
Fast Methods for Inference in Graphical Models

and Beat Tracking the Graphical Model Way

by

Dustin Lang

B . S c , The University of British Columbia, 2002

A THESIS S U B M I T T E D IN P A R T I A L F U L F I L M E N T O F
T H E R E Q U I R E M E N T S F O R T H E D E G R E E O F

M A S T E R O F S C I E N C E

in

The Faculty of Graduate Studies

(Department of Computer Science)

We accept this thesis as conforming
to the required standard

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

Thursday 7 t h October, 2004

© Dustin Lang, 2004

•ZJLJBCL
THE UNIVERSITY OF BRITISH COLUMBIA FACULTY OF GRADUATE STUDIES

Library Authorization

In present ing this thesis in partial fulf i l lment of the requirements for an advanced degree at the Universi ty of Brit ish Columbia, I agree

that the Library shall make it freely avai lable for reference and study. I further agree that permiss ion for extensive copying of this thesis

for scholarly purposes may be granted by the head of my depar tment or by his or her representat ives. It is understood that copying or

publicat ion of this thesis for f inancial gain shall not be al lowed without my writ ten permiss ion.

IO

N a m e of Author (please print) D a t e (dd /mm/yyyy)

™ e of Thesis.- F e t S f Methods -For I n f e r e n c e -

D e 9 r e e : M f l S f c r e r f S d l r V l C e Year: T-OO^f

Department of CfoyW p t l f e / C S c i fe/Q
The University of British Co lumbia

Vancouver, BC Canada

grad.ubc.ca/ forms/?formlD=THS page 1 of 1 last updated: 20-Jul-04

Abstract

Abstract

This thesis presents two related bodies of work. The first is about methods for speeding

up inference in graphical models, and the second is an application of the graphical

model framework to the beat tracking problem in sampled music.

Graphical models have become ubiquitous modelling tools; they are commonly used

in computer vision, bioinformatics, coding theory, speech recognition, and are central

to many machine learning techniques. Graphical models allow statistical indepen­

dence relationships between random variables to be expressed in a flexible, powerful,

and intuitive manner. Given observations, there are standard algorithms to compute

probability distributions over unknown states (marginals) or to find the most likely

configuration (maximum a posteriori, MAP, state). However, if each node in the graph­

ical model has TV states, then these computations cost O (N2). This is a particular

concern when dealing with continuous (or large discrete) state spaces. In such state

spaces, Monte Carlo methods are of great use, but typically produce better answers as

N increases. There is therefore a need for algorithms to speed up these computations.

We review the graphical model framework and explain the algorithms that we

consider: Belief Propagation, Maximum-Belief Propagation, and Particle Filtering and

Smoothing. We review existing fast methods for speeding up these computations, and

present a new fast method, some analysis, corrections, and improvements to existing

methods, and an empirical evaluation of the fast methods with respect to a variety of

parameters. Finally, we point out other applications to which this fast machinery can

be applied.

The second body of work is an application of the graphical model framework to

a common problem in music analysis: beat tracking. The goal of beat tracking is to

Abstract iii

determine the tempo track of a piece of sampled music, and to determine the points

in time at which beats occur. While fairly simple, our graphical model performs

remarkably well on a difficult and varied set of songs.

Contents iv

Contents

Abstract 1 1

Contents iv

List of Tables . . . • vii

List of Figures viii

Acknowledgements x i

1 Welcome 1

2 Graphica l Mode ls 3

2.1 Introduction to Graphical Models 3

2.2 Inference Methods 5

2.2.1 Belief Propagation 5

2.2.2 Discrete Maximum-Belief Propagation 8

2.2.3 Continuous (Max-)BP 10

2.2.4 Particle Smoothing 12

2.3 Summary 14

3 Fast Methods 15

3.1 Introduction 15

3.2 Related Work 18

3.3 Sum-Product 19

3.3.1 Fast Multipole Method 20

Contents v

3.3.2 Fast Gauss Transform 22

3.3.3 Improved Fast Gauss Transform 24

3.3.4 Box Filter 29

3.3.5 Dual-Tree Sum-Product 30

3.3.6 Better Bounds for Dual-Tree Methods 41

3.4 Max-Product 53

3.4.1 Distance Transform 53

3.4.2 Dual-Tree Max-Product 58

3.5 Application to Inference in Graphical Models 61

3.5.1 Belief Propagation 61

3.5.2 Maximum-Belief Propagation 64

3.5.3 Particle Smoothing 65

3.6 Other Applications 66

3.6.1 Gaussian Processes: Fast Conjugate Gradients 66

3.7 Empirical Testing of Fast Sum-Product Methods 69

3.7.1 Implementations 69

3.7.2 Results 70

3.7.3 Conclusions 79

3.8 Empirical Testing of Fast Max-Product Methods 81

3.8.1 Performance in N 81

3.8.2 The effect of other parameters 85

3.8.3 Conclusion 90

4 Application: Beat Tracking 91

4.1 Introduction 91

4.2 Related Work 92

4.3 Graphical Model 93

4.4 Smoothness Model 94

4.5 Local Probability Model 95

4.6 Audio Feature Extraction 98

Contents vi

4.7 Inference 98

4.8 Results 100

4.9 Future Work 103

4.10 Conclusions 107

5 Farewell 108

Bibliography 110

List of Tables v i i

List of Tables

4.1 Beat t racking results 102

List of Figures vi i i

List of Figures

2.1 Examples of undirected graphical models 4

2.2 Potential functions 4

2.3 Example graph: weather 6

2.4 Message-passing protocol. 8

2.5 A Max-BP message 9

2.6 A Max-BP example 10

2.7 Gridding methods 11

2.8 Hidden Markov Model 12

3.1 The fast methods we consider 17

3.2 I F G T error bound illustration 26

3.3 Protocol for choosing I F G T parameters 28

3.4 Box-filter approximation of Gaussian kernel 29

3.5 Illustration of a kd-tree partitioning of space 31

3.6 Illustration of dual-tree influence bounds 33

3.7 Bias in influence estimates 35

3.8 Pseudocode for Dual-Tree Sum-Product algorithm 37

3.9 Order-of-magnitude queues 38

3.10 Original influence bounds 42

3.11 Roadmap of the better upper bound proof 44

3.12 Example of the proof by construction 47

3.13 Two particle rotation 48

3.14 Positions and weights in the two-particle system 50

List of Figures ix

3.15 Solution phases of the two-particle problem 51

3.16 Better bounds results 54

3.17 Distance Transform example, part 1 56

3.18 Distance Transform example, part 2 57

3.19 A n example of the Dual-tree Max-Product pruning 59

3.20 Dual-tree Max-Product example 60

3.21 Pseudocode for Dual-tree Max-Product algorithm, part 1 62

3.22 Pseudocode for Dual-tree Max-Product algorithm, part 2 63

3.23 Test A : varying N 72

3.24 Test B results: varying N 73

3.25 Test C results: varying dimension 75

3.26 Test D results: varying allowable error e 76

3.27 Example clumpy data sets 77

3.28 Test E results: varying source dumpiness 78

3.29 Test F results: varying source and target dumpiness 80

3.30 Test G results: varying dimension 81

3.31 Filtered distribution p(ut |zi : t) 82

3.32 Particle filter and M A P estimates of hidden state 83

3.33 Test results for 1-D time series. . . . ' 84

3.34 1-D time series results: distance computations v. particle count 85

3.35 Beat tracking results: time vs. particle count 86

3.36 Beat tracking results: distance computations vs. particle count 87

3.37 Synthetic data set with c = 20 clusters 87

3.38 Time vs. dimensionality 88

3.39 Distance computations vs. dimensionality. . '. . 88

3.40 Time vs. dimensionality, relative to kd-tree 89

3.41 Time vs. kernel bandwidth 90

4.1 Our graphical model for beat tracking 93

4.2 The phase continuity constraint 95

List of Figures x

4.3 Cemgil and Kappen note probability. 96

4.4 Our template function for note probability 97

4.5 Audio signal processing (feature extraction) 99

4.6 Tempo tracking results for Cake / I Will Survive 104

4.7 Tempo tracks for Lucy In The Sky With Diamonds 105

4.8 Multiple solutions for Lucy In The Sky With Diamonds 106

Acknowledgements xi

Acknowledgements

Many people have been essential to making this thesis happen while keeping me more

or less sane.

First of all, I want to thank my mom and dad and my brother. They have always

supported me in whatever I have chosen to do. I know that no matter what happens

they will be there to catch me if I fall and cheer me on when I cross the finish line,

and that means a lot.

I have been fortunate to work in the Dark Side of the L C I . I count my labmates not

as coworkers but as friends, and it's a pleasure to arrive at work and be surrounded

by friends. In particular, I have greatly enjoyed working with Mike Klaas. He's not

only very clever, but also has a great sense of humour and a very acceptable level of

appreciation for the wonders of caffeine.

I also want to thank Nando de Freitas, who has been a brilliant supervisor. Some­

times we don't understand each other, but he is always ready to explain or be explained

to (usually with math!).

I thank David Lowe for reading this thesis during a very busy week, and for pro­

viding many useful comments.

I am fortunate to live with a great group of guys at The Orphanage. After a rough

day at school, it is a fantastically good thing to return to a warm house, a home-cooked

meal, good companions, and a game of Settlers.

Finally, I want to thank Micheline for her amazing ability to brighten up a room,

and my life.

Chapter 1. Welcome 1

Chapter 1

Welcome

Traditionally, the first chapter of a thesis is called the Introduction. I'm not a tradi­

tionalist, and my second chapter is an introduction to the topic area, so I've decided

to make this chapter a welcome instead. Welcome to my thesis, dear reader.

In an introduction, I 'm supposed to explain that I came up with a nice idea for

a thesis and then pursued it in a logical fashion, without taking any side trips or

stumbling down any dead-end alleys. Since this is not an introduction, I'm going to

tell the real story, which should help explain how these somewhat disparate chapters

are tied together.

I began my thesis work with the aim of exploring statistical machine listening:

I planned to approach long-standing problems in music processing from a statistical

machine learning perspective. The great advantage of probabilistic approaches is that

they typically allow us to produce not only a single answer, but a whole distribution

of potential answers with different weights (probabilities). One of the main difficulties

in music processing problems is that there are often several reasonable answers; com-

miting to one and discarding the rest is generally not a good idea. Also, researchers

typically break the problem into subproblems (beat detection, instrument identifi­

cation, and so on) that are then tackled independently. Since the raw input data

(sampled music) tends to be large, it is typically processed in different ways for each

subproblem; different subsets of the total information are discarded. The problem with

this approach is that ambiguities in one subproblem could potentially be resolved with

information from other subproblems, but if the problems are solved independently and

there is no representation of uncertainty, then doing this is impossible. I hoped that

by using a probabilistic approach, I would be able to represent the uncertainty in each

Chapter 1. Welcome 2

subproblem. Then, by combining subproblems in a principled way, I could leverage

different types of information to produce better results.

As often happens, this turned out to be a little bit more difficult than I thought

it would. I started with the beat tracking subproblem; my solution is presented in

Chapter 4. It took me a rather long time to arrive at my model for beat tracking,

which is slightly embarrassing since it's nearly the simplest model one can imagine.

Nevertheless, it works remarkably well on a wide variety of examples. I take comfort

in the fact that it's often the case that good ideas are only obvious in hindsight.

I found that while my beat tracking solution often gave nice results, it was also

quite computationally expensive. This led to an exploration of fast methods for in­

ference in graphical models. This material is presented in Chapter 3. Chapter 3 is a

bit of a monster. It contains a survey of existing fast methods, some new fast meth­

ods, some additional insights into existing fast methods, and an empirical evaluation.

The empirical evaluation presents findings that challenge commonly-held beliefs about

these methods.

This thesis is not exactly two papers stapled together, but the beat tracking and

fast methods chapters are mostly independent of each other. Chapter 2 presents an

introduction to graphical models and also introduces some notation. It contains no

new results. Readers familiar with the topic should probably just give it a brief skim,

while those new to area might find it a useful introduction.

When new phrases or ideas are introduced there is usually a note in the margin.

There is also an index, which may help you find things that I think are important.

Enough philosophizing, on to the thesis! " •

Chapter 4-
Beat
Tracking

• Chapter 3;
Fast
Methods

1 Chapter 2.
Graphical
Models

< margin
notes are
great

Chapter 2. Graphical Models 3

Chapter 2

Graphical Models

2.1 Introduction to Graphical Models

We present a brief introduction to graphical models and several algorithms for inference

in them. Good references for this material are Jordan [27] and Yedidia, Freeman and

Weiss [42].

Probabilistic graphical models provide a framework for expressing statistical inde­

pendence relationships between random variables. Each variable is represented by a

node in a graph, and potential dependence relationships are represented by edges. Vari­

ables can be multidimensional, and can be discrete or continuous. Observed variables

are represented by shaded nodes, and unknown or hidden variables are represented by

unshaded nodes.

We focus on undirected graphical models. Directed models and factor graphs can

easily be converted to undirected models, as shown in [42]. Several example undirected

graphical models are shown in Figure 2.1.

In undirected graphical models, the relationships between variables are expressed in

terms of potential functions. Consider nodes i and j, which represent the variables Xi • potential
fuTlCtZOTlS

and Xj. The potential function connecting these nodes is ipij(Xi,Xj), and expresses

the compatibility of the value Xi at node i with the value Xj at node j. See Figure 2.2.

Large values of the potential function indicate that the values Xi and Xj are likely

to co-occur, while small values indicate a statistically unlikely arrangement. Potential

functions must be non-negative; unlike probabilities, they need not be normalised.

According to the Hammersley-Clifford theorem [24], the joint probability of a graphical

Chapter 2. Graphical Models 4

Figure 2.1: Examples of undirected graphical models. Shaded nodes represent observed

variables, unshaded nodes represent hidden variables, and edges represent statistical

dependence relationships between variables, (a) is a Markov chain, (b) is a Markov

Random Field, (c) and (d) are arbitrary graphs.

node i node j

Figure 2.2: A potential function xpij'Xi, Xj) between node i and node j describes the

compatibility between the variable at node i having value Xi and the variable at node

j having value Xj.

Chapter 2. Graphical Models 5

model is

where V are the vertices in the graph and E are the edges. The functions ipi(Xi)

describes how likely it is for the variable at node i to have the value X{, and ipij(Xi, Xj)

are the potential functions connecting all pairs of variables that share edges. The

partition function Z is a normalisation constant.

2 . 2 I n f e r e n c e M e t h o d s

There are two primary inference tasks in graphical models. Consider the set of variables

X as being composed of the set of hidden variables XH and the set of observed variables

Xo- Given a set of observations Xo, the first inference task is to find the marginal

probabilities of each hidden node XH : • marginal
probabilities

p(Xi\X0) for each i e H . (2.1)

The second inference task is to find a maximum a posteriori (M A P) set of values for • MAP set

the hidden nodes XH-

X*H = a r g m a x p (X K | X 0) . (2.2)
xH

See Figure 2.3 for an example.

2.2.1 Belief Propagation

Belief Propagation [34] is an algorithm for computing the marginal probabilities in

graphical models. The algorithm is exact for graphs that are trees. In some cases the

same algorithm can also produce good results when used in cyclic ("loopy") graphs

[33].

Belief Propagation (BP) proceeds by passing messages between nodes. A message • message

passed to node j is simply a set of real values, one value per possible state at node

j. The intuition is that the message passed from node i to node j tells node j which

states are most preferred by node i; large values indicate favourable states.

Chapter 2. Graphical Models 6

Weather

Moisture Sensors Thermometer Photosensor

Figure 2.3: In the simple graph shown above, several noisy sensors are used to
measure environmental conditions, and there are several hidden variables about which
we would like to reason. Three binary moisture sensors Mj are connected to the
binary hidden variable for rain, R. The potential functions (edges) connecting Mi and
R model the noise properties of the sensors. For example, we expect R = true when
Mi = true, except that the sensors might have a false positive rate of 10% and a false
negative rate of 30%. In a similar manner, the continuous temperature T and binary
sun S variables are connected to their associated noisy sensors through potential
functions that describe the noise processes of the sensors. Finally, these three hidden
variables are each connected to the categorical weather variable W. The potential
function between R and W should take a high value for {R — true, W — rainy}, and
a low value for {R = true, W = sunny}.

In the terminology , introduced above, the set of observed nodes is
X0 = {Mi,M2,M3,T1,Pi} and the set of hidden nodes is XH = {R, S, T, W}.
By computing the marginal probabilities (equation 2.1), we could report the proba­
bilities of each state at each node: W = sunny, W = rainy, R = true, R = false,
S = true, S — false, and a probability distibution over the continuous variable T. By
computing a M A P set (equation 2.2), we could report the most probable combination,
such as X*H — {W = sunny, R = false, S = true, T = 25.4°C}.

Chapter 2. Graphical Models 7

Formally, if the states at node i are x^, then the probabilities (or beliefs) at node • belief

i are 1

bi(xi) = 7? V'i(zj) Yl moAxi) > (2-3)

where 7V(i) are the neighbours of node i (all nodes sharing edges with node i) and rrij^

is the message passed from node j to node i. Z is a normalizing constant. Intuitively,

ipi(xi) describes the local probability of each state, while the messages capture the

compatibility of each state with the rest of the graph.

The message passed from node j to node i is

mj:i(Xi) = ^Ipjixj) lj)j,i(Xj,Xi) Yl mk,j(X3) ' (2-4)
Xj keN(j) except i

which can be interpreted as the likelihood of arriving at state Xj, marginalized over all

states Xj.

Another way of understanding the message is to substitute the expression for the

belief bj(xj) into the above expression:

Now, bj(xj) can be seen as the probability of starting at state Xj, and ipjj(xj,Xi) the

probability of making the transition to state x; given that we start in state Xj. We

divide out the influence of the message passed in the opposite direction, mjj(xj) . (An

intuitive explanation for this is that the belief incorporates information from the whole

graph, but during message-passing we want to move information in only one direction

at a time, so we ignore edges that allow information to flow in the opposite direction.)

The summand, therefore, gives the probability of starting at state Xj (at node j) and

arriving at state Xi (at node i). B y summing over all Xj, we enumerate all possible

ways of arriving at Xj.

The messages must be passed in a specific order; this is called the message-passing

protocol. In tree models, one valid protocol is that one round of messages is passed from

the leaves to the root and then a second round is passed in the opposite direction. See
1This is the notation used in [42].

Chapter 2. Graphical Models 8

Figure 2.4: Message passing protocol in Belief Propagation. In the first round (left),

messages are passed from leaves to the root. The messages labelled [1] are computed

first (possibly in parallel), then message [2] is computed. In the second round (right),

messages are passed back from the root to the leaves. Message [3] is computed first,

and finally messages [4] are computed.

Figure 2.4. In the first round of messages, the message passed by node i summarizes

the information from all nodes in the subtree rooted at i. Messages arriving at the

root contain a summary of information from the whole tree. In the second round, the

message passed to node i summarizes the information from all nodes between the root

and i (including the information gathered in the first round). Messages arriving at the

leaves thus incorporate information gathered from the whole tree.

