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Abstract 

Abstract 

This thesis presents two related bodies of work. The first is about methods for speeding 

up inference in graphical models, and the second is an application of the graphical 

model framework to the beat tracking problem in sampled music. 

Graphical models have become ubiquitous modelling tools; they are commonly used 

in computer vision, bioinformatics, coding theory, speech recognition, and are central 

to many machine learning techniques. Graphical models allow statistical indepen­

dence relationships between random variables to be expressed in a flexible, powerful, 

and intuitive manner. Given observations, there are standard algorithms to compute 

probability distributions over unknown states (marginals) or to find the most likely 

configuration (maximum a posteriori, MAP, state). However, if each node in the graph­

ical model has TV states, then these computations cost O (N2). This is a particular 

concern when dealing with continuous (or large discrete) state spaces. In such state 

spaces, Monte Carlo methods are of great use, but typically produce better answers as 

N increases. There is therefore a need for algorithms to speed up these computations. 

We review the graphical model framework and explain the algorithms that we 

consider: Belief Propagation, Maximum-Belief Propagation, and Particle Filtering and 

Smoothing. We review existing fast methods for speeding up these computations, and 

present a new fast method, some analysis, corrections, and improvements to existing 

methods, and an empirical evaluation of the fast methods with respect to a variety of 

parameters. Finally, we point out other applications to which this fast machinery can 

be applied. 

The second body of work is an application of the graphical model framework to 

a common problem in music analysis: beat tracking. The goal of beat tracking is to 
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determine the tempo track of a piece of sampled music, and to determine the points 

in time at which beats occur. While fairly simple, our graphical model performs 

remarkably well on a difficult and varied set of songs. 
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Chapter 1 

Welcome 

Traditionally, the first chapter of a thesis is called the Introduction. I'm not a tradi­

tionalist, and my second chapter is an introduction to the topic area, so I've decided 

to make this chapter a welcome instead. Welcome to my thesis, dear reader. 

In an introduction, I 'm supposed to explain that I came up with a nice idea for 

a thesis and then pursued it in a logical fashion, without taking any side trips or 

stumbling down any dead-end alleys. Since this is not an introduction, I'm going to 

tell the real story, which should help explain how these somewhat disparate chapters 

are tied together. 

I began my thesis work with the aim of exploring statistical machine listening: 

I planned to approach long-standing problems in music processing from a statistical 

machine learning perspective. The great advantage of probabilistic approaches is that 

they typically allow us to produce not only a single answer, but a whole distribution 

of potential answers with different weights (probabilities). One of the main difficulties 

in music processing problems is that there are often several reasonable answers; com-

miting to one and discarding the rest is generally not a good idea. Also, researchers 

typically break the problem into subproblems (beat detection, instrument identifi­

cation, and so on) that are then tackled independently. Since the raw input data 

(sampled music) tends to be large, it is typically processed in different ways for each 

subproblem; different subsets of the total information are discarded. The problem with 

this approach is that ambiguities in one subproblem could potentially be resolved with 

information from other subproblems, but if the problems are solved independently and 

there is no representation of uncertainty, then doing this is impossible. I hoped that 

by using a probabilistic approach, I would be able to represent the uncertainty in each 



Chapter 1. Welcome 2 

subproblem. Then, by combining subproblems in a principled way, I could leverage 

different types of information to produce better results. 

As often happens, this turned out to be a little bit more difficult than I thought 

it would. I started with the beat tracking subproblem; my solution is presented in 

Chapter 4. It took me a rather long time to arrive at my model for beat tracking, 

which is slightly embarrassing since it's nearly the simplest model one can imagine. 

Nevertheless, it works remarkably well on a wide variety of examples. I take comfort 

in the fact that it's often the case that good ideas are only obvious in hindsight. 

I found that while my beat tracking solution often gave nice results, it was also 

quite computationally expensive. This led to an exploration of fast methods for in­

ference in graphical models. This material is presented in Chapter 3. Chapter 3 is a 

bit of a monster. It contains a survey of existing fast methods, some new fast meth­

ods, some additional insights into existing fast methods, and an empirical evaluation. 

The empirical evaluation presents findings that challenge commonly-held beliefs about 

these methods. 

This thesis is not exactly two papers stapled together, but the beat tracking and 

fast methods chapters are mostly independent of each other. Chapter 2 presents an 

introduction to graphical models and also introduces some notation. It contains no 

new results. Readers familiar with the topic should probably just give it a brief skim, 

while those new to area might find it a useful introduction. 

When new phrases or ideas are introduced there is usually a note in the margin. 

There is also an index, which may help you find things that I think are important. 

Enough philosophizing, on to the thesis! " • 

Chapter 4-
Beat 
Tracking 

• Chapter 3; 
Fast 
Methods 

1 Chapter 2. 
Graphical 
Models 

< margin 
notes are 
great 
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Chapter 2 

Graphical Models 

2.1 Introduction to Graphical Models 

We present a brief introduction to graphical models and several algorithms for inference 

in them. Good references for this material are Jordan [27] and Yedidia, Freeman and 

Weiss [42]. 

Probabilistic graphical models provide a framework for expressing statistical inde­

pendence relationships between random variables. Each variable is represented by a 

node in a graph, and potential dependence relationships are represented by edges. Vari­

ables can be multidimensional, and can be discrete or continuous. Observed variables 

are represented by shaded nodes, and unknown or hidden variables are represented by 

unshaded nodes. 

We focus on undirected graphical models. Directed models and factor graphs can 

easily be converted to undirected models, as shown in [42]. Several example undirected 

graphical models are shown in Figure 2.1. 

In undirected graphical models, the relationships between variables are expressed in 

terms of potential functions. Consider nodes i and j, which represent the variables Xi • potential 
fuTlCtZOTlS 

and Xj. The potential function connecting these nodes is ipij(Xi,Xj), and expresses 

the compatibility of the value Xi at node i with the value Xj at node j. See Figure 2.2. 

Large values of the potential function indicate that the values Xi and Xj are likely 

to co-occur, while small values indicate a statistically unlikely arrangement. Potential 

functions must be non-negative; unlike probabilities, they need not be normalised. 

According to the Hammersley-Clifford theorem [24], the joint probability of a graphical 
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Figure 2.1: Examples of undirected graphical models. Shaded nodes represent observed 

variables, unshaded nodes represent hidden variables, and edges represent statistical 

dependence relationships between variables, (a) is a Markov chain, (b) is a Markov 

Random Field, (c) and (d) are arbitrary graphs. 

node i node j 

Figure 2.2: A potential function xpij'Xi, Xj) between node i and node j describes the 

compatibility between the variable at node i having value Xi and the variable at node 

j having value Xj. 
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model is 

where V are the vertices in the graph and E are the edges. The functions ipi(Xi) 

describes how likely it is for the variable at node i to have the value X{, and ipij(Xi, Xj) 

are the potential functions connecting all pairs of variables that share edges. The 

partition function Z is a normalisation constant. 

2 . 2 I n f e r e n c e M e t h o d s 

There are two primary inference tasks in graphical models. Consider the set of variables 

X as being composed of the set of hidden variables XH and the set of observed variables 

Xo- Given a set of observations Xo, the first inference task is to find the marginal 

probabilities of each hidden node XH : • marginal 
probabilities 

p(Xi\X0) for each i e H . (2.1) 

The second inference task is to find a maximum a posteriori ( M A P ) set of values for • MAP set 

the hidden nodes XH-

X*H = a r g m a x p ( X K | X 0 ) . (2.2) 
xH 

See Figure 2.3 for an example. 

2.2.1 Belief Propagation 

Belief Propagation [34] is an algorithm for computing the marginal probabilities in 

graphical models. The algorithm is exact for graphs that are trees. In some cases the 

same algorithm can also produce good results when used in cyclic ("loopy") graphs 

[33]. 

Belief Propagation (BP) proceeds by passing messages between nodes. A message • message 

passed to node j is simply a set of real values, one value per possible state at node 

j. The intuition is that the message passed from node i to node j tells node j which 

states are most preferred by node i; large values indicate favourable states. 
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Weather 

Moisture Sensors Thermometer Photosensor 

Figure 2.3: In the simple graph shown above, several noisy sensors are used to 
measure environmental conditions, and there are several hidden variables about which 
we would like to reason. Three binary moisture sensors Mj are connected to the 
binary hidden variable for rain, R. The potential functions (edges) connecting Mi and 
R model the noise properties of the sensors. For example, we expect R = true when 
Mi = true, except that the sensors might have a false positive rate of 10% and a false 
negative rate of 30%. In a similar manner, the continuous temperature T and binary 
sun S variables are connected to their associated noisy sensors through potential 
functions that describe the noise processes of the sensors. Finally, these three hidden 
variables are each connected to the categorical weather variable W. The potential 
function between R and W should take a high value for {R — true, W — rainy}, and 
a low value for {R = true, W = sunny}. 

In the terminology , introduced above, the set of observed nodes is 
X0 = {Mi,M2,M3,T1,Pi} and the set of hidden nodes is XH = {R, S, T, W}. 
By computing the marginal probabilities (equation 2.1), we could report the proba­
bilities of each state at each node: W = sunny, W = rainy, R = true, R = false, 
S = true, S — false, and a probability distibution over the continuous variable T. By 
computing a M A P set (equation 2.2), we could report the most probable combination, 
such as X*H — {W = sunny, R = false, S = true, T = 25.4°C}. 
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Formally, if the states at node i are x^, then the probabilities (or beliefs) at node • belief 

i are 1 

bi(xi) = 7? V'i(zj) Yl moAxi) > (2-3) 

where 7V(i) are the neighbours of node i (all nodes sharing edges with node i) and rrij^ 

is the message passed from node j to node i. Z is a normalizing constant. Intuitively, 

ipi(xi) describes the local probability of each state, while the messages capture the 

compatibility of each state with the rest of the graph. 

The message passed from node j to node i is 

mj:i(Xi) = ^Ipjixj) lj)j,i(Xj,Xi) Yl mk,j(X3) ' (2-4) 
Xj keN(j) except i 

which can be interpreted as the likelihood of arriving at state Xj, marginalized over all 

states Xj. 

Another way of understanding the message is to substitute the expression for the 

belief bj(xj) into the above expression: 

Now, bj(xj) can be seen as the probability of starting at state Xj, and ipjj(xj,Xi) the 

probability of making the transition to state x; given that we start in state Xj. We 

divide out the influence of the message passed in the opposite direction, mjj(xj) . (An 

intuitive explanation for this is that the belief incorporates information from the whole 

graph, but during message-passing we want to move information in only one direction 

at a time, so we ignore edges that allow information to flow in the opposite direction.) 

The summand, therefore, gives the probability of starting at state Xj (at node j) and 

arriving at state Xi (at node i). B y summing over all Xj, we enumerate all possible 

ways of arriving at Xj. 

The messages must be passed in a specific order; this is called the message-passing 

protocol. In tree models, one valid protocol is that one round of messages is passed from 

the leaves to the root and then a second round is passed in the opposite direction. See 
1This is the notation used in [42]. 
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Figure 2.4: Message passing protocol in Belief Propagation. In the first round (left), 

messages are passed from leaves to the root. The messages labelled [1] are computed 

first (possibly in parallel), then message [2] is computed. In the second round (right), 

messages are passed back from the root to the leaves. Message [3] is computed first, 

and finally messages [4] are computed. 

Figure 2.4. In the first round of messages, the message passed by node i summarizes 

the information from all nodes in the subtree rooted at i. Messages arriving at the 

root contain a summary of information from the whole tree. In the second round, the 

message passed to node i summarizes the information from all nodes between the root 

and i (including the information gathered in the first round). Messages arriving at the 

leaves thus incorporate information gathered from the whole tree. 

2.2.2 Discrete Maximum-Belief Propagation 

The Belief Propagation (BP) algorithm solves exactly the inference task of computing 

the marginal probabilities for graphical models that are trees. For the maximum a 

posteriori (MAP) task, a similar but distinct algorithm, Maximum-Belief Propagation 

(Max-BP) must be used. Max-BP is a type of dynamic programming, and for Hidden 

Markov Models is equivalent to the Viterbi algorithm. 

As in standard BP, the Max-BP algorithm proceeds by passing messages between 

nodes. In the first round of message passing, we compute the costs of partial paths 
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States at 
node j 1>2 

«3 

Figure 2.5: A Max-BP message. Node j, with states ji, and j ' 3 , is the bubble on 

the left; node i is on the right. The message rrij^Xi) passed from node j to node i 

is indicated by the three arrows between the nodes; each arrow has associated with 

it a value, represented here by the width of the arrow. Note that one arrow arrives 

at each state Xj. The 'source' of each arrow is the corresponding value of x*j (see 

equation 2.6). 

through the graph. In the second round, we trace backward through the graph, col­

lecting states that are members of the cheapest total path. 

The messages are the same as in B P (equation 2.4) except that the summation is 

replaced by a maximization. The message passed from node j to node i is 

y,i(xi) = maxj tpj(xj) ipjA(xj,Xi) JJ mkj(xj) > . (2.5) 

1 keN(j) except i 

See Figure 2.5 for an illustration. 

The M A P problem can be interpreted as the problem of finding an optimal (highest-

value) path through the graph. In this light, the message mj^(xi) is the value of the 

optimal way of arriving at each state x\ from node j. We must also record the state 

Xj that produces the best path: 

xj,i( xi) = argmax < ipj(xj) ipj,i(xj, X{) JJ mk,j(xj) > . (2.6) 
Ij' k€N(j) except i 

After the first round of messages have been passed (from leaves to the root of the 

graph), the belief at the root node is computed (equation 2.3). The state with the 
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Figure 2.6: A Max-BP example. In this three-node graph, node i is a leaf node and 

node k is the root. (For this graph, we could arbitrarily make any of the nodes the 

root.) The messages from nodes i to j and j to k are shown by the arrows, where 

the width of the arrow shows the value of the message element. At state k, the top 

state has the highest belief, so is a member of the M A P set (which we have shown by 

shading it). We then trace backward through the graph, collecting the states {xMAP} 
that form the best path through the graph. 

largest belief2 is a member of the M A P set. We then trace backward through the 

graph (from the root to leaves), collecting, for each node, the state that led to that 

state; these form the M A P set. See Figure 2.6. 

2.2.3 Continuous (Max-)BP 

The B P and Max-BP algorithms described above solve the tasks of computing the 

marginals and M A P sets, respectively, for tree models with discrete state spaces. For 

tree models with continuous state spaces (or large discrete spaces), we can use (Max-

)BP if we first use one of several 'gridding' methods to create a discrete approximation 

of the continuous space. 

For bounded continuous state spaces, a simple gridding method is to place a uni­

form mesh over the state space. Each mesh point then becomes a discrete state. See 
2 I n genera l there c a n be two or m o r e s tates w i t h beliefs equa l t o the m a x i m u m . It is a s i m p l e 

ex t ens ion to col lec t a l l s u c h sets o f M A P sets. Here , we cons ider o n l y the s i m p l e case where there is 

a s ingle m a x i m u m . 
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Figure 2.7: Gridding methods, (a): an example continuous state space, (b): the 

uniform mesh method, with 20 x 20 grid. Each point becomes a discrete state. (Con­

necting lines have been added for ease of viewing.) (c): a contour view of the same 

continuous state space, (d): the Monte Carlo gridding method with 400 particles (the 

contour lines are overlaid for reference). Each particle becomes a discrete state. Note 

that areas of high probability have high particle density; more attention is paid to 

important regions of the state space. 
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p(xi\x0) 

p(yiM 

p(x2\xi) 

o 
p(y2\x2) 

Figure 2.8: A Hidden Markov Model. 

Figure 2.7. This method scales poorly to high-dimensional state spaces, since the 

number of mesh points grows exponentially with dimension. 

Another gridding approach is to run a particle filter to obtain a Monte Carlo 

approximation of the state space. Such an "adaptive grid" method is presented in [16] 

for the Max-BP problem. This works particularly well for large or high-dimensional 

state spaces, particularly those with small regions of high density. 

2.2.4 Particle Smoothing 

The Belief Propagation algorithm presented above allows us to calculate the marginal 

probabilities of each state, given all the observations, for tree models with discrete state 

spaces. For continuous state spaces or very large discrete spaces, we must typically 

resort to approximate methods. For chain models, Monte Carlo particle methods are 

a standard approach. Good references are [8, 9]. 

