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Abstract 

On-chip speeds and integration densities have grown exponentially over the past 
several decades creating a corresponding demand for high-bandwidth, chip-to-chip 
communication. Compared with integrated circuit technology, the technologies for 
chip-packaging, printed circuit boards, and connectors improve at a much slower 
rate. This results in a big and growing gap between the I/O bandwidth needed 
and the I/O bandwidth available. Off-chip bandwidth has become a bottleneck in 
developing high-speed systems. 

At high data rates, high-frequency losses, reflections and crosstalk severely de­
grade signal integrity and limit the performance of off-chip links. To combat these 
issues, designers increasingly rely on on-chip signal processing methods. This 
thesis explores the effectiveness of equalizing filters for high-bandwidth, point-
to-point, off-chip buses. In this work, we combine modelling, optimization and 
prototyping to demonstrate that linear programming provides practical, effective 
and flexible basis for designing equalization filters that greatly increase the band­
width of high-speed buses on printed circuit boards. We first show that the com­
mon eye-mask measure of signal integrity is a worst-case performance measure 
that corresponds to the metric. We show how eye masks can be parameter­
ized to provide a flexible framework for specifying signal integrity trade-offs. We 
use these parameterized masks to formulate the JQO optimal equalization filter syn­
thesis problem, and show that it can be extended to the unified optimization of 
pre-equalization, near-end crosstalk cancellation and decision-feedback equaliza­
tion filters. Our methods work with detailed, realistic channel models and allow 
the designer to specify practical constraints such as the maximum filter output and' 
bounds on filter coefficients. 

Our approach formulates equalization filter synthesis as a linear programming 
problem. While this makes our approach very flexible, the linear programs that 
we create can be quite large. To make our methods practical, we implemented a 
novel linear system solver for use in Mehrotra's interior point linear programming 
algorithm. Our solver exploits the specific sparsity properties of our optimization 
problems. We analyze the time and memory requirements of this new implemen­
tation as well as its numerical stability. 
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We evaluated the effectiveness of our algorithms by synthesizing filters for var­
ious high-speed signalling scenarios. We used simulation to validate these filters 
and demonstrate their advantages over existing synthesis methods. To address the 
practical issues that arise in real systems, we implemented a proof-of-concept test 
bed that enables preliminary evaluations of our filters with physical, printed circuit 
board buses. Through this combination of modelling, algorithm design, simula­
tion, and prototyping, we have demonstrate the advantages and practicality of our 
approach to equalizing filter design. 
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Introduction 

Advances in digital integrated circuit (IC) fabrication technology have resulted in 
an exponential growth for the speed and integration levels of ICs with a corre­
sponding demand for high-bandwidth for off-chip buses.1 Rent's rule [40] predicts, 
that off-chip bandwidth requirements grow as 

B oc nPf (1.1) 

where B is the bandwidth required by a component, n is the number of devices 
on the component, / is the operating frequency, and p is a "constant" depend­
ing on the type of component, typically in the range of 0.4 to 0.8. Although the 
number of I/Os has increased from 16 ~ 24 pins in the 1970s, to several hundred 
pins per IC now [64], this growth is being rapidly out-paced by the bandwidth 
demands. To continue to improve overall system performance, the per-pin inter­
connection bandwidth must scale with the speed and integration level of ICs. The 
ITRS roadmap projects a need for per-pin I/O bit rates that track clock frequencies, 
reaching 9.6 Gbits/sec by year 2009 and nearly 25 Gbits/sec by 2018 [3, p. 23-25]. 
However, compared with on-chip technology, the technologies for chip-packaging, 
printed circuit boards (PCB), and connectors improve at a much slower rate. This 
results in a large and growing gap between the I/O bandwidth needed and the I/O 
bandwidth available. Off-chip bandwidth has become a bottleneck in developing 
high-speed systems. Such bandwidth is especially critical for high-performance 
memory systems [16], inter-processor communication in shared memory multipro­
cessors (SMP) [7, 12, 24] and connections between line cards on backplanes for 
high-speed network routers [43, 69]. To meet this demand, designers are relying 
increasingly on equalizing filters and other on-chip signal processing techniques to 
maximize the utilization of off-chip interconnect. 

Off-chip interconnects are nowhere near ideal links and present great chal­
lenges to achieving multi-Gb/s signalling rates. For example, the inter-board chan­
nel shown in Figure 1.1 includes on-chip parasitics, package parasitics, backplane 
connectors, PCB traces and vias. At high data-rates, each of these contributes to 

' A p p e n d i x A descr ibes the t e r m i n o l o g y that is used i n this thesis to d e s c r i b e h i g h - s p e e d buses. 

A c r o n y m s are d e f i n e d w i t h their first use, a n d a g lossary o f a c r o n m y m s is p r o v i d e d i n A p p e n d i x B . 
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Figure 1.1: A high-speed system backplane channel [39]. 

severe signal integrity degradation such as dispersive and dielectric losses, reflec­
tions and crosstalk. In Section 2.2, we will discuss these channel impairments in 
greater detail. 

PCB traces, connectors and packages have dispersive losses due to their re­
sistances which become more severe at high frequency due to the skin effect. At 
frequencies greater than 1GHz, dielectric losses dominate. Although low-loss di­
electric materials exist, FR-4 (epoxy-fiberglass) is still commonly used due to its 
low cost and the maturity of the associated manufacturing processes. Furthermore, 
reflections occur due to impedance discontinuities along the link, i.e. at the inter­
faces between the connector and the PCB, between the PCB and the package, etc. 
Both dispersive losses and reflections result in spreading the pulse's energy into 
the time slots for adjacent bits; a phenomenon called intersymbol interference (1ST.) 
which severely limits the channel bandwidth. Moreover, high bit rates exacerbate 
the problems of electro-magnetic coupling (crosstalk) between channels in high­
speed buses. Crosstalk occurs in connectors, vias, packages and PCB traces. Short 
signal rise and fall times exacerbate coupling effects, making crosstalk a primary 
concern for present and future high-speed, high-density interconnect design. 

As integration density and data rates increase, dispersive losses, reflections 
and crosstalk can severely degrade signal integrity. Fortunately, these effects are 
linear processes. Accordingly, simple, on-chip signal processing techniques can 
compensate for them. This is the basic idea behind equalization as shown in Fig­
ure 1.2. An ideal transmission channel would in all cases deliver a delayed ver­
sion of the input signal Vin{t) from the driver without distortion to the receiver, 
i.e. vout(t) — Vin(t — td), where td is the propagation delay across the channel. 
Equivalently, an ideal channel would have a frequency response of e~^tdI, where 
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Figure 1.2: Block diagram of an equalized transmission channel (from [18, p. 
364]). 

j = and / is the identity matrix whose size is the number of input signals. 
If an equalizing filter has a transfer function that equals the inverse of the transfer 
function of the channel, then the concatenation of the equalizer and the channel 
will have a flat frequency and phase response. However, practical constraints such 
as power and limited switching time motivate studying optimal equalizing filter 
design under practical constraints. 

This thesis explores the effectiveness of equalizing filters for high-bandwidth, 
point-to-point, off-chip buses. As shown in Figure 1.3, this research encompasses 
formulating optimal equalization filter synthesis as a linear programming problem, 
developing efficient numerical techniques for solving these linear programs, and 
implementing a proof-of-concept test bed to demonstrate the filters in a real, phys­
ical setting. We claim that 

Thesis statement: Linear programming provides a practical, effective 
and flexible framework for designing equalization filters that greatly 
increase the bandwidth of high-speed, off-chip buses. 

The following are the major contributions supporting this thesis: 

1. We present an algorithm for optimal equalization filter synthesis for buses 
with realistic models where each wire has its own model and boundary ef­
fects are modelled. Previously (in [54]) we demonstrated the advantages of 
multi-input, multi-output pre-equalization filters for reducing far-end crosstalk 
assuming a simplified bus model where all wires are identical (i.e. cylindri­
cal), coupling depended only on wire separation and edge effects are ig­
nored. This work extends this approach to more realistic models where each 
wire has its own model and boundary effects are modelled. Moreover, the 
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Figure 1.3: Research roadmap. 

present approach addresses a comprehensive set of practical issues including 
the incorporation of differential and bidirectional channels, and modelling of 
realistic packaging and connector parasitics. Signal integrity issues such as 
dispersive and resistive losses, reflections, near-end crosstalk (NEXT) and 
far-end crosstalk (FEXT) are modelled. 

2. We show that the common eye-mask measure of signal integrity is a worst-
case performance measure that corresponds to the metric. We introduce 
parameterized eye masks by specifying the vertices of the mask. Parameteri­
zation allows direct optimization of eye masks. The filter design problem for 
an optimal eye mask is an optimization problem and can be formulated 
as a linear program. 

3. We show that the joint optimization of pre-equalization (PE), near-end crosstalk 
cancellation (NE) and decision-feedback equalization (DFE) filters can be 
formulated as a linear programming problem. 

4. The size of the resulting linear programs presents a great challenge to the 
practicality of our approach. To make the approach practical, we imple­
mented a version of Mehrotra's interior point algorithm that exploits the 
problem-specific sparsity structure of our filter synthesis problems. 
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5. The unified optimization framework for equalization filter synthesis enables 
rapid evaluation of design trade-offs and early identification of bandwidth 
bottlenecks. We demonstrate this approach by evaluating different signalling 
methods such as bidirectional and unidirectional signalling, 2-level signalling 
and multi-level signalling for on-board links as well as backplane links con­
necting two daughter cards. Equalization filters designed using our approach 
significantly improve off-chip bandwidth in all cases. 

6. We implemented a low-speed "scale-model" to provide a physical proof-of-
concept demonstration of the novel filters designed using our approach. The 
low-speed test bed uses commodity graphics cards to provide high-speed 
RAMDACs and a computer interface for downloading filter coefficients and 
test sequences. It avoids massive design and expensive test equipment and 
enables quick turn-around time. Measurements from the test bed validate our 
synthesis procedures and show that we can get results that are comparable 
to those predicted by simulation in the presence of many real-world non-
idealities such as timing jitter and power noise. 

7. We employed an in situ approach to channel measurement. This provides a 
practical solution to the channel estimation problem and demonstrates that 
our results are quite robust even in the presence of channel estimation error. 

The rest of this thesis is organized as follows. Chapter 2 provides an overview 
of the state-of-the-art in high-speed links, the equalization technique and its various 
applications. Chapter 3 introduces parameterized eye masks and extends the 
filter design methodology developed previously to realistic link models. Chapter 4 
describes a unified optimization framework for the three most common types of 
equalizing filters: pre-equalization, near-end crosstalk cancellation and decision-
feedback equalization. The resulting linear programs are huge. Chapter 5 presents 
an efficient linear programming solver that exploits the sparsity and structure of the 
filter synthesis problems. Chapter 6 describes a low-speed test bed which provides 
a physical proof-of-concept demonstration of the novel filters designed using our 
approach. Chapter 7 concludes the thesis and describes several possibilities for 
future work. 
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Chapter 2 

Related Work 

Given the critical need for off-chip bandwidth, high-speed links have been an area 
of intense research in both industry and academia. Serial links have achieved the 
highest per-pin bandwidths by using aggressive design techniques including equal­
ization, embedded clocks, and multi-level signaling. While bandwidth can be in­
creased by using multiple serial links in parallel, this approach is limited by the 
latency of serialization and deserialization, power requirements of such links, and 
the difficulty of implementing a chip with a large number of independent phase-
locked loops (PLLs). Thus, buses are used to achieve even higher total bandwidths. 
Section 2.1 examines recent work in both serial links and buses. 

At high bandwidths, signal integrity issues become critical. In Section 2.2 we 
summarize the dominant signal integrity issues focusing on crosstalk, resistive and 
dielectric losses, and reflections. These can be addressed by equalization, which 
we examine in Section 2.3. We note that equalization has been used for decades 
in telephone subscriber loop and other long-distance communication settings. The 
use of equalization in high-speed, digital systems is more recent, but is now be­
coming pervasive. While an ideal equalizer would allow unlimited bandwidth, real 
designs are constrained by practical constraints of power and sample rate. Thus, 
we need to design the best possible equalizer given a set of practical constraints. 
In Section 2.4 we describe the two leading approaches to equalizer design that are 
distinguished by their optimization criteria. Least-squares based methods provide 
I2 optimality, while linear programming based techniques allow optimization with 
an loo criterion. We examine the connections between these criteria and digital 
signal integrity in the same section. 

2.1 High-Speed Links: State-of-the-Art 

Interconnections are moving from traditional multi-drop buses (shared buses) to 
point-to-point links. Besides the fact that shared bus architectures suffer from 
contention over the shared bus, in the multi-drop bus environment, impedance 
mismatches exist at every drop line of the bus, which limits its practical switch­
ing frequencies. For example, the conventional peripheral component interface 
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(PCI) [49] uses reflected-wave switching. Due to impedance mismatches, the ideal 
2nd-reflected wave switching is never achieved in practice and multiple round-trip 
times are required for the waves to settle. Other electrical issues include capac-
itive loading and stub effects. These limit the performance of the PCI bus when 
scaling to higher operating frequencies. The latest revision of PCI, PCI-X operates 
at 133MHz with more complicated designs and higher cost than its predecessors. 
Compared with multi-drop buses, point-to-point links provide tight control of elec­
trical parameters of the bus and hence higher operating frequencies. For example, 
3D graphics and animations demand high bandwidth between the graphics card and 
main memory. To relieve this bottleneck, the accelerated graphics port (AGP) [35] 
was developed and dedicated to moving large blocks of 3D texture data between 
the PC graphics controller and system memory. The most recent version, AGP8X, 
operates at 533MHz and offers bandwidths of up to 2.12GB/s. The newly emerged 
PCI-express technology which might gradually replace the PCI, PCI-X and AGP 
buses over the next decade, is based on point-to-point communication with a switch 
fabric [50]. Moreover, compared with multi-drop buses, point-to-point links can 
more easily employ techniques such as equalization to improve bandwidth further. 
This research focuses on point-to-point links. Other technologies, such as crosstalk 
transfer logic (XTL) interface [47], have been proposed to improve multi-drop bus 
performance by using directional couplers to avoid problems of multiple reflec­
tions caused by impedance mismatches. While we do not consider such links in 
this thesis, our framework extends readily to any link with a linear model. Thus, 
our method could be used to synthesize filters for channels with directional cou­
plers such as XTL. 

Point-to-point links can be based on either serial links or parallel buses. Rep­
resentatives of recent parallel interconnects are parallel RapidIO interconnect [53] 
for both intra-board and backplane links and the Redwood parallel interface [66] 
from Rambus for intra-board links etc. The RapidIO parallel interconnect sup­
ports 8/16-bit LVDS interface and operates at up to 1GHz. The Rambus Redwood 
parallel bus interface offers data rates of 400MGb/s to 6.4Gb/s. The PCI-express 
protocol [50] is serial link based and provides up to 32 lanes of serial links. Each 
lane contains two differential pairs to'provide simultaneous bidirectional commu­
nication. First-generation PCI-express operates at a signalling rate of 2.5Gb/s per 
lane. PCI-SIG projects future signalling rates of 5 and lOGb/s [50]. 

A point-to-point parallel bus provides greater bandwidth by increasing either 
the operating clock frequency or the width of the.bus. The need for more pins limits 
the width of the bus. Moreover, parallel buses usually operate source-synchronously. 
An external clock is sent along with the data signals. A small skew within the bus 
could result in wrong data on clock edges. Consequently, routing becomes very 
challenging since trace lengths have to precisely match the length of the clock 
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trace. This requires more PCB area and can require more PCB layers. Clock skew 
among different channels can be mitigated by equalization techniques. Eventually 
clock skew and channel jitter limit the aggregated bandwidth of a parallel bus. 

Compared with point-to-point parallel buses, point-to-point serial links use 
fewer pins and avoid the trace-matching problem by embedding clock into data. 
This reduces component cost as well as board layout cost since fewer board layers 
can be used. However, transceivers for serial links are more complicated than those 
for parallel buses and use large amounts of die area and power. Moreover, com­
pared with parallel buses which incur minimal latency, serial links have additional 
latency due to serialization/deserialization, encoding/decoding and clock recovery 
from the data stream. This makes serial links unsuitable for low-latency applica­
tions such as the interconnect between CPU and memory. Parallel interfaces, such 
as RapidIO and Rambus Redwood, are more suitable for such applications where 
both latency and bandwidth must be considered. In applications where a single se­
rial link cannot provide sufficient bandwidth, multiple, parallel lanes of serial links 
are needed. For example, the PCI-express protocol allows up to 32 lanes of serial 
links. For these reasons, parallel links are of interest, and in this research, we study 
equalization techniques that improve bandwidth for such off-chip, parallel buses. 

2.2 Transmission Channel Limitations 

As data rates move into the Multi-Gb/s/channel range, signal integrity issues such 
as crosstalk, reflections, intersymbol interference (ISI), ground-bounce, timing jit­
ter, and substrate noise become critical and limit the channel bandwidth. The first 
three of these, crosstalk, reflections, and ISI, are linear processes and can be mit­
igated by on-chip equalization filters [17, 21, 62, 76].. For the rest of this section, 
we discuss the channel impairments, in particular, ISI, reflections and crosstalk. 
In Section 2.3, we then describe various equalization techniques that are currently 
used to mitigate these effects. 

• Resistive loss: 
Conductors have resistance, determined by the material (typically copper) 
and the cross-sectional area of the conductor. At high frequencies, currents 
flow primarily along the surface of the conductor, resulting in a frequency-
dependent increase in the resistance [18, pp. 103-105]. This is called the 
skin effect. At high frequencies, the resistance increases with the square root 
of the frequency. At low frequencies, current flows nearly uniformly in the 
entire cross-sectional area of the conductor; hence the conductor has a con­
stant resistance at low frequencies. The onset frequency of skin effect, fs, is 
inversely proportional to the area of the cross-section and the conductivity of 
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Figure 2.1: Loss as a function of frequency (from [48]). 

the material. The frequency-dependent attenuation due to skin effect results 
in dispersion of travelling waves (see Figure 2.2C) which causes data bits to 
overlap with each other, a phenomenon called intersymbol interference. 

• Dielectric loss: 
Dielectric materials absorb electro-magnetic energy and turn it into heat. 
The fraction of electro-magnetic power converted into heat by a dielectric 
material is called the dielectric loss. Similar to the skin effect, this results in 
dispersion of travelling waves and hence leads to intersymbol interference. 
The dielectric loss scales proportionally to frequency and dominates resistive 
loss at high frequencies. Figure 2.1 shows the total loss (resistive loss and 
dielectric loss) at different frequencies for 8 mil wide and lm long 50 ohm 
stripline with FR-4 dielectric [48]. At frequencies greater than GHz, the 
dielectric loss becomes dominant. At 1GHz, these losses attenuate the signal 
to only 40% of its strength at low frequencies. Without a special signalling 
scheme or low-loss materials, channel bandwidth is limited by resistive and 
dielectric losses. Although better dielectric materials with lower dielectric 
loss are available, FR-4 is still generally used due to its low production costs 
and highly developed manufacturing infrastructure. Moreover, FR-4 is used 
in most legacy backplanes where losses are a major issue at high data rates. 

• Reflections: 
Most off-chip links are electrically long at high data rates and must be mod­
elled as transmission lines. For example, FR-4 has a dielectric constant of 
about 4.5 and propagation delay about 71 ps/cm. The electrical length,Ae, of 
a 50 ps rising edge is 0.7 cm. As a rule of thumb, distributed models should 
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be used when the wire length is greater than or equal to A e /6 . Thus the criti­
cal dimension separating lumped from distributed systems for PCBs is about 
1mm which is very short compared with typical chip-to-chip links. 

When a signal travelling down a transmission line encounters a boundary 
with an impedance discontinuity, part of the signal propagates through the 
boundary and part of it is reflected back. The amount of reflection is directly 
proportional to the severity of the impedance discontinuity: 

kr = Z„2~ZJ (2.1) 

where kr is the reflection coefficient and Z\ and Zi are the characteristic 
impedance of the right and left side of the boundary respectively. Hence, the 
greater the impedance mismatch, the bigger the reflection. In the extreme 
cases where the Z2 is zero (infinite), all energy reflects back and kr is -
1 (+1). With impedance discontinuities along the link, it can take several 
round trips for the signal to settle and thus reflections can interfere with 
values sent later on. This results in severe intersymbol interference and also 
exacerbates crosstalk. Thus, for high-speed links, impedances are carefully 
controlled. However, for cost-effective designs, manufacturing tolerances 
limit the specification of the impedances of traces, connectors and package 
traces to roughly 10% of its nominal value. Moreover, via stubs of through 
vias for thick boards can cause large impedance mismatches and hence large 
reflections. The use of surface mount connectors, back-drilling, or blind vias 
can greatly reduce the via stub effect [39]. 

Crosstalk: 
A signal on a link induces signals on nearby links due to electro-magnetic 
coupling between the links. Crosstalk between transmission lines is both in­
ductive and capacitive. A signal propagating down a transmission line gets 
coupled to adjacent lines and results in waves propagating in both directions 
on adjacent lines. The forward-travelling wave induced by inductive cou­
pling is negative while the forward-travelling wave induced by capacitive 
coupling is positive. In an ideal homogeneous environment, the coupling ca­
pacitance and inductance are duals and the forward-travelling waves induced 
cancel each other [18, pp. 272-278]. Moreover, with the high-frequency at­
tenuation of the channel, far-end crosstalk is generally less troublesome than 
near-end crosstalk. Figure 2.2A shows a coupled microstrip transmission 
line. Figure 2.2B shows the configuration of one aggressor line and one vic­
tim line with proper terminations. Voltage waveforms at the near-end and 
far-end of both lines obtained by HSPICE are shown in Figure 2.2C. Since 
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the microstrip lines are inhomogeneous because of the interface between air 
and PCB dielectric, the forwarding capacitive and inductive coupling waves 
do not cancel each other. Thus, there is significant far-end crosstalk. 

Crosstalk is also produced by connectors, vias and packages and is mostly in­
ductive. The mutual inductance often approaches the level of self-inductance. 
High-speed packages and connectors control the level of crosstalk by provid­
ing more ground pins and carefully arranging the signal return path as close 
to the signal path as possible. 

To maximize packing density, designers attempt to place signal lines as close 
to each other as possible. The small inter-line spacing and high data rates ex­
acerbate the problem of crosstalk. In many situations, crosstalk can be the 
dominant concern for signal integrity. Traditionally, crosstalk is reduced by 
carefully controlling line geometry, shielding with grounded conductors, en­
suring close signal return paths, arranging circuits to decrease the coupled 
line length, etc. Although these methods reduce crosstalk, they do not elim­
inate it. High performance PCB designs often require many revisions to 
produce a working design. 

• Noise: 
Noise arises in high-speed buses from many sources. These include thermal 
noise, power supply noise, and crosstalk from signals outside the bus, and 
ground bounce. For practical designs, the energy per bit is much greater than 
the thermal noise floor. For example, a channel operating at 100 Gb/sec/wire 
(much faster than the current state-of-the-art) with a voltage swing of 0.1 
volts (somewhat less than the current state-of-the-art) with 100f2 nominal 
bus impedance uses 10~ 1 5 Joules/bit. At a temperature of 300K (i.e. 27 
Celsius), kT is 4.1 * 1 0 - 2 1 joules. Thus, the gap between the thermal noise 
floor and practical high-speed buses remains quite large. Power supply noise, 
crosstalk, and ground bounce are deterministic as much as they are side-
effects of the operation of the system. However, they are very complicated 
to model, and designers often treat them as random.noise source rather than 
attempting to model the system at a very fine level of detail. 