2.2.2 Discrete Maximum-Belief Propagation

The Belief Propagation (BP) algorithm solves exactly the inference task of computing

the marginal probabilities for graphical models that are trees. For the maximum a

posteriori (MAP) task, a similar but distinct algorithm, Maximum-Belief Propagation

(Max-BP) must be used. Max-BP is a type of dynamic programming, and for Hidden

Markov Models is equivalent to the Viterbi algorithm.

As in standard BP, the Max-BP algorithm proceeds by passing messages between

nodes. In the first round of message passing, we compute the costs of partial paths

Chapter 2. Graphical Models 9

States at
node j 1>2

«3

Figure 2.5: A Max-BP message. Node j, with states ji, and j ' 3 , is the bubble on

the left; node i is on the right. The message rrij^Xi) passed from node j to node i

is indicated by the three arrows between the nodes; each arrow has associated with

it a value, represented here by the width of the arrow. Note that one arrow arrives

at each state Xj. The 'source' of each arrow is the corresponding value of x*j (see

equation 2.6).

through the graph. In the second round, we trace backward through the graph, col­

lecting states that are members of the cheapest total path.

The messages are the same as in B P (equation 2.4) except that the summation is

replaced by a maximization. The message passed from node j to node i is

y,i(xi) = maxj tpj(xj) ipjA(xj,Xi) JJ mkj(xj) > . (2.5)

1 keN(j) except i

See Figure 2.5 for an illustration.

The M A P problem can be interpreted as the problem of finding an optimal (highest-

value) path through the graph. In this light, the message mj^(xi) is the value of the

optimal way of arriving at each state x\ from node j. We must also record the state

Xj that produces the best path:

xj,i(xi) = argmax < ipj(xj) ipj,i(xj, X{) JJ mk,j(xj) > . (2.6)
Ij' k€N(j) except i

After the first round of messages have been passed (from leaves to the root of the

graph), the belief at the root node is computed (equation 2.3). The state with the

Chapter 2. Graphical Models 10

Figure 2.6: A Max-BP example. In this three-node graph, node i is a leaf node and

node k is the root. (For this graph, we could arbitrarily make any of the nodes the

root.) The messages from nodes i to j and j to k are shown by the arrows, where

the width of the arrow shows the value of the message element. At state k, the top

state has the highest belief, so is a member of the M A P set (which we have shown by

shading it). We then trace backward through the graph, collecting the states {xMAP}
that form the best path through the graph.

largest belief2 is a member of the M A P set. We then trace backward through the

graph (from the root to leaves), collecting, for each node, the state that led to that

state; these form the M A P set. See Figure 2.6.

2.2.3 Continuous (Max-)BP

The B P and Max-BP algorithms described above solve the tasks of computing the

marginals and M A P sets, respectively, for tree models with discrete state spaces. For

tree models with continuous state spaces (or large discrete spaces), we can use (Max-

)BP if we first use one of several 'gridding' methods to create a discrete approximation

of the continuous space.

For bounded continuous state spaces, a simple gridding method is to place a uni­

form mesh over the state space. Each mesh point then becomes a discrete state. See
2 I n genera l there c a n be two or m o r e s tates w i t h beliefs equa l t o the m a x i m u m . It is a s i m p l e

ex t ens ion to col lec t a l l s u c h sets o f M A P sets. Here , we cons ider o n l y the s i m p l e case where there is

a s ingle m a x i m u m .

Chapter 2. Graphical Models 11

Figure 2.7: Gridding methods, (a): an example continuous state space, (b): the

uniform mesh method, with 20 x 20 grid. Each point becomes a discrete state. (Con­

necting lines have been added for ease of viewing.) (c): a contour view of the same

continuous state space, (d): the Monte Carlo gridding method with 400 particles (the

contour lines are overlaid for reference). Each particle becomes a discrete state. Note

that areas of high probability have high particle density; more attention is paid to

important regions of the state space.

Chapter 2. Graphical Models 12

p(xi\x0)

p(yiM

p(x2\xi)

o
p(y2\x2)

Figure 2.8: A Hidden Markov Model.

Figure 2.7. This method scales poorly to high-dimensional state spaces, since the

number of mesh points grows exponentially with dimension.

Another gridding approach is to run a particle filter to obtain a Monte Carlo

approximation of the state space. Such an "adaptive grid" method is presented in [16]

for the Max-BP problem. This works particularly well for large or high-dimensional

state spaces, particularly those with small regions of high density.

2.2.4 Particle Smoothing

The Belief Propagation algorithm presented above allows us to calculate the marginal

probabilities of each state, given all the observations, for tree models with discrete state

spaces. For continuous state spaces or very large discrete spaces, we must typically

resort to approximate methods. For chain models, Monte Carlo particle methods are

a standard approach. Good references are [8, 9].

The standard particle filter is typically applied to chain models (Hidden Markov

Models, HMM), which are characterized by a set of observations {yk} and hidden

variables for k = l...n, plus an initial state probability distribution n(xo),

transition model p(xk\xk-i), and observation model p(yk\xk)- See Figure 2.8.

For the remainder of this section we use the notation of [9], which has become

standard in the literature. As explained in [27], an H M M can be converted into an

Chapter 2. Graphical Models 13

undirected model by setting

1p(Xi) = p(xi) (2.7)

1p(Xi,Xj) = p(Xj\Xi) (2.8)

where Xj in the above can be either Xi+\ (for transitions) or yi (for observations).

Often, each pair of nodes in an H M M corresponds to an instant in time, and the

task is to estimate the trajectory of the hidden variables given the observations. For

each node, the particle filter generates an estimate of the filtering distribution: the •filtering
distribution

distribution of the hidden variable given all the observations up to that point in time.

This is accomplished by generating a number of weighted samples in the first node, and

propagating the set of samples to subsequent nodes as time progresses. The samples

are called particles; the particles at node k are , i = 1... N, and have filtering

where S is the Dirac delta function; the continuous distribution is approximated by a

weighted set of discrete samples.

The particle filter alone does not solve the task of computing the marginal prob­

abilities, however. Since we only move information forward in time, the filtering dis­

tribution at a given nodes takes into account only observations up to that node. To

produce the marginal probabilities, we must move information in the opposite direc­

tion as well. For a chain of length n, the marginal probabilities are p(xk\yi;n), while .

the filtering distribution is p(xk\y\:k). The filtering distribution at state k takes into

account only observations yi±, that is, observations up to time k; while the marginals

take into account all observations y\-n-

A n estimate of the marginal probabilities can be computed by making a back­

ward pass in which the samples generated during the forward (particle filter) pass

are reweighted. This is called the forward filtering-backward smoothing method. We

only state the result here; see [8] for details. The new particle weights are called the
(i)

smoothing weights, wW, and are computed as follows: •smoothing

(i)
weights w. . The filtering distribution at node k is estimated by

N

i=l

weight

Chapter 2. Graphical Models 14

p(̂ ii4m))
(2.10)

(2.9)

The marginal probabilities, or smoothing distributions, p(xk\yi:n), are approximated •smoothing
distribution

N

P (Xk | VO-.n) = Yl ™k\n 6 (4° ~ X<<) •
i = l

Note that this distribution has the same particles as the filtering distribution, but

different weights that incorporate information from all the observations.

2.3 Summary

In this chapter, we have reviewed the graphical model framework, stated the primary

inference tasks with which we are concerned, and presented several algorithms for

solving these tasks. Belief Propagation (BP) can be used to solve the task of computing

the marginal probabilities of the hidden states given all the observations. Maximum-

Belief Propagation (Max-BP), similarly, allows us to compute a maximum a posteriori

set of states for the hidden nodes. Both these algorithms are directly applicable to

models with discrete state spaces, and give exact results for graphical models that

are trees. For continuous state spaces or very large discrete spaces, we can apply

a discretization strategy (such as deterministic or Monte Carlo gridding) and then

apply (Max-)BP. Finally, for Hidden Markov Models with non-Gaussian continuous

state spaces, Particle Smoothing can be used to compute the marginal probabilities.

by

Chapter 3. Fast Methods 15

Chapter 3

Fast Methods

3.1 Introduction

In the previous chapter, we reviewed several methods for inference in graphical models.

These methods have strong theoretical bases, but in practice the resulting computa­

tion can be very expensive. When computed naively, the Particle Smoothing, Belief

Propagation, and Max-Belief Propagation algorithms each cost O (kN2), where k is

the number of nodes in the graphical model and N is the number of particles or dis­

crete states at each node. This cost becomes prohibitive for many practical problems

in which large numbers of states are required.

The O (N2) complexity of these algorithms arises when computing the smoothing

weights in Particle Smoothing, and in computing the messages in Belief Propagation

and Max-Belief Propagation (equations 2.10, 2.4, and 2.5, respectively). For Particle

Smoothing and Belief Propagation, this cost arises because every particle in one state

has some influence upon every particle in neighbouring nodes. This can be expressed

as a Sum-Product problem (defined below). In Max-Belief Propagation we must find,

for each particle in one state, the particle from a neighbouring state which exerts the

strongest influence. This can be expressed as a Max-Product problem (also defined

below).

In this chapter, we present fast methods for computing the Sum-Product and Max-

Product problems. We show how these can be used to speed up Particle Smoothing,

Belief Propagation and Max-Belief Propagation in Section 3.5. The Sum-Product and

Max-Product problems arise in many other settings; these are discussed briefly in

Section 3.6.

Chapter 3. Fast Methods. 16

For both the Sum- and Max-Product problems, we are given a set of points X =

{x^, i = 1. . . N, each of which has a non-negative weight, mass, or strength W{. We

call these source points, source particles, or simply X particles. These names come • sources

from the analogy to physical particles with electric charge or mass. We are also given a

set of points Y = {yj}, j = 1... M, which we call the target points, Y points, or target • targets

particles; these are the points at which we wish to measure the quantity of interest.

In some cases, the X and Y points will coincide. It will often be the case that M and

N are equal. We assume that'the points live in a multidimensional vector space (with

dimension D), though it is often the case that the methods and problems generalize

to metric spaces in a straightforward manner.

The Sum-Product problem is to compute the values • Sum-
Product

N

fj = J2wi Kd\\xi-yj\\) , j = l...M . (3.1)
i = i

problem

We call fj the influence at point yj. K is called the kernel function. In many cases, •influence

Ki(d) = K(d), meaning that the kernel is the same for each source. This problem is • kernel
also commonly called weighted Kernel Density Estimation. function

The Max-Product problem is simply the Sum-Product problem with the summa- . Max-
Product tion converted to a maximization:

x* = argmax { w{ Ki (\\xi - yj\\) j , j = l...M .
i€[l,N] L J

This can be seen as a search for the particle in X that has the greatest influence upon

each point in Y.

Here, we are interested in methods that will allow us to speed up the computation

as TV and M become large. We also want the methods to scale well as the dimension

D becomes large. We consider the methods shown in Figure 3.1.

We mention the Fast Multipole Method (FMM) briefly; there is an extensive liter­

ature on the topic, including good tutorials. The F M M is based on a combination of

space subdivision and series expansion, hence the series expansion must be rederived

problem

Chapter 3. Fast Methods 17

Sum-Product Methods

Fast Multipole Method

Gaussian Kernel

Fast Gauss Transform.

Improved FGT

Dual-Tree
• fcci-tree
• Anchors

Regular Grid

Box Filter

Max-Product Methods

Dual-Tree

• fcd-tree

• Anchors

Regular Grid

Distance Transform

Figure 3 . 1 : The fast methods we consider. See the text for discussion.

Chapter 3. Fast Methods 18

for each particular kernel function. The Dual-Tree method relies upon space parti­

tioning and the ability to compute bounds on the kernel function, so can easily handle

many different types of kernels. The Fast Gauss Transform (FGT) is a specialization

of the F M M for Gaussian kernels. The Improved Fast Gauss Transform (IFGT) uses

a different series expansion and a flat (non-hierarchical) subdivision of space. The

box-filter method applies only to the special case where the source and target points

are located on the vertices of a regular grid.

For the Max-Product problem, we again consider a Dual-Tree method, which can

be applied to a very broad class of kernel functions and arbitrary distributions of

points. For the particular case where the sources and targets are the vertices of a

regular grid, and for a limited family of kernel functions, the Distance Transform can

be applied.

Our specific contributions are:

• the Dual-Tree Max-Product algorithm;

• improved kernel bounds for the Dual-Tree Sum-Product algorithm;

• some implementation-level enhancements to the Dual-Tree Sum-Product algo­

rithm;

• a correction to the error bound of the Improved Fast Gauss Transform;

• a protocol for choosing the parameters of the Improved Fast Gauss Transform;

• the application of the Sum-Product to Particle Smoothing, (Max-)Belief Propa­

gation, and Gaussian Processes.

Of course, we also hope that our survey of existing fast methods will itself be helpful.

3.2 Related Work

Several researchers have presented methods for speeding up Belief Propagation (BP)

and Maximum-Belief Propagation (Max-BP) in various settings. These can be split

into two categories. The first are structural methods, which aim to reduce the total

number of messages passed during Loopy Belief Propagation (where multiple rounds

of message passing are required). The second type are methods that aim to reduce

Chapter 3. Fast Methods 19

the cost of computing a single message. We discuss only the former in this section;

the latter are instances of Sum-Product and Max-Product methods and are discussed

later. The fast Sum- and Max-Product methods we present can be used in conjunction

with these structural methods.

Felzenszwalb and Huttenlocher [12] present two structural methods for speeding

up Max-BP in Markov Random Fields (MRFs), particularly for computer vision ap­

plications. Since MRFs are cyclic, Max-BP is not guaranteed to produce the correct

answer, but Loopy Max-BP can give good approximations in some problem domains

[31, 13].
The first method uses a hierarchical (coarse-to-fine) strategy; a new M R F in created

in which 2x2 blocks of nodes in the original MRF are treated as a single node. This

process is repeated to create a pyramid. The smallest MRF at the top of the pyramid

can be solved quickly by running several iterations of Max-BP. The results are then

propagated downward to initialize the next-finer level in the pyramid. This process is

repeated until the bottom of the pyramid (the original MRF) is solved. This strategy

seems to work because it allows long-range movement of information through the graph

in a small number of iterations. For many computer vision problems, strong image

smoothness constraints allow blocks of nodes to be grouped together in such a manner.

Such multiresolution strategies are common in many fields [39].

The second method aims to reduce the number of iterations of Max-BP required,

by partitioning the graph into two halves and computing messages for only one half

of the graph each iteration. Such a strategy is given a theoretical grounding in [25].

3.3 Sum-Product

In this section, we present five approximate methods for the Sum-Product problem.

Recall that the Sum-Product problem is to compute

N

h = ^2wi Ki(\\xi-yj\\) , j = l . . . M .
1=1

Chapter 3. Fast Methods 20

Given an absolute error tolerance e, each of these methods compute approximate values

of fj that satisfy \fj — fj\ < e for each j.

3.3.1 Fast Multipole Method

There is an extensive literature on the Fast Multipole Method (F M M) . Good tutorials

exist, so rather than reinvent the wheel we refer interested readers to the references

of Beatson and Greengard [3] and Ihler [26]. In this section we will briefly discuss the

important features of the F M M . • ••

The F M M encompasses a large family of methods for solving Sum-Product prob­

lems. Most F M M formulations have been developed for applications in physics, where

TV-body problems commonly arise. In TV-body problems, a set of objects are dis­

tributed in space; each object has a weighted distance-dependent influence upon each

other object, and the influences are additive. For example, computing the gravita­

tional or electrostatic interaction of TV masses or charged particles is a typical TV-body

problem to which the F M M can be applied.

The F M M is typically applied to kernels which are not well-behaved near the

origin, but become smooth at a sufficient distance. For example, the gravitational and

electrostatic potentials1 are of the form

K (x - y) = 1

I k - y | |

which is singular at y = x but smooth elsewhere. The idea is then to develop series

expansions of the kernel that are valid for some domain \\x — y\\ > R. This is the

far-field expansion. If the far-field expansion can be written as

v
K (x, y) — ^2 <t>k (x) 4>k (y) , \\x-y\\eR ,

fc=i

then the problem can be split into two phases. In the first phase, the coefficients of
1 The potential describes the energy stored in the field, which is the integral of force over distance.

The force of the gravitational and potential fields go as F oc T . — - — r r - , so the potentials go as E oc
l | z - 2 / l l 2

1

Wx-Vl

Chapter 3. Fast Methods 21

the series expansion are computed:

N

Ck = ^2wi ipk Oi) , k = l...p ;
i=i

these depend only on the sources. In the second phase, the series expansion is evaluated

at each target point:

p

fj = Y,Ck<j>k(yj) , j = l...N ;

k=l

these depend only on the targets. In this way, the sources and targets interact only

through the series expansion, and the cost becomes O (Np), where p is the number of

terms in the series expansion.

Since in general the far-field expansion is only valid on some domain, it is necessary

to subdivide the space in which the particles live (typically using a hierarchical data

structure such as the kd-tree), and construct different series expansions that are valid

in different regions of the space. Evaluating the influence upon a single y particle is

then a matter of recursing down the tree, evaluating at each level the series expansions

that belong to branches of the tree that are sufficiently far away. This process stops

at the leaf nodes, which contain some small number of particles whose influence can

be evaluated directly.

Rather than evaluating the expansion separately for each y point, the F M M also

creates a space-partitioning tree for the target points, and rather than evaluating the

series expansion directly, constructs Taylor expansions that are valid for all target

points within that branch of the target tree. The result of this process is that for each

y point it is only necessary to evaluate a Taylor expansion.

This has been a very terse summary of a rich subject area. The key points are

that the F M M is based on a hierarchical subdivision of space and series expansions

that are valid on limited domains. The error bounds of the F M M are determined by

the truncation error of the series expansions, so are determined a priori. The exact

form of the series expansions depends on the form of the kernel; expansions for many

kernels have been developed.

Chapter 3. Fast Methods 22

3.3.2 Fast Gauss Transform

The Fast Gauss Transform (FGT) , presented by Greengard and Strain [22, 23, 2], is a

specialization of the Fast Multipole Method. It solves the Sum-Product problem for

the case when the kernel function is a Gaussian with scale parameter h:

K(d) = exp

There is also a version for the case of variable scales:

Ki(d) — exp

[37], though we consider only the simple case here.

The F G T proceeds by dividing the space into a uniform grid of boxes with side

length of order y/h. For each source particle, a Hermite expansion of the Gaussian is

performed. The expansion coefficients for the particles in each box can be summed,

yielding a single expansion for each box. In a similar manner, each target box has a set

of influential source boxes, and the Hermite expansion inside the box can be expressed

as a Taylor expansion. Thus, for each target point in the box, we need only do a

Taylor expansion. In this way, the source and target particles are decoupled through

the series expansions, and the O (MN) complexity becomes O (M + N).

