
A Distributed Directory Service

by

HONGBING Li
B. Sc. Shenyang Polytechnic University, China, 1984
M. Sc. Shenyang Polytechnic University, China, 1987

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN THE FACULTY OF GRADUATE STUDIES
DEPARTMENT OF COMPUTER SCIENCE

We accept this thesis as conforming to the required standard

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

January, 1994

© Hongbing Li, 1994

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

(Signature)

Department of

The University of British Columbia
Vancouver, Canada

Date ^ V > ^ ^ ^*9.* ' 9 ?*

DE-6 (2/88)

Abstract

Fast response time, large amounts of directory information, and friendly user in
terfaces are key criteria for a good distributed directory service. Although there are
some Internet directory services developed, many of them have failed to achieve these
goals. The work presented in this thesis is motivated by the importance of an Internet
directory service, specifically to provide network users' email addresses, and the current
development of such services, which is neither adequate nor effective.

We designed and implemented a light weight directory (lwd) service system, which
provides an Internet white pages service, with the following features: simple architecture,
easy incorporation of new sources of information, and quick response time to users'
queries. The system avoids requiring global cooperation, as most of other directory
service system do by storing all of the white-pages information locally. Thus response
time to users' queries are much faster. The system provides a mechanism to collect and
exchange information among different sites in the system. Two information exchange
protocols have been implemented, one guaranteeing all information maintained on one
site can be transferred to another, and the other more intuitive and easier to implement.

In comparison of the lwd system to several important Internet white pages services,
we found that lwd has simple query structure, fast response time, and friendly user
interface. In the lwd system, only a person's name is required to look up instead of
hierarchical structure information or a set of keywords many other existing or proposed
directory services demand. Also, the system provides error-tolerance capability to users'
queries by conducting "approximate matches" to user submitted partial names.

ii

Contents

Abstract ii

Table of Contents iii

List of Tables vii

List of Figures viii

Acknowledgements ix

1 Introduct ion 1

1.1 The Problem and Motivations 1

1.2 Requirements 3

1.3 General Description of the System 5

2 The Local Directory Service 8

2.1 Overview of the Local Directory Service 10

2.2 Information Storage 12

iii

2.2.1 The Structure of an Entry 12

2.2.2 Storage 13

2.2.3 The Processing of Duplicate Names 14

2.2.4 The Key File 16

2.3 Information Lookup 16

2.3.1 Lookup 16

2.3.2 A Fast and Efficient Algorithm - agrep 18

2.4 Information Maintenance 21

2.4.1 Information Collection 21

2.4.2 Information Conversion 25

2.4.3 Maintenance 27

2.4.4 Add 27

2.4.5 Delete 29

3 Information Exchange in a Dis tr ibuted S y s t e m 31

3.1 General Introduction 32

3.2 The Hash Method 35

3.2.1 The Hash Method Protocol 36

3.2.2 An Implementation of the Hash Method Protocol 36

3.2.3 Analysis of the Hash Method 40

iv

3.3 The Key Method 45

3.3.1 The Key Method Protocol 45

3.3.2 Analysis of the Key Method 45

3.3.3 ASN.l Definition for the Protocol 47

3.3.4 Implementation 50

3.4 Summary 52

4 Related Work 53

4.1 WHOIS Service 53

4.2 X.500 Pilot 54

4.3 Profile 55

4.4 Netfind 55

4.5 Knowbot Information Service 56

4.6 Comparison of Internet White Pages Facilities 56

5 Conclusions 59

5.1 Summary 59

5.2 Future Work 61

6 Bibliography 63

v

7 Appendix A fi7

8 Appendix B 7 l

VI

List of Tables

2.1 [agrep | egrep | grep | fgrep] Neufeld mid 20

2.2 [agrep | egrep | grep] 'N*eu[a-z]' mid 20

3.1 The sequence of client-server communication 35

3.2 The bit value when collision occurs 43

3.3 Using Different Ranges of Hash Values 44

4.1 Comparison of Internet White Pages Facilities 57

vn

List of Figures

1.1 The Architecture of the Lwd System 6

2.1 The Lwd Configuration 9

2.2 The Architecture of One Site 11

2.3 The structure of an entry 13

2.4 The structure of a duplicate name 15

3.1 Information exchange between multiple sites 34

3.2 The hash method protocol 36

3.3 Bit Map Tables 38

3.4 Hash method 39

3.5 Collision 41

3.6 The key method protocol 46

3.7 The key method 51

viii

Acknowledgement

I would like to thank Gerald Neufeld, my supervisor, for his guidance, encouragement

and patience throughout my work on this thesis. I would also like to thank Norm

Hutchinson for his reading through the draft of this thesis.

Many thanks to Zheng Zhu for discussing the draft with me, to Christopher Healey

and Tim Spurrell for their proofreading, to Runping Qi for his suggestions and comments,

and to Niels Maretti for his help in Latex and Gemacs. Thanks also to other staff and

graduate students in the Department of Computer Science at UBC, Barry Brachman,

John Demco, Peter Phillips, Michael Sanderson, Yinchun Xu, and Ying Zhang.

I owe thanks to my great husband, Gang Li, for his encouragement, and for taking

more responsibility to care for our son, Yaoyao Li, during the final stage of my thesis. I

am very grateful for Yaoyao's understanding when instead of staying home to tell him

stories, I went to school to work in the evenings.

Last but not the least, I would like to express my gratefulness to my grandma, who

has helped my parents to raise me and is always a source of care and encouragement to

me.

IX

Chapter 1

Introduction

Computer to computer communication enhances functionality and usability of computers

by sharing data and resources. The research presented in this thesis discusses the design

and implementation of a distributed directory service, which provides services to network

users who want to find other network users' information, such as email addresses, mailing

addresses, and phone numbers.

1.1 The Problem and Motivations

As the use of computer network and electronic mail has been increasingly integrated

with every aspect of activities in the society, a frequently asked question is,

"I know someone's name, and I think he must have an electronic mail

address somewhere. How can I find it?"

1

Chapter 1. Introduction 2

A directory service provides an answer to this question. In this thesis, a directory

service refers to an on-line computer system, centralized or distributed, which holds

directory information and provides its users with services to access information. A dis

tributed directory service consists of one or more cooperating subsystems. A subsystem

contains some directory information and executes a set of defined directory protocols.

From a user's perspective, a directory service is an integrated one, capable of pro

viding various services. These services allow users to lookup and update the directory

information.

Directory services have become increasingly important due to the growth of computer

networks and their penetration into the daily life of our society. There are millions of

users in the world who are using computer networks that communicate with each other.

What is needed is a directory service that identifies computer system users by name. The

directory services are sometimes known as white pages services because their function is

similar to the white pages of a telephone book. Given a person's name, computer white

pages may supply information such as email address, telephone number, and mailing

address.

The importance of such a service can be exemplified by imagining the chaotic situation

of a large and modern city without a telephone directory. Unlike telephone directory

services, which are provided by a centralized authority, computer directory services are

complicated by thousands of autonomous organizations in a network such as Internet, a

world-wide computer network connecting over one million computers with over 10 million

users. Within the Internet there is no central authority that provides directory services.

Currently research has been done on some Internet directory services. However, all of

them have the limitation of the directory information sources. That is, they only contain

information about a small set of network users. In many cases it is still not possible to

Chapter 1. Introduction 3

locate the electronic mail address for a given Internet user, even though a significant

effort has been made to achieve this goal. Moreover, accessing a collection of available

directories is time-consuming and requires knowledge of each directory's user interface.

This severely damages the usability of such services.

The work reported in this thesis is motivated by the importance of an Internet di

rectory service, especially providing network users' email addresses, and the current

development of such services, which is neither adequate nor effective.

1.2 Requirements

To provide a fast directory service system, the following requirements should be accom

plished:

• Local/fast lookup. Although quick response time for a look up is a key measure

ment of the effectiveness of every directory service system, many systems have

failed to achieve this goal. Currently, a good directory service system can respond

a user's query in a few seconds. On the other hand, some systems may take up

to 200 seconds to answer a query. Delayed responses may be caused by a lack

of cooperation between local and remote servers. To solve this problem, a query

which is fulfilled locally can reduce lookup time significantly. This requires that

directory information in a system be kept locally in each cooperating subsystem.

• Containing large amounts of directory information from a variety of sources. Di

rectory information usually comes from two types of sources: public and local.

Public sources include the information which people can easily obtain from the

Internet such as USENET and other network directory services, such as WHOIS

Chapter 1. Introduction 4

[Harrenstien85], Netfind [Schwartz89]. There is a huge amount of information lo

cated at various local sources. The local information sources, such as the userinfo

database created and maintained at the Computer Science Department of the Uni

versity of British Columbia, contain locally complete and up-to-date information.

To obtain as much, and as recent user information as possible, a directory service

system must be able to integrate local sources and public sources into a directory

information collection mechanism.

• Providing the service at a reasonable cost. This cost includes consumption of

network bandwidth, data storage cost, computational expense for processing user

queries, and the cost of operating such a service. Currently, most distributed direc

tory service systems require network-wide cooperation, such as dedicated directory

service servers throughout the network, in order to provide services. Therefore, in

addition to minimizing other costs such as data storage, network bandwidth, it is

important to consider the cost effect in operating a distributed directory service

system.

• Providing a friendly user interface. A friendly user interface usually possesses

two major capabilities: easy access to directory information, and error-tolerance

regarding user's queries. Providing an error-tolerant query processing mechanism

is important because users commonly misspell names in queries, due to mistyping

or incorrect spellings. Therefore, a friendly user interface should be able to "guess"

what a user actually means and find a solution which closely matches a user's query.

Chapter 1. Introduction 5

1.3 General Description of the System

The light weight directory (lwd) system is a distributed directory service system. We de

signed and implemented this system to achieve the goals outlined in the previous section.

Figure 1.1 shows the architecture of the lwd system. In the figure, each dotted box rep

resents a subsystem (local directory service) in the lwd system. Each subsystem consists

of a database and provides functionalities for information storage, information lookup,

and information maintenance. Subsystems exchange directory information according to

an information exchange protocol.