In this thesis, we will view channels as deterministic, and the optimal fil­
ter synthesis problem is to maximize the voltage margin at the receiver's 
input within this deterministic framework. In practice, this is a reasonable 
approach to providing robustness in the presence of the other sources of in­
terference described above. 
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Figure 2.2: A. A pair of coupled microstrip transmission lines. The lines are drawn 
25cm long, 8mil wide with 0.5Oz copper and separated by 6mil. The dielectric 
thickness of FR-4 is 4mil. Traces have characteristic impedance of approximately 
5017. B. Test configuration of one aggressor and one victim with proper termina­
tions. C. Voltage waveforms at near-end and far-end of both lines. 
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2.3 Equalization Techniques 

As integration density and data rates increase, dispersive losses, crosstalk and re­
flections severely degrade signal integrity and limit off-chip bandwidth. However, 
these effects are linear processes and on-chip signal processing technology can 
compensate for them. In particular, equalization techniques have been widely used 
to actively compensate for imperfect channels for many applications. Theoreti­
cally, the maximum amount of information that can be transmitted over a channel 
is limited by channel's bandwidth as well as the signal to noise ratio [58]. The 
theoretical maximum information transfer rate of a channel is called the Shannon 

Limit. Recently, advanced coding techniques such as Turbo codes [10] come close 
to reaching the theoretical Shannon limit, but at a cost of high computational com­
plexity for coding and decoding. These methods have been very successful in many 
applications such as wireless network interfaces. 

As described in the previous section, high-speed buses operate under condi­
tions where the energy per transmitted bit is far greater than the Shannon limit. 
Practical considerations of power and latency motivate designing simple filters that 
address the most significant signal integrity issues of ISI, crosstalk, and reflections. 
Thus, designers use FIR filters and thresholding receivers for their simplicity. Like­
wise, deterministic, linear channel models can be used to accurately account for 
ISI, crosstalk, and reflections. Filters designed with this approach can dramatically 
increase channel bandwidth and improve information rate with acceptable costs in 
terms of power, latency, and die area. 

For example, equalization has been used effectively for crosstalk cancellation 
in acoustic applications such as telephone line subscriber systems [15, 30, 31]. In 
the past decade, designers started using equalization to compensate for the disper­
sive losses of high-speed off-chip serial links [17, 21, 62] as well as crosstalk can­
cellation for nearest neighbors for high-speed buses [75]. The rest of this section 
describes various equalization techniques such as pre-equalization, receive equal­
ization, near-end crosstalk cancellation and decision feedback equalization. 

• Pre-equalization 
Channel equalization can be performed by the transmitter, as shown in Fig­
ure 1.2, preceding the actual channel driver. Transmitters that utilize equal­
izing filters are called pre-distorting transmitters. Pre-distorting equalizers 
are commonly realized as finite impulse response (FIR) digital filters. While 
infinite impulse response (IIR) [36, p. 249] filters can be more flexible than 
FIR filters, they are generally not used for high data rate transmission be­
cause of the difficulty of calculating the IIR recurrence (i.e. feedback) at 
very high rates. The inputs to the equalizing FIR filters are the present and 
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past transmitted symbols. The output of the FIR filter is a weighted sum 
of these symbols. The length of the filter depends on the number of sym­
bols that affect the response of the channel to the current symbol. The filter 
coefficients depend on the channel characteristics. 

Pre-distorting transmitters were first used by Dally and Poulton [17] in 
a serial channel over copper wires at 4Gb/s to reduce intersymbol inter­
ference caused by frequency-dependent attenuation of the channel. Pre-
equalizers boost the high-frequency components of the signal relative to the 
low-frequency components. It is often called pre-emphasis or de-emphasis. 
Since Dally and Poulton only considered the loss of the channel, to distin­
guish it from pre-equalizers that also deal with crosstalk cancellation, we call 
it single-line pre-emphasis (de-emphasis). Later, other groups [21, 62], e.g. 
Horowitz's group, used the same technique to design high-speed serial link 
transceivers. Rambus [75] reported using pre-equalizers for far-end crosstalk 
cancellation for nearest neighbors. In their design, each pin is responsible 
for cancelling the crosstalk it generates onto its neighbors by its transitions. 
However, they did not provide detailed information on the configurations of 
the filters and how they derived the filter coefficients. 

FIR equalizing filters built into transmitters are easy to implement at very 
high speed because of the availability of transmitted symbols at the trans­
mitter end. Furthermore, because each transmitted symbol is either 1 or 
0, multiplication with the filter coefficients is easy. For example, in [17], 
a five-tap FIR filter is implemented with digital adders, and an interleaved 
digital-to-analog converter (DAC) is used to generate pre-distorted pulses. 
However, because transmitters generally do not have information about the 
received signals, FIR filter coefficients are obtained either by characteriza­
tion of channel properties in advance [17,21], or by adaptive implementation 
with feedback information provided by the receiver [27, 62]. 

• Receive Equalization 
An equalizing filter can also be incorporated into the receiver; this is called 
receive equalization. Receive equalization can be realized either with ana­
log filters preceding the analog-to-digital converter (ADC) or with digital 
filters following the ADC. The latter one is the usual technique because 
digital filters are easy to implement and adapt. Compared with transmit 
equalizers, a receive equalizer can be adjusted using the channel informa­
tion obtained at the receiver and does not require transferring information 
back to the transmitter end. However, receive equalization amplifies high 
frequency noise [32]. Furthermore, high-speed ADC technology typically 
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lags behind high speed DAC technology in terms of maximum operating fre­
quency. Therefore, pre-distorting transmitters are commonly used in high­
speed transmission systems that run at multi-GHz speeds. Several years ago, 
Horowitz's group realized an 8-Gsamples/s ADC in 0.25 pm CMOS, which 
makes high-speed links with equalization at the receiver end possible with 
digital filters [71]. More recently, a high-speed I/O group at Intel reported an 
8-Gb/s source-synchronous parallel bus with adaptive receive equalization. 
The filters are implemented as analog 4-tap discrete-time FIR filter and are 
8-way interleaved to allow sufficient time for samples to be acquired [37]. 

• Decision-Feedback Equalization 
Compared with linear equalizers, decision-feedback equalizers (DFE) can 
correct for many of the same effects of crosstalk and intersymbol interfer­
ence without incurring the linear equalizer's downsides of increased power 
consumption and noise amplification. DFE works especially well for chan­
nels with long impulse responses, i.e. a long channel with impedance dis­
continuities that result in multiple reflections. The basic idea of DFE is to 
utilize symbols determined from previous decisions to cancel intersymbol 
interference and also crosstalk if decisions on neighboring wires are also 
considered [5]. As shown in Figure 2.3, DFE is usually used in conjunction 
with a linear equalizer. The linear equalizer which can be a pre-equalizer or 
a receive equalizer, is called a feed-forward equalizer in this case because it 
removes intersymbol interference from 'future' symbols, i.e. symbols after 
the decision instant. 

The latency of the feedback loop limits the application of standard DFE at 
high data rates. This problem can be mitigated by unrolling the feedback 
loop and making two decisions at each cycle [60, 63]. Two slicers are used 
at the receiver, one assumes the previous bit is 1 and the other assumes it is 0. 
Once the decision for the previous bit is available, the correct answer is se­
lected. This technique is also called partial response DFE. This approach can 
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be extended to accommodate even greater DFE latencies, but the exponential 
growth in the number of slicers limits this approach in practical designs. 

DFE suffers from error propagation since it is based on previous decisions. 
An erroneous decision could result in burst of errors. The problem of er­
ror propagation can be kept in control by keeping the error probability low 
with other system choices such as pre-equalization and receive equalization, 
keeping the feedback filter short and constraining the magnitude of contri­
butions from the feedback filter small. 

• Near-end Crosstalk Cancellation 
In cases where transmitters and receivers are co-localized together or bidi­
rectional links, near-end crosstalk noise is coupled to the attenuated signal 
received and can severely degrade signal integrity. Moreover, pre-equalizers 
exacerbate near-end crosstalk noise since they boost the high-frequency com­
ponents of the signal relative to the low-frequency components in order to 
compensate for the high-frequency losses of the links. Active cancellation 
techniques have been used to alleviate near-end crosstalk noise for high­
speed links [33]. Near-end equalizers are used effectively in local telephone 
subscriber loops. Local telephone subscriber loops use bundles of twisted 
copper wires and suffer severe crosstalk interference from neighboring chan­
nels due to the close physical proximity [30, 31]. The near-end equalizer 
approximates the near-end crosstalk noise by mimicking the near-end re­
sponse. Then the approximated near-end crosstalk noise is subtracted from 
the corrupted received signal. 

Equalization can also be used to mitigate the effects of transmit jitter [8]. In [8], 
Balamurugan and Shanbhag first showed that ISI in typical I/O channels tend to 
amplify high-frequency transmit clock jitter. Basically, if a transmitted edge is 
sent slightly later than its nominal time, the previously transmitted value will have 
had more time to change the bias closer to its asymptotic value. This increases 
the voltage swing required for the receiver to detect the current edge, amplifying 
the jitter. Likewise, if an edge is sent early, dispersion causes the transition to 
propagate faster, again amplifying the jitter. They then proposed a jitter equalizer 
attempting to change the jitter transfer function to a more benign response. 

Practical designs for high-speed links often combine the equalization tech­
niques described above to take advantage of the pros and cons of each. For exam­
ple, pre-equalizers suffer from increased power consumption while receive equal­
izers amplify high frequency noise. DFEs, on the other hand, are limited by error-
propagation and the latency of the feedback loop. Many practical serial link de­
signs [63, 74] combine pre-equalizers and DFEs to combat ISI. Hur et. al. used a 
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combination of a receive equalizer and a NEXT noise canceller with a four-level 
pulse amplitude modulation signaling scheme to achieve 20-Gb/s transmission over 
backplane channels [33]. Moreover, these filters interact with each other. For ex­
ample, pre-equalizers tend to boost high-frequency components of the signal rela­
tive to its low-frequency components to compensate for the high-frequency losses 
of the channel. This exacerbates near-end crosstalk noise. To achieve good per­
formance at Multi-GHz speeds, it is crucial for the designers to jointly synthesize 
these equalizing filters. 

Equalization techniques can also be classified in terms of methods for setting 
the equalization filter coefficients. Most recently, Zerbe et. al. from Rambus com­
pared adaptive and non-adaptive equalization methods in high-performance back­
planes with manufacturing variations and environmental variations such as tem­
perature and humidity [73]. They compared three methods. The first method is 
"lookup table and forget" where channels are characterized in a lab and a best set 
of equalization filter coefficients are established, saved and used for all backplane 
links. The second method is "adapt once and forget". The backplane channels 
are characterized in situ on power-up and a set of equalization filter coefficients is 
derived for the corresponding backplane channel. This method takes manufactur­
ing variations and component aging into account. The third method is "continuous 
adaptation" which also takes environmental variations into account. Their study 
shows that the latter two methods significantly outperform the first method at high 
data rates. The latter two are comparable with continuous adaptation performing 
slightly better. The equalization filter synthesis method proposed in this study char­
acterizes the channel in situ and only optimizes the filter coefficients once. Fully 
adaptive schemes based on this approach should be possible but beyond the scope 
of the current research. 

2.4 Equalizing Filter Design Methodologies 

If an equalizing filter had a transfer function that was exactly the inverse of the 
transfer function of the channel, the concatenation of the equalizer and the channel 
would have a flat frequency and phase response and allow arbitrarily high band­
width. However, practical limitations such as power and switching time motivate 
studying approximate filters. A straightforward approach is to first calculate the 
desired frequency response of the equalizing filter from the channel frequency re­
sponse. Then, standard filter design procedures can be used to design equalizing 
filters that approximate the desired frequency response. For example, the following 
two steps can be used to obtain a more manageable impulse response function: 
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• Windowing: h{n) = hd(n)W(n) where hd{n) is the desired impulse re­
sponse and W(n) is the windowing function. This step is needed to obtain a 
filter with a finite number of taps. 

• Delaying: h{n) is shifted to the right until the samples are all indexed by 
non-negative integers to obtain a causal filter. 

In practice, large windows must be used to obtain effective equalizing filters. Ac­
cordingly, many researchers have turned to using optimization methods to obtain 
good, approximate equalizing filters. Currently, there are two main classes of 
equalizing filter design methods for high speed links. One seeks to minimize the I2 
norm of the difference between the received signal and the transmitted signal. The 
other minimizes the norm. For the rest of this section, we briefly describe these 
approaches. 

• I2 and Minimum Mean Square Error 
With an ideal transmission channel, the received signal is a delayed ver­
sion of the transmitted signal. One can seek to minimize the I2 norm of the 
difference between the received signal and a delayed version of the trans­
mitted signal. This criterion is commonly used to design equalizers for tele­
phone subscriber systems [15, 30, 31], wireless communication [9, Chapter 
8] as well as optimal pre-emphasis equalizing filters for high-speed serial 
links [17, 63, 71]. The following briefly describes a few approaches based 
on I2 optimality. 

Consider a single channel with receive equalization and additive white Gaus­
sian noise as shown in Figure 2.4. As noted in Section 2.2, designers of­
ten assume a Gaussian noise model due to the impracticalities of accurately 
modelling the behavior of complex digital systems and the resulting power 
supply noise, ground bounce, crosstalk, etc. The received signal is given by: 

Out = f*h*\n + f*w (2.2) 

where * denotes convolution, h is the impulse response of the channel, / is 
the impulse response of the filter, In is the transmitted data, w is zero-mean 
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white Gaussian noise. Given the statistics of the input signal and the noise, 
the mean square error is defined as: 

MSE = E|n, w [(Out-Out i d e a i ) 2 ] (2.3) 

where Outjdea; is the desired output, normally a delayed version of the input 
signal. Assuming that all of the random processes are wide-sense station­
ary with known statistics, the optimal minimum mean square error (MMSE) 
equalizer is given by: 

/ M M S E = (S [ r r T ] ) - 1 £ ; [Ou t i d e a i r] (2.4) 

where r = [RL, • • •, Ro,..., R-L]T, R is the input signal to the equalizer, 
L — (N — l)/2, and N is the number of equalizer taps [9, Chapter 9]. 

A one-shot solution to equation 2.4 is to invert the covariance matrix. A l ­
ternatively, an iterative procedure can be used by calculating the gradient 
of MSE and descending along the steepest descent direction. In practice, 
the covariance matrices are generally not available [9, Chapter 9]. A pop­
ular algorithm known as the stochastic gradient (SG) algorithm, sometimes 
also called the least mean square algorithm, provides an adaptive solution 
by substituting a time average for the expectation in the MMSE solution. 
This approach, although called LMS, only approximates the MMSE solu­
tion. This is the price paid for neither requiring the channel to be stationary 
nor knowing the channel's characteristics in advance. A simple, commonly 
used variation of the LMS algorithm is sign-sign LMS [63, 73]. The sign-
sign LMS algorithm replaces the MSE calculation by using the sign of the 
input data and the measured error to update the filter coefficients. 

If all symbols are equally likely and the additive noise is 0, then the MMSE 
equalizer above reduces to a filter that forces the ISI and crosstalk com­
ponents of the channel's impulse response to be zero. This is called zero-
forcing [9, Chapter 9]: 

/ Z F = argmin{|| f * h - e6 ||2} (2.5) 

where 5 is the delay of the channel and eg denotes a column vector that is 
zero everywhere except for a one at 5. 

• loo and Linear Programming 
The MMSE and LMS methods described above minimize the average error 
of the channel. However, for digital systems, a more important objective is 
to minimize the worst-case error. In particular, the receiver in a digital link 



Chapter 2. Related Work 20 

includes some thresholding circuit. If the input is above the threshold for a 
logically high signal or below the threshold for a logically low signal in a 
large enough interval around the sampling time, then the signal will be re­
ceived correctly. If the signal is between the two thresholds, an error may 
occur. Note that getting a signal that is already above the logically high 
threshold even closer to the high target value produces a correct result, but 
no more correct than for one that just barely exceeded the threshold. Like­
wise for low signals. Consider a channel where input patterns in\ and iri2 

both produce traces that satisfy the thresholds of the receiver. It may be pos­
sible to improve the I2 metric by bringing the response to in\ much closer 
to the target levels while pushing the response to iri2 slightly into the region 
between the thresholds. As this example shows, optimizing with respect to 
the I2 metric is not guaranteed to maximize digital signal integrity. In [54], 
we presented a method for synthesizing optimal, pre-equalization filters for 
buses assuming a simplified bus model. We showed that the Zoo metric cor­
responds to digital signal integrity and presented a filter synthesis method 
based on linear programming. We describe a more general formulation of 
this approach in chapters 3 and 4. 

An advantage of the MMSE and LMS methods is that the effects of noise can 
be readily included in the model, although this does not necessarily translate 
into a precise analysis of the channel's bit-error rate (BER). The Zoo methods 
consider worst-case behavior, and therefore do not handle noise and other 
statistical phenomena naturally. We revisit these issues in Chapter 7. 

Linear programming has been used for FIR filter design for several decades 
[14, 34, 52, 57]. Given a desired frequency response, the design of a FIR 
filter can be viewed as a linear programming problem by forming a set of 
constraints for the actual frequency response of the FIR filter on a dense grid 
of frequencies. In addition to constraints on the frequency response, con­
straints on the time response such as maximum ripple in response to a step 
can also be imposed [52]. Samueli [57] used linear programming to design 
FIR filters that meet a spectral mask while satisfying requirements on ISI, 
e.g. the impulse response of the filters has uniformly spaced zero crossings. 
The work closest to ours is [13] in which linear programming techniques are 
explored for controlling ISI in a digital modem's signal path. They obtain the 
peak ISI by summing absolute values of system-pulse samples and explicitly 
limit or minimize peak ISI. The linear programs for these techniques are ei­
ther solved with a general purpose LP solver such as Simplex [19, Chapter 5] 
or a special purpose LP solver that incorporates Fast Fourier Transformation 
(FFT) techniques to speed up the computation [41]. 
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Previously (in [54]), we formulated pre-equalization filter synthesis for max­
imum eye height as a linear programming problem. We assumed a simpli­
fied bus model with all wires identical; in other words, we ignored edge 
effects by assuming cylindrical symmetry. Furthermore, we assumed that 
the the bus could be modelled as a collection of coupled transmission lines; 
in other words, we ignored discontinuities and parasitics due to packages, 
vias, connectors, etc. With this simple bus model, we demonstrated the ad­
vantages of loo multi-input, multi-output, pre-equalization filters for reduc­
ing far-end crosstalk when compared with traditional 1% filters. This work 
extends the approach to more realistic bus models, addresses a compre­
hensive set of practical issues, provides a unified optimization framework 
for pre-equalization, near-end crosstalk cancellation and decision-feedback 
equalization filters, and validates the novel filters with a low-cost, low-speed 
test bed. 

2.5 Summary 

Off-chip links have entered the multi-Gb/s era. At such high data rates, channel 
impairments such as dispersive losses, crosstalk and reflections severely degrade 
signal integrity and limit off-chip bandwidth. Equalization techniques have been 
successfully used to compensate for high-frequency attenuation of off-chip chan­
nels. With equalization and carefully chosen signalling methods, multi-Gb/s serial 
links have been built. The single-line pre-emphasis technique has become part of 
recently introduced communication protocols such as PCI-express. Equalization is 
also commonly used in telephone subscriber systems to cancel near-end and far-
end crosstalk [15, 30, 31]. 

With increasing integration density and data rates, ISI and crosstalk become 
even greater problems. In the near future, single-line pre-emphasis will be in­
sufficient. Furthermore, it is crucial to combine different equalization techniques 
effectively when operating at multi-GHz operating frequencies. While there has 
been intensive research in high-speed links in the past eight years, there has been 
little CAD tool support. In this thesis, we address the synthesis of multi-input, 
multi-output equalization filters to deal with both ISI and crosstalk. Furthermore, 
we develop a unified optimization framework for jointly synthesizing equalization 
filters for high-speed off-chip buses. It enables fast evaluation of link performance 
and allows easy comparison of different link configurations and early identification 
of bandwidth bottlenecks. 

In [54], we introduced 1^ optimization for synthesizing pre-equalizers for 
high-speed digital buses. As described in Section 2.4, this approach was limited 
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by simple bus models, restricted objective functions, and only provided for syn­
thesis of pre-equalizers. We now present new techniques that eliminate each of 
these limitations. First, we utilize eye masks, a commonly used measure of signal 
integrity that specifies bounds for the received signal throughout the time interval 
for transmitting a bit. We parameterize eye masks and then synthesize filters that 
directly optimize them. Second, we support arbitrary, linear bus models including 
impedance discontinuities and parasitics due to packages, vias, connectors, etc. 
Third, we show how to formulate the joint optimization of pre-equalizers, decision 
feedback equalizers, and near-end crosstalk cancellation filters as a unified linear 
programming problem. 
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Chapter 3 

Optimal Pre-equalization Filter 
Synthesis 

This chapter formulates the eye-mask optimization problem for single-ended, uni­
directional channels with pre-equalization filters as a linear programming (LP) 
problem. To focus on the key ideas behind the optimization methods, we defer 
the more general, unified approach for synthesizing multiple filters until Chapter 4. 
Moreover, for simplification, the channel model used in this chapter ignores pack­
aging parasitics, vias etc. which will also be addressed in Chapter 4. The key ideas 
presented in this chapter apply in the more general cases presented in later chapters. 

In this chapter, we first describe eye masks, a common measure of signal in­
tegrity, and show how they can be parameterized to obtain objective functions for 
optimization. We show that eye masks, are an (worst-case) measure: whether 
or not a link satisfies a given eye mask is determined by the worst-case outliers 
(highest and lowest levels) on the output channel over all possible input sequences. 
Accordingly, we first compute the worst-case responses of the channel. Because 
the filter and the bus are both linear, the output of the channel (filter and bus) is 
linear in the values of the inputs. Thus, the total distortion is the sum of the dis­
turbances caused by each of the individual input bits on other wires and at other 
bit times. When all of the disturbances have the same sign, we obtain the maxi­
mum total disturbance and hence the worst-case response. This can be achieved by 
setting the sign of each input bit to produce positive disturbances at the sampling 
time. This leads to the l^, optimal filter synthesis approach presented in this thesis. 

Section 3.2 states assumptions that simplify the presentation. To make the 
presentation more succinct and direct, we describe matrix formulations for lin­
ear convolutions with multi-input, multi-output channels in Section 3.3. We then 
show how to synthesize optimal pre-equalization filters to optimize eye masks or 
minimize mean square error in Section 3.4. Section 3.5 compares our LP based 
method with the more commonly used least squares approach and shows that our 
LP approach achieves greater eye height while providing greater control of filter 
overdrive and overshoot at the receiver. 
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3.1 Eye Diagrams and Parameterized Eye Masks 

Eye Diagrams are the most commonly used method to measure signal integrity. 
Figure 3.1 illustrates how an eye diagram is formed by overlaying a signal wave­
form over multiple symbol periods. It is called an eye diagram because the shape 
of the open region resembles an eye. An eye diagram provides a straightforward 
visual indication of how much voltage and timing margin is available for the re­
ceiver to correctly sample the signal. The eye opening represents the time during 
which we can safely sample the signal with fidelity. The height and width of the 
eye opening are often used to quantify signal integrity. We define the eye height 
as the maximum distortion (overshoot as well as undershoot) of the signal at the 
sampling instant. We write 77 to indicate that all logically high signals attain a level 
of at least +target — 77, and all low signals attain of at most —target + 77. The eye 
height is 

height =
 t a r g C t ~ 7 7 * 100% (3.1) 

target v ' 
The eye width is the length of the time interval that the separation between high-
going and low-going signals is greater than zero. This interval is indicated with the 
double-arrow labelled w in Figure 3.1, and we write 

uu 
width = — * 100% (3.2) 

where P is the bit-period, i.e. the time separation from one bit to the next. The 
eye height and width are both determined by the worst-case outlier signals. For 
example, the eye height is determined by the greatest overshoot or undershoot of 
all possible signals at the sampling instant. Hence, eye diagrams provide worst-
case measure of signal integrity. 

