
POST-PROCESSED SHADOW DETERMINATION

FOR

COMPOSITION OF DEPTH IMAGES

By

Russell W. Krywolt

B. Sc. (Computer Science) University of Lethbridge

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

COMPUTER SCIENCE

We accept this thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

October 1993

© Russell W. Krywolt, 1993

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at

the University of British Columbia, I agree that the Library shall make it freely available

for reference and study. I further agree that permission for extensive copying of this

thesis for scholarly purposes may be granted by the head of my department or by his

or her representatives. It is understood that copying or publication of this thesis for

financial gain shall not be allowed without my written permission.

Computer Science

The University of British Columbia

2075 Wesbrook Place

Vancouver, Canada

V6T 1Z1

Date:

1 5—^i cict.

Abstract

In the creation of computer generated pictures, many methods have been proposed to

reduce the amount of time it takes to render an image or sequence of images. Efforts

have been made to improve existing rendering algorithms and to create better ones, but

the compositing method has received little attention. The compositing method breaks a

scene up into parts which can be rendered separately which are then put together in such a

way that the result is nearly indistinguishable from an image rendered from the complete

scene. This can not only reduce the total time taken to generate an image sequence, but

can also create composite images from others rendered by different methods. In 1984,

Porter and Duff first introduced a well defined approach to computer image composition,

and in 1985, Duff proposed an extension to the this method that employed depth images.

Using depth images, visibility determination can be done by the computer, reducing the

human effort required to produce the resultant image. The images produced are likely to

be missing some elements that would be present if all objects were rendered in a single

scene, such as shadows from objects in one image not being cast on objects from other

images.

This thesis addresses the problem of modifying composited images such that the

resultant picture contains shadows that would normally only be present in an image

rendered from a scene containing all objects in both original pictures. A simple algorithm

is developed to reconstruct the visible surface of objects in an image. The reconstruction

is used to generate a shadow map for each image to be composited. The shadow map

indicates where shadows would fall on one image were objects in the other image present

when the original scene was rendered. The shadow map is then used to create shadows in

11

appropriate places on the original images, and these reshadowed images are composited

to obtain the desired result. The application of these techniques to other areas is also

investigated.

111

Table of Contents

Abstract

List of Figures^ vi

Acknowledgement^ viii

1 Introduction^ 1

2 Background to Image Composition^ 8

3 Enhancements to simple depth composition^ 14

3.1 Compositing with centre sampled pixels ^14

3.2 Generating antialiased images for composition ^18

3.3 Compositing pixels with equal depths ^ 22

4 Visible surface reconstruction^ 26

4.1 Simple surface reconstruction ^28

4.1.1 World coordinate retrieval ^28

4.1.2 Surface construction from world coordinates ^31

4.2 Image segmentation ^ 35

4.2.1 The ideal solution ^36

4.2.2 Possible approaches ^36

5 The reshadowing process^ 40

5.1 Creating the shadow map ^ 40

iv

5.2 Filtering the shadow map ^ 42

5.3 Using the shadow map ^ 44

5.4 Reshadowing already shadowed images ^ 45

6 Other applications and extensions^ 49

6.1 CAR - Computer Augmented Reality ^ 49

6.2 What now? ^ 54

7 Conclusions^ 56

Bibliography^ 58

A Depth Files^ 62

A.1 Optik depth files ^62

A.2 Other uses of depth files ^64

List of Figures

2.1 Table of 2D compositing operations from [port84] ^10

3.1 Division of pixel into four triangles and related depth values given by the

dots at the corners ^15

3.2 Division of center sampled pixel into eight equal areas with associated

depth values ^17

3.3 Sampling values within a single pixel ^19

3.4 A red cube composited with a gray sphere. The first image shows the

overall appearance, the second shows a magnified section where colour

sampling problems appears 21

3.5 Pixels partially covering a square polygon with sampling at the lower left

corner ^21

3.6 The red cube and gray sphere from figure 3.4, but with proper depth

sampling used ^ 22

3.7 Interpenetrating squares of differing colours ^23

4.1 Reshadowing problems created by not segmenting images before perform-

ing surface reconstruction ^ 27

4.2 Viewing vectors for the scene ^ 29

4.3 Vectors for calculating world coordinates ^ 30

vi

4.4 Reconstructing four triangles in one pixel from corner sampled depth data:

black circles are known depth data, they grey circle is the interpolated

depth data ^ 32

4.5 Reconstruction of triangles for centre sampled depth data: black circles

are known depth values, grey circles are interpolated depth values, arrows

show which known values contribute to the interpolated values ^33

4.6 Edge problems when reconstructed objects slope sharply away from the

camera. Original view is on the left, 90 degree rotation on the right. . . .^34

4.7 Edge problems for sharply sloped objects. Left shows standard reconstruc-

tion, right shows reconstruction where sampled depth values are assigned

to all parts of the pixel. ^35

4.8 Original image ^37

4.9 Associated depth map shown as greyscale ^ 38

5.1 A shadow map created by the modified raytracer ^ 42

5.2 A shadow map after filtering has been performed ^ 43

5.3 The result of applying a weighted filter to the shadow map ^ 44

5.4 Rendered and composite images of the same scene. The rendered image

is on the bottom ^ 46

vii

Acknowledgement

I would like to thank my supervisor, Alain Fournier, for providing many interesting

problems for me to work on, and for his understanding when I spent time on problems

and procedures not related to my thesis. In spite of having many demands on his time,

he was always able to assist me when necessary. My thanks to David Forsey, not only

for being my second reader, but also for encouraging me to explore all of the aspects

of computer graphics that I found interesting. I would especially like to acknowledge

the work and effort put in by everyone in the Computer Science Department in order to

create the pleasant and relaxed research atmosphere of which I have become so fond.

Russell Krywolt

October 1993.

viii

Chapter 1

Introduction

The generation of computer created images has always been limited by the speed at

which such pictures can be rendered. While improvements in hardware have reduced

the time it takes to render an image by orders of magnitude, the scenes that are being

created today are vastly more complex than those made even five years ago. As a result,

the increased computing power is being used to its fullest, and the average rendering

time for a typical scene today has not been reduced in proportion to the speed increase

of computers, and has remained fairly constant for those images with a high complexity.

Since the trend of creating more complex images as faster hardware becomes available is

likely to continue into the foreseeable future, computer graphics researchers have turned

to other methods to attempt to reduce rendering times. These efforts can be grouped into

two general categories, the first being developing algorithms and strategies to reduce the

computational complexity of rendering a scene or series of scenes, and the second splitting

the rendering effort into parts, rendering only those portions of the scene that change

with time, and then compositing, or assembling the parts of the images into a coherent

whole. The second method is obviously better suited to creating series of images that

are temporally related (an animation) rather than single pictures, while the first method

can be applied to both still frames and animated sequences. It is for this reason that

most of the effort put into decreasing overall rendering times has been directed towards

reducing the number of calculations done by a computer.

1

Chapter I. Introduction^ 2

Despite the drawbacks of the compositing method when applied to single images,

animation rendering times may be greatly affected. Since in many animations there is a

considerable amount of the image that remains static as time progresses, the computer

need only render the unchanging portion (or background) of the animation once, storing it,

rendering the parts of the scene that change from one frame to the next, then compositing

the two portions together on a frame by frame basis to produce the animation. This

method is best illustrated by looking at any of the Walt Disney classic animated films,

such as Snow White and the Seven Dwarves, Pinocchio, and others. In these films, vast

and elaborate backgrounds were painstakingly created. Trees were painted in such detail

that veins on leaves could be clearly seen, and features of other background elements were

similarly detailed. The animated characters were then created a frame at a time on clear

celluloid, called and animation cell. Each cell was then placed over the background in

the proper position, and photographed to create a single frame of film. Similarly detailed

foreground cells could be placed over the background and character if needed, creating a

multi-layered scene where the motion was restricted to few cells in different layers. This

process allowed the animation to be done much faster than if all the objects in every

frame were repainted each time, as well as letting the artists create much greater detail

in the background than would have been otherwise possible.

Another use for compositing is to form a single image from several images rendered

by different processes. General purpose modeling and rendering software packages are

based upon established algorithms, and are thus not often useful in a research environ-

ment. Current research can produce innovative modeling or rendering methods that just

cannot be done with commercial software. Most often these creations are of a singular

nature, that is, they are small pieces of software only intended to illustrate new ways

of doing things. Many times the results of this research will somehow be used by other

research based software, or perhaps by commercial software. As an example of this,

Chapter 1. Introduction^ 3

the hierarchical B-spline surface modeler used in [fors88] has proven to be such a useful

modeling tool that it is often used at Imager, the computer graphics laboratory at the

University of British Columbia, to create objects that are then exported to a commercial

animation system. This is done by approximating the B-spline surface by a triangular

mesh. While this mesh representation is fairly accurate, it is not perfect, and meshes of

even simple B-spline objects can be large, slowing down both the modeling and rendering

of the commercial software. Depending on the use of the B-spline surfaces, in many cases

it would be easier and more accurate to render the B-spline object without having to

convert it to a triangular mesh, and then composite it into an image rendered from the

scene created by the commercial package. This use of the compositing technique would

allow the creation of complex images that would otherwise be difficult to make.

The first attempt to systematize the application of this method to computer graphics

was reported by Porter and Duff in 1984 [port84]. They took the multi-layer approach

of Disney and applied it to computer graphics, enabling animators to render those parts

of an animation that could be considered to belong to the same layer, if they were cells,

render them separately, and then merge them such that the each rendered frame (from

the 'top' layer down) obscured the one below it, but only where pixels held interesting

information 1. In order to enable the computer to decide what information in a frame

was considered important, Porter and Duff used what they termed the alpha channel or

a-channel, which is the computer analogue of the matte signal used in video compositing.

The a-channel can be thought of as a separate image of the same size as the original,

but having a white pixel at the same coordinates as the image for a pixel that contained

interesting information, and a black pixel where the image had no important colour

information. The a-channel value could also take on intermediate values between 1

'Interesting information in this case refers to any area of the frame the animator decided was impor-
tant, whether it contained colour information or not

Chapter 1. Introduction^ 4

(white) and 0 (black) to indicate a transparency or partial coverage of a pixel in the

original image. If a pixel with an intermediate a value was composited over top of

another pixel, the resultant image would contain a pixel that was a blend of both pixel

colours, with the upper pixel contributing a times its colour, the lower (1 — a) times its

colour. Porter and Duff also defined several other compositing operations not normally

used in cell animation, such as all boolean combinations of images (and, or, not, xor,

etc) as well as other operators that combine the upper and lower layers in various ways.