The standard particle filter is typically applied to chain models (Hidden Markov 

Models, HMM), which are characterized by a set of observations {yk} and hidden 

variables for k = l...n, plus an initial state probability distribution n(xo), 

transition model p(xk\xk-i), and observation model p(yk\xk)- See Figure 2.8. 

For the remainder of this section we use the notation of [9], which has become 

standard in the literature. As explained in [27], an H M M can be converted into an 
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undirected model by setting 

1p(Xi) = p(xi) (2.7) 

1p(Xi,Xj) = p(Xj\Xi) (2.8) 

where Xj in the above can be either Xi+\ (for transitions) or yi (for observations). 

Often, each pair of nodes in an H M M corresponds to an instant in time, and the 

task is to estimate the trajectory of the hidden variables given the observations. For 

each node, the particle filter generates an estimate of the filtering distribution: the •filtering 
distribution 

distribution of the hidden variable given all the observations up to that point in time. 

This is accomplished by generating a number of weighted samples in the first node, and 

propagating the set of samples to subsequent nodes as time progresses. The samples 

are called particles; the particles at node k are , i = 1... N, and have filtering 

where S is the Dirac delta function; the continuous distribution is approximated by a 

weighted set of discrete samples. 

The particle filter alone does not solve the task of computing the marginal prob­

abilities, however. Since we only move information forward in time, the filtering dis­

tribution at a given nodes takes into account only observations up to that node. To 

produce the marginal probabilities, we must move information in the opposite direc­

tion as well. For a chain of length n, the marginal probabilities are p(xk\yi;n), while . 

the filtering distribution is p(xk\y\:k). The filtering distribution at state k takes into 

account only observations yi±, that is, observations up to time k; while the marginals 

take into account all observations y\-n-

A n estimate of the marginal probabilities can be computed by making a back­

ward pass in which the samples generated during the forward (particle filter) pass 

are reweighted. This is called the forward filtering-backward smoothing method. We 

only state the result here; see [8] for details. The new particle weights are called the 
(i) 

smoothing weights, wW, and are computed as follows: •smoothing 

(i) 
weights w. . The filtering distribution at node k is estimated by 

N 

i=l 

weight 
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p(̂ ii4m)) 
(2.10) 

(2.9) 

The marginal probabilities, or smoothing distributions, p(xk\yi:n), are approximated •smoothing 
distribution 

N 

P (Xk | VO-.n) = Yl ™k\n 6 (4° ~ X<<) • 
i = l 

Note that this distribution has the same particles as the filtering distribution, but 

different weights that incorporate information from all the observations. 

2.3 Summary 

In this chapter, we have reviewed the graphical model framework, stated the primary 

inference tasks with which we are concerned, and presented several algorithms for 

solving these tasks. Belief Propagation (BP) can be used to solve the task of computing 

the marginal probabilities of the hidden states given all the observations. Maximum-

Belief Propagation (Max-BP), similarly, allows us to compute a maximum a posteriori 

set of states for the hidden nodes. Both these algorithms are directly applicable to 

models with discrete state spaces, and give exact results for graphical models that 

are trees. For continuous state spaces or very large discrete spaces, we can apply 

a discretization strategy (such as deterministic or Monte Carlo gridding) and then 

apply (Max-)BP. Finally, for Hidden Markov Models with non-Gaussian continuous 

state spaces, Particle Smoothing can be used to compute the marginal probabilities. 

by 
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Chapter 3 

Fast Methods 

3.1 Introduction 

In the previous chapter, we reviewed several methods for inference in graphical models. 

These methods have strong theoretical bases, but in practice the resulting computa­

tion can be very expensive. When computed naively, the Particle Smoothing, Belief 

Propagation, and Max-Belief Propagation algorithms each cost O (kN2), where k is 

the number of nodes in the graphical model and N is the number of particles or dis­

crete states at each node. This cost becomes prohibitive for many practical problems 

in which large numbers of states are required. 

The O (N2) complexity of these algorithms arises when computing the smoothing 

weights in Particle Smoothing, and in computing the messages in Belief Propagation 

and Max-Belief Propagation (equations 2.10, 2.4, and 2.5, respectively). For Particle 

Smoothing and Belief Propagation, this cost arises because every particle in one state 

has some influence upon every particle in neighbouring nodes. This can be expressed 

as a Sum-Product problem (defined below). In Max-Belief Propagation we must find, 

for each particle in one state, the particle from a neighbouring state which exerts the 

strongest influence. This can be expressed as a Max-Product problem (also defined 

below). 

In this chapter, we present fast methods for computing the Sum-Product and Max-

Product problems. We show how these can be used to speed up Particle Smoothing, 

Belief Propagation and Max-Belief Propagation in Section 3.5. The Sum-Product and 

Max-Product problems arise in many other settings; these are discussed briefly in 

Section 3.6. 
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For both the Sum- and Max-Product problems, we are given a set of points X = 

{x^, i = 1. . . N, each of which has a non-negative weight, mass, or strength W{. We 

call these source points, source particles, or simply X particles. These names come • sources 

from the analogy to physical particles with electric charge or mass. We are also given a 

set of points Y = {yj}, j = 1... M, which we call the target points, Y points, or target • targets 

particles; these are the points at which we wish to measure the quantity of interest. 

In some cases, the X and Y points will coincide. It will often be the case that M and 

N are equal. We assume that'the points live in a multidimensional vector space (with 

dimension D), though it is often the case that the methods and problems generalize 

to metric spaces in a straightforward manner. 

The Sum-Product problem is to compute the values • Sum-
Product 

N 

fj = J2wi Kd\\xi-yj\\) , j = l...M . (3.1) 
i = i 

problem 

We call fj the influence at point yj. K is called the kernel function. In many cases, •influence 

Ki(d) = K(d), meaning that the kernel is the same for each source. This problem is • kernel 
also commonly called weighted Kernel Density Estimation. function 

The Max-Product problem is simply the Sum-Product problem with the summa- . Max-
Product tion converted to a maximization: 

x* = argmax { w{ Ki (\\xi - yj\\) j , j = l...M . 
i€[l,N] L J 

This can be seen as a search for the particle in X that has the greatest influence upon 

each point in Y. 

Here, we are interested in methods that will allow us to speed up the computation 

as TV and M become large. We also want the methods to scale well as the dimension 

D becomes large. We consider the methods shown in Figure 3.1. 

We mention the Fast Multipole Method (FMM) briefly; there is an extensive liter­

ature on the topic, including good tutorials. The F M M is based on a combination of 

space subdivision and series expansion, hence the series expansion must be rederived 

problem 
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Sum-Product Methods 

Fast Multipole Method 

Gaussian Kernel 

Fast Gauss Transform. 

Improved FGT 

Dual-Tree 
• fcci-tree 
• Anchors 

Regular Grid 

Box Filter 

Max-Product Methods 

Dual-Tree 

• fcd-tree 

• Anchors 

Regular Grid 

Distance Transform 

Figure 3 . 1 : The fast methods we consider. See the text for discussion. 
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for each particular kernel function. The Dual-Tree method relies upon space parti­

tioning and the ability to compute bounds on the kernel function, so can easily handle 

many different types of kernels. The Fast Gauss Transform (FGT) is a specialization 

of the F M M for Gaussian kernels. The Improved Fast Gauss Transform (IFGT) uses 

a different series expansion and a flat (non-hierarchical) subdivision of space. The 

box-filter method applies only to the special case where the source and target points 

are located on the vertices of a regular grid. 

For the Max-Product problem, we again consider a Dual-Tree method, which can 

be applied to a very broad class of kernel functions and arbitrary distributions of 

points. For the particular case where the sources and targets are the vertices of a 

regular grid, and for a limited family of kernel functions, the Distance Transform can 

be applied. 

Our specific contributions are: 

• the Dual-Tree Max-Product algorithm; 

• improved kernel bounds for the Dual-Tree Sum-Product algorithm; 

• some implementation-level enhancements to the Dual-Tree Sum-Product algo­

rithm; 

• a correction to the error bound of the Improved Fast Gauss Transform; 

• a protocol for choosing the parameters of the Improved Fast Gauss Transform; 

• the application of the Sum-Product to Particle Smoothing, (Max-)Belief Propa­

gation, and Gaussian Processes. 

Of course, we also hope that our survey of existing fast methods will itself be helpful. 

3.2 Related Work 

Several researchers have presented methods for speeding up Belief Propagation (BP) 

and Maximum-Belief Propagation (Max-BP) in various settings. These can be split 

into two categories. The first are structural methods, which aim to reduce the total 

number of messages passed during Loopy Belief Propagation (where multiple rounds 

of message passing are required). The second type are methods that aim to reduce 
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the cost of computing a single message. We discuss only the former in this section; 

the latter are instances of Sum-Product and Max-Product methods and are discussed 

later. The fast Sum- and Max-Product methods we present can be used in conjunction 

with these structural methods. 

Felzenszwalb and Huttenlocher [12] present two structural methods for speeding 

up Max-BP in Markov Random Fields (MRFs), particularly for computer vision ap­

plications. Since MRFs are cyclic, Max-BP is not guaranteed to produce the correct 

answer, but Loopy Max-BP can give good approximations in some problem domains 

[31, 13]. 
The first method uses a hierarchical (coarse-to-fine) strategy; a new M R F in created 

in which 2x2 blocks of nodes in the original MRF are treated as a single node. This 

process is repeated to create a pyramid. The smallest MRF at the top of the pyramid 

can be solved quickly by running several iterations of Max-BP. The results are then 

propagated downward to initialize the next-finer level in the pyramid. This process is 

repeated until the bottom of the pyramid (the original MRF) is solved. This strategy 

seems to work because it allows long-range movement of information through the graph 

in a small number of iterations. For many computer vision problems, strong image 

smoothness constraints allow blocks of nodes to be grouped together in such a manner. 

Such multiresolution strategies are common in many fields [39]. 

The second method aims to reduce the number of iterations of Max-BP required, 

by partitioning the graph into two halves and computing messages for only one half 

of the graph each iteration. Such a strategy is given a theoretical grounding in [25]. 

3.3 Sum-Product 

In this section, we present five approximate methods for the Sum-Product problem. 

Recall that the Sum-Product problem is to compute 

N 

h = ^2wi Ki(\\xi-yj\\) , j = l . . . M . 
1=1 
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Given an absolute error tolerance e, each of these methods compute approximate values 

of fj that satisfy \fj — fj\ < e for each j. 

3.3.1 Fast Multipole Method 

There is an extensive literature on the Fast Multipole Method ( F M M ) . Good tutorials 

exist, so rather than reinvent the wheel we refer interested readers to the references 

of Beatson and Greengard [3] and Ihler [26]. In this section we will briefly discuss the 

important features of the F M M . • •• 

The F M M encompasses a large family of methods for solving Sum-Product prob­

lems. Most F M M formulations have been developed for applications in physics, where 

TV-body problems commonly arise. In TV-body problems, a set of objects are dis­

tributed in space; each object has a weighted distance-dependent influence upon each 

other object, and the influences are additive. For example, computing the gravita­

tional or electrostatic interaction of TV masses or charged particles is a typical TV-body 

problem to which the F M M can be applied. 

The F M M is typically applied to kernels which are not well-behaved near the 

origin, but become smooth at a sufficient distance. For example, the gravitational and 

electrostatic potentials1 are of the form 

K (x - y) =  1  

I k - y | | 

which is singular at y = x but smooth elsewhere. The idea is then to develop series 

expansions of the kernel that are valid for some domain \\x — y\\ > R. This is the 

far-field expansion. If the far-field expansion can be written as 

v 
K ( x, y) — ^2 <t>k (x) 4>k (y) , \\x-y\\eR , 

fc=i 

then the problem can be split into two phases. In the first phase, the coefficients of 
1 The potential describes the energy stored in the field, which is the integral of force over distance. 

The force of the gravitational and potential fields go as F oc T . — - — r r - , so the potentials go as E oc 
l | z - 2 / l l 2 

1 

Wx-Vl 
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the series expansion are computed: 

N 

Ck = ^2wi ipk Oi) , k = l...p ; 
i=i 

these depend only on the sources. In the second phase, the series expansion is evaluated 

at each target point: 

p 

fj = Y,Ck<j>k(yj) , j = l...N ; 

k=l 

these depend only on the targets. In this way, the sources and targets interact only 

through the series expansion, and the cost becomes O (Np), where p is the number of 

terms in the series expansion. 

Since in general the far-field expansion is only valid on some domain, it is necessary 

to subdivide the space in which the particles live (typically using a hierarchical data 

structure such as the kd-tree), and construct different series expansions that are valid 

in different regions of the space. Evaluating the influence upon a single y particle is 

then a matter of recursing down the tree, evaluating at each level the series expansions 

that belong to branches of the tree that are sufficiently far away. This process stops 

at the leaf nodes, which contain some small number of particles whose influence can 

be evaluated directly. 

Rather than evaluating the expansion separately for each y point, the F M M also 

creates a space-partitioning tree for the target points, and rather than evaluating the 

series expansion directly, constructs Taylor expansions that are valid for all target 

points within that branch of the target tree. The result of this process is that for each 

y point it is only necessary to evaluate a Taylor expansion. 

This has been a very terse summary of a rich subject area. The key points are 

that the F M M is based on a hierarchical subdivision of space and series expansions 

that are valid on limited domains. The error bounds of the F M M are determined by 

the truncation error of the series expansions, so are determined a priori. The exact 

form of the series expansions depends on the form of the kernel; expansions for many 

kernels have been developed. 
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3.3.2 Fast Gauss Transform 

The Fast Gauss Transform (FGT) , presented by Greengard and Strain [22, 23, 2], is a 

specialization of the Fast Multipole Method. It solves the Sum-Product problem for 

the case when the kernel function is a Gaussian with scale parameter h: 

K(d) = exp 

There is also a version for the case of variable scales: 

Ki(d) — exp 

[37], though we consider only the simple case here. 

The F G T proceeds by dividing the space into a uniform grid of boxes with side 

length of order y/h. For each source particle, a Hermite expansion of the Gaussian is 

performed. The expansion coefficients for the particles in each box can be summed, 

yielding a single expansion for each box. In a similar manner, each target box has a set 

of influential source boxes, and the Hermite expansion inside the box can be expressed 

as a Taylor expansion. Thus, for each target point in the box, we need only do a 

Taylor expansion. In this way, the source and target particles are decoupled through 

the series expansions, and the O (MN) complexity becomes O (M + N). 

Formally, given a set of NB particles in a single box B with center XB, the Sum-

Product can be approximated by a Hermite expansion about the center: 

NB 

fA B) = /\,wi e x P 
i = l 

fj(B) = J2A«(B)ha 

where a is a multi-index, ha is the Hermite function of order a, and p.is the order of 

the expansion. The coefficients Aa(B) are given by 

Aa(B) = 

For each target box T, we compute the set of boxes B that are within range, then collect 

the Hermite expansions from these boxes and expand them in a Taylor expansion about 

( Vj-xB\ 

V Vh ) 
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the box center yx'-

where /3 is a multi-index and the coefficients Cp are 

^ E E ^ M ^ f ) • 
The set of boxes B that are within range of a target box T is determined by the 

error bound e. We take the n closest boxes in each dimension (i.e., all boxes in a cube 

with sides of length 2n + 1 boxes centered at T) and ignore the influence of all other 

boxes. In the worst case we ignore a particle at distance nr (where r is the side length 

of the boxes) with weight w. Therefore, we choose n such that the influence of this 

worst-case particle is less than e: -

f = w exp i — S < e 

and w cannot be greater than the sum of weights W: 

N 

w < W = ^^Wi , 
i=i 

hence the number of boxes within range of each target box does not depend on the 

number of source or target particles, but only on e. 

The number of terms p in the Hermite and Taylor expansions is also determined 

by the allowable error e. The error bound in [2] is 

where D is the dimension of the problem. 

The amount of work required to perform the F G T is divided into two phases: 

computing the expansion coefficients for all the boxes takes O (N); and evaluating the 

expansions for all the target points takes O (M). The number of terms required in the 

series expansions is a function of the error bound e. 
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Although the F G T yields linear performance with respect to the number of source 

and target points, there are several theoretical and practical shortcomings with respect 

to other problem parameters. First, the total number of Hermite expansions terms 

grows as pD, where D is the dimension of the problem, and p is the number of expansion 

terms per dimension. In addition, the uniform division of space causes the number 

of boxes to become large as the scale parameter h becomes small or when dimension 

grows. The number of boxes grows as (j^)2D', so implementations of the algorithm 

that do not deal cleverly with empty boxes will become prohibitively expensive, both 

in the amount of memory required to store many empty boxes, and in computation 

time in examining empty boxes. 