Intuitively, if a signal has greater eye height, then it is easier to distinguish high 
values from low ones. Likewise, greater eye width suggests greater tolerance of 
jitter in the signal timing or measurement instant. However, it is possible to have 
a channel with large eye height and width and poor signal integrity. For example, 
if the channel has large overshoot, then an otherwise large eye-opening can be a 
small fraction of the total input voltage range (see Figure 3.7B). Large excursions 
could degrade performance of the receiver's input circuitry and are indicative of 
excess power consumption. Similarly, with ringing, a channel can have a large eye 
height that decreases very rapidly in the neighborhood of the measurement point 
while still maintaining large eye width (see Figure 3.2). Such a channel is very 
sensitive to timing jitter. 

In practice, any electrical interface requires certain voltage and timing margins. 
For a particular electrical interface, a minimum criteria window with width equal 
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Figure 3.3: A parameterized eye mask. 

to its required timing margin and height equal to its required voltage margin is 
known as the eye mask [11]. If the received signal has an eye opening large enough 
to contain the eye mask, then the signal has adequate margins for the particular 
electrical interface to correctly interpret the received data. 

We now show how the eye masks can be generalized and parameterized to 
allow optimization. Figure 3.3 shows such a mask. Here, an eye mask is a set of 
polygons that specify constraints on the possible waveforms of a signal during each 
symbol period by excluding regions of undershoot and overshoot. We parameterize 
these polygons by specifying the vertices. In Figure 3.3, we specify constraints 
on overshoot and undershoot at four different sample times. This particular eye 
mask recognizes the transition slope and allows two times more distortion at the 
transition samples than the central samples of the eye where the sampling instant 
most likely happens. Note that the eye mask shown in Figure 3.3 restricts not only 
the voltage distortion during sample interval, but also overshoots during transitions. 

Mathematically, we represent an eye mask as a set L of undershoot constraints 
and U of overshoot constraints. We. can define L as a set of (s, r]s) pairs such that 
for all input patterns where the transmitted value for the wire and sample period 
of interest is +1, the received value must be at least 1 — rjs at sample time s. 
The overshoot constraints U is interpreted in the corresponding manner. A simple 
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objective function for optimization is, 

min ^2 wsVs 
f v{s,Vs)ei,u (3.3) 

where / is the filter coefficient space and ws is the weight assigned to sample time 
s. Larger values of ws correspond to greater weight at sample time s. Usually, one 
would expect to assign larger weight to the central samples. 

For the particular parameterized eye mask shown in Figure 3.3, rys is given as 
asrj. Pairs of the form (s, as) define the shape of the eye mask. The undershoot 
and overshoot constraints are interpreted similarly as above. For this particular 
parameterization of the eye masks, minimizing r\ optimizes the eye mask. For 
simplicity, we use this eye mask for all examples presented in this thesis, unless 
otherwise indicated. 

3.2 Simplifying Assumptions 

To simplify the presentation of our filter synthesis methods, we use the following 
assumptions: 

1. The response of the channel is linear and can be approximated accurately by 
a finite length impulse response. 

2. Each channel is used to convey binary (i.e. two-level) data. The input high 
and low levels are +1 and —1. Likewise, the output target levels are +1 and 
- 1 . 

3. The high and low portions of the eye mask are symmetric, and the same eye 
mask is used for every channel. 

The first assumption pertains to the physical interconnect and holds for most prac­
tical off-chip applications. The last two simplify the presentation. Extending the 
methods presented here to other signaling levels, other eye-mask shapes, etc., is 
straightforward. We will revisit these assumptions in Section 4.4. 

3.3 Matrix Formulations for Convolution 

Linear programming and least squares optimization problems are naturally formu­
lated with matrices. The responses of filters, buses, and other multi-input, multi-
output (MIMO) systems are naturally formulated as convolutions. Convolution is a 
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linear operator and therefore has a matrix representation. This section shows how 
we translate the impulse responses and convolutions of the signal processing world 
into the language of numerical optimization, matrices and vectors. Section 3.3.1 
introduces the simple case of scalar, i.e. single-input, single-output systems. Sec­
tion 3.3.2 generalizes this to the M1MO systems that are the subject of this thesis. 

3.3.1 Scalar Convolution 
Let v £ E™ be a vector of length n. The n components of v are v(0), v(l), ..., 
v(n — 1). We write \\v\\ to denote the Z2 norm of v, and to denote the Ik norm 
of v. For the sake of calculating matrix-vector products, all vectors in this thesis 
are column vectors unless otherwise stated. To simplify the upcoming formulas, 
for v e K™, we define v(i) = 0 for alH < 0 and all i > n. Let v\ and i ; 2 be vectors 
of lengths ni and n 2 respectively. The convolution of v\ and V2 is written v\ x vi 
as defined below: 

To express convolution in matrix form, let n = n\ + n 2 — 1 and v*n € Kn x™ be 
the matrix with 

(3.4) 
j=0 

(3.5) 

Pictorially, 

«i(0) 
t>i(l) ui(0) 
1/1 (2) «!(!) Vl(0) 0 

vi(ni - 1) 

0 vi{m-i) . . . «!(2) Vl(i) vi(fl) J 
(3.6) 

The convolution of v\ and u 2 in matrix form is: 

D i x u j — v*n extend 0 (n 2 ,n)u 2 (3.7) 
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where extendo(ri2, n) is the matrix that pads d 2 with zero elements to produce a 
vector of size n. The zero-extension matrix is defined as follows: 

extendo(ni, n) = 
P(n—ni) xni 

(3.8) 

where 7 n i X ni denotes a n\ x ni identity matrix and 0( n _ n i ) X T l l denotes a (n — 
n\) x n j zero matrix. 

It follows directly that 

v0 x vi x • • • x tifc.j = w0

x" v*" • • • ex tendo ^ - i , n)vk_x 

where n = (Yli=o n » ) + 1 — >̂ a n a " «i is the length of vector v^. 

(3.9) 

3.3.2 MIMO Convolution 
Our formulation for MIMO convolution is based on the formulation for linear con­
volution presented above. We address two issues that are particular to the MIMO 
formulation. 

• The impulse response of a MIMO system is a sequence of matrices rather 
than a sequence of scalars. Thus, the convolution matrix for a channel con­
sists of blocks, where each block is a matrix corresponding to the response 
of the channel for a particular delay. 

• For scalar convolution, the stimulus and the channel impulse response are 
mathematically interchangeable. Both are represented by vectors, and scalar 
convolution is commutative: one can apply the signal to the channel or the 
channel to the signal and produce the same result. For MIMO channels, 
this duality no longer holds. As noted above, the impulse response of a 
channel is a sequence of matrices. The input stimulus on the other hand, is a 
sequence of vectors. Each such vector gives the value of input on each line 
at a particular time. 

We address these two issues and present our matrix formulation for MIMO convo­
lution below. 

Let 

H = 

H0 

H i 
(3.10) 

\H„ 
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denote the impulse response of a MIMO channel where Ht(i,j) is the response at 
the ith output after a delay of t time steps to an impulse stimulus at the jth input. 
We adopt the convention that Ht = 0 for t < 0 or t > n. 

We write the input as a vector so that we can model the channel as a matrix, 
and compute the output of the channel as their product. In particular, we define an 
input vector In, such that \n(wt + j) is the value at time t at the jth input, where w 
is the number of inputs of the MIMO channel. 

For simplicity, we assume that the number of inputs and outputs are the same. 
The extension to channels with different numbers of inputs and outputs is straight­
forward. Now consider a channel of width w (w inputs and w outputs), and an 
impulse response of n\ time steps. Let H G Rn^wxw be the impulse response of 
the channel as described above. Likewise, let In G W12™ represent an input of 
width w and ri2 time steps. Let HXn G j R n u j x m i ; be the matrix with 

HXn = H(idivw)-(jdnw){i mod w, j mod w) (3.11) 

Pictorially, 

n\— 1 

0 
The response of the channel to In is 

H0 

H\ Ho 
i?2 Hi Hq 

H 

0 

Hni-i H2 Hi Hq 

(3.12) 

Out = HXn extend 0(n 2u;,nu;)ln (3.13) 

where n = ni + ri2 — 1 and extendo(n2tu, nw) is the matrix that pads In with zero 
elements to produce a vector of size nw. The vector Out in equation 3.13 has the 
same basic structure of that of In: Out G Rnw, and Ou\(tw + j) is the response at 
time t at the jth output. 

Let M G R"i™x™ and W G W1*™*™ be the impulse response matrix for two 
channels. Let In G Mn'aW be a stimulus applied to the first channel M , with the 
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output of M applied as the input to the second channel W. It follows directly from 
equation 3.13 that, Out , the output from W, is given by 

Out - WXn MXn ex tend 0 (n i n w; , rao)In (3.14) 

where n = ri\ + n-i + ni n — 2. Note that we have defined n to be large enough to 
ensure that MXn ex tendo(n i n u ; , nw)\n has enough trailing zeros to allow proper 
convolution when multiplied by WXn . The extension to the concatenation of three 
or more channels is straightforward. 

It is important to note that linear convolution for MIMO is associative but gen­
erally not commutative. It is commutative if the products of the submatrices are 
commutative, for example, if the sub-matrices are all symmetric or all circulant [26, 
Section 24.2]. 

3.4 Optimal Pre-equalizer Synthesis 

This section describes how to synthesize pre-equalization filters to optimize eye 
masks. This procedure supports arbitrary, linear bus models. Thus, each wire can 
have a different model and parasitic effects of bonding wires, vias, connectors, 
terminators, etc. can be taken into account. 

Figure 3.4 shows the structure of a typical channel with a pre-equalization filter. 
A filter is assigned to each wire of the bus. Each filter takes as input a data bit and 
one or more neighboring bits in each direction and outputs a pre-distorted signal for 
one wire of the bus. Thus, the collection of filters form a multiple-input, multiple-
output (i.e. MIMO) filter. In addition to reducing crosstalk, the pre-equalizer can 
also compensate for other linear distortions of the bus, including high-frequency 
attenuation due to resistive and dielectric losses. 

Implementing a filter where every output depends on the values received on 
every input wire would consume a large amount of chip area and introduce unac­
ceptable latency, especially for large buses. Noting that the largest contributions 
to crosstalk typically come from nearby wires, we consider filters where each out­
put is computed from the input value for the wire itself and each of its Wfir closest 
neighbors in both directions'. For example, the filter shown in Figure 3.4 is a 
design with wjfir = 2. 

To compensate for high-frequency losses, equalization filters typically have tap 
rates that are a small multiple of the data rate. Furthermore, note that we can only 
specify eye-mask constraints on a limited number of sample times. There are no 
constraints for the signals in between the sample times. To include high frequencies 

' A p p e n d i x C s u m m a r i z e s the d e f i n i t i o n s o f a l l var iab les that are used g l o b a l l y i n the thesis. 
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Figure 3.4: A typical channel with pre-equalization filters for crosstalk cancella­
tion. 

that might cause ringing, the sample rate for our analysis is a small multiple of the 
filter's tap rate. Moreover, in practice, the high-frequency roll-off of the channel 
and the limited slew rate of the transmitter limit the amount of high-frequency 
components. From experience, we get well-behaved results if the sample rate is 
twice the filter's tap rate. 

We write r t a p to denote the number of sample points used in the impulse re­
sponse functions per filter tap time and r^n to denote the number of sample points 
per bit. Figure 3.5 shows these three time scales: bit, tap, and sample. As depicted 
in the figure, we write So for the delay from the input of the filter to the output of 
the bus. The examples in this thesis use a delay slightly greater than the LC delay 
of the bus for So- In the remainder of this thesis, we write nx to indicate the number 
of bit-times for quantity x, mx for the number of tap times, and qx for the number 
of sample times with the relation: 

qx = rtapmx = rbnnx (3.15) 

For example, while ranr denotes the number of taps in the filter, q^r = r t a P m n r 

gives the length of the filter impulse response in sample times. In the examples 
presented in this chapter, we use r t a p = 4 and r\,n — 8 (i.e. 2 samples per tap). We 
define M^t as the set of integer multiples of rt,it. 

As shown in Section 3.1, minimizing r\ optimizes the eye mask. The worst-
case waveform from all possible input patterns for the channel determines r\. To 
find the worst-case input pattern for the channel, we consider the response to each 
transmitted bit from each wire separately. Section 3.4.1 derives the channel out­
put as a linear function of the filter coefficients. We then use this formulation in 
Section 3.4.2 to formulate the eye-mask optimization problem as a linear program. 
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Figure 3.5: Bit, tap, and sample times. 

3.4.1 The Bus Output is Linear in the Filter Coefficients 
Because the filter and the bus are both linear, for any fixed input and bus impulse 
response, the output from the bus is a linear function of the filter coefficients. 

Let Wbus denote the width of the bus. Let B G K9bus^bu S x«^ u s ^ m e j m p U i s e 

response of the bus, where % u s denotes the length of the bus impulse response in 
sample times. Input signals and filter coefficients are naturally given in bit times 
and tap times respectively. Because the analysis is done in sample times, over-
sampling is needed to convert the input (resp. filter coefficients) from a sequence 
in bit times (resp. tap times) to a sequence in sample times. To simplify the pre­
sentation, we first assume that bit times, tap times and sample times are the same. 
After we derive the bus output as a linear function of the filter coefficients, we take 
oversampling into account in the final formulation. 

Let F G R'Jiir^t'usXiUbus be the impulse response of the filter, i.e. the filter co­
efficient matrix. F consists of qnr blocks where block F t G E 1 " b ' , s X ' " b l , s gives the 
coupling from the input of the filter to the output after a delay of t time units. We 
consider filters where each output is computed from the input values for the wire 
itself and each of its u>nr closest neighbors in both directions. Hence, each F t is a 
band matrix with width 2u;fir + 1. To simplify the presentation, we assume full fil­
ters, i.e. each filter output is computed from input values for all wires. Based on this 
formulation, optimizing for narrower filters is straightforward. Let In G R 9 l n ' u ' b U 5 be 
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the input vector. From equation 3.14, the output of the bus, Out, is given by: 

Out = B x " F x " ex tend 0 ( g i n W b u s , n w b u s ) l n (3.16) 

where n = q\,us + q&r + <7in — 2. Equation 3.16 shows that for a given input, In, and 
bus impulse response, B, the output of the channel, Out, is a linear function of the 
filter coefficients. 

LP constraints are generally formulated as Ax < b where A is the constraint 
matrix, b is a constant vector and £ is a vector of LP variables which in this case 
are the filter coefficients. Thus, we need to swap In and F in equation 3.16. This 
requires formulating F as a vector and In as a matrix. 

Let / be the vector of size w^q^ of filter coefficients such that f(tw£us + 
iwbus +j) denotes the contribution of the input on wire j to the filter output for wire 
i after a delay of t time units. Let ft denote the column vector of length w^us for the 
filter coefficients for delay t. In particular, f(tw^us + iu>bUS +j) = ft(iwbus +j) = 
F t(i,j). Likewise, let ln t be the column vector of size u>bUS, where lnt(j) is the 
input on the wire j at time t, i.e. Int(j) = \r\(twhus + j)- Let \Nt be the block 
diagonal matrix of size wbus

 x wbuS' where all of the diagonal blocks are identical 
row vectors, \nf, of length w\,us. Let IN e M«n^buSxi«bus ^e m e m a t r j x consisting of 
a column of q\n matrices with IN t as its t'h submatrix. By this construction, 

F, • \r\j = INj • ft (3.17) 

Hence, 
(Fxln)( i ) = E J - o F w I r v 

= EU^ifi-j 

In matrix representation, 

Out = B x " IN x "ex tend 0 ( g f i r ^ u s . n w b u s ) / 
- G 0 (B , ln ) / 

(3.18) 

(3.19) 

wheren = <7bus+<7fir+gin-2 and G 0 (B, In) = B x " IN X " e x t e n d 0 ( g f i r W ^ u s , n ^ u s ) 

is a nwbus x QRrW^us matrix determined by the bus impulse response, B, and the 
input sequence In. 

We now consider oversampling. We write Iribk to denote the input to the chan­
nel quantized in bit times and ln s a m p i e to denote the input quantized in sample 
times. Thus, lnt>jt(wbuŝ  + i) gives the input signal on wire Wi at bit-time t. The 
oversample of Inbu is given by, 

ln Sampie = oversample(nin, rbiu wbns) • ln b L t (3.20) 
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where oversample(nin, r bj t , wbus) is a rbitninu;bus x riinWbus matrix given by 

oversample(n I r n r b i t , wbus)(i,j) = 
1 if (i div (wbusr-bit)) = (j div wbus) 

and (i mod Wbus) = (j mod uibus) 
0 otherwise 

In this equation, the clause (i div (w^us^bit)) = (j div tObus) matches sample 
times with the corresponding bit times, and the clause (i mod tt>bUS) = ( j mod 
Wbus) matches each wire with itself. The oversample(nin, rbn, wbus) matrix is 
block diagonal and each of its diagonal blocks is a column matrix consisting of rbit 
identity matrices of size u^us x ^b U s - Pictorially, 

oversample(rci„,rbit,u^Us) — 

0 

0 
(3.21) 

where 1 , ^ x 1 1 ^ denotes an identity matrix of size Wbus x Wbus- Oversampling the 
filter coefficient vector from tap times to sample times is done similarly. Note that 
oversampling is a linear operator. Taking oversampling into account, equation 3.19 
becomes 

Out = G 0 (B, oversample(nin, r b i t , wb us)lnbi t) oversample(m f i r, r t a p , w b u s ) / 
= G(B, Iribit)/ 

(3.22) 
where G = G 0 (B, oversample(ni„, r b i t , i O l n b i t ) oversample(m f i r, r t a p , w b u s ) . 
Similar to oversampling, it is straightforward to use matrix multiplication to extend 
a narrow filter with width to a full filter with width w^,us. Hence, for a given 
input sequence and bus impulse response, the bus output is a linear function of the 
filter coefficients represented by the matrix G. 
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3.4.2 Eye-Mask Optimization as an LP 
As described in Section 3.1, eye masks specify constraints that must hold for all 
possible input patterns; in other words, eye masks specify constraints on the worst-
case waveforms. This is an optimization problem that can be solved by linear 
programming. This section describes how we formulate the filter synthesis prob­
lem for optimal eye masks as a linear programming problem. 

To optimize the parameterized eye mask for a channel, we need to determine 
its worst-case input pattern over all possible input sequences. To find this worst-
case input pattern for the channel, we consider the response to each transmitted bit 
from each wire separately. Let bitj be a vector that represents a one-bit wide pulse 
on wire i starting at time 0 with all other wires held constant at 0. For any pair of 
wires, i,je[0... wbus -1] , and any sampling time, s £ [0... (n b u s + " f i r + l)n>it]> 
let g(i, j, s) be the vector such that g(i, j, s)Tf is the response on wire j at time s 
to input bitj given filter / . Using equation 3.22, the g vectors are readily derived 
from the impulse response of the bus: 

g(i,j,s)T = G(B,b\U)(j + SWhus) (3.23) 

That is, row j + swbus of G(B, bitj) is g(i, j, s)T. Moreover, in this case, column 
i + Jwbus °f B X n IN X " in equation 3.19, is the bit response on wire j to an input 
bit at time 0 on wire i. Hence, the g vectors can be derived from the bit responses 
of the bus, which is much easier to obtain than the bus's impulse response in real 
physical settings. 

By the assumption that the channel is linear, the received signal is a linear 
combination of these bit responses: 

™bus 

Out(j, 8) = u(*> fc)^> 3, s + kff (3.24) 
i = i fceMibit 

where Out(j, s) is the output on wire j at sample time s, and v(i, k) € ±1 is the 
data value sent on wire i at sample time k. We now calculate the crosstalk and 
crosstalk-free components of the received signal. Without loss of generality, we 
consider the case where a value of +1 is sent on wire j at time 0; in other words, 
w(j,0) =+1. Let 

u(j,s) = g(j,j,s)T f (3.25) 

The target delay of the channel is <5rj. Thus, u(j, 5o) • • • u(j, 5Q + rbn — 1) gives the 
undisturbed response of the channel to the +1 bit sent on wire j at time 0. 

The disturbances are the contributions from all other wires, and from the wire 
itself at other bit times. These can be determined from the bit responses of the bus 
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as well. Because the inputs are either + 1 or —1, we can compute the responses 
for a + 1 input bit on each wire at each bit time and sum the absolute values to get 
the maximum disturbance. In other words, if the disturbance produced by a + 1 
input on some wire and at some bit time is positive, then the value of this input 
will be + 1 in the input pattern that creates the greatest total overshoot and —1 in 
the pattern that creates the greatest undershoot. Noting that the response to a —1 is 
simply the negation of the response to a +1 , we find the worst-case disturbance by 
taking the absolute values of the responses to inputs of +1 . Let d^(i, s) denote the 
maximum total disturbance on wire i at sample time s: 

dx(j,s)=( £ £ \g(i,j,k + s)T f\)-\u(i,s)\ (3.26) 

The minimum value that wire j can have at time s is u(j, s) — d%(j, s) and the 
maximum is u(j,s) + ds(j,s). The worst-case channel response at any given 
sample time and any wire should satisfy the undershoot and overshoot constraints 
specified by the parameterized eye mask. 

The eye mask specifies constraints over a single bit period, and this specifica­
tion is independent of the target delay. Thus, the eye-mask constraints are for times 
0 . . . rtjjt — 1, and constraint (s, as) pertains to the bus output at time s + So- We 
can now write the linear program for eye-mask optimization over a multi-wire bus: 

minr) s.t. 
/ 
Vj € [0 . . .wbus - 1], Q 27) 

V(s, as) £ L, u(j, s + 50) - d%(j, s + S0) > 1 - asrj 
A V(s, as) e U, u(j, s + <50) + d E (j , s + 50) < 1 + asrj 

Note that at the optimal vertex of the LP, the worst-case channel response is com­
puted and the worst-case input pattern for the channel is identified. This useful 
byproduct of our approach allows us to test and measure the worst-case perfor­
mance of the channel. 

We implemented the LP optimization routine using MATLAB . LP constraints 
are generally formulated as Ax < b where A is the constraint matrix, b is a constant 
vector and x is a vector of LP variables. To write the constraints in matrix form, 
we define matrices Gu and Gd such that Guf and Gdf compute the undisturbed 
responses and disturbances respectively: 

1. Gu is r-bit̂ bus x f̂ir a n c * ' t s r o w s a r e t n e s e t °f ff(M> s ) T vectors with i = j 
and 50 < s < S0 + rbiu 

2. Gd is (^ u s rbit(n n r + 7 i b u s ) — wbnsrbn) x fcnr and contains the rest of g vectors. 
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We write the LP as: 

mm 7? s.t. 
fAv 

-I Gd 0 
-I -Gd 0 
w Gu 

—a 
w —Gu —a 

d 
1 < 

0 
0 
1 

- 1 

(3.28) 

The rows with the Gd matrices compute d, the absolute values of the disturbances. 
The rows with the Gu matrices compute the maximum undershoot and overshoot 
respectively: Gu computes the undisturbed responses; W computes the sum of the 
disturbance terms; and a is a column vector of scaling terms for each measurement 
point of the eye mask. We describe the detailed structure of these matrices and our 
implementation of numerical methods to solve these linear programs in Chapter 5. 

3.4.3 MSE and Least-Squares Optimization 
In order to compare our methods with traditional I2 techniques we implemented 
least-squares optimization for pre-equalizer synthesis. Minimizing mean square 
error requires a knowledge of the underlying distributions of the transmitted data. 
For simplicity, we assume each bit transmitted on each wire at each bit time is an 
independent, evenly weighted, Bernoulli random variable. We note that designers 
frequently make this assumption in practice because detailed statistical models are 
often unavailable. We model the bits as taking on values of ± 1 ; thus, each bit has 
a zero-mean. 

With these assumptions, for each wire and sample time, each contribution to 
the distortion on that wire and time is an independent, mean-zero, random variable. 
Thus, the expected value of the square of the sum of the disturbances is equal to 
the expected value of the sum of the squares. From Section 3.4.2, we know that 
Gdf gives the errors from the disturbances and Guf — e gives the errors from the 
"undisturbed" channel response, where e is a column vector of all ones. 