These operations, however powerful, are not always adequate. For example, if a moving

character is supposed to be weaving in and out of various parts of the scene, many layers

had to be constructed, and their operations specified exactly, in order to get the right

look and feel for the final animation. This time consuming process would be simplified

if all of the static portions of the animation could be rendered at once, rather than in

layers, and have the moving parts of the scene composited into it, with the computer

taking care of any visibility problems. This can be done using a modified version of

the popular Z-buffer visibility determination algorithm, as illustrated by Duff in [duff85].

Duff's method requires that for each pixel in a rendered image, a corresponding depth

value is stored. This depth value represents (in some form) the distance the pixel is

from the eye plane. When compositing images, the depth information of corresponding

pixels in each image is compared, and the pixel with the smallest depth is displayed in

the resultant image. This allows parts of animations to be composited easily, with some

increase in storage.

While this method provides an easy way to composite images without much user

intervention, the images produced can lack some elements that would be present if the

models of the two scenes were combined and then rendered. In many cases, if a scene

was rendered all at once, shadows from some objects would fall on other objects, but if

these shadowing objects were rendered separately from the rest of the scene and then

Chapter 1, Introduction^ 5

composited, those shadows would not appear in the resultant image. Likewise, reflections

present in a rendered image may be absent in a composited image. This thesis will focus

upon the former problem, presenting a solution that will allow the reshadowing of images

to occur when compositing to give the composite image the same shadows as would

appear in a rendered image of the same scene.

When considering the complete reshadowing problem, many aspects of it must be

solved before a complete solution is achieved. Because the scope of this thesis is insuffi-

cient to offer a complete solution to each and every aspect of the general problem, some

restrictions are placed on the images to be reshadowed and composited. When solutions

to the various problems that necessitate the restrictions are found, the restrictions can

be removed and the techniques described in the thesis can be directly applied to help

solve the complete problem.

The difficulty of discerning what objects are present in a scene (detailed in Chapter 4)
gives rise to the first restriction. If two images are to be reshadowed such that shadows

from one scene are to fall on the other, but not vice versa, then the scene that is causing

the shadows must be made up only of non-occluding objects, but the other may be of

arbitrary complexity. If the reshadowing is to be mutual, then both images must contain

only non-occluding objects 2. The second restriction on images is that all must have the

same viewing parameters (such as image dimensions, eye position, eye roll angle, and

such). The last restriction requires that all lighting parameters be the same (that is,

number of lights, position, colouration etc.).

Since the initial restriction placed on the images has two cases, the outline of the

solution is slightly different. In the first case, where only one image is used to reshadow

2Consider the case where a ball moves above a plane such that the ball never occludes the plane, but
casts a shadow. If the ball and plane were two separate images that were to be reshadowed, only the
image of the plane need be reshadowed. Again, please see Chapter for a complete explanation of why
this is necessary.

Chapter 1. Introduction^ 6

the other, it is first necessary to get some notion of the original three-dimensional shape

of the objects in the restricted (non-occluding) scene. To do this, world coordinates for

each visible pixel of every object are retrieved using the stored depth data and existing

ray-tracing techniques. These world coordinates are used to create a simple triangulated

description of the visible surface of each object. Once this surface description is created

it is passed to a modified ray-tracing renderer. If there are no problems with the recon-

struction, a shadow map is created by the ray-tracing software. This shadow map is an

image with the same dimensions as those being reshadowed but with all pixels having

a full white value. The world coordinates of each visible pixel in the other (arbitrarily

complex) scene are retrieved by the same method as used in the non-occluding scene,

but without reconstruction. From each of these coordinates, the ray-tracer sends a ray

to each light in the scene (since the assumption is that light positions are known). If any

ray intersects a triangle in the reconstruction of the non-occluding image, a black pixel is

placed in the shadow map at the same location as the pixel (from the arbitrarily complex

image) whose world coordinate was the origin of the ray. The shadow map is filtered to

smooth sharp intensity transitions, and overlaid on the arbitrarily complex image. This

overlaying causes pixels in the image to have their intensity reduced in proportion to

the amount of black present in the corresponding pixel of the shadow map. This is the

actual reshadowing step, and once performed, the two images are composited (using the

modified depth composition method discussed in Chapter 3) to give the final result.

The second case is solved in a similar manner, but the process is repeated for both

images. Thus, the first image is initially treated as the complex image (even though it is

not), and reshadowed. The images then reverse roles, the second image is reshadowed,

and the images are composited.

Both methods of solution are discussed in detail in this thesis, and the results of

their implementations are presented. The more difficult problems facing the solution of

Chapter 1. Introduction^ 7

the general case are discussed, but not implemented. Applications of this technique to

the merging of real video and computer generated images are also discussed, along with

related work currently being undertaken. Conclusions are made about the suitability

of the developed methods to the general problem, and directions for future work are

outlined. Finally, other applications of the depth compositing algorithms, along with

other uses for depth images, are discussed and implemented. It should be noted that

all of the steps mentioned previously are implemented as separate programs. While

this makes the process more cumbersome than if everything was automated, it allows

flexibility in the choice of other methods that may be implemented and tested with the

system. Also, should any other uses be found for the parts of the reshadowing process,

it enables easy exporting of the desired results without having to rewrite a large section

of a big program.

Chapter 2

Background to Image Composition

The use of image composition techniques in computer graphics has evolved for a number

of reasons. Composition provides a simple way to reduce the total time taken to produce

an animation by allowing static parts of an animation to be rendered only once, and

having the moving components rendered as needed, then put together to make the final

scene. Using image composition, it is also possible to combine images rendered using dif-

ferent methods into a coherent whole. Since many tools that exist for specific purposes

do not work in conjunction with complex general purpose renderers (or other tools), com-

position allows effects from all of these sources to be combined in an image or animation.

Computerized image composition also mimics the sophisticated (and sometimes expen-

sive) video composition tools used in video post-production, allowing computer artists

and animators access to the effects without having to purchase separate equipment.

While image composition has been in use for a long time in the film and video indus-

try, most people who wished to do computer compositing ended up writing specialized

software to do specific tasks. In 1984, Thomas Porter and Tom Duff put forward an

explicit method for compositing computer generated images ({port841). This method

relied upon the use of the a-channel. The amount by which an object covers a pixel is

determined by the a value of that pixel. If pixel p in image a had an a value of 1, p

would be completely covered by this object. If p in a had an a value of 0, then no objects

would cover that pixel. Likewise, if the a value of p were between 0 and 1, the pixel

8

Chapter 2. Background to Image Composition^ 9

would be partially covered by some object, and the ratio of covered to uncovered pixel

area would be cea/(1 — aa). When compositing a pixel from image b with the pixel p in a,

Porter and Duff make the assumption that the object partially covering p in b will cover

the object partially covering p in a by the ratio ab/(l — at), since if the pixel coverages

from a and b were simply added, it would be possible to get a values of greater than one.

The a value of a pixel is also used when that pixel is fully covered by an object that is

semi-transparent, with a indicating the amount of the background colour that is blocked

by the pixel, while (1 — a) is equal to the amount of the background colour allowed

through the pixel. While this dual interpretation of the a value may not seem proper,

Porter and Duff show that they are equivalent for compositing purposes. Emphasis is

placed on the multiplication of the actual colour information by the a information for

each pixel before compositing so that the alpha value of the resulting composite pixel

can be used directly to determine its colour. If this is not done, other, more complex

manipulations would have to be performed at a later stage in the compositing process.

Using this information, Porter and Duff define operations to be performed when corn-

positing pixels. These operations are summarized in the figure 2.1 (for a corresponding

pixel in image a and b, and colours rgba and rgbb respectively).

From figure 2.1, the operation of x over y means that the output pixel will be covered

as if x was placed in the foreground over y. Likewise, x in y means that portion of x

that would be obscuring a portion of y, were they composited using the over operator.

The operator x out y results in that part of x being shown that would not cover y if the

over operator was used. Using x atop y is equivalent in coverage to using x over y and

subtract the coverage given by x out y. Similarly x xor y is the same as taking x over

y, then removing the portion covered by x in y. To get the colour of the output pixel,

the rgba value is multiplied by Fa and added to the colour obtained by multiplying rgbb

by Fb. The final a value is obtained by adding Fa to Fb.

Chapter 2. Background to Image Composition^ 10

Figure 2.1: Table of 2D compositing operations from [port84]

Chapter 2. Background to Image Composition^ 11

This approach is conceptually similar to the way the Disney multiplane camera works

({levo771), where every image is treated as a layer in the compositing step. Thus to create

an image where an object is interpenetrating another object, the images involved must

be constructed in such a way that when composited, the result looks correct. The extra

effort in designing the scenes for composition was both time consuming, and not easily

done for some rendering software. To circumvent this extra work, Duff ([duff85]) put

forward a way of compositing images so that the computer performs the object visibility

calculations. The modified Z-buffer algorithm requires that some extra information be

stored with the colour and alpha information of the image. For every pixel in the image,

the depth value of that point (or the distance from the eye plane) is stored and used

for visibility calculations. Given two images x and y, with depth values zx and zy, and

colour and alpha values rgbax and rgbay at pixel location p, the pixel that has the

smallest depth value is found by comparing zx to zy, and using the smaller value. The

pixel with the smaller depth value than becomes the foreground pixel, (denoted by f),

and the other the background pixel (or pixel b). If the depth values are equal, Duff

chooses the pixel from the first input image as the foreground pixel, and the pixel from

the second input image as the background pixel. The depth value of the output pixel

is the depth value of the foreground pixel, while the colour of the output pixel is given

by 0(f over b) (1 — 0)(b over f), where l3 is the fraction of the pixel covered by an

object in f 1. This method provides a very good way of creating one image from multiple

input pictures with little effort. Some of the problems that show up in two-dimensional

image composition, specifically those lighting effects not common to all input images,

or those that the viewer would expect to see in a real scene but do not show up in a

composited image (shadows, reflections, and other object-dependent light interactions),

are still evident in the three-dimensional image compositing result.

