
Calibrating Head-Coupled Virtual Reality Systems 

by 

Alexander Stevenson 

B . S c , The University of British Columbia, 2000 

A THESIS S U B M I T T E D IN P A R T I A L F U L F I L M E N T O F 

T H E R E Q U I R E M E N T S F O R T H E D E G R E E OF 

Maste r of Science 

in 

T H E F A C U L T Y OF G R A D U A T E STUDIES 

(Department of Computer Science) 

We accept this thesis as conforming 
to the required stand^ifd y 

The University of British Columbia 
Apri l 2002 

© Alexander Stevenson, 2002 



In presenting this thesis in partial fulfilment of the requirements for an advanced 

degree at the University of British Columbia, I agree that the Library shall make 

it freely available for reference and study. I further agree that permission for 

extensive copying of this thesis for scholarly purposes may be granted by the head 

of my department or by his or her representatives. It is understood that copying or 

publication of this thesis for financial gain shall not be allowed without my written 

permission. 

Department of Computer Science 
The University of British Columbia 
201-2366 Main Mall 
Vancouver, BC 
Canada V6T 1Z4 
h t t p : / / w w w . c s . u b c . c a 

Date 

http://www.cs.ubc.ca


Abst rac t 

Head-tracking virtual environments are difficult to implement because of the need to 
calibrate such systems accurately, as well as the difficulty in computing the correct 
off-axis image for a given eye location. The situation is further complicated by the 
use of multiple screens, the need to change the calibration for different users, and 
the desire to write portable software which can be reused on different hardware with 
varying screen configurations. 

This, thesis presents a solution to these problems, allowing greatly simplified 
development of head-tracking software. By making use of-the head-tracking sensors 
built into the environment, we can quickly and accurately calibrate not only user-
specific measurements, such as eye-positions, but also system measurements, such 
as the size and locations of display screens. A method of doing this calibration is 
developed, as well as a software library which will read a system configuration and 
integrate with OpenGL to compute correct off-axis projections for a user's viewing 
position. The calibration makes use of a novel "sighting" technique which has the 
great advantage of accurately finding the true rotational centre of a user's eyes. To 
complement this, the software library includes functions which predict the optical 
centre of a user's eye based on a given gaze point. 

As a demonstration of both the calibration method and the utility library, a 
hardware rendering application is discussed. This application performs the real-time 
rendering of view-dependent LaFortune reflectance functions in graphics hardware. 
As with all view-dependent lighting methods, both the viewing angle and position 
of the light are taken into account while rendering. Head-coupling allows the system 
to use the user's true viewing direction in the lighting computation, and the position 
of the virtual light is controlled by a 3D sensor in the user's hand. The method in 
which the view-dependent lighting model is implemented in hardware is explained, 
as well as possible improvements. 

Throughout, the Polhemus FASTRAK is used as the tracking system, though 
all the results are easily applicable to any six degree-of-freedom tracking system. 

ii 



Contents 

Abstract ii 

Contents iii 

List of Tables vii 

List of Figures viii 

Acknowledgements ix 

1 Introduction 1 

1.1 Background 2 

1.2 Contributions of the thesis 4 

1.3 Overview of the thesis 5 

2 Designing a Calibration System 7 

2.1 Calibration requirements 7 

2.2 Locating points in 3D 8 
2.2.1 The Polhemus FASTRAK 9 

2.2.2 "Sighting" points 10 

2.2.3 Sensitivity to measurement errors 12 

2.3 Locating a user's eyes 13 

iii 



3 Calibration Method 17 

3.1 Overview of the calibration procedure 17 

3.2 Step 1: Mapping the frame buffer to physical screens 20 

3.3 Step 2: Finding 3D screen positions 22 

3.4 Step 3: Setting the origin of the virtual world 24 

3.5 Step 4: Accurately locating a user's eyes 25 

3.6 Increasing accuracy 26 

3.7 Dependence between calibration steps 28 

4 Producing the Final Image 31 

4.1 The role of the application 31 

4.2 Other applications 32 

4.3 Configuring OpenGL 34 

4.4 Generating correct off-axis projections 35 

4.4.1 Introduction to projections 36 

4.4.2 Specifying frusta in OpenGL 37 

4.4.3 Computing the frustum 39 

5 Rendering of View-Dependent Lighting 43 

5.1 Graphics hardware features 44 

5.1.1 Vertex programs 45 

5.1.2 Texture mapping advances: 

Multi-texture and cube mapping 45 

5.1.3 Register combiners 46 

5.2 Lafortune reflectance functions 47 

5.3 The existing software 48 

5.4 Implementing surface-local coordinate frames 49 

5.5 Results 53 

iv 



6 Conclusions 57 

6.1 Future work 58 

6.1.1 Tracker input 59 

6.1.2 Intersecting line samples 59 

6.1.3 More flexible transformations 60 

6.1.4 Lafortune rendering improvements 60 

6.1.5 More hardware support 61 

6.1.6 Studying the effects of error 61 

Bibliography 63 

Appendix A Running the Calibration Software 67 

A . l Program conventions 67 

A. 1.1 Tips on "sighting" accurately 67 

A. 1.2 Use of the calibration files 69 

A. 1.3 General notes on running the software 69 

A.2 calibrate2D: Assigning the frame buffer to screens 70 

A.3 calibrate3D: Finding screens in the real world 70 

A.4 calibrateOrigin: Specifying which way is up 72 

A. 5 calibrateUser: Locating a user's eyes 73 

Appendix B Developing Software Using Projector and VRConfig 75 

B. l Using the VRConfig class 75 

B.2 Using the Projector class 77 

B. 3 Designing your V R application using GLUT 78 

Appendix C File Formats For Calibration Data 81 

C. l 2D Screen Data calibration file 81 

C.2 3D Screen Data calibration file 82 

C.3 User Data calibration file 83 

v 



Appendix D Further Lafortune Rendering Optimisations 85 

D . l Texture shaders 86 

D. 2 Avoiding frame buffer read-backs 87 

Appendix E Calibration Results 91 

E. l Calibrating Eye Position 91 

E.2 Calibrating 3D Screen Position 92 

Appendix F Source Code of glSetOf f AxisView 95 

vi 



List of Tables 

E . l Measured eye positions and distance from the means 92 

E.2 Measured screen corner positions, and distance d from the means. . 93 

vn 



List of Figures 

2.1 Polhemus FASTRAK transmitter and sensor 10 

2.2 Sighting a target 11 

2.3 Rotational and optical centres of the eye 13 

3.1 Part way through the 2D screen calibration 21 

3.2 A user performs the 3D screen calibration 22 

3.3 A user calibrates her eye positions . 25 

3.4 Calibration step interdependencies 28 

4.1 The viewing frustum 36 

4.2 On-axis viewing of a normally oriented screen 37 

4.3 Off-axis viewing of an arbitrarily oriented screen 38 

4.4 Calculating the correct viewing frustum orientation 40 

5.1 Quantisation artifacts due to low frame buffer precision 55 

5.2 Curved, dense geometry masks precision problems 55 

A . l FASTRAK sensors and screw holes 68 

viii 



Acknowledgements 

I wish to thank the many people who have helped to make this thesis possible. I am 
deeply indebted to my supervisor Kel logg B o o t h who first helped convince me to 
enter the graduate program and has supported and encouraged me throughout. I am 
embarrassed to th ink of the patience he has shown w i t h my specious thesis schedule, 
and I owe h i m a great debt of gratitude for his understanding and flexibility. 

Wolfgang Heidr ich shared the ideas which form the real-time rendering as
pects of this thesis, and introduced me to the fun of t ry ing to find new uses for 
graphics hardware. B a r r y Po helped me understand off-axis projections, and I hope 
he finds this thesis useful. S id Fels provided many helpful suggestions which im
proved this thesis greatly. B r i a n Fisher was the source of many enjoyable discussions, 
and I par t icular ly appreciated his pragmatic philosophies about academia. 

I would like to thank all the members of the Imager Graphics L a b , and 
especially A r t h u r Louie, Brook Bakay, A d r i a n Secord, Ma t thew Brown , and Hamish 
Carr , for their support and friendship. I could not ask for better company dur ing 
those late night coding sessions that are de rigueur among us computer scientists. 
M a n y thanks also to my lifelong friend Rober t Bruce who listened to me ramble 
about my thesis and then pointed out my mistakes. 

I would like to thank my family for the countless ways they supported and 
encouraged me throughout this thesis and before, and my father for helping to proof
read. F ina l ly , .my deepest thanks go to Jacqueline Carey who has put up w i t h me 
more than any person should have to and shows every sign of continuing to do so 
for the foreseeable future, even though she should know better. T h a n k you al l! 

A L E X A N D E R S T E V E N S O N 

The University of British Columbia 
April 2002 

ix 



Chapter 1 

Introduction 

It would be safe to say every computer graphics laboratory has a number of experi

ments and visualisations that would benefit from display in a head-tracking environ

ment. Not only does head-tracking add to a user's ability to perceive depth in a field 

where "graphics" is all but synonymous with 3D, but research has shown the benefit 

head-coupling has on task performance in virtual environments [arth93]. Despite its 

benefits, however, head-coupling is rarely used because of the inconvenience. The 

added complexity of dealing with a tracking system, off-axis projections, calibrating 

user eye positions, calibrating screen positions, registering the virtual world with the 

physical one, and maintaining and debugging the associated code can easily double 

the size of a modest project. Instead, most computer graphics projects fall under 

the category of simple visualisations and the more weighty term of virtual reality is 

usually applied to those for which the time and effort has been expended to allow 

greater user interaction. 

In our lab, the Imager Graphics Lab at the University of British Columbia, 

we found ourselves very much in the situation described above. Despite having 

several Polhemus FASTRAK tracking systems, which had made their way back into 

regular lab use after I developed a cross-platform driver for them as part of my 

undergraduate thesis [stevOO], head-tracking was either done for its own sake or not 

1 



Chapter 1. Introduction 2 

at a l l . Tha t is to say the few projects that used head-tracking existed to provide 

a demonstration of head-tracking, and d id not use it as a mere visualisation tool . 

It is my hope that this thesis, and it 's companion software libraries and programs, 

w i l l help to rectify this situation, allowing anyone who decides his appl icat ion would 

benefit from head-coupling to add it w i th a m i n i m u m of effort and added complexity. 

1.1 Background 

T h e term "vir tual reality" was introduced by Ivan Sutherland i n the 1960s. In his 

vision of v i r tua l reality [suth65, suth68], a user wears a device on his head which 

places a smal l screen directly i n front of each eye. These screens are updated based 

on the direction the user is facing to show an appropriate view of a v i r tua l world. 

Today, the term "vir tual reality" is broadly used to describe many types of three 

dimensional displays, and Sutherland's V R is usually referred to as "head-mounted" 

and "immersive", because of a user's inabi l i ty to see anything but the screens directly 

in front of his eyes. 

We w i l l use the term "head-coupled v i r tua l reality" to refer to a system that 

tracks the posit ion of a user's head, but is not mounted on i t . 1 Instead of small 

screens mounted in front of a user's eyes, regular computer displays are used to 

display v i r tua l objects that are displayed correctly based on a user's eye positions. 

These images correspond exactly to what a user would see if the v i r t ua l world were 

real, and located in a volume extending behind the plane of the screen. Because of 

this notion of a volume in which the scene is viewed, this type of V R is sometimes 

referred to as "fish tank V R " , though is more often termed "head-coupled V R " . A n 

addit ional technique that is frequently used wi th head-coupled V R to increase the 

perception of depth is the stereoscopic display. In these displays, a user wears shut-

1Oi course, head-mounted displays are also "coupled" to the position of a user's head. 
Throughout this thesis, however, when we use the term "head-coupled VR" we will exclude 
head-mounted displays and refer instead to displays where the user's perspective of the 
screens changes as their head moves. 



Chapter 1. Introduction 3 

tered LCD glasses, which prevent both eyes from seeing the screen simultaneously. 

The glasses are synchronised with the refresh rate of the screens, allowing different 

images to be viewed by each eye. This allows the system to show the correct per

spective image for each eye position, which increases the accuracy of the display as 

well as allowing the user to perceive depth. 

Both head-coupling and stereoscopy are used in "augmented reality" systems: 

VR systems that are used to overlay displays of virtual objects over a user's view 

of real physical objects. These systems are like their all-virtual counterparts except 

that some of the objects seen are in fact real objects, while others are computer 

generated displays. Calibration for these systems is especially critical because of 

the fact that the virtual world must be registered precisely with the real objects. 

Many parameters must be considered in order to generate the correct image 

for each eye. Naturally, the positions of the screens must be known, as well as the 

location of the user's head, but the situation is even more complicated that it would 

appear at first glance. Deering [deer92] discusses several issues which should be 

taken into account when designing a head-coupled VR system. While some issues 

are no longer as important as they once were, many are still valid, and tricky to 

contend with. For instance, the effect of CRT screen curvature is less of a problem 

with modern CRT technology than it was in 1992, and can be avoided entirely by 

the use of projection systems or LCD panels. Deering's observation that the optical 

centre of the eye moves depending on gaze direction, however, is still a problem. 

The fact that head-coupled V R requires both the position of the screen, 

or screens, as well as the position of a user's eyes means it is heavily reliant on 

calibration. With head-mounted VR, it is fairly easy to assume that the user's eyes 

lie directly in front of the small screens installed in the helmet, and the location 

of those screens is known from the construction of the helmet itself. On the other 

hand, head-coupled V R frequently makes use of existing screens, like those on a 

user's desk, which can be arbitrarily located. Further, the sensor used to locate the 



Chapter 1. Introduction 4 

user's head can be in various positions with respect to the eyes. Calculating not 

only where the eyes are in relation to that sensor, but also re-calibrating for different 

users, whose inter-ocular distances vary, is important to the display of accurate VR 

images. 

The calibration process is critical to the success of head-coupled VR. Not only 

does it determine the quality of the rendering, but how it is designed greatly affects 

the overall usefulness of head-coupled VR. If the calibration procedure requires a 

large amount of time and effort, users and experimenters alike are deterred from 

using head-coupled V R in their applications. 

1 . 2 Contributions of the thesis 

This thesis describes the development of a method for performing fast, simple cal

ibration for head-coupled V R displays. A novel technique for determining the lo

cation of points in 3D, as well as the rotational centre of the eye, is introduced. 

This technique uses the notion of "sighting" a point from different positions to pin

point its location. This new method for finding eye position is, in most cases, faster 

to perform and more accurate than traditional methods, and should facilitate fu

ture research into the effects of calibration errors on a user's performance in a V R 

environment. 

The text of this thesis provides a description of the motivation and devel

opment of the calibration method, but much of the value in this work lies in the 

accompanying software. The calibration method itself is fully implemented in soft

ware in such a way as to allow it to be used by others needing similar calibration. 

The software guides a user through the calibration process, as well as automatically 

performing necessary measurements and calculations using a Polhemus FASTRAK 

tracking system. The results of this calibration are written to text files, which can 

be easily edited manually if necessary. Utility libraries are also included that allow a 

developer to read in the calibration data from the text files and use them to generate 



Chapter 1. Introduction 5 

correct off-axis perspectives in OpenGL, without having to know the complexities 

of the underlying math. 

As an example of how this software can facilitate the addition of head-

coupling to existing software, head-tracking was added to a non-trivial real-time 

rendering application: an object viewer capable of rendering the LaFortune re

flectance model in real-time. This application was further expanded to allow a 

user-controlled, virtual local light. This thesis will describe both the advantages of 

using head-tracking in this application, as well as the hardware rendering method 

used to calculate the Lafortune reflectance model in real-time. 

Finally, the thesis contains detailed instructions on how to run the calibration 

software and how to integrate the calibration method into other applications. 

1.3 Overv iew of the thesis 

This thesis is intended not only to show the development of the calibration method, 

but also to be used as a guide for those wishing to use the calibration system in their 

own work. With that in mind, descriptions of how to use the calibration software, 

and how to integrate it into other applications, have been placed in appendices. 

Those who only need to know how to run the calibration should read Appendix A, 

and might find the description of file formats in Appendix C useful. Those wishing 

to develop new applications should look at Appendix B, as well as the appropriate 

header files in the source code. Otherwise, the remainder of the thesis can be 

referenced as curiosity dictates. 

Chapter 2 describes the elements behind the design of the calibration system. 

First it examines the requirements our system needs to fulfil, and then describes 

some design goals for the system. The method we will use for finding points in 3D 

is described, and analysed in terms of the advantages it provides, specifically with 

regard to locating eye positions. 

