-one for each process. The disadvantage of providing N versions of a sequential tool

is the overwhelming amount of information. In addition, the way in which this vast amount of

information is presented to the user is often inappropriate for the task at hand [Pan99]; it is not

as easy for the user to focus on one particular process in the system when attending to all of

them. The complexity of the program development process alters drastically when parallelism is

introduced, and the problems are heightened by the relative instability of current parallel runtime

environments [Pan94]. This suggests that debugging a parallel program while al l the processes

are running concurrently may be too difficult and a tool tailored more to specific processes in

the system is more effective. In addition, the granularity cannot be varied and the user is left

with the functionality of a sequential tool, which might not be applicable for a parallel debugging

task.

N-version debuggers also lack the ability to supply different views of whatever information

the user might want. Although al l variables and program texts are available (which can be a

great advantage when debugging low level sequential code), this information is spread over TV

windows and not readily available for queries. It would take an overwhelming amount of time for

the programmer to extract, collect and interpret the information available. In addition, if the

focus is on one single process, the debugging views are not needed for the rest of the processes.

An example is pdbx [Pdb] for the SP/2 , which is a front end for multiple instances of the UNIX

debugger dbx running on multiple nodes on an IBM SP system. As wel l , p2d2 [Hoo96] is a graphical

front end for multiple instances of the Gdb sequential debugger, and has been used successfully

to debug systems with as many as 128 concurrent processes. It is possible to design a script for

PVM to allow users to execute Gdb on every process spawned. However, that would require a

script for each sequential tool being supported, and it is more difficult, in PVM, to conditionally

2.3. Related Work 25

spawn the debugger for a given set of processes, without having to rewrite the code in the original

program.

2.3.4 Replay Tools/Debuggers
Another major class of tools is the family of replay tools which allows the user to animate or

replay the execution of a program [XWXS96, TSS96, KV97, Arv92, CFR95]. Replay tools collect

information about the system as the program executes: messages are col lected, time stamped

and saved on secondary storage for replay. When the tool replays the execution, information

about message content and program state is retrieved from the disk. A replay tool is typically

considered an offline tool, deployed when the program has finished executing. Many of these

systems have a set granularity, thus focusing on, for example, the source code level, leaving the

user helpless if debugging on a higher level is needed. The opposite can of course also be the

case: when the focus is on the higher level of the system, mapping the error back to the lower

level is difficult because the tool does not readily support debugging at a lower level.

BUSTER [XWXS96] is one such 'post mortem' replay system; it allows the user to reexecute

the debugged program in different modes, depending on the amount of control needed, without

having to run the message passing system. A system like PVaniM [TSS96] is another PVM based

graphical tool that supports both online debugging and post mortem visualization of a parallel

execution.

Other examples of tools that combine the online and offline strategies of debugging in a

more integrated environment include MAD [KV97], PDT from the Annai toolset [CFR95], and

PDM [Arv92]. These tools provide more integrated environments for debugging while providing

higher level tools for finding and correcting specific errors, such as communication errors. MAD

is a debugging environment based on event graphs and their manipulation. It allows debugging

on various levels, from pattern of processes (groups of event graphs), to control flow graphs

and source code. PDT is an interactive distributed source-level debugger for distributed memory

parallel processes in the Annai toolset, and allows both online debugging and offline replay. The

PDM system is a framework for detecting communication-related errors in concurrent Occam

programs running on a Transputer network.

The major disadvantage of these tools is the massive amount of information involved and the

need to learn a new environment. The replay mechanism is extremely useful. However, unless

other tools can be used in connection with a replay, it becomes virtually impossible to accomplish

a specific debugging task, unless the tool specifically supports it. Again, if the replay mechanism

is merged with some of the techniques described in earlier subsections of this chapter, a stronger

and more flexible tool results.

2.3. Related Work 26

2.3.5 Relative Debuggers

For the sake of completeness we wish to mention the concept of relative debugging. Relative

debugging is a technique often used when porting programs to different architectures, thus

allowing the execution of two different versions of the same program on two different machines

at the same time. Guard [SA97, WA98] is such a debugger. It executes two different instances

of the same program on two different machines, thus allowing the programmer to compare the

contents of variables and more while the programs execute. Relative debugging is useful for

the programmer who ports existing programs to different architectures or operating systems.

The technique focuses on comparing two different instances of the same algorithm, where one

is known to produce the desired result. Thus, this technique is not directly applicable when it

comes to general (parallel) debugging.

2.3.6 Language Support for Communication

A different approach altogether involves writing programs using languages with built-in support

for parallelism. A well known example of this is the /xC++ language [BS95] from the University of

Waterloo. fiC++ extends C++ with new language constructs to express parallelism and provides

a runtime system that runs programs concurrently or in parallel, when appropriate hardware is

available. However, the need to debug is stil l present.

The work in [BK95, Kar95] describes debugging and performance tools for fiC++ in greater

detai l . A debugging session for a program written in /*C++ compares to those found in DIWIDE

and TotalView: a front end to a number of instances of wel l known sequential debuggers, such as

Gdb, attached to each process being debugged.

Other well known examples of languages that support communication include CML [RWZ88]

(Concurrent ML), and Facile [GMP89a, GMP89b] (ML with higher order concurrent processes based

on CCS), both functional languages. Often such languages are not considered to be platforms

for implementing parallel applications. One of the strongest arguments is lack of speed, a wel l

known side effect of functional programming languages. This is an unfortunate tradeoff, as

functional programs are more easily verified by program verification tools, thus reducing the

need for debugging.

2.3.7 Summary of Related Work

The following points summarize the problems with many of the existing tools:

• Restrictive interfaces that support only a number of predefined tasks.

• The data gathered need to be interpreted by the user to map the error back to the cause,

which often renders the tool less useful. In other words, the cause/effect concept is not

2.4. Top-down versus bottom-up debugging 27

well supported. In [KV97], it is argued that the original source code is a good basis for

debugging activit ies, since it contains the cause of the wrong behaviour.

• A fixed, often small grained, number of tasks are supported. Fixed granularity in connection

with restrictions on the interface makes debugging at higher levels almost impossible.

• Information overload: the amount of information presented can be so large that time

needed to find the information becomes unmanageable.

What the user wants is not always available in any of the reviewed systems. Each of the

systems have strong points and can be very useful for certain tasks. Unfortunately, applying

different selections of tools from different toolsets is an impossible task; different user interfaces,

different representations, different formats and so on make changing between tools for different

debugging tasks difficult. This means that the user must choose only one, or at best a small

number of tools, which might not be preferred for the debugging task.

2.4 Top-down versus bottom-up debugging

Figure 2.4: The top-down debugging strategy versus the bottom-up. Thin solid lines

represent various error types. The thick solid line represents a typical top-down de

bugging tool that presents al l the information available to the user. The dotted thick

line illustrates a bottom-up approach-the tool is specifically designed to finding and

correcting errors of type 2.

Specialised debugger

General debugger

2.5. Multilevel Debugging 28

Many debugging tools and environments offer a global view of the entire program and leave it

to the programmer to narrow the search space, including specializing the formation and testing

of hypotheses, and searching for errors. This approach poses one of the greatest problems with

existing tools and environments. The set of visualization tools and environments do support a

global problem identification and hypothesis-making process, however, they do not readily support

the process of localizing the error and mapping it back to the source code. We believe that this

is due to the information overload theory presented earlier and supported in [Pan99]. We refer

to this method of debugging using a global view tool as a top-down approach to debugging.

In Figure 2.4 the inner shape, containing various error types, represents the potential errors

in a program. The figure has been divided into a number of parts, one for each type of error

that can occur. The outer bold shape represents the typical method of debugging when using

debugging tools: the top-down approach.

A different approach is obtained by turning this well known method upside down. Instead of

providing a global view of a program and allowing the user to look for any kind of error using just

one tool, we propose that a bottom-up approach be adopted.

Assume the user has made some hypothesis about the type of error, typically based on the

report obtained when the error occurred. We propose the application of a tool specifically

tailored to supporting hypothesis creation, verification and error search of the specific type of

error, using the extra information that can be gathered from a parallel application. As mentioned,

this includes information about messages, their content as wel l as protocol information, such as

message exchange patterns.

2.5 Multilevel Debugging

The purpose of this research is to examine a bottom-up approach, which we refer to as 'mult i level

debugging', over the more conventional top-down approach described earlier. The focus is closely

tied to the major points of the multidimensional analysis described earlier and the description

il lustrated in Figure 2.3. In addition, we strive to develop tools and techniques that make use

of the extra debugging information that can be extracted from the parallel program, and we

show that new useful analyses can be done based on this information. To succeed in this task we

believe that the following three points must be understood and shown to be manageable tasks:

1. Error classif ication. We wish to determine the various types of errors involved in parallel

message passing programming and develop a methodology for efficient debugging of parallel

message passing programs. A number of new types of errors arise when dealing with parallel

message passing systems. We still believe that dimensions 1 and 2 can be applied as is,

whereas dimension 3 must be extended to contain error types caused by message passing.

2.6. Error Classification 29

2. Tool development. Understanding these error types makes it possible to write specific

tools that can greatly assist the programmer to more easily debug parallel message passing

programs.

3. Automat ion. It is possible that some of these tools can be semi-automated to remove part

of the burden of debugging from the programmer. By focusing on different error types in an

isolated way, tasks that might have been intractable become tractable, and in some cases,

it is possible to automate the debugging or correction process.

If these three tasks can be accomplished, they wil l promote the writing of parallel message

passing programs by allowing easy-to-use debugging tools that users wil l find useful.

2.6 Error Classification

For studying the task of debugging parallel programs, Figure 2.3 illustrates a good starting point.

An error in a parallel program can occur at any of the three different levels shown in Figure 2.3.

The data decomposition can contain errors as wel l , but this thesis is not concerned with these

types of errors. Data decomposition is a large separate subject that has been described in detail

in books such as [Fos95, FJL+88].

We briefly discuss some of the types of errors that can be encountered at the three different

levels. The errors at the sequential level have already been described in the previous sections,

but as mentioned, many of these errors occur in the parallel domain as wel l . In particular, it is

worth noting that the cause/effect chasm mentioned in [Eis97] further widens as the possibility

for even greater distance between cause and effect arises when message passing is involved.

When messages propagate from one piece of code to another through message passing, an

incorrect value can occur and be used in a piece of otherwise correct sequential code. The

distance between cause and effect in a sequential program is l imited to the one process and its

source code. In a parallel program, the distance can potentially be much greater as processes

communicate. This increases the distance in both dimensions: space and time. The spatial

distance increases as the cause and effect can now occur in different processes. With respect to

t ime, the distance can potentially increase as wel l . When data is transmitted from one process

to another, the time gap between the cause and the effect of an error become larger as it takes

substantially more time to pack, transmit, buffer and unpack data than it does to retrieve it

from local memory. Combining a large spatial distance with an increased temporal distance

further complicates locating the cause of the error. Figure 2.5 illustrates this situation. Process

A computes a bad value (0) for variable a and sends it to process B. Process B uses the value of

a as a divisor and hence crashes. It immediately looks as if the error is caused by faulty division,

but instead it is caused by a wrong computation by function f in process A. This error then

2.6. Error Classification 30

Process A
a = f(...);
pvm_pkint(buf, a);
pvm_send (...);

Process B

{int:a=0}

• pvm_recv(...);
pvm_upkint(buf, eta);
b = c/a; w

Division by zero error.

Figure 2.5: An illegal value 0 for the variable a was propagated from process A

to process B, where it caused the program to crash. This example shows how the

cause/effect chasm is widened by message passing.

propagates to process B through message passing. This example is typical of how the cause and

effect chasm negatively affect message passing programs, because now errors can be propagated

from one process to another through the network. Furthermore, the chasm widens when an error

propagates through a number of processes before being detected.

The problem with wrong values in messages carries directly into debugging at the message

level. Some of the errors that occur at this level are as follows:

• Wrong values (variables) sent/received. This is an example of one of the types of errors

Knuth classifies as a type T (Trivial typo) error in [Knu89].

• Too l i t t le/much data sent/received. This fits nicely into the M category (mismatch between

modules); the programmer is unaware of the mismatch between packs and unpacks.

• Variables packed/unpacked in the wrong order.

The highest level of debugging is in the communication protocol. One well known type of

error is deadlock. Deadlock can occur for a number of different reasons:

• If a process crashes due to an illegal computation, and if another process is blocked in a

receive cal l , waiting for a message from the crashed process, a deadlock occurs. Alter

natively, if the process does not crash but sends a message to a wrong or a nonexisting

receiver, the same receiver blocks, waiting for a message that never arrives.

This scenario with missing messages can easily happen in a master/slave configuration,

where the slaves communicate with each other. For example, in a ring pattern, if the

process IDs are stored in an array and each slave uses a wrong index to access this array

and thus sends its message to the wrong receiver, all the processes eventually block and

2.7. Tool Development 31

create a system wide deadlock, because none of the messages are delivered to the correct

receivers.

• A safe program is defined in [BD95a] as a program that does not require any buffers to

complete. That is, communication is synchronous. Often asynchronous message passing is

util ized to overlap computation with communication. Such programs are no longer safe,

and can deadlock due to an insufficient number of buffers. We investigate this in detail in

Chapter 8 and Appendix E.

• Messages delivered to the wrong receiver. Depending on the implementation of the program,

this can lead to deadlock, or if wild cards are used, the message can end up being delivered

to the wrong receiver and potentially cause errors in that process.

• Not only can messages be sent to the wrong receiver, but receivers can also attempt to

receive a message from a process that is not sending. This can cause the process to block

indefinitely, and at worst, cause a deadlocked process.

Al l these points are potential pitfalls in the parallel programming domain. All these errors

require debugging. Some of them are fairly easy to correct, while others are more problematic.

2.7 Tool Development

In the previous section, we gave examples of the types of errors that can occur, and divided them

into the three categories associated with the breakdown in Section 2.1.1: sequential errors,

message errors, and protocol errors.

These errors are conceptually different; sequential errors are errors found in the straight line

code. Message errors are errors caused by or associated with messages: a message can contain

wrong data, which can affect otherwise correct sequential code (this is an example of an overlap

between errors at different levels). The message can be received by the wrong receiver, or at

the wrong place in the correct process, which can more easily happen when wild cards are used

extensively. The overall structure of the messages, the protocol, can contain errors as wel l ,

which can result in messages being sent to wrong receivers.

Given the difficulty in having users adopt tools, we believe that in order to increase the usage

of a new tool, it must be designed with the following goals in mind:

• It is vital that the tool can be used directly on the source code. When using development

tools, part of the final program code is generated or inserted by the tool. This means that

no complete source code exists for the entire program. If the development tool does not

support the debugging task, debugging becomes cumbersome and complicated. Some tools

generate a complete source, but machine generated code is typically hard to read and

2.7. Tool Development 32

understand. An error in the generated code, rather than the user's code, is very difficult to

find. If the user can simply recompile or relink with a debugging library to util ize the tool,

the likelihood that the user wi l l adopt the tool is higher.

• To promote the usability of the tool it must be easily executable, either from the command

line or within a simple interface that does not require the user to learn a new environment.

• Finally, the tool should enable users to find and, correct specific types of errors, depending

on their manifestation. We believe correct tailoring of the tool is one of the most important

goals. Not only does this reduce information overload, but also makes certain complicated

and time, consuming debugging tasks easier. This is achieved by targeting a specific type

of error, using the information extracted from the program and the messages. Examples

include the ability to extract one process from a parallel system and debug it sequentially.

We return to this issue in Chapter 4.

These three goals are supported by the design goals proposed by Eisenstadt in [Eis97]. The

most important ones are these:

• Computable relations should be computed on request by the tool, not left to the user to

deduce on his own. Examples of violations of this design criteria include the often limited

number of views found in many visualization tools [MHC94, NAW+96, HE93].

• Displayable state should be displayed on request, not left to the user to draw or visualize.

This design goal is parallel to the previous one, and many of the tools that do not meet the

previous goal inherently do not meet this this goal either.

• Views for 'key players' (important pieces of information) other than variables should be

provided. This design goal is the most frequently violated when considering TV-version

debuggers [Pdb, Hoo96]. These tools are designed for the sequential programming domain,

and thus, do not offer easy access to information not indigenous to this domain.

• A variety of navigation tools should be provided at different levels of granularity. Instead of

locking the focus on the sequential code, or the code of a number of sequential processes

in parallel, the user should be able to change the level at which the debugging takes place.

Many replay tools/debuggers [XWXS96, TSS96, KV97, Arv92, CFR95] focus on one level,

namely the sequential code, making it virtually impossible to change the focus during the

debugging session to, for example, the protocol, or the messages.

Thus, we propose a multi level tool whose modularity (levels) closely follows the error classi

fication mentioned in Section 2.1.1 and the above design goals. (See Figure 2.3). The last of the

above points can be expanded into the two following design goals for such a tool:

2.7. Tool Development 33

• Conceptual modular izat ion. Depending on which type of error the user is trying to correct,

an appropriate tool should be applied. As a result, certain parts of the tool are tailored

specifically to finding and correcting errors of a specific type, which reduces the amount of

extraneous information reported by the specific debugging task.

• Extensibil i ty. The overall debugging tool should allow for easy extension as new tools are

implemented and need to be added.

2.7.1 Automation

If a certain task in a debugging session can be automated, then the tool should do so. This

follows directly from the design goals in the previous section. For example, when trying to

resolve deadlocks, it is possible to automate the search for a way to change the program to avoid

a deadlock; at a higher level it is possible to automate the verification of the protocol of the

system at runtime.

Protocols can be specified in process algebras such as CSP [Hoa78, Ros93, Ros94], and verified

using tools like FDR [For] from Formal Systems. However, in order to use these tools, the user

must have a strong background in theory as the specification of a protocol is a complicated

task. For CSP models, the protocol is checked for deadlocks, livelocks and fairness constraints.

Even if the programmer uses a tool like FDR to check the protocol, the potential for errors is

sti l l present. The protocol specification is not an implementation of the protocol. When the

program is developed, the protocol must be implemented as wel l . Problems can arise when the

implementation of the protocol does not match the specification. This problem is a specialization

of a problem known in software engineering: guaranteeing that the implementation of a system

adheres to the specification.

We propose a protocol testing module, where the specification is much easier to write, and

where the system simply checks all messages against this specification of the communication

protocol. That is, the protocol is not verified but al l the messages in the system are checked

against the specification.

Many problems in the sequential domain are NP-ha rd or undecidable, hence the need for

heuristics. The (debugging) problems considered in the parallel domain are no easier.

We believe that by focusing on a particular type of error and developing heuristics directed

towards this error type, it might be possible to raise the limit of what can be computed, and

even automated. This means that by narrowing the search space, as shown in Figure 2.4, we can

increase the size of the set of problems that can be solved (or semi-solved). One such example

is the deadlock correction algorithm, described in Chapter 6.

2.8. Tool Support for Parallel Program Development 34

2.8 Tool Support for Parallel Program Development

In previous sections we described the parallel programming domain, showed some of the numerous

places where errors can occur, and described some of the errors. This discussion shows the

importance of good tools for programmers working within the parallel programming domain.

In this subsection we briefly describe some of the problems that exist with tools for program

ming, debugging or development.

A parallel programming environment is an obvious tool to use when developing parallel pro

grams. In addition, these environments can greatly reduce the number of errors programmers

make.

A number of these tools have been developed over the years, and in Section 2.3 some of

them are presented. Though many of these tools restrict the user, to avoid certain types of

errors, the risk of errors in user code remains. These errors can cause subsequent errors in the

generated code as wel l . Even when using tools or programming languages with built-in support

for parallel programming, the problem of locating and correcting errors persists. Despite the

obvious advantages found in many of these systems, Pancake argues that not many are widely

adopted. In fact, it is claimed that "often only the developers of the tools end up using them in

the end [Pan93b]". A number of reasons for this paradox is given:

Steep learning curve. Many of the tools are advanced and offer a wide variety of functionality;

they can be quite difficult and time consuming to learn.

Difficult abstraction. The abstraction adopted by a tool, for example the way a program is

represented, the way communication is specified, and its limitations, can be difficult to

understand and familiarize oneself with.

Restrictiveness. Many tools are so restrictive that they work against the programmer. One

example is a tool that assures that any code created is deadlock free. This apparent

advantage has a drawback: programs with dynamic communication can not be expressed

using this tool.

Conservatism. There tends to be general skepticism towards new tools or languages, especially

if they require the user to learn a new language, or a new integrated tool.

Given the difficulty with tool adaptation and the inherent conservatism that perpetuates the

use of wel l known methods and tools, debugging is stil l unavoidable.

Debugging tools can suffer from the same problems as the development environments. So

when developing tools for debugging, the above points should be kept in mind as part of the

design goal. That is, the tool should be easy to learn and use, and the abstraction adopted by

the tool should not restrict one's ability to perform a specific debugging task.

2.8. Tool Support for Parallel Program Development 35

We attempt to avoid the four disadvantages mentioned earlier in the following ways:

• By designing the tools to have a simple user interface; that is, without many different

windows, menu bars and buttons.

• The abstractions in our approach closely follow the natural abstraction found in a parallel

program, namely, the three levels proposed.

• As with any tool a certain restrictiveness is unavoidable, but by satisfying the design goals

mentioned in Section 2.7, we believe that the tool becomes less restrictive and rigid.

• General conservativeness is difficult to counter; learning any new tool requires some effort

by the user, but we believe that by addressing the previous three subjects we can reduce

the amount of inherited conservatism. Whether the user now wants to use the tool or not is

a question of personal taste, not so much relying on steep learning curves, restrictiveness,

or complicated abstractions.

With a good understanding of error types, design goals, and the problems with existing tools,

we have formulated a multi level debugging strategy and specified a number of design goals such a

tool must satisfy. In the next chapter we describe the design of Mill ipede, a prototype multilevel

debugging tool.

Chapter 3

Millipede - A Prototype Multilevel

Parallel Debugger

"The point I have been patiently trying to make," Godwin said impatiently, " is that you expect

far too much of a first sentence. Think of it as analogous to a good country breakfast: what we

want is something simple, but nourishing to the imagination. Hold the philosophy, hold the

adjectives, just give us a plain subject and perhaps a wholesome, nonfattening adverb or two."

- Godwin to Danny Deck, Some Can Whistle

In this chapter we present Millipede, a prototype multi level debugger designed in accordance

with the ideas and methodologies presented in the previous chapters. We show how it is possible

to write debugging and analysis tools specifically tailored to the different levels mentioned

earlier. These tools are modules that are incorporated into Millipede. However, many of these

can be executed outside of Millipede, given the information about message history and the

communication protocol extracted by Millipede.

3.1 Design Criteria

An aim of this dissertation is to show that debugging can be decomposed into several tools,

each tailored to a specific error type, thus working on different levels of the program structure.

These levels are sequential code, message passing, and communication protocol. As argued in

Section 2.4, we propose a bottom-up technique referred to as 'mult i level debugging' (illustrated

in Figure 2.4) and develop tools to support debugging according to this methodology.

36

3.2. The legs of Millipede 37

A number of such tools are useful for locating and correcting a number of different errors; this

is illustrated by the overlapping error types within the specialized debugging tools in Figure 2.4.

On the other hand, even though this approach might prove to be useful, situations could arise

where such a strategy is not applicable. This could happen if an error occurs that is not covered

by any of the tools.

Given the problems with existing tools (see Section 2.3.7), as wel l as the apparent lack of

tool usage, we formulated a multilevel debugging strategy. Using this as the foundation for the

Millipede prototype, we can summarize a number of important design goals.

1. Access to source code debugging is vital as errors may be located in the sequential code.

It should be possible to apply the user's favourite sequential debugging tool to debug the

sequential part of the parallel program.

2. Access to delivered messages, as wel l as messages sti l l in the message queues. Not only do

many of the modules make extensive use of this information, but it might also be useful

for new modules that perform other forms of analyses on the unmatched (unreceived)

messages.

3. Automation of complex parts of the debugging process. This technique, combined with

relation-on-demand computations, reduces information overload.

4. Though not a direct design goal, extensibility is another important issue in the implementa

tion of a tool like Millipede. Extensibility of the message passing calls should be developed,

thus allowing the user to add new functionality to existing message passing calls. This

could become necessary when other modules are developed by other users of Millipede. In

Chapter 6, we show how extensibility plays an important role in a tool like Millipede: The

analysis described in Chapter 6 relies on the ability to extract information about messages.

This information can easily be extracted from the runtime system's internal relations and

tables, which is further described in Chapter 5. Using these relations and tables simplifies

the implementation of other modules in Millipede.

3.2 The legs of Millipede

The Millipede prototype debugging system is written for the PVM message passing system, and

consists of the following main parts:

• A core system built into the communication system consisting of wrapper functions for al l

the communication calls. These new functions (_PVM_XXX) are added to the original com

munication library. They execute the Millipede debugging code and then call the original

3.2. The legs of Millipede 38

message passing functions (pvm_xxx). Figure 3.2 shows a few examples of these new func

tions. Functionality, such as writing and reading log files, and logging messages and protocol

information, is implemented in these new functions.

• A runtime system that consists of several separately executing processes, which allows the

user to interact with the debugging system.

• A number of analysis tools/modules which are described in greater details in the following

chapters. These tools are typically invoked by the runtime system as a result of a query or

a command sent to the system by the user.

The current implementation of Millipede supports debugging parallel message programs that

use PVM. Millipede uses PVM to communicate internally as wel l . However, an MPI port of Millipede

to MPI and to also work for MPI programs is straightforward.

3.2.1 Overview
As stated, Millipede is a prototype implementation of a tool that utilizes a multi level debugging

strategy. This implies that the implementation and design closely follows the layered approach

proposed in the methodology.

Figure 3.1 shows a graphical representation of the Millipede debugging system and how it

interfaces with the application being debugged and the message passing system. The parallel

application has the message passing library linked into its executable. The current version of

Millipede uses PVM. The Millipede Core System is a re-implementation of al l the functions in the

PVM library, that is, when a message passing function is called from the application, the Millipede

version of that function is called. Any information that must be written to or read from log files

is handled here, and the original PVM functions are called. In general, code is wrapped around

the original cal l ; some is executed before the call and some after. This code can be thought of as

a logging aspect (as in aspect oriented programming) [Asp03], that is, it is executed before and

after the original message passing code.

Depending on whether log files are written or read in a subsequent debugging session, different

parts of this code are executed. The core system communicates with the runtime system,

informing it about messages sent and received. The information about the messages are kept in

relations in the runtime system.

The various modules and analysis tools are separate functions/processes that can obtain

information from the runtime system about the messages and the protocol. These modules can

then perform the analyses or tasks and send the results back to the runtime system.

3.2. The legs of Millipede 39

Application

jMillipede Runtim^

PVM

Application

Millipede Runtime

PVM

Millipede Core System

Modules Analysis Tools

= Application level communication

= Millipede level communication

Figure 3.1: The implementation of Millipede. The gray arrows represent communication

within Millipede, and the black arrows represent communication between applications.

The Application/Mil l ipede Runtime/PVM boxes represent one process.

3.2.2 Implementation
In the following subsections we briefly describe the implementation of the wrapper functions

and the runtime system. Details about the implementation of the modules can be found in the

respective chapters.

Wrapper Functions
By redefining the PVM functions, as shown in Figure 3.2, the C compiler substitutes all PVM calls

in the user code with calls to the equivalent underscore functions (e.g., _PVM_pkint instead

of pvm_pkint). These functions then perform the Millipede debugging code (informing the

runtime system about changes, prompting for input, printing output, writing log files, etc.). The

implementation of these functions is linked into the original PVM library (l i bpvm3 .a). When a

PVM program is compiled, the redefinition is only included if the M I L L I P E D E flag is set during

compilation. If this flag is not set, the program executes like a normal PVM program, but if the flag

is set, the Millipede version of the functions is executed. This way of switching between normal

and debugger execution is easy to manage, and does not require any rewriting of the program,

just recompilation and re-linking. Even if the program is compiled with the - D M I L L I P E D E option

the user can choose a normal execution by setting an environment variable.

3.3. The Sound of Little Legs Running AO

#define pvm_initsend(X)
#define pvm_recv(X,Y)
#define pvm_upkint(X,Y,Z)
#define pvm_pkint(X,Y,Z)

Figure 3.2: Examples of redefined PVM functions.

The Runtime System

The core of the runtime system consists of the following three main parts:

1. A centralized message number administrator process is responsible for assigning unique

numbers to all messages. These are not timestamps as defined by Lamport in [Lam78], but

rather a unique marker for each message in the system. The Lamport timestamps impose

a partial ordering of the messages using a happens-before relation, whereas the message

numbers are merely used to identify messages. This is necessary for matching the sending

process of a message with the receiving process. It also makes it possible for the user to

easily distinguish messages when working with the Message Debugging Module.

2. A number of status windows where the system reports information about events and addi

tional information requested by the user.

3. A driver/interface process in which the user interacts with the runtime system. It also

maintains information about the number of running processes in order to report termination.

When a parallel program is running and log files are generated, all the information linking log

files with program files is collected in a project file. This file contains all the information required

for a module in Millipede to locate the needed log files. Refer to appendix A for an example of a

project file.

Within the Millipede runtime system each process has a message queue. In this queue all

the information about the messages sent or received by the process is maintained. The modules

described in the remaining chapters make heavy use of this information.

Examples on how the modules use this information can be found in Chapters 4, 5, 6, 7, and 8.

3.3 The Sound of Little Legs Running

In accordance with the multilevel debugging strategy, Millipede has the following levels:

PVM_initsend (X FILE , LINE)
PVM_recv (X, Y, FILE , LINE)
PVM_upkint(#X,X,Y,Z, FILE , LINE)
PVM_pkint(#X,X,Y,Z, FILE , LINE)

3.3. The Sound of Little Legs Running 41

The Sequential Level - The module at this level facilitates the application of sequential debug

gers, as wel l as other sequential analyses or profiling tools, to one single process extracted

from the parallel application. Chapter 4 describes the Sequential Debugging Module in

greater detai l .

The Message Level - Here, we are concerned with messages sent between two processes. The

current tool in Millipede at this level allows for the interactive inspection and debugging

of messages, and supplies the user with a query language (MQL) for querying messages.

Examples and an in depth discussion about the Message Debugging Module can be found in

Chapter 5.

The Protocol Level - This is the last of the three levels and also the level that provides an

overview of the entire application with respect to the protocol. This level contains three

modules.

• The first module is the Deadlock Detection and Correction Module. This module is

an example of using automation to reduce the amount of information presented to

the user. When an application deadlocks, this module can be applied. The messages

are analyzed and a suggestion for altering the source code to remove the deadlock is

provided. More detail of the theory behind this analysis is given in Chapter 6.

• The second module is the Protocol Conformance Checking Module. This module allows

the user to specify a number of constraints on the protocol and have the runtime system

check all messages against these constraints and report any violations. This module

can be used to advantage in the program development cycle when implementing the

protocol from a possibly verified specification. Examples, along with more detail on

the implementation, are provided in Chapter 7.

• The last of the three modules at the protocol level is the Buffer Allocation Analysis

Module. This module performs an analysis on the message history; a graph based on

messages is created and analyzed to determine the number of buffers needed to ensure

efficient execution. By efficient we mean an execution that does not have any blocking

send calls due to a lack of buffers. The algorithm is described in Chapter 8, along with

a more detailed description of the general problem of determining buffer allocation in

systems with different buffer allocation schemes. Theoretical results are derived for

three problems with four different buffer allocation schemes.

Although we present the multi level debugging strategy and the implementation of Millipede

as having three distinct levels, a certain amount of overlap is present. For example, when using

the Sequential Debugging Module to extract and execute one process from the parallel system,

3.3. The Sound of Little Legs Running 42

if the log file belonging to that process is either corrupt or incorrect, or if the user specifically

requests it, the runtime system wil l prompt for valid data values for unpacked data. This feature

is conceptually part of the Message Debugging Module, but has proven to be a useful addition in

the Sequential Debugging Module as wel l . Millipede currently contains a total of five tools, but it

provides a general infrastructure for incorporating more. Millipede uses a simple command line

interface, and Appendix D contains screen dumps of the Millipede interface windows.

Chapter 4

Sequential Debugging of Parallel

Processes

"A computer lets you make more mistakes faster than any invention in human history-with the

possible exceptions of handguns and tequi la."

- Mitch Ratliffe

Following the multi level debugging methodology outlined in Chapter 2, errors should be fixed

at the lowest levels before moving on to higher levels. The sequential code of each process

constitutes the lowest level, so we first consider debugging code at the sequential level.

The two main problems we address in this chapter are:

• Providing the ability to extract a single process from a parallel system.

• Allowing the user to take advantage of existing sequential debugging tools on the sequential

code of the parallel program.

The sequential debugging module allows the user to extract one process from the parallel

system and replay the execution. It facilitates using any sequential tool to analyze or debug

the process. The messages that the process would have received in the parallel execution are

provided by the underlying Millipede runtime system. Extensive research and numerous tools have

been developed in the area of sequential debugging. Instead of providing new tools that might

be inadequate, the sequential debugging module enables the user to use existing sequential tools

specifically tailored to finding and correcting the type of errors that arise in sequential code.

43

4.1. The Sequential Debugging Module 44

4.1 The Sequential Debugging Module

To use the sequential debugging module the user must first compile the program and link the

Millipede runtime system to her code. The program is then executed in parallel until an error

occurs. The runtime system collects al l the messages that were sent throughout the execution

and stores them in log files, one for each process of the parallel program.

