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Abstract

RNA secondary structure prediction is an important problem in computational
molecular biology. Experiments show that existing polynomial time prediction algorithms
have limited success in predicting correctly the base pairs, i.e. secondary structure, in known
biological RNA structures. One limitation of many current algorithms is that they can pre-
dict only restricted classes of structures, excluding many so-called pseudoknotted secondary
structures. The type of the pseudoknotted structures that occur in biological structures, as
well as the type of structures handled by current algorithms, have been poorly understood,
making it difficult to assess the generality of current algorithms.

In this thesis we present a comprehensive and precise classification of structural
elements and loops in a secondary structure, along with a linear time algorithm for parsing
secondary structures into their structural elements. o

The parsing algorithm, along with the classification scheme for the loops in a pseu-
doknotted secondary structure, can be used in analysing existing prediction algorithms to
determine which known biological RNA structures can not be predicted by the algorithms.
This analysis can help us to design new and more powerful prediction algorithms.

Furthermore, we present two applications of our work: (i) linear time free energy
calculation algorithm, and (ii) linear time test for Akutsu’s[2] algorithm class.

We present a linear time algorithm for calculating the free energy of a given secondary
structure. This algorithm can be useful especially in heuristic prediction algorithms, as they
commonly use a procedure to calculate the free energy for a given sequence and structures.

We also present a linear time algorithm to test whether the prediction algorithm
introduced by Akutsu[2] can handle a given structure. The result of our analysis on al-
gorithm of Akutsu on some sets of biological structures shows that although it is proved
theoretically that the class of structures handled by Akutsu’s algorithm is more general
than that handled by the algorithm of Dirks and Pierce[7], they can both handle the same
class of given biological structures. '
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Chapter 1

Introduction

In this chapter, we first describe the research problem that we address in this thesis, parsing
a given RNA secondary structure to its structural components, and give some motivations
to support the importance of the work. Then in Section 1.2, we describe the contributions of
‘our work in other applications such as calculating the free energy of a given RNA secondary
structure. The last section is a brief overview of this thesis.

1.1 Parsing Secondary Structures: Problem and Motivation

An RNA molecule can be represented as a single stranded sequence consisting of the fol-
lowing four bases or nucleotides: Adenine (A), Guanine (G), Cytosine (C), and Uracil (U).
This single stranded sequence is called primary structure or sequence.

RNA molecules play diverse roles in the cell: as carriers of information, catalysts
in cellular processes, and mediators in determining the expression level of genes [6]. The
molecule folds into a functional shape (structure) by forming intramolecular base pairs
among some of its bases. These pairings arise from the Hydrogen-bonding forces between
pairs of bases. The secondary structure describes which bases of the molecule bond with
each other. Figure 1.2(a) and Figure 1.3(a) illustrate the base pairs in two simple secondary
structures. The base pairs together with unpaired bases in these examples form the fol-
lowing structural components: stacked pairs (stems), hairpin loops, bulge loops, internal
loops, multiloops, and pseudoknots (Figure 1.1). Then the secondary structure can also be
represented by a list of structural components. More detailed definition is given in Chapter
2.

The structure of a functional RNA molecule is often the key to its function and
interaction with other molecules, since it is conserved across many organisms though the
sequence may vary. Therefore predicting the secondai‘y‘structure of RNA molecules (or
being more general, nucleic acids) is one of the most important problems in computational
molecular biology.

Comparative sequence analysis is the most reliable approach for secondary structure
prediction but it needs several sequences available. When just a single molecule is available,
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Figure 1.1: RNA secondary structural components (left-right): stem, hairpin loop, bulge loop,
internal loop, multi-branch loop, pseudoknot. V

computational prediction of its secondary structure from its base sequence is based on the
premise that out of exponentially many possibilities, an RNA molecule is most likely to
fold into the minimum free energy (mfe) structure. The free energy of a given structure is
estimated by summing thermodynamic and entropic free energy terms associated with the
component loops of the secondary structure. '

Unfortunately, finding the mfe secondary structure for a given RNA sequence is NP-
hard [11]. Several polynomial time algorithms have been proposed for predicting the mfe
secondary structure from restricted classes of secondary structure. The most well known
such class is that of pseudoknot free secondary structures and the work on prediction of sec-
ondary structure has mostly focused on prediction of pseudoknot free secondary structure.
In Figure 1.2(a) a pseudoknot free structure is shown. Many biological RNA structures
are pseudoknot free but there are also many natural structures which are pseudoknotted.
Experiments showed that existing polynomial time algorithms are capable of predicting at
most 70% of base pairs correctly in known (experimentally determined) biological RNA

structures.
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Figure 1.2: (a) A pseudoknot free structure. (b) The tree of loops for the secondary structure given
in part (a).

Heuristic algorithms provide one widely used approach for predicting secondary




structures. These algorithms commonly need a procedure to calculate the free energy for
a given sequence and structure. So it is useful here to be able to compute what are the
loops of the structure. If the structure is pseudoknot free, loops are either nested in each
other, or disjoint, so it is natural to represent the loops and their relationships as a tree
(Figure 1.2(b)). Although it was not reported before, it is straightforward to construct the
tree from the description of the pseudoknot free secondary structure in linear time, if the
structure is represented in standard format (see Chapter 2). Construction of the tree from
the description of the secondary structure is what we mean by parsing the structure.

No previous work has provided a comprehensive way to classify the types of loops
that arise in pseudoknotted structures, although certain types of pseudoknotted structures
have been named. Figure 1.3(a) shows a simple pseudoknotted structure.

1 | c
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Figure 1.3: (a) A pseudokunotted structure. (b) The tree of loops for the secondary structure given
in part (a).

Although there are algorithms for finding the minimum free energy secondary struc-
ture from limited classes of pseudoknotted structures, the papers describing these algorithms
only implicitly (via description of their algorithm) explain what is their energy model, and
what class of structures their algorithm can handle. While our long-term goeﬂ is to develop
better algorithms for predicting pseudoknotted secondary structures, we felt that the first
step would be to elucidate what is the energy model used by current algorithms. In turn,
doing this means that a categorization of the types of loops which arise in pseudoknotted
secondary structures is needed, and an efficient algorithm for parsing secondary structures
into their component loops (Figure 1.3(b)) is useful. It should be noted here that the simple

.example in Figure 1.3(a) does not include all the different types of pseudoknotted loops that

can arise in a real secondary structure (see Chapter 2).

1.2 Contributvions

In this thesis we present a comprehensive way to classify the type of loops that arise in a
pseudoknotted structure, and also an algorithm which parses a given secondary structure to



its structural components. Our parsing algorithm can be used in analysing and understand-
ing known experimental structures (in order to design more efficient prediction algorithms),
efficient free energy calculation of a secondary structure and other applications.

The first two contributions of our work are:

e A classification scheme for the loops in a pseudoknotted secondary structure (pre-
sented in Chapter 2), and

o A linear time parsing algorithm for constructing the parse tree of a given secondary
structure (presented in Chapter 4).

The linear time algorithm for parsing a secondary structure can be used in several
applications. In this work we present two of them as the next two contributions of our work:

e A linear time algorithm to calculating the free energy of a given secondary structure.

Standard thermodynamic functions calculate the free energy of each loop using infor-
mation about the loop such as: (i) its external base pair, (ii) an ordered list of its
base pairs or tuples, (iii) number of unpaired bases in the loop, and (iv) type and
the location of the loop. The free energy of a secondary structure is calculated by
summing the free energy of its component loops. So it could be easily calculated in
linear time if we have all loops and needed information. We use our algorithm for

" parsing the secondary structure to identify all loops in the structure, plus the needed.
information about them, in linear time. Therefore it is possible to calculate the free
energy of a given secondary structure in linear time. '

o A linear time algorithm to test whether the prediction algorithm introduced by Akutsu
[2] can handle a given structure.

There are polynomial time algorithms which have been designed to predict. the sec-
ondary structure for RNA strands. As the problem is NP-hard, each of them can
handle a restricted class of structures. It is useful to have a characterization of the
‘classes of structures handled by each of these algorithms. Moreover, it is good to
know whether the class of structures handled by an algorithm includes most known
biological structures. Condon et al.[5] provide a simple characterization of the classes
of structures handled by Rivas and Eddy (R&E) [13], Dirks and Pierce (D&P) [7]
and Lyngso and Pederson (L&P) [11] algorithms. They also provide a linear time
algorithm to test if an input structure is in the R&E, D&P, and L&P classes. But
they didn’t provide a test algorithm for Akutsu class. Using the parsing algorithm, we

introduce a linear time algorithm to test whether an input structure is in the Akutsu
class. Then we apply it on the same structures used by Condon et al.[5], to identify
the number of structures that can be handled by the Akutsu algorithm.




1.3 Overview

In Chapter 2, we provide deﬁniﬁi_ons of structural elements and loops in RNA secondary
structure, where some notions, such as closed regions, bands and etc, are introduced in this

- work for the first time. In Chapter 3, we describe the previous related works, mostly in

predicting RNA secondary structure. In Chapter 4, we describe our linear time algorithm
for parsing a given structure to its closed regions (as structural components). We also
provide a precise proof as to why it works accurately and in linear time. We present an
application of our parsing algorithm in calculating the free energy of a given secondary
structure, in Chapter 5. In Chapter 6, we present another application, namely a linear time
test algorithm for Akutsu class. We also apply Akutsu class test algorifhm on the number
of known biological structures and present the result in this chapter. In Chapter 7 we erid
with a conclusion of our work and possible future work. . ' ' '



Chapter 2

Components of a Pseudoknotted
Secondary Structure

In this chapter we present a formal definition of RNA secondary structure, along with precise
definition and classification of structural elements and loops in a secondary structure.

For the first time, in this work we introduce closed region and bands notions, in
Section 2.2. In Section 2.3 we present a precise definition -of different type of loops in
a secondary structure, where types of loops in pseudoknotted structure such as interior-
pseudoknotted loop, multi-pseudoknotted loop and pseudoknotted Zoop are introduced for the
first time. In the last section, the notion of parse tree is introduced.

2.1 Components of a Pseudoknotted Secondary Structure

An RNA molecule can be represented as a single stranded sequence consisting of the fol-
lowing four bases or nucleotides: Adenine (A), Guanine (G), Cytosine (C), and Uracil (U).
This single stranded sequence is called primary structure or. sequence. The sequence has
distinct 5’ and 3’ ends.

The molecule folds into a functional shape by forming intramolecular base pairs
among some of its bases. These pairings arise from the Hydrogen-bonding forces between
pairs of bases. The set of these base pairings is known as the secondary structure of the
RNA. The Watson-Crick base pairs: {AU,CG,GC,UA} and wobble pairs: {GU,UG} are
the set of common base pairings.

. Formally, a set R of base pairs is called a secondary structure if each base is in at
most one base pair. We index the bases consecutively from the 5’ end toward the 3’ end,
starting at 1. Let 4.5 (i < j) denote that the base indexed 4 is paired with the base indexed
J, in which case we write i.j € R. For convenience, we write i.j to mean i.j € R. We refer
to the length of the sequence by n (Figure 2.1(a) and Figure 2.2(a)).

There are different ways for representing RNA secondary structure. Figure 2.1(a)

shows an example of usual representation of RNA secondary structure. But to easily explain
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Figure 2.1: (a) Pseudoknot free secondary structure of length 27. (b) Arc diagram representation
of the structure in part (a)

how algorithms work, it is usually easier to use other representations. In this work, we
use arc diagrams to represent secondary structures. In the arc diagram representation of
structure R, base indices are shown as vertices on a straight line (backbone), ordered from
the 5’ end, and arcs (always above the straight line) indicate base pairs (Figure 2.1(b) and
Figure 2.2(b)).

We introduce a pattern representation of secondary structures as an alternative,
which will be used in Chapter 6. In a pattern, information about unpaired bases and
consequently the base indices is lost but the pattern of nesting or overlaps among base pairs
is preserved. (We note that the definition of pattern could be extended so that unpaired
bases are represented using a special symbol.) For example, the pattern representation of
structure in Figure 2.1'is P = abcdeedcfgg fba. 4 ‘

To define patterns precisely, we introduce some notation. We use € to denote the
empty string. Let N, denote the natural numbers between 1 and n (inclusive). For any
string s over alphabet £, s | o denotes the string s with all occurrences of ¢ removed, and
s | ¥/, ¥ C L, denotes the string s with all occurrences of all ¢ € ¥’ removed. Also |s]

denotes the size (length) of s.