Chapter 3 describes the complete calibration procedure, as well as the depen-



Chapter 1. Introduction 6 

dencies between individual calibration steps. The reason for each calibration step 

is explained, and we see how the design goals described in Chapter 2 are applied in 

the final system. For an idea of how accurate the calibration system is in practice, 

sample calibration data has been collected and included in Appendix E. 

Chapter 4 explains how, given a set of calibration data, an application makes 

use of that data to produce a correct final image. How the calibration data is used to 

compute an appropriate off-axis projection is explained in some detail. For reference, 

the source code implementation of this step has also been included, in Appendix F. 

. With the calibration system fully described by the preceding chapters, Chap

ter 5 looks at a practical application which makes use of the calibration software: 

a view-dependent lighting model, which can be explored in real-time using head-

tracking and a user-controlled light position. This example is interesting both be

cause of the calibration and head-tracking, explained in earlier chapters, as well as 

the use of advanced graphics hardware features to implement the lighting model 

itself. A brief look at the new features of graphics accelerators is followed by a 

description of how this flexibility is used to implement the Lafortune reflectance 

model used in the application. Much of this explanation was originally written for a 

course project, but has been expanded and revised to reflect the new version of the 

software which incorporates the calibration system and head tracking. A method to 

speed up this rendering by avoiding frame buffer read-backs has also been included, 

and is in Appendix D. 

Finally, in Chapter 6, possible extensions and improvements to the calibra

tion process are discussed, as well as other applications and areas of future work. 



Chapter 2 

Designing a Calibration System 

2 . 1 Calibration requirements 

The design goals for developing the calibration system described by this thesis are 

broader than those of most similar systems. The reason for this is that the intention 

was to design a calibration method which worked under a variety of configura

tions. This is necessary for the system to be useful in the Imager Graphics Lab, 

where we develop software on many different platforms. In the lab we have several 

single-monitor Linux machines, stereo-capable IRIX machines, and an immersive 

projection display consisting of three 8-foot high screens powered by an SGI Onyx. 

In addition to this in-house panoply of hardware, we have off-site access to a four-

screen stereo-capable CAVE [cruz92, cruz93]. Typically, dealing with these different 

set-ups requires extensive modifications to the VR software. Because there has been 

no uniform way of doing this, most software is changed as needed, and measure

ments for screen parameters are hard-coded into the software itself. The result is 

that things are rarely calibrated correctly for the different environments, and that 

calibration intensive techniques, such as head-coupling, are generally avoided. 

Our calibration system, then, must not only provide a method to calibrate 

with sufficient accuracy to allow head-coupling and realistic rendering, but also be 

simple and convenient enough to promote its use. There are a number of design 

7 



Chapter 2. Designing a Calibration System 8 

factors that help achieve this goal. 

Minimising interdependence between calibration steps makes the calibration 

more convenient. A calibration system that must be performed in its entirety for 

every new user is inefficient and frustrating. Changes to one aspect of the environ

ment should require only a re-calibration of that aspect. Good modular design will 

help ensure that this goal is met. 

The calibration process should strive to be transparent. There should be 

no mystery as to what the calibration system is doing and the values it returns 

should make sense to the experimenter. This is especially important to allow the 

experimenter to judge whether the calibration is reasonable or not and avoid obvi

ous errors. For that reason, all the data in our calibration system should be stored 

in commented ASCII text files. These plainly show the values computed by the 

calibration, and can be easily edited manually if the experimenter knows the dimen

sions of certain aspects of the environment, or simply wishes to observe the effects 

of perturbing the calibration. Further, the calibration software should return check 

values and helpful indicators of accuracy wherever possible. 

The final design goal is to make per-user calibrations fast and simple. It is 

always good system design to streamline tasks that are performed frequently, and 

in virtual reality nothing changes as often as the viewer, or, more specifically, the 

position of the sensor on a viewer's head. Because the user's eye positions must 

be located in relation to this sensor each time the system is used, this calibration 

should be as fast and convenient as possible. The calibration of other attributes 

that change less often, such as monitor positions, can be longer and more rigorous. 

2.2 Locating points in 3D 

Achieving our goal of quick and easy calibration depends greatly on the method we 

choose to locate points in 3D. The act of locating points in 3D is at the heart of 

any calibration system, and the method we choose must be both accurate enough to 



Chapter 2. Designing a Calibration System 9 

provide useful data, as well as convenient enough to be practical when calibrating 

many points. Finding such a balance is difficult, because greater accuracy usually 

results in less convenience. 

Measuring the location of points can be done directly, by touching a sensor 

to the location we wish to measure, or indirectly, by using other measurements 

and known correspondences to calculate the position of an unknown point. The 

tracking system we use most often in the lab is the Polhemus FASTRAK, which 

is affected by the magnetic fields near the surface of CRT monitors and even LCD 

screens. Though magnetic interference only applies to magnetic tracking systems 

like the FASTRAK, CRT monitors are still problematic because the thick glass in 

front of the lit phosphor makes it impossible to place a tracker directly on the point 

we see lit. Regardless of the display technology we use, however, we still have the 

problem of locating the optical centre of a user's eyes. Because we cannot place a 

sensor inside the eye, accurately measuring the position of the eyes must be done 

indirectly, though it is not uncommon to measure a point just in front of the eye, 

and then treat this point as the location of the eye itself. 

Of course, because our system endeavours to allow calibration using any of 

the forementioned display technologies, and because we are indeed using a magnetic 

tracking system, our method of locating points must be an indirect one. Before we 

look at the method used to locate points in 3D, it helps to understand a little more 

about the tracking system we are using. 

2.2.1 The Polhemus F A S T R A K 

The Polhemus FASTRAK [polhOO] is a tracking system which returns six degree-of-

freedom data for up to four attached sensors. The system consists of a transmitter, 

which emits a magnetic field, and sensors that detect the strength and orientation of 

the field to determine their position and orientation. Both transmitter and sensors 

are pictured in Figure 2.1. Each second, 120 position and orientation records are 



Chapter 2. Designing a Calibration System ]() 

Figure 2.1: Polhemus FASTRAK transmitter and sensor. 

sent to the computer, so the latency of the system is dependent on the total number 

of sensors attached to the system. 

The design of the sensors holds particular interest for our application, as will 

soon become apparent. Each sensor has two small screw holes, with a diameter of 

0.292 cm and a length of 0.635 cm. These holes are precisely located on each sensor 

at an exact distance from the sensor's magnetic centre. Because the holes are very 

precisely located in relation to the reported position and orientation of the sensor, 

they can be used to calibrate other points. The next section will describe a way of 

using these screw holes to locate other points in 3D. Though the method does not 

rely on the particular type of tracking system, or the construction of the sensors, 

the fact that these sensors have small holes in them will prove convenient. 

2.2.2 " S i g h t i n g " p o i n t s 

Our method for locating points in 3D is based on the fact that the intersection of 

any two non-parallel, intersecting lines is a point. The idea is to generate two lines 

in 3D which intersect at the target point we wish to calibrate, thus allowing us to 

determine the position of the target point without the need to place a sensor directly 



Chapter 2. Designing a Calibration System 11 

" ' mi-U 

Sensor 

Sensor 

Target Point 

Figure 2.2: Sighting a target. 

on it. 

In order to generate these lines, we will use a technique we will refer to 

as "sighting". A user looks through two small holes, or sights, which are rigidly 

attached to sensors. By lining up the target point in these sights, we can use the 

sensor data to measure the exact location of the holes, and therefore the line that 

passes through the target point, as shown in Figure 2.2. By doing this twice, from 

different positions, we obtain two different lines in 3D that should intersect at the 

target point. In practice, however, the lines will not intersect due to the fact that 

there are small errors in aiming and measuring their positions. Instead, we must 

compute the point at which they come closest to intersecting. 

To do this, we first calculate the shortest line segment connecting the two 

lines, and then treat its midpoint as the near-intersection of the lines. To find the 

shortest line segment, we use the method described by Bourke [bour98]. In essence, 

by making use of the fact that the shortest line segment connecting the two lines 

will be perpendicular to both lines, we know the dot product of a vector pointing 

along the line segment and a vector pointing along a line will be zero. By using 

this equation for each line and then expanding the expressions in terms of their x, 

y and z components, we arrive at equations that can be solved for the endpoints of 



Chapter 2. Designing a Calibration System 12 

the line segment. Once we have found the endpoints of the line segment, averaging 

gives us its centre, which we use as the effective intersection of the two lines in 3D. 

To improve our estimate, we can also take into account more than two line 

samples. To do this, we compute the intersection of every pair of lines and then 

average our intersection points to produce a final approximation of the target point. 

This method of sighting points allows us to keep the sensors away from the 

magnetic interference of the monitor, while still obtaining accurate measurements 

of points on the screen. Also, by restricting the distance we need to move the 

sensors from the magnetic field generator used by the sensing system, we improve 

the accuracy we get from the tracker. The biggest advantage of the sighting method, 

however, is the ease with which we can use it to find the centre of a user's eye. 

2.2.3 Sensi t ivi ty to measurement errors 

One aspect of the "sighting" method which is difficult to contend with is that its 

sensitivity to measurement errors varies depending on the samples collected. To 

illustrate this point, we will look at the simple case of two line samples, one of 

which is measured flawlessly and passes through the target point, the other of which 

has some displacement error e. If the line samples were collected so that the angle 

between them (9) is close to 90 degrees, then the resulting error (S) in locating the 

target point is also very near e. However, if the angle between the line samples is 

much less than 90 degrees, small errors in one line cause the intersection of the lines 

to vary a great deal. The error in the target point can be expressed by: 

This means, given that users make small errors in the measurement of the 

line samples, that the results of our system will be much better if a user collects line 

samples that are at right angles to one another, and avoids collecting samples that 

are nearly parallel to one another. 



Chapter 2. Designing a Calibration System 13 

Figure 2.3: Rotational and optical centres of the eye. 

2.3 Loca t i ng a user's eyes 

To understand the great advantage our method provides in precisely locating a 

user's eyes, we must first understand the problems involved in trying to make this 

measurement. Deering [deer92] points out that the point we use when we render an 

image in computer graphics is equivalent to the first nodal point of the eye's lens 

system, also known as the "optical centre" of the eye. This point, however, is not the 

same as the rotational centre of the eye, and on average lies approximately 0.6 cm in 

front of it. Because there is a distance between the rotational centre and the optical 

centre, the optical centre moves as the eye changes gaze direction. Though it may 

move, its position is predictable: it always lies in the direction of the gaze from the 

rotational centre. What this means is that the optical centre, which is required for 

accurate rendering, can be found if we know the position of the rotational centre 

and the gaze direction. 

Fortunately our sighting technique is well suited to the task of accurately 

determining the rotational centre of the eye. When we look through the two sights 



Chapter 2. Designing a Calibration System 14 

while performing the sighting technique, our optical centre and rotational centre 

are by necessity lined up with those sights. It doesn't matter what we see through 

the sights; as long as we can see through the centre of both, the line connecting the 

sights will trace directly through the rotational centre of our eye. By placing a sensor 

rigidly on one's head, to keep track of changes in our head position, and then taking 

two line samples using different gaze directions, we will have two lines that intersect 

at the rotational centre of the eye. We can now find their intersection as described 

before, in Section 2.2.2, and thereby accurately measure the true rotational centre 

of the eye. 

This represents a huge advantage over traditional calibration methods, which 

simply try and approximate this by measuring inter-pupillary distance. Traditional 

methods have no way of identifying the rotational centre of the eye, and cannot take 

measurements inside the eye in any event. 

Using sighting is also much more convenient than traditional methods. Be

cause the sights can be rigidly affixed on a tripod next to the viewing screen, and do 

not need to be moved (as the movement of the user's head is all that's required to 

generate the different viewing directions), the calibration can be done very quickly 

and without the need of a second person to assist. If the sights used are already 

rigidly affixed in front of the user, the four samples necessary to find the rotational 

centre of both eyes can easily be taken in less than ten seconds. 

Even if the sensors are not mounted on a tripod, calibrating eye position 

using this method is not difficult. After a short demonstration of how to perform the 

calibration, new users of the system did not take more than a minute to correctly 

calibrate their eye positions, despite having to hold the sensors themselves. As 

one would expect, this time improves as the user gains experience performing the 

calibration. 

Of course, because we are using the screw holes of the Polhemus FASTRAK 

sensors as our sights, we know their position in relation to the reported sensor 



Chapter 2. Designing a Calibration System 15 

positions without having to calibrate them separately. It is also possible to use only 

one sensor to perform the calibration by rigidly attaching it to a sighting device, 

such as a scope or gun-sight, which is then used to generate the line samples to 

locate the target point. This has the advantage of lowering the latency of reading 

from the FASTRAK, because fewer sensors need to be polled for data, as well as 

providing a more intuitive aiming device than the screw holes of the FASTRAK 

sensors. For this method to be useful, however, the aiming device must be carefully 

measured and the position and orientation of the FASTRAK sensor mounted on it 

must be known exactly. Otherwise, errors present in the calculation of the position 

of the device will adversely affect the accuracy of the system. 

Once the rotational centre of the eye is located, we can approximate the 

position of the optical centre. To do so, we need to assume a gaze direction. Usually 

we assume the user is looking in the direction of the centre of the screen, which in 

many cases is a good approximation, though in some systems, with a user controlled 

pointer, assuming the user is looking at the pointer will give better results [deer92]. 

Once we have an assumed gaze direction, it is a simple matter to move 0.6 cm from 

the rotational centre in that direction. 

Further details on calibrating a user's eye positions will be provided in Section 

3.5; first we look at how our sighting method and ideas about calibration design 

combine to produce a complete working calibration method. 



This page intentionally left blank. 

16 



Chapter 3 

Calibration Method 

Keeping in mind the requirements and design goals we outlined for our system 

in Section 2.1, we will now look at how the final calibration system fulfils these 

requirements and allows the convenient, flexible calibration of a variety of head-

coupled VR systems. 

3.1 Overview of the calibration procedure 

In essence, a calibration system is simply a way of determining a set of coordinate 

transformations. Each transformation tells us how to move from one coordinate 

system, or "space", to another. In head-coupled V R we are concerned with knowing 

how to move between six different coordinate systems: 

Frame buffer coordinates This space is a 2D grid of computer memory that is 

used to hold the picture data seen on all attached screens. In multi-screen 

systems, rectangular sections of the frame buffer are displayed on different 

screens. 

Screen space This is a 2D space that exists for each display screen in the envi

ronment, and represents the visible surface of the screen. It is 2D because 

each screen is considered to be planar, but it is understood that these 2D 

17 



Chapter 3. Calibration Method 18 

spaces have associations with both the 3D world (where the screens are in fact 

positioned and oriented) as well as with frame buffer coordinates. 

Tracker/World space This space is the native 3D coordinate system of whatever 

tracking system we are using. The raw numbers that the tracking system 

returns as the positions and orientations of its sensors are said to be in tracker 

space. Because it exists in the physical world, we will use it as our real-world 

physical space, though in systems with multiple tracking systems, often there 

is a separate standardised world space to which all the tracking systems are 

calibrated. 

Head space This is the 3D coordinate system which originates at the tracking 

sensor placed on the user's head. The user's eyes do not move in head space, 

and so once located are considered fixed points. Note that head space does 

not need to be calibrated with respect to tracker space because it is defined in 

terms of the position and orientation of a tracking sensor, which is already in 

tracker space. 

Eye space For the sake of completeness we can treat each eye as being its own 

coordinate system. In practice, it is usually more convenient to treat eyes 

as points in head space, though generalising eye-position as a separate space 

can be useful for discussing calibration in terms of coordinate transforms. 

When treated as a separate coordinate system, the orientation of this space is 

unimportant. This is because the optical centre of the eye has no associated 

orientation, and only a position. 

Virtual space Virtual space is the 3D coordinate system of the virtual world. For 

head-coupled VR, after calibration it should line up with real-world space (in 

our case, tracker space) to provide the illusion that virtual objects exist and 

can be viewed as real objects. 



Chapter 3. Calibration Method 19 

It can be said that we have a complete calibration when we can move from any one 

coordinate system to any other, and thereby perform every coordinate transforma

tion required to render the images on the screens in the correct locations. 

Though looking at coordinate systems is a good way to visualise the calibra

tion process, the steps required to calibrate the system are actually quite intuitive. 

Two obvious calibration steps are locating the eyes of the user with respect to a 

head-mounted sensor and locating the screens with respect to the tracking system. 

Knowing these two things lets us determine the direction from which a user is view

ing the screen, so that we can compensate for his off-axis perspective. This is not 

enough, however, to provide a useful display of a virtual scene. Two more critical 

pieces of information are missing. 