In practice, these shortcomings limit the F G T to problems up to dimension D = 3. 

Unless adaptive gridding methods are used, the memory requirements of the F G T can 

be become prohibitive if h is too small. 

3 . 3 . 3 I m p r o v e d F a s t G a u s s T r a n s f o r m 

The Improved Fast Gauss Transform (IFGT) [40, 41] aims to improve upon the F G T 

by using a space-partitioning scheme and a series expansion that scale better with 

dimension. 

The space-partitioning scheme used in the I F G T is adaptive, in that it is sensitive 

to the location of source points rather than being fixed. They simply run the farthest-

point if-centers algorithm, which performs a rudimentary clustering of the data into 

K clusters. As in the F G T , the series expansion coefficients for all points in each 

cluster are summed. 

The F G T treats the multidimensional Gaussian as a product of one-dimensional 

Gaussians, performing a series expansion for each dimension independently. The I F G T 

does a series expansion of the distance from sources to targets, which yields fewer terms 

in the series expansion, particularly for high-dimensional problems. 

Formally, the algorithm proceeds as follows. First, the farthest-point clustering 

algorithm is run on the source points, producing K clusters. For each cluster B with 
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center xB, the series expansion coefficients are computed: 

B 2 a ^ f \ \ x i - x B \ \ 2 \ f X i - x B \ a . . 

^ = ^ 2 > * e x p ( 7^—> — ^ — J ' | a | < p -
i=l v * \ / 

Then, for each target cluster T, the set of clusters B that are within range are com­

puted.. Finally, the Taylor expansion for each target point is computed: 

exp< -
\\yi-xB\\ \ f y j - x B \ a 

h2 V h B \a\<p 

The total number of terms in the multi-dimensional Taylor expansion of total order 

p (called rp<i in [40]) is 
'p + D\ (p + D)\ 

rp,D D J p\D\ ' 

where D is the dimension of the problem. 

We must choose several parameters in order to satisfy a given error bound e. There 

are two sources of error in the IFGT: truncation of the series expansion after order p, 

and ignoring source clusters that are out of range. The first error source is called ET 

in equation 3.12 of [40]: 

T T , (2 r x r v - rx

2 — rv

2 1 2P /rxrv\P 

where rx is the maximum source cluster radius and ry is the range: the largest distance 

between targets and source clusters considered to be 'within range', p is the order of 

the series expansion. In [40] this bound is simplified (using the triangle inequality) to 

r *2P / TxTn 
E T < W 

p\\ h? ) ' 

but we find that in typical cases this simplification introduces a factor of 10 3 or more 

to the error bound; we therefore use the first expression. 

The second error source, as in the F G T , comes from ignoring the influence of 

clusters outside of range ry. The error bound for this term in [40], equation 3.13, is 

wrong. See Figure 3.2 for an illustration. The equation given is 

2 ' 
EC < W e x p j ^ } 
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d-

Cluster B 

x y 

Figure 3.2: A n illustration of the I F G T error bound due to ignoring clusters outside 

radius ry. The cluster center is XB and its radius is rx; the cluster is ignored if the 

distance dy from the center to y is greater than the range ry. In the worst case, a 

particle x with large weight sits on the cluster boundary nearest to y. The distance 

between y and x can be as small as d = ry — rx. 

However, in the worst case a source particle x with weight w = W and belonging to 

cluster B is located at the nearest possible point to target y. If the distance from y to 

the cluster center XB is infinitesimally greater than ry, then cluster B is ignored. If the 

particle x is located on the cluster boundary closest to y, then the distance between x 

and y is nearly ry — rx, not ry. Hence, the true error bound is 

r (ry ~ rx)2 \ Ec < W exp 
h? 

The I F G T papers do not suggest a method for choosing parameters K, ry and p 

to meet a given error bound e. We developed a protocol for choosing parameters that 

will satisfy a given error bound and also ensure that the complexity of the algorithm 

does not degrade. See Figure 3.3.3 for the protocol. It is based upon four constraints 

C: 

Ci : Ec < e 

Ci : . ET < € 

C3 : K < K* 

where C i and C2 are hard constraints that guarantee the error bound, C 3 is a hard 

constraint that guarantees the algorithmic complexity, and C4 is a soft constraint that 

(incorrect) 
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improves convergence. Note that each source cluster contributes to the error either 

through series expansion (ET) or by being ignored (Ec), but not both. Therefore, it 

suffices to require Ec < e and ET < e, rather than Ec + ET < e. 

Note that the I F G T , unlike the F G T , does not cluster the target points y; the 

distance from each target to each source cluster is computed. The algorithm therefore 

has O (KM) complexity, where K is the number of source clusters and M is the number 

of targets. To keep O (M) complexity, K must be bounded above by a constant, K*. 

This is constraint C 3 . Note that rx (the maximum cluster radius) decreases as K (the 

number of clusters) increases. Since K has an upper bound, rx has a lower bound. 

Contrary to the claim in [40], rx cannot be made as small as required by increasing 

K. 

The main issue with the I F G T is that the error bound ET + Ec vastly overesti­

mate the actual error. In [40], the error bound plots show that the bound typically 

overestimates the actual error by factors of 10 2 to more than 10 6. This is a major 

issue if we want guaranteed error bounds, because it means that we must choose p to 

be much larger than necessary. 

Another problem is that in many cases we cannot choose parameters such that 
r r r , x' y < 1, so the truncation error bound ET goes to zero very slowly. As the number 

of terms is increased from p — 1 to p, the error bound changes by a factor of ^ r * V y . 
phz 

Note that this can be greater than one - the error bound can increase as more terms 

are added to the series expansion! Eventually, p becomes large enough that the error 

bound decreases, but by this time p can become very large. This occurs because the 

Taylor expansion error bound grows with the size of the domain of the expansion. The 

expansion is about zero (the cluster center), so the worst-case expansion error occurs 

at the farthest point from the cluster center. This is troubling, because we know that 

the Gaussian decays away from zero; the greatest distance from the cluster center has 

the largest expansion error bound, yet we know that the Gaussian has the smallest 

value here. 
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// Recall: 

//Cx:EC<e 

// C2 : ET < e 

// C3:K<K* 

/ / f t : ( 2 ? ) < l 

Input: ry(ideal), e 
Output: k, ry, p 
Algorithm: 

for k = 1 to K*: 

run fc-centers algorithm, 
find largest cluster radius rx. 
using ry = ry(ideal), compute C\, C4. 
if C\ AND C4: 

break 

i f k < K*: 

// C4 can be satisfied. 

set ry = mm(ry) such that C\ AND C 4 . 

else: 
// C4 cannot be satisfied. 

set ry — min(ry) such that C\. 

set p = min(p) such that C2. 

Figure 3.3: Protocol for choosing IFGT parameters. We first try to find k < K* that 

will allow all the constraints to be satisfied with the given ry(ideal). In many cases, 

this is not possible so we must set k = K* and increase ry. Finally, we choose p 

to satisfy the truncation error bound C2. In practice, the fc-centers algorithm is run 

iteratively rather than being run anew each time through the loop. 



Chapter 3. Fast Methods 29 

1 1 

Figure 3.4: Box-Filter approximation of a Gaussian kernel. To achieve a relative error 

of 2%, 25 boxes are required. 

3.3.4 Box Filter 

Felzenszwalb, Huttenlocher and Kleinberg [10] note that when the source particles and 

target points are the vertices in a regular grid, the Sum-Product problem becomes a 

discrete convolution of the source weights by the kernel function. This is, if the kernel 

function K(xi,Xj) can be written as K(i — j), then 

N 

fj = YlWiK^ ^ J) • 
i=l 

In general this takes O (NM), where M is the support of the kernel. For certain kernels, 

however, this can be done more efficiently. The box filter, which has constant value 

inside some interval and zero elsewhere, allows the computation to be done in O (N). 

By summing several box filters, we can build a piecewise constant approximation to 

any smooth separable kernel. See Figure 3.4. 

To achieve an error bound of e, we must make the absolute difference between 

the approximation and the real kernel small. This is best accomplished by composing 

boxes of equal height such that the vertical space between boxes is equal; see Figure 

3.4. Such an arrangement is optimal because the error is bounded by the largest 

difference between the real value of the kernel and the box approximation. In order to 
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minimize this value globally, the vertical steps must be of equal size. It is necessary 

to use a number of boxes B, 

where Kmax and Kmin are the maximum and minimum values of the kernel, and W 

is the sum of source particle weights. The number of boxes can become large if small 

error bounds are required. In multiple dimensions, the convolution must be performed 

in each dimension. The cost of this method is O (DBN), where D is the number of 

dimensions, B the number of box filters required to approximate the kernel, and N 

the number of points. 

3.3.5 Dual-Tree Sum-Product 

Alex Gray and Andrew Moore [19, 32, 21, 20] introduced the dual-tree recursion that 

we use, and have presented algorithms similar to our fast Sum-Product algorithm. Our 

contributions here are mostly implementation-level improvements, except for section 

3.3.6, which presents better bounds on the influence function by using physically-

inspired constraints.2 

Our algorithm (in its simplest form) works for any non-increasing (monotonic de­

creasing or constant) kernel function of the distance between points, and non-negative 

particle weights. It is based on a dual-tree recursion, in which the frontier of a 'cross 

product' of trees is expanded in such a way that only areas of the trees that contain 

useful information are explored. Our algorithm allows the influence fj on each target 

point yj to be estimated to within a given error bound e. 

Alternatively, our algorithm could be adapted to become an any-time algorithm, 

in which an approximate answer can be returned at any time and the approximation 

becomes better as time progresses. This is a major difference between the dual-tree 

family of methods and the family of methods based on series expansions (Fast Multi-

pole Method, Fast Gauss Transform, Improved FGT). The expansion-based methods 
2Many of the ideas in this section were developed in collaboration with Mike Klaas. Both Mike 

and I thank the DSG Espresso Pool for supplying the brain fuel that allowed this work to proceed. 

B ~ Kmin) W 
2e 
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Figure 3.5: Illustration of a kd-tvee partitioning of space. The points are two hun­

dred samples from a ring with uniformly-distributed radius in (0.6,1) and uniformly-

distributed angle in (o, Nodes are split along the dimension with the largest 

range, and the dividing point is chosen so that the two children nodes contain an 

equal number of particles. 

guarantee error bounds based on theoretical bounds on the series truncation error. 

These bounds are valid for all data distributions, but since they are based on worst-

case behaviours, they are often quite loose for average-case problems. The amount of 

work that must be done is determined a priori, without reference to a particular data 

set. Dual-tree-based methods, on the other hand, are based solely on error bounds 

determined at run-time; they make decisions that are optimal for a single data set, 

rather than all possible data sets. 

Our dual-tree algorithm begins by creating space-partitioning trees for both the X 

and Y particles. See Figure 3.5 for an example of such a partitioning. We call these 

the X tree and Y tree, respectively. The leaves of each tree contain single particles. 
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Different types of space-partitioning tree, such as the kd-tree or ball-tree (anchors 

hierarchy [32]), can be used. One of the features of these trees is that it is a simple 

and inexpensive operation to compute the distance bounds between a pair of nodes. 

The basis of the algorithm is that, given a node from each of the X and Y trees, we 

can easily compute upper and lower bounds on the influence of all particles in the X 

node upon all points in the Y node. We can tighten the influence bounds by expanding 

nodes X and Y; that is, examining their children nodes. See Figure 3.6. The influence 

upon each Y child is the sum of the influences of the X children. Since the children 

nodes are more compact, the distance bounds are tighter, which in turn leads to tighter 

influence bounds. If the difference between the upper and lower influence bounds is 

much smaller than e, then there is almost nothing to be gained from expanding the 

nodes. This is where the computational savings of tree-based methods come from. 

If the nodes contain Nx and Ny particles, the cost of computing the Sum-Product 

naively is O (NxNy), while the dual-tree method performs only one operation. 

At the beginning of the algorithm, •. we cache the sum of weights within each node 

of the X tree. Then, we compute the distance bounds between the root nodes of the 

X and Y trees. This allows us to compute a bound on the sum of the influence of all 

particles in the X tree upon all particles in the Y tree. For each Y particle, we store 

this bound. Finally, we enqueue the X and Y root nodes on the list discussed below. 

As the algorithm proceeds, we keep a list of node-node pairs (one node from each 

of the X and Y trees, henceforth called "node-pairs" or "pairs") that we could expand. • node-pairs 

Expanding a node-pair involves considering all pairs of the nodes' children. For each 

child pair, we compute the new distance bound, and along with the total weight of 

particles in the X child this allows us to compute the influence bound of all points in 

the X child upon all points in the Y child. We enqueue each child pair, and for each 

particle in the Y node, update the influence bounds. 

The key point is that as long as the nodes of the trees become smaller as we 

move from the root to the leaves, then the influence bounds become tighter each time 

we process a pair from the queue. Intuitively, this occurs because the worst-case 

distribution of mass in the X tree becomes less bad; the distance bounds between the 
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Figure 3.6: Illustration of dual-tree influence bounds. 

(a) : X (left) and Y (right) nodes containing 50 particles each. 

(b) : the arrangement of particles that yields the lower-bound influence: all particles 

are in the farthest corners of the nodes, hence the distance is as large as possible, the 

value of the kernel function is as small as possible, and therefore the influence is as 

small as possible. The dotted line shows the upper bound on distance. 

(c) : an arrangement that leads to the upper-bound influence: all particles are as close 

together as possible, hence all distances are equal to the lower bound on distance, the 

kernel function has the largest value possible, and the influence is as large as possible. 

The dotted line shows the lower bound on distance. 

(d) : the effect of examining the children of the X and Y nodes. For clarity, the details 

are shown for only the lower Y child node. The upper distance bounds become smaller, 

and the lower distance bounds become larger. 
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child nodes is tighter than that of the parents. If we had exact arithmetic, we could 

compute the exact answer by expanding all pairs until we reached leaf nodes in both 

trees.3 

We know that the error bounds will decrease each time we process a node-pair from 

the queue. In practice, we would like to know that we are moving toward satisfying 

the error bound for each Y particle as quickly as possible. To achieve this, we attach 

a value to each node-pair and use a priority queue. The value function is the size of • value 

the error bound multiplied by the number of particles in the Y node: 

v(X, Y) = NYx ("PP"-) (X, Y) - /('«»«•) (X, Y)) 

where Ny is the number of points in Y. f(uPPer) and f(i°wer) are the upper and lower 

bounds on the influence of all particle in X upon all particle in Y, defined as: 

f(upper)rXiY) = K (d(lower^ (X,y)) J2Wi 

iex . . 

f (lower) (X:)Y) = K ((iiUpper) (X,Y)^ YlWi ' " (3-2) 
iex 

where K is the kernel function and d(lower) and d(upper) are the lower and upper bounds 

on the distance between X and V . Note that we cache the sum of weights in X. 

Our value function assigns highest priority to node-pairs that are currently con­

tributing most to the total error bound. Note that we cannot guarantee that processing 

the highest-priority node will lead to the largest possible decrease in total error, since 

we cannot know in advance how much tighter the child bounds will be compared to the 

parent bounds. Thus, we cannot guarantee that we are always reducing the error by 

the largest possible amount per unit of time, but we are guaranteed to be expending 

effort where it is most needed. 

(oriven upper and lower influence bounds f(upper) a n c j f (lower) f i f 

we wish to return 
an estimate with the smallest guaranteed symmetric error (|/ — / | < e), then 

f(X,Y) = | (f(uPPer) (X,Y) +f(lower^ (X,Y)} 

3Though this would cost at least O (MN) so would hardly be worthwhile! 
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Figure 3.7: A possible explanation for bias in the influence estimates for some prob­

lems. A Gaussian kernel from a to approximately 3a is shown. The solid lines show 

upper and lower bounds on the distance and influence. The dash-dotted line shows 

the average of the upper and lower influences; this is the influence estimate with the 

smallest guaranteed symmetric error bound. However, a more accurate estimate could 

be the dashed line, which corresponds to the influence at the average of the upper and 

lower distance bounds. For concave-up kernels, our estimate will always be biased in 

this manner. 
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which has error bound 

e(X,Y) = ^ ^upper^ (X,Y) - (X,Y)^ . 

