Understanding Stochastic Local Search Algorithms

An Empirical Analysis of the Relationship Between
Search Space Structure and Algorithm Behaviour

by
Kevin R. G. Smyth
B.Sc., The University of British Columbia, 2002

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE
in
The Faculty of Graduate Studies

(Department of Computer Science)

We accept this thesis as conforming
to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA
September 27, 2004
© Kevin R. G. Smyth, 2004

that the Library shall make it freely available for reference and study. | further agree that permissioﬁ for extensive copying. of this thesis
for scholarly purposes may be granted by the head of my department or by his or her representatives. Itis understood that copying or

- publication of this thesis for financial gain shall not be allowed without my written permission.

KEviN Smyril 30 /A [2004

Name of Author (please print) ’ Date (dd/mm/yyyy)

Tile of Thesis: ({ \IDERSTANDINIA SToutsTiC Loca SEARCH ALGOR ITHMS: -
An Emoigical AL OF THE ReLATINSHIP. BETwieN
SEARCH SPME STRUCTURE AD ALUNRITHM BE ivioul

\

" Degree: - MASTEK OF $(,{EN(,E Year: . Qw_j

Department of Conuger, LIENCE

The University of British Columbia
Vancouver, BC Canada

Abstract ii

Abstract

Combinatorial optimisation problems are an important and well-studied class of problems, with applica-
tions in most areas of the computing sciences. Because of their prominence, combinatorial optimisation
problems and their related decision problems have been the focus of extensive research for several decades.
The propositional satisfiability problem (SAT), in particular, has been the focus of a vast amount of research,
and a class of algorithms known as stochastic local search (SLS) algorithms has emerged as the state-of-the
art on a variety of SAT problem classes.

Much of the recent progress in algorithm development has been facilitated by an improved understand-
ing of the properties of SAT instances and of high-performance SAT algorithms. This thesis studies the
search space features underlying the behaviour of stochastic local search algorithms for SAT, extending ex-
isting results from the literature and providing novel contributions. Search space features such as plateaus
and the interconnectivity between plateaus are defined and studied on a variety of SAT instances, and it is
empirically demonstrated that features such as these are responsible for the wide range in instance hard-
ness observed in distributions of syntactically identical SAT instances. Furthermore, the novel concept of
the performance criticality of variables in SAT instances is introduced, and the connections between search
space structure and performance criticality are investigated. Finally, methods for practically exploiting

the knowledge gained by this search space analysis are briefly explored, with the goal of improving the

state-of-the-art in SAT solving.

Contents iii

Contents

Abstract B e e R e e e e e e e ii
Contents e e e iii
Listof Tables e e e vi
Listof Figures e e viii
Listof Algorithms X
Acknowledgements xi
1 Introduction o . L 1
1.1 Problem Definition and Motivation 2

1.2 Existing Work 3
121 NumberofSolutionso i e 3

122 SolutionClustering e 4

123 BackboneFragility 5

124 LocalMinima o i e e e 6

1.2.5 Effect of Search Space Structure on Algorithm Behaviour 7

1.2.6 Plateau Distribution e 8

1.2.7 Predicting Local SearchCost 9

13 ThesisOutline oo v v i e e 11

2 Preliminaries e e e 12
2.1 Propositional Formulae. © 12
2.2 SearchSpaceComponents 14
23 SLSAlgorithms for SAT 15

24 Empirical Methodology 17

Contents iv

3 Plateau Characteristics e 20
3.1 Definitions and Motivation AP 21
311 StateTypes. o e e 21

3.1.2 Plateaus e 22

32 Plateau characteristics of the UF-3-SAT diStribution . - . . . « oo o v v oot 23
3.2.1 Experimental Methodology 24

322 FractionofClosed Plateaus i i e 24

323 PlateauSize e 25

324 DiSCUSSION e e e e e e e e 27

33 Plateau characteristics of individual UF-3-SAT instances 28
3.3.1 Experimental Methodology 28

332 NumberofPlateaus 32

3.3.3 Fractionof Closed Plateaus i 33

334 PlateauSize o e e 35

3.4 Plateau characteristics of structured instances L o oL 37
34.1 NumberofPlateaus 37

342 PlateauSize o i e e e e e e e 39

3.5 Internal Plateau Structure e 41
351 BranchingFactor 46

352 Diameter e e 48

353 LMINState Fraction o i e e 48

354 ExitDistance 50

36 SUMIMATY . . . o v v v et e et e et e e e e e e e e 52
4 PlateauConnectivity e 54
4.1 Definitions and Motivation e 54
42 PCGProperties 60
421 Out-Degree e 62

422 TargetDepth 63

43 Solution Reachability 65
4.4 Properties of Trapsinthe SearchSpace 69
4.4.1 Attractivity 70

442 EscapeDifficulty 72

443 Connection With MixtureModels 75

45 SUMMATIY it e e e e e 77

Contents : v

5 Performance Critical Variables 79
51 MotIvation o e e e e 80
52 Oracles and Performance Criticality 81
5.3 Performance Critical Variables for SLS Algorithms T e 84
5.4 Performance Critical Variables for DPLL Algorithms, .. 89
5.5 DISCUSSION .+ v v v v v o i v e e e e e e 91

5.5.1 Connection with Search Space Features S 92
5.5.2 An Approximate PCV OFacle . . oo SPEPEER 95
5.6 SUMMATY v vttt e e e e e 97

6 Conclusionsand Future Work e 98

Bibliography 102

A TestSuite Description 107

B Binary Decision Diagrams 110

List of Tables vi
List of Tables

3.1 Number of plateaus in UF-3-SAT instances, counting all plateaus L. 32
3.2 Number of plateaus in UF-3-SAT instances, counting only open plateaus 34
3.3 Number of plateaus in UF-3-SAT instances, counting only closed plateaus 34
3.4 Size of closed plateaus in UF-3-SATinstances 35
3.5 Fraction of states contained in largest plateau for the UF3SAT testsets 35
3.6 Size of open plateaus in UF-3-SATinstances 36
3.7 Number of plateaus in structured instances oL oL 37
3.8 Fraction of closed plateaus in structured instances 38
3.9 Size of closed plateaus in structured instanceso 39
3.10 Fraction of states contained in largest plateau for the structured instances 40
3.11 Size of open plateaus in structured instances Lo oL 41
3.12 Summary statistics of the distribution of branching factors for the structured instances 46
3.13 Lower bound on plateau diameters for the structured instances 47
3.14 LMIN state fraction for the structured instances 50
3.15 Exit distance statistics for the structured instances 51
4.1 Summary statistics of the distribution of the out-degree of PCG nodes in UF-3-SAT instances 62
4.2 Summary statistics of the distribution of the out-degree of PCG nodes in structured instances 62

4.3 Summary statistics of the distribution of the average target depth of PCG nodes in UF-3-SAT
INSTANCES . . . v o o e e e 64

4.4 Summary statistics of the distribution of the maximum target depth of PCG nodes in UF-3-
SATINSIANCES o o o e e e 64

45 Summary statistics of the distribution of the average target depth of PCG nodes in structured
INSEANCES « . ¢ o o e e e e e e 65

4.6 Summary statistics of the distribution of the maximum target depth of PCG nodes in struc-
turedinstances. o o e 65
Correlation between p(S | A) and Isc for the UF-3-SAT testsets. 68

4.7

. List of Tables vii

48 p(S|A)values for the structured instances 69
4.9 Statistics from the distribution of &4, values for the UF-3-SAT testsets 71
4.10 Correlation between &0 and Isc for the UF-3-SAT testsets 72
4.11 Summary statistics for the distribution of €mqx values for the UF-3-SAT testsets 74
51 PCVresultsforSLSalgorithms 86
52 PCV results for DPLL-typealgorithms 90
A.1 Description of the random benchmark sets studied in this paper . . . - e ,.. 108

A2 Description of the structured benchmark sets studied in this paper 108

List of Figures viii

List of Figures

2.1

3.1
3.2
3.3
34
35
3.6
3.7
3.8
39
3.10
3.11
3.12
3.13
3.14

4.1
42
4.3
44
4.5
4.6
4.7
4.8
4.9
4.10

Example cumulative distribution functions L oL 18
Fraction of closed plateaus sampled ateachlevel 25
Distribution of plateau sizes (UF-3-SAT,20 variables) 26
Distribution of plateau sizes (UF-3-SAT, 50 variables) S 26
Distribution of plateau sizes (UF-3-SAT, 100 variables) 26
Distribution of the number of plateaus at each level over instances in the uf30 testset 32

Scaling of the average number of plateaus with the number of variables in the UF3SAT test sets 33

Average fraction of closed plateaus at each level for the UF3SAT test suites 34
P3 . from the instance in the uf20 test set withmedianlsc 43
An example level 3 plateau from theais6instance 44
An example level 5 plateau from the parity8instance 45
Distribution of branching factors for the 20, 50, and 100 variable UF-3-SAT testsets 46
Lower bound on plateau diameters for 20 variable UF-3-SAT testset 47
Distribution of the fraction of LMIN states for the 20, 50, and 100 variable UF-3-SAT test sets 49
Distribution of exit distances for the 20, 50, and 100 variable UF-3-SAT testsets 51
PCGforaneasy #f20iNStance oo v i it 58
PCG for the hardest uf20instance oo 59
PCG for the structured anominstance o o o 61
Correlation between p(S | A) and Isc for the uf30testset 67
Distribution of &, values for the UF-3-SAT testsets 70
Correlation between &,y and both Isc and p(S | A) for the uf-30testset 71
Shifted RLDs from instances from the uf30 testset 73
Distribution of €2 values for the UF-3-SAT testsets 74
Correlation between &,y and €y for the uf30testset. L. 75

RLD for hard instance from the uf30 test set, and approximation by mixed exponential dis-

rDULON . . o . ot e 76

List of Figures ix

5.1 Distribution of criticality factors with respect to Novelty* for variables in the hardest uf100
instance e JE T 85

5.2 Correlation between search cost and PCV fraction for the uf100 benchmark set using the
Noveltytalgorithm 87
5.3 Correlation of criticality factors with respect to different SLS algorithms 88
5.4 Additivity of PCVAs using dynarhic ranking for Novelty™ 88
5.5 Correlation-of criticality factors witﬁ respect to different algorithms on the bwa instance . . . 90

5.6 Correlation between average criticélity factor and two search space features for Novelty* on
theuf25testset e L T 92
5.7 Partial, weighted PCG for the hardest uf25 instance [93
5.8 Effect on the PCG when instantiating most critical variable in hardest uf25 instance 94
5.9 Correlation between 7y and criticality factor for Novelty™ on instancebwa 96
B.1 Comparing Truth Tables, Binary Trees, and Binary Decision Diagrams 110

List of Algorithms ' X

List of Algoritﬁms

21
22
3.1
3.2

GSAT(F, maxTries, maxSteps) o v v it it e e et e 16
WalkSAT/SKC(F, maxTries, maxSteps, P) . « v« v v v v v v it e e i e i et e e e e 17
Levelset(F, maxLev) . . . o v v v v o e e e e e 29
Partition(Levelsetk) e e e 31

Acknowledgements xi

Acknowledgements

This thesis would have never been completed without the support of many people. First and foremost, I
would like to thank Lisa Wong, whom I love deeply and truly, for being a constant source of motivation, for
reminding me to take time to enjoy the small things in life, and for putting up with all of the late nights and
weekend hours required to see this thesis through to completion. My thanks gé out to my family for their
constant interest in my research, even though I never took the time to give a satisfying explanation of it.

Many thanks are due to my supervisor Holger Hoos for his support and encouragement throughout my
young academic career, for giving me the freedom to pursue all of those wild ideas, and for the midnight
oil burnt during joint work. Thanks to both Holger Hoos and Nando de Freitas for improving this thesis
with insightful comments and suggestions.

Finally, there are many people in the computer science department who have made my life easier and
more enjoyable over the years. I would like to thank all of the members of the B-lab for their help and
for interesting discussions, in particular Dave Tompkins, Kevin Leyton-Brown, Steph Durocher, and Dan

Tulpan. Finally, I am indebted to Valerie McRae for all of her invaluable assistance.

Chapter 1. Introduction 1

Chapter 1

Introduction

Combinatorial optimisation problems are an important and well-studied class of problems, with applica-
tions in most areas of the computing sciences [G]79]. Combinatorial optimisation problems can generally be
described as computational problems in which all variables are discrete, and the goal is to find the best pos-
sible configuration among the set of variables, where quantifying what constitutes the “best” configuration
is highly problem-dependent [PS82]. Because of their prominence, combinatorial optimisation problems
have been the focus of extensive research for several decades. Unfortunately, many interesting combinato-
rial optimisation problems are known to be N'P-hard. Therefore, under the widely held assumption that
P 1= NP, any exact algorithm solving many of these problems must, in the worst case, require at least an
exponential amount of time in the problem size.

Combinatorial optimisation problems (finding solutions that minimise a cost metric) are closely related
to the corresponding decision problems (deciding whether there exists a solution with a given cost) [SW02].
In this thesis, we study a conceptually simple decision problem: the propositional satisfiability problem
(SAT). Over the past decade, much progress has been made in solving both large and hard instances of the
propositional satisfiability problem, in spite of the fact that the problem is NP-complete. Two main classes
of algorithms have emerged as the state-of-the art for SAT solving, stochastic local search (SLS) algorithms
[HS04] and systematic search algorithms based on the Davis-Putnam procedure (DPLL) [DLL62]. The for-
mer are generally incomplete, i.e. they cannot decide unsatisfiability. Beyond this fundamental difference,
however, there are certain classes of problem instances which can be handled more efficiently by either
of the two classes of algorithms. For example, it seems that state-of-the-art DPLL type algorithms have a
significant performance advantage on certain classes of SAT-encoded structured instances [SBH02].

Much of the progress in algorithm development has been facilitated by an improved understanding of
the properties of SAT instances and of high-performance SAT algorithms (see, e.g., [BS03, SBH02, KS03]).
With this thesis, we hope to complement and extend existing approaches for understanding the complex
interplay between properties of SAT instances and the behaviour of the algorithms used to solve them. The
majority of the thesis focuses on the analysis of SLS algorithms, though we also discuss the implications
of our findings on the design of systematic search algorithms and some of our analysis is done on both

SLS and systematic algorithms (c.f. Sections 5.3 and 5.4). Furthermore, though the thesis exclusively stud-

Chapter 1. Introduction | 2

ies the properties of SAT instances, most of the definitions and observations can be generalised to other
combinatorial optimisation problems.

The remainder of this chapter is structured as follows. We first define the central problem of this thesis,
and motivate its study. We then review previous work that has been done in this area, and comment on
how the work relates to this thesis. Finally, we conclude this introduction with an outline of the remainder

of the thesis.

1.1 Problem Definition and Motivation

The amount of research that has been unaertakeh towards an understanding of iiO{/V and why SLS algorithms
behave the way they do is surprisingly much less than the amount of work spent developing said algorithms.
Much of the research has focused solely on pushing the bounds of the set of instances which may be feasibly
solved, and on reducing the time required to solve those instances. While this is, and will continue to be,
an important goal, many of the approaches have been fairly ad-hoc, with more emphasis on tweaking algo-
rithms than in understanding the underlying reasons for their performance. The main problem addressed
in this thesis is how to extend the current understanding the relationship between search space features
and algorithm behaviour. The ultimate goal of this research is to use this knowledge to improve existing
algorithms, and to provide insights into how better algorithms can be developed.

In order to simplify our search space analysis and abstract away irrelevant details, we restrict our anal-
ysis to the propositional satisfiability problem. The propositional satisfiability problem (SAT) can be stated
as follows: Given a propositional formula F, find an assignment of truth values to the variables in F under
which F is satisfied, i.e., equivalent to true, or determine that no such variable assignment exists. In the
former case, F is called satisfiable, and in the latter case it is called unsatisfiable. Most widely studied
SAT algorithms are restricted to formulae in conjunctive normal form (CNF), i.e., to formulae of thé form

i (V;‘;l lij) where the /;; are literals, i.e., variables or their negations.

As alluded to above, there are two main classes of state-of-the-art algorithms for solving SAT for CNF
formulae: Stochastic local search (SLS) algorithms and systematic search algorithms based on DPLL-type
algorithms. This thesis focuses almost exclusively on the study of SLS algorithms for SAT. Stochastic local
search algorithms operate in the space of complete variable assignments, and iteratively make local modi-
fications to the complete assignment while trying to optimise a given objective function.! In the SAT case,
complete variable assignments correspond to a mapping from the binary truth values {T, 1 } to the set of
variables of the formula Var(F) = {x1,x,- -+, xx} (n is the number of propositional variables appearing

in the formula). The local modifications generally correspond to flipping the truth values of a small set

!Note that in this context it is useful to regard SAT as an optimisation problem rather than a decision problem.

Chapter 1. Introduction 3

(typically of size 1) of variables.

One of the simplest SLS algorithms for SAT fitting this framework is a simple random walk: starting
from a randomly chosen assignment, iteratively choose a random variable and flip the truth value assigned
to that variable, and repeat this process until a solution is found or a given time bound is exceeded. It
should be clear that the expected running time of such an algorithm on an instance with a single solution
would be on the order of O(2"), which quickly becomes computationally intractable as n grows large.?

In practice, SLS algorithmé employ some ty};)e of heuristic guidancé. The most natural (and common)
way to quantify the “quality” of a variable assignment is simply to use the number of unsatisfied clauses
under the assignment. Thus, we define the objective function of each SLS algorithm as a function over
variable assignments g : {T, J_}”N — R. The triple consisting of the set of assignments, the neighbourhood
relation, and the objective function comprises the search space of a problem instance with respect to a given
SLS algorithm. Section 2.3 presents more rigorous definitions of these (and related) concepts.

Clearly, the behaviour of any SLS algorithm is highly related to underlying features of the search space.
For example, if there are many local minima in the search space, this may (and in fact does) significantly
impede the progress of SLS algorithms. We might expect that instances with many solutions are easier
than instances with few — or that instances with a large number of solutions that are distributed uniformly
throughout the space of all assignments are easier than instances with the same number of solutions, but in
which all of the solutions appear in a tight cluster. The central problem of this thesis is to understand how

these types of search space features affect algorithm behaviour.

1.2 Existing Work

We now briefly review the most relevant literature related to the search space analyéds of SAT instances.
Many different aspects of the search spaces have been analysed, so we attempt to group the research into
general categories. Some of the research follows different approaches while attempting to answer the same
questions, while other research is very closely related to the work done in this thesis. The remainder of this
section describes the existing work, and charac'terises the relationship between the existing work and the

work done in this thesis.

1.2.1 Number of Solutions

One search space feature that is known to affect the performance of SLS algorithms for SAT is the number

of solutions.” In 1996, Clark et al. investigated the correlation between the number of solutions and the

2Note that non-trivial upper bounds on running time (i.e. bounds lower than O(2")) have been established for other simple SLS
algorithms. See, e.g., [Pap91, Sch99].

Chapter 1. Introduction 4

hardness of an instance [CFG*96]. For test instances, they used 1000 soluble random 3-SAT problems with
100 variables and 430 clauses (for a description of random 3-SAT problems, refer to Appendix A), and one
of the first SLS algorithms introduced for SAT, GSAT.3

In order to quantify the hardness of each instance, Clark et al. ran GSAT 100 times on each instance
and used the fraction of successful runs as a measure of local search cost. Note that because GSAT is a
very greedy algorithm, it can get permanently “stuck” in local minima regions of the search space, which
is why not all of the runs were successful. A strong but noisy positive correlation was found between the
number of solutions and this estimated local search cost, indicating that (not surprisingly) instances with
fewer solutions tend to be harder than instances with many.

Hoos extended this analysis in 1998 using an improved methodology [Hoo98]. Hoos used the GWSAT
algorithm [SK93], which is a more robust, better performing variant of GSAT, and which can be guaranteed
to find a solution (if one exists) given enough time [Hoo98]. He measured average local search cost (Isc) by
measuring the average number of GWSAT steps required to find a solutioh rather t‘han' simply measuring
the fraction of successful runs (we will use this definition of local search cost throughout this thesis).

Hoos also found a strong positive correlation between the number of solutions and Isc. In addition,
he noted that while for instances having high numbers of solutions the variability in Isc is very small, it
increases considerably for instances with lower numbers of solutions. Hoos also notes that with growing
problem size, the dependency of Isc on the number of solutions gets weaker.

While these results are significant, using the number of solutions to predict local search cost has a num-
ber of drawbacks. First, it is obviously very computationally expensive to count the number of solutions —
counting all the solutions to a SAT instance is in the #P-C complexity class [Val79], making this approach
suitable only for a posteriori analyses. Note that this observation applies to many of the other metrics dis-
cussed later in the section. Second, and more problematic, we have found that even if we consider only
single solution instances, there can still be a very large range in Isc. This agrees with Hoos’ findings for
small numbers of solutions, and suggests that there must be other search space factors affecting the hard-
ness of instances. This thesis extends these results by presenting a model of the search space which can

account for this large variance in Isc, even when accounting for the number of solutions.

1.2.2 Solution Clustering

In 1997, Parkes extended the work done by Clark ef al. by discovering that, for random 3-SAT instances
near the phase-transition region [CKT91], solution states are found in clusters [Par97]. He studied this
clustering phenomenon indirectly, by counting the unary prime implicates, or UPI’s (i.e. literals that are

logically entailed by the formula) of the instances. Parkes observed that for clause-to-variable ratios « less

3GSAT was conceived by Selman, Levesque, and Mitchell [SLM92] in 1992, and is described in detail in Section 2.3.

Chapter 1. Introduction 5

than the critical clause to variable ratio a4 most instances have few UPI's but as the transition is made to
a > ., most instances have many UPI’s. This phenomenon was observed for problem sizes ranging from
50 to 300 variables.

Parkes then described how instances that have many UPI’s have no solutions outside of the region of
the search space that is compatible with the UPI’s, and that in this region there are few constraints and the
density of solutions is high. He refers to such a region as a cluster, and proceeds to show that WalkSAT
performs badly on these “clustered instances” (WalkSAT is another well known SLS algorithm for SAT —
see [SKC93, SKC94] as well as Section 2.3).

Finally, Parkes conjectured that the addition of a single clause to a satisfiable instance could convert a
“solution cluster” into a “failed cluster”, which would be a very attractive region of the search space, from
which it is impossible to reach a solution. This was strictly a conjecture, and he did not provide a convincing
argument for it. In this thesis, we confirm Parkes’ conjecture by empirically demonstrating that such search
space features do in fact exist, and that they have a very significant impact on the behaviour of local search
algorithms.

Parkes’ findings seem to indicate that the number of solutions should not have such a dominating effect
on Isc as was previously believed. If all of the solutions of most instances are found in a single cluster, then
the difficulty faced by SLS algorithms is to find the solution cluster. Because the solution density is high
in these clusters, the number of solutions should not be particularly relevant. This apparent contradiction

with earlier results is addressed in the following section.

1.2.3 Backbone Fragility

Singer, Gent and Smaill studied the effect of the backbone of SAT instances on the Isc of WalkSAT [SGS00].
The backbone of a SAT instance is simply the set of UPIs. In this study, they used the WalkSAT algorithm
and random 3-SAT instances with 100 variables and a clause to variable ratio varying from 4.0 to 4.5. Their
findings are closely related to those presented in the previous section.

Singer et al. found that the number of solutions is highly correlated with Isc for instances with small-
backbones, but is much less relevant for large-backbone instances. To explain this they conjectured that for
small-backbone instances, finding the backbone is straightforward and the main difficulty is encountering
a solution once the backbone has been satisfied. In this case, the density of solutions in the region satisfying
the backbone is then important. For larger backbone sizes, the main difficulty is satisfying the backbone
and the number of solutions becomes less important.

This result is also related to another of Hoos’ observations in [Ho098]. Hoos found that the correlation

4The critical clause to variable ratio is more commonly known as the phase transition point for random 3-SAT instances, and is the
point at which a randomly chosen instance is satisfiable with probability 0.5[CKT91].

Chapter 1. Introduction 6

between the number of solutions and local search cost becomes weak in the over-constrained region (the
over-constrained region consists of all soluble SAT instances having a clause-to-variable ratio « > 4.26).
Singer et al. observed that large-backbone instances dominate the over-constrained region. Since the cor-
relation between number of solutions and Isc is not strong for large-backbone instances, this implies that
most instances in the over-constrained region will not exhibit this correlation.

Singer, Gent, and Smaill also introduced a novel metric that they demonstrated was highly correlated
with Isc. For a fixed backbone size, they generated 1000 WalkSAT runs, which terminated as soon a level 5
or lower state was found (please refer to the next chapter for a definition of the level of a state — in short,
the level of an assignment is the number of clauses which are unsatisfied by the assignment). For each of
these low level states, they measure the Hamming distance to the nearest solution, s, and find the average,
which they label hdns(Tys,s). They find a strong positive correlation between hdns(Tys,s) and Isc when
backbone size is fixed. 4 _

Motivated by these observations, Singer et al. make some conjectures ab6ut the search spaces of the
instances they were examining. They conjecture that the “quasi-solution area” (this corresponds in this
thesis to the set of all low level plateaus,® defined in Chapter 3) form interconnected areas of the search
space such that WalkSAT can always reach a solution from them without moving to higher-level states.
Further, they conjecture that in high-cost instances, this quasi-solution area extends to parts of the search
space that are Hamming-distant from solutions, whereas in lower cost instances the area is less extensive.

Our results indicate that this is indeed the case. However, Singer, Gent(and Smaill claim that variance
in hdns(T¢s, C) accounts for almost all of the variance in cost at three different backbone sizes. We do not
believe that such a simple measure can account for all of the variance in search cost. We have found that the
hardest instances seem to be those that have very attractive closed plateau regions in combination with few
low-level plateau regions that are well connected to solutions. We believe that while hdns(Tys, C) does seem
to show promise as a method for estimating local search cost, a complete understanding of SLS algorithm

behaviour requires a more detailed analysis of the respective search spaces.

1.2.4 Local Minima

Yokoo was interested in how the search space of random 3-SAT instances changes through the phase transi-
tion [Yok97]. In particular, he investigated the effect that adding clauses had on the number of local minima
states in the search space. For his analysis, he used a deterministic, greedy, lexographical tie-breaking al-
gorithm, and 20 variable random 3-SAT instances. In this analysis, Yokoo exhaustively explored the entire
search space of the problem instances, which explains why his analysis was restricted to such small in-

stances.

5Informally, a plateau is a set of connected states all having the same objective function value.

Chapter 1. Introduction 7

Yokoo pointed out a seemingly paradoxical situation: the average number of solutions to the problems
decreases as clauses are added, but soluble problems at the phase transition are harder than those beyond it.
To explain this, Yokoo measured the average ratio of “solution-reachable” states, where solution-reachable
states are states having the property that if his (deterministic) algorithm was initialized in those states, it
would eventually reach a solution.

Yokoo found that by adding more clauses, the ratio of solution-reachable states actually increased be-
yond the phase transition. Next, he found that the size of closed plateaus decreases as more clauses are
added, while the number of closed plateaus increases as clauses are added up to the phase transition point,
and then slowly decreased. Thus, Yokoo conjecfured that the reason problems get easier as more clauses
are added is that the added clauses either break up closed plateau regions, or eliminate them altogether.

Finally, Yokoo repeated the above analysis on 12 variable 3-colouring problems, with similar results.

1.2.5 Effect of Search Space Structure on Algorithm Behaviour

In 1993, Gent and Walsh performed an analysis of the the behaviour of GSAT on 500 variable random 3-SAT
problems [GW93]. Their experiments consisted of measuring how the level of visited states and “poss-flips”
(poss-flips is the number of neighbours of a state which all have the best possible score) vary during a GSAT
try (a single try is a series of hill-climbing steps, and ends when a maximum number of steps have been
completed or a solution is found).

Gent and Walsh found that the level initially decreases rapidly, but then flattens out until much search
is needed to improve the level. To explain this, they show that GSAT tries can be divided into a series
of distinct phases, which they label Hy, - - - , Hy. Each phase H; corresponds to the portion of the search
trajectory in which a typical variable flip results a net increase of i satisfied clauses. GSAT starts in phase
Hy, then moves to phase Hy,—1, etc. until the search is in the Hp phase. When the search is in the Hy phase,
they refer to this as the plateau-search phase because almost every move is ‘sideways’, with no change in
level. Early search phases have a short duration, but the level decreases rapidly.

As we will see, the results from our plateau-based search space analysis agree with these results, and
extend them in a non-trivial way. We find that the search space of random 3-SAT instances consists of a
single, large plateau region which is very easy to escape from at high levels. In regions such as this, a
greedy algorithm such as GSAT makes rapid progress and the level decreases very quickly. In addition, we
find that at high levels in the search space, many of the exits from these plateau regions have neighbours
which are a number of levels lower than the current state, but as the level decreases, this difference in the

level of neighbours tends to decrease. These results are discussed further in Chapter 4.

Chapter 1. Introduction 8

1.2.6 Plateau Distribution

In early SLS algorithms for SAT, a restart mechanism was used to address the problem of getting stuck
in closed plateau regions. A fixed number of greedy hill-climbing steps were performed, and then the
algorithm would be reinitialised to a random assignment. In 1995, Hampson and Kibler investigated how
much time should be spent searching plateau regions before restarting [HK95]. To do this, they used a
greedy hill-climbing algorithm that tracked the number of consecutive sideways moves made on a given
plateau region, and they also used breadth-first search (BFS) to exhaustively search plateau regions to a
limit of 100 000 states. They ran their experiments on random 3-SAT instances with 64 to 512 variables and
a clause to variable ratio & = 4.3.

Hampson and Kibler made a number of discoveries that are significant to this study. They demonstrated
that the size of plateau regions increases with increasing level. However, they also note that the density of
open states® in the plateau regions increases rapidly with increasing level. These observations are confirmed
by our analysis in Chapter 3.

Finally, Hampson and Kibler found that the size of lower level plateau regions seemed to grow expo-
nentially with the number of variables (n), while the density of open states in them decreased inversely
with 7, and that the number of lower level plateau regions increased linearly with 7. From this, they con-
jectured that if the search could be initialized randomly from states in lower level plateau regions, then the
average search time would increase linearly with n. To our knowledge, this conjecture was never tested,
and remains an open question.

In 1997, Frank, Cheeseman, and Stutz performed a fairly detailed analysis of the search space of Random
3-SAT instances, with a focus on finding the distribution of plateau region sizes, as well as a preliminary ex-
amination of the structure of these plateau regions [FCS97]. They used GSAT and random 3-SAT problems
with 100 variables and « = 3.8 to 4.6 for their analysis.

Frank et al. generated 1000 instances with « = 3.8,3.9,...,4.5,4.6, and ran GSAT once per instance until
it encountered a state at each level 1...5. Then, each of these states were expanded using breadth-first-
search (BFS) to find the entire plateau containing the starting state, and they report properties such as the
number of plateaus and how large they are. This work is very closely related to our work in Chapter 3,
where we attempt to replicate their experiments as well as extend their analysis in interesting directions.
Interestingly, our data differs from theirs dramatically, though the experiments were intended to be iden-
tical. Because of these differences, we draw different conclusions from our experiments, and are able to
explain conflicting observations that Frank ef al. were not able to. Further discussion of these results are left

for Chapter 3.