The first missing piece of information is the mapping from the computer's 

frame buffer to the screen space of different screens. In most multi-screen set-ups, 

each screen is mapped to a rectangular section of frame buffer and, in order to 

display the correct image on a screen, we must know which section of frame buffer 

is shown on each screen. 

The second missing piece of information is the location of our virtual world 

in relation to the physical world. In other words, we need to know the relationship 

of virtual space to world space. This information is required in order to give each 

screen and the user a sensible initial position in the virtual world. Without this extra 

transformation to register tracker space with virtual space, changing the locations 

of the screens would always change the view of the virtual world shown on them. 

This is inappropriate for most head-coupled VR applications, where frequently users 

prefer that a screen in front of them show them a "front" view, aligned with the 

virtual horizon. For this to happen, there must be a way to specify the default 

position and orientation. 

This gives us four pieces of calibration information we need to know in order 

to allow head-coupled VR: the location of screens in the frame buffer, the location 



Chapter 3. Calibration Method 20 

of screens in 3D tracker space, the default position and orientation of the virtual 

world, and the position of the user's eyes. These pieces of information correspond 

to the coordinate transformations from frame buffer coordinates to screen space, 

tracker space to screen space, tracker space to virtual space, and eye space to head 

space, respectively. Because the transformation from head space to tracker space 

is given by the position and orientation of the sensor on the user's head, the four 

pieces of information listed above are all that's required to provide us with coor

dinate transformations between all six spaces. If our system can collect all of this 

information, it will have the complete set of coordinate transformations needed to 

provide a head-coupled V R display. 

Each piece of information will be collected in a separate step. This provides 

the advantage of allowing parts of the calibration to be run independently of other 

parts. Also, errors made while running a calibration can be resolved by running the 

most recent step again, as opposed to having to throw out an entire calibration and 

begin from scratch. To understand to what extent we can re-run separate parts of 

the calibration, we will first look at what is involved in each step, and then examine 

the dependencies between the steps themselves. 

3.2 Step 1: Mapping the frame buffer to physical screens 

The first step of our calibration is to determine the number of screens, and then 

find out what section of frame buffer maps to each of those screens. 

To start the calibration, the experimenter runs the 2D screen calibration 

program from the command line, specifying how many screens are attached to the 

system. The program opens a window to the full size of the available frame buffer, 

and proceeds to lead the experimenter through the process of finding the boundaries 

of each screen. This is done by providing a horizontal and vertical guide line, which 

can be positioned by clicking with the mouse, or with the cursor keys of the keyboard. 

These guide lines make it easy to see when the user has found the edge of a screen. 



Chapter 3. Calibration Method 21 

Figure 3.1: Part way through the 2D screen calibration. 

After the last screen has been located, the areas of frame buffer used for each screen 

are recorded in an output file and the program exits. Figure 3.1 shows the screen 

after the first corner of a screen has been selected. This file now contains the 

information required to display an image on any screen that takes its image from 

the frame buffer. 

Though in theory this mapping could be determined by the software itself, 

without user intervention, this is not practical for a number of reasons. The way 

to query the operating system for this information is not portable across different 

platforms, and so the software would have to be rewritten for each new environment 

on which it was run. Also, by forcing the user to specify what area of the frame 

buffer is visible on each screen we guarantee that the system is correctly calibrated 

even if parts of the frame buffer are not displayed, as is the case around the edges of 

some CRT monitors or on projection displays that project images larger than their 

screens. 



Chapter 3. Calibration Method 22 

Figure 3.2: A user performs the 3D screen calibration. 

3.3 Step 2: Finding 3D screen positions 

Now that we have identified which parts of the frame buffer map onto visible screens, 

we can proceed to locate these screens in tracker space. This means finding where, 

physically, the monitors are positioned relative to our tracking system. The method 

used to do this is to display points on a screen and then have a user determine their 

location by sighting them, as described in Section 2.2.2. Figure 3.2 shows a user 

performing this step. 

First, the frame buffer data from step one is read to determine the position 

of the screens to calibrate. For each of the screen areas in the frame buffer, a point 

is displayed near each corner of the screen. The reason for not choosing the corners 

themselves is that many display devices have non-linear distortions very near their 

corners. These distortions would risk skewing our calibration, and are avoided by 

choosing points slightly towards the centre of the display. The sighting method is 



Chapter 3. Calibration Method 23 

used to obtain 3D line.samples that nearly intersect each of the on-screen points. 

By analysing these line samples, we find the best approximation of the 3D location 

of the point on the screen. After all the points are collected, they are then scaled 

outwards from their centre (their average) so that their position now corresponds 

with the true corners of the screen. We now have good approximate 3D positions 

for each of the four corners of a screen. 

In order for the positions we collect to be valid screen dimensions, they must 

be both planar and lie in a rectangle. However, because of the nature of measuring 

points, there will be small errors which mean that this is not exactly the case. For 

that reason, each set of four points undergoes a procedure to perturb the points 

slightly so that they do indeed form a planar rectangle. 

Let's suppose we have four measured corner points, numbered clockwise from 

top left, called Po, Pi, P2, and P 3 . We first calculate the horizontal (Xo,Xi) and 

vertical {Y0,Yi) axes of the screen, using X0 = &±&, Xx = E l ^ , Y0 = 

and Yi = E ^ E l . These two axes are guaranteed to intersect at the screen centre, 

Q _ P Q + P \ + P - I + P I NOW, the angle 9 between the screen axes can be found by 

9 = arccos ( j jx | -cyyl -C | | ) ' a n ^ t n e s c r e e n normal is found by n = j |x \ -c^|* | f f i -C|| ' 

where n is the normal vector and "x" is the vector cross-product operator. Next, 

two correction angles are computed. The first, £\ — is the correction angle for 

the x-axis and £2 = — £1 = is the correction angle for y-axis. The points XQ 

and Xi are rotated around the normal by £1 and the points YQ and Yi are rotated 

around the normal by £2- The axes are now guaranteed to be orthogonal, and a new 

set of corner estimates, QQ, QI, Q2, Q3, can be found by dx = Xi — C, dy = Yi — C, 

Qo = C - dx + dy, Qi = C + dx + dy, Q2 = C - dx - dy, and Q3 = C + dx - dy. 

The points Qo, Qi, Qi and Qs are now guaranteed to be planar and rectangular. 

To help the experimenter determine whether the values obtained for the 

screen positions are very far from correct, the values calculated during this procedure 

for the angles between the screen axes are displayed, as well as the total distance 



Chapter 3. Calibration Method 24 

the points are moved from their initial positions. This can give an experimenter an 

idea of whether a mistake was made while taking the original line samples, and can 

allow him to determine whether the calibration step should be repeated. 

The result is that we obtain a mapping, for each screen, from 2D frame buffer 

coordinates to 3D tracking system coordinates, which is saved to a data file. For 

information about the format of the data files used by the system, see Appendix C. 

3.4 Step 3: Set t ing the or ig in of the v i r t u a l wor ld 

Step three allows an origin position and orientation to be specified by the experi

menter to indicate where the origin of the virtual coordinate system should lie in 

relation to the tracker coordinate system. This can be set in different ways, depend

ing on the needs of the experimenter. 

The first, and most useful, way to specify the origin is in relation to a screen. 

The experimenter can specify a screen that should be considered the "front" screen. 

The origin calibration program will then compute the centre of that screen, in tracker 

space, and set this to be the origin of the virtual coordinate system. Also, the 

orientation of the virtual world will be set to correspond with the rc-axis and y-axls 

of the screen. 

The second method supported by the system for setting the default position 

and orientation is to make the virtual origin correspond with the position of a given 

sensor. The sensor's position and orientation are read, and the virtual coordinate 

system is made to originate from that spot. 

The final method supported by the system is to allow the user to specify the 

values for position and orientation manually. The position is specified in centimetres 

from the origin of the tracking system, and the orientation is specified in Euler 

angles. 

If this step is omitted, then the system defaults to having both virtual space 

and tracker space share the same origin and orientation. 



Chapter 3. Calibration Method 25 

Figure 3.3: A user calibrates her eye positions. 

3.5 Step 4 : Accurately locating a user's eyes 

The final step in our calibration is to locate a user's eyes with respect to a given 

sensor, which is assumed to be attached to a user's head. This is done, as described 

in Section 2.3, by having a user perform the sighting method without targeting any 

specific point. Instead, it is only important that his eye be looking in different 

directions (with respect to his head position) for each line sample. This allows us 

to compute the rotational centre of his eye. Figure 3.3 shows a user performing this 

step, and we can clearly see the sensor used to track their head position. 

Because this is the last step in the calibration, and must be performed every 

time either a new user wishes to use the system or an existing user changes the 

position of the sensor on his head, this step is performed very often. To simplify 

performing this step, it is useful to mount the sensors on a stand so that the user 

does not need to hold them every time the calibration needs to be performed and 



Chapter 3. Calibration Method 26 

instead can simply put his eye up to one sensor's screw hole to look through it to 

other sensor's screw hole. Notice that because the sensors report their own positions 

and orientations, it doesn't matter if the exact shape or size of the stand they are 

mounted on is not known. As long as the user can see through both screw holes, the 

calibration will be correct, and does not depend on the construction of the stand. 

In order to help the experimenter determine if the calibration step was accu

rately performed, the inter-ocular distance of the user is computed and displayed. 

If this value is around 6 cm, then it is likely that the calibration was successful, and 

we have successfully computed the location of the rotational centres of the user's 

eyes. 

3.6 Increasing accuracy 

The first step of the calibration, where the experimenter locates each screen in 

the frame buffer, should always be accurate because the interface provided by the 

calibration program makes it is easy to see, to the pixel, how much of the frame 

buffer is contained on a given screen. Also, in step three, where we specify the origin 

of the virtual coordinate system, the origin is either chosen by the experimenter or 

calculated exactly by the software based on screen positions. Here again, accuracy 

is not an issue. 

It is in the steps involving the measurement of 3D positions, using the sighting 

method, that we must consider the accuracy of the system. In these cases, accuracy 

is influenced by two things: the accuracy of the tracking system, and the care with 

which the line sample measurements are performed. 

The accuracy of the Polhemus FASTRAK is 0.08 cm RMS for the x, y, or z 

sensor position as long as it is used within 76 cm of the magnetic field transmitter. 

Because the FASTRAK is a magnetic tracker, this accuracy diminishes the farther 

from the transmitter the sensors are positioned, or if the sensors are located near 

metal or magnetic objects. 



Chapter 3. Calibration Method 27 

In order to help reduce the random errors present in the measurements of 

sensor position, the calibration software uses a low-pass filter to remove some of the 

high frequency noise that is present in the positional information. This software 

solution is used instead of the hardware supported filtering that is built into the 

FASTRAK itself. The filter mechanism is implemented as an abstract class, and 

can easily be replaced by other filtering schemes in the future, if the need should 

arise. One possible improvement would be to use the more robust Kalman filter 

[kalmGl, brow83, lian91]. For now, we average the most recent three positional values 

of the centre of a sighting hole to determine the value to record as the actual position. 

Because we average only three samples, we obtain a latency of 0.05 seconds while 

calibrating the screen positions, and a latency of 0.075 seconds while calibrating 

the eye positions (the extra sensor required to keep track of the head lowers the 

rate at which we can collect samples from the FASTRAK). These latencies should 

not adversely affect the calibration, especially when we consider the way in which a 

calibration is performed: first the sensors are lined up, and then a sample is taken. 

The interval between when an experimenter decides that the sensors are correctly 

aligned and when he records a line sample should always exceed 0.075 seconds, so by 

the time he presses the key to record the results of the measurement, the averaging 

of three data samples will have already taken place. 

The second factor which affects accuracy is how much care is taken while 

gathering the line samples used in the sighting method. It is much easier to ensure 

that the sensors are correctly lined up with their targets if they are rigidly attached 

to a stand, rather than hand held, as they can be placed and then checked to make 

sure they line up precisely with the target point. Also, the individual performing 

the calibration should try to ensure that he is looking through the centre of each 

screw hole, and that the target point falls in the centre of both screw holes. For 

a better idea of how the system performs, refer to the tables in Appendix E which 

compare values recorded by the system for the same set of points calibrated in 



Chapter 3. Calibration Method 28 

3D Screen Position 

Origin Calibration 
User's Eye Position 

V 2D Frame Buffer 

Figure 3.4: Calibration step interdependencies. 

several consecutive runs. 

In general, locating the position of the screens is more difficult, and there

fore more prone to error, than locating the user's eyes. If working with a system 

where the display screens are fixed and built to a known specification, the experi

menter may wish to consider manually entering the values for the known positions 

of the screens into the calibration file. The rest of the calibration can still be run 

unchanged, but will benefit from the precision of the known screen positions. 

3.7 Dependence between calibration steps 

A great advantage of a modular calibration design is the ability to run parts of the 

calibration separately from others, so that changes in one part of the system need 

not require re-calibration of the entire system. To know what changes we can make 

without affecting other parts of the system, however, we have to understand the 

dependencies between different parts of the calibration system, shown in Figure 3.4. 
The first step of the calibration, the mapping of the frame buffer to the appro

priate screens, will be correct as long as we do not change the fundamental system 

configuration, either by changing the number of screens present or by changing any 

of the screen resolutions. 

The second step, locating the screens in tracker space, depends upon the 

first step in order to determine both the number of screens as well as how to display 

points on them to allow the experimenter to calibrate them. For this reason, step 

two will always have to be performed again if step one has been redone. 



Chapter 3. Calibration Method 29 

The third step, that of setting the origin of the virtual coordinate system, 

is dependent on the second step. This is true not only because of the fact that the 

origin is frequently chosen based on the position of a screen from step two, but also 

because of an implementation decision to use the same configuration file to hold 

the origin information as well as the 3D screen positions. Though this goes against 

our general principle of minimising dependencies, the fact that this step takes no 

time to perform, and is computed immediately by running the calibrateOrigin 

program, means that in practice having this step depend on prior steps ensures that 

old origin-positions are not reused accidentally. 

The fourth step, that of finding the location of the user's eyes with respect 

to the head-mounted sensor, is not dependent on any other step of the calibration, 

and no other step in the calibration is dependent on it. This means it can be re-run 

at any time, without affecting any other step of the calibration. 

Another way to perform the calibration of the screens in step two would 

be to first locate the user's eyes, and then sight points on the screen by looking 

through only one sensor, using the position of the eye as the other point from which 

to determine our line sample. That is, we would be drawing lines from the centre of 

the user's eye through the screw hole of a sensor in order to locate the points on the 

screen. While this method would make it easier for the experimenter to line up the 

sensor with the target location on the screen, it would propagate any errors from the 

location of the eye through to the calibration of the screens. Also, it would mean 

that step two would be dependent on having a valid calibration of a user's eyes, 

which introduces needless complexity to the system. For that reason, the method 

that uses two sensors to perform the sighting is preferred. 



This page intentionally left blank. 

30 



Chapter 4 

Producing the Final Image 

A cal ibrat ion system, however accurate and convenient, is of no use unless it can be 

easily integrated into software applications. To make this integration easy, libraries 

were developed to read in the cal ibrat ion data and to use it to render the correct 

off-axis perspective image to the correct screen. Though it is assumed that the 

applicat ion w i l l handle reading from the t racking system, the libraries do provide 

functions to help compute the correct optical centre of a user's eyes, given their 

rotat ional centres and a gaze point. 

W h i l e detailed information on developing software wi th these libraries is pro

vided in A p p e n d i x B , this section w i l l describe how some of the functions necessary 

for the product ion of images in head-coupled V R are implemented. 

4 . 1 The role of the application 

Once all the cal ibrat ion data have been saved to files by the cal ibrat ion system, 

it is up to the application to make use of these data to implement a head-coupled 

V R system. To do this, the application must perform two essential tasks: reading 

from the tracking system and rendering the v i r tua l world to the screens. A brief 

description of how this is done w i l l give an idea of how the work is d iv ided between 

the applicat ion and the provided ut i l i ty libraries. 

31 



Chapter 4. Producing the Final Image 32 

For the Polhemus FASTRAK, reading from the tracker can be performed 

with the aid of the driver developed as part of my undergraduate thesis [stevOO]. 

This driver can be polled each display cycle to obtain the latest position and ori

entation of the head-mounted sensor. Once this information is obtained, it is sent 

to the calibration utility library and the eyes' rotational centres are automatically 

calculated. The application can then supply a 3D point to use as a guess for where 

the user is looking, so that the optical centres of the eyes can be calculated. All the 

calculations required to approximate the true eye-point are performed by functions 

in the utility library. The application need only provide the latest sensor position 

and gaze point. 