The runtime system writes the total content of the messages along with the return value of

the communication cal l . The messages and their content as wel l as the return values of the

message passing function, are captured to assure that the sequential re-execution is exactly the

same.

Handling nondeterminism is a problem for any debugging tool that attempts to locate errors

by re-executing the code. In the case of the Millipede tool for executing a single process, we

can classify nondeterminism into two types; the nondeterminism within the sequential code that

does not affect message history and the nondeterminism that can affect either messaging.

Nondeterminism which does not affect the messaging can be handled with the same techniques

used for handling nondeterminism within a sequential program. For example in case of random

numbers the seed to random number generator can be fixed. As long as it does not affect the

message history the message history provided by Millipede wil l produce the same execution and

hence exhibit the same error.

It possible however for the nondeterminism in the program to affect the messaging. It may

affect the ordering of messages or the even the contents of messages to be received. If this

cannot be fixed, then it can result in an invalid replay of the message history and the tool itself

may fai l . As in the previous case, it can be avoided by removing the nondeterminism to ensure the

re-execution runs with the same message history. One particularly difficult type of error occurs

when the nondeterminism is due to some type of timing measurements. Although messages are

replayed in the correct order, it is impossible to ensure identical timings.

In conclusion, what distinguishes these two types of nondeterminism is whether the replay

is unsuccessful in exhibiting the error, or whether the tool itself fails because of changes to the

expected message history.

The message passing, and in particular, the order of the message receipt, is fixed. Therefore,

it is not necessary to timestamp messages. It is necessary to capture the return values of all

the message passing function calls, as the program behaviour may depend on these values. For

example, nonblocking receive calls can return without receiving any data, and in order to replay

the execution when the process is executed sequentially, these values must be stored as wel l .

Consider the code in Figure 4.1. If no message is ready in the message system the process wil l

execute the else part of the if-statement. This can happen a number of times, and each time

the state of the program might change. In order to replay this behaviour when the program is

4.2. Limitations 45

a r r i v e d = f a l s e ;
while (!arrived) {

a r r i v e d = pvm_rirecv(tid, msgtag) ;
i f (arrived)

pvm_upkint(array, 10, 1) ;
else

//Do something e l s e
}

Figure 4.1: If the a r r i v e d variable is not logged there is no way to tel l how many

times the loop is executed, thus perhaps putting the process in a state that does not

match the state i t was in when it logged the messages.

re-executed with messages supplied from the log files, the value of the a r r i v e d variable must

be stored each time pvm_nrecv is cal led, and then returned to the process. This ensures an

execution that matches the original execution.

Figure 4.2 illustrates how an application's executable contains the original PVM functions when

linked with the PVM runtime system only, and how it contains both the PVM and the Millipede

runtime systems when the M I L L I P E D E flag is set at compile t ime. The Millipede runtime system is

compiled into the PVM library, but the replacement of the message passing calls only occurs when

the M I L L I P E D E flag is specified. Since the Millipede runtime system is not compiled with the

M I L L I P E D E flag, the calls to the original PVM function are called from the _PVM_send function.

Appendix A shows a complete example from compiling an application to extracting one process

using Millipede, and debugging it sequentially using Gdb.

4.2 Limitations

One of the problems with this straightforward logging approach is that log files can potentially

be very large. One solution is to try to reproduce the error with a smaller data set, however, this

approach is not always feasible.

A different approach is to use checkpointing. The idea is to save an image of the running

process and then purge the log files. If the process needs to be debugged, it can be restarted

from the checkpoint and the execution replayed from there using the messages in the log files.

The problem with checkpointing is restoring state; the kernel state associated with the process

must be consistent after restoration.

There has been work done on tools that allow for the checkpointing of the sequential state of

a process. A lightweight library called 'save_world' was developed by Bennet Yee [Yee96] from

the University of California in San Diego. Another wel l known system is Condor [LLM88], which

4.2. Limitations 46

Application:
pvm_send(.);

Application

Application:
pvm_send() ;

PVM:
i n t pvm_send(.){

// PVM code
}

Linked with PVM.
-Ipvm3

Application
_PVM_send(•);

Millipede:
i n t _PVM_send(.){

// M i l l i p e d e code
r = pvm_send(.);
// M i l l i p e d e code
r e t u r n r ;

}
PVM:
i n t pvm_send(.){

// M i l l i p e d e code
}

Compiled with Millipede.
-DMILLIPEDE -lpvm3

Figure 4.2: An example of the different parts of an application; first, the application;

second, the application linked with the PVM library, and third, the application and

communication library with the Millipede runtime system added.

also supports process migration. If such a checkpoint library were incorporated into Millipede, it

would be possible to save and resume an execution at any given t ime, and at the same time purge

log files and reduce their size considerably. Two important benefits arise from checkpointing:

first, a reduction in the disk space needed to save log files as these are purged at checkpoints,

and second, the time it takes to restart the process and re-execute it to the state of failure is

reduced by using the most recent checkpoint as a starting point for debugging.

One remaining problem occurs if the cause and effect chasm spans the checkpoint. That is, if

the source of the error is before a checkpoint, and if the manifestation is after, then all evidence

of the source of the error wi l l have been removed because the process was checkpointed and the

log files purged. This could be solved by storing the purged log files and all checkpoint images on

secondary storage until the debugging process has finished, if enough space is available.

The sequential debugging module is tailored to extract the messages of a parallel system

and support the debugging of one sequential process based on the log files captured while the

parallel system executes. However, there are classes of errors that are difficult to find using

this approach. For example, if an error does not occur every time the program is run, and if log

files are not generated during the execution that encounters the error, the Sequential Debugging

Module is of no use.

Millipede is not thread safe; if it is used with a multithreaded program, there may be problems

with the communication library and nondeterminism due to thread scheduling. In general, de

bugging multithreaded parallel programs introduces yet another type of concurrency that further

4.3. Examples 47

complicates the debugging process. The scheduling of threads can result in nondeterminism that

cannot be controlled by the user, and checkpointing with threads could potentially become a

problem as wel l . Thus, the MPI standard is not defined as thread safe; the two major public

domain implementations of MPI, LAM and MPICH, are not thread safe.

4.3 Examples

The following examples illustrate the types of errors that can be found and corrected by using

Millipede.

As a basis for these tests we used a master/slave implementation of an iterative hyperbolic

differential equation solver [FJL+88], which we seeded with two different errors. The first error

is a division by zero caused by a variable value of zero propagating through a message. The second

error is an out-of-bound indexing error; the array indexed is not big enough. The results show

that the errors that occurred in the parallel execution are faithfully reproduced in the sequential

execution of the process containing the error. Figures 4.3 and 4.5 show the relevant parts of the

slave program containing the errors.

4.3.1 Division by Zero Error

Consider the code shown in Figure 4.3. The assignment causes a division by zero if the variable

nproc equals zero. When the program is executed in parallel the slave process executing the

il legal division encounters an arithmetic exception and terminates.

In this case, Gdb is used in combination with the sequential code and the messages that were

extracted by Millipede. As shown in Figure 4.4, the error is easily located using Gdb. In contrast,

finding this error using N versions of Gdb online, the programmer would have to single step each

process to a point where the communication has occurred and the division by zero executed.

pvmjupkint(&nproc, 1, 1);
pvm_upkint(tids, nproc, 1);
pvm_upkint(&n, 1, 1);

e = n % nproc;

Figure 4.3: Sequential code with divide by zero.

Tools, such as DIWIDE, that allow macro stepping or tools, such as p2d2 or TotalView, that

allow control of all debuggers at the same time, can be used in a similar way to locate the error.

Such tools are good for master/slave or processor farm computations as a number of similar

4.3. Examples 48

(gdb) step
45 e = n % nproc;

Program r e c e i v e d s i g n a l SPGPFE A r i t h m e t i c
exception 0xef4a86a8 i n 0

(gdb) p r i n t n
4
(gdb) p r i n t nproc
0

Figure 4.4: Using Gdb to locate the error in the sequential code of a process from a

parallel program

processes are controlled as a unit, but this is not as easy for a pipeline computation or a parallel

program which is functionally decomposed; the different processes execute different code, thus

making it difficult to control al l the processes in a collective manner.

4.3.2 Memory Errors
If a process in a parallel system contains a memory leak or memory error, often, especially in

C, the most likely manifestation is that the process terminates because of an il legal memory

reference. When executed in parallel, even if one process terminates, the others continue to

execute until they crash, deadlock, or finish incorrectly. In sequential programming there are

tools, such as Purify [Pur], that are effective for discovering memory reference errors. Purify

links a runtime library to the process that tracks memory references and reports any illegal ones.

Unfortunately, no parallel version of Purify exists. The sequential version does not easily lend

itself to finding memory leaks in a parallel program. The only way to apply Purify to a parallel

program is to apply one instance to each process.

By using Millipede to extract the process that crashed, along with the corresponding log file,

it becomes possible to use Purify to find the offending code that contained the il legal memory

reference.

If a parallel system consists of a number of instances of the same program, for example a

master/slave or a processor farm application, it suffices to apply Purify to a single instance of

the slave processes in order to catch memory errors. This approach reduces the amount of

information the programmer needs to consider during the debugging process, and may reduce

the time needed to complete the debugging task.

Figure 4.5 shows a code fragment that indexes an array out of bounds. The x array is too

4.3. Examples 49

small, and at index nodes+1 an index out of bound error occurs. This error can result in two

different program behaviours: an incorrect result, or a segmentation fault where the process

terminates abnormally. This error is easily detected by using a tool like Purify. Note, this error

was introduced into the program when the parallel version was developed. Since the data must be

distributed across a number of processes, this error might not have been present in the sequential

version.

x = calloc(nodes,sizeof(double));

for (i = l ; I <=nodes; i++)
x [i] = (1 * (s t a r t + i - 1)) / (n - 1) ;

Figure 4.5: Source code with a memory error: the x array is one element too short.

Figure 4.6 shows the output from running Purify on the extracted process. The output clearly

marks the problematic array and specifies that the problem is an attempt to write past the end

of the array. In addition, the line in which the array is allocated is printed out. It it now a simple

problem to correct the error by either allocating a bigger array or changing the condition.

ABW: Array bounds w r i t e . This i s o c c u r r i n g w h ile i n :

main [Wave_slave.c:57]

for (i = l ; i<=nodes; i++)
==> x [i] = (1 * (s t a r t + i - 1)) / (n - 1) ;

W r i t i n g 8 bytes to 0xdc630 i n the heap. Address
i s 1 byte past end of a malloc'd block at 0xdc5a
136 bytes. This block was a l l o c a t e d from:

0xdc63 0
8 of

malloc [r t l i b . o]
c a l l o c [r t l i b . o]
main [Wave_slave.c:50]

==> x = calloc(nodes,sizeof(double));

Figure 4.6: Using Purify in combination with Millipede to locate memory errors.

The advantage of having the extracted process is the abil ity to use tools like Purify that

4.4. Implementation Details for the Sequential Debugging Module 50

have not been ported to the parallel domain. These tools can be more effectively used with

one process rather than trying to coordinate the use of ./V versions of them running at the same

time. It is possible to extract one process and its corresponding log fi le, and then debug it as a

sequential program.

4.4 Implementation Details for the Sequential Debugging Module

In this section we briefly explain some of the details of the implementation endemic to the

Sequential Debugging Module. The Sequential Debugging Module consists of two parts:

1. The collection phase that intercepts the values and names of variables being packed (calls

to the pvm_pkxxx functions) and return values of all the message passing functions.

2. The replay phase that reads the log files written in the collection phase, when pvm_upkxxx

functions are cal led.

The collection part is straightforward. When packing functions are called the names and the

values of the variables are written to the corresponding log file. Al l message passing functions

also write their return values to the log file. During replay, the log files are read, that is, instead

of performing a call to the PVM library the log files are read, and the values are returned to the

caller as if a message had arrived from the network.

The majority of the code for this part of the tool is for checking that the values read from the

log files are consistent with the message passing calls in the code. This is done by comparing the

names of the variables in the pvm_upkxxx cal l with the names of the variables in the log file. If

a mismatch between variable names or types is found, Millipede prompts the user for a value for

those variables that were unsuccessfully unpacked.

4.5 Summary

We have shown how it is possible to extract one process from a parallel system and debug it

sequentially. After extraction, it can execute as a standalone UNIX process and be debugged

using sequential debugging tools. This allows the user to correct errors in the sequential code of

a parallel program as if it were a purely sequential program.

Debugging message content, and obtaining an overview of messages and message queues in the

message passing system, are not supported by the Sequential Debugging Module. These problems

belong to the message level of Millipede, and in the following chapters we introduce tools that

provide the user with debugging capabilities at this level.

Chapter 5

Message Debugging

If we knew what it was we were doing, it would not be called research, would it?

- Albert Einstein

Once errors are corrected in the sequential code, the focus turns to process interaction. This

interaction happens through message passing. The purpose of the Message Debugging Module is

to support the location and correction of errors which cause incorrect messaging and message

content. We provide two tools to help in correcting the messaging:

• The first allows the user to interactively inspect and debug messages as the program runs.

That is, as messages are delivered to the process by the message passing system, the user

can inspect and change parts or al l of the message without the need for a debugger, such

as Gdb.

• The second is a simple query language to aid in querying the message history maintained by

the runtime system.

5.1 Interactive Message Debugging

In the Sequential Debugging Module the focus is on the key players of sequential programming,

for example, the variables and the control flow. When moving up the hierarchy, the next level

is the one concerned with messages passed between two processes. As illustrated in Figure 4.3,

an otherwise correct piece of sequential code can produce faulty results or even terminate with

an error due to the cause/effect chasm widening through message passing; a wrong value can be

sent from one process to another and cause an error.

51

5 . 7 . Interactive Message Debugging 52

The idea of interactive message debugging, or inspection, is to allow the user to choose one or

more processes, and while the parallel program executes, give the user separate views/windows

for each of these processes. These views show the messages that are sent to the process and

allow these to be changed. This is particularly useful if the user notices a message that contains

a wrong value, but does not want to terminate the execution to correct the problem. The value

is simply changed before it is delivered to the process and execution can continue uninterrupted.

At first, this might seem like a typical application of the TV-version strategy. However, the

difference is that in Millipede, the user chooses which processes he wishes to interact with at any

time during the debugging process. These views can be turned on and off at wi l l . This corresponds

to the idea of computing relations on demand, and also attempts to reduce information overload.

Naturally, the possibility of information overloading exists, especially if the user turns on too

many views at once. However, by starting out by displaying a small amount of information in

a few windows (or even no windows to begin with), and allowing the user to extend the view

by opening new windows and closing down those he does not need anymore, it differs from the

typical use of an TV-version tool. One difference between the tool here and the TV-version type

of tools is that in the latter case, the user adds views rather than removes them, which allows

him to focus on the activities at hand.

If a receiving process attempts to unpack more data than the sender sent, Millipede wil l

issue a warning with the line and the variable name that cannot be unpacked. In addition, in

order not to terminate the debugging session, Millipede wil l prompt for a value for the variable.

Figure 5.1 shows an example where the message contained too litt le data. Figure 5.1 represents

a window for one process; for each process observed (i.e., where the user has decided to perform

interactive message debugging), a separate window appears. Figure D.2 in Appendix D shows a

screen shot of an actual debugging session.

Receiving New Message:

Line 4: pvm_recv(4,0) <ok>
Line 9: pvm_upkint(&a,1,1) = [2] <ok>
Line 12: pvm_upkint(&b,1,1) = [?] <error>
No value a v a i l a b l e f o r i n t : b.

Please s p e c i f y a value. i n t : b = 78

Figure 5.1: No value for b was sent or read from the log files, so Millipede prompts the

user for a value. Debugging can continue once a value has been specified.

This technique can also be util ized in conjunction with the sequential debugging module for

testing purposes: if a replay file does not exist, the runtime system wil l prompt the user to supply

5.1. Interactive Message Debugging 53

values for al l the incoming messages. This allows for the testing of a single process without

running, or even having written, the code for the other processes of the parallel system. The

user simply runs the program with the Millipede runtime system turned on, specifies no log file

and debugs as usual, with the exception of having to specify values for unpacked variables for

al l incoming messages and return values for calls to procedures such as pvm_nrecv. It also

provides a technique for interactively testing the program with extreme or incorrect values. In

addition, this technique is particularly useful when prototyping a program, and it matches the

idea of iterative program development proposed by Araki et a l . [AFC91]. This is especially good

for testing master/slave, processor farm and pipeline code.

Figure 5.2 shows an example of how to use the interactive message debugging module. Note,

Millipede not only shows the unpacked values, but also the names of the variables that they are

unpacked into as well as the line number of the PVM communication cal l . Providing the user

with information about the line numbers and variable names addresses the issue of mapping the

display back to the source code. An interesting problem with interactive message debugging is

that it can exhibit the opposite of information overload; when a receive call expects a large

message, it requires the user to type an unreasonable amount of data. The user has the option

of replying f and the system prompts for the name of a file containing the data to be used.

Receiving New Message:

Line 78: pvmrecv(-1,0) <ok>

Line 81: pvm_upkint(&nproc,1,1) = [2] <bk>
Do you want to change t h i s [y/n] ? y
i n t : nproc = 2. New value = 3

Line 82: pvm_upkint(tids,3,1) = [262151,262152,262153] <ok>
Do you want to change t h i s [y/n/f] ? f
Filename: tids.txt
Read: [262150, 262151, 262152] <ok>

Figure 5.2: A message with tag 0 is received from anyone (-1 is a wild card in the

receive call), and two unpacking instructions are executed. One that unpacks one

integer and one that unpacks three. If the messages are supplied from a replay file

and an error or some type of inconsistency appear the <ok> wi l l be replaced with an

error message and the user wi l l be asked to provide a value that is compatible with the

destination variables for the unpacking cal l .

5.2. Message Queries 54

5.2 Message Queries

We now focus on the second part of the Message Debugging Module: the message querying tool

along with the Millipede Query Language (MQL) allows the user to write SQL-like queries for an

internal database of messages maintained by the Millipede runtime system.

One problem with existing tools is that only a fixed number of views are provided. The views,

or queries, provided by tools are typically those that the developer of the tool considers useful.

Since the developer and the user might have different foci or views, this is one of the contributing

factors as to why tools are primarily used only by their developers [Pan93b]. Three of the design

goals for the Millipede debugging system mentioned earlier are as follows:

• Displayable states should be displayed on request.

• Computable relations should be computed on request.

• Information overloading should be avoided.

Not only can state and computable relations be displayed on request, but queries can reduce

the complexity of information gathering from the message history; the alternative would require

filtering through a large quantity of data by hand.

The problem with a fixed number of views is easily solved for the Message Debugging Module

by giving the user a higher degree of freedom within the tool, that is, allowing users to define

their own queries. If the message history is viewed as a large database, it is natural to develop

an SQL-like language to facil i tate queries.

5.3 User Defined Queries

The Millipede runtime system organizes the messages into four relations: Senders and Receivers
as shown in Tables 5.1 and 5.2, which contain the overall information about the messages, and

SentMessages and ReceivedMessages as shown in Tables 5.3 and 5.4, which contain the

details about the messages.

MsgNo S i z e STID S L i n e S F i l e STag

7 154 262152 118 slave.c 5

Table 5.1: The Senders relation.

5.3. User Defined Queries 55

MsgNo RTID RLine RFile RTag

7 262150 86 master.c 5

Table 5.2: The Receivers relation.

MsgNo NO SLine SType SVarName SCount SValue

6 1 107 i n t me 1
6 2 108 i n t nodes 1
6 3 114 double y t l]

Table 5.3: The SentMessages relation.

MsgNo No RLine RType RVarName RCount Rvalue

6 1 87 i n t who 1
6 2 88 i n t r e s u l t _ l e n g t h 1
6 3 94 double y[index]

Table 5.4: The ReceivedMessages relation.

Queries are implemented using the four relations and the query language. To illustrate the

use of MQL, we implement two useful queries: locate, which locates messages sent between

two program lines, and match, which matches the packing functions with the corresponding

unpacking functions of a message. Figure C.1 in Appendix C shows the grammar for MQL.

The match Query
Since many variable values can be packed into one message, one of the easiest errors to make is

to unpack the message in the wrong order or into wrong variables. This means that values can

potentially be swapped in the variables they are unpacked into. By querying the message passing

system it is easy to verify in which order the values were packed, and in which order the values

were unpacked. In addition, the name of the variables on both the sender and receiver side, and

the line numbers are shown. This query is performed by executing the match query.

5.3. User Defined Queries 56

Figure 5.3 shows the wanted output of the match query on message number 6. The upper

half of the figure shows the packing routines and their line numbers, and the lower half shows

the unpacking routines and their line numbers.

(0)MILLIPEDE> match(6)
Message number: 6

Sender
F i l e : s lave.c
Line 107 pvm_pkint (&me, 1 (1);
Line 108 pvm_pkint(knodes, 1, 1);
Line 114 pvm_pkdouble{&y[1], nodes, 1) ;
Line 118 pvm_send(262150, 5);

Receiver
F i l e : master.c
Line 86 pvm_recv(262151, 5) ;
Line 87 pvm_upkint (&who, 1 (1) ;
Line 88 pvm_upkint{&result_length, 1, 1);
Line 94 pvm_upkdouble(&y[index], r e s u l t _ l e n g t h , 1);

Figure 5.3: By executing the match (6) query, Millipede wil l query the message queues

for all packing and unpacking commands for message number 6.

The MQL code for the match query is shown in Figure 5.4.

The l o c a t e Query
If the user believes that a message has been delivered to the wrong receiver, it is useful to search

the message database for messages that match a specific sender and receiver line number. Such

a query, l o c a t e , can easily be implemented using MQL. Figure 5.5 shows the expected output

from the query l o c a t e (86,118) , that is, it lists the messages sent from line 86 in some process

and received in line 118 in a different process (in practice, the sender and the receiver could be

the same process).

The Senders and the Receivers relations have the field MsgNo in common. By joining

these two relations and selecting the tuples where both the sender and the receiver line match

the values 118 and 86, we obtain a new relation containing the result. Figure 5.6 shows the

implementation of the l o c a t e query.

The match and the l o c a t e queries are two examples of the use of MQL. The user can write

his own queries, ranging from very simple to arbitrarily complicated. In addition to the four

mentioned relations, there are a few more bookkeeping relations. One such relation is the T I D S

relation that maps process IDs to message queue numbers. Its purpose is to allow the user to

develop queries that contain more information and have better formatted output.

5.4. Built-in Message Queries 57

define match(mno) as
begin

print("Message number: %\n",mno);
let Senderlnfo be

project
select from Senders
where (MsgNo == mno)

over (S F i l e , STID, STag);
let R e c e i v e r l n f o be

project
select from Receivers
where (MsgNo == mno)

over (R F i l e , RTID, RTag);
print ("\t Sender -\n");
display Senderlnfo
using " F i l e : \ t % \ n L i n e %\tpvm_send(%,%);\n" §
display

project
sort

select from SentMessages
where (MsgNo == mno)

by (No)
over (SLine, SType, SVarName, Scount)

using "Line %\tpvm_pk%(%,%,1);\n";
print ("\t Receiver -\n");
display R e c e i v e r l n f o
using " F i l e :\t%\nLine %\tpvm_recv(%,%);\n" }
display

project
sort

select from ReceivedMessages
where (MsgNo == mno)

by (No)
over (RLine, RType, RVarName, Rcount)

using "Line %\tpvm_pk%(%,%,1);\n";
print("\t -\n");

end

Figure 5.4: The implementation of the match query in MQL.

5.4 Built-in Message Queries

To keep MQL small, certain things such as arithmetic, tuple insertion and complex formatting has

been excluded. Sometimes certain queries can be cumbersome to implement if formatting the

output is important.

5.4. Built-in Message Queries 58

(0)MILLIPEDE> locate(118 ,86)
Messages sent from l i n e 118 to 86

Sender Receiver

No T i d F i l e Line Tag T i d F i l e Line Tag S i z e

6 262229 slave.c 118 5 262228 master.c 86 5 152
7 262230 slave.c 118 5 262228 master.c 86 5 144

Figure 5.5: The l o c a t e (118, 86) query queries the message passing system for

messages sent from line 118 and received by a (different) process at line 86.

define l o c a t e (s i , r l) as
begin

print("Messages sent from l i n e % to % : " , s l , r l) ;
print("\n\n\t Sender\t\tReceiver\n");
print(" ") ;
print (" \n");
print(" No\tTid \ t F i l e \ t L i n e \tTag \ t T i d \ t ") ;
p r i n t (" F i l e \ t L i n e \tTag \ t S i z e \n");
print (" ") ;
print (" \n");
let Msgs be join Senders with Receivers;
display

project
select from

select from Msgs
where (SLine == s i)

where (RLine == r l)
over (MsgNo, STID, S F i l e , SLine, STag, RTID,

R F i l e , RLine, RTag, S i z e) ;
using " % \ t % \ t % \ t % \ t % \ t % \ t % \ t % \ t % \ t % \ n " ;

end

Figure 5.6: The query code for computing the l o c a t e query.

The s t a t u s Query
•

Often it is useful to query the message passing system for its status, that is, obtain a list of the

messages that have been delivered, the ones that are stil l in the system and any outstanding

receive calls. An outstanding receive call is a process that is blocked in a call to pvm_recv(),
but has not yet received any data. Such a listing can be obtained by issuing the status query.

Figure 5.7 shows an example of using the status query. Millipede matches each send to a

receive, and shows the file names and the line numbers of the message passing calls. For a

file:///n/n/t
file:///tFile
file:///tLine
file:///tTag
file:///tTid
file:///tLine
file:///tTag
file:///tSize

5.4. Built-in Message Queries 59

p v m _ s e n d the first argument is the I D of the receiver, and the second argument is the message

tag. For a p v m _ r e c v the first argument is the I D of the sender, and the second argument is the

message tag. Both the sender and the message tag in a receive cal l can be specified as -1 , a wild

card value, which matches any sender or message tag.

(0)MILLIPEDE> status()
Msg No. Command Line F i l e

1 pvm_bcast(262152 0) 78 master.c
<-> pvm_recv(262150, 0) 22 slav e . c

1 pvm_bcast(262151 0) 78 master.c
<-> pvm_recv (2 6 2151, 0) 22 slav e . c

2 pvm_send(262152, 11) 75 slav e . c
<-> pvm_recv(2 62151, 11) 89 slav e . c

3 pvm_send(262151, 22) 80 slav e . c
<-> pvm_recv(262152, 22) 85 slav e . c

4 pvm_send(2 62152, 11) 75 slav e . c
< > pvm_recv(262151, 11) 89 slav e . c

5 pvm_send(262151, 22) 80 slav e . c
<-> pvm_recv(262152, 22) 85 slav e . c

6 pvm_send(262150, 5) 118 slav e . c
<-> pvm_recv(262151. 5) 86 master.c

7 pvm_send(262150, 5) 118 slav e . c
<-> pvm_recv(2 62152, 5) 86 master.c

Figure 5.7: Executing the status query produces a listing of matched and outstanding

messages. In this example no messages or receive calls are outstanding, that is, all

all messages that were sent were received and the message system is "empty". Note,

message number 1 occurs twice, implying that the sending process issued a multicast

or a broadcast.

This query could, with a l itt le effort, be implemented using MQL, but we believe that the

status query is a query that the user might use often. So to provide an easy to read output we

have implemented it as a built-in query. The problem with an MQL implementation of this query

is trying to list the outstanding receives and the unreceived messages in the same relation as the

messages that are already delivered. Since the final relation contains information about both a

sender and a receiver for each message, but the outstanding receives do not have a sender part,

and the unreceived messages do not have a receiver part yet, implementing the query in MQL is

not straightforward, but sti l l possible (possibly with a different structure of the output). Thus,

for convenience the status query is built-in.

We presented MQL code for the match and the l o c a t e queries in the previous subsection.

Table 5.5 shows a list of the currently available built-in queries, and in Appendix D , a number of

screen shots of actual query sessions are shown.

5.5. Discussion 60

s t a t u s Displays all the messages that are delivered, that are still in the
system, and all outstanding receive calls.

l o c a t e Locates all messages sent between two specified line numbers.
match Matches up packing and unpacking routines for a specific mes

sage number.
dump Displays on a per process basis, in reverse order, all the messages

ever sent.

Table 5.5: The built-in queries of the Message Debugging Module of Millipede.

The dump Query
The last query listed in Table 5.5 is for convenience, provided as a built-in. The dump query

allows users to obtain a complete listing of all messages sent and received as wel l as undelivered.

Figure 5.8 shows an example of the dump query.

(0)MILLIPEDE> dumpO
Queue: 0 Filename: master.c T i d : 262150
Msg.No Send.Tid Recv.Tag Send Tag

6 262151 5 5
7 262152 5 5

Queue: 1 Filename: slav e . c T i d : 262152
Msg.No Send.Tid Recv.Tag Send Tag

4 262151 11 11
2 262151 11 11
1 262150 0 0

Queue: 2 F i1ename: slave . c T i d : 262151
Msg.No Send.Tid Recv.Tag Send Tag

5 262152 22 22
3 262152 22 22
1 262150 0 0

Figure 5.8: The dump query shows all messages, both the ones that have been delivered

and the ones that are stil l in the message passing.

5.5 Discussion

The idea of making public the information gathered by the runtime system about the messages,

and representing them as relations in a database is a different approach to debugging. By allowing

the user to compute relations when needed, we fulfill one of the important design goals for a

debugging environment, namely computing relations on demand.

However, there are certain limitations. Since everything is represented as relations, only

queries that use the query language can be performed. However, the internal structure of the

5.6. Summary 61

Millipede runtime system can make use of these relations as wel l . We have seen two examples of

built-in queries that use these relations. In particular, one of these is the status command that

uses these relations to extract information but presents it in a way that is not easily implemented

as a user query.

Another important advantage of the relation/MQL part of the Message Debugging Module is

that the proficient user should be able to extend Millipede himself by adding built-in queries into

the runtime system if necessary.

One possibility that would address the above mentioned limitation is to extend MQL to allow

the creation of user defined relations and support an explicit tuple insertion, thus making it a

fully functional database language. However, this extension requires the ability to do other forms

of computations, for example, arithmetic, which in turn would seriously increase the size and

complexity of the query language.

An interesting technique for further investigation is the idea of message breakpoints. In

sequential debugging, breakpoints are often used; by setting breakpoints the user can let the

program run until the line containing the breakpoint is reached. This idea is extended to include

collective breakpoints, that is, the ability to set a number of breakpoints in multiple processes.

This could be further extended by abstracting away the line numbers; a receive statement

might be called a number of times, but instead of using the line number as a breakpoint, the

message number could be used. This would allow for greater flexibility for controlling the

program execution during a debugging session. Combined with collective stepping and collective

breakpoints, expressions such as break pO : 186, p2 :m45 could be allowed, p i : 186 being a

breakpoint in line 186 of process p i , and p2:m45 being a breakpoint that is activated when

message number 45 is delivered to process p2.

5.6 Summary

We provided a simple expressive query language that can compute a large number of relations,

and we believe that this shows that providing such services in a debugger is not only possible but

also very useful. In addition, we introduced interactive message debugging which allows the user

to inspect and change the message content during execution.

In connection with the sequential debugging module, the interactive message debugging allows

for unit testing of single parts of a system. This means, that these tools can be used in the

development phase as wel l .

In this chapter and the previous, we introduced the two lowest levels in the multi level debug

ging hierarchy. In addition, for each level we presented examples to illustrate the usefulness of

the tools at these levels.

Chapter 6

Deadlock Detection and Correction

"Problems cannot be solved at the same level of awareness that created them."

- Albert Einstein

In the previous chapter we demonstrated a number of techniques that are useful for locating

and correcting errors in messages sent between two processes. We now focus on the next—and

f ina l - leve l in the multi level debugging hierarchy: the protocol level. At this level the focus shifts

to include not only messages, but the communication protocol as wel l .

In this chapter, and in Chapters 7 and 8, we present three different tools and techniques for

performing debugging at the protocol level. Here, we present a tool for locating deadlocks, and

suggest corrective measures to remove them.

In Chapter 5 we introduced a number of relations that the programmer could use in conjunction

with the Mill ipede Query Language. These relations are the foundation for the analysis presented

here and in the following chapter. Millipede extracts protocol information from these relations;

in this chapter we describe how such information can be used to perform a deadlock correction

analysis.

6.1 Deadlock Detection and Correction

Detecting and correcting communication errors in message passing programs is a difficult problem.

Even simple communication errors are difficult to debug in a parallel environment with multiple

processes exchanging large numbers of messages. Although there are visualization tools [KG96,

KV97] to help users visualize the communication patterns of parallel programs, they do not

directly support the detection and correction of errors based on the user's source code.

In this chapter, we present an algorithm for correcting communication errors using delivered

62

6.2. Description of Problem 63

and undelivered messages. The algorithm is used to suggest corrective measures for removing

communication errors introduced by users as typographical errors in message passing systems,

such as PVM and MPI.

This work focuses on the validity of the algorithm by proving that for a nontrivial number of

errors the algorithm can suggest changes to correct these errors. The majority of this chapter

is devoted to theoretically justifying the validity of using this algorithm for correcting errors.

We use a counting argument to show that for less than n/2 errors, where n is the number of

processes involved in the deadlock, the algorithm is able to identify a few potential corrections.