6 An open state is a state having at least one neighbours at a lower level.

Chapter 1. Introduction 9

1.2.7 Predicting Local Search Cost

There has been a significant amount of research invested in attempting to find search space features which
are easy to measure, and which can also be used to predict the local search cost (Isc) of problem in-
stances. We have already discussed measures which correlate well with Isc, such as the number of solutions
[CFG™*96] or hdns(Tys, C) [SGSO00], but these are a posteriori measures for explaining algorithm performance.
The following measures are computationally cheap to compute, and can be unsed a priori to estimate the
expected local search cost. '

In 1998, Holger Hoos contributed to the literature with a chapter of his Ph.D. Dissertation devoted to
the search space structure of SAT instances [Hoo98]. The first section of the chapter is devoted to analysing
how the number of solutions affects local search cost, and is discussed earlier in this paper. The remaining
sections are devoted to novel metrics that Hoos developed for measuring search space features.

The first metric that Hoos introduces is the standard deviation of the number of unsatisfied clauses,
sdnclu. This is a measure of the variance of the objective function. The motivation behind this is the
intuition that the ruggedness or smoothness of the objective function across the search space should have
an effect on the behaviour of SLS algorithms.

Hoos measures sdnclu by exhaustive sampling for Random 3-SAT problems of size n = 20, but for
n = 50 and n = 100 he resorts to randomly sampling 100000 states from the search space. One concern
that we have with this random sampling method is that randomly sampling states from large instance will
almost exclusively find open states at relatively high levels. It is well known that SLS algorithms spend
very little time searching these higher level states, so it is not immediately clear why properties of these
higher level states will have a significant impact on SLS behaviour in general.

Nevertheless, Hoos does report a noisy negative correlation between sdnclu and local search cost, as
well as a positive correlation between sdnclu and number of solutions for 20, 50, and 100 variable Random
3-SAT instances. Hoos also finds that the correlation is stronger for under-constrained instances, and gets
weaker as the number of clauses increases. Thus, sdnclu must be capturing global search space features
which affect SLS algorithm performance, even though only high level states are being sampled.

Next, Hoos compares sdnclu, local search cost, and number of solutions of structured instances to Ran-
dom 3-SAT instances of equivalent size. He finds that his observations seem to hold for Random Graph
Colouring problems and Blocks World Planning problems, but he finds inconsistent results wheﬁ he exam-
ines All-Interval-Series problems. Note that this is one of the only pieces of existing work which has studied
the search space properties of structured problem instances. In this thesis, we also give equal precedence to
the study of random and structured instances whenever possible.

Following this, Hoos introduces a set of state types and investigates their distributions. Hoos defines

the following state types: BPLAT states are those that have neighbours at higher, lower, and equal levels.

Chapter 1. Introduction 10

SLOPE states only have neighbours at higher of lower levels. LMIN states have neighbours at the same
level or higher. LMAX states have neighbours at the same level or lower. SLMIN and SLMAX states are
LMIN and LMAX states respectively, which do not have any neighbours at the same level. Finally, IPLAT
states are those that only have neighbours at the same level.

By exhaustive sampling of Random 3-SAT instance with n = 20, Hoos measures the exact state distribu-
tions. He finds that almost all states are BPLAT, followed by a much smaller number of SLOPE states, and
even fewer LMIN and LMAX states. Hoos fouﬁd very few SLMIN or SLMAX states, and no IPLAT states.

Because it is infeasible to exhaustively enumerate the states of larger instances and random sampling
finds almost exclusively BPLAT states, Hoos then sampled the state distribution along GWSAT trajectories.
The results of this analysis show that GWSAT is very strongly attracted to LMIN states (which is not sur-
prising because GWSAT uses hill-climbing to move through the search space), and that the only types of
states that significantly affect GWSAT’s behaviour are BPLAT and LMIN states. Hoos also performed this
analysis on structured instances, with similar results.

Finally, Hoos analyses another novel metric,' the branching factor of local minima states, bimin. The
motivation here is that it is well known that loéal minima (or closed) states have a major impact on SLS
performance, and blmin is é Way to study these states. Because local minima states only account for a small
fraction of the states in the search space, they cannot be randomly sampled so instead Hoos samples blmin
along GWSAT trajectories. He again uses Random 3-SAT, Graph Colouring, Blocks World Planning, and
All-Intervals-Series instances.

Hoos finds a negative correlation between blmin and local search cost, and a positive correlation be-
tween blmin and both sdnclu and number of solutions. Hoos notes that the blmin values are fairly low,
indicating that the plateau structures are quite “brittle” and that most neighbours of local minimum states
are at higher levels. Along with his earlier observation that IPLAT states do not seem to exist, this can help
to explain the effectiveness of simple escape strategies such as random walk.

Finally, Nudelman et al. recently investigated how features of SAT instances can be used to build models
useful for predicting search cost [NLBD*04]. Their approach is to use machine learning to automatically
determine which of a set of given features are useful in building compact models for predicting local search
cost. They study a large set of random 3-SAT instances with varying clause to variable ratios. Though they
study only complete algorithms, a similar analysis could theoretically be performed using stochastic local
search algorithms. Our work is related to Nudelman et al.’s in several ways. Firstly, while they currently
only consider features of the instances which can be computed efficiently (the analyses we perform are very
computaﬁonally expensive), it may be possible to incorporate some of the features coming out of our work

in order to improve their models. Secondly, the features automatically determined to be useful in predicting

the search cost of an instance are obviously interesting objects of study. It should be possible to take those

Chapter 1. Introduction 11

interesting features, and analyse them carefully to determine the relationship between those features, and

features of the search space of the instance.

1.3 Thesis Outline

The remainder of the thesis is structured as followed. In the next chapter, we introduce necessary concepts
and definitions required for the remaining chapters. Chapter 3 studies the distribution of plateaus in the
search space, and how the properties of these plateaus are related to SLS algorithm behaviour. Chapter 4
discusses the connectivity of plateaus, illustrates how we can build simplified models of the search space
that aid in the understanding of both search space structure, and demonstrates how this structure affects
the performance of SLS algorithms. Chapter 4 also characterises and identifies and studies important search
space features that have a negative impact on SLS algorithm performance - so called “traps” in the search
space. Chapter 5 takes a slightly different direction, and identifies propositional variables that play a critical
role when solving SAT instances. We characterise the relationship between critical variables and search
space structure, which gives novel insights into the local search.paradigm. Finally, we summarise our main
results and suggest interesting directions for future work in Chapter 6. The two appendices at the end

of the thesis give a description of the test-sets used inthe thesis, and an introduction to binary decision

diagrams.

Chapter 2. Preliminaries 12

Chapter 2

Preliminaries

In this chapter, we introduce many of the notations and definitions used throughout the thesis. Many of
our definitions are meant to be functionally equivalent to those presented in [Ho098, HS504], though they
may be presented differently in this thesis. Throughout the thesis, the following conventions are followed.
Predicates are capitalised and italicised (E.g. LMIN(s)). Sets are italicised, with the first letter of each
word in the name capitalised, and optional subscripts and superscripts allowed (E.g. Level set’}-). Functions
are also capitalised and have the first letter of each word in the name capitalised, but are required to be
followed by a list of parameters in parentheses and are not allowed to have subscripts or superscripts in
the name (E.g. PickTwoClauses(F)). Literals are italicised, and must be a single lowercase symbol with
optional subscripts but only primes allowed as superscript (E.g. l; j)' Finally, we use S\ P and #S to denote
the set theoretical difference of S and P, {x | x € SAx ¢ P}, and the cardinality of S, respectively.

The remainder of this chapter is structured as follows. First, we formalise the definition of propositional
formulae and related definitions such as variable assignments and satisfiability. Then, we formalise many
of the definitions used to define the search space of SAT instances. Following this, we introduce Stochastic

Local Search algorithms for SAT and describe two reference algorithms used thfoughout the thesis. Finally,

we describe the embirical methodology used throughout the thesis.

2.1 Propositional Formulae

A propositional formula is, in its most general sense, a well-formed formula defined over a number of
Boolean variables {x1, X, - - - , X, } and the standard operators {—, A, V, —, - - - }. Throughout this thesis, we
focus solely on propositional formulae of a syntactically restricted class, called Conjunctive Normal Form.

The next definition formalises this notion.

Definition 2.1. (Propositional Formula, Conjunctive Normal Form)
A propositional variable is an element of the set V = {x; | i € N}, and can be assigned a value
from the set of truth values C = {T,L}. A literal is either a propositional variable x;, or its

negation —x;. Given a literal /, Variable(l) represents the associated variable.

Chapter 2. Preliminaries 13

A propositional sentence is a sentence over the alphabet P := VUCUOU{(,)}, where O represent
the propositional operators {—, A, V}.! A propositional sentence Fs is in Conjunctive Normal Form

if it can be written as a conjunction(A) of disjunctions(V) of literals:

k;
Fs= A\ I
i=1 \j=1

Here, each disjunction V;"':l lij is called a clausal sentence involving k; literals.

Because conjunction and disjunction are associative, we can disregard the order of the clausal
sentences and of literals within a single clausal sentence. Thus, for each clausal sentence V;‘(i=1 Lij
we define the set C(i) := U;‘;l lij, and call this set a clause. The number of literals in clause C
is given by Length(C) := #C. We also define the set F := |J/Z;{C(i)}, and call this set a CNF
formula. The number of clauses in F is given by Clauses(F) := #F. Finally, a CNF formula F is
in k-CNF if and only if 3k € NVC € F : Leng.th(C) = k. Note that, according to this definition,
clauses cannot contain dvuplicate literals, and CNF formulae cannot contain duplicate clauses —

this is not a serious restriction, since both duplicate literals and clauses are redundant. O

We should note that réstricting our attention to this subset of the propositional formulae is without loss
of generality, since any propositional formula may be transformed into an equivalent formula in CNF. In
fact, it is possible to convert any propositional formula into an equi-satisfiable CNF formula with only a
polynomial increase in the size of the formula [PG86, d1T90].

Given a propositional formula with n variables, it should be easy to see that there are exactly 2" different
ways to assign binary values to the variables. The propositional formula is defined in such a way that
each one of those assignments evaluates to either true or false; the goal of the SAT problem is to find an
assignment that evaluates to true for a given formula. The following definition formalises the concepts of

variable assignments and the method of evaluating the value of each assignment under a given formula.

Definition 2.2, (Assignment)
The variable set Var(F) of formula F is defined as the set of all variables appearing in . More
formally:

Var(F)={x;|3Ce F:x; € CVx; € C}

A variable assignment of formula F is amapping a : Var(F) +— {T, L} of the variable set of F to
the truth values. The set of all possible variable assignments is denoted by Assign(F).

INote that O may be extended to include other operators such as —, <, and ®, but that these additional operators are redundant
and are useful only for writing formulae more succinctly.

Chapter 2. Preliminaries

14

The value Val,(F) of formula F under assignment a is defined inductively:

Il

Valy(b)
Val,(—-b) =

Val,(x;) =
Val,(-x;) =

Val,(C) =

Val,(F) =

Note that Val,(F) = T if and only if all clauses contain at least one literal ! that is consistent

witha, ie. Val,(1)=T.

b be{T, L}
Tifb= 1

' be{T,L1}
Lifb=T

Vala(a(x:)) eV

Val,(—a(x;)) X EV

TifdleC:Val,(hl=T
' a(0) CeF
1 otherwise.

TiVCeF:Val,(C)=T

1 otherwise.

Finally, we are in a position to formally state the Propositional Satisfiability Problem. The Propositional

Satisfiability Problem is to determine for a given Propositional formula if there exists an assignment 4 that

satisfies the formula:

Definition 2.3. (Satisfiability)

A variable assignment 4 is a model of formula F if and only if Val,(F) = T; in this case we say

that a satisfies F. A formula F is satisfiable if and only if there exists at least one model of 7. [

2.2 Search Space Components

Given a formula F, we say that the set of variable assignments, Assign(F), forms the search space S(F).
We also define a neighbourhood relation on S(F), N(F) € S(F) x S(F). For brevity, we typically do not

include the reference to F when referring to S(F) and M (F), but implicitly assert the dependence on the

problem instance, and write S and N, respectively.

Taken together, S and NV form the search graph Gy = (S,). Gy determines the space of assignments

that a given SLS algorithm is searching, as well as the transitions available to the algorithm. Typically, -

however, SLS algorithms do not perform random walks on this graph; they are generally guided by some

form of greedy heuristic. This heuristic information is captured in the evaluation function g(F) : S(F) — R,

mapping search states to real numbers while ensuring that global optima in g correspond to satisfying

assignments. In most SLS algorithms for SAT, we simply define g(F,a) := #{c € F | Valy(c) = L}, that

is, the evaluation function value of an assignment is just the number of clauses that are not satisfied by that

Chapter 2. Preliminaries 15

assignment. Minimising g therefore corresponds to satisfying more clauses, and when g(F, a) is 0 there are
no clauses unsatisfied by a, and F is satisfied.

Finally, combing S, NV, and g results in the search landscape L = (S, N, g). The search landscape fully
defines the search space of an instance, and can be conceptualised as a graph in which nodes represent
search states, edges represent neighbouring states, and each state has a “fitness” values associated with it.
The goal then, of any SLS algorithm, is to perform a (biased) walk in the search landscape attempting to
find a state with a fitness value of zero. For a SAT instance involving n variables, the search landscape can
be conceptualised as an n-dimensional Boolean hypercube, with the evaluation function value of each state
associated with the corresponding vertex. Chapters 3 and 4 of this thesis exclusively study properties of
the search landscape in an attempt to understand how and why SLS algorithms behave the way they do on

these landscapes.

2.3 SLS Algorithms for SAT

For our purposes in this thesis, we will consider only a small (but well-studied) subset of SLS algorithms for
SAT. In order to simplify the analysis done later in the thesis, we restrict our attention to SLS algorithms that
search the landscape defined by S(F) = Assign(]:), N (F) corresponding to all pairs of states differing in
the value of only one variable, and g(F,a) := #{c € F | Val,(c) = L}. Most modern state-of-the-art SLS
algorithms for SAT are compliant with these restrictions, so we are still studying a very interesting class
of algorithms. Additionally, much of the theory that we will develop still appliés to other types of algo-
rithms (for example, those which use larger local neighbourhoods). For a more general and comprehensive
description of SLS algorithms in general, the reader is referred to [Ho098, HS04].

In this section, we give a brief overview of two “canonical” local search algorithms for SAT. These algo-
rithms are both very well-studied, and also form the basis for many other (better performing) algorithms.
The two algorithms are GSAT [SLM92], and WalkSAT /SKC [SKC93, SKC94].

Pseudo-code for the well-known GSAT algorithm is shown in Algorithm 2.1. The algorithm is quite
simple. Each run of the algorithm consists of a number of tries, each of which is commenced by choos-
ing a random starting assignment (c.f. line 3).2 Once the starting point has been chosen, a fixed num-
ber of steps are performed. In each step, a variable is selected (c.f. line 8) and flipped (c.f line 9). The
variable is chosen randomly from all variables that minimise the heuristic function scoreCSAT | defined as
score$SAT (v) = g(F,a’) — g(F,a), where a is the current assignment, and 4’ is the assignment with variable
v flipped. This process is repeated until either a solution is found, or the maximum number of steps has

been reached.

2Note that throughout the thesis, unless states otherwise, random choices are made uniformly over the given set.

Chapter 2. Preliminaries 16

Algorithm 2.1: GSAT(F, maxTries, maxSteps)

Input : CNF Formula F, Integers maxTries and maxSteps
Output: Satisfying assignment or “timeout”

1 begin

2 fortry :=1,--- ,maxTries do

3 a := randomly chosen element of Assign(F)

4 forstep:=1,--- ,maxSteps do

5 if Val,(F) = T thenreturna

6 else

7 B:= {v € Var(F) | Vo' € Var(F) : score§54T (v) < score§54T (v')}
8 v := randomly chosen element of B -
9 a := a with variable v flipped

10 end

11 end

12 end

13 return “timeout”

14 end

As previously mentioned, the basic GSAT algorithm forms the basis for many other SLS algorithms,
including (but by no means limited to) GWSAT [SK93], GSAT/TABU [MSK97, MSG97], HSAT [GW93]
and HWSAT [GW95], as well as very powerful dynamic local search algorithms such as GLS [MT00],
DLM [SW97], and SAPS [HTHO02].

Another interesting and influential class of algorithms is based on the WalkSAT framework. Pseudo-
code for the archetypical algorithm in this framework, WalkSAT/SKC, is shown in Algorithm 2.2. Struc-
turally, the algorithm is quite similar to GSAT; both algorithms iterate over a fixed number of tries and
steps, randomly reinitialising at the start of every try, and choosing a variable to be flipped in every step.
The major difference between the two algorithms, and the defining feature of the WalkSAT framework,
is that WalkSAT/SKC usés a two—tiéred variable selection mechanism (c.f. lines'7 — 16). To select a vari-
able to flip, a currently unsa&sﬁed clause C is lchosen and the candidate variable is then restricted to
those appearing in C. This guarantees that at the very least, clause C will be satisfied after the variable
flip. The set B (c.f. line 10) contains all variables that minimise the heuristic function scoreSKC, defined as
scoresXC(v) = #{C € F | Val,(C) = T AVal,(C) = L}, where a' is equivalent to the assignment a, with
the value of variable v flipped. Note that this heuristic function only counts a negative contribution for
the clauses that become unsatisfied when a variable is flipped; it does not count a positive contribution for
the clauses that become satisfied (i.e. it only assesses the “damage” done by a variable flip). Lines 11 - 16
show how a the variable is actually chosen from among the sets. If a variable can be chosen that does not
unsatisfy any new clauses, it is always chosen (c.f. line 11). Otherwise, with probability p, the variable is
chosen randomly from all of those in the clause, and with probability 1 — p the variable is chosen randomly

from B (the set of heuristically best variables). ‘

Chapter 2. Preliminaries 17

Algorithm 2.2: WalkSAT /SKC(F, maxTries, maxSteps, p)

Input : CNF Formula F, Integers maxTries and maxSteps, Probability p
Output: Satisfying assignment or “timeout”

1 begin

2 for try :=1, .. ,maxTries do

3 a := randomly chosen element of Assign(F)

4 forstep:=1,--. ,maxSteps do

5 if Val,(F) = T then returna

6 else

7 U:={Ce F|Val,(C)= 1}

8 C := randomly chosen element of U

9 Cp:={v € Var(F) |3l € C:v = Variable(l) }

B:={v e Cy| Vv € Cy: scoresXC(v) < score3XC(v')}
if Vo € B : scoreSXC(v) = 0 then
| ©v:= randomly chosen element of B

=
o

==
N o=

13 else

“ v := randomly chosen element of { ngvrtlﬁhpliéobzz?lliltlytyf_ .
15 end

16 a := a with variable v flipped

17 end

18 end

19 end

20 return “timeout”

21 end

WalkSAT/SKC has been shown to outperform GSAT (and variants of it) on many problem classes
[SKC94, Ho098]. As with GSAT, a large number of SLS algorithms have been based on the WalkSAT frame-
work. Some notable examples include WalkSAT /Tabu [MSK97, MSG97], and Novelty* [Ho099].

24 Empirical Methodology -

This thesis is very empirical in nature. Throughout the thesis, we perform experiments, typically by run-
ning SLS algorithms repeatedly on distributions of test instances, and report empirical results. Because SLS
algorithms are inherently randomised, their performance on a given instance can only be characterised by
a distribution-of run-times for that particular instance. Hoos and Stiitzle have developed a methodology
for empirically analysing SLS algorithms [HS98, HS04], and we follow their approach in this thesis.

To study the distribution of SLS algorithm run-times, we use cumulative distribution functions (CDFs).
A CDF is defined simply as the probability that a given random variable X takes a value less than or equal

to x, i.e. cdfix) = Pr[X < x|. For discrete distributions (which we exclusively encounter in the empirical

Chapter 2. Preliminaries 18

1 —
norm(x) WalkSAT ——— /

cdf{x) ------ 09 | ed(x,58000) ------ /
/
08 : 08
;
i 07 y
/
> 06 i z 06 /
E] 2 05
° / ° /
o Q.

0.4 04 /
/

i 03

i /.

02 / 0.2
!
/ \ 0.1 z.
4 ,_:-—-4-‘/
/ 0 -

0
-10 -5 0 5 10 100 1000 10000 100000 1e+06
search steps

Figure 2.1: Example cumulative distribution function. Left: The standard normal probability density func-
tion, labelled norm(x), and the associated CDF, labelled cdf(x). Right: An empirical CDF, the
RTD of WalkSAT/SKC on a hard random instance, as well as the best fitting exponential distri-

bution — see text for details.
studies throughout this thesis), this becomes:

cdfx) =) Pr{X =y] (2.1)
{y ly<x}

The left pane of Figure 2.1 illustrates a simple CDF for the standard normal probability density function.
For any x, if we would like to find Pr[X < x|, we simply find the intersection of the CDF with the desired x
value. For example, at x = 0, we get Pr[X < x] - 0.5. We use CDFs throughout this thesis, and will assume
that the reader is familiar with them.

CDFs are useful for analysing the distribution of run-times of an SLS algorithm on a given instance.
To achieve this, we run a given SLS algorithm repeatedly on an instance and measure either the number
of search steps or the CPU time required to sblve ‘the instance (we assﬁme that the algorithm is given
enough resources that it eventually finds a solution in every run). Given this run-time distribution (RTD),
it is a simple matter to determine the corresponding CDF. The right pane of Figure 2.1 illustrates such an
empirical CDF, obtained by running WalkSAT/SKC 1000 times on a hard Random 3-SAT instance, and
recording the number of search steps performed in each run.

The right pane of Figure 2.1 also shows the exponential distribution ed(x,m) = 1 —27*/™ with m =
58000. This exponential distribution fits the RTD very well, which is typical of the RTDs of SLS algorithms
(for further discussion of this observation, the reader is referred to [HS598, HS04]). Although it is desirable

to study the entire RTD, we often need to quantify the performance of an algorithm on an instance with a

single value. Since the RTDs are typically exponentially distributed, summary statistics of the distribution

can be meaningfully interpreted. In this thesis, we use the mean of the RTD to quantify the search cost of

Chapter 2. Preliminaries 19

an algorithm on a given instance, and refer to this value as the local search cost (Isc) of the given algorithm
on the given instance.

Because this is an empirical study, we need some benchmark instance sets. Appendix A gives an
overview of the instances that we use. When assembling these benchmark sets, we attempted to focus
on widely studied sets of instances that were representative of the the instances being studied in the lit-
erature. To this end, we include a number of Random 3-SAT test sets from the phase transition region of
various sizes [CKT91, GW94]. We also include SAT-encoded instances from other problem domains, such
as graph colouring, planning, logistics, and hardware verification and design. Due to the extremely high
computational resources required for many of the experiments in this thesis, many of the instances that we
study are smaller (and thus correspondingly easier) than those previously found in the literature. However,
it is our hope that the properties we observe and the intuitions that we gain by studying these smaller in-
stances carries over to larger instances. This is not without precedence; Yokoo studied the changes in search
space across the phase transition for 20 variable Random 3-SAT instances, with very interesting results that
did indeed carry over to larger instances [Yok97]. '

Finally, we briefly mention that a large number of the algorithms that we develop and use in this the-
sis are based on binary decision diagrams (BDDs). BDDs are essentially a compact method of modelling
Boolean functions. In this thesis, we use BDDs to represent sets of search states, in the following way. A
given state X = (x1, %9, -, xp) is treated as the input to a Boolean function f over n variables. The Boolean
function returns true if and only if the state X belongs to the sét represented by f. BDDs are a convenient
method of mbdelling such functions becaLise the BDDs are compact, and many set operations (such as in-
tersection, union, etc.) can be performed very efficiently with the BDDs. Appendix B gives a more detailed

overview of BDDs, as well as references to additional resources.

Chapter 3. Plateau Characteristics 20

Chapter 3

Plateau Characteristics

One of the most prominent search space features of SAT instances (and many other combinatorial optimi-
sation problems involving discretised evaluation functions) are structures known as plateaus. Simply put,
a plateau is a set of states in the search space that are all connected to one another, and are indistinguishable
with respect to a given evaluation function. Thus an SLS algorithm has no heuristic guidance when mov-
ing between states on a plateau, and must either make a non-improving move or choose uniformly from
neighbours on the plateau with the hope of finding a state which has neighbours with a lower evaluation
function value (such states are referred to as exif states). In this chapter we demonstrate that plateaus are
indeed a very prevalent search space feature in a wide variety of SAT instances, and we study many of their
properties.

Plateaus are interesting for a variety of reasons. For example, one of the most interesting classes of
plateaus are those which consist entirely of states having only neighbours with higher evaluation function
values. These states are known as local minima states, and they impede the progress of greedy local search
algorithms. If a plateau contains only local minima states, then the plateau is referred to as closed, and it
is impossible for an SLS algorithm to improve the evaluation function value without first making at least
one non-improving move. Thus, we would like to get a sense of how widespread such closed plateaus
are, and what properties the closed plateaus have. Plateaus are also a natural object of study because they
fully partition the search space - that is, every state belongs to exactly one plateau. Thus, plateaus allow
us to simplify our view of the search space by grouping states together and measuring properties of the
encompassing plateaus. _ ' , | ‘ i

This chapter is structured as follows. The next section presents ali of the formal definitions and language
. needed throughout the chapter, and further motivates the study of plateaus. Next, we study plateaus by
sampling the plateaus actually encountered when using an SLS algorithm to solve the instances and look at
properties such as the number of plateaus, their size, and the various types of plateaus. Next we describe a
method of exhaustively finding all of the plateaus in the search space, and report statistics over all plateaus.
Following this, we study the properties of plateaus in the search spaces of structured SAT instances. Next,
we study the internal structure of plateaus, and consider how the anatomy of plateaus affects SLS algorithm

behaviour. Finally, the chapter concludes with a discussion and summary of the main results.

Chapter 3. Plateau Characteristics 4 21

3.1 Definitions and Motivation

3.1.1 State Types

As previously discussed, the search space S of a combinatorial optimisation problem is composed of a
finite (or countable infinite) set of states. In the case of SAT, given a formula F, the search space S(F) :=
Assign(F), where Assign(F) is simply the set of all complete variable assignments. For convenience, we
typically call these assignments search space states or, for the sake of brevity, states. It should be obvious
that there are exactly 2" states, where n = #Var(F), since every state involves n variables each having two
possible values. Assuming that we are considering only neighbourhood relations N'(F) C Assign(F) x
Assign(F) in which two states are neighbours if and only if they differ in the value of exactly one variable,
the search space can be conceptualised as a Boolean hypercube.

In the following, we classify the search space states into different classes, depending on their local neigh-

- bourhood. The definition is from [Hoo098, HS04].

Definition 3.1. (State Types)
Let L = (S, N, g) be a search landscape. For a state s € S, we define the following functions
which determine the number of upwards, sideways, and downwards steps from s to one of its

direct neighbours:

#{s’ e N(s) | 8(s') > 8(s)}

upw(s) =
sidew(s) = #{s e N(s)]|g(s') =g(s)}
downw(s) = #{s' e N(s)]|g(s') <g(s)}

Based on these functions, we define the folldwing state types:

SLMIN(s) < downw(s) = sidew(s) =0

LMIN(s) < downw(s) = 0Asidew(s) > 0Aupw(s) >0
IPLAT(s) < downw(s) = upw(s) =0
LEDGE(s) < downw(s) > 0 Asidew(s) > 0Aupw(s) >0
SLOPE(s) <« downw(s) > 0Asidew(s) =0Aupw(s) >0
LMAX(s) <& downw(s) > 0Asidew(s) >0Aupw(s) =0
SLMAX(s) < sidew(s) =upw(s)=0

The states defined by these predicates are called strict local minima (SLMIN), local minima (LMIN),
plateau interior (IPLAT), ledge (LEDGE), slope (SLOPE), local maxima (LMAX), and strict local max-
ima (SLMAX) states. ' O

Chapter 3. Plateau Characteristics 22

It should be obvious from the definition that every state falls into exactly one of the above classes, and
thus the state types partition the search space. A detailed discussion of the state type distribution in various

classes of SAT instances can be found in [Ho098].

3.1.2 Plateaus

While the distribution of states is an interesting topic of study in and of itself, we are more interested in
studying larger search space structures that, as we will demonstrate throughout this thesis, have dramatic
effects on the behaviour of SLS algorithms. Rather that studying single states, we study groups of connected

states. The following definition formalises the notion of a region of the search space.

Definition 3.2. (Region)

Let L = (S, N, g) be asearch landscape and Gy = (S, V) be the corresponding search graph. A
region in Gy is aset R C S of search states that induces a connected subgraph of G N. Formally, R
is a region in Gy if and only if Vs',s” € R 3sq,s1,- -+, sk € RVi€ {0,--- ,k—1} 150 =5 As =
s AN (si, 8i41)- O

Regions are interesting because they correspond to portions of the search space in which it is possible
for an SLS algorithm to move between any two states belonging to the region without leaving the region.
Note that depending on the evaluation function, it may actually be improbable (or even impossible) that an
. SLS algorithm will actually travel between two states in the region — but such a trajectory is not ruled out
by the neighbourhood relation.

However, regions are not interesting in and of themselves. Individual states constitute trivial non-
interesting regions. The entire search space typically forms a trivial region as well (though this may not
be the case, depending on the neighbourhood relation). However, the next definition formalises a very
important and interesting type of region, the plateau region, as well as a closely related search space structure,

the plateau.

Definition 3.3. (Plateau Region, Plateau, Level)

Let L = (S, N, g) be a search landscape and Gy = (S,) be the corresponding search graph.
A region Rin Gy is a plateau region in L if and only if all states in R have the same evaluation
function value, i.e.,, 31 € RVs' € R: g(s') = L. In this case, define Level (R) := I to be the level of
plateau region R (we occasionally refer to the level of a state similarly).

A plateau in L is a maximally connected plateau region, i.e. a plateau region P is a plateau if and
only if =35 € P35’ € S\P : N'(s,5') A g(s) = g(s'). We denote the (unique) plateau containing
a state s € S with Plateau(s). O

Chapter 3. Plateau Characteristics 23

The preceding definition was the central definition of the chapter, and we will spend the majority of
the remainder of the chapter studying plateaus and their properties. As we have alluded to earlier, every
state in the search space belongs to exactly one plateau and so plateaus form a natural partition of the
search space. Furthermore, because the evaluation function value is constant for all states in a plateau,
the evaluation function cannot be used by SLS algorithms to guide the search when choosing between
states in the same plateau. Also, since all states in the same plateau are connected, an SLS algorithm can
move between any two states on the plateau without leaving the plateau (though it may, of course, require
multiple steps). All of these plateau properties enable us to group the states in a plateau together and
treat the entire plateau as a single entity. As we will demonstrate, understanding the properties of plateaus
allows us to more fully understand how search space features can affect algorithm behaviour.

We next define two important classes of plateaus — open and closed. Because local search algorithms
have no heuristic guidance (w.r.t. the evaluation function) while searching a plateau, it is not obvious how
much time should be invested in searching a given (potentially closed) plateau. The answer to this question
depends on many factors, but it essentially boils down to determining the expected time that it would take
to find a state on that plateau from which the search can progress again; such a state is referred to as an exit.
The following definition classifies plateaus into open plateaus, which are plateaus which contain at least

one exit (and thus may be worth searching), and closed plateaus which do not contain exits.

