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Abstract 

At their lowest level, all rendering algorithms depend on models of local illumination 

to define the interplay of light with the surfaces being rendered. These models 

depend both on the representations of light scattering at a surface due to reflection 

and to an equal extent on the representation of light sources and light fields. 

Both emission and reflection have in common that they describe how light 

leaves a surface as a function of direction. Reflection also depends on an incident 

light direction. Emission can depend on the position on the light source. We call the 

functions representing emission and reflection light distribution functions (LDF's). 

There are some difficulties to using measured light distribution functions. 

The data sets are very large - the size of the data grows with the fourth power of the 

sampling resolution. For example, a bidirectional reflectance distribution function 

(BRDF) sampled at five degrees angular resolution, which is arguably insufficient 

to capture highlights and other high frequency effects in the reflection, can easily 

require one and a half million samples. Once acquired this data requires some form 

of interpolation to use them. Any compression method used must be efficient, both 

in space and in the time required to evaluate the function at a point or over a range 

of points. 

This dissertation examines a wavelet representation of light distribution func-
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tions that addresses these issues. A data structure is presented that allows efficient 

reconstruction of LDFs for a given set of parameters, making the wavelet representa­

tion feasible for rendering tasks. Texture mapping methods that take advantage of 

our LDF representations are examined, as well as techniques for filtering LDFs, and 

methods for using wavelet compressed bidirection reflectance distribution functions 

(BRDFs) and light sources with Monte Carlo path tracing algorithms. 

The wavelet representation effectively compresses BRDF and emission data 

while inducing only a small error in the reconstructed signal. The representation can 

be used to evaluate efficiently some integrals that appear in shading computation 

which allows fast, accurate computation of local shading. The representation can 

be used to represent light fields and is used to reconstruct views of environments 

interactively from a precomputed set of views. The representation of the BRDF 

also allows the efficient generation of reflected directions for Monte Carlo ray tracing 

applications. The method can be integrated into many different global illumination 

algorithms, including ray tracers and wavelet radiosity systems. 
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Chapter 1 

Introduction 

One of the goals of image synthesis is to produce images of three dimensional scenes 

represented by a computer model that are indistinguishable from images of real 

scenes. The most successful methods used to render such images have been based 

on simulating the physics of light transport [CGIB86, Kaj86]. The process starts 

with a model of the scene to be rendered, including descriptions of light sources 

and surface reflection properties, and proceeds to simulate the transport of light 

from sources to surfaces. Ray tracing methods consider only direct illumination 

and perfect reflections and refraction [Whi80], although extensions exist to model 

other phenomena [Ama84, Kaj86, WRC88]. Radiosity methods consider the inter-

reflections of light in scenes with only diffuse surfaces [CGIB86]. Again there are 

extensions for other lighting phenomena [ICG86, SAWG91]. Both methods use sim­

ple models of local reflection and of light sources. Many of the extensions presented 

to these methods can make use of more complex lighting and reflection models, but 

although some progress has been made using various analytical models of light re­

flection, little exploration has been done in the use of measured distributions. As the 
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sophistication of the the rendering methods has increased the traditional reflectance 

models, such as those presented by Phong [Pho75], Blinn [Bli77], and Cook [CT82], 

and the light source models, such as those of Poulin [PA91], Warn [War83], and 

Verbeck [VG84], have become less adequate to the task at hand. 

As the demand for more realistic computer generated images increases so 

does the need for more accurate models of light reflection and of light sources. 

1.1 Light Distribution Functions 

We use the term light distribution function (LDF) for functions that describe how 

light is distributed over a set of directions. The term is applied to scattering, as well 

as emissive and transmissive processes. Reflection is the process of redistributing 

incoming light according to a reflectance function that describes for each incident 

direction the distribution of reflected light in all reflected direction. Emission, as 

from a light source, requires characterization of the amount of light emitted in 

particular directions. Transmission considers how light is propagated through a 

space, requiring a field of directional samples. In particular, emission can be modeled 

by considering transmission at a boundary surrounding the source. 

The main difficulty in using light distribution functions is in their represen­

tation. The light distribution functions considered share some key properties. The 

functions tend to be smooth over much of their domains, but have discontinuities 

and peaks that pose challenges in representing them compactly. If real surfaces or 

light sources are to be measured the functions need to be sampled at a fine inter­

val in order to capture the reflection and illumination effects that make that LDF 

different visually from other LDFs. This in turn leads to very large representations 

- reflection, as is refraction, is a function of four angular variables (an incoming di-
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rection and an outgoing direction); emission over a surface, or transmission through 

a planar region, is a function of a positional variable and a direction. 

This dissertation addresses a range of issues surrounding representations and 

uses of light distribution functions including, but not limited to: 

1. compact representations; 

2. efficient evaluation; 

3. ease of application to shading computations; 

4. construction by simulation; 

5. using LDFs to filter texture maps and shading computations; and, 

6. using LDFs in a Monte-Carlo path tracing application 

1.2 Outline 

The remainder of this dissertation is divided into 7 parts. Chapter 2 presents back­

ground and prior work. Chapter 3 presents a simple mechanism for using tabulated 

reflectance data, and in so doing motivates the work in later chapters. Chapter 4 

introduces our wavelet representation of the BRDF and the point-reconstruction 

algorithm. Chapter 5 shows how the structure can be applied similarly to represent 

light emitted from a surface. Chapter 6 uses the material from Chapters 4 and 5 to 

examine the local shading problem and shows how our representation allows efficient 

filtering of light reflected from the entire incident hemisphere. Chapter 7 shows how 

to use our BRDF representation to pre-filter texture maps, including bump maps 

and micro geometry textures. Chapter 8 shows how Monte Carlo integration can be 

used to evaluate many of the integrals that arise when solving lighting equations. 
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In particular, it shows how we can use our representation to generate samples that 

are distributed according to the BRDF and emissive textures. 
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Chapter 2 

Background 

The study of optics is divided into three subareas: physical optics, concerned with 

the wave nature of light and interactions of light with objects of comparable size to 

its wavelength; quantum optics, concerned with the interaction of light with atoms 

and molecules [BW75]; and geometrical optics, concerned with macroscopic effects. 

In computer graphics we are most concerned with geometrical optics, where 

we can represent light as directional distributions representing how much light is 

traveling in a given direction. We use radiance as the measure for the amount 

of light. Radiance is the power per unit of projected area perpendicular to the 

incoming light per solid angle in the direction of the incoming light, which in SI 

units is watts x m - 2 x sr - 1 . In computer graphics applications radiance is usually 

described as the amount of light power leaving a surface through a solid angle. The 

projected area accounts for the foreshortening of the area of the surface caused by 

viewing it at an angle. 

A related quantity is irradiance, E, which is the total energy per unit area 

falling on a surface, regardless of direction. To refer to the irradiance due to light 
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arriving in a specific direction we write Ei(u)). A more complete introduction to 

these quantities is presented in Appendix A . 

2.1 Reflectance Functions 

The bidirectional reflectance distribution function (BRDF) characterizes the reflec­

tion of light at a surface [Ins86]. Following the basic definition of a surface from 

differential geometry [dC76], we wil l assume that there is a mapping x = x(u, v) 

of an open set U in the uv plane into S, a set of points in E3. This mapping is a 

regular parameterization of class C^7™' if the function is in U and given a basis 

i,j,k in E3 and writing: 

x.(u,v) = xi(u,v)i + X2(u,v)j + xs(u, u)k 

then we have: 

rank 

( dx\ dx\ \ 
du dv 

dxi dx2 
du dv 

dx% 9x3 
\ du dv ) 

This of course means that there is at least one of the 2x2 minors of this matrix which 

is non-zero. We wil l often refer to x(u, v) as a point of S, when in fact it is the image 

of the mapping x = x(u, v) which is a point of 5. We wil l use similar shorthand 

for the parametric curves such as x = x(uo,w) and the vectors such as the tangent 

vector with respect to u:xu = (^ - , , ^ f ) of the tangent vector with respect to 

v.-x.v = ( ^ , , )• Note that the definition of a regular parameterization means 

that the vector N = x u x x„ cannot be of length 0, and therefore can always be 

normalized. The normalized vector: 

X 7 / X X 7 J 

jxu X Xv j 



is the normal to the surface at point x(urj, VQ) if the partial derivatives are computed 

for these values of the parameters. 

We will later restrict the parameterization a little more, but this is enough 

for now to consider the geometry of the reflection as illustrated in Figure 2.1. 

An orthonormal basis for E3 is given by i, j , k which define the axes X, Y and 

Z respectively. Without loss of generality we will compute the partial derivatives 

and N at UQ = 0 and VQ — 0. The vector k is chosen so that k = N . Without loss of 

generality we have assumed that the unit vector i defining the X axis is the image 

of x„ normalized, and that the unit vector j defining the Y axis is j = N x i. We 

know from the definition of the regular parameterization that this vector cannot be 

null. 

We will consider two points in S, P — x(v.i,Vi) and Q = x(u r , vr). Directions 

will be noted in polar angles cD = (9, <f>) in the frame XYZ1. For instance the 

direction of the X axis is UJX = (f ,0), the direction of the Y axis is Qy = (§,§), 

and the direction of the Z axis is Qz = (0, </>) where </> can take any value. 

2.1.1 B R D F Definitions 

The definition of the bidirectional reflection distribution function is based on the 

fact that if a quantity of light falls at a point P = X (WJ,UJ ) from the direction 

&i — &) o v e r a n infinitesimal solid angle duJi and causes an amount of reflected 

light at point Q = x.(ur,vr) in direction cDr = (9r,<f>r), another amount from the 

direction will cause a proportional amount of reflected light at the same point in the 

same direction. 

Note that if we consider photons, that means that if a photon takes a path 
1 Differential solid angles have associated with them a unique radial direction. When we write CS 

we are referring to the radial direction associated with the differential solid angle duj. 
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from P from direction cDj to re-emerge at point Q in direction ur, any other photon 

incident into the same point in the same direction will re-emerge at the same point 

in the same direction. In quantum optics this applies only to probabilities, but we 

will work only with amounts of light for which the variance can be ignored. This 

will be true if the medium did not change appreciably in the time between the two 

paths being taken (such as in a very rapid chemical reaction). 

This simple assumption of proportionality fails to hold in many cases, for 

instance when fluorescence or phosphorescence (when the delay between absorption 

and emission is longer) intervene. The incident quantity of light is best specified as 

a flux of dimension of power. Since this flux will be distributed over an area on 

the receiving surface and over a solid angle involving a a range of direction, one can 

specify it either as a second order differential of flux, or as a first order differential 

of irradiance over a differential of area, or as a radiance over a differential area and 

a differential element of solid angle: 

The cos 6i term is necessary in the relation 2.1 above because with radiance the 

power is expressed per solid angle and per area projected in the direction of the ray 

considered. In this case the ray carrying the radiance makes an angle f9j with the 

surface element dA{. To specify the reflected light we will use the radiance at that 

point in that direction Lr(ur,vr,£ur). If the power of the reflected light is distributed 

both over an area and over a solid angle, then the reflected radiance has to be a 

second order differential element d2Lr(ur,vr,uJr). So we will define the bidirectional 

scattering surface reflectance distribution function (BSSRDF) as the ratio: 

d2$(ui,Vi,uJi) = dE(ui,Vi,Ui)dAi = Li(ui,Vi,C3i) cos OiduidAi (2.1) 

SpQ(ui,Vi,uJi,ur,vr,aJr) = 
d?Lr(ur, vr,djr) (2.2) 
d?$i(ui,Vi,u}i) 
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The dimensions of this quantity are L~2sr~l. 

It is important to note that the same concepts and notations can be used 

when the light does not emerge on the same surface, but on another surface (virtual 

or real). This is the basis of the Lucifer approach to light transport and global 

illumination as described in [LF96]. In this case the reflection process is substituted 

by an explicit light transport mechanism. 

The Helmholtz reciprocity principle [SH92] states that the BRDF remains 

unchanged if incident and reflected directions are switched. It is clear that in the 

general case of the BSSRDF the incident and reflected positions have to be switched 

as well for the reciprocity principle to apply. 

Equations similar to 2.2 have been of course been developed before, especially 

by Nicodemus and his collaborators [NRH+77] also reprinted in [SHW92]. The best 

exposition of this material for computer graphics is to be found in Glassner's book 

[Gla95]. 

If we replace the differential incident flux by its expression as a function of 

the incident radiance and the differential elements of area and solid angles (Equation 

2.1) we get: 

We can easily find the relationship between the BSSRDF and the more commonly 

used bidirectional reflectance distribution function (BRDF) by integrating the re­

flected radiance over an area Ar: 

Replacing d2Lr() by its expression in terms of d2$() and SPQ (Equation 2.3): 

dLr(uJr) = j SpQ(ui,Vi,i2i,ur,vr,ur)Li(ui,Vi,tJiji) cos9iduJidAr. 

SpQ(Ui,Vi,uJi,Ur,Vr,Ur) = 
cPLr(ur, vr,u)r) (2.3) 

Li(ui, Vi,CSi) cos 9idu}{dAi 
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Since is not a function of (ur,vr) we can remove it from the integral. We can 

also remove cos Oi and du>i from the integral. We then obtain: 

dLr(ur) = Li(ui,Vi,u}i) cosOidui / SpQ(ui,Vi,u)i,ur,vr,ur)dAr. 

J AT 

If we note: 

F(ui,Vi,uJi,ur) = / SpQ(ui,Vi,uJi,ur,vr,Or)dAr 

J AT 

then we have in F() an expression of the BRDF: 
»-,/ —* —* \ dLT(dJr) , . 
F(ui,vuuJi,ujr) = — ^ - — — 2.4) 

Li (Ui ,Vi,uji) cos Oidui 

In this expression, we have removed from the list of arguments the position of the 

point at which we define the BSSRDF by integrating over an area. If this area is 

such that all the reflected light flux is included, then the function F() is expressing 

some intrinsic property of the surface. One can also note that the denominator 

in Equation 2.4 is cDj) cosQidu>i = dE(ui,Vi,Qi). The dimension of F() is 

clearly sr~l that is the reciprocal of the solid angle. 

The expression in equation 2.4 is still a function of the coordinates of P , 

the incident point. There are two simplifications that will lead us to the "classic" 

formula for the BRDF. The first step is if we assume that there is no reflection 

except at the point of incidence. That means that the BSSRDF includes a Dirac 

<5() function of the form: 

SpQ(Ui,Vi,UJi,Ur,Vr,Ur) = 6(ur - Ui,Vr - V^TiUi^Vi,^,^) 

and that the integral giving F() will give us the right answer if the area A r includes 

the incidence point P : 

F(ui,Vi,Ui,tir) = / 5(ur —Ui,vr - Vi)F(ur,vr,uJi,ur)dAr = F{ui, Vi,uJi,wT). 
J Ar 
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The second step is to assume that the material of the surface is homogeneous, 

that is the function /() is independent of the position of the incident point P. In this 

case we merely drop the arguments (v,i,Vi) from the expression of /() and obtain: 

_ dLr{ur) 
T(u>i,ur) = —— — — (2.5) 

Li{oJi) cos ViduJi 

Several points should be noted here about Equation 2.5. 

1. We have also removed (ui,Vi) from the expression of the incident radiance, 

even though the radiance will be in general a function of the position on the 

surface. The subscript i should remind us of that. 

2. The BRDF here is not assumed to be isotropic, and therefore depends on the 

local frame of reference used at the point of incidence. Even if it is isotropic 

it will clearly depend on the direction of the normal vector at the point of 

incidence. 

We have avoided difficulties by assuming that all the reflected light comes 

out at the point of incidence, and therefore it is obvious which frame of reference 

to use. In the general case of the light emerging at different points, or even in the 

case where we want to average the "classic" BRDF over a curved surface a second 

coordinate frame is necessary to define the exiting light. 

2.1.2 Illumination 

Consider again the geometry in Figure 2.1. It shows a differential area, dA, being 

illuminated by a light L; coming from an infinitesimal solid angle du)i. The light is 

then reflected in a given direction uTr. Let E(X) be the irradiance at wavelength A 

arriving at the element dA from the entire hemisphere centered on the normal N. 
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Then 
dE(uji) = Li(tJi) cos Oidu)i (2.6) 

where dE(uji) is the change in exitance caused by the illumination from dw{ at 

wavelength A. Given the BRDF, we can relate the change in irradiance to the 

change in exitance, dLr(u?r), emitted in direction uTr\ 

dLr(uT) = fr{£i —> djr)dE((3i) (2-7) 

The only contribution to the radiance LT is from the hemisphere surrounding dA, 

written fijv. We can integrate cJj over the hemisphere Q.^ to get 

LT(ijJr) — I Li(uJi)fr(uJi -> u?r) cos OiduJi (2-8) 

This is commonly referred to as the fundamental equation of physical shad­

ing. Most work done in illumination and shading has concentrated on simplifying 

one or both of the -Li(uTj) and fr{^i —> <Jr) terms. A common simplification is to 

assume that the BRDF does not change with the rotation of the surface dA about 

the normal N. Such a BRDF is called isotropic and can then be expressed as 

/r(&,0i,tfrA,A) = flS°{9i,(f>r-(f>i,er,X) (2.9) 

which can reduce storage and computational costs considerably. DeYoung et al. 

examine how to determine if a measured BRDF is isotropic or not, and show how 

to force a dataset to have this property, at the possible cost of accuracy [DLF96]. 