Patterns: A string P (of even length) over some alphabet ¥ is a secondary structure
pattern, or simply a pattern, if every symbol of ¥ occurs either exactly twice, or not
at all, in P. We say that secondary structure R for a strand of length n corresponds
to pattern P if there exists a mapping m : N,, — LU {e} with the following properties:
(i) if 2.5 € R then m(i) € ¥ and m(i) = m(j), (ii) if 7.7 and j.4 ¢ R for all j € Ny,
then m(i) = ¢, and (iii) P = m(1)m(2)...m(n).

We refer to the index of the first and the second occurrence of any symbol ¢ in P by
Left(P, o) and Right(P, o) respectively. When P is understood, we use Left(c) and Right(o).
In the same way, the first occurrence of any symbol is called a Left symbol where the second
occurrence is called a Right symbol. For example, pattern P = abedeedef gg fba corresponds
to the structure in Figure 2.1(b), and for symbol a, left(a) = 1 and Right(a) = 14.

1198l
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Figure 2.2: (a) Pseudoknotted secondary structure of length 13. (b) Arc diagram representation
of the structure in part (a)

2.2 Pseudoknotted Structural Elements

Here we introduce two new notions in a secondary structure: closed region and band.
Roughly speaking, a region C is a contiguous set of base indices, and if C' is closed then
there is no base index in C which is paired with a base index which is not in C. C is a
pseudoknotted closed region if there is no arc diagram representation of it such that no two
arcs cross each other. C is a pseudoknot free closed region if it is not a pseudoknotted closed
region. Figure 2.1(b) and Figure 2.2(b) represent a pseudoknot free and a pseudoknotted

closed region respectively. Within a pseudoknotted closed region, we define a notion of a

band. Bands in a pseudoknotted closed region refer to pseudoknotted stems. In Figure
2.2(b), the base pairs (arcs) 1.11 and 2.10 form a band, and also the base pairs (arcs) 8.13
and 9.12 form a band. In the rest of the section we formally define the above notions.

All of the following definitions are with respect to a fixed secondary structure R with
pattern representation P. We use [7; j] to denote the set of indices 4,7+ 1,...,j and call it



a region if ¢ < j. The union of two non-overlapping regions is called a gapped region.

Closed Regions: We say that [i;7] (¢ < j) is weakly closed if it contains at least one base
pair and for all base pairs 7.5’ of R, i’ € [i;5] if and only if 5/ € [i;j]. We say that
[¢; ] is closed, and write 4; j, if either (i) ¢ =1 and j =nor (i1) [¢; 7] is weakly closed
and for all [ with ¢ < I < j, [i;{] and [I; j] are not weakly closed. Each closed region
corresponds to a substructure (subset of base pairs) of R, and also to a pattern. We
say that a pattern is closed and refer to it as a closed pattern if its corresponding
region is a closed region. For example, abba and abab are closed patterns, but aabb is
not (unless aabb corresponds to the entire structure).

Let [¢; '] be a closed region. If ¢/ and j are such that i.j and 7/.5' then we say that
i.j and 4.5 are the external base pairs of [i;j']. If i.j' then the region has just one
external base pair. We also refer to 7 and j' as 7; j'’s left and right borders respectively.
Let [¢;7] and [i'; 5] be closed with ¢ < ¢/. If § < ¢, we say that [i;j] and [¢;j'] are
disjoint; otherwise we say that [¢; j'] is nested in [3; 7).

For example, in Figure 2.3 [12;36] is closed. [15;34] is weakly closed but it is not
closed as [15;24] is weakly closed. Pattern P = bedeedcfggfb corresponds to 12;36
and therefore is a closed pattern. 12.36 is the external base pair of 12;36 where 12
and 36 are the left and the right borders of it respectively. [15;24] and [26; 34] are
disjoint closed regions and both are nested in [12; 36].

Pseudoknotted Closed Region: We say that [i;j] is a pseudoknotted closed region of
R if ;7 and 4.7 ¢ R. We say that the indices ¢ and j are the left and right borders
of the pseudoknotted region [¢; j]. Pair ¢.7 is pseudoknotted if there exists ¢’.5' with
i< i <j<gorid <i<j < j. We also refer to ¢ and j as pseudoknotted
base indices. A pattern P is called a pseudoknotted pattern if it corresponds to a
pseudoknotted closed region.

For example, in Figure 2.3 {57;69] is a pseudoknotted closed region and its corre-
sponding pattern P = abcedebaed is a pseudoknotted pattern. 57.67 and 64.69 are its
external base pairs, where 57 and 69 are the left and the right borders of it respectively.
57.67, 58.66, 64.69 and 65.68 are all pseudoknotted pairs and 57, 58, 64, 66, 67, 68 and
69 are all pseudoknotted base indices.

Pseudoknot Free Closed Region: We say that the closed region i; j is pseudoknot free

if there are no two pairs 41.j1 and i9.70, with ¢ < 4y, 71,149,720 < 7 such that either

11 <ig < j1 < jaoripg <iy<jo<ji. A pattern P is called a pseudoknot free pattern
if it corresponds to a pseudoknot free closed region.

For example in Figure 2.3 [12;36] is a pseudoknot free closed region and its corre-
sponding pattern P = bedeedcfggfb is a pseudoknot free pattern.
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Figure 2.3: (a) Arc diagram representation of an RNA secondary structure R. R consists of two
 closed regions [1;40] and [41;82]. (b)[1;40] closed region. (c) [41;82] closed region.

Bands: Let i5.52 be a pseudoknotted base pair. We say that ig.73 is directly banded in i1.51
if (i) 41 <42 < jo < j1, and (ii) [i1 + 1,42 — 1] and [jo + 1, j1 — 1] are weakly closed.
Note that the “is directly banded in” relation is reflextive. We let “are banded” be
the symmetric and transitive closure of the “is directly banded in” relation. Let B
be an equivalence class under the “are banded” relation. That is, B is a set of base
pairs such that every two base pairs in B are banded and every base pair in B is
pseudoknotted. B has closing base pairs ¢1.7; and 4g.j2 such that for every base pair
2.7 in B, 41 <1 <19 and j2 < j < j1. Note that i1.7; may equal i5.J2.

A gapped region [i1;%]] U [j1;71] is a band of a pseudoknotted region if for some
equivalence class B, i1.j; and i}.j] are the closing pairs of B. Base pair 1.j or closed

10




region 4;j is contained in band [i1;%]] U [j1; /1], if and only if either 4,5 € [i1;4]] or
i,j € [41;71)- Then we simply say that i.j is in a band region. Base pair i.j spans
band [iy;2}] U [j1;01) if 41 < ¢ < ¢ and 5] < j < j1. We say that [iy;4]] U [5]; 1] is
a band of pseudoknotted region [i; j] if i <iy < J1 € j and there is no closed region
[p;g] withi <p<i; <j1 <g<j.

" We say that 4171 and )., are band’s closing pairs. 71.7) is the outer and .5} is the
inner closing pair of the band. We say that [i1; i) and [71; 71] are band regions. i; and
i} are the borders of [i1;%}] band region and jjandj; are the borders of [j};71] band
region. We refer to 4y and j; by the left and the right border of the band respectively.

For example in Figure 2.3 [57; 58] U [66;67] is a band of pseudoknotted closed region
[57;69] and 57.67 and 58.66 are the outer and the inner closing pair of the band.
[57; 58] and [66;67] are band regions where 57 and 67 are the left and the right border
of the band. 57.67 and 58.66 both span the band.

We can infer the following corollaries from the above definitions:

Corollary 2.2.1 A weakly closed region C can be decomposed to C1 UCy U ... U Cp U C’
where each C; ,1 < i< n, is a closed region and C’ is a set of unpaired base indices.

Corollary 2.2.2 Assume that i1.51,%2.52, «v.., in-Jn , 11 < i2 < ... < in, are the set of base
pairs that spans a band, [i1;%] U [j1;71]. Then we have j, < .... < j2 < J1.

Corollary 2.2.3 FEach base pair i.j in a pseudoknotted closed region either spans a band
or belongs to some nested closed region.

2.3 Loops in Pseudoknotted Structure

According to thermodynamic models of RNA secondary structure, the free energy of the
secondary structure of an RNA is calculated based on the summation of free energy of all
the loops in it (Figure 1.2). :

Our definitions of hairpin and interior loops given below are standard for pseudoknot
free structures. The definition of multi loops and external loop is generalized:

Hairpin loop: A hairpin loop contains a single external base pair 4.j and all bases in
[ + 1,7 — 1] must be unpaired. For example, in Figure 2.3 18.22 is a hairpin loop
external base pair.

Interior loop: An interior loop contains two unpseudoknotted base pairs 7.7 and i’.j’
where i < j' < j' < j and all bases in [i + 1,7 — 1] U [j’ + 1,7 — 1] are unpaired.
We refer to 4.5 and 4.5’ as the interior loop external and internal base pairs respec-
tively. There are two special cases of interior loops: stacked pairs, for which ¢/ =i +1

and j' = j — 1 and bulge loops, for which either ¢/ =i+ 1 or j' = j — 1 (but not both).
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For example, in Figure 2.3 26.34 and 28.32 are the external and internal base pairs
of an interior loop. 11.37 and 12.36 form a stacked pair, and 16.23 and 18.22 form a
bulge loop.

Multiloop: A multiloop contains an external base pair 7.5 and k > 1 tuples (21, j1), (%2, 72),
vy (Bky i) where 45,7, 1 <U<kand i< <j; <ig <ja<..<ip<jr<jandall
bases in [z, 5] — U[4, 71,1 < ! < k are unpaired. Furthermore, if 4;.5;, 1 <1 < k then k
should be at least 2. _

In Figure 2.3 12.36 is a multiloop external base pair with (15,24) and (26, 34) as
tuples. '

External loop: An external loop contains k > 0 tuples (i1,71), (%2,72), -, (%k,Jk) Where
g, 1 <l <kand i1 < j1 < d9 < Jo < ... < i < Jk, along with the bases in
(1;n] — Ui<i<klis; i), all of which must be unpaired.

In Figure 2.3, (1,40) and (41, 82) are the tuples of an external loop tuples.

We next introduce further types of elementary structures which are the consequence
of having pseudoknotted base pairs and pseudoknotted regions. Several algorithms that
predict pseudoknotted secondary structures, implicitly assign energies to these types of
loops.

Pseudoknotted loop: Assume that [i;'] is pseudoknotted region. Let [i1;44] U [4;71] U
[i2; 15] U [jé;jQ]? cooy [em; 5] U [0 Gm) be bands of [4; 5']. Let [p1;q1], [p2; q2), - [Pk; qk)
be closed regions which are nested in [; 5] — (U2, [4; 4] U2, [47; 71])- The pseudoknotted
loop corresponding to [¢; 5] is the set {(i1,71), (i, s <L <m}U{(p, @)1 <1< kY,
together with the bases in

(4, 5] = U lpr; @i) — Ul ] — Ui [ 41
all of which must be unpaired.

For example, in Figure 2.3, [1;40] corresponds to a pseudoknotted loop with [1;2] U
[5;6]U[3;4]U[9; 10]U[7; 8] U[39;40] as bands and [11; 37] as the closed region nested in
it; [41; 82] also corresponds to a pseudoknotted loop with [41;41] U [56; 56] U [42;43] U
[47; 48] U [44; 46] U [72; 82] U [49; 55] U [70; 71] as bands and [57;69] as the closed region
nested in it. '

Interior-pseudoknotted loops: An interior-pseudoknotted loop contains two base pairs
i.j and ¢'.j" where i < i’ < j' < j, all bases in [i + 1,7’ — 1JU[j' + 1, 5 — 1] are unpaired
and there is a band [bi; bi'] U [bj’; bj] such that bi < i < b’ and bj’ < j < bj. We refer
to 7.7 and 7’.j’ as the interior-pseudoknotted loop external and internal base pairs
respectively.