Noting that the values of the samples within the measurement interval are usu­
ally much more critical than those of samples outside it, we assign a weight to 
each sample point in the bit period, T(s), where T(s) is periodic with period r^t-
Otherwise, if all sample times throughout the bit period are weighted equally, the 
least-squares optimizer will compromise eye-height trying to reduce the error dur­
ing transitions. On the other hand, if transition samples are ignored, the optimizer 
will often find solutions with extreme overshoot during transitions. Weighting the 
sample points allows us to avoid such undesirable solutions. 
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The weighted, mean-square optimization problem is: 

mm TdGd f- 0 (3.29) 

where T u is the diagonal matrix that scales rows of Gu with the weights corre­
sponding to their sample times and likewise for T^. 

We used MATLAB'S least-squares linear system routine mldivide (a.k.a. \) to 
solve the LSQ problem. We briefly examine the time and space requirements of 
this approach in Section 5.5. 

3.5 Evaluation 

To evaluate the filter design methods described in the previous section, we im­
plemented the optimization routines using MATLAB [65]. For the least-squares 
based optimization, we used MATLAB'S mldivide. For the linear-programming 
based optimization, we wrote our own implementation of Mehrotra's algorithm 
with a problem-specific linear system solver that exploits the sparsity structure of 
our constraint matrix (see Chapter 5). We used HSPICE [6] to derive bus models 
and their bit-response functions. 

3.5.1 A Realistic Bus Model 

In our previous work [54], we used a simplified mathematical model for buses 
where all wires were identical (i.e. a cylindrical bus). In the preceding sections, 
we have described filter synthesis that support realistic bus models where each 
wire has its own model, boundary effects are modelled, and the parasitic effects of 
bonding wires, vias, connectors, etc. can be taken into account. 

For the results presented in this section, we used the field solver in HSPICE [6] 
to extract a model for microstrip lines in 1 Oz copper, 5 mil wide with 5 mil sep­
aration between lines, running above a ground plane with a dielectric thickness 
of 10 mil and a dielectric constant of 4.5. Each line is terminated with a resistor 
that matches the line's characteristic impedance. For simplicity, the bus is single-
ended and unidirectional. We extend this approach to differential signalling and 
bi-directional links in Chapter 4. 

With the extracted RLGC matrices, we used HSPICE simulations to obtain the 
responses on all wires to a single bit input on wire i for each wire of the bus. Using 
the results of these HSPICE simulations, our filter design procedure synthesizes 
the optimal filters and generates their corresponding worst-case input sequences. 
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3.5.2 Simulation Results 

All of the results reported in this section are for a 32-bit bus (i.e. wt,us — 32) using 
the bit-response model extracted by HSPICE. All designs have four filter taps per 
bit-time and two sample times per tap time (i.e. r t a p = 2 and r^n = 8). We write 
that a filter is x to indicate that the filter has m n r taps and a width (number 
of neighbors considered to each side) of W(jr. Unless otherwise noted, we use a bit-
time of 500ps (i.e. 2Gbits/sec/wire). To test our filters, we generated the worst-case 
input sequences for each filter [55], based on the observation that the worst-case 
disturbance occurs when all of the individual disturbances have the same sign. This 
is easily achieved by determining the disturbance caused by each input wire and 
bit-time and setting the sign of each input bit appropriately. 

To obtain practical designs that achieve good crosstalk reduction, we must 
choose the width and length of the filter appropriately. In general, larger filters 
achieve better crosstalk cancellation at an increased cost for the hardware imple­
mentation. Figure 3.6 shows simulation results for filters with various lengths and 
widths and the following synthesis methods: 

LP(a): The LP method using the eye mask from Figure 3.3. This mask has no con­
straints for sample times between measurement intervals (i.e. during transi­
tions between bits). We constrained the magnitude of the filter output to be 
at most three times the target at all times. 

LP(b): The same LP as above with further restrictions that the magnitude of the 
signals at the output of the bus must be less than twice the target level at all 
times. This reduces the worst-case overshoot with some attendant reduction 
in eye height. 

LSQ(c): The LSQ method with weight T(r) = 1 for the four sample points of 
the measurement interval and T(r) =0 for sample points between measure­
ment intervals (see equation 3.29). This means that we only optimize for the 
four points of the measurement interval, and allow any response elsewhere. 
Moreover, the maximum magnitude of filter coefficients is not constrained; 
thus, the overdrive ability of the filter is unconstrained. This tilts our com­
parison in favor of the LSQ method by giving it more latitude than the LP 
approaches. 

LSQ(d): The LSQ method with T(r) = 1 for four points of the measurement 
interval and T(r) = 0.4 for sample points between measurement intervals. 
This prevents extreme overshoot at transition taps. The maximum magnitude 
of filter coefficients remains unconstrained. 
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Filter design methods: 

LP(a): linear programming method without constraints outside 
the eye mask; 

LP(b): linear programming method with constraints constraining 
overshoot outside the eye mask; 

LSQ(c): least-squares optimization without constraints for sam­
ple points between measurement intervals. 

LSQ(d): least-squares optimization with weight 0.4 assigned for 
sample points between measurement intervals. 

Figure 3.6: Performance of equalizing filters for a 32-bit bus. 
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Figure 3.7 shows eye diagrams for the bus with no equalization and with 12 x 10 
filters synthesized by the LP and LSQ design methods. 

We make several observations. First, the filters designed using the LP methods 
outperform their LSQ counterparts with the same width and length in all cases 
terms of eye height, overshoot, and other eye-mask parameters. This shows the 
advantage of optimizing the eye mask directly rather than approximating it with 
mean-square error. Second, the LP filters have much lower overshoot than their 
LSQ counterparts. Furthermore, the overshoot for the LP filters can be greatly 
reduced with only a small penalty in the eye height, and this penalty is smaller for 
larger filters. The overshoot of the LSQ filters can be reduced by including sample 
points outside of the measurement interval in the objective function. However, LSQ 
eye height decreases significantly as overshoot is reduced. For example, compared 
with no constraints on transition taps (LSQ(c)), by setting the weight to 0.4 for 
transition taps (LSQ(d)), the 12 x 10 filter designed by the LSQ method has a 
much smaller overshoot (189% vs. 463%). However, the eye height decreases 
from 75% (LSQ(c)) to 61% (LSQ(d)). Naturally, signal integrity improves as the 
filter width and length are increased, and the improvement decreases as the filter 
grows larger. For the bus and bit-rate considered, twelve-tap filters with a width, 
Wfir, of eight or ten appear to be promising designs. Conversely, narrow filters 
afford little improvement in signal integrity. We synthesized filters for independent 
pre-emphasis for each line (war = 1), and simulated the bus with no filter. In all of 
these cases, the eye height was zero. 

The filters designed by the LP method require much less overdrive from the 
filter than those designed by the LSQ method. For example, the maximum filter 
output for the LSQ 8 x 8 filter is 6.53 times the target value, whereas the maximum 
filter output for the 8 x 8 filters designed by the LP methods are 1.639 and 2.227 
times the target value respectively. 

Another way to evaluate the performance of an equalizing filter is its maximum 
operating bit rate. We define the maximum operating bit rate as maximum bit rate 
at which the height of the eye is slightly greater than 50% and the eye width is 
over 25%. The bus impulse response matrix B is different for different bit rates; 
hence, filter synthesis was done for each bit rate we examined. The maximum bit 
rate for the bus without a filter is 333MHz. Single line pre-emphasis using a 12 
tap filter designed by the LP method increases the bandwidth to 500MHz. Nearest 
neighbor crosstalk cancellation (ujfir = 1) raises the bandwidth to 800MHz. With a 
12 x 10 filter designed with the LP method, the channel has a maximum bit rate of 
approximately 2.5GHz; Figure 3.7(D) shows the eye diagram. With a 12 x 10 filter 
designed by the LSQ method, the system has a maximum bit rate at approximately 
2GHz; the eye is completely closed at 2.5GHz. 
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Figure 3.7: Eye diagrams at 2Gbits/sec/wire. A. without filter. B. with 12 x 10 
equalizing filters designed by the LSQ method without constraints on transition 
taps. C. with 12 x 10 equalizing filters designed by the LP method with con­
straints on overshoot between measurement intervals. D. An eye diagram at 
2.5Gbit/sec/wire with a 12 x 10 equalizing filter designed by the LP method with 
constraints on overshoot between measurement intervals. 
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3.6 Summary 

In this chapter, we formulated objective functions for optimal pre-equalization syn­
thesis using parameterized eye masks. These objective functions give the designer 
great flexibility for specifying trade-offs between eye height, eye width, and other 
details of the eye shape. We presented an LP-based approach for synthesizing 
optimal pre-equalization filters for crosstalk cancellation for off-chip buses. In 
Chapter 5, we will present a problem-specific LP solver to solve these LPs very 
efficiently. 

Filters designed by our method can increase bus bandwidths by more than a 
factor of seven compared with a bus with no filters and more than a factor of three 
compared with a bus with only pre-emphasis and nearest neighbor crosstalk can­
cellation. The ability to directly specify critical parameters such as eye masks, 
output magnitude, and overshoot is a clear advantage of our approach. This is 
in contrast with the commonly used least-squares (LSQ) optimization techniques 
for filter design where error is minimized only in the average sense. Accordingly, 
filters designed with our method significantly outperform LSQ designed filters in 
terms of eye height, overshoot, and other eye-mask parameters. 
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Chapter 4 

A Unified Optimization 
Framework 

In Chapter 3, we presented crosstalk cancelling pre-equalizers for single-ended, 
unidirectional links with relatively simple channel models. This chapter extends 
this approach to jointly optimize pre-equalizers, decision-feedback equalizers and 
filters for near-end crosstalk cancellation. Moreover, this chapter addresses a com­
prehensive set of practical issues including the incorporation of differential and 
bidirectional links, and multi-level signalling. The examples in this chapter in­
clude packaging and connector parasitics, demonstrating the use of our methods 
with detailed models of realistic buses. We present simulation results for on-board 
links as well as backplane links connecting two daughter cards. 

High-speed links often use pre-equalization by the transmitter, decision feed­
back equalization by the receiver, and near-end cross-talk cancellation for bidirec­
tional links. Figure 4.1 shows a w-bit bidirectional link with differential signalling 
and these three forms of equalization. Each transceiver consists of a digital block 
that transmits and receives data, a pre-equalizer (PE), an equalizer for near-end 
crosstalk cancellation (NE), and a decision-feedback equalizer (DFE). We include 
the differential drivers and receivers in the channel model as well as the pack­
ages, PC board buses, and connectors that provide the connections between the 
communicating chips. Each of the three equalizers brings its own strengths and 
weaknesses to the system, and designing an optimal channel requires managing 
these trade-offs effectively. For example, the PE filter can improve far-end sig­
nal integrity by boosting the high-frequency components of the transmitted signal; 
however, this exacerbates near-end crosstalk and places greater demands on the NE 
filter. The DFE can correct for many of the same effects of crosstalk and ISI as the 
pre-equalizer, without incurring the PE's downsides of increased power consump­
tion and near-end crosstalk. However, the DFE is sensitive to errors in the received 
data stream, and creates a tight feedback cycle that is not present in the other filters. 
Thus, practical designs make use of pre-equalization, DFE and near-end crosstalk 
cancellation. This chapter presents a method for synthesizing optimal combina­
tions of pre-equalization, decision-feedback equalization and near-end crosstalk 
cancellation filters. We show that the synthesis problem remains a linear program. 
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Left tranceiver Channel Right tranceiver 

Figure 4.1: A bidirectional link with equalization filters. 

As in the previous chapter, we begin by stating assumptions that simplify the 
presentation. Section 4.2 describes our mathematical programming formulation 
for optimizing signal integrity. In Section 4.3, we demonstrate our approach by ex­
amining the symbol rates at which various eye heights can be achieved for several 
channel configurations. We show how this allows us to quickly evaluate different 
designs for high-speed buses. Finally, Section 4.5 presents a possible hardware 
implementation of the filters and shows the area and latency costs of the filters are 
acceptable. 

4.1 Simplifying Assumptions 

We make the same assumptions as in Section 3.2 and add two more: 

1. The channel is symmetric and transceivers on both ends have the same char­
acteristics. 

2. The equalized channel is error free, a.k.a, the inputs to the DFE match the 
transmitted data stream. 

A symmetric channel means that the channel response from left to right is the 
same as the channel response from right to left. Extending this framework to the 
non-symmetric case is straightforward. The error-free assumption is a simplifying 
assumption that allows us to obtain a linear link model (see Section 4.2). We will 
revisit these assumptions in greater detail in Section 4.4. 

4.2 Eye-Mask Optimization as an LP 

This section shows how to jointly synthesize optimal pre-equalization (PE), deci­
sion feedback equalization (DFE) and near-end crosstalk cancellation (NE) filters 
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Figure 4.2: A. Block diagram for the link from left to right. B. Error-free assump­
tion leads to a linear link model. 

to maximize eye height, optimize eye masks and minimize near-end crosstalk for 
simultaneous bidirectional signalling over differential pairs. 

As before, let r t a p be the number of sample times per tap time, and let rsym 

be the number of sample times per symbol time (see Figure 3.5). Note that, for 
two-level signalling, the symbol rate is the same as the bit rate. In the examples in 
this thesis, we use — 4 and r Sym — 8 (i.e. two taps per symbol). We define 
M s y m as the set of integer multiples of r s y m . 

Consider a link as shown in Figure 4.1. Each client transmits wunk symbols 
per symbol period. We call the width of the link and say that the channel 
has wiink lines. Using differential signalling, the bus between the transceivers has 
2wiink wires. In the following, we refer to each differential pair as simply a "pair"; 
thus, the bus has pairs. 

With the assumption that the channel is symmetric, we can restrict our attention 
to the channel from left to right. A block diagram for the left to right channel is 
shown in Figure 4.2A. In Figure 4.2, BuS[e to denote far-end impulse response 
of the bus: the response at Out given an impulse at lri|_. Likewise, the near-end 
impulse response, B u s n e is the response at Out given an impulse at IriR. 
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Consider the signal received at Out, the input of the threshold circuit in the 
right transceiver. We exploit the linearity of the channel and filters to break the 
signal received at Out into several independent components. Let Out(j, s) be the 
value received on line j at time s. We define: 

Outfe: (the far end response) the data transmitted by the left-transceiver convolved 
with the impulse responses of the PE filter and the far-end response of the 
channel. 

Outdfe: (the DFE filter output) The data received by the right-transceiver con­
volved with the impulse responses of the DFE filter. 

Outnext: (near end crosstalk) The data transmitted by the right-transceiver con­
volved with the near-end response of the channel. 

Out n e: (the NE filter output) The data transmitted by the right-transceiver con­
volved with the impulse response of the NE filter. 

Thus, Out = Outfe + Out d f e + Out n e x t + Outn e. Note that, for a given input se­
quence, the received signal Out is not linear in the filter coefficients due to the feed­
back loop and the thresolding block (see Figure 4.2A). To obtain a linear model, 
we assume that the link is error free; thus, the received data stream matches the 
transmitted data stream. With this assumption, we conceptually break the feed­
back loop by using an equivalent model with a delayed version of transmitted data 
as the input to the DFE filter as shown in Figure 4.2B. With this modified model, 
the received signal Out is linear in all filter coefficients. 

Let / p e , /dfe, and / n e be column vectors of the filter coefficients for the PE, 
DFE, and NE filters respectively. Let Outfe(j, s) be the component Outfe for line j 
at time s. Consider a scenario where a value of +1 is output by the left-transceiver 
on line i for one symbol period starting at time 0 and a value of 0 is sent at all other 
times and on all other lines. We define a column vector gfe(i, j, s) such that for this 
scenario the response at Out on line j at time s is given by gfe(i, j, s)T fpe. We call 
gte the far-end bit response of the channel. The vector <?fe is readily derived from 
bus impulse or bit responses (see Section 3.4.2). Let v(i, s) G ±1 be the data value 
sent on line i at time s. By the assumption that the channel is linear, we have 

Out f c ( j , s ) = E » ( * . * )Sfc(M.s + *)I7pe (4-1) 
i = l fceMsyln 

We define g^e, gnexi, and gne in the equivalent manner. Note that gfe and gnexl 

depend on the response of the bus whereas gafe and gne do not. The convolutions 
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for calculating Outfe and Outdfe use data from the left-transceiver, whereas the 
convolutions for Out n e x t and Out n e use data from the right. 

Let So be the target delay for the channel. As in Section 3.4, we choose 5o to 
be slightly larger than the LC delay of the channel. Thus v(i, s — 5o) is the desired 
value for Out(i, s). As in Section 3.4.2, we focus on the case where v(i, s — 5Q) = 
+1, and express the response of the channel as an "undisturbed" component plus a 
sum of "disturbances." The undisturbed response, u(j, s) is 

u(j,s) = 9te(j,J,S0 + s ) r / p e (4.2) 

We first consider disturbances arising from other bits sent by the left-transceiver 
including the contributions of the DFE filter. Choosing the signs of the other data 
bits to result in positive disturbances, the maximum far-end response, Outfar,max, 
and maximum far-end disturbance, dfe, are 

Outfar,max(j, s) = Y 2\2 \9k(h3,6o + s + k)T+gife:{i,j,6o + s + k)T fitc\ 
t = l fc6MSJm 

dfe(j, S) = Outf a r,m a x(j, s) - u(j, s) 
(4.3) 

We now consider near-end interference. The contribution of Out n e x t + Out n e is 
purely a disturbance. By reasoning equivalent to the far-end case, we get 

t"link 

dne(j,s) = Y, 2\2 | s " " ' ( i ' i ' ( 5 o + s + fe)r/pc + g„c(i, j,5o + s + k)T / „ e | 
i = l fceMsym 

(4.4) 
Here we used the assumption that the transceivers and channel are symmetric by 
assuming that / p e is the pre-equalizer for the left transceiver in equations 4.2 and 
4.3 and for the right in equation 4.4. This assumption could be removed by using 
separate filter coefficient vectors for the left and right transceivers. 

We pessimistically assume that the left and right transceivers have independent 
clocks; thus, there is no fixed alignment between the period of the near-end dis­
turbance and the received data. Instead, we assume that the worst-case near-end 
disturbance could happen at any time during the sampling interval. We overload 
dne and write dne(j) for the worst case near-end disturbance on line j with 

dne(j) = maxs6[o...r!ym]dne(j,s) 
(4.5) 
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Equations 4.2, 4.3 and 4.5 yield the mathematical program for unified opti­
mization for PE, DFE and NE filters for bidirectional signalling: 

min r\ s.t. 
/pc,/dfci/ne 

V(s, a) £ L. Vj £ [1... Wiink], 1 + dfe(j, s) - u(j, s) + dat{j) < arj 
A V(s, a) S f/. Vj e [1... tuiink], dk(j, s) + u(j, s) - 1 + dne(j) < ar] 

(4.6) 
We note that u, dfe, and d n e are all linear in the filter coefficients. Thus, this is a lin­
ear programming problem. The optimization problem for unidirectional signalling 
is the same with dne(j) = 0. 

4.3 Evaluation 

This section presents results using the filter synthesis approach described in the 
previous section for realistic channels. We evaluate the synthesis procedure by 
exploring trade-offs and limitations for high-speed off-chip buses. 

4.3.1 Channel Models 

We considered two basic channel configurations as shown in Figure 4.3: a 10 cm 
point-to-point interconnect between two chips on the same PC board; and an in­
terconnect across a 50 cm backplane. For the inter-board link, we used a model 
provided by Teradyne for their eight-row, VHDM-HSD connector. We modelled 
each DAC output as linearly slewing from its old value to its new value over the 
tap period. This reflects the limited slew-rate of real DACs and avoids introducing 
unwanted high-frequency energy into the channel [23]. 

All PC board buses considered here use 6 mil traces with 8 mil spacing in 0.5 
oz copper with ground planes on each side of the signal plane based on a design 
from Rambus [39]. We used the 2D field solver of HSPICE to obtain an electri­
cal model for this bus. The bus has a 100f2 nominal differential impedance. We 
assumed a manufacturing tolerance of ±10% for the actual impedance, and ex­
tracted models with worst-case mismatches. All differential pairs are terminated 
with lOOfi resistors. 

For our initial experiments, we used the ball grid array model from Dally and 
Poulton [18, p. 39]. Our initial experiments showed that the chip package was 
the critical bottleneck for both configurations due to the 5 nH of chip-to-package 
and another 5 nH of board-to-chip inductances. After consulting with designers 
of high-speed links in industry [29], we created a model where these inductances 
were reduced to 0.5 nH and reduced the package capacitances by a factor of 3. 
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Figure 4.3: Off-chip channel models. 
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Inter-board Intra-board 
bi uni bi uni 

PI, w/o filters 0.5 1.1 1.2 3.5 
PI, w. filters 1.7 3.0 2.5 6.0 
P2, w/o filters 0.5 1.4 2.5 10.0 
P2, w. filters 4.0 5.0 12.5 > 25.0 

bi = bidirectional link; uni = unidirectional link; 
PI = original, Dally and Poulton BGA model; 
P2 = L/10, C/3 BGA model. 

Table 4.1: Maximum Bit Rates (in Gb/s/pair/direction) for 50% Eye Height 

While we believe that these models provide a fairly realistic model for high­
speed links, it is important to note that we did not include ground and Vdd bounce, 
timing jitter, or PC board vias. Thus, with a real, physical link, the actual eye 
heights would be lower than the ones we report, and the effects of vias will be es­
pecially pronounced at high data rates. However, by using the same models for the 
channels with and without filters, we believe that our results realistically indicate 
the merits of our equalization filters and our unified optimization framework. 

4.3.2 Simulation Results 

Table 4.1 shows the bit rates that can be achieved for a variety of link configurations 
with four differential pairs. All filters were optimized using the parameterized eye 
mask from Figure 3.3. For all of the filters, the tap rate is twice the symbol rate. 
The pre-equalization filters compute their outputs for each differential pair based 
on the data input for that pair and for each of its immediate neighbors. We set the 
length of the filters to values that appeared to give good trade-offs between filter 
complexity and signal integrity. For inter-board links, the pre-equalizer has six taps 
(i.e. three symbol times), and for intra-board links it has four taps. 

The decision feedback equalizer only considers the current line. Like the pre-
equalizer, the DFE filter has six taps for the inter-board links and four taps for 
the intra-board links. We assume a latency of two symbol periods in the DFE; 
thus, it can only correct for ISI and reflections that occur after that delay. The 
DFE, together with the pre-equalizer, covers most of the bit response of the link to 
cancel ISI caused by high-frequency losses and reflections. We experimented with 
adding an extra set of taps to the DFE corresponding to the delay for reflections in 
the backplane, but the improvement that we saw in signal integrity was negligible. 
For our simulations, the DFE produces an output for every tap period - this allows 
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eye- Inter-board Intra-board 
height bi uni bi uni 

50% (2-PAM) 4.0 4.0 12.5 > 25.0 
83% (4-PAM) < 1.0 3.3 2.5 15.0 
93% (8-PAM) < 1.0 < 1.0 < 1.0 8.0 

Table 4.2: Maximum Bit Rates (in Gb/s/pair/direction) for Various Eye Heights 

us to construct the eye-diagram for the full sample period. We note that in an actual 
implementation, the DFE only needs to produce an output at the sample time for 
each symbol. 

Reflections are particularly severe for the bidirectional links, and we designed 
the near-end (NE) filters with multiple segments corresponding to the delays of 
the principal reflections. For the inter-board links, the NE filters have four seg­
ments. The first two segments have six taps and consider nearest neighbors. The 
last two have six taps but only consider the line itself. The NE filters for the intra-
board links have two segments. Both segments have four taps and consider nearest 
neighbors. For the inter-board NE filters the last two segments can ignore neigh­
boring lines because there is sufficient high-frequency attenuation in the backplane 
to render such coupling negligible. 