• Information storage. Directory information is stored in databases. The data struc

ture for an entry is organized to be a key/content pair, with a person's name taken

as the key and his email address along with other properties stored as content

under the key. The system processes duplicate names when storing and updating

information in a database.

An auxiliary key file is used to enchance the performance of the system. It stores all

keys in a database and is used to search for a partial name or a regular expression

instead of searching a complete database. Since the key file is much smaller than

the database, the search can be accomplished quickly.

• Information lookup. Directory information in a database can be looked up in one

of the following three ways:

— Exact full name match.

— Regular expression.

— Approximate match for partial name.

Chapter 1. Introduction 6

Database

Figure 1.1: The Architecture of the Lwd System

Chapter 1. Introduction 7

• Information maintenance. Information about people are collected from different

sources. The system also provides add and delete operations to directly update

directory information.

The system keeps track of the usability of its directory information. For example,

if an entry has not been accessed in a long period of time, the entry is considered

outdated and is removed from the database.

• Information exchange. In order to store as much information at a local site as

possible, the system provides a mechanism to exchange information between dif

ferent sites in a distributed environment. In Figure 1.1, the information exchange

protocol defines how sites exchange information.

The rest of this thesis is organized as follows. Chapter 2 introduces the local directory

service of the lwd system, which consists of information storage, information lookup,

and information maintenance at a local site. Chapter 3 focuses on two information

exchange protocols, the hash method protocol and the key method protocol, and their

implementations. Analysis and discussions of the two protocols are presented. Chapter

4 surveys other directory service systems. The advantages and disadvantages of the lwd

system, in comparison with others, are highlighted. Chapter 5 concludes the thesis by a

summary and discusses future work.

Chapter 2

The Local Directory Service

Lwd is a distributed directory system. Sites can be located on any system in the world

reachable through the Internet. A site is defined as a place where a database, which

stores directory information about people, is held. Figure 2.1 shows the configuration of

the system. A user can submit a request and expect to get a response from the nearest

database. Instead of transferring a request to a more distant site, the system keeps all

the information locally. Sites exchange information with each other periodically.

This chapter discusses the organization of a local directory service of the lwd system,

the ways in which information is collected from different sources and stored in databases,

and lookup and update services the system provides to its users. The next chapter

addresses the issue of information exchange between different sites.

8

Chapter 2. The Local Directory Service 9

Figure 2.1: The Lwd Configuration

Chapter 2. The Local Directory Service 10

2.1 Overview of the Local Directory Service

The local directory service provides three kinds of operations to users. A user can add,

delete, or lookup an entry in the system. In theory, a user can find information about

anyone in the world, if the person has an email address. Information about people can

be obtained from many sources. Currently we obtain information from EAN [Neufeld85]

(an implementation of CCITT X.400), USENET [Tanenbaum88], and a local directory

maintained by the Department of Computer Science at UBC.

The architecture of one site is shown in Figure 2.2. Due to the limited information

available at one site, a site needs to exchange information with other sites that have

databases. Basically, the architecture of one site consists of three parts.

• Information storage. How directory information is stored in a database and how

the data structures for the entries are organized.

• Information lookup. The system allows users to look up directory information in

three ways.

— Exact full name match.

— Regular expression.

— Approximate match for partial name.

• Information maintenance. It deals with collecting information about people from

different sources and converting them into a standard format. Users are provided

add and delete services to update directory information.

In the lwd system, information about people is stored and retrieved. Therefore,

one of the basic objectives of the system is to provide a convenient user interface. In

Chapter 2. The Local Directory Service 11

Information Lookup

Information Storage

Database

Data in
Standard
Format

Key File

Exchange with
- £ — 5*-

Filter

Data From
USENET

Data From
X.400

Data From
Other Source

Figure 2.2: The Architecture of One Site

Chapter 2. The Local Directory Service 12

order to retrieve information, the user should only be required to submit information

about a person's name. To meet this objective, we use people's names as keys and store

other information under the corresponding names in a database1 . We now discuss each

individual part in detail.

2.2 Information Storage

2.2.1 The Structure of an Entry

In the database, a person's information is stored in an entry based on a key/content pair.

A person's name is taken as the key and his email address along with other properties

such as phone number, facsimile number, organization, and address are stored as content

associated with the key. The date when the information was created is considered a

special property and is also stored. All the information, flattened in a string format

and separated by a delimiter ";", is stored as content. For example, Hongbing LVs

information as established on October 4, 1992 is as follows:

N a m e : Hongbing Li

Email: lihong@cs.ubc.ca

Phone: 822-3731

Addr: 2366 Main Mall, Vancouver, B.C. V6T 1Z4

Date: Oct. 4, 1992

In the database, the key for the entry is Hongbing Li. The content is Email=lihong@

cs.ubc.ca;Phone=822-3731;Addr=2366 Main Mall, Vancouver, B.C. V6T lZ4;Date=40ctl992.

1Currently we use an efficient database library Tdbm (dbm with transactions) which was developed

by Barry Brachman and Gerald Neufeld at the University of British Columbia [Brachman92].

mailto:lihong@cs.ubc.ca

Chapter 2. The Local Directory Service 13

From now on, we will assume that the content of an entry contains an email address

only, and other properties are omitted for simplicity of discussion. Figure 2.3 shows the

structure of a key and its content.

Key

A Name

Email
Address

Other
Properties

Date
Created

Figure 2.3: The structure of an entry

2.2.2 Storage

Before information is stored in the database, we see whether there is already an entry

for the person in the database. If there is no such entry with the person's name as its

key, we save the entry. If there is an entry, the two email values are compared. If they

are the same as well, we assume the two entries are for the same person. In this case, we

simply update the date property of the content. If the two email addresses are different,

we save the new email address into the database under the duplicate name. It is possible

that more than one email address of a person is stored under a duplicate name. Possibly

the person has more than one valid email address or there are two people with the same

name. It is also possible that one or two email addresses of the person are invalid. In

the later case, the problem can be solved by the maintain program. By comparing the

current date to the date stored in an entry, the maintain program can remove entries

Chapter 2. The Local Directory Service 14

which are considered inactive.

Currently, entries are stored in a tdbm [Brachman92] database library. Tdbm provides

nested atomic transactions, volatile and persistent databases, and support for very large

objects and distributed operation. While providing the new features, tdbm performs well

in comparison with ndbm [Berkeley86], the most widely-used extensible hashing library

under UNIX.

2.2.3 The Processing of Duplicate Names

In the lwd system, name duplication has to be handled properly in order to store informa

tion correctly. There are two cases where a duplicated name may occur. One is where dif

ferent people have the same name. The other is where the same person has more than one

email address. For example, there may be two people who have the name Hongbing Li,

with email addresses being lihong@cs.ubc.ca and hongbing@phoenix.princeton.edu. But

Gerald Neufeld may have two email addresses neufeld@cs.ubc.ca and gneufeld@ee.ubc.ca.

As discussed in section 2.2.1, we use a person's name as a key and the person's email

address as a content. Information about a person is saved as a key/content pair in our

database. When we encounter a duplicate name, there will be more than one content

associated with the same name. It is possible for multiple contents to be physically

stored under the same name key, but it complicates operations on the structure of the

content. This is because all information for an entry is stored in a flattened way, so we

would have to define another delimiter to separate multiple contents for different people.

Moreover, the majority of names have no duplicates. If we define a new delimiter, we

have to check every content to see whether it consists of more than one name.

We use a two level key/content structure to solve the above problem. In the first

mailto:lihong@cs.ubc.ca
mailto:hongbing@phoenix.princeton.edu
mailto:neufeld@cs.ubc.ca
mailto:gneufeld@ee.ubc.ca

Chapter 2. The Local Directory Service 15

level a duplicate name is taken as a key. Instead of the property content as shown in

Figure 2.3, a special content is stored under the duplicate name key. The special content

starts with a string "Duplicate Name" followed by internal keys for the property contents.

In the second level, a random number is generated for each email address. It acts as a

key, with the email address stored as a content under it. The structure of a duplicate

name is shown in Figure 2.4.

Email
Address

Other
Properties

Date
Created

Email
Address

Other
Properties

Date
Created

Content

Email
Address

Other
Properties

Date
Created

Figure 2.4: The structure of a duplicate name

The internal key is generated by a random number generator. To guarantee unique

ness when a random number is generated, an at tempt is made to store the entry in the

database. The insert mode of tdbm will not allow an entry to be stored using a key if an

entry already exists for that key. Therefore, if it is determined that the storage at tempt

has failed, another key must be generated.

Chapter 2. The Local Directory Service 16

2.2.4 The Key File

Initially, we considered storing partial names as keys in the database. By providing

a partial name, a user can expect to get the corresponding full name and then retrieve

information by using this full name. Unfortunately, this method would make the database

very large, since each name can be split into many partial names. Retrieving information

becomes time-consuming, moreover, much of the information in a database is redundant.

In order to solve this problem, we use a key file which stores all keys. When we store a

key with its content in a database, the key (person's name) is added to the key file. The

key file is an ordinary text file. Whenever there is a request for information retrieval

based on a partial name, or even a regular expression, a fast and efficient algorithm

agrep [Wu91] (approximate grep) is used to search for the person's name in the key file,

rather than searching the complete database. Since the key file is much smaller than the

database, the search can be accomplished quickly. This gives us increased performance

and a database of reduced size.

2.3 Informat ion Lookup

2.3.1 Lookup

The system provides a convenient and friendly user interface for looking up informa

tion. To look up a database, only information about a person's name is needed. Other

information, such as affiliation, country, and so on, is not required.

Users have multiple choices for submitting different forms of a person's name. A

person's full name, first name, last name, and a regular expression are all valid forms.

If a user provides a person's full name, the system searches the database for an entry

Chapter 2. The Local Directory Service 17

which has the given name as its key. If such an entry is found and it is not a duplicate

name, the system returns the person's email address. If a duplicate name is found, the

system returns a list of email addresses by looking up every internal key stored under the

duplicate name. If a user provides either a person's partial name or a regular expression,

a list of matched full names is returned. The user can use one of the names to get the

desired entry as in the case of looking up an entry by full name.