Once the eyes are accurately located, the application specifies the screen 

number to which it wishes to render. The utility library then automatically sets 

the viewport to render into the portion of the frame buffer associated with that 

screen. The library also computes the required off-axis projection to compensate 

for the user's viewing position in relation to the specified screen, and configures 

OpenGL to use this matrix when rendering. These calls replace the usual OpenGL 

calls to gluPerspective and glViewport. The application can then proceed to 

issue commands to render as normal, and everything will be drawn correctly to the 

selected screen. This step is repeated for each screen attached to the system. 

Other than these two steps, locating the eyes and choosing which screen 

should be rendered, the application performs exactly as its non-head-coupled coun

terpart. By automating and abstracting the math required to calculate the off-axis 

projections, all of the extra difficulty is removed from developing applications that 

use a head-coupled V R display. 

4.2 Other applications 

Though the calibration system utility libraries were designed with head-coupled VR 

in mind, there are some applications that prefer other types of projection. These 



Chapter 4. Producing the Final Image 33 

applications are also possible using the calibration system, though it is then up to 

the application to generate the desired projection. 

For example, some systems use the "Delft Virtual Window System" [smet87, 

gave95] method of displaying the virtual world. In these systems, instead of comput

ing the correct off-axis projection, a normal on-axis viewing perspective is computed 

taking into account the current viewer position and assuming that the viewing di

rection is towards the centre of the screen. Though this type of projection makes 

it impossible to do correct stereoscopic display, and prevents the virtual world from 

being registered correctly with the real world, the images produced by this type of 

display do not appear distorted when viewed from perspectives other than the cor

rect head-coupled perspective. This means that multiple users can share this type 

of display more easily than with true head-coupled VR. In essence, the movement 

of the viewer's head simply pans around the virtual scene, which is shown on screen 

as in normal 3D computer graphics. 

This type of display can be easily implemented with the help of the calibra

tion system. The screen position and eye positions would still be obtained from the 

calibration system, but the projection can now be performed by the regular OpenGL 

gluPerspective call. 

There are many other possible non-traditional uses for the calibration system 

as well. Multi-screen displays can use the system to determine the relative positions 

of different screens, to allow a user to drag a window intuitively from one screen 

to another, for example. Other systems might provide interaction based on the 

position of a stylus or 3D sensor in front of the screen. 

Though other uses of the system are certainly valid and useful, the vast 

majority of applications will make use of the calibration system to provide a head-

coupled V R perspective of a virtual world. For this reason, the rest of this chapter 

focuses on how the calibration system works with OpenGL to produce correct off-

axis projections for a given viewer position and a set of calibrated screen locations. 



Chapter 4. Producing the Final Image 34 

4 . 3 Configuring OpenGL 

The utility libraries provided with the calibration system replace the traditional 

OpenGL functions used to set-up projection matrices and viewports for rendering. 

Instead of having to use these functions directly, the utility library automates the 

process of figuring out the correct projection matrix for a given screen, sets the 

viewport so that the correct portion of the frame buffer is used, and automatically 

translates and rotates the virtual world to correspond with the calibrated origin. 

In a typical 3D OpenGL application, two functions are used to control how 

OpenGL displays the virtual world on the screen: glViewport and gluPerspective. 

glViewport specifies an area of the frame buffer to use for rendering. This function 

controls where on-screen the image will be displayed. gluPerspective computes an 

axis-aligned perspective projection matrix, given an eye position, up-vector and look-

at direction. This function controls what 3D geometry is rendered on screen, and 

how it looks. When we move to a head-coupled environment, we must now contend 

with the added complexity of a changing viewpoint, multiple screens, and a different 

virtual origin. The Projector class of our utility libraries provides this added 

functionality in two simple commands: glSetViewport and glSetOf f AxisView. 

The glSetViewport function performs the same task as the glViewport 

function in OpenGL, but instead takes only one parameter: the screen number 

to which we wish to render. The glSetViewport function automatically sets the 

viewport so that the image is drawn to the specified screen. 

The glSetOff AxisView function also takes the current screen number as a 

parameter and uses the user's current eye position as well as the calibrated screen 

position to compute the correct off-axis projection matrix required to display the 

correct image as seen from the user's viewpoint. 

Thus, instead of the typical command sequence: 

glViewport(x, y, width, height); 



Chapter 4. Producing the Final Image 35 

gluPerspective(fovy, aspect, near, f a r ) ; 

drawObjects(); 

We instead have the commands: 

for (i=0; i < NUM_SCREENS; i++) { 

projector->glSetViewport( i); 

projector->glSetOffAxisView(eyePos, i , near, f a r ) ; 

drawObjects(); 

} 

The loop is used to ensure that we draw on each screen in an environment. Other

wise, the second code fragment looks very similar to the first, and will therefore be 

intuitive to developers used to using OpenGL. 

To appreciate how much effort the developer has been spared, and to better 

understand what is involved in computing an image in head-coupled VR, we will 

now examine the process of calculating off-axis projection matrices. For further 

details on developing software using the utility libraries, see Appendix B. 

4 . 4 Generating correct off-axis projections 

Computing the off-axis projections used to show the viewer a realistic image from his 

true eye position is a critical part of head-coupled VR. Unfortunately, the complexity 

of this step discourages many people who would otherwise want to use head-coupling. 

Despite the fact that it has been already implemented in the utility library, some will 

still wish to know how this step is accomplished. This section will explain how the 

arbitrarily oriented off-axis projections needed in head-coupled V R are calculated 

using the help of some standard OpenGL functions. 



Chapter 4. Producing the Final Image 36 

Figure 4.1: The viewing frustum. 

4.4.1 In t roduct ion to projections 

The goal of the projection stage is to take a volume of 3D space and flatten the 

objects within it onto a plane, which corresponds to the screen. This volume is 

determined by the position of several "clipping planes" that discard, or "clip", any 

objects to one side of them. Al l the objects that lie within the volume laid out by 

the clipping planes are then flattened onto the 2D plane (screen). For perspective 

projections, six clipping planes are used, as shown in Figure 4.1. Four of these form 

the top, bottom, left and right sides of a pyramidal volume. Two more, called the 

near and far clipping planes, restrict the depth of the volume. This enclosed volume 

of space determines what is seen on screen and is called the "viewing frustum". 

In normal 3D computer graphics two assumptions are made that simplify 

specifying the viewing frustum: the eye-point is always assumed to lie on a line 

perpendicular to the centre of the frustum, and the screen's orientation is aligned 

with the viewer's orientation. Figure 4.2 shows this simple case. 

In head-coupled VR, however, we must contend with arbitrarily oriented 



Chapter 4. Producing the Final Image 37 

Figure 4.2: On-axis viewing of a normally oriented screen. 

off-axis projections. In these projections, unlike the normal 3D graphics case, the 

eye-point can be anywhere and the frustum rotated at arbitrary angles, as shown in 

Figure 4.3. The reason head-coupled V R requires this type of projection is intuitive: 

the screens may be at arbitrary orientations, and the user's eye may move about. 

Fortunately computing these frusta is not as difficult as one might think, thanks to 

some functions provided by the OpenGL graphics library. 

4.4.2 Specifying frusta i n O p e n G L 

Frusta can be defined two ways using OpenGL. The common way is to use the 

gluPerspective function. This uses an eye-point, an up-vector, a look-at-point, 

and a field-of-view parameter to calculate the shape and orientation of the view

ing frustum, as well as near and far clipping plane values to compute its depth. 

gluPerspective computes the appropriate transformation matrix and places it on 

the stack so that subsequent drawing commands are projected and transformed ac

cording to the specified parameters. Unfortunately, gluPerspective does not pro

vide a way to specify an off-axis eye-point, so we will have to use the second OpenGL 

function for specifying viewing frusta, the appropriately named glFrustum. 
The glFrustum function allows the specification of a viewing frustum in eye 



Chapter 4. Producing the Final Image 38 

Figure 4.3: Off-axis viewing of an arbitrarily oriented screen. 

space. The orientation assumed is with the x-axis to the right, the y-axis up, and a 

viewing direction along the negative z-axis. Notice that this implies a right handed 

coordinate system, and that because we are in eye space, the eye-point is the origin. 

Also, glFrustum assumes that the near and far clipping planes are parallel to the 

xy-plane, and assumes that the screen is located at the near clipping plane. 

The glFrustum function accepts values for the left, right, top, bottom, near 

and far clipping planes that make up the frustum. Al l of the values correspond 

to appropriate x, y and z coordinates with respect to the eye. These values also 

indirectly specify the corners of the 2D screen area onto which the frustum will be 

projected, as follows: the point (x, y, z) = (left, top, —near) is the top left corner 

of the screen area and the point (x, y, z) — [right, bottom, —near) is the bottom 

right corner. The reason we must negate the near clipping plane value is that by 

convention the near and far clipping planes are specified as their distance in front 

of the eye, and our viewing direction is along the negative z-axis of a right handed 

coordinate system. Because glFrustum allows the frustum to be specified anywhere 

with respect to the eye, it can be used to calculate the off-axis projections we need, 

even though the default orientation that it provides may not apply to a given screen. 

With a little effort, we can still generate the appropriate frustum for any eye-position 



Chapter 4. Producing the Final Image 39 

and screen orientation. 

4.4.3 Computing the frustum 

If the screen happens to be oriented in the default orientation that glFrustum 

assumes, specifying the viewing frustum is trivial. We subtract the current eye 

position, which reflects the assumed optical centre of the eye as discussed in Sections 

2.3 and 3.5, from the position of the screen corners to find their position with respect 

to the eye. We can then use the position of these corners to enter values for the 

left, right, top and bottom clipping planes. The near and far clipping planes can be 

chosen based on what objects we are interested in rendering, and we end up with 

a correct off-axis projection that will show the user an appropriate image given his 

current eye position. 

Unfortunately, the screen is generally not in the default orientation that 

glFrustum assumes. To cope with this, we first must first generate an appropriate 

viewing frustum, and then rotate it to correspond with the true screen orientation. 

Equivalently, some people prefer to think of this as rotating the screen to correspond 

with the default viewing frustum. Regardless, the important thing is to find an 

appropriate rotation matrix, and use this to obtain the correct viewing transform 

for a user's viewing position. 

To obtain the correct values for the screen as if it were correctly oriented, 

we need to calculate the unit x vector (ux), unit y vector (uy) and unit z vector 

(uz) for the screen coordinate system, in the default orientation. This means, if we 

assume the origin of the screen is the lower left corner, that the a;-axis should point 

to the lower right corner and the y-axis should point to the upper left corner, as 

shown in Figure 4.4. If we assume corners numbered clockwise from the lower left 

P0, P i , P2 and F 3 , this gives u x = % = ||piIpo|| and u z = u x x u y . 

Linear algebra [leon90] tells us that the matrix [ u x u y u z ] forms a basis for 

the screen orientation. By specifying the position of the screen corners to glFrustum 



Chapter 4. Producing the Final Image 40 

Screen 

Figure 4.4: Calculating the correct viewing frustum orientation. 

with respect to this new basis, we can produce a frustum that is of the correct shape 

and size, but oriented in the default orientation. We can then rotate the frustum to 

correspond with our true screen orientation and thereby produce the correct viewing 

frustum. 

The first step is to compute the positions of the lower left and upper right 

corners that glFrustum requires to compute the frustum. Recalling that glFrustum 

uses the eye point as the origin, the new lower left corner P0' can be found in two 

steps: translating the corner so that the eye point is the origin, and representing 

the corner with respect to the new basis. If the eye point to be used as the origin is 

E, then translating the lower left corner Prj by — E results in the vector t = PQ — E. 

We can find the position of the lower left corner with respect to our new basis by 

PQ = (t • u x , t • u y , t • uz). The position of the upper right corner P 2' with respect 

to the new basis can be calculated in the same way. The left, right, top, and 

bottom values required by glFrustum can now be calculated from these two corner 

points as described in Section 4.4.2. We can now use glFrustum to produce an 

appropriate off-axis projection matrix, which corresponds to the position of one's 

eye in relation to the screen. The final step is to rotate the frustum to correspond 

with our true screen orientation. This is accomplished by multiplying the frustum 

by the transpose of our basis, or [ux u y u z ] T . 



Chapter 4. Producing the Final Image 41 

The result of these operations is an off-axis projection that corresponds to 

the position and orientation of the screen as seen by the eye-point, though we are 

restricted in our choice for the near clipping plane. This is because glFrustum 

assumes that the value specified for the near clipping plane is the distance, along 

the z-axis, from the eye to the screen. Frequently we wish to have the near clipping 

plane set independently of the position of screen, and so we must work around this 

assumption. 

To do this, we scale the size of the screen based on its distance from the 

viewer and its distance from the near clipping plane. We can do this in such a way 

that the frustum still represents the correct viewing perspective for the user, yet 

allows us to position the near clipping plane at an arbitrary location. If d is the 

distance along the z-axis from the viewer to the screen, and near is the distance 

along the z-axis from the viewer to the near clipping plane, then this scale factor 

is That is, if before calling glFrustum we multiply the left, right, top, and 

bottom values by this scaling factor, the near clipping plane value can be set to any 

value we choose. The resulting frustum will still be correct for the user's eye position 

and the given screen position, but the near clipping plane can now be repositioned 

independently of the screen. 

We have seen all the steps required to compute an off-axis, arbitrarily oriented 

viewing frustum, with arbitrarily placed near and far clipping planes. If any further 

details on the implementation of this step are required, they can be readily found 

by examining the source code implementation of the glSetOf f AxisView function, 

included in Appendix F. More details on using glFrustum can be found in the 

OpenGL documentation [kemp97]. 



This page intentionally left blank. 

42 



Chapter 5 

Rendering of View-Dependent 
Lighting 

To test the success of the calibration system design, the system was integrated with 

an existing rendering application. This application is especially interesting in a 

head-tracked environment because the Lafortune lighting model it uses to render 

objects is view-dependent. 

The fact that the lighting of objects is view-dependent means that as the 

user moves his head to view the scene from different angles, he sees not only the 

changing perspective of the object on screen, but also a change in the lighting. This 

allows effects such as retro-reflection and off-specular reflection. In addition, the 

user is given control over the light position by making it correspond to the position 

of a sensor held in the user's hand. This way, the user is free to experiment in an 

intuitive way with the effects that different viewing angles and light positions have 

on rendered objects. 

The workings of the calibration system have already been discussed in detail, 

so this chapter will focus on describing the implementation of the view-dependent 

lighting model using advanced graphics hardware features. This method was de

veloped by Wolfgang Heidrich and myself as part of a graduate course in computer 

43 



Chapter 5. Rendering of View-Dependent Lighting 44 

graphics. Much of the following description is taken from a paper written for that 

course. That description has been updated to reflect the latest version of the soft

ware, which has been modified to consider the user's true eye position and to read 

the light position from a hand-held sensor. 

The way the implementation uses the graphics hardware is non-trivial, and 

without clever use of this hardware it would not be possible to perform the rendering 

in real-time as is required for head-coupled VR. Because of this, no discussion of the 

the method's use in a head-coupled VR environment would be complete without an 

explanation of how the rendering is accomplished. 

5.1 Graphics hardware features 

The past few years have seen rapid development in the graphics hardware industry, 

specifically in the area of 3D graphics cards for the PC. As 3D graphics hardware 

continues to advance we find that there are increasingly more techniques that, while 

previously too slow to be practical, can now be performed in real-time using hard

ware acceleration. 

Recent generations of 3D accelerated hardware, such as NVIDIA's GeForce3, 

provide not only faster speeds but also new features that greatly increase the flex

ibility of such hardware. The most exciting of these new features is the addition 

of programmable transform and lighting on a per-vertex basis, known as "vertex 

programs". This allows a developer to have full control over how the hardware 

performs the transformation and lighting of each vertex, as well as how texture 

coordinates and colours are assigned. This new programmability, as well as estab

lished features such as multi-texture, cube-mapping, and register combiners, provide 

great flexibility in the rendering pipeline. It is worth noting that these new features 

and extensions are explained in much greater detail elsewhere [nvidOl], and will be 

merely summarised here. 



Chapter 5. Rendering of View-Dependent Lighting 45 

5.1.1 Ver tex programs 

The latest advance in consumer graphics accelerators is the addition of a fully pro

grammable hardware transform and lighting stage. Termed "vertex programs", this 

OpenGL extension allows a developer to write the hardware transform stage himself, 

using assembly language. 

The assembly language consists of a repertoire of 1 7 SIMD instructions, each 

of which executes in a single clock cycle. Because of this, program execution time is 

directly proportional to program length. While the programs can only operate on a 

single vertex at a time, and have no support for branching or looping, they can take 

a number of constant parameters as input, as well as many per-vertex attributes, 

such as texture coordinates, colour, and position. 