There are several other simplifications made. Lambertian reflectors, used in 

radiosity solutions, assume the BRDF is a constant. Blinn-Phong shaders assume 

the BRDF is given by a diffuse Lambertian term and a specular reflection term 

[Pho75, BH77]. Other shaders approximate real BRDFs with varying degrees of 

complexity and success [War92a, CT82, HTSG91]. 
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2.1.3 Commonly Used Local Illumination Models 

Although real materials' BRDFs can be measured2 they are rarely used in practice 

so far. Instead, BRDFs are approximated by simple mathematical models of varying 

levels of accuracy, both with regards to appearance of the rendered surface and to 

their physical properties, such as energy conservation and reciprocity [Lew93]. 

Early local illumination work in computer graphics dates to the mid to late 

1970's with the work of Phong, Blinn, and Cook, [Pho75, Bli77, CT81], and to 

earlier work in optics [TS66, TS67]. The early computational models were designed 

to produce reasonable images at very low computational cost—the computers of the 

day were not up to the task of evaluating substantially more complex systems. 

Phong-Blinn Shading 

One of the most widely used computer graphic local illumination models was de­

veloped by Phong Bui-Tuong [Pho75]. The strength of the Phong model lies in its 

simplicity. The model allows non-ideal specular reflection with a specular peak of 

adjustable width. The width of the peak is controlled by a cos" a term, originally 

written as (R • V)n, where R is the direction of perfect reflection (as in a perfect 

mirror) and V is the reflected direction. The total illumination at a point on a 

surface at a given wavelength A is given by 

7(A) = Is(X)(kdiff(N • L) + kspec(R • V)n) 

where Is(\) is the illumination arriving at the surface from the source, kdiff and 

kspec are the fractions of diffuse and specular transport respectively, and L is the 
2Some argue this point on the basis that BRDFs may be comprised of delta functions. However, 

since measuring equipment does not sample an infinitesimal area or solid angle but an integral over 
some finite solid angle, this concern is unjustified. Moreover, delta functions can't occur in real 
materials. 
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direction to the light source. This formulation has a serious error. The highlight 

is controlled only by the difference between the viewing angle and the reflected 

angle, without taking into account surface geometry directly, leading to cases where 

the highlight can spill below the visible hemisphere centered on the normal to the 

surface. 

A frequently used reformulation of Phong shading, due to Blinn [Bli77], re­

places the RV term with the term N-H, where N is the normal to the surface, and 

H is the halfway vector, pointing half way between the light source direction and 

the viewer direction. Blinn's formulation generates more sensible results at glancing 

angles and similar results to Phong's elsewhere. 

Neither the Phong model, nor Blinn's reformulation of it, is based on any 

theoretical model of reflection. 

A Physics Based Model 

The Torrance-Sparrow model [TS66, TS67] is a physics based model of the interac­

tion of light with a reflecting surface. Early implementations for computer graphics 

are due to Blinn [BH77] and to Cook and Torrance [CT81]. 

The model represents a surface as a uniform distribution of microscopic mir­

rors, called micro-facets. The distribution and geometry of these reflectors controls 

how light reflects from a surface. The specular term of the reflection is given by 

= Fx DG 
P s vr (N-V)(N-LY 

where D is the distribution function of the micro-facets; G is the geometrical at­

tenuation factor, and accounts for self-shadowing and self-reflection of micro-facets 

with one another and is a simple geometric term; and Fx is the Fresnel term that 

relates incident light to reflected light at each micro-facet. The • V term scales the 
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result by the visible (foreshortened) area, and the N • L scales for the area visible 

to the light source. 

The complexity of the Cook-Torrance model is hidden in the D, G, and F 

functions. The micro-facet distribution function D, determines what proportion of 

the facets lie in the direction of the halfway vector. Choices used for this function in­

clude a Gaussian bump distribution, as used by Torrance and Sparrow [TS66, TS67]; 

the Trowbridge and Reitz distribution [TR67], used by Blinn; and the Beckmann 

distribution [BS87]. The Beckmann distribution has the advantage of a good theo­

retical basis and no arbitrary constants, unlike the other two, but does not produce 

particularly nice images. Cabral et al. propose an extension that allows algorith­

mic simulation of the micro-facet distribution allowing a wider range of micro-facet 

distributions to be used [CMS87]. 

The Fresnel term F relates the amount of light reflected from a surface at a 

certain wavelength to the incoming wavelengths, geometry of the surface and light, to 

the angle of incidence, and the polarization of the incoming light. The Fresnel term 

can be derived from Maxwell's equations at the surface boundary, ensuring that 

energy and continuity constraints are conserved after reflection. The derivation 

can be found in many modern optics texts, such as Born and Wolf [BW75]. For 

our purposes it is sufficient to note that to use these equations it is necessary to 

know the index of refraction and the coefficient of extinction of the surface. The 

expressions are also computationally expensive, requiring the evaluation of a number 

of trigonometric functions, square roots, and computation on complex numbers. 

The G term is geometrically defined to attenuate light because of self-blocking 

and intereflection by the micro-facets. As the incident and reflected directions ap­

proach the horizontal more of the light will be masked by the micro-facet geometry. 
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2.1.4 Anisotropic Shaders 

The shaders examined to date have been independent of surface orientation. How­

ever, many surfaces exhibit anisotropy, having different appearances from different 

directions. For example, fabrics frequently have a nap to them, appearing consider­

ably different depending on the orientation at which they are viewed. 

The earliest work on anisotropic shaders (where the BRDF varies with the 

orientation of the surface) in computer graphics is due to Kajiya, who developed a 

shader derived from the equations of electromagnetism [Kaj85]. His model uses an 

extension to Beckmann's scattering formula [BS87] extended to include anisotropic 

effects. Kajiya also extends bump mapping to frame mapping, where the entire local 

coordinate frame at a point can modified, allowing local deformation of anisotropy 

effects. 

The Poulin-Fournier Model 

Poulin and Fournier developed a simple model of anisotropic reflection in which 

small cylinders are distributed in various orientations over a surface [PF90]. The 

intensity of reflected light is calculated by determining the visible and illuminated 

portions of the cylinder, taking self-blocking into account. Their images are satisfac­

tory although the model seems limited to simulating brushed metals and Christmas 

ornaments. 

He-Torrance Shading 

He et al. present a reflectance model based on physical optics that computes reflec­

tive effects based on wavelength, incident angle, two surface roughness parameters, 

and the surface refractive index [HTSG91]. Their model also treats polarization 
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and directional Fresnel effects, allowing the simulation of effects such as depolariza­

tion and cross-polarization. Their model can be seen as an extension to the Cook-

Torrance model, replacing the micro-facet distribution made of Gaussian peaks, with 

a roughness described by the size of the Gaussian bumps and an autocorrelation 

length that is a measure of the distance between the Gaussian peaks, and carrying 

the polarization terms through their derivation. Their formulation approximates 

the diffuse behaviour of the surface with a uniform (Lambertian) term, and breaks 

the specular term into an ideal specular term, whose magnitude is controlled by the 

surface roughness, and a directional diffuse term which depends on the statistical 

distribution of the Gaussian bumps on the surface. 

The model yields visually attractive results, but the accuracy of the result 

depends crucially on selecting the correct surface statistics for the material being 

simulated. The authors only give a method for approximating the uniform diffuse 

term, leaving the reader at a loss for how to compute the other parameters required 

to shade a surface. 

2.1.5 Sampled BRDF data 

In addition to analytical models there are a number of techniques which depend on 

sampling either physical BRDF data, or else building up a sampled description of a 

BRDF from stochastic or other types of processes. 

Cabral et al. present a method of generating BRDFs filtering micro-geometry 

distributions and approximating the result using spherical harmonics [CMS87]. Westin 

et al. use a similar method but sample the geometry by ray-tracing. Their results 

are visually attractive, but their method requires storing tens of thousands of co­

efficients; they do not state the angular sampling density used to generate their 
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images. One disadvantage of using spherical harmonics is that the basis functions 

themselves are relatively expensive to compute. When used to represent BRDFs 

they are dependent on four variables, which makes them impossible to tabulate 

efficiently. 

Another approach to modeling the reflective properties of micro-geometries 

was taken by Fournier [Fou92] who represents a micro-geometry as a set of repre­

sentative normal directions and magnitudes, each with an associated Phong shader. 

To shade such a surface the contributions of each normal are summed. 

Ward presents a method for measuring and storing BRDF data for real ob­

jects. He describes his imaging gonioreflectometer, based on capturing the entire 

hemisphere of reflected light for an incident direction at once by using a reflecting 

hemisphere and a camera with a'fish-eye lens. He then fits an anisotropic surface 

micro-facet slope distribution to his acquired data [War92a]. 

2.1.6 Other work 

Apart from the general and measured illumination models a number of more spe­

cialized reflection models have been developed. 

Hanrahan and Krueger present a model of reflection caused by subsurface 

scattering [HK93]. They decompose surfaces into multiple layers with different 

reflection and absorption properties, solve the interactions using linear transport 

theory, and propose a ray-based Monte Carlo solution of the resulting integrals. 

Their model is particularly applicable to materials such as skin and leaves, where 

the effects of layering have a profound effect on the appearance of the surface. 

Nakamae et al. present a lighting model aimed at simulating driving con­

ditions, including wet roads, puddles, streaks of light, and the interaction with the 
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viewer's eye [NKON90]. 

2.2 Luminaires 

In illumination engineering a luminaire refers to a light source and its associated 

shades and reflectors. We will use the word luminaire in this way instead of the 

more common 'light source' used in compute graphics since we are more interested 

in the complete lamp. This section examines current computer graphics models of 

light sources and luminaires. 

The light source plays as important a part in shading calculations as does the 

surface. Most light source models used currently are directional, point, linear, and 

polygonal area sources. Directional and point sources are attractive because of their 

simplicity. Finding the direction to the light is simple and efficient. Linear and area 

sources are more difficult, requiring an integration over the surface of the light in 

order to compute the lighting. Some attempts have been made, particularly in the 

field of near-field photometry, to measure the shape and light distribution of actual 

luminaires [Ash92]. A related luminaire representation used when shading is the 

hemi-cube representation from radiosity techniques [CG85]. One view of the hemi-

cube is that it represents a luminaire comprised of the rest of the environment. 

This interpretation becomes relevant when using LDF representations for global 

illumination [Lew96]. 
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2.2.1 Directional and Point Light Sources 

Directional sources simplify the fundamental shading equation (Eqn. 2.8) by treat­

ing Li((Ji, Xi) as a product with a delta function parameterized by direction. 

Li(uji,Xi) = E(Xi)5(cos0i - cos0s)5(fa - <f>s) 

Point light sources are considered similarly, by including a distance term, r, to the 

source to correct for the solid angle of the source subtended by the surface element. 

The irradiance of a point source can vary by direction. The irradiance on an element 

dA due to the point source is given by 

E(Xi) = I(Q,Xi)^- (2.10) 

If the direction to the source is us then the radiance from the point source is: 

LM,Xi) = J ( ~ ^ ' ^(cosfl - cos0s)5{<p - fa) (2.11) 

Common extensions to the point light model include adding baffles and cones 

[War83], in effect specifying the directional distribution of I(u}, A). 

2.2.2 Linear and Area sources 

Directional and point sources are rare in the physical world. Real light sources 

have an extent, and this shows itself in the form of soft shadows, where a surface 

is illuminated by only part of a source. Point sources can be used to simulate 

area sources, but only by using a large number of them [VG84]; even then aliasing 

artifacts remain [Pou91]. 

Poulin and Amanatides give an analytical model for linear light sources based 

on integrating over the length of the light. They also present data structures to 

handle partial occlusion of the source [Pou91]. 
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Nishita and Nakamae present a method based on contour integration to de­

termine the illuminance at a point due to a polygonal light source in the presence 

of polygonal blockers [NON85]. Vedel approximates the contours due to blockers 

using a quad-tree approach, allowing non-polygonal objects to be used [Ved93]. 

Arvo developed analytic expressions for solving illumination due to Lamber­

tian emitters [Arv94], and due to emitters with Phong distributions [Arv95]. His 

techniques are based on irradiance tensors which use weighted integrals of the radi­

ation field to simulate various non-diffuse phenomena. He gives analytic forms for 

piecewise polynomial distributions over polygonal light sources. 

Houle extends the area light source representation, allowing the brightness 

and directional emissivity distribution of an area source to vary over the source's 

extent [Hou91]. 

2.2.3 Radiance Representations 

At the next level of refinement, light passing through a a finite area can be char­

acterized. By recording the radiance in each direction at each point on the area a 

compete representation of the distribution is obtained. 

Levoy and Hanrahan [LH96] and Gortler et al. [GGSC96] parameterize the 

space of positions and directions by the intersection of a line with two parallel places, 

one of which represents a viewing window while the other specifies a direction. A 

set of views of the volume are stored, and a new view is generated by interpolating 

from these views. Levoy and Hanrahan use a lossy compression system that reduces 

the accuracy of the simulation. Gortler et al. do not compress their data, keeping a 

large number of views in memory and using hardware texture mapping to perform 

the interpolations. 
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Christensen et al. develop a wavelet representation of radiance distribu­

tions using a non-standard wavelet decomposition over a unit patch and a radially 

stretched gnomonic projection of the hemisphere of directions. They then solve 

two point light transport equations by numerical sampling of the BRDF and of the 

transport integrals [CSSD96]. 

Lewis et al. present a similar representation of radiance distributions based 

on a Nusselt embedding of the angular components [Lew96]. This will be examined 

in more detail in Section 4.1. 

Ashdown [Ash92] presents a method for measuring such a data set for arbi­

trary luminaires, based on using a CCD-based video camera to record the emitted 

radiance from a number of positions around the luminaire. He also presents re­

sults claiming that a 5 degree sampling over the sphere surrounding the luminaire 

is sufficient for near-field illumination calculations. He uses a resolution of about 

480 samples per position. A quick calculation indicates that this representation still 

requires on the order of one and a half million samples, which is unwieldy for most 

graphics computations, particularly when multiple light sources are present in the 

scene. The storage costs are simply too high. 
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Chapter 3 

Representing BRDFs 

The BRDF is a function of four variables that needs to be sampled at a fairly high 

resolution to capture the reflection behaviour of a surface. Although many analytic 

BRDF models of varying complexity and accuracy are in use few of these rely on 

actual measurements of surfaces to fit parameters. Part of the reason for this is that 

actual measurements are expensive and hard to come by, and part is because real 

BRDFs are considerably more complex than those generated by computer models. 

In addition, the computational cost of those models that start to approach accurate 

representations are prohibitive. 

3.1 Measured Reflectance Functions 

Measuring a BRDF from an actual surface is problematic for several reasons. A 

gonioreflectometer measures a BRDF by physically moving a light source and a 

radiometer over the hemispheres of incident and reflected directions, taking mea­

surements every few degrees. Gonioreflectometers are relatively expensive and slow, 

and the data returned from them is often quite noisy, both in position and in value. 
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Ward attempted to address the problems of cost and speed [War92a] but the samples 

obtained from his gonioreflectometer are both nonuniform and noisy, complicating 

their use in rendering. Ward overcomes these limitations by fitting the parameters 

of a simple anisotropic shader to his data and using this shader to render surfaces, 

but his images are limited by his shading model. 

Greenberg et al. describe their experimental setup in which a gonioreflec­

tometer is used to gather BRDF data. They acknowledge that the amount of data 

collected is prohibitive to use, although they do use the data to try to validate 

analytic light reflection models[GTS+97]. 

Pai et al. have designed a measurement workbench, ACME, that should 

allow measurement of BRDFs, as well as geometry. It is expected to be operational 

by December 1997 [PAI97]. 

3.1.1 The Virtual Gonioreflectometer 

It is also possible to simulate a gonioreflectometer in software. Using a ray-casting 

strategy, a micro-geometry representing the small scale surface properties of a ma­

terial is sampled [CMS87, WAT92, DLF96]. A directional light source is moved over 

the hemisphere surrounding the surface normal, and at each light position the eye is 

fixed and the lighting evaluated over the micro-geometry being sampled. Multiple 

samples scattered over the area of the sample provide greater accuracy. The method 

used to evaluate the lighting of the sample patch can have a considerable impact on 

the resulting BRDF. In particular some strategy that accounts for inter-reflection 

over the surface will produce different results than a simple ray-casting strategy. 

For our experiments we used a path tracing algorithm similar to Kajiya's [Kaj86]. 

The resulting samples are then tabulated and can be used in the same way 
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as a physically measured BRDF can. For research purposes these synthetic BRDFs 

have a number of advantages. The noise and errors can be simulated, and samples 

can be taken at specific points without having to deal with the inaccuracies involved 

with mechanical systems. The sampling is both.fast and repeatable. 

Once measured and tabulated, BRDF data sets are large enough that their 

size is an impediment to their use. Without a priori knowledge of a material being 

sampled with a gonioreflectometer, or of the properties of a micro-geometry being 

sampled by a virtual gonioreflectometer, it is not possible to establish what sampling 

density is required to represent the BRDF within a given error tolerance. Either a 

relatively low frequency sampling is performed, possibly missing important features 

such as sharp reflection peaks, or a high frequency sampling is used, resulting in a 

data set which is too large to be useful. Consider for example a Phong model with 

an exponent of 50. Its specular component falls by half in 9.6 degrees. Sampling 

every 10 degrees gives (36 * 9)2 = 104976 samples. Each of these may involve 

multiple spectral samples. It is possible to establish if a given BRDF has certain 

properties, such as anisotropy for example, and modifying the BRDF to have a 

certain property. DeYoung and Fournier show methods for quantifying anisotropy, 

reciprocity, separability, and energy conservation [DF97]. 

3.2 Requirements of the Representation 

To determine if a particular representation is successful we must establish what is 

required of our representation. There are a number of operations that the represen­

tation must support, and some constraints on efficiency and compactness. 
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3.2.1 Point Reconstruction 

At a minimum the representation must allow reconstruction and interpolation of 

the BRDF at a given set of incident and reflected angles. This is the basic operation 

involved in using a BRDF for almost any computation. 