However, in our experiments we have find that for some problems this estimate will 

systematically overestimate the true influence fj. While we have not explored this 

effect in detail, one explanation could be that rather than the average of the upper 

and lower influence bounds, a better estimate would be the influence and the average 

of the upper and lower distance bounds. See Figure 3.7. For concave-up kernels, the 

estimate / given above will always be an overestimate if this explanation is correct. 

For fairly small e, most of the source particles within one a (where the Gaussian is 

concave-down) will be expanded to the leaves, while outside one a (where the Gaussian 

is concave-up) many nodes will be unexpanded and hence prone to this effect. 

Implementation Details 

In developing our algorithm, we discovered several enhancements that may seem un­

intuitive, yet give considerable performance increases. Only readers interested in such 

details need read this section. 

One might suppose that we need to keep the queue sorted by order of priority. 

However, all we really need to do4 is expand the subset of nodes necessary to bring 

the error bounds low enough; the order in which the work is performed is irrelevant.5 

We found that for Gaussian kernels with reasonable scales, the priorities span a very 

large range of values: many orders of magnitude. For reasonable error bounds e, we 

must expand nodes with values ranging over several orders of magnitude. Rather than 

keep a fully-sorted queue, we create a queue for each order of magnitude (henceforth, 

"order"). When dequeuing, we choose the first element from the highest-order queue. 

By doing this, we avoid expending effort maintaining a fully sorted queue. The 

consequence is that as we approach the target error (as we are expanding pairs of the 

final order) we may expand nodes with values smaller than the optimal; we may do 
4This only applies for the non-anytime version of the algorithm. 
5Except in so far as we have to process parents before we can process their children. 
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Inputs: root nodes of X and Y trees, Xr, Yr; e 
// Initialization. 

1 {Ur,Lr} = w(Xr) K {d^lower'u^er\Xr,Yr)) 

2 for j = 1 to N(Yr) 

3 Aupper,lower} frr r 1 
Jj — \Ur,^rS 

4 enqueue(Xr ,Yr,Ur, Lr) 
// Main loop. 

5 while NOT (bounds_satisfied ()) 
6 {Xi,Yi,Ui,Li} = dequeueQ 

// Expand nodes Xi and Y{. 
7 for yc = 1 to children*(li) 
8 Yc = child* (Yi,yc) 

// A is change in bounds. 

9 ^{upper,lower} f JJ. E} 

10 for xc = 1 to children* (Xi) 
11 Xc = child* (Xuxc) 

// Compute influence bounds for children. 
12 . . {Uc, Lc} = W(XC) K {d{upper,lower}^ yjj •• 

13 A{upper,lower} + _ rjj^ L J 

14 if NOT (leaf (Xc) AND leaf (Yc)) 
15 enqueue(Xc, Yc, Uc, Lc) 

// Update bounds on fj for each particle in Yc 

16 for j = 1 to N(YC) 

17 j{upper,lower} ^{Upper,lower} 

// Return estimates fj and error bounds ej. 

18 for j = 1 to N(Yr) 

19 f . - l (jiUPPER) ^ j?(lower)\ 

20 1 / Aupper) Mower)\ 
ei - 2 \h ~ Jj ) 

Figure 3.8: Pseudocode for the Dual-Tree Sum-Product algorithm. The notation 
{A,B} = f({XA,XB}) means A = f(XA) and B = f(XB). The enqueue(X, Y,L,U) 
function places a new element on the priority queue. We use the value function (U — 
L) x N(Y). The function children* () returns the number of children for non-leaf nodes 
and 1 for leaf nodes. The child* (X, i) function returns the i-th child for non-leaf nodes 
and the node itself for leaf nodes. 
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Figure 3.9: Order-of-magnitude queues. There is a set of active queues, containing 

(unsorted) pairs with values of the same order of magnitude. There is also a bucket 

containing (unsorted) pairs with small values. 

some unnecessary work. In practice, we find that the amount of unnecessary work we 

perform is small, and is more than paid for by avoiding the cost of maintaining a fully 

sorted queue. In our experiments, we found that simply maintaining the fully-sorted 

property of the queue took a significant portion of the computational effort, even when 

we used a Fibonacci heap as the underlying data structure, 

For kernels whose values do not span such a large range of values, we could use 

smaller increments than orders of magnitude, such as powers of two. Alternatively, we 

could use a finer discretization as the error bound approaches e. 

As a further enhancement, rather than maintaining a queue for each order, we 

maintain a fixed number of active queues and a catch-all bucket6 for pairs with small • bucket 

value; see Figure 3.9. Many pairs that are placed in the bucket will never be expanded. 

Therefore, we would like to minimize the amount of work performed on these pairs, 

while also allowing the possibility that they will be expanded. When expanding a 

We find that the bucket must be made df a hard material, since a hole in the bucket can result in 

a memory leak. 
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node-pair, we first compute the upper bound of the influence. From this we can 

compute an upper bound on the pair's value, by assuming that the lower influence 

bound is zero: 

f(.upper)fXiY) = K (d^lower) (X,Y)^j 

v(X,Y) = N(Y) (f(uPPer) — f ( l o w e r ) ^ 

< N(Y) f(uPPer) 

If the upper bound on value is small enough that the pair will be put in the bucket, 

then we don't have to compute the lower influence or value bounds. If at any point the 

active queues become empty, we create a new set of active queues (with smaller orders) 

and refill them from the bucket; at this time, we must compute the lower influence 

bound f ( l o w e r ) and recompute the value v of pairs that are removed from the bucket. 

This optimization allows us to avoid a significant amount of work (an upper distance 

and lower influence bound calculation) for 'hopeless' pairs that are never removed 

from the bucket. We find this strategy to be faster than the Fibonacci heap approach 

described by Gray and- Moore [20]. 

As another optimization, we found that checking if we have achieved the error 

bound is a relatively expensive operation compared to expanding a node-pair. There­

fore, we process a batch of node-pairs before checking if we have reached the target 

error level. We found that batches of one thousand node-pairs gave good results. 

Finally, we note that in order to satisfy the error bound e for each point in Y, we 

must first satisfy the bound that the sum of error bounds is less than eN(Y). This 

condition is much cheaper to check, since we need only maintain a total error bound, 

rather than N(Y) individual bounds. During the first phase (before we have satisfied 

the sum bound), we can use the "deferred asynchronous propagation" trick of Gray 

and Moore [20]: rather than adjusting the bounds for each point in Y, we propagate 

the /\{uPPer>lower} values to the immediate children of Y. In the pseudocode of Figure 

3.8, lines 16 and 17 are replaced by a simple operation that does not cost O (N (Yc)). 

When the first phase completes, these deferred A values must be propagated to the 

leaves. A significant portion of the running time of the algorithm is spent in the first 



Chapter 3. Fast Methods 40 

phase, so this can lead to considerable savings. 

Extensions 

We briefly mention a few simple extensions to our dual-tree Sum-Product algorithm. 

First, if would be straightforward to loosen some of the restrictions we have made on 

the form of the kernel function. At present we consider monotonic kernels K(X, Y) = 

K (\\X — Y\\), and in our algorithm we explicitly calculate the distance bounds between 

nodes. The bounds are then simply 

j^{upper,lower} j£ (^{lower,upper} ^ 

Instead, we could simply demand that bounds on the influence be calculable (in O (1)) 

given two nodes: 

Kupper = TJfX,Y) 

Rlower = LfX}Y) 

where U and L are the kernel-bounds functions. This would allow, for example, non-

stationary (translationally variant) kernels. 

Second, we could allow different kernels for each source point, for certain families 

of kernels. At present, we demand a uniform kernel: 

Ki{Xi,Y) = K(XUY) 

but it would be easy to allow certain families of parametrized kernels: 

Ki(Xi,Y) = K(Xi,Y,Pi) 

where Pi is some set of parameters. For example, with Gaussian kernels we could 

allow each source particle to have a unique variance. At present, the influence bounds 

are defined by the value of the kernel at the largest and smallest distances. With this 

change, the upper bound would become the value of the kernel with greatest value 

at the smallest distance (and vice versa for the lower bound). This is simple in the 

(unnormalized) Gaussian case: the kernel with greatest value is simply the kernel with 
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largest variance, and vice versa. We could simply keep track of the variance limits 

within each subtree of the source tree, in the same way that we track the sum of 

weights. 

Third, we have required non-negative particle weights, since this is typically the 

case for Sum-Product problems that arise in probabilistic inference. However, for 

more general Sum-Product settings, relaxing this restriction would be useful. This 

could be done quite easily: rather than caching the sum of weights within each X 

subtree, we would cache the sums of positive and negative weights separately. The 

bounds computations would also change: the upper influence bound would arise when 

all the particles with positive weights were as near as possible to the target point and 

all particles with negative weights were as far away as possible. The lower influence 

bound would be the opposite situation. 

3.3.6 Better Bounds for Dual-Tree Methods 

In this section we present new bounds that improve the Dual-Tree Sum-Product al­

gorithm. Our bounds on the kernel influence are always as good or better than the 

bounds currently used. Recall that the bounds (equation 3.2) are central to the Dual-

Tree approach. Given a source node X and target node Y, we wish to bound the 

influence of all particles in the source node on all points in the target node. 

As the algorithm proceeds, nodes are expanded in order to tighten the bounds. 

The estimate for the influence at each target point is bounded by the sum of bounds 

of all the source nodes. Once the sum of bounds has been tightened to less than the 

allowable error e, the algorithm completes. 

The original bounds, which are used by Gray and Moore and others, are the re­

sult of finding the distributions of particles (mass) that maximize and minimize the 

influence, subject to the constraint that the mass is equal to the masses of the actual 

particles in the node X. This can be written in continuous form as 



Chapter 3. Fast Methods 42 

Min Influenci 
Distribution , 

Max Influence 
Distribution 

Node Y 
o 

Figure 3.10: Original influence bounds. The maximum-influence distribution is a single 

particle with mass W at the closest point to node Y, while the minimum-influence 

distribution is a particle with mass W at the farthest point from Y. 

where W is the sum of the weights of particles in node X: 

iex 

For monotonic decreasing kernels, the extrema distributions collapse to delta func­

tions at the nearest and farthest points, respectively: 

where the argmax and argmin are the points in X that are farthest and nearest from 

Y. See Figure 3.10. 

We now make an analogy between the particles in X and physical particles. The 

constraint of the original bounds is that the zeroth raw moment of inertia of the 

function w* (x) matches that of the particles in X. That is, the total masses must 

be equal. We add the constraints that the first and second raw moments7 of inertia 

must also match those of the particles in X. That is, the original bounds satisfy the 
7 The raw moments are defined in terms of distance from the origin of the coordinate system, .while 

the (more intuitive) central moments are defined in terms of the center of mass of the object. 

W, 

w. 
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constraint CQ, denned as 

Co j w (x) dx 
x iex 

and we add the constraints C\ and C2: 

C\ : w (x) x dx 
Jx 

C2 : I w(x) | | x f dx 
Jx 

II 
2 

iex 
The constraint C\ requires that the center of mass (first moment) of the extrema 

distributions match that of the particles in X. Constraint C2 requires that the second 

moment of inertia match that of X. 

Finding the bounds now becomes the problem of finding the minimum and maxi­

mum of the constrained optimization 

We make a series of proofs and conjectures as shown in Figure 3.11. First, we • proof 
• roadn 

show that the optimal solutions must be composed of a finite number of Dirac delta 

functions (ie, point masses or particles). We conjecture that any such solution can be 

decomposed into a sum of D + 1-particle solutions, where D is the dimension of the 

problem. 

For the upper bound, we conjecture that if we are given a D + 1-particle solution, 

it is always possible to find a two-particle solution that satisfies the same constraints 

and is better. Hence, the maximum solution must be a two-particle solution. Next, we 

show that the optimal two-particle solution must lie on the line connecting the centers 

of the source and target nodes. Finally, for some cases we show that the endpoint 

solution is the optimal two-particle solution. 

For the lower bound, if we assume that a two-particle solution is optimal, we find 

that the particles are not constrained to lie on points but rather to lie on a D — 1-

dimensional spherical surface. We conjecture that this solution is the optimal not only 

for two-particle solution, but for all solutions. 

w(x) Jx 
s.t. Co, Ci, C2 (3.3) 
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Figure 3.11: A roadmap of the better upper bound proof. See the text (on page 43) 

for discussion. 
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The first theorem, which states that the op t imal solutions w* (x) cannot be con­

tinuous, follows. 8 

T h e o r e m 1 . For the optimization problem above (equation 3.3), the existence of a 

continuous optimum w* (x) implies that 

d3K(x,y) = Q 

dx3 

Proof. Equa t ion 3.3 can be solved as an infinite linear programming problem. Assume 

that w* (x) is continuous. We set up a Lagrangian wi th mult ipl iers 0 = {#o> #1) 62}-

2 

C (w ( x ) , 0) = / w (x) K (x, y) dx — 2_]®% xl w (x) dx — c 
Jx i = 0 Ux 

where aj are the raw moments of the particles in node X: 

J£X 
X Wj 

Differentiating the Lagrangian (3.4) by w (x) and setting to zero yields 

ZxK(x,y)'=lx (j2^x^j • (3-4) 

where Ix is the set membership function. Hence, K(x, y) is a po lynomia l of degree 

< 2 when x € X. Therefore, the th i rd derivative of K(x,'y) is zero. • 

C o r o l l a r y . Given a kernel K(x, y) with 3 or more non-zero derivatives (the Gaussian, 

for example), the extrema distributions w* (x) are composed of a finite sum of Dirac 

masses. 

Next , we conjecture that rather than dealing wi th a finite number of D i rac masses 

(henceforth called particles), we must deal w i th only D + l particles, where D is the 

dimension of the problem. 

C o n j e c t u r e 2. Any sum of N particles can be written as a sum of sets of up to D + l 

particles: 
N D+l 

w (x) = ^ Wi5 (x — Xi) —> w (x) = ^2 Y/ w ^ (x ~ ' 
i = i j=i 

This theorem is the result of discussions with Nando de Freitas, Joel Friedman, and Mike Klaas. 
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Sketch of proof. We show this by construction. See Figure 3.12 for an example in two 

dimensions. Note that the weights are non-negative. This implies that it is possible to 

find a set of up to D + 1 particles whose convex hull contains the center of mass. The 

construction proceeds as follows. Start with the original distribution of iV" particles 

with arbitrary (positive) masses. We will iteratively remove mass from this distribution 

while adding it to the equivalent distribution that we are constructing. At each step, 

select D + 1 points whose convex hull contains the center of mass. Choose portions 

of each of these particles' mass such that the center of mass coincides with the total 

center of mass. It is always possible to select some positive amount of mass in this 

way. Add these masses to the distribution under construction, and remove them from 

the original distribution. Repeat until all mass has been removed from the original 

distribution. • 

Coro l l a ry . Assume we are given a set of N particles that comprise an optimal solution 

to the optimization problem (equation 3.3). Any such solution can be written as a sum 

of solutions comprised of sets of D + l particles. Since the optimization and constraints 

are linear in weight, the solutions are independent. It thus suffices to find the optimal 

solutions of equation 3.3 comprised of D + 1 particles. 

Now, consider the upper bound (the maximum) of equation 3.3. We move from 

D + l particles to two particles. We do not yet have a proof for this. 

Conjecture 3. Given any set of D + 1 particles (with moments a.i,i = {0,1,2},), 

it is possible to find two particles that have the same moments and equal or greater 

influence. This is, there exist points x\ and x2 and weights w\ and w2 such that 

D+l 
wiK(xi,y) + w2K(x2,y) > ^WiK (xuy) , 

i=i 

and the moments of the two particles match that of the D + l particles. 

Next we show that the maximum two-particle solution must have both particles 

on the line connecting the centers of the source and target nodes. 



Chapter 3. Fast Methods 47 

Figure 3.12: Example of the proof by construction. The original distribution is the 

top-left box. The left column shows the remainder of the original distribution. The 

right column shows the constructed triangle. Each row is one step in the decomposition 

process. The area of each circle represents its mass. In the final step, all the remaining 

mass is removed from the original distribution. 
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Figure 3.13: Rotation of a two-particle system. The target point is Y (on the left). 

The particles are mi and m2\ their center of mass is xcm, which is also the center of 

mass of the node X. n > r2 so mi < m2. L is the distance from the nearest point in 

node Y to xcm. The distance from Y to mi is ci and the distance from Y to m2 is c2. 