'This is put in context of this thesis and explained more in Chapier 3

Chapter 2. Background to Image Composition^ 12

Much use has been made of the compositing method of [port84]. Almost every major

production animation system in use today has a two dimensional image composition

system capable of performing many useful operations on image sequences, such as cross

dissolves, wipes, and so on, in addition to the basic compositing operations. Many

of these animation package also include a three dimensional composition system based

on [duff85], although most do not extend the method as done with two dimensional

compositing. Some research has been done into other uses of the image composition

technique, both in hardware and software.

Nakamae, Ishizaki, Nishita and Takita ([naka89]) proposed a way to render portions

of an image separately and then use a three dimensional composite to correctly merge

them into a single picture. Their hope was that by raytracing only those portions of the

image where raytraced effects were desired and using scanline methods on the rest, that

the rendering time for images would be reduced. While their method produced com-

posite images nearly indistinguishable from singly rendered images of the same scene,

the time component of their method, as was stated in their goal, was not analysed. An-

other rendering compositing method was presented by Jahami and Beigbeder in [jaha91].

Hardware implementation of compositing has been investigated for some time. Molnar,

Eyles and Poulton ([moln92]) developed the PixelFlow system, a custom designed hard-

ware architecture for image generation using image composition methods to combine

various image elements produced by a network of hardware renderers. Mark Green and

Chris Shaw ([shaw901) described a parallel architecture for performing the three dimen-

sional compositing in [duff85]. They designed a pipelined VLSI chip to implement the

algorithms described by Duff. Earlier, Booth, Forsey and Paeth investigated hardware

assistance and acceleration to the Z-buffer algorithm in [boot86]. Shaw and Green have

also done other work on hardware composition, as described in [shaw89]. Other uses

of compositing, and methods of doing it have been investigated by Nakamae, Harada,

Chapter 2. Background to Image Composition^ 13

Ishizaki, and Nishita in [naka86], as well as Foley and Kim ({fole87]). Compositing pro-

cesses and systems have been looked at by Potmesil and Hoffert (FRAMES - [potm87]),

and Nadas and Fournier (GRAPE - [nada87]). Variants of the Z-buffer algorithm have

been developed by Salesin and Stolfi (the ZZ-buffer - [sale90]) and Haeberli and Akeley

(the Accumulation buffer - [haeb90]).

While the various software and hardware methods of compositing have been useful,

this thesis concentrates on the Duff method of [duff85]. The modifications made to the

Duff three dimensional composition algorithm will be detailed in following chapters along

with methods to use the depth data to assist in reshadowing composited images.

Chapter 3

Enhancements to simple depth composition

This chapter presents some modifications of the fairly robust method presented Duff

in [duff85] that will improve the results. Three main areas of the Duff method can be

examined. First, the output produced by a raytracer should be modified to calculate

depth and colour at the centre of the pixel instead of at the lower left corner. Secondly,

the generation of antialiased images and the related depth values are only discussed briefly

in the Duff paper, but the methods to produce these should be more rigidly defined due

to problems that arise when calculating depth for antialiased pixels. Also, the method

given does not deal explicitly with compositing two pixels that have the same depth value.

While this problem is not too serious when compositing single frames, it can result in

some temporal aliasing problems when an animation is being produced.

3.1 Compositing with centre sampled pixels

In order to composite depth images, it is necessary to determine which pixels of each

image should be displayed in the output image. This is done by comparing the depth

value of corresponding pixels in each input image, and outputting the pixel with the

smallest depth value. While this may seem sufficient, in practice the point sampled

nature of the images will result in colour aliasing in the output image. These problems

are overcome by averaging colour values of pixels in each input image based on the pixel

depth values.

14

Chapter 3. Enhancements to simple depth composition^ 15

Figure 3.1: Division of pixel into four triangles and related depth values given by the
dots at the corners

In [duff85] depth and colour values are assumed to have been sampled from the lower

left corner of the pixel. While it is true that many renderers do this, an equal number

sample from the centre of the pixel, and this creates a more complex situation than Duff

presents. When the pixels in the image are sampled in the lower left corner, the values

at every corner of every pixel are known 1. This allows us to divide up the pixel into

four triangles, each covering one-fourth of the pixel, and each having the depth value of

the associated pixel corner (figure 3.1). By looking at the corners of the corresponding

pixel in each composited image, it can be determined which pixel is nearer the camera,

and thus which should be displayed in the final image. Given two images a and b and

the pixel at location p in each image, if all four corners of p in image a have a smaller

depth value than the corners of pixel p in image b, or all corners of p in b have a smaller

depth value then all corners of p in image a, the output pixel of the composite image

is taken directly from the appropriate input image. If, however, some corners of p in a

lExcept for the top and rightmost rows, which is why Duff stores an extra row of pixels off the top
and right

Chapter 3. Enhancements to simple depth composition^ 16

are closer to the camera than in b, and some in b closer than in a (what Duff terms a

confused pixel), the output pixel colour must reflect this mix, and so should be a blend

of the pixel colours in a and b, proportionate to the amount of p that the pixels from

each image cover. This method can be thought of as performing colour filtering using

the depth data to determine the filter effects. For corner sampled images then, the filter

used is not symmetric around the origin point.

Compositing with centre sampled pixels is done in much the same fashion, but some

calculations must be modified, since for each pixel there is no knowledge about the depth

at the corners. In keeping with the Duff method, consider two centre sampled images, a

and b, and a pixel of interest at location p in each. Since p has eight neighbours, and the

depth value at p is known only in the centre, the depth value of the neighboring pixels can

be used as the depth at the appropriate place in p. If the pixels surrounding p are labeled

from 1 to 8, as shown in figure 3.2, the depth values at the corners of p are the same as the

depth values at pixels diagonally opposite p at the corner and the depth values at the sides

of pixel p are the same as the pixels that share that side with p. With this interpretation,

nine polygons of equal area can be constructed such that they cover p completely, each

having the same depth value as the appropriate part of p (see 3.2). Using this, we can

compute the portion of the pixel covered by a, by taking the ratio of polygons in p covered

by a and dividing by the total number of polygons in the pixel, in this case, nine. If this

amount is 13, the output pixel will have rgba = 13(a over b) -F (1 — 0)(6, over a), with the

depth value equal to the minimum depth value of a and b, where over is the operator used

in [duff85]. As stated previously, this method can be thought of as a filtering operation

using the depth data to determine the resultant colour information. The main difference

between this and the previous filter is that this one is symmetrical around the origin.

As may seem obvious, it would be possible to use the original Duff filter (or compositing

operation) to composite centre sampled images, using the centre sampled points in place

Chapter 3. Enhancements to simple depth composition^ 17

1
^

2
^

3

4 E-
^ 5

6
^

7
^

8

Figure 3.2: Division of center sampled pixel into eight equal areas with associated depth
values

of the appropriate corner sample. Due to the methods used to produce antialiased colour

information, this approach is not desirable, since elements present in all surrounding

pixels may have already contributed to the colour of the pixel being composited. Filtering

in the manner of the Duff paper takes only three surrounding pixels' information into

consideration, while ignoring seven others that may contain information that should be

reflected by the pixel being composited.

The original algorithm provides a simple means to prevent colour aliasing in compos-

ited corner sampled depth images, and is equally effective in dealing with centre sampled

images with the modifications presented in this section. It should be noted that in either

case, the filtering is independent of the order which images are composited, thus depth

compositing a over b is equivalent to depth compositing b over a.

Chapter 3. Enhancements to simple depth composition^ 18

3.2 Generating antialiased images for composition

Differing methods of generating antialiased images can produce odd effects when images

are composited together. In [duff85], no constraints are given for antialiasing methods

that will produce consistent results when images are composited. This section looks into

the cause of the problems and presents a simple way of eliminating them.

Antialiasing provides a way of masking, or even eliminating, problems in images and

image sequences caused by the discrete nature of computer generated pictures, and many

papers have dealt with methods for doing this ([crow77], [crow81], and many more, with

a good summary of antialiasing methods given in [fole90]). When dealing with single

images, the most apparent effects are jagged edges on colour or object boundaries. These

jaggies, as they are often referred to, result from the space and colour quantizing of

the computer's display hardware. For example, when rendering a polygon, if part of a

pixel in the image is covered by an edge of the polygon and part is not, there is no way

of dividing up the pixel so that one part displays the colour of the polygon, while the

other displays the background colour. To overcome this, most antialiasing methods use

an over-sampling approach. When rendering a scene, many samples of colour are taken

within the area of a pixel. The colours obtained by each sample are then combined to give

the final colour of the pixel (call this p) in the image. Thus, as in the previous example,

if the polygon colour (call this P) is found in m samples, and the background colour (B)

is found in n samples, the colour of the pixel in the image would be (Pm+ Bn)/(m+n).

This pixel is also given an a value representing the ratio of m to the total number of

samples (figure 3.3), to be used for compositing purposes.

Antialiased pixels solve one problem, but bring about another when during composit-

ing ([fium83] and [carp84]). Considering the previous examples, it is not easy to see

what the depth value for the pixel p should be. Since the multiple sampling method

Chapter 3. Enhancements to simple depth composition^ 19

a

a) pixel
b) polygon crossing part of pixel
c) sample point

Figure 3.3: Sampling values within a single pixel

Chapter 3. Enhancements to simple depth composition^ 20

of antialiasing works so well on colour values, it might be tempting to use it to try to

resolve the depth value problem. Taking the average depth value of all the samples is

dangerous, however, since the average value may not be at all representative of the colour

value and its association to other pixels. If the depth of the polygon is D and the depth

of the background I (consider this the largest value possible, representing the lack of

any depth information - see Appendix A), the antialiased depth of the image pixel would

be (Din + In)/(m n), as in the colour antialiasing, falling in between the polygon of

interest and the background. Now consider that another image is composited such that

the depth value of the second image at p would place it in behind the polygon with depth

D. Because of the averaging done on the depth from the first image, p from the second

image would have less depth than p from the first image. The pixel colour displayed in

the resultant image will be the colour of p from the second image, using the compositing

algorithm. When looking at the resultant image, jaggies at the boundary of p will be

noticeable, since p carried antialiased colour information from the polygon in the first

image that was lost upon compositing because the depth value at p did not accurately

reflect the relationship of p to the polygon. An illustration of this is given in figure 3.4.