The output of these programs is at the very least a clip-space transformed 

vertex, but can also include colour, texture, and fog information. 

Because of the flexibility of this assembly language, as well as the large 

number of inputs and outputs, we can use vertex programs to implement a number 

of non-traditional algorithms directly in hardware. 

5.1.2 Texture mapping advances: 

Mul t i - t ex tu re and cube mapping 

Texture mapping has always been a useful tool for improving the realism of polygonal 

models. Lately, however, graphics cards are supporting two new extensions to the 

well known texture mapping function. 

Multi-texture allows a graphics card to apply multiple textures to a fragment 

in a single pass. This can be done in hardware when the graphics card contains 

several independent texture units. Each unit is configured to render a different 

texture, and then the texture colour values for each pixel are either blended together 

or used as the input to register combiners, described later, for more complicated 

operations. 



Chapter 5. Rendering of View-Dependent Lighting 46 

Cube-mapping is a texturing method in which the texture is parameterised 

using three coordinates instead of two. This triple is interpreted as an un-normalised 

direction vector, and the texture itself can be thought of as lining the inside of a 

cube. The returned colour value corresponds to what would be seen by a viewer in 

the centre of the cube, looking in the specified direction at the texture lining the 

inside of the cube. In practice, separate textures must be specified for each of the 

six faces, and then the hardware performs the calculation to figure out which part 

of which texture a given vector specifies. 

Normally cube-mapping is used to simulate reflections and refractions, but 

this technique can also be used to normalise vectors. First, the vector is encoded 

as texture coordinates. Next, textures are generated for each of the cube faces such 

that for a given direction p, the point on the cube specified by p has a colour 

value that corresponds to the colour-coded vector ^ j - . We must "colour-code" this 

vector, as a texture's colour values may only range from 0 to 1, while components 

of a normalised vector can range from -1 to 1. To perform this conversion on a unit 

vector v, we calculated the colour-coded vector c as follows: 

c = 0.5 + 0.5v 

In this way, the result of the cube-mapping texturing process for any given 

vector direction is simply the same vector, colour-coded and normalised. Not only 

does this method provide a cheap way of doing the normalisation, but it performs 

this normalisation per-pixel, which prevents interpolation artifacts, caused by lin

early interpolated normals. 

5 .1 .3 Register combiners 

With the advent of new texture methods, and specifically multi-texture, the older 

OpenGL mechanism for combining pixel primary colour with several texture colours 

was lacking. For this reason, NVIDIA came up with a flexible way of combining 

several parameters to arrive at a final pixel colour. 



Chapter 5. Rendering of View-Dependent Lighting 47 

The "register combiner" extension consists of two or more general combiners, 

followed by a "final combiner". While the "final combiner" is only meant to perform 

a colour sum and fog computation, the general combiners are much more versatile. 

They allow a developer to specify a number of inputs, perform addition, multipli

cation or dot products, and produce an output, which may in turn be used as the 

input to a subsequent combiner. Inputs can be any of the texture colours, vertex 

colours, or even constants. Because the developer has control over the inputs and 

operations performed on them, register combiners can be used to help implement 

some functions in hardware. Lafortune reflectance functions fall into this category. 

5.2 Lafortune reflectance functions 

Lafortune reflectance functions [lafo97] are a generalisation of the classic cosine lobe 

model. The most convenient form of the Lafortune reflectance function gives the 

amount of reflected light, / , for a single lobe, based on a unit vector u indicating 

the direction of incoming light and a unit vector v indicating the direction of the 

viewer. This form of the Lafortune reflectance function is given as: 

/ (U, V ) = P(CXUXVX + CyUyVy + CZUZV^ 

where subscript notation has been used to refer to the x, y and z components of 

the vectors C , u, and v. In this equation, the scalar n is the specular exponent, 

similar to the specular exponent in the Phong shading model, the scalar p is the 

albedo, which controls the overall amount of light reflected by the surface, and C is 

a normalisation factor that controls the shape of the lobe. Both u and v are defined 

in a local coordinate system at the point on the reflective surface being rendered. 

This form of the reflectance function consists of a symmetric component-wise 

multiplication between u, v, and C , a three-way sum, an exponentiation, and finally 

a multiplication by the albedo. The useful thing about this form is that it can be 

simplified to merely four operations: a component-wise multiplication between u 



Chapter 5. Rendering of View-Dependent Lighting 48 

and v, a dot product with C, an exponentiation, and a multiplication. Both the 

component-wise multiplication and the dot product can be performed by register 

combiners, meaning that a large part of this function can be implemented directly 

in hardware. 

5.3 The existing software 

Register combiners were available in graphics cards well before vertex programs, 

and originally Wolfgang Heidrich had developed a way to use register combiners 

alone to implement the Lafortune reflectance model, with some limitations. We'll 

first examine how the old software worked, and then discuss how to use recent 

graphics hardware features to implement a more general solution, suitable for the 

head-tracking environment where we intend to use it. 

The original program had a multi-stage rendering method that evaluated 

the function / ( u , v) in parts. This method made use of the flexible way the register 

combiners can combine the output from texture units. 

To start, two texture units are initialised. The first texture unit contains 

the colour-coded C vector for the Lafortune function that depends on the surface 

reflectance. The second texture unit contains a standard cube-map used for normal

isation, as described in Section 5.1.2. By setting the texture coordinates correctly, 

the second texture unit will generate normalised, interpolated vectors indicating 

viewing position. 

These two texture units now produce values that can be used by the register 

combiners. The first register combiner is configured to perform a component-wise 

multiplication between the first texture unit's output (C) and a constant light direc

tion (u). The second register combiner performs a dot product between the output 

of the first register combiner and the output of the second texture unit (v). The 

final combiner stage simply takes this resulting dot product and passes it through 

as an intensity to the frame buffer. 



Chapter 5. Rendering of View-Dependent Lighting 49 

At this point, each pixel in the frame buffer contains an expression equiv

alent to (Cxuxvx + CyUyVy + Czuzvz). This result is then read back into system 

memory from the frame buffer and the exponentiation performed using a look-up 

table [sloa79, bass81]. Finally, an albedo texture is rendered and multiplied with 

the exponentiated result to produce the final output for the function. 

This process only considers a single lobe, of course, and so for models with 

multiple lobes this whole process is repeated, storing the intermediary results, and 

then computing the final result by multiplying all the lobe contributions together 

at the end. 

The problem with this implementation is that it does not use a surface-local 

coordinate system for u and v. Because of this, it only works for planar geometry. 

Further, because the older hardware for which the software was written only 

had two texture units, the program could not use the cube-map method to provide 

a normalised light direction. Because of this, it is limited to rendering objects lit 

with an infinite light. In order to render with a local light, like the one controlled 

by the sensor in the user's hand, the vector for lighting, u, would also have to be 

normalised and interpolated as is done with the viewing vector, u. 

Fortunately, by using features found in the newest graphics cards, specifically 

NVIDIA's GeForce3's vertex programs, we are able to overcome these shortcomings. 

5.4 I m p l e m e n t i n g s u r f a c e - l o c a l c o o r d i n a t e f r a m e s 

The previous implementation had two major shortcomings: it used a constant light 

direction for every vertex, and it assumed all the vertices lay in the z = 0 plane. 

We will now look at how to solve these problems using vertex programs. 

Vertex programs completely replace the standard OpenGL transform stage, 

and so we must implement not only the features that help us calculate the Lafortune 

equation, but also any operations that are normally provided by default OpenGL. 

In our case, this includes the transformation of the vertex from model space to clip 



Chapter 5. Rendering of View-Dependent Lighting 50 

space, as well as passing the texture coordinates for the first texture unit1 through 

the vertex program. 

Passing the texture coordinates through our program is trivial, and can be 

done with the single vertex program assembly language [nvidOl] command: 

MOV o[TEX0],v[TEX0]; 

The transformation from model space to clip space is slightly more complicated. It 

is performed by multiplying the vertex position by the combined Modelview and 

Projection matrices. This can be done using the following four dot product instruc

tions: 

DP4 o[HP0S] .x,v[0P0S] ,c[4] ; 

DP4 o [HPOS].y,v[0P0S],c[5] ; 

DP4 o[HP0S] .z,v[0P0S] ,c[6] ; 

DP4 o [HPOS].w,v[OPOS],c[7]; 

where v [OPOS] is the position of the vertex we wish to transform, and c [4] -c [7] 

are the rows of the combined Modelview-Projection Matrix. 

The vertex program is now capable of correctly transforming a vertex, and 

must now perform the calculations required to light it correctly. We will assume 

that the texture units and register combiners are set up as described in Section 5.3, 

except that the constant valued input to the first general register combiner (used 

for the light direction) is replaced with an input read from the primary colour. The 

reason for this is that we are no longer assuming a constant light direction for each 

vertex and need to provide a way for our vertex program to pass the correct light 

direction to our register combiners. Primary colour is a per-vertex attribute, which 

is interpolated for pixels between vertices. This means it will work well for passing 
1According to OpenGL conventions, the texture units are numbered starting.at 0. The 

assembly language examples, therefore, refer to the first texture unit as TEXO, the second 
texture unit as TEX1, etc. 



Chapter 5. Rendering of View-Dependent Lighting 51 

the light direction, as long as our models are well tessellated. If our model is not well 

tessellated we will run into artifacts caused by the fact that the linear interpolation 

of our normals is not length preserving. 

We can now formulate a definition of what our vertex program needs to 

output, and consequently what it needs to receive as input. The output of our 

program will be a vector pointing to the viewer, and a vector pointing to the light. 

The vector pointing to the viewer will be output from our program coded as the 

texture coordinates for texture unit two which, as we recall, is a cube-map set up for 

normalisation. The vector pointing to the light will be colour-coded as the vertex 

primary colour. This way each of these vectors can then be input to the register 

combiners for further computation. 

In order to calculate the vector pointing to the light and to the viewer, we 

need to consider the local coordinate frame of each vertex. This requires a normal, 

binormal and tangent for each vertex. While OpenGL provides a mechanism for 

assigning a normal to each vertex, and the binormal can be calculated by taking the 

cross-product of the normal and tangent, we still need a way to pass the tangent 

to our vertex program. We will do this by encoding the tangent as the texture 

coordinates for the third texture unit. Even though this texture unit is not otherwise 

used, it's coordinates can be passed to the vertex program to provide a tangent 

direction. 

We will also need three vertex program constants to complete our calcula

tions: the position of the light, in model space; the position of the viewer, in model 

space; and the vector [0.5 0.5 0.5 0 ] T , used in the colour-coding calculation. 

With our inputs and outputs defined, we are now ready to begin calculations. 

First, we have to calculate the local binormal, by computing the cross product of the 

normal and tangent. We first read the tangent into register Rl , and then calculate 

the cross product in register R2: 

MOV Rl,v[TEX2] ; 



Chapter 5. Rendering of View-Dependent Lighting 52 

MUL R2,v[NRML].zxyw,RI.yzxw; 

MAD R2,v[NRML].yzxw,RI.zxyw,-R2; 

We can now calculate the model space viewing direction as Viewer Direction = 

Vertex Position — Viewer Position, or, in vertex program assembly where R3 is the 

viewer direction and c [ l ] is the viewer position: 

ADD R3,v[0P0S],-c[l]; 

Our vertex program can now formulate a change-of-basis matrix to transform this 

model space vector to surface-local coordinate space by using the tangent, binormal 

and normal as the columns of a matrix [leon90], as in Section 4.4.3 when the view

ing frustum was calculated. We then multiply our vector by this change-of-basis 

matrix to rotate the viewing direction into surface-local coordinates using three dot 

products: 

DP3 o[TEXl].x,R3,Rl; 

DP3 o[TEXl].y,R3,R2; 

DP3 o[TEXl].z,R3,v[NRML]; 

This surface-local viewer direction is now the output to the second texture unit. 

The model space vector for lighting direction is calculated and stored in 

register R4 by: 

ADD R4,v[0P0S],-c[2]; 

It must be explicitly normalised, however, as it is not passed to a cube-map for 

normalisation. The normalised vector is stored in R3: 

DP3 R0.w,R4,R4; 

RSQ RO.w.RO.w; 

MUL R3.xyz,R4,R0.w; 



Chapter 5. Rendering of View-Dependent Lighting 53 

It is then transformed to surface-local space in the same way as with the viewing 

vector: 

DP3 R6.x,R3,R10; 

DP3 R6.y,R3,R2; 

DP3 R6.z,R3,v[NRML]; 

Finally, this result is colour-coded, according to the formula given in section 5.1.2. 

We assume c [3] has been set as the constant vector (0.5,0.5,0.5,0). The result is 

then returned as the primary vertex colour: 

MUL R4.xyz,R6,c[3] ; 

ADD o [COLO].xyz,c[3],R4 

The complete vertex program consists of only 21 commands. This is remarkably 

efficient considering all that the program does, and because each command runs 

in a single clock cycle, it means that on a 300 MHz processor the program would 

be capable of processing in excess of 14.28 million vertices per second! This effi

ciency allows us to use highly tessellated models to reduce any error resulting from 

interpolations between vertices. 

5.5 R e s u l t s 

This method is capable of rendering arbitrary geometry, lit using Lafortune re

flectance functions, in real-time. Further, because the parameters to the Lafortune 

functions are specified in textures, they, can change per-pixel. This means we are 

able to have specular lighting on some parts of geometry and retro-reflective lighting 

on others, for example. 

There is one problem with doing the calculations in the way described, how

ever: we are limited by a low-precision frame buffer. Because we perform our ex

ponentiation with eight bits of precision, we run into quantisation problems, which 



Chapter 5. Rendering of View-Dependent Lighting 54 

can be seen in the sample image, Figure 5.1. In this image, the yellow part of the 

texture is retro-reflective, while the black kangaroo shows a specular reflection. The 

quantisation caused by the lack of precision is easily seen in the specular highlight 

in the centre of the image, and is worsened by the low complexity of the geome

try. This problem is much less apparent on curved geometry, with more vertices, as 

shown in Figure 5.2. 

Even though our method runs in real-time we waste a lot of time by reading 

back pixels from the frame buffer. At very high resolutions, this will slow down 

the rendering substantially, and also limits the number of lobes we can render in a 

timely fashion. Though this does not prevent the method's use in our head-coupled 

environment, looking at a way to eliminate frame buffer read-backs would improve 

overall performance. One way this could be done is covered in Appendix D. 

Integrating the calibration software with the application was not difficult, 

despite the application's extensive use of OpenGL extensions and its vertex program 

implementation of the transform and lighting stage. No special provisions were 

required to adopt the utility library functions to the application, and most of the 

modifications were to allow the application to read the light and eye position from the 

tracking system. The ease in which the calibration system was integrated into this 

advanced rendering application shows the soundness of its design, and its feasibility 

as a useful tool for would-be VR practitioners. 



Figure 5.2: Curved, dense geometry masks precision problems. 



This page intentionally left blank. 

56 



Chapter 6 

Conclusions 

This thesis has presented a system for calibrating head-coupled V R environments. 

By examining the requirements for such a system, as well as relevant design princi

ples, we have succeeded in producing a convenient, flexible solution to the problem 

of calibrating both desktop and large-scale systems for use in a head-coupled virtual 

reality environment. 

The "sighting" technique has been shown to be an extremely flexible tool 

for locating points in 3D. By taking line samples that intersect target points, and 

analysing these samples to compute the location of the targets, we can accurately 

measure the location of points without placing the sensors near the actual tar

get. Though this is useful in avoiding the interference that display screens have on 

magnetic sensing equipment, it is a major advance in finding the position of the 

rotational centre of the eye. By providing a method to precisely measure the true 

rotational centre of the eye, and doing this in a fast, convenient way, the system 

provides distinct advantages over traditional methods of calibration. Further, be

cause it is easy to modify the measurements stored in the calibration files produced 

by our system, other calibration methods can be used if they are more appropriate 

for a given environment and the values they produce inserted into the appropriate 

calibration files. These values can then be used by the utility libraries provided to 

57 



Chapter 6. Conclusions 58 

easily and automatically provide appropriate off-axis projections based on the user's 

eye positions. 

Beyond the process of mere calibration, this thesis has also described a new 

way to render view-dependent Lafortune reflectance functions in real-time. The 

method correctly considers the lighting model in a coordinate system local to the 

surface of the object being rendered, and correctly calculates lighting and viewing 

vectors for each vertex of the object based on the positions of a light and viewer. 