This demonstrates the usability of the algorithm for debugging these types of communication

errors.

The algorithm we present not only works for statically specified communication, but can also

be applied when the sender or receiver is specified through an index into an array or by a function

cal l . It is then the programmer's job to go back and correct the array or function, to return what

the algorithm suggests. We assume that these errors are independent and infrequent. The

effectiveness of the technique decreases as the number of errors increases.

6.2 Description of Problem

The basic structure of send and receive calls in PVM and MPI are as follows:

send(buffer, receiver_node_ID, tag)
recv(buffer, sender_node_ID, tag)

Mistyping the node_iD or tag value results in a message that is either undelivered, or a message

that is received by the wrong process.

For example, consider the simple case of a single error, as shown in Figure 6.1. There is

an error in the send call of process B in Figure 6.1. B attempts to send a message to A, but

incorrectly sends it to someone else. Depending on whether the communication is synchronous

or asynchronous, process B either blocks, eventually hanging the system, or terminates; in either

case the result is an undelivered message in the system. Using the message queues in Millipede,

it is possible to extract both undelivered and recently delivered messages from the system, which

then can be used in the analysis to correct deadlocks.

6.3 The Algorithm

For the sake of simplicity we do not consider message tags or wild cards in our initial analysis,

however, we return to these cases later. We start this section with a number of definitions that

are used in the next section.

6.3. The Algorithm 64

Process A Process B

S e n d (b u f , B , t l) R e c v (b u f , A , t l)

R e c v (b u f , B , t 2) S e n d (b u f , C , t 2)

/
?

Figure 6.1 A simple error.

Definit ion 6.3.1 Let S = (s 0 , s i , . . . , s n _ i) be an ordered list of senders where each Si = (a, b)

and a, b are integer process identifiers (ranks in MPI). Let 71 = (r0, n,..., r n _ i) be an ordered list

of receivers where each rt = (a, b), and again, a, b are process identifiers. For Si = (a, b) e S, a is

fixed as the ID of the sending process, and for n = (a, b) e 11, b is fixed as the ID of the receiver.

Definition 6.3.2 A match between a sender si — (oi, bi) and a receiver tj — (a,j,bj) occurs when

(at = a,j) A (bi — bj).

The rationale behind the algorithm is as follows: Find a set of permutations M - {7r s , 7r r }

where the number of fields that need to be changed in order to obtain a system without any

unmatched sends and receives is minimal. This is always possible as there is a finite number of

senders and receivers, and thus a finite number of different permutations. This means that one

or possibly more permutations yield a minimum distance.

Therefore, applying these changes induced by the permutations to the sends and receives

in the program results in a program where al l the messages are matched (assuming it does not

deadlock for other causes as well). This means that all remaining undelivered messages can be

delivered to a receiver and the program is deadlock free (we assume that the deadlock is not

caused by insufficient buffer space in the buffering process). For an in depth analysis about

deadlocks due to buffer insufficiencies please refer to Chapter 8.

It is possible to reduce the problem to a bipartite matching problem [Pre92]. The approach is

as follows: Let G = (V,E) be a directed graph with weighted arcs as follows:

• V = Vs u Vr, where Vs represents processes sending a message, and VT represents processes

receiving a message. An element in V is composed of the process' ID and the call point of

either the send or the receive function (e.g., the line number of the call).

6.3. The Algorithm 65

• E is constructed as follows:

- For each unmatched (undelivered) messages m, do the following:

* If m = (s , r) is an outstanding send (i.e., the message sent by sender s has not

been received by receiver r), add arc (s , r) where s e Vs and r e Vr to E with

weight 2.

• If m = (r, s) is an outstanding receive, add arc (r, s) where s € V„ and r € Vr to E

with weight 2.

- Iterate backward through all successfully delivered messages (from newest to oldest)

(u,v) and add arcs (u,v) and (v,u) with weight 2 to B if (u,v) or (v,u) does not

already exist in E. The addition of arcs based on messages already delivered is done

in the opposite order they were delivered. The order is defined using the < operator

on the message numbers assigned to each message by the message number process

(see page 40). This ordering is chosen in an attempt to involve only processes that

communicated close in t ime to the occurrence of the deadlock.

- Add arcs with weight 1 to E to make G a complete bipartite graph.

Now consider the induced undirected weighted graph G = (V , E) constructed in the following

way:

• V = V.

• Each pair of directed arcs (u, v) and (v, u) in E is replaced by one undirected arc (u, v) to E

with weight equal to the sum of the two arcs (u,u) and (v,u).

G is the complete bipartite graph Kn,n, where n =\V\. The maximum bipartite graph matching

algorithm can be used to obtain a maximal matching in G [CLR90]. This matching represents a

system without a deadlock as G is a complete bipartite graph, and all nodes are involved in the

matching. Since all senders are matched to a receiver, no messages are undelivered.

Furthermore, this matching can be obtained by changing a minimum number of fields in the

senders and receivers. This is because arcs representing actual messages and outstanding receive

calls are favored with weight 2 over added arcs with weight 1. Since a maximum flow is computed,

as many of the weight 2 arcs as possible are in the result, and each node on the left is matched

to exactly one node on the right, thus resolving the deadlock. The following lemmas show that a

maximum matching implies a minimal change.

Lemma 6.3.3 Let G be as described above, and let f* be a maximal matching to the induced

undirected graph G. The total number of changes, needed for the system represented by G to

resolve the deadlock is An- \f*\.

6.3. The Algorithm 66

Proof: We have edges in G with three different weights: 2, 3, and 4. We need to consider the

number of changes needed for each weight.

• For edges with weight 4 no changes are needed. These edges represent delivered messages.

• Edges with weight 3 represent an arc with weight 2 and one with weight 1. The arc with

weight 2 represents either a posted send or an outstanding receive. When this edge is

included in the matching, a change to the source of the arcs with weight 1 is needed to

make it match the source of the arc with weight 2. Thus 4 - 3 = 1 change is needed.

• Edges with weight 2 represent two arcs with weight 1 each. These arcs are both added to

make G complete. This implies that the sender did not attempt to send to the receiver,

and the receiver did not attempt to receive from the sender, so a change in both sender

and receiver is needed; a total of 4 - 2 = 2 changes must be made.

This shows that the number of changes per send/receive pair is equal to 4 minus the weight of

the edge. Since the sum of the edges is equal to | / * |, and the total number of send/receive pairs

is n, the result follows. •

Lemma 6.3.4 Let G be as described above. A maximal matching f* on the corresponding graph

G determines a minimum number of changes to the parallel system represented by G to resolve

the deadlock.

Proof: Since the minimal number of changes needed is 4n-\ f* |, the minimal number of changes

occurs when the second term of this expression is maximal. This second term is the size of the

matching, which means that the expression is minimal when the matching is maximal. •

The time complexity of this max flow algorithm is 0(\E | • | / * |) [CLR90] where | / * | is the size

of the matching. Since G = Kn>n, \E\= n2 and | /*|= n. Therefore, the time complexity is 0(n 3).

Example 6.3.5 Consider a simple example with three senders (Si, S 2 and S3) and three receivers

(Ri, R2 and R3). Assume that Sx has sent a successfully delivered message to Ri. Now assume

that S 2 is trying to send a message to R2, but R2 is expecting a message from S i . S 3 is attempting

to send to R2, and R2 has posted a receive for a message from S3. This results in a deadlock of

R2 and R3, as no messages are ever sent to these processes. We can represent this scenario as

a bipartite graph with senders on the left and receivers on the right. The graph labelled (a) in

Figure 6.2 shows this deadlocked system.

The algorithm requires a complete bipartite graph; the graph labelled (b) in Figure 6.2

illustrates the K3i3, where the weights are shown as pairs (x,y), and where x is the weight of

the arc from the sender to the receiver, while y is the weight from the receiver to the sender.

We now construct the graph G by replacing the arc pairs and adding their weights. The

graph is labelled (c) in Figure 6.2 . With three senders and three receivers there is a total of 6

6.4. Algorithm accuracy 67

(c) (d)

Figure 6.2: (a) depicts a deadlocked configuration: R 2 and R 3 are not receiving any

messages, (b) illustrates the complete directed bipartite graph G. (c) shows the

induced complete undirected bipartite graph G. (d) gives the maximal matching in G.

different ways to combine the senders and receivers so all senders are matched with a receiver.

A maximal matching with weight 10 is given by matching Si with Ri, S 2 with R2, and S 3 with R3.

The graph labelled (d) in Figure 6.2 shows the result of applying the max-flow algorithm to the

complete bipartite graph, where the maximal matching is shown as solid lines.

6.4 Algorithm accuracy

In this section, we evaluate the effectiveness of the techniques by showing that the algorithm

does not frequently return an incorrect, or even more than one, answer. There could be more

than one way to correct a deadlock with a minimum number of field changes. To do this we need

to introduce a model that describes a system of senders and receivers equivalent to the one used

in the previous section. In the following, let n denote the number of senders and receivers, and

6.4. Algorithm accuracy 68

k the number of errors in the system. First we define the following:

Definition 6.4.1 A communication configuration is a pair (S,U) (see Definition 6.3.1). Let Cn

denote the set of all communication configurations with n senders and n receivers.

Definition 6.4.2 A send s = (a,b) is unmatched if for r = (c,b), c ^ a. Equivalently a receive

r = (a, b) is unmatched if for s = (a,d), d^b. We call a communication configuration valid if it

has no unmatched sends or receives. The set of valid configurations in Cn is denoted by Vn.

Given a configuration (S,Tl) = ({ s 0 , . . . , s „ _ i } , {r0,... , r „ _ i }) in Cn, S i = (aiM) and ^ =

{a,j,bj). The associated directed bipartite graph G = (V,E) is defined by the following:

This graph is a subgraph of G. More specifically, it has the same node set, but the arc set contains

only arcs of weight 2.

Example 6.4.3 For a system with two senders and two receivers, Figure 6.3 shows the only two

valid configurations.

Figure 6.3: Only two of the 16 configurations in C2 are valid: al l sends and receives

are matched in both vi and v2, thus making them valid configurations.

Definition 6.4.4 The valid communication configuration v e V„, where s , = r^, V i : 0 < i < n is

called the correct configuration. There is only one correct configuration in V„ and we denote it

byvc.

The correct communication configuration is the configuration that the programmer intended

to write. Lemma 6.4.15 shows that all valid configurations are equivalent, and without loss of

generality, we can choose one of them to represent the correct configuration.

6.4. Algorithm accuracy 69

Definit ion 6.4.5 Let v e C„. B(v,i) is the set of all communication configurations obtainable

by first removing k\ + k2 = j < i arcs from v (kx arcs oriented from S toll and k2 arcs in the

opposite direction), and then adding k\ new arcs oriented from S to H and k2 in the opposite

direction. The set of configurations that can be obtained by removing exactly i, and then

adding exactly i new arcs is denoted as B(v,i). This set can be computed in the following way:

B(v, i) = B(v, i) \ B(v, i - 1) and B(v, 0) = B(v, 0) = {v}.

Example 6.4.6 Figure 6.4 shows B(vi,l) for i>i from Figure 6.3.

(a) (b)

(c) (d)

Figure 6.4: The set B(vi,l) for configuration vi as shown in Figure 6.3.

Example 6.4.7 In Figure 6.5 consider an invalid configuration v e C„ \V „ . The boldface x

marks v. The boxes mark valid configurations and the rest, marked by x, are other invalid

configurations v' e Cn\Vn. The solid line marks B(v,0), the dashed line B(v,l), and the dotted

line B(v,2). In order to correct v, such that it becomes a valid configuration by making a

minimal number of changes-that is, moving as few arcs as possible to transform v into a valid

configuration—we choose the first valid configuration found in the series of increasing sets:

B(v, 1), B(v, 2) , In the example in Figure 6.5, a valid configuration is found in B(v, 1).

We show, that for any invalid communication configuration in Cn, the probability that the first

encountered valid communication configuration in the series of increasing sets B(v, 1), B(v, 2) , . . .

is the correct communication configuration is high. In other words, if we introduce k errors into a

6.4. Algorithm accuracy 70

B(v,0)

Figure 6.5: The set of elements bounded by the solid line is B(v,0) (This set always

contains only one element, namely v itself). The set bounded by the dashed line

(including B(v,0)) is B(v,l)), and B(v,2) contains al l the elements.

valid communication configuration v e V „ , then the algorithm with a high probability wi l l propose

x to correct the error.

Lemma 6.4.8 The number of valid configurations in Cn, that is, the size of the set Vn, is n\.

Proof: For a configuration to be valid, each sender must send to a distinct receiver, and this

receiver must receive from this sender. If st = (a,i,bi), then a receiver rj = (ai,bj) where bi = bj

must exist. It is therefore, sufficient to determine the number of different ways to order n

senders. There are n! such ways. •

In the following, we consider the set of configurations on n senders and n receivers C„, and

the corresponding set of valid configurations V„ = {v0,.. .,vn<-i}. Let k < n/2 to be the number

of errors in the system.

Example 6.4.9 Consider a system with 1 error; we need to consider the configurations obtainable

by introducing one error to all Vi e V„ . This is a set of sets like this:

B1 = {B(v0,l),B(vl,l),...,B(vni-1,l)}.

6.4. Algorithm accuracy 71

// we know for every system with one error that the following is true:

n'.-l

p| B(Vi,l) = f] 6 = 0,
i=0 6 6 B i

then B(v, 1) contains only one valid configuration, which must be the correct configuration.

Consider Figure 6.6. If two errors are introduced into the configuration vi, then we have a

configuration that is in the intersection of B(vi,2) and B(v2,2), and this non valid configuration

can be corrected to either vi or v2 by moving two arcs. Since there are two valid configurations,

either may be the correct configuration.

Figure 6.6: r\iB(vi, 1) = 0, which means the correct configuration wi l l always be found

if only one error is present in the system. However, r\iB(vi,2) ^ 0, which means that

if two errors are present, then a wrong valid configuration might be suggested as the

correction to the deadlock.

In order to argue that the configuration obtained by moving a minimal number of arcs in any

invalid configuration is the correct valid configuration, we must therefore show the following for

all Vi,Vj eVn,i^ j:

B{Vi,e)^B{vhe)\ \ B(vue) n B{vhe) |
r-j and —— ——— are small V e < k,

\B(vi,e)\ \B(vj,e)\
(6.1)

where small means an acceptably low fraction of wrongly proposed corrections. This is equivalent

to showing the following:

| B(vc,e)nB(vi,e)

B{vc,e) is small V e < k,V vt 6 Vn\{vc}, (6.2)

6.4. Algorithm accuracy 72

where vc is the correct configuration in Cn.

To simplify the description of the communication configurations we introduce the following

notation. For each communication configuration in Cn, where the size of C„ is n2n, we assign a 2n

digit number sir1...snrn (s,-,ri e { 0 , . . . , n - 1}) as follows: Si equals the number of the receiver

that sender number i is sending to, and n equals the number of the sender that receiver number

i is trying to receive from.

Example 6.4.10 For example, using the two configurations in Figure 6.3 we obtain the repre

sentation: vi = 0011 and v2 = 1100. Figure 6.7 shows which configurations can be reached in k

steps from the correct configuration vc = 0011.

Figure 6.7: The solid lines connect configurations that are distance one apart. That

is, if two configurations are connected directly by a line, one can be obtained from the

other by moving one arc. In Cn the maximum distance is four, so no two configurations

can be more than distance four away from each other.

6.4. Algorithm accuracy 73

The following lemmas are needed to prove Equation 6 .2 .

Lemma 6.4.11 The number of configurations that can be obtained by moving i or less arcs in v,

denoted by | B(v,i) \, is as follows:

E (2 ;) (« - I > '
j=o v J '

Proof:
i

\B(v,i)\ = \\jB(v,j)\ (6.3)
3=0

i
= Y,\B(v,j)\ (6.4)

3=0

3=0 V J '

where Equation 6 .3 follows from Definition 6 . 4 .5 , Equation 6 .4 follows from the fact that B(v,j)n
B(v,i) = 0 if i ^ j, and Equation 6.5 follows from the observation that B(v,j) is the set of

configurations where we move exactly j arcs: we must choose j out of the 2n arcs to move.

Each of these arcs can be moved to any of the either n senders or receivers except for the one it

pointed to originally, leaving n - 1 choices. This is done for a total number of j times. •

Example 6.4.12 Table 6.1 shows a few examples of \ B(v, e) \. Recall that B{v, e) is the set of

configurations that can be obtained by moving a maximum of e different arcs in configuration v.

errors (e)
n 0 1 2 3 4 5 6

2 1 5 11 15 16

3 1 13 73 233 573 665 729

Table 6 . 1 : | B(v,e) \ is the size of the sets that can be obtained by moving e or less

arcs in a valid configuration v.

Definit ion 6.4.13 The distance between two valid configurations in Vn, denoted as d(vi,Vj), is

defined as follows:
2n

d{Vi,Vj) = Y^\VU ± vi,h
1=0

where vt = Vi2... Vi2n, VJ = VJ1 VJ2 . . . Vj2n, and

1 if S is true.

0 otherwise.

6.4. Algorithm accuracy 74

and S is a relational expression.

Example 6.4.14 The valid configurations in C3 are as follows

V3 = {001122, 110022, 002211, 220011, 221100, 210210}.

Table 6.2 shows the distances between these different valid configurations.

001122 110022 002211 122001 221100 210210
001122 0 4 4 6 4 6
110022 4 0 6 4 6 4
002211 4 6 0 4 6 4
122001 6 4 4 0 4 6
221100 4 6 6 4 0 4
210210 6 4 4 6 4 0

Table 6.2: Distances between valid configurations in V 3 c C3. The maximum distance

between configurations in V3 is 6, and the number of valid configurations is also 6.

Lemma 6.4.15 For any system Cn, a distance k, and a valid configuration v e Vn c Cn, the

number of valid configurations in V„ with distance k does not depend on the choice of v.

Proof: Permutations are automorphisms. •

Lemma 6.4.16 The possible distances between valid configurations in V„ c C„ are 4 , 6 , . . . , 2n -

2,2n.

Proof: A necessary condition for a configuration to be valid is that {si,..., sn} = {ri,...,rn} =

{0,... , n - 1}. Since all valid configurations are equivalent, consider vc = s\ris2r2,. • .,snrn. A

minimum of two send/receive pairs must be switched to obtain a different valid configuration.

This gives a minimum distance of 4. Now choose two send/receive pairs a, b to switch. There are

three cases to consider:

1. Both pairs are of the form s^r, = ii, which means that either they have not been switched

before, or that they have been switched back to their original state. When these pairs are

switched, the distance increases by 4.

2. One of the pairs, say a, is of the form = ii, and the other one, b, is not. When a and

b are switched a contributes distance 2 to the total distance, and b already contributed

distance 2, so the total distance only increases by 2.

3. Neither a nor b are of the form sin = ii. Neither contribute further to the total distance by

being switched.

6.4. Algorithm accuracy 75

Definit ion 6.4.17 Let V(v,m) be the set of valid configurations exactly distance m from the

valid configuration v, that is, the set B(v, m) n V „ .

Lemma 6.4.18 The size of V(v, m) for m = 2k is the following:

\V(v,2k) |= Q c ,

where

2=0

Proof: Since V(v, 2k) is the set of configurations exactly distance m away from v, we start by

choosing k of the n send/receive pairs to move; this can be done in (£) different ways. Since

we are only interested in permutations that result in configurations exactly distance 2k away,

we must multiply by the number of permutations of k elements that permute all k elements.

We need to determine the number of permutations of k elements which have no fixed points.

This problem was first proposed by the French mathematician Pierre Remond de Montmort in

1713 [Mon 13]. The answer is the alternating sum k\ <L~^L- This series of numbers is known

as recontres numbers or derangements, m

Example 6.4.19 c« is a fast growing series. Table 6.3 illustrates this by computing the first 11

values of c^. It should be clear, that the rapid growth in the number of valid configurations

makes correcting systems with a large number of errors virtually impossible.

i Ci

0 1
1 0
2 1
3 2
4 9
5 44
6 265
7 1,854
8 14,833
9 133,496
10 1,334,961

Table 6.3: The rate of growth of .

Example 6.4.20 Table 6.4 gives an example of the number of valid configurations at given

distances from another valid configuration. The columns for distance 0 and 2 are omitted as

they are always 1 and 0, respectively.

6.4. Algorithm accuracy 76

Number of valid configurations at different distances.
n 4 6 8 10 12 14 16 18
2 1
3 3 2
4 6 8 9
5 10 20 45 44
6 15 40 135 264 265
7 21 70 315 924 1,855 1,854
8 28 112 630 2,464 7,420 14,832 14,833
9 36 168 1,134 5,544 22,260 66,744 133,497 133,496
10 45 240 1,890 11,088 55,650 222,480 667,485 1,334,960

Table 6.4: The number of valid configurations at different distances in Vn. Distances

0 and 2 are omitted as they are always 1 and 0, respectively. Note, the last number in

each row corresponds to c, for i = n.

Consider the following two configurations: vx = 001122v 2 =002211. These two configurations

differ in the last four positions, thus having a distance of four. To compute the intersection

B(vi,2) n B(v2,2), we must find the configurations that can be reached from both vi and v2 by

changing at most two positions in each. Since the distance between the two configurations is

four, and we can change at most two positions in each configuration, it follows that we must

change exactly two in each. Choose two fields in v\, say vii and vlj. Change these two positions

to have the values of v2i andi> 2 j , and obtain i^ . We know that d(v'1,v2) = 2 . Now change the two

positions in v2 that differ from v[, say v2, and v2m to have the values of vlt = v'u and vXm = v'lm,

and obtain v'2. We now know that d(v[,v2) = 0 . The original distance is four and we must change

two fields in each configuration. The number of different ways this can be done is (*) = 6 . The

six configurations are as follows:

113333, 112222, 112323, 113233, 113232, 112332.

The underlined positions are the fields changed in vi and the overlined fields are the ones changed

in v2. According to Lemma 6.4.15, al l valid configurations are equivalent. Therefore, we can

simply study the properties of the correct valid configuration vc of V „ .

Example 6.4.21 Figure 6.8 illustrates the overlapping sets, the intersections can easily be seen

by comparing the coloured areas with the solid lines. Table 6.5 shows the intersection sets for

various values of k and k'. Note, the size of the intersecting sets shown in Table 6.5 can be found

on the diagonal in Table 6.6 from the lower left to the upper right.

Table 6.6 shows the sizes of the various intersections depending on different values of k and

k'. All these values can be read from Figure 6.8. The upper left part is mainly zeros because

6.4. Algorithm accuracy 77

Figure 6.8: An illustration of which configurations are in which intersections when

considering all the valid configurations in the C2 system.

Constraint 6(1122, jfc) n 6(2211, *')
(k < 4) A (k' < 0)
(k < 3) A (k1 < 1)
(k < 2) A (k1 < 2)
(k < 1) A (jfc' < 3)
(fc < 0) A (A' < 4)

2211
1211, 2111, 2212, 2221
2222, 1212, 1221, 2112, 2121, 1111
1112,1121, 1222, 2122
1122

Table 6.5: An example of the intersection B(1122, k) n 6(2211, k'), that is, the config

urations that can be transformed into 1122 by moving at most k arcs, and into 2211 by

moving at most k! arcs.

d(1122,2211) = 4. For example, it is impossible to find a configuration that can be turned into

1122 by moving two arcs, and into 2211 by moving one.

6.4. Algorithm accuracy 78

k' < 0 < 1 k' < 2 A;' < 3 k' < 4
k < 0 0 0 0 0 1
k < 1 0 0 0 4 5
k<2 0 0 6 10 11
k < 3 0 4 10 14 15
/c < 4 1 5 11 15 16

Table 6.6: The size of #(1122, k) n 5(2211, fc') for various values of k and fc'.

We can now determine the number of elements in the intersections of the B sets in 6.2.

Theorem 6.4.22 Let e be the number of errors in a communication system Cn. The number

of configurations with e errors for which the maximum matching either suggests a wrong valid

configuration or a set of valid configurations where the correct one is included is as follows:

(6.6) \J % , e) n % , e) *£(")«E £ E 0(i,a,b,Co)

t=2 ^ ' 6=0 a=max{6,e-6} c o =0

where

and

0(i, a, b, c) = Q (2 i " ̂) (n - 2) - (^ " J)̂ (n - 1)-

Cxy = (a - c0) + (6 - c0) - 2i

cx = 2i — a + c0

cy = 2i — b + c0

under the constraints (cxy > 0 A c x > 0 A cv > 0).

Proof: We wish to compute the total number of configurations in the intersections of the set

B(vc,e) with the sets B{vj,e), and then compare that with the total number of configurations in

the set B(vc,e) (cf. Equation 6.1). We start with Equation 6.7.

| J % , e) n % , e)
vjev

(6.7)

Equation 6.8 follows from Equation 6.7; since the maximum distance between a configuration

v e B(vc,e) and a configuration v' G B(vi,e) for Vi e Vn\{vc} is 2e, we can thus restrict ourselves

to consider valid configurations at distances 4,6,...,2e from vc. T>(vc,i) is the set of valid

configurations exactly distance i from vc. •

(J | J % , e) n % , e)
ie{4,...,2e} Vj£V(vc,i)

(6.8)

6.4. Algorithm accuracy 79

From Definition 6.4.5 we get the following:

e e

B(vc,e) = | J B(vc,a) and B(Vj,e) = \J B(vjtb).
a=0 6=0

This gives the following result in Equation 6.9:

U U [\jB(vc,a)) n (\JB{,vjtb)
ie{A,...,2e} VjeV(vc,i) \a=l

.6=1

(6.9)

Since the V sets are disjoint, we can exchange the unions with sums, and arrive at Equation 6.10:

E E
i=2 vjeV(va,2i)

\jB(vc,a))n(\jB(vj,b)
\a=l Kb=l

(6.10)

For a configuration v e B(vc,a) n B(vj,b) with b = d(vj,v) and a = d(vc,v), if a < b, then vc

wil l be reported as the correct communication configuration. Since we are counting the valid

communication configurations that are incorrect corrections, we only consider cases where a > b.

Additionally, if a + b < e then the intersection between B{vc, a) and B(vj,b) is empty. These three

observations combined, yield Equation 6.11.

E E
i=2 VieV(vc,2i)

(J (J % , o) n % , i)
6=0 a=max{b,e — 6}

(6.11)

Finally, by summing the sizes of the intersections B{vc, a) n B(vj,b), we obtain the quadruple sum

shown in Equation 6.12, which is an upper bound for Equation 6.7.

E E E E \B(vc,a)nB(Vj,b)\
i=2 Vje V(vc,2i) 6=0 a=max{b,e-b}

(6.12)

We now calculate the value of

\B{vc,a)nB(vj,b)\

for values a and b where j = 2i. Let x = vc = xiX2-.-X2n arid y = VJ = yiy2---V2n with

d{x,y) = j = Ii. We want to find configurations z = v = zxz2 ...z2n such that d(x,z) = a and

•d(y,z) - b. Assume, without loss of generality, that xk = yk for j + 1 < k < 2n such that we get

the following:

j 2n—j

X = x2 ... Xj X j + i . . . x2n

y -- '- Zi . z2 . . . Zj+l . . . Z2n

z = '• yi 2/2 • • • yj Xj+i . . . X2n

6.4. Algorithm accuracy 80

Now define the following:

Cy = {Zk • 1 < k < j : zk = xk A zk ^ Vk)

Cx = {zk •• 1 < k < j : Zk ^ xk A zk = Vk]

CXy = {Zk • 1 < k < j : zk ^ xk A zk ^ Vk}

Co = {Zk • j + 1 < k < 2n : zk ^ xk A zk ^ Vk}

Cx — 1 Cx

Cy — 1 Cy

Cxy | CXy |

Co = \c„

A ^-configuration must satisfy the following:

+ C0

since d(x, z) = a and d(y, z) = b. This results in the following 3 equations:

(X 0Xy ~\- CX ~t~ CQ

}) — CXy ~h Cy -f" C 0

— C-xy 0-x ~r"

(6.13)

The last equation follows from the fact that xk ^ yk for 1 < k < j. Setting a' = a - c0 and

b' = 6 - c 0 we obtain 3 equations with 3 unknowns represented by the following matrix equation:

f 1 1 0 \ f c x y \ (a' \

1 0 1

VI 1 1 / \ J J
By inverting the matrix we can compute values for cxy, cx, and cy in the following way:

(Cxy \

Cx

V cv J

(1 1 - 1 W a' \

V

0 - 1

-1 0

1

/ a' + b'-j \

V
j-v

3-a!

(a + b - j - 2 c 0 \

j -b + c0

J \ j - a + Co /

V

V 3 J

where the number of fields where z differs from x, but not from y, is cx; the number of fields

where z differs from y, but not x, is cy; and the number of fields where z differs from both x and

2/ is c x y .

We now look at the different ways of choosing fields in z that satisfy these constraints. Of the

j fields where xk ^ yk, we must choose cx where z differs from x but not y. Of the remaining

U - cx), we must choose cy fields. The rest of the cxy fields are prechosen. Of the (2n - j) fields

where a; and y do not differ, we must choose c 0 fields where z differs.

6.4. Algorithm accuracy 81

The values of the Cx and Cy fields are chosen to be the values of the opposite string, that is,

for the cx chosen fields the value is that of y and vice versa, for the cy chosen ones. The remaining

Cxy fields can take any value except those of the corresponding fields in x and y, which (n - 2)

choices for these cxy fields. The C0 fields can take any value except that of the corresponding

fields of x and y, which are the same. There are (n - 1) different choices for these values.

By substituting these values in Equation 6.12 on page 79, and summing over all valid values of

c0 (i.e., values for c 0 that produce nonnegative values for cxy,cx and cy) we get the number of

configurations with distance a to x, and distance b to y. The constraint (cx > 0 f\cy > 0Acxy > 0)

assures valid values of cxy, cx and cy. By subtracting the two last equations of 6.13 from the first,

we get c0 < (a + b + 2i)/2. Taking this into consideration, we arrive at the following result, as

stated in Equation 6.6:

| J % , e) n % , e)

e e e

^ E E E E \B(vc,a)nB(Vj,b)\
i=2 VjeT>(vc,2i) 6=0 a=max{b,e-b}

= Y,\V(vc,2i)\J2 E E 0(i,a,b,c0)
i=2 6=0 a=max{b,e — b} co=0

a + b + 2i

= E(")C 'E E E 0(i,a,b,Co) (6.14)
i=2 ^ ' 6=0 a=max{b,e-b} co=0

where ct are the constants from Lemma 6.4.18, and

and cxy,cx,cy are given as follows:

cxy = (a - c0) + (b - c0) - 2i

cx = 2i - b + c0

cy = 2i — a + c0

under the constraints (cxy > 0 A cx > 0 A cy > 0).

•

Using Equation 6.14 we can now compute an upper bound for the fraction in Equation 6.2.

Figure 6.9 shows the estimated failure rate for the algorithm. An ambiguous correction is when

more than one valid configuration is at the minimum distance.

6.5. Message tags 82

Number of errors (e)
e = 1 e = 2 e = 3 e = 4 e = 5

n W A W A W A W A W A
2 0.00 0.00 0.00 54.55
3 0.00 0.00 0.00 24.66
4 0.00 0.00 0.00 13.00
5 0.00 0.00 0.00 7.38 4.74 32.93
6 0.00 0.00 0.00 5.26 2.67 23.86
7 0.00 0.00 0.00 3.75 1.64 17.91 7.76 53.79
8 0.00 0.00 0.00 2.80 1.07 13.88 5.10 42.08
9 0.00 0.00 0.00 2.17 0.74 11.05 3.51 33.67 11.33 88.85
10 0.00 0.00 0.00 1.73 0.53 8.99 2.52 27.49 8.02 71.39

Figure 6.9: The failure rate for the algorithm in percents-incorrect suggested correc

tions (labelled W) and ambiguous corrections (labelled A).

6.5 Message tags

We now consider message passing that includes message tags. We do not formally analyze this

case, but argue that the chances of the algorithm being able to predict the correct solution

increases proportionally to the number of different message tags used.

We do not have a polynomial time algorithm for the case where tags are considered, but the

desired permutations can be obtained by computing a Hamming distance between all possible

combinations of permutations of senders and receivers, and choosing the one or ones that give

the smallest Hamming distance. This is an exhaustive search that is only feasible for small values

of n. This algorithm has time complexity 0(n\).

Figure 6.10 is a copy of Figure 6.3, where we have introduced message tags. The S i and Rx

both send/receive with tag 11, and S 2 and R2 both send/receive with tag 22. It is obvious that

v2 is no longer a valid configuration as there is a tag mismatch between S i and R2, and between

S 2 and Ri. In fact, v2 is now a configuration with at least 2 errors.

By introducing message tags into a communication system, and by choosing them carefully,

that is, in a meaningful way with respect to the message they are associated with, the risk of the

algorithm predicting a wrong solution is greatly reduced.

As an example, consider C2. As seen in the previous example the 54.55% ambiguity rate has

disappeared as v2 is no longer a valid configuration. This holds true if two errors are introduced

in the sender or receiver IDs. The correct valid configuration vx is distance 2 away, where

v2 is distance 4 away. Similarly, if two errors are introduced into the tags, the correct valid

configuration is distance 2 away, whereas the wrong valid configuration is distance 4 away.