For example, in Figure 2.3 1.6 and 2.5 are the external and internal base pairs of an
interior-pseudoknotted. loop.
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Multi-pseudoknotted loops: A multi-pseudoknotted loop contains an external base pair
i.j7 and k > 1 tuples (i1,71), (i2,72), -y (%k,Jk) where: (i) 4555, 1 < I < k and
1<t <j1<i2<j2<..<ig<Jk <], along with the bases in [4; j] — Ui<i<klis; 5]
all of which must be unpaired, (ii) there is a band [bi; bi']U[bj’; bj] such that bi < ¢ < bi’
and bj’ < j < by, and (iii) there is exactly one tuple (i, ;) for which 4;; j; is not true (i.e
[i1; 71] is not a closed region) and %;.j; spans a band (b7 < 4, << bi’ and bj’ < j; << by).
For example, in Figure 2.3 44.82 is the external base pair of a multi-loop which has
(45,73) and (74,81) as tuples. [

Multi-Pseudoknotted and Interior-pseudoknotted loops are called spanning band loops. If,
in the above definition of interior loop, we remove the constraint that i.j and ¢’.;" should
be unpseudoknotted, then interior-pseudoknotted loop would be an special case of interior
loop. Also if for exactly one of the tuples (i, ;) (where é;.71) in the above definition of
multiloop we allow [4;; ji] not to be closed, then multi-pseudoknotted loop would be a special
case of multiloop.

We can infer the following corollaries from the above definition and the definitions of Section
2.2:

Corollary 2.3.1 Ewvery unpaired base is in ezactly one loop and every base pair is in ezactly
two loops. An external loop is a weakly closed region. FEvery other loop, except interior-
pseudoknotted and multi-pseudoknotted loops, corresponds to a closed region. Interior-
pseudoknotted and multi-pseudoknotted loops are not closed as their external base pair spans
a band. Hairpin, interior and multi loops correspond to unpseudoknotted closed regions and
pseudoknotted loops correspond to pseudoknotied closed regions.

Corollary 2.3.2 Every spanning band base pair, except the inner closing pair of the band,
is either an interior-pseudoknotted or a multi-pseudoknotted loop external base pair.

2.3.1 Location Attribute of Loops

By introducing bands, each loop nested in a pseudoknot loop gets a location status as
follows which is needed in calculating its free energy.

in-Band loops: A Loop correspbnding to a closed region which is nested in one of a bands’
regions is an in-Band loop. The closing pairs of such a loop is in a band region.

In Figure 2.3 50; 54 corresponds to an in-Band halrpln loop and [74; 81] corresponds

to an in-Band pseudoknotted loop.

out-Band loops: Let PR denote a pseudoknotted region. A loop corresponding to a closed
region which is nested in PR but is not nested in any band of PR is an out-Band

loop.




In Figure 2.3 11; 37 corresponds to an out-Band multiloop and [57;69] corresponds to
an out-Band pseudoknotted loop.

span-Band loops: A Loop which is nested in a pseudoknotted region, but neither is
in-Band nor out-Band is a span-Band loop. This kind of loop is either a Multi-
pseudoknotted loop or an Interior-pseudoknotted loop. :

For example, in Figure 2.3 44;82 corresponds to a multi-pseudoknotted loop and 1;6
corresponds to an interior-pseudoknotted loop.

2.4 Parse Tree

Let [i; 5] and [¢'; 5] be closed regions. We say that [i; 5] is a child of [¢; j] if [¢; j'] is nested
in [i; ] and is not nested in any [¢"; "] with ¢ < ¢”. We say that [¢; j] and [¢/; j'] are siblings
if they are children of the same closed region and 7 # ¢’. So the closed regions form a tree
structure.

An ordered tree T'(R) is called the parse tree of R if: (i) there is a 1-1 correspondence
between nodes of the tree and closed regions of R, and (ii) if node V' corresponds to closed
region C then V-is the parent of all the nodes whose corresponding closed regions are nested
in C. The children of each node are ordered by the left index of the closed region. We also
refer to T(R) by T(P) where P is the pattern representation of R. Assume that C is the
closéd region corresponding to node V and C1, ..., Cy, are the closed regions correspond to
the children of V. Then we say that the pattérn corresponding to C also corresponds to
node V. Also, C' = C — U C; is called the private region corresponding to V' and we refer
to the pattern corresponding to C’ as the private pattern of V. (Figure 2.4)

The parse tree of R contains information about R’s closed regions, but it could be
easily updated to contain other information such as band regions, loop types (see Chapter
5).
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Figure 2.4: Parse tree for the structure in Figure 2.3. Consider node V' = (12,36) as an example.
(15,24) and (26, 34) are V’s children. C = [12;36] is Vs corresponding closed region and its pattern
is P = bedeedcfgg fb. C', the private closed region of V, contains 12.36 as base pair and its private
closed pattern is P’ = bb.
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Chapter 3

Related Work

In this section, we describe related work in three cases. In Section 3.1 we describe work on
classification of structural motifs that are found in pseudoknotted secondary structures. In
Section 3.2 we discuss related work on algorithms for predicting pseudoknotted secondary
structures, and means for classifying the structures handled by these algorithms. Related
work on calculating the free energy of given secondary structure is discussed in Section 3.3.
It should be noted that there is no related work on parsing a secondary structure, although
parsing a pseudoknot free secondary structure is very similar to constructing an expression
tree from an arithmetic expression whose parentheses are well-formed. '

3.1 Classification Scheme

There are several works on pseudoknotted secondary structures which studied different pos-
sible structures that could be formed as a consequence of having pseudoknotted base pairs:
[12, 9]. They tried to classify pseudoknots (pseudoknotted substructures) into different
types and study the types of pseudoknots which occur in known biological structures. How-
ever, their classification are incomplete and ambiguous (e.g. the definition of H-type and
B-type pseudoknots) [10]. Our parsing algorithm can be used to classify different types of
pseudoknots that arise in real structures. Although it is not part of this thesis, our notions
of bands and our loop classifications can help to provide a precise definition for different
type of pseudoknots.

3.2 Pseudoknotted Secondary Structure Prediction

General pseudoknotted RNA secondary structure prediction is NP-hard and therefore sev-
eral incomplete polynomial complexity algorithms have been proposed to solve this problem.
Dynamic programming and heuristic algorithms are two widely used approaches.

There are several dynamic programming algorithms for RNA secondary structure
with pseudoknot prediction. Each of them can handle a restricted class of structures as
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they try to find a minimum free energy (mfe) secondary structure for a limited classes of
pseudoknotted structures.

Rivas and Eddy (R&E) [13] proposed an algorithm with a complexity of O(n) in
running time which can handle a large class of structures. They use different free energy
parameters for the loops which are nested in a pseudoknot loop and consider a loop (interior
or multi) [¢; 5] to be nested in"a pseudoknot if there is a band with two closing base pairs
4, - ji and 7} --j; such that 4, < ¢ < ¢ and j; < j < j; (span-band loop). .

Uemura et al. (U) [15] proposed algorithms of time complexity O(n*) for simple
pseudoknots and O(n®) or more for the other more complicated pseudoknots. Their al-
gorithms are based on tree adjoining grammar (TAG) and therefore are not so easy to
understand.

Akutsu (A) [2] re-formulated the method of Uemura et al. [15] and introduced sim-
ple dynamic programming algorithms for RNA secondary structure prediction. Akutsu’s
algorithms are of time complexity O(n?) for simple pseudoknots and O(n5) for more compli-
cated pseudoknots. The algorithms are easy to understand and to modify and hence easier .
to cope with various score functions (i.e. free energy functions). However, the algorithms of
Akutsu [2] handles a more restricted class of structures than does the algorithm of Uemura
et al. (U) [15]. ‘ : ‘

Dirks and Pierce (D&P) [7] described an O(n%) dynamic programming algorithm for
computing the partition function and minimum free energy structure of an RNA (or DNA)
strand. The class of pseudoknotted structures that their algorithm can handle consists
of structures which pseudoknot loops have exactly two bands. They consider a loop to be
nested in a pseudoknot loop (and hence use different parameters to calculate its free energy)
if the loop is of the kind out-band.

Lyngso and Pederson (L&P) [11] introduced a simple O(n®) algorithm which can
handle the structures with really simple pseudoknot loops. The class of structures they can
handle allows pseudoknot loops with exactly two bands. They do not allow the pseudoknot
loops nested in another one and also do not make a difference between the free energy of
the loops whether they are nested in a pseundoknot loop or not.

It is proved by Condon et al.[5] that there is actually a relation between the class
of structures each of these algorithms can handle: PKF C L&P ¢ D&P ¢ AC U C

R&E. (PKF represents the class of pseudoknot free structures)

This shows that there is actually a trade off between the complexity of the aigorithm
and the generality class of structures it can handle.

There are also several heuristic (and incomplete) algorithms for RNA secondary
structure prediction [14, 8]. Heuristic algorithms find a locally minimum-energy secondary
structure over the whole search space.
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3.3 Free Energy Calculation

Heuristic algorithms commonly use a function for calculating the free energy of substructures
(as partial solutions) in the process of searching for a low-energy structure in the search
space. But there is no explicit work on calculating the free energy of given secondary
structure in linear time. Here we can use our linear time free energy calculation algorithm,
to calculate the free energy of partial solution substructures.
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Chapter 4
Parsing Algorithm

In this chapter we introduce a linear time algorithm for parsing a secondary structure into
its closed regions. A parsing algorithm creates the tree T'(R) of closed regions in R.

The algorithm for finding closed regions is described in Section 4.1. In Section 4.2,
we prove that the closed region finding algorithm identifies all closed regions in the structure
accurately. In Section 4.3 we explain how the parse tree is constructed gradually, by adding
a node to the tree for each closed region, when it is identified. The last section explains the
time complexity of the parsing algorithm, which is linear. -

To build the tree of closed regions, our algorithm takes as input a linked list repre-
sentation L of a secondary structure R for a strand of length n. In this representation, list
- elements are the base indices, with bidirectional links between adjacent elements and addi-
tionally bidirectional links between paired indices. For convenience, we define the function
bp(i) to be jifi. € Ror ji € R, and to 0 if 4 is unpaired.

4.1 Closed Region Finding Algorithm

The Build- Closed-Regions- Tree algorithm, presented in Algorithm 1, scans the list of indices
from left to right and marks indices ¢ with 4 < bp(t), so as to identify closed regions efficiently.
The tree of closed regions is built gradually by calling the Add-To-Tree procedure from the
algorithm right after identifying each closed region.

We provide the intuition behind the algorithm in Sectlon 4.1.1 and describe four
invariants of it in section 4.1.2.

4.1.1 Intuition

To identify a closed region it is enough to find its borders. Every unpseudoknotted base pair
,i.7, is the external base pair of a closed region ,i; j, and therefore ¢ and j are the borders of
i; 5. But this is not true for pseudoknotted base pairs. According to the definition, a base
pair 4. is pseudoknotted if there exists i’.5' with ¢/ < 1 < j/ < j ori <4’ < j < j/, where ¢
in the former and ¢’ in the latter case couldn’t be a closed region border.
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Scanning the list L of indices from left to right, if we reach j = bp(i) knowing that
there is an index 3/, 7 < i’ < j, whose pair 7’ has not been scanned yet, we can conclude
that both 4 and ¢’ are pseudoknotted and # is not a closed region border. To facilitate this
procedure we introduce three types of marks for base indices, B, P and N. A base index
i < bp(i) is marked as (i) B (for “base pair found”) if its base pair is found, (ii) P (for
“pseudoknotted”) if we know that it is pseudoknotted, and (iii) N (“not a border”) if we
‘know that it is not a border of a closed region.

For example, in Figure 4.1(a): (a) When we scan index 7, index 3 is B-marked as
7 = bp(3). (b) When we scan index 10, indices 8 and 9 are P-marked and N-marked as
2 <i<10 < bp(i) for i =8 and i = 9. Also, 2 is B-marked and P-marked as 10 = bp(2)
and 2 < 8 < bp(2) < bp(8). Note that when index 10 has just been scanned, it is not clear
~ what is the base pair of 1. Depending on the base pair of 1, 2 may or may not be the left
border of a closed region, and so 2 is not N-marked yet. (c) When we scan index 11, 1 is
B-marked and P-marked and 2 is N-marked, as now we know that 2 is in the same closed
region as 1 and therefore 2 is not the left border of a closed region. More details on this
example are given in Section 4.1.3.

To facilitate the process of marking, and keep it working efficiently, Algorithm 1
makes use of a stack ST. While scanning the list and marking base indices, for efficiency
reasons the algorithm removes base indices from the list when they are no longer needed.
The following base indices are removed from the list L: (i) base indices which are not
the border of any closed region, and (ii) base indices which are the borders of an already
identified closed region.