A regular expression is often useful when one is uncertain about the precise spelling

of a name. Consider the case where a user would like to obtain the directory information

of a person named neufeld but only remembers the first four letters in the name. The

regular expression

'neuf[a-z]*'

can be used to express a pattern which starts with a string 'neuf', followed by an arbitrary

string consisting of lower case letters 'a,...,z'. What follows is a script of a lookup

operation when the user provided the regular expression 'neuf[a-z]*':

Enter name: 'neuf[a-z]*'

Matched names:

andrew neufeld

Christopher neufeld

eric neufeld

gerald neufeld

kathryn neufeld

At this moment, the user is able to provide a full name to the prompt for a name:

Chapter 2. The Local Directory Service 18

E n t e r n a m e : gerald neufeld

E m a i l = n e u f e l d @ c s . u b c . c a

The syntax of regular expressions accepted by the system is the same as for agrep.

Partial names are always enclosed in quotes to distinguish them from full names.

2.3.2 A Fast and Efficient A l g o r i t h m - agrep

Finding a person's name according to a regular expression can be considered a general

string-searching problem. String searching in Unix is often performed by functions in

the grep family. In our system a new tool agrep, which is similar to grep (or egrep or

fgrep), is used for string searching, agrep was developed by Sun Wu and Udi Manber at

the University of Arizona [Wu91]. It supports many kinds of queries, including arbitrary

wild cards, sets of patterns, and general regular expressions. In addition to several new

features, agrep supports most of the options available in the grep family. However, it is

much more general, and usually gives better performance.

agrep has two significant features that the grep family does not support:

1. The ability to search for approximate patterns. This feature allows a user to make

a query based on an inexact pattern, such as a misspelled name. For example,

assume that a file foo contains a name hongbing. The command

agrep -1 hongbin foo

searches the file and returns hongbing, as well as other key words that can be

obtained from hongbin with at most 1 substitution, insertion, or deletion.

mailto:neufeld@cs.ubc.ca

Chapter 2. The Local Directory Service 19

2. Multiple patterns with AND (or OR) logical queries. For example, the command

agrep -d ' T r o m ' 'burger,pizza' mbox

returns all mail messages which contain either keyword burger or pizza. In the

command, -d ' T r o m ' defines mail messages as records, agrep matches each record

separately. The comma between the words burger and pizza denotes a logical OR

operator. The command

agrep -d " F r o m ' 'good;pizza' mbox

returns all mail messages which contain both keywords good and pizza. The semi

colon between the two keywords denotes the logical AND operator.

agrep not only supports a large number of options, but is also very efficient. Sun Wu

and Udi Manber conducted performance analysis and concluded that agrep is competitive

with the best exact string-matching tools that they could find at that time, and in many

cases, it is one to two orders of magnitude faster than other approximate string-matching

algorithms [Wu9l]. We also conducted some simple experiments on agrep, grep, egrep,

and fgrep. We collected 16 megabytes of data consisting of email addresses, associated

names, and dates from news headers on the USENET. We first looked up string "Neufeld"

from the data file, then regular expression 'N*eu[a-z]\ Each set of tests was run 10 times

to get the experiment results. They are summarized in Tables 2.1 and 2.2.

In the tables, each number indicates the time (in seconds) spent by an agrep command

or a command from the grep family on machines based on various architectures. The

machines, a SUN 4/75, a MIPS M2000-8, and an HP 720, were under normal loads2.

There is no data for fgrep in Table 2.2 because fgrep patterns are fixed strings and regular

expression metacharacters are not allowed.

2The SPECint ratings for the machines are 20.24, 19.27, and 39.00 respectively.

Chapter 2. The Local Directory Service 20

agrep

egrep

grep

fgrep

SUN 4/75

2

11

15

18

MIPS M2000-8

9

8

8

9

HP 720

1

6

7

6

Table 2.1: [agrep | egrep | grep | fgrep] Neufeld mid

agrep

egrep

grep

SUN 4/75

10

23

37

MIPS M2000-8

23

18

19

HP 720

10

35

35

Table 2.2: [agrep | egrep | grep] 'N*eu[a-z]' mid

Chapter 2. The Local Directory Service 21

From the results in the tables, we can see that agrep is fastest except on the MIPS

architecture, where the difference is not significant. These results provide supporting

evidence for Sun Wu and Udi Manber's claim that agrep is very efficient for both exact

and approximate pattern searching.

Because agrep provides more general functionalities as well as enhanced performance,

it was chosen to perform pattern searching in our system.

2.4 Information Maintenance

2.4.1 Information Collection

The lwd system targets an environment that provides as many information sources as

possible. Currently we use three sources: USENET, EAN, and our on-campus source.

Other sources which become available can be easily incorporated into the system. Now

we describe how we collect data from the three information sources.

D a t a from U S E N E T

USENET [Tanenbaum88], started at Duke University and the University of North Car

olina, offers a service called network news. Network news is divided into hundreds of

newsgroups on a variety of topics. There are groups for popular programming languages,

for common microcomputers, and for several operating systems, as well as groups for peo

ple offering or seeking jobs, people wanting to buy or sell things, and groups for many

recreational activities and sports. USENET users can subscribe to whatever groups they

are interested in.

Chapter 2. The Local Directory Service 22

Users can also post messages to news groups. Messages are broadcasted to all the

machines in the world that carry the news groups. A user with a question or an opinion

on some subject can post a message that may start a discussion eventually involving

hundreds or thousands of people all over the world. The number of subscribers to

USENET is enormous. Thus, USENET is a good source for getting information about

people.

We can obtain information about a person, including the person's name and email

address, from the header of a news message in USENET. A news message header looks

like:

Path: cs.ubc.ca!stephen.cs.ubc.ca!not-for-mail

From: neufeld@cs.ubc.ca (Gerald Neufeld)

Newsgroups: cs.systems

Subject: THURSDAY SEMINAR

Date: 16 Jun 1993 14:45:47 -0700

Organization: Computer Science, University of B.C., Vancouver, B.C., Canada

Lines: 32

Distribution: cs

Message-ID: <lvo4abINN7e2@stephen.cs.ubc.ca>

NNTP-Posting-Host: Stephen.cs.ubc.ca

In a news message header only two lines have useful information for us: the "From"

line and the "Date" line. From these we can get the sender's name, email address, and

the date when the message was sent. The date information will be used later to check

whether a database entry is out of date.

By going through each news message in every news group, we can obtain a large

amount of information about many people. We can then use a filter, which will be

mailto:neufeld@cs.ubc.ca
mailto:lvo4abINN7e2@stephen.cs.ubc.ca

Chapter 2. The Local Directory Service 23

described in the next section, to transform the information into a standard format such

that each entry looks like:

Da te=16Jun l993

N a m e = G e r a l d Neufeld

Email=neufeld@cs.ubc.ca

When we collect data from USENET, we need to choose an interval between two

consecutive collections. In our news host, lifespans of messages vary in different news

groups ranging from 7 to 21 days. We decided to perform a data collection every 7

days. In order to avoid collecting information from the same message more than once,

messages which are older than 7 days are not processed. This allows us to save both

time and space.

D a t a from X . 4 0 0

One of the major design objectives of the lwd system is to store people's email addresses.

On the Internet, the volume of electronic mail among people continues to increase. A

well known advantage of email service is that it is very fast. People can expect a message

delivered from coast to coast in a few seconds. Moreover, electronic mail has the speed

of the telephone without requiring that both parties be available at the same instant. It

leaves a written copy of the message that can be filed away or forwarded. Furthermore,

a message can be sent to many people at once. Electronic mail messages are highly

structured documents. In many systems, each message has a large number of header

fields in addition to its contents. These include the sender's name and address, the

recipient's name and address, the date and time of delivery, a list of people to receive

carbon copies, the expiry date, the importance level, and so on.

mailto:neufeld@cs.ubc.ca

Chapter 2. The Local Directory Service 24

Many telephone companies and PTT's are interested in offering electronic mail as a

standard service to companies and individual subscribers. To prevent worldwide chaos,

CCITT defined a series of protocols in 1984 for what it calls Message Handling Systems

(MHS) in its X.400 series of recommendations [MHS88].

A distributed message system based on the CCITT X.400 recommendations, called

EAN [Neufeld85] , was implemented at the University of British Columbia. In the EAN

system there are log files which record information about all incoming and outgoing

messages. Part of this information is electronic mail addresses of EAN users who send

or receive messages, the users' names, times when the messages are sent or received, and

machines where the messages are delivered to or received from. From the log files, we

can get the names and email addresses of both the sender and receiver, and the time

when a message was sent or received.

D a t a from Other Sources

In the department of Computer Science of the University of British Columbia, a database

called "userinfo" has been developed. The database contains directory information of

all people affiliated with the department. We have included the directory information

in our system. There is another on-line database for all faculty and staff members on

the UBC campus. We also plan to store this related information into our system. Other

sources, from other universities or industrial organizations, can be easily incorporated

into our system.

Chapter 2. The Local Directory Service 25

2.4.2 Information Conversion

A Standard Format

Since information is collected from different sources, we need to convert it into a standard

format. By doing this the lwd store function is simplified since only one generic function

is needed to store information from different sources into a database. In the standard

format, each entry has three fields:

D a t e =

N a m e =

E m a i l =

For example, the entry for Hongbing Li in the standard format is as follows.

D a t e = 2 0 c t l 9 9 2

Name=Hongbing Li

Email=lihong@cs.ubc.ca

D a t e indicates the time when the entry was first created, N a m e indicates the per

son's name, and Email is the electronic mail address of that person.

Information Conversion

The filter used for converting collected information into the standard format is imple

mented in Perl [Wall90]. Perl is an interpreted language optimized for scanning arbitrary

text files, extracting information from those text files, and printing reports based on that

information. It is very concise and convenient to use. The filter used to produce data in

the standard format described above needs to take care of a few special cases.

mailto:lihong@cs.ubc.ca

Chapter 2. The Local Directory Service 26

• Processing of special characters.