3.2.2 Accurate Shading 

One common operation that uses BRDFs is local shading. We would like to perform 

shading computations in a more sophisticated way than just point samples of light 

directions. In particular, the representation should allow the reflected radiance to 

be filtered over all directions of incident irradiance. This corresponds to evaluating 

the shading equation (Eqn. 2.8): 

Lr(ujr,X)= / Li(u?i, X)fr(u>i -> cJ*r, A) cos OidoJi. (3-1) 

This can be done by summing a number of point-wise samples, but more efficient 

methods would be useful. 

3.2.3 Texture Maps 

Surfaces used in computer graphics frequently exhibit shading detail at a level be­

tween that of pure geometry and that of shading differential areas. Texture maps 

modify shading parameters in that range of scales, adding visual richness without 

extending the geometry. In this range the level of detail used depends critically 

on the projected area of a pixel onto the object. Methods that allow our BRDF 

representation to be used in conjunction with texture mapping would be useful. 
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3.2.4 Compactness 

It is not uncommon to have several hundred different surfaces with different surface 

properties appear in single frames of large scale commercial animations. These 

surface properties, of which the BRDFs play an important role, must be reasonably 

compact in their representation, or else the scenes could not be computed in a timely 

fashion because of memory constraints. As will be shown, raw representations of 

BRDF data are generally too large to fit this requirement. 

3.2.5 Level of Detail 

Ideally the reconstructed BRDF would be identical to the original sampled signal at 

every sample point. However, such a reconstruction may be prohibitively expensive. 

It would be good if our method allowed fidelity to be traded off for faster rendering, 

letting the user rapidly pre-view an image, while being able to compute a full fidelity 

-image when required. Likewise, the values returned by our presentation between 

samples points should not add important features to the BRDF that do not exist 

in the original. This rules out most interpolating polynomials, and many other 

representations, because of ringing effects. 

3.3 Shading with Measured Reflectances 

3.3.1 Selecting a Parameterization 

The topology of the BRDF function space is an hemisphere crossed with an hemi­

sphere; if we consider refraction as well, a sphere crossed with a sphere (52 x S2). 

In selecting a parameterization to use we must consider a few factors: 

• The topology of the basis functions used to represent the functions; 
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• The error induced by the conversions from the measurements; and 

• The distortion in sample spacings caused by different embeddings. 

Fortunately the embedding of S2 x S2 is straightforward, save for the matter of 

redundancy at the poles. For our initial experiments we chose to use a polar map­

ping, as in [CMS87]. This mapping was chosen because of its simplicity and be­

cause it is consistent with the inputs to the shading code in the ray-tracer used. 

It provided a very quick way to test the usefulness of measured reflectance func­

tion as well as allowing us to easily visualize the functions directly using interactive 

techniques[DLF96]. Another obvious choice is to map by direction cosines or using a 

Nusselt embedding [Lew96]. This parameterization will be examined in more detail 

in Section 4.1. 

3.3.2 Using Measured B R D F s 

The simplest way to use measured reflectance functions while rendering in a ray 

tracing environment is to use interpolated table lookup. Fortunately BRDFs have 

the property of being smooth over much of their range, but they also contain dis­

continuities and regions of rapid change that are sufficiently important that they 

should not be ignored. 

Another fact to consider is that the original BRDF may have discontinuities, 

but the reconstruction method used should not introduce new discontinuities where 

none exist. Fitting our simple basis functions over the data will misrepresent the 

discontinuities already present, but this cannot be helped, particularly since we are 

using discrete samples. The Nyquist theorem tells us that we can only accurately 

reconstruct a signal up to a frequency dictated by our sampling rate, but our signal 

may contain arbitrarily high frequencies. In fact, in the presence of discontinuities 
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our signal contains arbitrarily high frequencies that cannot be reconstructed from 

our samples. 

We are then left in a position where more samples are required to arrive at a 

reconstruction that is accurate to some degree, but where the samples have a high 

cost in terms of storage. Choosing an appropriate set of basis functions with which 

to represent the measured BRDFs should lead to considerable space savings and 

increased accuracy in reconstruction. 

For initial experiments data were gathered with the virtual gonioreflectome-

ter and the resulting BRDFs used to shade surfaces with a ray tracer. We used 2 

micro-geometries in our tests. The sawtooth micro-geometry, shown in figure 3.2 

was chosen because of sharp discontinuities and ease of visualization. The velvet, 

shown in figure 3.3 was chosen because of its interesting shading characteristics. 

Much of the reflection on velvet occurs in regions of low incident angle, with a large 

uniform scattering, and a small contribution from the surface under the individual 

cut threads. 

The most naive approach to using a tabulated BRDF is to use a piecewise 

constant reconstruction strategy. This technique, though easy to implement and 

computationally efficient, is usually insufficient for even the simplest BRDFs. The 

lack of continuity in the representation causes highly visible artifacts in the generated 

images (Figure 3.1(a)). 

Quadrilinear interpolation on the parameters 4>i,0i,(f)r,9r, provides geometric 

(C(°)) continuity, but the lack of {C^) tangential continuity leads to visible artifacts 

(Figure 3.1(b)). 

Higher order interpolation functions can provide us with tangential con­

tinuity. In particular, we have used a few different quadricubic interpolation meth-
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ods. The simplest was to fit a tangentially continuous interpolating four dimensional 

tensor product cubic polynomial (Hermite) through the 256 samples surrounding 

the requested sample point (Figure 3.1(c)). It has the unfortunate drawback of 

oscillating considerably, as do all interpolating splines. We also used a quadricubic 

B-Spline scheme where we took the samples points to be the B-spline control mesh 

(Figure 3.1(d)). Although this last method is non-interpolating it produces good 

results because of the dense sampling over the hemisphere relative to the curvature 

of the BRDF. The resulting surface closely approximates the BRDF. This indicates 

that non-uniform sampling schemes should be examined. Figure 3.3 shows a more 

complex surface and the result of using B-spline bases to approximate the BRDF. 

3.3.3 Sampling Density 

An important issue to consider when measuring BRDFs is how many samples are 

required to obtain data that accurately represents a BRDF within some error tol­

erance. Such a figure is difficult to establish for real measured BRDFs since the 

gonioreflectometer can induce a considerable amount of error, both systematic and 

random. The effects of these errors can be reduced by making sufficient measure­

ments, but this increases the expense of gathering BRDF data. However, for syn­

thetic BRDFs we can generate samples from any direction and compare them against 

data obtained by re-sampling the corresponding BRDF, without worries about the 

errors inherent in a physical apparatus. 

Figure 3.4 shows the root mean squared error rates between sub-sampled 

versions of the measured BRDFs and the BRDFs generated at the same sample 

points for different re-sampling methods. The RMS error is not an ideal error 

measure for these data, but because the measures are being used for comparison 
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(c) (d) 

Figure 3.1: Different interpolation methods for measured B R D F s . (a) piecewise 
constant; (b) quadrilinear interpolation; (c) tangentially continuous cubic tensor 
product polynomial; (d) tensor product cubic B-Spline; The micro-geometry, shown 
in Figure 3.2, is sampled at a resolution of 30 samples in 4>i and <f>r and 15 samples 
in di and 9T, in each of the red, green, and blue colour channels. 
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Figure 3.2: The sawtooth micro-geometry. 



between representations of the same function this is not as much of an issue as in 

the case of image comparisons. 

The linear interpolation performed consistently well although the the visual 

artifacts caused by the lack of tangential continuity were problematic. The quadri-

linear case was also the fastest of the methods described (excluding the piecewise 

constant approach rejected because of its highly objectionable artifacts). To con­

trast the linear interpolation with the tensor product cubics, observe that the linear 

interpolation requires only 16 samples to be accessed compared to the 256 required 

for the tensor product cubics. Further augmenting the computational work required 

at each sample to evaluate a cubic polynomial causes the cubic bases to lose their 

attractiveness. 

The tangentially continuous interpolating spline shows itself to be a poor 

choice. Interpolating splines have a tendency to oscillate considerably in their spans, 

and this is demonstrated in our results. 

The best images overall were produced using the B-Spline bases, providing 

low error rates and tangential continuity. Its major drawback was the cost of compu­

tation compared to the quadrilinear basis. The cubic bases require 16 times as many 

operations as the linear bases, and each operation is more expensive (evaluating a 

cubic instead of a linear function). 

3.3,4 Summary 

It remains to examine whether the tabulated representations of the BRDF success­

fully addressed the representational issues described in Section 3.2. Examining the 

points in turn: 

Point Reconstruction: The method allows easy evaluation of the BRDF making 
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Figure 3.4: Root mean squared error for two measured BRDFs: (a) BRDF generated 
from a sawtooth micro-geometry (Figure 3.2) originally sampled at a resolution of 
30 samples in </>t and 4>r and 15 samples in 0{ and 6r; (b) BRDF generated from a 
velvet micro-geometry (Figure 3.3) originally sampled at a resolution of 15 samples 
in each angular direction. 



it easy to integrate into point-shading computations typical to ray tracers. 

Filtered Shading: The method provides no special facilities for filtering the re­

flection computation over incident light directions. 

Compactness: The method requires large amounts of storage, making the tech­

nique infeasible when a large number of shaders are required. 

Texture Maps: The method allows various forms of texture mapping to be used, 

but, as will be seen in chapter 7 most filtering schemes would require vast 

amounts of storage since the tabulations do not reduce storage requirements. 

Level of Detail: The method is computationally efficient, although there is no way 

to trade off fidelity for additional speed without seriously compromising the 

fidelity. The main run-time inefficiency is caused by virtual memory thrashing 

when the BRDF data sets are too large or numerous. 

3.4 Summary 

We have presented some simple methods for using tabulated representations of 

BRDFs. The methods performs well in terms of point-shading evaluation and in 

fidelity to the original data. The compactness issue unfortunately impinges on the 

efficiency of the method when many BRDFs are used, causing excessive memory 

swaps to disk. The lack of explicit filtered shading techniques is also a drawback. 
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Chapter 4 

A Wavelet Representation 

The raw tabulated representations used in Chapter 3 fail in fulfilling our require­

ments for a representation. We have examined using the raw tabulations and spline 

representations thereof. Other researchers have examined spherical harmonics as a 

solution. None of these methods are sufficiently compact, nor do they simplify the 

process of filtering reflection computations. 

We propose a wavelet based solution for a number of reasons: 

1. The representation allows a good control of the accuracy/space trade-off; 

2. The point-wise reconstruction is logarithmic in the number of original BRDF 

samples; 

3. A wavelet reconstruction can smoothly interpolate the original data; 

4. Error metrics are easy to compute; 

5. Incremental levels of accuracy can be used; and 

6. BRDFs are largely smooth with important discontinuities, which can be in­

terpreted as a signal which is mostly low-frequency, but with localized high 
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frequencies. Wavelets are ideally suited to represent this kind of data as they 

can isolate features at various resolutions, and provide considerable compres­

sion in regions where the signal is largely constant. The goal of the remainder 

of this dissertation is to study the appropriateness of wavelet bases for rep­

resenting the BRDF and to examine the algorithms related to shading that 

follow from the representation. 

4.1 Parameterization 

Recall that the topology of the BRDF function space is an hemisphere crossed with 

an hemisphere, or if we consider the transmission as well, a sphere crossed with a 

sphere (S2 x S2). The most common wavelet formulations are applied on Cartesian 

spaces. Fortunately there are straightforward embeddings of S2 x S2 into R4 if one 

is willing to compromise on the matter of required discontinuity in the mapping. In 

our initial experiments, described in chapter 3, we used a polar embedding. For our 

wavelet based representation we will use the Nusselt embedding, which is closely 

related to the direction cosines [Lew96]. 

To express a direction given by a vector v in a local coordinate frame given 

by the normal N and surface tangent T, we let \ix = v.T and ny = v.(N x T). If 

the angles are defined in polar and azimuthal angles (6,4>) we obtain: 

fix = sin 0 cos <fi 

fiy — sin 0 sin cj) 

We normalize these to the range (0..1), and call them K and A: 

K = [ux + 1.0)/2.0 
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K 

Figure 4.1: The Nusselt embedding. The given direction is mapped to a particular 
pair (K, A) by projecting the intersection with the hemisphere onto the unit square. 

A = (ny + 1.0)/2.0. 

K and A then index in the unit square. Directions then cover only the circle at the 

center of the square. We define the value of any function of directions for which 

Hx+ny > 1 as zero. Figure 4.1 shows graphically how a direction maps to a position 

in Nusselt coordinates. 

To perform the change of variable in integrals over (p and 9 we multiply by 

the determinant of the Jacobian, which is: 

\d(0,4>) 

D(K, A) I cos 9 sin 9 

If we take for example Equation 2.8 expressed in terms of (9, </>): 

Lr(x,y,0r,(pr) = j j Li(x,y,9,(p)fr(9,(j),9r,(j>r)cos9duj (4.1) 

0 <f> 

which becomes in Nusselt coordinates (recalling that duj = sin 9d9d<p): 

l l 

Lr(x,y,Kr,Xr) = 4 j j Li(x, y, K, A)/r(«, A, « r, Xr)dKd\ (4.2) 
o o 
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The Nusselt parameterization has a number of advantages. The change of 

variables in the local shading expressions eliminates the cosine foreshortening term, 

making the integrals much simpler to evaluate. The projection assigns more sam­

ples in the region of the poles, while neglecting glancing angles, where the areas are 

generally foreshortened and of less importance to global light levels. The Nusselt 

parameters are easily converted to vectors in the surface coordinate frame, requir­

ing only two multiplications and a square root, as opposed to the trigonometric 

operations required when using polar embeddings. 

4.2 Wavelets and BRDFs 

Schroder and Sweldens showed a method for encoding the reflections from one in­

cident direction using a spherical wavelet representation [SS95]. This restriction to 

one incident direction is a serious shortcoming. This method does not easily extend 

to encoding a large number of incident directions since the dimensionality of the 

function space of a BRDF does not map to the topology of their spherical space. 

The other difficulty is that even extending the method to higher dimensions, the 

basis functions of their transforms are built by subdivision of the input space. The 

basis functions are no longer self-similar, and cannot be composed of sets of uni-

dimensional functions, which as we shall see in sections 4.2.2 and 6.3 is critical to 

efficient evaluation of shading computations. 

We chose instead to use a multi-dimensional wavelet transform, mapping the 

parameter space of the BRDF to a Cartesian grid. The multi-dimensional wavelet 

decomposition allows a choice in how the uni-dimensional decomposition is extended 

to higher dimensions. In the standard case a product of one-dimensional decompo­

sitions is used. In the non-standard case a product of the basis functions is used, 
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leading to a multi-dimensional multi-resolution analysis that is analogous to the 

uni-dimensional case [Dau92]. We will examine each in turn, and the algorithms 

that follow. 

4.2.1 Standard Decomposition 

The standard four-dimensional wavelet decomposition yields: 

J>(Ki,Aj,K r,A r) = ^YL^^2c9,h,j,kBg{Ki)Bh{\)Bj{Kr)Bk(Xr) (4.3) 
9 h j k 

where Bn is denned as 

<f>(x) if n = 0 
B„(x) = I (4.4) 

2~l/2ip(2~lx — rn) if n = 2l + m for some / and m > 0 

and ip is our mother wavelet and (j) is our smoothing function. 

Consider the coefficients and basis functions that must be examined to re­

construct the BRDF at point q in the standard decomposition. Each coefficient 
cg,h,j,k for which any of Bg(rii),Bh(Ki),Bj(ni),Bk{ni) is non-zero needs to be ex­

amined. Recall that Bn(x) = 2~l/2ip(2~lx — m) if n = 2l + m for some / and m > 0 

when n > 0. We can then, for each / and m, establish which functions ipitTn(x) are 

non-zero. If the wavelet has a width of support w then there will be w basis func­

tions to examine at each level /. Observe then that each term in the summations of 

equation 4.3 can reference basis functions ipi,m() at different levels. This interaction 

means that a reconstruction costs 0(u>4Z4); if there are n4 original samples in the 

signal the cost is 0(w4 log4, n). This cost is too high to use the standard decompo­

sition to evaluate the value of the BRDF at a point. The non-standard transform 

gives more encouraging results. 
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4.2.2 Non-Standard Decomposition 

We will express a BRDF as its projection onto a multi-resolution wavelet space. For 

a univariate wavelet basis, the basis functions are all derived from two functions by 

scaling by a factor I (we will us I = 0 as the coarsest level of the pyramid, that 

is a larger I in the discrete case corresponds to a larger number of elements) and 

translations by m, which can range from 0 to 2l. One group comes from the scaling 

function (f>(): 

(f>im(p) = 2l/2<t>(2lp-rn) 

and the other from the mother wavelet function 

i>lm(p) = 2'/2V(2V - m) 

To manage the notation for multidimensional wavelet bases, we will use a 

four-variable vector q: 

q = Xi, Kr, Xr) 

and a multi-resolution index j: 

j = (v, I, mKi, mXi, mKr, mXr) 

Here v is the selector index for the wavelet functions, I is the level in the wavelet 

subspaces, 0 being the coarsest, and mp the offset at that level for parameter p. The 

level is the same for all variables because we use non-standard multidimensional 

wavelet bases [Dau92, SDS95]. Since they all have an hyper-cube support (same 

extent for all variables at a given level) the data structure is simpler, as are many 

geometric operations. The selector v determines the product of wavelet and smooth 

basis functions that together define Bj (q). We introduce a special notation to 
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indicate the selection, where v[h] is interpreted as the hth bit of v. 