Theorem 4. Assume that the center of mass is the center of the source node, and 

that the kernel is Gaussian. The maximum two-particle solution to equation 3.3 occurs 

when both particles are located on the line connecting the centers of the source and 

target nodes. 

Proof. We call the line connecting the centers of the source and target nodes XY. 

Assume we are given an optimal solution S that satisfies the constraints (Co, C i , 

C2), and has particles not on XY. We will show that it is possible to rotate the 

particles about their center of mass, giving solution S'. By doing this, we can improve 

the solution; the optimal rotation is to place the particles on the line XY. This 

contradicts the assumption that S is an optimal solution. 

First, note that rigid rotation about the center of mass preserves the moments, so 

if S satisfies the constraints then so does S'. 

The geometry is shown in Figure 3.13. The distances ci and c2 can be calculated 

using the cosine law, which allows us to write the influence as a function of the angle 
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of rotation <f>. Setting the first derivative to zero, we find that potential solutions are 

0 i = 0 

<t>2 = TT 

r\-r2 
cos fc = • 

Taking the second derivative, we find that 0i and <\>2 are local maxima and fa is a 

local minima. Since <f> is an angular variable, the global maximum is the maximum of 

the local maxima. Both <j>\ and (f>2 correspond to solution in which the particles are 

on the line XY. • 

This theorem (which relies on a number of conjectures which remain to be proven) 

is very useful. For a two-particle solution in which the particles lie on the line XY, 

the moment constraints allow us to write the masses of the two particles (wi and w2) 

and the position of the second particle (x2) in terms of the position of the first particle 

( x i ) . See Figure 3.14. The constraint that both particles be inside node X (ie, have 

distance to the center of the node not greater than R) constrains x\ to lie in a range 

of radii [Rmin,R]. We are thus left with a one-dimensional constrained optimization 

in one variable, which is much simpler to solve than the original multi-variable, multi­

dimensional problem. 

Assume that the target is at position y > R. As the first particle moves from 

Rmin to R, its distance to y decreases so the value of the kernel function increases. 

Meanwhile, its mass w\ decreases. The second particle, meanwhile, is constrained to 

move from —R to —Rmin and its mass increases. Clearly, the influence of the second 

particle increases as this occurs, while the influence of the first particle may increase 

or decrease, depending on the relative importance of mass relative to kernel value. 

While it is possible to solve this optimization numerically at run time, the added 

computational expense of doing this is likely to be greater than the gain yielded by 

the better bounds. Therefore, we would like to find analytically conditions where the 

maximum is one of the endpoints (x\ — R m i n or x\ — R). 

In the following, we consider the Gaussian kernel. Given a bandwidth u, node 
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Figure 3.14: Positions and weights in the two-particle system. Left: positions of the 

two particles as x\ moves from Rmin to R. Right: weights of the two particles as x\ 

moves from Rmin to R. 

radius R, and moment constraints, we want to show that for targets outside a particular 

range, the optimal solution occurs at the endpoint x\ = R. If this condition holds, 

then we can compute the better upper bound at only marginally greater cost than the 

original bound. 

We have thus far found it impossible to derive closed-form expressions for the 

conditions that must hold for x\ = R to be the solution. Running numerical tests 

allows us to get a sense of the structure of the solution space: see Figure 3.15. 

If we try to find analytic expressions for the boundaries of the regions where the 

endpoint solutions hold, we encounter equations of the form 

piexp(ti) = p2exp(t2) , 

where p\ and p2 are polynomials and the terms t\ and t2 are not equal. It may be 

impossible to derive closed-form solutions to these equations. We may be forced to 

resort to numerical methods or weaker bounds. 

It has been difficult to prove even weaker bounds. For example, we can focus on 

the first particle and determine when the derivative of the influence of the first particle 

is positive. If we can show it is positive in [Rmin,R], then x\ = R is the maximum. 
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Figure 3.15: Solution phases of the two-particle system. The black area shows where 

the endpoint x\ = Rmin is the maximum solution; the white area shows where x\ — R 

is the solution. In the gray area, the maximum is in the interior of the range. The left 

plot shows the results for a source node with small second moment, while the right 

plot shows a large second moment. The lines show the bounds we would like to prove. 

The white line separates the x\ = Rmin region. The dashed black line shows where 

x i = R is a local maximum of the influence of the first particle. The dot-dashed line 

shows where the point of inflection of the Gaussian occurs at R. 
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We can ignore the second particle because the derivative of its influence with respect 

to xi is always positive; this weakens the bound. 

Trying this, we find that the minimum of the derivative occurs either at Xi = R 

or at some point in the interior that is the solution to a cubic equation. It would be 

straightforward to solve this numerically, but it is difficult to handle analytically. If 

we ignore the potential interior solution and assume that one of the endpoints is the 

solution, then we arrive at the first bound shown in Figure 3.15. This bound is 

<r<(y-R)(R + Rmin) 

Unfortunately, as-y (the "distance to the target) becomes large, this bound becomes 

weak: it requires o < 0 (y/y), while the true bound appears to go as cr < 9 (y). 

Another bound that may be provable and has better asymptotic behaviour is 

which demands that the Gaussian be concave-up at R. Being concave-up is not in 

itself a sufficient condition for the solution to be xi = R, but the bound seems to hold 

empirically. This bound is shown in Figure 3.15. 

B e t t e r L o w e r B o u n d 

Our better lower bound also requires several unproven conjectures. If we assume that 

a two-particle solution is optimal, then we find that the minimum solution to equation 

3.3 is not a point but rather a curve. In this optimal solution, both particles sit on 

the radius of a circle centered at yy. Recall that yf is the point in the target node Y 

that is farthest from the center of source node X. This can be shown by writing the 

total influence in terms of the position of one of the particles, setting the derivatives 

to zero, and solving the resulting simultaneous equations. 

The result is the lower bound 

/ Wy2

f + M\ 
/ ( X > y ) > W e x p ( - - ^ J , 
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where M is the (central) second moment,9 and W is the sum of masses in X. 

Since the two-particle solution is not a point but rather a surface, we conjecture 

that this surface is also the solution to the general problem. 

Testing of Better Bounds 

We tested our better bounds by running the Dual-Tree algorithm with the Anchors 

Hierarchy, computing at each step both the standard bounds and the better bounds 

described above. The results are shown in Figure 3.16. The better upper bound is 

at most half as large as the original bound. The better lower bound is considerably 

larger than the original bound. 

3.4 Max-Product 

The Max-Product problem is simply the Sum-Product problem with the summation 

converted to a maximization: 

fj
 = ^ ( Wi K i (WXi ~ ̂ 'ID f 

x* = argmax { w{ K{ (||XJ - y3\\) } , j = 1. . . M . 
ie[i,N] L J 

where, as before, W{ is the weight of source particle Xi and Ki(d) is a kernel function of 

the distance between sources x and targets y. We focus on the case where the kernel 

function is uniform: Ki(d) = K(d). 

The Max-Product problem can be seen as a search for the source particle Xj among 

the iV particles in X that has the largest influence upon target point yj. 

3.4.1 Distance Transform 

Felzenszwalb and Huttenlocher [12] note that for cases where the source and target 

points are the vertices of a regular grid, the Distance Transform [4, 11] can be used to 

solve the Max-Product problem. 
9Although we discussed the raw moments earlier, it is simpler to consider the central moments 

here; it is simple to convert between the two. 
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Better / Original 

Original / Better 

Figure 3.16: Better bounds results. Top: Upper bound. Bottom: Lower bound. 
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For example, the truncated linear and quadratic cost functions 

CI(XJ,XJ) == mm(\xi — Xj\ ,d) ' 

C2(xi,Xj) = mm(\xi - Xj\ 2 ,(Fj , 

which correspond to the kernel functions 

K\ (xi, Xj) = exp {— min (|XJ — Xj\, d)} 

K2(xi,Xj) = exp |—min — Xj|2,d^| 

can be solved with distance transforms, if the state space is a regular grid. 

The Distance Transform takes advantage of the fact that on a regular grid the kernel 

function changes in a predictable way. We reproduce the example of the distance 

transform in one dimension from [10], except with weighted kernel functions. See 

Figures 3.17 and 3.18. This example uses the kernel function K\ above. We work in 

negative log space so we use cost function c\. Assume that the truncation term d is 

very large so has no effect in this example. The problem of finding the kernel with 

maximum influence now becomes the problem of finding the lower envelope of the cost 

function c\. Note that in one dimension, the cost function of each source particle is an 

inverted one-dimensional cone (a " V " ) ; the weight of the particle determines the cost 

of the base of the cone. 

In one dimension, the sources and targets do not have to be embedded in a regular 

grid. We can simply sort the sources and proceed as described in the example, except 

that instead of simply adding one, we must keep track of the distances between points. 

In higher dimensions, however, this becomes infeasible, since the multi-dimensional 

Distance Transform depends upon many points sharing coordinate values. 

The distance transform is fast: it costs O (DN), where D is the dimension of the 

problem and N is the number of grid points. While distance transform methods are 

very fast, their domain is somewhat limited: except for one-dimensional problems, they 

cannot be used in conjunction with Monte Carlo gridding methods (sections 2.2.3 and 

2.2.4, for example). 
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Figure 3.17: Distance Transform example: part 1: forward pass. 

The X and Y points are the regular grid {0... 8}. Each X particle is represented by 

a cone; the weight of the particle determines the height of the cone (ie, the minimum 

cost). The find the Max-Product, we find the lower envelope of all the cones (the min), 

and the cones to which the lower envelope belongs (the argmin). 

We first make a forward pass through the points. At each position i, we compute 

Min (i) = min (Min (i — 1) + 1 , w{). That is, we either take the previous answer plus 

one (labelled "Prev + 1"), or we take the cone anchored at i, whose value is Wi (labelled 

"This wn). 

If the previous answer was chosen, the argmin is unchanged; if cone i was chosen, the 

argmin becomes i. The boxes where this occurs are highlighted. This process projects 

the influence of the cones to the right. In the reverse pass we gather the influence to 

the left; see the following Figure. 
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Figure 3.18: Distance Transform example: part 2: reverse pass. 

In the reverse pass of the Distance Transform algorithm, we start from the right 

and update the values computed in the forward pass. At each point i, we consider 

the value computed in the forward pass (labelled "Forward"), and the value of the 

previous answer plus one. 

This is, the minimum at position i is: 

Min (i) = min (Min (i + 1) + 1 , Forward (i)) , 

where Forward (i) is the Min (i) value computed in the forward pass. 

If the previous value is chosen, the argmin is updated. The boxes where this occurs 

are highlighted; these correspond to the locations where the dotted line is different 

from the solid line. 



Chapter 3. Fast Methods 58 

3.4.2 Dual-Tree Max-Product 

As in the Sum-Product case, we develop a dual-tree strategy. The algorithm is based on 

bounding the distance and weight, hence the influence, of subtrees of X particles upon 

subtrees of Y particles. Unlike the Sum-Product case, the Max-Product algorithm 

gives the exact result. 

We begin by constructing space-partitioning trees for the X particles and Y points. 

The leaf nodes of these trees can contain multiple points. 1 0 We also cache at each node 

in the X tree the maximum particle weight contained by the node. At leaf nodes, we 

sort the particles in order of decreasing weight. 

The algorithm proceeds by doing a depth-first recursion down the Y tree. For 

each node, we maintain a list of X nodes that could contain the best particle. For 

each X node we compute the lower and upper bounds of the maximum influence of 

particles in the node on all points in the Y node. The largest lower bound on influence 

is the pruning threshold: any candidate node whose upper bound is less than this •pruning 
threshoh 

threshold cannot possibly contain the best particle, and hence need not be considered. 

See Figures 3.19 and 3.20. 

In each recursive step, we choose one Y child on which to recurse. Initially, the set 

of X candidates is the set of candidates of the parent. We sort the candidates by lower 

bound, which allows us to explore the most promising nodes first. For each of the 

candidates' children, we compute the lower bound on distance and hence the upper 

bound on influence. Any candidates that have upper bound less than the pruning 

threshold are pruned. For those that are kept, the lower influence bound is computed; 

these nodes have the potential to become the new best candidate. 

As we descend the trees, the influence bounds become tighter so we are able to 

prune more and more nodes, until at the leaf level we are, ideally, left with only a few 

nodes. Once we reach the leaf nodes, we begin looking at individual particles. The 

candidate nodes are sorted by lower influence bound, and the particles are sorted by 
1 0 The number of particles in the leaf nodes influences the tradeoff between pruning based on distance 

and pruning based on weight. We have not investigated this effect in practice. In our experiments we 

allow up to 25 particles in leaf nodes. 
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Figure 3.19: Dual-tree Max-Product pruning. The X particles are 2000 samples from 
the ring with uniformly distributed radius in (0.6,1) and uniformly distributed angle 
in ^0, ^ J . The weights are uniformly distributed in (0,1). The kernel is a Gaussian 
with scale a = 0.1. The pruning steps for a single Y point are shown. Each plot shows 
one level in the X tree. The candidate (dark) and non-candidate (light) nodes are 
shown. In the bottom-right plot, a close-up of the six final candidate nodes is shown 
(dashed). The single box whose particles are examined is shown in black. The subset 
of the particles that are examined individually is shown in black. 
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Figure 3.20: Dual-tree Max-Product example. 

Top: the influence bounds for the nodes shown in the previous figure. The pruning 
threshold at each level is shown (dashed line), along with the bounds for each candidate 
node. 

Bottom: pruning at the leaf level: in the example, six leaf nodes are candidates. 
We begin examining particles in the first box. As it happens, the first particle we 
examine is the best particle (the correct answer). Pruning by particle weight (the 
upper marker) allows us to ignore all but the first six particles. The pruning threshold 
is then sufficiently high that we can prune the remaining candidate nodes without 
having to examine any of their particles. There were 2000 particles in X, of which 
six nodes (containing 94 particles total) were candidate leaf nodes. Of these, only six 
particles from the first node were examined individually. 



Chapter 3. Fast Methods 61 

weight, so we examine the most promising particles first and minimize the number of 

individual particles examined. In many cases, we have to examine only the first few 

particles in the first node, since often the pruning threshold increases sufficiently that 

the remaining candidate nodes can be pruned. 

The dual-tree strategy is effective because, for a given node in the Y tree, the list 

of candidate nodes in the X tree is valid for all the points within the Y node. In 

this way, pruning decisions are made once rather than being 'rediscovered' for each Y 

point. 

3.5 Application to Inference in Graphical Models 

In the section we describe how to apply our fast Sum-Product and Max-Product algo­

rithms to Belief Propagation, Maximum-Belief Propagation, and Particle Smoothing. 

3.5.1 Belief Propagation 

The expensive operation in the Belief Propagation algorithm is computing the mes­

sages. Recall that the message from node j to node i is (equation 2.4): 

which costs O(NiNj), where Nj is the number of states at node j n and Ni is the 

number of states at node i. For each of the Ni states, we compute a sum of Nj terms. 

If the potential function ipjj (xj,Xi) can be written as a kernel function K (d (xj,Xi)), 

(where d is a distance metric) then our fast Sum-Product methods can be applied eas­

ily. We specialize to the case where d(xj,Xj) = || Xj Xi ||, though as discussed in 

section 3.3.5, this restriction could be relaxed. 

First, note that ipj (XJ) and the incoming mesasges m^j (XJ) do not depend on 

Xi. These terms are combined to become the weight W(XJ). Meanwhile, the potential 

1 1 For Discrete BP, this is simply the number of discrete states, while for Continuous BP (section 

2.2.3) it is the number of particles (discretized states). 

k&N(j) except i 
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INPUTS: root nodes of X and Y trees, Xr, Yr. 

ALGORITHM: 

1 leaves = {} 

2 candidates = {Xr} 

3 max_recursive(y r , leaves, candidates, —oo) 

FUNCTION max_recursive(y, leaves, candidates, T) 

4 if (leaf (Y) AND candidates = {}) 

// Base Case: reached leaves. 

5 max_base_case(Y, leaves) 

6 else 

// Recursive case: recur se on each Y child. 

7 foreach y € children* (Y) 

8 Ty = T 

9 val id = {} 

10 foreach p € candidates 

// Check if we can prune parent node p. 

11 if {w(p)K{dlower(p,y))<ry) 

12 continue 

13 foreach x £ children (p) 

// Compute child bounds. 

14 f {upper,lower) ^ = W (X) K (d{to«>er,URper} (x, y)) 

// Set pruning threshold. 