A wild card or an 'any' value is a special value that matches any other value. These are often

used when a receiver does not know the identity of the sender or the tag of the package. They

6.6. Summary 83

11

22

vi v2

Figure 6.10: Introducing message tags.

are often used for dynamic communication in cl ient/server type applications or for convenience,

instead of the process ID. When introducing wild cards into a communication system, the degree

of freedom with respect to field values increases. This significantly decreases the success rate of

an algorithm, such as the one presented.

6.6 Summary

In this chapter, we presented an algorithm that proposes changes in message passing systems that

have deadlocked due to a small number of typographical errors. If a small number of errors occur

in an otherwise working message passing system, then we can correct these errors with a high

probability.

Many programmers make extensive use of wild cards in receive calls. This does not only

increase the risk of a message being accepted by a receiver that is not supposed to receive it,

but also complicates the problem of discovering the source of the error. In contrast, by carefully

choosing message tags, and by associating different tags with different types of communication,

the risk of wrong sends going through is substantially reduced. Furthermore, the ability to predict

the correct communication configuration is greatly increased.

We do not have a polynomial t ime algorithm for the case where message tags are considered;

we believe that the problem can be reduced to a 3 dimensional matching problem, which is

NP-comp le te . Introducing message tags make the problem more complex but on the other hand

reduces the size of the overlapping B sets. The 0(n!) algorithm can easily be implemented such

that message tags are taken into account.

Chapter 7

Protocol Conformance Checking

"The pure and simple truth is rarely pure and never simple"

- Oscar Wilde

In the previous chapter, we described the Deadlock Detection and Correction Module, which

is the first tool at the protocol level of the Millipede multi level debugger. In this chapter, we

investigate a technique referred to as Protocol Constraint Conformance Checking. A protocol

constraint specification is an assertion-like specification of a protocol's behaviour that specifies a

number of constraints that the protocol must conform to when executed. It is not a verification

tool like SMV [CLM89, McM92] or FDR [For], nor is it directly comparable to assert statements in C,

but rather a technique that allows the user to automate checking the behaviour of the protocol of

a running parallel system by writing a specification file containing a number of constraints. These

constraints are checked against the messages at runtime. We present the Protocol Constraint

Specification Language (PCSL) and a Millipede tool Millipede Online Protocol Error Detection

(MOPED) which executes the constraint conformance checking at runtime.

7.1 Between Testing and Verification

The idea behind constraint conformance checking is to allow the user to write a specification of

the behaviour of the protocol, and then, using information about actual messages, automatically

check that the messages satisfy the constraints. It is important to distinguish the protocol

constraint specification from the wel l known concept of constraint programming [Lel88]. A

program written in a constraint programming language is a set of equations that are given to a

constraint-satisfaction system which in turn, returns the values satisfying the constraints. Our

approach does not generate a list of messages that satisfy the constraint system, but rather, using

84

7.1. Between Testing and Verification 85

message information, checks that the constraints are val id. In later sections we explain in detail

how constraints are instantiated using message information and checked.

We now argue why protocol constraints are useful in the debugging and development cycles of

a parallel program. The communication protocol of a parallel message passing program starts as a

specification; this specification can be anything from written prose to a detailed CSP description.

One of the goals of such a specification is to serve as a starting point for the implementation of

the protocol using, for example, C and PVM. A second goal is to serve as a specification that can

be used for testing purposes.

A number of different paths can be taken from the specification to the actual running imple

mentation. The most straightforward one is to simply implement the protocol. This leaves the

user with the daunting task of having to test a protocol implementation that might contain errors

and deadlocks. If the specification is more rigorous than just plain English, perhaps written in

some verification language, using a verification tool to check that the protocol does not have

deadlocks, livelocks, and race conditions is a natural choice. In Section 7.2, we briefly describe

some of the advantages and disadvantages of this technique. Once a protocol specification is

verified, it must stil l be implemented in the target language and message passing system. Errors

may be introduced into this implementation as wel l ; this means that testing the implementation

is sti l l necessary.

Whenever the translation of the protocol from specification to implementation is done by hand,

as with any implementation, the risk of introducing errors exists. We believe this is particularly

true when the source (specification or verified protocol in some verification language) and the

target (e.g., a C program) domains differ greatly. One of the closest relationships between a

specification language and a programming language is between CSP [Hoa78] and Occam [May83],

but even here the difference is stil l substantial.

No matter which approach is taken, a substantial amount of testing is necessary. This is where

protocol constraints can help; as a mixture of asserts and constraints, we allow the user to specify

relationships between processes (through a constraint-like specification), and have the system

check that the messages conform to the constraints through assert-like checks.

We believe that the collection of constraint specifications in one file (rather than assert like

statements associated with each message passing call) gives the user a faster and more complete

overview of the entire constraint specification, as well as more tightly coupling the sending

process with the receiving process.

Since program development is often an iterative task, another main goal of the constraint

system is to provide the ability to use it in connection with such a program development strategy.

This means that the init ial specification can be very general, and as the implementation becomes

more complex, or as discoveries are made about the protocol, the specification can be refined as

7.2. Protocol Checking and Verification 86

wel l .

Naturally, there is no guarantee that the transcription of the protocol specification to the con

straint specification language is correct, but this language is not large nor complicated. Whether

a protocol is formally verified or not, protocol constraints can aid in testing the implementation

of a protocol. Many users are not familiar with CSP or other complex specification languages or

verification tools. If this is the case, protocol verification is virtually impossible. However, though

not constituting verification in the typical sense of the word, constraints enable users unfamiliar

with verification tools to write simple protocol constraint specifications as the program is being

developed, and MOPED checks messages against these when the program runs. We believe that

this can assist the user in correcting errors in the implementation that might otherwise be difficult

to find.

7.2 Protocol Checking and Verification

For completeness, we include some information on protocol verification in this chapter. A common

denominator for the tools mentioned in this section is the ability to check and verify protocols and

perform model checking. Being able to check a protocol for deadlocks and fairness constraints is

an important part of developing and debugging parallel programs. However, most existing tools

require the protocol/model to be specified or implemented separately in the language of the tool,

which means that the protocol must be re-implemented in the source language the application is

written in.

Some well known approaches to protocol specification include CSP [Hoa78], CTLV/u-calculus

[CE81] and coloured Petri nets [Jen92]. Specifications written in CSP can be verified and checked

using the FDR model checking tool [For]. FDR (Failures-Divergence-Refinement) allows for the

checking of many properties of finite-state systems and the investigation of systems which fai l

these checks. CSP allows a wide range of correctness conditions, including deadlock and livelock

freedom, as wel l as general safety and liveness properties to be encoded and checked using FDR.

A different approach to model checking is using CTL (Computational Tree Logic); systems using

this abstraction include VIS [The96], Mur</» [Dil96] and SMV [CLM89, McM92]. The specification

is typically translated into a BDD (Binary Decision Diagram), and various algorithmic techniques

can be applied in order to verify statements about the model. All of these systems accept

specifications written in different languages, none of which are compatible with standard C or

C++. The SPIN [Hol97] system also falls into this category of tools, although it is based on LTL

(Linear Temporal Logic) and not CTL. In [San99] two important problems are pointed out with

these techniques; these are as follows: the specification languages are fairly low level, and the

state space explosion problem is present.

The approach to model checking with coloured Petri-nets is slightly different; the user has

7.3. Protocol Constraint Specification 87

to specify a graphical representation of the protocol and annotate it with code written in ML. A

number of analyses can then be performed on the model by constructing a state space for the

net. To transcribe a Petri-net model to C requires implementing the protocol based on a graphical

representation and translating ML code to C. The risk of introducing errors is increased as the

translation from a graphical representation and a functional specification must be performed

manually.

7.3 Protocol Constraint Specification

Before we start defining protocols, we introduce a few concepts and definitions. A group of

processes is an ordered set of processes all spawned from the same pvm_spawn cal l . There can

be several groups of the same program depending on the number of spawn calls. An instance

is one process from a group. Each process in a group is given an instance number, starting at 0,

each time a group is spawned.

A l ine number is either a concrete line number containing a pvm_send, a pvm_recv or an

identifier. If an identifier is used, Millipede wil l search the appropriate source file for comments of

the form / * ((l i n e - l a b e l)) * / where l i n e - l a b e l is the identifier used in the specification

of the protocol.

7.3.1 Protocol Contents

To use the PCSL/MOPED, the user first writes a file containing a constraint specification that she

wishes to check her program against. We refer to a protocol constraint specification as simply a

protocol specification, or just as a specification. A protocol specification file consists of a number

of lines that specify which sends can send to which receives. One of the powerful features of the

PCSL/MOPED module is the ability to start out by specifying a very general version of the protocol

and checking it; as errors are detected and corrected, or as more knowledge about the protocol

is gained, the specification can be specialized step by step. A protocol consists of a number of

lines of the following form:

pgnamei[e1}{e2}(e3) -> pgname2[ei]{e5}{ee)

Each line can be followed by a number of quantif iers of the following form:

V id : RelExpression;

The first part states that a process created from program pgnamei with instance number e 2 in

group e i may send from a send call in line e 3 to a receive call in a process created from a program

pgname2 with instance number e 5 in group e 4 with a receive call in line e 6 . Values for e i , e 2 and e 3

can either be omitted, or be a number or an identifier. If e 3 is the identifier x y z , and pgnamei.c

7.4. The PCSL Grammar and Semantics 88

contains a pvm_send followed by a / * ((x y z)) * / comment, e 3 wi l l be substituted with the

actual line number of the send call in the source file.

If e i or e 2 are identifiers, or if e 3 is an identifier that does not match any / * ((. . .)) * / line

in the source file, then these are bound to the group, the instance number, or the line number of

the process who sent the message. If any or all of e i , e 2 , or e 3 are omitted, no check is done for

the missing expression. This is equivalent to a wild card match.

Values for e 4 , e 5 , or e 6 can either be expressions, identifiers, or be omitted. Again, if omitted,

a wild card match is performed. If an expression is given, this expression is evaluated and matched

to the actual values of the group, instance, and line number of the process that received the

message. If a new identifier is introduced in any of e 4 , e 5 or e 6 , it is bound to the actual

group, instance, or line number of the receiver of the message. If e 6 is an identifier, a similar

replacement, as described for e 3 , wi l l take place.

A quantifier introduces constraints on an identifier used in the e i , . . . , e 6 . These can be qualified

by both lower and upper bounds or bound by other expressions.

A message (sent from a sender to a receiver) is a tuple as follows:

where Ps and Pr are the program names of the sender and receiver processes, GS,IS, and Ls

denote the group, instance, and line of the sender, and Gr,Ir, and Lr denote those of the

receiver. Ns and Nr are the total number of processes in group Gs and Gr. Ns and N r are

reserved names in PCSL; at check time they contain the values of Ns and /V r of M.

7.4 The PCSL Grammar and Semantics

For completeness, the BNF grammar of the protocol constraint language (PCSL) can be found in

Appendix B.1. The expressions and the relational expressions of the grammar are a subset of the

grammar for expressions in the C programming language with the square root function added.

In Appendix B.1, the semantics for computing expressions and relational expressions are

shown. The Greek symbol u denotes a symbol table that associates variables with values. Vari

able/value pairs can be added to the symbol table using the E function defined in Figure 7.1.

M = (PS,P, {GS,IS,L.),(Gr,Ir,Lr),Ns,Nr)

a U {e = v} if e is an identifier, and e is not bound in a.
error if e is an identifier, and e is already bound in a.
a otherwise.

Figure 7.1: Adding elements to the symbol table.

With the symbol table a in place, we now turn our attention to the semantics of a single PCSL

7.4. The PCSL Grammar and Semantics 89

line. Recall the following appearance of a specification line L:

/3[ei]{e2}(e3)-><5[e4]{e 5}(e6) :: Q

where Q is a list of quantifiers. Such a line (referred to by L) is always checked with respect to

a message M. The semantic function we create is named B. We say that a message M does not

violate a specification line L, if

<B[L]]M = true.

We briefly explain how a message is checked against a protocol line in the following. Remembering

that e i , e 2 and e 3 can either be left blank, a number (constant) or an identifier. We perform the

following for each of these:

• If ei is a number (ci), e{ is replaced by ait and the quantifier V a * : at = a is added to Q.

• If ei is an identifier, replace all of its occurrences by a * . This step is not necessary, but it

clarifies the following explanation.

• If ei is left blank, replace the blank with ai, and add the quantifier V a , : true to Q.

This transformation is applied to each protocol line such that any quantifiers associated with

the sender side of a protocol line can be checked separately from the rest of the quantifiers (by

looking up quantifiers that bind a ,) .

For e 4 , e 5 , and e 6 , apply the following transformation: if ei is left blank, replace ei with 7,,
and add the quantifier : true to Q. This transformation is done in order to avoid comparing

numbers to empty expressions.

The table in Figure 7.2 summarizes the following in depth explanation of how to check a

message against a protocol line. If any of the checks past step 2 fai l , the protocol is violated by

the message.

Before any checking can be performed, we need to add information from the message M to

the symbol table. Recall that e 1 (e 2 and e 3 are al l replaced by Q i , a 2 and a 3 , respectively. We

now use the S function to add the bindings ax = Gs, a 2 = Is, and a 2 = Ls to the symbol table a.

We are now ready to check the protocol line against the actual message M.

• The first step in checking a line against a message is to determine if the actual sender

and receiver of the message match the program names specified in the line. The actual

sender and receiver are Ps and Pr, and the sender and receiver specified in the protocol

line are 0 and 6. Thus, the first check that must be performed becomes the following:

(Ps = p A Pr = 8). If this evaluates to true the sender may send a message to the receiver.

• Recall the transformation performed on the protocol line, that is, replacing or adding a l t

a2, and a 3 for the expressions e i , e 2 , and e 3 . This transformation may result in up to three

7.4. The PCSL Grammar and Semantics 90

quantifiers a» : r i t which must be checked as wel l . Here, checked means that the values

are within the boundaries of their definitions. r» is a relational expression, so the semantic

function Tl is used in the following way: f\Q3q=yai:ri Tllrijcr. If this expression evaluates to

true we know the sender part of the message matches the line.

• If the first two steps of the check are true, the protocol line matches the sender; now we

need to check if the receiver of the message matches the receiver part of the protocol line.

First, if any of e 4 , e 5 or e 6 are identifiers, add these to the symbol table with the bindings

of the receiver group, instance or line number, respectively, (any line number identifiers

that existed in a / * ((. . .)) * / comment wil l have been replaced already). All other

quantifiers are checked also using the Tl function as follows: f \ Q 5 q = V v . r {v, •) e a A fc[r]]cr.

We can restrict the conjunction to only consider quantifiers where v ^ ait but to keep it

simple we do not bother with this restriction as checking the sender quantifiers one more

time does not change anything.

• We now need to check that the actual receiver of the message may indeed receive it

according to the specification. That entails checking three properties: The group, the

instance, and the line number.

- The expression e 4 is evaluated using the £ semantic function for evaluating expressions.

Note, if e 4 is an identifier, it would have been inserted into the symbol table with the

value Gr- The resulting value is then compared to the actual group number of the

receiver, Gr: £|e4]]<7 = Gr.

- A similar check involving the use of £ is performed on the instance number in the

following way: £[e5]]<7 = IT.

- Finally, the line number of the actual receiver is compared to the value we get by

evaluating e 6 : £[e 6]]cr = LT.

Note, if for example e 4 is left blank, it then gets replaced by 74, and the quantifier V7 4 : true

is added to Q. This quantifier always evaluates to true; however, since e 4 = 74 is an identifier,

the value Gr is associated with it; that is, before performing the quantifier check on the receiver

part, the binding 74 = Gr is inserted into a. Now, when the check £[[74J<7 = GT is performed, it

becomes trivially true because of the binding of 7 4 in the symbol table.

If any of the checks after the second check fai l , an error must be reported, as the receiver

should not have received the message, or the sender should not have sent the message to the

receiver. Figure 7.2 shows the six steps of the checking algorithm. We can summarize the check

by the semantic function B, which is shown in Figure 7.3.

7.5. Examples

Step Check Comment
1 (Ps = pAPr= S) If false move on to the next line.

If true continue.
2 AQ3?=Va ;:r, This checks if the sender part of the mes

sage matches the sender part of the proto
col line.
If false move on to the next line.
If true continue.

3 A Q 9 , = v „ ((V) ^ A W Check the rest (all) of the quantifiers.
If false report a quantifier error.
If true continue.

4 £le4<r = Gr Check if the receiver group may receive this
message.
If false report a group error.
If true continue.

5 £[e 5Jer = Ir Check if the receiver instance may receive
this message.
If false report an instance error.
If true continue.

6 £{e6}a = Lr Check if the receiver line may receive this
message.
If false report a line error.
If true protocol line is not violated by the
message with respect to the semantics of
Figure 7.3

Figure 7.2: Checking a protocol line takes six steps. If the check fails in the first 2

steps, it is because the line did not match the sender, so move on to the next. If any of

the checks in the subsequent steps fai l , it constitutes an error; the sender is matched

to the protocol line, but the receiver did not match the line.

B[LJM = (P„ = p A Pr = 5) A I f\ ((v, •) e a A 7^r>) I A
\QBq=Vv.r J

(Sletja' = G P) A {£|e5]a' = Ir) A (£[ee]ff' = Lr)

where

a = E[e 3](L.)(S[e 2K/.)(E[ei](G.)0))
a' = E [e 6] (L r) (E [e 5] (J P) (£ [e 4 K G P) a))
Q = Vv0 : r 0 ; . . . ; Vw„ : rn; r» is a relational expression.

Figure 7.3: Semantics for a PCSL line.

7.5 Examples

In this section we present a number of examples of how to specify protocol constraints.

7.5. Examples 92

7.5.1 The Simplest Protocol

As stated in the previous section, a protocol constraint specification can start out being very

general. In Figure 7.4 the simplest possible protocol is shown.

H 2 Send Send ^j

Receive Receive

Send Send

Receive Receive

j = 0,1,2
Figure 7.4: Example of /?[]{}() - * 0[}{ }();

This protocol consists of only the following one line (we use the Greek symbol 0 as a shorthand

notation to represent a program name):

This line states that any 0 process can send to any other 0 process regardless of the group,

instance or line number. The first part of the picture in Figure 7.4 shows that 0 processes

communicate among themselves. The second part shows that any 0 process can communicate

with any one 0 process. Lastly, the rightmost part shows that all sends in any 0 process may send

to any receive in any 0 process, including itself.

We can specialize this very simple specification to represent a system where 0 process number

i can send to another 0 process with instance number i + 1, and where process number n - 1

sends to instance number 0. In summary, we have the following:

0 [] { O } () -> / ? [] { ! } () ;

0[]{!}() -> 0[}{2}();

3[}{n-l}() -> /3[]{0}();

Alternatively, in short notation using a quantifier, we arrive at the following:

P[]{*)() P\ H(« + !)%"}() : : V i : 0 < i &&t < n - 1;

In Figure 7.5 this protocol is shown graphically with a fully quantified PCSL line.

7.5. Examples 93

Figure 7.5: Example of 0\] {» } () -4 0{]{(t + l)%n}() :: V i : 0 < i kk i < n - 1;

7.5.2 Pipe-and-Roll Matrix Multiplication

Consider a more complex example that also includes the use of line numbers. The pseudo code

for the pipe-and-roll matrix multiplication algorithm [FJL+88] is shown in Figure 7.6 (the master's

code) and in Figure 7.7 (the slave's code). Processes communicate subblocks of a matrix in a

two-dimensional grid, sending up and right to neighbor processes. (A graphical illustration of this

protocol can be seen in Figure 7.8.)

Let N*N be the number of processors
Map concurrent computer on to array of N*N processors
D i s t r i b u t e subblocks of A and B to processors
Await subblock r e s u l t s i n matrix C

Figure 7.6: Pseudo code for the master of the pipe-and-roll matrix multiplication
algorithm.

As we can see from the 2 functions Pipe_A and Roll_B, a process executing a pipe call can

7.5. Examples 94

I n i t i a l i z e subblock matrix C to 0
Receive subblocks A and B
for i=0 to N-l do {
T = Pipe_A()
C = C + T*B
R o l l _ B ()

}

Send subblock C to master

Pipe_A() {
Determine the source processor of the pipe
Determine the l a s t processor of the pipe,
i f (t h i s processor i s the source processor) then
Copy A to T

else i f (processor i s not the source processor) then
Receive T from processor on the l e f t

i f (processor i s not the l a s t processor i n pipe) then
Send T to processor on the r i g h t

return T
}

Roll_B() {
Send B to processor above (with wrap around)
Receive B from processor below.
}

Figure 7.7: Pseudo code for the slave of the pipe-and-roll matrix multiplication algo
rithm.

only send to the process to the right of it and receive from the process to the left of it, and when

executing a Roll_B, it can only send to the process above it and receive from the process below

it (assuming the processes are arranged in a grid of size N x N). Let us assume, for simplicity,

that N = 4 in the following; that is, we are working with a 4 x 4 grid of processes.

A process with instance j performing a Pipe_A operation can send to process (j +1)%4, and a

process j performing a Roll_B operation can send to process (j +12)%16. This can be expressed

by the following two PCSL lines:

Matrix[]{j}(SendPipe) -> Matrix[+ l)%A}(ReceivePipe) :: Vj : j < 16;

Matrix{]{j}(SendRoll) -> Matrix[+ 12)%16}(ReceiveRoll) :: Vj : j < 16;

The graphical representation can be seen in Figure 7.8. This only includes the communication

between the worker processes (called Matrix).
To add protocol specification lines to check communication between the master (Master) and

7.5. Examples 95

Matrix

Matrix '

0

a
•O-

•0-

-0-

•0-

Send / * Send Pipe */

Receive /* ReceivePipe */

Send /* Send Roll */

1 fc- Receive/* SendRoll */
\

Figure 7.8: The pipe-and-roll part of the matrix multiplication algorithm.

the slaves, add the following two lines to the specification file:

Master[]{0}(SendParams) —> Matrix[]{ }(ReceiveParams);

Matrix[]{}(SendResult) —\ Master[]{0}(ReceiveResult);

Also, note that the group numbers are left out to simplify the description of the protocol.

Limitations

By inspecting the communication pattern in the program pseudo code, it becomes clear that the

pipe communication does not need to wrap around, that is, the last processor in the pipe does not

need to send anything to the source processor. The source processor of each round of pipes differs

from the one in the previous round. It is not directly possible to specify a protocol that reflects

such a communication pattern that depends on the state in the application. In Section 7.10 we

describe a.way to resolve this problem and expand the set of protocols that can be specified.

7.5.3 A Partial Differential Equation Solver

Let us consider a parallel master/slave program to solve a hyperbolic differential equation. There

is one master process and n slave processes. Figure 7.9 shows the algorithm for the master, and

Figure 7.10 for the slaves.

Version 1 of the Protocol Constraint Specification

The most general protocol, V\ (covering all sends) that we can specify for the master/slave

system is illustrated in Figure 7.11.

The V\ protocol contains 3 lines:

7.5. Examples 96

Send parameters to slaves 0 , . . , J f - l /* ((MS)) */

Repeat N times {
Receive r e s u l t from sl a v e

}
/* ((MR)) */

Figure 7.9: Pseudo code for master algorithm for a differential equation.

Receive parameters from master /* ((SR)) */

Repeat n times {
i f (i d > 0) t h e n
Send to slave id - 1

i f (i d < N-1) t h e n
Send to slave id + 1

/*

/*

((SI))

((S 2))

*/

*/

C a l c u l a t e

i f (i d > 0) t h e n
Receive from slave id - 1

i f (i d < N - 1) t h e n
Receive from slave id + 1

}
Send r e s u l t to the master

/*

/*

((RD)

((R 2))

*/

*/

i f (i d > 0) t h e n
Receive from slave id - 1

i f (i d < N - 1) t h e n
Receive from slave id + 1

}
Send r e s u l t to the master /* ((SS)) */

Figure 7.10: Pseudo code for slave algorithm for a differential equation solver.

Master ^ Slave

Master[]{}()
Slave{}{}()
Slave[}{}()

Slave[}{}();
Master[]{}();
Slave[}{}();

Figure 7.11: V\— Version 1 of the protocol specification.

1. Any master program can send to any slave program regardless of group, instance, or line

number.

7.5. Examples 97

2. Any slave program can send to any master program regardless of group, instance, or line

number.

3. Any slave program can send to any other slave program regardless of group, instance, or

line number.

Vx is not very useful; it does not specify anything about the communication between the

slaves. First, we extend V\ for master group 0 (only one group of master programs is spawned,

and this group contains only one process with instance 0). This changes the left part of the

first line and the right part of the second line in Figure 7.11 to Master[0]{0}(). Likewise, for

the slaves, there is only one group of slaves spawned, so lines 1, 2, and 3 can be changed to

Slave[0]{}(). Let V[denote this version of the protocol specification, as shown in Figure 7.12.

1: Master[0}{0}{) -> Slave[0]{}();
2: Slave[0}{}() -> M aster [0}{0}();
3: Slave[0]{}() -> Slave[0}{}();

Figure 7.12: V[- Extended version 1 of the protocol specification.

Version 2 of the Protocol Constraint Specification

By inspecting the code in Figure 7.10 we see that slave number i can send to slave number i + 1

if i < N - 1 (assuming the system has N slave processes), and slave number i can send to slave

number i - 1 if i > 0. Figure 7.13 shows the protocol as a graphical representation. We can

incorporate this into the protocol specification and arrive at the second version, which is shown

in Figure 7.14.

Note, that line 3 is split into line 3a (i sends to i + 1) and line 3b (i sends to i - 1). Also note

the use of the two quantifier expressions following these lines.

Version 3 of the Protocol Constraint Specification

Looking closer at the lines 3a and 3b in Figure 7.14, and comparing these with the pseudo code

in Figure 7.10, we see that the V? protocol specification does not specify that the send marked

s i always sends to the receive marked R l , and that the send marked S2 always sends to the

receive marked R 2 . If, by mistake, a message were delivered to the wrong receive, there

wil l be a violation of the communication protocol, so we need to add this information to the

specification. Thus, line 3a represents the message passed between send S i and receive R l ,
and line 3b represents the message passed between send S2 and receive R 2 . Adding this to the

specification we obtain the third version, as shown in Figure 7.15. For completeness, we added

line information about the parameter and result messages sent to and from the master.

7.6. Online Checking 98

Slave[0]{0}

Slave[0]{1}

Master[0]{0} <5 Slave[0]{2}

Slave[0]{3}

Slave[0]{4}

Figure 7.13: Graphical representation of V2 - the second version of the protocol

specification.

1: Master[0}{0}{) ->• Slave[0]{}();
2: Slave[0}{}{) -»• • M a s i e r [0]{0}();
3a: 5/aue[0]{i}() ->• S7aue[0]{i + 1}() :: V i : i < n - 1;
3b: Slave[0]{i}{) -+ Slave[0]{i - 1}() :: V i : 0 < i;

Figure 7.14: V2 — Version 2 of the protocol specification.

1: Master[0]{0}(MS) -> S/ovetOllJCSfi);
2: 5/aue[0]{}(55) -> Mosier[0]{0}(M JR);
3a: Slave[0\{i}{Sl) Slave[0}{i + 1}(RI) :: V i : i < n - 1;
3b: 5loue[0]{t}(52) -> 5/owe[0]{i - l}(iJ2) :: V t : 0 < i;

Figure 7.15: - Version 3 of the protocol specification.

Figure 7.16 shows an extended version of P3, where we added information about the instance

of the slaves in lines 1 and 2. Furthermore, we added an upper bound for i in line 3b, and a lower

bound for i in line 3a. Al l these changes do not change the protocol in any way, but allow the

system to predict which sends/receives are legal. V3 can only be checked, not predicted (see

Section 7.8 for more information on protocol prediction).

7.6 Online Checking

MOPED can be used in two different modes: online or offline. The online mode checks the

specification as the communication takes place; each message in the system is captured by

Millipede and checked against the constraint specification. If an error occurs, that is, if a message

7.7. Offline Checking 99

1: Master[0}{0}(MS)
2: Slave[0}{i}(SS)
3a: Slave[0]{i}(Sl)
3b: Slave[0]{i}(S2)

Slave[0}{i}(SR) :: V i : (0 < i) kk (i < n);

-» Masier[0]{0}(Mi?)
5/ove[0]{z + l } (m)
5Iave[0]{i- l}(i22)

V i : (0 < i) k k (i < n);
V i : (0 < i) k k (i < n - 1);
V i : (0 < i) k k (i < n);

Figure 7.16: - Extended version 3 of the protocol specification.

violates the protocol specification, a message is displayed in the Millipede status window.

When developing programs, this approach can be used incrementally, as shown in the example

in Section 7.5.3. The first version of the specification can be very general, and then gradually

refined until errors are discovered. Once the error is corrected, the specification can be further

refined if the program stil l does not function correctly.

7.6.1 Strictness

A protocol specification can be checked using different levels of strictness. When using the

refinement technique, that is, starting out with a simple specification, some messages might not

match any lines, thus violating the protocol. The user might not perceive this as a violation as

the protocol is not fully specified; if this is the case, a lower level of strictness can be adopted.

Table 7.1 shows the 3 different levels of strictness that MOPED currently supports.

Level Description
1 0 or more protocol specification lines may match with respect to program

name and sender quantifiers.
2 At least one protocol specification line must match with respect to program

name and sender quantifiers.
3 Exactly one protocol specification line must match with respect to program

name and sender quantifiers.

Table 7.1: The MOPED Strictness levels.

Strictness level 1 should be used when the protocol has not yet been fully specified, level 2

when the protocol is fully specified, but not uniquely (i.e., a message can match more than one

protocol line), and level 3 if a ful l specification is given.

7.7 Offline Checking

As described in the previous section, Millipede can check messages against the protocol specifica

t ion, while the program is running. However, if Millipede is generating log files while the program

executes, the checking can also be performed offline. All the information needed to check the

protocol can be extracted from the set of log files and the corresponding project file.

7.8. Protocol Prediction 100

7.8 Protocol Prediction

As mentioned earlier, if all constraint lines are fully quantified with bounds for each variable,

Millipede can generate a list of all possible valid send/receive combinations. For the example in

Figure 7.16, the prediction table is shown in Table 7.2 (for n = 4).

Sender Receiver Line
Master[0}{0}(MS) -»• Slave[0]{0}(SR)

-> Slave[0]{l}(SR)
-> Slave[0]{2}(SR)
-> Slave[0]{3}{SR)

|
Slave[0]{O}(SS)
Slave[0}{0}(Sl)

-> Master[0]{0}(MR)
-> Slave[0]{l}(Rl)

2
3a

Slave[0}{l}{SS)
Slave[0]{l}(Sl)
Slave[0]{l}(S2)

-> Master[0}{0}(MR)
-> Slave[0]{2}(Rl)
-> Slave[0]{0}{R2)

2
3a
3b

Slave[0}{2}(SS)
Slave[0}{2}{Sl)
Slave[0]{2}{Sl)

-» Master{0}{0}(MR)
-)• 5/awe[0]{3}(i?l)
-> S/aue[0]{l}(.R2)

2
3a
3b

Slave[0]{3}{SS)
Slave[0}{3}(Sl)

-> Mas£er[0]{0}(M.R)
-> 5/awe[0]{2}(i?2)

2
3b

Table 7.2: Prediction table for the V3 protocol specification.

A prediction table can help determine if the protocol specified matches what the user had in

mind. Naturally, there is always a risk that an error is present in the protocol specification; this

is similar to the risk mentioned in Section 7.2 of introducing errors into the implementation of a

protocol that is verified using a model checker. However, we believe that the number of errors

introduced here should be considerably smaller than in the implementation stage.

7.9 Implementation

As with all other Millipede modules, the MOPED module is a separate process that runs the protocol

checking algorithm. MOPED parses the constraint specification file using a parser generated from

the BNF grammar in Appendix B.1. This parser is generated using Flex [Pax98] and Bison [CSH02].

A parse representing the specification is returned by the parser, and messages can be checked

against this specification by evaluating the tree using the information about the sender, receiver,

group, and instance number. Messages are provided by the Millipede runtime system; when the

module is run offline (i.e., the application is not currently running) the messages are extracted

from the log files. The protocol specification lines are checked against a message one at a time,

and depending on the strictness level, errors are reported to the user.

7.10. Discussion 101

7.10 Discussion

A number of interesting extensions should be added to PCSL and the MOPED checking module in

order to strengthen the quality of the checks performed. We briefly describe some of these in

this section.

Since we are working with message passing systems, such as PVM and MPI, where al l sends are

annotated with a message tag, it should be possible to add information about message tags to a

PCSL line. This means expanding the following:

£ [] { } () - > * [] { } ()

to the following:

/?[]{}()< >->*[] { } () < >

where < > represents an expression that determines the message tag.

In order to ease the possibility of choosing from a small number of values, another useful

functionality would be to allow set expressions of the following form:

e £ {vi,v2, • • .,vn}.

So far, the focus has been on the senders and receivers of messages. However, errors also

occur because the content of messages is incorrect. Another useful extension is to allow each

PCSL line to be associated with one or more templates describing the structure of the message

being sent and received.

