
An XML-based Tool for Verification of Multi-vendor
MPLS Router Configuration

by
Hui Wang

B.Sc, Wuhan University, P.R.China, 1998

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in
THE FACULTY OF GRADUATE STUDIES

(Department of Computer Science)

We accept this thesis as conforming
to the required standard

The University of British Columbia
August 2002

© Hui Wang, 2002

In presenting t h i s thesis i n p a r t i a l f u l f i l m e n t of the requirements
for an advanced degree at the U n i v e r s i t y of B r i t i s h Columbia, I
agree that the Library s h a l l make i t f r e e l y a v a i l a b l e for reference
and study. I further agree that permission for extensive copying of
t h i s thesis for s c h o l a r l y purposes may be granted by the head of my
department or by his or her representatives. It i s understood that
copying or p u b l i c a t i o n of t h i s thesis for f i n a n c i a l gain s h a l l not
be allowed without my written permission.

Department of

The U n i v e r s i t y of B r i t i s h Columbia
Vancouver, Canada

Date OS, C^t?r2

A b s t r a c t

The explosive development of the Internet over the last few years has encour­
aged multi-vendor networks to support various needs from customers. Multi-vendor
configuration management, which is partly concerned with verification of configura­
tion files, is complicated by the fact that each vendor uses a different configuration
language.

We have implemented an XML-based configuration verification tool (XVT)
for multi-vendor networks. X V T currently can parse Multiple Protocol Label Switch­
ing (MPLS) configuration files from Cisco and Juniper companies. X V T can also
verify those configuration files against the predefined rules. X V T provides a small
set of predefined operators for users to define new verification rules. X M L is used
in X V T to integrate various router configuration files into one uniform global view,
which is used for verification purpose.

ii

C o n t e n t s

Abstract b*

Contents iii

List of Tables vi

List of Figures vi i

Acknowledgements vii i

Dedication ix

1 Introduction 1

1.1 Motivation 1

1.2 Problems 4

1.3 Overview 6

2 Background 7

2.1 Router Configuration 7

2.1.1 Router Configuration Files 7

2.2 MPLS V P N 11

2.2.1 MPLS 11

2.2.2 MPLS V P N 12

2.3 Network Management 14

iii

2.3.1 Integrated Network Management System 16
2.4 XML and Related Technology 18

2.4.1 XML 18
2.4.2 Related Techniques 21

2.5 Related Work 22
2.5.1 AT&T-NetDB 22
2.5.2 OPNet-NetDoctor 22
2.5.3 OpenNMS-BlueBird 23
2.5.4 Synopsis 24

3 Design 25
3.1 Parse and Check 27

3.1.1 Analysis of Configuration Files 27
3.1.2 Error Checking Rules 34

3.2 Multi-vendor Network Management 35
3.2.1 Global View 35
3.2.2 Keyword Set 40
3.2.3 Query 45

4 Implementation 46
4.1 Parser 48
4.2 Translator 50
4.3 Checker 52

4.3.1 Within the Section of the Same Router Configuration File . . 53
4.3.2 Across Different Sections within the Same Router Configura­

tion File .' 55
4.3.3 Across Different Router Configuration Files 56
4.3.4 Implementation of Rules 56