Definition 3.4. (Exits, Open and Closed Plateau Regions)

Let L = (S,N,g) be a search landscape and P a plateau in L. A state s € P is an exit of
P if and only if s has a neighbour at a lower level than P, ie. EXIT(s) holds if and only if
3s' € S\P: N(s,5') A g(s) > g(s'). In this context, s’ is called a target of exit s.

A plateau P is called an open plateau if and only if it contains at least one exit, otherwise P is

called a closed plateau. g

The remainder of this chaptef is dedicated to an empirical investigation of the properties of plateaus in
the search space. We would like to provide answers to questions such as: How many plateaus are there?
What is the ratio of open to closed plateaus? How big are the plateaus? What does the internal structure of

these plateaus look like?

3.2 Plateau characteristics of the UF-3-SAT distribution

In this section, we study plateaus in the search spaces of instances from the UF-3-SAT distribution (a de-

scription of this distribution is given in Appendix A). Rather than study properties of individual instances,

Chapter 3. Plateau Characteristics 24

we attempt to probabilistically sample plateaus uniformly and at random from the entire UF-3-SAT dis-
tribution, and measure their properties. Thus, this analysis gives insight into what type of plateaus one
would expect to encounter in a typical instance from the UF-3-SAT distribution, but does not give any
sense of what the search spaces of individual instances look like.

The experimental analyses in this section are intended to replicate those of [FCS97] exactly. We repli-
cated the instance distributions and experimental methodology as accurately as possible from the descrip-
tions in the literature, and performed the same analyses. However, our results differ dramatically from the
previously published results, and we draw correspondingly different conclusions. These discrepancies will
be discussed throughout this chapter, but we note at this time that the results presented in this section have

been rigorously checked, and corroborated by several different methods.

3.2.1 Experimental Methodology

Ideally, we would like to sample plateaus at low levels uniformly and at random from the UF-3-5AT dis-
tribution. Unfortunately, this is not possible unless the number of variables is very low. To overcome this
problem, we follow the approach of [FCS97] and use GSAT (c.f. Section 2.3) to sample plateaus. For each
instance in the distribution (1000 instances total), we ran GSAT once for each level from 0 to 5 and output
the first state encountered by GSAT at that level. If GSAT did not encounter a state at the desired level
during the run, it was run again. This process gave us a distribution of states for each level 0 to 5. Because
we used GSAT to sample the states, the distributions are biased — nonetheless, since we are interested in
SLS algorithm behaviour, the states form an interesting sample. Also, since GSAT is initialized randomly,
the bias is due only to the greedy descent mechanism in GSAT, and not by the starting state.

Each state s was then expanded into Plateau(s) by using breadth-first search. Each state was stored with
very low memory overhead in a bit vector, and double-counting of states was avoided by storing them in
a hash-table. Because the plateaus were frequently very large, a maximum of 10° states were explored
(compare this with a maximum of 10000 states in [FCS97]). We recorded statistics such as the size of the

plateau and the number of exits, as well as other statistics which will be discussed in later sections.

3.2.2 Fraction of Closed Plateaus

Figure 3.1 shows the proportion of plateaus that are closed at each level. It is interesting to note that the
shape of the curves is similar for all number of variables. The proportion of closed plateaus is (trivially) 1 at
level 0, and decreases rapidly as the level is increased — there are vanishingly few closed regions at higher

levels. The proportion of closed plateaus decreases faster than exponentially with the level; for example,

for the ufb0 test set, the best-fit function was f(x) = a~*, witha ~ 2 and b ~ 1.35, and similar functions fit

Chapter 3. Plateau Characteristics 25

uf100 ---@--
uf50 e
uf20 —+— -

traction closed

0.1

Y.

level

Figure 3.1: Fraction of closed plateaus sampled at each level.

the data well for the other test sets.

Perhaps most interesting is the relatively low proportion of closed plateau regions at level 1 — in fact,
over half of the plateaus sampled from the uf20 and uf50 distributions were open, and only slightly less
than half of those from uf100 were open as well. This indicates that a solution can be reached from a large
fraction of the plateaus sampled at level 1 simply by exploring the plateau until an exit is found. While this
may make it sound like these instances should be trivial to solve, many other details must be considered.
For example, even though a plateau is open, it is not necessarily the case that it is easy to find an exit —
the plateau may be very large and there may be only a few exits, or the exits may be clustered together in a
small, fairly unconnected region of the plateau. This is studied in depth in Section 3.5.

As hinted at earlier, there are discrepancies between these results and results of Frank, Cheeseman and
Stutz that this experiment was supposed to replicate exactly [FCS97]. Frank et al. also show a monotonic
decrease in the proportion of closed plateaus with increasing level. However, the values that they report are
much higher in some cases. For example, for the uf100 distribution, Frank et al. report that approximately
0.9 of the plateaus samples at level 1 were closed, down to approximately 0.2 at level 5. Their results for

smaller test sets are more comparable to ours.

3.2.3 Plateau Size

Figures 3.2, 3.3, and 3.4 show the distribution of the sizes of the plateau regions encountered by GSAT on
the uf20, uf50, and uf100 test sets, respectively. Our first observation is that plateaus in these distributions

are very large, and the size is directly proportional to both the level and the number of variables. The

Chapter 3. Plateau Characteristics 26

1 . - 7 v
09} . y // 09 t—d-| i
i ! g
0.8 | v]/ f 0.8 [~ J/
07 | 0.7 fr—r ’)
08 | 08—/
05 | I 05 (L
04 i 04/
7 7 i 4 0 —
03 Lo / 03 [- 0 :
02 i/ i 02 R]
01 _in/ j f] 01 e g T
¥ o Lotz I 0 e
1 10 100 1000 10000 100000 1e+06 1 10 100 1000 10000 100000 18406 1 10 100 1000 10000 100000 10406
plateau size plateau size plateau size

Figure 3.2: Distribution of plateau sizes (UF-3-SAT, 20 variables). Left: all plateaus, Centre: open plateaus,
Right: closed plateaus.

1 7 1
A .
z 0.9 [2 oo 0.9
I 08 t3 V4 4 08 -
7 L p— ~ .
- 07 5 / 07 - S S
/
08 // [08
0.5 0.5 ’ 5
-] / ol A . e Py
________ s 03 —~ 2 / 03—/ f—
"""""""" 02r- // 02 p—-e / - 2 T
. v 74 3 —
- e 0.1 fmmm e — 01 t—, 4
o T B o 5 cme
1000 10000 100000 16406 1 10 100 1000 10000 100000 1e+08 1 10 100 1000 10000 100000 1e+06
platsau size plateau size . plateau size

Figure 3.3: Distribution of plateau sizes (UF-3-SAT, 50 variables). Left: all plateaus, Centre: open plateaus,
Right: closed plateaus.

1 1
I 1
09t | 0.9 |2
08 | o8 }3
0.7 / 075
0.6 Lo 0.6
0.5 05
0.4 / 0.4

0.3 oo / (IR A N—
02 AN iy W 02

0 44/ o -
1 10 100 1000 10000 100000 1e+06 1 10 100 1000 10000 100000 1e+06 1 10 100 1000 10000 100000 1e+06

lateau size plateau size - plateau size
p

Figure 3.4: Distribution of plateau sizes (UF-3-SAT, 100 variables). Left: all plateaus, Centre: open plateaus,
Right: closed plateaus.

Chapter 3. Plateau Characteristics 27

variance in the distributions decreases substantially with the level which is quite interesting, but not partic-
ularly surprising considering the random nature of the instances. Recall that the plateau exploration was
terminated after encountering 10° states, explaining why many of the CDFs are truncated.

We first consider the sizes of the closed plateaus, found in the right panes of the figures. The closed
plateaus are relatively small, and the sizes increase with the number of variables. There is a slight tendency
for higher level closed plateaus to be smaller than those at lower levels. Recall that there are also fewer
closed plateaus at higher levels, which is why there are so few data points in the CDFs for the high-level
distributions. Thus, we observe that closed plateaus are larger and more abundant at lower levels.

The situation looks quite different for open plateaus, which are shown in the centre panes of the figures.
We find that the vast majority of the sampled open plateaus are very large, with the size increasing with
level. Because a maximum of 10° states were explored, the full CDFs are visible only for the uf20 distri-
bution. In fact, for the uf100 distribution, only 55% of the level 1 open plateaus, 10% of the level 2 open
plateaus, and very few higher level plateaus had less than 10° states. The vast majority of the sampled
plateaus for the uf100 test set were very large. '

These results are not at all consistent with those of Frank et al. [FCS97]. For example, Frank et al. report
that the median size of level 1 closed plateaus sampled from the uf100 distribution was 48 states, and that
only approximately 4% of the level 1 closed plateaus contained more than 1000 states. In contrast, we find
a median size of 3580 states and fully 68% of the level 1 closed plateaus contained more than 1000 states. In
fact, 4% of the level 1 closed plateaus that we sampled from the uf100 had more than 10° states. Our results
for the open plateaus also differ dramatically from those of Frank et al.. For the uf100 distribution, Frank
et al. report that, although they found that open plateaus were typically 10-30 times larger than closed
plateaus, the vast majority of open plateaus at level 1 consisted of fewer than 1000 states and very few had
more than 10000. In contrast, less than 2% of the level 1 open plateaus that we sampled from the uf100

distribution were smaller than 1000 states, and fully 45% of them were larger than 10° states.

3.2.4 Discussion

It is somewhat troubling that our results from this section differ so dramatically from those of Frank
et al. [FCS97], which they were intended to exactly replicate. However, we reiterate that all of our results
presented in this section were carefully checked, and we are confident that they are correct. All of the al-
gorithms employed were corroborated using completely different methods (the methods from succeeding
sections): Because we are reporting much larger plateaus than those from the literature, one might suspect
that we are somehow over-representing plateaus — that is, counting states that should not be included in a
plateau or double-counting states. However, it is very simple to confirm that a set of states are all elements

of a single plateau, and we have performed this check for a large number of the plateaus we sampled.

Chapter 3. Plateau Characteristics 28

It is unclear what could cause the difference in results. One possible source of the discrepancy is that, as
we will see in the next section, there are in fact many, many small plateaus in the search space. However,
when we actually sampled the plateaus that were encountered by GSAT over a large number of runs,
none of these small plateaus were encountered. It is possible that Frank et al. somehow used an unsound
implementation of GSAT that encountered a large number of these small plateaus.

While the analysis in this section paint an interesting picture of what plateaus are typically found in an
entire UF-3-SAT distribution, it gives no indication of what the search spaces of individual instances look
like. For example, we are most interested in how the search spaces of, say, the easiest and hardest instances
from a distribution differ. We would like to know what search space structures are present in the hard

instances that cause difficulties for SLS algorithms.

3.3 Plateau characteristics of individual UF-3-SAT instances

In this section, we study the search space of individual UF-3-SAT instances in detail, rather than sampling
search space features from the entire instance distribution. For each instance, we find every low level state,
and then group the states into their respective plateaus. Thus, we get a detailed look at the complete low-
level region of the search space for each instance.

It is critical to study the search space on an instancé-by-instance basis in order to understand the be-
haviour of SLS algorithms. Such an approach makes it possible to study the search space features re-
sponsible for making a given instance easy or hard for local search to solve, rather than simply making

observations about the entire instance distribution.

3.3.1 Experimental Methodology

In order to study the complete low-level search space of these instances, we need a method to find every
single low level plateau. This is quite a difficult task. Sampling cannot be used, because this will not ensure
that the entire search space is sampled. The complete search space cannot be enumerated because it is too
large. Our approach to the problem in to first find all of tﬁe states at a given level, and then to partition this
set of states into its component plateaus. The following definition formalises the notion of the complete set

of states at a given level, which we refer to as a levelset.

Definition 3.5. (Levelset) . S
LetL = (S, N g)bea search landscape The levelset at level k, denoted Levelsetk is the set of all
states having level k. Formally, Levelset* := {s € S | g(s) = k}. Note that Levelset* is comprised

of all of the states from all plateaus at level k. : _ O

Chapter 3. Plateau Characteristics 29

Algorithm 3.1: Levelset(F, maxLev)

Input : CNF Formula F, Integer maxLev
Output: Set of BDDs representing Levelset

1 begin

2 | //Build the partial levelsets w.r.t. each clause
3 LS — @

5 foreachc € F do

7 pls® — BDDSatSet(c)

9 pls! « —~BDDSatSet(c)
1 fork « 2---maxLev do
13 I plsk — L

1 end

16 LS «— LSU {pls}

17 end

18 // Merge the partial levelsets until only one remaining
20 while #LS > 1 do

2 (pls1, plsy) «— ChooseTwoPartial Levelsets(LS)
2 LS « LS\ {pls1, pls2}

26 fork «— 0---maxLev do

28 | plsk o — V(i jli+j=k} (PIS5 A plsh)

29 end

31 LS — LSU {plsloz}

32 end

33 | //Only one set of partial levelsets left — it represents the set of complete levelsets
35 return s, where Is is the single remaining element of LS
3 end

Because the sets of states that we are exploring are so large, it is infeasible to store them using conven-
tional means such as simple lists of bit vectors. To avoid these problems, we use Binary Decision Diagrams
(BDDs) to store the levelsets and the plateaus. BDDs allow us to represent the sets of states by Boolean
functions: a state is an element of the set if and only if it is a minterm of the Boolean function represented
by the BDD. Appendix B gives a brief mfroductidn to BDDs, and a description bf the BDD functions that
we use.

The pseudo-code shown in Algorithm 3.1 elucidates our method for calculating the low level levelsets
Levelset, fork = 0,- - - ,maxLev. For all of the experimenfs in this section, we set maxLev to 5. The input
to the algorithm is a CNF Formula, and the maximum level that we would like to calculate the levelset for.
Note that the procedure calculates all of the levelsets simultaneously.

A key concept for understanding this process is that of a partial levelset. This is simply a levelset with
respect to a subset of the clauses. In the for loop declared at line 5, we build partial levelsets with respect to

each clause. Atlevel 0, we simply have all states that satisfy the clause. At level 1, we have all states that do

not satisfy the clause. Every state in the search space falls into exactly one of these classes, so for all levels

Chapter 3. Plateau Characteristics 30

greater than 1 we set the BDDs to L, representing the empty set. Note that each pls is a set of maxLev + 1
BDDs, and that LS is a set of sets of BDDs.

Once we have these partial levelsets for each clause, we begin to combine them. At line 22, we call a
procedure to heuristically choose two partial levelsets to be combined. Any two choices are correct, but the
size of the BDDs explodes if the order of combination is not made carefully. We have found that choosing
two partial levelsets according to a heuristic that both maximises the overlap of the support of the two BDDs
while simultaneously minimising the BDD sizes gives the best results. The two chosen partial levelsets are
removed from the collection LS, and then recombined into a new partial levelset.

The levelset combination is shown in line 26. It should be clear that, given two disjoint sets of clauses C;
and C; and their cofresponding partial levelsets pls; and pls;, it is fairly straightforward to build the partial
levelset plsioy for C = C; U Cy. In order for a state s to be at level k with respect to C, it will have to be at
level i with respect to C; and level j with respect to C;, where i and j are chosen such that i + j = k. This
is exactly what is accomplished in line 26 (note that the A and V operations are being performed on BDDs,
and correspond to the BDD and and or operations, respectively). Finally, pls;.; is added to the collection

. LS. Note that pls;.; is the partial levelset with respect to all of the clauses covered by pls; and pls;. Since
we start with a set of partial levelsets, each corresponding to a single clause in the formula, when all of
the partial levelsets have been recombined so that there is only one remaining, this last remaining partial
levelset is actually the (complete) levelset with respect to the entire formula.

Once we have collected all of the low level levelsets, we must partition each levelset into its component
plateaus. The pseudo-code of Algorithm 3.2 illustrates our partitioning prbcess. The input to the algorithm
is a BDD representation of Levelset’, for some k, and the output is the set of all plateaus at level k (also
represented as BDDs).

In line 4, we choose a single cube from the remaining partition, and add it to the BDD P, representing the
explored portion of the plateau. Starting from those states, we iteratively expand the plateau using a set-
wise breadth-first-search until all of the states in the plateau have been added. Lines 9 — 13 illustrate how the
plateau is expanded. For every variable v, the function representing the plateau but with v complemented is
calculated, and restricted to level k. The disjunction of all of those functions, Nbr, represents all neighbours
of the partial plateau that are also elements of the plateau being explored (note that many of the states may
already be in P). Nbr is then added to P and removed from Remaining. It is trivial to see that when no more
new states are generated, the entire plateau has been explored. .

Using the two procedures described above, we can find and represent every plateau in the entire search
space, or just all >plateaus at low levels in the search space. It is no longer necessary to resort to sampling the
search space — we get a complete picture of the entire low level portion of the search space. However, the

computation is exceptionally expensive (some of the experiments used to collect data for the succeeding

Chapter 3. Plateau Characteristics 31

Algorithm 3.2: Partition(Levelset)

Input : BDD Representation of Levelset*
Output: Set of BDDs representing each plateau

1 Begin

RC-THE- T B~ AU LI S T R)

RN N N RN B oa e e e e e el
G o W N HE O 8 g NN e W N O

26

Remainder «— Levelset®
while Remainder # L do
P — BDDPickOneCube(Remainder)
fixedPoint «— false
// expand the plateau containing that cube (setwise-BES)
while Remainder # L and fixed Point = false do
// find all neighbours on the current plateau
foreach v € Var(F) do
Nbr, «— BDDNegate(P,v)
NbrLS, «— Nbr, A Remainder
end
Nbr «— va Var(F) NbrLSv
// check for fixed point
if P A Nbr = P then
| fixedPoint — true
else
end
end
fixedPoint « false
P «— PV Nbr
Remainder « Remainder A ~Nbr
// add the complete plateau to the set of all plateaus
PlateauSet «— PlateauSet U {P}
end
return PlateauSet

27 end

// Start with entire levelset

// choose one BDD cube to start from

Chapter 3. Plateau Characteristics

32

1 r.)) 7 T
4 ! i:
0.9 { .
A } [}
H H
0.8 ¢ i
. { i
! !
H !
1)
0.7 ; i
4 i
1
0.6 fooee ¢ i
])
{ {
t
0.5 [> i
I E i
0.4 5 {
\ i
! i
-’]
0.3 E i
1]
i ;
02 + ; i 0 =
:' i ; T
0.1 i ! 3 4
‘:’ £ " Jr—
N Wi) 5
100 1000 10000

Figure 3.5: Distribution of the number of plateaus at each level over instances in the uf30 test set.

number of pl

ateaus

level
0 1 2 3 4 5

Test Set I o /R X o /x| ox/%] x o /% | X 0./% | T 0x/x
uf20 17 (065) | 84 (043) | 228 (041) | 478 (036) | 902 (030) | 1556 (027)
uf25 1.7 (0.56) | 10.5 (041) | 320 (0.36) 76.2 (0.33) 168.1 (0.32) 339.3 (0.30)
uf30 22 (073) | 137 (046) | 462 (036) | 1271 (0.33) | 3159 (032) | 7031 (0.33)
uf35 23 (0.80) | 169 (0.51) | 63.8 (0.42) | 193.1 (0.38) 510.8 (0.35) | 1239.1 (0.34)
ufd0 24 (078) | 186 (053) | 79.1 (045) | 2706 (045) | 7942 (0.44) | 20882 (0.43)

ufd5 26 (073) | 221 (048) | 986 (039) | 3570 (0.37) | 11342 (0.34) | 32109 (0.33)

Table 3.1: Statistics of the number of plateaus in UF-3-SAT instances, counting all plateaus. For every test
set and level we show the mean number of plateaus as well as the coefficient of variation.

sections ran for over four CPU weeks), so the analysis is restricted to fairly small instances. Nevertheless,

we hope that the intuitions and hypotheses developed from studying these smaller instances will also hold

for larger instances — and we will show that this is the case in later chapters of the thesis.

3.3.2 Number of Plateaus
Figure 3.5 shows the distribution of the number of plateaus (of all types) for the uf30 test set. The number

of solution plateaus is quité low — in any given instance, there are less than 10 solution plateaus — and
the CDF for level 0 looks quite jaggy simply because of the discretised scale on the x axis of the plot. As

the level is increased, the typical number of plateaus also increases, though the relative rate of increase

decreases with level. Interestingly, the coefficient of variation also decreases with level.
Table 3.1 shows summary statistics of the number of plateau regions found at each level for all of the

UF3SAT test sets. We see that the obsgrvatibns we made for the uf30 test set genefalize with the number of

lChapter 3. Plateau Characteristics 33

10000

N
plateaus

20 25 30 35 40 45
vanables

Figure 3.6: Scaling of the average number of plateaus with the number of variables for the UF3SAT test sets.
Each point represents the average number of plateaus at the given level, for the distribution with
the given number of variables. The error bars show the standard deviation of each distribution.

variables. In all cases, the average number of plateaus increases with level, while the coefficient of variation
decreases. We also observe that the number of plateaus increases rapidly with the number of variables.
Figure 3.6 shows how the number of plateaus scales with the number of variables. There are too few data
points for an accurate assessment of the scaling behaviour, but the scaling seems to be sub-exponential

(note the log scale on the y axis of the plot).

3.3.3 Fraction of Closed Plateaus

Tables 3.2 and 3.3 show the same data as Table 3.1, except that the plateaus have been separated into open
and closed plateaus, respectively. We observe that the vast majority of plateaus are in fact open — especially
at higher levels. Interestingly, while the number of open plateaus increases with level, the number of closed
plateaus decreases. Thus, closed plateaus exist mainly at lower levels and are not only relatively rare
(compared to open plateaus) at higher levels, they 'simply do not occur. Note that the number of closed
plateaus does increase with the number of variables.

Figure 3.7 shows the average proportion of plateaus that are closed at each level for all of the UF3SAT
test suites. This figure is surprisingly similar to Figure 3.1. The ratio decreases rapidly with the level; the
function f(x) = a=*" fits these curves well. The ratios tend to be higher for larger number of variables,
though this is not true, for example, for the uf25 test set, which has a higher than expected ratio for lower
levels, and lower than expected for higher levels.

The coefficient of variation in the distribution of plateau counts is significantly higher for the closed

Chapter 3. Plateau Characteristics

34

fraction closed

level
1 2 3 4 5
Test Set T o /] % o /% | ¥ o /%] ¥ o /% | % o./%
uk20 60 (056) | 207 (045) | 467 (037) | 898 (03D | 1556 (027)
uf25 7.0 (0.53) | 285 (0.41) 73.8 (0.35) 167.4 (0.32) 339.1 (0.30)
uf30 94 (057) | 409 (0.42) | 1237 (035) | 3142 (0.33) | 7026 (033)
uf3s 113 (073) | 565 (048) | 187.3 (0.40) | 5075 (0.36) | 1237.7 (0.34)
ufdo 122 (071) | 69.6 (052) | 2621 (047) | 7885 (0.44) | 2085.1 (0.43)
ufds 143 (0.65) | 863 (0.44) | 3438 (0.39) | 11236 (035) | 32052 (0.33)

Table 3.2: Statistics of the number of plateaus in UF-3-SAT instances, counting only open plateaus. For ev-

ery test set and level we show the mean number of plateaus as well as the coefficient of variation.

level
0 1 2 3 4 5
Test Set ¥ o /] X ox/x | X ox/R] X /X & o /R] % 0/%
uf20 1.7 (065) | 24 (069 [21 (1.00) | 11 (1.03) | 04 (192) | 0.1 (3.55)
uf25 1.7 (056) | 35 (059) | 36 (067) | 24 (083 | 07 (147)| 01 (3.03)
uf30 22 (073) | 43 (061) [53 (059 | 34 (077) | 17 (105 [05 (1.73)
uf35 23 (0.80) | 56 (067) | 73 (058 | 58 (0.68) | 33 (083) | 14 (1.07)
uf40 24 (078) | 65 (062) | 95 (054) | 86 (0.62) | 57 (0.78) | 3.1 (0.91)
uf45 26 (073) |78 (061) | 123 (048) | 132 (049) | 107 (0.72) | 57 (0.93)

Table 3.3: Statistics of the number of plateaus in UF-3-SAT instances, counting only closed plateaus. For ev-

ery test set and level we show the mean number of plateaus as well as the coefficient of variation.

08 |-

06

0.4

0.2

level

fraction closed

0.1

0.001

0.0001

level

Figure 3.7: Average fraction of closed plateaus at each level for the UF3SAT test suites. Both plots show the

same data, but the plot on the right is a semi-log plot which illustrates the (super-)exponential
decrease of fraction closed with the level.

Chapter 3. Plateau Characteristics 35

level
0 1 2 3 4 5
Test Set X o/ X o /x| ¥ o /3] X /] X /R o /%
w20 67 (266) | 53 (082 | 49 (1.0d) | 25 (069) | 21 (058 | 24 (0.99)
uf25 80 (125 | 71 (085 | 53 (0.82) | 3.6 (068 | 23 (0.80) | 20 (0.44)
uf30 138 (1.35) | 174 (1.60) | 92 (0.86) | 52 (099) | 43 (1.14) | 32 (1.15)
uf35 350 (200) | 247 (103) | 133 (079 | 84 (0.80) | 56 (062) | 44 (0.85)
uf40 763 (338) | 374 (147) | 234 (126) | 116 (0.76) | 68 (0.74) | 48 (0.65)
uf45 684 (147) | 489 (0.83) | 251 (0.69) | 197 (0.89) | 115 (0.69) | 73 (0.63)

Table 3.4: Statistics of the size of closed plateaus in UF-3-SAT instances. For every test set and level we
show the mean of the average size of closed plateaus in each instance, as well as the coefficient of
variation of the distribution of average sizes.

level
1 2 3 4 5
Test Set fnmx oy /% [fnmx oy /% | fmnx ox /% | fnmx 0y /% I fnmx oy /%
uf20 0.64 (0.3) 0.74 (0.3) 0.91 (0.1) 0.96 (0.0) 0.98 (0.0)
uf25 0.64 0.4) 0.78 (0.3) 0.95 (0.1) 0.98 (0.0) 0.99 (0.0)
uf30 070 (03) | 0.87 (0.2) 0.96 (0.1) 0.99 (0.0) | >0.99 (0.0)
uf35 0.71 0.3) | 0.88 (0.2) 0.98 0.0) | >0.99 (0.0) | >0.99 (0.0)
uf40 0.74 (0.3) 0.89 (0.2) 0.99 0.0) | >0.99 (0.0) | >0.99 (0.0)
uf4s 0.75 0.3) | 091 (0.1) | 098 0.0) | >0.99 (0.0) | >0.99 (0.0)

Table 3.5: Fraction of states contained in the largest plateau for the UF3SAT test sets. For every test set and
level k we show the mean and coefficient of variation of the distribution of X, values.

regions than the open, and this value increases with the level. This is very interesting, suggesting that
while some search space features are fairly uniform between instances, the number of closed plateaus is
not. Obviously, the number of closed plateaus is closely related to the number of LMIN states, which
is known to be correlated with problem hardness in other combinatorial optimisation problems [Yok97].
Thus, it is features such as this that may help to explain the large variance in local search cost within a

distribution of homogeneous instances.

3.3.4 Plateau Size

Table 3.4 shows statistics of the sizes of closed plateaus in the UF-3-SAT test sets. Not surprisingly, the size
of the closed plateaus grows with the number of variables. What is more interesting, however, is that the
closed plateaus are typically very small, and that the size actually decreases with the level. Thus, closed
plateaus are both very rare and very small at higher levels. Since we believe that closed plateaus are one of
the most prominent search space features that interfere with SLS algorithins, this is quite interesting — it is
crucial for a high-performance SLS algorithm to effectively avoid closed plateaus at low levels of the search
space.

The situation with open plateaus is markedly different. We find that the distﬁbution of sizes of open

plateaus is quite irregular. Recall that there are a large number of open plateaus in the search space, espe-

Chapter 3. Plateau Characteristics 36

level
1 2 3 4 5
TestSet || med max | med max | med AX | med max | med TAAX
uf20 25 63.8 1.9 428.6 1.7 1913.1 1.4 5891.4 11 14266.2
uf25 3.7 141.0 2.7 1389.0 21 7779.1 1.8 29658.1 1.6 88846.3
uf30 4.6 524.0 33 5753.5 2.5 34524.6 2.1 150860.1 2.0 5232511
uf35 7.4 1409.8 44 150822 34 1017733 2.6 512087.0 21 207 x 10%
uf40 10.8 3675.0 6.2 46339.7 41 351692.3 3.3 1.98 x 10° 2.6 899 x 106
uf45 169 5547.1 83 91009.9 58 851473.2 44 573 x 10° 3.6 3.04 x 107

Table 3.6: Statistics of the size of open plateaus in UF-3-SAT instances. For every test set and level we show
the mean of the distribution of median and maximum sizes of open plateau regions.

cially at higher levels. With this in mind, consider the data presented in Table 3.5. In this table, we show

statistics of the value:

[
#Levelsetk

where k is the level, and PX .. is the open plateau at level k having maximal size. Intuitively, f&,, gives an

indication of how much of the level is contained in the largest plateau — it will soon become clear why this

is an interesting value to study.

Table 3.5 illustrates a very interesting phonomenon: even though there are many open plateaus (up-
wards of 3000 for the largest test sets at level 5), most of the states at higher levels belong to a single, large, open
plateau. This phenomenon is present for all of the test sets, and appears stronger for the larger sets. Starting
at roughly level 3, every level has one large plateau region that contains the bulk of the states at that level.
At higher levels, there are (relatively) very few states that do not belong to Pysx. There is also virtually no
variance in the distribution of fX . values for large k, indicating that the phenomenon is present in all of
the instances.

Due to the irregular distribution of open plateau sizes, it is meaningless to consider, for example, the
average plateau size at a given level. In order to illustrate the typical size of open plateau regions, we look
at the distribution of median and max sizes, and present statistics of those distributions in Table 3.6. Not
surprisingly (considering the results from the preceding paragraph), we find that the median open plateau
size tends to be quite small. Surprisingly, the median size decreases with the level — typical open plateaus
at level 5 contain less than 5 states. Closer examination reveals that at higher levels these very small open
plateaus are typically degenerate in that they consist entirely of exit states — these plateaus would have
very little effect on the behaviour of SLS algorithms. The median size of open plateaus increases with the
number of variables.

The size of PX . is also shown in Table 3.6. In contrast to the median open plateau size, the maximum

open plateau size increases rapidly with level. The maximum size also increase rapidly with the number

of variables so that at level 5, the largest open plateau in the 45 variable test set has over 30 million states.

Chapter 3. Plateau Characteristics 37

level
0 1 2 3 4 5
Instance # o o] # o o] # o o] # o e] #) o | # ° .
anom 1 0 1 4 2 2 13 12 1 56 56 0 183 171 12 574 565 9
medium 2 0 2 5 2 3 37 33 4 221 188 33 986 871 115 4652 4431 221
flat20-easy 48 0 48 73 73 0 86 86 0 494 494 0 }3023 3023 0 9014 9014 0
flat20-med [168 0 168 | 133 133 0 (355 355 0 2371 2371 0 {5662 5662 0 | 15841 15841 0
flat20-hard 6 0 6 43 19 24 38 38 0 320 320 0 {1238 1238 0 3458 3458 0
par8-1-c 1 0 1 1 1 0 19 15 4 65 18 47 414 229 185 1794 1152 642

Table 3.7: Number of plateaus in structured instances. For each instance and level, we show the total num-
ber of plateaus, the total number of open plateaus, and the total number of closed plateaus (#, o
and s, respectively).