4>i,m{p) i f ^ N = o 

i>l,m(p) Hv[h] = 1 

Then we then write the basis function Fj (q) as: 

-fj(ci) = r?,mK.,i/(«i) x rj,TnA.,i/(^i) x r 2

m K r „ ( K r ) x r f m v ^(Ar) 

Then the projection of the BRDF TR onto the multi-resolution space is given 

by: 

TT(AVJ, A J , KT, A r ) — /JFJ(K{, Aj, «; r , A r ) (4-5) 

where i^(.) are the appropriate basis functions, and are their duals. The fj 

are given by 

/ j = < ~Fr(rvi, Xi, Kr, Xr)\Fj(Ki, Aj, M r , A r ) > 
1 1 1 1 

— ^*j*J*j3~v(^ii Aj, /^T', A^) Fj (/^j, Aj, Av̂ , Xj.)dKidXiolrvj.dXj' (4.6) 
0 0 0 0 

Since our functions are defined as zero when fix + / i 2 > = 1 we can safely 

narrow the bounds of integration from ( — 0 0 . . 0 0 ) to (0..1). 

If we now examine the time-complexity of the reconstruction at a point we 

find that since the basis functions FjQ used in the analysis are multi-dimensional, 

each of the terms of the summation in equation 4.5 has a unique level / for all com­

binations of ip and (j) required to assemble Fj(). There are then 15 basis functions 

with w4 translations at each level that support the point q at which we are recon­

structing, where w is the width of the basis functions. This means we have only 

0(w4 log2 n) terms to examine during our traversal to evaluate at a point. 

In view of these results, we choose to use only the non-standard decomposi­

tion in our investigations. 
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4.2.3 Choice of Basis 

Our choice of wavelet basis functions is determined by two properties: the width of 

support of the basis, and the amount of compression a basis can provide. Since one of 

our goals in using the wavelet representation is to reduce the memory requirements 

we see immediately why greater compression is a goal. It is not so obvious why the 

width of support of the basis is important, or how it relates to compression rates. 

Firstly, the narrower the width of support of a wavelet, the less computa­

tional work is required in the reconstruction, since the scaled and translated wavelets 

will cover fewer terms. When extending to higher dimensions the amount of work 

required by wider bases increases with the power of the dimension. The number 

of terms examined then becomes a dominant factor in the cost of the reconstruc­

tion. In the case of bi-orthogonal wavelets all we care about is the width of the 

reconstruction wavelet. The analysis wavelet can be as wide as necessary, since the 

wavelet transform is performed off-line using the fast wavelet transform. 

Secondly, wider bases tend to compress better. The number of vanishing mo­

ments of a wavelet tells us the highest degree polynomial that the wavelet basis can 

represent exactly with only as many terms as the width of the basis. This ability to 

represent high-order polynomial correlates strongly with the amount of compression 

that a basis provides. In general, wavelets with more vanishing moments have a 

wider width of support. Thus, wider bases provide better compression, but at the 

cost of much more expensive computation. 

It follows then that the best bases for our application will compress the data 

well, while being as narrow as possible. It is only possible to determine experimen­

tally which bases are best for our application. 
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4.3 Representation 

The remaining difficulty is in representing the coefficients. The major advantage 

of using a wavelet based representation is that the representation is sparse, with 

many of the wavelet coefficients being zero or small. To increase our compression 

rate at the cost of accuracy we threshold small coefficients to zero. A property of 

the orthogonal and bi-orthogonal wavelet transform is that the sum of these thresh­

olded coefficients gives us the root mean square error induced in the reconstruction 

by ignoring the thresholded terms. If the original BRDF is / , the coefficients of 

its wavelet transformed representation are Wi, and JA represents the BRDF recon­

structed by using only the coefficients in the set A then the error is given by for 

some constants CQ and c\\ 

co( £ Kl2 )V2 <= 11/ - / A l l < = c i ( £ H 2 )1/2- (4-7) 
(i)iA (i)£A 

The difficulty is that there are as many wavelet coefficients as original data 

points, even though a large number of them may be zero. Thus we want to find 

a representation that stores only the non-zero coefficients, allowing us considerable 

economies in storage. 

4.3.1 Hash Table 

One solution to the problem of storing zeros is to use a hash table representation 

of the array containing only the non-zero coefficients. We use an open-addressing 

scheme keyed on the index of the coefficient. This scheme is compact, requiring only 

storing the non-zero entries and the keys[Knu73]. 

In an open addressing scheme the keys are stored in a table at an address 

given by some hash function h(k, i) where k is the key, and i is a count of the number 
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of probes required to find an empty slot. If the table is only lightly loaded most 

keys will hash to an empty slot on the first try. If a collision occurs, i is incremented 

and the process repeats. To do a lookup in the table the same sequence of hashes 

is examined until either the key is found at the position h(k, i) in the table or an 

empty slot is found, at which time it is known that the key is not in the table, a 

negative probe. 

In our application we expect most of our searches to have a negative result, 

indicating that the coefficient is zero. It is then important that negative searches 

be very quick. If the table is too full then negative probes will have to check a large 

number of entries and performance will be seriously affected. 

Instead we allocate a table that is about twice as large as the number of non­

zero coefficients. Since the expected number of probes required for a negative result 

is given by 1/(1 — a) where a is the load factor (ratio of full slots to table length), 

we find that with a = 0.5 that a negative probe is expected to take 2 lookups. We 

feel that this is an acceptable trade-off. 

We choose for our table size a prime number m about twice the size of our 

number of non-zero coefficients in our thresholded wavelet representation. Then our 

hash function is: 

h(k,i) = h\(k) + i* fi2(k) 

h-i(k) = k mod m 

h2(k) = k mod (m — 1) 

Since m and h,2{k) are relatively prime h(k,i),i = l..m will probe the entire table 

before repeating itself. See Knuth for more details [Knu73]. 

Unfortunately, if our data set is sparse most of our lookups are expected 

to return negative probes. This means that our most expensive lookups are most 
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common. A simple extension to address this would be to structure our evaluation 

i n a tree structure and to augment out hash table w i t h tree-structure information. 

A t this point though, it becomes more efficient to store the tree explici t ly . 

4.3.2 Wavelet Coefficient Tree 

In a one dimensional transform it is possible to use a b inary tree structure that 

at each node records the value of the coefficient and mimics the structure of the 

wavelet analysis. T h e n it is possible to prune any subtrees that contain only zero 

coefficients. There may remain nodes i n the tree that record zero values (if any of 

its descendants are non-zero) but these add no more than a smal l linear factor to 

the size of the stored tree. For reconstruction it is sufficient to traverse a pa th down 

the tree, following a ch i ld pointer i f the child 's basis function supports the point 

being evaluated. We let this structure inspire us i n higher dimensions. 

A n efficient opt ion for the representation is as a Wavelet Coefficient Tree. 

T h i s tree is a sparse hexa-decary tree (16 ordered children), where the depth of 

the nodes indicates the depth of the coefficients i n the representation, and where 

each node stores the non-zero coefficients w i t h the same offset m , indexed by u, the 

wavelet basis selector. 

We use a structure called a wavelet node that stores a l l non-zero wavelet 

coefficients w i t h the same indices (/, mo, m i , 7712,7713), and different basis selector v. 

T h e wavelet node also maintains a list of non-empty subtrees rooted at a wavelet 

node w i t h indices l+l, 2m 0-r-6{0}, 2 m i + 6 { l } , 2rn2+b{2}, 2m 3 +6{3} where b = 0..15. 

T h e addi t ion of a 15-bit mask indica t ing which coefficients are present (the value 

mask) and and a 16 bit mask indica t ing which children (the ch i ld mask) are present 

allow very compact storage of the tree. 
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function Eval(BRDFTree brdf, vector d) 

{ 
result — 0; 
for 6 = 1 . . 15 

if (brdf->valuemask & (0x01>>6)) 
j = (b,brdf —>l,brdf —>m[0. .4]); 
result += brdf—>value[b] * B-j(d); 

for 6 = 0 . . 15 
if (brdf->childMask & (0x01 >>6)) 

j = (b, brdf->level+l, brdf->m[0] * 2 + ( ( 6 » 0 ) & 0 x 0 1 ) , 
brdf->m[l] * 2 + ( ( 6 » l ) & 0 x 0 1 ) , 
brdf->m[2] * 2 + ((6>>2)&0x01), 
brdf->m[3] * 2 + ( ( & » 3 ) & 0 x 0 1 ) ) ; 

// Check the support of B-j() 
if [InSupportOf-B-j{d)) 

result += Eval(brdf—>child[b], d); 
return result; 

} 

Figure 4:2: Reconstruction of a 4-variable Wavelet compressed function at point q 

This method is both simple to implement and efficient. The tree traversal 

for an evaluation is comprised of a number of bit-mask operations and tests for cov­

erage by the relevant child's basis function. This coverage operation can frequently 

be implemented much more efficiently than a basis function evaluation. For effi­

ciency the non-Haar wavelet and scaling functions T(x) are tabulated off line, and 

basis function evaluation becomes a table lookup after scaling and translating the 

parameter x. Haar bases are coded algorithmically because of their simplicity. Fig. 

4.2 shows the traversal pseudo-code for a point-evaluation. 

4 . 4 Compressing the B R D F 

Now, with a data structure that can store sparse wavelet coefficients, and an algo­

rithm for point reconstruction, we must briefly examine the thresholding operations 

that we hope will allow us to compress BRDF efficiently using wavelets. 
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A key result for approximation is that the wavelet coefficients of a suffi­

ciently smooth function decay by levels at least as a power of 2^, provided ip has 

N vanishing moments: 

maxjliojjl < C 2~lN. 

The rate of decay is governed by the number of vanishing moments of the 

wavelet used. As an example, Haar wavelets have only one vanishing moment, 

which means that they do not approximate functions very rapidly. Similarly, the 

Haar coefficients do not tend to zero fast at finer levels, so Haar wavelets will not 

produce as marked a contrast in coefficient size between smooth and non-smooth 

sections of data as wavelets with more vanishing moments. 

A consequence of this is a bound on the error if we approximate a function 

with a limited set of coefficients. If / is the function to be approximated, A is the 

set of coefficients (i) chosen to be in the approximating function /A, the 1? norm 

of the error is bounded by 

c o ( £ H 2 ) 1 / 2 <- l l / - /^ l l<=ci (E H 2 ) 1 / 2 -

This means that the L2-error will be smallest when the n largest wavelet 

coefficients are chosen for the approximation. This corresponds to simple threshold 

compression of the wavelet coefficient information. Prom the above results it is 

clear that for smooth data, compression rates improve as the number of vanishing 

moments of the wavelet increases. It remains to show that these results apply to 

BRDF data. 
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4.5 Wavelet Compression Results 

Our results fall into three categories: BRDF size reduction vs. error in the BRDF, 

BRDF size reduction vs. error in the resulting image, and timings. We will examine 

these in turn, after having described our test data. 

4.5.1 Test Data 

The BRDFs we used to test our method were generated using a virtual gonioreflecto-

meter [WAT92, DLF96]. This process gives us considerable control over the data 

generated. We can easily capture the same BRDF at different sampling resolutions 

and be assured that measurement errors are not an issue. 

The BRDFs we examined are the sawtooth and the velvet from chapter 3, 

and a Phong shader with an exponent of 30. These were sampled at a resolution of 

32 samples for each of K ; , A J , A R and Kr. 

4.5.2 B R D F Size Reduction 

The measure of success of our BRDF representation is of compression vs. error, 

both in the representation of the BRDF, and in images shaded with the BRDF. 

Figure 4.4 shows compression vs. error rates for the sawtooth BRDF and various 

wavelet bases, where the error is the root-mean-square (RMS) of the difference 

between the complete BRDF and the thresholded BRDF. The important points to 

note from these plots is that the simple bases with narrow support perform quite 

competitively with the broader bases with more vanishing moments. In particular, 

the Daubechies basis with 4 vanishing moments is not as efficient as the simple 

linear spline1 . The added cost of evaluating the Daubechies basis however (about 

'This is the spline 2,2 from page 277 of [Dau92], shown in Figure B.2 
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Figure 4.3: Haar versus linear spline. Both B R D F s are thresholded to 0.1% of 
original size 

linear spline 1 . The added cost of evaluating the Daubechies basis however (about 

16 times the work — the Daubechies basis has about twice the coverage of the 

linear spline) makes this a gain of only marginal utility. Overall the linear spline 

bases seem to be adequate to compressing B R D F data to usable sizes with few 

visible artifacts. Figure 4.3 contrasts the Haar and linear spline bases, each wi th 

the wavelet coefficients thresholded to 0.1% of the original number of coefficients. 

The smooth interpolation of the spline helps mask the artifacts visible from the 

Haar's piecewise constant basis functions. 

Table 4.1 shows a comparison of running times and accuracy in the rendered 

image with thresholding. The image R M S error is computed from pixel values, 

scaled to the range (0..1], of the difference images, shown i n F ig . 4.5. 

'This is the spline 2,2 from page 277 of [Dau92], shown in Figure B.2 
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Figure 4.4: Compression vs. Percent total error. Prom top to bottom: the sawtooth 
BRDF, a Phong illumination model with exponent 30, and a velvet BRDF. 
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BRDF Size # Coef. Time Image RMS BRDF RMS 
Phong (n=50) 1.0 150933 50.9 0.0000 0.0000 

0.2 30183 36.4 0.0020 0.0244 
0.1 15051 30.1 0.0031 0.0549 

0.05 7542 22.7 0.0054 0.1049 
0.01 1503 12.5 0.0159 0.2334 

0.005 747 8.8 0.0236 0.2814 
0.001 147 3.5 0.0825 0.4331 

0.0001 12 1.5 0.1877 0.7486 
Velvet 1.0 93911 30.0 0.0000 0.0000 

0.20 18779 16.2 0.0010 0.0437 
0.10 9388 13.2 0.0028 0.0944 
0.05 4692 10.9 0.0029 0.1612 
0.01 936 6.4 0.0152 0.2984 

0.005 467 5.5 0.0216 0.3535 
0.001 91 2.8 0.0362 0.5160 

0.0001 6 1.3 0.0776 0.8279 
Sawtooth 1.0 127334 40.4 0.0000 0.0000 

0.2 25463 22.8 0.0075 0.0386 
0.1 12728 17.7 0.0149 0.0719 

0.05 6363 13.0 0.0202 0.1207 
0.01 1268 6.7 0.0352 0.3479 

0.005 632 5.2 0.0459 0.4639 
0.001 123 2.8 0.0762 0.6809 

0.0001 8 1.5 0.1486 0.9231 

Table 4.1: Comparison of running times vs thresholding and accuracy. Size is given 
as the fraction of original non-zero coefficients; time is in milliseconds per pixel on 
a 200 mhz MIPS R4400 processor; RMS errors are calculated after normalization of 
data to the range (0..1]. The BRDF RMS is for the red channel. 
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difference images below them show the absolute difference from the chair rendered 

from the unthresholded BRDF. The most important point to note is that the images 

are consistently good when the BRDFs are compressed to 1% of their original sizes. 

Even at 0.1% the surfaces are still recognizable. The relationship between the size 

of the BRDF and the speed of evaluation makes these highly compressed BRDFs 

even more attractive. 

4.6 Summary 

In this chapter we have presented a wavelet based representation of the BRDF. 

The original BRDF data are transformed into the wavelet domain using a multi­

dimensional non-standard wavelet transform. The coefficients are then stored in 

a sparse hexa-decary tree that does not store subtrees whose nodes are all zero-

valued. The representation allows rapid evaluation of the BRDF at a point and 

provides interpolation between originally sampled points. The reconstruction at a 

point costs O(logn) time, where there are n 4 original samples. The method allows 

a simple trade-off between space used and error induced by the lossy compression. 

54 



(c) 

Figure 4.5: A chair shaded wi th our wavelet compressed B R D F s , and the difference 
images. From left to right the images are generated wi th B R D F s thresholded to 
10%, 5%, 1%, 0.5%, and 0.1% or their original sizes. The (a) is a Phong shader with 
an exponent of 50,(b) a velvet, and (c) is a sawtooth, red on one side, blue on the 
other. 
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Chapter 5 

Light Field Representations 

Recent developments have made image-based rendering techniques useful as a sup­

plement to traditional rendering methods. The main idea is that an object can be 

represented as a series of views of itself and that its appearance in a rendered scene 

is generated by interpolating a new view from these views and compositing this view 

into the image[GGSC96, LH96]. One of the main difficulties of this approach is that 

to obtain good reconstructions from many different directions a dense sampling of 

the space of views is required. This quickly leads to an explosion in the amount of 

data to be stored and in the reconstruction times. Our interest is to use techniques 

similar to those used for storing and reconstructing BRDFs to store and reconstruct 

light field objects. 

We are interested not only in generating new views of the objects, but also 

in using such objects as light sources in a scene. To date light field objects have 

only been used to add views of objects into a scene. Recognizing that a light field 

object (LFO) is a representation of all light emitted from the volume surrounding 

the object allows us to treat the object as a light source. In addition, this kind of 
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representation is appropriate for maintaining a representation of light arriving at a 

surface, which can then be used to shade the surface, as will be shown in chapter 6. 

5.1 Representing Light Field Objects 

The problems of representing light fields and of representing the light emitted from 

a lamp are closely related to BRDF representations. Both require representing a 

function of 4 variables, some or all of which are directional. In the case of light 

fields we exchange two of the directional parameters of the BRDF with positional 

parameters on some surface. Evaluating the direct illumination at a point x due 

to an object Le is done by integrating the product of the BRDF T and the light 

arriving from the surface area of the object. This is a restating of Equation 2.8 

integrating over points in space rather than directions: 

We will revisit this equation in chapter 6. This chapter examines the problem of ef­

ficiently representing the distribution of light emitted by a luminaire, corresponding 

to the Le(.) term of equation 5.1. 