This can be achieved easily in Java by defining messages as objects, and using the reflec

tion mechanism (instanceof function) to determine the type of the incoming object. In Oc

cam [May83] the notion of typed channels assures that the correct type of data is always received

on a channel. However, in PVM and MPI, the notion of channels does not exist, and when using

message passing static analysis and type checking are not always possible. A possible solution

can be specifying message content using a specification language like XDR [Sri95] or XML [XML98]

to define data types, or using the MPi_Datatype function, which specifies an internal message

data type for al l calls.

The above mentioned extensions to PCSL/MOPED not only allow for a more refined protocol

specification, which results in more rigorous checks, but also make it possible to check that

messages contain the correct type of data. This last point again shows an example of an overlap

between levels; at the protocol level we are also concerned with the content of the messages,

which theoretically should be included in the Message Level.

7.10. Discussion 102

7.10.1 State Dependent Communication

As the last part of this section we briefly return to the problem stated in Section 7.5.2. The

problem is defining a protocol that depends on values stored in the program at runtime. The

example at hand is more clearly illustrated in Figure 7.17 (the roll part of the protocol is left out

for clarity). Depending on the program variable k, a number of processes do not send anything;

this set of nonsending processes varies according to the row in which the process is located, as

well as the number k.

o - o - o o - o—

o » o »o—I UD »• o » o - l

L*o > • o -o—I LQ -O • o—I

L-O -O »• O—I O -O HD

k = 0 k = l

o *o - O

L-o >> o >o—I » o . » o - l

- o — - * o o— O -O - O -

[»• O K>- • O - l

O HD K>-1 UD O •O-'

k = 2 k = 3

Figure 7.17: The four different stages of the pipe operation.

A simple formula that determines which instance numbers should not send, given a value k

7.11. Summary 103

and a row number, is the following:

(row + k + Ns- 1)%NS + row * Ns

where Ns is the group size. We can write the following protocol specification line:

Matrix[]{j}(SendPipe) -t Matrix[]{(j + l)%A}(ReceivePipe) ::

Vj : j < = 0 kk j < Ns kkj \ = (row + k + Ns - 1)%NS + row * Ns;

This requires the values of the program variables k and row (row can be computed as Ns/A).

These can be obtained by adding lines to the program in the following way:

protocol_sym(row);
protocol_sym(k);
p v m _ s e n d (. . .) ; /* ((SendPipe)) */

The program variables row and k are then packed and sent to the protocol checking module

(and added to the log files), and inserted, along with Ns, into the symbol table a at check time.

Appendix B.2 shows an entire debugging session using the protocol specification language and

the MOPED checking tool.

7.11 Summary

In this chapter we presented a tool at the protocol level that can assist the user in checking that

the messages in a system adhere to a protocol specification. The specification of the protocol is

comparable to assertions in C; if a message violates a line in the specification, the user is notified

about the line as wel l as the offending message.

We have designed PCSL to be small in comparison to other specification languages to avoid

having the user learn a complete new language. We have also avoided adding temporal constraints

to the language. The reason is to reduce its complexity to the more simple task of matching

message patterns. Adding temporal constraints is possible, however, the added expressiveness

complicates the language when compared to simpler task of message matching.

A number of interesting extensions are proposed; these extensions provide an even more

flexible tool to aid the user when developing and debugging protocols.

Chapter 8

Buffer Allocation in Message Passing

Programs

"How extremely stupid not to have thought of that."

- Thomas Huxley on reading 'Origin of the Species'

"Just because a problem is NP-comple te doesn't mean we can't try to solve it; as a matter of

fact, those problems are the only interesting ones."

— My M.Sc. supervisor Peter Meller-Hielsen, The University of Aarhus

In the previous two chapters we described two tools at the protocol level of the Millipede tool.

In this chapter, we present a number of theoretical results concerned with buffer allocation in

message passing systems, plus a tool at the protocol level of Millipede.

The motivation behind the work presented in this chapter is the simple question 'can we

determine the minimum number of buffers needed for an asynchronous message program to be

guaranteed not to deadlock because of an insufficient number of buffer?' This question leads

to a detailed investigation of several buffer related questions under different buffer placement

schemes [BBW02];

An example showing the importance of this problem is the following: assume a program has

been developed and tested on a cluster of machines using a small problem set. Now, when the

program is executed on a larger problem on a production machine, it deadlocks due to lack of

buffers. If the production machine has fewer buffers due to the bigger problem size, an otherwise

working program might deadlock.

However, the answer to the original question turns out to be 'no, not for systems like MPI and

104

8.1. Motivation and Related Work 105

PVM, ' but other useful discoveries and results emerge in the process. One in particular, referred

to as the Nonblocking Buffer Allocation Problem, turns out to be tractable, and thus a useful tool

to be included in Millipede. In addition, our ability to solve this problem enables us to compute

approximations for the original, intractable, problem.

8.1 Motivation and Related Work

The multiprocess system that we consider is a collection of simultaneously executing independent

asynchronous processes that compute by interspersing local computation and point-to-point mes

sage passing between processes; these are referred to as A-computations in [CMT96]. Such a sys

tem is equivalent to one with three different events, such as the one defined by Lamport [Lam78]:

send events, receive events and internal events. As wel l , we only consider programs that are

repeatable [CL94a, CL94b] when executed in an unrestricted environment, that is, programs with

static communication patterns. While this narrows the class of programs we consider, the class

of applications with static communication patterns is still considerable.

The message passing primitives considered are the traditional, asynchronous, buffered com

munications: the nonblocking send and the blocking receive, which are the standard primitives

used in MPI and PVM. Cypher and Leu formally define the former as a POST-SEND, immediately

followed by a WAIT-FOR-BUFFER-RELEASE, and the latter as a POST-RECEIVE immediately fol

lowed by a WAIT-FOR-RECEIVE-TO-BE-MATCHED [CL94a, CL94b]. Informally, the send blocks until

the message is copied out of the process into a send buffer; the receive blocks until the message

has been copied into the receive buffer.

One aspect of portability introduced in the MPI standard [Don94] is that of a safe program. As

defined in the standard, a program is safe if it requires no buffering, that is, if it is synchronous.

Safe programs can be ported to machines with differing amounts of buffer space. Determining

whether a system is buffer independent-the system is 0-safe-was investigated in [CL94a, CL94b].

However, to demand that the program execute correctly with no buffering is restrictive. Buffering

reduces the amount of synchronization delay and also makes it possible to offload communication

to the underlying system or network components, thus overlapping communication and compu

tation.

The notion of safety, as introduced in the MPI standard, underscores the concern that, when

buffer resources are unknown, asynchronous communication can potentially deadlock the system.

This notion is extended to fc-safety, in order to better characterize the buffer requirements of the

program, thus making it safe to take advantage of asynchronous communication. The definition of

fc-buffer correctness is introduced by Bruck et a l . [BDH+95] to describe programs that complete

without deadlock in a message passing environment with k buffers per process. Similarly, Burns

and Daoud [BD95b] introduce guaranteed envelope resources into LAM [GBV94], a public domain

8.1. Motivation and Related Work 106

version of MPI. Guaranteed envelope resources-a weaker condition than /c-safety-is used in LAM

to reserve a guaranteed number of message header slots on the receiver side.

In our model, the interesting systems are buffer dependent, and require an unknown number

of buffers to avoid deadlock. More recently in modern clusters, greater overlap of computation

and communication is possible by offloading communication onto network interface cards. Unfor

tunately, most NICs have orders of magnitude less memory than the average host, which makes

message buffers a limited resource. Thus, programs that use asynchronous message passing, and

that execute correctly otherwise, might deadlock when executing on a system where parts of the

message passing system have been offloaded to the NIC. These issues have been investigated in

several papers [Don94, DHHW93, FBH+92, KW01].

Unfortunately, the value of k, for determining fc-safety, is usually not known a priori. We

have investigated the complexity of determining the minimum value of k for programs using

asynchronous buffered communication with static communication patterns. A program is said

to be fc-safe if k buffers are enough to guarantee that the program never deadlocks due to

insufficient buffers.

In this chapter, we consider the following three problems, all related to determining buffer

requirements for asynchronous message passing programs:

B A P - t h e Buffer Allocation Problem: What is the minimum number of buffers required to ensure

deadlock free execution (i.e., determine k for fc-safety)?

BSP- t he Buffer Sufficiency Problem: Given a buffer assignment, can we determine whether or

not the assignment is sufficient to avoid deadlock?

N B A P - t h e Nonblocking Buffer Allocation Problem: What is the minimum number of buffers

needed to allow for an asynchronous execution (i.e., no send calls block)?

The complexity of these questions depends as well on the type of buffers provided by the

system. We consider the following types of buffering schemes. In the first three schemes, the

buffers are either allocated on the send side only, the receive side only, or mixed and allocated

on both sides. Finally, we also consider schemes that allocate buffers on a per channel basis.

In the following section, we present the results of our investigation for the different buffer

allocation schemes; we also present a tool in Millipede to assist the user to solve the Nonblocking

Buffer Allocation Problem. The solution for this problem is an upper bound for the Buffer Alloca

tion Problem, and we later return to how the user can use this tool to reduce buffer requirements

for a system by inserting barrier synchronizations.

Variations of these problems have been investigated by the operations research commu

nity [Ana89, Rei87, She75]. In these models, events or products are buffered between various

stations in the production process, however, the arrival of these events is governed by probability

8.2. Buffer Allocation Problems 107

distributions, which are specified a priori. In our model, since processes are asynchronous, the

time for a message to arrive is nondeterministic; that is, a message may take an arbitrarily long

time to arrive and a process may take an arbitrarily long time to perform a send or a receive.

To determine the minimum number of buffers, the execution of a system can be modeled using

a (coloured) Petri net [Jen92]. In order to determine whether the system can reach a state of

deadlock, the Petri net occurrence graph [HJJJ85] is constructed, and a search for dead markings

is performed. However, the size of the occurrence graph is exponential in the size of the original

Petri net.

8.2 Buffer Allocation Problems

We now introduce a number of definitions to formalize the model we wi l l work with. Let S be

a multiprocess system with n processes and Ei communication events occurring in process i; a

communication event is either a send or a receive cal l . A communication graph of 5 is a directed

acyclic graph G(S) = (V, A) where the set of vertices V = {viiC | 1 < i < n, 0 < c < (Ei + 1)

corresponds to the communication events and the arc set A consists of two disjoint arc sets: the

computation arc set P and the communication arc set C. Each vertex represents an event in the

system: vertex vifi represents the start of process i, vertex vitC, 1 < c < Eit represents either

a send or a receive vertex, and finally, vertex vit(Ei+i) represents the end of a process. An arc

(w;,c, Vt,c+i) e P, 0 < c < Eit represents a computation within process i and an arc (vitS,vjit) e C
represents a communication between different processes, i and j, where Wj, s is a send vertex, and

vj<t is a receive vertex. Note, process arcs are drawn without orientation, but are always oriented

downward. These communication graphs are comparable to the time-space diagrams-without

internal events-noted in [Lam78].

A multiprocess system S is unsafe if a deadlock can occur due to an insufficient number of

available buffers; if S is not unsafe, then 5 is said to be safe. Figure 8.1 shows an example of a

system that is unsafe; with no buffers this system always deadlocks.

A per-process buffer assignment is an n-tuple B = (bi,b2,... ,bn) of nonnegative integers

representing the number of buffers for each process. Similarly, a per-channel buffer assignment

is a g-tuple B - {h,b2,... ,bq),q = (£), representing the number of buffers allocatable by the

application; ideally, as few buffers as possible should be allocated.

Two natural decision problems arise from this optimization problem. Given a communication

graph G(S) and a nonnegative integer k, the Buffer Allocation Problem (BAP) is deciding whether

there exists a buffer assignment B such that S is safe and Yl h < In order to solve this problem

we need to solve a simpler one. Suppose we are given a buffer assignment B and a communication

graph G(S), the Buffer Sufficiency Problem (BSP) is deciding whether the assignment is sufficient

to make 5 safe.

8.2. Buffer Allocation Problems 108

Figure 8.1: An unsafe system-without buffers this communication graph always dead

locks.

In addition, we can require that no process in the system 5 should ever block on a send. Given

a communication graph G(S) and a nonnegative integer k, the Nonblocking Buffer Allocation

Problem (NBAP) is deciding whether there exists a buffer assignment B, such that no send in S

ever blocks, and J^h < k. As we see later, this problem plays a key role in the buffer reduction

technique we describe in Section 8.4.

In Section E.1 in Appendix E, we formally present the graph framework that we use to prove

our results. The first result that we prove is Theorem 8.2.1 concerning the Buffer Allocation

Problem.

Theorem 8.2.1 Assuming buffers are allocated on the receiver side, the Buffer Allocation Prob

lem (BAP) is NP-hard.

Proof: See page 147 in Appendix E. •

Theorem 8.2.1 shows that determining the minimum number of buffers needed for a program

to be fc-safe, that is, determining the value k, is intractable. Thus, there is likely no polynomial

t ime algorithm to solve this problem.

To illustrate this problem, consider the graph shown in Figure 8.2. To assure deadlock free

execution, such a graph must have at least one buffer. The buffer can be placed in either of

the processes; however, the choice of the process might affect future buffer requirements. The

graph in Figure 8.2 is an example of a graph used throughout the proofs of both BAP and BSP

in Appendix E; we refer to such a graph as a t-ring. A t-ring is a subgraph of a communication

graph G(s), consisting of t > i processes, such that in each of the t processes there is a send

vertex sijiCj and a receive vertex r i j 4 j , CJ < dh 1 < j < t such that the arcs (siltCl,riudt) and

(s i J + 1 , c j + 1 , r i j , d j) , 1 < j < t are in A.

The next step in our investigation is to consider a potentially easier problem, referred to as

the Buffer Sufficiency Problem.

8.3. The Nonblocking Buffer Allocation Problem 109

Figure 8.2: A general t-ring in G(S).

Theorem 8.2.2 Assuming buffers are allocated on the receiver side, the Buffer Sufficiency

Problem (BSP) is coNP-comp/e te .

Proof: See page E.3.2 in Appendix E. •

As Theorem 8.2.2 states this problem is as hard as BAP, that is, in polynomial time we cannot

verify that a buffer assignment is sufficient to avoid deadlocks.

These two results mean that adding a polynomial t ime automated analysis to Millipede to

determine the exact minimum number of buffers to assure fc-safety is difficult. However, as

the opening quote of this chapter states, just because a problem is N P - h a r d does not mean we

cannot provide approximations and heuristics. In Section 8.4, we present a technique that utilizes

barriers to reduce buffer requirements; by inserting barriers or making certain communications

synchronous, the buffer requirements for NBAP is reduced. Since the result of NBAP is st i l l an

upper bound for BAP, this is a way of approximating the number of buffers required to assure safe

execution in the original program, augmented with the barriers. We now turn to the Nonblocking

Buffer Allocation Problem.

8.3 The Nonblocking Buffer Allocation Problem

We have shown the Buffer Allocation Problem to be intractable; interestingly, the problem of

determining the minimum number of buffers needed to assure nonblocking sends for an asyn

chronous message passing program, referred to as the Nonblocking Buffer Allocation Problem

(NBAP), is tractable. This means we have a tr ivial upper bound for BAP. However, examples exist

where the result of the NBAP algorithm used as an approximation for BAP results in an unbounded

overestimation of the optimal solution for BAP. In Section 8.4 we return to such an example.

The NBAP problem is stated as follows for a multiprocess system S: does there exist a buffer

assignment B, such that no send in S ever blocks, and Yh < ^?

To explain the algorithm we need to introduce a few definitions. Given a communication

graph G(S) and two vertices, viiC+k and viiC in G{S). Vertex vitC+k is communication dependent

8.3. The Nonblocking Buffer Allocation Problem 110

on vertex Vi.c if vitC is the start vertex, or if there exists a vertex vjid,j ^ i, such that there exists

a path from u i i C to vjid and the arc (vjid, vitC+k) is in A. See Figure 8.3. Vertex viiC+k is terminally

communication dependent on vertex v^c if vitC+k is communication dependent on v^c and is not

communication dependent on the vertices vitC+i, 0 < I < k.

Figure 8.3: vitC+k is communication dependent on vitC.

The algorithm for computing the minimum buffer assignment to assure nonblocking sends is

shown in Figure 8.4. Section E.4 in Appendix E contains the proof for the correctness of the NBAP

algorithm.

1. For each receive vertex Viit determine its terminal communication dependency,
vertex viiC, where t > c.

2. Set Ii<t = [c, t] to be the interval between vertex vi:C and vertex vi}t.

3. For each process component d, compute bi, the maximum overlap over al l inter
vals 7M.

4. B = {bx, b2,..., bn} is the optimal nonblocking buffer assignment.

Figure 8.4: Algorithm for computing an optimal nonblocking buffer assignment.

The time between when a message can arrive at process i and when it is received by the receive

cal l corresponding to vertex u i] C is represented by the interval IiiC. Each of these intervals must

have a buffer to ensure nonblocking sends. Hence, the minimum number of buffers, bi, is the

maximum overlap over all intervals within process pi. See page 155 for a detailed description on

the specific techniques for computing the maximum overlap in polynomial t ime.

To illustrate the algorithm, consider an implementation of the parallel pipe-and-roll matrix

multiplication algorithm as described in Figures 7.6 and 7.7 in Chapter 7. In this instance, let us

consider a system with one master process and four slave processes arranged in a 2 x 2 grid.

8.3. The Nonblocking Buffer Allocation Problem 111

R> R ^ ^ ^
4 3 3 3 3

Figure 8.5: Communication graph with buffer intervals for a 2 x 2 worker configuration
of the pipe-and-roll matrix multiplication algorithm

Figure 8.5 illustrates the communication graph created based on the messages sent when the

algorithm is executed. P0 is the master process, and P i , . . . , P i are the slave processes. The

dotted vertical lines represent the / intervals computed by the NBAP algorithm. Remember, the

beginning of an interval signifies the earliest time during that process when the message, received

by the receive vertex at the end of the dotted line, can arrive in the communication system in

that process. Thus, a buffer must be available for this message during this interval.

Figures 8.6 and 8.7 illustrate the use of this algorithm in Millipede. Millipede maintains

information to construct a communication graph based on the messages. This information can be

extracted from the relations Senders and Receivers, or from a set of message log files.

By executing the command nbap, the current program loaded into Millipede is analyzed. The

corresponding communication graph is built, and the NBAP algorithm is applied. The output, as

seen in Figure 8.6, is a line for each process with its buffer requirements. To further investigate

the requirements of a single process, the user can execute the nbap command with the process

ID of the process in question. Figure 8.7 shows the output from the command nbap 242167.
The output contains a number of intervals; these are equivalent to the space between two

communication nodes on the communication graph. The number in the Line column represents

the line number in which that interval ends, that is, the line number of either a send or a receive

cal l .

8.4. Approximations of BAP using NBAP 112

(0)|MILLIPEDE> nbap
Master.c
Group / Instance / Tid / Buffers

0 / 0 / 242165 / 4

Slave.c
Group / Instance / Tid / Buffers

0 / 0 / 242167 / 3
0 / 0 / 242169 / 3
0 / 0 / 242171 / 3
0 / 0 / 242173 / 3

Figure 8.6: The result of executing the nbap command in Millipede.

(0)|MILLIPEDE) nbap 242167
File : Slave c
Interval Line No Buffers

1 78 2
2 36 1
3 64 2
4 66 3
5 36 2
6 64 1
7 66 1
8 117 0
9 end 0

Figure 8.7: By passing the nbap command a process identifier, detailed information

about its buffer requirements is displayed.

Another important aspect of the NBAP algorithm is that if the system can provide the number

of buffers suggested by the algorithm, all sends become nonblocking, which optimise's the ability

to overlap communication and computation. In order to make efficient use of asynchronous

message passing, it is important to ensure that no send operations block.

8.4 Approximations of BAP using NBAP

As shown the Buffer Allocation Problem is N P - h a r d for all four buffer placement schemes. As

mentioned, an obvious approximation to BAP is the result computed by the NBAP algorithm; not

only does it guarantee that a program with that many buffers does not contain any blocking sends,

but a side effect is that no deadlocks due to insufficient buffers ever occurs. Unfortunately,

this approximation is not always sufficient. Consider the two communication graphs shown in

Figure 8.8. For the left graph labelled (a), the NBAP algorithm suggests a number k, where k is

the number of messages, in this case 8. However, the correct number of buffers for this graph to

avoid deadlocks is 0; the graph represents a 0-safe program, which can be executed synchronously,

thus requiring no buffers at a l l . For the graph labelled (b), the algorithm computes the value 1.

8.4. Approximations of BAP using NBAP 113

Again, this communication graph represents a programs that is 0-safe, but the approximation of

1 buffer for (b) is a much tighter upper bound than 8 is for (a).

Pi

(a) (b)
Figure 8.8: (a) shows an example for which the NBAP output is a worst case approx

imation. The graph in (b) is an example where NBAP is within 1 from the optimal

result.

We attempt to counter this problem by introducing epochs. Intuitively, an epoch in a com

munication graph is any set of vertices that can be separated from the rest of the graph by two

horizontal lines cutting the graph in three parts, such that exactly one vertical arc in each process

is crossed by each line, and no communication arcs are crossed. Actually, all three parts, above

the top line, between the lines and below the bottom line, are epochs.

Consider a communication graph G(S) with n processes. A set e of n pairs of vertices

(vi,a,Vitki)> one pair for each process in G(S), represents an epoch if the following holds. Define

E(e) as follows:

E(e) = {viti | (vitCi,viiki) 6 e, i G [0,n), I G [cj,fc;]}

such that for al l v G E(e), if v is a send event, the corresponding receive event vr is in E(e), or

if v is a receive event, the corresponding send event vs is in E(e). The vertices in the epoch are

exactly the vertices in E(e).

Figure 8.9 shows an example of dividing the communication graph from Figure 8.5 into three

epochs. The significance of an epoch is that it is self contained, that is, no communication within

an epoch involves any communication events outside that epoch.

Assume that we have computed the minimum number of buffers needed to assure nonblocking

sends, that is, the result of the NBAP algorithm. We know this is an upper bound for BAP. An

example of parts of such a graph is shown in the left part of Figure 8.10. Consider a process arc

8.4. Approximations of BAP using NBAP 114

R> Pi

-•4

Epoch 1

Epoch 2

Epoch 3

Figure 8.9: The communication graph for the matrix multiplication system with three

epochs introduced.

(vi,c,VilC+i), and an epoch e where vitC E(e) and t>i,c+i e E{e), that is, the process arc crosses

an epoch boundary.

If the line dividing the communication graph (the epoch line) is replaced by a barrier synchro

nization, the intervals, representing buffer requirements, that start before the barrier can now

be shortened to start at the barrier. This is illustrated in the right side of Figure 8.10. Thus,

the more epochs the communication graph is divided into, the better the chances of reducing

buffer requirements. However, barriers do force the processes to synchronize, which can lead to

a significant slow down, with respect to execution speed. This means there is a trade off between

the number of buffers required and the number of barriers added; safety is traded for execution

speed.

The barriers we suggest are equivalent to the epoch boundaries, and involve all the processes

in the system. This might be an unnecessarily conservative approach. If a number of the processes

require more buffers than others, it might be sufficient to focus on these processes.

We can define sub-epochs as self contained sets, like E(e), that do not involve al l n processes,

but sti l l ensure that both ends of a communication arc are included in the epoch for the involved

processes. The boundaries of such sub-epochs can be replaced by barrier synchronization between

8.4. Approximations of BAP using NBAP 115

Buffer
Requirements

Buffer
Requirement

Figure 8.10: By creating epochs, buffer requirements are reduced. Intervals no longer

cross epoch boundaries.

the processes included in the epoch. Figure 8.11 shows an example of a sub-epoch.

An even less restrictive approach is to add synchronization points between just two processes.

In practice, this is equivalent to making a message passing call synchronous. This is easily achieved

in MPI by using the synchronous message passing calls rather than the asynchronous ones.

Barriers are by definition synchronous, but our model assumes asynchronous communication.

However, barriers can be simulated using asynchronous communication, as shown in Figure 8.12.

Simulating a synchronous message passing call in the corresponding asynchronous communica

tion graph can be done by adding an 'ack-l ike' message in the opposite direction of the original

message, thus making the call and the added 'ack' look like a mini barrier between two processes

only.

One of the important design goals for a tool like Millipede is to easily allow the user to map a

problem back to the source code. Millipede provides this mapping through the nbap command.

When nbap is executed with a process identifier, as seen in Figure 8.7, the buffer requirements

for each interval are shown with corresponding line numbers. The intervals 2 through 6 are

equivalent to the left side of Figure 8.10. By adding a barrier immediately before the line T =

P i p e _ A () in Figure 7.7, and re-executing the nbap algorithm, the buffer requirements change;

the maximum is now 2 instead of 3, as previously.

With the information about the buffer requirements for each interval, it is easy to search the

list for the intervals with the largest numbers, return to the source code for examination, and

8.5. Discussion 116

Figure 8.11: An illustration of the use of sub-epochs; epochs that do not involve all

processes. Processes P i ,P2>P3> and P 4 al l participate in a sub-epoch. Barrier synchro

nizations between these four processes can then be inserted at the epoch boundaries.

possibly insert barriers, or make some calls synchronous.

8.5 Discussion

A number of techniques can be amalgamated into a new analysis tool for the BAP approxima

tion algorithm. Since the user might not want to work with the communication graph, certain

automated tasks can be implemented:

• Communication in loops should be automatically recognized in the communication graph,

which then could be 'rolled up ' . Often, buffer requirements within loops only slightly differ,

so by rolling up loops, it becomes clear where barriers can be placed so that they do not

interfere with loops.

• Automatic recomputation of buffer requirements after inserting barriers or synchronous

8.6. Summary 117

P1 P2 P3 Barrier

I ! I !

Figure 8.12: Implementation of barrier synchronization using asynchronous communi

cation. No process can cross the dashed line before every process is ready.

communication without re-executing the program would make the development/debugging

cycle much more efficient and shorter.

8.6 Summary

In this section we presented three problems related to buffer allocation in asynchronous message

passing systems, the Buffer Allocation Problem, the Buffer Sufficiency Problem, and the Non-

blocking Buffer Allocation Problem. We considered them under four different buffer placements

schemes (send side buffers, receive side buffers, mixed send and receive side buffers, and buffers

placed on communication channels), and proved that the most general problem of determining

the minimum number of buffer needed to assure deadlock free execution is intractable. We

presented a polynomial time algorithm for computing the minimum number of buffers needed to

assure that no send ever blocks. In addition, we showed how to use the NBAP algorithm along with

barriers or synchronous communication calls to approximate the solution to the Buffer Allocation

Problem.

The majority of the work concerning buffer allocation is found in Appendix E, and while most

of the problems presented are intractable (see Table 9.1), the results themselves are interesting

and form a solid starting point, and offers insight into the problem for further research into

heuristics and approximations.

Chapter 9

Conclusion and Future Work

"If you have an important point to make, don't try to be subtle or clever. Use a pile driver. Hit

the point once. Then come back and hit it again. Then hit it a third time with a tremendous

whack."

- Winston Churchill

"Always do one thing less than you think you can do"

- Bernard Baruch

9.1 Conclusion

In this dissertation we described a debugging strategy for parallel message passing programs,

called multi level debugging. To validate the thesis, we develop a number of tools and analyses

to support it. These tools are realized as modules in a prototype implementation of a multilevel

debugger, called Millipede(Multilevel Interactive Parallel Debugger). Millipede is implemented

for C programs that use the PVM message passing library. The multi level debugging strategy is

based on a number of observations about parallel programming, debugging, and the shortcomings

of existing tools.

A parallel system decomposes naturally into three parts: sequential code, messages, and the

overall communication protocol. Therefore, it is natural to tailor debugging of such systems

to this structure; errors are classified according to the three levels in which they occur. We

show that by providing tools specifically tailored to each level, certain tasks and analyses, which

are otherwise tedious, error prone, and time consuming, become easier to accomplish. The

118

9.1. Conclusion 119

narrower focus enables the automation of certain tasks, such as deadlock correction and protocol

conformance checking. Additionally, the design goals include avoiding information overload,

computing relations on request, and providing views for 'key players' at each level. One main

problem with existing tools, which we address with the multi level debugging strategy, is the set

granularity, or lack of support for certain debugging tasks. An example of this is the application of

N versions of a sequential debugger, such as Gdb, to ./V different processes in a parallel system.

We show that a bottom up approach with a number of specially tailored tools is useful for

debugging parallel message programs. We verify this thesis by implementing a variety of tools

that support the multi level debugging strategy at each of the three levels.

9.1.1 The Sequential Level
At the sequential leve l - the lowest leve l -we reason that since a number of very good tools,

such as Gdb and Purify already exist, the missing functionality is the ability to apply these tools

to a single process of a multiprocess system. To facil i tate the use of existing debugging tools,

we add message logging functionality to the runtime system of Millipede; these log files contain

information about the messages in the system. By intercepting al l message passing calls, the

runtime system replays messages read from log files rather from the network, facil itating the

sequential debugging of one process of a parallel system-as if it were a stand-alone program.

We successfully validated this approach by demonstrating how a number of sequential debugging

tools can be applied to one process of a parallel system. One of the key points in the design of this

tool is the reduction in the amount of information presented to the user, as well as assuring that

the abstraction of the tool is correct. Nondeterminism in the sequential code limits this tool's

usefulness. If the sequential code does not receive the messages in the same order every time

the code is executed the order of the messages in the log files wi l l be incorrect. However, similar

problems exist in the sequential domain; errors can be hard to reproduce with nondeterministic

code.

9.1.2 The Message Leve I
At the message leve l - the second leve l - i t is difficult to perform debugging tasks that involve

controlling and keeping track of messages. We counter this problem by providing two tools at this

level. The first is an extension of the well known idea of inspecting and changing variables in a

sequential program. We extend that idea to the Message Level, by providing functionality in the

runtime system to allow the user to chose a number of processes to perform interactive message

inspection on; as messages are delivered to the process, the user can choose to intercept them for

inspection. In addition, if errors occur during unpacking, the user is automatically informed and

can focus his attention on correcting the problem. This technique can be used in connection with

9.1. Conclusion 120

the Sequential Debugging Module as wel l ; if no log files exist, a program can still be debugged

sequentially-messages can be provided manually by the user or from a file. This provides a way

to test a single processes of a multiprocess system; even if the rest of the system is not yet

implemented. An important result of this tool is the ability to view and manipulate messages a

a unit; if the need arises, the user can investigate the source and destination variables of the

values in the message. The level of abstraction can be tuned to match the user's needs. In

addition, the tool wi l l automatically notify the user about errors caused by unpacking too much

data, immediately enabling him to identify the packing and unpacking routines that were involved

with the message. One potential draw back with interactive message debugging is the potentially

large amount of data the user must manually supply if the tool is being used for unit testing. We

have provided the user with the ability to read values from a file; this avoids errors due to typing,

but the problem of producing the data in the file stil l remains.

The second tool at the message level is a query language, the Millipede Query Language

(MQL), which allows the user to form queries about the messages. If the user is interested in

discovering certain facts about messages, it is an almost impossible task if he has to manually

browse through a large set of messages. Using MQL he can easily form a query that selects

the messages that he is interested in, thus computing relations when needed and reducing the

information overload. Relations containing information about the messages are maintained by

the runtime system, and at any time the user can form queries related to the messages and their

content. We show a number of different useful queries as an example of the expressiveness of

MQL. This tool is based on the design goal of 'computing relations on request'. It follows that this

technique reduces the information overload that could otherwise appear when perusing the large

relations containing information about the messages and their content. MQL is extensible, thus

implementing support for more complex queries is straightforward. Queries in MQL are limited by

the the language itself, but also by the operations provided by the underlying database system.

One possibility is to replace MQL with an implementation of the complete SQL specification and

use a state-of-the-art relational database.

9.1.3 The Protocol Level

At the protocol leve l - the third of the three leve ls-we develop three different tools and perform

an in-depth analysis of the problem of determining the minimum number of buffers needed to

ensure that an asynchronous message passing program does not deadlock due to buffer insuffi

ciencies.

The first tool is the Deadlock Detection and Correction Tool. When a parallel system deadlocks,

a global overview is often required to gain the knowledge needed to remove the deadlock. The

tool automatically computes a possible solution, which is a number of changes to the source code

9.1. Conclusion 121

that wi l l remove the deadlock. We present an algorithm that does this and is based on computing

a maximal matching in a bipartite graph, where the nodes represent the senders and receivers

in the parallel system. We show that the probability of the algorithm suggesting an incorrect

way to resolve the deadlock is small. This tool allows the user to query the system for potential

solutions. Again, a relation is computed automatically. Computing this relation by hand can be

time consuming and error prone. We show that the number of times the algorithm suggests a

wrong solution, when the number of errors in the system is less than half the number of processes,

is sufficiently small (between 0% and 11% for the number of processes less than or equal to 10).

This tool illustrates how certain tasks can be automated when the level of abstraction is raised.

In addition to the automation of the task, the tool suggests a solution to remove the error, which

is something made possible by the level of abstraction and automation as wel l .