Formally, given a set of NB particles in a single box B with center XB, the Sum-

Product can be approximated by a Hermite expansion about the center:

NB

fA B) = /\,wi e x P
i = l

fj(B) = J2A«(B)ha

where a is a multi-index, ha is the Hermite function of order a, and p.is the order of

the expansion. The coefficients Aa(B) are given by

Aa(B) =

For each target box T, we compute the set of boxes B that are within range, then collect

the Hermite expansions from these boxes and expand them in a Taylor expansion about

(Vj-xB\

V Vh)

Chapter 3. Fast Methods 23

the box center yx'-

where /3 is a multi-index and the coefficients Cp are

^ E E ^ M ^ f) •
The set of boxes B that are within range of a target box T is determined by the

error bound e. We take the n closest boxes in each dimension (i.e., all boxes in a cube

with sides of length 2n + 1 boxes centered at T) and ignore the influence of all other

boxes. In the worst case we ignore a particle at distance nr (where r is the side length

of the boxes) with weight w. Therefore, we choose n such that the influence of this

worst-case particle is less than e: -

f = w exp i — S < e

and w cannot be greater than the sum of weights W:

N

w < W = ^^Wi ,
i=i

hence the number of boxes within range of each target box does not depend on the

number of source or target particles, but only on e.

The number of terms p in the Hermite and Taylor expansions is also determined

by the allowable error e. The error bound in [2] is

where D is the dimension of the problem.

The amount of work required to perform the F G T is divided into two phases:

computing the expansion coefficients for all the boxes takes O (N); and evaluating the

expansions for all the target points takes O (M). The number of terms required in the

series expansions is a function of the error bound e.

Chapter 3. Fast Methods 24

Although the F G T yields linear performance with respect to the number of source

and target points, there are several theoretical and practical shortcomings with respect

to other problem parameters. First, the total number of Hermite expansions terms

grows as pD, where D is the dimension of the problem, and p is the number of expansion

terms per dimension. In addition, the uniform division of space causes the number

of boxes to become large as the scale parameter h becomes small or when dimension

grows. The number of boxes grows as (j^)2D', so implementations of the algorithm

that do not deal cleverly with empty boxes will become prohibitively expensive, both

in the amount of memory required to store many empty boxes, and in computation

time in examining empty boxes.

In practice, these shortcomings limit the F G T to problems up to dimension D = 3.

Unless adaptive gridding methods are used, the memory requirements of the F G T can

be become prohibitive if h is too small.

3 . 3 . 3 I m p r o v e d F a s t G a u s s T r a n s f o r m

The Improved Fast Gauss Transform (IFGT) [40, 41] aims to improve upon the F G T

by using a space-partitioning scheme and a series expansion that scale better with

dimension.

The space-partitioning scheme used in the I F G T is adaptive, in that it is sensitive

to the location of source points rather than being fixed. They simply run the farthest-

point if-centers algorithm, which performs a rudimentary clustering of the data into

K clusters. As in the F G T , the series expansion coefficients for all points in each

cluster are summed.

The F G T treats the multidimensional Gaussian as a product of one-dimensional

Gaussians, performing a series expansion for each dimension independently. The I F G T

does a series expansion of the distance from sources to targets, which yields fewer terms

in the series expansion, particularly for high-dimensional problems.

Formally, the algorithm proceeds as follows. First, the farthest-point clustering

algorithm is run on the source points, producing K clusters. For each cluster B with

Chapter 3. Fast Methods 25

center xB, the series expansion coefficients are computed:

B 2 a ^ f \ \ x i - x B \ \ 2 \ f X i - x B \ a . .

^ = ^ 2 > * e x p (7^—> — ^ — J ' | a | < p -
i=l v * \ /

Then, for each target cluster T, the set of clusters B that are within range are com­

puted.. Finally, the Taylor expansion for each target point is computed:

exp< -
\\yi-xB\\ \ f y j - x B \ a

h2 V h B \a\<p

The total number of terms in the multi-dimensional Taylor expansion of total order

p (called rp<i in [40]) is
'p + D\ (p + D)\

rp,D D J p\D\ '

where D is the dimension of the problem.

We must choose several parameters in order to satisfy a given error bound e. There

are two sources of error in the IFGT: truncation of the series expansion after order p,

and ignoring source clusters that are out of range. The first error source is called ET

in equation 3.12 of [40]:

T T , (2 r x r v - rx

2 — rv

2 1 2P /rxrv\P

where rx is the maximum source cluster radius and ry is the range: the largest distance

between targets and source clusters considered to be 'within range', p is the order of

the series expansion. In [40] this bound is simplified (using the triangle inequality) to

r *2P / TxTn
E T < W

p\\ h?) '

but we find that in typical cases this simplification introduces a factor of 10 3 or more

to the error bound; we therefore use the first expression.

The second error source, as in the F G T , comes from ignoring the influence of

clusters outside of range ry. The error bound for this term in [40], equation 3.13, is

wrong. See Figure 3.2 for an illustration. The equation given is

2 '
EC < W e x p j ^ }

Chapter 3. Fast Methods 26

d-

Cluster B

x y

Figure 3.2: A n illustration of the I F G T error bound due to ignoring clusters outside

radius ry. The cluster center is XB and its radius is rx; the cluster is ignored if the

distance dy from the center to y is greater than the range ry. In the worst case, a

particle x with large weight sits on the cluster boundary nearest to y. The distance

between y and x can be as small as d = ry — rx.

However, in the worst case a source particle x with weight w = W and belonging to

cluster B is located at the nearest possible point to target y. If the distance from y to

the cluster center XB is infinitesimally greater than ry, then cluster B is ignored. If the

particle x is located on the cluster boundary closest to y, then the distance between x

and y is nearly ry — rx, not ry. Hence, the true error bound is

r (ry ~ rx)2 \ Ec < W exp
h?

The I F G T papers do not suggest a method for choosing parameters K, ry and p

to meet a given error bound e. We developed a protocol for choosing parameters that

will satisfy a given error bound and also ensure that the complexity of the algorithm

does not degrade. See Figure 3.3.3 for the protocol. It is based upon four constraints

C:

Ci : Ec < e

Ci : . ET < €

C3 : K < K*

where C i and C2 are hard constraints that guarantee the error bound, C 3 is a hard

constraint that guarantees the algorithmic complexity, and C4 is a soft constraint that

(incorrect)

Chapter 3. Fast Methods 27

improves convergence. Note that each source cluster contributes to the error either

through series expansion (ET) or by being ignored (Ec), but not both. Therefore, it

suffices to require Ec < e and ET < e, rather than Ec + ET < e.

Note that the I F G T , unlike the F G T , does not cluster the target points y; the

distance from each target to each source cluster is computed. The algorithm therefore

has O (KM) complexity, where K is the number of source clusters and M is the number

of targets. To keep O (M) complexity, K must be bounded above by a constant, K*.

This is constraint C 3 . Note that rx (the maximum cluster radius) decreases as K (the

number of clusters) increases. Since K has an upper bound, rx has a lower bound.

Contrary to the claim in [40], rx cannot be made as small as required by increasing

K.

The main issue with the I F G T is that the error bound ET + Ec vastly overesti­

mate the actual error. In [40], the error bound plots show that the bound typically

overestimates the actual error by factors of 10 2 to more than 10 6. This is a major

issue if we want guaranteed error bounds, because it means that we must choose p to

be much larger than necessary.

Another problem is that in many cases we cannot choose parameters such that
r r r , x' y < 1, so the truncation error bound ET goes to zero very slowly. As the number

of terms is increased from p — 1 to p, the error bound changes by a factor of ^ r * V y .
phz

Note that this can be greater than one - the error bound can increase as more terms

are added to the series expansion! Eventually, p becomes large enough that the error

bound decreases, but by this time p can become very large. This occurs because the

Taylor expansion error bound grows with the size of the domain of the expansion. The

expansion is about zero (the cluster center), so the worst-case expansion error occurs

at the farthest point from the cluster center. This is troubling, because we know that

the Gaussian decays away from zero; the greatest distance from the cluster center has

the largest expansion error bound, yet we know that the Gaussian has the smallest

value here.

Chapter 3. Fast Methods 28

// Recall:

//Cx:EC<e

// C2 : ET < e

// C3:K<K*

/ / f t : (2 ?) < l

Input: ry(ideal), e
Output: k, ry, p
Algorithm:

for k = 1 to K*:

run fc-centers algorithm,
find largest cluster radius rx.
using ry = ry(ideal), compute C\, C4.
if C\ AND C4:

break

i f k < K*:

// C4 can be satisfied.

set ry = mm(ry) such that C\ AND C 4 .

else:
// C4 cannot be satisfied.

set ry — min(ry) such that C\.

set p = min(p) such that C2.

Figure 3.3: Protocol for choosing IFGT parameters. We first try to find k < K* that

will allow all the constraints to be satisfied with the given ry(ideal). In many cases,

this is not possible so we must set k = K* and increase ry. Finally, we choose p

to satisfy the truncation error bound C2. In practice, the fc-centers algorithm is run

iteratively rather than being run anew each time through the loop.

Chapter 3. Fast Methods 29

1 1

Figure 3.4: Box-Filter approximation of a Gaussian kernel. To achieve a relative error

of 2%, 25 boxes are required.

3.3.4 Box Filter

Felzenszwalb, Huttenlocher and Kleinberg [10] note that when the source particles and

target points are the vertices in a regular grid, the Sum-Product problem becomes a

discrete convolution of the source weights by the kernel function. This is, if the kernel

function K(xi,Xj) can be written as K(i — j), then

N

fj = YlWiK^ ^ J) •
i=l

In general this takes O (NM), where M is the support of the kernel. For certain kernels,

however, this can be done more efficiently. The box filter, which has constant value

inside some interval and zero elsewhere, allows the computation to be done in O (N).

By summing several box filters, we can build a piecewise constant approximation to

any smooth separable kernel. See Figure 3.4.

To achieve an error bound of e, we must make the absolute difference between

the approximation and the real kernel small. This is best accomplished by composing

boxes of equal height such that the vertical space between boxes is equal; see Figure

3.4. Such an arrangement is optimal because the error is bounded by the largest

difference between the real value of the kernel and the box approximation. In order to

Chapter 3. Fast Methods 30

minimize this value globally, the vertical steps must be of equal size. It is necessary

to use a number of boxes B,

where Kmax and Kmin are the maximum and minimum values of the kernel, and W

is the sum of source particle weights. The number of boxes can become large if small

error bounds are required. In multiple dimensions, the convolution must be performed

in each dimension. The cost of this method is O (DBN), where D is the number of

dimensions, B the number of box filters required to approximate the kernel, and N

the number of points.

3.3.5 Dual-Tree Sum-Product

Alex Gray and Andrew Moore [19, 32, 21, 20] introduced the dual-tree recursion that

we use, and have presented algorithms similar to our fast Sum-Product algorithm. Our

contributions here are mostly implementation-level improvements, except for section

3.3.6, which presents better bounds on the influence function by using physically-

inspired constraints.2

Our algorithm (in its simplest form) works for any non-increasing (monotonic de­

creasing or constant) kernel function of the distance between points, and non-negative

particle weights. It is based on a dual-tree recursion, in which the frontier of a 'cross

product' of trees is expanded in such a way that only areas of the trees that contain

useful information are explored. Our algorithm allows the influence fj on each target

point yj to be estimated to within a given error bound e.

Alternatively, our algorithm could be adapted to become an any-time algorithm,

in which an approximate answer can be returned at any time and the approximation

becomes better as time progresses. This is a major difference between the dual-tree

family of methods and the family of methods based on series expansions (Fast Multi-

pole Method, Fast Gauss Transform, Improved FGT). The expansion-based methods
2Many of the ideas in this section were developed in collaboration with Mike Klaas. Both Mike

and I thank the DSG Espresso Pool for supplying the brain fuel that allowed this work to proceed.

B ~ Kmin) W
2e

Chapter 3. Fast Methods 31

Figure 3.5: Illustration of a kd-tvee partitioning of space. The points are two hun­

dred samples from a ring with uniformly-distributed radius in (0.6,1) and uniformly-

distributed angle in (o, Nodes are split along the dimension with the largest

range, and the dividing point is chosen so that the two children nodes contain an

equal number of particles.

guarantee error bounds based on theoretical bounds on the series truncation error.

These bounds are valid for all data distributions, but since they are based on worst-

case behaviours, they are often quite loose for average-case problems. The amount of

work that must be done is determined a priori, without reference to a particular data

set. Dual-tree-based methods, on the other hand, are based solely on error bounds

determined at run-time; they make decisions that are optimal for a single data set,

rather than all possible data sets.

Our dual-tree algorithm begins by creating space-partitioning trees for both the X

and Y particles. See Figure 3.5 for an example of such a partitioning. We call these

the X tree and Y tree, respectively. The leaves of each tree contain single particles.

Chapter 3. Fast Methods 32

Different types of space-partitioning tree, such as the kd-tree or ball-tree (anchors

hierarchy [32]), can be used. One of the features of these trees is that it is a simple

and inexpensive operation to compute the distance bounds between a pair of nodes.

The basis of the algorithm is that, given a node from each of the X and Y trees, we

can easily compute upper and lower bounds on the influence of all particles in the X

node upon all points in the Y node. We can tighten the influence bounds by expanding

nodes X and Y; that is, examining their children nodes. See Figure 3.6. The influence

upon each Y child is the sum of the influences of the X children. Since the children

nodes are more compact, the distance bounds are tighter, which in turn leads to tighter

influence bounds. If the difference between the upper and lower influence bounds is

much smaller than e, then there is almost nothing to be gained from expanding the

nodes. This is where the computational savings of tree-based methods come from.

If the nodes contain Nx and Ny particles, the cost of computing the Sum-Product

naively is O (NxNy), while the dual-tree method performs only one operation.

At the beginning of the algorithm, •. we cache the sum of weights within each node

of the X tree. Then, we compute the distance bounds between the root nodes of the

X and Y trees. This allows us to compute a bound on the sum of the influence of all

particles in the X tree upon all particles in the Y tree. For each Y particle, we store

this bound. Finally, we enqueue the X and Y root nodes on the list discussed below.

As the algorithm proceeds, we keep a list of node-node pairs (one node from each

of the X and Y trees, henceforth called "node-pairs" or "pairs") that we could expand. • node-pairs

Expanding a node-pair involves considering all pairs of the nodes' children. For each

child pair, we compute the new distance bound, and along with the total weight of

particles in the X child this allows us to compute the influence bound of all points in

the X child upon all points in the Y child. We enqueue each child pair, and for each

particle in the Y node, update the influence bounds.

The key point is that as long as the nodes of the trees become smaller as we

move from the root to the leaves, then the influence bounds become tighter each time

we process a pair from the queue. Intuitively, this occurs because the worst-case

distribution of mass in the X tree becomes less bad; the distance bounds between the

Chapter 3. Fast Methods 33

Figure 3.6: Illustration of dual-tree influence bounds.

(a) : X (left) and Y (right) nodes containing 50 particles each.

(b) : the arrangement of particles that yields the lower-bound influence: all particles

are in the farthest corners of the nodes, hence the distance is as large as possible, the

value of the kernel function is as small as possible, and therefore the influence is as

small as possible. The dotted line shows the upper bound on distance.

(c) : an arrangement that leads to the upper-bound influence: all particles are as close

together as possible, hence all distances are equal to the lower bound on distance, the

kernel function has the largest value possible, and the influence is as large as possible.

The dotted line shows the lower bound on distance.

(d) : the effect of examining the children of the X and Y nodes. For clarity, the details

are shown for only the lower Y child node. The upper distance bounds become smaller,

and the lower distance bounds become larger.

Chapter 3. Fast Methods 34

child nodes is tighter than that of the parents. If we had exact arithmetic, we could

compute the exact answer by expanding all pairs until we reached leaf nodes in both

trees.3

We know that the error bounds will decrease each time we process a node-pair from

the queue. In practice, we would like to know that we are moving toward satisfying

the error bound for each Y particle as quickly as possible. To achieve this, we attach

a value to each node-pair and use a priority queue. The value function is the size of • value

the error bound multiplied by the number of particles in the Y node:

v(X, Y) = NYx ("PP"-) (X, Y) - /('«»«•) (X, Y))

where Ny is the number of points in Y. f(uPPer) and f(i°wer) are the upper and lower

bounds on the influence of all particle in X upon all particle in Y, defined as:

f(upper)rXiY) = K (d(lower^ (X,y)) J2Wi

iex . .

f (lower) (X:)Y) = K ((iiUpper) (X,Y)^ YlWi ' " (3-2)
iex

where K is the kernel function and d(lower) and d(upper) are the lower and upper bounds

on the distance between X and V . Note that we cache the sum of weights in X.

Our value function assigns highest priority to node-pairs that are currently con­

tributing most to the total error bound. Note that we cannot guarantee that processing

the highest-priority node will lead to the largest possible decrease in total error, since

we cannot know in advance how much tighter the child bounds will be compared to the

parent bounds. Thus, we cannot guarantee that we are always reducing the error by

the largest possible amount per unit of time, but we are guaranteed to be expending

effort where it is most needed.

(oriven upper and lower influence bounds f(upper) a n c j f (lower) f i f

we wish to return
an estimate with the smallest guaranteed symmetric error (|/ — / | < e), then

f(X,Y) = | (f(uPPer) (X,Y) +f(lower^ (X,Y)}

3Though this would cost at least O (MN) so would hardly be worthwhile!

Chapter 3. Fast Methods 35

Upper and Lower Bounds
Average Influence
Average Distance

fl

CD o d
d
d

favg

fmid

Distance

Figure 3.7: A possible explanation for bias in the influence estimates for some prob­

lems. A Gaussian kernel from a to approximately 3a is shown. The solid lines show

upper and lower bounds on the distance and influence. The dash-dotted line shows

the average of the upper and lower influences; this is the influence estimate with the

smallest guaranteed symmetric error bound. However, a more accurate estimate could

be the dashed line, which corresponds to the influence at the average of the upper and

lower distance bounds. For concave-up kernels, our estimate will always be biased in

this manner.

Chapter 3. Fast Methods 36

which has error bound

e(X,Y) = ^ ^upper^ (X,Y) - (X,Y)^ .

However, in our experiments we have find that for some problems this estimate will

systematically overestimate the true influence fj. While we have not explored this

effect in detail, one explanation could be that rather than the average of the upper

and lower influence bounds, a better estimate would be the influence and the average

of the upper and lower distance bounds. See Figure 3.7. For concave-up kernels, the

estimate / given above will always be an overestimate if this explanation is correct.

For fairly small e, most of the source particles within one a (where the Gaussian is

concave-down) will be expanded to the leaves, while outside one a (where the Gaussian

is concave-up) many nodes will be unexpanded and hence prone to this effect.

Implementation Details

In developing our algorithm, we discovered several enhancements that may seem un­

intuitive, yet give considerable performance increases. Only readers interested in such

details need read this section.

One might suppose that we need to keep the queue sorted by order of priority.

However, all we really need to do4 is expand the subset of nodes necessary to bring

the error bounds low enough; the order in which the work is performed is irrelevant.5

We found that for Gaussian kernels with reasonable scales, the priorities span a very

large range of values: many orders of magnitude. For reasonable error bounds e, we

must expand nodes with values ranging over several orders of magnitude. Rather than

keep a fully-sorted queue, we create a queue for each order of magnitude (henceforth,

"order"). When dequeuing, we choose the first element from the highest-order queue.