The stack and list also provide an efficient way to identify closed regions. For exam-
ple, in Figure 4.1(a), when index 7 is scanned, its base pair, 3, is on top of the stack and
this identifies that [3;7] is a closed region. Identifying pseudoknotted closed region is more
complicated but is explained more fully below (Section 4.1.2 and Section 4.1.3).

W7Vt

1234567 8910111213
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N

(a) (b)

Figlire 4.1: (a) Arc diagram representation of an RNA secondary structure. (b) Parse tree for the
structure in part (a).
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algorithm Build-Closed-Regions-Tree
input: linked list L representation of structure R for a strand of length n
output: tree T of closed regions of R

S G W N
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15
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17
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20
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23
24
25
26
27
28
29
30
31
32
33

initialize T to contain one node labeled [1, n);
initialize stack ST to be empty;
A=1;
repeat
if A < bp()) then
Push(A, ST);
elseif bp(A\) = 0 then // A is unpaired
Remove(A, L);
else // bp(A) < A
B-mark(bp(\)); :
if Top(ST) = bp(A) =Pred(A, L) then // (bp(M), A) is a closed region
Pop(ST); _
if !(bp()\) = 1 and A = n) then Add-To-Tree([bp(A), A], T);
Remove(bp(A), L);
elseif mark(Pred(bp()), L)) = P&B and bp()\) = Pred(A, L) then
// A is the right border of a pseudoknotted region
h «— Pop(ST); // note that h =Pred(bp(}), L)
Remove(h, L); ’
if I(h = 1 and A = n) then Add-To-Tree([h, \],T);
Remove(bp(A), L);
else
// bp(A) - X is pseudoknotted but A isn’t the right border of a closed region
P-mark(bp(}));
while Top(ST) > bp()) do
j — Pop(ST);
P-mark(j);
N-mark(j);
if mark(j) = B&N&P then
Remove(4, L);
if mark(bp(A)) = B&N&P then
Remove(bp(A), L);
Remove(\, L);
Ai=A+1;
until A =n + 1;
return T

Algorithm 1: Build the tree of closed regions.
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4.1.2 Invariants

The following invariants are maintained when index [ has just been scanned. The Mark
Invariant formalizes what marks an index has when index [ has just been scanned by the
algorithm. The List and Stack Invariants formalize what is in the list L and stack ST when
index ! has just been scanned. Finally, the Closed Region Invariant formalizes how a closed
region can be identified by the algorithm.

Mark Invariant: For all indices ¢ in L with ¢ <! and ¢ < bp(2),

B-mark invariant: i is B-marked if and only if bp(i) < ;

P-mark invariant: i is P-marked if and only if for some 7’,
i <1 < bp(i) <1 and bp(i) < bp(i), or
i’ < i < bp(i) <land bp(i') < bp(i);

and

N-mark invariant: i is N-marked if and only if there exists ¢’ in the same closed
region as ¢ with i’ <1 < bp(i') <. '

List Invariant: For all a < [, a is not in list L if and only if either (i) a is B-marked,
P-marked, and N-marked, (ii) bp(a) < a, or (iii) for some b < {, a;b.

Stack Invariant: ST contains exactly those indices i < [ such that i is in L and 4 is not
N-marked.

Closed Region Invariant: If A # 1 or [ + 1 # n, then [h,l + 1] is a closed region of R
if and only if bp(l 4+ 1) < I+ 1, h is on the top of the stack ST, bp(l + 1) is [+ 1’s
predecessor in list L, and either (i) h = bp(l +1) or (ii) h is B-marked and P-marked
and h is bp(l + 1)’s predecessor in list L. v

Note that [1;7] is a special case of closed region which is added to the T(R) in the first
step by the algorithm, so we excluded it from the closed region invariant and the following
sections in this chapter.

4.1.3 Example

Consider the structure in Figure 4.1(a) as an example. Table 4.1 shows the list, stack,
marks and closed region identified, as Algorithm 1 is executed on the example. (Here, we
do not show the links in L, but they can be easily infered from the figure.)

When index 6 is scanned by the algorithm, it is removed from L as it is unpaired.
Then Top(ST) = 3 = bp(7) = Pred(7), and therefore algorithm identifies (3,7) as a closed
region, and add (3,7) to the parse tree, when it scans.7. :
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When index 10 = bp(2) is scanned by the algorithm, indices 8 and 9 aré P-marked
and N-marked, as 2 < ¢ < 10 < bp(¢) for ¢ € {8,9}, and are removed from the stack ST.
Moreover, index 2 is B-marked and P-marked. ,

When the algorithm scans index 11 = bp(1), index 2 is N-marked and as it was
P-marked and B-marked before it is removed from L (and therefore ST'). Moreover, index
1 is B-marked and P-marked. ‘ _ :

When index 12 = bp(9) is scanned by the algorithm, index 9 is B-marked and as it
was P-marked and N-marked before it is removed from L. Then 8 = bp(13) = Pred(13)
and Top(ST) =1 = pred(8) and 1 is P-marked and B-marked, but 13 = n, therefore the
algorithm does not identify (1,13) as a closed region, since (1, 13) is already in the tree.

At the end, the parse tree for the structure in Figure 4.1(a) has (1,13) in the root
and (3,7) as its child (Figure 4.1(b)).

| A | List L with marks on elements | Stack ST | Closed region identified |
0 [{1,23,4,5,6,7,8,9,10, 11, 12,13} | { }
1 1{1,2,3,4,5,6,7,8,9, 10,11, 12, 13} | {1}
2 1{1,23,4,5,6,7,8,9, 10, 11, 12, 13} | {1, 2}
3 1{1,2,3,4,5,6,7,8,9,10, 11, 12, 13} | {1, 2,3}
4 [{1,2,3, ,5/6,7,8,9,10,11,12, 13} | {1, 2, 3}
5 1{1,2,3, ,,6,7,8,9, 10,11, 12, 13} | {1, 2, 3}
6 |{1,23, ,, ,78,09 10,11, 12,13} | {1, 2, 3}
7 ({2, ,, , ,80910,11,12, 13} | {1, 2} (3,7
8 [{1,2,, ,, , ,80910, 11,12, 13} | {1, 2, 8} (3,7)
9 |[{1,2 , ,, , ,80910, 11,12, 13} | {1, 2,8, 9} | (3,7)
{2, ,, ,,89 ,11,12 13} | {1, 2} (3,7)
B PP
P NN :
mi{y, ,, ,,, ,89 , ,12,13} | {1} (3,7
B PP
P NN
2¢{ ,, ,,,,8 ,, , ,13} | {1} _ (3,7)
B P
P N
13 {a I NS N N S U S N ) > } {} (337)

Table 4.1: Execution of Algorithm 1 on secondary structure of Figure 4.1(a). There is one row
for each base index, plus an initial row, 0. Column 1 shows which base index is scanned by the
algorithm. The remaining columns describe what happens when index ¢ is scanned (i.e when A = 7).
Column 2 gives the list L along with the marks on list elements and column 3 gives the stack, when
i has just been scanned (when the algorithm reaches line 31). Column 4 lists which closed region
has been identified (and added to the tree) by the algorithm, if any, when 4 is scanned.
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4.2 Closed Region Finding Algorithm: Proof

We prove in Theorem 4.2.1 that Algorithm 1 calls Add — to — tree([s, 7], R) if and only if
[4;4] is closed. First , we prove that the closed region invariant, and therefore the three
other invariants, are maintained by the algorithm. '

We prove in Claim 4.2.1 that all the above invariants are maintained by the algo-
rithm, on an input list L that represents structure R for a strand of length n, when [ has just
been scanned. Formally, we say that [ has just been scanned when line 32 of the algorithm
is reached with A = +1 or line 4 is reached and [ = 0. We also say [ is scanned when lines
5 to 30 of the algorithm are executed with A = L.

Claim 4.2.1 For any input L all invariants are true when | has just been scanned, for all
[,o<l<n.

Proof

We use induction to prove Claim 4.2.1. It is obviously true when we have [ = 0 (base
case). ‘ ‘ '
Let I > 0. Assume that the claim is true for all ¥ < [ (Induction Hypothesis). We prove
that the claim is true for [. ‘

4.2.1 Mark Invariant Proof

Here we prove that all three mark invariants are tru'e..

B-mark: When [ is scanned, if ¢ < bp(¢) = [ then ¢ is B-marked on line 10 of the algorithm
and no other index is B-marked. Since marks are never removed from an index, by
the Induction Hypothesis the B-mark invariant is true for all ¢ with i < bp(i) < I,
therefore the B-mark invariant is true.

P-mark: We can decompose each case of the P-mark invariant into two subcases:

e The case “For some ¢, 1 < ¢/ < bp(s) < and bp() < bp(i')” is decomposed to

< bp(i')
Case 1.2 For some ¢/, i < ¢/ < bp(i) = | and bp() < bp(¢'), which is equivalent
to bp(l) < ¢’ <1 < bp(¢'), where bp(i) = 1.

~—

Case 1.1 For some 4/, i < ¢ < bp(z) <! and bp(

e The case “For some 7', i’ < i < bp(i') < I and bp(i') < bp(i)” is decomposed to
Case 2.1 For some ¢/, ¢/ < i < bp(i') <! and bp(i') < bp(7)
Case 2.2 For some ¢/, i’ <1 < bp(i') =1 and bp(i') < bp(¢) which is equivalent
to bp(l) < % <l < bp(i), where bp(i') = 1.

Now we need to prove that ¢ is P-marked if and only if one of the above four cases

holds.
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Part 1 7 is P-marked if one the above four cases holds.
Proof

If one of the two first subcases, Case 1.1 or Case 2.1, holds then ¢ is P-marked
by the Induction Hypothesis.

Assume that the Case 1.2 holds, which means that bp(l) < i/ < I < bp(¢'). If
bp(l) is not P-marked when [ —1 has just been scanned then one of the following
occurs: (i) ¢’ is not N-marked and therefore (by the Stack invariant and Induction
Hypothesis) bp(l) is not on the top of the stack. In this case the algorithm skips
line 11. (ii) 4/ is N-marked. In this case there exists ¢”, in the same closed
region as 7/, with ¢/ < ¢/ < bp(i") < I (by the N-mark invariant and Induction
Hypothesis). If bp(l) is not-already P-marked then (by the P-mark invariant
and Induction Hypothesis) there is no " with ¢ < bp(l) < bp(i”) < I. Therefore
bp(l) < i" < 1. We choose the first such ¢”. This 3" can not be N-marked;
otherwise it won’t be the first such i” (by the N-mark invariant). Therefore i
is in L and separates bp(l) from ! in L. So bp(l) is not I's predecessor and the
algorithm skips line 15. As a result, the algorithm reaches line 20 and bp(l) is
P-marked in line 21.

As the last case, assume that Case 2.2 holds, which means that bp(l) < i <1 <
bp(i). If i is not P-marked when [ — 1 has just been scanned then, using the
same explanation as above, the algorithm skips lines 11 and 15 and reaches line
20. bp(l) < i < 1 < bp(i) and 7 is not P-marked, so ¢ is not N-marked (otherwise
it is N-marked in line 25 and therefore P-marked in line 24). Therefore i is still
on the stack (by the List, Stack and Mark invariants) and it is above bp(l) on
the stack. So ¢ is P-marked in line 24.

d

Part 2 One of the above four cases holds if 7 is P-marked.
Proof

If 1 is P-marked when [—1 has just been scanned then by the Induction hypothesis
one of the two first subcases, Case 1.1 or Case 2.1, holds.

Assume that ¢ is not P-marked when [ — 1 has just been scanned and it receives
a P-mark when [ is scanned. ¢ can receive a P-mark only in lines 21 or 24.
Assume that i receives P-mark in line 21, which means that ¢ = bp(l). As the
algorithm reaches that line, which means that it skipped lines 11 and 15, so
[bp(1),1] is not a closed region and there exists an ' such that either i’ < bp(l) <
bp(i') < L or bp(l) < i’ < 1 < bp(') (by the closed region definition). The former
case means that bp(l) is already P-marked , contradicting the fact that bp(l) is
not P-marked yet, therefore the latter case is true and Case 1.2 holds.