The second tool at the protocol level is the Protocol Conformance Checking Tool. The idea we

investigated is how to provide an easy way for the user to automate checking that the messages

adhere to the specification of the intended protocol. The tool allows the user to write a simple

specification of a protocol, and then have all messages checked against that specification as the

program is running. This tool reduces the gap between a protocol specification (even a protocol

specification that has been verified using verification tools) and implementation, by aiding the

user in verifying that the implemented protocol matches the specification. An obvious downside

with such a tool is that it is impossible to guarantee that the constraint specification the user

provides matches the protocol. On the other hand, the specification language is small, and if used

in an iterative fashion along with the program development, we have shown that it is a feasible

approach to take to automatically verify that messages adhere to the provided specification. One

important issue is the tools ability to map the error back to the source code. That is, once a

message has violated the specification, information about the sender and the receiver, as wel l

as the lines involved in packing and unpacking the message are reported to the user. One of the

limiting factors is that the tool does not take any temporal or timing issues into account; it is

concerned with spatial issues only, that is, the message passing pattern.

The last tool at this level originates from this theoretical question: " in a system that uses

asynchronous buffered nonblocking sends and blocking receives, can we determine the minimum

number of buffers required by a message passing program such that it never deadlocks due to lack

of buffers?" This problem is known as the fc-safety problem, and it led to an in-depth investigation

of three related questions: one, "can we compute a minimal buffer assignment needed to avoid

deadlock?"; two, "can we verify that an assignment is sufficient?"; and three, "can we compute

the minimal buffer assignment needed to avoid blocking sends?" We determine the complexities

for all three questions; the first two are N P - h a r d , whereas the last one has a known polynomial

t ime solution. We investigate these three problems, the Buffer Allocation Problem (BAP), the

9.1. Conclusion 122

Buffer Sufficiency Problem (BSP), and the Nonblocking Buffer Allocation Problem (NBAP), respec

tively, with four different buffer allocation schemes: buffers placed on the receiver's side, on

the sender's side, on both sides, and on channels (under the assumption that we use channel-like

communication). The result of this investigation is as follows:

• The Buffer Allocation Problem is intractable under all four buffer allocation schemes.

• The Buffer Sufficiency Problem is intractable for the receive side buffer and for the mixed

buffer allocation schemes, tractable for the channel scheme and conjectured to be tractable

for sender side buffers.

• The Nonblocking Buffer Allocation Problem is tractable for all buffer placement schemes,

except the mixed send and receive scheme.

Table 9.1 summarizes these results.

Problem Receive
Buffer

Send
Placement

Send 6t Receive Channel
BAP NP-hard NP-hard NP-hard NP-complete
BSP coNP-complete (P) coNP-complete P
NBAP P P NP-hard P

Table 9.1: Results for the three problems under the four different buffer placements
schemes.

In addition, we provide an implementation of the NBAP algorithm in Millipede, and show how

this algorithm, combined with a number of techniques for inserting synchronization points into

the code, can be used to reduce the number of buffers required to ensure fc-safety. Since the

number of buffers needed to ensure nonblocking sends (the result of the NBAP algorithm) is an

upper bound for the original BAP problem, reducing the number of buffers necessary for NBAP

provides an improved approximations for BAP. This work was done in collaboration with Alex

Brodsky [BBW02].

9.1.4 Summary

The decomposition of the parallel programming domain into three levels led to a bottom-up

approach to debugging, referred to as multilevel debugging. We have implemented a number of

tools in accordance with this strategy. These tools are tailored to a specific error type at one of the

three levels of the parallel programming domain. In addition to serving as a debugging framework

the multi level strategy provides a guide for implementing new tools within the framework.

9.2. Future Work 123

By implementing various tools we have shown that it is possible to util ize the extra information

that can be extracted from a parallel program to raise the level of abstraction within each tool;

in turn, this allows for automation and analyses that otherwise would be impossible.

Furthermore, the decomposition and the narrowed focus on one specific error type for each

tool has reduced the information overload that is eminent in many existing tools, and allowed

us to meet a number of design goals for tools in general, and for debugging tools specifically.

These include views for 'key players', automatic relation computation, automated analyses, and

automatic computation of possible solutions to errors.

All these tools have been implemented as modules in Millipede, a prototype multi level de

bugger with a simple command line interface. Millipede does not require any rewriting or trans

formation, and is thus applicable directly to the source code, which is another important design

goal.

9.2 Future Work

During the design and implementation of Millipede, a number of interesting issues and suggestions

for improvements have arisen. The following sections describe some of the research directions

future work can take, and also describe issues that should be addressed to make Millipede fully

functional.

9.2.1 Further Development

The current version of Millipede is written for PVM, and al l PVM functions have not yet been

implemented. A first step is to complete the implementation of the Millipede runtime system to

support al l PVM functions. A natural next step is to implement a version of the runtime system

for MPI.

Furthermore, providing a simple GUI for interacting with Millipede has certain advantages. One

of the more important advantages is its ability to easily manage a number of windows through the

use of tabs, or cascading panes. A simple GUI can be implemented using Tcl/Tk, which provides

call back functionality to C.

In Chapters 4 through 8 we describe in detail improvements and future work for each tool.

We highlight some of the more important ones here.

Since log files can become quite large, and since replaying a process from the start can take

too long, one of the most important improvements for the runtime system is to add check pointing

and log file truncation. Netzer and Xu describe an efficient way to checkpoint and maintain log

file consistency in [NX93]. Implementing a similar scheme for Millipede wil l improve its ability to

debug long running applications with large message data sets.

9.2. Future Work 124

The database system used in connection with MQL is written in C and is part of Millipede. By

using existing databases that provide access through C functions, not only do we get a better

database, but it also becomes easier to extend MQL with new functionality that might already be

found in the native SQL dialect of the chosen database.

Breakpoints are wel l known in the sequential debugging domain; we believe that this concept

can be extended to messages as wel l . Message breakpoints abstracts away line numbers, and lets

the user control program execution, based on the messages.

The algorithm for correcting deadlocks, described in Chapter 6, does not take message tags

into account. An interesting extension to this work is to develop an algorithm that also considers

message tags. In addition, a new analysis of the quality of such an algorithm should be performed.

For the Protocol Conformance Checking Tool, a number of simple improvements have been

suggested in Section 7.10. Two examples are adding message tags to specification lines and

allowing the user to write specification lines where communication is dependent on program

state. An interesting extension to this module would be a graphic display showing the flow of

the messages as the program executes. Such an interface can be combined with the message

relations described in Chapter 5 to provide a graphical replay of the protocol.

Finally, the Buffer Sufficiency Problem for the mixed buffer allocation scheme should be

investigated. If we can show that the problem is tractable, an algorithm can be developed and

added to Millipede. Further research should be done on an approximation heuristic for the Buffer

Allocation Problem. We only suggest simple measures, but we believe that more work can be

done to provide better approximations.

Bibliography

[AFC91] K. Araki, Z. Furukawa, and J . Cheng. A General Framework for Debugging. IEEE
Software, pages 14-20, May 1991.

[Ana89] V. Anantharm. The optimal buffer allocation problem. IEEE Transactions on Information
Theory, 35(4):721-725, 1989.

[Arv92] D. K. Arvind. On the detection of communication related errors in parallel programs.
Parallel computing, 18:1381-1392, 1992.

[Asp03] The AspectJ Team, Xerox Corporation, Palo Alto Research Center. The AspectJ™
Programming Guide, 2003.

[BB97] B. B. Blendstrup and J . B. Pedersen. P V M b u i l d e r - et grafisk vaerktoj t i l parallel
programmering. Master's thesis, Aarhus Universitet, January 1997.

[BBW02] A. Brodsky, J . B. Pedersen, and A. Wagner. On the Complexity of Buffer Allocation in
Parallel Message Passing Systems. In Communicating Process Architectures 2002. IOS
Press, September 2002.

[BD95a] G. Burns and R. Daoud. Robust MPI Message Delivery with Guaranteed Resources. MPI
Developers Conference at the University of Notre Dame, June 1995.

[BD95b] G. Burns and R. Daoud. Robust MPI Message Delivery with Guaranteed Resources. MPI
Developers Conference at the University of Notre Dame, June 1995.

[BDH+95] J . Bruck, D. Dolev, C. Ho, M. Rosu, and R. Strong. Efficient message passing interface
(mpi) for parallel computing on clusters of workstations. In 7th Annual ACM Symposium
on Parallel Algorithms and Architectures, pages 64 - 73, July 1995.

[BK95] P. A. Buhr and M. Karsten. /JC++ Monitoring, Visualization and Debugging Annotated
Reference Manual, Preliminary draft edition, November 1995.

[BS95] P. A. Buhr and R. A. Stroobosscher. fiC++ Annotated Reference Manual, Version 4.4,
Available via ftp from p i g . u w a t e r l o o . c a in pub/uSystem/uC++. g z , Department
of Computer Science, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
edition, September 1995.

[BW00] J . B. Pedersen and A. Wagner. Sequential Debugging of Parallel Programs. In Pro
ceedings of the international conference on communications in computing, CIC'2000.
CSREA Press, June 2000.

125

Bibliography 126

[BW01a] J . B. Pedersen and A. Wagner. Correcting Errors in Message Passing Systems. In
F. Mueller, editor, High-Level Parallel Programming Models and Supportive Environ
ments, 6th international workshop, HIPS 2001 San Francisco, CA, USA, volume 2026
of Lecture Notes in Computer Science, pages 122-137. Springer Verlag, April 2001.

J . B. Pedersen and A. Wagner. Protocol Verification in Mill ipede. In Communicating
Process Architectures 2001. IOS Press, September 2001.

E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for branching
t ime temporal logic. Logic of Programs: Workshop, Yorktown Heights, NY, 131, May
1981.

C. Clemencon, J . Fritscher, and R. RLihl. Visualization, Execution Control and Replay
of Massively Parallel Programs within Annai's Debugging Tool. In Proceedings of High-
Performance Computing Symposium, pages 393-405, July 1995.

R. Cypher and E. Leu. Repeatable and portable message-passing programs. In Proc.
of The Symposium on the Principles of Distributed Computing (PODC), pages 22-31,
1994.

R. Cypher and E. Leu. The semantics of blocking and nonblocking send and receive
primitives. In Proceedings of 8th IEEE International parallel processing symposium
(IPPS), pages 729-735, 1994.

E. M. Clarke, D. E. Long, and K. L. McMillan. Compositional model checking. In
Proceedings, Fourth Annual Symposium on Logic in Computer Science, pages 353-362.
IEEE Computer Society Press, June 1989.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT press,
1990.

B. Charron-Bost, F. Mattern, and G. Tel. Synchronous, asynchronous, and causally
ordered communication. Journal of Distributed Computing, 9(4): 173-191, 1996.

S. A. Cook. The complexity of theorem-proving procedures. In Proceedings of the 3rd
Annual ACM Symposium on the Theory of Computing, pages 151-158, 1971.

[BW01b]

[CE81]

[CFR95]

[CL94a]

[CL94b]

[CLM89]

[CLR90]

[CMT96]

[Coo71]

[CSH02]

[DHHW93]

[Dil96]

[Don]

R. Corbett, R. Stallman, and W. Hansen.
http://www.gnu.org/manual/bison/index.html.

Bison 1.35, May 2002.

J . Dongarra, R. Hempel, A. Hey, and D. Walker. A proposal for a user-level, message-
passing interface in a distributed memory environment. Technical Report TM-12231,
ORNL, June 1993.

D. L. Dil l. The Mur</> Verification System. In 8th International Conference on Computer
Aided Verification, pages 390-393, July/August 1996.

J . Dongarra et a l . HeNCE:
http://www.netlib.org/hence.

Users' Guide. Version 2.0.

[Don94] J . Dongarra. MPI: A Message Passing Interface Standard. The International Journal of
Supercomputers and High Performance Computing, 8:165-184, 1994.

http://www.gnu.org/manual/bison/index.html
http://www.netlib.org/hence

Bibliography 127

[Eis97] M. Eisenstadt. My hairiest bug war stories. In The Debugging Scandal and What to Do
About It - Communication of the ACM. ACM Press, April 1997.

[FBH+92] D. Frye, R. Bryant, H. Ho, R. Lawrence, and M. Snir. An external user interface
for scalable parallel systems. Technical report, IBM highly parallel supercomputing
systems laboratory, November 1992.

[FJL+88] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J . Salmon, and D. Walker. Solving problems on
concurrent processors. General techniques and regular problems, volume 1. Prentice
Hall International, 1988.

[For] Formal Systems. FDR2. http://www.fsei.com.

[Fos95] I.Foster. Designing and Building Parallel Programs: Concepts and tools for parallel
software engineering. Addison Wesley, 1995.

[GBV94] R. Daoud G. Burns and J . Vaigl. LAM: An Open Cluster Environment for MPI. In
Supercomputing Symposium '94, June 1994.

[Gdb] Gdb - GNU Debugger, http://www.gnu.org/directory/gdb.html.

[Gei94] A. Geist et a l . PVM: Parallel Virtual Machine. A User's Guide and Tutorial for Net
worked Parallel Computing. Prentice Hall International, 1994.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, New York, 1979.

[GMP89a] A. Giacalone, P. Mishra, and S. Prasad. Facile: A Symmetric Integration of Concurrent
and Functional Programming. Proceedings of the 1989TAPSOFT Conference, 352, 1989.

[GMP89b] A. Giacalone, P. Mishra, and S. Prasad. Facile: A Symmetric Integration of Concurrent
and Functional Programming. International Journal of Parallel Programming, 18(2),
1989.

[Gra86] J . Gray. Why do Computers Stop and What Can be Done About it? Proceedings of 5th
Symposium on Reliability in Distributed Software and Database Systems, pages 3-12,
January 1986.

[HE93] M. T. Heath and J . A. Ethridge. ParaGraph: A Tool for Visualizing Performance of
Parallel Programs. Technical report, Technical Report Oak Ridge National Laboratories,
1993.

[Hei97] F. Heinze et a l . Trapper, Eliminating Performance Bottlenecks in a Parallel Embedded
Application. IEEE Concurrency, pages 28-37, July-September 1997.

[HJJJ85] P. Huber, A. M. Jensen, L. 0 . Jepsen, and K. Jensen. Reachability trees for high-level
Petri nets. Theoretical Computer Science, 45:261-292, 1985.

[Hoa78] C. A. R. Hoare. Communicating Sequential Processes. Communications of the ACM,
21(8):666-677, August 1978.

[Hol97] G. J . Holzmann. The Spin Model Checker. IEEE Transactions on Software Engineering,
23(5):279-295, May 1997.

http://www.fsei.com
http://www.gnu.org/directory/gdb.html

Bibliography 128

[Hoo96] R. Hood. The p2d2 Project: Building a Portable Distributed Debugger. In Proceedings of
the ACM SIGMETRICES Symposium on Parallel and Distributed Tools (SPDT'96), pages
127-136, May 1996.

[IBM02] IBM Press Release. IBM Executive Says Grids Will Be A Breakthrough For Manag
ing IT Efficiency, June 2002. http://www-916.ibm.com/press/prnews.nsf/jan/
F23B8EA466B5569085256BDC0064024B.

[Jen92] K. Jensen. Coloured Petri nets. Basic Concepts, Analysis Methods and Practical use,
volume 1. Springer Verlag, 1992.

[Joh83] W. L. Johnston. An Effective Bug Classification Scheme Must Take the Programmer into
Account. Proceedings of the workshop of High-level debugging. Palo Alto, California,
1983.

[Kar95] M. Karsten. A Multi-Threaded Debugger for Multi-Threaded Applications, Diplomar-
beit, Fakultat fur Mathematik und Informatik, Universitat Mannheim, Deuthchland
edition, August 1995.

[KG96] J . A. Kohl and G. A. Geist. The PVM 3.4 Tracing Facility and XPVM 1.1. Proceedings of
the 29th Annual Hawaii International Conference on System Sciences, pages 290-299,
1996.

[KLK99] P. Kacsuk, R. Lovas, and J . Kocacs. Systematic Debugging of Parallel Programs in
DIWIDE Based on Collective Breakpoints and Macrosteps. In Proceedings of the 5th
International Euro-Par Conference (Euro-Par'99), volume 1685 of Lecture Notes in
Computer Science, pages 90-97. Springer Verlag, August 1999.

[Knu89] D. E. Knuth. The Errors of TpX. Software - Practise and Experience, 19(7):607-685,
July 1989.

[KV97] D. Kranzlmuller and J . Volkert. Using Different Levels of Abstraction for Parallel
Programming Debugging. In Proceedings of the 1997IASTED (International Conference
on Intelligent Information), pages 523-529, 1997.

[KW01] C. Keppitiyagama and A. Wagner. Asynchronous MPI messaging on myrinet. In Proceed
ings 15th International Parallel and Distributed Processing Symposium (IPDPS'01).
IEEE, 2001.

[Lam78j L. Lamport. Time, clocks and the orderings of events in a distributed system. Com
munications of the ACM, 21:558-565, 1978.

[Lel88] Wm Leler. Constraint Programming Languages — Their Specification and Generation.
Addison-Wesley, 1988.

[LLM88] M. Litzkow, M. Livny, and M. Mutka. Condor: A Hunter of Idle Workstations. Proceedings
of the 8th International Conference of Distributed Computing Systems, pages 104-111,
June 1988.

[May83] D. May. OCCAM (language). ACM SIGPLAN Notices, 18(4):69-79, April 1983.

[McM92] Ken McMillan. Symbolic Model Checking: An Approach to the State Space Explosion
Problem. PhD thesis, Carnegie Mellon University, 1992.

http://www-916.ibm.com/press/prnews.nsf/jan/

Bibliography 129

[MHC94] B. P. Miller, J . K. Hollingsworth, and M. D. Callaghan. The Paradyn Parallel Performance
Measurement Tools and PVM. Environments and Tools for Parallel Scientific Computing,
1994.

[Mon13] P. de MontMort. On the game of thirteen. 1713. Reprinted in Annotated Readings in
the History of Statistics, ed. H. A. David and A. W. F. Edwards, Springer Verlag, 2001,
pp. 25-29.

[NAW+96] W. E. Nagel, A. Arnold, M. Weber, H. C. Hoppe, and K. Solchenbach. VAMPIR: Vi
sualization and Analysis of MPI Resources. Supercomputer 63, XII(1):69-80, January
1996.

[NC92] P. Newton and J . C. Browne. The CODE 2.0 Graphical Parallel Programming Language.
Proceedings of the ACM International Conference on Supercomputing, July 1992.

[ND94] P. Newton and J . Dongerra. Overview of VPE: A Visual environment for Message-Passing,

1994. http://www.cs.utk.edu/ newton/vpe/vpe.html.

[Net] NetSolve. http://icl.cs.utk.edu/netsolve.
[NX93] R. H. B. Netzer and J . Xu. Adaptive message logging for incremental replay of message-

passing programs. In Proceedings of the 1993 ACM/IEEE conference on Supercomput
ing, pages 840-849. ACM Press, 1993.

[NY93] P. Newton and S. Y. Khedekar. CODE 2.0 User Manual, March 1993.

[Pal99] Pallas GmbH. TotalVieW, 1999. http://www.pallas.de/pages/totalv.htm.

[Pan93a] C. M. Pancake. Graphical Support for Parallel Debugging. Software Support for Parallel
Computation, pages 216-228, 1993.

[Pan93b] C. M. Pancake. Why Is There Such a Mis-Match between User Need and Parallel Tool
Production? Keynote address, 1993 Workshop on Parallel Computing Systems: A Dialog
between Users and Developers, April 1993.

[Pan93c] C M . Pancake et a l . Results of User Surveys Conducted on Behalf of Intel Supercomputer
Systems Division, Two Divisions of IBM Corporation, and CONVEX Computer Corporation,
1989-1993.

[Pan94] C. M. Pancake. What Users Need in Parallel Tool Support: Survey Results and Analysis.
Technical Report CSTR 94-80-3, Oregon State University, June 1994.

[Pan99] C. M. Pancake. Applying Human Factors to the Design of Performance Tools. In
Proceedings of the 5th International Euro-Par Conference (Euro-Par'99), volume 1685
of Lecture Notes in Computer Science, pages 44-60. Springer Verlag, August 1999.

[Pax98] V. Paxson. Flex - a scanner generator, November 1998. http://www.gnu.org/
manual/flex-2.5.4/flex.html.

[Pdb] pdbx and pedb: Parallel Program Debuggers. http://www.tc.corneii.edu/
UserDoc/Software/PTools/pdbx.

[Pre92] 0 . Pretzel. Error-Correcting Codes and Finite Fields. Clarendon Press, 1992.

http://www.cs.utk.edu/
http://icl.cs.utk.edu/netsolve
http://www.pallas.de/pages/totalv.htm
http://www.gnu.org/
http://www.tc.corneii.edu/

Bibliography 130

[Pur] Rational Purify for UNIX, http://www.rational.com/products.

[Rei87] M. Reiman. The optimal buffer allocation problem in light traffic. In IEEE Conference
on Decision and Control, 1987.

[Ros93] A. W. Roscoe. Developing and verifying protocols in CSP. Proceeding of the protocol
verification workshop, Mierlo, The Netherlands, March 1993.

[Ros94] A. W. Roscoe. Model-Checking CSP. A classical mind, essays in honour of C.A.R. Hoare,
1994.

[RWZ88] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. CML: a higher-order concurrent language.
Proceedings of the ACM SIGPLAN'91 Conference on Programming Language Design and
Implementation, January 1988.

[SA97] R. Sosic and D. Abramson. Guard: a Relative Debugger. Software - Practise and
Experience, 27(2): 185-206, February 1997.

[San99] A. A. Sane. Techniques for Developing Correct, Fast and Robust Implementation of
Distributed Protocols. PhD thesis, University of Illinois at Urbana-Champaign, 1999.

[She75] T. Sheskin. Allocation of interstage storage along an automatic production line. AIEE
Transactions, 8(1), 1975.

[Sri95] R. Srinivasan. XDR: External Data Representation Standard. RFC 1832, Sun Microsys
tems, August 1995.

[SSG91] A. Singh, J . Schaeffer, and M. Green. A template-Based Approach to the Generation
of Distributed Applications Using a Network of Workstations. IEEE Transactions on
parallel and distributed systems, 2(1):52-67, January 1991.

[SSP85] J . C. Spohrer, E. Soloway, and E. Pope. A Goal /Plan Analysis of Buggy Pascal Programs.
Human-computer Interaction, 1 (2): 163-207, 1985.

[SSS90] A. Singh, D. Szafron, and J . Schaeffer. Experience with parallel programming using
code templates. Concurrency, Practise and Experience, 10:91-120, March 1990.

[The96] The VIS Group. VIS: A system for Verification and Synthesis. Proceedings of the 8th
International Conference on Computer Aided Verification, 1102, July 1996.

[Top] The top 500 fastest computers, http://www.topsoo.org.

[TSS96] B. Topol, V. Sunderam, and J . Stasko. PVaniM2.0, 1996. http://www.cc.gatech.edu/
gvu/softviz/parviz/pvanimOL/ pvanimOL.html.

[WA98] G. Watson and D. Abramson. Finding Errors in Data Parallel Programs: A Case Study.
May 1998. http://www.rdt.monash.edu.au/ ~greg/papers/sc98.html.

[WAF02] P. H. Welch, J . R. Aldous, and J . Foster. CSP networking for Java (JCSP.net). Lecture
Notes in Computer Science, 2330, 2002.

[XML98] Extensible markup language (XML) 1.0. Technical Report REC-xml-19980210, W3C,
February 1998.

http://www.rational.com/products
http://www.topsoo.org
http://www.cc.gatech.edu/
http://www.rdt.monash.edu.au/
http://JCSP.net

Bibliography 131

[XWXS96] J . Xiong, D. Wang, W. Xheng, and M. Shen. BUSTER: An Integrated Debugger for
PVM. Proceedings of 1996 IEEE Second International Conference on Algorithms and
Architectures for Parallel Processing, ICAPP '96, Singapore, pages 124-129, June 1996.

[Yee96] Bennet Yee. A Portable save_world Process Checkpointing Package, 1996.
ht tp: / /www.cs.ucsd.edu/users/bsy/fun.html.

http://www.cs.ucsd.edu/users/bsy/fun.html

Appendix A

A Complete Example of a Millipede

Session

In this section, we illustrate a complete example of how to use Millipede to extract a single

process from a parallel program, and how to debug such a process sequentially. We consider a

master/slave application and extract one of the slave processes. The steps are as follows, and

Figure A.1 shows how this session looks in Millipede:

1. First, we compile both the master program and the slave program with the - D M I L L I P E D E

option set. This ensures that the Millipede versions of the message passing calls execute

when the parallel program executes.

2. If the environment variable M I L L I P E D E _ R C M is set, log files are generated when the pro

gram executes. The program can execute as it is normally, or through Millipede. In this

example we show an execution through Millipede.

3. Millipede is started and the name of the master program is passed as a parameter.

4. Using the Millipede command p r o j e c t <name>, we specify a project file, which contains

al l the information about the execution for future debugging purposes.

5. The parallel program can now be executed using the run.

6. After exiting Millipede, we can unset the M I L L I P E D E _ R C M environment variable and set

M I L L I P E D E _ R E M . This instructs the Millipede runtime system that instead of writing log

files when executing the message passing calls, log files are read.

7. We can now apply any sequential debugging tool; in this case we execute Gdb with one of

the slave processes.

132

133

8. When the first PVM call executes, the Millipede runtime system prompts the user for the

name of a log file from which the messages are supplied.

9. Sequential debugging now commences as if the program were a sequential program. The

Millipede runtime system reads the log file each time a message passing call is made in the

code, and supplies the program with values for the variables received through the messages.

The programmer can debug, recompile, and re-execute the process with the message log

until the errors have been corrected. If the programmer wishes to debug the same process

with another set of messages, the program can be restarted with a different log file.

(1) gcc -g -DMILLIPEDE - I . -L$PVM_ROOT/lib/$PVM_ARCH/ -o Master Master c -lpvm3
(2) gcc -g -DMILLIPEDE - I . -L$PVM_ROOT/lib/$PVM_ARCH/ -o Slave Slave.c -lpvm3
(3) setenv MILLIPEDE_RCM
(4) pvm
pvm> q u i t
pvmd s t i l l running
(5) M i l l i p e d e Master

W E L C O M E T O T H E

' # # # #

M U L T I - L E V E L D E B U G G I N G S Y S T E M
(0)|MILLIPEDE> p r o j e c t M a s t e r - s l a v e . p r j
P r o j e c t f i l e i s 'Master-slave.prj'
(0) |MILLIPEDE) run
Program 'Master' terminated normally; 0 messages i n 0 queues.
(0) |MILLIPEDE) p r o j e c t

P r o j e c t
P r o j e c t name: Master-slave.prj
1 Master.c pr o c e s s (e s) :

Group / Instance / T i d

0 / 0 / 242165
4 Slave.c p r o c e s s (e s) :

Group / Instance / T i d

0 / 0 / 242167
0 / 1 / 242169
0 / 2 1 242171
0 / 3 / 242173

End of P r o j e c t
(0) |MILLIPEDE) e x i t
(6) unsetenv MILLIPEDE_RCMsetenv MILLIPEDE_REM
(7) gdb Slave
GNU gdb 5.2
(gdb) break main
Breakpoint 1 at 0xl5af8: f i l e Slave.c, l i n e 19.
(gdb) run
19 mytid " pvm_mytid() ;
(gdb) next
Replay f i l e name: Slave-242171. rpf

Figure A .1 : A complete example of a debugging session using a sequential debugging

tool on an extracted process.

Appendix B

The PCSL Grammar and Semantics

B.1 The PCSL Grammar and Semantics

This section contains the grammar and the semantics for the Protocol Constraint Specification

Language (PCSL).

Figure B.1 shows the BNF grammar for the PCSL grammar. Note, the symbol e is not a symbol

Protocol
Commlist
Comm
LeftClass
RightClass

Quantifiers
QuantifierList
Quantifier
Index
ClassExpression
Expression

RelExpression

Commlist
e | Commlist Comm
LeftClass '->" RightClass Quantifiers ";"
Identifier | "[" Index "]""{" Index "}""(" Index ")"
Identifier
"[" ClassExpression "]""{" ClassExpression "}"
"(" ClassExpression")"
e | Q u a n t i f i e r L i s t
Quantifier | Quantif ier"," QuantifierList
forall Identifier":" RelExpression
e | Number | Identifier
e j Expression
Expression "*" Expression | Expression "/" Expression

Expression"-" Expression
Expression Expression

sqrt(" Expression")"

Expression"+" Expression
Expression"%" Expression
"-" Expression | " (" Expression ")'
Identifier | Number
Expression "<" Expression | Expression "<" Expression
Expression ">" Expression j Expression ">" Expression
Expression "=" Expression | Expression V Expression
RelExpression "&&" RelExpression
RelExpression "||" RelExpression
"(" RelExpression ")" | "true" | "false"

Figure B.1: The PCSL BNF grammar.

134

8.2. A Complete Example Using PCSL/MOPED 135

£ [Number]] cr
£[ldentifier]cr

= Number
= a(ldentifier)
= £[e i]<7 * £\e2\a
= £ [e i] a / £\e2\a
= Slaja + £le2}a
= £le^a - £\e2la
= £|ei]CT mod £\e2\a
= exp(£\el\cj,£le2\a)
= SMa

7e[false]cr
K\ex < e2]a
niei > e2\a
Kbi < e2\a
7l[ei > e2ja
Tl\&\ = e2\a
ft[ei ^ e 2]a

^ [r i || r2p

Rftrueja true
false

£\ex * e2|cr
£[ei/e2J<7
£[ei + e2Jcr
£[[ei - e2]]cr
£ I e 1 % e 2] a
£[e i 'e2J(7
£[(e) l c r

£\eila < £le2\a
Zleila > £\e2}<?
%ij<7 < £\e2}a
^ffejo- > £(e2Ja

£bih * £\e2}o-

Rfrifr V n{r2}a £l-eja
£[sqrt(e) }a

Figure B.2: Semantics for the PCSL grammar

in the grammar, but simply means that the left hand side of the production can be substituted

with nothing, that is, it can be left blank.

Figure B.2 contains a natural semantics for the PCSL grammar.

B.2 A Complete Example Using PCSL/MOPED

In this section we illustrate the use of the MOPED module in Millipede. Figure B.3 shows how to

activate MOPED within Millipede. The protocol specification is the same as used in Chapter 7.

A protocol specification file can be loaded when Millipede is in MOPED mode by using the

command l o a d . The l i s t command displays the content of the specification currently loaded.

Once the program executes, any violations of the protocol are reported. If the user wishes

to know more about the message that violated the protocol, such information can be obtained

through a query.

B.2. A Complete Example Using PCSL/MOPED 136

(0) |MILLIPEDE) moped
(0) |MILLIPEDE\MOPED> load "protocol.pes
(0) |MILLIPEDE\MOPED> l i s t
1: master[0)0(MS) -> slave[0]i(MR) :: f o r a l l i (0<=i && i<=7);
2: s l a v e [0] i (S S) -> slave[0]0(MR) :: f o r a l l i (0< = i &St i< = 7) ;
3: s l a v e [0] i (S I) -> slave[0]i+1(Rl) :: f o r a l l i (0< = i &5c i<7) ;
4: s l a v e [0] i (S 2) -> slave[0]i-1(R2) :: f o r a l l i (0<i && i<=7);
(0) |MILLIPEDE\MOPED> e x i t
(0) jMILLIPEDE) run
MOPED: P r o t o c o l v i o l a t i o n :
Q u a n t i f i e r e r r o r :

(0<i && i<7)
v i o l a t e d by

i == 0
[(0<0 && 0<7)]

i n
f i l e : slave.c
group... : 0
instance : 0
l i n e : 34
TID : 242167

(5)MILLIPEDE>

Figure B.3: A complete example using MOPED to check all messages against a protocol

specification written in PCSL.

Appendix C

The MQL Grammar

C.1 The Millipede Query Language Grammar

Figure C.1 shows the BNF grammar for the Millipede Query Language.

Al l MQL definitions are stored in an internal function table in Millipede, and retrieved when

needed. During execution of a query, a local environment is maintained, containing any inter

mediate relations created using let. This local environment, along with all the relations created

during evaluation of a statement of application, is then removed. It is currently not possible to

add any permanent relations to the runtime system.

137

The Millipede Query Language Grammar

Command :: = Application
Definition
Query

Application : = Name "(" [Arguments] ")"
Arguments :: = Value

Value" , " Parameters
Definition :: = "define" Name "(" [Parameters]")" "as" Query
Parameters :: Name

Name" , " Parameters
Query : = QueryElement

"begin" [QueryList] QueryElement "end"
QueryList :: = QueryElement

QueryElement";" QueryElement
QueryElement :: = Query

"print (String {"," Value }")"
"display" Relation "using" String
"let" Name "be" Relation

Op = "==" | "!="|"<"|"<="|">"|">="
AttributeList :: = Name

Attr ibuteList"," Name
Relation :: = Name

"select f rom" Relation "where" Name "Op" ("#.
"project" Relation "over" AttributeList
"rename" Name " in" Relation "to" Name
" join" Relation "with" Relation
"union o f Relation "and" Relation
"di f ference between" Relation "and" Relation
"sort" Relation "by" AttributeList

Figure C. 1: The Millipede Query Language BNF grammar.

Appendix D

Millipede Screen Shots

In this chapter we show a number of the most common windows in Millipede.

Figure D.1 shows the start up screen of Millipede. This is the main window for interacting with

the debugging system. Commands for controlling the execution are issued here. MQL scripts are

loaded from here, and protocol specifications for the protocol assertion module can be controlled

from this window as wel l . Figures D.2 and D.3 show an example of interactive debugging and the

status monitor, respectively.