Further, the fact that the parameters for the Lafortune model are stored in texture 

coordinates means they can be varied per-pixel, in a single pass. This allows different 

parts of an object to exhibit different lighting characteristics, with no penalty in 

rendering time. Though the technique suffers in quality from the poor precision 

of the frame buffer, which is used to store an intermediate value in the lighting 

calculation, it still holds promise as a real-time rendering technique. Moreover, it 

provides an engaging demonstration of how both the lighting as well as the view of 

the rendered objects can be linked to a head-coupled perspective. 

6.1 Future work 

Though the system is currently complete in that it offers all the features necessary 

for calibrating most head-coupled V R environments, there are a number of ways 

it could be improved. These range from new features to more robust methods of 

analysing the data it collects. In general, the system favours speed over accuracy, 

and convenience is chosen over rigour. This section will look at some ways work could 

be done to improve the accuracy and robustness of the system. We will also look at 

possible improvements to the Lafortune rendering method we have described, and 

describe new studies that can be done to qualify the need for accurate calibration 

in V R environments. 



Chapter 6. Conclusions 59 

6.1.1 Tracker input 

Though the system currently uses a low-pass filter to help reduce random noise 

while taking calibration measurements, there exist better forms of filtering. Kalman 

filtering [kalm61, brow83, lian91] would be especially appropriate as it is able to 

match the type of movement common in tracking systems better than a regular 

averaging filter. Also, because Kalman filtering can be used to either predict data, at 

the cost of accuracy, or to smooth it, increasing latency, it would be suitable for both 

the calibration measurements as well as use in applications. Measurements taken 

during the calibration process could be smoothed to reduce errors, while applications 

could choose predictive filtering to minimise latency while tracking head-position. 

Currently, filtering is only used in the calibration programs themselves, and 

no general interface is provided for reading from the tracking system. Work could be 

done to create a general "input driver" that not only supports filtering of different 

types, but also abstracts the type of tracking system used from the rest of the 

system. This abstraction would be very useful in extending the flexibility of the 

calibration system as a whole, as the calibration system currently assumes the use 

of a Polhemus FASTRAK. Not only could different input devices be used seamlessly 

with the calibration system, but applications could use this input driver as well. This 

would avoid having each application re-implement code to read from the tracking 

system, as is currently required. 

6.1.2 Intersecting line samples 

Work could be done to bring statistical rigour to the method of finding the best 

intersection of a number of lines in 3D, taking into account the way they were 

sampled. The fact that errors are likely to be greater when the angles between 

the lines are very small could be considered, and methods could be used to try to 

estimate the error associated with different measurements. One such method would 

be to weight line sample pairs according to the distance of the shortest line segment 



Chapter 6. Conclusions 60 

between them (the shorter the line segment, the closer they are to intersecting), 

as well as according to the cosine of the angle between them (lines that are near 

parallel are more sensitive to measurement errors). 

6.1.3 M o r e flexible transformations 

Currently, the transformations between different spaces have certain assumptions 

made about them. The screens are assumed to be perfectly flat and rectangular, 

and only four points are taken to approximate their position in 3D. By sampling the 

positions of a grid of points on the screen, much more information could be obtained 

about the mapping from frame buffer to 3D position. This would allow not only 

better approximations of the true screen position, but also automatic corrections 

for keystone effects and other uniform geometric distortions. Though such a system 

would be much more difficult to incorporate into regular OpenGL, it would add 

further flexibility to the system. 

6.1.4 Lafortune rendering improvements 

The method described for rendering Lafortune reflections is far from perfect. Cer

tainly the first step would be to implement the method described in section D.2, 

once hardware is available that supports texture shaders on five texture units. As 

hardware progresses further, other features could be added that would improve both 

the quality and speed of the rendering. 

One promising feature being introduced in the latest graphics hardware is the 

addition of special modes for high-precision frame buffer values [nvidOl]. Different 

pixel storage formats can be specified that have different amounts of precision, and 

there is a chance that a way could be found to avoid the precision errors present in 

the current method. 

In the future, finding a way to implement self-shadowing of objects and 

distance attenuation for lights would also add greatly to the realism of the rendering. 



Chapter 6. Conclusions 61 

Ultimately work could be done to develop the rendering method into a rendering 

engine capable of displaying an entire virtual world in real-time. 

6.1.5 M o r e hardware support 

High-end SGI systems sometimes have multiple rendering pipelines, each with its 

own frame buffer. On these systems, each rendering pipeline must be calibrated 

separately, and the drawing to each pipeline then controlled by the application. 

The calibration system will currently work on these systems, but treats each pipeline 

separately. In the future, support could be added to allow the calibration system 

to automatically support multiple rendering pipelines. This would require changes 

to both the utility libraries, as well as the existing file formats, and would probably 

result in unnecessary complications for users who only need to use the system on 

single-pipeline systems. It would, however, allow software to run unmodified on 

these multi-pipeline systems and take advantage of both the additional displays and 

speed provided by the extra rendering pipelines. 

As new display technologies are developed, and as new tracking systems are 

developed, the calibration method could be adjusted to match. The method of find

ing eye position, for example, is fundamentally sound, and could be used with gaze 

tracking cameras and an auto-stereoscopic display to allow accurate head-coupled 

stereo display without the need for glasses. Future work can centre around ways 

to use the ideas behind the calibration method to make the most out of emerging 

tracking and display technologies. 

6.1.6 S tudying the effects of error 

Not only does this thesis facilitate the development of future head-coupled VR 

software, but it also allows new lines of research into the effects of calibration errors 

on task performance in a V R environment. Using our accurate, simple method for 

finding eye position, future studies can now examine how different types of induced 



Chapter 6. Conclusions 62 

error in the position of a user's eyes affect the perception of the V R environment. 

By varying different aspects of a user's eyes' calibration, such as the interocular 

distance, or the predicted location of the optical centres of his eyes, we can determine 

which measurements are most important in providing a realistic V R display. This 

will provide new information about the human visual system, and allow future 

calibration systems to take advantage of this to provide increasingly compelling 

virtual environments. 



Bibl iography 

[arth93] Kevin W. Arthur, Kellogg S. Booth, and Colin Ware. "Evaluating 3D 

task performance for fish tank virtual worlds". ACM Transactions on 

Information Systems, 11 (3), pp. 239-265, July 1993. 

[bass81] Daniel Ft. Bass. "Using the video lookup table for reflectivity calculations: 

Specific techniques and graphics results". Computer Graphics and Image 

Processing, 17 (3), pp. 249-261, November 1981. 

[bour98] Paul Bourke. "The shortest line between two lines in 3D". April 1998. 

http://astronomy.swin. edu.au/~pbourke/geometry/lineline3d/ 

[brow83] R.G. Brown. Introduction to Random Signal Analysis and Kalman Fil

tering, John Wiley & Sons, Inc., 1983. 

[cruz92] Carolina Cruz-Neira, Daniel J. Sandin, Thomas A. DeFanti, Robert V. 

Kenyon, and John C. Hart. "The CAVE Audio Visual Experience Au

tomatic Virtual Environment". Communications of the ACM, pp. 64-72, 

1993. 

[cruz93] Carolina Cruz-Neira, Daniel J. Sandin, and Thomas A. DeFanti. 

"Surround-screen Projection-based Virtual Reality: The Design and Im

plementation of the CAVE". Proceedings of SIGGRAPH '93, pp. 135-142, 

1993. 

63 

http://astronomy.swin
http://edu.au/~pbourke/geometry/lineline3d/


Bibliography 64 

[deer92] Michael F. Deering. "High resolution virtual reality". Proceedings of SIG-

GRAPH '92, 26 (2), pp. 195-202, 1992. 

[fole82] James D. Foley, Andries Van Dam, Steven Feiner, and John Hughes. 

Computer Graphics: Principles and Practice, 2nd edition, Addison-

Wesley Publishing Company, 1990. 

[gave95] William W. Gaver, Gerda Smets, and Kees Overbeeke. "A Virtual Win

dow on Media Space". Proceedings of the Conference on Human Factors 

in Computing Systems (CHP95), pp. 257-264, 1995. 

[kalm61] R.E. Kalman and R.S. Bucy. "New results in linear filtering and predic

tion theory". Transactions of ASME (Journal of basic engineering), 83d, 

pp. 95-108, 1961. 

[kemp97] Renate Kempf, Chris Frazier and the OpenGL Architecture Review 

Board. OpenGL Reference Manual: The Official Reference Document to 

OpenGL, Version 1.1, Addison-Wesley Developers Press, 1997. 

[lafo97] Eric P.F. Lafortune, Sing-Choong Foo, Kenneth E. Torrance, and Don

ald P. Greenberg. "Non-Linear Approximation of Reflectance Functions". 

Proceedings of SIGGRAPH '97, pp. 117-126, 1997. 

[Ieon90] Steven J. Leon. Linear Algebra With Applications, fourth edition, 

Macmillan Publishing Company, 1990. 

[Iian91] Jiandong Liang, Chris Shaw, and Mark Green. "On temporal-spatial re

alism in the virtual reality environment". Proceedings of the A CM Sym

posium on User Interface Software and Technology, pp. 19-25, 1991. 

[lindOl] Erik Lindholm, Mark J. Kilgard, and Henry Moreton. "A User-

Programmable Vertex Engine".. Proceedings of SIGGRAPH 2001, pp. 

149-158, 2001. 



Bibliography 65 

[nvidOl] NVIDIA OpenGL Extension Specifications. May 2001. 

http://developer, nvidia. com 

[polhOO] 3SPACE FASTRAK User's Manual, 2000 edition, revision A. Polhemus 

Incorporated, June 2000. 

[sloa79] K.R. Sloan, Jr., and C. M . Brown. "Color map techniques". Computer 

Graphics and Image Processing, 10 (4), pp. 297-317, August 1979. 

[smet87] G.J.F. Smets, C.J. Overbeeke, and M.H. Stratmann. "Depth on a flat 

screen". Perceptual and Motor Skills, 64, pp. 1023-1034, 1987. 

[stevOO] Alexander Stevenson. "A Driver for the Polhemus FASTRAK and 

Its Integration Into the OpenGL Graphics Interface". April 2000. 

http://www. cs. ubc. ca/~alex/ 

[summ99] Valerie A. Summers, Kellogg S. Booth, Tom Calvert, Evan Graham, and 

Christine L. Mackenzie. "Calibration For Augmented Reality Experimen

tal Testbeds". Proceedings of 1999 ACM Symposium on Interactive 3D 

Graphics, pp. 155-162, 1999. 

[suth65] Ivan Sutherland. "The ultimate display". Proceedings of IFIP Congress, 

pp. 506-508, 1965. 

[suth68] Ivan Sutherland. "A head-mounted three dimensional display". Fall Joint 

Computer Conference, AFIPS Conference Proceedings, 33, pp. 757-764, 

1968. 

[swinOO] Colin Swindells, John C. Dill, and Kellogg S. Booth. "System lag tests 

for augmented and virtual environments". Proceedings of the 13th Annual 

Symposium on User Interface Software and Technology (UIST-00), pp. 

161-170, November 2000. 

http://developer
http://www


This page intentionally left blank. 

66 



Appendix A 

Running the Calibration 

Software 

This appendix describes how to run the calibration system and will be of most 

interest to those who plan on actually using the system. It will also be of interest 

for those who wish to see how the steps explained in Chapter 3 were implemented 

in the final calibration system. 

A . l Program conventions 

Each step of the calibration is performed by a separate program. Though they all 

perform different tasks, they share many similarities, which was done to make the 

calibration as simple as possible. Each program will be described in detail later. 

First we look at some important assumptions that are made and common aspects 

of all the programs. 

A.1 .1 T ips on "sighting" accurately 

"Sighting" is the way the system locates points in 3D. For the calibration to be 

reliable, it is very important that the sighting be done correctly and carefully, so 

that accurate measurements are obtained. 

67 



Appendix A. Running the Calibration Software 68 

Right Screw Hole 

Figure A . l : FASTRAK sensors and screw holes. 

Sighting is performed by lining up the screw holes of two FASTRAK sensors 

and looking through them. Because each FASTRAK sensor has two screw holes, 

it is critical that the correct hole be used. Holding the sensor, with the cable 

trailing down and the flat part facing away from you, you must look through the 

left screw hole, as shown in Figure A . l . It is important that this be understood by 

the experimenter as well any user of the system. One way to ensure this is to block 

the other hole completely so that it cannot be used to look through. This can be 

easily done with one of the plastic screws that ship with these sensors when they 

are purchased from Polhemus. 

Sighting finds the location of a point by intersecting two or more lines, which 

are aimed at that point. To ensure that errors are minimised, these lines should be 

at large angles to one another, as close to 90° as possible. This way, small errors in 

aiming will not cause large errors in determining the intersection of the lines. You 

will find that mounting the sensors on a bracket, so they both can be held with one 

hand, will make aiming much easier. Even better, mounting the sensors on a tripod 

makes it easy to ensure that the sensors are precisely positioned at the time a line 

sample is taken. 

Because the FASTRAK is a magnetic tracking system, it is adversely affected 

by aspects of the environment that emit or affect magnetic fields. If the FASTRAK 



Appendix A. Running the Calibration Software 69 

sensors or transmitter are located very near large metal objects, CRT monitors, 

or LCD panels, the tracker's accuracy will be greatly diminished. For this reason, 

the sensors should be kept at least 10 cm away from the surface of either CRT 

monitors or LCD panels while measurements are being taken, and metal objects in 

the environment should be avoided. 

Finally, the accuracy of the FASTRAK system depends on the distance be

tween the sensors and the transmitter. In order to obtain the best results, one 

should try to keep the sensors within approximately one metre of the transmitter. 

A . 1 . 2 Use of the cal ibrat ion files 

Al l the calibration programs write their results to one of three calibration files: a 2D 

screen calibration file, a 3D screen calibration file, or a user calibration file. These 

files are plain ASCII text files and can be opened up for editing in any text editor. 

Examining these files during the calibration will help you understand the type of 

information that has been collected by a given program. See Appendix C for sample 

calibration files, as well as an explanation of their formatting. 

A . 1.3 Genera l notes on running the software 

Running any of the programs with no command line arguments will display a help 

screen showing the correct syntax for running the command. Because each program 

takes a number of parameters, these help screens are invaluable reminders of how 

to run the calibration system. Any parameters listed on the help screen in square 

brackets are optional. 

None of the programs writes to an output file until it finishes the calibration 

step it is performing, so if you decide that you do not want the program to write to 

a file you have specified, close the program before it finishes the calibration. 



Appendix A. Running the Calibration Software 70 

A.2 calibrate2D: Assigning the frame buffer to screens 

The first step in the calibration is finding which parts of the frame buffer are shown 

on each display screen. This step is performed by the calibrate2D program, which 

takes two parameters: the number of screens, and a filename to use as the 2D screen 

calibration file. This file will be created if it does not exist, and overwritten if it 

does. 

The program will prompt the user to specify two opposite corners of each 

screen, and use the position of these corners to determine the extent of each screen 

in the frame buffer. This is done as follows: the user is prompted to select the first 

corner. The user clicks with the mouse in the corner of one of the visible screens, 

and then uses the cursor keys to make sure that the horizontal and vertical guide

lines are as close to the edge of the screen as possible, while still being visible. The 

user presses the space-bar to record the position of that corner. The user then clicks 

the opposite corner of the screen and ensures that the guide-lines are positioned 

correctly with the cursor keys, as before. Once correctly positioned, the user presses 

the space-bar again to record the corner position. This process is repeated for each 

screen attached to the system. 

This step is very easy to perform, as long as one remembers that the cursor 

keys are the best way for finely adjusting the on-screen guidelines. This step will 

need to be redone if the number of display screens attached to a system changes, or 

if the resolution of these screens change. Fortunately, these types of changes happen 

very infrequently. Also, notice that the FASTRAK is not required for this step of 

the calibration. 

A.3 calibrate3D: Finding screens in the real world 

Once the system knows where to place images so that they are seen on each screen, 

these screens must be located in 3D space. This is done with the calibrate3D 



Appendix A. Running the Calibration Software 71 

program, which takes a number of command line parameters: the name of the 2D 

configuration file generated by calibrate2D, the file-descriptor that refers to the 

FASTRAK sensing system, the baud rate at which the FASTRAK is operating, the 

number of the first sensor used for sighting, the number of the second sensor used 

for sighting, and optionally the name of the file to use for the 3D screen calibration 

file. The file-descriptor for the FASTRAK is that of the serial port to which the 

FASTRAK is connected, usually /dev/ttySO or /dev/ttySl. The "number of the 

sensor" is the number next to the input port that the sensor is plugged into on the 

body of the FASTRAK system, from one to four. If no filename is specified for the 

3D screen calibration file, the name "3D.cfg" will be used by default, and that file 

will be created or overwritten as necessary. 