Generally the characters result from people misusing news groups or mail systems.

This causes unknown, unexpected, or meaningless information. The special char

acters are:

{ } < § ; * ? ! < > ! /

: _ " # " & ' / . [] $ +

There are other cases in a name or an email address, such as more than one

consecutive period "." or consecutive comma ",", several digits of numbers which go

along with a name to represent the person's telephone number, multiple consecutive

brackets, and so on. They should all be ignored by the system.

• Processing incorrect format.

The correct format of collected information about a person is:

"name" <email address> or

email address (name)

Take Hongbing Li as an example, the correct format should be:

"Hongbing Li" <lihong@cs.ubc.ca> or

lihong@cs.ubc.ca (Hongbing Li)

The following information shows an example of incorrect format of information.

"Q 8)" <castro@alm.admin.usfca.edu>

diwadkva@ctrvxl.vanderbilt.eduVaibhav A. Diwadkar)

• Processing aliases.

Some people like to use personal aliases rather than names in their messages. These

aliases act like a person's name but can not be used for our purposes. For example,

mailto:lihong@cs.ubc.ca
mailto:lihong@cs.ubc.ca
mailto:castro@alm.admin.usfca.edu

Chapter 2. The Local Directory Service 27

"The Puzzled" , "The Black Eagle", and "A hopeless person", have to be removed

manually, because there is no way to detect them from message syntax.

2.4.3 Maintenance

Information stored in the directory is maintained by a program called maintain. A

special property, the date property, is used to check whether this entry is out of date.

The date property is automatically updated whenever there is a lookup operation on the

entry. Inactive entries, that is, those which have not been accessed for a certain period of

time, are removed from the directory. There are two advantages which justify removing

inactive entries:

• It keeps the directory at a reasonable size;

• It is very likely that an inactive entry contains out of date information.

2.4.4 Add

To collect information and enrich the database, a function add is provided to allow a

user to add entries into the database.

In order to add an entry about a person to a database, a user must provide the name

and the email address of the person. A user is also asked if other additional properties

about the person are to be entered. The properties are described in section 2.2.1 as other

properties. They are:

Chapter 2. The Local Directory Service 28

P h o n e : the person's telephone number;

Fax: a number to which a facsimile can be sent;

Org : the organization to which the person is affiliated;

A d d r : the postal address of the person

The add function works as follows. The system first prints the prompt E n t e r n a m e :

to ask for a name to which properties are to be added. It should be pointed out that

only full names are accepted by the add command. After receiving a person's name,

the system prompts E n t e r ema i l : for the person's e-mail address. The system asks

whether the user wants to add other properties into the entry, in addition to the existing

ones. A user can also modify an existing property by providing a new one to the system

after confirming the option. What follows is a script of how Hongbing Li's information

is added to a database. In the script, system prompts are in bold font, {i.e. E n t e r

N a m e :) . User input to the system is in sans serif font, {i.e. Hongbing Li).

E n t e r n a m e : Hongbing Li

E n t e r emai l : lihong@cs.ubc.ca

E n t e r o t h e r p r o p e r t i e s : (y / n ?) y

P h o n e : 822-3731

Fax: 822-5485

O r g : Dept of Computer Science, UBC

A d d r : 2366 Main Mall, Vancouver, B.C., Canada V6T 1Z4

After accepting the input, the system asks the user to confirm that information is to

be stored in the database:

A d d or n o t : (y / n ?)

mailto:lihong@cs.ubc.ca

Chapter 2. The Local Directory Service 29

The user can respond to the prompt with n to avoid storing in the database, if an

error in the input is detected. Otherwise, the new entry is written into the database.

Since we don't store entries with partial names as keys in a database, the full name

of the person should be provided. It is recommended that a person's full name be given

in the order of first name, middle name, and last name. However, the system is able to

accept a full name given in any format.

There are no fixed formats for other properties, but we recommend users choose some

reasonably acceptable format. For the organization where a person works, a user can

provide either rough or detailed information. For example,

Univ. of British Columbia or

Dept. of Computer Science, Univ. of British Columbia or

System Group, Dept. of Computer Science, Univ. of British Columbia

2.4.5 Delete

To delete an entry from a database, a person's name is required. The system first checks

whether the given name is a full name (first name and last name) or only a partial name.

If the given name is a full name, the system looks in the database to find an entry with

the given name as its key. If such an entry is found, the system determines whether the

name is a duplicate key. If it is a duplicate key, the system asks the user to provide the

email address of the person in order to decide which person's information the user wants

to delete. After the entry is uniquely identified, it is deleted from the database. The

following script shows the system and user interaction when the delete operation finds a

duplicate key:

Chapter 2. The Local Directory Service 30

Enter N a m e : Hongbing Li

Dupl icate N a m e

Please specify the email address: lihong@cs.ubc.ca

If the system is given a partial name, it searches in the key file to find a list of matched

full names. The user chooses the name to be deleted. The user can then submit it to

the system and expect that the corresponding entry will be deleted from the database,

according to the algorithm of deleting an entry by full name described above.

Since a separate key file is used to store all the keys in a database, whenever an entry

is deleted from the database, the key should also be deleted from the key file. In the

case of a duplicate name, the name in the key file isn't removed, since there are at least

two entries stored under one duplicate name.

An important point to remember is when there are only two entries under a duplicate

name and one of them is deleted, the other one becomes unique. The duplicate name

entry of two levels is changed into a normal entry of one level to store the unique entry.

A key is deleted from the key file using the following procedure: first, agrep is used to

get the line number of the key in the key file. Then the key file is updated by removing

the line from the original file.

mailto:lihong@cs.ubc.ca

Chapter 3

Information Exchange in a

Distributed System

The previous chapter discussed site architecture and operations provided by the system.

The architecture defines a local site in the system. All the sites are interconnected by

the Internet to provide a distributed environment for the directory service system. This

chapter discusses issues related to acquiring and organizing information in databases at

different sites in the lwd system.

This chapter is organized as follows: Section 3.1 discusses the general issues involved

in the lwd system. Section 3.2 describes and examines the hash method used in one im

plementation of the lwd system, to exchange information between different sites. Finally,

Section 3.3 discusses another information exchange method, the key method, which is

used in another implementation of the system.

31

Chapter 3. Information Exchange in a Distributed System 32

3.1 General Introduction

Accompanied by the rapid growth of communications, computers have been intercon

nected by various local and wide area networks. People are not satisfied with centralized

systems which have limitations such as speed and resources. It is imperative to develop

distributed systems and applications in order to keep up with the rapid development of

computer networks.

The lwd system is a distributed directory service designed and implemented to provide

an Internet white pages service. A distributed system such as lwd possesses the following

properties:

• Extensibility. A distributed system can be extended as the demand for service grows

without replacing any of the existing components. In the lwd system, there may

be an arbitrary number of sites connected into the system. It is much easier to

extend a system which is distributed.

• Sharing of resources. For example, in a distributed system, each workstation may

be diskless or have only a small disk (10-20 Mbytes) for temporary storage. Access

to permanent files on a large disk can be provided to all of the workstations by a

single file server. In the lwd system, a database at each site usually contains a large

amount of information, for example, 36 Mbytes for 200,000 entries in a database

implemented using tdbm. It can be installed on a central file server to allow other

workstations in the distributed system to access it.

• Uninterrupted availability. When one of the components in a distributed system fails

most of the work in progress need not be interrupted. Only the jobs performed

on the failed component need to be moved to another available component. For

Chapter 3. Information Exchange in a Distributed System 33

example, a user may move to another workstation if the one being used breaks

down.

For a distributed directory service, a user expects that a request can be fulfilled locally

or remotely if the request can't be done locally. Most of the distributed directory service

systems currently available (e.g., X.500) maintain a portion of information at each server

in the system. To answer a query, such a system tries to locate the information locally.

If such an at tempt fails, the system may need to access a remote database. It usually

takes much longer to conduct a remote lookup. In the lwd system all lookups are local,

no at tempt is made to do a distributed lookup. This implies that the local database

must be as complete as possible.

In the lwd system, a large number of sites in the system are connected by the Internet,

as shown in Figure 2.1. Each site in the system holds its own database. Since each site

in the system collects data individually, different sites may contain different entries. To

avoid remote accesses, the system tries to store as much information as possible in the

local database. So, every site in the system may hold almost the same information as

any other site in the system. Since every site in the system contains as much information

as possible, a query to the system can be done locally and hence improves the response

time of the system.

To store as much information at one site as possible, the system has to provide a

mechanism which allows exchange of information among different sites. The general

framework for information exchange is shown in Figure 3.1. In the figure, three sites

are used to show how sites exchange information with each other. When one site sends

a request to another, it expects to receive entries which do not exist locally but which

are available at other sites. Each site can retrieve and send the information requested

by other sites in the system, if such information is available locally. In other words,

Chapter 3. Information Exchange in a Distributed System 34

Figure 3.1: Information exchange between multiple sites

Chapter 3. Information Exchange in a Distributed System 35

every site can act either as a client or a server. The major sequence of this client-server

communication is described in Table 3.1.

Client

sends request for information exchange

waits for reply

receives reply and

continues

Network

transmitting request

transmits reply

Server

receives request

executes request

sends reply

Table 3.1: The sequence of client-server communication.

In the lwd system, two different methods have been implemented for information

exchange between different sites. They are described separately in the following sections.

3.2 The Hash Method

The hash method uses a bit map table to record the availability of entries at each site

in the lwd system. After receiving a request for information from another site, this bit

map table is used to decide whether the requested information is available locally. Since

indices of the table are hash values of persons' email addresses, this method is called the

hash method.