Session tdt View -Settings Heip

H E L C O N E T O T H E

i
It tt tt tttttttttt tttttttttttt tttttttttt tttttttttttt

ft tl It tt tt tt tt tt # tt tt , tt tt tt
tt tl tl tt tt tt tt tt tt ttttlt#tt tt it tttttttttt
tt tt tt tt tt tttttttttt tt tt tt tt
tt It tt tt tt tt It tt tt
tt tt tttttttttttt tttttttttttt tt * *#tttt#tt Ittttttt* tttttttttttt

H U L T I -L E V E L D E I 3 U G G I H ' G S Y S T E M

<0)IHILLIPEDE> |

7 * C

Figure D.1: The Millipede startup screen.

139

140

Wavejs lave;c^262T51 I •-> I j |
Mill ipede.c: Reading config f i l e done
Replay f i l e : Uawe.slave-2S2151.rpf
==================== Debugging session ======
Debugging PVM program: 262151
Message Monitor : 2G2147
Status Monitor : 2G2148
Interactive debugging mode chosen.

Line 72: pvm.mbtidO = 2G2151
Receiving New Package <
Line 78; pvm_recv(-l,0)
Line 81: pvm_upkint(8,nproc,l,l) = [4] <ok>
Do you want to change this [y/n/f] ? n
Line 82: pvm_upkint(tids,4,l) = [282151,282152,282153,282154] <ok>
Do you want to change this [y/n/f] ?

Figure D.2: Screen shot illustrating interactive message debugging.

otalus UVIAVI ""_ " " — - j" I •

(rfave.master.c (262150): Receive ended (Msg. No.: 29, Sender..: 262153, Tag: -1)
Wave.slave.c (262154): Send ended (Msg. No.: 27, Receiver: 262150, Tag: 5)
Wave.slave.c (262151): Send ended (Msg. No.: 25, Receiver: 262150, Tag: 5)
Wave.slave.c (262153): Send ended (Msg. No.: 29, Receiver: 262150, Tag: 5)
Uave.slave.c (262152): Send ended (Msg. No.: 28, Receiver: 262150, Tag: 5)

Status Monitor Running (Process IE = 262148)

Figure D.3: Screen shot showing the status monitor. This window shows what each

process in the system is doing with respect to communication.

http://Uawe.slave-2S2151.rpf

Appendix E

Theoretical Framework for The

Buffer Allocation Problems

In this section we define the three buffer allocation problems formally, present the theoretical

graph frame work, and the proofs.

E.1 Definitions

Let 5 be a multiprocess system with n processes and Ei communication events occurring in

process i; a communication event is either a send or a receive. A multiprocess system S is unsafe

if a deadlock can occur due to an insufficient number of available buffers; if S is not unsafe, then

5 is said to be safe. Figure E.1 is an example of an unsafe system. The numbers above the graph

in Figure E.1 represent the buffer assignment.

Figure E.1: Order of execution can cause deadlock.

A per-process buffer assignment is an n-tuple B = (bub2,..., bn) of nonnegative integers

representing the number of buffers that can be allocated by each process. Similarly, a per-

141

E.1. Definitions 142

channel buffer assignment is a g-tuple B = (h,b2, • • • ,bq), q = ("), representing the number

of buffers each channel in the system can allocate. Since buffers take up memory, which may

be needed by the application, ideally, as few buffers as possible should be allocated. However,

allocating too few buffers results in an unsafe system.

Buffer utilization is the nondeterministic phenomena of interest in the system. Making the

choice of when to use a buffer affects future choices. For example, in Figure E.1, using a buffer

for communication 1 before communication 3 completes results in deadlock.

Two natural decision problems arise from this optimization problem. Given a system 5 and a

nonnegative integer k, the Buffer Al location Problem (BAP) is to decide if there exists a buffer

assignment B such that S is safe and ^ h < k. In order to solve this problem we need to solve a

simpler one. Suppose we are given a buffer assignment B and a system S; the Buffer Sufficiency

Problem (BSP) is then to decide whether the assignment is sufficient to make S safe.

Additionally, we can require that no process in system S should ever block on a send. Given

a system 5 and a nonnegative integer k, the Nonblocking Buffer Al locat ion Problem (NBAP) is

to decide whether there exists a buffer assignment B, such that no send in S ever blocks, and

Eh <k.

We model systems by using communication graphs, and executions of systems by colouring

games on these graphs. Communication graphs can be derived from execution traces of a program.

The following subsection defines the graph based framework used throughout this section.

E.1.1 The Graph Based Framework
A communicat ion graph of 5 is a directed acyclic graph G = G{S) = (V,A) where the set of

vertices V = {vitC | 1 < i < n, 0 < c < (Ei +1)} corresponds to the communication events and the

arc set A consists of two disjoint arc sets: the computation arc set P and the communication arc

set C. Each vertex represents an event in the system: vertex vifi represents the start of process i,

vertex viiC, 1 < c < Ei} represents either a send or a receive event, and vertex ^.(^i+i) represents

the end of a process. An arc, (vitC,vitC+i) e P, 0 < c < Ei} represents a computation within

process i and an arc (viiS,vjit) e C represents a communication between different processes, i and

j, where vitS is a send vertex, and v]tt is a receive vertex (e.g. Figure E.2). Note, the process arcs

are drawn without orientation for clarity; they are always oriented downward. Communication

graphs are comparable to the time-space diagrams-without internal events-noted in [Lam78].

The ith process component Gi of G is the subgraph Gi = (Vi,Ai) where Vi = {vitC e V \ 0 <

c < (Ei + 1)} and Ai — {(vi!C,vi}C+1) e A \ 0 < c < Ei}. The process component corresponds

to a process in S. We construct communication graphs by connecting process components with

arcs. Hence, it is more intuitive to treat a process component as a chain of send and receive

vertices bound by a start and an end vertex. A channel is represented by a channel pair (Gi:Gj)

E.1. Definitions 143

P, P2

* V1,0* f \ o o

E 1 , 2 < r 1 J 2,2 E
8 ^ Ala 8

Figure E.2: An example of a communication graph with a 2-ring.

of process components.

A t-ring is a subgraph of a communication graph G(S), consisting of t > 1 process components,

such that in each of the t process components there is a send vertex SijtCj and a receive vertex

rt^dj, CJ < dj, 1 < j < t such that the arcs (siuCl,riltdt) and (s i > + l i C . + 1 , r i j > d j) , 1 < j < t are in A.

This definition is equivalent to the definition of a crown in [CMT96].

A t-ring represents a circular dependence of alternating send and receive events; see the

example in Figure E.3. The shaded arcs in Figure E.3 show how each receive event depends on

the preceding send event and each send event depends on the corresponding receive event. Thus,

without an available buffer, there is a circular dependency that results in the system deadlocking.

Figure E.3: Dependency cycle in G(S).

To model the execution of a system S, we define a colouring game that simulates the execution

of the system with respect to G(S).

E.1.2 Colouring the Communication Graph
Given a communication graph G(S), an execution of a corresponding system S is represented by

a colouring game where the goal is to colour all vertices green; a green vertex corresponds to the

completion of an event. We use three colours to denote the state of each event in the system: a

red vertex indicates that the corresponding event has not yet started, a yellow vertex indicates

E.1. Definitions 144

that the corresponding event has started but not completed, and a green vertex indicates that the

corresponding event has completed. Hence, a red vertex must first be coloured yellow before it

can be coloured green; this corresponds to a traffic light changing from red, to yellow, to green. 1

We use tokens to represent buffer allocations. A buffer assignment of a process (or channel)

is represented by a pool of tokens associated with the corresponding process component (respec

tively, the channel component). An instance of buffer utilization is represented by removing a

token from a token pool and placing it on the corresponding communication arc.

The colouring game represents an execution via the following rules. Initially, the start vertices

of G are coloured green and all remaining vertices are coloured red; this is called the init ial

colouring.

send->yei A red send vertex may be coloured yellow if the preceding vertex is

green-the send is ready.

recv->yel A red receive vertex may be coloured yellow if the corresponding

send vertex is yellow, and the preceding vertex (in the same process

component) is green-both the send and the receive are ready.

recvAye/ A red receive vertex may be coloured yellow if the corresponding

send vertex is yellow, and a token from the corresponding token pool

is placed on the incident communication a rc - the send is ready and

a buffer is used.

send^grn A yellow send vertex may be coloured green if the corresponding

receive vertex is coloured yellow—the communication has completed

from the sender's perspective.

recv^grn A yellow receive vertex may be coloured green if both of its preceding

vertices are green. If the incident communication arc has a token,

the token is returned to its token poo l -a receive completes after the

send completes.

end-^yel A red end vertex may be coloured yellow if the preceding vertex is

green.

end^grn A yellow end vertex may be coloured green.

Buffer util ization is represented by placing a token from the token pool on the selected arc,

and colouring the corresponding receive vertex yellow. If no tokens are available, the rule cannot

be invoked.

A colouring of G, denoted by x , is a colour assignment to al l vertices, which can be obtained by

repeatedly applying the colouring rules, starting from the init ial colouring. A colouring sequence

£ = (xi» X2, •••) is a sequence of colourings such that each colouring is derived from the preceding

one by a single application of one of the colouring rules. An execution of a multiprocess system
1 Naturally, we refer to a European traffic light.

E.2. Useful Lemmas 145

S with buffer assignment B is represented by a colouring sequence on G(S). Each transition,

from one colouring to the next, within a colouring sequence, corresponds to a state change of an

event in the corresponding execution. Assuming that all events in the system are ordered, there

is a correspondence between the colouring sequences on G(S) and the executions of system S.

Using the correspondence between colouring sequences on G(S) and executions of system S, we

reason about system 5 by reasoning about colouring sequences on G(S).

We say that a colouring sequence completes if and only if the last colouring in the sequence

comprises only green vertices. A colouring sequence deadlocks if and only if the last colouring in

the sequence has one or more nongreen vertices and the sequence cannot be extended via the

application of the colouring rules. A system S is safe if and only if every colouring sequence on

the graph G(S) completes.

We say that a colouring sequence blocks if there exists a sequence on G{S), ending with a

colouring containing a yellow send vertex, that cannot be extended by applying rule recvAye/

to the corresponding receive vertex. A colouring sequence is block f ree if every prefix of the

sequence does not block; a communication graph G, is block free if al l colouring sequences on it

are also block free. If G(S)) is block free, then no send in S wi l l ever block during an execution.

A token assignment, also denoted by B, is a list of nonnegative integers, denoting the number

of tokens assigned to each token pool; the token assignment is the abstract representation of

a buffer assignment. The number of tokens required depends on the number of times that rule

recvAye/ may be invoked. If a token pool is empty, this means al l buffers are in use.

E.2 Useful Lemmas

The following lemmas are used throughout our proofs. Lemma E.2.1 characterizes the condi

tions under which a colouring sequence wil l deadlock. Lemma E.2.2 characterizes conditions

under which a single colouring sequence may represent all possible colouring sequences. Finally,

Lemma E.2.3 characterizes a class of communication graphs on which no colouring sequence wil l

deadlock.

Lemma E.2.1 (The t-Ring Lemma) Let G be a communication graph comprising a single t-ring.

Any colouring sequence on G completes if and only if rule recvAye/ is invoked at least once.

Proof: Assume by contradiction that there exists a complete colouring sequence £ that does not

make use of rule recvAye/. Consider the first colouring in S where one of the send vertices is

green; call the vertex s». Let rj be the corresponding receive vertex. According to rule send->grn,

the vertex rj must be yellow. Since rule recvAye/ has not been applied, rule recv-^yel must

have been invoked earlier in the sequence. By the definition of a t-ring, the send vertex Sj must

be the predecessor of rj. Since the rule recv^yel was applied to r,-, Sj must be green. Hence,

there is an earlier colouring in S with a green send vertex. This is a contradiction.

E.2. Useful Lemmas 146

In the other direction, if rule recvAye/ is invoked on receive vertex rjt then rule send^grn

can be invoked on the corresponding send vertex SJ, breaking the circular dependency. •

Define the dependency graph of communication graph G = (V, A) to be H = (V, E) where al l

process arcs in A are reversed in E and all communication arcs in A are bidirectional in E. Define

the depth d(y) of a vertex v e V to be the length of the maximum length path in H from v to a

start vertex.

Lemma E.2.2 Let G be communication graph with a token assignment of 0. For any vertex v

in G, if there exists a colouring sequence that colours vertex v green, there does not exist a

colouring sequence that deadlocks before colouring v green.

Proof: Proof by contradiction. Assume that there exist two colouring sequences, such that one

colouring sequence colours a vertex green and the other deadlocks and does not colour the vertex

green. Let v e V be such a vertex of minimum depth; that is, all vertices of lesser depth wil l be

coloured green eventually by any colouring sequence on G. In order for a vertex to be coloured

green, its component predecessor must be green. Since the depth of the predecessor is less than

the depth of v, it can always be coloured green. Furthermore, since a send and its corresponding

receive vertex are adjacent to each other, their depths differ by at most 1.

Since v must be a communication vertex, by rules send->grn and recv^grn, the adjacent

communication vertex t must be coloured yellow before v can be coloured green. If vertex t is

of a lesser depth than v, then t must be green colourable in all colouring sequences; hence, v

must also be green colourable. If t is at the same depth as v, then its component predecessor

is at a lesser depth and must be green colourable, hence t is yellow colourable, and v is green

colourable. If t is at a greater depth than v, the component predecessor of t, say u, is at the

same or a lesser depth than t. If the latter, then u is green colourable and t is yellow colourable,

otherwise, we apply the same argument to u first. Since there is no path from u to v in i l - b e c a u s e

d(u) < d(v)-we need only recurse a finite number of times. •

Lemma E.2.3 If G is a communication graph whose dependency graph is acyclic, then no colour

ing sequence on G will deadlock.

Proof: Proof by contradiction. Assume that a colouring sequence deadlocks on G. Let v be the

vertex of minimum depth that cannot be coloured green. If v is a send (receive) vertex, let u be

the corresponding receive (send) vertex. Let vertex t be the component predecessor of vertex

u and let vertex w be the component predecessor of vertex v. Since the dependency graph is

acyclic, the depths of both t and w are less than the depths of u and v. Hence, both t and w

may be coloured green based on our minimality assumption. However, then both u and v may be

coloured green; this is a contradiction! If v is an end vertex, then it has only one predecessor,

which is of a lesser depth, which leads to the same contradiction. •

E.3. Buffer Allocation in Systems with Receive Side Buffers 147

E.3 Buffer Allocation in Systems with Receive Side Buffers

In systems with receive side buffers, messages are buffered only by the receiver. Buffers are

allocated by the receiving process when a message arrives, but cannot be received, and are freed

when the message is received by the application. Analogously, when colouring a receive vertex of

the corresponding communication graph, only a token belonging to the same process component

may be used. We call this the receive side al location scheme.

E.3.1 The Buffer Allocation Problem

In order to prevent deadlock in distributed applications, the underlying system needs to allocate a

sufficient number of buffers. Ideally, i t should be the minimum number required. Unfortunately,

determining the number of buffers required to make the system safe is intractable.

The corresponding graph-based decision problem is this: given a communication graph G and

a positive integer.A;, determine if there is a token assignment of size k such that no colouring

sequence deadlocks on G. We show that BAPr is N P - h a r d by a reduction of the wel l known 3SAT

problem [Coo71] to B A P r . Recall the definition of 3SAT: determine if there exists a satisfying as

signment to A " = i (a i v ^ V c j) ' where ait bi} and c» are Boolean literals in {x1,xi,x2,x2,... ,xn, xn}.

Theorem E.3.1 The Buffer Allocation Problem (BAPr) is NP-hard.

Proof: Proof by reduction of 3SAT to BAPr. For any 3SAT instance F we construct a corresponding

communication graph G such that for a token assignment of size n, any colouring sequence

completes on G if and only if the corresponding variable assignment satisfies F.

Let F be an instance of 3SAT with n variables and c clauses; the variables are denoted

X\ , x2,..., xnt and the j th clause is denoted (a, V bj V CJ), where ahbj,Cj e {xx,xlt...,xn,xn}.

The corresponding communication graph G comprises 2n + 1 process components: 2n of the

components-cal led l i teral components-are labeled PXi and PSi, i = l...n, and correspond to

the literals of F. The last component-cal led the barr ier component- is labeled Pbamer-

Each process component is divided into c + 1 epochs, where each epoch is a consecutive

sequence of zero or more vertices within the component. All epochs are synchronized, that

is, the vertices of one epoch must be coloured green before any of the vertices in the next

epoch may be coloured. To ensure this we use a barrier component; the j t h epoch of the barrier

component, j = 0 , . . . , c, comprises 2n receive vertices, labeled qij, and 2n send vertices, labeled

tij, I € {xi,xi,... ,xn,xn}. At the end of each epoch there is an arc from each of the literal

components P (, I e {xi,xi,...,xn,xn}, to the barrier component. Each arc emanates from vertex

sij, called a barrier send vertex, and is incident on vertex qtj, where I e {xi,xly.. .,x„,xn} and

j = 0 . . . c. These arcs are followed by arcs emanating from the barrier component to the literal

components; the arcs emanate from vertices tij and are incident on vertices rt<j, called barrier

E.3. Buffer Allocation in Systems with Receive Side Buffers 148

receive vertices. The barrier component has no cyclic dependencies. Hence, by Lemma E.2.3,

no colouring sequence wil l deadlock on a barrier component.

Epoch 0 fixes a token assignment corresponding to a variable assignment in 3SAT. Each pair of

process components, PXi and PSi,i = l...n, forms a variable component, which corresponds to a

variable. The two process components of a pair share a 2-ring; see Figure E.4. By Lemma E.2.1, at

least one token must be assigned to either process component PXi or PXi to prevent all colouring

sequences from deadlocking on G. Since only n tokens are available, each component pair can

be assigned exactly one token. Finally, assigning the token to process component, PXi or PXi,

corresponds to fixing variable Xi to true or false. The epoch terminates with a barrier send vertex

s;,.,o, followed by a barrier receive vertex r j i i 0 , k e {xi,Xi}.

Epoch j of each process component corresponds to the j th clause of F. The epoch of a process

component Pi, I ̂ o3, b}, c,—not labeled by a literal of the j th clause-contains only two vertices:

the barrier send vertex stj and the barrier receive vertex rij. The three process components,

Paj, Pbj, PCj, whose labels correspond to the literals in the j th clause share a 3-ring in the j th

epoch; see Figure E.4. By Lemma E.2.1, to avoid deadlock, at least one of the three process

components must have a token. If none of the components are assigned a token, all literals in

the j t h clause are false. The epoch is terminated by the barrier send and the barrier receive

vertices.

A satisfying assignment on F satisfies at least one literal in every clause. A corresponding token

E.3. Buffer Allocation in Systems with Receive Side Buffers 149

assignment assigns a token to the corresponding process component in each 3-ring—corresponding

to the true l iteral. Hence, by Lemma E.2.1 none of the colouring sequences wil l deadlock on any

of the clause component and any colouring sequence on G wi l l complete.

For a falsifying assignment of F, there exists at least one clause comprising false literals. The

corresponding token assignment fails to assign any tokens to the process components that share

the corresponding 3-ring. Thus, by Lemma E.2.1 all colouring sequences wi l l deadlock in that

clause component.

Hence, for a token assignment of size n, any colouring sequence on G wi l l complete if and

only if the corresponding assignment satisfies F. Since finding a token assignment of size n such

that no colouring sequence on G deadlocks is as hard as finding a satisfying assignment for F,

BAP r is NP -hard. •

E.3.2 The Buffer Sufficiency Problem
A potentially simpler problem involves verifying whether a given buffer assignment is sufficient

to prevent deadlock. Formally, given a graph G and a token assignment on G, determine if none

of the colouring sequences on G deadlock. This problem turns out to be intractable as wel l .

We show that BSPr is coNP-complete by a reduction from the TAUTOLOGY problem [GJ79,

Page 261] to BSPr. Given an instance of a formula in disjunctive normal form (DNF), V*=i Aj=i ai,j

where O i j e . . . ,xn,xn}, the formula is a tautology if it is satisfied by all assignments. An

assignment that falsifies F is a concise proof that the formula is not a tautology. We shall restrict

our attention to 3DNF formulas, where each term has three literals: V L i (f l i A h A Q) .

Theorem E.3.2 The Buffer Sufficiency Problem (BSPr) is coNP-complete.

Proof: Let G be a communication graph along with a token assignment. If there exists a

deadlocking colouring sequence on G, then the sequence itself is a certif icate. The sequence is

at most twice the number of vertices in G. Hence, BSPr is in coNP.

Let F be a 3DNF formula with t terms where each term has three literals. For any 3DNF

formula F, we construct a communication graph G and fix a token assignment such that there is

a colouring sequence on G that deadlocks if and only if the corresponding assignment falsifies F.

The construction consists of four types of components that correspond to fixing an assignment, a

term in the disjunction, the disjunction, and the interconnects between components.

Each variable in F is represented by a variable component comprising three process compo

nents that are labeled PXi, PXi, and Qt. The latter, called the arbitrator component, comprises

three receive vertices, labeled qit rXi, and rXi. The former two process components, called

variable components, comprise two send vertices each. The first, labeled sXi (sSi), is adjacent

to the corresponding receive vertex rXi (rXi) in the arbitrator component. The second, labeled

txi (tXi), is adjacent to receive vertices in components called dispersers, described later. The

E.3. Buffer Allocation in Systems with Receive Side Buffers 150

vertex qi in the arbitrator component is similarly adjacent to a vertex in a disperser component.

The corresponding token assignment for each variable component assigns one token to Qi and no

tokens to the other two components; see Figure E.5. The component has the following property:

Figure E.5: The construction of the components.

Property E.3.3 Let G be a communication graph that contains a variable component. Any

colouring sequence on G may colour exactly one of the two vertices tXi or tXi yellow before

vertex qi is coloured green.

Proof: By rule send^yel, in order for tXi (tXi) to be coloured yellow, vertex sXi (sSi) must be

coloured green. Hence, by rule send^grn, vertex rXj (rXi) must first be coloured yellow. Since

vertex is red, vertex rXi (rXi) can only be coloured yellow via rule recvAye/ . However, there

is only one token assigned to process component Qit hence rule recvAye/ may only be invoked

once. •

The j th term in the disjunction is represented by a term component comprising a process

component, which is called the term component and labeled Pj. The first part of each term

component consists of a send vertex SJ and a receive vertex ry, these vertices are part of a

t-ring. In the first term component, P i , there is an additional send vertex labeled s d o n e ; these

are described in the next paragraph. The second part of each term component consists of three

receive vertices labeled r^aj, r2>bi, and r^Cj, where a,j,bj,Cj e {xx,xi,... ,xn,xn} correspond to

the literals in the j th term; see Figure E.5. These receive vertices are adjacent to send vertices

in components called dispersers, which are described later. The term components are used to

construct a disjunction component.

The disjunction component comprises t term components, where the first two vertices, SJ and

rjt are part of a t-ring spanning all t components. Specifically, each send vertex SJ, j < t, is

E.3. Buffer Allocation in Systems with Receive Side Buffers 151

adjacent to receive vertex rj+x and vertex st is adjacent to receive vertex n; see Figure E.5. Each

term component is assigned one token. The disjunction component has the following property.

Property E.3.4 Let G be a communication graph that contains a disjunction component. Any

colouring sequence on G can colour rj} j e [1, t], green if and only if at least one of rk, k e [1, t],

is coloured yellow before any rk,ak, rkibk, or rk,Ck are coloured yellow.

Proof: By Lemma E.2.1, vertex rj can be coloured green, if and only if rule recvAye/ is invoked,

colouring one of the receive vertices rk, k e [l,t], yellow. The rule may only be invoked if and

only if a token is available. Since each term component only has one token assigned and since

vertex rk precedes vertices rkiak, rktbk, and rk,Ch, a token is available if and only if none of the

vertices rk,ak, rk>bk, and rktCk, are coloured yellow via rule recvAye/, before vertex rk is coloured

yellow. •

Once vertex rk, k e [l,t], is coloured yellow, all rjt j = l...t may be coloured green, and

vertex s d o n e may be coloured yellow. We now describe how the components are connected

together using disperse components. Let s be a send vertex and R be a set of receive vertices.

An (s,.R)-disperser comprises \R\ + 1 process components: one master component, labeled Ms,

and \R\ slave components labeled Sr, r e R. The master component comprises one receive

vertex labeled rs, followed by \R\ send vertices labeled sr, r e R. Each send vertex is adjacent

to the receive vertex on the corresponding slave component Sr. Each slave component has two

vertices: a receive vertex qr, followed by a send vertex tr; see Figure E.6. The latter vertex is

adjacent to the receive vertex r in some other component. None of the components are assigned

any tokens. The following property of a disperser follows from Lemma E.2.3.

sVl sV2 sx

0 0 0 0

Figure E.6: The disperser component.

Property E.3.5 Let G be a communication graph containing an (s,R)-disperser. If a colouring

sequence colours vertex rs yellow, then the colouring sequence can be extended to colour all

vertices tr, r e R yellow.

E.3. Buffer Allocation in Systems with Receive Side Buffers 152

Let RXi, i = l...n, be the set of receive vertices labeled rjiXi e Pj, j £ [l,t], and let RXi

be similarly defined; recall that a,j,bj,Cj are simply l i teral place holders in the vertex labels
rj,aj, rj,bj, rjtCj. Hence, a (t^-R^J-d isperser connects send vertex tXi e PXi to vertices in RXi —

belonging to the term components. Furthermore, let Q be the set of receive vertices qi (in

the variable components), i = 1.. . n ; a (s d o n e , (?)-disperser connects vertex s d 0 n e to all variable

components via receive vertices qi. The construction of G comprises n variable components and

one disjunction component, composed of t term components; these are connected together by

a (s d 0 ne ,Q)-disperser, and 2n (ta,#a)-dispersers, where a 6 {xx,xi,... ,xn,xn}. We claim that

there exists a colouring sequence that deadlocks on G if and only if there is a falsifying assignment

for formula F, that is, F is not a tautology.

Suppose that F has a falsifying assignment x, that is every term in the disjunction is false

because each term has a literal x, or xit which is false. To construct a colouring sequence on G

that deadlocks, we construct a set of vertices U. The first half of the colouring sequence is a

maximal colouring sequence involving only the vertices of U. The second half of the sequence

may involve al l vertices in G. The resulting colouring sequence wil l always deadlock.

Let X = {a e {xi,xi,..., xn,xn} \ a\x — 0}, which is the set of literals that are false, and

let Z = {sa e Pa | o £ X) u {SJ | j = 1, . . . ,t}, which contains the set of send vertices from the

variable components that are labeled by a true literal and the numbered send vertices in the

disjunction component; the set Z contains the vertices which may not initially be coloured. Let

U = V\Z be the rest of the vertex set.

Consider a colouring sequence involving only vertices in U. By property E.3.3 any maximal

colouring sequence wil l colour the vertices ta yellow (in the variable component), where a e X.

Hence, by property E.3.5 the vertices tr (in the dispersers) wi l l be coloured yellow, where

r G Uaex -Ra—the send vertices tr in the dispersers are adjacent to the receive vertices in Ra-

Since a; is a falsifying assignment, every term contains a l i teral, which is falsified by x. Without loss

of generality, let O j denote a literal that is false in the j th term; therefore, process component Pj

contains a receive vertex r^ai, which is adjacent to the yellow send vertex trj (in the disperser).

Since none of the vertices of the t-ring (in the disjunction component) are not in {/- they are

stil l coloured red- the token belonging to component Pj is used to apply rule recvAye/ to colour

vertex r^ai yellow. Since every term has a false l i teral, the colouring sequence colours a receive

vertex r j a i , j = 1. . A in every term component Pj. After the sequence cannot be extended,

allow al l vertices to be coloured; since vertices rjtai (in the term components), j = 1 . . . t, have

been coloured yellow before vertex rj (in term component Pj), according to property E.3.4, the

sequence wil l deadlock.

If a colouring sequence on G deadlocks, according to property E.3.4, deadlock occurs only

if there is a yellow vertex labeled rk,ak, rk,bk, or rk,Ck in each of the term components. Their

E.3. Buffer Allocation in Systems with Receive Side Buffers 153

predecessors-vertices U, I e {xi,xi,... ,xn,xm}, in the dispersers-must be green. Since the

colouring sequence is maximal, by property E.3.3 exactly one of tXi or tXi is red, thus this

corresponds to a valid assignment: setting Xi = 0 if tXi is green, or Xi = 1 if tXi is green yields an

assignment that falsifies F.

Thus, a colouring sequence on G deadlocks if and only if the corresponding assignment falsifies

F. Hence, BSPr is coNP-comple te . •

Therefore, just determining whether a buffer assignment is sufficient is intractable, even

one as simple as in the preceding example. Intuitively, the buffers of a process are assigned

based on the behaviour of other processes; thus, buffer util ization is not locally decidable.

Further, the order in which buffers are assigned is nondeterministic, exploding the search space

of possible buffer utilizations. This phenomena, which our proofs rely on, is what we call buffer

stealing. For example, in a system corresponding to the variable component (see Figure E.5),

the first process to send its message gets the buffer, and the other process remains blocked until

the arbitrator performs the receives. This stealing corresponds to fixing a value of a variable.

Similarly, the system corresponding to the disjunction component allocates buffers for each of

the term processes. However, if the buffer is stolen in al l terms, corresponding to a falsifying

assignment, then the system wil l deadlock within the ring.

For completeness, we note the following corollary:

Corol lary E.3.6 The Buffer Allocation Problem (BAPr) is in S 2 P -

Proof: By Theorem E.3.2, verifying that a token assignment is sufficient to prevent deadlock

(BSPr) is coNP-comple te . Since we can nondeterministically guess a sufficient token assignment,

the result follows. •

E.3.3 The Nonblocking Buffer Allocation Problem
In addition to the system being safe, we can require that no sending process ever blocks due to

insufficient buffers on the receiving process. The Nonblocking Buffer Allocation Problem (NBAP r)

is to determine the minimum number of buffers needed to achieve nonblocking sends.

Formally, the corresponding decision problem is this: given a communication graph G and an

integer k, determine if there exists a token assignment of size k such that no colouring sequence

on G blocks. Recall that a colouring sequence does not block if, whenever a send vertex is

coloured yellow, rule recvAye/ may be applied to the corresponding receive vertex.

Let Pi and Pj, j ̂ i, be two process components. Given two vertices, vitC and viit, in Pit

t > c, vertex vitt is communicat ion dependent on vertex vi<c if viiC is the start vertex or if there

exists a vertex vjid e Pj, such that there is a path from viiC to vjtd and the arc (vjtd,vi:t) is in

A (see Figure E.7). Vertex vi>t is terminal ly communicat ion dependent on vertex vitC if vitt

E.3. Buffer Allocation in Systems with Receive Side Buffers 154

is communication dependent on v»iC and is not communication dependent on the vertices viti,

c < I <t. The algorithm depicted in Figure E.8 computes an optimal token assignment such that

no colouring sequence on G can block.

Figure E.7: vi>c+k is communication dependent on vi<c.

1. For each receive vertex viit determine its terminal communication depen
dency, vertex vitC, where t > c.

2. Set Iiit = [c, t] to be the interval between vertex vitC and vertex v;it.
3. For each process component Gi, compute bit the maximum overlap over al l

intervals Iitt.
4. B = {h,b2,...,bn} is the optimal nonblocking token assignment.

Figure E.8: Algorithm for computing an optimal nonblocking buffer assignment.

Remark E.3.7 In a system corresponding to communication graph G, the time between a message

arriving at process i and its receipt corresponds to the interval hit. Each interval must have a

buffer to ensure nonblocking sends. Hence, the minimum number of buffers, bi, is the maximum

overlap over all intervals within process pi.

Computing the terminal communication dependencies for G can be done via dynamic program

ming in 0(\V\n) t ime, where V is the vertex set of G and n is the number of process components.

If there exists a path from vertex v^c to vjtd, then there exists a path from v^c to all vertices

Vj,d+k, k > 0. Associate with each vertex Vi,c an integer vector a,iC of size n; aiiC[j] = d means

that there exists a path from vitC to vjyd, and thus to Vj:d+k, k > 0. The vector a i i C is computed by

taking the element-wise minimums over the vectors of the adjacent vertices VitC; this is simply

E.4. Proof of Correctness of the Nonblocking Buffer Allocation Algorithm 155

a depth-first traversal of G. Since the number of arcs is bounded by 3 | V | / 2 and the pairwise

comparison takes n steps, the traversal takes 0{\V\n) t ime.

Next, computing the 0 (| V |) intervals, Iitt, requires one table lookup per interval. To compute

the maximum overlap we sort the intervals and perform a sweep, keeping track of the current and

maximum overlap; this takes 0(\V\log \V\) t ime. Thus, the total complexity is 0 (| V | n + | V | log |V |)

t ime. In the worst case, where n « | V | , this algorithm is quadratic. However, in practice n is

usually fixed, in which case the \V\log\V\ term dominates.

E.4 Proof of Correctness of the Nonblocking Buffer Allocation Algorithm

Lemma E.4.1 Let G be a communication graph. For all vertices vi>c,vj,d 6 G; if v^d's a send

vertex and there exists a path from the vertex vi>c to vertex vjid, then vertex v^d cannot be

coloured yellow until vertex viiC is coloured green.