Happily, the proportion of exits from these immense plateaus is very high (for very high levels, these large

plateaus actually consist only of exits), so they do not significantly impede the progress of SLS algorithms.

3.4 Plateau characteristics of structured instances

In this section, we turn our attention to another class of instances — structured instances. These instances
(described in Appendix A) are not randomly generated, but rather are SAT-encoded instances of other
problems, such as planning, graph colouring, and parity checking. Again, we examine the characteristics
of plateaus in the search spaces of these instances. The algorithms we use and the data we measure are
identical to those of the preceding section, allowing the results to be contrasted. We first study the number
of plateaus distributed in the low levels of the search space, and measure the fraction of the plateaus that
are closed. Following this, we present results of the empirically measured distributions of the sizes of the

plateaus.

- 3.4.1 Number of Plateaus

We first turn our attention to Table 3.7, which shows the total number of plateaus at each level in the
structured instances that we studied. The total number of plateaus is further broken down into the number
of open and closed plateaus. Note that in this table the entries represent the actual plateau counts for
the instances, unlike similar tables in previous sections which displayed statistics across a distribution of
instances. '. | .
The results are very interesting. We first note that the total number of plateaus at each level increases '
_with the level — this is consistent with our results for the Uniform Random 3-SAT test suites. There are
too few data points to make a rigorous claim, but the scaling of the total number of plateaus appears to be
exponential with the level, especially at higher levels. The total number of open and closed plateau regions

also seem to increase with the level for all of the structured instances, with the exception of the graph

Chapter 3. Plateau Characteristics 38

level :
Instance 0] 1] 2] 3] 4] 5
anom 1.00 | 0.50 | 0.08 | 0.00 | 0.07 [0.02

medium 1.00 | 0.60 | 0.11 | 015 | 0.12 | 0.05
flat20-easy 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
flat20-med 1.00 | 0.00 | 0.00 | 0.00 [0.00 { 0.00
flat20-hard || 1.00 | 0.56 | 0.00 | 0.00 [0.00 | 0.00
par8-1-c 1.00 | 0.00 | 021 | 0.72 | 045 | 0.36

Table 3.8: Fraction of plateaus that are closed at each level in structured instances.

colouring instances which have no closed plateau regions at higher levels. Additionally, there does not
seem to be a direct relationship between the size of the instances and the number of plateaué. The blocks-
world planning instance, medium, is the largest of the instances and while it does have more plateaus than
the smaller piarming instance anom and the smaller parity-checking instance par-8-1-c, the flat graph
colouring instances have the most plateaus of all the structured instances.

Due to the differences in problem size, it is difficult to draw a direct comparison between these results
and those for the Uniform Random 3-SAT test suites. However, the smallest structured instance, anom,
is approximately the same size as the largest Uniform Random 3-SAT instances — though the instances
are obviously syntactically quite different. When comparing the results of these instances, we observe that
the anom instance has significantly fewer plateaus (and fewer open plateaus) than the average number of
plateéus (and average number of open plateaus) in the uf45 test set. At lower levels the anom instance has
fewer closed plateau regions than instances in the uf45, but this relationship is reversed at higher levels.

Table 3.8 shows the fraction of plateaus at each level that are closed in thé structured instances. For the
planning instances we see that the fraction of plateaus that are closed tends to decrease rapidly with the
level, indicating that the major obstacles to local search algorithms are encountered at low levels. The flat
graph colouring instances are quite unusual in that, although they have a large number of plateau regions,
all of the plateaus are open. The only exception to this is the hardest.colouring instance, in which 56% of the
level 1 plateaus were closed. Given this information about the search space of the graph colouring instances,
it should not come as a surprise that these instances are indeed the easiest of the structured instances
studied here. It is interesting that the hardest instance was the only one to have closed plateaus that were
not solutions — this clearly suggests that these closed regions may be the reason why this instance, which
is syntactically similar to the other colouring instances, is so much more difficult for SLS algorithms. This
will be studied much more closely in the following chapter of this thesis. Lastly, we observe that the parity
instance is quite different than all of the other instances studied in this chapter (including the Uniform
Random 3-SAT instances) in that a large proportion of its plateaus are closed, even at higher levels in the
search space. Thus, local search algorithms may have a difficult time even reaching the lower levels of the

search space. This offers a partial explanation why parity instances (more specifically, larger versions of

Chapter 3. Plateau Characteristics 39

level
0 1 2 3 4 5
Instance X op/% | T ox/x | ¥ o /F] F o/ X o /X[X 0u/%
anom 1.0 (0.00) 1.0 (0.00) | 1.0 (0.00) -] 29 (08)] 40 (104
medium 1.0 (0.00) 1.0 (0.00) | 1.0 (0.00) | 23 (L08) | 41 (1.20) | 52 (1.62)
flat20-easy || 65530.5 (2.64) - | -) -) -) -)
flat20-med 58.4 (1.21) - | -) -) -) -)
flat20-hard 945.0 (0.00) | 1701.0 (1.04) | - =) -) - - - =)
par8-1-c 1.0 (0.00) - (-) | 28 (047) | 197 (1.26) | 468 (217) | 350 (1.67)

Table 3.9: Statistics of the size of closed plateaus in structured instances. For every instance and level we
show the mean size of closed plateaus, as well as the coefficient of variation of the distribu-
tion. Many of the instances (most notably the graph colouring instances) do not have any closed
plateaus at some levels; these entries are labelled with —.

syntactically similar instances) are among the hardest known instances for modern SLS algorithms.

3.4.2 Plateau Size

We now study the distribution of plateau sizes in structured instances. First, Table 3.9 presents statistics of
the distributions of sizes of closed plateaus at each level for the structured instances. We note that the mean
size of closed plateaus is quite small and has little variance for the planning instances, though the average
size does increase slowly with the level. As was mentioned in the previous section, the easy and median
difficulty graph colouring problems have no closed plateaus that are not solutions. The solution plateaus
tend to be quite large (especially for the easiest instance), again helping to explain why those instances are
so easy for local search algorithms. We also see that the average size of the closed regions at level 1 in the
hardest graph colouring instance is by far the largest that we have observed in any of the instances (though
still only an average of 1701 states). The average size of the closed plateaus in the parity instance increases
with the level and is larger than those of the planning instances. We observe a fair amount of variation in
this distribution, and closer inspection reveals that there is indeed a wide range of sizes. To illustrate, at
level 5 there are 642 closed plateau regions. The smallest has a single state, and the largest has 630 states.

These results are quite different than those for the Uniform Random 3-SAT instances. While the closed
plateaus tended to get smaller with the level in the Uniform Random 3-SAT instances, the size of closed
plateaus increases with level in the structured instances. Thus, while closed plateaus were only a problem
at very low levels for Uniform Random 3-SAT instances, they may significantly affect the behaviour of
SLS algorithms even at high levels in the search spaces of structured instances. This is consistent with the
relatively poor performance of current SLS algorithms on many structured instances.

Next, we consider the size of open plateau regions in the structured instances. An immediate first
question that we would like to resolve is whether or not the struc‘tured instances exhibit the “one-big-

plateau” phenomenon we observed in the Uniform Random 3-SAT test suites. Table 3.10 shows the FEax

Chapter 3. Plateau Characteristics 40

level
Instance 1 | 2 [3] 4 | 5
anom 043 | 0.19 | 0.11 | 0.05 | 0.04

medium 036 | 012 | 0.06 | 0.02 | 0.01
flat20-easy (| 1.00 | 0.99 | 0.98 | 0.98 | 0.97
flat20-med 0.99 | 1.00 | 1.00 | 1.00 | 0.99
flat20-hard || 0.96 | 1.00 | 0.99 | 0.99 | 0.98
par8-1-c 1.00 | 0.66 | 0.29 [0.13 | 0.16

Table 3.10: Fraction of states contained in the largest plateau for the structured instances. For every instance
and level k we show the (single) f,. value.

values, which can be contrasted with those in Table 3.5. We observe somewhat mixed results. The planning
instances do not have large fX,, values and, in fact, the value decreases with level. The parity instance
shows a similar trend, though the values are significantly larger. These results are diametrically opposed
to those that we obtained for the Uniform Random 3-SAT test suites — the search spaces of these instances
do not seem to be dominated at higher levels by a single large plateau. The f¥,, values for the colouring
instances, however, are exceptionally large, even at fairly low levels in the search space. Given that we
know that there are a large number of plateaus at these levels, it must be the case that the vast majority of
(open) plateaus in the search space of these instances are very small (relative to the largest plateau).

Table 3.11 shows statistics of the sizes of the open plateau regions for the structured instances. As
expected, both the median and the maximum sizes of the open plateaus tend to increase with the level. The
planning and parity instances seem to have fairly small open plateaus compared with the other instances
(including the Uniform Random 3-SAT instances), even at fairly high levels of the search space. The graph
colouring instances are again the exception. While the median open plateau sizes are all féirly small (less
than 1260 states for all levels less than 5), the maximum sizes are extremely large. At the highest level
measured, level 5, the largest open plateaus in all of the graph colouring instances consisted of hundreds of
billions of search states.

In fact, these results are consistent with our observations for the random instances. In all of the cases
that we studied (both random and structured), the median plateau size at each level were generally quite
small, while the maximum sizes could be very large. This suggests that it may be possible to partially
explore plateaus encountered during search, as long as the maximum number of states explored is limited
to a fairly small value — for example, the median plateau size (an idea which has been proposed before,
e.g. in [FCS97, HK95)). An approach such as this opens up many possibilities for augmenting existing SLS

algorithms with plateau searching capabilities.

Chapter 3. Plateau Characteristics 41

level _
1 2 3 4 5
Instance med max | med max | med max | med max | med max
anom 3.0 3.0 3.0 7.0 2.0 19.0 3.0 44.0 3.0 164.0
medium 4.0 4.0 3.0 15.0 3.0 54.0 4.0 177.0 4.0 604.0

flat20-easy 210 9.04x107 [350 127x10° | 189.0 123x10° | 273.0 945x10Y | 2660 5.87 x 10!}
flat20-med 21.0 9.78 x 10° 100 393x107 | 45.0 8.7 x 108 49.0 1.25x 1010 420 126 x 101
flat20-hard || 945.0 143 x10% | 135.0 9.78x 107 | 9450 2.84x10° | 1260.0 4.7 x10¥ | 12150 5.03 x 10!
par§-1-c 4.0 4.0 6.0 162.0 | 24.0 498.0 18.0 3585.0 24.0 42886.0

Table 3.11: Statistics of the size of open plateaus in structured instances. For every instance and level we
show both the median and max size of the open plateaus.

3.5 Internal Plateau Structure

Up to this point, the distribution of plateaus has been studied — the size, number, fraction of plateaus that
are closed, etc. In this section, we study the actual structure of the plateau regions, which can obviously
have a large impact on the behaviour of SLS algorithms. We will study properties such as the diameter of
plateaus, the branching factor of the states that compose the plateaus, and well as émeasure of how difficult

it is for SLS algorithms to find an exit from the plateau. The following definitions formalise these concepts.

Definition 3.6. (Diameter)

LetL = (S,N,g) be a search landscape and Gy = (S, V) be the corresponding search graph.

Given a plateau P, the diameter of P is simply the diameter of the corresponding subgraph of

G, i.e. the maximal graph geodesic of G’ = (P, Np) where Np(sy,52) < N(s1,52) Asy,52 € P.
a

Definition 3.7. (Branching Factor)
Let L = (S, N, g) be a search landscape, and Gy = (S, NV) be the corresponding search graph.
Given a plateau P, the plateau branching factor of a state s in P is defined as the fraction of neigh-

bours of s also in P:

. #{s’ € Plateau(s) | N'(s,s'
BranchingFactor(s) 1= { T es l(/\;(]s s”()})}

Similarly, we define the branching factor of plateau P as the average of BranchingFactor(s) over

all statess € P.. . ' |

The branching factor and diameter of a plateau give a sense of how the plateau is actually structured.

Plateaus with a high branching factor and low diameter would be “squeezed” into a small region of the

search space. Such a plateau would be highly connected (it would be fairly easy to maneuver around

Chapter 3. Plateau Characteristics 42

the plateau), and we might expect that most of the propositional variables would have a constant value
across the entire plateau. Conversely, plateaus with low branching factor and high diameter would be

more “brittle” and would snake their way throughout a larger portion of the search space.

Definition 3.8. (Exit Distance)
Given an open plateau P, the plateau exit distance of a state s € P is simply the length of the
shortest path in P from s to an exit state. We define the exit distance of plateau P as the average

plateau exit distance of all states s € P. U

Exit distance is a very interesting measure — it helps to quantify the intuition that even open plateaus
may be difficult to escape from. If there are few exits distributed in a large plateau, they could be difficult
for an SLS algorithm to find — especially considering that there is no heuristic guidance from the objective
function on a plateau. Orthogonally, if there are many exits but they are all clustered together and not well
connected with the rest of the plateau, it may still be difficult to reach an exit.

With the goal of aiding in the conceptualisation of internal plateau structure, Figures 3.8, 3.9 and 3.10
show sample plateaus from three very different instances. Each node in the graphs represents a single state.
Neighbouring states are connected by edges. Exit states are rendered in green diamonds, while non-exit
states are rendered in red octagons (note that all three of the plateaus are open). The graphs were generated
by the excellent graph layout program yEd,! and laid out using the “smart organic” method, which is based
on the force directed layout paradigm. The plateaus were chosen so that they each contain roughly 1000
states; small enough to study the details within the plateaus, but containing enough states to ensure that
large scale structures are observable.

The plateaus are quite fascinating and beautiful. The differences between plateaus from different in-
stances, though not surprising, are quite dramatic. After looking at many samples of plateaus from in-
stances of various types, it becomes apparent that plateaus belonging to a given instance tend to share
many features. To borrow a colourful term from Douglas Hofstadter, plateaus from the same family of
instances seem to share the same “spirit” [Hof85].

To illustrate this point, first consider the plateau shown in Figure 3.8. This is P3,, (i.e. the largest open
plateau region at level 3) from the instance in the uf20 test set with median Isc. The plateau has 1222 states,
1047 of which are exits. The spirit of this plateau could be described as disarray — which is not surprising
considering that the plateau comes from a randomly generated instance. It is interesting to note that the
branching factor of the plateau is fairly low (approximately 0.185). As we will discuss shortly, all of the
plateaus we studied have low branching factors. Also interesting is the distribution of non-exit states in

the plateau. These states are distributed throughout the plateau, but they also appear in large clusters.

'yEd is freely available for download at www. yworks . com.

Chapter 3. Plateau Characteristics 43

i
by |
‘:‘\"§ ‘ 2 %

b4
B\ A | et
R | LA 72
. D SS SN 7%
Wi

=

% : 2 on %S4\ e,
< o B B RIS T SRR S
s R R NN
T PN SRR
& Nedls N0 2 0% Y
o—-b-——& o “ / "vq‘ '\‘6}2'5“‘ :":"g:f

Figure 3.8: P, from the instance in the uf20 test set with median Isc.

Chapter 3. Plateau Characteristics 44

Figure 3.9: An example level 3 plateau from the aisé6 instance.

Because there are so many exits, the exit distance of this plateau is quite low — but there do exist states
having plateau exit distance of 6. Finally, we note that the diameter of the plateau is actually larger than the
number of variables.

We now turn our attention to the plateau shown in Figure 3.9, which has a very different spirit. This
plateau is from an All-Interval-Series instance, and has level 3. It was chosen arbitrarily from all plateaus
having approximately 1000 states — it contains 848 states, 800 of which are exits. This plateau is very
beautiful — in fact, we found all of the large plateaus from the ais instance to be quite beautiful. The
branching factor of the plateau is very low (approximately 0.04), and the plateau is perfectly symmetric.2
Again, there are a large number of exits from this plateau resulting in a small exit distance, and the diameter
is larger than the number of variables.

The last example plateau is shown in Figure 3.10. This level 5 plateau is from a highly structured parity
learning instance — and this inherent structure is dramatically manifested in the plateau’s spirit. Plateaus
from the parity test set are characterised by large, very regular grids. The branching factor of this plateau is
again quite low (approximately 0.09), and the plateau is comprised of multiple symmetric, well connected
regions which are loosely coupled by a small number of edges. The plateau is open, but unlike the other
sample plateaus, the fraction of exits is quite low (235 of the 969 states are exits), making this plateau a

2Note that it is not true that all plateaus in ais instances share this symmetry — many do, and all low level plateaus seem to have
at least some symmetry, but they are not all as perfect as the example shown in Figure 3.9.

Chapter 3. Plateau Characteristics 45

Figure 3.10: An example level 5 plateau from the parity8 instance.

potential obstacle to local search algorithms. In fact, many of the low level plateaus in this instance look
similar to this one, which helps to explain why these types of instances are so difficult for SLS algorithms.
In contrast with the other example plateaus, the diameter of this plateau is less than the number of vari-
ables. Also note that in this instance, the exits appear in tightly connected clusters rather than uniformly
distributed throughout the plateau — this makes it significantly more difficult to find an exit from these
plateaus.

We should note now that these plateaus are somewhat atypical. As we have seen in the previous sec-
tions, the majority of plateaus are smaller than these. Nonetheless, there are many large plateaus — and as
we will see in the next chapter, the larger plateaus often dominate the space actually encountered by SLS
algorithms — and studying these larger plateaus has illustrated how dramatically different the search spaces
of different instance types can be.

The remainder of this section studies the distributions of these properties over multiple plateaus from
the same instances as well as over distributions of instances. In the following, the data for the UF-3-SAT
test sets was collected in the same manner as in Section 3.2. We similarly sample plateaus for the structured

instances, but since the structured test suites are composed of single instances, we sample 1000 plateaus at

Chapter 3. Plateau Characteristics 46

1 T T %
09 -
08 e /
07 / ¥ [
08 A Na —
Ay
o VA
.4
,H s Pt Py
0.3 | —=mmmd- [o mmrf- s el S B PR
{ H i 1

o AWM I — —
ot b/ i — R

e 5 connne: . 5 wranen:

[} 005 01 018 02 025 03 035 [} 005 0.1 015 02 025 03 035 [} 005 01 015 02 026 083 035
branching factor branching factor branching factor

Figure 3.11: Distribution of branching factors for the UF-3-SAT test sets. Left to Right: uf20, uf50, uf100.

level
0 1 2 3 4 5
Instance £ oy/%] oi/%] £ /%] £ ox/% | £ o /%] £ ox/%
anom 0 (0) [0.007 (1.65) | 0.019 (0.80) | 0.025 (0.81) [0.036 (0.58) | 0.053 (0.47)
medium 0 (0) | 0.002 (2:30) | 0.009 (0.87) | 0.012 (0.72) | 0.019 (048) | 0.025 (0.44)
ais6 0 (0) | 0.006 (1.70) | 0.031 (0.45) | 0.045 (0.41) | 0.058 (0.32) | 0.064 (0.36)

flat20-easy || 0209 (0.23) | 0245 (0.07) | 0257 (0.07) | 0276 (0.08) | 0298 (0.09) | 0321 (0.09)
flat20-med | 0.069 (0.22) | 0120 (0.04) | 0.167 (0.04) | 0.205 (0.05) | 0.240 (0.06) | 0.272 (0.06)
flat20-hard || 0.136) | 0178 (0.06) | 0232 (004) | 0272 (0.06) | 0310 (0.06) | 0345 (0.07)
par8-l-c 0) | 0.023 | 0.043 (030) | 0056 (0.26) | 0072 (0.25) | 0.086 (0.25)

Table 3.12: Summary statistics of the distribution of branching factors for the structured instances. For each
instance and level, we should the mean and variation coefficient of the distribution.

each level for each structured instance.

3.5.1 Branching Factor

Figure 3.11 shows the distribution of branching factors for plateaus sampled from the uf20, uf50, and uf100
test sets. The plateaus were sampled by using the same sampled states from Section 3.2. Starting from
each sampled state, the plateau was expanded and the plateau branching factor was measured for each
state, and then averaged to give the branching factor of each plateau. The entire distributions of branching
factors are shown for each level in the figure.

The branching factors tend to be lower for lower level plateau regions; this is likely a consequence of the
smaller plateau size at lower levels (it should be obvious that the branching factor will increase monoton-
ically with plateau size, all else being equal). There is also more variance in the distribution of branching
factors at lower levels; again, this is likely a consequence of the increased variance in the distribution of
plateau sizes at lower levels. The branching factor also tends to decrease with the number of variables
(an exception is the distribution for level 0; the average of the level 0 distribution increases slightly with
the number of variables). Considering that the branching factors are normalised by the number of neigh-
bouring states (i.e. the number of variables for SAT), this indicates that the rate of growth of the average

branching factor is slower than linear in the number of variables.

Chapter 3. Plateau Characteristics 47

Figure 3.12: Distribution of lower bound on plateau diameter for the uf20 test set. Left: All plateaus, Centre:
open plateaus, Right: closed plateaus.

level
0 1 2 3 4 5
Instance X o0y/% max % 0x/% max| X oy/X% max X o0y/X max % 0x/X max] X 0y/% max
anom 0 0) 0]0.009 (1.75) 0.04 {0.022 (0.88) 0.06 [0.033 (1.04) 0.12]0.050 (0.75) 0.19[0.089 (0.64) 0.27
medium 0 0) 0]0.002 (2.36) 0.02|0.011 (0.95) 0.04 |0.016 (0.85) 0.06|0.027 (0.61) 0.09 |0.038 (0.56) 0.11
ais6 0 0) 0]0.008 (1.75) 0.03|0.264 (0.98) 1.30(0.764 (1.05) 3.20|0.521 (0.49) 1.97 | 0.403 (0.68) 2.95

flat20-easy || 0.619 (0.35) 1.02[0.264 (0.18) 0.40|0.207 (0.13) 0.33[0.178 (0.10) 0.250.160 (0.10) 0.23|0.148 (0.10) 0.27
flat20-med || 0.161 (0.44) 0.33[1.315 (0.08) 1.55|0.354 (0.09) 0.53|0.236 (0.20) 1.55|0.187 (0.16) 0.97|0.164 (0.10) 0.33
flat20-hard | 0.189 (0.10) 0.22|0.930 (0.28) 1.23|0.263 (0.12) 0.38[0.183 (0.09) 0.25|0.153 (0.09) 0.27|0.139 (0.08) 0.22
par8-1-c 0 (0) 0]/0.039 (020) 0.05]|0.202 (0.60) 0.36|0.129 (0.95) 0.66|0.198 (0.69) 0.66|0.448 (0.91) 1.45

Table 3.13: Summary statistics of the distribution of lower bounds on plateau diameter for the structured
instances. For each instance and level, we show the mean, variation coefficient, and max of the
distribution.

Table 3.12 shows summary statistics of the distribution of branching factors for the structured test suites.
Because the instances are so different, there is no clear picture emerging from the data, though we can make
some observations. As we observed for the UF-3-SAT test sets, the branching factor increases with the level
for the structured instances (again, likely a consequence of the increasing plateau size). We also note that the
branching factors are much lower than observed for the random instances, with the exception of the graph
colouring instances (recall that the search spaces of these instances consists of a single very large plateau).

The branching factor of zero at level zero for all of the instances except the graph colouring instances is due

to the fact that these instances have a single solution — and thus no neighbouring states.

Chapter 3. Plateau Characteristics 48

3.5.2 Diameter

Figure 3.12 shows the distribution of a lower bound on the plateau diameter for the 20 variable UF-3-SAT
test sets. This data is measured using the same sampled states from Section 3.2. From each sampled state s,
Plateau(s) is searched in a breadth-first manner, and the maximal length of the shortest path from s to any
other state in Plateau(s) is recorded. Because this value is only calculated for one starting state, this value
may not equal the true plateau diameter, but it is clearly a lower bound of the true diameter. Additionally,
because a maximum of 10° states are explored, this bound may not be tight for the larger test sets (this is
because the plateaus encountered are very large, and the breadth-first search restricts the explored states to
those with short path lengths from the starting state s), so we present data only for the uf20 test set.

As we can see from the figure, there are a large number of cases in which the diameter is larger than
the number of variables. This is interesting because it means that many of the plateaus are not contained
in small sub-regions of the search space in which many of the variables have constant value for all states
in the plateau. The larger plateaus at higher levels really are “interlaced” throughout the search space.
Interestingly, the modes of the distributions at higher levels (level 3 and above) are exactly equal to the
number of variables. Not surprisingly, the smaller closed plateaus have much smaller diameters as well.

We also study the lower bound on plateau diameter for the structured instances. Table 3.13 shows the
mean, variation coefficient, and maximum of the sampled distributions. Because the number of variables
is different between each of the structured instances, we show the lower bound on plateau diameter nor-
malised by the number of variables. Thus, values greater than one indicate that the diameter is at least as
large as the number of variables. Not surprisingly, the diameter data essentially reflects the plateau sizes
(cf. Tables 3.9, 3.10, and 3.11). The instances that had large plateaus, namely the all-interval series and
flat graph colouring instances, did have plateaus whose diameter was larger than the number of variables.
Recall that we expand a maximum of one million search states per plateau. This bound was exceeded for
ais6 at level 4, £lat20-easy at level 1, £1at20-med at level 2, and flat20-hard at level 1. Because
the plateaus are so much larger than the cutoff, and we perform a breadth-first search, the measured lower
bounds on the plateaus cannot be expected to be tight for the previously mentioned instances at higher
levels, and thus we cannot extract any sense of the scaling behaviour of the diameter with level for these

instances.

3.5.3 LMIN State Fraction

We now turn to-a very interesting measure — the fraction of LMIN states in a given plateau. This value
is interesting because even though a plateau may be open (i.e. it may have an exit), if most of the states

are non-exit states then it may be very difficult for an SLS algorithm to find the exit state. In particular,

Chapter 3. Plateau Characteristics 49

LMIN state fraction 1 LMIN state fraction 1

Figure 3.13: Distribution of the fraction of LMIN states for the UF-3-SAT test sets. Left to Right: uf20, uf50,
uf100.

greedy algorithms that do not allow non-improving moves could become temporarily trapped in these
open plateaus. Note that we only measure these values for open plateaus, since the fraction is one for
closed plateaus, by definition. Furthermore, since every open plateau consists of LMIN, possibly IPLAT,
and exit states — and since IPLAT states are exceedingly rare [Hoo98] — there is a (near) perfect inverse
relationship between the fraction of LMIN states and the exit density of a plateau.

Figure 3.13 shows the distribution of LMIN state fractions for the UF-3-SAT test sets. For the smallest
set, uf20, we see that at higher levels there are very few LMIN states in the plateaus meaning that most (or
in some cases all) of the states are exit states — at high levels, it is easy to improve on the objective function.
As the level decreases, we observe a monotonic increase in the fraction of LMIN states until at level one the
range of the distribution essentially covers the interval (0,1). At level one, the mean LMIN state fraction is
0.58 — many of the plateaus have a high proportion of non-exit states.

The situation becomes even more interesting for the uf50 and uf100 test sets. As the number of variables
increases, the LMIN state distributions shift toward one. Thus, as the problem size grows, even the open
plateaus at low levels are made up of mostly of LMIN states. For the largest test set, uf100, the mean fraction
of LMIN states at level five is 0.41 and this increases to 0.77 at level one, with the mode of the distribution
approaching one. It should not come as a surprise that the fraction is so high, or that it increases with
problem size given the (relative) difficulty of these instances.

Table 3.14 shows summary statistics from the corresponding distribution for the structured instances.
We observe the same general trends in the structured instances as we do for the UF-3-SAT test sets. The
fraction of LMIN states is higher at low levels, and tends to decrease with the level. One exception is the
parity learning instance, for which the ratio stays relatively high even at higher levels. Interestingly, the

rate of decrease for the planning (and to some extent the parity learning) instances is lower than for the all-

Chapter 3. Plateau Characteristics | 50

.) level]
1 . 2 3 4 5
Instance Ed o /% | £ ox /%] £ oy /% | £ o/%] ¥ 0 /X
anom 0613 (0.13) | 0587 (0.20) | 0458 (0.24) | 0.407 (041) | 0.472 (0.47)
medium 0.750 ©) | 0667 (025) | 0573 (0.30) | 0.616 (0.31) | 0580 (0.37)
ais6 - @ | 0781 (020) | 0267 (0.78) | 0.021 (0.64) | 0.001 (0.35)

flat20-easy || 0.403 (0.43) | 0.235 (0.63) | 0.151 (0.81) | 0.077 (1.09) | 0.035 (1.34)
flat20-med || 0.681 (0.02) | 0.464 (0.11) | 0266 (0.26) | 0.141 (0.48) | 0.056 (0.74)
flat20-hard || 0.896 (<0.01) | 0.695 (0.13) | 0442 (0.28) | 0.243 (0.50) | 0.099 (0.83)
par8-1-c 0.750 ©) | 0908 (0.17) | 0.666 (0.26) | 0610 (0.28) | 0.723 (0.25)

Table 3.14: Summary statistics of the distribution of the fraction of LMIN states in open plateaus for the
structured instances. For each instance and level, we show the mean and variation coefficient of
the distribution. The entries are marked -’ for level one of the aisé instance because there are
no open plateaus at level one for this instance.

interval-series and flat graph colouring instances (and also seems to be slower than for the UF-3-SAT test
sets). At higher levels, the all-interval-series and flat graph colouring instances have relatively few LMIN
states, indicating that it is easy to get to lower levels in these instances.

In addition to these observations, we note also that all-interval-series and graph colouring instances
seem to be much easier for SLS algorithms than the planning or parity instances (this is a very general
statement, but it can be backed up with solid empirical evidence given for example in [Hoo98, HS04}).
Thus, it seems reasonable to conjecture that there is a direct correlation between high LMIN state fractions
at low levels and the intrinsic hardness of structured instances. Furthermore, if we consider only the flat
graph colouring instances, we make an interesting observation that seems to corroborate our previous
conjecture. At each and every level, the LMIN state fraction increases monotonically as we go from the
easiest to the hardest instance. Intuitively, this must be the case because, as we discussed in Section 3.4.1,
the search spaces of the flat graph colouring instances are dominated by a single large open plateau. If
it were possible to easily find an exit from each of these large open plateaus, then the graph colouring
instances would be trivial to solve. Since they are not trivial, there must be other sources of hardness such

as the one we just discussed.

3.5.4 Exit Distance

Figure 3.14 shows.the distribution of exit distances for the UF-3-SAT test sets. This data is very interesting,
because it gives an indication of the typical number of steps an SLS algorithm must take on an open plateau
before reaching an exit. Obviously, the higher the exit distance, the more difficulties a plateau will pose
for a local search algorithm. This data was also measured using the same sampled states from Section 3.2.
Starting from a sampled state s, Plateau(s) was explored using breadth-first search, and the distance to the

closest exit was recorded. For obvious reasons, the distribution is taken only over open plateaus.