15 TY = max (ry , max ( / W r ( x ) ) ) 

16 val id = val id U {x G children (p) : fu™er (x) > ry} 

17 val id = {xe val id : / u ^ e r (x) > ry} 

18 leaves^ = {x € val id : leaf (x)} 

19 candidates^, = {x € val id : NOT (leaf (x))} 

20 sort(leaves y by flower) 

21 max_recursive (y, leaves^, candidates^, TV) 

Figure 3.21: Dual-tree M a x - P r o d u c t algori thm, part 1. In the recursive step, we 

recurse on each chi ld of the Y node. We examine the children of each candidate node, 

and collect the set of children above the pruning threshold ry, as we raise the threshold 

(lines 10-16). F ina l ly , we select the nodes above threshold, sort the non-leaves, and 

recurse (lines 17-21). 
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FUNCTION max_base_case(Y, leaves) 

1 foreach x G leaves 

2 f {upper,lower} ^ = w (x) K 'dil°wer'uPPer} (x,Y)) 

3 r = max (flower (x) 

4 leaves = {x G leaves : fupper (x) > T} 

5 sort (leaves by flower) 

// Examine individual y points. 

6 foreach y G Y 

7 Ty=T 

8 foreach x G leaves 

// Prune nodes by Y (cached), then by y. 

9 if ((fuPPer(x) < Ty) OR (w (x) K (dlower (x, y)) < Ty)) 

10 continue 

// Examine individual x particles. 

11 foreach i G x 

// Prune by weight. 

i f( r w C T ( I )^i < T») 
13 break 

14 f(i) = w(i)K(d(i,y)) 

15 i f ( / ( i ) > r v ) 

// i is the new best particle. 

16 Ty = f(i) 

17 x* (y) = i 

Figure 3.22: Dual-tree Max-Product algorithm, part 2 (base case). We first calculate 

the influence bounds of the candidates, find the pruning threshold, and prune (lines 

1-5). We then examine individual y points. We prune based on the cached bound (for 

the parent node V) and then on y (lines 6-10). Next, we look at individual particles 

in the node x. The particles are sorted by weight, so when a particle is reached whose 

weight leads to an influence below threshold, we can skip the remaining particles (lines 

13-14). Finally, we compute the influence of the particle and decide if it is the new 

best (lines 14-17). 
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function becomes the kernel function: 

I^J(XJ) n mk,j{xj)) 

k€N(j) except i 

lpjti(xj,Xi) K(\\xj-Xi\\) 
Nj 

mjti{xi) => 'YJWJ K (\\XJ - Xi\\) . 
3=1 

Now, computing the message is clearly a Sum-Product problem, and the applicable 

fast method can be plugged in. 

3.5.2 Maximum-Belief Propagation 

Our fast Max-Product algorithms can be applied to the Maximum-Belief Propagation 

algorithm in the same way the Sum-Product is used for normal Belief Propagation. 

The expensive operation arises when computing the messages (equation 2.5): 

mj,i(xi) = maxj ipj(xj) ipj,i(xj,Xi) JJ mkj(xj) \ . 
1 keN(j) except i 

This costs O (NiNj) if the number of states at nodes i and j are iVj and Nj, respectively; 

we perform a maximization over Nj terms for each of Ni sites. 

As in the B P case, our fast methods can be applied in cases where the potential 

function ipjj (XJ, x^ can be written as a kernel function: 

Uj{xj) JJ mkij{xj)\ 
^ Ur- ATI A\ * / k€N(j) except 

1pj,i(Xj,Xi) => K{\\Xj-Xi 

m*i (x^ => max{u>j K (\\XJ - Xi\\) j . 

Now, the Max-BP messages is clearly an instance of the Max-Product problem, and 

for problems with suitable potential functions, our fast method can be applied simply. 
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3.5.3 P a r t i c l e S m o o t h i n g 

The expensive operation in particle smoothing is computing the smoothing weights 

(equation 2.10): 

Wn\n -  Wn 

fc|n fc ^ ~(m) /-(j) , - H \ 

This costs O (N2), where N is the number of particles per node. Note that particle 

filtering costs only O (N); it is only in calculating the smoothing weights that quadratic 

complexity is incurred. 

The smoothing weights can be computed efficiently by applying a fast Sum-Product 

method twice. First, compute the denominator: 

^• = E 4 m ) p ( 4 ^ i 4 m ) ) 
m = l 

by making the transformations 

~(m) 
Wk 

~(™) xk 
~0) 
xk+l Xj 

(j) 
k+l 4

m ) ) = > if(||x m-Xj (4 
N 

dj ^ u ; m # ( | | x m - X j | 

m = l 

where the fourth line is justified by equation 2.8. In this way, computing dj is a 

Sum-Product problem which can be solved with one of our fast methods. 

Next, compute the outer sum, replacing the denominator by dj-. 

_^^n»p(aSii40) 



Chapter 3. Fast Methods 66 

Make the following transformations: 

.... • 
x f c + l X3 

Xp, r* X{ 

p ( 4 + i i 4 l ) ) =*• ^(xi>xi) =*• ^ ( i i ^ - ^ i i ) 
N 

• «i =>• K(WXJ-Xi\\) • 
3=1 

Clearly, Sj is also a Sum-Product problem which can be solved with one of the fast 

methods. 

Finally, the smoothing weights are given by 

~(i) - ( i ) 
Wk\n = W k S i • 

In this way, we can perform particle smoothing efficiently for Hidden Markov Models 

whose transition model p (xfel^fc-i) c a n be written as the kernel function K (\\xk — Xfc_i||). 

3.6 Other Applications 

Here we mention briefly another setting in which the Sum-Product problem arises. 

3.6.1 Gaussian Processes: Fast Conjugate Gradients 

We do not review the Gaussian Processes literature here, since good introductory 

papers are available, including [14, 30]. We use their notation here. 

A Gaussian Process is a distribution 

p (t|C, {xn}) = 1 exp ( ~ (t - M ) T C - 1 (t - ^ 

where t is a set of random variables t = {t(x\), t(x2), • • •} that are related through the 

covariance matrix C, which has elements derived from a covariance function: Cm<n — 

C (xm, Xn). 
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A typical task to be performed with a Gaussian Process model is to predict the 

value of £JV+I given XN+I and a set of observations V = { x i , . . . , X J V } . The prediction 

is a Gaussian distribution: 

p(tN+1\xN+1,V,C(xm,xn)) = -^exp ( - ^ N + 1 * A r + 1 ) ^ 

where the mean and variance are given by 

tN+l = k N + 1 C N tj\ 

&N+1 = K ~ ^N+l^N^^N+l 

and tiv = {ti,t2, • • • > ^N}- The vector k and scalar K are 

kN+i - (^C (xi,xN+i), C(x2,xN+i), . . . , C (XN,XN+X) ) 

K = C (xN+1,XN+l) • 

Given TV observations, the cost of making predictions is O ( T V 3 ) if we take the naive 

approach of inverting the matrix CN- This is prohibitively expensive for most datasets 

of practical interest. Gibbs [15] notes that we need not compute CN

L; we only need 

to compute C^t^ once and then CN

lkN+1 for each prediction. By using a conjugate 

gradient approach, these can be computed approximately in O ( T V 2 ) . Given a matrix 

CN and a vector u, the method derives a series of estimates of CN

lu. We begin with 

the estimate y\ = 0, and at each step compute an update: 

Vk+i = Vk + Afc/ifc 

where Xk and hk are computed as follows: 

9i = u 

hi = u 

Xk = 
9kCNhk 

9k+i = 9k~ AfcCjy/ifc 

9l9k 
hk+i = gk+i + jkhk . 



Chapter 3. Fast Methods 68 

After TV iterations we are guaranteed to reach = Cj^u, but good approximations 

can be had with K < N. For a subset of matrices CN it is also possible to compute 

an error bound on the estimate yx\ see [15] for details. 

Note that the most expensive operation in the above set of equations is the matrix-

vector multiplication CV/ifc. We introduce our fast methods to this computation by-

recalling that the elements of CN are derived from the correlation function C(xm, xn). 

Hence, we can make the following transformation: 

N 

f = CNhk => fi = J2c(xi>xi)hk) « * = 
i=i 

(7) 

where h{

k ' is the j - t h element of the vector hk. In this way, for a subset of correlation 

functions C(xm, xn), the matrix-vector multiply becomes a Sum-Product problem, and 

our fast methods can be applied. 1 2 

As it happens, Gibbs [14] suggests that the Gaussian correlation function captures 

the main properties that we want for regression problems, and notes that it is often 

used in practice. That is, 

C(xm,xn) = e1exp\--}2 , n 2 }+02 , 2 ̂  r(Z)s 

where r(l) are scale parameters for each of the L dimensions, and (?i and 62 control 

the overall noise model properties. 

Wi th the extensions to our Dual-tree Sum-Product algorithm discussed in sections 

3.3.5, many of the other correlation functions presented by Gibbs (including periodic 

correlation and input-dependent noise) can be solved. 

In summary, making predictions with a Gaussian Process model costs O (-/V3) 

if performed naively (by matrix inversion), or O (KN2) if approximated with the 

conjugate gradient method. For some correlation functions, our fast methods can be 

applied, yielding O (KN) complexity. 
1 2Note that the vector hk can contain negative elements, so our Dual-tree Sum-Product algorithm 

would need to be extended to the negative weights case, as discussed in section 3.3.5. The Fast Gauss 

Transform and Improved FGT work with negative weights. 
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3.7 Empirical Testing of Fast Sum-Product Methods 

The section presents the results of testing the Fast Gauss Transform, Improved Fast 

Gauss Transform, and Dual-Tree methods (using kd-tree and Anchors Hierarchy data 

structures) for fast Sum-Product computation. We examine the performance of these 

methods with respect to data set size, dimension, allowable error, and data set struc­

ture ("dumpiness"), measured in terms of CPU time and memory usage. The results 

are striking, challenging several claims that are commonly made about these methods. 

For simplicity, we consider a subset of the Sum-Product problem. Some of these 

simplifying assumptions can be easily relaxed for some of the fast methods, but we as­

sume that these will not change the essential properties that we examine. Specifically, 

we assume: 

That is, we consider the points to live in a vector space, and use a Gaussian kernel, 

non-negative weights, and equal numbers of sources and targets. 

To be useful to a broad audience, we feel that fast Sum-Product algorithms must 

allow the user to set a guaranteed absolute error level. That is, given an allowable 

error e, the method must return approximations fj such that 

Ideally, the methods should work well even with small e, so that one can simply "plug 

it in and forget about it." 

3.7.1 Implementations 

The FGT implementation we test was generously provided by Firas Harhze, and is writ­

ten in C with a M A T L A B wrapper. It uses a fairly simple space-subdivision scheme, so 

Wi > 0 

M = N 

fj-fi < e • 



Chapter 3: Fast Methods 70 

has memory requirements of O J- Adaptive space subdivision or sparse memory 

allocation could perhaps improve the performance, particularly for small-bandwidth 

problems. 

The implementation of the I F G T that we test was generously provided by 

Changjiang Yang and Ramani Duraiswami. It is written in CH—h with MATLAB bind­

ings. 

We use our own implementation of the Dual-Tree algorithm. The Dual-Tree re­

cursion is independent of the space-partitioning data structure. We implemented the 

kd-tree and the Anchors Hierarchy [32]. It is written in C with MATLAB bindings. 

3.7.2 Results 

A l l tests were run on our Xeon 2.4 GHz, 1 G B memory, compute servers. We ran 

the tests within MATLAB ; all the fast algorithms are written in C or C++ and have 

MATLAB bindings. We stopped testing a method once its memory requirements rose 

above 1 G B in order to avoid swapping. In all cases we repeated the tests with several 

data sets. In some of the plots the error bars are omitted for clarity. The error bars 

are typically very small. Most of the plots have log-log scales. The curve labelled 

"Naive" is the straightforward O (N2) summation. 

For the I F G T , we set the upper bound on the number of clusters to be K* = y/N. 

In practice, K* should be set to a constant, but since we are testing over several orders 

of magnitude this seems more reasonable. 

Many of the tests below can be seen as one-dimensional probes in parameter space 

about the point N = 10, 000, Gaussian bandwidth h = 0.01, dimension D = 3, allow­

able error e = I O - 6 , dumpiness C = 1 (ie, uniform) point distribution, with weights 

drawn uniformly from [0,1]. In all cases the points are confined to the unit D-cube. 

We occasionally choose other parameters in order to illustrate a particular point. We 

use D = 3 to allow the F G T to be tested. 
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Test A: N 

Researchers have focused attention on the performance of fast algorithms with respect 

to N (the number of source and target points). Figure 3.23 shows that it is cru­

cially important to consider other factors, since these strongly influence the empirical 

performance. 

In this test, the scale of the Gaussians is h — 0.1, so a large proportion of the 

space has a significant contribution to the total influence. A n important observation 

in Figure 3.23 is that the dual-tree methods (KDtree and Anchors) are doing about 

O (N2) work. Empirically, they are never faster than Naive for this problem. Indeed, 

only the F G T is ever faster, and then only for a small range of N. The I F G T appears 

to be demonstrating better asymptotic performance, but the crossover point (if the 

trend continues) occurs at about 1.5 hours of compute time. 

Another important thing to note in Figure 3.23 is that the dual-tree methods 

run out of memory before reaching N = 50,000 points; this happens after a modest 

amount of compute, time. Also of interest is the fact that the I F G T has decreasing 

memory requirements. We presume this is because the number of clusters increases, 

so the cluster radii decrease and the error bounds converge toward zero more quickly, 

meaning that fewer expansion terms are required. 

Test B: N 

In this test, we repeat test A but use a smaller Gaussian scale parameter, h = 0.01. 

The behaviour of the algorithms is strikingly different. We can no longer run the 

I F G T , since the number of expansion terms required is more than 10 1 0 for N = 100. 

The dual-tree methods perform well, though memory usage is still a concern. 

Test C: Dimension D 

In this test, we fix N = 10,000 and vary the dimension. We set e = 1 0 - 3 to allow the 

I F G T to run in a reasonable amount of time. Surprisingly, the I F G T and Anchors, 

both of which are supposed to work well in high dimension, do not perform particularly 
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Figure 3.24: Test B: D = 3, h = 0.01, uniform data, e = IO - 6 . Top: CPU Time. 

Bottom: Memory usage. 
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well. The IFGT's computational requirements become infeasibly large above D = 2, 

while Anchors never does better than KDtree. This continues to be true even when 

we subtract the time required to build the Anchors Hierarchy. 

Also surprising is the fact that the KDtree method improves up to dimension 4; it 

is typically assumed that its performance always decreases with dimension. Further, 

the curse of dimensionality does not seem to rear its head here; KDtree works well up 

to at least D = 100. 

Tes t D : A l l o w a b l e E r r o r e 

In this test, we examine the cost of decreasing e. The dual-tree methods have slowly-

increasing costs as the accuracy is increased. The FGT has a more quickly increasing 

cost, but for this problem it is still competitive at e = 10~ n . 

We find that the dual-tree methods begin to have problems when e < 10 - 1 1 ; while 

these methods can give arbitrarily accurate approximations given exact arithmetic, in 

practice they are prone to cancellation error.13 

The bottom plot in Figure 3.26 shows the maximum error in the estimates. The 

dual-tree methods produce results whose maximum errors are almost exactly equal to 

the error tolerance e. One way of interpreting this is that these methods do as little 

work as possible to produce an estimate that satisfies the required bounds. The FGT, 

on the other hand, produces results that have real error well below the requirements. 

Notice the 'steps'; we believe these occur as the algorithm either adds terms to the 

series expansion, or chooses to increase the number of boxes that are considered to be 

within range. 

D a t a Set C l u m p i n e s s 

Next, we explore the behaviour of the fast methods on data sets drawn from non­

uniform distributions. 
1 3 This is a problem with the algorithm in general, not just our implementation of it; other published 

versions of the algorithm share this problem. 
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Figure 3.26: Test D: D = 3, h = 0.01, N = 10,000, uniform data. Top: CPU Time. 

Bottom: Real error. 
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Figure 3.27: Example clumpy data sets. The dumpinesses are C = 1 (left), C = 1.5 

(middle), and C = 3 (right). Each data set contains 1000 points. 

We use a method for generating clumpy data that draws on the concept of lacu-

narity. Lacunarity [1, 35] measures the texture or 'difference from uniformity' of a set 

of points, and is distinct from fractal dimension. It is a scale-dependent quantity that 

measures the width of the distribution of point density. Lacunarity at a given scale 

can be measured by covering the set with boxes of that scale; the distribution of point 

densities in the boxes is measured, and the lacunarity is defined as the second moment 

of the distribution divided by the first moment squared. 