To prevent the above situation, the depth of p must be taken to be the least depth

of all the samples. If the depth value used is always a specific sample from the m n

samples taken, more problems can occur. If two pixels p and q are on opposite sides of

a square polygon as in figure 3.5, and the sample that is always chosen is taken at the

lower left corner of the pixel, the depths of p and q will be different even though one

would expect them to be the same. The solution to this problem is to take the minimum

value from all the samples in a pixel. This ensures that the colour and depth data are

related to the polygon which the antialiased pixel partially covers. Sampling problems,

while not eliminated, are reduced since the method will return a consistent result for

pixels that are partially covered by objects.

Chapter 3. Enhancements to simple depth composition^ 21

Figure 3.4: A red cube composited with a gray sphere. The first image shows the
overall appearance, the second shows a magnified section where colour sampling problems
appears

Figure 3.5: Pixels partially covering a square polygon with sampling at the lower left
corner

Chapter 3. Enhancements to simple depth composition^ 22

Figure 3.6: The red cube and gray sphere from figure 3.4, but with proper depth
sampling used

3.3 Compositing pixels with equal depths

One problem that arises when compositing depth images is that corresponding pixels may

have equivalent depths 2. This occurs when two objects in the images to be composited

interpenetrate in the final image. As an example, consider image a, a red square, and

image b, a blue square, arranged such that when the images are composited, the resultant

image has the blue square and the red square intersecting at a forty-five degree angle

(shown in figure 3.7). If a pixel p has the same depth in both images a and b, then it

lies on the surface of the red square at the point where it intersects the blue square. The

colour of point p in the composite needs to be determined.

Using the Duff algorithm, the pixel of interest (assuming it is opaque) would have a

resultant colour the same as the pixel in the first image, in sequence, to be composited,

modified by the compositing operation. Because the compositing operation acts as a

2Equivalent, in this context, means that the depths of the two pixel are equal within some user defined
tolerance E.

Chapter 3. Enhancements to simple depth composition^ 23

Figure 3.7: Interpenetrating squares of differing colours

Chapter 3. Enhancements to simple depth composition^ 24

filter for the depth values, it is unlikely that this choice of pixel will cause colour aliasing

to appear. For example, consider a single row of pixels in two depth images where the

depth values in the first image are increasing, the depth values in the second decreasing,

and the depth values equal at pixel p on the row. After compositing without filtering

the depth values, the colour of the row of pixels will undergo an abrupt change at pixel

p, the point at which the depths are equal. Performing the same composite with depth

filtering results in pixel p having a colour that is a blend of the colour of the pixels from

the original images at p. While this may not seem significant for single images, in an

animation, abrupt colour changes (depending on the motion) can distract a viewer and

reduce the quality of the animation. The filtering done by the compositing algorithm

will generally produce more desirable results than if filtering is not performed.

In some cases, compositing may be performed with objects where a large number

of pixels have quivalent depths. Consider a composition involving two images of the

same square, but with the square in one image red, the other blue. If the assumption

is that blending is desirable, as with the previous example, the composite image would

show a magenta square. Because there is no real world example of where differing colour

objects occupy the exact same space, this may seem a reasonable treatment. However,

were this part of an animation where one square was moving with respect to the other,

the effect would be very disconcerting, since a large region of a color not present in the

original scenes would be introduced. Thus some selection of colour must be done, rather

than a blending. The Duff compositing algorithm performs this by selecting the colour

of the first input image where two pixels' depths are equivalent, as noted earlier, and

using this in the final calculation after filtering the depth values. In this case, however,

all depth values are equivalent, so the filtering does not affect any pixel depth values,

and the colour of the first input image results for all equivalent depth pixels, giving the

consistent colour selection desired.

Chapter 3. Enhancements to simple depth composition^ 25

While no mention is made of the behaviour of compositing equal depth pixels in

[duff85], it turns out that the compositing algorithm does, in fact, give the result that is

appropriate in the above situations.

Chapter 4

Visible surface reconstruction

In order to reshadow composited images, world coordinate information must be extracted

from the images, and some notion of the shape of the object must be inferred from this

data. Because a depth image does not store enough information to completely describe an

object, the only information about an object comes from those portions that are present

in the picture, and thus only the visible surface of the object can be reconstructed. Of

course, other assumptions about the shape of the object can be made based on either

human intuition, various other aspects of the image, such as existing shadows, or changes

in the visible surface of the object over a sequence of images. Since there is much work

being done on all of these methods ([horn86], [ba1182], many others), and the purpose of

this thesis is to verify a process that can be used to reshadow images (and not to solve

all parts of that process), they are not discussed here in any detail. For the purposes of

this thesis, a surface reconstruction algorithm giving a reasonable model of the visible

surface of objects is sufficient. This visible surface model is then used by a modified ray

tracer to reshadow the images to be composited (see Chapter 5).

For arbitrarily complex images, the reconstruction of shape from visible surfaces is

very difficult. Separate objects in the image must be identified and reconstructed sepa-

rately, since if object a occludes object b in the scene, a surface reconstruction algorithm

may consider the two objects as one, and create a model that does not reflect the sep-

aration of the objects. This would give rise to errors in the reshadowing calculations

26

Chapter 4. Visible surface reconstruction^ 27

because light that would pass between objects would be blocked by the reconstructed

one, as shown in figure 4.1. To properly separate objects, some sort of image segmenta-

Figure 4.1: Reshadowing problems created by not segmenting images before performing
surface reconstruction

tion must be done. Work on this has been going on in the area of computer vision for

some time, but the accurate segmentation of arbitrary images is still a long way from

being usable. Because of the complexity of the problem, this thesis deals with the shad-

owing problem within the restrictions described in Chapter I, that is the lighting and

Chapter 4. Visible surface reconstruction^ 28

viewing parameters being the same in all images to be composited, and the scenes are

composed of non-occluding objects. The image segmentation problem is important and

still relevant however, and various aspects of it are discussed later in this chapter.

4.1 Simple surface reconstruction

This section details the method developed for reconstructing visible surfaces from depth

information. The surface created is intended only to be used as an illustration that the

method for reshadowing composited images is a valid one, and is not intended to be an

ideal solution to the object reconstruction problem.

In the introduction to this thesis, it was stated that all of the viewing parameters

for both images to be composited are the same, and are known. The knowledge of

these parameters comes directly from the raytracing software used to produce a depth

image (see Appendix A). Along with the depth information, the raytracer stores other

information about a scene, such as the window size, distance from window to eye, eye

location and bank, as well as lighting information, such as the location, type, and colour

of all the lights in each scene. With this information, coupled with the depth of each

pixel, a simple surface reconstruction is fairly straightforward. First, the original world

coordinates of each pixel covered by an object in the scene must be obtained, and then

these points joined to form a surface.

4.1.1 World coordinate retrieval

To retrieve world coordinates of pixels from a depth image, a modified raytracing algo-

rithm can be used. When raytracing, a ray is cast from the eye position through a pixel

into the scene. The ray is then checked for intersections with all objects in the scene,

and if an intersection is found, the world coordinate of that point, as well as the distance

Chapter 4. Visible surface reconstruction^ 29

along the ray at which it occurred, is returned. In the raytracer used to render depth

images, (called optik, see [aman87], [buch92], and Appendix A) this intersection depth

is recorded as the depth of the pixel through which the ray was cast. Thus the depth

map for the image represents depth from the eye point, but an option exists within optik

that allows this distance to be projected onto a ray perpendicular to the image plane.

In order to retrieve the world coordinates of the scene, this process must be performed

in reverse. Calculating the various vectors needed from the eye and window information

is done exactly as it is for standard ray tracing, since the viewing parameters are known

([whit79], [whit80], [fole90]). This results in two vectors of interest, namely the unit

Image plane

Figure 4.2: Viewing vectors for the scene

vector representing the direction of the ray from the eye through a pixel p on the window
-I

(the vector Ray), and the unit vector that is perpendicular to the viewing plane through

the eye point (the vector in). It is also necessary to know the eye position relative to

the world coordinate origin, Eye, that is stored in the depth file (see figure 4.2). Once

this is done the world coordinates of pixel p (which shall be denoted as P) can be found

for each of the two ways the depth values are stored.

Chapter 4. Visible surface reconstruction^ 30

If the depth value, call it d, is stored as the distance along the eye ray, the world

coordinates of p can be described as P = (d • Ray) + Eye. The calculation of d • Ray

gives the world coordinates of p relative to the world origin, since Ray is a unit vector

in the correct orientation, and d is a scalar. The addition of Eye moves the origin of the

eye ray to the eye position, and is necessary because the depth is computed from the eye

location.

Where the depth value is stored as the distance along the ray projected onto the vector

In, some additional calculations are required. First the scalar d multiplies the unit vector

In. The resulting vector, T , gives the depth of p from the viewing screen. Because the
-

vector Ray is a unit vector, f cannot simply be projected on to it. The correct treatment

a) Simple projection
b) Desired projection
c) Image plane

Figure 4.3: Vectors for calculating world coordinates

for that will give the proper P is P = Ray (I 12^(f Ray)) + E-ye. This calculates

Chapter 4. Visible surface reconstruction^ 31

ifayalong Ray the depth would have been when projected on In orignally, and moves

the resultant vector to the eye position.

4.1.2 Surface construction from world coordinates

Once the world coordinates for each pixel are found, a simple surface over the points can

be constructed. The method used here is to construct a simple triangular mesh where

each triangle shares every vertex with three other triangles. This is done because of the

way world coordinates for pixels are retrieved. Since each retrieved point occupies a space

in a regular grid (the window) with respect to all the other points, a triangulation can be

trivially constructed. The triangular mesh has also been chosen due to the simplicity of

intersection calculations required when creating the shadow map to reshadow the images.

For the case of lower left corner sampled pixels, consider that each pixel has defined

world co-ordinates at the corners. If the simplest construction was done, each pixel

would be a square on a surface. This does not work, however, if the corner points are not

co-planar Since this is the more likely case it would be possible to use a bilinear patch

to represent the surface, but bilinear patches require complex intersection calculations

(see Chapter 5), and would not be usable if one vertex in the pixel had no depth value,

since any patch with a null vertex would not be reconstructed (as explained later in this

chapter) . If each pixel is split into two triangles any null vertex would again give rise to

problems since neither of the triangles would be usable. This leads logically into breaking

the pixel into four triangles. While some triangles would not be used, there is a very

good chance that some of the pixel information would be reconstructed. To do this, an

extra vertex must be introduced at the centre of the pixel where the four triangles share

a vertex as in figure 4.4. The coordinates of the centre vertex are found by adding the

coordinates of the surrounding four points and dividing each component by four.