One particularly suitable application of LFOs is in modeling the luminaires 

used to illuminate a scene. Luminaires are available in a variety of shapes, sizes, with 

vastly different lighting characteristics. Although the emissive surface of the lamp 

(the filament or excited gas) plays an important role in determining the character­

istics of the emitted light a very significant role is played by the rest of the lighting 

fixture—the lamp shade and reflectors. The fixtures focus or diffuse light, allowing 

many variations on how the light emitted from an incandescent bulb or fluorescent 

tube will illuminate a scene. Although it is possible to model the fixture as part of 

(5.1) 
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the scene and to render it like any other surface in the scene this approach has major 

drawbacks. Because of the intensity of the light near its source and the proximity to 

the surfaces of the fixture, any variations in the fixture surfaces tend to be magnified 

and be made visible in the outgoing distribution of light—the distribution of light 

from a faceted lamp shade wil l be visibly different than that from a continuously 

curved one. Consider for example a lamp with an imperfect bulb'that is rippled. 

The light projected would have brighter and dimmer areas, depending on how the 

light was focused or diffused by the imperfections in the glass. The rippling is nearly 

invisible geometrically, and appears only at a very fine scale, but clearly apparent 

in the light falling on the wall. Likewise, any errors in the computations involving 

the source and the other parts of the luminaire wil l be magnified throughout the 

scene. In the case where a fixture has to be simulated, the fine scale geometry of the 

real fixture wil l affect how the lamp emits light, but the computational and storage 

costs caused by the geometry involved may be prohibitive to accurate simulation. 

Many rendering techniques are also poorly suited to the accurate simulation 

of scenes that include complete luminaires. Traditional ray tracers do not handle 

reflective lamp shades at all—the lighting calculation traces a ray to the light source 

(typically a point) and cannot determine if a surface is reflecting a sufficient amount 

of light to be worth of considering as a light source. Radiosity engines are partic­

ularly i l l equipped because of the 0(n2) (or 0(n logn) for hierarchical radiosity) 

dependence on the number of elements in the discretization required to simulate 

high frequency lighting changes [HSA91]. The refinement required on a luminaire 

tends to be prohibitive for radiosity methods. 

In order to represent efficiently the light emitted by a luminaire it is necessary 

to express the radiance emitted by the luminaire in all directions. Were all light 
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sources points this would be an easy measurement requiring only the sampling of 

the illumination in the sphere surrounding the point. Instead, since most luminaires 

have a finite size, we have to measure the emissivity in every direction from every 

point on the luminaire's surface. This quickly becomes unwieldy, more so when the 

luminaire is not convex, as lighting calculations using the luminaire are complicated 

by the need to integrate over the surface of the luminaire. 

Fortunately, it is possible to represent a luminaire by its bounding volume. 

The radiant flux at each point of its boundary is measured. The interaction of light 

in any volume can be completely replaced by a description of the radiant flux at 

every point on the boundary of the volume. This is quite similar to the approaches 

taken by Levoy and Hanrahan [LH96] and Gortler et al. [GGSC96], that they use 

to represent objects that are sampled from multiple viewpoints. 

5.2 Representation Requirements 

The representation chosen for the LFO is closely related to the intended application. 

Bearing in mind that we are interested using our light field objects primarily as light 

sources in ray-tracing and radiosity type applications, we propose the following 

criteria. 

Units 

We are particularly interested in the steady state solutions of light transfer. As 

such, we want a unit of light that is independent of time. Also, we will frequently be 

point sampling our representations, and do not want to have to account for area each 

time. As power is measured in Watts, the appropriate units for our representation 

is in Watts per meter squared per solid angle. 
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Accuracy 

The method must provide an accurate representation of the luminaire. In particular, 

the user must be able to specify the tolerances to which the representation must 

adhere. The method should not introduce artifacts into the shaded scene. Since light 

sources are critical to the illumination in a scene any artifacts must be quantifiable. 

Compactness 

The representation must be sufficiently compact that representing many LFOs in 

one scene is reasonable. A raw fine-grained sampling of the object in space and 

direction is therefore inadequate. 

Efficiency 

Computing the shading at a point due to a luminaire must be fast—this is the most 

frequent operation in most rendering systems. Our representation should also allow 

other shading computations to be done efficiently. 

Geometric approximation 

The representation should allow some form of a geometric approximation for the 

luminaire, in order to calculate inter-reflection effects of the scene upon the lumi­

naire. This becomes more relevant when the luminaires are large compared to the 

scene. Usually the light reflected at a luminaire from elsewhere in a scene is con­

siderably less important than the light emitted from the luminaire itself, mitigating 

the inaccuracies due to coarse geometry. 
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5 . 3 LFO Approximations 

A representation of a light field object is a dense sampling in both positions and 

directions on the surface of the lamp's boundary surface. The approaches examined 

in this thesis explicitly parameterize directions, using the Nusselt parameterization 

described in section 4.1. We choose to use this to parameterize directions on our lu­

minaires because this reduces the number of coordinate changes required when using 

our BRDF representation. Various parameterizations of position on the bounding 

surface can be easily substituted without radically changing the representation of 

the directional distributions. 

5.3.1 Spherical Bounds 

One obvious boundary is a bounding sphere enclosing the luminaire. There are two 

simple ways to parameterize the sphere: by polar coordinates, or by two Nusselt-

parameterized hemispheres. The disadvantage of this sampling is that a polar em­

bedding of the sphere of directions is non-uniformly sampled with regards to its 

spatial embedding, allocating too much work at the poles. Since a luminaire will 

frequently not have preferred viewing positions this is problematic. Likewise, a 

Nusselt parameterized sphere is also non-uniform in its sampling, and artifacts are 

introduced at the horizon. The Nusselt embedding also requires two hemispheres 

to be recorded and computed with separately in order to represent a sphere. For 

these reasons, and the fact that domains without these problems exist, we shall not 

examine spherical spaces any further. 
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5.3.2 Rectilinear domains 

An important class of light field objects is formed by the "light through a win­

dow" parameterization. Here the light field object is measured as if seen through 

a window. The most common geometry used is a rectilinear region, although other 

parameterizable domains can be used. This domain is particularly useful to repre­

sent light passing through a region of space which forms a particularly good basis 

for accumulating light arriving at a surface. This will be used extensively in chapter 

6. A ray tracer can easily be adapted to compute such light fields. The parame­

terization is also easily mapped onto objects, making the integration of light field 

object luminaires into a scene quite simple. 

5.3.3 Polyhedral domains 

Another representation to use for the boundary surface is a polyhedral bounding 

volume. In particular a bounding box is good. Each face of the box is easily 

discretized, and the directional distribution gathered over it. For any point in the 

scene at most three faces are visible, reducing the shading from a lamp to the 

shading from three area sources with spatially-varying emittance distributions. More 

complex polyhedra could be used, such as a convex hull of the luminaire, but as the 

number of faces increases, the number of area source-like surfaces that must be 

considered increases rapidly. Using only one wall of the bounding box trivially 

allows surface mounted luminaires to be used. 

5.3.4 Arbitrary domains 

A related representation allows the mapping of a luminaire onto an arbitrary object. 

By taking a luminaire representation parameterized by u and v and identifying these 
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parameters with the parameters of a geometric object, the object can be made 

to have a spatially and directionally varying emissivity distribution. There are a 

few difficulties with this approach however. Sampling issues (addressed in Chapter 

8) are complicated by the geometry. The mapping from the object's parametric 

space to world space is usually not the same as the mapping from the luminaire's 

original space to its u, v parameterization, inducing distortions in the brightness of 

the luminaire over the surface. A re-parameterization may help this, but is not easy 

to obtain in general. 

5.4 Sampling Luminaires 

Ashdown has shown a system based on CCD video cameras and a moving gantry 

for measuring the emissivity of a luminaire over an encircling sphere [Ash92]. His 

method records video images from a number of directions, and these then need to 

be transformed into positional and directional samples. The camera registration 

and lens distortion effects can cause serious artifacts. These problems may also 

appear in the Gortler et a/.'s Lumigraph [GGSC96] as their data are collected with 

a hand-held video camera. 

Instead of building a physical instrument we have chosen to instrument our 

test-bed ray tracer to sample detailed geometries of luminaires. Similar measure­

ments can be made with Lucifer, a global illumination software package that uses a 

wavelet representation of light, with the added benefit of obtaining our data already 

in the wavelet domain [Lew96]. Both these methods make measurements completely 

repeatable and lets us ignore calibration issues allowing us to concentrate on repre­

sentational issues. Using our system we sampled 3 luminaires at a resolution of 32 

samples in each of u, v, K, and A: 
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• A simple lamp shade made of spheres; 

• A ceiling mounted fluorescent lamp with sharp baffles; and 

• A simple room environment with a red wall, a blue wall, a green floor, and a 

sphere with a sawtooth B R D F . 

A view of each is show in Figure 5.1. 

5.5 Luminaire Representation 

Directional radiance distributions have many of the same properties as B R D F s . Over 

much of their angular range luminaires are smoothly varying, but any discontinuities 

are important. Thus, we choose to adapt our wavelet representation of B R D F s to 

the problem of representing the exiting flux through a surface parameterized by 

positional parameters (u,v) ranging from 0 to 1, and in directions (K, A), again 

ranging from 0 to 1. 

The four-variable vector q corresponds to d of section 4.2.2: 

q = (u,v,Ki,\i) 

and the multi-resolution index k corresponds to j of of section 4.2.2: 

k = ( j / , Z , m u , m „ , m r e . , m ; J . 

Then the radiance £ (q) can be expressed as its projection onto a multi-resolution 

wavelet space: 

£(q) = £&*£fc(q), 
k 

entirely analog to the case of the B R D F . The fVare are given by: 

bk = < Lr(u,v,Ki,Xi)\Bk{u,v,Ki,Xi) > 
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1 1 1 1 

Lr(u,v,Ki,Xi)Bk(J u,v,Ki, Xi)dudvdKid\i (5.2) 
0 0 0 0 

Likewise, the basis functions Bk are given by: 

B f c ( q ) (Ai). 

This is precisely what Lewis al. do [Lew96], but they only use these 

radiance representations on flat surfaces. The same data structures then apply to 

radiance distributions as to BRDFs. Lewis et al. and Christensen et al. also restrict 

their wavelet representation to Haar wavelets. We will not do so, except in specific 

circumstance when general wavelet bases are simply too computationally expensive 

to use. For instance if the radiance distributions are compressed using non-Haar 

wavelets, the direct evaluation of the illumination equation becomes dramatically 

more expensive, as will be seen in Chapter 6. 

The reconstruction algorithm is entirely analogous to the BRDF reconstruc­

tion. 

One of the goals of the luminaire representation is to be able to take a complex lumi­

naire and sample it in a reasonable fashion that will allow integration of complicated 

luminaire geometry without an inordinate amount of work for the renderer. Figure 

5.2 shows our three test luminaires at different compression levels. The top row is at 

100%, the center at 10% of original size, and the last at 1% of original size. Figure 

5.4 shows compression rates of luminaires plotted against the RMS error induced. 

A viewer for our data sets achieves interactive rates at reconstructing views 

from our luminaire information. Figure 5.3 shows screen captures of the application 

5.6 R e s u l t s 
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at work. The mouse position determines the viewing direction, and the image is 

redrawn in incremental steps. Instead of using the mouse to determine viewing 

positions it should be possible to use a head-tracking interface to complete the 

illusion of looking at light through a window. 

Further results will be presented in Chapter 6 where local shading computa­

tions are examined. 

5.7 Summary 

This chapter has shown how to use a wavelet representation similar to that presented 

in Chapter 4 to store and reconstruct the light field through a surface. The rep­

resentation works particularly well for rectangular luminaires and representations 

of light through a window. As in Chapter 4 the representation allows a tradeoff of 

space versus accuracy. 
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Figure 5.2: Three Luminaires at (from top to bottom) 100%, 10% and 1% of original 
sizes. The lamp is viewed from nearly below. 
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Figure 5.3: 2 Screen shots of RadView, an interactive program for viewing light field 
objects and luminaires. A view of the room scene is shown above and a bottom view 
of the sphere luminaire below. 
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Figure 5.4: Compression rates vs. error for our three objects. 
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Chapter 6 

Local Illumination and Filtering 

With BRDFs and light sources now defined, it is possible to examine the process of 

surface shading. Consider again equation 2.8, without the wavelength dependence: 

The challenge of local shading is to evaluate this integral efficiently at every point 

on a surface. Different assumptions about the incident light function Lj() lead 

to various different solutions. Early ray tracers assumed either point or directional 

lights, while more sophisticated techniques such as Monte Carlo ray tracing [Kaj86], 

extended radiosity methods [ICG86, CRMT91], and photon tracing [Jen95], for 

example, allow more general formulations. 

Computing the illumination at a point due to a point light source is straightforward. 

Recall from section 2.2.1 that radiance Li(u?i) at a point when the direction to the 

(6.1) 

6.1 Point Lights 
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source is us is given by: 

Li{LOi) =
 /(~2^^(cosg- coa0,)8{<f> - fa) (6.2) 

Substituting into equation 2.8: 

Lr(ujT) = / ^^^S(cos0 — cos9s)S((p — (f)s)fr(ui ^ cjr) cos Oiduji (6.3) 

Rewriting with the Nusselt parameterization and integrating we find: 

Lr(Kr, Xr) =4 fr(Ks, \ s , Kr, \r) (6-4) 

6.2 Light Field Objects 

The most frequent use of a luminaire is to compute the direct illumination at a point 

due to that luminaire. This is an evaluation of the shading equation for a limited 

part of the hemisphere. This section is concerned with how to use our luminaire 

representation to evaluate the direct lighting at a point. 

Consider again the shading equation but with the addition of a parameter x 

denoting the point being shaded, in world coordinates: 

Lr(x.,u?T) = / Li(x,uji)fr(uji —> ujr) cos9idu>i (6-5) 

If we are interested only in direct illumination due to a particular luminaire 

Ce we can rewrite this as: 

T- , f ~- ,r~i X , i ', r h o(x,x')cosf9jcos0e 

Lr(x,u?r) = / .7>((x' - x) -> u?r)Le(x!, (x - x'))^ ' .. ' }r= -dx.' (6.6) 
Jx'eLe \\x'-x\\z 

where g(x, x') is a geometry term accounting for occlusion (both self-occlusion and 

blockers) that returns 1 if the path from x to x' is unobstructed and zero otherwise. 
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Converting to Nusselt parameters and making explicit that the integration is over 
parameters u, v of the light source: 

1 1 

Lr(x,y, KR, Xr) = 4 J J J>(K(U, V), \(U, V), KT, Xr)Le(u, v, K(U, V), X(U, V)) 

o o 

xg ( x1iL--4i"s f l e^^ (6-7) 
where x and x' are derived from the parameters on their respective surfaces, and the 

functions K() and A() establish the Nusselt parameters corresponding to the direction 

to the point being shaded. In all but the simplest geometries, these coordinate 

transformations make the integral analytically intractable. Chapter 8 examines the 

application of Monte Carlo integration to solving this integral. 

6.3 Radiance Field 

Local shading can be computed efficiently if the incident radiance field is known. 

Currently, both Lucifer [LF96] and wavelet radiosity methods [GSCH93] can be 

adapted to generate wavelet-represented radiance fields. We will examine the par­

ticular case where the incident field is described using a planar wavelet projected 

radiance field presented in section 5.3.2. Recall that the incident radiance is repre­

sented as a function Li(u, v, K, A), and the BRDF is given by JFr(«, A, K t , Xr) where 

all the parameters range from 0 to 1. To shade in the direction of the eye where 

e = (u,v, Kr,Xr) where (u,v) are the spatial coordinates of the point being shaded, 

and (nr, Xr) is the direction to the eye from that point, then the required radiance 

is: 
l l 

Lr(e) — Lr(u, v, nr, Xr) — 4 Jj Jr

r(K.i,Xi,nr,Xr)Li(u,v,K,X)dKdX (2-8) 
o o 
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Recall that the wavelet projection of Li is: 

Li(q) = Y,hBk(q) 
k 

where q is the vector: 

q = (U,V,K,X) 

and k is the index vector: 

k= (vk,lk,mk,mk,mk,mk

x) 

Likewise the projection of the BRDF is given by: 

^rr(d) = £ / i F i ( d ) 
j 

where d is the vector: 

and j is the index vector: 

j = (v3, V, m3

K, m{, m3

Kr, mJ

Xr) 

Then equation 2.8 becomes: 

1 l 

Lr{u,v,KR,\R) = 4 £ £ / k 6 j J J Fk(d)Sj(q)dKdA 
j k oo 

Using the T() notation to expand the basis functions F$ and B^ we arrive at 
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Leaving only functions of K and A in the integrals: 

Lr(u,v,Kr,xr) = 4 £ £ / k & j r 2

J m J vj(nr)vlmi nJ\r)T%mkuAu)^m*Av) 
"1 k 

1 1 

/ r ! W Wlm^ (*)d* I (X)d\ (6.9) 
0 0 

Recall that the bases for the radiance (the k indices) were constrained to be Haar 

bases while the BRDF bases may be arbitrary. The T() terms outside the integrals 

are evaluations of the basis. In most cases one of these will be 0 for bases of finite 

support. The integrals can be computed efficiently by tabulating the integral of the 

non-Haar bases. To evaluate, the range of integration is first clipped against either 

the whole range of the Haar smooth function and integrated, or against the two 

halves of the Haar wavelet separately and summed. If the radiance wavelet were not 

restricted to Haar this integration would become more expensive, as the tabulation 

of product of all the basis functions would be required. The additional width of the 

radiance wavelet would also increase the number of wavelets at every level that share 

support with the BRDF wavelets, further increasing the computational expense. 