In our initial designs, near-end crosstalk severely limited the performance of 
the bidirectional links. This is because the peak of the near-end interference can 
occur anywhere in the received eye. To mitigate this, we introduced an integrating 
receiver [59, 75] at the input of the thresholding element. We modelled it with 
a simple convolution over four consecutive sample points, using weights of 1/8, 
3/8, 3/8, and 1/8. This allowed bandwidth improvements of roughly 10% for 
most of the bidirectional scenarios and a much larger improvement of 60% for the 
intra-board link with the reduced inductance package. In all cases, the integra­
tor reduced the performance of the unidirectional links. Thus, we report results 
for bidirectional links with an integrating receiver and with a simple, thresholding 
receiver for the unidirectional links. 

Rather than picking fixed weights for the integrator, it would be desirable to 
have them included in the optimization problem. We note that this is no longer a 
linear optimization problem because the received signal depends on the product of 
the pre-equalizer coefficients and the integrator weights. Optimizing the integrator 
weights is a topic for future research. 

From Table 4.1, we see that the equalizing filters double the channel bandwidth 
in all cases with even greater gains when using the low inductance package. Due to 
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near-end crosstalk, bidirectional signalling always has a lower one-way bandwidth 
than unidirectional signalling. However, bidirectional signalling simultaneously 
sends and receives data across the same transmission channel. It effectively dou­
bles the maximum throughput for a given pin-count when the workloads on both 
directions are equal. Therefore, to obtain the peak effective throughput, we need 
to double the numbers given in Table 4.1. Alternative to simultaneous bidirec­
tional signalling, we can use a unidirectional link for each direction. For example, 
PCI-express uses two unidirectional serial links to realize bidirectional communi­
cation [50]. This provides lower latency and greater total bandwidth at the cost of 
greater pin and wire counts. The better BGA package provides greater bandwidth 
than the old BGA package, especially in the case of intra-board links. For inter-
board links, with better BGA packages, the connector between the line card and 
the backplane becomes the bottleneck that limits the bandwidth. 

Table 4.2 explores the trade-off between symbol rate and eye height. All results 
are with the reduced inductance package. If a channel with two-level signalling 
achieves an eye height of (100 — E/(N — 1))%, then a channel with A^-level sig­
nalling and the same filters can achieve an eye height of (100 — E)%. This is 
because we assume eye masks that constrain overshoot and undershoot symmetri­
cally. Thus, 83% eye height for two-level signalling provides 50% for four-level, 
and a 93% eye height for two-level signalling provides 50% for eight-level. Be­
cause we are ignoring ground bounce, and clock jitter, these are optimistic esti­
mates, especially for multi-level signalling. In all cases, we constrained the maxi­
mum output of the filter to be at most three times the target value. Greater signal 
integrity can be achieved in the unidirectional case with greater overdrive, but we 
regarded that the cost in power and the need for greater DAC resolution preclude 
such designs. 

Table 4.2 illustrates how a designer can use our synthesis procedure to explore 
design trade-offs. For example, it shows that for the channels that we consid­
ered, multi-level signalling is never advantageous for a bidirectional link - the to­
tal bandwidth of the link is much less than can be achieved with simple, two-level 
signalling. For unidirectional links, four-level signalling is a more viable alterna­
tive. A designer would have to trade-off the advantages of a lower symbol rate 
against the increased complexity in the receiver circuitry. Moreover, in all cases, 
eight-level signalling is never advantageous compared with four-level signalling. 
We note that because our models do not include PC board vias, the extremely high 
data rates obtained for intra-board, unidirectional links should be taken with many 
grains of salt. Even in this case, we see the advantage of automatic filter synthesis 
- it allows us to quickly identify scenarios where more detailed modelling of the 
channel is needed. 

We also tried separate synthesis of the filters. We first synthesized an opti-
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mal pre-equalizer assuming no DFE or NE filters, and then synthesized the other 
two filters including the pre-equalizer in the channel. The unified approach per­
formed much better in the bidirectional case when the filter output magnitude was 
unconstrained. This is because the pre-equalizer generated by separate synthesis 
would drive very high slew-rate transitions into the channel causing severe near-
end crosstalk. Reducing the maximum filter output magnitude mitigates this effect. 
However, it also reduces the performance of the pre-equalizer. Hence manual ad­
justments and multiple iterations are needed to achieve good performance with 
separate synthesis. The unified optimization automatically finds the best balance 
between the filters and achieves eye-heights 5-10% greater than those for separate 
optimization. Thus, in addition to producing better filters, the designer can explore 
a simpler design space without losing optimality. 

Our filter design times range from less than one minute for a unidirectional link 
with four differential pairs, to about two minutes for a bidirectional link with four 
pairs and about forty minutes for a bidirectional link with 16 pairs. These times 
are for a 900MHz, UltraSparc III processor. The time is roughly equally divided 
between setting up the linear program and solving it. As described in Chapter 5, 
the LP solver has been optimized for filter synthesis. The LP set-up code has not 
been carefully tuned and there are likely opportunities for further efficiency gains. 

4.4 Generalizations 

In Section 3.2 and Section 4.1, we made several assumptions to simplify the pre­
sentation. We now revisit each of these assumptions. 

The response of the channel is linear. Linearity is what allows us to con­
sider the responses from each wire and each bit-time separately. Fortunately, linear 
models are very accurate for off-chip interconnect. We do not see this as a major 
limitation. 

Each differential pair is used to convey two-level signals. As noted in Sec­
tion 4.3, our methods extend directly to multi-level signalling because we consider 
both overshoot and undershoot. 

The eye mask is symmetric and the same for every differential pair. Our 
methods work with asymmetric eye masks and with different eye masks for each 
link of the channel. These changes would be reflected in the objective function. 
For example, with different eye masks for each link of the channel, let rjj be the 
eye-mask parameter for link j. A simple way to deal with different eye masks for 
each link of the channel is to introduce a global variable -q, such that, for every link 
j, Vj < V- The final LP would remain the same with one additional constraint for 
each link of the channel. 
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The channel is symmetric. As noted following equation 4.4, this assump­
tion can easily be removed. Disturbances from the two transceivers would have 
to be considered separately. This roughly doubles the number of variables and 
constraints in the LP, but the structure remains the same. 

The link is error-free. In practice, errors may occur, and following an error, 
the DFE filter may corrupt signal integrity rather than improve it. In practice, the 
DFE filter output is typically small enough to prevent cascading errors from be­
coming a serious issue. Consider a bus with an error-rate of 10~15/symbol when 
the data input to the DFE is correct. For the sake of an example, we will assume 
that the error rate increases to 1 0 - 6 when the DFE is processing an erroneous bit. 
Because the higher error rate only lasts for a few symbols, the impact on the over­
all error rate is negligible. More generally, our linear programming formulation 
provides a natural opportunity for restricting the magnitude of the DFE output to 
ensure that cascading errors are not a problem. 

The filter synthesis problem is a linear program. As discussed in Sec­
tion 3.1, our linear programming formulation corresponds directly to eye masks. 
While we parameterized the eye mask using a single scaling factor, n, we note 
that the linear programming framework provides a great degree of flexibility in 
formulating the objective function. Nevertheless, there are some natural aspects of 
filter design that do not fit into our linear programming framework. In particular, 
optimizing cascaded filters (such as the integrators discussed in Section 4.3) and 
minimizing the power output of the transmitter require quadratic formulations. We 
examine these issues further in Section 7.1. 

4.5 Hardware Implementation 

We briefly consider the practicality of implementing the equalization filters de­
signed in Section 4.3. Once the size and the oversample rate of the filter are 
decided, the filter implementation can use standard FIR designs [17]. The filter 
synthesis problem amounts to determining the values of the filter coefficients. We 
do this using the optimization methods described in the previous sections. These 
coefficients can then be loaded into the FIR hardware, for example by using a scan-
chain. 

As an example, we consider an implementation based on pipelined adder trees 
to compute the output for each wire. As shown in Figure 3.4, the filter can be 
implemented as a separate filter for each wire that receives inputs for the data to 
be transmitted on the wire itself and a few of its nearest neighbors. Figure 4.4 
shows a hardware implementation framework suitable for the filters described in 
this thesis. It uses an interleaved DAC as described in [17,71]. The clock generator 
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r-1 

(a) FIR filter with interleaved DAC 

FIR, 

(b) Filter for each DAC 

Figure 4.4: An implementation of an equalizing filter 
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produces phases for enabling each DAC. A current summing circuit combines the 
DAC outputs to produce the filter output, v. For simplicity, we show a design 
where the interleaving factor for the DAC is the same as the oversampling rate of 
the filter, r. By using a separate filter for each DAC, the DACs are incorporated 
into the channel, and filter coefficients can be adjusted to compensate for variations 
between the DACs. 

Because the filter is linear, we can compute the contributions to the output 
arising from each input separately. The output of a FIR filter for a single DAC 
channel includes a delay, z~l to align its output with the clock phase of its DAC. 
Figure 4.4(b) shows an implementation of a FIR filter for a single DAC channel. 
The filter coefficients, Ctj correspond to the contributions of an input on wire j 
after a delay of t tap times: 

min(t,r) 

<U,j = Y F(t- g,j) (4.7) 
s=o 

The values of x are either 0 or 1, thus the multiplications are simple AND gates. 
We now estimate the area cost and latency cost of our filters. For a filter of size 

rrcfir x wJn r, the number of filter coefficients per wire is mar(2u>fir + 1). The filters 
for the wires on the edges of the bus will have smaller number of filter coefficients. 
We will ignore the edge effects for the estimation below. If we consider an over-
sampling rate of r, the filter for each DAC needs to sum up nfir(2it;fir + 1) filter 
coefficients to compute the input for the DAC, where n n r = m^/r is the length of 
the filter in bit time. This requires r(nfir(2w;f;r + 1) — 1) full adders for each wire. 
For example, if we consider an oversampling rate of 2 and a filter of size 6 x 1 , and 
8-bit data paths for 8-bit DACs, this design requires 128, 1-bit adders. Each 1-bit 
adder can be implemented with less than 40 transistors. Thus, a 6 x 1 filter can be 
constructed with ~ 5K transistors per output pad. The total area cost per output 
pad is less than 20K transistors for the bi-directional inter-board links presented 
in Section 4.3 which employ pre-equalization, decision-feedback equalization and 
near-end crosstalk cancellation (see Table 4.5). Notice that this is a straightforward 
implementation without any effort to reduce the number of transistors. With care­
ful design, we believe the area could be reduced further. For a chip with 100-200 
million transistors and a few hundred high-speed I/Os, our filters can double the 
output bandwidth for a few percent of the total chip area. 

Furthermore, the filter's latency is very small. The design shown here requires 
an adder-tree of depth roughly log3/2(4wfir + 2). With simple retiming techniques, 
the latency cost can be reduced to roughly log3/2(2u;fir + 1). For example, for a 
6 x 1 filter, that is 2 to 3 adder delays. Thus, it is reasonable to estimate that the 
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Filter Filter Size # Filter Coefficients # 8-bit Adders 
PE 6 x 1 18 16 

DFE 6 x 0 6 4 
NE, segment 1,2 6 x 1 18 16 
NE, segment 3,4 6 x 0 6 4 

Table 4.3: Hardware cost of the equalization filters for the bi-directional inter-board 
links presented in Section 4.3. 

filter adds less than 500ps to the latency of the channel for an implementation in a 
0.13/ii process. 

4.6 Summary 

Chip clock rates continue to grow at a much faster rate than improvements in off-
chip interconnect. To bridge the gap, designers are using increasingly sophisticated 
on-chip equalization filters. To achieve maximum bandwidth, designers need to 
jointly synthesize these filters. In this chapter, we presented a unified approach 
for synthesizing optimal filters for three of the most common forms of equaliza­
tion: transmitter pre-equalization, decision-feedback equalization, and near-end 
crosstalk cancellation. 

To illustrate the use of our methods, we examined the design of bidirectional 
and unidirectional channels for both intra-board and cross-backplane communi­
cation. Our models included chip packaging parasitics, impedance mismatches, 
dielectric and skin-effect losses, and connector parasitics. The optimal filters sig­
nificantly improve channel bandwidth in all cases. Moreover, automatic synthesis 
of optimal filters allows early identification of bandwidth bottlenecks and rapid 
evaluation of design trade-offs such as the use of multi-level signalling and inte­
grating receivers. 

We briefly examined the area and latency costs of the filters synthesized in this 
chapter. The significant bandwidth advantages, the acceptable per-pad transistor 
count and the low added latency demonstrate the practicality of these filters. 



60 

Chapter 5 

Implementing the Optimization 
Algorithm 

Chapter 3 and 4 formulated the optimal equalization filter synthesis problem 
as a linear programming (LP) problem. In this chapter, we describe an efficient 
algorithm for solving the resulting LPs. The size of the LPs presents a computa­
tional challenge. The number of variables and constraints grows quadratically with 
the number of links in the bus. The examples presented in Section 4.3 have over 
10,000 variables and over 15,000 constraints for a bidirectional bus with four dif­
ferential pairs. With sixteen pairs, the LP has over 100,000 variables and 200,000 
constraints. To solve these large LPs efficiently, we implemented a customized ver­
sion of Mehrotra's interior-point, predictor-corrector algorithm [46, Section 14.2] 
using MATLAB [65]. 

To simplify the presentation, we present the solution for channels with pre-
equalizers. For more general cases as presented in Chapter 4, the algorithm de­
scribed in this chapter applies in a straightforward fashion. Section 5.1 describes 
the detailed structure of the LP and shows that the large number of LP variables 
is primarily due to the number of disturbance terms. Section 5.2 briefly describes 
Mehrotra's interior-point method. The critical step for the performance of Mehro­
tra's interior-point method is the solution of a linear system derived from the con­
straint matrix. Section 5.3 presents our efficient linear system solver that exploits 
the sparsity structure of our particular constraint matrix and analyzes the time com­
plexity and space requirements of the algorithm. Section 5.4 analyzes the numer­
ical stability of the linear system solver. Section 5.5 examines the time complex­
ity and space requirements of the least-squares (LSQ) approach presented in Sec­
tion 3.4.3. 

5.1 The Linear Program 

Given a bus's bit responses and an eye-mask specification, we set up the linear pro­
gramming problem according to the formulation presented in the previous chapters. 
In addition, we note that in practice, filters have limited overdrive ability. Thus, we 
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augment the constraints from equation 3.27 with constraints to limit the magnitude 
of the filter output on each wire at each tap time. The final linear programs have 
the following constraints: 

• Constraints to Compute the Absolute Values of the Disturbances: 

\g(i,j,s)Tf\=d(i,j,s) (5.1) 

As defined in Section 3.4.1, g(i,j, s) is the vector such that gT(i,j, s)f is the 
response on wire j at time s to a single bit input on wire i given filter / . The g 
vectors can be readily derived from the bus bit responses (see equation 3.23). 
To obtain a linear formulation, we turn the equality constraints on absolute 
values above into the following two linear inequality constraints: 

g(iJ,s)Tf < d(i,j,s) 
-g(i,3,s)Tf < d(i,j,s) T f / , ^ (5-2) 

Note that we are effectively minimizing the maximum total disturbance (see 
Section 3.4.2), which is the sum of the absolute value of each individual 
disturbances, i.e. the l\ norm of the disturbance vector d. At optimality, one 
of the two constraints from equation 5.2 for each component of d must be 
tight; otherwise, we would be able to further improve the objective function. 
Hence, with these two constraints, at the optimal vertex, the components of 
d are the absolute values of the disturbances. 

As defined in Section 3.4.2, Gd denotes the set of g(i,j,s) vectors such 
that the rows of Gd compute the disturbances. In matrix form, equation 5.2 
becomes 

-Gdf < d ( 5 ' 3 ) 

Let ^disturb denote the number of disturbances (i.e. the length of d) and 
denote the number of filter coefficients (i.e. the length of / ) ; thus, Gd is 
^disturb * fcfir- The number of filter coefficients, fc„r> is roughly ifbus^flr(2wfi r-t-

1). Note that, ^disturb grows quadratically with the width of the bus. We have 
one disturbance term for each pair of wires, each sample time, and each sym­
bol time of the channel's bit response. Let fcmaSk denote the number of sample 
points for which the eye mask specifies constraints. The number of bit-times 
that disturb a bus output at any particular bit time is roughly ( n n r + n b u s ) ; 

thus 
^disturb « w g u s f c m a s k ( n f i r - | - n b u S ) (5.4) 

The number of disturbances dominates the number of LP variables. A typ­
ical example with 16 differential pairs has over 50,000 variables and over 
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100,000 constraints. The number of filter coefficients is typically only sev­
eral hundred. 

• Eye-Mask Constraints: 

The eye-mask constraints above are the matrix representation of the con­
straints given in the LP formulation of equation 3.27. The first and second 
constraints determine the maximum overshoot and undershoot respectively. 
The column vector a has length fcmaskWbUs,

 w ^ a n e ^ e m e n t f ° r e a c n m e a " 
surement point for each wire. In the case of nonsymmetric eye masks, the a 
vector for the overshoot constraints is different from the one for the under­
shoot constraints. Likewise, constraints can be specified with a different eye 
mask for each wire without changing the structure of the matrices. Here, we 
assume symmetric eye masks to simplify the presentation. Note that this has 
no impact on the complexity of the LP. Gu has a separate row to compute 
the undisturbed response for each measurement point of the eye mask and for 
each wire; thus, Gu is fcmask^bus x &fir- Each row of W computes the max­
imum total disturbance for that wire and measurement point by summing 
up the contributing disturbances. W is /cmask^bus x ^disturb- ^ e w r ' t e ^biock 

to denote the number of disturbances contributing to a single measurement 
point of the eye mask for a given wire. Thus, fcbiock = ^ d i s t u r b / ( w b u s ^ m a s k ) ~ 

^ b u s ( « f i r + " b u s ) - We group together the rows of Gd for computing distur­
bances on a given wire at a given measurement point. With this permutation 
of Gd, W is block diagonal: 

In Section 5.3, we show that this block structure of W leads to a very efficient 
way to solve the linear program. 

• Maximum Filter Output Constraints: 

F f < P 
-Ff < p (5.7) 

Mp < p 

Guf + Wd < 1 + ar, 
Guf-Wd > 1-at) (5.5) 

= 1, if (i - l)fc biock < j < i fcbtock 

0, otherwise (5.6) 

We can compute the maximum filter outputs for every tap time and every 
wire the same way as we compute the maximum total disturbance: Ff com­
putes the bit responses of the filter / , and at optimality, the elements of 
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the vector p are the absolute values of the filter bit responses. The length 
of p, fcmaxf, is roughly Wbus(2wflr + l)(m f i r + r bit/r t ap). Similar to W, M 
computes the maximum filter outputs for each wire at each tap time by sum­
ming up the contributions from each bit time and each wire. Thus, M is 
^ b u s ^ b i t / ^ t a p x &maxf and has the same structure as W, but with block size 
1 x nfir(2w;fir + 1). Note that F and M are much smaller than Gd and W. 
The parameter p is the limit of filter overdrive ability. 

We combine the constraints above and write the linear program as: 

min ry s.t. 
f4,v,p 

' -I 0 Gd 0 " 
' 0 -I F 0 r 

-I 0 -Gd 0 
0 -I -F 0 * 
w 0 Gu 

—a 
w 0 ~GU 

—a -

0 M 0 0 

d 
V 
f 
V 

< 

0 
0 
0 
0 
1 

(5.8) 

The number of variables in the LP is 

&vars — &fir + ^disturb + ^ m a x f + 1 

and the number of constraints is 

(5.9) 

^cons — 2(fcm a xf + fcojsturt) + ^ b u s ^ m a s k ) + ' l w b u s ? ' b i t / ? ' t a p (5.10) 

Table 5.1 on page 69 summarizes the notation used in this chapter and also the 
matrix dimensions. To illustrate the relative sizes of the matrices, the third column 
of the table shows the values for each variable and matrix dimensions for a small 
example. 

Typically, n b u s > ^ f i r and wbus > w&r in which case ^disturb is much greater 
than fcfir and km£af. This yields that the number of variables and the number of 
constraints are both 0 ( ^ u s n b u s f c m a s k ) . and the total number of elements in the con­
straint matrix is 0(^ u s n^ u s /c^ a s k ) . Fortunately, the matrix is sparse: most of these 
elements are zero. Most of the nonzero elements of the matrix are from matrix 
Gd (see equation 5.8) whose rows are the gT vectors as defined in Section 3.4.2. 
Note that g(i, j, t)T f denotes the bus output on wire j at time t for a single in­
put bit on wire i at time 0. Thus, g(i,j,t) only has nonzero elements at indices 
that correspond to the filter coefficients of wire i. Therefore, Gd has the following 
properties: 
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1. each column of Gd only has l/wbus of its elements nonzero. 

2. the columns of Gd that correspond to filter coefficients of wire i have no 
overlapping nonzero elements with the columns of Gd that correspond to 
filter coefficients of wire k with k^i. 

These sparsity properties also apply to Gu. We show in Section 5.3 that this spar­
sity structure allows us to greatly speed up the computation. 

The matrix Gd has approximately a density of l/u>hUs and contains most of 
the nonzero elements of the constraint matrix. Thus, the overall density of the 
constraint matrix is roughly /cfii/(fcdisturbiubus)- As an example, consider a twelve-
tap pre-equalization filter (mf,r — 12) for a 32 bit bus (u%us — 32), where the 
filter for each wire considers eight neighboring wires in each direction (u>fir = 8); 
the bus impulse response has a length of 4 bit times ((/bus = 4rbjt); there are 4 
filter tap times per data bit time (r^t/r^p = 4); and the eye mask has four sample 
points A;mask — 4. For this example, fedismrbj &fir, ^maxf are roughly 28K, 7K and 8K 
respectively. The linear program for such a filter has roughly 43K variables and 
72K constraints. Thus, the constraint matrix has nearly 3 billion entries, of which 
roughly 24 million are nonzero. 

5.2 Mehrotra's Interior-Point Algorithm 

Primal-dual interior-point methods outperform the simplex method on many large 
problems and perform better than other interior-point methods. Among many gen­
eral algorithmic approaches, the most effective one in practice has proven to be the 
primal-dual infeasible-interior-point approach, including a number of variants and 
enhancements such as Mehrotra's predictor-corrector technique [44]. To solve the 
large LPs formulated in previous chapters, we implemented Mehrotra's interior-
point algorithm. This popular predictor-corrector algorithm is applied to a primal-
dual formulation of the LP, and one of its key features is a clever, adaptive choice of 
the centering parameter [46, Section 14.2]. This section briefly describes Mehro­
tra's algorithm. 

Consider an LP problem in standard form: 

where A £ R m x n , which determines the sizes of other vectors involved. The dual 
problem for equation 5.11 is 

min {c x\Ax — b, x > 0} (5.11) 

max {bTX\ATX + z — c, z > 0} (5.12) 
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Primal-dual solutions of equation 5.11 and 5.12 are characterized by Karush-
Kuhn-Tucker conditions [46, Section 13.1]: 

A, a) = 

where 

ATX + z-c 
Ax -b 
XZe 

= o (5.13) 

X = diag(xi,a;2,. 

Z = diag(zi, z2, • • • ,z„) . 

e = (1,1, . . . , 1) T 

The system of equations 5.13 can be solved by applying Newton's method and 
carrying out a line search to enforce the non-negativity constraints on x and z. Un­
fortunately, often we can only take a small step before violating the non-negativity 
constraints. Therefore, the pure Newton's method with line search converges very 
slowly in this case. Rather than solving the system of equations 5.13, primal-dual 
interior point methods introduce the concept of a central path. The central path is 
parameterized by a scalar r , and consists of a set of points that are solutions of the 
following linear system for r > 0: 

(5.14) 

(x,z) > 0 

The role of r is to enforce that all the complementarity products have the same 
values for all indices. Hence, the central path keeps iterates biased towards the 
interior of the nonnegative orthant (x,z) > 0 . As r approaches 0, the solution 
of the linear system 5.14 approaches the optimal solution (x*,X*,z*) which is 
the solution of the linear system 5.13. In practice, r is defined as the product 
of a centering parameter a and a complementarity gap p, where a e [0,1] and 
p — xTz/n. 

Mehrotra's predictor-corrector algorithm [44, 46] implements the basic ideas 
described above with an additional second-order correction. It consists of three 
major steps. 