Chapter 3. Information Exchange in a Distributed System 36

3.2.1 The Hash Method Protocol

As mentioned at the beginning of Chapter 2, each site in the lwd system holds its own

database. In addition, each site also maintains an array of bits, called the bit map table,

to record the availability of its information. The indices of the table are hash values

of persons' email addresses. Every entry in the bit map table is a boolean value: the

it\v bit of the table is 1 if an entry whose email address' hash value is i exists in the

local database. Otherwise the ith bit of the table is 0. When a site, say site A, requests

information from another site, say site B, the following protocol, shown in Figure 3.2, is

applied: Site A first sends its bit map table to site B. When site B receives the bit map

table, it compares the table against its own. Site B only sends back those entries whose

email address' hash values correspond to value 1 in its local bit map table but value 0

in the received bit map table.

Site A Network Site B

Compare it with the local bit map table;
Reply the entries Site A doesn't have

Figure 3.2: The hash method protocol

3.2.2 An Implementation of the Hash Method Protocol

The hash method is implemented as follows: Each site in the system holds a database

and maintains a bit map table. The size of the bit map table (number of bits) equals

Chapter 3. Information Exchange in a Distributed System 37

the number of different hash values available. Figure 3.3 shows an example of two sites

(UBC site and SFU site) where each site's bit map table is of size 12.

First, a person's email address is converted to a natural number according to a hash

function from sdbm [Yigit90], an ndbm-like hashed database library [Berkeley86]. The

hash function is given in Appendix B. Initially, every bit in both bit map tables has the

value 0. As the system evolves, entries may be added to either of the local databases.

When an entry is added to a database, its email address is "hashed" to obtain a natural

number i. The z'th bit of the bit map table is updated to 1 to indicate that the entry is

available at the site. The reason for choosing an email address, rather than a persons' full

name, to obtain a hash value is due to the fact that different people may have identical

names. Using email addresses increases the possibility that a natural number (index of

the bit map table) corresponds to a unique entry in the database.

Twelve email addresses are shown in Figure 3.3, with respective suffixes (e.g. @cs.ubc.ca)

omitted for simplicity. For example, email addresses lihong and neufeld in the figure are

only a shorthand of lihong@cs.ubc.ca and neufeld@cs.ubc.ca respectively. Assume that

the hash values of the email addresses lihong, neufeld and brachman are 1,2, and 3

respectively. From the bit map table at the UBC site, we can conclude that the entry of

lihong is available at the UBC site, while that of neufeld is not, because the first bit in

the bit map table is 1 and the second bit in the table is 0.

Suppose the UBC site makes a request to exchange information with the SFU site.

It first sends its bit map table to the SFU site. After receiving the table, the SFU site

performs an exclusive-ORon the received table and its local one to obtain a the difference

table. A 1 in the table indicates the corresponding entry exists at one of the two sites

but not at both. The Figure 3.3 details the result of this operation. Next, the SFU site

applies a logical-AND operation to the difference table and its own information table.

mailto:lihong@cs.ubc.ca
mailto:neufeld@cs.ubc.ca

Chapter 3. Information Exchange in a Distributed System 38

The hash method

Protocol

UBC:

1

1

2

0

3

1

4

0

5

0

6

0

7

0

8

1

9

1

10

0

11

1

12

1 SFU:

1

1

2

1

3

1

4

0

5

0

6

1

7

1

8

1

9 10

1 1

11

0

12

0

UBC© SFU

email

lihong
neufeld

brachman
goldberg

acton
terry

msample
Sanders
demco
pronk
phillip
phillips

hash value

1
2
3
4
5
6
7
8
9
10
11
12

1 2 3 4 5 6 7 9 10 11 12

0 1 0 0 0 1 1 0 0 1 1 1
A A T T T T~T

Figure 3.3: Bit Map Tables

Chapter 3. Information Exchange in a Distributed System 39

This operation results in a table of size 12, where every bit which has value 1 means that

the corresponding entry exists at the SFU site but not at the UBC site. Figure 3.4 shows

the final table which indicates the entries available at the SFU site but unavailable at

the UBC site.

UBC © SFU

IDEAL: SFU A (UBC (±> SFU)

BUFFER:

1

0

2

1

3

0

4

0

5

0

6

1

J
7

1

1

8

0

9

0

10 11

1

\

1

/

12

1

\ i

1

0

2

1

3

0

4

0

5

0

6

1

7

1

8

0

9

0

10

1

11

0

12

0

key

Gerald Neufeld

Barry Brachman

Mike Sample

John Demco

content

neufeld

brachman

msample

demco

TDBM:

key

HongbingLi

Gerald Neufeld

Barry Brachman

Mike Sample

John Demco

Peter Phillips

2

3

7

9

lihong

neufeld

brachman

msample

demco

pphillip

Gerald Neufeld

Barry Brachman

Mike Sample

John Demco

Figure 3.4: Hash method

In the hash method, a local database needs to store another kind of entry, in addition

to the entries with people's names as their keys. The entries use hash values as keys and

Chapter 3. Information Exchange in a Distributed System 40

people's names as their contents to establish a relationship between hash values (of email

addresses) and people's names. The purpose of doing this is to make retrieving an entry

from the database easier. In Figure 3.4, the dotted lines pointing to the block TDBM

illustrate the problem. Take Gerald Neufeld as an example: two entries related to him

are stored in the database. One uses Gerald Neufeld as a key, with his email address as

a content. The other uses the hash value 2 as a key and the name Gerald Neufeld as

a content. Hence, when the site retrieves information from the database about people

who's email address hash value is 2 according to the bit set in the final bit map table, it

can first find the person's name Gerald Neufeld by retrieving the hash value key 2 and

then use Gerald Neufeld as a key to find the content needed.

3.2.3 Analysis of the Hash Method

Associated with the adoption of hash methods is the problem of collisions. A collision

means that there are two (or more) different email addresses which hash to the same

value, so they share an identical bit in the bit map table. This means the lwd system

may not be able to identify unique entries in the local database which should be sent to

the remote site. The number of collision depends on the size of the hash table.

One solution to the collision problem is to create a collision entry table which records

all the entries whose email addresses cause collision. When a request for information

exchange occurs, this collision entry table is sent along with other normal entries (entries

whose email addresses don't cause collisions) to the requesting site. The requesting site

then decides which entries it does not have. The advantage of this solution is that it

guarantees that every entry in a local database, which doesn't exist at other sites, will

be exchanged. A disadvantage is that maintaining a collision entry table may consume

a significant amount of storage and network bandwidth if the collision rate is high.

Chapter 3. Information Exchange in a Distributed System 4 1

10 11 12

email

neufeld
lamport

hash value

2
2

email

demco
gates

hash value

10
10

TJ

Collision Entry Table:

key

Gerald Neufeld

John Lamport

John Demco

Mike Gates

content

neufeld

lamport

demco

gates

Figure 3.5: Collision

Chapter 3. Information Exchange in a Distributed System 42

To illustrate the problem in detail, let us take the bit map table at the SFU site in

Figure 3.3 as an example. Suppose there are two email addresses neufeld and lamport

which have a hash value of 2, and demco and gates which have a hash value of 10 as

shown in Figure 3.5. There are four possibilities for a collision as shown in Table 3.2.

The first is indicated by the first row in the table, indicating that there is no entry, whose

email addresses are neufeld or lamport existing in the database. The second row shows

there is an entry whose email address is lamport in the database. The third row means

that there is a entry of neufeld in the database. Finally, the last row describes the case

when both entries are stored in the database. All cases except the first will set the bit

value to 1.

The problem becomes complicated since even if the collision bit is 1 in the bit map

table of a requesting site, we cannot predict if the first, the second or both collision entries

are stored in the database. To get exact information needed at one site, we generate a

collision entry table. Whenever there is a collision, the system records both the entries

in the collision entry table. The collision bit in the bit map table is set to 0. When a

site, say SFU, receives a request for information exchange from another site, say UBC,

it compares the bit map tables at the two sites and sends back the normal entries which

the UBC site needs. In addition, SFU sends the contents of its collision entry table.

At the UBC site, after storing the normal entries SFU sent, it saves the contents of the

collision entries table in the database. At same time, it concatenates the contents with

its own collision entry table.

To reduce the probability of collisions, one could use a larger set of hash values.

In the lwd system, it means that a larger bit map table should be used. In the hash

algorithm we adopt, the maximum hash value can reach 232. That means that 23 2 should

be chosen as the size of the bit map table. However, this causes a significant overhead in

both speed and storage space. First, whenever information exchange occurs, a very large

Chapter 3. Information Exchange in a Distributed System 43

neufeld

n

n

y

y

lamport

n

y

n

y

the bit value

0

1

1

1

Table 3.2: The bit value when collision occurs

bit map table, containing 232 bits, is transferred between two sites. This causes heavy

traffic and slows down the performance of the network. Also, a local database typically

contains around 250,000 entries, therefore, only 0.6% of the bits in an bit map table are

used.

A solution for reducing network traffic and unnecessary storage space is a smaller bit

map table. However, smaller bit map tables inevitably lead to an increased probability

of collisions. An experiment was conducted to study the relationship between the size

of the bit map table and probability of collisions. In the experiment, the original hash

algorithm was used to generate a hash value h for a given email address. This hash value

is in the range [0, 232 — 1]. The index (hash value) to the bit map table is the number

h modulo p

where p is the prime number closest to 224, 223, and so on. Table 3.3 shows the result of

this experiment.