As in the last case, assume that ¢ receives P-mark in line 24, where i # bp(1).
It means that 4 is above bp(l) on the stack and therefore bp(l) < i < I. Also
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I < bp(i), otherwise either [¢,bp(7)] is a closed region, and therefore 4 is not on
the stack (by the list and the Stack invariants), or [¢,bp(4)] is not a closed region
and (by the closed region definition) (%, bp(i)) is a pseudoknotted base pair and
i is already P-marked. Therefore bp(l) < i < < bp(%) and Case 2.2 holds. U

N-mark: We need to prove that ¢ is N-marked if and only if there exists i’ in the same
closed region as ¢ with ¢’ < < bp(¥) <.

Part 1 7 is N-marked if there exists ¢’ in the same closed region as ¢ with ¢/ < i <
bp(i') < L.
Proof
If there exists 7’ in the same closed region as ¢ with ¢ < ¢ < bp(¥’) < I then by
the Induction Hypothesis ¢ is N-marked when [ — 1 has just been scanned.
Assume that ¢ is not N-marked when [ — 1 has just been scanned and i’ <
i <bp(i) =1 Ifbp(l) < ¢ <l < bp(¢) then using the same proof as Part 1
- Case 2.2 in above (by the P-mark invariant) i is N-marked in line 25. If
bp(l) < i < bp(¢) < I then 1 is still on the stack (by the List and the Stack
invariants) and in the list L. So bp(l) is not on the top of the stack and the
algorithm skips line 11. Furthermore ¢ separates bp(l) and ! in L so bp({) is not
the predecessor of [ which causes the algorithm to skip line 15. As a result, the
algorithm runs line 20 and ¢ is N-marked in line 25.
g

Part 2 There exists ¢’ in the same closed region as ¢ with ¢/ <1 < bp(¢') < lif 7 is
N-marked.

Proof

If i is N-marked when [ — 1 has just been scanned then by the Induction Hy-
pothesis there exists ¢’ in the same closed region as 4, with ¢/ < i < bp(i') < [.
Assume that 7 is not N-marked when [ — 1 has just been scanned and it receives
an N-mark when [ is scanned. ¢ can receive an N-mark only in line 25. In this
case i should be on the stack above bp(l) which means that bp(l) < i < I. If
! < bp(i) then it is clear that ¢ is in the same closed region as bp(l). Otherwise, if
bp(i) < I, as i is still on the stack it should be in the same closed region as bp(l)
(by the List and the Stack invariants). Therefore bp(l) < ¢ <! and i is in the
same closed region as bp(l).

G

Having all of these, the Mark invariant is true.
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4.2.2 List Invariant Proof

We need to prove that for all a < [, a is not in the list L if and only if (i) a is B-marked,
P-marked, and N-marked, (ii) bp(a) < a, or (iii) for some b < [, a;b.

Part 1 a is not in L if any of the above three cases holds.
Proof
If @ < I then by Induction Hypothesis when [ — 1 has just been scanned a is not in L
if either (i) a is B-marked, P-marked and N-marked, (ii) bp(a) < a, or (iii) for some
b<l, a;b.
Now we need to prove that by scanning [, (i) a < [ is removed from L if a receives its

last mark, which could be either N, P or B, (ii)  is removed from L if bp(l) <, and
also (iil) index h, h < I, is removed from L if ;1.

(i) Assume that when [ is scanned a receives its last mark, which is either N, P or
B. If N is the last mark then a should get it in line 25 and the algorithm checks
right after that, in line 26, whether o has all three marks and removes it. If
P is the last mark, [ should get it either in line 21 or 24. In the former case
the algorithm checks in line 28 and in the latter checks in line 26 whether a has
all three marks and removes it. If B is the last mark then a should get it in
line 10 and a = bp(l). Then the algorithm continues either from line 15 or 20
(the algorithm should skip line 11 as a = bp(l) is N-marked before and by the
Stack invariant a = bp(l) is not on the stack). If the algorithm runs line 15 then
a = bp(l) is removed in line 19, and if it runs line 20 then a = bp(l) is removed
in line 29.

(ii) Assume that bp(l) < [. Then [ is removed from the list either by line 8, if  is not
paired, or line 30, if [ is paired.

(iii) Assume that there exists h < [ such that h;l. Then [ is removed from the list
either in line 14 or line 17 by the Closed region invariant.

a

Part 2 Either of the abqve three cases holds if ¢ is not in L.
Proof

If a < lis not in the list L when [ — 1 has just been scanned then either (i) a is
B-marked, P-marked and N-marked, (ii) bp(a) < a, or (iii) for some b < I, a;b.

Assume that a is removed from L when [ is scanned. An index is removed from L in
eitherv of these lines: 8,14,17,19, 27,29 or 30. '

(i) If a is removed from L either in line 19, line 27 or line 29 then a has all three
marks, P, N and B,
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(ii) If @ is removed from L either in line 8 or line 30 then a = and bp(a) < a.

(iii) If a is removed from L either in line 14 or line 17 then by the Closed region
invariant there exists h < [ such that A;l.

g

4.2.83 Stack Invariant Proof

When the algorithm removes an index ¢ from the list L it removes ¢ from the stack too
(lines 12 and 16). The algorithm also removes all indices, which are N-marked, from the
stack in line 23. Furthermore, an index is not removed from the stack in any other place in
the algorithm. So the stack invariant is maintained.

4.2.4 Closed Region Invariant Proof

We need to prove that [h,! + 1] is a closed region of R if and only if bp(l +1) <! +1, his
on the top of the stack ST, bp(l + 1) is I + 1’s predecessor, and either (i) h = bp(l + 1) or
(ii) h-is B-marked and P-marked and h is bp(l + 1)’s predecessor.

Part 1 [h,l + 1} is a closed region if one of the above two cases holds.

Proof

(i) Assume that when ! has been just scanned h = bp(l + 1) < I + 1 is on the top
of the stack and is [ + 1’s predecessor. It means that there is no i’ such that
h <i' <l+1<bp(i) (otherwise by the List invariant, i’ is still in the list and
h could not be I + 1’s predecessor) or i’ < h < bp(i') < I+ 1 (otherwise by the
N-mark invariant h is N-marked and therefore by the Stack invariant should
not be on the stack). Therefore [h,! + 1] is a closed region.

(ii) Assume that h is on the top of the stack and is P-marked and B-marked. There-
fore there is no 4’ such that ¢/ < h < bp(?’) < [ and h is in the same closed region
as i'. (Otherwise h is N-marked, by the N-mark invariant). Suppose that h is
bp(l+1)’s predecessor which is [ +1’s predecessor. It means that there is no base
pair ¢’ such that h < ¢/ <141 < bp(¢’) (otherwise ¢’ is on the top of the stack
by the Stack invariant). Therefore [h,l + 1] is a closed region.

a
Part 2 One of the above two cases holds if [h,! + 1] is a closed region.

Proof
[k, + 1] is a closed region so bp(l + 1) < I+ 1. h is either paired with { + 1 or not :
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(i) Assume that h = bp(l + 1). Then, by Lemma 4.2.1 below, there is no index
remaining in L between h and I +1. So h is on the top of the stack (by the Stack
invariant) and it is [ + 1's predecessor. Therefore the first case, (i), of the Closed
region invariant is satisfied.

(ii) Assume that h is not paired with ! 4 1. Then [h,! + 1] is a pseudoknotted closed
region. It is clear, by Lemma 4.2.1, that the only index remaining in L between
hand [ +1is bp(l+1). [bp(l +1);1+1] is not a closed region (otherwise [k, [+ 1]
is not a closed region by the closed region definition) and as [k, + 1] is a closed

" region so there is no index i’ such that bp(l +1) < ¢’ <1+ 1 < bp(¢'). Therefore,
there is an index ¢’ such that 7/ < bp(l + 1) < bp(i’) < [ + 1 which means that
bp(l + 1) is N-marked (by the N-mark invariant) and is not on the stack. So
h is on the top of the stack (by the Stack invariant) , h is P-marked and B-
marked (by the Mark invariant and closed region definition) and it is bp(l 4 1)’s
predecessor in the list (by the List invariant), which is [ + 1’s predecessor itself.
Therefore the second case, (ii), of the Closed region invariant is satisfied.

a

Lemma 4.2.1 If [h;l] is a closed region then, when | — 1 has just been scanned, the only
indices a, h < a <1, which remain in L are : h, | and bp(l).

Proof : '

All a such that h < bp(a) < a < | are removed from L when [ — 1 has just been
scarined by the List invariant. All a such that h < a < bp(a) < [ are B-marked (by the B-
mark invariant). If a is just B-marked then there is no i’ such that i’ < a < bp(i’) < bp(a)
or a < i < bp(a) < bp(i') (by the P-mark and N-mark invariants) and therefore {a, bp(a)]
is a closed region and a is removed from L by List invariant . If a is P-marked too, then
either a;b (for some b, b < [) or a is N-marked too (by the N-mark invariant). In both
cases a is removed from L by the List invariant. So the only indices which remain are: h,
[ and bp(l).

]

O

4.2.5 Add-to-tree Calls Theorem

Theorem 4.2.1 On input R, Algorithm 1 calls Add-to-tree([h,l + 1], R) if and only if
[h, 1 + 1] is a closed region of R.

Proof By the closed region invariant, the proof is as follows: We will show that
Algorithm1 calls Add-to-tree([h,l + 1], R) if and only if when [ has just been scanned,
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bp(l+1) <141, his on the top of the stack ST, bp(l+1) is I + 1’s predecessor, and either
(i) h =bp(l + 1) or (ii) h is B-marked and P-marked and A is bp(l + 1)’s predecessor.

Part 1. Algorithm1 calls Add-to-tree([h,! + 1], R) if one of the above two cases holds.
Proof ' '

Assume that the first case holds, so when [ has just been scanned, bp(l +1) <1+ 1,
h is on the fop of the stack ST, h = bp(l + 1) and h is | + 1’s predecessor. So while
scanning ! + 1, the algorithm runs line 10 and then as all conditions in line 11 are
satisfied it calls Add-to-tree([h,l + 1], R).

Now assume that the second case holds, so when [ has just been scanned, bp(l + 1) <
[+ 1, h is on the top of the stack ST and it is B-marked and P-marked and also is
bp(l+1)’s predecessor, where bp(l+1) is [+1’s predecessor. So scanning [+1 algorithm
runs line 10 and then skips line 11 as h is on the top of the stack and not bp(l+1). Then
as all conditions in line 15 are satisfied the algorithm calls Add-to-tree([h,l + 1], R).

g

Part 2 One of the above two cases holds if Algorithm]1 calls Add-to-tree([h,l + 1), R).
Proof

The algorithm calls Add-to-tree([h,! + 1], R) if it reaches either line 13 or 18 when
scanning [ + 1. 4 :

The algorithm reaches line 13 only if bp(l + 1) is on the top of the stack and bp(l +
1) =Pred(({ +1), L). In this case it identifies [bp(l + 1), + 1] as a closed region which
means that h = bp(l + 1). So the first case holds.

The algorithm reaches line 18 (and skips line 11) only if bp(l + 1) is not on the top of
the stack, bp(l + 1) =Pred(! + 1) and Pred(bp({ + 1), L) is marked as P&B. In this
case it identifies [h,! + 1] as a closed region where h is on the top of the stack. Note
that h should be the predecessor of (bp(l + 1), L). So the second case holds.

0

O

4.3 Constructing the Parse Tree

The Parse tree of structure R is built gradually by calling Add-To-Tree procedure from
Closed region finding algorithm whenever a closed region is identified.
The Add-To-Tree(lh,1},T) procedure works as follows:

e Create a new node [h,1] if [h,1] # [1,n].
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e For each child [a,b] of the root [1,n] of T, check whether a > h, and make [a,b] a
child of [h,!] (and thus no longer a child of [1,7n]) if this is the case.

e Make [h,l] a child of {1,n].

By maintaining a list of the children of each node ordered by the.left border index, and
traversing them from the greatest to the smallest, this can be done efficiently in linear time
in the number of children [h, ] has.

4.4 Parsing Algorithm Running Time

Algorithm 1 scans the whole list once from left to right. So each index is visited once, and
is pushed on the stack, popped off the stack, removed from the list, and receives each mark
at most once. Therefore Algorithm 1 accesses each index for a constant number of times,
and ignoring the cost of calls to the Add-To-Tree procedure, it is linear in the number of
indices, n, in the list. ‘

The Add-To-Tree(|h,1],T) procedure is linear in the number of children [h,!] has.
So the whole cost of calls to Add-To-Tree procedure is linear in the number of nodes in the
tree T, which is at most n.