Chapter 4. Visible surface reconstruction^ 32

Figure 4.4: Reconstructing four triangles in one pixel from corner sampled depth data:
black circles are known depth data, they grey circle is the interpolated depth data

A similar method can be used to reconstruct centre sampled pixels. Since the center

vertex coordinates are already known, the four corner coordinates to construct the four

triangles must be found. Each corner of the pixel has a total of four surrounding pixels

adjacent to it. Since each of these pixels has a point associated with its centre, the average

of all the centre points around the corner under consideration are used to calculate its

value (see figure 4.5). Repeating this for each of the four unknown corners of the pixel

allows us to make four triangles. There may be cases where the world coordinates of

some vertices in a pixel cannot be retrieved because the depth value is undefined. When

this occurs, any triangle with a null vertex is should not be included in the reconstructed

surface, and the calculation of interpolated vertices must reflect this. Thus if there are

only three non-null vertices (assuming corner sampled depth values) the vertex created

by interpolation should only use the non-null data, and the coordinates of the centre

vertex are found by adding all three valid vertices and dividing by three, instead of four.

Applying this procedure to a variety of images shows that certain types of objects

are reconstructed poorly. Objects that slope sharply away from the camera position will

display jagged edges on those parts furthest away from the camera (see figure 4.6). This

is caused by the way the depth information is sampled at each pixel. For edge sampled

Chapter 4. Visible surface reconstruction^ 33

N A\
\\././

\ /\
00

\\• \\•

• Known vertex

0 Interpolated vertex

Known vertex
contributions to
interpolated vertex

Figure 4.5: Reconstruction of triangles for centre sampled depth data: black circles are
known depth values, grey circles are interpolated depth values, arrows show which known
values contribute to the interpolated values

images exhibiting this problem, pixels on the back edge are surrounded mainly by pixels

with no depth value. This causes the reconstruction algorithm to throw out several of

the triangles of the pixel's reconstruction. If this is done consistently along the rear

edge, only one triangle per pixel could be reconstructed, leaving a jagged edge. Centre

sampled images show this aliasing as well, since triangles of a pixel would also be thrown

out under the same conditions. One way to solve this problem is to extrapolate the

sampled depth from the pixel to all corners that would otherwise have no depth value.

While this stops the algorithm from discarding triangles, it gives the reconstruction a

flanged look (triangles whose values were extrapolated at null vertices would be parallel

to the image plane, and not follow the slope of the rest of the object) where it was jagged

before (figure 4.7). Some way might be developed to estimate depth information for null

vertices from the existing vertices and triangles, but this enters into the more complex

Chapter 4. Visible surface reconstruction^ 34

Figure 4.6: Edge problems when reconstructed objects slope sharply away from the
camera. Original view is on the left, 90 degree rotation on the right.

realm of general surface reconstruction and thus is not investigated by this thesis. The

jaggedness exhibited does not detract from the reshadowing method, since utilising a

better surface reconstruction would eliminate the problem.

The visible surface reconstruction method put forward here gives a fairly good ap-

proximation of the surface. It is only useful for range images for which uniform dense

depth data is present. If a non-uniformly sampled or sparsely valued depth image is used,

the reconstructed surface will show some significant problems. This method is also sus-

ceptible to some sampling problems. If a very small object is reconstructed the shape of

the object may be obscured by the discontinuities between adjacent triangles on the sur-

face. Even for surfaces without these problems, the reconstructed triangle mesh may not

be as accurate as some would like. Even though the reconstruction procedure proposed

here is meant only to verify that the overall reshadowing method is feasible, it would be

possible to perform some smoothing on the mesh to get a more accurate representation

(a spline-based surface, for example). Other methods of retrieving surface information

Chapter 4. Visible surface reconstruction^ 35

Figure 4.7: Edge problems for sharply sloped objects. Left shows standard reconstruc-
tion, right shows reconstruction where sampled depth values are assigned to all parts of
the pixel.

from depth data have been investigated by many people Ghopp92], [schm91], [tana92]),

and perhaps some image space methods, such as shape from shading and surface from

motion ([horn86] gives an overview) may also provide superior surface reconstruction to

the procedure used here.

4.2 Image segmentation

As mentioned before, this thesis does not deal with the most general case of compositing

two arbitrarily complex images. This is mainly due to the problems encountered when

trying to retrieve some notion of where objects are relative to other objects in the scene.

Much work has been done on the image segmentation problem in the field of computer

vision, and the techniques developed can be useful for reshadowing purposes. This section

puts forward what should be included in a complete solution to the image segmentation

problem, and discusses some implementation problems.

Chapter 4. Visible surface reconstruction^ 36

4.2.1 The ideal solution

An ideal solution to the image segmentation problem for compositing purposes would

result in each pixel in an image belonging to a known object. An object would be known

if its boundaries with all adjacent, occluding, or occluded objects are known. If all of this

information was available, it would be easy to apply the simple surface reconstruction

algorithm (given previously) to each object in turn, by treating each object as if it were

the only thing in the image. When the surface reconstruction is complete for all objects,

they could be merged into the same scene and viewed in three dimensions.

4.2.2 Possible approaches

Boundaries of objects can be determined by some form of edge detection (such as the

one given in [cann86]). Typical edge detectors operate on an greyscale (luminance only)

image, and find areas of the image where there is a steep intensity gradient. This is done

by using a two dimensional filter over the image and finding where the second derivative

of the intensity changes from positive to negative (a zero-crossing). The various edges

found by this method are then joined together, and, in the ideal case, show the boundaries

of objects in the scene. If the depth information is considered as intensity information,

that is each depth value is mapped to a displayable greyscale value, this method can be

used to find depth discontinuities and thus detect objects (figure 4.8 and figure 4.9).

Some problems occur with this approach however. When edge detection is done on

a greyscale non-depth image, abrupt changes in intensity due to texture or shading are

usually identified as edges. With depth images, there is no texturing or shading infor-

mation present, but now other problems occur. When separate objects occupy similar

areas in depth (such as a slightly sloped ramp on a desk), they are often not identified

as separate objects. Complex objects can also induce problems when detecting intensity

Chapter 4. Visible surface reconstruction^ 37

Figure 4.8: Original image

edges. If the object has areas where there is a rapid change in slope direction (ie: a

triangular prism viewed from above the long axis where two rectangles meet), there is

an edge that would be detected, but it is not a boundary edge. These different types of

edges must somehow be differentiated, which is difficult. The problems make it difficult

to properly identify boundary edges.

Once all edges are found, each boundary edge must be joined with those from the same

object to form the complete boundary of that object. In an ideal case, each boundary

edge would touch only two other boundary edges that belong to the same object. Since

the ideal case rarely happens, and many edges that are not boundary edges could touch

the boundary edge at various places, a way of identifying the boundary edges must be

found, along with a method for correctly determining which adjoining edge is a boundary

edge on the same object. If this can be done then the only remaining barrier to the

Chapter 4. Visible surface reconstruction^ 38

Figure 4.9: Associated depth map shown as greyscale

Chapter 4. Visible surface reconstruction^ 39

segmentation of the image would be to identify occluding objects. For example, if the

image was of a sphere in front of a rectangle, it would have to be determined if the

rectangle was actually continuous behind the sphere or not so that any boundary edges

detected could be joined together properly.

People working in the area of computer vision have tackled these problems for many

years, and will continue to do so, hopefully coming up with better segmentation methods

that can be applied to the compositing process. When this is done, the reshadowing of

composited images will be more usable.

Chapter 5

The reshadowing process

Creating shadows on composited images is a fairly straightforward process. Using the

visible surface reconstructed from one image, a, (via the method presented in the previous

chapter), the locations of shadows cast by this surface onto the objects of the other image,

b, are found using a simple raytracing method. This generates a shadow map, which is

an image of the same dimensions as the ones to be composited, containing a black pixel

wherever a pixel in image b would be shadowed by the object in image a. The shadow

map generated will be used to place shadows on image b, and must be filtered somehow

to remove all hard edges and jaggies which are caused by the binary nature of the shadow

map, as first produced. Once image b as been reshadowed the two pictures are composited

to produce the final image. In the case of images that are appropriate to use for mutual

shadowing as mentioned in Chapter I, the reshadowing process is repeated twice, with

the images swapping roles the second time through. This results in both images being

reshadowed, and the compositing is then performed.

5.1 Creating the shadow map

The purpose of creating a shadow map is to show where shadows should be cast on image

b from the reconstructed object in image a. This situation is analogous to the shadow

determination problem when raytracing a scene. When a scene is raytraced, a ray is cast

from the eye into the scene, where it may intersect some object. If this is the case, the

40

Chapter 5. The reshadowing process^ 41

point of intersection is found, and another ray is cast from that point to the light. If

this ray intersects any object, then the point from which it was cast is considered to be

in shadow. For depth images, it is a simple matter to retrieve the world coordinates of

each pixel in the image (see Chapter 4). The world coordinate is the intersection point of

the eye ray from the original rendering with an object in the scene. As with raytracing

shadows all that is needed is to cast a ray from that point to the light, and find any

intersections along it. If an intersection is found, a black pixel is written to the shadow

map in the same location as the pixel from image b being considered.

The existing raytracer, optik (see Appendix A), was modified to create the shadow

map because many procedures that already exist are needed or readily adaptable for this

purpose. A routine was added to read in a depth image and to convert all depths to

world coordinate information using the same method as for surface reconstruction. The

light position was also retrieved from the depth image header and added to the scene.

Using the existing interface for optik, the triangles making up the reconstructed surface

can be easily read into the scene. A shadow ray between a world coordinate point from

the depth image and the light is created using existing routines in optik, and the original

image coordinates of the point are noted. The triangles from the reconstruction are

checked for intersections with the cast ray using the ray intersection routines in optik,

and if there is an intersection, a black pixel is written to the final image at the position

that was noted before. If there is no intersection, a white pixel is written. This process is

repeated for every pixel that has a depth value from the original image b. Because there

are likely to be many triangles in the visible surface reconstruction, using optik allows the

existing ray-intersection acceleration techniques to be used Gwoo89], [aman87]), reducing

the time taken to produce the shadow map.