By doing this, we avoid expending effort maintaining a fully sorted queue. The

consequence is that as we approach the target error (as we are expanding pairs of the

final order) we may expand nodes with values smaller than the optimal; we may do
4This only applies for the non-anytime version of the algorithm.
5Except in so far as we have to process parents before we can process their children.

Chapter 3. Fast Methods 37

Inputs: root nodes of X and Y trees, Xr, Yr; e
// Initialization.

1 {Ur,Lr} = w(Xr) K {d^lower'u^er\Xr,Yr))

2 for j = 1 to N(Yr)

3 Aupper,lower} frr r 1
Jj — \Ur,^rS

4 enqueue(Xr ,Yr,Ur, Lr)
// Main loop.

5 while NOT (bounds_satisfied ())
6 {Xi,Yi,Ui,Li} = dequeueQ

// Expand nodes Xi and Y{.
7 for yc = 1 to children*(li)
8 Yc = child* (Yi,yc)

// A is change in bounds.

9 ^{upper,lower} f JJ. E}

10 for xc = 1 to children* (Xi)
11 Xc = child* (Xuxc)

// Compute influence bounds for children.
12 . . {Uc, Lc} = W(XC) K {d{upper,lower}^ yjj ••

13 A{upper,lower} + _ rjj^ L J

14 if NOT (leaf (Xc) AND leaf (Yc))
15 enqueue(Xc, Yc, Uc, Lc)

// Update bounds on fj for each particle in Yc

16 for j = 1 to N(YC)

17 j{upper,lower} ^{Upper,lower}

// Return estimates fj and error bounds ej.

18 for j = 1 to N(Yr)

19 f . - l (jiUPPER) ^ j?(lower)\

20 1 / Aupper) Mower)\
ei - 2 \h ~ Jj)

Figure 3.8: Pseudocode for the Dual-Tree Sum-Product algorithm. The notation
{A,B} = f({XA,XB}) means A = f(XA) and B = f(XB). The enqueue(X, Y,L,U)
function places a new element on the priority queue. We use the value function (U —
L) x N(Y). The function children* () returns the number of children for non-leaf nodes
and 1 for leaf nodes. The child* (X, i) function returns the i-th child for non-leaf nodes
and the node itself for leaf nodes.

Chapter 3. Fast Methods 38

Order

5 —

4

3

2

1

< 1-

Active Queues

Bucket

Figure 3.9: Order-of-magnitude queues. There is a set of active queues, containing

(unsorted) pairs with values of the same order of magnitude. There is also a bucket

containing (unsorted) pairs with small values.

some unnecessary work. In practice, we find that the amount of unnecessary work we

perform is small, and is more than paid for by avoiding the cost of maintaining a fully

sorted queue. In our experiments, we found that simply maintaining the fully-sorted

property of the queue took a significant portion of the computational effort, even when

we used a Fibonacci heap as the underlying data structure,

For kernels whose values do not span such a large range of values, we could use

smaller increments than orders of magnitude, such as powers of two. Alternatively, we

could use a finer discretization as the error bound approaches e.

As a further enhancement, rather than maintaining a queue for each order, we

maintain a fixed number of active queues and a catch-all bucket6 for pairs with small • bucket

value; see Figure 3.9. Many pairs that are placed in the bucket will never be expanded.

Therefore, we would like to minimize the amount of work performed on these pairs,

while also allowing the possibility that they will be expanded. When expanding a

We find that the bucket must be made df a hard material, since a hole in the bucket can result in

a memory leak.

Chapter 3. Fast Methods 39

node-pair, we first compute the upper bound of the influence. From this we can

compute an upper bound on the pair's value, by assuming that the lower influence

bound is zero:

f(.upper)fXiY) = K (d^lower) (X,Y)^j

v(X,Y) = N(Y) (f(uPPer) — f (l o w e r) ^

< N(Y) f(uPPer)

If the upper bound on value is small enough that the pair will be put in the bucket,

then we don't have to compute the lower influence or value bounds. If at any point the

active queues become empty, we create a new set of active queues (with smaller orders)

and refill them from the bucket; at this time, we must compute the lower influence

bound f (l o w e r) and recompute the value v of pairs that are removed from the bucket.

This optimization allows us to avoid a significant amount of work (an upper distance

and lower influence bound calculation) for 'hopeless' pairs that are never removed

from the bucket. We find this strategy to be faster than the Fibonacci heap approach

described by Gray and- Moore [20].

As another optimization, we found that checking if we have achieved the error

bound is a relatively expensive operation compared to expanding a node-pair. There­

fore, we process a batch of node-pairs before checking if we have reached the target

error level. We found that batches of one thousand node-pairs gave good results.

Finally, we note that in order to satisfy the error bound e for each point in Y, we

must first satisfy the bound that the sum of error bounds is less than eN(Y). This

condition is much cheaper to check, since we need only maintain a total error bound,

rather than N(Y) individual bounds. During the first phase (before we have satisfied

the sum bound), we can use the "deferred asynchronous propagation" trick of Gray

and Moore [20]: rather than adjusting the bounds for each point in Y, we propagate

the /\{uPPer>lower} values to the immediate children of Y. In the pseudocode of Figure

3.8, lines 16 and 17 are replaced by a simple operation that does not cost O (N (Yc)).

When the first phase completes, these deferred A values must be propagated to the

leaves. A significant portion of the running time of the algorithm is spent in the first

Chapter 3. Fast Methods 40

phase, so this can lead to considerable savings.

Extensions

We briefly mention a few simple extensions to our dual-tree Sum-Product algorithm.

First, if would be straightforward to loosen some of the restrictions we have made on

the form of the kernel function. At present we consider monotonic kernels K(X, Y) =

K (\\X — Y\\), and in our algorithm we explicitly calculate the distance bounds between

nodes. The bounds are then simply

j^{upper,lower} j£ (^{lower,upper} ^

Instead, we could simply demand that bounds on the influence be calculable (in O (1))

given two nodes:

Kupper = TJfX,Y)

Rlower = LfX}Y)

where U and L are the kernel-bounds functions. This would allow, for example, non-

stationary (translationally variant) kernels.

Second, we could allow different kernels for each source point, for certain families

of kernels. At present, we demand a uniform kernel:

Ki{Xi,Y) = K(XUY)

but it would be easy to allow certain families of parametrized kernels:

Ki(Xi,Y) = K(Xi,Y,Pi)

where Pi is some set of parameters. For example, with Gaussian kernels we could

allow each source particle to have a unique variance. At present, the influence bounds

are defined by the value of the kernel at the largest and smallest distances. With this

change, the upper bound would become the value of the kernel with greatest value

at the smallest distance (and vice versa for the lower bound). This is simple in the

(unnormalized) Gaussian case: the kernel with greatest value is simply the kernel with

Chapter 3. Fast Methods 41

largest variance, and vice versa. We could simply keep track of the variance limits

within each subtree of the source tree, in the same way that we track the sum of

weights.

Third, we have required non-negative particle weights, since this is typically the

case for Sum-Product problems that arise in probabilistic inference. However, for

more general Sum-Product settings, relaxing this restriction would be useful. This

could be done quite easily: rather than caching the sum of weights within each X

subtree, we would cache the sums of positive and negative weights separately. The

bounds computations would also change: the upper influence bound would arise when

all the particles with positive weights were as near as possible to the target point and

all particles with negative weights were as far away as possible. The lower influence

bound would be the opposite situation.

3.3.6 Better Bounds for Dual-Tree Methods

In this section we present new bounds that improve the Dual-Tree Sum-Product al­

gorithm. Our bounds on the kernel influence are always as good or better than the

bounds currently used. Recall that the bounds (equation 3.2) are central to the Dual-

Tree approach. Given a source node X and target node Y, we wish to bound the

influence of all particles in the source node on all points in the target node.

As the algorithm proceeds, nodes are expanded in order to tighten the bounds.

The estimate for the influence at each target point is bounded by the sum of bounds

of all the source nodes. Once the sum of bounds has been tightened to less than the

allowable error e, the algorithm completes.

The original bounds, which are used by Gray and Moore and others, are the re­

sult of finding the distributions of particles (mass) that maximize and minimize the

influence, subject to the constraint that the mass is equal to the masses of the actual

particles in the node X. This can be written in continuous form as

Chapter 3. Fast Methods 42

Min Influenci
Distribution ,

Max Influence
Distribution

Node Y
o

Figure 3.10: Original influence bounds. The maximum-influence distribution is a single

particle with mass W at the closest point to node Y, while the minimum-influence

distribution is a particle with mass W at the farthest point from Y.

where W is the sum of the weights of particles in node X:

iex

For monotonic decreasing kernels, the extrema distributions collapse to delta func­

tions at the nearest and farthest points, respectively:

where the argmax and argmin are the points in X that are farthest and nearest from

Y. See Figure 3.10.

We now make an analogy between the particles in X and physical particles. The

constraint of the original bounds is that the zeroth raw moment of inertia of the

function w* (x) matches that of the particles in X. That is, the total masses must

be equal. We add the constraints that the first and second raw moments7 of inertia

must also match those of the particles in X. That is, the original bounds satisfy the
7 The raw moments are defined in terms of distance from the origin of the coordinate system, .while

the (more intuitive) central moments are defined in terms of the center of mass of the object.

W,

w.

Chapter 3. Fast Methods 43

constraint CQ, denned as

Co j w (x) dx
x iex

and we add the constraints C\ and C2:

C\ : w (x) x dx
Jx

C2 : I w(x) | | x f dx
Jx

II
2

iex
The constraint C\ requires that the center of mass (first moment) of the extrema

distributions match that of the particles in X. Constraint C2 requires that the second

moment of inertia match that of X.

Finding the bounds now becomes the problem of finding the minimum and maxi­

mum of the constrained optimization

We make a series of proofs and conjectures as shown in Figure 3.11. First, we • proof
• roadn

show that the optimal solutions must be composed of a finite number of Dirac delta

functions (ie, point masses or particles). We conjecture that any such solution can be

decomposed into a sum of D + 1-particle solutions, where D is the dimension of the

problem.

For the upper bound, we conjecture that if we are given a D + 1-particle solution,

it is always possible to find a two-particle solution that satisfies the same constraints

and is better. Hence, the maximum solution must be a two-particle solution. Next, we

show that the optimal two-particle solution must lie on the line connecting the centers

of the source and target nodes. Finally, for some cases we show that the endpoint

solution is the optimal two-particle solution.

For the lower bound, if we assume that a two-particle solution is optimal, we find

that the particles are not constrained to lie on points but rather to lie on a D — 1-

dimensional spherical surface. We conjecture that this solution is the optimal not only

for two-particle solution, but for all solutions.

w(x) Jx
s.t. Co, Ci, C2 (3.3)

Chapter 3. Fast Methods 44

Continuous
Distribution

Theorem 1

N particles

Conjecture 2

D + l particles

Conjecture 3

2 particles

(Some cases)

Endpoint

Upper Bound Only

Figure 3.11: A roadmap of the better upper bound proof. See the text (on page 43)

for discussion.

Chapter 3. Fast Methods 45

The first theorem, which states that the op t imal solutions w* (x) cannot be con­

tinuous, follows. 8

T h e o r e m 1 . For the optimization problem above (equation 3.3), the existence of a

continuous optimum w* (x) implies that

d3K(x,y) = Q

dx3

Proof. Equa t ion 3.3 can be solved as an infinite linear programming problem. Assume

that w* (x) is continuous. We set up a Lagrangian wi th mult ipl iers 0 = {#o> #1) 62}-

2

C (w (x) , 0) = / w (x) K (x, y) dx — 2_]®% xl w (x) dx — c
Jx i = 0 Ux

where aj are the raw moments of the particles in node X:

J£X
X Wj

Differentiating the Lagrangian (3.4) by w (x) and setting to zero yields

ZxK(x,y)'=lx (j2^x^j • (3-4)

where Ix is the set membership function. Hence, K(x, y) is a po lynomia l of degree

< 2 when x € X. Therefore, the th i rd derivative of K(x,'y) is zero. •

C o r o l l a r y . Given a kernel K(x, y) with 3 or more non-zero derivatives (the Gaussian,

for example), the extrema distributions w* (x) are composed of a finite sum of Dirac

masses.

Next , we conjecture that rather than dealing wi th a finite number of D i rac masses

(henceforth called particles), we must deal w i th only D + l particles, where D is the

dimension of the problem.

C o n j e c t u r e 2. Any sum of N particles can be written as a sum of sets of up to D + l

particles:
N D+l

w (x) = ^ Wi5 (x — Xi) —> w (x) = ^2 Y/ w ^ (x ~ '
i = i j=i

This theorem is the result of discussions with Nando de Freitas, Joel Friedman, and Mike Klaas.

Chapter 3. Fast Methods 46

Sketch of proof. We show this by construction. See Figure 3.12 for an example in two

dimensions. Note that the weights are non-negative. This implies that it is possible to

find a set of up to D + 1 particles whose convex hull contains the center of mass. The

construction proceeds as follows. Start with the original distribution of iV" particles

with arbitrary (positive) masses. We will iteratively remove mass from this distribution

while adding it to the equivalent distribution that we are constructing. At each step,

select D + 1 points whose convex hull contains the center of mass. Choose portions

of each of these particles' mass such that the center of mass coincides with the total

center of mass. It is always possible to select some positive amount of mass in this

way. Add these masses to the distribution under construction, and remove them from

the original distribution. Repeat until all mass has been removed from the original

distribution. •

Coro l l a ry . Assume we are given a set of N particles that comprise an optimal solution

to the optimization problem (equation 3.3). Any such solution can be written as a sum

of solutions comprised of sets of D + l particles. Since the optimization and constraints

are linear in weight, the solutions are independent. It thus suffices to find the optimal

solutions of equation 3.3 comprised of D + 1 particles.

Now, consider the upper bound (the maximum) of equation 3.3. We move from

D + l particles to two particles. We do not yet have a proof for this.

Conjecture 3. Given any set of D + 1 particles (with moments a.i,i = {0,1,2},),

it is possible to find two particles that have the same moments and equal or greater

influence. This is, there exist points x\ and x2 and weights w\ and w2 such that

D+l
wiK(xi,y) + w2K(x2,y) > ^WiK (xuy) ,

i=i

and the moments of the two particles match that of the D + l particles.

Next we show that the maximum two-particle solution must have both particles

on the line connecting the centers of the source and target nodes.

Chapter 3. Fast Methods 47

Figure 3.12: Example of the proof by construction. The original distribution is the

top-left box. The left column shows the remainder of the original distribution. The

right column shows the constructed triangle. Each row is one step in the decomposition

process. The area of each circle represents its mass. In the final step, all the remaining

mass is removed from the original distribution.

Chapter 3. Fast Methods 48

m i

Y

TO2

L

Figure 3.13: Rotation of a two-particle system. The target point is Y (on the left).

The particles are mi and m2\ their center of mass is xcm, which is also the center of

mass of the node X. n > r2 so mi < m2. L is the distance from the nearest point in

node Y to xcm. The distance from Y to mi is ci and the distance from Y to m2 is c2.

Theorem 4. Assume that the center of mass is the center of the source node, and

that the kernel is Gaussian. The maximum two-particle solution to equation 3.3 occurs

when both particles are located on the line connecting the centers of the source and

target nodes.

Proof. We call the line connecting the centers of the source and target nodes XY.

Assume we are given an optimal solution S that satisfies the constraints (Co, C i ,

C2), and has particles not on XY. We will show that it is possible to rotate the

particles about their center of mass, giving solution S'. By doing this, we can improve

the solution; the optimal rotation is to place the particles on the line XY. This

contradicts the assumption that S is an optimal solution.

First, note that rigid rotation about the center of mass preserves the moments, so

if S satisfies the constraints then so does S'.

The geometry is shown in Figure 3.13. The distances ci and c2 can be calculated

using the cosine law, which allows us to write the influence as a function of the angle

Chapter 3. Fast Methods 49

of rotation <f>. Setting the first derivative to zero, we find that potential solutions are

0 i = 0

<t>2 = TT

r\-r2
cos fc = •

Taking the second derivative, we find that 0i and <\>2 are local maxima and fa is a

local minima. Since <f> is an angular variable, the global maximum is the maximum of

the local maxima. Both <j>\ and (f>2 correspond to solution in which the particles are

on the line XY. •

This theorem (which relies on a number of conjectures which remain to be proven)

is very useful. For a two-particle solution in which the particles lie on the line XY,

the moment constraints allow us to write the masses of the two particles (wi and w2)

and the position of the second particle (x2) in terms of the position of the first particle

(x i) . See Figure 3.14. The constraint that both particles be inside node X (ie, have

distance to the center of the node not greater than R) constrains x\ to lie in a range

of radii [Rmin,R]. We are thus left with a one-dimensional constrained optimization

in one variable, which is much simpler to solve than the original multi-variable, multi­

dimensional problem.

Assume that the target is at position y > R. As the first particle moves from

Rmin to R, its distance to y decreases so the value of the kernel function increases.

Meanwhile, its mass w\ decreases. The second particle, meanwhile, is constrained to

move from —R to —Rmin and its mass increases. Clearly, the influence of the second

particle increases as this occurs, while the influence of the first particle may increase

or decrease, depending on the relative importance of mass relative to kernel value.

While it is possible to solve this optimization numerically at run time, the added

computational expense of doing this is likely to be greater than the gain yielded by

the better bounds. Therefore, we would like to find analytically conditions where the

maximum is one of the endpoints (x\ — R m i n or x\ — R).

In the following, we consider the Gaussian kernel. Given a bandwidth u, node

Chapter 3. Fast Methods 50

Figure 3.14: Positions and weights in the two-particle system. Left: positions of the

two particles as x\ moves from Rmin to R. Right: weights of the two particles as x\

moves from Rmin to R.

radius R, and moment constraints, we want to show that for targets outside a particular

range, the optimal solution occurs at the endpoint x\ = R. If this condition holds,

then we can compute the better upper bound at only marginally greater cost than the

original bound.

We have thus far found it impossible to derive closed-form expressions for the

conditions that must hold for x\ = R to be the solution. Running numerical tests

allows us to get a sense of the structure of the solution space: see Figure 3.15.

If we try to find analytic expressions for the boundaries of the regions where the

endpoint solutions hold, we encounter equations of the form

piexp(ti) = p2exp(t2) ,

where p\ and p2 are polynomials and the terms t\ and t2 are not equal. It may be

impossible to derive closed-form solutions to these equations. We may be forced to

resort to numerical methods or weaker bounds.

It has been difficult to prove even weaker bounds. For example, we can focus on

the first particle and determine when the derivative of the influence of the first particle

is positive. If we can show it is positive in [Rmin,R], then x\ = R is the maximum.