4.4 Topology Extractor 57

iv

4.5 Explorer 59

4.6 Query 59

4.6.1 The Query Language 59

4.6.2 Rules and Query Language 65

4.7 Tools for Implementation 65

4.7.1 X M L Document Parser • • • 65

4.7.2 XSLT Engine 65

4.7.3 XQL Engine 65

4.7.4 Visualization 66

5 Test 68
5.1 Simulation of Environment 68

5.1.1 Network Topology 68

5.1.2 Router Configuration Files 70

5.2 Error Report 70

5.3 Results 70

6 Conclusion 73
6.1 Conclusion 73

6.2 Future work 74

Bibliography 76

v

L i s t o f T a b l e s

2.1 Sample of Cisco Router Configuration File 9

2.2 Sample of Juniper Router Configuration File 10

2.3 Example of X M L 20

3.1 Juniper's Configuration File Example 43

4.1 Parsing Global Setting Variables for Juniper Configuration Files . . 49

4.2 Parsing Global Setting Variables for Cisco Configuration Files 50

4.3 Mapping for Global Setting Variables 50

4.4 Mapping for Interface Variables 51

4.5 Mapping for MPLS Label Switched Path Variables 51

4.6 Mapping for MPLS V P N Variables 52

4.7 Mapping for BGP Variables 52

4.8 Predefined Operators 62

4.9 Error Rules Expressed by Operators 67

v i

L i s t o f F i g u r e s

2.1 Network Components of V P N Architecture 13

2.2 INMS Model 17

3.1 Cisco and Juniper's MPLS V P N Configuration File Sample 30

3.2 Cisco and Juniper's V P N BGP Session Configuration File Samples . 31

3.3 Cisco and Juniper's Explicit Path Configuration File Samples . . . 32

3.4 Cisco and Juniper's LSP Configuration File Samples 33

3.5 Global View 39

3.6 DTD of Keyword Set 41

3.7 The Structure of the Keyword Set 42

3.8 Parsing and Mapping Procedure 44

4.1 Modules of X V T 47

4.2 Example of Keyword Set 48

4.3 Example of Rules Defined in XSLT 57

4.4 Topology 58

4.5 Error Report Example 60

4.6 EBNF for Query Language 61

5.1 Network Topology 69

5.2 Error Report Example 71

5.3 Performance Chart 72

vn

A c k n o w l e d g e m e n t s

I would like to express my gratitude to my supervisor, Professor Alan Wagner, for
his extensive guidence and encouragement. I would also like to thank my parents for
their constant love and for their believing me eventual success even when I despaired.
Without them, this thesis would never have been completed.

H u i W A N G

The University of British Columbia
August 2002

viii

To my parents

ix

Chapter 1

I n t r o d u c t i o n

1.1 Motivation

The explosive growth of the Internet over the last few years has led to the develop­

ment of diverse equipment provided by different network vendors. Network service

provider companies often rely on the network equipment from various vendors to

support the customers' needs. However, configuring a large multi-vendor network

correctly is extremely difficult for the following reasons[l]:

• Consistency of neighboring routers

The correct operation of the network depends on a consistent configuration

across the routers in the network. The operation of an individual router does

not ensure the network works properly. For example, two routers need to be

correctly configured as each other's neighbor to establish a point-to-point link.

The link fails to be established if one of these two routers incorrectly configures

its neighbor or if different settings of their configuration do not allow them to

inter-operate.

• Network-wide influence of local changes

Changes in the configuration of a single router may have a network-wide in­

fluence. For example, for a network in which bandwidth is used as one of the

1

factors to decide routing paths, increasing the bandwidth of one specific link

results in more data moving through this link; thus affecting the traffic across

other links.

• Complex configuration options

Router vendor companies provide a wide array of options and parameters for

configuration purposes. For example, Cisco's Internet Operating System (IOS)

has over 600 commandsfl]. What is more complicated is that the router ven­

dors keep updating their products and configuration manuals as their products

change. Different versions of the same router product may be different as well.

For example, Juniper's JTJNOS release 5.3 has new features for improving net­

work security and enabling the Traffic Engineering Database to more readily

track and re-act to changes in bandwidth availability, etc..

• Limited configuration tools

Basic commercial tools provide templates for certain configuration opera­

tions, such as higher-level languages supporting specific inter-domain routing

policies [2], however, the number of commercial configuration tools for large

multi-vendor networks is fairly limited. Furthermore, commercial configura­

tion tools often lag behind the release of new routers and techniques.

• Manual intervention

In theory, router configuration data can be automatically driven from a database

containing all necessary configuration information. However, in practice com­

plete automation of router configuration is extremely difficult. Manual inter­

vention is necessary when installing new network equipment, fixing network

failures and adapting to new demands from users. Manual intervention may

produce errors and inconsistencies with unforeseen consequences to the net­

work.

2

• Individual standards

The network devices from different companies have their own configuration

standards. Each vendor-specific product uniquely categorizes and has its

own terminology to describe the network components, features, functions and

states, even though the underlying concepts and principles are the same for

similar products from different vendors.

To minimize the risks of configuration errors, configuration management,

which is one of the functional areas in integrated network management [3], is con­

cerned with verification of configuration files. There are a few commercial config­

uration verification tools at present to help network operators to find and locate

the configuration errors in a multi-vendor network. But the number of the tools

is very limited. Among these multi-vendor verification tools, the most successful

and well-known product is OPNet's NetDoctor[4]. However, users are required to

know the Python script programming in order to update the verification rule library.

For other multi-vendor network tools, Lucent's OneVision Management System[5]
is only enabled for ATM, Frame relay and IP networks, while Dorado's RedcellTM

Virtual Private Network Service Center (VPN SC) system[6] automates the creation

and deployment of IP VPNs but ignores configuration verification.

This thesis introduces the design and implementation of a flexible, extensible

configuration verification tool for routers in multi-vendor networks. The contribu­

tions of the thesis include the following:

• We develop a XML-based router configuration verification tool, X V T , for

multi-vendor networks. Given the router configuration files from different

vendors, the tool checks the configuration errors in the individual file as well

as across these files. The tool is extensible in the sense that users can add new

verification rules using predefined verification operators.

• We explore the advantages of X M L used in the configuration management of

multi-vendor network.