Therefore the parsing tree algorithm is lineer in the number of indices, 7, in the list
and thus in the number of base pairs in the structure R.
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Chapter 5

Energy Calculation

Standard thermodynamic models calculate the free energy of each loop using certain infor-
mation about the loop, such as: (i) its external base pair, (ii) an ordered list of its base
pairs or tuples, (iii) number of unpaired bases in the loop, and (iv) type and the location
of the loop (see Section 2.3.1). The free energy of a secondary structure is calculated by
summing the free energy of its component loops.

Here we represent an algorithm that identifies all loops in the structure plus needed
information about them in linear time, using the parsing algorithm. Then all we need to
calculate the the free energy of the structure is to add up the free energy of all loops, and
clearly it can be done in linear time.

Given a structure R of length n, the parsing algorithm creates the parse tree, T(R),
where we have [1;7] in the root and every other node in the tree corresponds to a closed
region of R. The external loop of R corresponds to the root node. Every other loop, except
interior-pseudoknotted and multi-pseudoknotted loops, corresponds to a closed region and
therefore to a node in the tree. We can easily derive all the information, except the location,
for unpseudoknotted loops from T'(R) in linear time.

Interior-pseudoknotted and multi-pseudoknotted loops are not closed as their exter-
nal base pair spans the band. To identify these types of loops, the location status of all the
other loops, and also to complete the information needed for pseudoknotted loops, we need
to find the band regions for each pseudoknotted closed region(pseudoknotted loops).

Having band regions for a pseudoknotted closed region 4;j and knowing the location
status of its children, we have all needed information for 4; j’s corresponding pseudoknotted -
loop.

The algorithm does the following steps to achieve the above goals.

Loop type finding: The algorithm decides the type of loop corresponding to each closed
region.

Band finding: The algorithm finds the list of bands for each pseudoknotted closed region.
At the end of this step an ordered list of bands regions (ordered by the left border
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.index) is assigned to the corresponding pseudoknotted closed region.

Loop location finding: The algorithm figures out the location status of all loops in the
tree, using the ordered list of band regions.

Inner loop finding: The algorithm identifies all Multi-pseudoknotted and Interior-
pseudoknotted loops, which we refer to by Inner Loops, in addition to their necessary
information.

5.1 Loop Type Finding

Each closed region 4; j corresponds to a loop whose type can be determined as follows, using
the definition of each loop (Chapter 2).

¢ Pseudoknot loop Closed region ¢; j corresponds to a pseudoknotted loopifij ¢ R
(i;7 is a pseudoknotted closed region).

¢ Hairpin Loop Pseudoknot free closed region i; j corresponds to a hairpin loop if it
has no children in T(R).

e Interior Loop Pseudoknot free closed region ¢; j corfesponds to an interior loop if it
has exactly one child in T'(R), which is also not a pseudoknotted closed region.

e Multi Loop Pseudoknot free closed region %; j corresponds to a multiloop if either (i)
it has more than one child in T'(R), or (ii) it has one child which is a pseudoknotted
closed region. '

5.2 Band Finding

Our band finding algorithm is given in Algorithm 2.

Let C = i;j be a pseudoknotted closed region in R. We defined a linked list rep-
resentation L for R, in Chapter 4. Now let BL be a sublist of L starting from index 4 to
index j. In the first step we remove the following from BL: (i) unpaired base indices, and
(ii) base indices corresponding to nested closed regions. -

Then by Corollary 2.2.3, BL only contains indices corresponding to spanning band
base pairs. In other words, BL is a linked list representation of spanning band base pairs
in ;7.

Inspired by Corollary 2.2.2, Algorithm 2 scans the list BL from left to right to
identify bands and their region’s borders.

Next-leftBase(b, BL) returns 4, the first index after b, in BL for which bp(i) > 4
1.bp(2) will be the outer closing pair of the next band.

We could easily get the ordered list of band regions, BandRegions (ordered by the
left border index) by doing the following after identifying each band: (i) removing the base
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algorithm Band-Finding
input: linked list BL representation of spanning band base pairs in ; j
1 bi =1,

2 repeat

3 b :=bp(b;); // bi.bj is the outer closmg pair of a band, B
4  b:=by;

5 bi=1b

7  while Next(b;, BL) = bp(Prev(b;, BL)) do

8 b’ := Next (b}, BL);

9 := Prev(b}, BL);

// b’ b} is the inner closing pair of the band B
// So B [bi; b;] U [b; by] is aband of 4; 5

10  b; :=Next-leftBase(b}, BL);

11 until b; = 5 + 1;

Algorithm 2: Find Bands of a pseudoknotted closed region.

indices corresponding to the band regions from BL, ana instead (ii) storing the band regions
borders.

For example, in Figure 5.1 BL corresponding to 1;42 includes the following base
. pairs: 1.16, 2.8, 3.7, 4.42, 5.33, 6.32, 9.31 and 15.30. Algorithm 2 figures out the bands in
the following order: (1) [1; 1]JU[16; 16] (2) [2;3]U[7;8], (3) [4 6]U[32;42], and [9; 15]U[30; 31].
So we have the ordered list of band regions as
BandRegions = {[1;1],[2; 3], [4; 6], [7; 8], [9; 15], [16; 16], [30; 31], [32; 42]}.

Running Time:
We can do the first step for all of the closed regions by first removing all unpaired bases from
L and then removing nested closed regions (which all have already been identified) from
each closed region. A closed region i’; j' can be removed (from its parent closed region) in
constant time by making Prev(i’, L) and Next(j', L) to be adjacent (by updating the links).
The former-is linear in n, number of base pairs, and the latter is linear in the number of
nodes in the tree, which is at most n. So the whole cost of the first is linear in n (number
of base pairs in R).
Algorithm 2 scans BL,the spanning band base pairs list, once. So it is linear in the
size of BL. Therefore it takes O(n) time for all of the closed regions. '
Thus, finding BandRegions list for all pseudoknotted closed regions in R is linear
in n (number of base pairs in R).

5.3 Loop Location Finding

For pseudoknotted closed region C, let ChildList be the list of its children ordered by the
left border index. So having BandRegions, an ordered list of band regions, (Section 5.2)
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Figure 5.1: Arc diagram representation of an RNA secondary structure (closed region [41;82] in
Figure 2.3(c)).

we can easily figure out the location status of C’s children. All we need to do is to scan
both ordered list from left to right (in parallel, similar to Merge Sort procedure) and check
whether a child is nested in a band region or not. A child corresponds to a in-Band loop
in the former and to a out-Band loop in the latter case. This can be done in linear time
in the size of BandRegions and ChildList. So the whole cost for all of the closed regions
is linear in n (number of base pairs in R) plus the number of nodes in the tree, which is at
most n. Therefore, loop location finding algorithm is linear in n (number of base pairs in

R).

5.4 Inner Loop Finding

By Corollary 2.3.2, each spanning band base pair, except the inner closing pair of the bands,
corresponds to either an interior-pseudoknotted or a multi-pseudoknotted loop external base
pair. _

Inspired by Corollary 2.3.2 and definitions for interior-pseudoknotted and multi-
pseudoknotted loops (Chapter 2), the Inner Loop Finding algorithm does the following for
each pseudoknotted closed region i;j to identify all loops of interior—pse'udoknotted and
multi-pseudoknotted types: :

1. Take the link list representation of spanning band base pairs, BL (Section 5.2), and
ordered list of children, ChildList (Section 5.3) as input..

2. Similar to loop location finding algorithm (Section 5.3) scan BL and ChildList from
left to right and assign to each index ¢ the number of children which are nested between
i and Next(i), Nested(i), along with the list of their indices, T'uples(z).

3. Each index 4, bp(i) > ¢, in BL corresponds to an interior-pseudoknotted loop with
1.bp(7) as the external and Next(i¢, BL).Prev(bp(i), BL)) as the internal base pairs, if
the followings are satisfied: (i) Next(i, BL) = bp(Prev(bp(i), BL))

(i) Nested(i) = Nested(Prev(bp(i), BL)) = 0.
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4. Each index i, bp(4) > 1, in BL corresponds to a multi-pseudoknotted loop with 2.bp(%)
as external base pair if the followings are satisfied: (i) Next(¢, BL) = bp(Prev(bp(¢), BL))
(ii) Nested(i) > 0 or Nested(Prev(bp(i), BL)) > 0. Children corresponding to
Tuples(i) and Tuples(Prev(bp(i), BL)) along with (Next(i, BL), Prev(bp(i), BL)))
will be the tuples corresponding to this multi-pseudoknotted loop.

Running Time:

Step 2 can be easily (similar to Merge Sort procedure) done in linear time, in the size of
BL and ChildList, for each pseudoknotted closed region 4; . Then the algorithm needs one
scan of BL to identify all inner loops corresponding to 4;j. So the above algorithm works
in linear time, in the size of BL and ChildList, for each pseudoknotted closed region i; j.
Thus, the whole cost is linear in n (number of base pairs in R) plus the number of nodes in
the tree, which is at most n. Therefore, finding all inner loops of the structure R is linear
in n (number of base pairs in R).
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Chapter 6

Akutsu’s Algorithm Structure
Class

Akutsu [2] introduced simple dynamic programming algorithms for RNA secondary struc-
ture prediction. This algorithm is capable of predicting the secondary structure for a re-
stricted class of pseudoknotted RNA structures. We analyse the definition of pseudoknots
provided in Akutsu’s [2] work and present a concise characterization of the class of structures
Akutsu’s algorithm can handle. '

Akutsu defined pseudoknots in the secondary structure to be either simple or recur-
sive where recursive pseudoknot is a generalized version of simple pseudoknot. We discuss
simple pseudoknots in Section 6.1 and recursive pseudoknots (which is equivalent to sec-
ondary structure with recursive pseudoknots) in Section 6.3. In Section 6.2 we describe
secondary structures with sfmple pseudoknots which are an intermediate class of structures
defined by Akutsu [2].

6.1 Simple Pseudoknot Structures

Definition 6.1.1 Akutsu definition for simple pseudoknot:

Let P be a pattern of size 2n over an alphabet ¥ of size n. P is called a simple
pseudoknot if there ezxist positions (indices) jo = jo(P) and jy = jo(P) (1 < jy < jo < 2n)
for which the following conditions are satisfied:

e Al: Eacha € T satisfies either 1 < Left(a) < jj < Right(a) < jo or ji < Left(a) <
jo < Right(a) < 2n. ' '

e A2: Ifa and b, for each a,b € T, satisfy either Left(a) < Left(b) < j§ or jh <
Left(a) < Left(b), then Right(a) > Right(b) holds.

The two indices jo and j, witness that P is a simple pseudoknot and we refer to them as
witnesses for P. (Figure 6.1(a))
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Figure 6.1: (a) Secondary structure with pattern P = abebcaddce: Simple pseudoknot with jo =
Left(e) and jy = Left(d) as witnesses. (b) Secondary structure with pattern P'= abbcaddeec:
Recursive pseudoknot as P = abbcaP;eec where Py = dd and abbcaeec are both simple pseudoknot.
(c) Secondary structure with pattern P = abbcaddece: nelther simple or recursive. '

‘According to A1, symbols in a simple pseudoknot P can be divided in to two groups:
e G1: each symbol a € G1 satisfies 1 < Left(a) < jb < Right(a) < jo.
e G2: each symbol a; € G2 satisfies j) < Left(a) < jo < Right(a) < 2n.

Sdit can be derived directly from A2 that P | G1 is of the form aias...ara,...a2a;,
where a; € G1,V1 < ¢ < r. The same is true for P | G2.
For example, in the structure of Figure 6.1(a), a,b € G1 and ¢,d, e € G2.

Definition 6.1.2 Our definition for simple pseudoknot:
A pattern P is a simplest pseudoknot if and only if it admits either of these two
cases: ' : - :

e B1: It is equal to aqaq.

e B2: It is equal to either aja;Pia;a1 Py or a1 Piajaia; Py, where a1 Pia; Ps is a simplest
pseudoknot.