Given an initial point (x°, A 0 , z°) with (a;0, z°) > 0, 
For k = 0,1,2,.. . 

' ATX + z - c ' 0 
*(x T , XT,zT) = Ax — b = 0 

XZe re 
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Predictor step: At this step, Mehrotra's algorithm computes the pure Newton 
(affine-scaling) direction (Ax"^, AX"^, As"^) by solving: 

0 AT I ' Axaff ' -rc 

A 0 0 AX"ff = -n 
Zk 0 Xk Az"ff -XkZke 

where rc — ATXk + zk — c, = Axk — b are the residuals of the primal 
and dual feasibilities respectively. 

An adaptive approach for computing the centering parameter a: The algorithm 
calculates this parameter based on the complementarity gap at the current 
point and the gap after taking a hypothetical step in the affine scaling direc­
tion. The step size in the affine scaling direction is calculated by 

a ^ = m i n ( l , min -xk/Axf) 
i:Axf<0 

o ^ = m i n ( l 1 min -zk/Azf) (5.16) 

^ff = (x + oPffAx"ff)T{z + ad

affAz"ff)/n 

The algorithm sets the centering parameter to a = (paj?/p)3. Thus, the 
centering parameter is small when good progress can be made in the affine 
direction and large when the affine direction produces little improvement 
and more centrality is needed. In this way, the choice of a balances the 
competing goals reducing p and improving centrality. 

A corrector step: At this step, Mehrotra's algorithm solves the following equa­
tions to obtain a corrected, centered step direction. It is essentially a step 
based on the Taylor series expansion of the complementarity equations [56]. 
The resulting linear system of equations is 

0 AT I ' Axk ' 
A 0 0 AXk = -n 

Zk 0 Xk _ -XkZke - AXaffAZa$e + ape 
(5.17) 

Finally, the algorithm sets the step size, a, by the same basic approach as 
presented in equation 5.16 and updates (xk+l, A f e + 1 , zk+1) = (xk, Xk, zk) + 
a{Axk,AXk,Azk). 
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The special structure of the left-hand-side matrix in equations 5.15 and 5.17 
enables their reduction into smaller systems with positive definite matrices [46]. 
For example, 5.15 can be reformulated into the following system: 

AA2ATAX = -n + Ai-Z^Xrc + x-afiZ^e) 
Az = —rc — ATAX (5.18) 
Ax = ^x + aiiZ-le- Z~lXAz 

with A = Z~l/2Xl/2 and Az = —z - X~lZAx. The first equation above 
is called the system of "normal equations" for the LP. Recall that X and Z are 
diagonal matrices; thus, the right hand side of equation 5.17 can be computed very 
efficiently. Forming and inverting AA2AT directly requires impractical amounts 
of time and memory for real filter design problems. The next section presents our 
approach to solving this system efficiently. 

5.3 An Efficient Linear System Solver 

The LP given in equation 5.8 is in dual form. Let A denote the constraint matrix 
in equation 5.8, and let x be the column vector [d,p, / , rj\T. Each Newton step of 
Mehrotra'a algorithm solves the linear system corresponding to the normal equa­
tions: 

ATA2Ax = y (5.19) 

where A is a diagonal matrix whose elements are updated with each iteration of the 
algorithm (see Section 5.2). 

The size of the normal equations grows quadratically with the width of the bus 
(see Section 5.1). Even with standard sparse-matrix techniques, the resources re­
quired to form the normal equations and solving the system would render the 
filter synthesis approach impractical. Large linear systems can be solved either 
by using iterative methods or by direct techniques that exploit special properties 
of the specific problem. We explored both approaches. Iterative methods require 
preconditioners, especially for ill-conditioned systems such as those that arise as 
interior-point methods approach optimality. We have not found a suitable precon-
ditioner for our problem. On the other hand, we did find a very efficient way to 
solve the problem directly. We present this direct approach here. 

• Block Computation: 
Due to the size of A, computing the normal equation directly from A would 
use an unacceptable amount of memory. We note that A is formed by distinct 
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M2 M3 

Ms M6 

Figure 5.2: Sparsity pattern of ATA2A. 
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Number of sample points per bit time 8 
rtap Number of sample points per tap time 4 

Wbus Bus width 16 

(/bus The length of the bus impulse response in sam­
ple time 

80 

Wfir Filter width 1 
m n r 

Filter length in tap time 6 

fcmask Number of measurement points defined in the 
eye mask 

8 

fcfir Number of filter coefficients, roughly 
WbusTOfir(2wf i r + 1) 

276 

fcdisturb Number of variables for computing abso­
lute values of the disturbances, roughly 
^bus fcmask ("fir + n b u s ) 

38784 

fcmaxf Number of variables for computing absolute 
values of the filter bit responses, roughly 
Wbus("ifir + r^u/r t a p )(2u;fir + 1) 

368 

fcblock fcdisturb/( fcmask W b u s ) 303 
Gd ^disturb x fcfir, roughly /cdisturbfcfir/wbus nonzeros 38784x276 
Gu Wbus^mask x fcfir, roughly fcmaskfcfir nonzeros 128x276 
W Wbus^mask x ^disturb, only fcdisturb nonzeros 128x38784 
F fcmaxf x fcfir, roughly fcmaxffcnr/wbus nonzeros 368x276 
M ^bus n , i t / r l a p x fcmaxf, only fcmaxf nonzeros 32x368 
Mi fcdisturb x /cdisturb (Block Diagonal) 38784x38784 
M 2 fcdisturb X fcmaxf (All zero) 38784x368 
M 3 fcdisturb X (fcfir + 1) 38784x277 
M 4 fcmaxf x fcmaxf (Block Diagonal) 368x368 
M 5 (fcmaxf) X (fcfir + 1) 368x277 
M 6 (fcfir + 1) X (fcfir + 1) 277x277 

Table 5.1: Notation and matrix dimensions; the third column shows the values and 
matrix dimensions for a 32-wire differential bus. 
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blocks naturally arising from the linear program as shown in equation 5.8. 
Let us define the following matrices based on equation 5.8: 

F=[F 0}; Gd = [Gd 0] ; G u , a = [Gu -a] Gu,b = [Gu +a] (5.20) 

where 0 is a column vector and a is the vector specifying the eye mask that 
we defined previously in the formulation of the LP. The sizes of Gd, Gu, F, 
W and M are given in Table 5.1. We identify blocks M\ through Me as 
shown in Figure 5.2 and defined below: 

M i = Al+A2

3 + WT(Al+A2

6)W 
M2 = 0 
M3 = {Al-A\)Gd + WT{AlGu>a-AlGu>b) 
M 4 = A | + Al + MTA2

7M 
M 5 = (A4 — A2)F 
M6 = G^(Al+Al)Gd + FT(A2+Ai)F + GlaAlGUia + GlbAlGUib 

(5.21) 
where Aj , A2, A3, A4, A5, A6 and A7 are the portions of A corresponding 

respectively to rows of Gd, F, —Gd, —F, GUA, GUtb and M in the constraint 
matrix A (see Figure 5.1). 

Schur Complement Formulation: 
The sparsity pattern of ATA2A is depicted in Figure 5.2. Solving the normal 
equations directly is time consuming. For example, the bottom rows are up­
dated at each iteration of a Cholesky decomposition [67, p. 174].The update 
fills in the bottom rows of ATA2A, destroys the sparsity of those blocks and 
results in a slow, memory intensive computation. Other direct techniques 
suffer similar inefficiencies. The block structure of the matrix lends itself 
naturally to a block elimination procedure. In particular, since (^^r 

is block diagonal (because M 2 = 0), it makes sense to form the Schur com­
plement [22, p. 101] of ATA2A with respect to this 2 x 2 block matrix. This 
yields 

5 x 3 = y3-(M^M^yi + M^M^y2) 
X l = M^yi-M{lM3x3 (5.22) 
x2 = M 4

- 1 3 / 2 - A f 4

- 1 A f 5 S 3 

where 
S = M6 - ( M 3

T M 1 - 1 M 3 + M 5

T M 4 - 1 M 5 ) (5.23) 

and x = [xi; x2; x3], y = [2/1; 2/2; 2/3]- The lengths of Xi and yi are deter­
mined by the matrices M\ to M$. 
The Schur complement S is (fcf,r + 1) x (fcf,r + 1) and is much smaller than 
the original system of normal equations. We note that calculating right hand 
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sides of equation 5.22 can be computed easily as they only involve a small 
number of matrix-vector multiplications and vector additions provided that 
we have the inverses of M\ and M4. Thus, the time complexity is determined 
by the effort required to invert these two matrices and form the Schur com­
plement, S. M4 is much smaller than M i , and the two matrices have similar 
structure. Thus, we focus our attention on inverting M i and computing the 
matrix S. Once S is formed, it is straightforward to solve the corresponding 
system using Cholesky decomposition. 

Efficient Inversion of M i : 
Computing the Schur complement, S, involves inverting M i and M4. Both 
matrices are block diagonal with similar properties (see equation 5.21). While 
M4 is of size fcmaxf x fcmaxf and thus small and easy to invert, M i is fcdisturb x 

fcdisturb- As fcdisturb grows quadratically with the width of the bus, a direct 
inversion is computationally costly. 
From equation 5.21, we note that M i is the sum of WT(A\ + Ag)W and a 
diagonal matrix A 2 + A 2 . Let 

A 2 

A 1 3 
A 2 -
iV56 — 

= A? + A 2 

(5.24) 
A | + A | 

It follows that M i = Al3+WTAl6W. From equation 5.6, W is a fcmaskWbus x 
fcdisturb matrix composed of non-overlapping, stripes of ones as shown be­
low: 

W 

1---1 

0 
1---1 

0 

1---1 

(5.25) 

Each stripe is of length fcbiock = fcdisturb A m a s k t U b u s - From the structure of 
W, it is easy to see that W T A 2

6 W forms a block diagonal matrix, with 
Wbus^mask blocks of size fcbiock- Moreover, all the elements in the i'h sub-
block have the same value, namely A 2

6 ( i , i ) . Thus, each block of M i is a 
rank-1 update of a diagonal matrix. Because A 2

6 is a diagonal matrix, we 
can write V = WTA0Q and obtain 

M i A? 3 + VVT 

This allows us to apply the Sherman-Morrison-Woodbury formula [25] di­
rectly to obtain a formula for M{ 
inversion and low-rank updates. 

-1 that involves merely diagonal matrix 
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M f 1 = A^-A^V(I + V^A^V)^VTA^ 
= A^-A-JVBV^A-J ( 5 - 2 6 ) 

-2T where B — (I + VTA^V)~1 is a kmaskwhus x km-d^Wbus matrix. Let A13 be 
the vector consisting of the diagonal elements of A 2

3 . Note that V r A j ~ 3

2 V = 
A56W/Aj"3

2V7TA56. From the structure of W (see equation 5.25), it is easy 
to see that WA^WT forms a diagonal fcmaskWbuS x fcrnask^bus matrix whose 
i'h diagonal element equals Ylj=i ^ 1 3 ( * * fcbiock + j)- Accordingly, B is a 
diagonal matrix and 

( fcbiock \ 

1 + A 5 6 ( M ) Y Aia(* * fcbiock (5.27) 

and thus, the computation of B thus involves 0(u>busfcmask fcbiock) operations 
which is O(fcdisturb)-

Rather than forming M-f 1 explicitly, we compute B and use formula 5.26 
each place where M-j - 1 is needed in the Schur complement computation as 
described below. 

Forming the Schur Complement: 
We now look at the pieces of the Schur complement from equation 5.22 and 
show how each can be computed efficiently using the formulation for M-j - 1 

described above. The two pieces that dominate the time are the computation 
for MQ and M 3

r M 1

_ 1 M 3 . We combine these two together to eliminate re­
dundant computations. Using the formula for M^1 from equation 5.26 we 
get: 

M 6 - MjM^M3 

= M6- [ M 3

T A - 3

2 M 3 - (VTA^2M3)TB(VTA-3

2M3)} 
(5.28) 

We calculate M 6 - MjA^M3 and ( V T A - 3

2 M 3 ) r B ( V T A f 3

2 M 3 ) sepa­
rately. Next, we expand M 3 and Me according to their definitions in equa­
tion 5.21 to get 

M 6 — M j AJ~ 3

2M 3 = S i - ( S 2 + £ f ) (5.29) 
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where 

51 = GT

d(A2

3 - (A 2 - Al)2Ki)Gd 

+ FT(A2

2 + A2)F^ 
+ GutaA\GUA + G^bAlGUtb ,c o m 

+ (A§G£tt - AlGlb)WA^WT(AlGUta-A2GUtb) 

52 = {AlGla-AlGlb)WA^{Al-A\)Gd 

Note that due to the sparsity pattern of W (see equation 5.25), WA~^2WT is 
diagonal of size fcmask^busx ^ m a s k ^ b u s ; it takes fcbi0Ck calculations to compute 
each element. Accordingly, it takes fcbiock^mask^bus = ^disturb operations to 
compute WA^2WT. Gd is much larger than F, Gu,a ox'GUib (see Table 5.1 
and equation 5.20). Thus, the most computationally intensive component of 
this step is to compute C7j(A 2

3 - (A 2 - A2 )2 A±2)Gd. The A's are diagonal, 
so calculating A 2

3 — ( A 3 — A 2) 2A]~ 3

2 only takes O ^ d i s t u r b ) operations. As 
we described in Section 5.1, each column of Gd only has l/w\,us of its ele­
ments nonzero. Moreover, each column only has overlapping nonzeros with 
approximately k^/w^us columns. Hence, for each row of the final product 
of G^(A2

3 — (A 2 — A2)A^2)Gd, there are only / c f i r / ^ b u s nonzeros and each 
nonzero entry takes /cdisturb/^bus operations to compute. Thus, this step takes 
0(fcfi r fcdisturb/Wb u s ) operations. 

Now we look at the computation of (VT A^2M3)T B(VT A^2M3). We sub­
stitute for M3 using equation 5.21 and get 

VTA^2M3 = (V T Aj~ 3

2 (A 2 - A2))Gd + {VT A^2WT){A2GUA - A2Gu,b) 

Because Gd is much larger than either C7U j a or GUib, the time for this step 
is dominated by the time to compute (VTA^2(A2 - A2))Gd. Note that 
V — WTA5Q and A 5 6 is diagonal; thus, VT has the same structure as W 

shown in equation 5.25. V has exactly d i s t u r b nonzero elements. Multipli­
cation of VT with a diagonal matrix only takes d i s t u r b operations. Likewise, 
multiplying VT by any column of Gd takes at most /cdisturb operations. Gd 

has kfy + 1 columns, thus, the multiplication of V T A ^ 3

2 ( A 3 — A 2 ) with Gd 

takes O(fcdisturb^nr) operations. Note that, here for simplicity, we ignored the 
sparsity of Gd. Hence, this is an upper bound for the number of operations 
for calculating VTA'[2M3. 

Because V T Aj~ 3

2 M3 is fcmasku>bus x (^fir + 1) and B is a diagonal matrix, 
(VTA^2M3)TB(VTA^2M3) can be calculated with 0(fc | r fc m a s k tObus) op­
erations. Combining these observations, we note that typically ^disturb > 
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fcfirfcmaskWbus and conclude (VT A1Z

2 M3)T B(VT Ax% M3) can be completed 
with O(fcdisturbfcfir) operations. 

The time critical steps for forming the Schur complement have been described 
above. Summarizing, we get: 

Calculating B: this can be done with O(fcdisturb) operations. The number of dis­
turbances ^disturb is approximately w2

u sA:m a sic(nbus + " f i r ) - In typical filter 
designs, n b u s > " f i r - Thus, in terms of the design parameters, this step can 
be done with 0 ( ^ u s f c m a s k 7 i b U s ) operations. 

Calculating M 6 — M^A^M^: this requires 0 ( fc| r fcdismrb /w 2

u s ) operations. The 
total number of filter coefficients A;nr is approximately W b u s 7 n n r (2w n r + 1). 
Thus, this step can be done with 0(w2^masknbyiSm\rWf[r) operations. 

Calculating (VTA^M3)TB(VTA];2M3): this can be done with O(Aidisturbfcfir) 

operations, which is 0 ( w b U S f c m a s k r c b u s m f i r W f i r ) -

In practice, filter design parameters such as and w n r are typically small because 
of area and latency costs as well as power consumption of the filters. Thus, for 
wide buses, the total time for constructing the Schur complement is 0(fcdisturbfcfir)> 

which is 0 ( W b U S f c m a s k ^ b u s m f i r W f i r ) . The Schur complement system can be solved 
in 0(k\r) = 0(w^asm\rw\r) operations using Cholesky decomposition. Depend­
ing on the design parameters, either the Shur or Cholesky step can be the critical 
step. For small filters, m| rw; 2

r is small relative to /cmask"bus and constructing the 
Schur complement dominates. For large filters, Cholesky decomposition domi­
nates. In total, the linear system solver runs in 0(/cdisturbfcfir + k\r) time, which is 
0 ( w £ u s m n r W n r ( & m a s k n b u s + "^flr^ir))- Although the running time is cubic in ujbus, 

we note that in practice the width of parallel buses is limited by timing issues as dis­
cussed in Section 2.1. Moreover, note that 0(k\x) is the amount of work required 
to solve a general linear system with k^ independent variables, i.e. a variable for 
each filter coefficient. 

We ran a few examples for buses of various sizes. Table 5.2A shows the the 
size of the LPs, the number of iterations and time per iteration for buses of various 
sizes with a 4 x 4 pre-equalizer. When the width of the bus doubles, the size of the 
LP goes up by a factor of 4. The number of LP iterations stays roughly constant. As 
the width of the bus doubles, the time per iteration also goes up by approximately 
a factor of 4, better than the factor of 8 predicted by the asymptotic analysis above. 
We note that the examples given in Table 5.2 are small in terms of ^bus and may 
not fully reflect the asymptotic regime. Moreover, the run-times using MATLAB 

can only serve as a rough indication to performance, since the routines are not 
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uniformly optimized. To show this, we list the time breakdown for the critical 
steps of the linear system solver in Table 5.2B. 

First, note that the asymptotic behavior of each critical step validates the asymp­
totic analysis. For example, the time for calculating M§ — M-fA^M^ grows 
quadratically with the width of the bus, as predicted by the analysis. The time for 
calculating VTA^3

2M3 grows by approximately a factor of 6, slightly better than 
the factor of 8 predicted by the analysis. Note that the asymptotic analysis for this 
step is an upper bound since we ignored the sparsity of Gd when we estimated the 
number of operations for calculating VT A^2M3. 

Second, as we noted above, the routines are not uniformly optimized. For ex­
ample, in the asymptotic analysis, the Cholesky factorization is one of the critical 
operations. However, in our MATLAB implementation, the Cholesky factorization 
is fairly fast and calculating M 6 - M ^ A ^ M s and {VTA^M3)TB(VTA^M3) 
determines the actual running time. We note that the chol() function in MATLAB 
for full matrices is highly optimized while we implemented the other steps in MAT-
LAB in a straightforward fashion. Moreover, there are other issues such as cache 
and translation look-aside buffer (TLB) misses, paging etc. that will affect the mea­
sured run-times especially for computations that involve large matrices. Clearly 
there are many opportunities for further optimization of our implementation. This 
is an area for future work. 

We now consider the memory requirements of this algorithm. In the steps pre­
sented above, we carefully avoid producing large dense intermediate matrices. For 
example, M3 is large and dense. In step 3, instead of forming M3, we compute 
V T A j ~ 3

2 M 3 directly from the submatrices of the constraint matrix A. The largest 
matrix with the greatest number of nonzeros in the algorithm is Gd- The num­
ber of nonzeros in Gd is approximately 2fcfirfcdisturb/wbUs (see Section 5.1). Thus, 
the amount of memory required by this algorithm is 0(/cnr&disturb/wbus)> w m c n * s 

0{w%uskmisknbusmh-rw6r)- . 

5.4 Numerical Stability 

We briefly address the issue of the numerical stability of our approach. In gen­
eral, applying the Sherman-Morrison-Woodbury formula may be numerically un­
stable [26, 72]. However, in our case the risk is minimal. We assess the stability of 
the approach by a combination of theoretical analysis and empirical measurements 
as follows. 

We invert M i with the Sherman-Morrison-Woodbury formula 5.26: 

M ^ = (Al3 + VVT)-i 
= Au2-^V(I + VTA£V)-WATi ( 5 ' 3 2 ) 
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A. 
Wbus # v a r . # c o n s . # L P iter. time/iter. (s) t i m e / i t e r / c o n s . ( m s ) 

4 2393 4752 18 0.98 0.214 
8 9529 18976 20 1.74 0.092 

16 38009 75840 24 7.20 0.095 
32 141801 303232 17 30.41 0.100 
64 606713 1212672 13 137.84 0.114 

B. 
^ b u s B M6 - M?A^M3 (VTA^M3fB(VTATiM3) Cholesky 

4 <0.01 0.04 0.01 <0.01 
8 0.01 0.12 0.05 <0.01 

16 0.07 0.55 0.34 0.02 
32 0.29 2.49 2.40 0.08 
64 1.21 9.28 14.11 0.56 

Table 5.2: Example filter designs for buses of various sizes with 4 x 4 pre-
equalizers, ribus = 10, rbit = 8, r t a p = 2, and fcmask = 8. Panel B shows the 
time breakdown for critical steps of the linear system solver for a single linear sys­
tem, solve. All numbers reported are in seconds. These times are for a 900MHz, 
UltraSparc III Processor. 
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recalling that each of the A matrices is diagonal with Af 3 = A2 + A3, A§6 = 
A2 + Al and V = WTA56. 

First of all, note that the inversion is done for a symmetric low rank correction, 
VVT, of a positive diagonal matrix, A2

3, whose entries are bounded away from 
zero and do not exhibit fast growth throughout the iteration (figure 5.3 A and B 
illustrate this for a particular example). 

Secondly, VTA~[3V is diagonal with all nonzero elements positive. Hence, 
(I +VT A^3V) is diagonal and its eigenvalues are bounded away from zero. There­
fore, the inversion of (/ + VTA^3V) is easy (see equation 5.27) and does not 
introduce ill-conditioning. 

Moreover, the correction, VVT, has rank fcmaskWbus and is block diagonal; thus 
it is sufficient to consider each of the fcmaskWbus blocks separately. Let denote 
the i'h diagonal block of M i . Let A | 3 1 be the portion of A2

3 corresponding to 
M i , * . With W as shown in equation 5.25, we have 

M\,i = A2

3. +A2S,i)eeT (5.33) 

where e is a column vector of all ones and Ag 6(i,i) denotes the i'h diagonal ele­
ment of Ag 6 . Hence M i ^ is a positive rank-1 update of a positive diagonal ma­
trix. Let Ci,i, C2,i, • • •, Cn,i (in decreasing order) denote the eigenvalues of M L , ; . 
Let £i,i, £2,1, • • •, £n , t (in decreasing order as well) denote the eigenvalues of A2

3 v 

Thus, £ i , i , . . . , £n,i are just a reordering of the diagonal elements of Af 3 i and are 
all positive as well. According to the interlacing eigenvalue theorem [70, pp. 103-
104][22, Theorem 8.1.8], the eigenvalues of the updated matrix interlace with the 
eigenvalues of the original matrix: 

Cl,i > > <2,i > 6,» > • • • > Cn,i > Zn,i (5.34) 

with 
n 

- = h\ockAl6(i, i) (5.35) 
J'=I 

where fcbiock is the length of e, i.e. the size of each block. Thus, £1^ is at most £i,i + 
^biockA56(i, i) and Cn,i is at least For typical filter synthesis problems, fcbiock 

is on the order of a few hundred. The well-behaved nature of A\3 (Figure 5.3A and 
B) and A§6 (Figure 5.3C) leads us to believe that the numerical inversion involved 
in computing the Schur complement following the procedure we have laid out is 
not bound to introduce ill-conditioning beyond that already present in the normal 
equations ATA2A. 