We adapt the notion of the ratio of variance to squared mean. Given a number 

of samples N and a dumpiness C, our clumpy data generator recursively divides the 

space into 2D sub-boxes, and distributes the N samples among the sub-boxes such 

than 

J2Ni = N 

i=l 

c t _ var({ iVj) 

mean( {iV,} ) 2 

This process continues until N is below some threshold (we use 10). Some example 

clumpy data sets are shown in Figure 3.27. 

Test E: Source dumpiness 

In this test, we draw the source particles X from a clumpy distribution, while the 

targets are drawn from a uniform distribution. 
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Figure 3.28: Test E : D = 3, h = 0.01, e = 10~ 6, N = 10,000, clumpy X, uniform Y". 

Top: absolute C P U time. Bottom: relative C P U time as clumpiness increases. 
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Figure 3.28 shows the relative C P U time as dumpiness increases. The dual-tree 

methods show significant improvements as the source points become clumpy. Anchors 

improves more than KDtree,- although KDtree is still faster in absolute terms. The 

F G T shows minor improvement as dumpiness increases. 

Tes t F : S o u r c e a n d T a r g e t C l u m p i n e s s 

In this test, we draw both the sources and targets from clumpy distributions. The 

dual-tree methods show even more marked improvement as clumpiness increases. The 

F G T also shows greater improvement than in the previous test. 

Tes t G : C l u m p y D a t a , D i m e n s i o n D 

In this test, we test the performance with dimension, given clumpy data sets. The 

results are not very different than the uniform case (Test C). This is surprising, since 

neither Anchors nor I F G T does particularly well, even given clumpy data. 

3.7.3 Conclusions 

We presented a comparison between the most widely used fast methods for the Sum-

Product problem. In our comparison, we varied not only the number of points N, 

but also the structure in the data, the required precision and the dimension of the 

state space. The results indicate that the fast methods can only work well when 

there is structure in the kernel matrix. They also indicate that dual tree methods 

are preferable in high dimensions. Surprisingly, the results show that the KDtree 

works better than the Anchors Hierarchy in our particular experiments. This seems to 

contradict common beliefs about these methods. Yet, there is a lack of methodological 

comparisons between these methods in the literature. This makes it clear that further 

investigation is warranted. 
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Figure 3.30: Test G results: h = 0.01, e = IO" 3, N = 10,000, clumpy X, clumpy Y. 

3.8 Empirical Testing of Fast Max-Product Methods 

The tests presented in this section were performed by Mike Klaas as part of a paper 

that we co-authored along with Nando de Freitas. I implemented the Dual-Tree Max-

Product algorithm, while Mike implemented the Distance Transform (and also tracked 

down a few bugs in the Dual-Tree). The text is largely due to Mike. I thank Mike for 

allowing me to include the material here. 

3.8.1 Performance in iV 

Here, we focus on performance in synthetic and real-world settings as N grows; com­

parisons are made both in settings where the Distance Transform is applicable and 

where it is not. We present results in terms of both CPU time and number of distance 

computations (kernel evaluations) performed. This is important as in some applica­

tions the kernel evaluation is extremely expensive and thus dominates the runtime of 
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Figure 3.31: Filtered distribution p( i i t | z i : t ) 

the algorithm. 

M u l t i - m o d a l n o n - l i n e a r t i m e ser ies 

We consider the following standard reference model 

ut+i = \ut + 25 ̂  U t

 7 +8cos l.2t + vt+i (3.5) 
z 1 + u% 
u2 

*t+i = ~^ + ™t+i (3.6) 

Where vt ~ J\f(0,av) and u>t ~ JV(0,O-W). The filtered distribution is bimodal and 

highly non-linear (see figure 3.31), meaning the standard particle filter produces sig­

nificant error even with a high particle count. 

After running a standard SIR particle filter, we implemented the M A P sequence es­

timation described in [17]. Figure 3.32 demonstrates the accuracy gained by calculating 

the M A P solution. We chose a one-dimensional setting so that the Dual-Tree algorithm 

could be directly compared against the Distance Transform. (We used a modified ver­

sion of the Distance Transform that allows it to be applied to one-dimensional problems 
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Figure 3.32: Top: Particle filter and M A P estimates of the latent state in the 1-D time 

series experiment. Bottom: the same plot, with the true state subtracted from each 

line. Mean error for the particle filter was 4.05, while the M A P solution achieved a 

mean error of 1.74. 
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Figure 3.33: 1-D time series results. The dual-tree algorithm became more efficient 

than naive computation after approximately 70ms of compute time. Both Dual-Tree 

and Distance Transform methods show similar asymptotic growth, although the con­

stants in the Distance Transform are approximately three times smaller. 

that do not lie on a regular grid.) Figures 3.33 and 3.34 summarize the results. It is 

clear that the Distance Transform is superior in this setting, although the Dual-Tree 

algorithm is still quite usable, being several orders of magnitude faster than the naive 

method. 

Bea t - t r ack ing 

We tested the fast methods for the beat-tracking problem described in chapter 4. The 

algorithm used was the forward pass particle filter followed by Max-Belief Propaga­

tion. Since the state space of this model is a three-dimensional Monte Carlo grid, the 

Distance Transform cannot be used. 

Figures 3.35 and 3.36 summarize the results. Using the fast method allows more 

particles to be used, which results in a better solution. This can be quantified by 

looking at the probability of the M A P solution, which is computed during Max-Belief 

Propagation. The probability of the M A P sequence with 50,000 particles was p = 0.87, 

while using 1000 particles resulted in a M A P sequence of probability p = 0.53. 
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Figure 3.34: 1-D time series results: distance computations v. particle count. 

3.8.2 T h e effect o f o t h e r p a r a m e t e r s 

D i s t r i b u t i o n and d imens ion 

To examine the effects of other parameters on the behaviour of the dual-tree algorithm, 

we ran several experiments varying dimensionality, distribution, and spatial index 

while keeping N constant. We used two spatial indices: kd-trees and metric trees (built 

using the Anchors hierarchy). We generated synthetic data by drawing points from 

a mixture of Gaussians distributed evenly in the space. Figure 3.37 shows a typical 

clustered data distribution. In all runs the number of particles was held constant at 

N = 20,000, and the dimension was varied to a maximum of D = 40. Figures 3.38 

and 3.39 show the results for CPU time and distance computations, respectively. In 

these figures, the solid line represents a uniform distribution of particles, the dashed 

line represents a 4-cluster distribution, the dash-dot line has 20 clusters, and the 

dotted line has 100. We expect methods based on spatial indexing to fare poorly 

given uniform data since the average distance between points quickly becomes a very 

peaked distribution in high dimension, reducing the value of distance as a measure 

of contrast. The results are consistent with this expectation: for uniform data, both 

the kd-tree and Anchors methods exceeded O (N2) distance computations by D — 12. 



Chapter 3. Fast Methods 86 

Particles 

Figure 3.35: Beat tracking results: time v. particle count. The dual-tree method 

becomes more efficient at t = 10ms, and thereafter dominates the naive method. 

Perhaps more surprising is that the kd-tree method consistently outperformed the 

Anchors method on uniform data even up to D = 40. The depth of a balanced binary 

kd-tree of 20, 000 particles and leaf size 25 is ten, so for D > 10 there are many 

dimensions that are not split even a single time! 

Of more practical interest are the results for clustered data. It is clear that the 

distribution vastly affects the runtime of Dual-Tree algorithms; at D = 20, solving 

the Max-Product with the Anchors method was six times faster on clustered data 

compared to uniform. We expect this effect to be even greater on real data sets, as the 

clustering should exist on many scales rather than simply on the top level as is the case 

with our synthetic data. It is also interesting to note the different effect that clustering 

had on kd-trees compared to metric trees. For the Anchors method, clustering always 

improved the runtime, albeit by a marginal amount in low dimensions. For kd-trees, 

clustering hurt performance in low dimensions, only providing gains after about D = 8. 

The difference in the two methods is shown in figure 3.40. 



Chapter 3. Fast Methods 87 

10* 1 0 3 1 0 4 

Particles 

Figure 3.36: Beat tracking results: distance computations vs. particle count. 

Figure 3.37: Synthetic data set with c = 20 clusters. 

Effect of kernel width 

To measure the effect of different kernels, we test both methods on a 1-D uniform 

distribution of 200,000 points, and use a Gaussian kernel with bandwidth (cr) varying 

over several orders of magnitude. The number of the distance computations required 

was reduced by an order of magnitude over this range (see Figure 3.41). It seems that 

with very wide kernels, the values that the kernel function takes on are in a smaller 

range, so the weights become more important. 
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Figure 3.38: Time vs. dimensionality. For clarity, only the uniform distribution 

and one level of clustered data are shown. This experiment demonstrates that some 

structure is required to accelerate the Max-Product problem in high dimensions. 

Figure 3.39: Distance computations vs. dimensionality. The level of clustering shown 

is less than in Figure 3.38. For kd-trees, clustering hurts performance when D < 8. 
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Figure 3.40: Time vs. dimensionality; relative to kd-tree = 1. Top: uniform data. 

Second: four clusters. Third: 20 clusters. Bottom: 100 clusters. Metric trees are 

better able to properly index clusters: the more clustered the data, the smaller di­

mensionality required for the Anchors method to outperform kd-trees (D — 30 for 

somewhat-clustered data, D = 15 for moderately-clustered data, and D = 6 for 

significantly-clustered data). 
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Figure 3.41: Effect of kernel bandwidth: distance computations vs. bandwidth of a 

Gaussian kernel. 

3.8.3 C o n c l u s i o n 

We examine some of the variables that affect the performance of Dual-Tree recursion, 

such as dimensionality, data distribution, spatial index, and kernel. These parameters 

have dramatic effects on the runtime of the algorithm, and our results suggest that 

more exploration is warranted into these effects—behaviour as N varies is only a small 

part of the story. 
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Chapter 4 

Application: Beat Tracking 

4.1 Introduction 

The material in this chapter borrows heavily from the paper written by myself and 

Nando de Freitas for the Neural Information Processing Systems 2004 (NIPS* 17) con­

ference [29]; The comments from our anonymous reviewers were very helpful. 

In this chapter, we present an application of graphical models, and our fast infer­

ence methods, to a popular problem in music processing: beat tracking. 

Human listeners have little difficulty tracking the beat of most popular music; 

tapping a foot in time to music is an example of beat tracking. Dixon describes 

beats as follows: "much music has as its rhythmic basis a series of pulses, spaced • beat 

approximately equally in time, relative to which the timing of all musical events can 

be described. This phenomenon is called the beat, and the individual pulses are also 

called beats" [7]. Given a piece of recorded music (an M P 3 file, for example), we wish 

to produce a set of beats that correspond to the beats perceived by human listeners. 

For a listener tapping a foot or clapping in time to music, the beats are the taps or 

claps. 

The set of beats of a song can be characterized by the trajectories through time of 

the tempo and phase offset. Tempo is typically measured in beats per minute (BPM) , • tempo 

and describes the frequency of beats. The phase offset determines the time offset of , 
• phase 

the beat. When tapping a foot in time to music, tempo is the rate of foot tapping and offset 

phase offset is the time at which the tap occurs. Phase zero is called the 'down beat' 

and phase 7r is the 'up beat'; 'down' and 'up' refer to the position of the foot when 

tapping in time to the beat. 
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The beat tracking problem is somewhat ill-posed. Music is often ambiguous; dif­

ferent human listeners can perceive the beat differently. There are often several beat 

tracks that could be considered reasonable or correct. For example, when listening to 

music with a fast tempo, many human listeners will tap every second beat (2/2 time 

rather than 4/4 time). 

We see the beat tracking problem as not only an interesting problem in its own 

right, but as one aspect of the larger problem of machine analysis of music. Given beat 

tracks for a number of songs, we could extract descriptions of the rhythm and use these 

features for clustering or searching in music collections. We could also use the rhythm 

information to do structural analysis of songs - for example, to find repeating sections. 

In addition, we note that beat tracking produces a description of the time scale of a 

song; knowledge of the tempo of a song would be one way to achieve time-invariance in 

a symbolic description. Finally, we note that beat tracking tells us where the important 

parts of a song are; the beats (and major divisions of the beats) are good sampling 

points for other music-analysis problems such as note detection. Conversely, analyses 

of other aspects of music could help to choose between multiple interpretations of the 

beat. 

4.2 Related Work 

Many researchers have investigated the beat tracking problem; we present only a brief 

overview here. Scheirer [36] presents a system, based on psychoacoustical observations, 

in which a bank of resonators compete to explain the processed audio input. The 

system is tested on a difficult set of examples, and considerable success is reported. 

The most common problem is a lack of global consistency in the results - the system 

switches between locally optimal solutions. 

Goto [18] has described several systems for beat tracking. He takes a very prag­

matic view of the problem, and introduces a number of assumptions that allow good 

results in a limited domain - pop music in 4/4 time with roughly constant tempo, 

where bass or snare drums keep the beat according to drum patterns known a priori, 
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or where chord changes occur at particular times within the measure. 

Cemgil and Kappen [6] phrase the beat tracking problem in probabilistic terms, 

and we adapt their model as our local observation model. They use MIDI-like (event-

based) input rather than audio, so the results are not easily comparable to our system. 

In formulating our model for beat tracking, we assume that the tempo is nearly con­

stant over short periods of time, and usually varies smoothly. We expect the phase to 

be continuous. This allows us to use the simple graphical model shown in Figure 4.1. 

We break the song into a set of frames of two seconds; each frame is composed of a • frame 

pair of nodes in the graphical model. We expect the tempo to be constant within each 

frame, and the tempo and phase offset parameters to vary smoothly between frames. 

Figure 4.1: Our graphical model for beat tracking. The hidden state X is composed 

of the state variables tempo and phase offset. The observations Y are the features 

extracted by our audio signal processing. The potential function <fi describes the com­

patibility of the observations with the state, while the potential function ip describes 

the smoothness between neighbouring states. Each pair of X and Y nodes comprises 

one frame. 

In this undirected probabilistic graphical model, the potential function d>(Yi,Xi) 

describes the compatibility of the state variable X = {T, P}, composed of tempo T 

and phase offset P, with the local observations Y. The potential function tp(Xi, Xi+i) 

describes the smoothness constraints between neighbouring frames. The observations 

4.3 Graphical Model 
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Y comes from processing the audio signal, which is described in Section 4.6. The <f> 

function comes from domain knowledge and is described in Section 4.5. This model 

allows us to trade off local fit and global smoothness in a principled manner. Ambiguity 

in one section of the song can be resolved by using contextual information from more 

certain regions. By using an undirected model, we allow contextual information to 

flow both forward and backward in time. 

In such models, belief propagation (BP) allows us to compute the marginal proba­

bilities of the state variables in each frame. Alternatively, maximum belief propagation 

(Max-BP) allows a joint maximum a posteriori (MAP) set of state variables to be de­

termined. That is, given a song, we generate the observations Y j , i = 1... F, (where 

F is the number of frames in the song) and seek a set of states Xi that maximize the 

joint product 
1 F F-l 

P(X,Y) = - H^iY^Xi) H^(Xi,Xi+1) . 
i = l i = l 

4.4 Smoothness Model 

The potential function tp (Xi, Xi+i) expresses our belief that the tempo typically varies 

smoothly and phase is typically continuous. The tp w e u s e is the product of tempo 

and phase smoothness components: 

ip = ipT tpP . 

We expect that relative changes in tempo are important, so for the tempo smooth­

ness component tpT, we place a Gaussian transition model on the log of tempo change: 

log(T i+i) = log(r i )+^(0, c r r
2 ) 

so we can write the tempo smoothness term as the Gaussian 

iPr (Tu Ti+1) = JV (log ( T i + i ) - log (Ti), oT

2) . 

We set the variance aT = 0.1. 

The phase smoothness component tpP allows us to enforce continuity of phase 

between frames. We want beats to be spaced approximately evenly in time, even 
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Figure 4.2: A demonstration of the phase continuity constraint. The plot shows two 

frames with different tempos and phase offsets. There is a linear relationship between 

phase and time in each frame. Beats occur at points where phase (mod 27r) is zero. 

We would like the phase to be continuous at the boundary between frames. 

across frame boundaries; see Figure 4.2. Given tempo and phase offsets values in a 

frame, there is a linear relationship of phase with time: 

0(t\T,P) = 2nTt - P . 