A pattern P is a simple pseudoknot if and only if either it is a simplest pseudoknot
or it is equal to a1 Piaja;a;yy ... aray . .. a;410; Py, for some ay, a;,...ar € X, where a1 Pia1 Py
is a simplest pseudoknot. '

Corollary 6.1.1 It can be easily infered, by using simple induction on the definition of
simplest pseudoknot, that there is no Left symbol after (on the right side of) the second
occurrence of ay, where ay is the first symbol in the pattern.

 Then, it can be easily infered, from the simple pseudoknot definition, that a 31mplest
pseudoknot pattern is equivalent to the simple pseudoknot pattern in which there is no Left
symbol after (on the right side of)) the second occurrence of ay, where a; is the first symbol
in the pattern. :
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Figure 6.2: Arc diagram representation of structures in Figure 6.1.
6.1.1 Equivalence of Definitions

Theorem 6.1.1 Definition 6.1.1 and 6.1.2 are equivalent.
Proof

Part 1 If P satisfies Definition 6.1.1 then P satisfies Definition 6.1.2.
Proof

We use induction to prove this. If P is of length 2 and satisfies Deﬁmtlon 6.1.1 then
it is equal to a1ay and so satisfies Definition 6.1.2 (Base case).

Assume that it is true for all P of length k¥ < I. Let P, of length [, satisfy Definition
6.1.1. Let jo(P) and j()(P) be witnesses for P. Then either (i) there is a Left symbol
after the second occurrence of aj, or (ii) there isn’t.

All of the symbols after the second occurrence of a; should belong to G2. So in case(i),
these symbols form a a;a;41...0:6,...a;110; Py pattern, where P» only consists of
Right symbols. Therefore P = a1Pia1a;0;41...0,0,...0;010;Pe. If we let P’ =
a1 Pya1 Py, let jo(P') = Right(P’,a;) and let jo(P’) = jo(P) then both conditions Al
and A2 are still satisfied for P’ with jj(P’) and jo(P') as witnesses. So, P’ = a1 Pia1 P,
satisfies Definition 6.1.1 and therefore, by induction, it satisfies Definition 6.1.2 and in
fact must be a simplest pseudoknot, since P, only contains Right symbols (Corollary
6.1.1). Therefore P satisfies Definition 6.1.2. 4

Now consider case(ii) where there is no Left symbol after the second occurrence of ay.
The symbol a;, right before the second occurrence of ay, either belongs to G1 or G2.
To satisfy Definition 6.1.1 it must be that (i) P = a1a;Pia;a1 P, if a; € G1, or (ii)
P = a1 Pia;a1a; P, if a; € G2, while Pg only consists of Right symbols which definitely
belong to G2. In both cases jo(P) = Right(P,a1) and jj = Right(P,a;)—1if P, =¢
or j4(P) < Right(P,a1)—1 otherwise. If we let P’ = P | ay, let jo(P’) = Right(P',a1)
and make j{(P’) to be equal to either (1) Right(P’,a1) if Py =€, or (2) jo(P)if P # ¢
and a; € G2, or (3) jo(P) — 1 if P, # € and a; € G1, then both conditions Al and
A2 are still satisfied for P’ with j{(P’) and jo(P’) as witnesses. So, P’ = a1Pia1 P,
satisfies Definition 6.1.1 and therefore, by induction, it satisfies Definition 6.1.2 and in
fact must be a simplest pseudoknot, since P, only contains Right symbols (Corollary
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6.1.1). So, by simplest pseudoknot definition, P isa simplest pseudoknot and therefore
by Corollary 6.1.1 P satisfies Definition 6.1.2.

g

Part 2 If P satisfies Definition 6.1.2 then P satisfies Definition 6.1.1.
Proof ' »

We use induction to prove this. If P is of length 2 and satisfies Definition 6.1.2 then
it is equal to a1a; and so satisfies Definition 6.1.1 (Base case).

Assume that it is true for all P of length k < I. Let P, of length [, satisfy Definition
6.1.2.

Suppose that either P = aya;Pia;a1P; or P = a;Pa;a1a;P and P/ = a1 Pya1 Py is a
simplest pseudoknot. By Corollary 6.1.1 and using induction, P’ satisfies Definition
6.1.1. Let jo(P') and jo(P’) be witnesses for P’, so the following are true: (i) jo(P’) =
Right(P’,a1), and (ii) ji = Right(P',a1) if P = € or jy(P’) is an index of a symbol
in P, otherwise. If we let jo(P) = Right(P,a;) and let j5(P) to be equal to either (1)
Right(P,a1) — 1if Py = ¢, or (2) jo(P') if P, # € and a; € G2, or (3) jo(P) + 1 if
Py # ¢ and a; € G1, then both conditions A1 and A2 are true for P and therefore P
satisfies Definition 6.1.1. :

Finally, suppose that P = a1 P1a1a;ai41 . ..arar ... 6i110; P and P’ = a1 Pia1 P is a
simplest pseudoknot. By Corollary 6.1.1 and using induction, P’ satisfies Definition
6.1.1. Let j4(P’) and jo(P') be witnesses for P’, so the following are true: (i) jo(P’) =
Right(P',a1) (i) ji = Right(P’,a1) if P, = € or j{(P’) is an index of a symbol in Py
otherwise. If we let jo(P) = Left(P,a,) and jj(P) = j,(P’) then both conditions Al
and A2 are true for P and therefore P satisfies Definition 6.1.1.

O

g

6.1.2 Simple Pseudoknot Membership Test: Linear Time Algorithm

The algorithm for testing whether a pattern P is simple pseudoknot has two steps. In the
first step it deals with the a;a;11...ara, ... a;y10; subpattern and removes it from P make
the pattern a simplest pseudoknot. This can be done by scanning the symbols in the pattern
starting from the symbol after the second occurrence of a1 and doing the following:

1. While the current symbol, a;, is a Left symbol push it on the top of the stack ST
(which is empty at the begining) and move to the next symbol.

2. While the current symbol, a;, is a Right symbol and we have a; on the top of the
stack, pop.a; from top of the stack and move to the next symbol.
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3. If the stack ST is empty remove all of the symbols between the second occurrence of
a; and the current symbol from P.

Running time:

It can be easily seen that the above algorithm works in linear time as it checks each
symbol at most once.

Next we should figure out if P is simplest pseudoknot. We use both cases in the
definition of simplest pseudoknot to construct the desired algorithm.

We define two simplify operations according to B2:

i aja;S1a;0159 is converted to a1.51a155.
ii a1S1a;a14;53 1s converted to a1S1a153.

| We define one more operation, final operation according to B1:
iii aiaq is converted to e.

In these cases we say that a simple/final operation is applicable to a;.
The algorithm for testing whether the pattern P is a simplest pseudoknot works as
follows:

1. While one of the simplify operations, i or ii, is applicable on the first symbol,ay, apply
it.

2. Do the final operation, iii, on a; if it is applicable.
3. Return true if the pattern is empty and false otherwise.

For example, patterh P = abebcaddce corresponding to the structure in Figure 6.1(a)
is a simple pseudoknot pattern as we can simplify it as the following: (1) abebcaddce —
abebcace by removing dd in the first step, (2) abebcace — abebae by (ii), (3)abebae — aeae
by (i), (4) aeae — aa by (ii), and finally (5) aa — € by (iii).

Simple test running time: ‘

Each simplify operation takes constant time, and the algorithm does at most n
(number of distinct symbols in P) simplify operation on the pattern. Therefore the running
time of the algorithm will be O(n).

So the whole test can be done in linear time.

6.2 Secondary Structures with Simple Pseudoknots

Definition 6.2.1 A pattern P is called a pattern with simple pseudoknots if and only if
for some strings Si, P1,S2, Ps, ...., S, Py, Si41 € X%

o P=S,PS;P;... 8PSy,
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e cach P, 1 <i<t, is a simple pseudoknot, and
o P'=515;...5:5;,1 is a pseudoknot free pattern.

" Note that a pseudoknot free pattern corresponds to the case of t = 0 and qualifies as
a pattern with simple pseudoknots.
We say that a secondary structure R'is a secondary structure with simple pseudo-
knots if its corresponding pattern, P, is a pattern with simple pseudoknots.

We give a characterization of secondary structure with simple pseudoknots in The-
orem 6.2.1. First we prove two useful lemmas.

Lemma 6.2.1 If pattern P is a simple pseudoknot then it is a closed pattern.

Proof Let pattern P = a;...a,, be a simple pseudoknot. To prove that P is a closed
pattern it is enough to prove that its corresponding structure, [Left{a1); Right(anm)], is a
closed region. , : :

Clearly [Left(a1); Right(anm)] is a weakly closed region. Assume that it is not
closed. Then there is a., a, # a1 and a, # an, such that either [Left(a1); Right(a,)]
or [Left(a,); Right(am)] is weakly closed. In the former case, Right(a,) should be greater
than Right(a;) which means that a, belongs to G2. Therefore Right(a,) > Left(am) and
we also have Right(a,;) < Right(am). Then we can conclude that [Left(a1); Right(a,))
is not weakly closed. In the latter case, Left(a,) should be less than Left(a,;,) which
means that a, belongs to First group. Therefore Left(a,) < Right(a;) and we also have
Left(a,) > Right(a;). Then we can conclude that [Left(a,); Right(a,,)] is not weakly
closed. (Contradiction)

O

Lemma 6.2.2 Any closed region of a simple pseudoknot structure R of length n is either
[1;n] or is pseudoknot free.

Proof

Type 1: regions [¢; j] with ¢ < jj and j > jo. Suppose that 1.¢/ and j'.n. By Definition
6.1.1 j; < ¢ and j' < jo, so both ¢’ and j/ are in [¢;j]. Therefore 1 and n should be
in [¢; j] which means that [i; j] = [1;n]. So this type only contains one region which is
the whole structure K.

Type 2: regions [i; j] such that either: (i) ¢ < j§ and j < jo (where clearly j{ < j), or (ii)
Jo =1 < jo and jo < j. Then it is easy to see that ¢.j. So this type of closed region is
pseudoknot free.

ad
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Theorem 6.2.1 A pattern P is a pattern with simple pseudoknots if and only if all of the

closed patterns corresponding to the nodes in its parse tree T(P) are either pseudoknot free

or simple pseudoknot.

Part

Part

a

Proof
To prove our theorem, we need to prove the following.

1 If for all of the nodes V in parse tree T'(P) one of the following is true, then P is
a pattern with simple pseudoknots : (i) the pattern corresponding to V' is pseudoknot
free, or (ii) the pattern corresponding to V is a simple pseudoknot.

Proof

Assume that each node V' in T(P) either corresponds to a pseudoknot free closed
pattern or its corresponding pseudoknotted closed pattern is a simple pseudoknot. By
Lemma 6.2.2 there are no two nodes V and U such that their corresponding pseu-
doknotted closed patterns are simple pseudoknots and one of them is the ancestor of
another. Assume that Py,..., P; are the closed patterns corresponding to the pseu-
doknotted nodes, ordered by the left index of hte closed pattern. So we can write
P = S1PS3P,...S;P,S; 1 where each P;, 1 < i <t,is a simple pseudoknot pattern
and 5153 ...8:5:41 is a pseudoknot free pattern. Therefore P is a pattern with simple
pseudoknots.

O

2 If P is a pattern with simple pseudoknots then one of the following is true for any
node V in T(P): (i) the pattern corresponding to V is pseudoknot free, or (ii) the
pattern corresponding to. V' is a simple pseudoknot.

Proof A
Assume that P is a pattern with simple pseudoknots. So P = S1P1S2P; ... S¢P;Si1

‘where each P, 1 <1i<t,is a simple pseudoknot pattern and S152 ...S5:S¢4+1 is a

pseudoknot free pattern.

Each P;, 1 < i <t is a closed pattern (by Lemma 6.2.1) and so a node in T'(P) is
associated with it. The other nodes in the tree should correspond to pseudoknot free
closed patterns. So closed regions corresponding to all nodes V' are either pseudoknot
free or simple pseudoknot. ‘

a

6.2.1 Secondary Structure with Simple Pseudoknots Membership Test |

Therefore the following algorithm can easily test whether a secondary structure R, with

pattern representation P (Lemma 6.2.3), is a secondary structure with simple pseudoknots:
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1. Construct the parse tree T'(P).