In the experiment, there are a total of 50,000 entries in a local database. The

entries, consisting of email addresses associated with person's names, are obtained from

three different sources: USENET, EAN, and our UBC local directory as discussed in

Section 2.4.1. The last column of Table 3.3 shows the minimum number of bytes of data

Chapter 3. Information Exchange in a Distributed System 44

n

24

23

22

21

20

19

16

nearest prime

number (p) to 2n

16,777,213

8,388,617

4,194,301

2,097,143

1,048,573

524,287

65,537

number of

collision entries (c)

1,061

1,142

1,327

1,645

2,392

3,578

17,803

collision

rate

2.1%

2.3%

2.65%

3.29%

4.78%

7.16%

35.6%

number of bytes

to be transferred

2,203,252

1,162,776

656,988

426,644

370,272

423,336

1,788,492

Table 3.3: Using Different Ranges of Hash Values

to be transferred during an exchange of information. These numbers are obtained by the

formula:

p - r 8 + c x l 0 0 (3.1)

In (3.1), p -J- 8 is the size of a bit map table in bytes. We assume each entry occupies

100 bytes on average, c x 100 is the size of the collision table in bytes. According

to the previous discussion, when a site requests an information exchange, it sends its

bit map table, which has p 4- 8 bytes, and its entire collision table, which has c x 100

bytes. We use the numbers in the last column to approximate network traffic in the

situation. As shown in the table, collision rates range from a little over 2% to over

35%. This experiment reveals that when the number of entries in a database is 50,000

and the average number of bytes per entry is 100, choosing the nearest prime number

to 220 as the size of bit map table requires the least network traffic during information

exchanges. It should be pointed out that the conclusion may change if the number of

entries in a database, or the average number of bytes per entry, changes. Nevertheless,

Chapter 3. Information Exchange in a Distributed System 45

the significance of the experiment is to provide a method for choosing a bit map table

size during further development of the lwd system.

3.3 The Key Method

The key method is implemented by using keys to decide on the availability of entries

at a site in the lwd system. After receiving a request for information exchange, a site

transmits its key file to the requesting site. The requesting site then decides whether the

information is available at its own site. For simplicity, we call this the key method.

3.3.1 The Key Method Protocol

The protocol for exchanging information between two sites works as shown in Figure 3.6.

First, site A sends a request to site B. After receiving the request, site B sends its key

file to site A. Site A checks the received key file against its local database to find those

keys, called non-existing keys at site A, which are in site B's key file but not in site A's

local database. Site A sends the list of keys back to site B. Site B retrieves all the entries

on the list and sends them back to site A. When site A receives these entries from site

B, it saves them in its local database. The protocol gives site A all the entries it does

not have which exist in site B's database.

3.3.2 Analysis of the Key Method

The key method solves the problem of information exchange between two different sites

in a distributed system. The data used in the analysis of the key method is identical to

the data used in the hash method. The size of the key file is 720,604 bytes when the

Chapter 3. Information Exchange in a Distributed System 46

Site A Network Site B

Request for information

exchange --

Transmit the key file

at Site B

Transmit the entries

Figure 3.6: The key method protocol

number of entries in a database is 50,000. A disadvantage of the key method is, due to

duplicate names, it does not guarantee complete information exchange. The following

example highlights this issue: suppose that there are two different individuals who share

the identical name Hongbing Li. The database at UBC contains the entry for one, and

the database at SFU contains the entry for another. For the sake of easy identification,

the individuals at UBC and SFU are identified as Hongbing Li-U and Hongbing Li-S

respectively. Due to the identical name, UBC and SFU sites use the same key (the

individual's name Hongbing Li) to point to different entries for different individuals.

When the UBC site requests an information exchange with the SFU site, it expects to

receive the entry Hongbing Li-S since it does not exist in its database. However, when

the UBC site receives the key file from the SFU site, it is not able to identify that

Hongbing Li-S is different from Hongbing Li-U. Therefore, it does not request Hongbing

Li-S by putt ing the key Hongbing Li in the non-existing key list. The consequence of

Chapter 3. Information Exchange in a Distributed System 47

this is that the SFU site will not retrieve and send Hongbing Li-S^s entry back to the

UBC site.

Based on the discussion above, we can see that the key method is suitable for a system

where the duplicate name rate is very low or lack of complete information exchange is

considered insignificant.

3.3.3 ASN. l Definition for the Protocol

Communication between any communicating entities requires a clear specification of the

format and type of information to be exchanged. The lwd system is designed to serve a

very large and diverse user community in a heterogeneous environment. The complexity

of the data structures exchanged by distributed applications in a heterogeneous environ

ment necessitates a general tool, called an external data representation language. In a

heterogeneous environment, interconnection of different systems requires:

• Interconnection of different computer environments. This addresses different rep

resentations of the same data on different computers. For example, an integer may

be represented in 2's complement format on one computer and in l 's complement

format on another. During an information exchange between two different com

puters in the system, it is necessary to ensure the information is properly conveyed,

regardless of how the information is represented on both sides of the exchange.

• Interconnection when different communication applications are implemented in dif

ferent programming languages. To support this type of heterogeneity, it is neces

sary to ensure that the external data representation language is not dependent on

a particular programming language.

Chapter 3. Information Exchange in a Distributed System 48

• Interconnection of different applications systems. Although different application

systems may have been written in the same programming language and on the same

computer and operating system, they may be vastly different in the way in which

they represent messages. An example is two different proprietary email systems.

• Interconnection of heterogeneous networks. In this case, the form of the data

should be able to be altered without changing the type information. This means

the form should be decoupled from the type.

Abstract Syntax One (ASN.l) [ASN188] with its encoding rules is an external data

representation language defined by ISO and CCITT, which supports the forms of hetero

geneous interconnection mentioned above. It provides a standard format of information

which can be understood by different computers in a heterogeneous environment. In the

Key Method implementation of the Iwd system, ASN.l was chosen to define the protocol

for information exchange. The rest of this section is devoted to a brief introduction to

the ASN.l definitions.

In the lwd system, one site accepts a request from another site, performs the required

operations, and sends back the requested information. The types, operations and their

arguments between two sites are defined below in ASN.l:

LwdDirectory DEFINITIONS::=BEGIN

— t h e ASN.l d e f i n i t i o n s d e s c r i b e t y p e s , o p e r a t i o n s and t h e i r arguments

— between two s i t e s t o exchange in fo rma t ion i n t h e lwd sys tem.

— o p e r a t i o n s suppor ted by t h e system

Chapter 3. Information Exchange in a Distributed System 49

TransmitKey OPERATION

ARGUMENT ReqMsg

RESULT AllKeys

ERRORS {noKeyFile, ServiceError}

: := 1

SendEntry OPERATION

ARGUMENT KeysNeeded

RESULT Entries

ERRORS {ServiceError}

: := 2

— argument types required by operations

ReqMsg ::= PrintableString

KeysNeeded ::= PrintableString

— result types returned by operations

AllKeys ::= PrintableString

Entries ::= SET OF Entry

— Entry in directory

Entry ::= SEQUENCE {

key PrintableString,

dptr INTEGER,

Chapter 3. Information Exchange in a Distributed System 50

desc OCTET STRING

}

— errors returned by operations

noKeyFile ERROR PARAMETER None ::= 1

ServiceError ERROR PARAMETER None ::= 2

END

Sometimes it is necessary for a site to return an error, rather than a result, to the

requester if an anomaly is detected. The defined error types are:

noKeyFi le : indicates a problem with the key file at the requested site, for instance,

there was no key file found.

ServiceError : either a database problem or some communication problem, for example,

after the requesting site A receives the key file from site B, site A asks for entries it doesn't

have locally by sending the non-existing key list to site B. However, some entries can't

be found in the database at site B.

3.3.4 Implementat ion

The key method is implemented by means of key files at different sites. Each site in the

system holds a key file as discussed in Section 2.2.4. It includes all the entry name keys

in a local database. Instead of transferring a bit map table, as in the hash method, a

site transfers its key file to the requesting site, as shown in Figure 3.7.

Chapter 3. Information Exchange in a Distributed System 51

The key method

Protocol

UBC key file
SFU key file

Hongbing Li
Barry Brachman
Mike Sanderson
John Demco
George Phillips
Peter Phillips

V V
non-existing keys
at UBC

Gerald Neufeld
Terry Cotta
Mike Sample
Frank Pronk

Hongbing Li
Gerald Neufeld
Barry Brachman
Terry Cotta
Mike Sample
Mike Sanderson
John Demco
Frank Pronk

Figure 3.7: The key method

Chapter 3. Information Exchange in a Distributed System 52

When site A receives a key file from site B, it needs to find those keys from the key

file whose corresponding entries do not exist in site A's database. The lwd system uses

a feature of DbmStoreQ in tdbm, which allows efficient detection of whether an entry

corresponding to a given key exists in a database. Then the requesting site sends the

non-existing keys to the requested site. After receiving the list, the requested site sends

back the data needed by the requesting site. All requests and responses for information

exchange are implemented in a client-server model, with the requesting site acting as a

client and a receiving site acting as a server. Two sites communicate through T C P / I P .

3.4 Summary

This section discusses issues related to information exchange between different sites.

The goal of the lwd system is to store as much information as possible at one site. This

can make the response time for a user's query very fast. Two methods for information

exchange, the hash method and the key method, were implemented. The hash method

guarantees that all the information requested can be transferred to a requesting site.

However, to get reasonable performance it requires choosing the size of a bit map table

carefully. The key method is more intuitive than the hash method. The disadvantage

is that , in the case of duplicate names, it does not guarantee complete information

exchange.

Chapter 4

Related Work

In this chapter, several important projects and systems related to directory services

are surveyed. Advantages and disadvantages of each system are briefly discussed, in

comparison with the lwd system.

4.1 WHOIS Service

The WHOIS service [Harrenstien85] is a centralized TCP-based Internet directory ser

vice, developed by the SRI Network Information Center (NIC) in 1985. It provides

netwide directory service to Internet users. The WHOIS server is accessible across the

Internet from user programs running on local hosts. It collects and delivers information

about registered DDN users. Such user information includes a user's full name, U.S.

postal mail address, telephone number, and network email address.

The WHOIS system collects user information by means of user registrations. There

fore, it contains information about only a small fraction of Internet users, i.e., those who

53

Chapter 4- Related Work 54

have registered with NIC. This has prevented the system from providing a reasonable

service to meet the demand of Internet white page service.

4.2 X.500 Pilot

The CCITT X.500 [DS88] defines a new OSI application and represents a milestone

in the development of large-scale distributed systems. It provides a specification for

a global on-line directory which holds data to be used to facilitate communications.

It is designed to hold information on "objects" which are of interest in various areas of

communication. Examples of such objects include people (e.g., name, address, telephone

number, facsimile number, and electronic mail address); organizations (e.g., organization

name, address, phone number, telex number, and facsimile number); and OSI application

entities (e.g., name and presentation address).