Chapter 3. Plateau Characteristics 51

Figure 3.14: Distribution of exit distances for the UF-3-SAT test sets. Left to Right: uf20, uf50, uf100.

level

1 2 3 4 5
Instance X o/%] X ox/% X 0x/%] T ox/% | X oy/%
anom 0777 (054) | 0910 (0.70) | 0.771 (0.81) | 0964 (082) | 1.385 (0.96)
medium 0.811 (048) | 0986 (0.72) | 1.036 (0.76) | 1.383 (0.86) | 1.392 (0.90)

ais6 = () | 2917 (1.01) | 0430 (1.44) | 0.045 (461) | 0.002 (25.10)
flat20-easy || 1551 (0.90) | 0709 (1.11) | 0392 (1.42) | 0.187 (211) | 0.086 (3.29)
flat20-med || 3.168 (0.68) | 1250 (0.75) | 0.661 (0.98) | 0.369 (1.37) | 0.148 (2.40)
flat20-hard || 11476 (0.64) | 2.087 (0.69) | 0.879 (0.87) | 0468 (1.20) | 0179 (2.16)
par8-1-c 2127 (042) | 9.003 (058) | 2071 (0.96) | 2123 (1.03) | 4411 (1.13)

Table 3.15: Summary statistics of the distribution of exit distances in open plateaus for the structured in-
stances. For each instance and level, we show the mean and variation coefficient of the distri-
bution. The entries are marked "~ for level one of the aisé6 instance because there are no open
plateaus at level one for this instance.

The results are very interesting. Athigher levels, even though the size of the sampled plateau is typically
very large, the exit distances are very small - meaning that they should be easy to find. As the level
decreases, the expected exit distance increases, indicating that even open plateau regions at lower levels
may pose a problem for SLS algorithms. We do note, however, that the exit distance distributions at all
levels are skewed toward shorter distances and the expected exit distances are small, even at lower levels.
Thus, even though the plateaus encountered by GSAT are larger at higher levels, they are typically open
with very small exit distances. The troublesome plateaus are those smaller plateaus at lower levels that are
either closed, or have high exit distances.

Table 3.15 shows summary statistics for the distribution of exit distances measured for the structured
instances. There are some very interesting differences between these results and those for the distributions
of LMIN state fractions in the previous section. The expected exit distance increases with the level for the

planning instances, even though the LMIN state ratio decreases. The mean exit distances for the planning

Chapter 3. Plateau Characteristics _ 52

instances were very low for all levels, ihdicating that, for these instancés, it must bé closed plateau regions
that are the major source of hardness since open plateaus seem quite easy to escape from.

The all-interval-series instance is quite interesting. There are no open plateaus at level one, and the
exit distance at level two modératély high (2.917). Note however, that the exits from level two must lead
to solutions. At higher levels, the exit distance is negligible. When we combine this information with the
fact that the LMIN state ratio is very low at higher levels, increasing to 0.781 at level two, it should not be
surprising that this instance is quite easy for SLS algorithms.

The data from the parity learning instance is also quite interesting. Along with the high LMIN state ratio
mentioned in the previous section, the par8-1-c instance also has very high exit distances, even at higher
levels. Thus, even though the parity learning instance has a large fraction of open plateaus at each level, it
is very difficult to find an exit from many of the open plateaus. Figure 3.10 gives a good visual indication
of the internal plateau structure underlying these observations.

Finally we consider the flat graph colouring instances. The mean exit distance decreases with level for
these instances, as the LMIN state fraction did. Also, corresponding to our observations for the LMIN state
fraction, the mean exit distance monotonically increases from the easiest to the hardest instance at each
level, demonstrating nicely which search space features make instances from the same distribution more

difficult to solve than syntactically similar instances.

3.6 Summary

In this chapter, we have introduced the basic search space features that we study in this thesis, in particular
the plateau. We studied the plateau characteristics of the UF-3-SAT instance distribution, attempting to
replicate and extend the results of Frank et al. [FCS97] by studying the plateaus encountered by the GSAT
algorithm. We studied plateau properties such as size of plateaus, and the fraction of closed plateaus.
We observed that the average fraction of closed plateaus decreases rapidly with the level, and that open
plateaus tend to be much larger than closed plateaﬁs, especially at higher levels. Our results differ from
those of [FCS97] in that we report much larger plateau sizes. We have ensured that our results are correct,
and provide some possible explanations for the discrepancies.

Next, we studied the plateau characteristics of individual UF-3-SAT instances by exhaustively exploring
the low level regions of the search space. This allows us to study the number of plateaus at each level, and
we note that the number of plateaus increases rapidly with the level and that the majority of high level
plateaus are open. We also studied the size of plateaus, observing that the size of closed plateaus decreases
with level — thus, closed plateaus are only prominent at very low levels in the search space. Interestingly,

we observe that while there are many open plateaus at high levels, the majority of these plateaus are very

Chapter 3. Plateau Characteristics 53

small (and consist entirely of exits), while one single large plateau contains most of the states at higher
levels. This “one-big-plateau” phenomenon is very interesting because it indicates that the entire low level
search space is connected, and thﬁs an algorithm never has to go to very high levels to reach any point in
the low level search space.

We performed a similar analysis on individual structured instances, with similar results. We observe
that the number of plateaus increases (exponentially) with the level, and that the number of open as well as
closed plateaus increases with the level (recall that for the random test sets, the number of closed plateaus
decreases with level). When studying the fraction of closed plateaus at each level, we observed that, while
the fraction of closed plateaus tended to decrease with level, the harder structured instances tended to have
a higher proportion of closed plateaus at each level. We also noted that closed plateaus were typically
quite small, and that they were largest for the hardest instance. We observed that the size of open plateaus
increases with level, and that the median sizes were fairly small. The only structured instances to exhibit
the “one-big-plateau” phenomenon were the graph colouring instances.

Finally, we studied the internal structure of plateau regions. We observed very low branching factors for
all of the instances studied, indicating that plateaus are rather “brittle” (this has been previously reported
in [Ho098]), though the branching factors increase with level. Next, we study the diameter of plateaus and
observe that there are many cases, especially at higher levels, where the diameter is greater than the number
of variables. In general, the diameter seemed to be proportional to the plateau size. We next studied the
fraction of LMIN states from a plateau, and found that at high levels there were very few LMIN states
(indicating that it is very easy to find an exit to a lower level state from high level plateaus), and that the
LMIN state fraction decreases with level, though there were typically a substantial number of exits from

plateaus at all levels. Lastly, we studied the exit distances of plateaus, and observed that at high levels the

exit distance was typically very low, while at low levels the exit distances were occasionally very high.

Chapter 4. Plateau Connectivity 54

'

Chapter 4

Plateau Connectivity

The previous chapter studies the distribution of plateaus in the search space and properties of the plateaus,
which is crucial to gain an understanding of what these components of the search landscape look like. This
chapter takes an alternative direction, and focuses rather on the connections between plateau regions, and
how the model consisting of these interconnected plateaus accurately characterises the search space of the
instances that we study. We will demonstrate how understanding properties of this model of the search
space can aid in the understanding of algorithm behaviour. This undersfanding provides insight into how
existing local search algorithms can be improved and new algorithms can be developed.

This chapter is structured as follows. We first formalise the definitions of concepts that are central
to this chapter, and motivate the research. Then we begin our study of Plateau Connectivity Graphs by
undertaking an empirical study of their basic properties. Next, we demonstrate how Plateau Connectivity
Graphs can be used to approximate the likelihood that an iterated improvement algorithm will reach a
solution (rather than get caught in a local minimum). Following this, we introduce a novel method for
classifying search space traps, and empirically demonstrate how these traps adversely affect local search

algorithms. Finally, we summarise and discuss the main results from the chapter.

4.1 Definitions and Motivation

We begin with the central definition of the chapter; that of a Plateau Connectivity Graph. A Plateau Con-
nectivity Graph (PCG) is a directed graph in which each node represents a plateau, and there are edges
between nodes if and only if the corresponding plateaus are connected. Two pléteaus are considered to be
connected if they each contain at least one state that neighbours a state in the other plateau. The following

definition formalises this concept:

Definition 4.1. (Plateau Connectivity Graph)
A Plateau Connectivity Graph (PCG) is a directed graph G = (V, E). Eachnode v € V represents
an entire plateau in the search landscape L = (S, N, g). There is an edge (#,v) € E from u to v if

and only if there exists at least one pair of states s, € u and s, € v such that level(s,) > level(sy)

Chapter 4. Plateau Connectivity : 55

and s, and s, are neighbours under the given neighbourhood relation V. Such a pair of states
is called an exit-target pair from u to v. A Partial PCG is a PCG in which not all of the plateaus
(or corresponding édges) in the search space are represented. Unless otherwise noted, we will

assume throughout this thesis that we are referring to partial PCGs. (

Intuitively, PCGs form a fairly representative, but still small and simple, model of the features of the
search space that have a large impact on SLS algorithm behaviour. For example, we can consider a simple
local search algorithm which always always makes either sideways or downwards moves, and chooses
randomly between all exit targets. Such an algorithm would always either move within a plateau, or follow
one of the PCG edges — thus, the algorithm would walk strictly along the PCG edges. The intuition is
similar for more complicated algorithms — because most SLS algorithms for SAT are guided by the same
objective function, we conjecture that PCGs will capture the important aspects of the search space, and thus
will adequately model the behaviour of even complex algorithms.

In order to better understand how PCGs accurately model the search space, we make distinctions be-
tween different types of PCG nodes, depending on the number of incoming and outgoing edges. The

following definition formalises our classification.

Definition 4.2. (PCG Node Types)
Given a (partial) PCG G = (V, E), we can define the following sets:

R={veV|-3u:(uv)€E} 4.1)
L={ueV|-3v: (4v)€E} 4.2)
M = {u € L|level(u) >0} C L (4.3)
S = {u e L|level(u) =0} C L (4.4)

R is the set of all roots of the graph; that is, the set of nodes with no incoming edges. L is the
set of all leaves of the graph; the set of nodes with no outgoing edges. Obviously, elements of
L correspond to closed plateaus. M is the set of closed plateaus that are not solution plateaus
(clearly M C L,and M = L if and only if there are solutions). S is the set of solution plateaus

(clearly S C L, and S = L if and only if there are no closed plateaus that are not solutions). [l

Chapter 4. Plateau Connectivity 56

Note that the current definition of PCGs can only portray whether two plateaus are connected (meaning
that it is possible for a local search algorithm to move directly between the two plateaus). Intuitively,
however, we would expect that certain connedions may be more important than others. For example,
consider a plateau P; having a large number of exits leading to another plateau P,, but only a few leading
to a third plateau P3. The connection between P; and P; seems somehow more important, since in practice
we would expect an SLS algorithm to follow that edge more than the other. To capture this notion of relative

importance, we introduce edge weights for PCGs. The following definition formalises this concept.

Definition 4.3. (Weighted PCG)
Given a search landscape L = (S, N, g), a weighted PCG is a PCG augmented with a function
w : E — [0, 1] having the following property:

Yuev: Y. w(u,v) =1 (4.5)

{veV|(u,v)€E}
That is, the sum of the weights of all outgoing edges must sum to 1 for every PCG node. Thus,
a weighted PCG G is represented by a triple: G = (V, E, w), where V and E are the vertex and
edge sets of the corresponding unweighted PCG, and w is the weight function. O

There are indefinitely many ways to construct the function w, but there are two major factors that w
should attempt to capture. Firstly, as hinted at above, w(u, v) should be proportional to the number of
neighbouring states in # and v. Secondly, w should reflect the behaviour of the algorithm it is attempting
to model. For example, if we would like to model a best improvement algorithm with w(u, v), then for
every exit state in u, only the target state having the best score should contribute to the weight (reflecting
the fact that the other targets would never be selected by the algorithm). Note that w only approximates the
expected algorithm behaviour on the plateau — in particular, we are making the sirnplifying assumption
that the SLS algorithm being modelled is able to choose uniformly and randomly from all exit states on the
plateau, which is obviously not the case in existing algorithms.! -

In this chapter, we opt for a fairly general weight function to ensure that we are not modelling features
that are overly algorithm specific. Our weight function basically gives equal precedence to every exit-target
pair from every source plateau. Formally, we first define the set of all exit-target pairs between two plateaus
u and v:

Extyy = {(su,50) | Su € U A Sy € VAN (54,80) Ag(su) > g(s0)} (4.6)

!The exit taken by an SLS algorithm from a given plateau depends on many factors, including the state at which the algorithm
entered the plateau, possible clustering effects which could make some exits inaccessible from neighbours in the plateau, and even
higher-order effects such as search history (which could affect the exits chosen by, for example, a tabu search algorithm).

Chapter 4. Plateau Connectivity 57

Next, we define the set of all exit-target pairs having u as the target:

Extu = U Extuv (4.7)
veV

Finally, using these sets we are able to define our weight function:

#Ext,o
#Ext,

w(u,v) = (4.8)

Note that @ gives equal precedence to every exit-target pair leaving a plateau. This ensures that we are
not making the function algorithm-specific by only including certain exit-target pairs, but it also ensures
that stronger connections are reflected by higher weights. In practice, we have found that this weight
function achieves a good compromise between simplicity, generality, and predictive power.

Now that we have fully defined PCGs, we will aid the intuitive understanding of these structures
through examples. Figures 4.1 and 4.2 show partial PCGs for an easy instance and the hardest instance
from the uf20 test set, respectively. All nodes are labelled x.y, where x is the level of the plateau and y is
simply an identifier that is unique to the level. Open plateaus are rendered in white ovals, closed plateaus
in red squares, and solution plateaus in green triangles. The edge labels are the w values, and dashed edges
represent those edges with weight less than 0.05. Edges with weight greater than 0.3 are rendered with bold
lines.

In order to clearly illustrate these graphs we had to omit some details. First, plateaus are only shown
if they were encountered at least one time over the course of 1000 runs of GWSAT (the graphs remain
unchanged if other algorithms, such as WalkSAT or Novelty™ are used). This results in only Py being
shown at higher levels (c.f. Section 3.3.4). Clearly this will not affect the conclusions that we can draw from
studying the PCGs, since if the small degenerate plateaus at higher levels are very rarely encountered then
they cannot have a significant impact on the behaviour of the SLS algorithms. The second detail omitted is
that edges with weights lower than 0.01 are not displayed.? This is simply because again we assume that
very weak edges will have little impact on SLS algorithm behaviour but they clutter up the graphs and
make it difficult to see the more important structures.

We now turn our attention to Figure 4.1, which represents an easy instance from the uf20 test set. The
main feature of note is that the search space appears to be structured essentially as a large funnel directing
all search trajectories toward the solution. Given the structure of the PCG, it is not at all surprising that the
instance is easy, There are a fair number of closed plateaus, but, with the exception of the plateau labelled

1.1, none of them are strongly connected to higher-level plateaus — meaning that we would not expect an

2 An exception to this rule is made if removing these edges would leave a node with no incoming edges; in this case the incoming
edge with the highest weight (still less than 0.01) is left in the graph. These weak edges are rendered in dashed grey lines.

Chapter 4. Plateau Connectivity

58

Figure 4.1: Weighted, partial PCG for an easy uf20 instance.

Chapter 4. Plateau Connectivity

59

Figure 4.2: Weighted, partial PCG for the hardest uf20 instance.

Chapter 4. Plateau Connectivity 60

SLS algorithm to be attracted to those closed plateaus.

Figure 4.2, representing the hardest of the u#f20 instances, is notably different. While the PCG seems
similar at higher levels (only Ppax was encountered, and each high level plateau is strongly connected to the
large plateau directly below), there are substantial differences at lower levels. Firstly, there are considerably
more low-level plateaus that were encountered during the 1000 runs, and many of these are either closed, or
are well-connected to closed plateéﬁs. Secondly, and more importantly, if we follow the highest-weighted
edges down from the high level plateaus, the majority of the edges lead to the closed plateau 1.1, not toa
solution. Clearly this is where the difficulty of this instance comes from. Assuming that the edge weights
are representative of how a real SLS algorithm would behave on this instance, we can see that the vast
majority of trajectories lead to plateaus 2.1, 2.3, and 2.4. Both 2.1 and 2.3 are only connected to the
closed plateau 1.1, and plateau 2 . 4 has an edge with weight 0.84 leading to 1. 1.

It is interesting to note that these two instances have a similar number of closed plateaus, and they
both only have one well-connected closed plateau, yet the local search cost of the instances is drastically
different. As we have anecdotally explained, the key difference lies in the connections between the various
plateaus. The remainder of this chapter will further develop these ideas and empirically demonstrate that
hard instances consistently have such search space structures.

Finally, Figure 4.3 shows the PCG for the smallest structured instance, anom. As we can see, this PCG
is substantially more complex than those of the random instances. Because of this complexity, we were
unable to add edge weights without cluttering up the figure. Instead, the colour of every edge is directly
proportional to the weight; darker edges indicate higher edge weights. The PCG is broken into 13 disjoint
connected components,® some containing many plateaus some only two. This instance has a single model,
and thus only one solution plateau, labelled 0. 1. The largest connected component actually contains the
solution. All paths in all of the other components lead to closed plateau regions, indicating that there are
large portions of the search space from which it is impossible to reach a solution except by first going to
higher levels. Because they appear to be so attractive and well-connected, we would expect that the closed
plateaus labelled 1.1 and 1.3 would be major factors contributing to the difficulty of this instance. This

will be investigated further in later sections of this chapter.

4.2 PCG Properties

In this section, we study some basic graph-theoretic properties of PCGs in order to paint an empirical
picture of what typical PCGs look like. We use the same test suites as in the previous chapter, allowing us

to complement the existing results w.r.t. plateau properties with these new higher-level PCG results. In this

3Note that this disjointness is an artifact resulting from the omission of plateaus from the partial PCG — if all encountered plateaus
up to level 9 are included in the partial PCG then the resulting partial PCG is connected.

Chapter 4. Plateau Connectivity 61

POOO © \ SO0 &
@@@@@g‘» QOO 1o
\-<~ ’@ @@g}: .,)) /
i\ \ /
\} \
® Y ®
AN/
o)
o) elee ollelele]e
QOO ||e

Figure 4.3: Weighted, partial PCG for the structured anom instance. This figure shows a single PCG, but
the PCG consists of multiple disjoint components. The vertical ordering of the nodes within
each component represents the relative levels the corresponding plateaus. Nodes representing
plateaus at the same level are aligned vertically where possible.

Chapter 4. Plateau Connectivity 62

level
1 2 3 4 5
Test Set T o /3] X o /i F o /E] X o/E] X /X
uf20 110 (0.16) | 194 (017) [272 (0.13) [332 (0.11) | 3.8¢ (0.10)
uf25 1.08 (0.12) | 1.89 (0.16) | 257 (0.11) | 3.07 (0.09) | 3.50 (0.08)
uf30 1.09 (0.17) | 1.90 (0.13) | 249 (0.10) | 297 (0.09) | 3.40 (0.07)
uf35 1.09 (0.14) | 1.81 (0.15) | 241 (0.11) | 290 (0.09) | 3.28 (0.08)
uf40 1.09 (011) | 1.77 - (0.14) | 230 (0.10) | 278 (0.08) | 3.16 (0.07)
uf45 108 (0.08) | 1.77. (0.14) | 232 (0.10) | 277 (0.08) | 3.15 (0.07)

Table 4.1: Summary statistics of the distribution of the out-degree of PCG nodes from the UF-3-SAT in-
stances. For every test set and level we show the mean and coefficient of variation of the distribu-
tion (over all instances) of the average out-degree of all open plateau nodes (over all open plateau
nodes in each instance).

level
1 2 3 4 5
Instance £ 0/] ¥ 0x/% | £ o /% | T o /% | X oL /%
anom 1.000 (0) [1250 (035) [1.607 (0.37) | 2.216 (0.41) | 2.696 (0.45)
medium 1.000 (0) | 1061 (022) | 1.537 (0.39) | 1.886 (0.44) | 2.307 (0.49)

fla0-casy || 1.644 (3.32) | 2744 (3.35) | 2656 (1.81) | 2970 (0.90) | 4.104 (0.80)
flat20-med || 2256 (6.40) | 1913 (831) | 2301 (3.32) | 3471 (1.96) | 4194 (1.69)
flat20-hard || 1.263 (0.88) | 2.579 (2.61) | 1.794 (1.89) | 2.942 (0.84) | 3.770 (0.86)
par8-1-c 1.000 ©) | 1.067 (0.23) | 2889 (1.19) | 2.022 (0.64) | 2.168 (1.28)

Table 4.2: Summary statistics of the distribution of the out-degree of PCG nodes from the structured in-
stances. For every test set and level we show the mean and coefficient of variation of the distri-
bution (over all open plateau nodes in the instance) of the out-degree of the open plateau nodes.

section, we measure the distribution of out-degrees of PCG nodes corresponding to open plateaus. We also
measure the distribution of average and maximum target depths for the same PCG nodes (these terms will
be defined shortly). The PCGs were constructed from the plateau data presented in Section 3.3. To generate
the PCGs, we started with the highest level plateaus and iteratively calculated Ext, for the source plateau,

and Ext,;, between u and all low level plateaus. Finally, w(u, v) was calculated accordi_ng to Equation 4.8.

421 Out-Degree

Given an PCG G = (V, E) and an open plateau u at level k, the out-degree is simply:
#{veV|3s, €u,sy€0v:N(sysu) Alevel(u) > level (v)} 4.9)

For each instance and level, we calculated the out-degree of each node and then averaged these out-degrees
to give an average out-degree for the given instance and level.

Table 4.1 shows summary statistics of the distribution of out-degrees of PCG nodes for the UF-3-SAT
instances. There are some interesting trends present in the table. The out-degree tends to increase with level,

which is not surprising considering that there are fewer plateaus at low levels. More interesting is the fact

Chapter 4. Plateau Connectivity 63

that the average out-degrees tend to decrease with problem size. This trend is present at all levels (including
level 1), and the relationship is monotonic wifh the single exception of level 3 of uf40 being slightly lower
than level 3 of ufd5. The trend is particularly puzzling considering that the number of plateaus increases
with problem size. Also notable from the table is the very low coefficient of variation in the distributions
— because this is the coefficient of variation of the average out degrees, it indicates that the average values
are similar across all instances in each test set. Finally, we observe that the coefficient of variation decreases
both with level and problem size.

" We also consider similar data for the structured instances, and show this in Table 4.2. Note that the data
in this table have not been double-averaged, and so the variation reported is the variation of the distribu-
tion over all open plateau nodes at each level. We see that the data is quantitatively similar to that for the
structured instances. The out-degrees of the nodes tend to increase with the level. Interestingly, the magni-
tude of the out-degrees for the anom, medium, and par8-1-c instances are lower than the corresponding
values from the random test sets (with the exception of level 3 of the par8-1-c instance, which has a
higher than expected average out-degree). Close examination of these instances reveals that when there are
a large number of plateaus present at a given level, many of these are very small and only connected to a
single lower level plateau — resulting in an out-degree of one for many of the plateaus.

The data presented in this section has interesting implications \for algorithm mobility. Because the out-
degrees of many of the plateaus are quite low, especially at lower levels, it becomes difficult for local search
algorithms to directly move around the low level search space. Especially considering that many plateaus
are connected to only one lower level plateau, it may be necessary for SLS algorithms to occasionally “re-
treat” to significantly higher levels of the search space in order to avoid being restricted to certain regions of
the search space. This is illustrated quite dramatically in Figure 4.3 (the PCG for the anom instance), where
we see large disjoint subgraphs in the PCG between which it is impossible for an SLS algorithm to move

without moving to higher search space levels.

4.2.2 Target Depth

Tables 4.3 and 4.4 shows statistics of the average and maximum target depth, respectively, for the UF-3-
SAT test sets. Given a PCG edge (1, v), the target depth is simply the difference in level between the two
plateaus. Target depth gives a sense of the expected improvement we expect to observe when exiting a
plateau — high target depth values indicate that it is possible to descend multiple levels by following a
single edge.

Interestingly, there is quite a range in the target depth values. Both the average and maximum target
depths are (trivially) 1 at level 1, and increase with the level. The rate of increase appears to be linear with

the level, but the maximum values are only 1.51 (120, level 5), and 2.12 (uf20, level 5) for the average and

Chapter 4. Plateau Connectivity 64

level
1 2 3 4 5
Test Set ¥ /x| X o/X | X o/] F /R] X o/
uf20 1.00 0 [117 (0.10) [129 (0.06) | 140 (0.04) | 1.51 (0.03)
uf25 1.00 (0 | 112 (0.06) | 1.23 (0.04) [1.33 (0.03) | 143 (0.03)
uf30 1.00 (0) | 111 (0.05) { 121 (0.04) | 1.30 (0.03) | 139 (0.03)
uf35 1.00 (0) | 110 (0.05) | 1.19 (0.04) [127 (0.03) | 1.36 (0.03)
uf40 1.00 (0) | .09 (0.05) | 116 (0.03) | 1.24 (0.03) | 1.32 (0.03)
uf45 1.00 (0) | .09 (0.05) | 116 (0.03) | 123 (0.02) | 1.30 (0.02)

Table 4.3: Summary statistics of the distribution of the average target depth of PCG nodes from the UF-3-
SAT instances. For every test set and level we show the mean and coefficient of variation of the
distribution (over-all instances). of the average target depth-of the open plateau nodes (over all
open plateaus at the given level).

level .
1 2 3 4 5
Test Set I o /| % /x| * o /E] X /x| X ou/%
uf20 1.00 0 [133 (012) [1.61 (0.09) | 1.87 (0.07) | 212 (0.06)
uf25 1.00 (0) | 1.26 (0.10) | 1.50 (0.07) | 1.74 (0.06) | 1.98 (0.05)
uf30 1.00 (0) | 124 (0.08) | 146 (0.07) | 1.68 (0.06) | 1.91 (0.05)
uf3s 1.00 (0) | 1.21 (0.08) | 141 (0.07) | 1.63 (0.06) | 1.84 (0.05)
uf40 1.00 0 | 119 (0.08) | 1.37 (0.06) | 1.57 (0.06) | 1.77 (0.06)
uf4s 1.00 (0) | .18 (0.07) | 136 (0.07) | 1.54 (0.05) | 1.73 (0.05)

Table 4.4: Summary statistics of the distribution of the average target depth of PCG nodes from the UF-3-
SAT instances. For every test set and level we show the mean and coefficient of variation of the
distribution (over all instances) of the maximum target depth of the open plateau nodes (over all
open plateaus at the given level).

maximum, respectively. Because the values are so low, we can expeét that SLS algorithms typically progress
by going down in one or two levels only, rather than jumping down multiple levels. Both the average and
maximum target depths decrease with the problem size, which was unexpected but is lii<e1y related to
the similar trend in out-degree discussed in the previous section. Finally, we note that the variance in the
distributions is very low and tends to decrease with both the level (with the exception of level 1, for which
the coefficient of variation is 0) and the problem size.

The corresponding data for the structured instances is shown in Tables 4.5 and 4.6. Surprisingly, the data
is quite quantitatively similar to the data for the random test sets. The target depths increase with level,
and are fairly similar between the structured instances. One notable difference occurs at level 2. The anom,
med, and par8-1-c instances have a large number of level 2 plateaus with a target depth of 2 — indicating

that it is fairly easy to reach solutions from level 2 in these instances. In contrast, the graph colouring and

random test sets have relatively few connections between solutions and any states not at level 1.

Chapter 4. Plateau Connectivity 65

level
1 2 3 4 5
Instance x 0x/E] ¥ 0/ | £ ox/% | T o /% | ¥ o./%
anom 1000 (0) | 1417 (032) | 1705 (032) | 1.657 (032) | 1.635 (0.35)
medium 1000 (0) | 1758 (023) | 1.644 (033) | 1.530 (0.35) | 1.557 (0.34)
flat20-easy 1.000 ©) | 1.008 (0.07) | 1.335° (0.16) | 1453 (0.19) | 1452 (0.19)
fla20-med || 1000 (0) | 1.002 (0.03) | 1296 (018) | 1.327 (017) | 1.371 (0.17)
flat20-hard || 1000 (0) | 1.004 (0.02) | 1266 (020) | 1.335 (0.17) | 1.379 (0.19)
par8-1-c 1000 (0) | 1967 (0.06) | 1399 (0.14) | 1.652 (027) | 1489 (0.29)

Table 4.5: Summary statistics of the distribution of the average target depth of PCG nodes from the struc-
tured instances. For every instance and level we show the mean and coefficient of variation of
the distribution (over all open plateaus at the given level) of average target depths from the open

plateau nodes.
level
1 2 3 4 5
Instance ¥ oy /%] £ o/% | X on/%] X ox/%] X o /%
anom 1.000 (0) | 1500 (033) [2036 (0.35) | 2.199 (0.39) | 2258 (0.43)
medium 1.000 (0) | 1.788 (0.23) | 1.989 (040) | 1.848 (047) | 2.002 (0.44)
flat20-easy || 1.000 (0) | Lo12 (0.11) | 1.765 (024) | 2114 (0.27) | 2313 (0.28)
flat20-med || 1.000 (0) { 1.003 (0.05) | 1.639 (0.29) | 1.896 (0.28) | 2.021 (0.28)
flat20-hard || 1.000 (0) { 1L.026 (0.16) | 1534 (0.33) | 1.886 (0.27) | 2.082 (0.31)
par8-1-c 1.000 (0) | 2.000 (0) | 1.889 (024) | 1.729 (0.28) | 1.659 (0.32)

Table 4.6: Summary statistics of the distribution of the maximum target depth of PCG nodes from the struc-
tured instances. For every instance and level we show the mean and coefficient of variation of the
distribution (over all open plateaus at the given level) of maximum target depths from the open
plateau nodes.

4.3 Solution Reachability

Now that we have defined PCGs and studied some of their basic graph-theoretic properties, we begin to
treat PCGs as actual models of the search space and demonstrate PCGs can be used to model and under-
stand SLS algorithm behaviour. The intuitive idea is that actual SLS algorithm trajectories will correspond
to paths in the PCGs, under various simplifying assumptions. First, we are unable to model non-improving
moves using PCGs. However, it is well-known that the performance of many SLS algorithms (including
algorithms that do and do not make non-improving moves) is highly correlated on the test sets studied here
(see, for example, [Hoo98]). Thus, the intrinsic hardness of an instance is relatively algorithm-independent,
so accurately modelling the behaviour of the simpler algorithms is desirable because it abstracts away the
subtleties introduced by more complex algorithms. Second, the time spent searching plateaus is not cap-
tured by PCGs, and we instead assume that an algorithm is able to immediately choose randomly and in-
dependently from the set of exit-target pairs from a given plateau. While this assumption may be violated
by phenomenon such as the clustering of exits within plateaus (which has been observed and discussed

briefly in Chapter 3), and by the fact that, given an exit, most SLS algorithms are biased towards choosing

Chapter 4. Plateau Connectivity 66

higher-quality targets, we believe that it is a reasonable first-order approximation of the behaviour of actual
SLS algorithms.

Formally, given a weighted PCG G = (V, E,w) we model algorithm behaviour by defining a Markov
chain M = {X;, X1, Xa, - - - }, where each X; is a random variable with domain V. The transition matrix, P,
is derived from the PCG edge weights: P, = W(u, v) wherever w(u, v) is defined, Py, = 1forallu € L, and
all other entries are zero. The self loops for all of the closed plateaus make those Markov chain states into
“sinks”, ensuring that all of the probability mass is eventually accumulated into those states. This transition
matrix is of a special form: because it contains no cycles, the maximum number of transitions that can be
made before encountering one of the “sink” states is bounded above by the maximum path length in the
PCG, I (note that [is usually defined to be a constant for the partial PCGs that we study, but in all cases is

bounded above by the number of propositional clauses). This immediately implies that, for ¢ > I, we have:

pt) = p. p(t-1) — p(t-1) — p() (4.10)

Now, given an initial distribution A over the Markov chain states, we can calculate the distribution of
X;, the state of the Markov chain at time ¢. By definition, this is just p(*) = A- P(*). For all ¢ > I, this becomes
= p) = A. P(), Thus, the Markov chain converges to steady state 7 in time polynomial in the size of
the PCG. Obviously, the only states which will be assigned any probability mass in 7z will the those in L —
i.e. the closed plateaus (including solutions).