The cost of the method would be prohibitive because of the exponential growth of 

number of coefficients covered at finer levels of the wavelet transform. Thresholding 

helps this, but only by a linear amount. 

The implementation now becomes a set of nested traversals of the radiance 

tree and of the BRDF tree, comparing the supports of the children's bases before 

recursing. At each pair of nodes the summand of equation 6.3 is computed. Fig. 

6.1 shows pseudo-code for the traversal. 
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f l o a t RadTraverse(RadianceTree wet, BRDFTree brdf, u, v, kappa, lambda) 
I j u and v axe parametric positions on the surface being shaded, 
/ / i n wet coordinates 
/ / kappa and lambda indicate the direction to the eye 

{ 
result — BRDFTraverse{brdf, wet, u, v, kappa, lambda); 

II Here the recursion checks for support against the positional 
/ / components, u and v, at indices U and V in the m vector, 
/ / which is the m terms from the index vector k in the text. 10 
/ / The zero and one bits of b index the U and V indices of m. for b = 0. .15 

if (wct->childmask & (0x01>>6)) 
/ / test our given u,v against the 
/ / support of the child basis given by b 
m[U] = wct->m[U] * 2 + ( ( 6 » 0 ) & 0 x 0 1 ) ; 
m[V] = wct->m[V] * 2 + ( ( 6 » l ) & 0 x 0 1 ) ; 
if (InHaarSupport(wct—>level,m[ U],u) 

&& InHaarSupport(wct —>level,m[V],v)) 
result += RadTraverse(wct—>child[b],brdf, 20 

u,v,kappa,lambda); return result; 
} 

f l o a t BRDFTraverse(BRDFTree brdf, RadianceTree wet, u, v, kappa, lambda) 
{ 

result = Integrate(brdf, wet, u, v, kappa, lambda); 

II Here the recursion checks for support against the reflected 
/ / directions, kappa and lambda, at indices Kr and Lr in the m 30 
/ / vector, which is the m terms from the index vector j in the text. 
/ / Bits 2 and 3 of b index the Kr and Lr indices of m. for 6 = 0. .15 

if (brdf->childmask & (0x01>>6)) 
m[Kr] = brdf->m[Kr] * 2 + ( ( & » 2 ) & 0 x 0 1 ) ; 
m[Lr] = brdf->m[Lr] * 2 + ((6>>2)&0x01); 
if (InGammaSupport(brdf —>level,m[Kr],kappa) 
8i8i InGammaSupport(brdf—>level,m[Lr],lambda)) 

result += BRDfTraverse(brdf—>child[b],wct, 
u,v,kappa,lambda); 40 return result; 

Figure 6.1: Tree-traversal evaluation of nested summations of equation 6.3. The 
function IntegrateQ calculates the summand of equation 6.3. 
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6.4 Results 

Fig. 6.2 show the results of applying this computation. The image shows the back 

wall of a cubic room with a green floor, a red left wall and a blue right wall, similar 

to the classic Cornell box [GTGB84]. The BRDF is Lambertian, which is to say 

that the BRDF is a constant. The radiance field was sampled with a ray tracer at 

a resolution of 32 by 32, both positionally and angularly. The image on the left is 

computed without thresholding, on the right with. The unthresholded image took 

90 milliseconds per pixel, the thresholded one 17 milliseconds per pixel. 

Fig. 6.3 shows the back wall of a similar room for different Phong exponents. 

The wall was shaded from an incident light field. The important part to note is the 

glossy reflections. As the Phong exponent increases the images become sharper. 

Fig. 6.4 shows the result of a scene with a wall illuminated by an area light 

source in the presence of a blocker. Again, the radiance field was sampled at 32 by 

32 positionally and angularly. The BRDF was sampled at 16 samples per angular 

component. Note the effect of the filtering. The dimmer regions correspond to 

regions where the light was partially occluded. The upper left image, with wavelet 

coefficients thresholded to 10% of original size, took 113 milliseconds per pixel, the 

upper right 54 milliseconds per pixel at 1% of original size. The bottom left shows 

the same scene with the BRDF represented with a linear spline basis, thresholded 

to 0.5% of original size. 

An examination of the running times shows that thresholding does vastly 

improve running times with very little degradation in image quality. Using non-

Haar bases for the BRDF is too expensive to be considered reasonable, particularly 

as the sampling rates of the radiance field and of the BRDF increase. 

In this chapter we have shown how to use the BRDF representation of Chap-
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Figure 6.2: Orthographic view of a Lambertian wall in a cubic room. A sphere close 
to the wall occludes much of the room. Leftmost, a wire-frame view of the geometry. 
Center, the shaded view of the back wall, computed without thresholding. Right, 
the back wall shaded wi th the incident radiance thresholded to 1% of the original 
size. 

Figure 6.3: The back wall of a room, with Phong B R D F s . From left to right the 
exponents are 5, 50, and 200. 
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Figure 6.4: A wall i l luminated by an area light source. A sphere partially occludes 
the light source. The B R D F is generated from a sawtooth micro-geometry. The top-
left image is computed without thresholding. In the top-center the incident radiance 
and the B R D F thresholded to 1% of the original size. The top right image is the 
result of thresholding the incident radiance to 1% of the original size, and using a 
linear spline basis (spline 2,2 from Daubechies, p. 277) for the B R D F , thresholded 
to 5% of its original size. The bottom image shows a view of the geometry for 
reference. 
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ter 4 and the luminaire representation of Chapter 5 to efficiently evaluate the shading 

equation at a point. The luminaire representation is used to describe the light ar­

riving at a surface from all directions. The BRDF is then used to mediate the 

interaction. The sparse nature of the wavelet transforms, as well as some obser­

vations about how the wavelet basis functions can be decomposed into separable 

parts within the shading integral, allow us to evaluate the integral directly, with­

out sampling the light field and BRDF at points, as previous general solutions to 

this integral have had to. The solution is sufficiently fast to replace point sampling 

methods, and can be integrated into such rendering algorithms as Lucifer [LF96] 

and wavelet radiosity [GSCH93] that generate wavelet representations of incident 

light. 
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Chapter 7 

Filtering Textures 

The use of texture maps has a long history in computer graphics [BN76]. First used 

to provide more interesting surfaces by varying the colour of a surface according 

to its local parameterization, texture maps have since been applied as methods of 

modifying many parameters in analytic shading models [Hec86]. In general tex­

ture maps add detail to the surface appearance without increasing the geometric 

complexity. Whenever texture maps are used some sort of filtering is required to 

overcome sampling problems. Some of these techniques can be applied to surfaces 

whose properties are defined by measured BRDFs. 

There are 5 ways in which BRDFs and filtering can interact: 

1. Treat a colour map as a colour modifier over the exiting (or incident) light at a 

surface element, as in Figure 7.1 where the mandrill was applied over a BRDF-

specified Phong shaded plane; existing texture map filtering technologies apply 

[Wil83, Fou92, GH86]; 

2. A texture map can vary the parameters of an analytical shader. If the param­

eters are linearly separable from the shading equation then methods from (1) 
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apply, otherwise considerable knowledge of the shader is required and it is not 

obvious how to filter them. We will not examine this option further; 

3. The BRDF can vary over the surface according to a texture map: entries 

in the texture map are indices into a table of BRDFs. Figure 7.2 shows 

a checkerboard texture made from a Blinn-Phong sampled BRDF and the 

sawtooth BRDF from Figure 3.1(e); 

4. The normal at the surface can be perturbed, requiring some filtering of the 

BRDF to adequately capture these perturbations, particularly in those cases 

where highlights are induced; 

5. A complete micro-geometry can be specified over the surface, and this needs 

to be filtered. Measured BRDF based techniques provide useful tools for this. 

The cases addressed in this dissertation are items three, four and five. Meth­

ods three and four will be shown to be subsets of method five. 

Two approaches present themselves for filtering BRDFs: pre-filtering and 

filtering at the time of rendering. We will examine pre-filtering in particular, since 

existing methods for filtering at rendering time are easily extended to include BRDF 

surfaces. The disadvantage of rendering time methods is that they can be very 

expensive, as their cost is usually related to the number of texture pixels covered 

by a screen pixel. When pre-filtering, however, the cost per pixel is essentially 

constant [Hec86]. The drawback is that when pre-filtering we must assume that 

the light source direction and the viewer direction do not change appreciably over 

the surface area subtended the the pixel being shaded. This assumption may be 

wrong, particularly in cases where point light sources are very near the surfaces and 

when the viewer is very far away from the object, or viewing it at a glancing angle. 
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Figure 7.1: The plane is illuminated by a directional source. The BRDF is a tab­
ulated monochromatic Phong shader with a low ambient term. The colour of the 
mandrill texture map modulates the monochromatic BRDF. No anti-aliasing is per­
formed. 

Figure 7.2: A checkerboard texture made of a Blinn-Phong shader and a sawtooth 
texture, filtered by super-sampling at 16 samples per pixel. 

8 3 



This assumption is implicit in all pre-filtering methods, without which no linear 

separation of light and viewer directions and shader parameters can be made. 

7.1 Linearity and B R D F s 

Most view and light independent filtering techniques need the parameter being fil­

tered to cause only a linear effect on the shading of a surface. Consider for example 

a surface shaded using the Phong illumination model. If the property being changed 

is the exponent in the cosine term then the texture cannot be pre-filtered using tra­

ditional linear methods. If on the other hand the textured property is the specular 

scaling term it is easy to see that the linear methods apply: 

ksl(N • H)n + ks2(N • H)n

 f - u P = ^— (7-1) 

= k s l + ks2{N-H)n (7.2) 

If we want to pre-filter BRDFs independently of light and view directions 

we must show that the tabulated values can be factored from the point-shading 

equation. Rewriting equation 2.7 with explicit directional dependences we get: 

Substituting for dE(X) (Equation 2.1): 

dLr(iJjr) = Tr(uJi,djr)Li((jji) cos9idu)i (7-3) 

Consider a surface composed of n different materials each with BRDF Tj, j = 

l..n, each of which subtends a fraction aj of the surface under the pixel being 

rendered. Then the light reflected from a direction ufi in direction uJT at that pixel 
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is given by: 
n 

dLr(ujr) = £ ajTj(uJi —>• ujr)Li(uJi, A) cosOiduji (7-4) 
j=i 

n 
= Li(i3i) cosOidwi £a,jTj(uii —>• djr). (7-5) 

We see that the BRDFs can be extracted linearly, and summed separately to yield 

an equivalent BRDF for the surface when viewed from far enough away that the 

individual parts of the inhomogeneous surface are not visible. 

The last operation required to filter BRDFs independently of viewer or light 

source positions is to compute the weighted sum of BRDFs. The sum required is the 

point-wise sum of the BRDF functions. In a case where the BRDFs are represented 

by point samples on the same grids a point-wise addition is sufficient. Things are 

more complicated when the samples fall on different grids, or when the BRDFs are 

approximated by more complex bases. 

The case of particular interest to us is how to perform efficiently the sum­

mation when the BRDFs are represented using wavelet coefficients. If the BRDFs 

are sampled on the same grid and transformed with the same wavelet function, then 

the summation is simple. Wavelets are sums of linear terms, which makes addition 

in the wavelet domain the same as addition in the untransformed domain: 

^i(d)+^ r 2(d) = ^ / ^ ( d J + S / z ^ ^ d ) (7.6) 
j j 

= E ( / i J + / 2 J ) ^ ( d ) (7-7) 
3 

Thus we can sum wavelet coefficients to find our representation of the summed 

BRDFs, saving the considerable computational expense of reconstructing the origi­

nal BRDFs, summing them, and transforming back to the wavelet domain. Fortu­

nately, in practice our BRDFs are sampled on the same grids. It is difficult to sample 
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BRDFs at more than 64 samples in each of KJ, Xi,Kr and Ar. The next reasonable 

increment to perform the wavelet transform without requiring extensive padding of 

the data is at 128 samples each, requiring 228 samples, which is prohibitive. Our 

results show that a resolution of 32 samples per parameter is frequently sufficient, 

and that 64 works quite well. This leads us to use BRDFs that are sampled at the 

same rates, obviating the need to sum BRDFs sampled on different grids. Scaling 

a BRDF data set up to the next sampled resolution is easy in the wavelet domain, 

as this can be done trivially by setting the new coefficients to zero. In our rep­

resentation none of these subtrees will be stored, and so the representation of a 

32x32x32x32 BRDF is identical to its scaled up 64x64x64x64 representation. 

7.2 Pre-filtering BRDF Textures 

Williams presented a texture mapping system for colour maps based on pyramidal 

data structures where each larger level of the pyramid represents extra detail [Wil83]. 

By choosing the texture map at the appropriate level of detail to use at each pixel 

the colour texture can be adequately filtered. Williams' MIP (multum in parvo) 

maps store a pixel-based texture at the lowest level of the pyramid and filtered 

versions of the texture at higher levels. This approach bears a resemblance to a 

wavelet scheme. We could extend our BRDF representation to include two more 

variables - the texture parameters u and v on the surface. Then by integrating over 

the range of u and v visible from a pixel a correctly shaded pixel could be obtained. 

However, the advantages of the wavelet transform quickly disappear as the number 

of dimensions increases. Recall from section 4.2.2 that the cost of a non-standard 

wavelet transform's reconstruction at a point includes a wD term. Even for Haar, 

this constant becomes large. Integrating over u and v would increase the cost beyond 
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practicality. 

Fortunately, a MlP-map like approach can be applied to BRDF textures. Our 

texture maps stores indices into a table of BRDFs. We then use a MlP-map scheme 

to filter the texture. At each level of the pyramid we store the BRDFs indexed by 

the texture. The top level of the pyramid contains one measured BRDF, that of the 

surface when viewed from sufficiently far away that texel differences are invisible. 

Each level below it stores a more detailed map of BRDFs and the BRDFs necessary 

to shade the texels in that map. Since the BRDF has been shown to be linearly 

separable from the shading equation (Section 7.1) and that the wavelet-represented 

BRDFs can easily be added, we can apply this pyramidal scheme to our measured 

BRDFs. Each BRDF in the coarser level I + 1 of the pyramid can be built from the 

finer level Z's BRDFs (u and v are texel indices in the texture maps): 

^;:i)(d) = \ E fr\2u+i,2v+j)(d) (7.8) 

In essence, we have pre-computed a number of integrals over u and v without using 

the wavelet transform to store the BRDF as a function of u and v. 

To use the pyramid the area subtended by a pixel being rendered is estimated, 

as per Williams [Wil83]. A non-integral index into the depth of the pyramid is 

derived so that a texel at level u. would correspond in size to the pixel being rendered. 

Consider filtering a texture on a surface as seen from a particular pixel. We project 

a circular filter at the pixel against the plane tangential to the point on the surface 

corresponding to the center of the pixel. This yields an ellipse1. A measure of the 

size of the ellipse (in this case the maximum of the major and minor axis lengths) is 

used to determine the level \i of the pyramid at which one screen pixel would subtend 
lrThis is not strictly true — this yields a conic section, which may by a hyperbola or a parabola. 

We can nevertheless get a measure of the area subtended in screen space. 
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Figure 7.3: A plane shaded with a sawtooth B R D F , with and without the pyramidal 
filtering scheme. The B R D F was generated from the micro-geometry. The base 
texture is 4x4. 

one texture sample. Since this /J, does not necessarily correspond to a computed level 

of the pyramid, possibly being non-integral, Tr^u ^ is approximated by a weighted 

sum of the two nearest levels: 

^>,„) = M - > - M ) P > & + (M - M P v S t ) (7-9) 
The entire B R D F J>^ u y S j is never calculated. Instead Tr^u ^ is only evaluated 

for the required incident and reflected directions: 

J>? o, 0 )(d) = (1.0 - CP - L / " J ) ) ^ £ ) ( d ) + &i - W)^r [ f i , ) (d) . (7.10) 

7.3 Filtering Micro-Geometry Textures 

We now wi l l consider using our measured B R D F representation to filter micro-

geometries. One model for reflective surfaces is as a small scale micro-geometry 

where each facet is shaded using a simpler reflection model. Previous work has 
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Figure 7.4: A chair shaded with the sawtooth B R D F , wi th and without the pyra­
midal filtering scheme. 

shown how to sample such a micro-geometry to generate a B R D F to use in further 

shading [CMS87, Kaj85, W A T 9 2 , GMN94] . However, relatively little work has been 

done on rendering wi thin the transitional area where the surface goes from being best 

represented by its detailed geometry to being best represented by some aggregate 

B R D F . The B R D F map presented above is a simplified case of this, where the 

micro-geometry is flat. 

Consider the sawtooth pattern in Figure 3.2. Recall that a B R D F can be 

measured for a micro-geometry wi th a vir tual gonioreflectometer. This allows us 

to shade a surface that is viewed from far enough away that the micro-geometry 

pattern itself is invisible. Only the overall shading effect is visible in this case. If 

however the surface is close enough that the details of the micro-geometry should 

be visible, then we need to build a texture to represent it. This can be done by 

sampling subregions of the micro-geometry to acquire a B R D F representative of 
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those subregions, and then using this texture to shade the object. The difficulty 

arises when the viewer is in the zone of transition when parts of the micro-geometry 

may be visible while others might not. In this case some sort of filtering is necessary. 

Failure to do so yields artifacts like those seen in Figure 7.5. 

A second issue that arises in this kind of filtering is masking and self-

shadowing. The micro-geometry may occlude itself and light sources in various 

ways. Care must be taken when generating filtered versions of the texture that 

these effects are adequately captured. Simply averaging BRDFs will not provide 

this. Consider a surface with a sharply ridged strip running down its center. On 

either side the BRDF may not include shadowing effects, and if the BRDFs are 

averaged light might still fall on the flat area that should be blocked by the ridge. 