Chapter 5. The reshadowing process^ 42

Figure 5.1: A shadow map created by the modified raytracer

5.2 Filtering the shadow map

The shadow map produced by the above method contains only black or white pixels.

If this were used to reshadow an image, the result would be a hard edged shadow that

would have jagged edges, depending on its orientation. Because the shadow produced by

many rendering methods is soft-edged (to mimic real world shadows), the shadow created

here should be soft edged as well. To do this, a simple filtering technique is used, which

also smooths jaggies or other artifacts that can result from shadows that do not follow a

row or column of pixels, as in figure 5.1.

To smooth the shadow map, it is easiest to darken the white pixels that border black

ones. The simplest way to do this is to darken the pixel being considered by a percentage

equal to the ratio of black to white pixels surrounding it. If there were four white, and

four black pixels in the shadow map surrounding the one of interest, it would be darkened

to fifty percent of its original value. If there are no black pixels in the area, then nothing

Chapter 5. The reshadowing process^ 43

Figure 5.2: A shadow map after filtering has been performed

is done. Doing this for all pixels in the shadow map completes the filtering (see figure

5.2). Slightly better results can be obtained using different weighting on the simple box

filter. If every white pixel is given a percentage of black equal to twenty percent times the

number of surrounding black neighbours (up to five black surrounding pixels, where the

white pixel would be changed to totally black), the intensity falloff around black edges

becomes closer to a smooth gradient than the initial simple filter. This appears less jagged

to the human eye, and can thus be judged better than the initial method (figure 5.3).

By varying the filter width (from a single pixel to many) differing smoothing effects can

be created that is tailored to a particular person's taste, since not everyone will agree on

what amount of filtering is best. In an animation created using the first method, where a

rotating square from one image was placed above a stationary square from another (figure

5.4), the filtering was sufficient to mask any jaggies from the original shadow map.

Chapter 5. The reshadowing process^ 44

Figure 5.3: The result of applying a weighted filter to the shadow map

5.3 Using the shadow map

To reshadow an image, the antialiased shadow map is used as an overlay. Because the

shadow map is the same size as the image to be reshadowed, each pixel in the image

has a corresponding pixel in the shadow map. For every pixel p in the image, the same

pixel in the shadow map is evaluated. If the pixel is white, nothing is done to p in the

image, but if it is not white, reshadowing occurs. This is done by comparing the colour

of the pixel in the shadow map to black. If the pixel in the shadow map is black, the

corresponding pixel in the image is reduced in intensity by half, in order to approximate

the default shadowing that optik produces. If p in the image originally had red, green,

and blue values of 150, 90, and 60, respectively, the reduction would change the values

to 75, 45, and 30. If the pixel is between pure black and white, then the amount of black

in the pixel, expressed as the the black value divided by the maximum black value, is

halved, and used as the percent by which to darken the original pixel. This method of

Chapter 5. The reshadowing process^ 45

reshadowing produces a soft shadow on the image that is a very close approximation of

a shadow made by optik under default conditions (as in figure 5.4).

When raytracing the original scene, the selection of parameters for surfaces (specu-

larity, ambient illumination, etc), and light intensity can cause the reshadowing process

to produce shadows that are less acceptable. The shadows may reduce the intensity

of pixels too greatly, or not enough. To overcome this, a measure of control has been

added so that the default intensity reduction can be altered by employing the equation

((S * (1 — D)) D) * c, where S is the shadow map value at a pixel p between 0 (black)

and 1 (white), D is the intensity reduction to be performed when S is 0, and c is the

colour of p in the image to be reshadowed. This allows the user to adjust the effect of the

shadow to some degree. As an extension to this work, a more interactive interface should

be created, allowing the user to change the reshadowing (not the shadow position, merely

the intensity) and view it to judge whether it is satisfactory. As it is now, the interface

is manageable, and reshadows images well for default optik images. The completion of

the reshadowing process occurs when the reshadowed image and the image from which

the surface was reconstructed are composited together using the method described in

Chapter 3. In the case of two images shadowing each other, the reshadowed version of

both images are composited.

5.4 Reshadowing already shadowed images

Throughout this chapter, the reshadowing process has been discussed as if no shadow

existed in either original image. If original shadows do exist, problems will occur when

using the method presented here. If the shadow map created had a shadow on pixel p

in an image, and p was a shadow pixel from the original image, it would be additionally

darkened by the overlay process. This would result in an image where newly created

Chapter 5. The reshadowing process^ 46

Figure 5.4: Rendered and composite images of the same scene. The rendered image is
on the bottom

Chapter 5. The reshadowing process^ 47

shadows and original shadows could be differentiated by the original shadows being darker

than the original ones, which is undesirable. To prevent this from happening, a couple of

steps could be taken. First, each pixel in an image could have an extra bit of information

stored with it, a 1 if the pixel is in shadow, or a 0 if it is not, or optionally use one byte to

denote the amount of shadow present. This extra information would be determined by

the renderer when the image is first created. When compositing, this information would

be used to determine if a pixel which would be reshadowed should be darkened. If the

pixel should be reshadowed, the compositor would then switch the shadow bit on so that

further compositing operations would know the pixel is in shadow. The second method

for preventing reshadowing of already shadowed pixels is to reconstruct the scene every

time it is composited, and to create a shadow map for the scene without considering

any other images or reconstructions. After doing this, another shadow map would be

constructed as described in this chapter. The first shadow map would then be compared

to the second, and wherever there was a black pixel in both, that pixel would be turned

white in the second. The modified shadow map would then be overlaid on the image to

be reshadowed, with the result being that since pixels already in shadow are noted as

white on the shadow map, they would not be reshadowed, and thus the output image

will look better.

The first method is a very good one, with the exception that added storage is required

to keep the shadowing information. While the ratio of shadow information to colour in-

formation would be quite small (one byte, or 256 levels of grey, of shadow information

versus four bytes of rgba information for the image), the extra data would not be used for

most normal image operations, wasting some space. Since a person would not necessar-

ily know the use to which an image might be put in the future, most would include this

shadow information on the off chance that it may be needed at some time. The second

procedure outlined above has some obstacles to successful implementation. First of all,

Chapter 5. The reshadowing process^ 48

the problem of image segmentation needs to be solved before it can be determined where

shadows are in a single image. Secondly, the problem of complexity arises. When de-

termining shadows some surface reconstruction must be performed, which takes time as

well as space, whereas the first solution presented above merely takes more space. Also,

shadow map creation via this method will not be as accurate as one created from the

renderer itself, due to the reconstruction process. The advantage this method has over

the renderer created one is that a shadow map can be made for any depth image, without

having to store information while rendering, but it is currently impractical. Many of the

shadowing problems noted here are also discussed in [gers87], as well as those related to

the more general illumination issue.

With the double shadowing problem either ignored or worked around by the ways

given here, images produced with this reshadowing method are nearly indistinguishable

from those that were rendered from a complete scene under default conditions without a

detailed side-by-side comparison of reshadowed and rendered images.

Chapter 6

Other applications and extensions

A logical extension of the reshadowing method presented in this thesis is to combine

real video images with computer generated ones in the same way two computer pictures

are combined. This would eliminate the need for teams of artists painstakingly creating

shadows on images that combine computer objects and a real scene (the films Terminator-

2 and Jurassic Park, for example) as is done currently.

6.1 CAR - Computer Augmented Reality

As computers become faster and algorithms are developed and improved, it has become

easier to use computer graphics to create special effects for film and video. Technology is

approaching the point where computer graphics will be able to be seamlessly integrated

into real images with very little effort. The methods that are being developed to do

this can be grouped into an area that has been termed computer augmented reality

(or CAR). Various aspects of CAR are being investigated at the University of British

Columbia, of which this thesis will hopefully form a part. Problems dealing with global

illumination (highlights, adding and removing lights etc), viewing parameter matching,

and local illumination (shadows, reflections, etc) are all being investigated by the UBC

CAR project, and a brief overview of all the problems involved will be presented here,

along with the specific application of this thesis to CAR.

The main problem with CAR is to translate various aspects of the real image into

49

Chapter 6. Other applications and extensions^ 50

values that can be understood by computer graphics programs. For example, much needs

to be known about the camera in the real image, such as the position it is in relative to

the objects in the scene, whether it is tilted, zoomed, defocused an so on. Most computer

graphics programs define the computer generated camera by several values, such as the

point in space at which it is located, the point in the scene at which it is aimed, the angle

of view, any rotations or tilts relative to the global axes, and the screen distance from the

actual point where the camera is located. When taken together, all of this information

forms the viewing pyramid of the scene. This viewing pyramid encompasses those parts

of the scene that are visible to the camera, and is used to create the two dimensional

image of the scene. In order to be able to effectively use the real image, the viewing

pyramid for the camera that took the image must be determined.

The success of this determination depends largely on what can be inferred from the

scene. It is not possible to retrieve the viewing pyramid from a scene unless something

is known about the object in the scene. If the scene is a staged one, every object in the

scene can be measured for size and relationship to other objects, then a computer model

made of the real objects. This can then be manipulated until the objects in the computer

scene match those in the real one. The viewing parameters of the computer model can

then be taken as the viewing parameters of the real camera. If the real image is actually

a part of a sequence, this process can be repeated for each frame of the film or video.

This method works well, but needs the measurements of the real objects. It also takes

large amounts of time, mainly by people, to match the real scene with the computer

model. Ways of making the computer aid in the scene matching are currently being

investigated, but the process is still mostly manual ([four931). Means of determining

the viewing pyramid without measuring the scene are more desirable than the previous

method, since if you do not have to have the physical objects present, camera parameters

can be determined for any images, not just staged ones. Several methods exist is the

Chapter 6. Other applications and extensions^ 51

computer vision field for tracking objects within a scene ([horn86], [lowe90J), and these

can be used in conjunction with human methods. If a person outlines objects in a scene,

the computer can then go and make a guess as to the objects' dimensions and relations to

each other. Once this is done, the viewing parameters can be calculated, and tested with

a defined object that is inserted in to the scene. If the user thinks the inserted object

fits with the scene, the viewing parameters guessed at can be used as the parameters

of the real camera. Tithe object does not fit, another guess, based on how the inserted

object appears, can be made and the process repeated. Once the parameters of one image

are known, the objects in subsequent images can be related to the ones in the known

image by the tracking method mentioned previously. While this method is more widely

useful than the manual measurement procedure, more problems can occur because of the

difficulty of tracking objects between images. Also, while the objects are outlined by the

user, and the relative sizes are easy to compute, the dimensions of the objects must be

guessed at, which could take a large amount of time. Ti, when object detection algorithms

become capable of doing so, the computer is used to determine object boundaries, the

process would be sped up considerably.