M gives us a model with which we can estimate the probability that a greedy SLS algorithm we will
end up in each of the closed plateau regions, given an arbitrary initial distribution over the starting states.
In order to model the behaviour of actual SLS algorithms as accurately as possible, we let A(u) be directly
proportional to the number of states in # — corresponding to randomly and uniformly choosing a starting
state.

Given our model, we would like to evaluate how accurately it captures the interesting features of the
search space, and how accurately it models the behaviour of actual local search algorithms. In order to
quantify this, we define the “solution reachability” of an instance as the probability mass assigned by M
to all solution plateaus in the steady state. Intuitively, we expect that the hardness of an instance should
be (negatively) correlated with the probability that the Markov chain simulation ends up in a solution.
The next definition demonstrates how we (efficiently) calculate the desired probability, and introduces our

notation of “solution reachability”.

Definition 4.4. (Solution Reachability)
Let G = (V, E,w) be a weighted PCG, and A be a probability distribution over V. We define the

Chapter 4. Plateau Connectivity 67

1 10000

1000 b

REEIT S A A
7

100 =

GSAT [fraction successtful)
+
GWSAT {Search Steps]

01 L 10
1] 0.2 0.4 0.6 0.8 1 0 0.2 04 0.6 0.8 1

p(S | A) p(S | 4)

Figure 4.4: Correlation between p(S | A) and two measures of Isc for the uf30 test set. Left: fraction of
successful GSAT runs. Right: GWSAT Isc (measured in search steps).

conditional reachability p(v | A) of each node v € V recursively:

A(v) ifveR
p(v]d):= { . 4.11)
Y. p(u| b)) -w(u,v)+ A(v) otherwise

Given the conditional reachability of each node, the solution reachability p(S | A) of the PCG is

then simply defined as:
p(S[8):=) p(s|8) | (4.12)
SES
Note that the set S in the equation represents the set of solution plateaus in the PCG. a

Figure 4.4 demonstrates how effectively our model captures the search space features underlying in-
stance hardness. In the left pane of the figure, we show the correlation between the solutibn reachability
p(S | A) and the fraction of successful runs of the GSAT algorithm. The plot also shows the function
y = 0.105102 100870166-x which is the best least squares fit through the points of an equation of the form
y = c-107* (i.e. astraight line in the semi-log plot). To measure the fraction of successful GSAT runs, we ran
GSAT 1000 times (without restart) with a cutoff high enough to ensure that all runs that did not encounter
a closed plateau successfully completed (a cutoff of 1000000 was used for all experiments, whereas all suc-
cessful runs took less than 10000 steps). There is a surprisingly strong correlation between the logarithm of
the success fraction and the solution reachability (correlation coefficient r = 0.91). While we were expecting
the correlation, the exponential relationship between p(S | A) and the fraction of successful runs is surpris-
ing. Note, hox;vever, that the exponential function has a sum of squared residuals ssr = 0.864 (rms of residu-
als = 0.094, variance of residuals = 0.009), while the best fit linear function has ssr = 1.138 (rms of residuals

=(.108, variance of residuals = 0.012), so the exponential function more accurately models the relationship.

Chapter 4. Plateau Connectivity 68

TestSet || p(STA) ov/% | Isc oy/% | rl ot
U0 073 (031) | 12460 (150) | 079 | 12.8
uf25 073 (033) | 20007 (0.75) | -0.85 | 162
uf30 0.75 (0.31) | 30992 (1.05) | -0.86 | 16.5
uf3s 074 (034) | 42950 (0.95) | -0.85 | 16.0
uf40 075 (035) | 62830 (0.99) | -0.84 | 154
uf45 0.80 (028) | 713.63 (1.09) | -065 | 85

Table 4.7: Correlation between p(S | A) and GWSAT Isc for the UF-3-SAT test sets. p(S | A) and Isc are the
mean solution reachability and local search cost for the entire test sets, respectively. The columns
labelled o,/ % are the coefficient of variation of the associated distributions. Finally, the columns
labelled r and t; show the correlation coefficient and test statistic of each regression analysis,
respectively. Note that a test statistic t; > 2.262 indicates a statistically significant correlation
with confidence level & = 0.05.

The right pane of Figure 4.4 shows the cor:re_lation between p(S | A) and the local search cost of a more
robust variant of GSAT, GWSAT [SK93]. This plot also shows the best least squares fit equation of the form
y = 107**b, which in this case is the function y = 10713104-x+332362 GWSAT is able to make upwards
moves (which are not captured by our simple model), but this does not seem to have a significant negative
effect on the predictive power of our model. We observe a strong negative correlation (r = —0.86) between
the logarithm of GWSAT Isc and p(S | A). In this case, the exponential relationship is less surprising since
given a fixed success probability in our model, it may still require an SLS algorithm an exponential number
of steps to actually find a solution. ‘

Table 4.7 shows the correlation coefficient of the regression analysis performed on each of the test sets,
in order to study how the predictions of the model scale with problem size. The results demonstrate clearly
that p(S | A) is highly (inversely) correlated with the local search cost of GWSAT for all of the UF-3-SAT
test sets studied here, and the results seem to scale well. It is slightly troubling that the uf45 test set had
a relatively low correlation coefficient. Closer examination reveals that this is caused by a few outliers
having high p(S | A) and Isc values. Further investigation indicates that in each of these outlying instances
there was at least one open plateau region that had an uncharacteristically high exit distance — making the
instance relatively hard, while not being factored into the calculation of p(S | A). Given our simplifying
assumptions, it is not surprising that there exist cases for which the model gives poor predictions — overall,
however the results are very positive. In order to get even more accurate predictions, the simplifying
assumptions could be relaxed by including information in the model about, for example, the fraction of
exits in plateaus and/or the exit distance, and incorporating this into the model by adding suitably defined
self-loops for open plateaus representing the expected number of steps required to find an exit from the
plateau. We also note that this correlation analysis was repeated with other local search algorithms such as

WalkSAT, Novelty™, and SAPS, with similar results.

Finally, Table 4.8 shows the solution reachability values for each of our structured instances. Although

Chapter 4. Plateau Connectivity 69

Instance || p(S]4)

anom 0.566
medium 0.552
flat20-easy 1.000
flat20-med . 1.000
flat20-hard 0.969
par8-1-c 0.298

Table 4.8: p(S | A) values for the structured instances.

we do not have a distribution of instances available to study the correlation between p(S | A) and Isc for the
structured instances, we do note that the values that we observe are negatively correlated with Isc between
all of the instances. The graph colouring instances, with the very high solution reachability values, are also
the easiest instances (GWSAT Isc of 50, 96, and 710 for the easy, median, and hard instance, respectively),
and the solution reachability of the hardest graph colouring instance is lower than the others. The planning
instances, which have mid-range solution reachability values, are also only moderately difficult instances
(GWSAT Isc of 1096 and 2573 for anom and medium, respectively). Finally, the parity instance, which has
the lowest solution reachability value is also by far the most difficult instance (GWSAT Isc 14248). This

indicates that our model is informative for the structured instances as well as the random ones.

4.4 Properties of Traps in the Search Space

In the previous section, we studied a novel method of modelling the search space of SAT instances and the
connection between a feature of this model — namely the probability of reaching a solution plateau — and
the hardness of an instance. In this section, we study the extent to which a single closed plateau can affect
the behaviour of local search algorithms. Intuitively, if a closed plateau is both attractive and difficult for
a local search algorithm to escape from, then we would expect that plateau to have a significant negative
impact on the local search algorithm. Informally, we refer to such plateaus as traps. The remainder of this
section is broken into two major subsections, one dealing with the attractivity of traps, and the second with
their escape difficulty. We will show that there do exist closed plateaus that are exceptionally attractive for
SLS algorithms, and that this attractivity is closely related to the difficulty of the UF-3-SAT instances. In
fact, we will show that in the hardest instances, an accurate measure of the attractivity of the single most

attractive trap is enough to explain the difficulty of the instance — indicating that these traps are the single

most influential search space feature that makes SAT instances hard.

Chapter 4. Plateau Connectivity 70

0.9

0.8

0.7

0.6

0.5

0.4

03

0.2

0.1

0
0.0001 . 0.001 0.01. 0.1

Umax

. 100

Figure 4.5: Distribution of &,y values for the UF-3-SAT test sets. The y value at every & value along the x
axis of the graph gives the fraction of instances having &;;0x > «.

4.4.1 Attractivity

The previous section gave us the foundations for a definition of the attractivity of a trap. Intuitively, we
define the attractivity of a trap as the reachability of the trap versus the reachability of all solutions. The

following definition formalises this notion.

Definition 4.5. (Attractivity Factor)
Given a PCG G = (V, E) and a closed plateau u € V, the attractivity factor « of u is defined as:

p(uld)
a(u) == —4———= (4.13)

W= ysTa)
This is simply the conditional reachability of the plateau normalised by the solution reachability,
and gives an indication of how likely we expect the trap would be encountered compared to
solutions. For brevity, we let Py, denote the plateau with the largest attractivity factor aax :=

max,epm o(u). O

Figure 4.5 shows the distribution of &max values for all of the UF-3-SAT test sets, and Table 4.9 shows the
same data numerically for specific a thresholds. It is somewhat surprising how low the fraction of instances
having &qx > 1 is, ranging between 0.06 and 0.12. This means that less than 12% of instances had closed
plateaus that were more attractive than solutions, in all of the test sets. Also interesting is that the fractions
tend to decrease with problem size for low thresholds, but for « larger than 0.5 there does not seem to be a

well-defined relationship between the various problem sizes. This indicates that as the problems get larger,

Chapter 4. Plateau Connectivity 71

TestSet || @ >005 | «>01 | #>025 | «a>05 | a>075 | a21 | a>2

uf20 0.78 0.58 0.30 0.21 0.09 0.07 0.03
uf25 0.68 0.52 0.26 0.20 0.14 0.10 0.02
uf30 0.69 0.47 0.28 0.15 0.10 0.08 0.03
uf35 0.58 0.45 0.28 0.18 0.15 0.12 0.07
uf40 0.56 0.43 0.30 0.19 0.14 0.10 0.06
ufd5 0.50 0.35 0.21 0.11 0.09 0.06 0.02

Table 4.9: Statistics from the distribution of Xmax values for the UF-3-SAT test sets. Every column gives the
proportion of instances having ocmax"greater than the given value._

10000 T 1

...... Ry 0 "t*{q .
gk .9 ¥ 3'15--
T+
0.8 e
z + 07 |- i
g 1000 = : Al
2 PRI T 0.6 tE %
5 4 . e = +
aq —_ *
S '6‘+ +! % + 7 0.5 o
= h...f..kgﬁ- Foge ¥ i a he g
= P> 1h. SR 0.4 ;
b4 v Lo FRiE Y ‘ ¥+
= 100 R s +
0] ; g W : 0.3 HLE
..... H X 3 G i R 02 gy 4 +
0.1
10 i) i il
0.0001 0.001 0.01 0.1 1 10 0.0001 0.001 0.01 0.1 1
Cmax . Qmax

Figure 4.6: Correlation between .y and Isc (left) as well as p(S | A) (right) for the uf-30 test set.

fewer instances tend to have very attractive single plateau regions, suggesting that the hardness of larger
instances might come either from multiple attractive closed plateaus, or from plateaus that are open, but
still pose an obstacle for local search by having, for example, high exit-distances and/or few exits.

In order to understand the extent to which P5,. is responsible for the hardness of UF-3-SAT instances,
we examine the correlation between a4, and Isc. Figure 4.6 shows this correlation for the uf30 test set (c.f.
Figure 4.4, showing the correlation between p(S | A) and Isc for the same test set). The results are quite
surprising — the correlation is very strong (correlation coefficient r = 0.81). This indicates that simply
measuring the attractivity of the single most attractive trap gives a very good prediction of the hardness-
of the instance. Also note that the relationship between ay,y and Isc is polynomial, as opposed to the
exponential relationship between p(S | A) and Isc. Table 4.10 summarises the correlation data for all of the
UF-3-SAT test sets. Very interestingly, the correlation coefficients that we observe are only slightly worse
that those in Table 4.7, and the values scale well with the problem size.

Because a,,x and p(S | A) are so closely related, and both are highly correlated with Isc, we must
determine if the effects of one subsumes the other. Figure 4.6 (right) shows the correlation between a,x and
p(S | A) on the uf30 test set (similar correlations were observed for the other UF-3-SAT test sets). There is an

obvious (inverse) correlation between the two measures, which should not be surprising considering their

Chapter 4. Plateau Connectivity 72

Test Set || Xpar Ox/X I Isc oy /% I r | ts
uf20 039 (2.23) | 12891 (1.49) | 0.81 | 13.7
uf25 033 (1.73) | 20142 (0.75) | 0.81 | 13.6
uf30 0.38 (2.85) | 310.39 (1.04) | 0.81 | 134
uf35 039 (1.97) | 431.26 (0.96) | 0.83 | 149
uf40 060 (3.70) | 62829 (0.98) | 0.89 | 19.1
uf45 030 (3.12) | 71261 (1.07) | 0.80 | 13.1

Table 4.10: Correlation between &, and GWSAT Isc for the UF-3-SAT test sets. ®;;zx and Isc are the &pmax
and local search cost for the entire test sets, respectively. The columns labelled 0, /% are the
coefficient of variation of the associated distributions. Finally, the columns labelled r and t;
show the correlation coefficient and test statistic of each regression analysis, respectively.

related definitions. What is surprising, however, is the tightness of the correlation. It seems that, for the UF-
3-SAT test sets, the effects of P4, alone are enough to explain the variation is hardness between instances
from the same test set. Thus, rather than there being many smaller closed plateaus causing the difficulty,
there seems to be one major trap in each instance. This suggests that‘search strategies that explicitly detect
and avoid such traps may be very effective. | -

These results are particularly interesting considering the results from Chapter 3. In particular, while we
observe that the UF-3-SAT instances contain a significant number of closed plateaus at low levels, many
of these plateaus do not contribute to the hardness of the instance. Furthermore, since the number of
closed plateaus becomes vanishingly small as the level increases, it appears that the task of discovering

P54 . should be feasible.

4.4.2 Escape Difficulty

As we alluded to earlier in this section, we would like to characterise a “trap” as a closed plateau that
is both attractive and difficult to escape from. To some extent, the attractivity factor of a closed plateau
captures both attractivity and escape difficulty. However, we now attempt to explicitly characterise the
escape difficult of closed plateaus. We characterise the escape difficulty of a closed plateau by measuring
the shift in the RLD that occurs when a local search algorithm is initialised uniformly and randomly from

states within the closed plateau.

Definition 4.6. (Escape Difficulty)
Given a PCG G = (V,E) and a closed plateau u € V, and any local search algorithm A, the
escape difficulty € of u is defined as:

e(u) := 15cW) y (4.14)

Isc

Where Isc is simply the mean of the RLD obtained by running A on the instance, and Isc(u) is

Chapter 4. Plateau Connectivity 73

1 ui 1
0.9 5 0.9
0.8 0.8
0.7 0.7
06 06
05 05
0.4 0.4
0.3 / 7 " 03
/AR original RTD ——
0.2 7 i original RLD =———] 0.2 QRTD ¢=0.17 ———mm- -
/ / QRLD 0=0.06 --- QRTD =041 ------
0.1 4 QRLD «=0.09 - e 0.1 QRTD 0=1.04 s .
g 7 , QRLD 0=0.223 - : QRTD 0=9.91 --=—
0 . L 0 y
1 10 100 1000 10000 10 100 1000 10000 100000
Search Steps Search Steps

Figure 4.7: Shifted RLDs obtained by initialising GWSAT from various closed plateau regions. Shown are
the instance with median and maximum local search cost (left and right, respectively) from the
uf30 test set. The RLDs are labelled by the a values of the closed plateaus from which GWSAT
is initialised. See text for further details.

the mean of the the qualified RLD obtained by first randomly and uniformly initialising .4 from
states in #, and then running .4 as usual (without restart). For brevity, we define €max := e(P%..),

i.e. the escape difficulty of the most attractive plateau. U

Figure 4.7 shows example shifted RLDs for the instances with median and maximum local search cost
for the GWSAT algorithm from the uf30 test set. In this figure, we initialised GWSAT from each of the closed
plateaus with highest a values (i.e. the most attractive plateaus). We first turn our attention to the left pane
of the figure, which shows the shifted RLDs for the instance with median search cost. We show shifted
RLDs for the three most attractive closed plateaus. Most surprising in this figure is that initialising from the
most attractive plateau (¢ = 0.223) actually makes the instance slightly easier for GWSAT. While surprising,
this is likely an indication of why this instance is not more difficult; though Py, is quite attractive, being
situated in the plateau is not detrimental to the search trajectory. The two other plateaus (¢ = 0.06 and 0.09)
result in a shift to the right in the RLDs, indicating that starting from these plateaus is detrimental to the
search. However, in these cases, the plateaus are not very attractive so the instance is still easy to solve.

The right pane of Figure 4.7 shows shifted RLDs for the hardest instance from the uf30 test set. This
instance has fewer surprises. Initialising from the most attractive plateaus (x = 9.91, 1.04, and 0.41) results
in a shift to the right, and in fact e monotonically increases with « for each of these plateaus. We also observe
one plateau for which the initialisation makes the instance easier, but this plateau is not very attractive.
Given these observations, it should be evident why this instance is difficult — the search space contains
closed plateaus which are both very attractive and difficult to escape from.

Figure 4.8 shows the distribution of €4 values for all of the UF-3-SAT test sets, and Table 4.11 shows

summary statistics from the same distributions.

Chapter 4. Plateau Connectivity

74

0.9

0.8

0.7

0.6

05

04

0.3

0.2

0.1

Figure 4.8: Distribution of €qx values for the UF-3-SAT test sets. The y value at every € value along the x
axis of the graph gives the fraction of instances having emgx > €.

Test Set || ¥ ox/% | min | med | max || emax 21
uf20 1.259 (0.27) | 0.489 | 1.201 | 2.529 0.786
uf25 1.199 (0.31) | 0.343 | 1.155 | 2.410 0.690
uf30 1.212 (0.32) | 0273 | 1.221 | 2.136 0.727
uf35 1.193 (0.36) | 0.187 | 1.154 | 2.625 0.690
uf40 1.154 (0.34) | 0328 | 1.120 | 2.357 0.660
uf45 1.101 (0.34) | 0.195 | 1.054 | 2.220 0.570

Table 4.11: Summary statistics for the distribution of €pqx values for the UF-3-SAT test sets. %, 0x/%, min,
med, and max are the mean, coefficient of variation, min, median, and maximum of the distribu-
tion, respectively. The column labelled €qx > 1 shows the fraction of instances from each test
set for which initialising from Py, increases the search cost.

Chapter 4. Plateau Connectivity 75

22
+
2 +.
+ + M
18 i +
+ + + +
1.6 + !
+a R +
+ +
14 ha + + et 4.+
+ + 0t o+ +
+ +4, +
+ +
é 1.2 + -:+ +. "
w . '!{,.H'*' +
1 it + .t i +.
+
+ . * +i+ . +
0.8 ¥ T ¥y
. + + o+ +
0.6 + 4 +
. .
0.4
* +

0.2 N

0.0001 0.001 0.01 0.1 1 10

al’T‘aX

Figure 4.9: Correlation between &4x and €m4x for the uf30 test set. Each point represents a single instance.

In general, we observe that a5y and €pqy are not correlated, as illustrated for the uf30 test set in Figure
4.9. The correlation coefficient in this case is r = 0.06. This is not terribly surprising, and illustrates that,
while e€pqy is an interesting and useful search space feature, it is not directly related to Isc. For example,
consider an instance that has a high Isc caused by a very attractive trap. In this case, it is likely that €3, will
actually be small because the SLS algorithm is drawn rapidly into the trap — thus, the difference between
the original RLD and the RLD when initialised from in the trap is small. This intuition is confirmed by
Figure 4.9, where all instances with &4y > 1 have only moderate €,,,x (though interestingly, €,4x is greater
than 1 in all of these cases). In contrast, we have seen cases in which closed plateaus had a low « value,
but if the search was initialised in the plateau, the local search cost increased dramatically (c.f. Figure 4.7).
Again, this intuition is supported by Figure 4.9, which illustrates many cases in which an instance has a

low &y value, but high €0y

4,4.3 Connection With Mixture Models

In [Hoo02], Hoos introduces a “mixture model” for the behaviour of SLS algorithms for SAT. He observes
that, while the RLDs of SLS algorithms on SAT instances are typically exponentially distributed, the RLDs of
hard instances may exhibit substantial deviations from exponential distributions. Hoos demonstrates that
the RLDs of these irregular instances can typically be fit by two component mixed exponential distributions,

i.e. functions of the form

med[p, my, my] = p-ed[my] + (1 — p) - ed[my) (4.15)

Chapter 4. Plateau Connectivity 76

1 1
0.9
0.8
0.7
06
0.5
0.4
0.3
0.2
RLD ——
0.19%9d[92]+0.81°ed[1742] ------ 4
QRLD 0=9.91 -------
€d[1742] e
1000 10000 100000

Search Steps

Figure 4.10: RLD for hard instance from the uf30 test set, and approximation by mixed exponential distri-
bution

where ed[m](x) = 1 —27*/™ is the cdf of an exponential distribution with median m. The intuitive ex-
planation is that there are two corﬁpeﬁng factors contributing to the irregular RLD: the solution(s) and a
trap. . o | '

Our search space models and the mixture models agree very well with this earlier result. As an example,
we consider Figure 4.10 which shows the RLD of GWSAT on the hardest instance from the uf30 test set. Also
shown in this figure is the best fit med function med [0.19,92,1742], which approximates the empirical RLD
almost perfectly.t

. We also show the qualified RLD when initialising GWSAT from states in Py,,. The RLD is fairly sig-
nificantly shifted (¢ = 1.27) and, not surprisingly, differs substantially from an exponential distribution.
However, ed[1742] matches the right tail of the shifted RLD well. Interestingly, ed[1742] also matches the
right tail of the original RLD well (the tails of the original RLD and the shifted RLD coincide). Given our
hypotheses about the effect of traps (such as Py, in this instance) on run-time behaviour, it should not be
surprising that the right tails of these distributions coincide; it the trap is very attractive and difficult to
escape from, then the algorithm will likely fall into the trap quickly and the long term behaviour of the tra-
jectory will not be substantially different than if the algorithm had been initialised into the trap. However,
because the original RLD is located substantially to the left of the shifted RLD,.this indicates that there is at
least some chance of reaching a solution without encountering the trap. This observation is supported by

the solution reachability of this instance, which is 0.08.

“Note that there is a slight deviation in the left tail. This is caused by the initial search phase after initialisation, where the algorithm
is able to improve the evaluation function rapidly, but has little chance of finding a solution. For an in-depth explanation of this
deviation, refer to [Hoo98].

Chapter 4. Plateau Connectivity 77

This interpretation agrees well with the best-fit mixed exponential med[0.19,92,1742).3 The first compo-
nent of this distribution, weighted 0.19, is an exponential distribution with a low median of only 92 search
steps. This component represents the trajectories which are “lucky” and do not encounter any major traps,
and thus find a solution quite quickly. The second component, with the higher weight of 0.81, is an expo-
nential with a higher median of 1742 search steps. Most interestingly, this exponential distribution matches
the right tails of both the original RLD and the RLD after initialising from the Py,,. This component repre-

sents trajectories which encounter the trap.

4.5 Summary

In this chapter, we introduced a novel a posteriori méthod of modelling and studying the search space fea-
tures underlying the behaviour of SLS algorithms. This model gives insights into the search space features
responsible for the hardness of instances, and also gives new insights into existing results from the litera-
ture.

The central definition of this chapter extends the notion of plateaus, defined in the previous chapter,
with information about the connectivity of the plateaus. By modelling the search space with a graph in
which plateaus are nodes, and nodes are connected by an edge if there exists at least one exit-target pair
between the nodes — called a plateau connectivity graph — we are able to construct a compact model of
the search space, while retaining many interesting properties.

We then improve this model by introducing weighted PCGs, in which the edge weights correspond to
the degree to which the corresponding plateaus are connected. With this additional information, weighted
PCGs capture the relevant properties of the corresponding search spaces in a compact way that facilitates
our later analyses.

“Our first empirical analysis of the chapter is of basic graph theoretic properties of the PCGs. We measure
the average out-degree of PCG nodes, and the average and maximum target depth of PCG nodes. This
analysis gives insight into high-level search space features that affect, for example, the mobility of SLS
algorithms.

We next introduced one of the major contributions of this thesis — the notion of solution reachability.
We demonstrated how it is possible to construct a Markov chain over the weighted PCG which effectively
simulates SLS algorithm behaviour on the corresponding instance. Next, we proved that the Markov chain
reaches the steady state in time polynomial in the size of the instance, and that in the steady state all of
the probability mass is assigned to closed plateaus (including solutions). Solution reachability was then

defined as the probability mass over all solution plateaus in the steady state. We demonstrated that solu-

5This function was computed using the function fitting procedure in gnuplot which, given the function med[p,m, my] = p -
ed[mi] + (1 — p) - ed[m,)] and the empirical RLD, finds the parameters p, m;, and m; that minimise the sum of squared errors.

Chapter 4. Plateau Connectivity 78

tion reachability correlates very well with Isc, and thus our model effectively characterises SLS algorithm
behaviour.

Following this, we introduced and studied the properties of traps in the search space. Intuitively, a trap
is a closed plateau that is both attractive and difficult to escape from. We defined the attractivity of a closed
plateau as the amount of probability mass assigned to the closed plateau relative to the probability mass as-
signed to all solution plateaus. Interestingly, we demonstrate that the attractivity of the most attractive trap
correlates well with Isc as well as solution reachability. Given the results from the previous chapter (i.e. the
small size of closed plateaus), this suggests that it may be possible and effective in practice to dynamically
detect and avoid these attractive traps, potentially improving the performance of SLS algorithms.

Next, we defined the notion of the escape difficulty of a trap, which is essentially a measure of how
much worse off an SLS algorithm is when initialised into the given trap. We find that a large proportion
of the closed plateaus have an escape difficulty greater than one (indicating that it is detrimental to be
initialised into these closed plateaus), and that the average escape difficulty is greater than one for all of the
test sets considered. Finally, we note that the attractivity factor of the most attractive trap and the escape
difficulty of the same trap are uncorrelated, and we give an explanation of why this is not surprising, and
how it illustrates a potential weakness of our measure of escape difficulty.

Our final analysis of the chapter connects plateau connectivity with the “mixture models” defined by
Hoos [Hoo002]. We provide a limited amount of empirical evidence demonstrating that mixture models are
the result of highly attractive closed plateaus, that have a high escape difficulty. We demonstrate that Py,

(i.e. the most attractive closed plateau) is responsible for the large component of the mixed exponential

distribution, which is consistent with the motivation given by Hoos when he introduced these models.

Chapter 5. Performance Critical Variables 79

Chapter 5

Performance Critical Variables and the

Value of Information in SAT Solving

In this chapter, we introduce the notion of performance criticality of variables in solving satisfiable SAT
instances. Intuitively, a variable is performance critical if and only if it has a truth assignment under which
the run-time of a given SAT algorithm is éubstantially reduced. Understanding the properties of PCVs (and
the connection between PCVs and the search space features studied in the previous chapters) is useful for
understanding what makes some SAT instances harder than others. PCVs are tightly related to many of the
concepts presented in earlier chapters; in particular, PCVs reflect asymmetry in the search space.

We present a bound on the amortisable cost of realising an oracle for performance critical variables
(PCVs) and show that PCVs exist for a number of high-performance SAT algorithms and a range of SAT
instances. PCVs are algorithm dependent, yet, particularly for structured instances, the PCV sets of differ-
ent SAT solvers often overlap. We also provide results on the additivity of the effects of PCV assignments
and on the correlation between the number of PCVs and the hardness of SAT instances. We also discuss the
relationship between PCVs and the established concepts of backdoor and backbone variables. Most inter-
estingly, we discuss the relationship between PCVs, plateau connectivity, and traps in the search space.

This chapter is structured as follows. First, we motivate the study and introduce the important con-
cepts used throughout the chapter. Next, we give formal definitions for performance critical variables and
variable assignments and discuss how these notions of performance criticality are related to the theoretical
idea of oracles for variable and value selection in SAT and their practical approximation using heuristics.
Following this, we present the results of our empirical studies of performance critical variables and variable
assignments for high-performance stochastic local search and systematic search algorithms for SAT. Finally,
we discus the relationship between PCVs and related concepts from previous chapters of this thesis as well

as some existing concepts from the literature, and conclude by summarising our main results and potential

extensions to this work.

Chapter 5. Performance Critical Variables 80

5.1 Motivation

The work presented in this chapter is based on the intuitive premise that in typical satisfiable instances
of SAT, not all variables are equal with respect to their potential for reducing the run-time of a given SAT
algorithm when assigned a particular truth value. This gives rise to the notion of performance criticality;
intuitively, performance critical variable assignments (PCVAs) are truth assignments of individual variables
that lead to substantial reductions of the run-time of a given SAT algorithm; and performance critical variables
(PCVs) are the variables for which such assignments exist. The magnitude of the run-time reductions caused
by a PCVA or PCV is measured by a suitably defined criticality factor.

Note that the notion of a performance critical variable differs substantially from the well-known concept
of a backbone variable [Par97]; in particular, as we will see later, PCVs exist for instances that have no
backbones and backbone variables are not necessarily performance-critical. The ideas behind PCVs are
closely related to that underlying the recently introduced notion of a minimal backdoor set but differ in
several important aspects. In particular, while backdoor sets capture a potentially drastic reduction in the
asymptotic time complexity for solving a given family of SAT instances based on the knowledge of a set of
variables, PCVs offer a more fine-grained measure of run-time reductions for individual instances that are
achievable based on knowledge about individual variables.

PCVs are closely related to the search space features that we have studied in previous chapters. Under-
standing how search space features are related to PCVs facilitates a deeper understanding of the reasons
underlying the pérformance criticality of variables. In particular, as we will demonstrate later in the chapter,
there is a strong correlation between the average criticality factor of variables and both solution reachability
and @max (c.f. Sections 4.3 and 4.4). Furthermore, we demonstrate the effect of critical variables on plateau
connectivity, which illustrates how the search space changes when PCVs are instantiated.

PCVs also have interesting practical applications: The existence of PCVs indicates a potential for re-
ducing the run-time of a given SAT algorithm. This raises two fundamental questions. Do PCVs exist in
commonly studied types of SAT instances? And how much is it worth to identify them, in terms of the
amortisable cost of a procedure that determines the performance criticality of a given variable? In this
chapter, we provide answers to both of these questions.