Chapter 3. Fast Methods 51

Figure 3.15: Solution phases of the two-particle system. The black area shows where

the endpoint x\ = Rmin is the maximum solution; the white area shows where x\ — R

is the solution. In the gray area, the maximum is in the interior of the range. The left

plot shows the results for a source node with small second moment, while the right

plot shows a large second moment. The lines show the bounds we would like to prove.

The white line separates the x\ = Rmin region. The dashed black line shows where

x i = R is a local maximum of the influence of the first particle. The dot-dashed line

shows where the point of inflection of the Gaussian occurs at R.

Chapter 3. Fast Methods 52

We can ignore the second particle because the derivative of its influence with respect

to xi is always positive; this weakens the bound.

Trying this, we find that the minimum of the derivative occurs either at Xi = R

or at some point in the interior that is the solution to a cubic equation. It would be

straightforward to solve this numerically, but it is difficult to handle analytically. If

we ignore the potential interior solution and assume that one of the endpoints is the

solution, then we arrive at the first bound shown in Figure 3.15. This bound is

<r<(y-R)(R + Rmin)

Unfortunately, as-y (the "distance to the target) becomes large, this bound becomes

weak: it requires o < 0 (y/y), while the true bound appears to go as cr < 9 (y).

Another bound that may be provable and has better asymptotic behaviour is

which demands that the Gaussian be concave-up at R. Being concave-up is not in

itself a sufficient condition for the solution to be xi = R, but the bound seems to hold

empirically. This bound is shown in Figure 3.15.

B e t t e r L o w e r B o u n d

Our better lower bound also requires several unproven conjectures. If we assume that

a two-particle solution is optimal, then we find that the minimum solution to equation

3.3 is not a point but rather a curve. In this optimal solution, both particles sit on

the radius of a circle centered at yy. Recall that yf is the point in the target node Y

that is farthest from the center of source node X. This can be shown by writing the

total influence in terms of the position of one of the particles, setting the derivatives

to zero, and solving the resulting simultaneous equations.

The result is the lower bound

/ Wy2

f + M\
/ (X > y) > W e x p (- - ^ J ,

Chapter 3. Fast Methods 53

where M is the (central) second moment,9 and W is the sum of masses in X.

Since the two-particle solution is not a point but rather a surface, we conjecture

that this surface is also the solution to the general problem.

Testing of Better Bounds

We tested our better bounds by running the Dual-Tree algorithm with the Anchors

Hierarchy, computing at each step both the standard bounds and the better bounds

described above. The results are shown in Figure 3.16. The better upper bound is

at most half as large as the original bound. The better lower bound is considerably

larger than the original bound.

3.4 Max-Product

The Max-Product problem is simply the Sum-Product problem with the summation

converted to a maximization:

fj
 = ^ (Wi K i (WXi ~ ̂ 'ID f

x* = argmax { w{ K{ (||XJ - y3\\) } , j = 1. . . M .
ie[i,N] L J

where, as before, W{ is the weight of source particle Xi and Ki(d) is a kernel function of

the distance between sources x and targets y. We focus on the case where the kernel

function is uniform: Ki(d) = K(d).

The Max-Product problem can be seen as a search for the source particle Xj among

the iV particles in X that has the largest influence upon target point yj.

3.4.1 Distance Transform

Felzenszwalb and Huttenlocher [12] note that for cases where the source and target

points are the vertices of a regular grid, the Distance Transform [4, 11] can be used to

solve the Max-Product problem.
9Although we discussed the raw moments earlier, it is simpler to consider the central moments

here; it is simple to convert between the two.

Chapter 3. Fast Methods 54

Better / Original

Original / Better

Figure 3.16: Better bounds results. Top: Upper bound. Bottom: Lower bound.

Chapter 3. Fast Methods 55

For example, the truncated linear and quadratic cost functions

CI(XJ,XJ) == mm(\xi — Xj\ ,d) '

C2(xi,Xj) = mm(\xi - Xj\ 2 ,(Fj ,

which correspond to the kernel functions

K\ (xi, Xj) = exp {— min (|XJ — Xj\, d)}

K2(xi,Xj) = exp |—min — Xj|2,d^|

can be solved with distance transforms, if the state space is a regular grid.

The Distance Transform takes advantage of the fact that on a regular grid the kernel

function changes in a predictable way. We reproduce the example of the distance

transform in one dimension from [10], except with weighted kernel functions. See

Figures 3.17 and 3.18. This example uses the kernel function K\ above. We work in

negative log space so we use cost function c\. Assume that the truncation term d is

very large so has no effect in this example. The problem of finding the kernel with

maximum influence now becomes the problem of finding the lower envelope of the cost

function c\. Note that in one dimension, the cost function of each source particle is an

inverted one-dimensional cone (a " V ") ; the weight of the particle determines the cost

of the base of the cone.

In one dimension, the sources and targets do not have to be embedded in a regular

grid. We can simply sort the sources and proceed as described in the example, except

that instead of simply adding one, we must keep track of the distances between points.

In higher dimensions, however, this becomes infeasible, since the multi-dimensional

Distance Transform depends upon many points sharing coordinate values.

The distance transform is fast: it costs O (DN), where D is the dimension of the

problem and N is the number of grid points. While distance transform methods are

very fast, their domain is somewhat limited: except for one-dimensional problems, they

cannot be used in conjunction with Monte Carlo gridding methods (sections 2.2.3 and

2.2.4, for example).

Chapter 3. Fast Methods 56

Figure 3.17: Distance Transform example: part 1: forward pass.

The X and Y points are the regular grid {0... 8}. Each X particle is represented by

a cone; the weight of the particle determines the height of the cone (ie, the minimum

cost). The find the Max-Product, we find the lower envelope of all the cones (the min),

and the cones to which the lower envelope belongs (the argmin).

We first make a forward pass through the points. At each position i, we compute

Min (i) = min (Min (i — 1) + 1 , w{). That is, we either take the previous answer plus

one (labelled "Prev + 1"), or we take the cone anchored at i, whose value is Wi (labelled

"This wn).

If the previous answer was chosen, the argmin is unchanged; if cone i was chosen, the

argmin becomes i. The boxes where this occurs are highlighted. This process projects

the influence of the cones to the right. In the reverse pass we gather the influence to

the left; see the following Figure.

Chapter 3. Fast Methods . . . 57

e — e — e — e — e — e — e — e — &

0 1 2 3 4 5 6 7 8
Position

Forward

Prev +1

Min

Argmin

Figure 3.18: Distance Transform example: part 2: reverse pass.

In the reverse pass of the Distance Transform algorithm, we start from the right

and update the values computed in the forward pass. At each point i, we consider

the value computed in the forward pass (labelled "Forward"), and the value of the

previous answer plus one.

This is, the minimum at position i is:

Min (i) = min (Min (i + 1) + 1 , Forward (i)) ,

where Forward (i) is the Min (i) value computed in the forward pass.

If the previous value is chosen, the argmin is updated. The boxes where this occurs

are highlighted; these correspond to the locations where the dotted line is different

from the solid line.

Chapter 3. Fast Methods 58

3.4.2 Dual-Tree Max-Product

As in the Sum-Product case, we develop a dual-tree strategy. The algorithm is based on

bounding the distance and weight, hence the influence, of subtrees of X particles upon

subtrees of Y particles. Unlike the Sum-Product case, the Max-Product algorithm

gives the exact result.

We begin by constructing space-partitioning trees for the X particles and Y points.

The leaf nodes of these trees can contain multiple points. 1 0 We also cache at each node

in the X tree the maximum particle weight contained by the node. At leaf nodes, we

sort the particles in order of decreasing weight.

The algorithm proceeds by doing a depth-first recursion down the Y tree. For

each node, we maintain a list of X nodes that could contain the best particle. For

each X node we compute the lower and upper bounds of the maximum influence of

particles in the node on all points in the Y node. The largest lower bound on influence

is the pruning threshold: any candidate node whose upper bound is less than this •pruning
threshoh

threshold cannot possibly contain the best particle, and hence need not be considered.

See Figures 3.19 and 3.20.

In each recursive step, we choose one Y child on which to recurse. Initially, the set

of X candidates is the set of candidates of the parent. We sort the candidates by lower

bound, which allows us to explore the most promising nodes first. For each of the

candidates' children, we compute the lower bound on distance and hence the upper

bound on influence. Any candidates that have upper bound less than the pruning

threshold are pruned. For those that are kept, the lower influence bound is computed;

these nodes have the potential to become the new best candidate.

As we descend the trees, the influence bounds become tighter so we are able to

prune more and more nodes, until at the leaf level we are, ideally, left with only a few

nodes. Once we reach the leaf nodes, we begin looking at individual particles. The

candidate nodes are sorted by lower influence bound, and the particles are sorted by
1 0 The number of particles in the leaf nodes influences the tradeoff between pruning based on distance

and pruning based on weight. We have not investigated this effect in practice. In our experiments we

allow up to 25 particles in leaf nodes.

Chapter 3. Fast Methods 59

Figure 3.19: Dual-tree Max-Product pruning. The X particles are 2000 samples from
the ring with uniformly distributed radius in (0.6,1) and uniformly distributed angle
in ^0, ^ J . The weights are uniformly distributed in (0,1). The kernel is a Gaussian
with scale a = 0.1. The pruning steps for a single Y point are shown. Each plot shows
one level in the X tree. The candidate (dark) and non-candidate (light) nodes are
shown. In the bottom-right plot, a close-up of the six final candidate nodes is shown
(dashed). The single box whose particles are examined is shown in black. The subset
of the particles that are examined individually is shown in black.

Chapter 3. Fast Methods 60

CD

CD

a
CD

CC '
PI

i—i

hO
O

-50

-100

* H 06

CD 1
66

Candidate Boxes

- 1
CD

CJ PI
CD

c«-2
PI

i — i

O

^ - 3

- 4

.1 it

i <*•

—©— Examined Boxes
—•— Examined Particles
- A - Skipped Particles
- a- Skipped Boxes

Objects

Figure 3.20: Dual-tree Max-Product example.

Top: the influence bounds for the nodes shown in the previous figure. The pruning
threshold at each level is shown (dashed line), along with the bounds for each candidate
node.

Bottom: pruning at the leaf level: in the example, six leaf nodes are candidates.
We begin examining particles in the first box. As it happens, the first particle we
examine is the best particle (the correct answer). Pruning by particle weight (the
upper marker) allows us to ignore all but the first six particles. The pruning threshold
is then sufficiently high that we can prune the remaining candidate nodes without
having to examine any of their particles. There were 2000 particles in X, of which
six nodes (containing 94 particles total) were candidate leaf nodes. Of these, only six
particles from the first node were examined individually.

Chapter 3. Fast Methods 61

weight, so we examine the most promising particles first and minimize the number of

individual particles examined. In many cases, we have to examine only the first few

particles in the first node, since often the pruning threshold increases sufficiently that

the remaining candidate nodes can be pruned.

The dual-tree strategy is effective because, for a given node in the Y tree, the list

of candidate nodes in the X tree is valid for all the points within the Y node. In

this way, pruning decisions are made once rather than being 'rediscovered' for each Y

point.

3.5 Application to Inference in Graphical Models

In the section we describe how to apply our fast Sum-Product and Max-Product algo­

rithms to Belief Propagation, Maximum-Belief Propagation, and Particle Smoothing.

3.5.1 Belief Propagation

The expensive operation in the Belief Propagation algorithm is computing the mes­

sages. Recall that the message from node j to node i is (equation 2.4):

which costs O(NiNj), where Nj is the number of states at node j n and Ni is the

number of states at node i. For each of the Ni states, we compute a sum of Nj terms.

If the potential function ipjj (xj,Xi) can be written as a kernel function K (d (xj,Xi)),

(where d is a distance metric) then our fast Sum-Product methods can be applied eas­

ily. We specialize to the case where d(xj,Xj) = || Xj Xi ||, though as discussed in

section 3.3.5, this restriction could be relaxed.

First, note that ipj (XJ) and the incoming mesasges m^j (XJ) do not depend on

Xi. These terms are combined to become the weight W(XJ). Meanwhile, the potential

1 1 For Discrete BP, this is simply the number of discrete states, while for Continuous BP (section

2.2.3) it is the number of particles (discretized states).

k&N(j) except i

Chapter 3. Fast Methods 62

INPUTS: root nodes of X and Y trees, Xr, Yr.

ALGORITHM:

1 leaves = {}

2 candidates = {Xr}

3 max_recursive(y r , leaves, candidates, —oo)

FUNCTION max_recursive(y, leaves, candidates, T)

4 if (leaf (Y) AND candidates = {})

// Base Case: reached leaves.

5 max_base_case(Y, leaves)

6 else

// Recursive case: recur se on each Y child.

7 foreach y € children* (Y)

8 Ty = T

9 val id = {}

10 foreach p € candidates

// Check if we can prune parent node p.

11 if {w(p)K{dlower(p,y))<ry)

12 continue

13 foreach x £ children (p)

// Compute child bounds.

14 f {upper,lower) ^ = W (X) K (d{to«>er,URper} (x, y))

// Set pruning threshold.

15 TY = max (ry , max (/ W r (x)))

16 val id = val id U {x G children (p) : fu™er (x) > ry}

17 val id = {xe val id : / u ^ e r (x) > ry}

18 leaves^ = {x € val id : leaf (x)}

19 candidates^, = {x € val id : NOT (leaf (x))}

20 sort(leaves y by flower)

21 max_recursive (y, leaves^, candidates^, TV)

Figure 3.21: Dual-tree M a x - P r o d u c t algori thm, part 1. In the recursive step, we

recurse on each chi ld of the Y node. We examine the children of each candidate node,

and collect the set of children above the pruning threshold ry, as we raise the threshold

(lines 10-16). F ina l ly , we select the nodes above threshold, sort the non-leaves, and

recurse (lines 17-21).

Chapter 3. Fast Methods 63

FUNCTION max_base_case(Y, leaves)

1 foreach x G leaves

2 f {upper,lower} ^ = w (x) K 'dil°wer'uPPer} (x,Y))

3 r = max (flower (x)

4 leaves = {x G leaves : fupper (x) > T}

5 sort (leaves by flower)

// Examine individual y points.

6 foreach y G Y

7 Ty=T

8 foreach x G leaves

// Prune nodes by Y (cached), then by y.

9 if ((fuPPer(x) < Ty) OR (w (x) K (dlower (x, y)) < Ty))

10 continue

// Examine individual x particles.

11 foreach i G x

// Prune by weight.

i f(r w C T (I)^i < T»)
13 break

14 f(i) = w(i)K(d(i,y))

15 i f (/ (i) > r v)

// i is the new best particle.

16 Ty = f(i)

17 x* (y) = i

Figure 3.22: Dual-tree Max-Product algorithm, part 2 (base case). We first calculate

the influence bounds of the candidates, find the pruning threshold, and prune (lines

1-5). We then examine individual y points. We prune based on the cached bound (for

the parent node V) and then on y (lines 6-10). Next, we look at individual particles

in the node x. The particles are sorted by weight, so when a particle is reached whose

weight leads to an influence below threshold, we can skip the remaining particles (lines

13-14). Finally, we compute the influence of the particle and decide if it is the new

best (lines 14-17).

Chapter 3. Fast Methods 64

function becomes the kernel function:

I^J(XJ) n mk,j{xj))

k€N(j) except i

lpjti(xj,Xi) K(\\xj-Xi\\)
Nj

mjti{xi) => 'YJWJ K (\\XJ - Xi\\) .
3=1

Now, computing the message is clearly a Sum-Product problem, and the applicable

fast method can be plugged in.

3.5.2 Maximum-Belief Propagation

Our fast Max-Product algorithms can be applied to the Maximum-Belief Propagation

algorithm in the same way the Sum-Product is used for normal Belief Propagation.

The expensive operation arises when computing the messages (equation 2.5):

mj,i(xi) = maxj ipj(xj) ipj,i(xj,Xi) JJ mkj(xj) \ .
1 keN(j) except i

This costs O (NiNj) if the number of states at nodes i and j are iVj and Nj, respectively;

we perform a maximization over Nj terms for each of Ni sites.

As in the B P case, our fast methods can be applied in cases where the potential

function ipjj (XJ, x^ can be written as a kernel function:

Uj{xj) JJ mkij{xj)\
^ Ur- ATI A\ * / k€N(j) except

1pj,i(Xj,Xi) => K{\\Xj-Xi

m*i (x^ => max{u>j K (\\XJ - Xi\\) j .

Now, the Max-BP messages is clearly an instance of the Max-Product problem, and

for problems with suitable potential functions, our fast method can be applied simply.

Chapter 3. Fast Methods 65

3.5.3 P a r t i c l e S m o o t h i n g

The expensive operation in particle smoothing is computing the smoothing weights

(equation 2.10):

Wn\n - Wn

fc|n fc ^ ~(m) /-(j) , - H \

This costs O (N2), where N is the number of particles per node. Note that particle

filtering costs only O (N); it is only in calculating the smoothing weights that quadratic

complexity is incurred.

The smoothing weights can be computed efficiently by applying a fast Sum-Product

method twice. First, compute the denominator:

^• = E 4 m) p (4 ^ i 4 m))
m = l

by making the transformations

~(m)
Wk

~(™) xk
~0)
xk+l Xj

(j)
k+l 4

m)) = > if(||x m-Xj (4
N

dj ^ u ; m # (| | x m - X j |

m = l

where the fourth line is justified by equation 2.8. In this way, computing dj is a

Sum-Product problem which can be solved with one of our fast methods.

Next, compute the outer sum, replacing the denominator by dj-.

_^^n»p(aSii40)

Chapter 3. Fast Methods 66

Make the following transformations:

.... •
x f c + l X3

Xp, r* X{

p (4 + i i 4 l)) =*• ^(xi>xi) =*• ^ (i i ^ - ^ i i)
N

• «i =>• K(WXJ-Xi\\) •
3=1

Clearly, Sj is also a Sum-Product problem which can be solved with one of the fast

methods.

Finally, the smoothing weights are given by

~(i) - (i)
Wk\n = W k S i •

In this way, we can perform particle smoothing efficiently for Hidden Markov Models

whose transition model p (xfel^fc-i) c a n be written as the kernel function K (\\xk — Xfc_i||).

3.6 Other Applications

Here we mention briefly another setting in which the Sum-Product problem arises.

3.6.1 Gaussian Processes: Fast Conjugate Gradients

We do not review the Gaussian Processes literature here, since good introductory

papers are available, including [14, 30]. We use their notation here.

A Gaussian Process is a distribution

p (t|C, {xn}) = 1 exp (~ (t - M) T C - 1 (t - ^

where t is a set of random variables t = {t(x\), t(x2), • • •} that are related through the

covariance matrix C, which has elements derived from a covariance function: Cm<n —

C (xm, Xn).