We will use the pyramidal scheme presented in Section 7.2 to store the tex­

tures, although the BRDFs at each level will be computed from the micro-geometries 

rather than from the level below. To build the pyramid we use a virtual gonio-

reflectometer, sampling appropriate sub-regions of the micro-geometry to generate 

the various BRDFs in the pyramid. This approach guarantees that self-shadowing 

and inter-reflection are properly accounted for. 

Let the BRDF of a particular texel (u, v) of a unit square texture within 

level I be ^ > ( u u ) j f°r integral I. The micro-geometry represented by Fr\uv) is the 

rectangle r from )̂ to (^r-, ^ T O , where the complete geometry of the texture 

map is scaled to the unit square. 

Figure 7.3 shows a plane textured without and with our sawtooth texture 

using the pyramidal scheme. Figure 7.4 shows the same texture applied to a chair. 
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7.4 Bump Maps 

Bump maps perturb the normal of each point on a surface before shading calcu­

lations are performed. Each texel of the bump map stores a perturbation vector 

which is added to the computed normal for the surface before computing the shad­

ing. Bump maps are more challenging to filter than colour maps, and the same 

techniques do not generally apply because perturbations of the normal are not lin­

early separable from shading calculations [Fou92]. Becker and Max show some 

methods for forming the transition between bump maps and BRDFs, which implic­

itly includes filtering bump maps, but they pass directly from bump map to a single 

BRDF in one step which is not adequate for complex bump maps. Nor do they 

discuss their BRDF representation in detail [BM93]. 

Consider shading a pixel that subtends a region of a surface which includes 

two polygons with normals, No and N±. The colour resulting from shading the 

average normal will be different than the average of the shading computed with the 

two normals separately. Consider the case where the shader is a Phong shader. The 

average of the two normals NQ and Ni could point in such a direction as to cause a 

specular highlight to appear, when neither iVo nor N\ cause such behaviour. Bump 

maps cannot then be pre-filtered using the same techniques as colour maps. Instead 

the pre-computed information must factor in the effect of the shader characteristics 

on the final colour. 

One benefit of filtering measured BRDFs explicitly is that bump maps are 

easily filtered. The observation to make is that applying a bump map to a surface 

shaded with a BRDF TT is equivalent to rotating TT about the normal, producing 

a new BRDF T'T. If the normal is perturbed by some rotation Kn,A„ then the 
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perturbed BRDF TR' is given by 

J~r (ACJJ Aj, Kr, Ar) — J~r(fti ~\~ l^rit ~T" An, Kr -f- Ar -(- An) (7.11) 

which is simply a rotation of the BRDF about the normal. We set the value of TR to 

zero outside of the visible hemisphere. To filter at run-time we need only filter the 

perturbed BRDFs over the projected area of the screen pixel, which only requires 

four more additions than filtering a non-bump mapped texture. 

Filtering is still computationally expensive, however. As an alternative it is 

possible to pre-filter the texture using the pyramidal scheme described above. In 

this case it is necessary to build the texture up from the low level BRDFs. Williams' 

averaging scheme to generate the next level is adequate: 

i,j=0,l 

More complex filters can, of course, be used. Figure 7.5 contrasts a bump 

texture filtered in different ways. The first image shows the bump map with no 

filtering. The second shows it filtered using our pyramidal bump map filtering 

scheme. The third shows the same bump map, but generated directly from the 

micro-geometry. The interesting point to note is that generating the bump map 

pyramid was fast compared to the micro-geometry pyramid because the bump map 

geometry is simple while the micro-geometry was comprised of 1600 polygons. 

7.5 Summary 

This chapter has described a set of methods for filtering BRDF-based texture maps. 

The texture maps can be flat surfaces with varying BRDFs, bump maps, or general 

micro-geometry. The method is based on pyramidal representations of BRDFs, 
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Figure 7.5: A plane with three versions of the same texture. From left to right: the 
unfiltered bump map, the bump map filtered with our pyramidal scheme, and the 
bump map rendered by super-sampling each pixel 4 times. The micro-geometry is 
shown below for reference. 
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where each BRDF in the pyramid can be generated using a gonioreflectometer to 

sample the BRDFs and geometry of the underlying surface. Our compact BRDF 

representation makes this approach feasible, although storage requirements are still 

high. 
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Chapter 8 

BRDFs and Probability 

Distributions 

Image synthesis algorithms based on Monte-Carlo path tracing [Kaj86, CRMT91, 

Jen96, SWZ96] have been used to generate impressively realistic images of artificial 

environments. As these environments become more complex and as the techniques 

are applied more and more to modeling real environments, the use of reflectance 

functions measured from real materials becomes more important. To represent 

adequately these functions a large number of incident and reflected directions must 

be measured [War92a, War92b]. 

8.1 Monte-Carlo Path Tracing 

Monte Carlo solutions are a set of techniques applied to solving integrals by point 

sampling the integrand. The material in this section is can be found in many texts 

[HH64], and this particular derivation is taken largely from Shirley et a/.'s work on 

Monte Carlo methods for direct lighting [SWZ96]. 
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Consider a function h : Q —> 1Z where Q can be a multidimensional space, 

and we want to estimate the expected value of h(ip), where ip is a random variable 

with probability density function p : Q —>• 1Z+. If u. is a measure denned on Q then 

Jgp(tp)diJ,(ip) — 1. The expected value of h(ip), E[h(ip)} can then be approximated 

by a sum: 
r l N 

E[h(<f>)} = / />(</> W ) W ) = - £ htyi) (8.1) 
JG i y i=i 

where the samples ipi are a set of N instance of the the random variable ip. Substi­

tuting f = hp for the integrand we find: 

The variance of this expression is 

7 v i j2 KM 
N [p 

(8.3) 
N^p^i) 

To decrease the variance we want to use a large N and also want / jp to have low 

variance. Choices of p so that p is large when / is large lead to having more samples 

in more important regions, which helps reduce variance. 

If we choose to approximate the fundamental equation of physical shading, 

in Nusselt parameters (Equation 4.2), using only one sample we arrive at: 

q(K, A) 

where fhe pair (K, A) has distribution q. Selecting the proper distribution q can 

greatly reduce the variance of the computation. Shirley et al. show how to choose 

q to sample the Lj() term efficiently when the light is incident from a luminaire. 

The BRDF is assumed to vary only slightly over the angular range of the luminaire, 

and is not considered in the generated probability distributions. If instead we are 

interested in the incident light from all directions, not just from luminaires, then 

96 



the BRDF must be considered. Since little can be known about the illumination 

in the scene apart from the light sources (without considerable extra computation), 

the distribution of the BRDF may be the most important term we should consider 

when selecting the distribution q. In practice we want a distribution that includes 

the BRDF term when sampling the non-source illuminators of the surface (since we 

don't know their brightnesses), and the light source geometry, as per Shirley et al. 

when the light sources are known. Veach and Guibas give a simple technique for 

combining two such distributions, based on randomly selecting which distribution to 

use [VG95]. We will examine how to build and generate deviates from a distribution 

based on the BRDF, and then show briefly a technique to sample light sources in 

our framework. 

8.2 The Distribution Function 

Monte-Carlo path tracing techniques can benefit dramatically from accurate gener­

ation of reflected directions. Generating reflected directions according to the distri­

bution of the BRDF can dramatically reduce the variance of the process. Lafortune 

and Willems show how using a probability distribution proportional to the BRDF 

and a cosine factor can reduce variance, but do not give a method for efficiently 

generating these directions [LW95]. Shirley et al. [SWZ96] examine the problem 

of sampling light sources, but do not include the BRDF's mediating effect on the 

computation. 

Thus, we want to generate reflected rays according to the distribution of the 

BRDF. The first observation to make is that the BRDF is everywhere positive. In 

addition, the BRDF exactly determines the magnitude of the light reflected, which 

means that if the incident light is held constant, the BRDF alone determines the 
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magnitude of the reflection. This means that the BRDF, suitably normalized, can 

be used as the probability distribution q. The important part to note is that the 

distribution can be different for each Kr,Xr. The normalization factor then is 
l l 

p(nr,Xr) = JJ fR(Kr,Xr, K,X)dndX. (8.5) 
o o 

The distribution of q for a given reflected direction KR, Xr is then given by 

q{K,X) = —————. (8.6) 

The difficulty is in generating values of K and A distributed according to 

q. Usual methods involve storing the inverse of the cumulative probability density 

functions, but this is prohibitive in our case, since q is parameterized by the reflected 

direction. There is however some advantage to be gained from using our wavelet 

representation. A Haar transformed version of the data lends itself to efficient 

computation of reflected data. Only a coarse representation of q is required to 

effectively reduce the variance of the integration. The wavelet representation can be 

used to integrate the function in about the same amount of time as an evaluation 

of the BRDF. Since our representation is adaptive in trading accuracy with time we 

should arrive at good results. It remains to show how to extract from our wavelet 

representation K ' S and As's distributed according to q. 

We will begin by examining the univariate case, and from there extend the 

result to higher dimensions and show how it works with our BRDF data in a Monte-

Carlo path tracing framework. 

8.3 Generating Random Deviates 

The problem is to generate random deviates according to a given probability distri­

bution. Given a uniform probability distribution function so that the probability of 
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generating a number between x and x + dx, denoted p(x)dx is uniform on the range 

0 < x < 1, we can take a given function of it, say y(x) and find that its probability 

distribution y(x)dy is given by 

p{y)=p(x)\^\ 

To generate some distribution of y then, say one with p(y) = f(x) we need 

to solve 

If the indefinite integral of f(x) is F(x) then 

y(x)=F-1(x). 

The geometric interpretation is that one should choose a uniform random x and find 

the value y at which the area under the curve f(x) to its left has fraction x of the 

total area [PTVF92]. 

8.3.1 Univariate 

In most cases we do not have an analytic representation of F~l(x). In our particular 

case though, we can easily compute some values of /a

ft f(x)dx which we can use to 

our advantage to let us evaluate F~1(x) by searching. 

The key observation is that the smooth terms of a Haar wavelet-compressed 

signal gives the average value of the signal in the region covered by the smooth 

terms. By performing a binary search down the hierarchy of wavelet coefficients we 

can then find the point at which the area to the left of that point is equal to our 

uniform random deviate x. The detail that must be attended to is a scaling term 

for the total area under the curve. Fortunately the top-level smooth term gives us 
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the area under the entire signal. The cost of this algorithm is then 0(log2 n) where 

n is the number of samples in the original signal. The cost can be lowered at the 

cost of accuracy by thresholding the wavelet coefficients. 

Consider the Haar transform of a discrete signal f(x) defined over the domain 

0..1, whose wavelet coefficients are witTn, I = 0..d, m = 0..2' — 1, and ws is the smooth 

term. Then 
d 2 ' - l 

f{x) = Ws(j){x) + £ £ wl,mi>l,m{x) (8-7) 
1=0 m=0 

Integrating we find: 
rb rb d 2 ' - l -ft 

/ f(x)dx = ws <f>(x)dx + wi,m / ipi,m{?)dx (8.8) 
J a J a 1=0 m=0 J a 

It must also be recalled that for any wavelet ip(x)dx = 0. In the par­

ticular case of the Haar basis a wavelet -ipitm(x) is supported entirely in the range 

(m/2l, (m+l)/2l), and zero everywhere else. Consider what happens when we recon­

struct our function f(x)dx only considering the wavelet coefficients wi<m, I = 0..k, 

effectively truncating the evaluation at a certain level. Let the function fk(n) rep­

resent the reconstruction of f(x) obtained by truncating the evaluation at level k: 

k 2 ( - l 

(8.9) 
1=0 m=0 

The error induced is then 

ek(x) = f(x)-fk(x) (8.10) 
d 2 ' - l 

= S YI wl,mi>l,m(x) I8-11) 
l=k+lm=0 

If we now consider the error induced by integrating fk(x) rather than f(x) 

we find: 

f f{x)dx- fb fk{x)dx= f ek{x)dx (8.12) 
Ja Ja Ja 
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function Search( y,l,r,total,(j>,d,m ) 
i f total = y return r 

i f total + z=±((j) + wdtTn) < y 
return Search( y, (I + r)/2 ,r, 

total + ^{(p + Wd,m), <p - wd,m, d + 1,2m + 1) 
else 

return Search( y,l,{l + r)/2, total, 
(/> + Wd,m,d+l,2m ) 

Figure 8.1: Generating a random deviate from a Haar-transformed signal. 

and 
rb d 2 ' - l „6 

/ ek(x)dx = X X / ^l,m{x)dx (8.13) 

However, f* ipijm(x)dx = 0 unless the interval (a, 6) partially intersects the interval 

( § ? > 2 2 2 ^ ) ) since that is the entire width of support of the wavelet ipijm(x). It is then 

the case that 

f(x)dx = fk(x)dx (8.14) 
J ™ J™. 

In our particular application we are interested in performing a search to find 

some value b such that given y: 

y= fbf(x)dx (8.15) 
Jo 

We can do this using a binary search technique. Observing that the binary 

search will follow the dyadic divisions of the wavelet transform, we find that we 

can compute J^l+r^2 f(x)dx incrementally at each iteration, by keeping track of 

the smooth term during the traversal (Figure 8.1). Other wavelet bases are not 

as accommodating as Haar, and require that the evaluation be performed to the 

bottom level of the wavelet coefficient tree. The cost then becomes 0(log2n) where 

n is the number of terms, since the search requires an O(logn) reconstruction at 

each of the O(logn) levels. 
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8.4 Multivariate 

Extending the result to higher dimensions is straightforward. The largest compli­

cation is that if a similar search is to be used we want to choose a point that has 

a certain fraction of the volume under the curve to its left, in some sense. Con­

sider the two dimensional case. There are a large number of rectangular regions 

with one corner at the origin where the volume under the curve is the same. Our 

task is to'choose one of these. If we are consistent in how we choose our area then 

we will achieve an unbiased result. One way to be consistent in our enumeration 

of the space is to use a quad-tree like search, where the area in each quadrant is 

examined in a consistent order. In 4 dimensions we use a hexa-decary search in­

stead of a quadtree search, and find that the search space is again divided along the 

dyadic subdivisions of the input. It is easy to show that because this subdivision is 

dyadic that the finer-scale terms need not be examined to find the integral over the 

subdivision regions. The key observation is that if any of the functions that 

comprise the basis functions B^m(-)
 a* a depth I of the search is the wavelet then 

the value of the integral of Bi}Tn(.) over the range of the search is zero. Likewise the 

integral of £fy,m'(-) for V > I will also be zero. The only time that the 5()'s don't 

include a wavelet component is when the B(.) is a pure smoothing term, but this 

only happens at the root of the wavelet tree and can be dealt with as a special case. 

8.5 Multivariate with Fixed incident Directions 

The problem becomes more interesting when two variables are held fixed, which 

is the case when we are performing Monte-Carlo path tracing, and requesting a 

representative distribution of reflected rays. The integral to search for a reflected 
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function Integrate(WaveletNode wn, « i f X i , K m i n , n m a x , A™in, X m a x ) 

r = 0 
for b = 0..15 

i f b i t 6 of wn.ValueMask i s set 
r + =

 Twn.l,wn.mKi,b(Ki) X i ' t o n . l , B ) n . m x i , l ) ( ^ ) 

x J K min r u m . i , u ; 7 i . m K r , 6 ( K ' - ) « K r x J A min ^wn.l,wn.mxr,b( r> r 

for 6 = 0..15 
i f b i t b of wn.ChildMask i s set 

i f Ki i s i n the support of r° n , + 1 2 w n m[rj ]+b:06(.) 
and Aj i s i n the support of 7 + 1 2 u m . m [ 1 ] + 6 : 1 ] 6 ( - ) 
r += Integrate (wn. Child[b] , m, X { , K m i n , n m a x , A? 

return r 
V 

Figure 8.2: Integration over exiting directions of the BRDF from a 4-variable 
Wavelet compressed BRDF 

ray is: 
/ ^ \ JS -Fr(Kii Xj, Kr, Xr)dKrdXr . . 

9 \ K i , A i ) — 7-T ( 8 . 1 0 J 

P ( K t , X i ) 

Writing this in wavelet terms and leaving within the integral only functions of KT 

and Ar we find: 

15 
9{Ki,Xi)p(Ki,Xi) = E E E Sl,rn,uT?mK (Ki)T} ( X i ) 

I m i/=l 1 * 

x S^lmKrA^r)dnr STlmxTtU(Xr)dXr (8.17) 

The terms within the integrals are easy to compute. The integrals of the basis 

functions can be tabulated for fast lookup, or evaluated analytically in the case 

of simpler bases, such as Haar. Pseudo-code for the integration is given in Figure 

8.2. The search itself is a straightforward quad-tree search over the range of the 

integration variables nr and Ar. 
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8.6 Sampling Light Sources 

In section 6.2 we saw how the shading equation can be transformed from an integral 

over the incident hemisphere to an integral over the area of the light source. We also 

saw that because of the coordinate transformations involved, the analytic solution 

of this integral is is not available in general. Monte Carlo techniques give us some 

tools for evaluating this integral. . 

Before examining the solution to this integral we must examine which geo­

metric domains we are interested in. Simple modifications to a ray tracer allow a 

(u, v) parameterized emissive texture to be mapped onto an object in the same way 

as other textures are mapped. To sample from the point being shaded we need only 

to be able to convert a point of intersection in world coordinates to a (u, v) pair. To 

evaluate the integral from the point of view of the lamp requires that a (u, v) pair 

be converted into world coordinates. Although this operation is supported for most 

primitives it is not usually supported for collections of primitives, such as polygonal 

meshes. For purposes of our discussion we will only examine primitives for which 

this mapping is well defined. 