Regarding the first question, we provide a number of positive results. We found that for six high-
performance SAT algorithms and a broad range of SAT instances we studied, there exist sets of PCVs, which
in many cases contain substantially more than 5% of the variables appearing in the respective instance.
Furthermore, for random as well as for structured instances we found a positive correlation between the

algorithm-specific hardness of the instance and the size of its PCV set — indicating that there is the most

potential for exploiting PCVs in the hardest instances. We also found evidence that the run-time reduction

Chapter 5. Performance Critical Variables 81

potential of individual PCVs is additive, i.e., by considering sets of PCVs, often substantially larger run-time
reductions can be achieved than by the respective individual PCVs.

Regarding the second question, we present a simple bound on the amortisable computational cost for
obtaining PCV information, giving a sense of how much value we can assign to the information that a
given variable is a PCV. Furthermore, we present preliminary empirical results suggesting that at least in
certain cases, information on PCVs for SLS algorithms can be obtained in a computationally inexpensive
way, by collecting simple statistics on the individual variable assignments encountered in local minima of
the respective search spaces.

It may be noted that our notion of performance criticality is algorithm dependent. However, unlike the
somewhat related notion of backdoor variable sets, the concept of performance criticality applies directly
to any type of SAT algorithm. Furthermore, we have found that the PCV sets for the different algorithms
applied to the same SAT instance typically overlap to some extent; this is particularly the case for structured
instances and suggests that the notion of performance criticality captures (at least to some extent) algorithm

independent properties of these instances.

5.2 Oracles and Performance Criticality

The idea underlying performance criticality is rather straightforward. Given a SAT instance in the form
of a CNF formula F, fixing the truth value assigned to one of the variables in F such that satisfiability is
preserved should intuitively lead to a reduction in the run-time required by a SAT algorithm for solving F.
When measuring the size of the search space in terms of the complete set of truth assignments to unassigned
variables in F, assigning one variable leads to a reduction in search space size by a factor of two. Clearly,
the same factor would be obtained for the reduction in run-time of an extremely simple (and inefficient)
search algorithm, such as uniform random sampling.

However, the effect of such an atomic assignment on more powerful algorithms can be very different,
for example, because the solution density of a satisfiable instance (or the potential for propagation effects)
increases (or decreases) sharply as a result of the atomic assignment under consideration. Intuitively, we
call an atomic assignment performance critical w.r.t. the given algorithm A if it reduces the run-time of .4
by more than a factor of two, i.e., the reduction effect for A exceeds what could be expected due to the

corresponding reduction in search space size. This is captured by the following definition:

Definition 5.1. (Performance-critical variable assignment (PCVA))

Given a propositional formula F, let Var(F) denote the set of variables occurring in . Let

A be a SAT algorithm, and let sc(F, A) denote the search cost of A on F, i.., the (expected)

Chapter 5. Performance Critical Variables 82

run-time required by A for solving F. Finally, let F[x := v] denote the formula obtained from
F by setting x to truth value v. An atomic truth assignment x := v, where x € Var(F) and
v € {1, T}, is called a performance critical variable assignment (PVCA) of F with respect to A if
and only if:

sc(Flx:=1v], A) <sc(F,A)/2 (5.1)

In this context, the criticality factor of x := v is defined as:
cf(x:=v,F,A):=sc(F,A)/(2-sc(Flx :=v], A)) (5.2)

and PCVAs are characterised by a criticality factor > 1. O

Note that the definition of PCVAs generalises easily to multiple variable assignments, by ensuring that
the search cost is decreased by a factor of 2, when there are k variable assignments being made. We
investigate the behaviour of PCVAs in this general sense later in the chapter when we study the additivity
of PCVAs. The notion of performance criticality can also be easily genefalised to variables rather than
variable assignments. The intuition here is to run A on F(x := 1] and F[x := T] in parallel until a solution
is found. A variable is called performance critical if and only if the combined run-time of these two parallel

runs is smaller than the run-time of A on F, as formalised by the following definition.

Definition 5.2. (Performance-critical variable (PCV))

A variable x € Var(F) is a performance critical variable (PCV) of F with respect to A if and only if:

min{sc(F[x = T],..A),sc(]-"[x = 1), A)} < sc(F, A)/2 | (5.3)

In this context, the criticality factor of x is defined as:
cf (x, F, A) :=sc(F, A)/(2-min{sc(F|x := T], A),sc(F[x := L], A)}) (54)

and PCVs are characterised by a criticality factor > 1. O

From these definitions it follows immediately that if x := v is a PCVA of F with respect to .4, then
x is a PCV of F w.rt. A, and conversely, if x is a PCV of F w.rt. A, then either x := T orx := Lisa
PCVA of F w.rt. A. Although in the latter case, it is possible that both x := T and x := L are PCVAs
of F w.r.t. A, our empirical results (reported in the next two sections) indicate that this happens extremely
rarely. Consequently, for a given SAT instance and algorithm there is a near one-to-one relationship between
PCVAs and PCVs.

Chapter 5. Performance Critical Variables 83

Both notions of performance criticality are conceptually motivated by the idea of perfect oracles (i.e.,
oracles without error). In the context of this work, a perfect oracle correctly decides the truth of a predicate
without incurring any cost in terms of resource consumption. A perfect PCVA oracle would decide for a
given algorithm 4, formula F, variable x € Var(F), and truth value v € {T, L}, whether x := visa
PCVA of F w.r.t. A. Likewise, a perfect PCV oracle would decide for a given algorithm A, formula 7, and
variable x € Var(F), whether x is a PCV of F w.r.t. A. Considering the close relationship between PCVs
and PCVAs, in the following we only consider PCV oracles.

In practice, the results obtained from an oracle may be approximated using heuristics. Typically, this has
two consequences: the answers provided by the heuristic may be erroneous, and computing these answers
consumes computational resources. This raises the following central question: Up to which point can the
cost of a heuristic approximating a perfect PCV oracle be amortised through the reduction in solution cost
that is achieved by using such an oracle, or in other words: what is the value of the information obtained
by the oracle?

The answer to this question depends on two factors: (i) the averége reduction in search cost that can be
achieved by using a perfect PCV oraclé, énci (ii) the assumed quality of the heuristic approximation, i.e., the
error rate of the heuristic. The average search cost reduction can be easily determined from the criticality

factors introduced above. In particular, for the error-free case, we obtain the following result:

Theorem 5.1. Given a propositional formula F and a SAT algorithm A, let n denote the number of
variables in F, and n. the number of PCVs of F w.r.t. A; furthermore, let ¢ f denote the average criticality
factor of the PCVs of F with respect to A. Then the amortisable expected run-time of an error-free
heuristic for deciding the criticality of variables in F is bounded from above by:

se(F, A)-ne/n-(1—1/cf).
Proof: Let H be the heuristic procedure, hc(x) be the cost of evaluating the heuristic for variable
x, and hc be the average heuristic cost over all of the variables in 7. Assume that we use H
to construct a new algorithm A’ as follows: we consider the variables in random order, and for
each variable x we execute H to determine if x is a PCV. If x is a PCV we run A on F [x := T]and
F|x := 1] in parallel, otherwise we continue trying the variables in order. The search cost of this
algorithm, sc(F, A’) is just the expected heuristic cost (hic) times the expected number of trials

before choosing a PCV (1/n.) plus the expected cost of solving the two simplified formulae in

Chapter 5. Performance Critical Variables . 84

parallel (1/cf - sc(F,.A)). Obviously, the cost will be amortised if and only if:

sc(F,A) < sc(F,A)
& (n/n) -hc+ (1/cf) -sc(F,A) < sc(F,A)
& (n/ne) -he < sc(F,A)-(1—1/cf)
& he < sc(F,A) ne/n-(1-1/cf)

O

For example, if we assume that n./n = 0.08, and 3 = 1.76 then the heuristic cost hc is amortised if
and only Aic < 0.035- sc(F,.A). These values are actual data obtained from Novelty* on the bwa instance
— thus, in practice, a perfect heuristic for deciding if a variable is a PCV could be allocated a substantial
amount (3.5%) of the computational resources allocated to solving the problem and the cost would be amor-
tised. In general, PCV oracles will likely be imperfect, i.e. have errors, but the cost can still be amortised in

this case.

5.3 Performance Critical Variables for SLS Algorithms

In this section, we study PCVs with respect to various high-performance SLS algorithms for SAT, and
discuss the relationship between PCVs and algorithm behaviour. We show that a nontrivial number of
PCVs exist for many different types of SAT instances, and that the corresponding criticality factors are
reasonably high, which demonstrates the potential for practically exploiting PCVs'. The algorithms we
study are WalkSAT [SKC93], Novelty™ [Ho099], and SAPS [HTHO02]. We use the i‘mplementation of these
algorithms from the SLS algorithm package UBCSAT [THO04]. WalkSAT and Novelty* have been widely
studied in the literature, and are often used as benchmarks to compare against, while SAPS is relatively
new but has been shown to be the best performing SLS aigorithm on various types of SAT instances. As
opposed to previous chapters of this thesis, where we focused on simpler SLS algorithms for the sake of
abstracting away algorithm details, in this chapter we use state-of-the art algorithms.

The instances used in this chapter are described in Appendix A, and include larger instances than we.
were able to study in previous chapters. Again, we chose a variety of instance types and sizes, in order to
study the effects of PCVs on many different instances. However, the complexity of the analysis, while less
restrictive than in previous chapters, still limited the size of the instances we could study.

In order to measure the distribution of criticality factors over all PCVAs in a given SAT formula F, we
do the following. First, a complete SAT algorithm (i.e. an algorithm that is guaranteed to decide whether an

instance is satisfiable in a finite amount of time) is used to test whether the (restricted) formula F[x := v] is

Chapter 5. Performance Critical Variables 85

1 .
X
0.9

0.8

0.7

NERRE

0.4

0.3 ‘.‘

0.2

traction of variables

0.1 ~

T
0.1 1 10 100
criticality factor

Figure 5.1: Distribution of criticality factors with respect to Novelty™ for variables in the hardest uf100
instance. Each point represents one variable, and criticality factors are measured as in Definition
5.2. Variables with a criticality factor greater than one (in this case 37% of all variables) are PCVs.

satisfiable for every atomic variable assignment x := v (2 - n tests must be completed, where 7 is the number
of variables in F). Then, sc(F|[x := v],.A) is measured and recorded for every satisfiable formula F[x := v]
and SLS algorithm A. If F[x := v] is unsatisfiable, then its search cost is set to infinity. The criticality factor
of each atomic assignment and variable are calculated from the search costs according to Definitions 5.1
and 5.2, respectively.

We evaluate two methods of computing sc(F[x := 1], A). Both of these methods involve substituting
the truth value v for x in the formula, then simplifying the formula before solving it using .A. The first
method, partial, substitutes variable x with truth value v and simplifies the formula by removing all literals
that become false and by removing all clauses that become true as a consequence of the substitution (this
process is known as unit propagation). The second, full, does a complete unit propagation of the atomic
assignment x := v — that is, the assignment x := v is unit propagated, but if any new unit clauses are
generated as a result of a propagation, the corresponding atomic assignment is also propagated. Finally,
as a baseline measurement, we also consider a third method, init, which simply initializes x to v at the
start of the search, but does not further restrict the truth value of x. Since init did not result in any major
reductions in search cost, we do not discuss results for this variant in the following. In all cases at least
100 runs were performed on each (simplified) formula, and the mean number of search steps required to
solve the instance is reported as the search cost. Note that technically, the first two methods can be seen as

preprocessing stages that are integrated into the respective SLS algorithms.

Figure 5.1 shows the distribution of criticality factors with respect to Novelty™ for the hardest random-

Chapter 5. Performance Critical Variables 86

Walksat-SKC Novelty* SAPS
Benchmark “ sc PCVfrac/# of (cv.) sc PCVfrac/# of (cv) sc PCVfrac/# cf (c.v.)
uf50 682 0.06 / 2.87 1.24 (0.17) 416 0.09 / 4.30 1.37 (0.27) 291 0.06 / 2.89 1.21(0.11)
1f100 3643 0.04 / 4.20 1.26 (0.14) 3369 0.08 / 8.06 1.44 (0.47) 1358 0.03/271 1.16 (0.10)
1f200 27249 0.03/6.20 1.29 (0.16) 14529 0.04 / 8.38 1.28 (0.16) 9423 0.01 /202 1.16 (0.08)
anomaly 587 029 /14 42.91 (0) 177 0.42 /20 10.04 (0) 137 0.40 / 19 8.29 (0)
medium 1182 0.17 / 20 149 (0) 446 0.16 / 18 62.98 (0) 325 0.19/22 37.97 (0)
huge 21786 0.07 /31 1.66 (0) 12498 0.08 /37 1.86 (0) 3427 0.05 /25 1.51(0)
bwa 18073 0.06 /27 1.53 (0) 10362 0.08 / 36 1.76 (0) 3203 0.05 /24 1.44 (0)
loga 139465 0.04 /29 1.48 (0) 63276 0.05 /43 1.38 (0) | 11606 001/5 1.11 (0)
18 542 <001/15 2.24(0.32) 8317 0.03/17.14 3.80(0.25) 368 0.01/417 1.19 (0.07)
SarB-1-c G351 025716 346 | 2421 025716 360 | 1577 0177 11 173(0)
ssa7552-038 85319 0.06 /83 4.90 (0) - -/ - -(=) 4539 0/0 n/a

Table 5.1: PCV results for thee prominent SLS algorithms. sc is the expected search cost for each algorithm
on each benchmark set. PCV frac and # are the mean fraction of variables that are PCVs and
number of variables that are PCVs, respectively. cf and c.v. are the mean and coefficient of vari-
ation, respectively, of the criticality factors of variables that are PCVs. Note that the test sets
containing more than one instance are presented in italics. Entries marked ‘- indicate that the
PCV measurement had not completed after 150 000 CPU seconds.

3-SAT instance from the uf100 test set (the distribution is over all variables in the instance). Note the large
fraction (0.37) of variables that are PCVs. This shows that solving F[x := T)] and F|[x := 1] in parallel for
any of those variables would result in a speedup. Even more interesting is the range of criticality factors.
The smallest criticality factor is 0.33, meaning that solving F[x := T] and F[x := 1] in parallel would
result in an approximately 3-fold slowdown, while some variables have criticality factors greater than 25,
i.e., lead to a 25-fold speedup. This result is very encouraging — because there are so many PCVs, it may
be possible in practice to find such variables and realise the speedup. Also note that to take advantage
of a PCV it is only necessary that the identity of the variable be known, not the correct truth value of the
variable. , y

Table 5.1 shoWs the mean number and fraction of PCVs, as well as the meaﬁ criticality factors for all
of the benchmark sets used in this study. The results show clearly that for all three algorithms, almost
all of the instances studied here have a nontrivial number of PCVs. Generally, there seem to be a higher
fraction of PCVs with respect to Novelty* than the other two algorithms, and the fraction for WalkSAT
seems higher than SAPS in most cases. The average criticality factors are also reasonably high, indicating
that a substantial speedup is realisable for most of the PCVs, particularly for the structured instances. The
fraction of variables that are performance critical decreases with increasing problem size for both random
and structured instances, though the average criticality factors stay relatively constant as the problem size
is increased for the UF-3-SAT test sets. We also note that for all of the instances studied there exist PCVs
with criticality factors much higher than the average — in many cases, finding the “maximally critical”
PCV renders the instance trivial to solve.

In fact, the relationship between PCVs and algorithm behaviour is even more interesting than Table 5.1

alone would suggest. Figure 5.2 illustrates the correlation between search cost and the fraction of variables

Chapter 5. Performance Critical Variables 87

0.4
+ ¥
L
+ 4 +
0.3
¥
i
"
- +
% ¢+ H
g o2 ;
3 +
@ +
+
i+
+ Hi4 i+ F
A
+ +
+ i+
0.1 +
¥+ +
++
=+ ++
+ H +
414 o+
+i 4
e 4
4
o " ddld n HH -H
100 1000 10000 100000 1e+06

search cost [steps)

Figure 5.2: Correlation between search cost and PCV fraction for the ufl00 benchmark set using the
Novelty™ algorithm.

that are PCVs for all of the instances in the uf100 benchmark set. Interestingly, we see that harder instances
have more critical variables, which indicates that harder instances offer more potential for performance
improvements than easier instances. We have confirmed that similar (though in some cases weaker) cor-
relations exist for all of the algorithms studied in this paper (including the DPLL algorithms of the next
section), on all of the random benchmark sets. .

Interestingly, the criticality factors with respect to different SLS algorithms are quite highly correlated.
Figure 5.3 shows the correlation of criticality factors with respect to Novelty™ and SAPS for the hardest in-
stance from the uf100 test set, as well as for the bwa instance. Furthermore, the areas of the plot containing
variables that are critical for both algorithms consistently contains a large fraction of the critical variables
for each algorithm. In particular, if a variable is performance critical for N ovelty*, then it is almost always
performance critical for SAPS. The correlations and overlap of critical variables is even stronger when com-
paring the two algorithms to WalkSAT. Thus, it appears that for at least some instances, some variables are
performance critical independent of the algorithm. We give evidence in the next section that this is also
true between different DPLL-type algorithms, as well as between SLS and DPLL-type algorithms.

Next, we study to which extent the run-time reductions achieved by correctly assigning PCVs are addi-
tive in the sense that combining multiple PCVAs leads to run-time reductions greater than those achieved
by individual PCVAs. For this purpose, for a given formula F, we generate a sequence of formulae
F = Fo,---,Fasuch that for 1 <i < n, F; := F;_1[x := v], where the atomic assignment x := v is
chosen so that sc(F;_1[x := v],.A) is minimized. Intuitively, this gives us an optimistic estimate on the

performance improvement afforded by combinations of PCVAs.

Chapter 5. Performance Critical Variables 88

2 2
% S
0.1 i idii i i HH | H i 0.1 H i - HEHEE
0.1 1 10 100 0.1 1 10

cf. (Novelty+) cf. (Novelty+)

Figure 5.3: Correlation of criticality factors with respect to Novelty* and SAPS. Left: correlation on the
hardest instance from the uf100 test set. Right: correlation on the bwa instance. Each point
represents one variable, and criticality factors are measured as in Definition 5.2.

normalized search cost
normalized search cost
(=]
&

0.0001 it ! - 001 L 2 4 L ! !
0 0.05 0.1 0.15 0.2 0 0.02 0.04 0.06 0.08 0.1
fraction of atomic assignments fraction of atomic assignments

Figure 5.4: Additivity of PCVAs using dynamic ranking for Novelty*. nr/sc(F, A) is a normalized line
on the plot indicating when the instance becomes trivial; see text for details. Left: Hard uf100
instance; right: bwa instance from the blocks benchmark set.

Chapter 5. Performance Critical Variables 89

Figure 5.4 shows the normalized search cost sc(F;, A)/sc(F, A) for each of the formulae Fy, ..., Fu.
The results show the dramatic decreases in search cost obtained when multiple PCVAs with the largest
criticality factors are used to simplify the formula. The line labelled nr/sc(F, A) in the plots indicates the
point at which the search cost of the simplified instance becomes less than the number of variables in F;. In
both of the examples shown, the instances become trivially solvable after only a relatively small fraction of
the atomic assignments have been made. In fact, in both cases when using the full simplification technique,
the unit propagation alone solves the instances after a typically relatively small number of PCVAs have
been made. It may be noted that as a side-effect, this method for measuring the effects of PCVA additivity
provides an effective way for finding small backdoor sets for the given instances (this will be discussed

further in the ‘Discussion’ section of this chapter).

5.4 Performance Critical Variables for DPLL Algorithms

We now present results for PCVs for DPLL algorithms. These algorithms are complete (guaranteed to find
a solution or determine that none exists in finite time), and have been shown to outperform SLS algo-
rithms on many -problem classes, partidﬂarly ont SAT-encoded instances from donﬁains such as planning
and hardware verification. We test three DPLL-type algorithms: SATZ-rand [GSK98], KCNFS [DD01], and
zchaff [MMZ*01]. These three algorithms have been well-studied in the literature, and are among the state-
of-the-art complete algorithms on the benchmark sets we study in this paper. The heuristics employed in
each algorithm are quite different; nevertheless, we demonstrate that there are nontrivial sets of PCVs with
respect to each of the DPLL algorithms.

Our experimental protocol for finding PCVs with respect to these systematic SAT algorithms is similar
to that for the previously discussed SLS algorithms. We iterate through every atomic assignment x := v,
and measure sc(F[x := v]) by first doing a full unit propagation of the assignment to obtain the simplified
formula F[x := v] in which variable x is forced to take the value v, and then running each algorithm on
F[x := v]. Because SATZ-rand is a randomized algorithm, we run it 100 times on each formula, and report
the mean search cost. The two other algorithms are deterministic, and consequently need to be run only
once per instance. For all three algorithms we used measures of search cost that correlate linearly with run
time (e.g. number of nodes in the search tree, or total number of implications). Hence, the search cost values
reported in Table 5.2 can be compared for the same algorithm between different instances, but not between
different algorithms.

DPLL-type algorithms typically run a full unit propagation as a preprocessing step; even if this were

not the case, unit clauses are generally discovered and propagated very quickly during the search. For this

reason, our results for partial (i.e. doing a partial rather than full unit propagation to obtain F[x := v}) are

Chapter 5. Performance Critical Variables 90

KCNFS SATZ-rand zchaff
Benchmark ” sc PCVfrac/# cf (cv) sc PCVfrac/# cf (c.v.) sc PCVfrac/# cf(cv)
uf50 67 0.03/1.38 1.24(0.12) 302 0.23/11.61 1.86(0.46) 279 022 /11.06 1.24(0.12)
uf100 587 0.07 /680 1.17(0.07) 2090 0.06 /6.26 1.21(0.23) 3528 0.25/2513 1.83(0.36)
1f200 5186 0.22 /448 1.76(0.34) 42172 012 /2451 1.27(0.08) | 376187 0.24 /4718 2.66(1.26)
anomaly 3 0.04/2 1.5 (0) 14 0.46 / 22 2.41(0) 82 0.27 /13 7.58 (0)
medium 12 0.21/ 24 2.88 (0) 142 0.26 / 30 18.77 (0) 318 0.22 /26 32.08 (0)
huge 10 <0.01/2 1.25(0) 1041 0.11 /49 2.50 (0) 1805 0.05 /21 1.60 (0)
bwa 10 - 001/6 1.32 (0) 958 0.10 / 45 2.46 (0) 2163 0.06 / 26 1.70(0)
Toga - -/ - -0 - -/- -(-) | 4535 001711 .06 (0)
ii8 881419 0.07 /4.78 1.51(0) 4695 01177943 1.36(0.24) 1944 0.11 /6229 1.92(0.25)
par8-1-c 20 0.23 /15 2.95 (0) 111 0.42 /27 4.40 (0) 581 0.36 / 23 2.12 (0)
ssa7552-038 1628 0/0 n/a | 440084 0.36 / 540 4.90 (0) 2677 <0.01/6 1.04 (0)

Table 5.2: PCV results for DPLL-type algorithms.sc is the expected search cost for each algorithm on each
benchmark set. PCV frac and # are the mean fraction of variables that are PCVs and number
of variables that are PCVs, respectively. cf and c.v. are the mean and coefficient of variation,
respectively, of the criticality factors of variables that are PCVs. Entries marked ‘- indicate that
the PCV measurement had not completed after 150 000 CPU seconds.

10 - 10 T
..................... ¥ #
i+ * o+
+ L+ F
R "
L3R IF LN
IR
¥ H v
% 1 m ¥ T ;'a 1
°o ¥ @
S 5t b
+. : 2
= : { +
+ 4
0.1 . 0.1 H
0.1 1 10 0.1 1 10
ci. (Novelty+)) c.f. (zchaff)

Figure 5.5: Correlation of criticality factors with respect to different algorithms on the bwa instance. Left:
Novelty*t vs. SATZ-rand, Right: zchaff vs. SATZ-rand. Each point represents one variable, and
criticality factors are measured as in Definition 5.2.

virtually identical to those for fﬁll; and vwe"report only the results for the latter. 4

Table 5.2 shows our PCV results for the DPLL-type algorithms. As for the previously considered SLS
algorithms, that there are a nontrivial number of PCVs for virtually all of the benchmark instances con-
sidered. Interestingly, there often seem to be more PCVs for the DPLL-type élgorithms than for the SLS
algorithms when compared on a given test-set, most notably for the SATZ-rand and zchaff algorithms. The
average criticality factors are also reasonably high for all of the test sets. As with the SLS algorithm results,
most instances have PCVs with very high criticality factors with respect to the DPLL algorithms.

Additional results indicate that there is a significant amount of overlap between the sets of PCVs for SLS
algoritiuns and DPLL-type algorithms, as well as between PCV sets for different DPLL-type algorithms.
For example, consider Figure 5.5, which shows the correlation between the criticality factor of each variable

in the bwa instance for Novelty* and SATZ-rand (left) and zchaff and SATZ-rand (right). We see that

http://algorithms.se

Chapter 5. Performance Critical Variables 91

the region for which the criticality factor is greater than one for both algorithms consistently contains a
large portion of the points that are greater than one for each algorithm. This is quite surprising, given the
different nature of these algorithms and their underlying heuristics, and provides evidence that algorithm-
independent performance critical variables exist for some instances.

We also observe additivity effects for PCVAs with respect to the DPLL-type algorithms on many of the
test sets that are similar to those for SLS algorithms. For example, zchaff on the ssa7552-038 instance
has only 6 PCVs (out of 1501 variables). However, when the single PCVA with the highest criticality factor
is used to simplify the formula, the entire formula becomes trivial. As another example, KCNFS shows
excellent additivity on the hardest uf100 instance — the dynamic ranking found a small backdoor of only
6 PCVAs, which is surprisingly small considering the results from [Int03]. Furthermore, the search cost
decreased by more than a factor of two with the addition of each PCVA, indicating that a speedup is possible

even if all 2° assignments to the corresponding variables were run in parallel.

5.5 Discussion

As previously mentioned, the notion of PCVs is conceptually related to that of backdoor variables [WGS03].
Both concepts are algorithm-dependent; but while the notion of performance criticality applies to arbitrary
SAT algorithms, backdoor sets are relative to polynomial-time SAT algorithms, such as unit propagation.
Furthermore, it should be hdted that, unlike our concept of performance criticality, the notion of a backdoor
inherently refers to a property of a set of variables. It is also more coarse-grained, since it only captures
potential reductions from exponential to polynomial-time asymptotic complexity for certain classes. It
should be noted that variables from (minimal) backdoor sets are not necessarily performance critical, since
a reduction may only be obtained when several or all of the elerﬁents of a given backdoor set are assigned
the correct truth value. Additionally, it is currently unclear whether small backdoors can be determined
and exploited in an amortised way.

Interestingly, our additivity for PCVAs resulted in new, substantially smaller backdoor sets than previ-
ously known for the random SAT instances considered here. For example, at clauses-to-variables ratio 4.3,
Interian [Int03] reports an expected backdoor size of approximately 0.5 - n for n = 100 variables. Using our
dynamic ranking scheme and Novelty™ on the uf100 set, we find expected backdoor sets of size 0.078 - n,
with minimum and maximum values of 0.05 - # and 0.16 - 1, respectively. We find similar results on this
test-set when using the dynamic ranking scheme with all of the other algorithms.

Another concept that is intuitively related to PCVs is that of the backbone; the backbone of a satisfiable
SAT instance is the set of variables that have the same truth values in all satisfying assignments. Obviously,

any PCVA x := v where x is a backbone variable x must set v to the correct value; hence, knowledge of

Chapter 5. Performance Critical Variables 92

10 10
............................. Wi
+
- + - +
5 ; + G + +
R Gty : Gt Dt e
g AN oy, ¥ + e ...:F 5 £ % o jf,-k::—-‘:
> it 1 R o > g+
H E N ¥ *; &3‘.&% E - i .:¢ +ﬁgt: Ak
+ Lo Lo +
0.1 0.1 L
0 01 02 03 04 05 06 07 08 09 1 0.0001 0.001 0.01 0.1 1 10
p(S|4) %max

Figure 5.6: Correlation between p(S | A) and average criticality factor (left), and &,y and average criticality
factor (right) with respect to Noveltyt on the uf25 test set. Each point represents one instance
from the set, and the criticality factor is averaged over all variables in the instance.

backbone is potentially useful in narrowing down the set of candidates for PCVAs. However, backbone
variables are not necessarily performance critical, and PCVs may not necessarily appear in the backbone of
a given instance. In this context, it may be noted that some of our test-instances (ii8*) have no backbones, but
do have PCVs (c.f. Tables 5.1 and 5.2). Still, there may be a noisy correlation between the two concepts; con-
sidering recent approaches for the efficient heuristic determination of backbone variables [ZRL03, DD01],

this issue should be further investigated.

5.5.1 Connection with Search Space Features

While we have demonstrated that performance critical variables exist, and that they have a substantial
impact on the performance of SAT algorithms, so far we have not discussed the underlying causes of per-
formance criticality. We now investigate the nature of the connection between the search space features
studied in previous chapters and performance critical variables.

' The left pane of Figure 5.6 shows the correlation between solution reachability p(S | A) (defined in Sec-
tion 4.3), and the" average criticality factor of each instance in the uf25 test set. Very interestingly, instances
with a high average criticaiity factor tend to have low solution reachability (the correlation coefficient is
r = —0.51). This suggests that fixing critical variables to their correct values may increase the solution
reachability, thus rendering the instances easier.

The right pane of Figure 5.6 shows a similar correlation between the maximum attractivity factor of
closed plateaus &y, and the average criticality factor of each instance. These two measures are positively

correlated (correlation coefficient r = 0.49), suggesting further that fixing critical variables to their correct

values may reduce the attractivity factor of the most attractive trap, thus rendering the instances easier.

Chapter 5. Performance Critical Variables

93

Figure 5.7: Partial, weighted PCG for the hardest uf25 instance.

Chapter 5. Performance Critical Variables

94

Figure 5.8: Effect on the PCG when instantiating the most critical variable in the hardest uf25 instance.

Chapter 5. Performance Critical Variables 95

To further test these conjectures, we closely examine the search space of the hardest uf25 instance, both
before and after the PCVA with the highest criticality factor is fixed (the most critical PCVA with respect to
Novelty* has a criticality factor of 2.4). Figure 5.7 shows the weighted, partial plateau connectivity graphs
for the original formula. It is obvious why this instance is hard. The majority of paths with signiﬁcant
weights lead down to the plateau labelled 2 . 1. From this point, most of the paths lead to closed plateaus,
with only a few outgoing paths that can reach solutions. This hard instance has solution reachability p(S |
A) = 0.15.

After the most critical PCVA has been assigned, and the formula correspondingly simplified (all clauses
containing the literal removed from the formula, and all occurrences of the negated literal removed from
all clauses), the search space looks drastically different, as illustrated in Figure 5.8. Firstly, there are fewer
plateaus at level 1, and more at level 3, and there are significantly fewer closed plateaus. The most inter-
esting change, however, concerns the plateau connectivity. Most of the paths with significant weights still
lead down to a level 2 plateau (labelled 2. 5),! but from this point on the situation is drastically different.
There are only four outgoing edges from plateau 2.5, and two of them lead to closed plateau regions.
However, one edge (with weight 0.17) leads directly to the solution plateau and the last edge (also having
weight 0.17) leads to a plateau that feeds directly into the solution plateau. Thus, fixing the most critical
PCVA effectively made many of the traps much less attractive, and the solution more accessible. The solu-
tion reachability of the simplified instance is p(S | A) = 0.36, which is now higher than 15% of the other
instances in the test set. Furthermore, the simplified instance is now at the 60" quantile of the hardness
distribution for Novelty* (rather than the 100*%).