Chapter 3. Fast Methods 67

A typical task to be performed with a Gaussian Process model is to predict the

value of £JV+I given XN+I and a set of observations V = { x i , . . . , X J V } . The prediction

is a Gaussian distribution:

p(tN+1\xN+1,V,C(xm,xn)) = -^exp (- ^ N + 1 * A r + 1) ^

where the mean and variance are given by

tN+l = k N + 1 C N tj\

&N+1 = K ~ ^N+l^N^^N+l

and tiv = {ti,t2, • • • > ^N}- The vector k and scalar K are

kN+i - (^C (xi,xN+i), C(x2,xN+i), . . . , C (XN,XN+X))

K = C (xN+1,XN+l) •

Given TV observations, the cost of making predictions is O (T V 3) if we take the naive

approach of inverting the matrix CN- This is prohibitively expensive for most datasets

of practical interest. Gibbs [15] notes that we need not compute CN

L; we only need

to compute C^t^ once and then CN

lkN+1 for each prediction. By using a conjugate

gradient approach, these can be computed approximately in O (T V 2) . Given a matrix

CN and a vector u, the method derives a series of estimates of CN

lu. We begin with

the estimate y\ = 0, and at each step compute an update:

Vk+i = Vk + Afc/ifc

where Xk and hk are computed as follows:

9i = u

hi = u

Xk =
9kCNhk

9k+i = 9k~ AfcCjy/ifc

9l9k
hk+i = gk+i + jkhk .

Chapter 3. Fast Methods 68

After TV iterations we are guaranteed to reach = Cj^u, but good approximations

can be had with K < N. For a subset of matrices CN it is also possible to compute

an error bound on the estimate yx\ see [15] for details.

Note that the most expensive operation in the above set of equations is the matrix-

vector multiplication CV/ifc. We introduce our fast methods to this computation by-

recalling that the elements of CN are derived from the correlation function C(xm, xn).

Hence, we can make the following transformation:

N

f = CNhk => fi = J2c(xi>xi)hk) « * =
i=i

(7)

where h{

k ' is the j - t h element of the vector hk. In this way, for a subset of correlation

functions C(xm, xn), the matrix-vector multiply becomes a Sum-Product problem, and

our fast methods can be applied. 1 2

As it happens, Gibbs [14] suggests that the Gaussian correlation function captures

the main properties that we want for regression problems, and notes that it is often

used in practice. That is,

C(xm,xn) = e1exp\--}2 , n 2 }+02 , 2 ̂ r(Z)s

where r(l) are scale parameters for each of the L dimensions, and (?i and 62 control

the overall noise model properties.

Wi th the extensions to our Dual-tree Sum-Product algorithm discussed in sections

3.3.5, many of the other correlation functions presented by Gibbs (including periodic

correlation and input-dependent noise) can be solved.

In summary, making predictions with a Gaussian Process model costs O (-/V3)

if performed naively (by matrix inversion), or O (KN2) if approximated with the

conjugate gradient method. For some correlation functions, our fast methods can be

applied, yielding O (KN) complexity.
1 2Note that the vector hk can contain negative elements, so our Dual-tree Sum-Product algorithm

would need to be extended to the negative weights case, as discussed in section 3.3.5. The Fast Gauss

Transform and Improved FGT work with negative weights.

Chapter 3. Fast Methods 69

3.7 Empirical Testing of Fast Sum-Product Methods

The section presents the results of testing the Fast Gauss Transform, Improved Fast

Gauss Transform, and Dual-Tree methods (using kd-tree and Anchors Hierarchy data

structures) for fast Sum-Product computation. We examine the performance of these

methods with respect to data set size, dimension, allowable error, and data set struc­

ture ("dumpiness"), measured in terms of CPU time and memory usage. The results

are striking, challenging several claims that are commonly made about these methods.

For simplicity, we consider a subset of the Sum-Product problem. Some of these

simplifying assumptions can be easily relaxed for some of the fast methods, but we as­

sume that these will not change the essential properties that we examine. Specifically,

we assume:

That is, we consider the points to live in a vector space, and use a Gaussian kernel,

non-negative weights, and equal numbers of sources and targets.

To be useful to a broad audience, we feel that fast Sum-Product algorithms must

allow the user to set a guaranteed absolute error level. That is, given an allowable

error e, the method must return approximations fj such that

Ideally, the methods should work well even with small e, so that one can simply "plug

it in and forget about it."

3.7.1 Implementations

The FGT implementation we test was generously provided by Firas Harhze, and is writ­

ten in C with a M A T L A B wrapper. It uses a fairly simple space-subdivision scheme, so

Wi > 0

M = N

fj-fi < e •

Chapter 3: Fast Methods 70

has memory requirements of O J- Adaptive space subdivision or sparse memory

allocation could perhaps improve the performance, particularly for small-bandwidth

problems.

The implementation of the I F G T that we test was generously provided by

Changjiang Yang and Ramani Duraiswami. It is written in CH—h with MATLAB bind­

ings.

We use our own implementation of the Dual-Tree algorithm. The Dual-Tree re­

cursion is independent of the space-partitioning data structure. We implemented the

kd-tree and the Anchors Hierarchy [32]. It is written in C with MATLAB bindings.

3.7.2 Results

A l l tests were run on our Xeon 2.4 GHz, 1 G B memory, compute servers. We ran

the tests within MATLAB ; all the fast algorithms are written in C or C++ and have

MATLAB bindings. We stopped testing a method once its memory requirements rose

above 1 G B in order to avoid swapping. In all cases we repeated the tests with several

data sets. In some of the plots the error bars are omitted for clarity. The error bars

are typically very small. Most of the plots have log-log scales. The curve labelled

"Naive" is the straightforward O (N2) summation.

For the I F G T , we set the upper bound on the number of clusters to be K* = y/N.

In practice, K* should be set to a constant, but since we are testing over several orders

of magnitude this seems more reasonable.

Many of the tests below can be seen as one-dimensional probes in parameter space

about the point N = 10, 000, Gaussian bandwidth h = 0.01, dimension D = 3, allow­

able error e = I O - 6 , dumpiness C = 1 (ie, uniform) point distribution, with weights

drawn uniformly from [0,1]. In all cases the points are confined to the unit D-cube.

We occasionally choose other parameters in order to illustrate a particular point. We

use D = 3 to allow the F G T to be tested.

Chapter 3. Fast Methods 71

Test A: N

Researchers have focused attention on the performance of fast algorithms with respect

to N (the number of source and target points). Figure 3.23 shows that it is cru­

cially important to consider other factors, since these strongly influence the empirical

performance.

In this test, the scale of the Gaussians is h — 0.1, so a large proportion of the

space has a significant contribution to the total influence. A n important observation

in Figure 3.23 is that the dual-tree methods (KDtree and Anchors) are doing about

O (N2) work. Empirically, they are never faster than Naive for this problem. Indeed,

only the F G T is ever faster, and then only for a small range of N. The I F G T appears

to be demonstrating better asymptotic performance, but the crossover point (if the

trend continues) occurs at about 1.5 hours of compute time.

Another important thing to note in Figure 3.23 is that the dual-tree methods

run out of memory before reaching N = 50,000 points; this happens after a modest

amount of compute, time. Also of interest is the fact that the I F G T has decreasing

memory requirements. We presume this is because the number of clusters increases,

so the cluster radii decrease and the error bounds converge toward zero more quickly,

meaning that fewer expansion terms are required.

Test B: N

In this test, we repeat test A but use a smaller Gaussian scale parameter, h = 0.01.

The behaviour of the algorithms is strikingly different. We can no longer run the

I F G T , since the number of expansion terms required is more than 10 1 0 for N = 100.

The dual-tree methods perform well, though memory usage is still a concern.

Test C: Dimension D

In this test, we fix N = 10,000 and vary the dimension. We set e = 1 0 - 3 to allow the

I F G T to run in a reasonable amount of time. Surprisingly, the I F G T and Anchors,

both of which are supposed to work well in high dimension, do not perform particularly

Chapter 3. Fast Methods 72

Figure 3.24: Test B: D = 3, h = 0.01, uniform data, e = IO - 6 . Top: CPU Time.

Bottom: Memory usage.

Chapter 3. Fast Methods 74

well. The IFGT's computational requirements become infeasibly large above D = 2,

while Anchors never does better than KDtree. This continues to be true even when

we subtract the time required to build the Anchors Hierarchy.

Also surprising is the fact that the KDtree method improves up to dimension 4; it

is typically assumed that its performance always decreases with dimension. Further,

the curse of dimensionality does not seem to rear its head here; KDtree works well up

to at least D = 100.

Tes t D : A l l o w a b l e E r r o r e

In this test, we examine the cost of decreasing e. The dual-tree methods have slowly-

increasing costs as the accuracy is increased. The FGT has a more quickly increasing

cost, but for this problem it is still competitive at e = 10~ n .

We find that the dual-tree methods begin to have problems when e < 10 - 1 1 ; while

these methods can give arbitrarily accurate approximations given exact arithmetic, in

practice they are prone to cancellation error.13

The bottom plot in Figure 3.26 shows the maximum error in the estimates. The

dual-tree methods produce results whose maximum errors are almost exactly equal to

the error tolerance e. One way of interpreting this is that these methods do as little

work as possible to produce an estimate that satisfies the required bounds. The FGT,

on the other hand, produces results that have real error well below the requirements.

Notice the 'steps'; we believe these occur as the algorithm either adds terms to the

series expansion, or chooses to increase the number of boxes that are considered to be

within range.

D a t a Set C l u m p i n e s s

Next, we explore the behaviour of the fast methods on data sets drawn from non­

uniform distributions.
1 3 This is a problem with the algorithm in general, not just our implementation of it; other published

versions of the algorithm share this problem.

Chapter 3. Fast Methods 75

Chapter 3. Fast Methods 76

Naive
- e - FGT
- A - Anchors
- * - KDtree

10
o
E
i -

o
A

-&i—£—

Epsilon

4-

- e - FGT
- A - Anchors
- * - KDtree

Epsilon

Figure 3.26: Test D: D = 3, h = 0.01, N = 10,000, uniform data. Top: CPU Time.

Bottom: Real error.

Chapter 3. Fast Methods 77

Figure 3.27: Example clumpy data sets. The dumpinesses are C = 1 (left), C = 1.5

(middle), and C = 3 (right). Each data set contains 1000 points.

We use a method for generating clumpy data that draws on the concept of lacu-

narity. Lacunarity [1, 35] measures the texture or 'difference from uniformity' of a set

of points, and is distinct from fractal dimension. It is a scale-dependent quantity that

measures the width of the distribution of point density. Lacunarity at a given scale

can be measured by covering the set with boxes of that scale; the distribution of point

densities in the boxes is measured, and the lacunarity is defined as the second moment

of the distribution divided by the first moment squared.

We adapt the notion of the ratio of variance to squared mean. Given a number

of samples N and a dumpiness C, our clumpy data generator recursively divides the

space into 2D sub-boxes, and distributes the N samples among the sub-boxes such

than

J2Ni = N

i=l

c t _ var({ iVj)

mean({iV,}) 2

This process continues until N is below some threshold (we use 10). Some example

clumpy data sets are shown in Figure 3.27.

Test E: Source dumpiness

In this test, we draw the source particles X from a clumpy distribution, while the

targets are drawn from a uniform distribution.

Chapter 3. Fast Methods 78

10 '
CD
E
i -
3
CL
O

10 u

p o o o o o o o o o o o o o d

Naive

- e - FGT

- A - Anchors

- * - KDtree

1.5 2 2.5
Data C lumpiness

03
o3 0.
r r
<D
D)
CU
CO

0_
O

0.6 Naive

- e - F G T

^ A - A n c h o r s
0.5 KDt ree

1.5 2 2.5
Da ta C lump iness

Figure 3.28: Test E : D = 3, h = 0.01, e = 10~ 6, N = 10,000, clumpy X, uniform Y".

Top: absolute C P U time. Bottom: relative C P U time as clumpiness increases.

Chapter 3. Fast Methods 79

Figure 3.28 shows the relative C P U time as dumpiness increases. The dual-tree

methods show significant improvements as the source points become clumpy. Anchors

improves more than KDtree,- although KDtree is still faster in absolute terms. The

F G T shows minor improvement as dumpiness increases.

Tes t F : S o u r c e a n d T a r g e t C l u m p i n e s s

In this test, we draw both the sources and targets from clumpy distributions. The

dual-tree methods show even more marked improvement as clumpiness increases. The

F G T also shows greater improvement than in the previous test.

Tes t G : C l u m p y D a t a , D i m e n s i o n D

In this test, we test the performance with dimension, given clumpy data sets. The

results are not very different than the uniform case (Test C). This is surprising, since

neither Anchors nor I F G T does particularly well, even given clumpy data.

3.7.3 Conclusions

We presented a comparison between the most widely used fast methods for the Sum-

Product problem. In our comparison, we varied not only the number of points N,

but also the structure in the data, the required precision and the dimension of the

state space. The results indicate that the fast methods can only work well when

there is structure in the kernel matrix. They also indicate that dual tree methods

are preferable in high dimensions. Surprisingly, the results show that the KDtree

works better than the Anchors Hierarchy in our particular experiments. This seems to

contradict common beliefs about these methods. Yet, there is a lack of methodological

comparisons between these methods in the literature. This makes it clear that further

investigation is warranted.

Chapter 3. Fast Methods 80

10'

CD
E

3
Q_
O

j o o o o o o o o o o o o ^

10"

— Naive
-e- FGT
- A - Anchors
- * - KDtree

1.5 2 2.5
Data Clumpiness

- * - KDtree

1.5
Data Clumpiness

2.5

Figure 3.29: Test F results: D = 3, h = 0.01, e = 10~6, N = 10,000, clumpy X,

clumpy Y. Top: absolute CPU time. Bottom: relative CPU time as clumpiness

increases.

Chapter 3. Fast Methods 81

Figure 3.30: Test G results: h = 0.01, e = IO" 3, N = 10,000, clumpy X, clumpy Y.

3.8 Empirical Testing of Fast Max-Product Methods

The tests presented in this section were performed by Mike Klaas as part of a paper

that we co-authored along with Nando de Freitas. I implemented the Dual-Tree Max-

Product algorithm, while Mike implemented the Distance Transform (and also tracked

down a few bugs in the Dual-Tree). The text is largely due to Mike. I thank Mike for

allowing me to include the material here.

3.8.1 Performance in iV

Here, we focus on performance in synthetic and real-world settings as N grows; com­

parisons are made both in settings where the Distance Transform is applicable and

where it is not. We present results in terms of both CPU time and number of distance

computations (kernel evaluations) performed. This is important as in some applica­

tions the kernel evaluation is extremely expensive and thus dominates the runtime of

Chapter 3. Fast Methods 82

Figure 3.31: Filtered distribution p(i i t | z i : t)

the algorithm.

M u l t i - m o d a l n o n - l i n e a r t i m e ser ies

We consider the following standard reference model

ut+i = \ut + 25 ̂ U t

 7 +8cos l.2t + vt+i (3.5)
z 1 + u%
u2

*t+i = ~^ + ™t+i (3.6)

Where vt ~ J\f(0,av) and u>t ~ JV(0,O-W). The filtered distribution is bimodal and

highly non-linear (see figure 3.31), meaning the standard particle filter produces sig­

nificant error even with a high particle count.

After running a standard SIR particle filter, we implemented the M A P sequence es­

timation described in [17]. Figure 3.32 demonstrates the accuracy gained by calculating

the M A P solution. We chose a one-dimensional setting so that the Dual-Tree algorithm

could be directly compared against the Distance Transform. (We used a modified ver­

sion of the Distance Transform that allows it to be applied to one-dimensional problems

Chapter 3. Fast Methods 83

30

20

10

0

- 1 0

- 2 0

- 3 0 (

50

40

30

20

10

0

- 1 0

-20.

Q *

+ Noisy obs .

•o • T r u e state

P F es t imate

M A P es t imate

10 20 30
T i m e s tep

40 50

• No isy obs .

T r u e state

PF es t imate

M A P es t imate

10 20 30
T i m e s tep

40 50

Figure 3.32: Top: Particle filter and M A P estimates of the latent state in the 1-D time

series experiment. Bottom: the same plot, with the true state subtracted from each

line. Mean error for the particle filter was 4.05, while the M A P solution achieved a

mean error of 1.74.

Chapter 3. Fast Methods 84

103

102

Q)

E
i -

10°

10"1

102 103 104

Particles

Figure 3.33: 1-D time series results. The dual-tree algorithm became more efficient

than naive computation after approximately 70ms of compute time. Both Dual-Tree

and Distance Transform methods show similar asymptotic growth, although the con­

stants in the Distance Transform are approximately three times smaller.

that do not lie on a regular grid.) Figures 3.33 and 3.34 summarize the results. It is

clear that the Distance Transform is superior in this setting, although the Dual-Tree

algorithm is still quite usable, being several orders of magnitude faster than the naive

method.

Bea t - t r ack ing

We tested the fast methods for the beat-tracking problem described in chapter 4. The

algorithm used was the forward pass particle filter followed by Max-Belief Propaga­

tion. Since the state space of this model is a three-dimensional Monte Carlo grid, the

Distance Transform cannot be used.

Figures 3.35 and 3.36 summarize the results. Using the fast method allows more

particles to be used, which results in a better solution. This can be quantified by

looking at the probability of the M A P solution, which is computed during Max-Belief

Propagation. The probability of the M A P sequence with 50,000 particles was p = 0.87,

while using 1000 particles resulted in a M A P sequence of probability p = 0.53.

Chapter 3. Fast Methods 85

102 103 104

Particles

Figure 3.34: 1-D time series results: distance computations v. particle count.

3.8.2 T h e effect o f o t h e r p a r a m e t e r s

D i s t r i b u t i o n and d imens ion

To examine the effects of other parameters on the behaviour of the dual-tree algorithm,

we ran several experiments varying dimensionality, distribution, and spatial index

while keeping N constant. We used two spatial indices: kd-trees and metric trees (built

using the Anchors hierarchy). We generated synthetic data by drawing points from

a mixture of Gaussians distributed evenly in the space. Figure 3.37 shows a typical

clustered data distribution. In all runs the number of particles was held constant at

N = 20,000, and the dimension was varied to a maximum of D = 40. Figures 3.38

and 3.39 show the results for CPU time and distance computations, respectively. In

these figures, the solid line represents a uniform distribution of particles, the dashed

line represents a 4-cluster distribution, the dash-dot line has 20 clusters, and the

dotted line has 100. We expect methods based on spatial indexing to fare poorly

given uniform data since the average distance between points quickly becomes a very

peaked distribution in high dimension, reducing the value of distance as a measure

of contrast. The results are consistent with this expectation: for uniform data, both

the kd-tree and Anchors methods exceeded O (N2) distance computations by D — 12.

Chapter 3. Fast Methods 86

Particles

Figure 3.35: Beat tracking results: time v. particle count. The dual-tree method

becomes more efficient at t = 10ms, and thereafter dominates the naive method.

Perhaps more surprising is that the kd-tree method consistently outperformed the

Anchors method on uniform data even up to D = 40. The depth of a balanced binary

kd-tree of 20, 000 particles and leaf size 25 is ten, so for D > 10 there are many

dimensions that are not split even a single time!