2. Starting from the root, check the nodes in each level of T'(P). If the simple pseudoknot
test returns true on all of the pseudoknotted closed patterns corresponding to nodes
in T'(P) then return true and return false otherwise.

For example, the structure in Figure 6.1(a) is a secondary structure with simple
pseudoknots. The only pseudoknotted node in its parse tree (Figure 6.3(a)) is the root node
whose pattern is P = abebcaddce and P is a simple pseudoknot. But, the structure in Figure
6.1(b) is not a secondary structure with simple pseudoknots. The pattern P = abbcaddeec
corresponding to its root node (Figure 6.3(b)) is not a simple pseudoknot.

e - -
@a),R(a) : @a),R(a) . L(a),R(a)

—

T P pus
@),R@ L(b),R@ @),R@ Le) ,R(e> %DVR@

_ - P %

(a) - (b) ’ (c)

Figure 6.3: Parse trees for the structures in Figure 6.1.

Simple structure test running time: ,

Constructing the parse tree can be done in O(n) running time, n = number of base
pairs in the structure, (Lemma 6.2.3). Then all we need is to run the simple pseudoknot
test on all of the pseudoknotted nodes in the tree. According to Lemma 6.2.2, if the closed
region corresponding to a node V is a simple pseudoknot, then none of the nodes in the
subtree rooted at node V is pseudoknotted, and therefore the algorithm does not need to
run the simple pseudoknot test on them. So the whole simple pseudoknot test on the nodes
of T(R) is linear in the number of base pairs and the running time of the algorithm is O(n).

Lemma 6.2.3 We can obtain all the patterns and the private patterns corresponding to
closed regions of structure R easily in linear time. This also follows that we can obtain

T(P) from T(R) in linear time.

Proof Consider the following algorithm which assigns a symbol to each paired base
index in L, the linked list representation of R: (i) let ¢ = 1, (ii) scan L from left to right,
when [ < bp(l) # 0 is scanned assign symbol a; to both [ and bp(l) and increase i.

It is easy to see that the above algorithm is linear in the length of L (and therefore
in the length of R). Having L with symbol assignments and T'(R) we can easily figure out
the pattern corresponding to each closed region in R, and therefore T'(P), in linear time in

n (number of base pairs in R).




To obtain the private pattern PC corresponding to a closed region C, we just need '
to remove the patterns corresponding to C’s nested closed regions from PC. The pattern
corresponding to nested closed region i’;j' can be removed in constant time by making
Prev(i’, L) and Next(j’, L) to be adjacent (by updating the links). So this can be done in
linear time in the number of nested closed region in C. Therefore the cost for the whole
closed regions is linear in the number of closed region in R (number of nodes in the tree)
which is at most n (number of base pairs in R). '

So we can obtain all patterns and private patterns corresponding to closed regions

of R in linear time in n (number of base pairs in R).
D N

6.3 Secondary Structures with Recursive Pseudoknots

Definition 6.3.1 A pattern P is called a recursive pseudoknot if and only if P is a simple
pseudoknot or P = Py P,P| where P, is a nonempty simple pseudoknot and P, P; is a
~ recursive pseudoknot. :

We say that an RNA secondary structure R is o secondary structure with recursive
pseudoknots or conveniently recursive pseudoknot structure if its corresponding pattern P
is a recursive pseudoknot.

Claim 6.3.1 Given the above deﬁniﬁon we claim that the pattern P is a recursive pseudo-
knot if and only if all of the private patterns corresponding to the nodes in T(P) are simple
pseudoknot. '

Proof .
The simple pseudoknot test returns true on a node if its corresponding private pat-
tern is a simple pseudoknot. So to prove our claim we need to prove the following.

Part 1 If the simple pseudoknot test returns true on all nodes in T'(P), then P is a recursive
pseudoknot. '

Proof

We prove it by using induction on the size of P, 2n. It is clearly true for 2n = 2
(Base case). Let assume that it is true for all patterns of size 2l < 2n (Induction
Hypothesis). We prove that it is true for any pattern P of length 2n.

Let Ly be one of the leaf nodes in T'(P). Assume that simple pseudoknot test returns
true on Ly which means that its corresponding private pattern C; is a simple pseu-
doknot. Either L is the only node in the tree (which means that C; = P) or there
are more nodes in the tree than L.

In the former case, since P is simple pseudoknot, by Definition 6.3.1 P is a recursive

pseudoknot.




In the latter case P = P,C;P|. By eliminating L, from T(P) we can get the parse
tree, 11, corresponding to Py P]. Assume that the simple pseudoknot test returns true
on all of the nodes in T'(P) which means that it returns true on all of the nodes in 7.
Using induction Py P is recursive pseudoknot. We saw before that Cy is a nonempty
simple pseudoknot. Therefore, by the definition of recursive pseudoknot P = P;C P]
is a recursive pseudoknot.

|

Part 2 If P is a recursive pseudoknot then the simple pseudoknot test returns true on all

of the nodes in T'(P).
Proof

We prove it by using induction on the size of P, 2n. It is clearly true for 2n = 2
(Base case). Let assume that it is true for all patterns of size 20 < 2n (Induction
Hypothesis). We prove that it is true for any pattern P of length 2n.

Assume P is a recursive pseudoknot. Then either P is a simple pseudoknot or it is of
the form Py P, P{ wheré P, is a nonempty simple pseudoknot and P, P is a recursive
pseudoknot.

In the former case the simple pseudoknot test should return true on all of the nodes
in T(P). (Using Lemma 6.3.1).

In the latter case assume that T3 and T; are respectively the parse trees for Py Py P]
and P,. It is easy to see that T'(P) can be obtained by concatenating T} and T5. (This
is done by finding a node in T7 which should be the parent of the root node in 1%
and making the parent-child relationship between them.) Using induction, the simple
pseudoknot test should return true on all of the nodes in T and T3 and therefore on
all of the nodes in T(P). This makes the proof complete.

]

a

Lemma 6.3.1 If pattern P is a simple pseudoknot then the simple pseudoknot test returns
true on all of the nodes in T(P). '

Proof -

We use induction to prove this. It is true for 2n = 2 (Base case). Assume that it is
true for all structures of size 2k < 2n (Induction Hypothesis). We prove that it is true for
any structure of size 2n.

If T(P) consists of just one node then this node should return true. Assume that
T(P) has more than one node. By Lemma 6.2.2 it should have some nodes of the second
type, Type 2. As the Type 2 nodes correspond to the pseudoknot free closed regions
then there should be a leaf node .j such that either jj = j or jo = j. It is clear that i.j
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is a simple pseudoknot, and it is easy to see that by removing ¢.j from R, the remaining
structure is still a simple pseudoknot. So by induction, the simple pseudoknot test returns
true on all of the other nodes in T'(P).

(]

6.3.1 Recursive Pseudoknot Membership Test

v

Now we can easily test whether a secondary structure R, with pattern representation P -
(Lemma 6.2.3), is a recursive pseudoknot structure by the following algorithm:

1. Construct the parse tree T(P).

2. If the simple pseudoknot test returns true on all of the private patterns corresponding
to the nodes in T'(P) then return true and return false otherwise.

For example, the structure in Figure 6.1(b) is a recursive pseudoknot. All private
patterns corresponding to the nodes in its parse tree (Figure 6.3(b)) which includes acac,
aa, bb and ee are simple pseudoknots. But the structure in Figure 6.1(c) is not a recursive
pseudoknot. The private pattern corresponding to its root node (Figure 6.3(c)) which is
abbcaece is not a simple pseudoknot.

Recursive structure test running time:

Constructing the parse tree can be done in O(n) running time, n = number of base
pairs in the structure, (Lemma 6.2.3). Then all we need is to run simple pseudoknot test
on all of the private patterns corresponding to the nodes in the tree (Lemma 6.2.3). The
simple pseudoknot test is linear (in the number of base pairs) too, so the running time of
the whole algorithm is O(n). "

6.4 Classification of Biological Structures

Condon et al.[5] provide a simple characterization of the classes of structures handled by
Rivas and Eddy (R&E) [13], Dirks and Pierce (D&P) [7], Lyngso and Pederson (L&P) (11]
and Akutsu [2] algorithms. They also provide a linear time algorithm to test if an input
structure is in the R&E, D&P, and L&P classes. They applied their algorithms to classify
biological structures from PseudoBase (PBase) [16], the Nucleic Acids Database (NDB) [3],
16S and 23S ribosomal RNA and Group I and Group II Introns from Gutell Database [4].

We also applied our algorithms for Akutsu class membership, for both secondary
structures with simple pseudoknots (Section 6.2) and secondary structures with recursive
pseudoknots (Section 6.3), on the same biological structures. Table 6.1 presents our results
and also the results reported by Condon et al.[5].

As reported by Condon et al.[5], the R&E structure class is indeed very general,
whereas the L&P class misses almost all of the 16s rRNA structures. The Akutsu Simple
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PBase | 165 23S | GpI| Gpll | NDB
Intron | Intron

# Strs 240 | 152 69 10 3 12

Ave: | 149|466 | 7631 | 128.97| 200 | 3124
#Bps :

PKF 0 0 14 0 0 1

AkutsuS 204 0 14 0 0 1

L&P | 231 12| 14| 10 0 1

D&P 232 | 150 14 10 0 5

AkutsuR 232 | 150 14 10 0 5

R&E 240 | 152 25 10 0 7

Table 6.1: Structure classification. Columns 2-7 present data for each RNA data set. For each data
set (column), the entry in first row lists the number of structures in the data set. The second row lists
the average number of base pairs in the structures. The remaining rows list the number of structures
of the data set that are in the PKF, Akutsu(secondary structures with simple pseudoknots), L&P,
D&P, Akutsu(secondary structures with recursive pseudoknots) and R&E classes, respectively.

class behaves worse than L&P, as it misses all of the structures in Group I additionally.
Although it is proved theoretically that Akutsu Recursive class is more general than D&P
class, the test result shows that they can both handle the same class of given biological

structures.




Chapter 7

Conclusion and Future Work

RNA molecules play diverse roles in the cell. The structure of RNA molecules is often
the key to their function and predicting the secondary structure of RNA molecules is thus
an important problem in computational molecular biology. Algorithms for computational
prediction of RNA secondary structures, which find the minimum free energy (mfe) structure
are widely used, but experiments show that existing polynomial time algorithms are not
so powerful in predicting the base pairs in known biological RNA structures (experimental
structures) correctly. Therefore, improving existing algorithms or designing new algorithms, '
which are more capable in predicting the real secondary structure of RNA sequences, is an
important challenge. _

Towards this goal, in this thesis, we presented a precise definition of the structural
elements in a secondary structure, and also a comprehensive way to classify the type of loops
that arise in pseudoknotted structure (Chapter 2). Then we introduced a parsing algorithm
which parses a given secondary structure to its structural components (Chapter 4). This
parsing algorithm, along with the classification scheme for the loops in a pseudoknotted
secondary structure, can be used in analysing existing prediction algorithms and known
biological RNA structures in order to design new, more powerful, prediction algorithms.

Our parsing algorithm can be used in other applications. In this thesis we presented
two of them: (i) calculating the free energy of a given secondary structure in linear time
(Chapter 5), and (ii) constructing a linear time algorithm to test whether the prediction
algorithm introduced by Akutsu [2] can handle a given structure (Chapter 6).

Our work can be continued in future in several directions:

‘e Heuristic algorithms commonly use a procedure to calculate the free energy for a given
sequence and structure. Incorporating the linear free energy calculation algorithm
(presented in Chapter 5), into heuristic algorithms may cause improvements in their
efficiency. '

e The parsing algorithm can be used in order to analyse known biological RNA struc-
tures, in order to find out what structures occur more frequently in biology.
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The method for parsing a secondary structure appears to yield a linear time algo-
rithm for finding the maximum independent set in a circle graph. The previous best
algorithm had running time O(nlogn) [1].

The parsing algorithm plus extra functions presented in energy calculation part seems
to be useful in calculating the minimum number of base pairs that need to be removed
in order to make a secondary structure pseudoknot free.

The classification model we presented in this thesis can be studied and improved if
needed. This wasn’t an easy task before, but now as we have some new notions and
conventions it can be done more easily. '

There is no precise characterization of the class of structures handled by Uemura et
al.[15] algorithm (Uemura). Our work may be useful in providing such a character-
ization, and also constructing an algorithm to test whether Uemura’s algorithm can
handle a given structure. '
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