Shirley et al. make the assumption that the emissivity of the object does 

not vary much over the range of directions represented while illuminating an object. 

However, it is easy to see that given a spherical emitter with a directionally varying 

emission, that the emissivity can vary considerably between the horizon and the 

center of the visible disk, since the surface normal changes by 90 degrees. Shirley's 

methods are all based on sampling the geometry of the luminaire from the point of 

view of the surface being shaded. This sampling is straightforward if the geometry is 

simple. In particular Shirley addresses spherical, planar, and cylindrical luminaires. 

There are two ways to proceed if we want to generalize to arbitrary geome-
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tries. We can either use a test and reject sampling method that generates points on 

a bounding volume of the luminaire and then casts a ray from the view point to the 

luminaire. If the ray misses the luminaire's geometry a new sample is computed. 

Another approach is to generate samples in the luminaire's parametric space. This 

approach has the advantage that the random deviates are easy to compute, and 

may allow the brightness of the luminaire to be taken into account. However, a uni­

form sampling in parametric space will almost never generate a uniform sampling 

in world space. Likewise, this distortion will considerably affect the distribution of 

the emission from the luminaire, likely making any importance sampling generated 

from the emissivity map less useful. The additional complication is that unlike the 

BRDF directional sampling we present, any importance measure generated from the 

luminaire will be closely tied to the geometry of the luminaire. 

For arbitrary geometries we choose to generate sample rays toward the lu­

minaire's bounding box because the mapping from (u,v) parameters to world space 

is not straightforward for luminaires made of groups of polygons or bicubic patches. 

Shirley's techniques are then largely sufficient for this. 

For planar luminaires we choose to generate samples in the luminaire's para­

metric space. We can use a technique similar to that used to generate random 

deviates from BRDF data to generate points on the luminaire distributed according 

to the intensity of the luminaire in the direction toward the point being shaded. The 

main difficulty is that the direction toward the point being shaded is not constant 

with respect to the chosen position on the luminaire. Consider equation 6.7. To 

generate (u, u)'s distributed according to the magnitude of Le in a manner analo­

gous to that presented for the BRDF we must be able to evaluate the normalization 
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term: 
l l 

p(x) = JJ Le(u,v,K(u,v),X(u,v))dudv (8.18) 
o o 

Given this we can then search the cumulative probability function using the same 

algorithm, provided we can evaluate 

g(x) = JJ Le(u,v, K(U,V), X(u,v))dudv (8.19) 

where the limits of integration are the quadratic subdivisions of our search algorithm. 

Recasting Le() into wavelet terms this integral becomes1: 

<7(X) = E E E fl,m,u II tfm „(K(u,v))Tf (X(U,V)) 

x i ? m . > ) r U > ) * « t o (8-2°) 

Note that unlike the case of the BRDF none of the basis functions can be removed 

from the integral, since the directional terms are functions of u and v. This suf­

ficiently complicates the integral that the simple search described in section 8.5 

cannot be used as the cost of evaluation is too high. It would be more useful to 

simply generate more sample points from a uniform distribution to reduce variance. 

8.7 Results 

Searching using the algorithm presented above can be slow—a great many terms 

might be examined. There are two ways to reduce the amount of work required 

to generate the reflection rays. By thresholding the wavelet representation of the 

BRDF the number of terms that need to be examined can be reduced. The result is 
'The selector arguments to F change from equation 8.17 because we order a luminaire's parame­

ters as u, v, K, A, while the BRDF parameters are ordered Ki, A,, K r , A r — the variables of integration 
correspond to different basis selectors 
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that the distribution of reflected rays is the same as some simplified version of the 

BRDF. 

Figure 8.3 shows a ray-traced environment in which the direction of the re­

flected rays is determined using our method. The back wall is a Haar transformed 

Phong BRDF with an exponent of 100. The right hand image shows the same envi­

ronment using naive random direction sampling. The images were both generated 

using four samples per pixel. The image on the left, with reflected rays generated 

using our scheme, has considerably less noise than the one on the right. The visual 

quality achieved in 4 samples per pixel on the reflected plane is superior to any other 

method we are aware of. 

Figure 8.4, left, shows an environment illuminated by two of our fluorescent 

luminaires (Figure 5.1, center). Figure 8.4, right, shows the same environment 

illuminated by the sphere lamp (Figure 5.1, left). Again the images were generated 

at four samples per pixel. In both of these images the extra noise can be attributed 

to the variance accross the surface of the luminaire. Since generating samples based 

on the distribution of the emittance on the luminaire is not feasible we distributed 

samples geometrically over the luminaire and evaluated the emittance at the selected 

point. 

8.8 Summary 

In this chapter we have examined the integration of our BRDF and luminaire repre­

sentations into a Monte Carlo ray tracing environment. The wavelet representation 

of the BRDF leads to a simple method for generating reflected directions based on 

the value of the BRDF that dramatically reduces the variance in the computation 

of reflections in Monte Carlo ray tracing. The method does not however extend to 
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Figure 8.3: Ray-traced environment with reflected directions computed with (left) 
and without (right) our method. 4 samples per pixel. 



sampling luminaires, as the computation is confounded by geometric terms that do 

not allow the separation of the integrals involved and so their efficient solution. 
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C h a p t e r 9 

Conclusion 

This dissertation has presented a number of representations and algorithms relating 

to problems of local illumination when using light distribution fields. The bidi­

rectional reflection distribution function and luminaires describe the interaction or 

emission of light with or from an object. The driving problem is that the data sets 

for BRDFs and for luminaires are very large and require some form of compression to 

use them effectively. The unifying feature of this work is an efficient representation 

of four dimensional data sets parameterized by positional and angular components 

using the non-standard wavelet decomposition. The decomposition leads to efficient 

algorithms for reconstructing BRDFs and luminaires at single points, for filtering 

textures, for generating importance-weighted samples of these functions, and for 

evaluating local shading computations. 

We have shown that wavelets can be used to represent BRDFs efficiently and 

accurately. The representation allows the compression of many BRDFs to less than 

5% and frequently less than 1% without appreciable degradation in the resulting 

shaded images. The point evaluation method runs in O(logn) time where there are 
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n 4 original samples. 

Using a similar representation we have shown a method of compressing a 

representation of light flux through a boundary in space. This allows us to efficiently 

represent luminaires as well as the large number of views of objects required for light 

field rendering applications. An interactive application shows that these light field 

images can be reconstructed from their wavelet projected versions at interactive 

rates. We can use the same representation to describe the light incident on a plane. 

Combining these two results and exploiting the sparseness of the wavelet 

representations of the BRDF and of the incident light, we can accurately evaluate 

the integral over the BRDF and incident hemisphere to generate accurate filtered 

lighting calculations for given reflected directions. Although not interactive on cur­

rent hardware, the costs are roughly equivalent to evaluating the shading due to 10 

point light sources. This shading algorithm is particularly well suited for use with 

Lucifer, a rendering system that propagates light through an environment, always 

representing light fluxes by their wavelet projections. 

A related result uses the properties of the multi-dimensional wavelet trans­

form to generate reflected directions for Monte Carlo path tracing applications. 

Given an incident light direction, it is possible to generate random reflected di­

rections by treating the BRDF as a probability distribution, and generating the 

reflected ray according to the partial probability given by fixing the two incident 

variables. These representations can considerably reduce variance of Monte Carlo 

path tracing solutions to global illumination. 
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9.1 Future Directions 

Throughout this work we have assumed that surface reflectance is only a function 

of incident and reflected directions. As was alluded to briefly in chapter 2 this is 

an oversimplification. In general the reflectance is also a function of incident and 

exiting positions on the surface. It would be interesting to add this complexity to 

our representation, but the costs due to the higher dimensionality of the resulting 

function overwhelm the computation. A more efficient representation is required. 

A related area of interest is in curved surfaces. If sub-surface scattering is 

allowed then a curved surface will considerably complicate the shading computation. 

It may be important to accurately estimate the effect of the curvature on the exiting 

light directions, as this is essential to compute directly the shading of curved surface. 

One direction to take the investigation is towards light transfer. The process of 

reflection in general can be treated as a light transport operator. Instead of a 

purely geometric transfer function, as found in Lucifer for example, the transport 

could account for the interaction of the surface. 

A further area of investigation is in the representation of sparse data used. 

In particular, our current data structures store all wavelet coefficients in a top-down 

fashion, forcing us to examine possibly unimportant coefficients before finding large, 

important coefficients nearer the bottom of the tree. Exploring data structures that 

would allow the coefficients to be accessed in order of importance will be critical in 

reducing the amount of work and in letting the algorithm be truly adaptive in the 

amount of work to perform in search of an approximate solution. 
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Appendix A 

Introductory Radiometry 

This appendix provides a brief introduction to radiometric quantities used in this 

dissertation. For more specific information the reader is encouraged to consult 

[CW93] which includes a good introduction to radiometry for computer graphics. 

A . l Light 

Light is the part of the spectrum of electro-magnetic radiation that can affect the 

human sense of sight. 

Electro-magnetic radiation is composed of a magnetic field wave and an elec­

tric field wave propagating at a right angle to each other. The main characteristic 

of a radiation is its wavelength (A), the distance between two consecutive maxima 

(see Figure A.l). Another characteristic, directly related to the preceding, is its 

frequency (v). It is related to the wavelength and the speed of the wave (c) by the 

relation: c = vX. The units1 of wavelengths are units of length, such as meters (m), 

nanometers (nm = 10-9m) or angstroms (A — 10~10m). 
'We will use in our example the SI (Systeme International) units. 
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4 Amplitude 

Figure A . l : Wavelength of a periodic phenomenon 

T h e units of frequency are inverses of t ime units (such as and the units 

of speed are units of lengths per unit of t ime (such as m . s - 1 ) . Electromagnetic 

radia t ion ranges i n wavelength from 1 0 - 1 2 m (gamma rays) to 1 0 1 3 m (very low fre­

quency radio waves). T h e visible part (again visible refers to the capabili t ies of a 

par t icular species, i n the present case ours, and we assume every reader of this text 

is of the same species) lies between 4 x 1 0 ~ 7 m and 7 x 1 0 ~ 7 m , which is from 400nm 

to 700nm. Figure A . 2 shows the visible spectrum and its immediate neighborhood, 

and the corresponding colors. 

There are several other properties of light that are relevant to vis ion and 

computer graphics 2 . L igh t is a form of energy, so one way to characterize a light 

source is by the amount of energy it emits. The SI unit of energy is the Joule ( J ) . 

T h e power, given i n Wat t (W), is the energy emitted per unit of t ime. A Wat t is 

2There are two parallel nomenclatures for the properties of light here, a physical one, which is 
concerned about the objective physical properties of the radiation, and a psychophysical one, which 
is concerned with the action of the light on our visual system. In this dissertation we are only 
concerned with the radiometric quantities, that is to say, the objective physical properties. 
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Figure A.2: The electro-magnetic and visible spectrum 
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thus a Joule per second. It is called a radiant flux in radiometry. A light source is 

normally more than a single point. The radiant exitance is the power emitted per 

unit of surface area of the source. The SI unit is the W.m~2. Similarly one defines 

the amount of light received by an illuminated object in terms of the power received 

by unit area. It is called the irradiance, and has the same units as the exitance. 

To illustrate, let us consider a case where the light source can be assimilated to a 

point and the medium in which the light propagates does not absorb its energy. The 

wavefront of the light, which is the locus of points reached at some instant by the 

radiation emitted by the source at some earlier instant, is then a sphere. Since the 

total energy is conserved, the irradiance at some point decreases proportionally to 

the square of the distance from the source because the same total energy is spread 

over the area of the sphere which increases proportionally to the square of its radius 

(see Figure A.3). The power emitted is distributed all over the space around the 

light source. To characterize this distribution through space, one uses the radiant 

intensity, which is a power per unit of solid angle (\V.sr~1). One simplified way to 

define a solid angle is to imagine a cone (the section can be any shape) with its 

apex at the light source, and such that the intersection of that cone with a sphere 

of radius r has an area A. Then the solid angle defined by the cone is to = A/r2 (see 

Figure A.3). The total solid angle around a point is then An. The energy density 

of a radiation is the energy per unit volume of space, (for instance in J.m-3). It is 

then the intensity divided by the speed of propagation of the radiation (check for 

yourself that it agrees with the units). Table A.l gathers these useful quantities and 

their units. 

The speed of propagation of electro-magnetic radiation in a vacuum is one 

of the fundamental constant of nature, and is approximately equal to 3 x 108m.s_1. 
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Figure A.3: Solid angle 

Physical Radiometric Symbol SI Units 
Energy Radiant Energy U J(joule) 
Power Radiant Flux P I^(watt=J.s-1) 
Flux density 
(source) Radiant Exitance 

Radiosity 
B W.m,-2 

Flux density 
(receiver) Irradiance E W.m-2 

Angular flux Radiant Intensity I W.sr'1 

Angular flux density Radiance L W.m~2 .sr~l 

Spectral Reflectance P dimensionless 
Spectral Transmittance T 

Solid angle <x) sr(steradian) 
Frequency V or Hz (Hertz) 
Wavelength A meter 

Table A.l : Radiometric Quantities (in SI units) 
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This is the maximum speed realizable by any phenomenon capable of carrying matter 

or information in a given frame of reference. In media other than a vacuum, the 

speed of light is less, and a given material's index of refraction is the ratio between 

the speed of light in a vacuum and the speed of light in this material. This value 

depends on the wavelength of the light. Note that the speed of light in air is almost 

equal to the speed of light in a vacuum, and therefore the index of refraction of the 

air can be taken to be one for most purposes. 

So far we have described light (and electro-magnetic radiation in general) in 

term of waves. Historically, light has first been thought of as a stream of corpuscles, 

traveling out in straight lines from light sources. Phenomena like reflection can of 

course be easily explained in this model. Later, about in the middle of the 17th 

century in Europe, physicists began to show that a wave model can easily explain 

reflection, as well as refraction and more complex phenomena. This model slowly 

became the standard one. But phenomena investigated later, such as the photo­

electric effect, resisted explanation within the wave model. Modern physics now has 

adopted the position that light, as well as matter in general, can be described both 

in term of waves and in term of particles. In the case of light, the corresponding 

particle is the photon. The photon can be understood as the basic packet of radia­

tion. For our purposes, all of this means that there is no harm in thinking of light 

either as wave or as a stream of corpuscles, and select the model most appropriate 

for the solution of the problem at hand. In particular, we will use the concept of 

rays of light. If you want to think about photons, rays are just the paths followed 

by the photons. If you prefer waves, a ray is an line drawn in the direction in which 

a wave is traveling. 
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Appendix B 

Wavelets 

This appendix provides an extremely brief introduction to wavelets, shamelessly 

lifted, with the author's permission, from [Lew95]. Much of the material is taken 

.from Reissell [Rei94], although a similar and more easily obtainable treatment is 

contained in Daubechies [Dau92]. 

B . l Fundamental Wavelet Properties 

Wavelets are built from scaling functions, which we define by dilations and transla­

tions of a base scaling function (f>(x) of the form: 

<f>lm{x)=2-ll2<l>{2-lx-m) 

each level I corresponds to a function space VJ, which is part of a nested sequence 

of subspaces ... C V_i C Vo C V\ C V2 •. • with these properties: 

• the union of all Vj spans L 2 

• fix) 6 Vi -> f(x + k) e Vt 
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• f{x) G Vi f(2lx) e v0 

• any f(x) G Vj has a unique representation as a linear combination of < m̂(a;)'s 

We define a wavelet function space Wi as composed of those functions that 

need to be added to a given space Vj to span the next finer space Vj+i: Vj+i = Vi®Wi. 

The basis functions for Wi are also dilations and translations of a mother ("parent" ?) 

wavelet ip(x): 

1>lm{x) = 2~l/2i;(2-lx - m) 

Since 4>{x) G VQ and Vo C Vi, we can write 4>(x) as a linear combination of 

the basis functions </>(2x — m) for Vi: 

4>{x) = V2j2hm^{2x-m) 
m 

This also holds for ip: 

ip(x) = V2~Y19m<P{2x - m) 
m 

These are the dilation or refinement equations. They are the essence of multi-

resolution analysis. Wavelet bases differ principally in their choices of {hm} (which 

turns out to determine {gm})-

Let Pif be the projection of a function / G L2 into the subspace Vj: 

Plf{x) = YI < / ' fa™ > <t>lm(x) 
m 

It can be shown 

II / - Pif \\< C2" w « fell /(») ||2 

y n 

where Nv is the number of vanishing moments of the wavelets, i. e. for 

n = 0,..., Nv - 1 

J xnxp{x)dx = 0 
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Figure B.l: The Haar smoothing function and wavelet. 

B.2 Basis Functions 

The simplest basis functions are the Haar bases. The smoothing functions are a 

constant over their range, and zero outside. The wavelets are simple step functions. 

Both are illustrated in figure B.l. They have the property that they are orthogonal. 

As far as this dissertation is concerned this means that the Haar smoothing and 

wavelet functions can be used both as analysis and reconstruction wavelets. This is 

not true in general. In a bi-orthogonal scheme the basis functions and their duals 

are different. Take for example the simplest linear spline. The analysis wavelet is 

a very complex function with broad support, whereas the reconstruction wavelet 

is simple with very limited support. The reconstruction wavelet is shown in figure 

B.2. This feature is important throughout this dissertation, where the width of 

the reconstruction wavelet is one of the major factors affecting the efficiency of the 

algorithms. 
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Figure B.2: The duals of the linear spline smoothing function and wavelet, used for 
reconstruction. 
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