Of more practical interest are the results for clustered data. It is clear that the

distribution vastly affects the runtime of Dual-Tree algorithms; at D = 20, solving

the Max-Product with the Anchors method was six times faster on clustered data

compared to uniform. We expect this effect to be even greater on real data sets, as the

clustering should exist on many scales rather than simply on the top level as is the case

with our synthetic data. It is also interesting to note the different effect that clustering

had on kd-trees compared to metric trees. For the Anchors method, clustering always

improved the runtime, albeit by a marginal amount in low dimensions. For kd-trees,

clustering hurt performance in low dimensions, only providing gains after about D = 8.

The difference in the two methods is shown in figure 3.40.

Chapter 3. Fast Methods 87

10* 1 0 3 1 0 4

Particles

Figure 3.36: Beat tracking results: distance computations vs. particle count.

Figure 3.37: Synthetic data set with c = 20 clusters.

Effect of kernel width

To measure the effect of different kernels, we test both methods on a 1-D uniform

distribution of 200,000 points, and use a Gaussian kernel with bandwidth (cr) varying

over several orders of magnitude. The number of the distance computations required

was reduced by an order of magnitude over this range (see Figure 3.41). It seems that

with very wide kernels, the values that the kernel function takes on are in a smaller

range, so the weights become more important.

Chapter 3. Fast Methods 88

1 10 40
Dimension

Figure 3.38: Time vs. dimensionality. For clarity, only the uniform distribution

and one level of clustered data are shown. This experiment demonstrates that some

structure is required to accelerate the Max-Product problem in high dimensions.

Figure 3.39: Distance computations vs. dimensionality. The level of clustering shown

is less than in Figure 3.38. For kd-trees, clustering hurts performance when D < 8.

Chapter 3. Fast Methods 89

1*- • © - "

anchors
kd-tree

CD

E
0 >
05

DC 1

it. .

"""*•.

1 . 1 1—|

anchors ;
• o kd-tree

" " * • • .

1

10 40

Dimension

Figure 3.40: Time vs. dimensionality; relative to kd-tree = 1. Top: uniform data.

Second: four clusters. Third: 20 clusters. Bottom: 100 clusters. Metric trees are

better able to properly index clusters: the more clustered the data, the smaller di­

mensionality required for the Anchors method to outperform kd-trees (D — 30 for

somewhat-clustered data, D = 15 for moderately-clustered data, and D = 6 for

significantly-clustered data).

Chapter 3. Fast Methods 90

Figure 3.41: Effect of kernel bandwidth: distance computations vs. bandwidth of a

Gaussian kernel.

3.8.3 C o n c l u s i o n

We examine some of the variables that affect the performance of Dual-Tree recursion,

such as dimensionality, data distribution, spatial index, and kernel. These parameters

have dramatic effects on the runtime of the algorithm, and our results suggest that

more exploration is warranted into these effects—behaviour as N varies is only a small

part of the story.

Chapter 4. Application: Beat Tracking 91

Chapter 4

Application: Beat Tracking

4.1 Introduction

The material in this chapter borrows heavily from the paper written by myself and

Nando de Freitas for the Neural Information Processing Systems 2004 (NIPS* 17) con­

ference [29]; The comments from our anonymous reviewers were very helpful.

In this chapter, we present an application of graphical models, and our fast infer­

ence methods, to a popular problem in music processing: beat tracking.

Human listeners have little difficulty tracking the beat of most popular music;

tapping a foot in time to music is an example of beat tracking. Dixon describes

beats as follows: "much music has as its rhythmic basis a series of pulses, spaced • beat

approximately equally in time, relative to which the timing of all musical events can

be described. This phenomenon is called the beat, and the individual pulses are also

called beats" [7]. Given a piece of recorded music (an M P 3 file, for example), we wish

to produce a set of beats that correspond to the beats perceived by human listeners.

For a listener tapping a foot or clapping in time to music, the beats are the taps or

claps.

The set of beats of a song can be characterized by the trajectories through time of

the tempo and phase offset. Tempo is typically measured in beats per minute (BPM) , • tempo

and describes the frequency of beats. The phase offset determines the time offset of ,
• phase

the beat. When tapping a foot in time to music, tempo is the rate of foot tapping and offset

phase offset is the time at which the tap occurs. Phase zero is called the 'down beat'

and phase 7r is the 'up beat'; 'down' and 'up' refer to the position of the foot when

tapping in time to the beat.

Chapter 4. Application: Beat Tracking 92

The beat tracking problem is somewhat ill-posed. Music is often ambiguous; dif­

ferent human listeners can perceive the beat differently. There are often several beat

tracks that could be considered reasonable or correct. For example, when listening to

music with a fast tempo, many human listeners will tap every second beat (2/2 time

rather than 4/4 time).

We see the beat tracking problem as not only an interesting problem in its own

right, but as one aspect of the larger problem of machine analysis of music. Given beat

tracks for a number of songs, we could extract descriptions of the rhythm and use these

features for clustering or searching in music collections. We could also use the rhythm

information to do structural analysis of songs - for example, to find repeating sections.

In addition, we note that beat tracking produces a description of the time scale of a

song; knowledge of the tempo of a song would be one way to achieve time-invariance in

a symbolic description. Finally, we note that beat tracking tells us where the important

parts of a song are; the beats (and major divisions of the beats) are good sampling

points for other music-analysis problems such as note detection. Conversely, analyses

of other aspects of music could help to choose between multiple interpretations of the

beat.

4.2 Related Work

Many researchers have investigated the beat tracking problem; we present only a brief

overview here. Scheirer [36] presents a system, based on psychoacoustical observations,

in which a bank of resonators compete to explain the processed audio input. The

system is tested on a difficult set of examples, and considerable success is reported.

The most common problem is a lack of global consistency in the results - the system

switches between locally optimal solutions.

Goto [18] has described several systems for beat tracking. He takes a very prag­

matic view of the problem, and introduces a number of assumptions that allow good

results in a limited domain - pop music in 4/4 time with roughly constant tempo,

where bass or snare drums keep the beat according to drum patterns known a priori,

Chapter 4. Application: Beat Tracking 93

or where chord changes occur at particular times within the measure.

Cemgil and Kappen [6] phrase the beat tracking problem in probabilistic terms,

and we adapt their model as our local observation model. They use MIDI-like (event-

based) input rather than audio, so the results are not easily comparable to our system.

In formulating our model for beat tracking, we assume that the tempo is nearly con­

stant over short periods of time, and usually varies smoothly. We expect the phase to

be continuous. This allows us to use the simple graphical model shown in Figure 4.1.

We break the song into a set of frames of two seconds; each frame is composed of a • frame

pair of nodes in the graphical model. We expect the tempo to be constant within each

frame, and the tempo and phase offset parameters to vary smoothly between frames.

Figure 4.1: Our graphical model for beat tracking. The hidden state X is composed

of the state variables tempo and phase offset. The observations Y are the features

extracted by our audio signal processing. The potential function <fi describes the com­

patibility of the observations with the state, while the potential function ip describes

the smoothness between neighbouring states. Each pair of X and Y nodes comprises

one frame.

In this undirected probabilistic graphical model, the potential function d>(Yi,Xi)

describes the compatibility of the state variable X = {T, P}, composed of tempo T

and phase offset P, with the local observations Y. The potential function tp(Xi, Xi+i)

describes the smoothness constraints between neighbouring frames. The observations

4.3 Graphical Model

Chapter 4. Application: Beat Tracking 94

Y comes from processing the audio signal, which is described in Section 4.6. The <f>

function comes from domain knowledge and is described in Section 4.5. This model

allows us to trade off local fit and global smoothness in a principled manner. Ambiguity

in one section of the song can be resolved by using contextual information from more

certain regions. By using an undirected model, we allow contextual information to

flow both forward and backward in time.

In such models, belief propagation (BP) allows us to compute the marginal proba­

bilities of the state variables in each frame. Alternatively, maximum belief propagation

(Max-BP) allows a joint maximum a posteriori (MAP) set of state variables to be de­

termined. That is, given a song, we generate the observations Y j , i = 1... F, (where

F is the number of frames in the song) and seek a set of states Xi that maximize the

joint product
1 F F-l

P(X,Y) = - H^iY^Xi) H^(Xi,Xi+1) .
i = l i = l

4.4 Smoothness Model

The potential function tp (Xi, Xi+i) expresses our belief that the tempo typically varies

smoothly and phase is typically continuous. The tp w e u s e is the product of tempo

and phase smoothness components:

ip = ipT tpP .

We expect that relative changes in tempo are important, so for the tempo smooth­

ness component tpT, we place a Gaussian transition model on the log of tempo change:

log(T i+i) = log(r i)+^(0, c r r
2)

so we can write the tempo smoothness term as the Gaussian

iPr (Tu Ti+1) = JV (log (T i + i) - log (Ti), oT

2) .

We set the variance aT = 0.1.

The phase smoothness component tpP allows us to enforce continuity of phase

between frames. We want beats to be spaced approximately evenly in time, even

Chapter 4. Application: Beat Tracking 95

Figure 4.2: A demonstration of the phase continuity constraint. The plot shows two

frames with different tempos and phase offsets. There is a linear relationship between

phase and time in each frame. Beats occur at points where phase (mod 27r) is zero.

We would like the phase to be continuous at the boundary between frames.

across frame boundaries; see Figure 4.2. Given tempo and phase offsets values in a

frame, there is a linear relationship of phase with time:

0(t\T,P) = 2nTt - P .

We want the phases of neighbouring frames to be continuous at the frame boundary.

If the boundary separating frames i and i + 1 is at time tb, we want

9(tb | TuPi) ~ 6(tb | Ti+uPi+1) .

Since phase values are cyclic, we project the phase values onto the unit circle and place

a Gaussian on the distance between points on the circle:

Oi = 9(tb\Ti,P$

Qi+i = &(h I Ti+i, Pi+\)

ipP = j\f(^ (cosflj — cos#j + 1 , sin#j — sin0;+i) , cr P

2 ^ ,

where j\f is a two-dimensional Gaussian. We set the variance a> = 0.l7r.

4.5 Local Probability Model

In this section, we describe the derivation of our local potential function (also known

as the observation model) cp {Xii Xi).

Chapter 4. Application: Beat Tracking 96

ti
CD >
CU

i A k. i i

i k. i k i k

A t A A t A A t A A t A A f A A t A

o
O H

0.5 1 1.5 2
Time (units of beats)

2.5

Figure 4.3: Cemgil and Kappen probability of a note occurring at different times, in

units of beats, for D — 8 and A = 1. The function is periodic and infinite. Musical

events (notes) are most likely to occur on the beat (that is, at an integer number of

beats). The probability of a note occurring at finer and finer divisions of the beat

drops away exponentially.

Our model is an adaptation of the work of [6], which was developed for use with

MIDI input. Their model is designed so that it "prefers simpler [musical] notations".

The beat is divided into a fixed number of bins (some power of two), D, and each

note is assigned to the nearest bin. The probability of observing a note at a coarse

subdivision of the beat is greater than at a finer subdivision. More precisely, a note

that is quantized to the bin at beat number k has probability

p(k) oc exp ^ - A r f (f c) j

where d(k) is the number of digits in the binary representation of the number (k mod 1);

that is, the number of bits required to represent the fractional portion of the number

k, and A is a parameter. See Figure 4.3.

Since we use recorded music rather than MIDI, we must perform signal processing

to extract features from the raw data. This process produces a signal that has consid­

erably more uncertainty than the discrete events of MIDI data, so we adjust the model.

We add the constraint that features should be observed near some quantization point,

Chapter 4. Application: Beat Tracking 97

Figure 4.4: One period of our template function b(t), which gives the expected distri­

bution of notes within a beat. Given tempo and phase offset values, we stretch and

shift this function to get the expected distribution of notes in time.

which we express by centering a Gaussian around each of the quantization points. The

variance of this Gaussian, <7Q is in units of beats, so we arrive at the periodic template

function b(t), shown in Figure 4.4. We have set the number of bins to 8, A to one, and

„ — i
Q - 40-

The template function b(t) expresses our belief about the distribution of musical

events within the beat. By shifting and scaling b(t), we can describe the expected

distribution of notes in time for different tempos and phase offsets:

b(t\T,p) = b(rt-^-

Our signal processing (described below) yields a discrete set of events that are

meant to correspond to musical events. In each frame, we produce a set of discrete

events Y = {ti, Ei}, i = 1... M , where ti is the time at which the event occurs and

Ei is the 'strength' or 'energy' of the event. Given state variables X = {T, P}, the

expected distribution of events in time is b(t \T,P). We can treat this as a multinomial

distribution in the continuous limit (as bin size approaches zero), from which a set of

Chapter 4. Application: Beat Tracking 98

events Y are drawn. This leads to the potential function

M
Ei <l>(Y,X) = <j>({t,E},{T,P}) - J] [b(U\T,P)]

i=l

4.6 A u d i o Feature E x t r a c t i o n

Our signal processing stage is meant to extract features from the raw audio signal

that approximate musical events (drum beats, piano notes, guitar strums, etc.). As

discussed above, we produce a set of events composed of time and 'strength' values,

where the strength describes our certainty that an event occurred. We assume that

musical events are characterized by brief, rapid increases in energy in the audio signal.

This is certainly the case for percussive instruments such as drums and piano, and will

often be the case for string and woodwind instruments and for voices. This assumption

breaks for sounds that fade in smoothly rather than 'spikily'.

The audio signal processing is shown in Figure 4.5. We begin by taking the short-

time Fourier transform (STFT) of the signal: we slide a 50 millisecond Hann window

over the signal in steps of 10 milliseconds, take the Fourier transform, and extract the

energy spectrum. Following a suggestion by [36], we pass the energy spectrum through

a bank of five filters that sum the energy in different portions of the spectrum. We take

the logarithm of the summed energies to get a 'loudness' signal. Next, we convolve

each of the five resulting loudness signals with a filter that detects positive-going edges.

This can be considered a 'loudness gain' signal. Finally, we find positive maxima of

the loudness gain signals within 50 ms neighbourhoods. The result is a set of points,

one per 50 ms for each of the five frequency bands, that describe the energy gain in

the band, with emphasis on the maxima. These are the features Y that we use in our

local probability model d>.

4 . 7 Inference

To find a maximum a posteriori (MAP) set of state variables that best explain a set

of observations, we need to optimize a 2F-diniensional, continuous, non-linear, non-

Chapter 4. Application: Beat Tracking 99

Figure 4.5: Our audio signal processing (feature extraction). We are given the raw

audio waveform (top plot). We take the short-time Fourier transform and pass the

spectra through a set of five bandpass filters. The log of energy from the third filters is

shown (second plot). Next, we convolve the energy signal with a soft-derivative filter to

find the increase in energy (third plot). Finally, we find positive maxima in the energy

gain signal (bottom plot). These discrete peaks are the features (or observations) Y.

The dotted line in the bottom plot is the positive portion of the energy gain signal.

In summary, the signal processing detects the locations of rapid increases in energy in

various frequency bands.

Chapter 4. Application: Beat Tracking 100

Gaussian function that has many local extrema. F is the number of frames in the

song, so is on the order of the length of the song in seconds - typically in the hundreds.

This is clearly difficult. We present two approximation strategies. In the first strategy,

we convert the continuous state space into a uniform discrete grid and run discrete

maximum-belief propagation (Max-BP). In the second strategy, we run a particle filter

in the forward direction, then use the particles as 'grid' points and run Max-BP as per

[17].

Since the landscape we are optimizing has many local maxima, we must use a fine

discretization grid (for the first strategy) or a large number of particles (for the second

strategy). M a x - B P costs O (N2) when performed naively, where N is the number of

discretized states (or particles) per frame. We use the methods of Chapter 3 to reduce

the cost of the computation.

For the results presented here, we discretize the state space into NT = 90 tempo

values and NP = 50 phase offset values for the fixed-grid method. We distribute the

tempo values uniformly on a log scale between 40 and 150 B P M , and distribute the

phase offsets on a uniform grid. For the particle filter version, we use NT x NP = 4500

particles. Wi th these values, our C and Matlab implementation runs at faster than

real time (the duration of the song) on a standard desktop computer.

4 . 8 Results

A standard corpus of labelled ground truth data for the beat-tracking problem does

not exist. To evaluate our algorithm, we manually labelled a relatively small number

of songs by listening to each song and marking each perceived beat. We sought out

examples that we thought would be difficult, and we attempted to avoid the methods

of [28]. Ideally, we would have several human listeners label each song, since this would

help to capture the ambiguity inherent in the problem. However, this would be quite

time-consuming.

One can imagine several methods for speeding up the process of generating ground

truth labellings and of cleaning up the noisy results generated by humans. For example,

/ O f

a human labelling of a short segment of the song could be automatically extrapolated

to the remainder of the song, using energy spikes in the audio signal to fine-tune the

placement of beats. However, by generating ground truth using assumptions similar

to those embodied in the models we intend to test, we risk invalidating the results.

We instead opted to use 'raw' human-labelled songs.

There is no standard evaluation metric for beat tracking. We use the p function

presented by Cemgil et al [5] and used by Dixon [7] in his analysis:

where S and T are the ground-truth and proposed beat times, and a is set to 40

milliseconds. A p value near 100 means that each predicted beat is close to a true

beat, while a value near zero means that each predicted beat is far from a true beat.

We have focused on finding a globally-optimum beat track rather than precisely

locating each beat. We could likely improve the p values of our results by fine-tuning

each predicted beat, for example by finding nearby energy peaks, though we have not

done this in the results presented here.

Table 4.1 shows a summary of our results. Note the wide range of genres and the

choice of songs with features that we thought would make beat tracking difficult. This

includes all our results (not just the ones that look good).

The first two columns list the name of the song and its genre or the reason we

included it. An [(e)] indicates that we edited the song to remove talking on long

periods of silence. An [(x)] indicates that only an excerpt of the song was available.

The third column lists the qualitative performance of the fixed grid (FG) version: [x2]

means our algorithm produced a beat track twice as fast as ground truth, [x 1/2] means

we tracked at half speed, and [TT] means we produced a syncopated (TT phase error) beat

track. A blank entry means our algorithm produced the correct beat track. A star [•]

means that our result incorrectly switches phase or tempo. In one case, we tracked at

3/2 the true tempo; this is marked as [0]. The p values are after compensating for the

qualitative error (if any). The fifth column shows a histogram of the absolute phase

error (0 to ir); this is also after correcting for qualitative error. The remaining columns

discussion

of Table

4.1.