1.2 Problems

The scope of the problems discussed in the thesis is limited in the following ways:

• Network architecture

The architecture of the network considered in this thesis is MPLS V P N ar­

chitecture. The MPLS V P N network is a multi-vendor network with routers

from Cisco and Juniper vendor companies. The network protocols configured

in this architecture are Multiple Protocol Label Switching (MPLS) and Border

Gateway Protocol (BGP).

• Network devices

There are various network devices such as routers, switches, and bridges work­

ing in one multi-vendor network. However, routers are the only network de­

vices that are discussed in the thesis.

• Data from network

Data in a multi-vendor network can be grouped as static data and dynamic

data. The static data is the data that does not change frequently and is

comparatively static, for example, the router configuration data saved in the

configuration files. The dynamic data is the data that keeps changing from

time to time, for example, the traffic information data in the network. The

network data considered in this thesis is only static data from router configu­

ration files.

There are various kinds of router products from different vendors. Cisco and

Juniper are two leading companies in the router market and together have

more than 90% of the router product market. Hence Cisco and Juniper router

4

configuration files are chosen for analysis since they represent most router

products in the market at present.

• Network management function area

The International Organization for Standards (ISO) has defined five function

areas for network management. These five areas are fault management, ac­

counting management, configuration management, performance management

and security management [7]. This thesis only considers the configuration man­

agement area. Specifically, the thesis discusses the topic of router configuration

verification.

The basic goal of the thesis is to implement a flexible, extensible router

configuration verification tool for multiple vendors. Although standardizing config­

urations has been mentioned in the literature, a common standard has not emerged.

Router vendors tend to use private standards to highlight the aspects of their prod­

ucts that differentiate them from their competitors. As a result configuration files

from different router vendors are typically quite different from each other. Develop­

ing a separate verification tool for routers of each vendor is one approach. However,

it cannot exploit the commonality that exists for features and attributes among dif­

ferent configuration languages. Another approach is to have a general configuration

verification tool to check against the configuration files of various standards from

different vendors.

The tool needs to generalize various configuration information from different

routers and collect the generalized configuration information. The representation

of the collected data is the fundamental problem for the implementation. How to

define the universal set of configuration information as well as the mapping rules

between the configuration data and the universal set wil l be discussed in the thesis.

The design of a query system to enable users to create new verification rules and

query without specific programming skills is also discussed in the thesis.

5

X M L has been standardized within the WWW Consortium (W3C) with the

aim of bringing mark-up to data representation. X M L has also been found useful in

data processing and system integration due to its ability to be machine accessible

but in a human understandable way. It can express a huge range of document types

because of its separation of data content from how it is represented. As a result

it has the potential to be used in the specification of management information and

interfaces. The problem we explore is whether there are advantages and disadvan­

tages of using X M L for the specification of information in a multi-vendor router

configuration verification tool.

1.3 Overview

Chapter 2 introduces the background knowledge and related work for multi-vendor

network management as well as the basic concepts of X M L . Chapter 3 presents the

ideas of the design. How to define the generic data repository and how to map the

managed configuration data into the generic data repository is discussed in Chapter

3. The idea of a keyword set, which is for extensibility purpose, and the design

of the verification rules and queries are also introduced in Chapter 3. Chapter 4

describes the details of implementation of the tool. Chapter 5 presents the tool's

experiment environment and results. And the last chapter presents conclusion and

future work.

6

Chapter 2

B a c k g r o u n d

2.1 Router Configuration

The basic function of a router is to receive incoming packets and direct them towards

the destination. Routers also participate in various protocols to provide network

services such as MPLS or BGP, and higher-level user services such as multicast.

In addition, routers may perform various filtering functions to control the packets

that will be accepted or denied by the network. These tasks are configured in the

router by setting a large number of configuration options in the configuration file

that control the operation of the router.

2.1.1 Router Configuration Files

In general, router configuration files have the following features:

• Various keywords

Different vendors use their own configuration language to configure their routers

Different configuration keywords are used in different router configuration files

even for the same configuration task. For example, in a Cisco configuration

file the keyword of a label switched path is "tunnel" while in Juniper it is

"LSP".

7

• No common file structure and access method

Router configuration files are text files with a sequence of characters organized

in lines. Some configuration files are simply streams of bytes without any struc­

ture while other configuration files are formatted rigidly. Some configuration

files are accessed sequentially so that each text line in the configuration file

is processed in order, one after another. Some other configuration files are

accessed directly so that arbitrary lines can be read or written without re­

strictions on the order. For example, Cisco router configuration files are free

form and manipulated with sequential access. Juniper router configuration

files are represented in X M L format with tree structure and manipulated with

direct access.