The number of screens attached to the system is determined by reading the 

2D calibration file, so it is important that the 2D calibration file be correct for the 

current system configuration. For each screen, the program will prompt the user 

to aim at a target near a corner of the screen and press the space-bar to take a 

sample. To aim at the target, look through the left screw hole (left is defined as 

explained in Section A.1.1) of each sensor you specified as a sighting sensor, and 

line up the target at the centre of both holes. If the target is obscured by text on 

the screen, pressing "T" will toggle the display of on-screen messages and allow you 

to see the target unobstructed. Once the target is lined up through the holes, press 

the space-bar to record a line sample. Next, aim at the target point again from a 

different location and take another line sample. As many line samples as desired 

can be taken this way, pressing the space-bar to record each. The total number of 

line samples collected is indicated by the on-screen display. If you make a mistake, 

pressing "Backspace" will delete the most recent sample from memory and allow you 

to retake it. Of course, to erase several samples you can press "Backspace" several 

times. As long as you have two or more line samples recorded, you can proceed to 

the next target point by pressing "Enter". 



Appendix A. Running the Calibration Software 72 

Once four points on each screen are found they will be used to estimate the 

position of the screen corners. These corners, in turn, will be run though a procedure 

to make each screen rectangular and planar, if it is not already. The results of these 

adjustments will be displayed after the file is written, and you should inspect these 

values to make sure that everything seems reasonable. 

Because this step of the calibration locates the screens in 3D with respect to 

the tracking system, it will need to be repeated if either the screens change position 

or the FASTRAK transmitter is moved. 

In some cases, where the geometry of the screens has been measured already 

or is known by other means, you may wish to generate a 3D calibration file by 

hand. If you generate a 3D calibration file by hand and wish to run only the check 

procedure, without the calibration, this can be done by running calibrate3D with 

the " - f i x " parameter. In this mode, you need only specify the 2D calibration file, 

an existing 3D calibration file, and optionally a filename to output the new 3D 

calibration data (otherwise the default "3D.cfg" is used, as before). The existing 

3D calibration file will be checked, adjusted to ensure the screens are planar and 

rectangular, and a new calibration file will be written with the new data. 

A . 4 c a l i b r a t e O r i g i n : S p e c i f y i n g w h i c h w a y is u p 

Now that we know the position of the screens in 3D, we need to update the 3D 

calibration file with the origin of the virtual world. That is, we have to indicate 

from where in real space the virtual world should originate. This is easily done 

with the cal ibrateOrigin program. This program can be used to set the origin 

and default orientation of the virtual coordinate system in three different ways, 

according to either the position of a screen, a sensor position, or manually specified 

values. 

The first form of the command is chosen with the -screen switch. This is by 

far the easiest and most useful of the three modes. In this mode, a screen number, 



Appendix A. Running the Calibration Software 73 

a 2D calibration file and a 3D calibration file are specified. The calibration files are 

read, and the 3D calibration file is updated to reflect a virtual coordinate system 

originating in the centre of the specified screen, and having a default orientation such 

that the x and y axes of the screen correspond to the x and y axes of the virtual 

world. This command makes it very easy to pick a centre screen, and automatically 

have the virtual world appear in front of this screen, in the correct orientation. 

The second form of the command is selected with the -sensor switch. For 

this command, the FASTRAK file descriptor, baud rate, sensor number, 2D cali

bration file and 3D calibration file must be specified. The origin and orientation are 

then read from the FASTRAK sensor. 

The final form of the command is used to manually specify values for the 

origin and orientation. This mode is selected with the -manual switch, and expects 

the x, y, and z position and h, p, and r Euler angles of the origin as well as 

the names of the 2D and 3D calibration files.The origin information is stored in 

the 3D calibration file, so this calibration step should be repeated anytime the 3D 

calibration file is generated. 

A.5 calibrateUser: Locating a user's eyes 

The final step in calibrating the VR system is locating the user's eyes with respect 

to a head-mounted sensor. This step is accomplished by the calibrateUser pro

gram. This program takes the FASTRAK file descriptor, baud rate, first "sighting 

sensor" number, second "sighting sensor" number, head-mounted sensor number, 

and optionally the user calibration file filename from the command line. If no file

name is specified for the user calibration file "user.cfg" is used. Notice that this 

program does not read in either a 3D calibration file or a 2D calibration file, and 

is completely independent of the other calibration steps. This step must be redone, 

however, each time the sensor is moved on the user's head. This can happen if the 

sensor is bumped or pulled, or if it is removed and replaced. In either of these cases, 



Appendix A. Running the Calibration Software 74 

the calibration should be re-run to ensure accurate results. 

This program functions very much like the calibrate3D program. For each 

eye, the user is asked to look through the left screw holes (left is defined as explained 

in Section A.1.1) of two sensors. No particular target needs to be lined up through 

the holes. After the first line sample is taken, by pressing the space-bar, the user 

should turn his eyes in another direction and look through the sighting sensors again. 

This can be repeated for as many samples as desired, and as with the calibrate3D 

program the "Backspace" key can be used to erase the most recent sample. Anytime 

after two or more samples have been taken for an eye, the "Enter" key can be pressed 

to proceed. 

As long as the user can see through the centre of both holes the calibration 

will work, but for best accuracy the user should be aware of the direction he is 

looking with respect to his head. Samples should be taken with the user looking in 

different directions. For example, if one sample is taken with the user's eyes turned 

left, the next should be taken with the user's eyes turned right. It doesn't matter 

which way the user's eyes are turned, as long as each line sample is taken with the 

user looking in a different direction with respect to his head. 

After both eyes are calibrated, the interocular distance is computed and 

displayed. This value should be near 6 cm for most people, and if it is far from that 

value something has gone wrong and the calibration should be repeated. Once this 

calibration is performed the user should not remove or reposition the head-mounted 

sensor until he is finished using the head-coupled environment, or this calibration 

should be redone. 

This calibration can be made quicker and easier by rigidly mounting the 

sighting sensors on a bracket next to the viewing screens. This way, the user does 

not have to touch the sensors in order to look through them, and can progress 

though the calibration very quickly. 



Appendix B 

Developing Software Using 

Projector and VRConfig 

This appendix explains what is necessary to allow a developer to easily add head-

tracking and multiple monitor support to his own virtual reality programs, using 

the Projector and VRConfig utility libraries. In addition to this appendix, the 

header files for these libraries as well as the source code for the Lafortune rendering 

application are extremely helpful when developing applications that make use of 

the calibration system. For more information regarding the free, cross-platform sg 
vector library that is required by Projector and VRConfig, please refer on-line to 

http://plib.sourceforge.net. 

B . l U s i n g the VRConfig class 

The VRConf i g class encapsulates all the calibration information for a given VR 

setup, as well as the methods to read and write appropriate configuration files. 

The functions in this class deal with the tasks of reading and writing calibration 

files. Each function takes a filename as a parameter and then reads or writes the 

appropriate calibration information to that file. The definitions of these functions 

are as follows: 

75 

http://plib.sourceforge.net


Appendix B. Developing Software Using Pro jec to r and VRConfig 76 

i n t load2DScreenPos(const c h a r * f i lename); 

i n t load3DScreenPos(const c h a r * f i lename) ; 

i n t loadUserData(const c h a r * f i lename); 

v o i d save2DScreenPos(const c h a r * f i lename); 

v o i d save3DScreenPos(const c h a r * f i lename); 

v o i d saveUserData(const c h a r * f i lename); 

The functions to load data return an integer, which is 1 if the file was loaded and 

parsed successfully and 0 otherwise. Note that the 2D calibration data file (read by 

load2DScreenPos) should always be loaded first when loading data because this file 

is used to determine the number of screens in the system. When saving data, the 

specified filename will be created if it doesn't exist, and overwritten if it does. 

Once the calibration data is loaded it is stored in a number of public class 

variables. These variables consist of an integer that holds the sensor number at

tached to the user's head, from one to four, vectors that hold the position of the 

left eye, right eye, virtual origin and Euler angles for the orientation of the vir

tual coordinate system. For the most part these are handled by functions in the 

Pro jec to r library, and typical applications do not need to worry about them. Also 

in the VRConfig library are arrays of vectors that hold the position of the screen 

corners in both 3D tracker space and 2D frame buffer space. These are accessed by 

screen number and corner number, where the corners are numbered in the order of 

top left, top right, bottom left, and bottom right. Most of the time these values are 

only used by functions in the Pro jec to r library. 

The number of screens attached to the system is stored in the variable 

numScreens. This number should be used to determine how many times an ap

plication needs to draw the virtual world to ensure it is displayed on each screen 

attached to a system. More details on how this is done will be provided later, in 

Section B.3. 



Appendix B. Developing Software Using Pro jec to r and VRConfig 77 

B . 2 U s i n g t h e P r o j e c t o r c l a s s 

A Pro jec to r object is assigned a VRConfig object, which it uses to determine 

correct off-axis projections and eye-positions for a given environment. This allows 

an application to simply call functions in the Pro jec to r class, instead of having 

to deal with the VRConfig data itself. Though the Pro jec to r class only has five 

functions, these provide everything one needs to produce a head-coupled off-axis 

perspective with a minimum of effort. 

setConfigCVRConfig * newCfg) 

This function must be called before a Pro jec to r object can be used. It gives 

the P ro jec to r object a pointer to a valid VRConfig object, which it should 

use to read in all the required calibration information. 

findEyeCentre(sgVec3 eyePos, sgVec3 headPos, 

sgVec3 headEuler, bool r ightEye) 

This function locates the rotational centre of an eye, based on a given head 

position (headPos) and orientation (headEuler), by looking up the calibrated 

position in the VRConfig object. This eye position is then returned as the 

value for eyePos. If r igh tEye is t rue then the position of the right eye is 

returned, otherwise the position of the left eye is returned. 

moveEye(sgVec3 eyePos, sgVec3 gazePoint , i n t distance=0.6) 

Applications that wish to predict the exact location of the optical centre of 

a user's eye can use the moveEye function to perturb the position of the ro

tational centre appropriately. If eyePos is the current rotational centre, and 

gazePoint is the point that the user is looking at, then this function will move 

eyePos by a d is tance (default is 0.6 cm) in the direction of gazePoint . The 

gazePoint must be approximated depending on the application. Often either 

the centre of a screen that has the user's focus, or the location of a 3D pointer 

is used. 



Appendix B. Developing Software Using Projector and VRConfig 78 

glSetViewport(int ScreenNum) 

This function gives an appropriate glViewport command to OpenGL to 

restrict drawing in the frame buffer to the area specified for screen number 

ScreenNum. 

glSetOffAxisView(sgVec3 eyePos, int ScreenNum, f loat near, f loat far) 

This function computes the correct off-axis viewing frustum for screen number 

ScreenNum, given the optical centre of an eye eyePos. The near and far clip

ping planes are specified as the distance from the viewer to the planes. Also, 

the origin of the virtual coordinate system will be read from the VRConfig 

object and the correct transformation computed. When finished, this function 

will have set the OpenGL Projection Matrix to correctly perform the off-axis 

projection and origin transformation, and the OpenGL Modelview Matrix will 

be set to the identity. In short, this function performs all the steps required to 

ensure that the virtual world is correctly projected onto the screen ScreenNum. 

B . 3 Designing your V R application using G L U T 

The libraries for interfacing with the calibration system work very easily in con

junction with the G L U T application framework. This section will outline some 

suggestions on how to best use the libraries with the G L U T call-back system. More 

detailed information about using G L U T in applications is readily available online.1 

A n application that uses the calibration system should provide some way 

to specify which calibration files should be used, and then load these files into a 

VRConfig object. The 2D calibration file should be loaded first, followed by the 3D 

calibration file and then the user calibration file. A pointer to this VRConfig object 

can then be given to a Projector object using the Projector . setConf i g function. 

A n application that uses head-coupling must perform at least two tasks: 

xhttp://www.opengl.org/developers/documentation/glut.html 

http://www.opengl.org/developers/documentation/glut.html


Appendix B. Developing Software Using Projector and VRConfig 79 

reading the current position of the sensors in the tracking system, and displaying 

the virtual world to the screen. 

Reading from the Polhemus F A S T R A K is described in detail by my under

graduate thesis,2 and the driver which accompanies that thesis makes this task very 

simple. It is most easily accomplished in the context of a G L U T application by 

having the G L U T "idle" call-back process new data from the tracking system and 

save the results. This provides a position for the head-mounted sensor. 

The position of the head-mounted sensor can then be fed to the Projector 

object, so that an eye position can be determined. This is done by calling the 

Projector.f indEyeCentre function to find the rotational centre, followed by the 

Projector.moveEye function to locate the approximate optical centre. Stereo dis

plays are easy to implement, as one need only change the rightEye flag to generate 

positions for one eye or the other. 

The final required component of a head-coupled application consists of draw

ing the virtual world to the screen. Initiated by a call to the display call-back, a 

typical 3D application would perform this task by setting the OpenGL viewport to 

determine where the image will be drawn, setting the OpenGL Projection Matrix 

to a perspective transformation, and finally using the OpenGL Modelview Matrix 

to adjust the position of geometry as it is drawn to the screen. The Projector class 

makes the head-coupled case just as easy. 

The display calls are placed in a loop, which repeats VRConfig.numScreens 

times, once for each attached screen. A call to Projector.glSetViewport auto

matically sets the viewport correctly for the current screen, and similarly a call to 

Projector .g lSetOff AxisView sets the correct OpenGL Projection Matrix for the 

viewer's off-axis perspective. The application can then proceed to draw the virtual 

scene as for a regular OpenGL application. The net result will be that every attached 

screen will automatically show a correctly calibrated, head-coupled perspective view 

2The undergraduate thesis is available online at http://www.cs.ubc.ca/~alex/. 

http://www.cs.ubc.ca/~alex/


Appendix B. Developing Software Using Projector and VRConfig 80 

of the virtual world. 



Appendix C 

File Formats For Calibration 

Data 

This appendix describes the file formats used for storing the calibration data. These 

files can be easily modified with a regular text editor, and by default they are 

generated with comments explaining the values on each line. 

Samples of these files will be reproduced here for easy reference. In any file, 

lines beginning with the pound sign (#) are treated as comments and are ignored 

by the parser. Indications in comments as to which points are which are only for 

the benefit of human readers; the system uses the order that the points are found 

in the file to determine which are which. Finally, individual components of a point 

should be separated by a comma. 

C . l 2 D Screen D a t a ca l ibra t ion file 

The 2D Screen Data calibration file contains the locations of screen corners in frame 

buffer coordinates. No explicit indication of the number of screens present is read 

by the parser. Instead, the system will read in groups of four points at a time, and 

increment the number of screens accordingly. 

81 



Appendix C. File Formats For Calibration Data 82 

# 2D screen positions i n frame buffer coords (1 screen) 
# Top Left Corner, Screen 1 
0.00, 818.00 
# Top Right Corner, Screen 1 
1151.00, 818.00 
# Bottom Left Corner, Screen 1 
0.00, 1.00 
# Bottom Right Corner, Screen 1 
1151.00, 1.00 

G.2 3D Screen Data calibration file 

The 3D Screen Data calibration file contains the locations of screen corners in tracker 

space, as well as the origin and orientation of virtual space with respect to tracker 

space. The first non-comment line of the file is a six-tuple of values: the first three 

represent the x, y, and z position of the origin position, and the next three are the 

Euler angles for the orientation. 

Successive lines in the file correspond exactly to the lines of the 2D Screen 

Data file, and the parser will expect the same number of screens defined in the 3D 

data file as were defined in the 2D file. For this reason, the 2D file is always read in 

first to determine the number of screens, and this number is assumed for the rest of 

the system. 

# Origin XYZ Position and Euler Angles 
36.49, -44.65, -25.56, 3.92, -97.48, 4.53 
# 3D screen positions i n cm from o r i g i n (1 screen) 
# Top Left Corner, Screen 1 
17.69, -47.55, -36.35 
# Top Right Corner, Screen 1 
53.59, -45.09, -39.19 
# Bottom Left Corner, Screen 1 
19.40, -44.21, -11.93 
# Bottom Right Corner, Screen 1 
55.29, -41.75, -14.78 



Appendix C. File Formats For Calibration Data 83 

C.3 User Data calibration file 

The User Data calibration file contains the location of the user's eyes from the 

head-mounted sensor, as well as the sensor number to read for the head position 

(this applies to the Polhemus FASTRAK, which supports up to four sensors). The 

first non-comment line of the file is the sensor number, from one to four, and the 

following two lines are 3D points that represent the rotational centre of the right 

and left eye, respectively. 