We want the phases of neighbouring frames to be continuous at the frame boundary. 

If the boundary separating frames i and i + 1 is at time tb, we want 

9(tb | TuPi) ~ 6(tb | Ti+uPi+1) . 

Since phase values are cyclic, we project the phase values onto the unit circle and place 

a Gaussian on the distance between points on the circle: 

Oi = 9(tb\Ti,P$ 

Qi+i = &(h I Ti+i, Pi+\) 

ipP = j\f(^ (cosflj — cos#j + 1 , sin#j — sin0;+i) , cr P

2 ^ , 

where j\f is a two-dimensional Gaussian. We set the variance a> = 0.l7r. 

4.5 Local Probability Model 

In this section, we describe the derivation of our local potential function (also known 

as the observation model) cp {Xii Xi). 
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Figure 4.3: Cemgil and Kappen probability of a note occurring at different times, in 

units of beats, for D — 8 and A = 1. The function is periodic and infinite. Musical 

events (notes) are most likely to occur on the beat (that is, at an integer number of 

beats). The probability of a note occurring at finer and finer divisions of the beat 

drops away exponentially. 

Our model is an adaptation of the work of [6], which was developed for use with 

MIDI input. Their model is designed so that it "prefers simpler [musical] notations". 

The beat is divided into a fixed number of bins (some power of two), D, and each 

note is assigned to the nearest bin. The probability of observing a note at a coarse 

subdivision of the beat is greater than at a finer subdivision. More precisely, a note 

that is quantized to the bin at beat number k has probability 

p(k) oc exp ^ - A r f ( f c ) j 

where d(k) is the number of digits in the binary representation of the number (k mod 1); 

that is, the number of bits required to represent the fractional portion of the number 

k, and A is a parameter. See Figure 4.3. 

Since we use recorded music rather than MIDI, we must perform signal processing 

to extract features from the raw data. This process produces a signal that has consid­

erably more uncertainty than the discrete events of MIDI data, so we adjust the model. 

We add the constraint that features should be observed near some quantization point, 



Chapter 4. Application: Beat Tracking 97 

Figure 4.4: One period of our template function b(t), which gives the expected distri­

bution of notes within a beat. Given tempo and phase offset values, we stretch and 

shift this function to get the expected distribution of notes in time. 

which we express by centering a Gaussian around each of the quantization points. The 

variance of this Gaussian, <7Q is in units of beats, so we arrive at the periodic template 

function b(t), shown in Figure 4.4. We have set the number of bins to 8, A to one, and 

„ — i 
Q - 40-

The template function b(t) expresses our belief about the distribution of musical 

events within the beat. By shifting and scaling b(t), we can describe the expected 

distribution of notes in time for different tempos and phase offsets: 

b(t\T,p) = b(rt-^-

Our signal processing (described below) yields a discrete set of events that are 

meant to correspond to musical events. In each frame, we produce a set of discrete 

events Y = {ti, Ei}, i = 1... M , where ti is the time at which the event occurs and 

Ei is the 'strength' or 'energy' of the event. Given state variables X = {T, P}, the 

expected distribution of events in time is b(t \T,P). We can treat this as a multinomial 

distribution in the continuous limit (as bin size approaches zero), from which a set of 



Chapter 4. Application: Beat Tracking 98 

events Y are drawn. This leads to the potential function 

M 
Ei <l>(Y,X) = <j>({t,E},{T,P}) - J] [b(U\T,P ) ] 

i=l 

4.6 A u d i o Feature E x t r a c t i o n 

Our signal processing stage is meant to extract features from the raw audio signal 

that approximate musical events (drum beats, piano notes, guitar strums, etc.). As 

discussed above, we produce a set of events composed of time and 'strength' values, 

where the strength describes our certainty that an event occurred. We assume that 

musical events are characterized by brief, rapid increases in energy in the audio signal. 

This is certainly the case for percussive instruments such as drums and piano, and will 

often be the case for string and woodwind instruments and for voices. This assumption 

breaks for sounds that fade in smoothly rather than 'spikily'. 

The audio signal processing is shown in Figure 4.5. We begin by taking the short-

time Fourier transform (STFT) of the signal: we slide a 50 millisecond Hann window 

over the signal in steps of 10 milliseconds, take the Fourier transform, and extract the 

energy spectrum. Following a suggestion by [36], we pass the energy spectrum through 

a bank of five filters that sum the energy in different portions of the spectrum. We take 

the logarithm of the summed energies to get a 'loudness' signal. Next, we convolve 

each of the five resulting loudness signals with a filter that detects positive-going edges. 

This can be considered a 'loudness gain' signal. Finally, we find positive maxima of 

the loudness gain signals within 50 ms neighbourhoods. The result is a set of points, 

one per 50 ms for each of the five frequency bands, that describe the energy gain in 

the band, with emphasis on the maxima. These are the features Y that we use in our 

local probability model d>. 

4 . 7 Inference 

To find a maximum a posteriori (MAP) set of state variables that best explain a set 

of observations, we need to optimize a 2F-diniensional, continuous, non-linear, non-
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Figure 4.5: Our audio signal processing (feature extraction). We are given the raw 

audio waveform (top plot). We take the short-time Fourier transform and pass the 

spectra through a set of five bandpass filters. The log of energy from the third filters is 

shown (second plot). Next, we convolve the energy signal with a soft-derivative filter to 

find the increase in energy (third plot). Finally, we find positive maxima in the energy 

gain signal (bottom plot). These discrete peaks are the features (or observations) Y. 

The dotted line in the bottom plot is the positive portion of the energy gain signal. 

In summary, the signal processing detects the locations of rapid increases in energy in 

various frequency bands. 
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Gaussian function that has many local extrema. F is the number of frames in the 

song, so is on the order of the length of the song in seconds - typically in the hundreds. 

This is clearly difficult. We present two approximation strategies. In the first strategy, 

we convert the continuous state space into a uniform discrete grid and run discrete 

maximum-belief propagation (Max-BP). In the second strategy, we run a particle filter 

in the forward direction, then use the particles as 'grid' points and run Max-BP as per 

[17]. 

Since the landscape we are optimizing has many local maxima, we must use a fine 

discretization grid (for the first strategy) or a large number of particles (for the second 

strategy). M a x - B P costs O (N2) when performed naively, where N is the number of 

discretized states (or particles) per frame. We use the methods of Chapter 3 to reduce 

the cost of the computation. 

For the results presented here, we discretize the state space into NT = 90 tempo 

values and NP = 50 phase offset values for the fixed-grid method. We distribute the 

tempo values uniformly on a log scale between 40 and 150 B P M , and distribute the 

phase offsets on a uniform grid. For the particle filter version, we use NT x NP = 4500 

particles. Wi th these values, our C and Matlab implementation runs at faster than 

real time (the duration of the song) on a standard desktop computer. 

4 . 8 Results 

A standard corpus of labelled ground truth data for the beat-tracking problem does 

not exist. To evaluate our algorithm, we manually labelled a relatively small number 

of songs by listening to each song and marking each perceived beat. We sought out 

examples that we thought would be difficult, and we attempted to avoid the methods 

of [28]. Ideally, we would have several human listeners label each song, since this would 

help to capture the ambiguity inherent in the problem. However, this would be quite 

time-consuming. 

One can imagine several methods for speeding up the process of generating ground 

truth labellings and of cleaning up the noisy results generated by humans. For example, 



/ O f 

a human labelling of a short segment of the song could be automatically extrapolated 

to the remainder of the song, using energy spikes in the audio signal to fine-tune the 

placement of beats. However, by generating ground truth using assumptions similar 

to those embodied in the models we intend to test, we risk invalidating the results. 

We instead opted to use 'raw' human-labelled songs. 

There is no standard evaluation metric for beat tracking. We use the p function 

presented by Cemgil et al [5] and used by Dixon [7] in his analysis: 

where S and T are the ground-truth and proposed beat times, and a is set to 40 

milliseconds. A p value near 100 means that each predicted beat is close to a true 

beat, while a value near zero means that each predicted beat is far from a true beat. 

We have focused on finding a globally-optimum beat track rather than precisely 

locating each beat. We could likely improve the p values of our results by fine-tuning 

each predicted beat, for example by finding nearby energy peaks, though we have not 

done this in the results presented here. 

Table 4.1 shows a summary of our results. Note the wide range of genres and the 

choice of songs with features that we thought would make beat tracking difficult. This 

includes all our results (not just the ones that look good). 

The first two columns list the name of the song and its genre or the reason we 

included it. An [(e)] indicates that we edited the song to remove talking on long 

periods of silence. An [(x)] indicates that only an excerpt of the song was available. 

The third column lists the qualitative performance of the fixed grid (FG) version: [x2] 

means our algorithm produced a beat track twice as fast as ground truth, [x 1/2] means 

we tracked at half speed, and [TT] means we produced a syncopated (TT phase error) beat 

track. A blank entry means our algorithm produced the correct beat track. A star [•] 

means that our result incorrectly switches phase or tempo. In one case, we tracked at 

3/2 the true tempo; this is marked as [0]. The p values are after compensating for the 

qualitative error (if any). The fifth column shows a histogram of the absolute phase 

error (0 to ir); this is also after correcting for qualitative error. The remaining columns 

discussion 

of Table 

4.1. 
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contain the same items for the particle filter (PF) version. Note that while the FG and 

PF versions are often nearly identical, they occasionally choose qualitatively different 

answers. 

Out of 25 examples, the fixed grid version produces the correct- answer in 17 cases, 

tracks at double speed in two cases, half speed in two cases, syncopated in one case, 

and in three cases produces a track that (incorrectly) switches tempo or phase. The 

particle filter version produces 16 correct answers, two double-speed, two-half-speed, 

two syncopated, and the same three 'switching' tracks. 

An example of a successful tempo track is shown in Figure 4.6. 

The result for Lucy In The Sky With Diamonds (one of the 'switching' results) is 

worth examination; see figure 4.7. It is also interesting to examine the final message 

passed during Max-BP: we can see several local maxima corresponding to qualitatively 

different solutions; see Figure 4.8. 

4.9 Future Work 

We would like to investigate several modifications of our model and inference methods. 

Longer-range tempo smoothness constraints as suggested by [5] could be useful. This 

would allow us to express that a tempo change to a new value and back to the original 

value is more likely than two arbitrary tempo changes. 

It would be useful to extract M A P sets of parameters for several qualitatively 

different solutions, as this would help to express the ambiguity of the problem. As we 

saw in the Lucy In The Sky With Diamonds example, there can be multiple plausible 

beat tracks for many pieces of music. This is a harder inference problem than finding 

fc-best M A P sets, since we want the solutions to belong to different local maxima. 

The particle filter could also be changed. At present, we first perform a full particle 

filtering sweep and then run Max-BP. Taking into account the quality of the partial 

M A P solutions during particle filtering might allow superior results by directing more 

particles toward regions of the state space that are likely to contain the final M A P 

solution. Since we know that our probability terrain is multi-modal, a mixture particle 
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Figure 4.6: Tempo tracks for Cake / I Will Survive. Middle: 'raw' ground-truth 

tempo (instantaneous tempo estimate based on the time between adjacent beats) and 

smoothed ground truth (by averaging). Top: tracking results for the fixed grid version. 

Bottom: results for the particle filter version. 
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Figure 4.7: Tempo tracks for Lucy In The Sky With Diamonds. The vertical lines mark 

times at which the time signature changes between 3/4 and 4/4. We track correctly 

(at half speed), and follow the first three time signature changes (with a slight glitch at 

the second change). On the fourth change, however, we track at 2/3 the true tempo. 

On the fifth change we return to the correct beat. 
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0 1/4 1/2 3/4 
Phase Offset 

Figure 4.8: The last message passed during Max-BP. Bright means high probabil­

ity. This message tells us the probability of a sequence that ends with each state. 

The global maximum (near 100 B P M , phase offset 1/2) corresponds to the beat track 

shown in the Figure 4.7. The local maximum near 50 B P M corresponds to an alter­

nate solution in which, rather than tracking the quarter notes, we track one beat per 

measure. This alternate solution is quite plausible; some human listeners will produce 

it. Note also the local maximum near 100 B P M but phase-shifted by a half beat from 

the global maximum. This corresponds to a syncopated beat track. 
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filter would be useful [38]. 

Our current model of tempo change (ipT) does not take into account the fact that 

abrupt tempo changes to related tempos (half, double, etc.) do occur. 

A n issue that we have not considered is parameter estimation: we have set aQ, 

dp, and aT arbitrarily. It would be preferable to learn optimal values for these hy-

perparameters from the inputs. Some songs, including most electronic, rock, and pop 

music, have very steady tempos and rarely have phase discontinuities. Others, par­

ticularly solo performances of classical music, have large tempo variance (musically, 

this is known as rubato). Having a single set of hyperparameters for all types of music 

is unsatisfying. Allowing these values to vary would likely improve our results, and, 

indeed, the optimal values of the hyperparameters could perhaps be used for tasks 

such as genre identification.1 

4.10 Conclus ions 

We present a graphical model for beat tracking and evaluate it on a set of varied and 

difficult examples. We achieve good results that are comparable with those reported 

by other researchers, although direct comparisons are impossible without a shared 

data set and evaluation metric. 

There are several advantages to formulating the problem in a probabilistic setting. 

The beat tracking problem has inherent ambiguity and multiple interpretations are 

often plausible. Wi th a probabilistic model, we can produce several candidate solu­

tions with different probabilities. This is particularly useful for situations in which 

beat tracking is one element in a larger machine listening application. Probabilistic 

graphical models allow flexible and powerful handling of uncertainty, and allow local 

and contextual information to interact in a principled manner. Additional domain 

knowledge and constraints can be added in a clean and principled way. 

'One of our anonymous reviewers pointed out the previous two issues. 
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Chapter 5 

Farewell 

Since I started my thesis with a welcome, it seems fitting to end it with a farewell. 

Let us review briefly what we've discussed. Chapter 2 got us up and running, 

thinking about graphical models and how we compute with them. We reviewed the 

most common techniques: Belief Propagation, in both standard and Max flavours, 

plus Particle Filtering and Particle Smoothing. 

Chapter 3 presented a lot of material. First, we presented the problems we want to 

solve, which we call the Sum-Product and Max-Product. Next, we reviewed some of 

the existing fast methods for the Sum-Product, including the Fast Multipole Method, 

Fast Gauss Transform, Improved FGT, the Box Filter trick, and the Dual-Tree method. 

We then took a brief digression to present some new ideas for tightening the bounds 

that are central to the Dual-Tree method. 

Next, we switched to the Max-Product problem. We presented the Distance Trans­

form, which can be used to solve some Max-Product problems in cases where the state 

space is a regular grid. We then presented a novel algorithm for the Max-Product 

problem using a Dual-Tree approach. 

We then returned to graphical models and stated explicitly how the fast meth­

ods can be used to solve Belief Propagation, Max-Belief Propagation, and Particle 

Smoothing. We also presented the idea of using the Sum-Product algorithms to speed 

up Gaussian Processes; one of the key computations there involves computing the 

product of an inverse kernel matrix and a vector. This can be solved with the fast 

conjugate gradient method, which requires many Sum-Product computations. In this 

setting the weights can be negative, so some of the fast methods would need to be 

extended. Doing this would open the door to solving many problems that can be 
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expressed as the multiplication of a structured kernel with an arbitrary vector. 

To complete the chapter, we presented some empirical tests that compare the fast 

methods head-to-head. Some of the results challenge claims in the literature about 

the performance of the fast methods. For example, the Dual-Tree method using the 

Anchors Hierarchy," and the Improved Fast Gauss Transform are both supposed to 

perform well with high-dimensional, clustered data. However, we find that this is 

not the case: the Dual-Tree fcd-treeis faster. Our empirical evaluation highlights the 

importance of considering factors other than N (the number of particles). The degree 

of structure in the data and the properties of the kernel function have a much greater 

effect on the empirical performance. 

In chapter 4, we presented an application of graphical models to the beat tracking 

problem. Given a piece of sampled music, we want to produce an estimate of the tempo 

track of the song, and an estimate of the location of beats. The results are quite good, 

and by using a probabilistic approach we leave open the possibility of combining the 

beat tracker with other machine listening applications. 

I thank you for your attention, dear reader, and bid you farewell. 
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K (kernel function), 17 
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Fast Gauss Transform, 22 
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