To test this conjecture, we observed the extremal values of A2

3 while solving 
a typical filter synthesis problem, in particular, the synthesis of a pre-equalization 
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filter for a bus with 16 differential pairs. Panels A and B of Figure 5.3 depict the 
minimal and maximal values of A 2

3 throughout the iteration. The graph shows 
that these value are moderate (both in terms of being bounded away from zero 
and having a moderate upper bound) even as the solution is close to convergence. 
Panel C of Figure 5.3 shows that the maximal value of A 2

6 is moderate throughout 
the iteration. Thus, the inversion of M i with the Sherman-Morrison-Woodbury 
formula does not introduce serious ill-conditioning. 

Furthermore, the residuals for the Schur complement solver throughout the 
iteration were consistently close to machine precision. Since the relative error is 
bounded (for any linear system) by the norm of the relative residual multiplied 
by the condition number of the matrix, we computed the condition numbers of 
the Schur complement matrix throughout the iteration (see Figure 5.3C). From the 
fifth iteration, the condition number grows steadily; this is as expected because 
interior point methods have an inherent ill-conditioning due to driving the barrier 
parameter to zero in order to penalize constraint violations. Using techniques such 
as the Sherman-Morrison-Woodbury formula and the Schur complement do not 
eliminate this underlying ill-conditioning. Thus, the condition number of the Schur 
complement grows as the iterations progress just as that for the normal equations. 
However our approach does not appear to add any further ill-conditioning and the 
Schur complement matrix stays very well conditioned even in the final iterations. 
While an empirical study such as this cannot prove the stability of the algorithm 
for all cases, the observation that the matrices remain very well-behaved strongly 
supports our belief that our approach is quite stable in practice. 

5.5 Time and Space Requirements for the LSQ Approach 

In order to compare our methods with traditional I2 techniques we implemented 
least-squares (LSQ) optimization for pre-equalizer synthesis as described in Sec­
tion 3.4.3. We briefly address the time and space requirements for the LSQ ap­
proach in this section. 

number of variables in the LSQ problem is the number of filter coefficients, /cfir. 
G | s q has w 2

u s (n n r + nbUS)ky rows, where kr is the number of non-zeros in one 
period of the T function. Typically, nt,us > ^fir and tut,us > w n r . Hence, G | s q has 
many more rows than columns. Moreover, as discussed in Section 5.1, note that 
the g vectors have the following properties: 

1. g(i, j, t) has no overlapping nonzero elements with j, t) where A; ̂  i. 

Let G | s q denote in the LSQ formulation (see equation 3.29). The 

2. g(i,j, t) only has a fraction of l/wbus elements nonzero. 
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B. 
minimal value of A;. + A ; ' maximal value of A*\+ A\ 

10 15 20 
Iteration 

10. 15 20-
Iteratlon 

Figure 5.3: A. Minimal values of A 2

3 , B. Maximal values of A 2

3 , C. Maximal 
values of A | 6 , D. Condition number of the Schur complement throughout the iter­
ation. 
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The first observation means that G\sq can be permuted into a block diagonal matrix 
with Wbus blocks. Each block is a (u>bus(?inr + nbus)ky) x (/cfir/wbus) matrix. Be­
cause G | s q is block diagonal, the LSQ problem given in equation 3.29 is equivalent 
to ^us independent subproblems. 

As described in Section 3.4.3, we implemented the least-squares optimization 
using MATLAB'S built-in mldivide function. For sparse, over-determined prob­
lems, mldivide uses Householder reflections to compute a Q-less QR factorization 
°f Gisq [65]. This factorization allows the solution of sparse least-squares problems 
in two steps: a QR factorization and a triangular linear system solve [67, p. 83]. 
For a LSQ problem of size m x n, the QR factorization based on Householder re­
flections can be done in 0(mn2) operations [67, p. 75]. As we noted above, we are 
effectively solving Wbus independent subproblems of size (u^usC -̂fir + ^bus^r) x 

(fcfir/wbus)- Therefore, in total, the QR factorization step takes fc|r(nf,r + nbUs)kr 
operations, which is 0{w^m\rw2

ir{nfix + nbus)ky). The triangular linear system 
solve takes 0(k\T) operations, which is 0{w^ajn\rw2

{{). Thus, mldivide solves the 
LSQ problem given by equation 3.29 in 0{w2^m\xw2

a{n^ + nbus)kr) operations. 
Moreover, because the subproblems are independent, the Householder reflec­

tions don't introduce fill-in. Therefore, the space requirement for setting up and 
solving the LSQ problem is 0(w£usWfi rmfi r(nbus + n^ky), which is the space 
required by the matrix G | s q . 

The mldivide routine in MATLAB is highly optimized. In practice, for the 
examples presented in this thesis, the LSQ problems are solved in a few seconds 
when running on a 900MHz, UltraSparc III processor. 

In the LP formulation, we set up constraints to constrain the overdrive power 
of the filter. However, in the LSQ formulation, such constraints cannot be set up 
directly. To constrain the power of the filter designed, linear constraints can be set 
up to bound the maximum magnitude of each individual filter coefficients. In those 
cases, MATLAB LSQ solver Isqlin is used to solve the LSQ problem with linear 
constraints. This significantly slows down the optimization procedure. Moreover, 
this tends to lower the eye height significantly while no significant decrease in the 
maximum filter output. Thus, we did not report results with bounds on the filter 
coefficients in Chapter 3. 

5.6 Summary 

The linear programs for optimal filter synthesis grow quadratically in size with 
the number of links in the bus. To make the synthesis approach practical, we 
implemented Mehrotra's interior-point algorithm with an efficient linear system 
solver that exploits the problem-specific properties of our particular constraint ma-
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tfix. The special properties of the normal equations allow us to apply the Sherman-
Morrison-Woodbury formula and obtain an efficient linear system solver. The lin­
ear system solver runs in cubic time in the width of the bus and makes the LP 
approach practical. We note that it is slower than the LSQ approach which runs in 
quadratic time in the width of the bus. However, in practice, the width of a paral­
lel bus is limited (see Section 2.1). Moreover, compared with the traditional LSQ 
approach, the LP approach achieves better equalizer performance while offering 
a more flexible framework. The LP approach allows direct control of critical pa­
rameters such as the overdrive ability of the filters and maximum overshoot at the 
receiver. We also presented analysis and numerical evidence that the linear system 
solver is numerically stable. These make the LP approach a practical and superior 
alternative to the traditional LSQ approach. 



82 

Chapter 6 

A Proof-of-Concept Test Bed 

Equalization filters are one part of a high-speed link. The complete design must 
also take into account the design of high-speed DACs and ADCs, low jitter PLLs 
and DLLs, state-of-the-art packaging, detailed electrical modelling of the intercon­
nect, etc. Complete designs require custom-chip design, many designers, expen­
sive equipment, and design cycles of a year or more. While such efforts are neces­
sary to bring interconnect solutions to the point that they can be utilized by system 
architects, only a few research groups can undertake such resource-intensive ef­
forts. 

Smaller groups like us often focus on particular interconnect challenges by 
using simulation-based studies. Simulations provide a practical way to examine 
issues in cutting edge interconnect. However, simulations inevitably rely on sim­
plified models for the bus and connectors, as well as for clock jitter and other 
phenomena that degrade signal integrity. For example, accurate electrical models 
for buses and connectors are difficult to obtain without measurement as they re­
quire 3D solutions to Maxwell's equations. Numerical solutions for these systems 
are intractable for realistic interconnect. Thus, we need a physical implementation 
while avoiding massive design efforts and expensive test equipment. We achieve 
this by targeting much lower bit rates and deliberately designing PC board buses to 
exacerbate signal integrity issues at these lower frequencies. This "scale-model" 
approach has numerous advantages: it is inexpensive to implement; the design cy­
cle is dramatically shortened; and we can easily alter the test bed to examine the 
impact of varying individual components of the link. Unlike simulation alone, the 
physical implementation forces us to address a wide range of issues arising in an 
actual design. 

Section 6.1 describes how our test bed uses commodity PC graphics cards to 
provide analog channels operating at up to 300M samples/sec. Section 6.2 demon­
strates the effectiveness of our test bed by using it to evaluate filters designed. 
These experiments show the impact of timing jitter and inaccuracies in channel 
estimation. The test bed also confirms that our filters offer dramatic improvements 
in signal integrity. Its low cost and simplicity should allow our test bed design to 
be easily used and modified for a wide range of research in signal integrity and 
mixed-signal design. 
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6.1 The Test Bed 

We designed our test bed around inexpensive VGA graphics cards. Each graphics 
port provides three analog outputs for the red, green and blue color channels. Us­
ing dual-port, PCI graphics cards and a typical PC with five available PCI slots, we 
can implement a test bed with up to 30 analog channels. To use graphics cards as 
transmitters in a synchronous transmission system, we must synchronize the video 
outputs so that they have identical pixel rates and so that frames and scanlines are 
aligned. Section 6.1.2 presents our solution to synchronizing the graphics cards. 
Typical graphics cards support pixel rates of up to 250MHz-400MHz. To compen­
sate for high-frequency losses, our equalizing filters have sample rates that are a 
small multiple of the data rate. For example, using four samples per data bit limits 
the data rate of our test bed to 60 ~ lOOMbits/sec. Thus, the buses in our test bed 
must have crosstalk and other losses comparable to those seen at multi-Gbs rates 
while operating at a much lower speed. Section 6.1.3 describes the issues involved 
in designing a sufficiently bad PC board bus. Finally, once the test bed is imple­
mented, we must measure its electrical parameters to validate simulation models 
and provide a basis for filter synthesis. Section 6.1.4 describes how we perform 
these measurements using our test bed. 

6.1.1 System Overview 

Figure 6.1 shows our test bed. It consists of three major components: a host PC 
with multiple PCI graphics cards, a PCB with a bus under test and impedance 
matching networks, and an oscilloscope as a receiver. The bus under test is driven 
by the video outputs of the graphics cards. We used ATI Radeon 7000 V E graphics 
cards at a cost of about $US 60 each. Each card provides separate VGA and DVI 
graphics ports providing a total of six analog channels per card. A run of seven 
boards cost $US 350, mainly because of the area needed for a long bus. Not count­
ing the oscilloscope and signal generator which are available in most electronic 
labs, our test bed can be built for less than $US 2000. 

After characterizing the bus, we use our filter synthesis methods to derive the 
filter coefficients and determine their worst-case input sequences. We then compute 
the filter outputs and store them as pixel values that are transferred to the frame 
buffers of the graphics cards. As result, the RGB signals from the cards drive each 
wire of the bus with the values from the corresponding filter. At the receiver end, 
the oscilloscope records the bus outputs which we then download to the host PC 
for analysis. 
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Figure 6.1: The test bed. 

6.1.2 Synchronizing Multiple Graphics Cards 

In our test bed, we match the pixel clocks of the graphics cards by modifying the 
graphics cards to operate from a common clock. We then use a software approach 
to align the frames and scanlines from the multiple graphics ports. 

The Radeon 7000 derives its pixel clocks from a 27MHz crystal oscillator. We 
added connectors that allow us to override the oscillator with the signal from an 
external signal generator, an Agilent 33250A. The cards track the signal generator 
from 27MHz to 29MHz. Adding the connector for an external clock is the only 
physical change that we made to the graphics cards. 

With the pixel clocks matched, we need to align the frames and scanlines to 
ensure sufficient scanline overlap to test our filters. This is called "genlock." While 
graphics cards with hardware support for genlock are available, they are specialty 
devices with prices in the thousands of dollars. Using a large number of these 
expensive cards would increase the cost of our test bed by an order of magnitude. 
Instead, we adapted a software approach to genlock originally described in [4]. The 
main idea is to temporarily alter the length of the horizontal and vertical retrace 
times of each graphics port to bring all of the ports into alignment. The solution 
in [4] used software observation of the retrace intervals to achieve frame level 
synchronization across multiple PC's running real-time Linux. Using the same 
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general approach on a single PC running RedHat Linux and XFree86, we use an 
oscilloscope to make precise measurements of sync pulse alignments and achieve 
synchronization to within a few pixel times. 

VGA standards [1] specify the registers that control the video signal generation. 
To access these registers, we modified the graphics card driver in XFree86 [2] and 
extended the VIDMODE feature of XFree86 so that synchronization can be per­
formed at the application level. With this method we achieve synchronization to 
within 15 pixels. In particular, this software approach is limited because the graph­
ics card that we used restricts the number of pixels in a scanline to be a multiple 
of eight; it does not provide software observation of the horizontal synchronization 
events; and changes made to the timing registers appear to cause some small ran­
dom perturbation in horizontal sync timing. For our application, the residual offset 
is not a problem and can be accommodated by shifting the location of the filter 
outputs in the frame buffer. Using the 1600 x 1200, video mode (the longest sup­
ported scanline for the DVI channel) with a filter oversampling rate of four pixels 
per bit provides test sequences of up to 396 bits per scanline which is more than 
adequate for our purposes. 

6.1.3 A Scale Model for High-speed Buses 

The Radeon 7000 graphics cards provide 300MHz RAMDACs. With four filter 
samples per data bit, this sets the upper limit for the data rate of our test bed to 
be 75MHz. To obtain a signaling environment at these bit rates similar to that 
of a multi-Gbs bus, the bus geometry must promote crosstalk. To that end, we 
fabricated a bus that is 1 meter long with 6 mil (0.15mm) wide traces with 6 mil 
spacing running 93 mils (2.36mm) over the ground plane with a standard, FR-
4 dielectric and 0.5oz (0.017mm) copper thickness. The large separation to the 
ground plane increases the inductive coupling to produce significant crosstalk at 
relatively low data rates. Using the HSPICE 2D field solver, we extracted a model 
for the bus and simulations showed that without equalization it should have a closed 
data eye at 70 Mbits/sec. The board is 15in x lOin (38cm x 25cm). 

Figure 6.2 shows the resistive impedance matching network that we use. Achiev­
ing sufficient crosstalk for our experiments necessitated a bus geometry with a rel­
atively high characteristic impedance, about lOOfi. The RGB outputs from the 
graphics card are 750, and the input to the oscilloscope (an HP 54522A) is 50fi. 
To address these impedance mismatches, we considered transformers and resistive 
networks. To use transformers, we would have to restrict our data sequences to 
minimize the low-frequency content of the transmitted signals. On the other hand, 
insertion loss is the main disadvantage of using a resistive network. We chose the 
resistive network approach for its ease of implementation and the flexibility of be-
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Figure 6.2: Impedance matching networks. 

ing able to change the termination simply by changing resistor values. The voltage 
output from this network has about 40% of the magnitude of an implementation 
with ideal transformers. 

Even with impedance matching networks, there are many discontinuities in 
the signal path. These include the VGA and DVI connectors, DVI-VGA adapters, 
header-pin connectors, and some non-impedance controlled segments on the board 
and between the VGA connectors and the header pins. As discussed in Chapter 2, 
connectors and chip packages for multi-Gbs links have many non-idealities as well. 

6.1.4 Bus Characterization 

A challenge in applying equalizing filters in high-speed I/O links is channel es­
timation. In current practice, filter coefficients for single-line pre-emphasis are 
manually adjusted through either trial-and-error or channel analysis [76]. For bus 
characterization, a time-domain reflectometer (TDR) or a vector network analyzer 
(VNA) can be used. Our test lab has a 2-port VNA. To use a 2-port VNA for a 
multi-port system, a matched terminator is required to obtain accurate measure­
ments. Furthermore, a w-bit bus is a 2w-port network and requires measure­
ment configurations. For the nine-wire bus described in Section 6.2, this requires 
153 test configurations with manual changes for each. Furthermore, VNA mea­
surements would not include circuitry and interconnect on the graphics cards such 
as the DACs, graphic chip packaging, and graphics card copper traces. 

Instead of using the VNA, we perform channel estimation in situ. Our opti­
mization methods are formulated with respect to the response on each bus output 
to a pulse whose width is one data bit time on each bus input. For our test bed, 
we program the graphics cards to produce such pulses and measure the responses 
directly using the oscilloscope. This method takes the entire channel including the 
DACs, connectors, resistive networks, and bus into account. For a lu-bit bus, we 
only need w2 configurations. This number can be further reduced to w by send­
ing out bits consecutively on each wire. With a multi-channel oscilloscope, the 
number of configurations is only w/(c — 1), where c is the number of oscilloscope 
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ports. That is only 9 configurations for our nine wire bus with a two-channel os­
cilloscope. Unlike a VNA which uses a tuned front end, our approach is highly 
sensitive to noise. As discussed in Section 6.2.1, we average the response to 100 
measurements per configuration to obtain satisfactory accuracy. For real links, sim­
ple on-chip oscilloscope circuits [28] could be used to perform channel estimation 
in situ. Due to the simplicity of the on-chip oscilloscope circuits, they are less ac­
curate than the oscilloscope used in the test labs. One might need to average many 
runs to get acceptable accuracy. 

6.2 Results 

Using our test bed, we have performed some experiments with our filters. Fig­
ure 6.3 shows the complete test flow. For a given filter structure and the set of bit 
responses obtained with the in situ bus characterization method described above, 
we derive a set of filter coefficients and its corresponding worst-case input se­
quences with the filter synthesis approach described in previous chapters. We then 
compute the filter outputs and render them to the graphics cards. We drive the bus 
with the RGB outputs of the graphics cards and measure the bus output signals 
with the oscilloscope. We then upload the samples from the oscilloscope through 
a GPIB connection back to the host PC, post-process the samples and generate the 
worst-case eye diagram for the channel. 

This section describes our in situ measurements of bit responses, measurements 
of filter effectiveness, and the impact of timing jitter. Pragmatism motivated us to 
choose a nine-wire bus for these experiments. We had two graphics cards which 
offer 12 channels in total. One graphics port failed and our supplier didn't have 
more cards available. Fortunately, nine wires were wide enough to show large-
scale crosstalk and sufficient to demonstrate our filters. 

6.2.1 Bus Characterization 

Figure 6.4A shows a complete bit response on the middle wire of the bus, wire 
4, given a single, bit-wide input on each wire consecutively. The response to 
the pulse on the wire itself (Figure 6.4B) has a peak at 128 ~ 148mv, with 
wires driven directly by the VGA port having a higher peak than those driven 
through DVI—»VGA adapters. This is apparently due to high-frequency losses of 
the DVI—> VGA adapter. All wires of the bus, except for the middle three wires are 
driven by DVI ports via DVI-VGA adapters. This is an example of how our in situ 
channel estimation approach incorporates the entire link. Figure 6.4C shows the 
maximum crosstalk on wire 0 from the other wires. Note that coupling from wire 
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Figure 6.3: Test flow. 

2 is stronger than that from wire 1; otherwise, crosstalk decreases with distance 
as expected. This suggests that for this relatively tight bus configuration, crosstalk 
cancellation for nearest neighbor might not be sufficient. 

We observed a 5mv peak-to-peak noise floor. With coupling terms from 2mv 
to 15mv, we averaged the values from 100 measurements to estimate a bus model. 
We automated these measurements using GPIB programming of the oscilloscope. 
From the standard deviation of these measurements, we estimate that our bus model 
is accurate to within ±3%. Using the average from 50 traces degrades the accuracy 
for filter synthesis to ±8% with little impact on end-to-end signal integrity. This 
suggests that simple, on-chip circuitry [28] for channel estimation should suffice 
when implementing our filters for multi-Gbs links. 

6.2.2 Filter Performance 

As defined previously in Section 3.4.2, we write that a filter is m x k to indicate 
that the filter has m taps and considers k neighbors to each side. We test each 
filter using its worst-case input sequence (see Section 3.5) and random variations. 
Since we only have ~ 400 bits worth of useful data per scan-line (see Section 6.1), 
for the eye diagrams shown in Figure 6.5, we used the worst-case input sequences 
for the middle wires, which have the most severe crosstalk. Given the worst-case 
input sequence, the corresponding filter output is then calculated, stored and then 
rendered to corresponding displays. Because of the limited overdrive ability of the 
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RAMDACs, the filter outputs are scaled to [0,255] in pixel values, which results in 
different high and low values for filters with different overdrive. 

Figure 6.5 shows eye diagrams measured from the bus with various filters. As 
predicted by the HSPICE field solver and simulation, this bus has a closed eye at 
70Mbit/s, Figure 6.5A. For single-line pre-emphasis, neither the LP nor the LSQ 
synthesized filters open the eye. As the LP method optimizes for the worst-case, 
it can make no progress and produces meaningless filter coefficients. The LSQ 
method, on the other hand, optimizes for the average case and produces a filter that 
provides some improvement in signal integrity. Thus, we show a single-line pre-
emphasis filter designed by the LSQ method in Figure 6.5B. While the LSQ method 
cannot open the eye with a 12 x 1 filter, the LP method achieves 14% eye height and 
15% eye width in simulation that neglected jitter. However, due to jitter and voltage 
noise in the physical system, we do not observe this small eye opening using the 
test bed, Figure 6.5C. By taking more wires into account, the 12x3 filters designed 
by theLP method produces a good eye opening, Figure 6.5D. Figure 6.5E shows 
that an excellent eye is produced by a full-width filter using the LP method, while 
Figure 6.5F shows that the corresponding LSQ filter is not nearly as effective. This 
shows the advantage of the LP method that maximizes eye masks directly. These 
observations are consistent with simulation results reported in previous chapters 
and confirm the correctness and practicality of our filter design approach. 

6.2.3 Jitter 

High-speed I/O bandwidth should scale with technology as long as the timing un­
certainties can be made to scale at the same rate [76]. Clock jitter and channel 
interference are the dominant causes of timing uncertainty. Although equalizing 
filters can greatly reduce channel interference, clock jitter can significantly degrade 
channel performance [8]. 

We face two timing issues in this test bed: subpixel misalignment and graph­
ics card PLL jitter. The subpixel misalignment between video ports is the residual 
misalignment after shifting the location of filter outputs in the frame buffer (see 
Section 6.1.2). We measure this subpixel misalignment and incorporate it into the 
channel model. Although pixel clock jitter is not specified by graphics card man­
ufacturers, it is significant. For the cards we used, the jitter appears to be random 
with a standard deviation of approximately 200ps. The excellent eye-diagrams 
shown in Figure 6.5 suggest that although we synthesized the equalizing filters as­
suming perfect timing, the filter design approach tolerates moderate amounts of 
jitter. 

With 200ps rms random jitter, to ensure a bit error rate (BER) of 1 0 - 1 2 , the sys­
tem should tolerate 2.8ns peak-to-peak jitter. With randomly generated extreme-
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case jitter of either + 1.4ns or —1.4ns, we simulated the transmission system with 
the 12 x 9 equalizing filter designed by the LP method. The open eye shown in 
Figure 6.5G suggests that the system provides 10~ 1 2 BER and further confirms 
that the filter design approach has some jitter tolerance. However, compared with 
Figure 6.5D, Figure 6.5G shows reduction in both eye height and eye width. This 
suggests the importance of taking jitter into account while designing equalizing 
filtersin order to guarantee a specified BER. Incorporating jitter explicitly in our 
filter synthesis procedure is a topic for future research. Once we develop a jitter-
aware synthesis procedure, we should be able to use our test bed to validate its 
effectiveness. . 

6.3 Summary 

This chapter presented a simple, low-cost, signal integrity test bed for PCB buses. 
We used commodity graphics cards to provide a large number of analog channels 
at rates of 300-400M samples/sec. By designing buses with exaggerated crosstalk, 
we modelled channels similar to those found in multi-Gbs links at a much lower 
rate. Because our approach uses commodity components and does not require 
custom-chip fabrication, we can perform experiments with an order-of-magnitude 
or more reduction in cost, time, and effort compared with full-speed links. This 
allows us to quickly evaluate novel signaling approaches. 

The low-speed scale model does not account for every aspect of a high-speed 
bus. For example, high-frequency losses are much more severe at multi-GHz rates 
where dielectric loss and skin effect are both more severe. Although we saw signif­
icant jitter in our test bed, the impact of jitter at multi-GHz rates is likely to be even 
greater. Similar remarks can be said for ground bounce, power supply noise, etc. 
To complete the evaluation of our filters for multi-GHz rates, it would be necessary 
to design the high-speed chips and boards, and integrate them with the appropriate 
packages and connectors. We could then measure the bit-error rate under suitably 
adverse operating conditions and determine the performance gain achieved by our 
equalizers. As described at the beginning of this chapter, such an evaluation is a 
large effort, beyond the scope of a single, Ph.D. dissertation. 