Proof: By rule send-^yel, the predecessor of vjtd must first be coloured green before vjtd can

be coloured yellow. Since rules send->grn, and recv-^grn imply that the predecessors of a green

vertex must be green, the result follows. •

Corol lary E.4.2 Let G, vitC, and vjtd be as in Lemma E.4.1 and let vitt be the receive vertex

corresponding to the send vertex vj:d. Rule recvAye/ will never be applied to vertex vi<t before

vertex i>jjC is coloured green.

The preceding corollary implies that a token, which is needed to colour the receive vertex

viit yellow, need not be available until the vertex on which vi<t is terminally communication

dependent is coloured green. Hence, it is sufficient to ensure token availability just before

colouring the respective send vertex green; this is also necessary.

Theorem E.4.3 Given G, let viiC be a send vertex and v^t be a receive vertex that is terminally

communication dependent on vertex vi}C. A token for the application of rule recvAye/ on arc

{vj,d, i>i,t) must be available as soon as vertex VitC is coloured green.

Proof: Let vjtd be the send vertex corresponding to the receive vertex vi<t and let Q = {viiQ \ c <

q < t] be the set of vertices that are predecessors of vijt, but on which Vitt is not communication

dependent.

Since vi<t is not communication dependent on the vertices in Q, we can construct a colouring

sequence on G that fixes the vertices in Q to be red, and colours vertex vjid yellow, making

the application of rule recvAye/ possible in the next step. Since no progress is made in the

ith process component after colouring vertex vi>c green, the state of the associated token pool

does not change until the application of rule recvAye/ to vertex viit. Hence, when vertex vi;C is

coloured green, the token pool must have a token destined for arc (vj^v^t). •

E.4. Proof of Correctness of the Nonblocking Buffer Allocation Algorithm 156

Thus, if a receive vertex r is terminally communication dependent on a send vertex s, then it

is necessary and sufficient that a token, which is used to apply rule recvAye/ to receive vertex r,

must be available as soon as the send vertex s is coloured green; the start vertex may be thought

of as a special send vertex. Since the interval corresponding to r begins when s is coloured

green, and ends when r is coloured green, a token must be available for the recvAye/ rule, which

can occur during this interval. Computing the maximum overlap of intervals yields the required

number of tokens.

Example Use of the NBAPr Algorithm

To demonstrate the NBAPr algorithm we have implemented it, and analyzed the pipe-and-roll

parallel matrix multiplication algorithm [FJL+88]. The program has one control process and a

number of worker processes arranged in a 2 dimensional mesh. We ran the NBAP r algorithm

on meshes of size 2 x 2, 3 x 3 and 4 x 4 . The communication graph for the smallest example,

comprising four workers ordered in a 2 x 2 mesh, is depicted in Figure E.9. The corresponding

optimal buffer assignment is listed in the second column of Table 1.

Po Pi 1 P3 P4
4 3 3 3 3

•
Figure E.9: The communication system for a 2 x 2 worker process mesh.

In this example, process 0 is the control process and processes 1 through 4 are the workers.

The control process needs 4 buffers and the workers each need 3 to execute without blocking.

The results obtained when executing the NBAPr algorithm on a 3 x 3 worker system is 9 buffers for

the control process and between 4 and 5 buffers for the worker processes. For the 4 x 4 system

the numbers are 16 for the control process and between 5 and 7 buffers for the workers.

E.5. Buffer Allocation in Systems with Send Side Buffers 157

Proc. Max overlap
I i b

Overlap for intervals lj
I3 U Is U I7 Is l 9

0 4 0 0 0 0 4 3 2 1 0
1 3 2 1 2 3 2 1 1 0 0
2 3 3 2 1 2 1 1 1 0 0
3 3 3 2 1 2 1 1 1 0 0
4 3 2 1 2 3 2 1 1 0 0

Table 1. The result of running the NBAP r algorithm on the 2 x 2 worker example.

Approximating BAPr with NBAPr

The NBAPr algorithm is useful for determining a token assignment that prevents deadlock, that

is, approximating BAPr. Since a nonblocking colouring sequence does not deadlock, a token

assignment determined by the NBAP r algorithm ensures that the graph is deadlock free. However,

the token assignment may be far from optimal. A simple example of this phenomena is a two

process component graph comprised of n arcs emanating from the first component and incident

on the second. Such a graph requires zero tokens to avoid deadlock, but requires n tokens to

be block free. Thus, the aforementioned token assignment may entail many more tokens than

required.

E.5 Buffer Allocation in Systems with Send Side Buffers

In this section we consider the second of the four buffer placement strategies: send side buffers.

Buffers are now allocated on the sending process side if the receive is not ready to accept the

message. Correspondingly, the token pool used when applying rule recvAye/ to the receive vertex

of arc (s,r) belongs to the process component containing the send vertex s. We call this the send

side al location scheme.

The Buffer Allocation Problem (BAPS) remains intractable. The problem is conjectured to

be NP-comple te (see the following paragraph). The NP-hardness follows from the observation

that each t-ring in the construction in Theorem E.3.1 has to have a token assigned to a process

component pair in order to prevent deadlock. It does not matter if the token is allocated from

the token pool of the sending or the receiving process component. Hence, the reduction used in

Theorem E.3.1 can be applied with no modification.

We conjecture that the corresponding Buffer Sufficiency Problem (BSPs) is in P . This is

because the relative order in which tokens from a particular token pool are util ized is invariant

with respect to the colouring sequences. Hence, we believe that the determining sufficiency is

similar to the nonblocking buffer allocation problem and hence is in P . If this is the case, BAP S

is NP-comple te .

The Nonblocking Buffer Allocation Problem (NBAPS) remains in P . The problem can be solved

E. 6. Buffer Allocation in Systems with Send and Receive Side Buffers 158

by first reversing all arcs in the communication graph, swapping the start and end vertices, and

then running the algorithm described in Figure E.8.

E.6 Buffer Allocation in Systems with Send and Receive Side Buffers

So far we have considered systems exclusively with send side or receive side buffers. In this section

we investigate systems with buffers on both the send and the receive sides; many communication

systems use per-host buffer pools for both receiving and sending messages. The choice of where

to buffer the message-on the sender or on the receiver-increases the difficulty of determining

the system's properties.

We assume a lazy mechanism for utilizing buffers: first use a buffer from the sender's pool.

If none is available, use a buffer from the receiver's pool. If neither is available, attempt to

free a send side buffer by transferring its contents to a buffer belonging to the corresponding

receiver. Intuitively, the system attempts to maximize buffer use, without attempting to predict

the future.

The corresponding colouring game allows tokens to be allocated from the pools belonging

to both the sending component and the receiving component. Correspondingly, a lazy token

util ization scheme is used: let (si,r,) be a communication arc from process component Pi to

process component Pj. The following rules apply during the application of rule recvAye/ to

vertex r j:

1. If a token belonging to component Pi is available, use it.

2. Otherwise, if a token belonging to component Pj is available, use it.

3. Otherwise, if a token belonging to component Pi is currently placed on arc (ti,rk), U e Pi,

rk e Pk, and a token belonging to component Pk is available. Then the token on arc (ti,rk)

may be replaced with the one belonging to Pk, freeing a token to be used in the current

application of rule recvAye/.

We call this the mixed allocation scheme.

Not unexpectedly, the Buffer Allocation Problem (BAPSr) remains intractable within the mixed

allocation scheme. This is because the receive side allocation scheme, which provides no choice

of token pools, can be simulated within the mixed allocation scheme. Concretely consider the

receive side allocation scheme analyzed in Section E.3: to simulate the receive side allocation

scheme on communication graph G, within the mixed allocation scheme, each arc in G is replaced

by the component illustrated in Figure E.10. Since vertex q cannot be coloured green until vertex

r is coloured yellow, and component P' has no tokens, applying rule recvAye/ to r requires that

Pj has an available token, regardless of whether Pi has an available token.

Similarly, the Buffer Sufficiency Problem (BSPSr) within the mixed allocation scheme is also

E.6. Buffer Allocation in Systems with Send and Receive Side Buffers 159

coNP-complete. The hardness follows from Theorem E.3.2 and the preceding argument. Since

a colouring sequence also serves as a deadlock certif icate in this case, the coNP-completeness

result follows.

The interesting property of the mixed allocation scheme is that the Nonblocking Buffer Allo

cation Problem (NBAPsr) is intractable; the choice of token pools increases the search space of

solutions exponentially! The reduction is from 3SAT.

Theorem E.6.1 The Nonblocking Buffer Allocation Problem (NBAPsr) is NP -hard.

Proof: Let F be an instance of 3SAT, comprising n variables, labeled xit i = 1... n, and c clauses.

We construct a communication graph G such that there exists a token assignment of n + 2

tokens that prevents any colouring sequence from blocking on G if and only if the corresponding

assignment satisfies F.

The graph G comprises 2n + 3 process components: the first 2n are labeled PXi and PXi,

i = 1... n, and the remaining three process components are labeled P, Qo and Qi, respectively.

The graph is divided into c + 1 epochs: epoch 0 corresponds to the variable assignment, and

epochs 1 through c correspond to clause evaluation.

In epoch 0 each process component PXi contains a single send vertex Si that is adjacent to the

receive vertex n located in epoch 0 of process component PXi. Process component Q0 (and Qi)

contains four vertices: two receive vertices q 0 , i and g0 >2 (respectively 51,1 and 91,2), followed by

two send vertices t 0 , i and £0,2 (respectively i i , i and * i > 2) . Finally, process component P contains

eight vertices: two send vertices, s 0 , i and s 0) 2 , that are adjacent to vertices g 0 , i and q0y, two

receive vertices, r 0] 1 and 7-0,2, that are adjacent to io, i and i 0 ,2; two more send vertices, s i , i

and s 1) 2 , that are adjacent to c/i,i and QI j 2; and two more receive vertices, 7-1,1 and T-I,2, that are

adjacent to <i,i and £ i , 2 . See Figure E.11. Epoch 0 has two important properties.

Property E.6.2 Any token assignment must assign at least one token to either component PXi or

PXi to prevent the colouring sequence from blocking after colouring vertex S J yellow.

E.6. Buffer Allocation in Systems with Send and Receive Side Buffers 160

Property E.6.3 A token assignment on G having only n + 2 tokens must assign two tokens to

process component P to prevent a colouring sequence from blocking after yellow colouring one

of the send vertices s0,i, s0,2, s i , i or s i i 2 .

Proof: Since n tokens must be allocated to the process components PXi or PXi, i = 1,..., n , this

leaves only two tokens to be allocated. Since the colouring rule sequence send->yel, recvAye/ ,

send^grn, send-^yel, recvAye/can colour send vertices s 0 , i and s 0 ,2, or send vertices sXil and

s i , 2 , component pairs (P,Q0) and (P,Qi) must each have two tokens between them. This can

only happen by assigning the tokens to P. m

A corollary of these properties is that once a legal token assignment is made, no colouring

sequence wil l block in epoch 0. The choice of allocating the token on PXi versus PXi corresponds

to fixing the variable assignment.

P_ P
X 4 Xn

9 9 9

v \ \ \ \
9 #

Figure E. 11: Reduction from 3SAT to N B A P s r

For j = 1... c, epoch j corresponds to the j th clause. Each epoch comprises two parts of

six arcs each: the synchronization part and the evaluation part. Four process components are

involved in an epoch: the three components, P 0 j . , Pbj, and PCj, whose labels are the literals

in the j th clause, where a,j,bj,Cj e {xlt xx,..., xn,xn], and component P, which is involved in

every epoch. Epoch j of component Paj comprises four vertices: receive vertex r a j t j , send vertex

E.6. Buffer Allocation in Systems with Send and Receive Side Buffers 161

taj,j, receive vertex r'ajj, and send vertex t'ajJ. Process components Pbj and PCj are analogously

formed.

In epoch j component P has 12 vertices, the first six are these: send vertex sajj, receive

vertex qajj, send vertex sbjj, receive vertex qbjj, send vertex sCjtj, and receive vertex qCjj.

These are followed by three send vertices: s'ajj, s'b.j, and s'Cjj, and three receive vertices: q'ajj,

Each vertex sij is adjacent to vertex nj, each vertex tij is adjacent to vertex qtj, each vertex

s\j is adjacent to vertex f{ -, and each vertex t\ . is adjacent to vertex c/,'̂ ; see Figure E.11. For

conciseness we drop the last index, j, if it is obvious from the context. Epoch j has three

important properties:

Property E . 6 . 4 / / vertex q' (in epoch j) is coloured green and vertex saj+1 (in epoch j + 1) is

still red, then no tokens that belong to component P are assigned to arcs. The same applies to

vertex pairs (qaj, sbj), (qbj, sCj), and (qCj, s'a.), also in epoch j .

Proof: All ancestors of q'c must be coloured green and all descendants of saj+1 must be coloured

red. This includes all vertices in G, except some vertices Si and n in epoch 0, which are not

adjacent to vertices in component P. Hence, the tokens belonging to P are not assigned to any

arc. The same argument applies to the other vertex pairs. •

Property E . 6 . 5 A colouring sequence on G can block only when yellow colouring receive vertices

r ' a j > r'bj> r'cj> q'aj, i'bj> or q'Cj.

Proof: As a corollary of properties E.6.2 and E.6.3, no colouring sequence can block in epoch

0. Thus, we need only check that no colouring sequence can block in the first part of epoch j,

j = 1 . . . c.

By property E.6.4, if saj is red and its predecessor is green, then no tokens of P are in

use. Hence, to colour saj green, a token is available to colour raj yellow. Since vertex raj is a

predecessor of taj, vertex raj must be coloured green before taj may be coloured yellow. Thus

the token is freed before taj is coloured green, and may be used to colour vertex qaj yellow after

taj is coloured yellow. A similar argument applies to the vertices rbj, qbj, rCj, and qCj. m

Property E . 6 . 6 A colouring sequence can block in epoch j if and only if none of the three process

components, Paj, Pbj, and PCj, have a token assigned.

Proof: For the ' i f direction consider a colouring sequence that colours vertex qCj green, but has

not yet coloured vertex s'a yellow. By definition, blocking does not occur, if rule recvAye/ may

always be applied to colour a receive vertex yellow. To colour the send vertices s'a., s'b., and s'c.

yellow and then green, the receive vertices r'a., r'b , and r'c., must be coloured yellow via rule

recvAye / . Since the receive vertices r'a., r'bj, and r'c. are not ancestors of the send vertices s'a ,

s'b , and s'c., none of the receive vertices need be coloured green before the send vertices are

E.7. Buffer Allocation in Channel Based Systems 162

coloured yellow. However, component P has only two tokens, and none of components Paj, Pbs,

PCj have any. Hence, rule recvAye/ can only be invoked twice, instead of the requisite three

times. Thus, a colouring sequence can block in epoch j.

For the 'only i f direction we claim that if a literal component Paj, Pbj, or PCj has a token,

rule recvAye/ can be invoked on any of the six receive vertices r'a., r'b , r'c., q'a., q'b., and q'c..

Since r' is a predecessor of t'a , r' must be coloured green before t' , and hence before q'a. is

coloured yellow. Thus, the same token that was allocated upon the application of rule recvAye/

to vertex r' , may also be allocated upon the application of rule recvAye/ to vertex q' ; the

same argument is applicable to vertices q'b and q'c.. Applying rule recvAye/ to vertices r'a. and

r'b , uses the two tokens from component P. To colour vertex r'c. yellow there are three possible

scenarios:

1. the colouring sequence has already freed one of the tokens, allowing it to be reused,

2. component PCj has a token, in which case it is used, or

3. component Paj (or Pbj) has a token, in which case it replaces the token used to yellow

colour vertex r'a. (or r'b) and the freed token is used to colour vertex r'c..

Since at least one component Paj, Pbj, or PCj have a token, the claim is proven. •

By property E.6.6 a colour sequence wi l l block in epoch j if and only if none of the process

components Paj, P^, or PCj has a token, which corresponds to the jth clause having no literals

that are true. Thus, a token assignment of size 2n + 2 prevents any colouring sequence on G from

blocking if and only if the corresponding assignment satisfies F. u

E.7 Buffer Allocation in Channel Based Systems

In channel based systems processes communicate via pairwise connections that are created at

startup. Each connection, called a channel, is specified by its endpoints and is used by one

process to send messages to the other. Each channel functions independently of other channels

in the system, and resources such as buffers are allocated on a per channel basis, rather than per

process. Finally, channels behave like queues, that is, messages are removed from the channel

in the same order that they are inserted.

Channels may either be unidirectional, comprising source and destination endpoints, or bidi

rectional, comprising two symmetric endpoints. In the former case, only the source process may

insert messages into the channel and only the destination process may remove messages from

the channels. A bidirectional channel is equivalent to two unidirectional channels, allowing both

processes to insert and remove messages from the channel. Here we only consider unidirectional

channels.

E. 7. Buffer Allocation in Channel Based Systems 163

Except for buffer allocation, channel based communication does not differ from the previously

described send/receive mechanism. In fact, an unbuffered channel communication is just a

synchronous send/receive communication. Thus, we can derive similar results for channel based

systems.

In the corresponding colouring game, tokens are allocated to channels (component pairs)

instead of to components. This change does not change the properties used in our proofs. In

fact, Lemma E.2.1 may be used unchanged. We call this the per channel allocation scheme.

E.7.1 The Buffer Allocation Problem

The corresponding Buffer Allocation Problem (BAPSr) is this: given a communication graph G and

an integer k, determine whether there exist a token assignment of size k, such that no colouring

sequence deadlocks on G. Even though token util ization, during the colouring of a communication

graph, is only dictated by the communication arcs within a process component pair, determining

the number of tokens needed remains N P - h a r d . The proof is similar in spirit to Theorem E.3.1.

Theorem E.7.1 The Buffer Allocation Problem (BAPSr) is NP-hard.

Proof: We prove this by reducing 3SAT to BAPsr. For any 3SAT instance F we construct a

corresponding communication graph G-polynomial in size of F - s u c h that for a token assignment

of size n, any colouring sequence wil l complete on G if and only if the corresponding variable

assignment satisfies F.

Let F be an instance of 3SAT on n variables and comprising c clauses. The construction is

nearly identical to that in Theorem E.3.1, except for the components representing the clauses

of F. The graph G has 2n process components that are labeled by the literals of F, PXi and

PXi, i = 1 . . . n. Each component comprises c + 1 epochs, where each epoch contains zero or two

vertices.

As in Theorem E.3.1, epoch 0 fixes a variable assignment. In epoch 0 each component has

two vertices: a send vertex, labeled sXi (or sXi), and a receive vertex rXi, (respectively rXi),

i = 1... TI. Vertex sXi is adjacent to vertex rSi, and vertex sSi is adjacent to vertex rXi; this is a

2-ring, identical to epoch 0 in Theorem E.3.1. Epoch 0 has the the following property:

Property E.7.2 Any colouring sequence on G will deadlock in epoch 0 unless each process com

ponent pair has a token assigned to the token pool of either (PXi ,PXi), or (PXi, PXi), i = 1 . . . ri.

Thus, the token assignment must be of at least size n. (Follows from Lemma E.2.1.)

Property E.7.2 yields the following correspondence between assignments on F and token

assignments of size n.

Property E.7.3 The corresponding token assignment of a variable assignment on F assigns a

token to the channel (PXi, PXi) if xt is true, or to (PXi, PXi) if xt is false.

E.7. Buffer Allocation in Channel Based Systems 164

The j th epoch represents the j th clause of F, denoted (a.j,bj,Cj), where a,j,bj,Cj e . . . , xn

The process components Paj, P&i, Pbj, Piit PCj, and P E j form a 6-ring, while the remaining com

ponents have no vertices in the j th epoch. Process component Paj has two vertices in the j th

component: a send vertex, sajj, and a receive vertex r a j j \ similarly, the other five components

have a send and receive vertex that are correspondingly named. The arcs linking the 6 compo

nents are these: (saj,j,rajJ), {Saitj,n,j), (Sbj ,j ,% j) , (.S^j, TCjj), (sCj J ,rSj j), and {sSj ,j ,Taj ,j) .

These form a 6-ring, as illustrated in Figure E.12. The key property of the j th epoch is this:

Figure E.12: The clause representation in epoch j .

Property E.7.4 No colouring sequence on G will deadlock in the jth epoch if and only if at least

one of the channels has a token: ft,)> (f t , - , ^) , (A , , ^) , (P-bi,PCj), i.PcnPSj), (Pc,,Paj).

(Follows from Lemma E.2.1.)

A refined version of property E.7.4 is more useful:

Property E.7.5 For any token assignment of size n such that no colouring sequence deadlocks

on G in epoch 0, no colouring sequence on G will deadlock in the jth epoch if and only if at least

one of the channels (Paj,Pa,), [Pbj,P-bj), ond (PCj,P5j), has a token.

Proof: By property E.7.2, all token assignments that do not cause deadlock in epoch 0 only assign

tokens to channels of the form (PXi,PXi) or (PSi,PXi). Hence, only channels (Pas,Pai), (Pbj,P-bj),

and (PCi,Pcj) can have a token. By property E.7.4, no colouring sequence on G wi l l deadlock in

epoch j if one of these channels has a token. •

We claim that given a token assignment of size n, any colouring sequence wil l complete on G

if and only if the corresponding variable assignment satisfies F.

If an assignment x satisfies F, then every clause has at least one literal that evaluates to true.

By Property E.7.3, in each of the j epochs at least one of the channels listed in Property E.7.5

wil l be allocated a token. Hence, by Property E.7.5 no colouring sequence wil l deadlock on G.

If an assignment x does not satisfy F then there is at least one clause in which al l literals

are false. Let (a,j,bj,Cj) be the unsatisfied clause. By property E.7.3, the corresponding token

E.7. Buffer Allocation in Channel Based Systems 165

assignment wi l l not assign a token to (P a . , P a j .) , {Pbj,Pb.), or (P C i , P 5 i) , hence, by Property E.7.5,

al l colouring sequences wil l deadlock.

Thus, NBAPsr is N P - h a r d . •

Since tokens are assigned on a per channel basis, token usage depends only on the two process

components that comprise the channel. Consequently, the sufficiency of a token assignment can

be verified in linear t ime. Thus, the easier problem BSPsr is in P , implying that BAPsr is N P -

complete. We describe the verification algorithm and prove its correctness.

E.7.2 The Buffer Sufficiency Problem
To verify the sufficiency of a token assignment, perform a colouring on G: at each step of the

colouring a vertex of G is coloured according to the rules in section E.1. Using a queue to keep

track of colourable vertices means that determining which vertex to colour next takes 0(1) t ime.

Since each vertex changes colour at most tw ice- the maximum length of any colouring sequence

is 2\V\ colourings-colouring a graph takes 0(|V |) t ime. The token assignment is sufficient if and

only if the colouring sequence completes. The algorithm's correctness follows immediately from

the following theorem: any colouring sequence on G completes if and only if some colouring

sequence on G completes. Thus, a token assignment is sufficient if and only if some colouring

sequence on G completes.

Theorem E.7.6 Let G be a communication graph and B a token assignment on G. Any colouring

sequence on G completes if and only if a colouring sequence on G completes.

Proof: For any communication graph G, we construct a new graph G' where every token is

simulated by a process component, the size of the corresponding token assignment is zero, and

every colouring sequence on G corresponds to a colouring sequence on 67', such that a colouring

sequence on G completes if and only if the corresponding colouring sequence on 67' completes.

Since the token assignment on G' is zero, by Lemma E.2.2 a colouring sequence on G' completes

if and only if every colouring sequence on 67' completes. Hence, every colouring sequence on G

completes if and only if a colouring sequence on 67 completes.

To simulate an m token channel (a channel that has been assigned m tokens) m process

components are chained together. For each channel (P , Q) with m tokens, m process components

P i , P 2 , . . . , P m are interspersed between P and Q. The channel (P,Q) is replaced with these

channels: (P , P i) , (P i , P 2) , . . . , (P m _ i , P m) , (P r a , Q) . Each arc from P to Q is replaced by a chain

of arcs from P -> P i -> P 2 -> . . . ->• P m _ i -> Pm -> Q. The replacement is illustrated in

Figure E.13.

We claim that a colouring sequence, S, on 67 wi l l deadlock if and only if the corresponding

colouring sequence, £ ' , on 67' deadlocks. First, we construct the correspondence and argue its

E.7. Buffer Allocation in Channel Based Systems 166

P q P Pi P m q

Figure E.13: Simulating m tokens by m components.

correctness. Second, we argue that sequence E deadlocks on G if and only if the corresponding

sequence E ' deadlocks on G". Finally, we apply Lemma E.2.2 to prove our result.

Since the transformation is i terat ive-each m token channel is independent of the other

channels- i t is sufficient to derive the correspondence between the colouring sequence on G and

the graph G" where a single m token channel has been replaced. Let (P, Q) denote the channel

in G that is replaced in G ' .

Let (s ; , rt) e G , / = 1,2, . . . , denote the arcs from process component P to Q. The correspond

ing paths in G ' are

(s (,n , (,s i , ; , r2 , j ,S2 , / , . . . ,rm<i,smti,ri),

Pi Pi Pm

where each arc (rkti,skj) is within process component Pk and each arc (s*,j)riM-i,j) is between

process components Pk and Pk+i; the vertices st and n , / = 1,2, . . . are called the fringe vertices.

A colouring sequence E can be represented as a sequence of differences (or moves), 6it

between every two consecutive colourings Xi and Xi+i- The sequence A E = <5i<52... is a sequence

of colouring game moves Si = (v, colour) such that applying Si to colouring xt yields xt+i> the next

colouring in £ ; A s can be derived from E and, E can be derived from A E and G . The sequence

A s comprises two types of moves: those that colour fringe vertices, called fringe moves, and

those that do not, called normal moves.

Given a colouring sequence E on G , we transform it into the corresponding colouring sequence

E ' on G ' . The transformation replaces some fringe moves in sequence A s with sequences of

moves, resulting in the corresponding move sequence A s < . This sequence comprises normal

moves and added moves; added moves are a mixture of fringe moves and moves on the vertices

within the added components Pt. There are four types of fringe moves in A s : colour a send

E.7. Buffer Allocation in Channel Based Systems 167

vertex s; yellow ((s/,yel>), colour a send vertex s; green ((sj.grn)), colour a receive vertex n

yellow {(n, yel)), and colour a receive vertex r, green ((rh grn)). The transformation is performed

in the order that the moves occur in sequence A^.

• If 5i = (si,yel), then no action is taken.

• if Si = (si,grn), we replace it with the sequence

(ri ,i, yel) ,{sh grn), (n,/, grn), (si,/, yel),

suffixed by the sequences

(r^yel), (sj_i,j,grn), (r ^ , grn), (s^;, yel), j - 2 . . . k - \

where k is the smallest integer such that the move (sk,i-i:grn) has not yet been inserted

into the move sequence A E, that is, vertex sk,i-i has not yet been coloured green.

• \f Si = (n,yel), we remove it from the sequence; it is restored when we replace the move

(n,grn).
• if Si = (n,grn) we replace this move with the sequence

(rhyel), <sm,;,grn), (r,, grn),

suffixed with the sequences

(r9j ,hj, yel), (s9j -1 >ft., grn), (r9j ,h., grn), (s9.,/,.+!, yel), j = 0 ... fc - 1,

where = m - j, h3• = I + 1 + j , and A; is the smallest integer such that the move

(sm_jfe,j+i+jfc,yel) has not yet been inserted into the sequence, that is, vertex sm-k,i+i+k

has not yet been coloured yellow. Since the head of this sequence colours s T O j (green,

rmti+i could be coloured yellow, if s m _i , j+ i is yellow, then sm-i,i+i could be coloured green

followed byrmj+i and finally sm,i+i could be coloured yellow; this colouring cascades down

the added process components.

It is important to note that each of the replacement sequences is maximal, that is, no additional

valid colouring moves on the chain process components Pi, i = 1... m, may be suffixed to them.

The new sequence looks like this:

normal moves normal moves

A S- = 5i...5hl S'i---8'91 Shl+1...Sh25'gi+1...S'g2....

added moves added moves

Since G is a contraction of G', all normal vertices are coloured by A £/ in the same order as

in AE . Recall that normal vertices are not adjacent to the process component chain, and hence,

are not affected by the transformation. While normal vertices within process components P and

E.7. Buffer Allocation in Channel Based Systems 168

Q may depend on the order that the fringe vertices are coloured, the dependence is via process

arcs, not communication arcs. Consequently, the normal vertices only depend on the order that

the fringe vertices are coloured green. Fortunately, this order is preserved. By inspection,

the replacement sequences of moves are valid. Thus, the transformed sequence As< is val id.

Additionally, all green colouring moves on fringe vertices are preserved by the transformation; a

vertex is coloured green by A s if and only if the corresponding vertex is coloured green by As-.
The following property is key:

Property E.7.7 As deadlocks on G if and only if A^ deadlocks on G'.

Proof: By contradiction, suppose that As deadlocks on G while AE/ can be extended, that is,

another vertex colouring move may be suffixed to AE<. Let v be the vertex that can be coloured

by the extension. Vertex v may either be a normal vertex, a fringe vertex, or a vertex belonging

to a process chain. The latter is impossible because every replacement sequence of moves is

maximal.

If v is a normal vertex, then its predecessors are either a normal vertex or a fringe vertex that

has been coloured green. Since the transformation preserves the colourings of normal vertices

and the order in which vertices are coloured green, if AE< can be extended by colouring v, then

so can AE, which is a contradiction.

If v is a fringe vertex, there are four cases: either v is a send vertex s; being coloured yellow

or green, or v is a receive vertex r (being coloured yellow or green. The transformation does not

affect moves that colour send vertices yellow and such a colouring only depends on its process

component predecessor being green. Hence, if the colouring can be suffixed to As<, it can also be

suffixed to AE; resulting in a contradiction. If the extension colours the send vertex green, this

means that the original sequence A E can be extended by either adding the colourings (s;,grn) or

(rh yel)(s(, g rn) , depending on whether rt has been coloured yellow or not in the original sequence

As; thus, it is a contradiction.

Similarly, if v is a fringe receive vertex being coloured green, this is not possible, because the

transformation colours fringe receive vertices yellow, then green, by a single replacement se

quence. Finally, if v is a fringe receive vertex r (that can be coloured yellow, the original sequence

A s can be extended by the move (r (, g r n) , because in the original sequence the corresponding

send vertex st has already been coloured green. Thus, we have another contradiction.

In the other direction, if the original sequence can be extended, then transforming the

extension of the sequence A s yields an extension to the presumably deadlocked sequence AE/.
Thus, A s deadlocks on G if and only if As- deadlocks on G'. m

A corollary of Property E.7.7 is that the colouring sequence £ deadlocks if and only if the

colouring sequence £ ' deadlocks.

E.8. Summary 169

By Lemma E.2.2 a colouring sequence on G1 completes if and only if all colouring sequences on

G' complete. Hence, a colouring sequence on G completes if and only if al l colouring sequences

on G complete. •

Corollary E.7.8 A colouring sequence on G completes if and only if the token assignment is

sufficient.

E.7.3 The Nonblocking Buffer Allocation Problem
For the Nonblocking Buffer Allocation Problem, the algorithm derived in section E.3.3 suffices with

a small modification. Since the token pools are per channel, rather than per process component,

the computation must be performed on a per pool basis. Hence, there is an additional factor of n

in the runtime. Since each process may be using up to n channels, the runtime of the algorithm

becomes 0(\V\n2 + |V|nlog(|V|n)); the cost increases because the number of allocations to be

made becomes quadratic in n.

E.8 Summary

As message passing becomes increasingly popular, the problem of determining fc-safety plays an

increasingly important role. The relevance of this problem grows as more and more functionality

of message passing systems is offloaded to the network interface card, where limited buffer

space is a serious issue. Even if message passing is kept in main memory, buffer space can stil l be

limited due to the sometimes very large data sets used in many parallel and distributed programs.

Unfortunately, determining fc-safety is intractable.

We have shown that in the receive buffer model, determining the number of buffers needed

to assure safe execution of a program is NP -hard, and that even verifying whether a number

of assigned buffers is sufficient is coNP-complete. On the positive side, if we require that no

send blocks, we provide a polynomial time algorithm for computing the minimum number of

buffers. By allocating this number of buffers, safe execution is guaranteed. In addition, we have

implemented the NBAPr algorithm, and it is now part of the Millipede debugging system.

For systems with only send buffers, the Buffer Allocation Problem remains NP-complete. In

addition, we conjecture that the Buffer Sufficiency Problem can be solved in polynomial time

because the order of the sends in each process is fixed. The Nonblocking Buffer Allocation

problem for systems with only send buffers can be solved in polynomial t ime.

For systems with both send and receive buffers, the Buffer Allocation Problem as well as

the Buffer Sufficiency Problem remain intractable. More interestingly, the Nonblocking Buffer

Allocation problem has become intractable.

For systems with unidirectional channel buffers, both the Buffer Sufficiency Problem as well

E.8. Summary 170

as the Nonblocking Buffer Allocation Problem have polynomial time algorithms. However, the

Buffer Allocation Problem stil l remains an NP-comple te problem. The results (conjectures) are

summarized in Table E.1.

Buffer Placement
Problem Receive Send Send 6t Receive Channel
BAP NP-hard NP-hard NP-hard NP-complete
BSP coNP-complete (P) coNP-complete P
NBAP P P NP-hard P

Table E.1: Results for the three problems under the four different buffer placement

schemes.