Once the viewing parameters for the real image are known, the parameters for the

computer generated image must be manipulated to match those of the real image, or vice

versa. Changing the viewing parameters of one image to those of another is not a well

defined problem. Since the parameters of the two images could be completely different,

the transformation required might take more information than the image provides, and

not be possible. Simple operations, such as coordinate transformations when all but the

viewing point are the same, are easy to implement, but aspect ratio changes and depth

scaling are much more difficult. One answer to all of these image manipulation problems

is to construct the computer scene using the viewing parameters of the real image. This

eliminates all of the effort required to massage one set of viewing parameters to another

Chapter 6. Other applications and extensions^ 52

at the expense of being able to use an arbitrary computer generated image or sequence.

Having somehow retrieved the viewing parameters between the real and computer

generated images, and having a fairly accurate model of the real scene, some combination

of the two images can be performed. If lights exist in the computer scene that are not

visible in the real scene, the effects of these lights can be calculated, and the real image

reshaded to show the new lighting effects. Likewise, if a scene model exists, and the

location of the real lights are known, these can be used to shade the computer generated

objects in relation to the scene. The location of shadows caused by computer generated

lights shining on the real scene can be found by using the model of the real scene.

Finally, all of these effects can be applied to the real image. Highlights can be added or

removed, and shadows created or eliminated in their proper locations by use of image

processing techniques. Correctly shaded computer generated objects can the be rendered

and composited into the real scene by standard two dimensional compositing. Because

the computer generated image is created specifically for the particular real image from

a model of the real scene, the computer objects can be rendered so that they appear to

interpenetrate and be occluded by real objects. This creates effects that make the final

image or sequence look almost as if the computer objects and effects were present in the

original scene ([four93]).

As an alternative to the methods for real scene modeling described above, stereo

image pairs can be used to obtain a depth map ([horn86], [bake81]) of the images, or

methods that operate on sequences of images Gshao88], [matt88]) might be employed

to determine a depth map. This depth map can then be utilised by the reshadowing

procedure described in this thesis as if the real image were, in fact, computer generated.

Because the depth map of the real image will be sparser than that of a computer generated

one due to the method of retrieval, some form of reconstruction should be performed on

the depth data so that the reshadowing process can make use of it. Also, real images

Chapter 6. Other applications and extensions^ 53

will most likely be fairly complex, which presents problems for the current reshadowing

method, exactly as in the case for complex computer generated scenes. As mentioned in

Chapter 1, the solution to this problem is to come up with a good image segmentation

algorithm so that objects in the image can be logically separated from one another for

the reconstruction process. While the reconstruction method presented in Chapter 4
works well for visible surfaces, it does not give a good notion of the overall shape of the

object, which may be needed to retrieve the viewing parameters of the real scene. If only

reshadowing is desired the viewing parameters need not be retrieved, but the depths of

the computer generated image and real image must be matched in some fashion so as to

prevent errors of scale when compositing. This might be achieved by using an interactive

technique where the user dynamically scales the depths of one image against the other so

as to get a satisfactory correlation between them. Problems with perspective and aspect

ratio could occur as well, in which case the viewing parameters of the real image would

have to be retrieved. In this case, and if the real image was to be used in other CAR

related operations, some way of finding the shape of an object, and not just its visible

surface, should be found, as discussed in Chapter 4. This would facilitate the recovery of

the viewing parameters, as well as be of assistance when performing global illumination

tasks. Once the two images have been altered enough so that reshadowing can proceed,

the procedures described in this thesis can be employed to reshadow the real image. If

the computer generated image is to be reshadowed as well, some way of finding the light

position in the real image must be found.

Despite all of the hurdles yet to be overcome, the method of reshadowing computer

generated images presented in this thesis shows promise for applications using computer

graphics to enchance real images. Research currently being conducted on CAR problems

may also provide results that will be useful in broadening the scope of the reshadowing

Chapter 6. Other applications and extensions^ 54

method of this thesis to include general reshading of images, better surface reconstruc-

tion, and even image manipulation where necessary. It is also hoped that the procedures

described here will be of use to those delving into the CAR field once the various limita-

tions have been overcome.

6.2 What now?

As has been mentioned throughout this thesis, there are many things that should be

done to make the reshadowing process truly useful. Most important of these is finding

a good image segmentation method, so that arbitrarily complex depth images can be

composited and reshadowed. Edge detection techniques may prove useful in doing this,

as might modified surface fitting and discontinuity finding algorithms, such as [terz83],

[marr84], [gamb87], and [terz88], which have been successfully applied to restricted do-

main problems. After this is done, a better reconstruction method should be found.

Initially a better visible surface finding algorithm should be created, where a smoother

surface is constructed from the points that will be at most as expensive to intersect in the

shadow map calculations as the current triangular mesh. Some heuristic method should

also be used to guess at the best way to reconstruct the complete object, using human

input to verify the guesses, unless it becomes possible to easily retrieve the entire object

description. Current shape from shading methods, as well as reconstruction from image

sequences, coupled with the depth and colour information, will hopefully provide a basis

for doing this.

Once it is possible to reshadow arbitrarily complex images, a method of dealing

correctly with multiple, extended, and area light sources should be found. This entails not

only the creation of shadows cast from such light sources, but also the removal of lessening

of those shadows that would be illuminated by lights if the scenes were composited. This

Chapter 6. Other applications and extensions^ 55

leads into the more general reshading problem of CAR, where methods from there could

be borrowed to create new highlights on objects illuminated by a light from a composited

image, as well as removing highlights from reshadowed areas of images. At the same time,

ways should be found of overcoming problems encountered when compositing images with

separate viewing parameters, again CAR research will hopefully be able to assist in this.

Reshadowing real images should be investigated in parallel to all of these improve-

ments. Depth maps for real images should be obtained somehow, either from image

methods, such as stereo image matching, or from other methods, such as laser range

finding or sonic echo location. Once the real images have the information that is needed

to composite two computer generated pictures, all of the things that can be done to

computer images can be performed on the real image. Thus, any combination of real

and computer generated images will be able to be composited using the same sets of

tools. Ultimately this method should be used in some fashion by CAR research groups,

providing a means of assisting both local and global shadowing calculations.

Chapter 7

Conclusions

This thesis has extended the three dimensional compositing method of Duff to enable ob-

jects within differents scenes to interact with each other in such a way to create shadows

on images as if all the objects in the scenes were present at once. While the procedure

described here does not solve all problems associated with this process, it does show that

reshadowing of composited images can be done easily for images with restricted charac-

teristics, and provides thoughts and possible methods of dealing with images of arbitrary

complexity. A fast and reasonably accurate visible surface reconstruction algorithm was

given that allows a modified raytracer to create a shadow map for use in reshadowing

composited images. Applications of this process to the area of computer augmented real-

ity have been discussed. A short video was produced in the course of this thesis (of which

figure 5.4 is a part) that shows the results, both positive and negative, of the methods

described.

The results of performing these processes to reshadow images shows great promise.

As it stands now, to produce a reshadowed image with the desired qualities too many

restrictions must be imposed on the images to make the methods presented in this thesis

usable in anything other than a research environment. If the improvements suggested

throughout this thesis are performed, the reshadowing process will be made more robust

and useful. This thesis has shown that the reshadowing process can prove valuable in

many aspects of image production and modification, and it is hoped that it will be an

56

Chapter 7. Conclusions^ 57

important initial effort upon which others can build.

Bibliography

laman871 J. Amanatides and A. Woo. "Optik Users' Manual". Technical Report DGP
1987-2, University of Toronto, August 1987.

[bake81] H. H. Baker and T. 0. Binford. "Depth from edge and intensity based stereo".
Proc. 7th Int. Joint Conf. on Artificial Intelligence, pp. 631-636, 1981.

[ba1182] D. H. Ballard and C. M. Brown. Computer Vision. Prentice-Hall, 1982.

[boot86] Kellogg S. Booth, David R. Forsey, and Alan W. Paeth. "Hardware assistance
for Z-buffer visible surface algorithms". Proceedings of Graphics Interface '86,
pp. 194-201, May 1986.

[buch921 John Buchanan. "[kmpsxroptik". Proceedings of the 1992 Western Computer
Graphics Sympo sium, pp. 147-152, April 1992.

[cann86] J. F. Canny. "A computational approach to edge detection". IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, Vol. 8, No. 6, pp. 679-698,
1986.

[carp84] Loren Carpenter. "The A-buffer, an Antialiased Hidden Surface Method".
Computer Graphics (SIGGRAPH '84 Proceedings), Vol. 18, No. 3, pp. 103—
108, July 1984.

[crow77] Franklin C. Crow. "The Aliasing Problem in Computer-Generated Shaded
Images". Communications of the ACM, Vol. 20, No. 11, pp. 799-805, November
1977.

[crow81] F.C. Crow. "A Comparison of Antialiasing Techniques". IEEE Computer
Graphics and Applications, Vol. 1, No. 1, pp. 40-48, January 1981.

[duff851 T. Duff. "Compositing 3-D Rendered Images". Computer Graphics (SIG-
GRAPH '85 Proceedings), Vol. 19, No. 3, pp. 41-44, July 1985.

[fium83] E. Fiume, A. Fournier, and L. Rudolph. "A Parallel Scan Conversion Algo-
rithm with Anti-Aliasing for a General Purpose Ultracomputer". Computer
Graphics (SIGGRAPH '83 Proceedings), Vol. 17, No. 3, pp. 141-150, July
1983.

58

Bibliography^ 59

[fole87] James D. Foley and Won Chul Kim. "Image composition via lookup table
manipulation". IEEE Computer Graphics and Applications, Vol. 7, No. 11,
pp. 26-35, November 1987.

[fole90] J.D. Foley, A. van Dam, Steven K. Feiner, and John F. Hughes. Fundamen-
tals of Interactive Computer Graphics. Addison-Wesley Publishing Company,
second edition, 1990.

[fors88] David R. Forsey and Richard H. Bartels. "Hierarchical B-Spline Refinement".
Computer Graphics (SIGGRAPH '88 Proceedings), Vol. 22, No. 4, pp. 205-212,
August 1988.