NYSERNet Inc. implemented a White Pages Pilot Project [Rose89] which is now

managed by Performance Systems International. The project adopts X.500 as the basis

for its prototype implementation. This facility is seen as the eventual replacement for

the WHOIS service [Schwartz89]. X.500 involves a hierarchical collection of servers

running at participating sites, each of which maintains directory information about that

site. Browsing and searching operations are supported. Distributed operation of the

Directory is achieved through a complex combination of protocols and the knowledge of

network nodes known to each component system. Although X.500 is considered to be

an advanced design for distributed directory, it is still under development and needs the

sites' cooperation to run. It is not widely used now because of various constraints such

as resources, and cooperation of organizations.

Chapter 4- Related Work 55

4.3 Profile

Larry L. Peterson at the University of Arizona developed a system called Profile [Peterson88].

Profile is an attribute-based naming service used to identify users and organizations. It

supports queries over general types of objects, based on the Universal Naming Proto

col defined in [Peterson88]. However, Profile focuses its effort more on the structure of

query mechanisms for supporting directory services, and is not expected to be a practical

directory service system available to a wide range of network users.

4.4 Netfind

Michael F. Schwartz et al. at the University of Colorado developed an Internet white

pages directory tool called Netfind [Schwartz89]. The tool does not require the type of

global cooperation many existing or proposed directory services demand. Global cooper

ation usually means running special directory servers at many sites around the Internet.

At present, the tool utilizes information from USENET news messages, the Domain

Naming System, the Simple Mail Transfer Protocol, and the "finger" protocol. Since

they use a very large, administratively decentralized collection of information sources,

such wide distribution increases the number of different failure modes the system can

experience, because of the fluctuations in availability of the Internet and the sites being

searched. For example, some sites disallow "SMTP" or "finger" protocols for security

reasons or privacy concerns.

Chapter 4- Related Work 56

4.5 Knowbot Information Service

Ralph E. Droms at Bucknell University built a tool called a Knowbot Information Service

(KIS) [Droms90]. KIS provides an Internet white pages facility by utilizing existing

sources of information including Profile, WHOIS, the CSNET name server, finger, MCI

Mail, the MIT white pages, and the X.500 Pilot. Since Droms' system is oriented

towards providing a front-end to a variety of different information sources, it provides

a translation between query formats used on different systems. It fulfills user queries

by invoking one, or a combination, of services mentioned above. An advantage of this

system is that it utilizes many information sources and thus has a high success rate in

fulfilling users' query. One disadvantage is that it relies heavily on the global network

and performance of other computing facilities in the network. Therefore, its response

time to user queries is relatively long.

4.6 Comparison of Internet Whi te Pages Facilities

In the Table 4.1, six directory service systems are compared. Some of the data

used in the table is taken from Schwartz's report [Schwartz89]. What follows is a brief

explanation and discussion of each row listed in the tables.

• Query Structure. This refers to support for making meaningful queries. To submit

a query to the lwd system, it is sufficient to provide only a person's name, whereas

other systems require more information such as a hierarchical structure (X.500

Pilot) or a set of keywords (Netfind). The lwd system also provides error-tolerance

to partial names by conducting "approximate matching". This means that the

system may find the correct answer to a query, even if the query uses a misspelled

Chapter 4- Related Work 57

Metric

Query

Structure

Response

Time

(seconds)

Information

Sources

Individuals

Reached

LWD

User name,

partial

names,

soundx

names

1-2

USENET,

EAN,

UBC

Directory

185,569

Netfind

User name

near matches;

wide variety

of

organizational

keywords

3-45

USENET,

Domain

Naming

System,

The Simple

Naming

Protocol,

finger

1,147,000

WHOIS

User name

substrings

8-45

Registration

70,000

X.500_Pilot

Regular

expressions

over typed

fields

14-182

100,000

Profile

Regular

expressions

+ matching

operators

over typed

fields; path

preferences

1-2

Administra

tive Data

5,000

KIS

Regular

expressions

over typed

fields

10-102

WHOIS,

Profile,

X.500 Pilot,

the CSNET

Name server,

finger,

MCI Mail,

the MIT

White Page

390,000

Table 4.1: Comparison of Internet White Pages Facilities

Chapter 4- Related Work 58

name. The complexity of the query structure reflects the complexity of a user

query from a user's perspective.

• Response Time. The response time depends on various circumstances. For the

X.500 Pilot, the low end represents a local query directed to a specific individual,

while the high end represents a query to a non-existent individual by providing a

flattened organization string. For KIS, the low end represents querying a single

fast information source, and the high end represents querying a set of 9 different

information sources. Although the circumstances are different, the numbers in

this row show the significant advantage of the lwd system, which has the quickest

response time. This is due to the fact that the lwd system stores all the information

locally, so queries are performed at a local site which does not need to search for

other resources and rely on network traffic and performance. Numbers in this row

indicate that X.500 Pilot and KIS perform more slowly because of this.

• Information Sources. This row shows the information sources each system is cur

rently using.

• Individuals Reached. This is the number of individuals each system can reach

at the time of the survey. Numbers in this row indicate that the Netfind system

reaches the largest number of users and KIS ranks second. This is because of the

information sources they used (see the row "Information Sources".) Although the

lwd system uses only USENET, EAN and a UBC local directory, it has reached

a reasonably large number of individuals. This row measures an aspect of the

effectiveness of a directory service system.

Chapter 5

Conclusions

5.1 Summary

This thesis presents the lwd system, a distributed directory service system, developed at

the University of British Columbia. The lwd system provides an Internet white pages

service.

Several major issues concerning the lwd system are discussed in this document: Chap

ter 2 presents the lwd system's local site architecture, information collection, organiza

tion and operations for database management and user services. Chapter 3 focuses on

the network-wide architecture of the lwd system, and the methods used to exchange

information among different sites within the system. Chapter 4 briefly surveys several

directory service systems related and compares a few important aspects of such systems

to show the advantages and disadvantages of different systems and techniques used in

implementations of these systems.

The lwd system is implemented in the C programming language and the perl script

59

Chapter 5. Conclusions 60

language. It has approximately 5000 lines of C code, including header files and comments,

and 350 lines of perl code. Up until August of 1993, the database at the UBC site

approximately consists of 185,569 entries. Due to the information exchange mechanism

of the Iwd system, other sites of the system are expected to maintain a comparable

amount of information as well.

From the perspective of system architecture, information exchange mechanism, and

user interface, the Iwd system possesses the following features which make the system

unique in comparison to other systems surveyed in the Chapter 4.

• Simplicity of the system architecture. Although the Iwd system is a distributed

system, it does not require global cooperation, as most of other directory service

system do. Usually such global cooperation is conducted in the form of coordinating

a set of network servers, each of which maintains highly structured information

{e.g. X.500). The Iwd system adopts the strategy of storing all of the white-pages

information locally. This allows all the users' queries to be fulfilled locally, without

cooperation from other sites in the system. This strategy makes the Iwd system

unique and gives it an obvious advantage in terms of response time to users' queries.

Among the systems surveyed in the Chapter 4, the Iwd system performs the best

in this area. Not requiring global cooperation also allows easy installation on other

sites in the system.

• Mechanism of information sharing. To store as much information on each site as

possible, the system provides a mechanism to collect and exchange information

among different sites in the system. Two methods have been implemented sepa

rately to facilitate information exchange between different sites. One method is

the hash method. It guarantees that all information maintained on one site can be

transferred to another. However, to get better performance, it requires choosing

Chapter 5. Conclusions 61

the size of a bit map table carefully. The other method is the key method, which

is more intuitive and easy to implement than the hash method. The disadvantage

of this method is that, if duplicate names exist, it may not be able to transfer all

information to another site.

• Source of information. Currently, the Iwd system obtains network users' infor

mation from three different sources, i.e. USENET, EAN - an implementation of

X.400, and a local directory database operational at the Department of Computer

Science at UBC. However, the architecture of the Iwd system allows easy access to

other sources to obtain as much information as possible.

• Flexibility of query. The system provides a simplified user interface. To submit a

query to the system, a user only needs to provide a person's name as an argument,

thus making queries easier. A user does not need to submit other information such

as organization name. The system also provides some error-tolerance capability

to users' queries by conducting "approximate matches" to user submitted partial

names. This capability allows the system to find the right answer even though it

is given misspelled names.

5.2 Future Work

Future developments of the Iwd system can be done in the following areas, The focus of

the work is to enhance the usability and practicality of the Iwd system.

• Increasing the number of information sources. Currently, the Iwd system collects

information from three different sources. To make the system more effective and

useful, it is necessary to enhance the ability of the system to access information

Chapter 5. Conclusions 62

from other sources, such as those sources accessible to the KIS system.

• Experimenting with the lwd system in a practical "multiple-site" environment.

The current implementation and experimentation of the lwd system is done at the

University of British Columbia. Due to the limit of resource, we are not able to

install the lwd system at any other sites outside of the domain of "cs.ubc.ca". It is

important to create a real multiple-site environment to evaluate and improve the

system.

• Improving the system services to users. For example, the current system provides

addition, lookup, and deletion of entries in a database. Modification of entries

is embedded in the addition operation: if a user wants to modify an entry, he

can use add command to add new properties to a person's entry in the system

without changing other existing properties (recall that add command allows user to

modify properties of existing entries). However, providing a separate modification

operation may make users' access to the database more convenient.

• Security of the system. For safety reasons, it has been suggested that the system

should check a user's privilege before allowing him to delete or modify an entry in

the database. It has also been suggested that the system should keep a record of

modifications made to the database in order to trace sources of intentional damage

to the databases.

• Integrating the lwd system into mail systems. It would be very useful to integrate

the lwd system into a mail system, (e.g., EAN, or the unix mail system), because

the need for the lwd system usually arises when a user intends to send a mail

but does not know the exact email address of the intended receiver. Therefore,

providing a directory service in a mail system will give users convenience and

improve the efficiency of the mail system.