These results provide new insights into why variables are performance critical with respect to SLS al-
gorithms. We conjectu‘re that the most critical variable assignments are those appearing in very attractive
traps, but having a value that is incéonsistent with the set of solutions. Thus, the attractive trap effectively
restricts the given variable to the (incorrect) value compatible with the traps. The next section discusses the

possibility of exploiting performance critical variables based on this conjecture,

5.5.2 An Approximate PCV Oracle

Like in the case of backdoor sets and backbone variables, it is unclear whether there is a reasonably efficient
way of determining PCVs or of guessing them with reasonable accuracy. Based on the intuition that in the
case of SLS algorithms, the existence of PCVAs (and hence PCVs) could be the result of local minima attract-
ing the search into non-solution areas of the respective search space, we performed initial experiments with
a simple heuristic that counted the number of times each variable was set to T and L, respectively, in the lo-

cal minima encountered during a small number of short independent runs of Novelty™ on a given instance.

!Note that there is no correspondence between the node ids of the two PCGs.

Chapter 5. Performance Critical Variables 96

10
_ ..+ k4 N
o
|
ki il + + T
z 1 g + B
e
8 e i 2 ety
¥ +4 +t i 4 ## ;
+ e f;ﬂ, A
0.1
0 0.2 04 0.6 0.8 1

Y

Figure 5.9: Correlation between <y and criticality factor for Novelty™ on instance bwa . The 7y values were
collected by running Novelty* five times for 100 steps, and measuring the frequency of lo-
cal minima in which each atomic assignment occurred. Each point represents one backbone-
compatible atomic assignment.

As illustrated in Figure 5.9, for some instances we observe a negative correlation (correlation coefficient
r = —0.80) between the criticality factor of atomic assignments x := v compatible with the backbone and 7,
the frequency of local minima in which x was assigned v. Thus, the PCVAs with highest criticality factors
tended to have low frequencies — indicating that the corresponding variable was set to the opposite value
in the majority of the local minima encountered during the short runs. The natural interpretation of this
observation is that, while many variable assignments appear frequently in local minima, the critical ones
are those that are frequently set to a value that is incompatible with any solutions. This analysis supports
our conjecture from the last section, and further elucidates the relationship between search space features
* and algorithm behaviour. "

Figure 5.9 suggests that it may be possible to heuristically determine PCVs in an efficient way — and to
take advantage of them in practical algorithms. It may be noted that our method for determining 7 values
is similar the the method used in [ZRL03] for determining pseudo-backbone variables. However, contrary
to their results, we find that setting these variables to their opposite values is more effective than setting them

to the prevalent values in local minima. Uhfortunately, it is beyond the scope of this thesis to provide an

implementation and evaluation of a practical method for exploiting PCVs.

Chapter 5. Performance Critical Variables 97

5.6 Summary

In this chapter we have introduced the notion of performance critical variables (PCVs). PCVs are related
to previously studied concepts of backbone variables and minimal backdoor sets, but differ from these
in interesting ways. Based on computational experiments with several high-performance SAT algorithms
applied to a various sets of benchmark instances, we have demonstrated that almost all instances have a
significant number of PCVs for both stochastic local search and systematic search algorithms. Particularly
for structured instances, we observed a significant overlap between the PCV sets for different algorithms
applied to the same problem instance as well as some correlation between the respective criticality factors.
We have presented evidence for the additivity of the effects of PCVs, as well as for a positive correlation
between size of PCV sets and the (algorithm-specific) hardness of instances.

We have also demonstrated a clear connection between performance critical variables and search space
features. We have shown that the average criticality factor of an instance is correlated with p(S | A) and
&mayx (c.f. Sections 4.3 and 4.4, respectively), and we have illustrated, through the use of plateau connectiv-
ity graphs, how the search space is affected when the most critical PCVA is instantiated. Based on these
observations, we conjecture that performance criticality is the result of attractive traps that force the critical
variables to values that are inconsistent with all solutions.

These results raise a number of interesting questions. Possibly the most relevant of these concerns the
existence of heuristics that approximate PCV oracles in an amortised way and hence can be used to improve
existing SAT algorithms. We reported some preliminary encouraging results for SLS algorithms, but further
work is required in order to obtain more conclusive answers. Overall, we believe that an understanding of
the connection between performance criticality and search space features will give rise to further interesting
results for SAT and other combinatorial problems and will ultimately lead to improvements in our ability

to solve these problems.

Chapter 6. Conclusions and Future Work 98

Chapter 6

Conclusions and Future Work

In this thesis we have studied various search space properties, and empirically demonstrated that these
search space features are responsible for making instances hard. We used the propositional satisfiability
problem as our main application area because of its practical relevance, and conceptual simplicity — but
we also note that most of the concepts and intuitions developed throughout the thesis generalise to other
combinatorial problems. This chapter summarises the main contributions of the thesis, and provides inter-
esting directions for future work.

Our contributions begin in Chapter 3, where we extend (and correct) results from the literature concern-
ing the distribution of plateaus in the search space. We find plateaus that are significantly larger than those
previously reported — an observation that clears up some apparently contradictory results in the literature.
Next, we extend the analysis of plateaus by introducing a computationally expensive (but still feasible on
problems of a nontrivial size) method based on binary decision diagrams for exhaustively exploring the
plateau ;tmcmre of SAT instances. This allows us to get a complete picture of the low-level regions of the
search space, without resorting to sampling (as previous approaches were forced to do). We report a very
interesting, novel result for the uniform random 3-SAT instances. We find that at high levels the vast major-
ity of states at a given level all reside within a single, large, connected plateau, and that only at low levels
does the search space really degenerate into more locally connected regions. We also report that closed
plateaus are typically much smaller than open plateaus, and that closed plateaus become vanishingly rare
as the level is increased, indicating that schemes which explicitly detect and avoid closed plateaus may be
helpful.

We also extend our plateau analysis to include structured instances. This makes the results much more
practically relevant, since structured instances are more interesting from a practitioner’s point of view than
randomly generated instances, and strengthens the contribution of this thesis since much of the existing
literature focuses solely on randomly generated instances.

We perform a detailed analysis of the internal structure of plateaus, which has not been performed in
the past. We measure plateau properties such as the branching factor of local minima states, the plateau
diameter, the fraction of states in the plateau that are closed, and the average disténce to an exit from the

plateau.

Chapter 6. Conclusions and Future Work 99

Chapter 4 extends the results from Chapter 3 by studying the interconnectivity of plateaus in the search
space. We demonstrate how we can abstract away irrelevant details of the search space and construct a
simple, compact model of the search space that is still representive enough to capture the features respon-
sible for instance hardness. We investigate simple graph-theoretic properties of this model, and discuss
the consequences of these results on algorithm mobility. Next, we define a Markov process on the model,
bound the mixing time of the Markov chain with a polynomial (in the size of the SAT instance), and demon-
strate how this simplified model of the search space can give insight into the behaviour of SLS algorithms.
Furthermore, we empirically demonstrate the effectiveness of this model by showing how certain features
of the model correlate well with instance hardness.

We also provide a formal definition of “traps” in the search space, and demonstrate that, for uniform
random 3-SAT instances, the effects of the single most attractive plateau if enough to account for the diffi-
culty of the instance. We introduce a novel definition of the escape difficulty of traps, and demonstrate that
in the vast majority of cases it is detrimental to initialise the search from the most attractive trap. Finally,
we connect plateau connectivity with Hoos” “mixture models”, and provide empirical evidence that it is
attractive traps that are responsible for the hard component of the irregular RTDs.

The final chapter describing the empirical analyses of the thesis, Chapter 5, takes a slightly different
direction that the previous chapters, and introduces the novel concept of performance criticality of vari-
ables in satisfiable SAT instances. After formally defining the notion of performance criticality, we provide
a bound on the amortisable running time of a perfect PCV oracle. Our empirical analysis in this chap-
ter demonstrates that there are a non-trivial number of PCV for all of the instances studied, indicating
a widespread potential for practically exploiting PCVs. We empirically demonstrate that the fraction of
PCVs that an instance has is positively correlated with local search cost — i.e. that hard instances tend to
have more PCVs. We also show that sets of PCVs are additive in the sense that the run-time improvements
realisable by simultaneously instantiating a number of PCVs is amortisable. In fact, we show that in a large
number of cases (particularly for hardef, and structured instances), only a few PCVs need be instantiated
before the instance becomes completely trivial to solve. Also, we show that there is a significant amount
of overlap between the sets of PCVs with respect to different algorithms, indicating that some PCVs are
algorithm dependent. | - ‘ '

We also show that performance criticality is closely related to the search space features studied in earlier
chapters. In particular, we show that the average criticality factor of an instance is highly correlated with
both solution reachability and the maximum trap attractivity of an instance. Furthermore, we demonstrate
how the search space changes when the most critical variable is instantiated — not surprisingly, this in-

creases solution reachability and decreases the attractivity of traps. Finally, we describe a mechanism that

may be useful for constructing a practical PCV oracle.

Chapter 6. Conclusions and Future Work 100

It seems that with any scientific endeavour, resolving a few questions reveals a host of new problems,
and this thesis was no exception. There are many possible directions in which this research may be ex-
tended. Firstly, we note again that our analyses throughout the thesis were restricted to fairly small SAT
instances due to the computationally expensive nature of the empirical experiments being performed. One
possible way to extend the analysis to larger instances is to only partially explore plateaus. In fact, we devel-
oped a method for the partial exploration of plateaus which works by storing only a single state to represent
each plateau. When we are sampling states in order to measure the distribution of plateaus encountered
during a series of SLS algorithm runs, a single state is stored to represent each encountered plateau. When
we need to determine which existing plateau (if any) a given state s belongs to, we run a number of simple
local search algorithms in parallel, each initialised to the plateau representative states, restricted to stay at
the same level, and biased towards reducing the hamming distance to s. If a path is found from any of the
representative states to s, then s is known to belong to the corresponding plateau, otherwise we use s as
the representative state for a new plateau. Given the set of representative states, a partial (approximate)
PCG can be constructed by perturbing each representative state, while restricting the perturbed state to the
same level, in order to sample a number of states from the plateau. All of the lower level neighbours of
these states can be found, and the containing plateau of each neighbour can be found using the technique
described above. Preliminary experiments indicate that this technique holds a great deal of potential.

While we have attempted to make our experiments as complete and representative as possible, time
constraints occasionally required that we only performed our experiments on a single representative case.
Examples of this include the analysis of the connection between escape difficulty and mixture models in
Section 4.4, the effect on the search space of instantiating the PCV with the highest criticality factor in Section
5.5, and the example PCV oracle heuristic, also in Section 5.5. While we do believe these examples are
representative, we intend to expand these analyses to more instances in order to fully justify the respective
claims. ’

The main focus of this thesis was the analysis of the relationship between search space structure and
algorithm behaviour, and while we did suggest methods of exploiting the results we were not able to im-
plement them. Some directions that we believe are particularly promising include schemes which explicitly
detect and avoid closed plateaus, and the incorporation of a PCV heuristic (such as that described in Section
5.5) into a SAT solver.

Other directions for future work include the study of strong polynomial SAT solving techniques in the
context of performance criticality (see, e.g., [BW03] such techniques could be used instead of unit propa-
gation as a preprocessing stage after a551gnmg a truth value to a PCV) and the mvestlgatlon of the scaling

of PCV set size and average criticality factors of PCVs with problem size for families of structured and

random instances. It may also be interesting to study the concept of PCVs for unsatisfiable SAT instances;

Chapter 6. Conclusions and Future Work 101

this requires a slightly different definition, but similar intuitions and analysis techniques apply.

Finally, it should be noted that the concept of performance criticality can be easily applied to other
combinatorial problems. Throughout this thesis, we have used SAT to introduce and study these concepts
because of its conceptual simplicity and its prominent status in the theoretical and empirical study of al-
gorithmic complexity and combinatorial problem solving. However, we believe it will be fruitful to study
the concept of performance criticality for other combinatorial problems, particularly for widely studied
optimisation problems, such as MAX-SAT, TSP, and more general constraint satisfaction problems.

It is our strong belief that in order to design high-performance SLS algorithms for SAT, it is necessary
to understand, as completely as possible, properties of the space which is being searched. This thesis
contributes to this understanding, and it is our hope that the concepts discussed within this thesis will

provide insights leading to improvements in the state-of-the-art in SAT solving.

Bibliography 102

Bibliography

[Bry92] R. E. Bryant. Symbolic boolean manipulation with ordered binary decision diagrams. ACM
Computing Surveys, 24(3), 1992.

[BS03] D. Le Berre and L. Simon. The essentials of the SAT’03 competition. In Submitted to LNAI June
2003.

[BW03] Fahiem Bacchus and Jonathdn Winter. Effective preprocessing with hyper-resolution and

equality reduction. In Proc. SAT 2003, pages 183-192, 2003.

[CA96] James M. Crawford and Larry D. Auton. Experimental results on the crossover point in ran-

dom 3-SAT. Artificial Intelligence Journal, 81(1-2):31-57, 1996.

[CFG*96] D. Clark, J. Frank, I. Gent, E. MacIntyre, N. Tomov, and T. Walsh. Local search and the number
of solutions. In E. Freuder, editor, Principles and Practice of Constraint Programming - CP’96, vol-
ume 1118 of Lecture Notes in Computer Science, pages 119-133. Springer Verlag, Berlin, Germany,

1996.

[CKT91] Peter Cheeseman, Bob Kanefsky, and William M. Taylor. Where the really hard problems are.
In Proceedings of the Twelfth International Joint Conference on Artificial Intelligence (IJCAI-91), pages ,
331-337,1991.

[DDO01] Olivier Dubois and Gilles Dequen. A backbone-search heuristic for efficient solving of hard
3-SAT formulae. In Proc. IJCAI-01, pages 248-253, 2001.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem
proving. Communications of the ACM, 5(7):394-397, July 1962.

[dIT90] T. Boy de la Tour. Minimizing the number of clauses by renaming. In Proc. of the 10th Conference
on Automated Deduction, pages 558-572, 1990. ‘

[FCS97] Jeremy Frank, Peter Cheeseman, and John Stutz. When gravity fails: Local search topology.
Journal of Artificial Intelligence Research, 7:249-281,1997.

Bibliography 103

[GJ79] M.R. Garey and D.B. Johnson. Computers and Intractability. A Guide to the Theory of NP-
Completeness. W.H. Freeman, New York, 1979.

[GSK98] Carla P. Gomes, Bart Selman, and Henry Kautz. Boosting combinatorial search through ran-

domization. In Proc. AAAI-98, pages 431437, Madison, Wisconsin, 1998.

[GW93] Ian Gent and Toby Walsh. An empirical analysis of search in gsat. Journal of Artificial Intelligence
Research, 1:47-59, 1993.

[GW94] Ian Gent and Toby Walsh. The SAT phase transition. In Proceedings of the Eleventh European
Conference on Artificial Intelligence (ECAI’94), pages 105-109, 1994.

[GW95] Ian Gent and Toby Walsh. Unsatisfied variables in local search. In Amsterdam J. Hallam,
I0S Press, editor, Hybrid Problems, Hybrid Solutions, pages 73-85, 1995.

[HK95] S. Hampson and D. Kibler. Plateaus and plateau search in boolean satisfiability problems:
When to give up searching and start again. In DIMACS Challenge "95, 1995.

[Hof85] Douglas R. Hofstadter. Metamagical Themas: Questing for the Essence of Mind and Pattern, chapter
13: Metafonts, Metamathematics, and Metaphysics. Basic Books, 1985.

[Hoo98] Holger H. Hoos. Stochastic Local Search - Methods, Models, Applications. PhD thesis, Technische
Universitiat Darmstadt, 1998.

[Hoo99] Holger H. Hoos. On the run-time behaviour of stochastic local search algorithms for SAT. In
Proc. AAAI-99, pages 661-666, 1999.

[Hoo02] Holger H. Hoos. A mixture-model for the behaviour of sls algorithms for SAT. In In Proc.
AAAI'02, pages 661-667, 2002.

[HS98] Holger H. Hoos and Thomas Stiitzle. Evaluating las vegas algorithms - pitfalls and reme-
dies. In Proceedings of the 14th Annual Conference on Uncertainty in Artificial Intelligence (UAI-98),
pages 238-245, San Francisco, CA, 1998. Morgan Kaufmann Publishers.

[HS00] Holger H. Hoos and Thomas Stiitzle. SATLIB: An online resource for research on SAT. In SAT
2000. 10S Press, Amsterdam, The Netherlands, 2000.

[HS04] Holger H. Hoos and Thomas Stiitzle. Stochastic Local Search—Foundations and Applications.
’ Morgan Kaufmann Publishers, USA, 2004.

[HTHO02] Frank Hutter, Dave A.D. Tompkins, and Holger H. Hoos. Scaling and probabilistic smoothing;:
Efficient dynamic local search for SAT. In Proc. CP 2002, pages 233-248, 2002.

Bibliography 104

[Int03] Y. Interian. Backdoor sets for random 3-SAT. In Proc. SAT 2003, pages 231-238, 2003.

[KKRR92] A.P. Kamath, N.K. Karmarkar, K.G. Ramakrishnan, and M.G.C. Resende. A continuous ap-
proach to inductive inference. Mathematical Programming, 57:215-238,1992.

[KMS96] Henry Kautz, David McAllester, and Bart Selman. Encoding plans in propositional logic. In
Proc. KR’96, pages 374-384, 1996.

[KS96] Henry Kautz and Bart Selman. Pushing the envelope: Planning, propositional logic, and
stochastic search. In Proc. AAAI’96, pages 1194-1201, 1996.

[KS03] Henry Kautz and Bart Selman. Ten challenges redux: Recent progress in propositional reason-
ing and search. In Ninth International Conference on Principles and Practice of Constraint Program-
ming (CP 2003), 2003.

[MMZ*01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: Engineering an Efficient SAT Solver. In Proc. DAC'01, 2001. |

[MSG97] B. Mazure, L. Sais, and E. Grégoire. Tabu Search for SAT. In Proceedings of the 14th National
Conference on Artificial Intelligence, pages 281-285. AAAI Press / The MIT Press, Menlo Park,
CA, USA, 1997.

[MSK97] David A. McAllester, Bart Selman, and Henry A. Kautz. Evidence for invariants in local search.
In Proc. AAAI-97, pages 321-326, 1997.

[MTO00] P. Mills and E. Tsang. Guided local search for solving SAT and weighted MAX-SAT problems.
In L.P. Gent, H. van Maaren, and T. Walsh, editors, SAT2000 — Highlights of Satisfiability Research
in the Year 2000, pages 8§9-106. 2000.

[NLBD*04] E. Nudelman, K. Leyton-Brown, A. Devkar, Y. Shoham, and H. Hoos. Understanding random
sat: Beyond the clauses-to-variables ratio. In International Conference on Principles and Practice

of Constraint Programming (CP), 2004.

[Pap91] Christos H. Papadimitriou. On selecting a satisfying truth assignment (extended abstract). In
Proceedings of the 32nd annual symposium on Foundations of computer science, pages 163—-169. IEEE

Computer Society Press, 1991.

[Par97] Andrew J. Parkes. Clustering at the phase transition. In Proceedings of the 14th National Con-
ference on Artificial Intelligence, pages 340-345. AAAI Press / The MIT Press, Menlo Park, CA,
USA, 1997. '

Bibliography 105

[PG86] D. A. Plaisted and S. Greenbaum. A structure preserving clause form translation. Journal of

Symbolic Computation, 2:293-304, 1986.

[PS82] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial optimization: algorithms and
complexity. Prentice Hall, 1982.

[SBH02] Laurent Simon, Daniel Le Berre, and Edward A. Hirsch. The SAT2002 competition, 2002.

[Sch99] Uwe Schéning. A probabilistic algorithm for k-sat and constraint satisfaction problems. In
Proceedings of the 40th Annual Symposium on Foundations of Computer Science, page 410. IEEE
Computer Society, 1999.

[SGS00] J. Singer, I. Gent, and A. Smaill. Backbone fragility and the local search cost peak. Journal of
Artificial Intelligence Research, pages 235-270, 2000.

[SK93] B. Selman and H.A. Kautz. Domain-independent extensions to gsat: Solving large structured
satisfiability problems. In Proc. IJCAI-93,1993.

[SKC93] B. Selman, H.A. Kautz, and B. Cohen. Local search strategies for satisfiability testing. In Proc.
2nd DIMACS Challenge on Cliques, Coloring, and Satisfiability, 1993.

[SKC94] B. Selman, H.A. Kautz, and B. Cohen. Noise strategies for improving local search. In Proc.
AAAI-94,19%4.

[SLM92] B. Selman, H.J. Levesque, and D.G. Mitchell. A new method for solving hard satisfiability
problems. In Proc AAAI-92,1992.

[SW97] Y. Shang and B.W. Wah. Discrete lagrangian-based search for solving MAX-SAT problems.
In Proceedings of the 15th International Joint Conference on Artificial Intelligence, volume 1, pages

378-383. Morgan Kaufmann Publishers, San Francisco, CA, USA, 1997.

[SWO02] John Slaney and Toby Walsh. Phase transition behavior: from decision to optimization. In
In the Proceedings of the Fifth International Conference on Theory and Applications of Satisfiability
Testing (SAT 2002), 2002.

[THO4] Dave A. D. Tompkins and Holger H. Hoos. UBCSAT: An implementation and experimentation
environment for SLS algorithms for SAT and MAX-SAT. In In the Proceedings of the Seventh
International Conference on Theory and Applications of Satisfiability Testing (SAT 2004), pages 37-
46, 2004.

[Val79] L. Valiant. The complexity of enumeration and reliability problems. SIAM Journal on Comput-
ing, 8(3):410-421, 1979.

" ‘Bibliography . I 106

[WGS03] Ryan Williams, Carla Gomes, and Bart Selman. Backdoors to typical case complexity. In
Proc. IJCAI-03, Acaplco, Mexico, 2003.

[Yok97] Makoto Yokoo. Why adding more constraints makes a problem easier for hill-climbing algo-
rithms: Analysing landscapes of csp’s. In Proc. CP’97, volume 1330 of LNCS, pages 357-370,
1997.

[ZRL03] W.Zhang, A.Rangan, and M. Looks. Backbone guided local search for maximum satisfiability.
In Proc. IJCAI-03, pages 1179~1184, 2003.

Appendix A. Test Suite Description 107

Appendix A

Test Suite Description

The empirical nature of this thesis required that an interesting set of problem instances be selected for study.
Choosing a representative set of SAT instances for an empirical study is a daunting, if not impossible, task.
The instances must represent interesting problems that have been studied in the past and/or are relevant
to practical applications. However, there are always restrictions on the number and size of instances that
can be studied.

Many of the empirical experiments performed in this thesis were exceedingly computationally inten-
sive, both with respect to computation time and storage. Because of this, we were restricted to fairly small
SAT instances that are considered quite easy by modern standards. Nonetheless, we hope that even the
study of small instances is interesting, because many of the observations and intuitions gained by studying
small instances generalise to larger instances. When possible, we studied larger instances and contrasted
the results with those for the smaller instances. Even after restricting the test sets to small instances, some
of the experiments still took multiple CPU months to complete. ‘

We study two main class of instances: random and structured. The random instances are interesting
because they have been extensively studied in the past, so there is a wealth of literature to contrast results
with. Another advantage of studying randomly generated instances is that distributions of syntactically
identical instances can be generated and studied. The structured instances are generally much less avail-
able, and must be studied on and instance-by-instance basis. One exception to this rule is that we may
generate random distributions of instances from other problem domains, such as graph colouring, and
then encode these instances into propositional satisfiability.

The random instances that we study come from the Uniform Random 3-SAT distribution, near the
phase-transition region [CKT91]. We generally refer to this entire class of instances as UF-3-SAT. Table A.1
shows the UF-3-SAT test sets that we study. The first collection of test sets, named uf20-uf50, were generated
éxplicitly for this thesis. There are 100 instances in each test set, and the number of variables ranges from
20 to 50 in steps of 5. The clause to variable ratio in each test set is determined by Crawford and Auton’s
formula C/V = 4.258 4 58.260~>/3, which was empirically demonstrated to fit the phase transition region

well, even for small instances [CA96]. We also used four set of larger instances, taken from SATLIB [HS00].

These sets, with 20, 50, 100, and 200 variables, also have a clause to variable ratio near the phase transition,

Appendix A. Test Suite Description 108

Benchmark | # m #

uf20 20 93 100
uf25 25 113 100
uf30 30 133 100
uf35 35 154 100
ufd0 40 175 100
ufd5 45 196 100
uf20 20 91 1000
uf50 50 218 1000
uf100 100 430 1000
uf200 200 860 1000

Table A.1: Description of the random benchmark sets studied in this paper; n, m, and # are the number of
variables, clauses and instances, respectively, in each benchmark set.

Benchmark | n m #
ii8 (66-1068) (186-8214) 14
anomaly 48 261 1
medium 116 953 1
huge 459 7054 1
bwa 459 4675 1
loga 828 6718 1
aisé6 61 581 1
flat20-easy 60 116 1
flat20-med 60 116 1
flat20-hard 60 116 1
par8-1-c 64 254 1
ssa7552-038 1501 3575 1

Table A.2: Description of the structured benchmark sets studied in this paper; n, m, and # are the number
of variables, clauses and instances, respectively, in each benchmark set. Note that most of the
“sets” actually consist of a single instance.

but the actual number of clauses was determined empirically for each set by experimentally determining
the point at which approximately 50% of the instances in the set were satisfiable.

Choosing interesting structured instances proved to be more challenging. We needed small instances,
which were hard to come by and so already limited the set of potential instances. We also wanted instances
syntactically different instances encoded from different problems. Table A.2 shows the structured instances
used in the thesis, which are all available for download from SATLIB [HS00]. The ii8 set consists of 14 in-
stances of various sizes, and are from a SAT formulation of Boolean function synthesis problems [KKRR92].
The anomaly, medium, huge, and bwa sets all consist of a single instance, and correspond to SAT-encoded

instances of the well-known blocks world problem domain. The loga instance is from a SAT formulation

of a logistical planning problem. A more detailed description of the problem domains and the SAT encod-

Appendix A. Test Suite Description 109

ing used to generate these instances can be found in [KS96, KMS96]. The ais6 instance a SAT formulation
of the all-interval-series problem, inspired by a well-known problem in serial music composition [Hoo98].
The flat20-easy, flat20-med, and flat20-hard are SAT-encoded instances of the graph colouring
problem. To obtain these instances, 1000 graph colouring instances were generated using Joe Culberson’s
flat graph genera_ltor,1 each having 20 nodes, 3 colours, and a connectivity of 0.245. The graph colouring
problems were then converted into propositional formulae using Joe Culberson’s converting utility. These
three instances are those with the lowest, median, and maximum local search cost for the GWSAT algorithm
(c.f. Section 2.3) from the entire distribution of instances. The par8-1-c instance is a propositional version
of a parity learning problem.? Finally, the ssa7552-038 instance is from a hardware verification problem
testing for single-at-stuck faults.

There are quite a number of syntactically different structured instances represented in our test sets,
though the number of instances is fairly low. Combined with the large number of randomly generated
instances, we are confident that we have chosen an interesting set of instances for study, which are still

small enough for our empirical experiments to be computationally feasible.

1 Available online at http: / /web.cs.ualberta.ca/~joe/Coloring/Generators/flat.html

ZMore details regarding the problem and the propositional encoding may be found on the DIMACS website ftp://dimacs.
rutgers.edu/pub/challenge/satisfiability/contributed/crawford/README.

3More details regarding the problem and the propositional encoding may be found on the DIMACS website ftp://dimacs.
rutgers.edu/pub/challenge/satisfiability/contributed/UCSC/instances/cnf-ssa/README.

Appendix B. Binary Decision Diagrams 110

Appendix B

Binary Decision Diagrams

Reduced Ordered Binary Decision Diagrams (ROBDDs, or BDDs for short) are a data structure useful for
compactly representing Boolean functions using Directed Acyclic Graphs (DAGs). They represent func-
tions canonically and efficiently (both in terms of space and time complexity), making them popular in
practical applications. For a thorough introduction to BDDs, the reader is referred to [Bry92]. For all of
the experiments conducted in this thesis, we used the popular BDD package CUDD version 2.4.0, available
online at http://vlsi.colorado.edu/~fabio/CUDD.

Throughout this thesis, we use BDDs to store very large sets of (related) search space states. In order to
do this, we assume that states are binary vectors of the form X= (x1,%x2,- -+ , xn) (Where n is the number of
propositional variables). Such a vector can be interpreted as the input to a Boolean function f : {0,1}" —
{0,1}. Thus, we can represent a set of states with such a Boolean function by adopting the convention that
a state X is in the set defined by f if and only if f(X) = 1 (i.e. the output is interpreted as true). By using a
BDD to represent f, we can efficiently store and manipulate the corresponding set of binary states.

Figure B.1 illustrates the relationship between Boolean functions, binary trees, and binary decision dia-
grams. Each of the three data structures represents the same set of three-variable states {011,110, 111}, but

the BDD does so using the least amount of space. The BDD uses two rules to reduce the number of nodes

R R RRP,POOOCO
—__O0OO0ORRPR OO
-0 0 = O 0O oM

Figure B.1: Comparing three different representations of the same Boolean function. Left: Truth Table,
Centre: Binary Tree, Right: Binary Decision Diagram. In the diagrams, dashed edges symbolise
a value of 0 being assigned to the source variable, while solid edges symbolise a value of 1.

Appendix B. Binary Decision Diagrams ‘ 111

used. First, if both of the outgoing edges of a node n;. point to the same node n,, then 7, is redundant and
can be removed ahd"any incoming edges can be pointed directly at n. Second, equivalent nodes must be
removed.

In addition to the space savings, a further advantage of BDDs is that it is possible (and efficient) to
calculate the intersection and union of sets of states simply by using the BDD and (A) and or (V) operations.
These operations were crucial for efficiently calculating Levelset* and partitioning the set into individual
plateaus (recall that both Levelset* and plateaus were stored using BDDs).

The pseudo-code of Algorithms 3.1 and 3.2 reference non-standard BDD operations that we will now
define. BDDSatSet(LiteralSet c) takes as input a set of literals (interpreted as a disjunction, forming a
clause) and returns the set of states consistent with the input clause.’ Of course, the output is returned
as a BDD. Hence, this function is trivial: we simply build a small BDD representing the disjunction (it
should be easy to see that the number of nodes in such a BDD must be linear in the number of literals).
The minterms of this function represent the desired states. BDDPickOneCube(BDD f) returns an arbitrary
cube of the input BDD. A cube is simply a conjunction of literals (all variables do not necessarily need to
be represented in the conjunction) that is consistent with at least one minterm of the BDD. In our context, a
cube is a very compact representation of a subset of the states represented by the original BDD. Finding a
cube of a BDD is simple; simply find a path to the node labelled “1”, and then construct a new BDD out of
all literals appearing along that path. Finally, BDDNegate(BDD f,int var) exchanges the outgoing edges
of all nodes associated with variable var. This has the effect of simultaneously flipping variable var in all of

the states in the implicitly represented set.