[four93] A. Fournier, A. Gunawan, and C. Romanzin. "Common Illumination Between
Real and Computer Generated Scenes". Graphics Inerface (GI) '93 Proceed-
ings, May 1993.

[gamb87] C. Gamble and T. Poggio. "Visual integration and detection of discontinu-
ities: the key role of intensity edges". AI-Memo-970, MIT AT Laboratory,
Cambridge, MA, 1987.

[gers87] Ron Gershon. The use of color in computational vision. Ph.D. thesis, Dept.
of Computer Science, University of Toronto, 1987.

[haeb90] Paul Haeberli and Kurt Akeley. "The Accumulation Buffer: Hardware Support
for High-Quality Rendering". Computer Graphics (SIGGRAPH '90 Proceed-
ings), Vol. 24, No. 4, pp. 309-318, August 1990.

[hopp92] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner
Stuetzle. "Surface reconstruction from unorganized points". Computer Graph-
ics (SIGGRAPH '92 Proceedings), Vol. 26, No. 2, pp. 71-78, July 1992.

[horn86] B. K. P. Horn. Robot Vision. McGraw-Hill, 1986.

[jaha91] Ghassan Jahami and Michel Beigbeder. "A rendering compositing method".
COMPUGRAPHICS '91, Vol. I, pp. 504-513, 1991.

[levo77] M. Levoy. "A color animation system based on the multiplane technique".
Computer Graphics (SIGGRAPH '77 Proceedings), Vol. 11, No. 2, pp. 65-71,
July 1977.

[lowe90] D. G. Lowe. "Integrated treatment of matching and measurement errors for
robust model-based motion tracking". Proc. 3rd International Conference on
Computer Vision, pp. 436-440, 1990.

Bibliography^ 60

[marr84] J. L. Marroquin. "Surface reconstruction preserving discontinuities". AI-
Memo-792, MIT Al Laboratory, Cambridge, MA, 1984.

[matt88] L. Matthies, R. Szeliski, and T. Kanade. "Incremental estimation of dense
depth maps from image sequences". Proc. IEEE Conf. Computer Vision and
Pattern Recognition, 1988, 1988.

[moln92] Steven Molnar, John Eyles, and John Poulton. "PixelFlow: High-speed ren-
dering using image composition". Computer Graphics (SIGGRAPH '92 Pro-
ceedings), Vol. 26, No. 2, pp. 231-240, July 1992.

[nada87] Tom Nadas and Alain Fournier. "GRAPE: An Environment to Build Display
Processes". Computer Graphics (SIGGRAPH '87 Proceedings), Vol. 21, No. 4,
pp. 75-84, July 1987.

[naka86] E. Nakamae, K. Harada, T. Ishizaki, and T. Nishita. "A Montage Method:
The Overlaying of the Computer Generated Images onto a Background Pho-
tograph". Computer Graphics (SIGGRAPH '86 Proceedings), Vol. 20, No. 4,
pp. 207-214, August 1986.

[naka89] Eihachiro Nakamae, Takao Ishizaki, Tomoyuki Nishita, and Shinichi Takita.
"Compositing 3D Images with Antialiasing and Various Effects". IEEE Com-
puter Graphics and Applications, Vol. 9, No. 2, pp. 21-29, March 1989.

[port84] T. Porter and T. Duff. "Compositing digital images". Computer Graphics
(SIGGRAPH '84 Proceedings), Vol. 18, No. 3, pp. 253-259, July 1984.

[potm82] M. Potmesil and I. Chakravarty. "Synthetic Image Generation with a Lens
and Aperture Camera Model". ACM Transactions on Graphics, Vol. 1, No. 2,
pp. 85-108, April 1982.

[potm87] Michael Potmesil and Eric M. Hoffert. "FRAMES: Software Tools for Mod-
eling, Rendering and Animation of 3D Scenes". Computer Graphics (SIG-
GRAPH '87 Proceedings), Vol. 21, No. 4, pp. 85-93, July 1987.

[sale90] David Salesin and Jorge Stolfi. "Rendering CSG Models with a ZZ-Buffer".
Computer Graphics (SIGGRAPH '90 Proceedings), Vol. 24, No. 4, pp. 67-76,
August 1990.

[schm91] F. Schmitt, Xin Chen, and Wen-Hui Du. "Geometric Modelling from Range
Image Data". Eurographics '91, pp. 317-328, September 1991.

[shao88] M. Shao, T. Simchony, and R. Chellappa. "New algorithms for reconstruction
of a 3D depth map from one or more images". Proc. IEEE Conf. Computer
Vision and Pattern Recognition, 1988, 1988.

Bibliography^ 61

[shaw89] Christopher D. Shaw, Mark Green, and Jonathan Schaeffer. "Anti-aliasing
issues in image composition". Proceedings of Graphics Interface '89, pp. 113-
120, June 1989.

[shaw90] Christopher D. Shaw, Mark Green, and Jonathan Schaeffer. "A parallel graph-
ics system using raster image composition". Proceedings of the 1990 Western
Computer Graphics Symposium, March 1990.

[tana92] H.T. Tanaka and F. Kishino. "Recovering and Visualizing Complex Shapes
from Range DataAdaptive". Visual Computing (Proceedings of CG Interna-
tional '92), 1992.

[terz83] D. Terzopoulos. "The role of constraints and discontinuities in visible-surface
reconstruction". Proc. 8th Int. Joint Conf. on Artificial Intelligence, pp. 1073-
1077, 1983.

[terz88] D. Terzopoulos. "The computation of visible surface representations". IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 10, No. 4,
pp. 417-438, July 1988.

[whit791 T. Whitted. "An improved illumination model for shaded display". Computer
Graphics (Special SIGGRAPH '79 Issue), Vol. 13, No. 3, pp. 1-14, August
1979.

[whit80] Turner Whitted. "An Improved Illumination Model for Shaded Display".
Communications of the ACM, Vol. 23, No. 6, pp. 343-349, June 1980.

[woo89] Andrew C. H. Woo. "Accelerators for Shadow Determination in Ray Tracing".
M.Sc. Thesis, Department of Computer Science, University of Toronto, 1989.

Appendix A

Depth Files

Throughout this thesis there have been many references to the optik depth file format.

While the procedures given can be applied to virtually any depth file format, it has been

useful to give some concrete examples using the optik format. Here the optik format shall

be explained in more detail, and other uses for the depth file format will be outlined.

A.1 Optik depth files

Optik is a program that renders mathematically modeled scenes using ray-tracing tech-

niques based on [whit80]. It, and the variations developed by students in the course

of their work, is described in [aman87] and [buch92]. One of the variations of optik

was created by Chris Romanzin (one of the authors of [four93]) to write out a file with

depth information in addition to the regular rgba information. This depth file uses the

existing rgba storage routines in order to store depth information for every pixel in the

corresponding image. Included in the header of the image, which describes the size of the

image and the number of bits of information in each pixel, is information that completely

describes the viewing pyramid and information about lighting, such as location, intensity

colour, and so forth. This extra information is used to reshadow images in the manner

described by this thesis.

In optik, it is possible to store between one and three bytes of colour information,

with an optional byte of a information. To take advantage of this variability to store

62

Appendix A. Depth Files^ 63

the minimum amount of depth information that the user needs, the depth data can also

be stored as one to four bytes per pixel of information. In order to do this, the depth

information, as calculated by optik from object-ray intersection points, must be put in a

form where meaningful information can be stored at many resolutions. The depth data

is thus mapped into 2871 discrete values, where n is the number of bytes per pixel to

use to store the depth information, defined by the user. Because the depth for a pixel

is originally calculated as a floating point number (from the ray-object intersection), a

mapping scheme is used where the original floating point value can be retrieved so that

it is possible to composite depth images that are stored with differing numbers of bytes

per pixel. This is done by storing the minimum and maximum depth values of the scene

in the depth map header. The floating point depth value is then mapped to the 28n

values, with the 2° value indicating pixels with the minimum depth, the 2' — I value

indicating pixels that have the maximum depth value, the 28' value indicating that the

pixel has no depth information (that is no ray-object intersection was found), and other

floating point depth values mapped to the appropriate integral value by the formula

V = ((fp — min)/(max — min)) * 28n — I, where V is the integral value, fp the floating

point value, min and max are the minimum and maximum depth values, respectively.

While there are many other possible methods for storing depth data, this is the one used

by optik.

The way the depth values are computed can also be controlled by the user, allowing

for some flexibility in using optik depth files with other depth file formats. The user may

choose that the floating point depth value be stored as the distance along the ray from the

eye through the pixel (as determined by the ray-object intersection calculations), or this

value may be projected onto a vector perpendicular to the eye plane before being stored in

the depth file. Various methods of obtaining the depth information when oversampling

(as discussed in Chapter 3) are also implemented, namely taking the minimum depth

Appendix A. Depth Files^ 64

from all samples, the maximum depth from all samples, or choosing a consistent sample

number.

Additional modifications have been made in the course of work on this thesis. A

provision has been made to allow optik to directly read in depth map files, automatically

retrieve world coordinates from them, and send shadow rays from each of these points

to the light sources defined in the depth map header. These rays are then used to check

for intersections with reconstructed objects (read in as a group of optik objects). This

version of optik also creates a shadow map, of the form discussed in this thesis, with

values that depend on the outcome of the aforementioned intersections.

A.2 Other uses of depth files

There are other uses that can be made of the depth information besides employing it

for compositing purposes. Potmesil and Chakravarty ([potm82]) use depth information

to create a depth of field affect in images. Duff in [duff85] uses the depth information

to create a fog effect. Each of these methods have been implemented in the course of

the work on this thesis, but because they are not directly relevant to the subject of this

thesis, and because the original implementations are documented elsewhere, the details

do not have to be presented here.

Other possible application of depth files can be seen when considering applications of

various effects at the object or scene level. Because the depth values give partial object

information, it may be possible to create postprocessed effects that simulate those created

as modeled effects. For example, treating each depth value and corresponding pixel as a

separate object, some particle system calculations could be performed, allowing objects

to explode, drop, bounce, and so forth, without a need to know any extra information

about a scene. Glows around objects calculated from the depths might be a useful effect.

Appendix A. Depth Files^ 65

These are just some of the uses to which depth files might conceivably be put, and it it

hoped that some effort may be put into the exploration of said uses at a later date, or

by others.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74