# Sensor attached to head (1-4) 
4- • ' .. . 
# Position of right eye from head sensor, i n cm 
5.35, -1.13, 16.60 
# Position of l e f t eye from head sensor, i n cm 
3.11, -7.58, 17.41 



This page intentionally left blank. 

84 



Appendix D 

Further Lafortune Rendering 

Optimisations 

Though fast enough to allow head-tracking in real-time, the method for rendering 

Lafortune reflectance functions described in Chapter 5 is limited to using two lobes 

for the lighting model because of performance considerations. Currently, the slowest 

parts of this method for rendering Lafortune reflectance functions are the calls to 

read back pixels from the frame buffer. This is a notoriously slow operation, and 

the problem is compounded by having to read the frame buffer once for the first 

lobe, to perform the exponentiation, and twice for each additional lobe, because we 

need to store intermediary results. 

It is possible to get around this, however, by offloading more of the com

putation to our vertex program, and then making use of the new texture shader 

extension, which provides new modes for indexing into and combining textures. By 

computing the component-wise multiplication of the light and viewer direction in 

the vertex program, and then using texture shaders to compute the dot product, we 

can use a dot product texture lookup to calculate the exponentiation, allowing us to 

perform the entire lighting computation without reading back the frame buffer. It 

is worth noting, however, that these optimisations have not yet been implemented, 

85 



Appendix D. Further Lafortune Rendering Optimisations 86 

as they require five texture units to completely eliminate frame buffer reads and the 

GeForce3 we used to run our software has only four texture units. For the sake of 

completeness, we will now examine how we could implement this method, given a 

card with enough texture units. First, however, we need to look at another OpenGL 

extension: the texture shader. 

D . l Texture shaders 

The texture shader extension not only offers a number of new texture modes, al

lowing the calculation of dot products and dependent texture lookups, but also 

introduces new pixel formats, including a signed RGBA8 representation. Of course, 

the regular GL_TEXTURE_2D mode is still supported, as is the conventional un

signed RGBA8 pixel format, but by using the new modes, we can coax the hardware 

into doing more of our Lafortune calculation. 

Each texture shader stage takes an input from a previous shader stage, and 

provides both a shader stage output as well as a colour output. The shader stage 

output can be used as the input to subsequent texture shaders, while the colour 

output behaves as a regular texture output, and can be used as input to the register 

combiners. 

The two shader modes useful to us are the ones used to compute simple dot 

product 2D texture lookups. 

The GL_DQT_PRODUCT_NV mode computes the dot product of the texture 

shader's coordinates with the shader input. It then passes this result as the first 

component of the shader output. 

The GL_DOTJPRODUCT_TEXTURE.2D.NV shader mode must be pre

ceded by a GL_DOT_PRODUCT_NV. It also computes a dot product between an 

input and its texture coordinates, but then uses the result from the first dot product 

as well as the result from the dot product it just computed to form a 2D lookup into 

a texture, which has been bound to the unit. The colour result returned is that of 



Appendix D. Further Lafortune Rendering Optimisations 87 

the filtered 2D target texel. 

D.2 Avoiding frame buffer read-backs 

We now have all the tools we need to perform the exponentiation and blending of 

the albedo in hardware. 

In order to do this, five texture units, numbered zero through four, are ini

tialised as follows: 

Texture unit zero contains a texture that has in its red channel the specular 

exponent n to be used in the Lafortune function. This texture unit is initialised 

as a GL_TEXTURE_2D shader, and the pixel format for the texture should be the 

standard unsigned RGBA. 

Texture unit one is configured as a GL_TEXTURE_2D shader with a signed 

RGBA8 texture that contains the Lafortune parameters Cx, Cy and Cz in the RGB 

components. 

Texture unit two is a GL_DOT_PRODUCT_NV shader that takes its input 

from texture unit one. The texture coordinates for this unit are provided by the 

vertex program, and are equivalent to [uxvx uyvy uzvz]J. This way, the output of 

this texture unit is the dot product 

= (CXUXVX + CyUyVy + CZUZVZ) 

which is the un-exponentiated part of the Lafortune equation. 

Texture unit three has an unsigned RGBA texture bound to a shader of 

type GL.DOT.PRODUCT_TEXTURE-2D_NV, and takes its input from texture 

unit zero. The texture coordinates provided by the vertex program must always 

be (1,0,0) so that the dot product calculated is equal to the specular exponent 

(contained in the red channel) specified by the input texture. 

Cx 

q = Cy UyVy 

cz UzVz 



A p p e n d i x D . Further Lafortune Rendering Optimisat ions 88 

T h i s shader then uses the result q from texture shader two as the first com

ponent for a texture lookup, and the specular exponent n as the second component. 

Texture unit three w i l l now return a texel from its currently bound texture, at loca

t ion (q,n). To allow this process to calculate our exponentiation, we must generate 

a 2D exponent lookup table and b ind it as an unsigned R G B A texture to unit three. 

Th i s way, the result of texture unit three w i l l be the exponentiated por t ion of the 

Lafortune model: (Cxuxvx + Cyuyvy + Czuzvz)n. 

Texture unit four is a G L _ T E X T U R E _ 2 D shader that contains the unsigned 

R G B A albedo texture. The result of this texture is equivalent to the albedo term 

in the Lafortune equation, p. 

Now that our textures are set up, and generating bo th the exponentiated 

term and the albedo term, al l that remains is for us to mul t ip ly them together. A 

single register combiner can be used to mul t ip ly the output of texture three w i t h 

the output of texture four, and this final result can now be wri t ten to the frame 

buffer. 

We have thus managed to compute an entire lobe i n a single pass, and can 

therefore blend subsequent lobes without reading back from the frame buffer. Th i s 

represents a significant improvement in speed, without sacrificing our abi l i ty to 

support local l ighting and a local viewer. 

Not yet described is the vertex program which generates the correct sets of 

texture coordinates to allow the texture shaders to perform the desired dot products 

correctly. T h i s vertex program is fairly straightforward, and is largely the same as 

the vertex program used in the current implementation. The only differences are: the 

eye vector and view vector are normalised and then mul t ip l ied inside of the program, 

and returned as a texture coordinate; a constant texture coordinate of (1,0,0) is 

returned for texture unit three; and finally the albedo texture uni t coordinates must 

be passed through the program unchanged. 

The.only downside to this method is that parts of the equation are calculated 



Appendix D. Further Lafortune Rendering Optimisations 89 

per-vertex, and other parts are calculated per-pixel. This could lead to interpolation 

problems for the parts that are calculated per-vertex. For well tessellated models, 

however, this should not prove too serious a concern. 



This page intentionally left blank. 

90 



Appendix E 

Calibration Results 

This appendix provides tables of sample data collected by the calibration system. 

Because the accuracy of the system depends on the care with which the calibration 

is performed, as well as on the distance between the FASTRAK sensors and the 

transmitter when a measurement is taken, it is not practical to do a formal error 

analysis of the system. Instead, by running the calibration numerous times on the 

same environment, and comparing the results obtained each time, we can get some 

idea of how well the system performs. Though this type of test will not reveal sources 

of systematic error in our measurements, it will give us an idea of the accuracy of 

the system and the effect of random errors. 

The only two steps of the calibration that are dependent on tracking system 

measurements are the calibration of 3D screen position and the calibration of the 

user's eyes. Each of these steps has been repeated ten times and the results of these 

runs have been summarised. 

E . l Calibrating Eye Position 

A sensor was rigidly affixed to the plastic liner of a construction helmet. This liner 

was removed from the helmet, and adjusted to fit securely on a user's head. Two 

more sensors were attached to each other so that they were approximately 15 cm 

91 



Appendix E. Calibration Results 92 

Table E . l : M easured eye positions and distance from the means. 
Left Eye Dist. from Mean Right Eye Dist. from Mean 

(7.89, 5.04, 12.19) 0.19 cm (6.92, 0.31, 15.56) 0.22 cm 
(8.11, 5.16, 12.20) 0.14 cm (6.99, 0.53, 15.44) 0.08 cm 
(7.95, 5.14, 12.16) 0.07 cm (7.10, 0.35, 15.51) 0.16 cm 
(8.00, 5.23, 12.07) 0.07 cm (6.99, 0.36, 15.42) 0.10 cm 
(8.05, 5.23, 12.19) 0.10 cm (6.99, 0.51, 15.53) 0.12 cm 
(7.99, 5.23, 12.11) 0.05 cm (7.16, 0.56, 15.39) 0.18 cm 
(7.91, 5.22, 12.04) 0.12 cm (6.99, 0.56, 15.31) 0.16 cm 
(7.94, 5.13, 12.05) 0.10 cm (6.92, 0.45, 15.38) 0.11 cm 
(8.06, 5.22, 12.10) 0.08 cm (7.08, 0.49, 15.29) 0.15 cm 
(8.04, 5.21, 12.12) 0.05 cm (7.08, 0.45, 15.42) 0.06 cm 

apart, and so that a user could see through both left screw holes of the sensors. 

This apparatus was held by the user in one hand to perform the calibration and 

the other hand was used to press the keys on the keyboard. The entire calibration 

was performed by a single person, unaided, and the sensors were not mounted on a 

tripod or other rigid mounting. 

Table E . l shows the measured positions for the rotational centre of the each 

eye. The average position of each eye was calculated, and the table also shows the 

distance of each measurement from the average position for that eye. We see that 

the our values lie in a very small range (around 2 mm) and this suggests that our 

calibration method is quite accurate. If the sensors had been rigidly mounted on 

a tripod of some sort, the values may have been even better. Also, it is possible 

that some of the variance in the positions is due to movement of the sensor on the 

user's head. Movement of both the user's hair and skin as well as the flexible plastic 

helmet liner could account for the few millimetres of change we see in our data. 

E.2 Calibrating 3D Screen Position 

The 3D screen calibration step was performed with the same apparatus as the cal

ibration of the eyes: the user performed the calibration unaided, and though the 



Appendix E. Calibration Results 93 

Tab e E.2: Measured screen corner positions, and distance d from the means. 
Top Left Corner d Top Right Corner d 

(29.38, -63.68, -6.13) 0.46 cm (63.62, -63.17, -6.78) 1.29 cm 
(29.45, -63.24, -6.91) 0.62 cm (63.90, -61.71, -7.69) 0.54 cm 
(29.62, -63.32, -6.80) 0.49 cm (64.08, -61.85, -7.17) 0.45 cm 
(29.58, -63.62, -6.43) 0.18 cm (63.74, -62.19, -7.17) 0.25 cm 
(29.61, -64.35, -6.42) 0.63 cm (63.69, -62.44, -7.23) 0.46 cm 
(29.57, -63.73, -6.79) 0.23 cm (63.55, -61.28, -7.77) 0.86 cm 
(29.61, -64.08, -6.54) 0.34 cm (63.60, -62.17, -7.34) 0.20 cm 
(29.50, -63.92, -6.35) 0.28 cm (63.36, -61.00, -7.26) 1.04 cm 
(29.85, -63.71, -6.58) 0.31 cm (63.71, -61.85, -7.00) 0.33 cm 
(29.30, -63.77, -6:64) 0.26 cm (63.42, -62.24, -7.55) 0.43 cm 
Bottom Left Corner d Bottom Right Corner d 
(29.80, -61.45, 17.90) 0.66 cm (64.04, -60.95, 17.26) 1.90 cm 
(29.90, -60.84, 17.82) 0.07 cm (64.35, -59.31, 17.04) 0.40 cm 
(29.78, -60.83, 17.75) 0.14 cm (64.24, -59.35, 17.37) 0.49 cm 
(29.98, -60.67, 17.85) 0.18 cm (64.14, -59.24, 17.12) 0.22 cm 
(29.98, -60.66, 17.76) 0.17 cm (64.07, -58.75, 16.95) 0.32 cm 
(30.08, -60.95, 17.68) 0.22 cm (64.06, -58.51, 16.69) 0.65 cm 
(30.00, -60.72, 17.75) 0.12 cm (63.98, -58.81, 16.94) 0.27 cm 
(29.90, -61.06, 17.69) 0.25 cm (63.76, -58.15, 16.78) 0.99 cm 
(29.97, -60.48, 17.39) 0.50 cm (63.83, -58.62, 16.97) 0.50 cm 
(29.81, -60.49, 17.97) 0.40 cm (63.93, -58.97, 17.07) 0.15 cm 

sensors were attached so that they could be held with one hand, they were not 

mounted on a rigid tripod of any sort. An ordinary desktop CRT monitor was used 

for the calibration. Table E.2 shows the measured positions of the four screen cor

ners, as they are reported by the calibration software after they have undergone the 

adjustment procedure described in Section 3.3. Also shown is the distance from the 

mean for each corner measurement. 

The values collected for this calibration step vary farther from the mean than 

the values for eye position, suggesting they are less accurate. This is understandable 

given that the task of lining up a target point in the sights is more difficult than 

the act of merely looking through the sights. Also, it is difficult to hold the sensors, 

aim them, and press the key to collect the sample simultaneously. It is likely that 



Appendix E. Calibration Results 94 

having the sensors rigidly mounted on a tripod would make aiming much easier, and 

therefore improve the accuracy of the measurements. Even so, no value varies more 

than 2 cm from the mean, and the majority of the values lie within 5 mm. 



Appendix F 

Source Code of 

glSetOffAxisView 

This appendix provides a listing of the source code implementation of the utility 

library's glSetOff AxisView function, which computes a user's viewing frustum as 

described in Section 4.4.3. It makes extensive use of the free sg vector library, which 

can be obtained from http://plib.sourceforge.net. 

v o i d Projector::glSetOffAxisView(const sgVec3 eyePos, i n t ScreenNum, 
f l o a t n e a r _ c l i p , f l o a t f a r . c l i p ) { 

sgVec3 eyeToScreen, x P r o j , y P r o j , z P r o j ; 

f l o a t width, height, distance, l e f t , r i g h t , bottom, top; 

// Calculate vector from eye to screen origin (lower left corner) 

sgSubVec3(eyeToScreen, eyePos, cfg->screens[ScreenNum][2]); 
// Calculate vectors from bottom left corner of screen that form 
// the screen coordinate frame 

sgSubVec3(xProj, cfg->screens[ScreenNum][3], cfg->screens[ScreenNum] [2]); 
width = sgLengthVec3(xProj); 
sgScaleVec3(xProj, SG.QNE / width); 
sgSubVec3(yProj, cfg->screens[ScreenNum][0], cfg->screens[ScreenNum][2]); 
height = sgLengthVec3(yProj); 
sgScaleVec3(yProj, SG.ONE / he i g h t ) ; 
sgVectorProductVec3(zProj, x P r o j , y P r o j ) ; 

95 

http://plib.sourceforge.net


Appendix F. Source Code of glSetOff AxisView 96 

// Now, specify an o f f - a x i s viewing frustum in order to define the 
// viewing volume with respect to the user's eye p o s i t i o n . 

l e f t = sgScalarProductVec3(eyeToScreen, xProj); 
r i g h t = width - l e f t ; 
bottom = sgScalarProductVec3(eyeToScreen, yProj); 
top = height - bottom; 
distance = sgScalarProductVec3(eyeToScreen, zProj); 
l e f t = - l e f t * (near_clip / distance); 
r i g h t = r i g h t * (near.clip / distance); 
bottom = -bottom * (near_clip / distance); 
top = top * (near_clip / distance); 

glMatrixMode (GL_PR0JECTI0N); 
glLoadldentityO ; 

glFrustum(left, r i g h t , bottom, top, near_clip, f a r . c l i p ) ; 

// Rotate the viewing frustum to correspond with the actual 
// screen o r i e n t a t i o n . 

GLfloat worldToScreenM[16] = {xProj [SGJC] , yProj [SGJC] , zProj [SGJC] , 0.0, 
xProj [SG_Y] , yProj [SG.Y] , zProj [SG.Y] , 0.0, 
xProj[SG_Z], yProj [SG_Z] , zProj [SG_Z] , 0.0, 

0.0, 0.0, 0.0, 1.0} 
glMultMatrixf(worldToScreenM); 

// I n i t i a l i z e some variables 

sgVec3 zeroVec; 
sgZeroVec3(zeroVec); 
sgMat4 originTransform; 

// Render as seen from user's eye position 

glTranslatef(-eyePos [SGJC] , -eyePos[SG.Y] , -eyePos[SGJ3]); 

// Do correction for offset o r i g i n of Universe 

sgMakeCoordMat4(originTransform, cfg->originPos, cfg->originEuler); 
glMultMatrixf((GLfloat *)originTransform); 

// Make Modelview matrix the i d e n t i t y . 

glMatrixMode(GL-MODELVIEW); 
glLoadldentityO ; 

} 