Chapter 4. Application: Beat Tracking 102

JJJJJJJJJ
ID b- I-H O CT>
00 N IO IO

y j j j j j j j j j
Oi IV CM C i i-H
W N O O

00 OO N H (N
CD N N CO

O O} O i
00 t - N N N i-H OS t— Oi 00

N t - t o CO 00

o

JJJJJJJJJJ JJJJJJJJJJ JJJJJ
oo s m ^ H

OO N N ^ t o

i>- oo o o o>
n (- ^ s i o

O O J CM CM CM
N N N ^ 0O

i - H CTi C M I O Oi
oo tv oo l>- iv

i -H 0 5 i -H «D 0 5
N N N OO 0O

-K
O
-K

O

fl
CP

o *
1 1
Q. 43

— 3
o3 ti
o . -

'3 2
to G

o3

<p
43
o

G o3

OJ -55
- d CO
O J

o E S o 03
1 - 5

o3
O o >
csa
N
03

3 3
bO bO

m 0 1 O

3 o o

4rf

" 3

a

3
, 0

03
fl
bo

CP
bo
fl
03

43
O O pej

o
P4

Si
fl
3

PH

4**
fl
3
O,
A. o

PH

o3
o
H
O

fl fl
o3 o3

o3 o3
bO brt

co

-2 o o
< H tn

fl
.5
'co

. tp
fl
O

T3
fl

fl
o

PH

CM
00

o c

0)
40

"o
0
o
o3

PQ

2
o

o
fl fl
CP

6

>3 03
03

O <£

CM 2
o3 'rp
bo 5

£ i

o g

03 cp
fl
CP
CP
f l

o

43
o

fl o

- 3
fl
o3

1-5

O
fl
cp

1-3

03

o

3
a
CO
O
fl
O
f l

o o
ti
CP
L ;

c S
0 3
§ o

E ^

1 ^
03 co

Q

.3 cp

>> 3
cp «
to ^

3

3

CP
3

PQ

fl

3

3

.2
'to
co
cp

CO
C
O C

O ti
3

w
Pd

03 73

•g CP
03 O co

Q 0 £
J £ 3
a o o
S W Q

fl
03

I
V
>i
o
03

a
a

O

3

ti

bO

E

CP a ti
oi

K
A
CP

PQ

bo
fl
O

CO
~m

"ti
CP rt

0 ^

1 0

CP
O ^

o
a - 1

P .2
^ o - o
03 CO

CO J
S >
+j 03
CP CP
ti 3

O PQ

4=
3

Q

4<i
CO
CP

43

y
3 tJ

o

0 5

i-H
t>
C£)

CP

03
43

o

s
CO

3

bO o3

03
CP CM

pq P

A o
43
CO

PH

T J
fl
O
o
CP

CO

-a fl
CP

-a
O

I
CP

43

CP

s
O

o
3

o
x) o
<

-a
3
3 o ti
<
cp

s
O
3 ^
cp cp

£ a|
^ S
\ CO

o

O

03
a
S

43
P3

5? O

T3
CP ti
c
3

o o
40
S
o3

PQ

3

CD v
PQ ^

\ 03

3 s
o3 P PQ

s 2
42
3

0?
CO

O w Pi
•3 O

o
ti
CP -o fl
p

CP
43

J i
3
o3

43

co

1
PCj

PQ

1-5

CP
. . CO

o3
3 CP
S 6 .•s «

PH O

Chapter 4. Application: Beat Tracking 103

contain the same items for the particle filter (PF) version. Note that while the FG and

PF versions are often nearly identical, they occasionally choose qualitatively different

answers.

Out of 25 examples, the fixed grid version produces the correct- answer in 17 cases,

tracks at double speed in two cases, half speed in two cases, syncopated in one case,

and in three cases produces a track that (incorrectly) switches tempo or phase. The

particle filter version produces 16 correct answers, two double-speed, two-half-speed,

two syncopated, and the same three 'switching' tracks.

An example of a successful tempo track is shown in Figure 4.6.

The result for Lucy In The Sky With Diamonds (one of the 'switching' results) is

worth examination; see figure 4.7. It is also interesting to examine the final message

passed during Max-BP: we can see several local maxima corresponding to qualitatively

different solutions; see Figure 4.8.

4.9 Future Work

We would like to investigate several modifications of our model and inference methods.

Longer-range tempo smoothness constraints as suggested by [5] could be useful. This

would allow us to express that a tempo change to a new value and back to the original

value is more likely than two arbitrary tempo changes.

It would be useful to extract M A P sets of parameters for several qualitatively

different solutions, as this would help to express the ambiguity of the problem. As we

saw in the Lucy In The Sky With Diamonds example, there can be multiple plausible

beat tracks for many pieces of music. This is a harder inference problem than finding

fc-best M A P sets, since we want the solutions to belong to different local maxima.

The particle filter could also be changed. At present, we first perform a full particle

filtering sweep and then run Max-BP. Taking into account the quality of the partial

M A P solutions during particle filtering might allow superior results by directing more

particles toward regions of the state space that are likely to contain the final M A P

solution. Since we know that our probability terrain is multi-modal, a mixture particle

Chapter 4. Application: Beat Tracking 104

105

s 100

DH
CQ

o
a

EH

95

90

85

105

§ 100

85

105

s 100

o
D H

a
EH

95

90

85'

Smoothed ground truth
F G Predicted

T

Smoothed ground truth
Raw ground truth

IT

Smoothed ground truth
P F Predicted

X
50 100 150 200

Time (s)
250

Figure 4.6: Tempo tracks for Cake / I Will Survive. Middle: 'raw' ground-truth

tempo (instantaneous tempo estimate based on the time between adjacent beats) and

smoothed ground truth (by averaging). Top: tracking results for the fixed grid version.

Bottom: results for the particle filter version.

Chapter 4. Application: Beat Tracking 105

Figure 4.7: Tempo tracks for Lucy In The Sky With Diamonds. The vertical lines mark

times at which the time signature changes between 3/4 and 4/4. We track correctly

(at half speed), and follow the first three time signature changes (with a slight glitch at

the second change). On the fourth change, however, we track at 2/3 the true tempo.

On the fifth change we return to the correct beat.

Chapter 4. Application: Beat Tracking 106

0 1/4 1/2 3/4
Phase Offset

Figure 4.8: The last message passed during Max-BP. Bright means high probabil­

ity. This message tells us the probability of a sequence that ends with each state.

The global maximum (near 100 B P M , phase offset 1/2) corresponds to the beat track

shown in the Figure 4.7. The local maximum near 50 B P M corresponds to an alter­

nate solution in which, rather than tracking the quarter notes, we track one beat per

measure. This alternate solution is quite plausible; some human listeners will produce

it. Note also the local maximum near 100 B P M but phase-shifted by a half beat from

the global maximum. This corresponds to a syncopated beat track.

Chapter 4. Application: Beat Tracking 107

filter would be useful [38].

Our current model of tempo change (ipT) does not take into account the fact that

abrupt tempo changes to related tempos (half, double, etc.) do occur.

A n issue that we have not considered is parameter estimation: we have set aQ,

dp, and aT arbitrarily. It would be preferable to learn optimal values for these hy-

perparameters from the inputs. Some songs, including most electronic, rock, and pop

music, have very steady tempos and rarely have phase discontinuities. Others, par­

ticularly solo performances of classical music, have large tempo variance (musically,

this is known as rubato). Having a single set of hyperparameters for all types of music

is unsatisfying. Allowing these values to vary would likely improve our results, and,

indeed, the optimal values of the hyperparameters could perhaps be used for tasks

such as genre identification.1

4.10 Conclus ions

We present a graphical model for beat tracking and evaluate it on a set of varied and

difficult examples. We achieve good results that are comparable with those reported

by other researchers, although direct comparisons are impossible without a shared

data set and evaluation metric.

There are several advantages to formulating the problem in a probabilistic setting.

The beat tracking problem has inherent ambiguity and multiple interpretations are

often plausible. Wi th a probabilistic model, we can produce several candidate solu­

tions with different probabilities. This is particularly useful for situations in which

beat tracking is one element in a larger machine listening application. Probabilistic

graphical models allow flexible and powerful handling of uncertainty, and allow local

and contextual information to interact in a principled manner. Additional domain

knowledge and constraints can be added in a clean and principled way.

'One of our anonymous reviewers pointed out the previous two issues.

Chapter 5. Farewell 108

Chapter 5

Farewell

Since I started my thesis with a welcome, it seems fitting to end it with a farewell.

Let us review briefly what we've discussed. Chapter 2 got us up and running,

thinking about graphical models and how we compute with them. We reviewed the

most common techniques: Belief Propagation, in both standard and Max flavours,

plus Particle Filtering and Particle Smoothing.

Chapter 3 presented a lot of material. First, we presented the problems we want to

solve, which we call the Sum-Product and Max-Product. Next, we reviewed some of

the existing fast methods for the Sum-Product, including the Fast Multipole Method,

Fast Gauss Transform, Improved FGT, the Box Filter trick, and the Dual-Tree method.

We then took a brief digression to present some new ideas for tightening the bounds

that are central to the Dual-Tree method.

Next, we switched to the Max-Product problem. We presented the Distance Trans­

form, which can be used to solve some Max-Product problems in cases where the state

space is a regular grid. We then presented a novel algorithm for the Max-Product

problem using a Dual-Tree approach.

We then returned to graphical models and stated explicitly how the fast meth­

ods can be used to solve Belief Propagation, Max-Belief Propagation, and Particle

Smoothing. We also presented the idea of using the Sum-Product algorithms to speed

up Gaussian Processes; one of the key computations there involves computing the

product of an inverse kernel matrix and a vector. This can be solved with the fast

conjugate gradient method, which requires many Sum-Product computations. In this

setting the weights can be negative, so some of the fast methods would need to be

extended. Doing this would open the door to solving many problems that can be

Chapter 5. Farewell 109

expressed as the multiplication of a structured kernel with an arbitrary vector.

To complete the chapter, we presented some empirical tests that compare the fast

methods head-to-head. Some of the results challenge claims in the literature about

the performance of the fast methods. For example, the Dual-Tree method using the

Anchors Hierarchy," and the Improved Fast Gauss Transform are both supposed to

perform well with high-dimensional, clustered data. However, we find that this is

not the case: the Dual-Tree fcd-treeis faster. Our empirical evaluation highlights the

importance of considering factors other than N (the number of particles). The degree

of structure in the data and the properties of the kernel function have a much greater

effect on the empirical performance.

In chapter 4, we presented an application of graphical models to the beat tracking

problem. Given a piece of sampled music, we want to produce an estimate of the tempo

track of the song, and an estimate of the location of beats. The results are quite good,

and by using a probabilistic approach we leave open the possibility of combining the

beat tracker with other machine listening applications.

I thank you for your attention, dear reader, and bid you farewell.

Bibliography- nO

Bibliography

[1] C Allain and M Cloitre. Characterizing the lacunarity of random and deterministic

fractal sets. Physical Review A, 44(6):3552-3558, Sep 1991.

[2] B J C Baxter and G Roussos. A new error estimate of the fast Gauss transform.

SIAM Journal of Scientific Computing, 24(l):257-259, 2002.

[3] R K Beatson and L Greengard. A short course on fast multipole methods. In

M Ainsworth, J Levesley, W Light, and M Marietta, editors, Wavelets, Multilevel

Methods and Elliptic PDEs, pages 1-37. Oxford University Press, 1997.

[4] G Borgefors. Distance Transformations in digital images. Computer Vision,

Graphics, and Image Processing, 34:344-371, 1986.

[5] A T Cemgil, B Kappen, P Desain, and H Honing. On tempo tracking: Tempogram

representation and Kalman filtering. Journal of New Music Research, 28(4):259-

273, 2001.

[6] A T Cemgil and H J Kappen. Monte Carlo methods for tempo tracking and

rhythm quantization. Journal of Artificial Intelligence Research, 18(1):45-81,

2003.

[7] S Dixon. A n empirical comparison of tempo trackers. Technical Report T R -

2001-21, Austrian Research Institute for Artificial Intelligence, Vienna, Austria,

2001.

[8] A Doucet. On sequential simulation-based methods for Bayesian filtering. Techni­

cal Report C U E D / F - I N F E N G / T R 310, Department of Engineering, Cambridge

University, 1998.

Bibliography 111

[9] A Doucet, N de Freitas, and N J Gordon, editors. Sequential Monte Carlo Methods

in Practice. Springer-Verlag, 2001.

[10] P F Felzenswalb, D P Huttenlocher, and J M Kleinberg. Fast algorithms for

large-state-space hmms with application to web usage analysis. In Advances in

Neural Information Processing Systems 16, 2003. - 1

[11] P F Felzenszwalb and D P Huttenlocher. Distance Transforms of sampled func­

tions. Technical Report TR2004-1963, Cornell Computing and Information Sci­

ence, September 2004.

[12] P F Felzenszwalb and D P Huttenlocher. Efficient belief propagation for early

vision. In CVPR, 2004.

j

[13] B J Frey, R Koetter, and N Petrovic. Very loopy belief propagation for unwrapping

phase images. In Advances in Neural Information Processing Systems 14, pages

737-743, 2002.

[14] M N Gibbs. Bayesian Gaussian Processes for Regression and Classification. PhD

thesis, University of Cambridge, 1997.

[15] M N Gibbs and D J MacKay. Efficient implementation of Gaussian

Processes, ht tp: / /www.inference.phy.cam.ac.uk/mnglO/GP/gpros.ps.gz or

ht tp: / /www.cs. toronto.edu/~mackay/gpros.ps.gz, 1997.

[16] S J Godsill, A Doucet, and M West. Maximum a posteriori sequence estimation

using Monte Carlo particle filters. Ann. Inst. Stat. Math., 53(l):82-96, March

2001.

[17] S J Godsill, A Doucet, and M West. Maximum a posteriori sequence estimation

using Monte Carlo particle filters. Ann. Inst. Stat. Math., 53(l):82-96, March

2001.

[18] M Goto. A n audio-based real-time beat tracking system for music with or without

drum-sounds. Journal of New Music Research, 30(2):159-171, 2001.

http://www.inference.phy.cam.ac.uk/mnglO/GP/gpros.ps.gz
http://www.cs.toronto.edu/~mackay/gpros.ps.gz

Bibliography 112

[19] A G Gray and A W Moore. 'N-Body' problems in statistical learning. In Advances

in Neural Information Processing Systems 4, pages 521-527, 2000.

[20] Alexander Gray and Andrew Moore. Nonparametric density estimation: Toward

computational tractability. In SIAM International Conference on Data Mining,

2003.

[21] Alexander Gray and Andrew Moore. Rapid evaluation of multiple density models.

In Artificial Intelligence and Statistics, 2003.

[22] L Greengard and J Strain. The fast Gauss transform. SIAM Journal of Scientific

Statistical Computing, 12(l):79-94, 1991.

[23] L Greengard and X Sun. A new version of the Fast gauss transform. Documenta

Mathematica, ICM(3):575-584, 1998.

[24] J M Hammersley and P Clifford. Markov fields on finite graphs and lattices.

Unpublished manuscript, 1971. . *

[25] Firas Hamze and Nando de Freitas. From fields to trees. In UAI, 2004.

[26] A Ihler. A n overview of fast multipole methods. Area Exam; http://ssg.mit.

edu/~ihler/papers/ihler_area.pdf.

[27] Michael I Jordan. Introduction to Probabilistic Graphical Models. In Press.

[28] D LaLoudouana and M B Tarare. Data set selection. Presented at NIPS Work­

shop, 2002.

[29] Dustin Lang and Nando de Freitas. Beat tracking the graphical model way. In

Advances in Neural Information Processing Systems 17, 2004.

[30] D J MacKay. Introduction to Gaussian Processes, http://www. cs .toronto.

edu/~mackay/gpB.ps.gz,1997.

http://ssg.mit
http://www

Bibliography 113

[31] R J McEliece, D J C MacKay, and J-F Cheng. Turbo Decoding as an instance

of Pearl's 'Belief Propagation' algorithm. IEEE Journal on Selected Areas in

Communication, 16(2):140-152, 1998.

[32] Andrew Moore. The Anchors Hierarchy: Using the triangle inequality to survive

high dimensional data. Technical Report CMU-RI-TR-.00-05, Robotics Institute,

Carnegie Mellon University, Pittsburgh, PA, February 2000.

[33] Kevin Murphy, Yair Weiss, and Michael Jordan. Loopy-belief propagation for

approximate inference: A n empirical study. In Uncertainty in AI (UAI), 1999.

[34] J Pearl. Probabilistic reasoning in intelligent systems: networks of plausible in­

ference. Morgan-Kaufmann, 1988.

[35] R E Plotnick, R H Gardner, W W Hargrove, K Prestegaard, and M Perlmut-

ter. Lacunarity analysis: a general technique for the analysis of spatial patterns.

Physical Review E, 53(5 B):5461-5468, May 1996.

[36] E D Scheirer. Tempo and beat analysis of acoustic musical signals. J. Acoust.

Soc. Am., 103(1):588-601, Jan 1998.

[37] J Strain. The Fast Gauss Transform with variable scales. SIAM Journal of

Scientific and Statistical Computing, 12:1131-1139, 1991.

[38] J Vermaak, A Doucet, and Patrick Perez. Maintaining multi-modality through

mixture tracking. In ICCV, 2003.

[39] A S Willsky. Multiresolution Markov models for signal and image processing.

Proceedings of the IEEE, 90(8):1396-1458, August 2002.

[40] C Yang, R Duraiswami, and N A Gumerov. Improved fast gauss transform.

Technical Report CS-TR-4495, U M I A C S , University of Maryland, College Park,

2003.

Bibliography 114

[41] C Yang, R Duraiswami, N A Gumerov, and L S Davis. Improved fast Gauss

transform and efficient kernel density estimation. In International Conference on

Computer Vision, Nice, 2003.

[42] J S Yedidia, W T Freeman, and Y Weiss. Understanding belief propagation and

its generalizations. Technical Report TR2001-22, Mitsubishi Electric Research

Labs, 2001.

115

Index
K (kernel function), 17

X (source particles), 17

XH (hidden variables), 5

Xo (observed variables), 5

Y (target particles), 17

e, 20

i/> (potential functions), 3
jupper flower cjg

kd-tree, 31

W{ (weight), 17

x*, 54

adaptive grid, 11

anchors hierarchy, 31

beat, 93

belief, 7

Belief Propagation, 5

B P (Belief Propagation, 5

chain models, 11

conjugate gradient, 68

directed models, 3

dual-tree, 31

dynamic programming, 8

error tolerance, 20

factor graphs, 3

Fast Gauss Transform, 22

Fast Multipole Method, 20

' F G T (Fast Gauss Transform, 22 •

filtering distribution, 13

filtering weights, 13

F M M , 20

forward-backward algorithm, 14

frame (beat-tracking), 95

Gaussian Processes, 68

gridding methods, 11

Hammersley-Clifford theorem, 3

Hidden Markov Models, 11

hidden variables, 3

IFGT, 25

Improved Fast Gauss Transform, 25

Inference (in graphical models), 5

influence, 17

kernel density estimation, 17

kernel function, 17

Loopy graphs, 5

M A P set, 5

marginal probabilities, 5

mass (of source particles), 17

Max-BP, 8

Max-Product, 54

Max-Product problem, 17

Maximum a posteriori set, 5

Maximum-Belief Propagation, 8

message-passing protocol, 7

messages (in Belief Propagation),

observed variables, 3

Particle Smoothing, 11

phase offset, 93

potential functions, 3

pruning threshold, 59

shaded nodes, 3

smoothing distribution, 14

smoothing weights, 14

source particles, 17

space-partitioning tree, 31

Sum-Product problem, 17

target points, 17

tempo, 93

unshaded nodes, 3

value function, 35

Viterbi algorithm, 8

weight (of source particles), 17