Bibliography

[Peterson88] Larry L. Peterson, "The Profile Naming Service", ACM Transactions on

Computer Systems, Vol. 6, No. 4, 341-364, November 1988.

[Schwartz89] Michael F. Schwartz, Panagiotis G. Tsirigotis, "Experience with a

Semantically Cognizant Internet White Pages Directory Tool", Journal of

Internetworking: Research and Experience, Vol. 2, No. 1, pp. 23-50, March

1991.

[Harrenstien85] K. Harrenstien, M. Stahl and E. Feinler, "NICNAME/WHOIS", Request

For Comments 954, October 1985.

[Rose89] M. T. Rose and M. L. Schoffstall, "An Introduction to a NYSERNet White

Pages Pilot Project", Technical Report, NYSERNet Inc., December 1989.

[Neufeld92-1] Gerald Neufeld and Son Vuong, "An Overview of ASN.l" , IEEE Networks

and ISDN Systems, Vol. 23, No. 5, pp. 393-415, February, 1992.

[DS88] CCITT, "Recommendation X.500, OSI: Specification of the Distributed

Directory System", Data Communication Networks, Blue Book, Volume VIII,

Fascicle VIII.8, Omnicom, 115 Park Str., S.E., Vienna, VA22180 USA, Nov.

1989.

63

[ASN188] CCITT, "Recommendation X.208, Specification of Abstract Syntax

Notation One (ASN.l)", Data Communications Networks Open Systems

Interconnection (OSI) Model and Notation, Service Definition, Blue Book,

Volume VIII, Fascicle VIII.4, Omnicom, 115 Park St., S.E., Vienna, VA22180

USA, Nov. 1989.

[Kernighan88] Brian W. Kernighan and Dennis M. Ritchie, "The C Programming

Language, 2nd Edition", Prentice-Hall, 1988.

[MHS88] CCITT, Recommendations X.400-X.420, Data Communication Networks

Message Handling Systems, Blue Book, Volume VIII, Fascicle VIII.7,

Omnicom, 115 Park St., S.E., Vienna, VA 22180 USA, Nov. 1989.

[Neufeld92-2] Gerald Neufeld, Barry Brachman, Murray Goldberg and Duncan Stickings,

"The EAN X.500 Directory Service", Internetworking: Research and

Experience, Vol. 3, pp. 55-81, 1992.

[Sample93] Michael Sample and Gerald Neufeld, "Implementing Efficient Encoders

and Decoders for Network Data Representations", IEEE INFOCOM '93

Proceedings, Vol. 3, pp. 1144-1153, , March 1993.

[Coulouris88] George F. Coulouris and Jean Dollimore, "Distributed Systems Concepts

and Design", Addison-Wesley Publishing Company, 1988.

[Clark89] David D. Clark, Van Jacobson, John Romkey and Howard Salwen, "An

Analysis of TCP Processing Overhead", IEEE Communications Magazine,

pp. 23-29, June 1989.

[Brachman92] Barry Brachman and Gerald Neufeld, "TDBM: A DBM Library With

Atomic Transactions", Summer '92 USENIX, pp. 63-80, June 1992.

64

[Wu91] Sun Wu and Udi Manber, "Fast Text Searching With Errors", Technical

Report, Department of Computer Science, The University of Arizona,

November 1991.

[AT&T79] AT&T, dbm(3X), Unix Programmer's Manual, Seventh Edition, Vol. 1, Bell

Laboratories, January 1979.

[Berkeley86] Computer Systems Research Group, Computer Science Division, EECS.

ndbm(3), 4-3BSD Unix Programmer's Reference Manual (PRM), University

of California, Berkeley, April 1986.

[Droms90] Ralph E. Droms, "Access to Heterogeneous Directory Services", Proceedings

of the InfoCom Conference, pp. 1054-1061, June 1990.

[Comer90] D. E. Comer and R. E. Droms, "Uniform access to Internet directory

services", Computer Communication Review, Vol. 20, No. 4, pp. 50-59,

September 1990.

[Schwartz87] M. F. Schwartz, J. Zahorjan and D. Notkin. A Name Service for Evolving,

Heterogeneous Systems. Proceedings of the Eleventh ACM Symposium on

Operating Systems Principles, pp. 52-62, Austin, Texas, November 1987.

Published as Operating Systems Review Vol. 21, No. 5.

[Semtaniuk91] Bohdan Semtaniuk, "Distributed operation of the X.500 directory",

Computer Networks and ISDN Systems, Vol. 21, No. 1, pp. 17-40, March

1991.

[Tanenbaum85] Andrew S. Tanenbaum and Robbert Van Renesse, "Distributed

Operating Systems", Computing Surveys, Vol. 17, No. 4, pp. 419-470,

December 1985.

65

[Knuth77] D. E. Knuth, J. H. Morris, and V. R. Prat t , "Fast pattern matching in

strings", SI AM Journal on Computing, Vol. 6, pp. 323-350, June 1977.

[Boyer77] R. S. Boyer and J. S. Moore, "A fast string searching algorithm",

Communications of the ACM, Vol. 20, pp. 762-772, October 1977.

[Wall90] Larry Wall and Randal L. Schwartz, "Programming Perl", O'Reilly &

Associates, Inc., 1990.

[Seltzer91] M. Seltzer and 0 . Yigit, "A New Hashing Package for UNIX", Proceedings

of the Winter Usenix Conference, Usenix Association, pp. 173-184, January

1991.

[Seltzer92] M. Seltzer and M. Olson, 'LIBTP: Portable, Modular Transactions for

UNIX", Proceedings of the Winter Usenix Conference, Usenix Association,

pp. 5-25, January 1992.

[Neufeld85] Gerald Neufeld, John Demco, Brent Hilpert, and Rick Sample, "EAN: an

X.400 message system", Computer Message Systems, IFIP, pp. 3-15, 1985.

[Yigit90] 0 . Yigit, "sdbm - Substitute DBM or Berkeley sf ndbm for Every UN*X Made

Simple", sf sdbm source distribution, Dec. 1990.

[Tanenbaum88] Andrew S. Tanenbaum, "Computer Networks, 2nd Edition", Prentice-

Hall, 1988.

66

Chapter 7

Appendix A

LWD(l) USER COMMANDS LWD(l)

NAME

lwd - light weight directory

SYNOPSIS

lwd [name]

DESCRIPTION

lwd allows users to lookup a person's email address by
specifying the person's name.

Users have multiple choices for submitting different forms
of a person's name. A person's full name, first name, last
name or a regular expression are all valid forms.

In addition to a person's email address, lwd will supply
other properties such as telephone number, organization and
address about a given name. Currently, however, most of
entries in the database don't have such information.

An lwd command with a name argument provides the person's

67

Appendix A 68

email address and possibly other related information.

MESSAGES

lwd will possibly supply other messages, described below,
for a given name if it fails to find the requested email
address.

Matched names
If you provide a person's first name, last name,
or a regular expression, a group of matched names
are returned. You can then use one of the names to
get that person's email address.

No name matched
There is no information related to the person in
the database. A group of approximate matching
names are returned then.

Enclose regular expression in single quotes
For a regular expression, one should always
enclose the entire pattern argument in single
quotes, i.e., 'pattern'. This avoids characters,
which cause unexpected results when included in an
unquoted pattern, since some characters may also
be meaningful to the shell.

A regular expression is written the same as for
agrep. Please see the manual page for agrep for
more information related to regular expressions.

Unmatched '
There is no matching single quote for a regular
expression.

Sun Release 4.1 Last change: 31 Jan 1993 1

Appendix A 69

LWD(l) USER COMMANDS LWD(l)

EXAMPLES
example'/ lwd Hongbing Li

Email= =lihong@cs. ubc. ca

example0/ lwd
Enter name: Gerald Neufeld

Email5 =neufeld@cs .ubc .ca

example'/olwd
Enter name: 'neuf[a-z]*'

Matched names:
andrew neufeld
Christopher neufeld
eric neufeld
gerald neufeld
kathryn neufeld

DEPENDENCIES
lwd uses tdbm and the functions it provides to establish,
maintain and operate on a database, tdbm is a dbm database
with nested atomic transactions. It was developed by Barry
Brachman in the Dept. of Computer Science of UBC.

FILES
/cs/public/bin/lwd
/cs/public/generic/src/network/lwd

SEE ALSO
whois(l), agrep(l)

BUGS
This is the first release of lwd. Any bug reports, comments
or suggestions are ALWAYS appreciated. Please email them
to the authors.

Appendix A 70

AUTHOR
Hongbing Li <lihong@cs.ubc.ca>
Gerald Neufeld <neufeld@cs.ubc.ca>

Sun Release 4.1 Last change: 31 Jan 1993 2

mailto:lihong@cs.ubc.ca
mailto:neufeld@cs.ubc.ca

Chapter 8

Appendix B

/ *
* From sdbm, an ndbm work-alike hashed database library
* Author: oz@nexus.yorku.ca
* Status: public domain.
*

* polynomial conversion ignoring overflows
* [this seems to work remarkably well, in fact better
* than the ndbm hash function. Replace at your own risk]
* use: 65599 nice.
* 65587 even better.
*

* [In one experiment, this function hashed 84165 symbols (English words
* plus symbol table values) with no collisions. —Barry Brachman,

* Department of Computer Science, UBC]
*/
u_long
sdbm_hash(str, len)
char *str;
int len;
{

register u_long n;

n = 0;

#define HASHC n = *str++ + 65587 * n

#ifdef NODUFF
while (len—)

71

mailto:oz@nexus.yorku.ca

Appendix B

n = HASHC;
#else

if (len > 0) {
int loop;

loop = (len + 8 - 1) » 3;
switch (len & (8 - 1)) {
case 0:

do {

case 7:
case 6:
case 5:
case 4:
case 3:
case 2:
case 1:
} while

HASHC
HASHC
HASHC
HASHC
HASHC
HASHC
HASHC
HASHC,
(—loc >p);

}
}

#endif
return(n) ;