We demonstrated our test bed by using it to validate our synthesis procedures 
for crosstalk cancelling equalization filters. Measurements from the test bed show 
that we can get results that are comparable to those predicted by simulation. We 
also observed the degradations caused by non-idealities such as timing jitter and 
imperfect connectors. Although a full-speed implementation is still necessary be­
fore application, our test bed allows simple and fast proof-of-concept validation 
and demonstration of new signalling methods as we develop them. Our test bed 
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promises the identification of opportunities and potential problems early in the de­
sign cycle complementing simulation and full-speed implementations to lower the 
total cost and time required to implement novel high-speed buses. 
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Figure 6.4: Bus bit responses. 
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Chapter 7 

Conclusion and Future Work 

In this thesis, I have presented a comprehensive framework for equalization fil­
ter synthesis for high-speed digital buses with linear models. These methods al­
low direct optimization of eye masks, support arbitrary, linear models for buses 
and provide joint optimization of pre-equalizers, decision-feedback equalizers, and 
near-end crosstalk cancelling filters. This approach is based on the loo optimiza­
tion for worst-case response using linear programming. I first described the use 
of loo methods for high-speed links in [54]. In that work, I only considered pre-
equalization filters, the objective functions corresponded to eye height rather than 
the more general eye masks supported here, and I used a simplistic model for the 
bus where all wires were assumed to have the same characteristics. The present 
research removes all of these restrictions, provides an efficient solver for the linear 
programs arising from the filter synthesis problems, and validates the novel filters 
with a low-cost, low-speed test bed. 

I first introduced parameterized eye masks which allow the direct optimiza­
tion of eye masks. Using these masks, I formulated the resulting loo optimal pre-
equalization filter synthesis problem as an instance of linear programming. For 
the single-ended bus that I considered (see Section 3.5.1), filters designed by this 
method increased bus bandwidths by more than a factor of seven compared with a 
bus with no filters and more than a factor of three compared with a bus with only 
single-line pre-emphasis and nearest neighbor crosstalk cancellation. Moreover, 
parameterization of the eye mask gives the designer great flexibility for specify­
ing trade-offs between eye height, eye width, and other details of the eye shape. 
Critical parameters such as filter overdrive ability and overshoot can be naturally 
incorporated as linear constraints. This is in contrast with the commonly used I2 
approaches for filter design where error is minimized only in the average sense 
and these other parameters can only be specified indirectly. Accordingly, filters 
designed with this method significantly outperform LSQ designed filters in terms 
of eye height, overshoot, and other eye-mask parameters. 

I then presented a unified approach for synthesizing optimal filters for the 
three most common forms of equalization: transmitter pre-equalization, decision-
feedback equalization, and near-end crosstalk cancellation. I showed that the re­
sulting optimization problem remains linear under reasonable assumptions and can 
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be solved using linear programming. To illustrate the use of these methods, I 
examined the design of intra-board and cross-backplane links. The link models 
included chip-packaging parasitics, impedance mismatches, dielectric and skin-
effect losses, and connector parasitics. I evaluated different design trade-offs such 
as the use of simultaneous bidirectional signalling and multi-level signalling. The 
unified approach allows early identification of bandwidth bottlenecks and rapid 
evaluation of design trade-offs. I briefly discussed the area cost and latency cost 
of the equalizing filters for a straightforward implementation based on pipelined 
adder trees. I noted that these costs are acceptable and certainly are justified by 
their performance advantages for bandwidth critical applications. Power consump­
tion is obviously an important issue that merits further study. 

The resulting linear programs are large. The number of variables and con­
straints is dominated by the number of disturbances ^disturb which grows quadrati-
cally with the width of the bus. To solve these large LPs, I implemented Mehrotra's 
interior-point method with sparse matrix techniques. Exploiting the specific struc­
ture of the constraint matrix arising in this approach, I developed an efficient linear 
system solver that runs in 0( fcdisturb&nr + fc|r) time. Moreover, in practice, the 
number of LP iterations stays roughly constant, around twenty for the examples 
presented in this thesis. This makes the linear programming approach a competi­
tive alternative to least-squares based methods. 

To validate the approach with real hardware, I presented a simple, low-cost, 
signal-integrity test bed for PCB buses. I used commodity graphics cards to provide 
a large number of analog channels at rates of 300-400M samples/sec. By designing 
buses with bad signal integrity at such low speeds and improving their performance 
with the equalization filters designed, I validated the equalization filter synthesis 
procedures. Measurements from the test bed are comparable to those predicted by 
simulation in the presence of real world effects such timing jitter and power noise. 

In summary, this thesis combines modelling, optimization and prototyping to 
demonstrate that linear programming provides a practical, effective and flexible 
framework for designing equalization filters that greatly increase the bandwidth 
of high-speed off-chip buses. Furthermore, Moore's law [45] favors this approach: 
logic circuits will continue to get cheaper and faster, increasing the demand for off-
chip bandwidth while reducing the size and power consumption of the filters. Pack­
aging and PC board technology progresses at a much slower pace. Thus, I expect 
sophisticated equalization filters to become prevalent with technology scaling. The 
first applications are likely to be large SMP multi-processors [12] and high-speed 
network switches [43, 69] where bandwidth is critical and backplane/centerplane 
resources are critical. With further technology scaling, and such filters will migrate 
downward into a wider range of products as off-chip bandwidth becomes critical 
for more and more applications. 



Chapter 7. Conclusion and Future Work 96 

7.1 Future Work 

This thesis has demonstrated the effectiveness of MIMO equalization filters for 
high-speed off-chip buses. This section considers some natural extensions of this 
work as well as other possible applications of equalization techniques. 

• Reducing the Hardware Complexity 
The current work assumes that every tap of a filter considers the same num­
ber of neighboring wires; in other words, the filters have a rectangular shape. 
The crosstalk between wires far apart is typically small and short-lived, thus 
requiring less equalization. Non-rectangular filters that vary the number of 
taps for each pair of wires according to he strength of the coupling could 
reduce the hardware cost of the equalization filters with negligible impact on 
performance. A straightforward approach is to first design rectangular filters 
and then remove the filter coefficients that are smaller than some threshold. 
With the shape of the filter determined, a new LP can be set up to derive a 
new set of optimal equalization filter coefficients. More sophisticated meth­
ods could use heuristic search techniques such as simulated annealing [38] 
to find the optimal filter shape. The filter synthesis methods presented in this 
thesis could be used for each configuration considered. 

The bus models used here include coupling terms for every pair of wires in 
the bus. As noted above, crosstalk between widely separated wires is typi­
cally small. Ignoring coupling between widely separated wires can reduce 
the size of the LPs, thereby reducing the time and memory required by this 
approach and improving its practicality. 

• Adaptive Filter Design 
As discussed in Chapter 2, there are three common methods for setting equal­
ization filter coefficients: "lookup table and forget", "adapt once and forget" 
and "continuous adaptation". The latter two methods take manufacturing 
variations into account and hence offer significantly better performance than 
the first method which characterizes channels in the lab and derives a set 
of equalization filter coefficients later applied to all channels [73]. The ap­
proach presented in this thesis falls into the second category, "adapt once and 
forget". The channels are characterized in situ on power-up (see Chapter 6) 
and a set of ^ optimal filter coefficients are derived. Channel characteris­
tics drift over time due to environmental variations such as temperature and 
humidity changes [73]. Continuous adaptation algorithms, such as sign-sign 
LMS [63, 73] takes these variations into account. 
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A natural extension of this work is to develop an adaptive scheme for 
filter design. Because the optimization problem is convex, a simple hill-
climbing strategy could be employed to improve the objective function given 
the old solution. Moreover, environmental variations change at a time-scale 
much slower than the targeted bit rates (multi-GHz), which means that re-
calibration can use a slower, off-line procedure. The changes in channel 
characteristics can be viewed as perturbations to the original problem. A l ­
though the optimal vertex of the original problem is likely not optimal for the 
perturbed problem, it is likely to be close. With a solution close to optimal, it 
might be possible to use variations of the Simplex method [46] which might 
only take a few simple steps to converge to the true optimal solution. 

• Receive Equalization 
I presented a unified optimization framework for pre-equalization, near-end 
crosstalk cancellation and decision-feedback equalization. As noted in Chap­
ter 2, some designs also employ receive equalization. Due to the com­
plexity of implementing a receive equalizer at multi-GHz frequencies, pre-
equalization is more popular in high-speed links. However, receive equaliza­
tion may be simpler when adaptive methods are used. In particular, adaptive 
pre-equalization requires information to be transferred back to the transmit­
ter end in order to adjust the filter coefficients. For example, Rambus re­
ported a common-mode signaling system that creates a back-channel com­
munication path over differential high-speed links for an adaptive differential 
high-speed link transceiver cell [27]. In contrast, channel characterization is 
readily available for receive equalization. 

The methods presented in this thesis can be directly applied to receive equal­
ization. For example, if receive equalization is used instead of pre-equalization 
in the bidirectional link considered in Chapter 4, the optimization problem 
remains linear, and the LP formulation is the same with some straightforward 
modifications to the derivation of the G matrix. In this case, equation 3.16 
becomes 

Out = F x " B x " In (7.1) 

where n = qbus + g n r + q\n — 2. As in Chapter 4, the matrices would need to 
be manipulated to treat the filter coefficients as the input to the system. 

If a system contains both pre-equalization and receive equalization, the opti­
mization problem becomes quadratic and the linear programming approach 
developed in this work is no longer applicable. 
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• Coded Signalling with Equalization 
The idea behind a coding scheme is that a few input patterns may be re­
sponsible for the most serious crosstalk and ISI. One can design codes that 
avoid these worst-case patterns. Because such codes do not use all possi­
ble combinations of levels on the wires, the bits sent per symbol is reduced; 
however, the improvement in signal integrity can enable a higher symbol 
rate and thus a higher overall bandwidth than the same channel without cod­
ing. As a simple example, differential signalling can be understood as a 
coding technique where two wires are used to transmit a single bit. This 
provides current balancing and rejection of common-mode interference that 
in practice can greatly improve signal integrity. Equalization technique can 
be used with coded signalling to further improve signal integrity. In fact, 
I showed how differential signalling can be included in my filter synthesis 
framework in Chapter 4. Other schemes, for example, sending 3 signals on 
4 wires while keeping current balance in the 4-wire bundle, might improve 
the overall bandwidth and efficiency compared with differential signalling 
and single-ended signalling [51]. Equalization filter design for channels that 
employ coded signalling techniques is a topic for future work. Note that the 
low-speed test bed can again be readily used to do proof-of-concept valida­
tion of such new techniques as we develop them. 

• Bit-Error-Rate Minimization 
The performance of high-speed links is degraded by noise. Sources of noise 
in digital systems include power supply noise, electro-magnetic interfer­
ence (EMI), intersymbol interference (ISI), crosstalk, ground bounce, pro­
cess variation, thermal noise, and shot noise. Noise can be modelled by its 
effects on the signal level (voltage noise) or event times (jitter). While some 
of these disturbances such as ISI or ground bounce are caused by the dig­
ital behavior of the system and can be modelled deterministically, most of 
the noise sources listed above are best modelled as unbounded, random pro­
cesses. When these noise sources are considered, it is no longer possible 
to guarantee error-free performance. Instead, one must settle for probabilis­
tic measures, the most common of which is the bit-error rate (BER). High-
bandwidth buses are normally specified with a maximum acceptable BER, 
with typical targets of with typical targets of 1 0 - 1 5 to 1 0 - 2 0 or lower. 

As described in Section 2.3, the problem of designing equalizing filters to 
minimize mean-square error in the presence of random noise has been ex­
tensively studied [15, 17, 30, 31, 63, 71]. However, this does not necessarily 
minimize bit-error rate. The Zoo approach optimizes for the best worst-case 
performance in the case of no random noise. Although this would intuitively 
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result in low BER in the presence of random noise, it might not lead to the 
lowest BER depending on the properties of the actual noise. 

To calculate the BER exactly requires the knowledge of the statistics of the 
data transmitted over the channel and of the noise. In practice, such detailed 
statistics are rarely available. Because the worst-case data pattern is typically 
determined by a few wires and a few consecutive symbols, it can be closely 
approximated by random data every few hundred or few thousand bits. Thus, 
the worst-case data pattern can be used to bound signal integrity and seek 
to minimize the worst-case BER. Although this may overestimate the BER 
by a factor of a hundred or a thousand, this is on the same order as other 
approximations that are necessary with the statistical data that is actually 
available. A topic for future research is to extend our methods that model 
the thresholding behavior of digital links to include random noise. 

• Applications of Equalization Techniques 
This work focused on the application of equalization techniques for off-chip 
buses to mitigate intersymbol interference, crosstalk and other linear distor­
tions of the channel. Similar ideas can be applied to on-chip interconnects 
and optical interconnects. 

Intersymbol interference and crosstalk are present in on-chip buses and limit 
their performance. On-chip buses are RC transmission lines producing se­
rious intersymbol interference at high data rates. Unlike off-chip links, the 
availability of active circuitry on chip means that designers can insert re­
peaters to improve wire delay and sharpen the rise time to some extent at 
the cost of additional power dissipation and chip area. Another method is to 
pre-emphasize the high-frequency components of the signal and effectively 
equalize the low-pass nature of the RC transmission line [18, p. 361]. 

Crosstalk arises in on-chip interconnect primarily from capacitive coupling. 
In deep-submicron processes, wires are fabricated to be tall compared with 
their width and spacing. While this reduces wire-resistance, it also increases 
capacitive coupling between adjacent wires. The resulting crosstalk appears 
as a data-dependent delay of the interconnect. For example, if two adjacent 
wires switch in the same direction, the effective coupling capacitance is zero; 
thus the effective total capacitance decreases and so does the delay. If they 
switch in the opposite direction, the effective coupling capacitance is dou­
bled; hence the effective total capacitance increases and so does the delay. 
Techniques such as crosstalk avoidance codes (CAC) [20, 68] reduce delay 
variations by eliminating worst-case coupling transitions in a bus at the cost 
of additional wires. 
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Recently, Sridhara et. al. combined decision-feedback equalization for ISI 
and CAC to improve on-chip communication speeds [61]. They used a sim­
ple variable threshold inverter as receiver and modified its switching thresh­
old as a function of the past output of the bus. The equalization techniques 
studied in the current work can be directly applied to on-chip interconnect to 
mitigate the impact of crosstalk and intersymbol interference. Moreover, to 
further improve bandwidth, the current approach could be extended to design 
equalizing filters for coding schemes such as CAC. 

Intersymbol interference and crosstalk are also present in optical intercon­
nects. For example, insufficient channel spacing produces crosstalk between 
adjacent dense wavelength-division multiplexing (DWDM) channels [42]. 
Fibre nonlinearities cause wavelength interaction. Moreover, optical inter­
connects are also dispersive which results in intersymbol interference. Un­
like off-chip interconnects, many phenomenon in optical interconnects are 
highly nonlinear [42]. Nonlinear equalization filters are likely to be neces­
sary for optical interconnects. 

• Nonlinear Optimization 
The methods developed in this approach are applicable to any system with 
a linear channel model and objective function. In some applications, linear 
models might be inappropriate. For example, if a link employs cascaded 
filters, i.e. receive equalization and pre-equalization at the same time, then 
the channel is linear in the filter coefficients of either equalizer, but not both. 
In this case, the problem is quadratic in the filter coefficients. The integrating 
receivers considered in Chapter 4 are a special case of this. Because we 
assumed a fixed coefficients for the integrator, we were able to include the 
integrators in the channel model. To jointly optimize cascaded filters would 
require optimization techniques more general than the linear programming 
approaches that we have used in this thesis. This remains a topic for future 
work. 

One of the most important design factors currently is power. The equaliz­
ers are constantly active and consume power during link operations. Low-
power circuit design techniques can be used to reduce the amount of power 
consumption by the equalizers [37]. In this research, I indirectly constrain 
the peak power of the equalizers by limiting the over-drive ability of the 
equalizer. Instead of optimizing signal integrity, one can seek to minimize 
power under some signal integrity constraints. The problem then becomes a 
quadratic program and is a topic for future work. 
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In this thesis, I have presented a comprehensive framework for equalization 
filter synthesis for high-speed digital buses with linear models. I have shown how 
eye-mask optimization and joint optimization of pre-equalizers, decision-feedback 
equalizers, and near-end crosstalk cancelling filters can be formulated as linear pro­
gramming problems. I presented an efficient linear program solver for these filter 
synthesis problems, and demonstrated the efficacy of our filters using a scale-model 
test bed based on low-cost, commodity graphics cards. Filters synthesized for 
optimality by our methods consistently outperform their counterparts optimized by 
the traditional, I2 methods. 

In this final chapter, I briefly examined possible extensions of my approach 
to other equalization problems including adaptive filter design, bit-error-rate min­
imization in the presence of random noise, power minimization, and filter design 
for non-linear (e.g. optical) interconnect. For many of these problems, the mod­
els or objective functions are intrinsically non-linear and would therefore require 
non-linear optimization methods. Because of the thresholding operations that are 
fundamental in digital links, criteria will continue to play an important role 
and I see promising opportunities to extend the methods developed in this thesis to 
these broader contexts. 
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Appendix A 

Terminology 
A communication link typically consists of a transmitter, the communication 
medium (called a channel), and a receiver. The transmitter takes the digital data 
and converts it to analog waveforms on the channel. The channel is the commu­
nication medium between the transmitter and the receiver, and can have physical 
realizations such as free space for wireless communication, optic fibres for optical 
communication and printed circuit board (PCB) traces, coaxial cables or twisted­
pair wires for off-chip electrical communication etc. When a channel is imple­
mented using electrical technologies, the implementation is often referred to as 
interconnect. Likewise, an optical implementation of a channel can be referred 
to as optical interconnect. In the backplane environment shown in Figure 1.1, 
the channel is implemented by on-chip wires, bonding wires and pins of the chip 
package, backplane connectors, PCB traces and vias etc. 

This thesis addresses the synthesis of optimal filters for high-speed buses. A 
bus is an implementation of a channel consisting of multiple wires (and the asso­
ciated pins, vias, etc.). We typically view the data transmitted across the bus as 
partitioned among the wires. We refer to each wire or cluster of wires as line, and 
each line conveys a subset of the data transmitted on the channel. For example, a 
bus may be organized where each line consists of a pair of wires where the voltage 
(or current) applied to one is the negation of the voltage applied to the other. This 
is called differential signalling because the receiver is sensitive to the difference 
of the signals on the two wires rather than to their absolute values. Another com­
mon alternative is single-ended signalling where each line is implemented with a 
single wire, and the receiver detects symbols (e.g. bits) by observing the level of 
the voltage on that wire. 
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Glossary 

BER 
BGA 
DFE 
DVI 
FEXT 
FIR 
GPIB 
HSPICE 
ISI 
LP 
LSQ 
LVDS 

MIMO 
MMSE 
NE 
NEXT 
PAM 
PCB 
PE 
PLL 
TDR 
VGA 
VNA 

Bit error rate 
Ball grid array 
Decision feedback equalization 
Digital video input 
Far-end crosstalk 
Finite impulse response 
IEEE 488 General Purpose Interface Bus 
Avantl's version of SPICE, the industry-standard circuit simulator. 
Intersymbol interference 
Linear programming 
Least-squares 
Low-voltage differential signalling 

Let v be a vector of length n, || v \\k is defined as yY27=o l"(0lfe-
In particular, || v \\\ is Y^i=o 

" I b i s ^ E ? = o ( « W ) 2 ; 
v Hoo is max{|u(0)|, \v(l)\,\v(n - 1)|}. 

Multi-input multi-output 
Minimum mean square error 
Near-end equalizer 
Near-end crosstalk 
Pulse amplitude modulation 
Printed circuit board 
Pre-equalizer 
Phase-lock loop 
Time-domain reflectometer 
Video graphics array 
Vector network analyzer 
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We summarize the list of variables that we use throughout the thesis. We omit the 
variables that are only used locally. 

B B e KTbus^busX^bus i s the bus impulse response. (p. 33) 

dz(i,s) the worst-case disturbance on wire i at sample (p. 37) 
time s. 

dfe(i, s) the worst-case far-end disturbance on wire i at (p. 49) 
sample time s. 

dtte(i, s) The worst-case near-end disturbance on wire i at (p. 49) 
sample time s. 

extendo extendo is a linear operator, for v G E " 1 and n > (p. 29) 
n\, extendo(^i, n)v pads v with zeros to produce 
a vector of size n 

F F e R m f irWbu S xw b u s i s t h e filter i m p U i s e response, i.e. (p. 33) 
the filter coefficient matrix. 

/ the filter coefficient vector. (p. 34) 

G G is a function of the bus impulse response and (p. 35) 
the input. G • / gives the response of the channel 
consisting of the bus and filter / for a given input 
sequence. 

Gd the set of g(i, j, s)T vectors that do not belong to (p. 37) 
Gu- Gdf computes the disturbances. 

Gu the set of g{i,j,s)T vectors with i = j and <5o < (p. 37) 
s < 5Q + rt,it. Guf computes the undisturbed re­
sponses. 
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A vector such that g(i,j, s)Tf is the response on 
wire j at time s to a single bit input on wire i given 
filter / . 

(P- 36) 

In In G R9 in«w i s t n e m p U t vector to the channel. (P- 33) 

fcbiock The size of the diagonal blocks in the normal equa­
tions, fcbiock = fcdisturb/(fcmaskWbus)-

(P- 62) 

fcdisturb Number of disturbances, roughly w 2

u s f c m a s k ( " f i r + 

" b u s ) -

(P- 61) 

fcfir Total number of filter coefficients, roughly 
^ b u s T O f i r ( 2 c O f i r + 1). 

(P- 61) 

fcmask Number of measurement points defined in the eye 
mask. 

(P- 61) 

fcmaxf The number of variables introduced to calculate 
the maximum filter output, roughly w^i^w^+l). 

(P- 63) 

L Lower bound constraints for eye masks. L consists 
of a set of (s,rjs) pairs such that the maximum un­
dershoot at sample time s is rjs. 

(P- 26) 

M b i t The set of integers that are multiples of r^. (P- 32) 

M s y m The set of integers that are multiples of r s y m . (P- 47) 

m f i r The length of the filter in tap times. (P- 32) 

" b u s The length of the bus impulse response in bit 
times. 

(P- 32) 

" f i r The length of the filter in bit times. (P- 32) 

" I n The length of the input sequence in bit times. (P- 32) 

Out The output vector. (P- 34) 

Qbus The length of the bus impulse response in sample 
times. 

(P- 33) 

Qfir The length of the filter in sample times. (P- 32) 
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qin The length of the input sequence in sample times. (p. 32) 

r t a p The number of sample times per tap. (p. 32) 

Tbu The number of sample times per bit. (p. 32) 

fsym The number of sample times per symbol. (p. 47) 

U Upper bound constraints for eye masks, [/consists (p. 26) 
of a set of (s,as) pairs such that the maximum 
overshoot at sample time s is r/s. 

u(i, s) The undisturbed output on wire i at time s given a (p. 36) 
single bit input on wire i at time 0. 

W b u s Width of the bus. (p. 33) 

w n r Width of the filter, defined as the number of neigh- (p. 31) 
bors considered in each side of the input wire. The 
number of inputs to the filter for any given wire is 
2w f i r + 1. 

wimk Number of links in the bus. (p. 47) 

a A vector that specifies the shape of a parameter- (p. 38) 
ized eye mask. ds means the maximum over­
shoot/undershoot at sample time s is asn. 

do The estimated delay of the bus. (p. 32) 

n The eye-mask optimization parameter, together (p. 24) 
with a to specify the undershoot and overshoot 
constraints of a parameterized eye mask. 