Cisco Router Configuration Files

Cisco router configuration files consist of four major components: global settings,

interface specification, filter specification, and routing protocol specification^]. The

"global settings" component consists of basic configuration parameters such as host­

name and password encryption. For example, the router configuration file in Table

2.1 includes two parameters for its "global settings" component: "version 12.0"

which identifies the version of router product and "hostname Pescara" which speci­

fies the router name. In addition to the global settings, the other three components

configure different aspects of the router configuration. The "interface specification"

component performs the configuration of interfaces such as setting the IP address of

interface. The "filter specification" component performs the configuration of packet

filters and route filters. Packet filters are configured via an access list that identifies

which packets should be accepted or denied. Route filters are configured via a road

map that identifies the routing between different Autonomous Systems (ASs). The

"routing protocol specification" component performs the configuration of routing

protocols.

8

I

version 12.0
l
hostname Pescara
I

interface LoopbackO
ip address 10.10.10.4 255.255.255.255
ip router isis

I

interface LoopbacklOl
ip address 200.0.4.1 255.255.255.0
no ip directed-broadcast

I

router bgp 100
bgp log-neighbor-changes
neighbor 10.10.10.6 remote-as 100
neighbor 10.10.10.6 update-source LoopbackO

I

Table 2.1: Sample of Cisco Router Configuration File

The configuration commands can be grouped into different sections corre­

sponding to the components they belong to. For example, the router configuration

commands in Table 2.1 can be grouped into three sections: "global settings" section

for the "global settings" component, "interface" section for the "interface specifica­

tion" component and "router BGP" section for the "routing protocol specification"

component. The "global settings" section includes two parameters, "version" and

"hostname". The "interface" section includes the configuration for two interfaces:

LoopbackO and LoopbacklOl. The "router BGP" section consists of BGP routing

session configuration with the neighbors in the BGP peer group identified in the

"router BGP" section.

There are two types of commands in Cisco configuration files. Each type of

command has different formats. The first type of the command is to assign values

to the variables. It follows the "variable value" format. The variable is also called

a "keyword". For example, "hostname p i " is the command used to'configure the

9

router name. The literal "hostname" is the keyword of the command while "pi" is

the data value. The second type of command is to disable/enable condition variables.

It follows the "keyword" format. For example, "tag-switching ip" command is used

to enable MPLS protocol on one specific interface with the "tag-switching ip" as

the keyword.

Juniper Router Configuration Files

Juniper router configuration files are represented in X M L format with a clear hier­

archical relationship[9]. For example, the Juniper router configuration file shown in

Table 2.2 configures MPLS and LDP protocols on the router. The MPLS protocol

is enabled on interface "sO-0/0/0/0" and LDP protocol is enabled on interface "sO-

0/0/1/0". The "protocols" tag is the element with two sub-elements; each protocol

is one sub-element.

<protocol>
<mpls>

<interface>
<name>sO-0/0/0/0</name>

</interface >
</mpls>
<ldp>

<interface>
<name>s0-0/0/l/0</name>

</interface>
</ldp>

</protocol>

Table 2.2: Sample of Juniper Router Configuration File

Since Juniper router configuration files are represented in X M L format, the

commands in Juniper router configuration files are represented in matched-tag for­

mat. These tags are context-sensitive, i.e., the meaning of one specific tag depends

on its ancestor elements, its sibling elements and its children elements. One con­

figuration command is represented by a set of tags. For example, the command to

10

configure the interface for MPLS protocol name in Table 2.2 is represented by a set

of tags with "mpls" tag as the root and "name" tag under the "interface" tag. The

"name" tag itself cannot specify the interface for MPLS without any context from

ancestor elements.

2.2 M P L S V P N

2.2.1 M P L S

Multiple Protocol Label Switching (MPLS) is a high-performance packet forwarding

technology that integrates the network layer (layer-3) routing and traffic manage­

ment capabilities with the data link layer (layer-2). In MPLS, packet forwarding

is done based on short, fixed length labels. A label switched path (LSP) defines a

sequence of labels from the source to destination so that each MPLS router is able

to forward the packets following the LSP.

The routers participated in MPLS are classified into Label Switching Routers

(LSRs) and Label Edge Routers (LERs). A LER is the router located at the edge of

MPLS network and the access network. It is used to establish the Label Switched

Paths (LSPs), and assign or remove the packet labels when traffic enters or leaves

the MPLS network. The router that assigns the initial label for traffic entering the

network is called the ingress router, while the router that removes the labels for

traffic leaving the network is called the egress router. A LSR is a router that is not

located at the edge of MPLS network and used to exchange the labels of the packets

to enable packets to be forwarded to the next hop. The basic MPLS configuration

includes the following commands[9][10]:

• Enable MPLS on the router

MPLS is enabled on the router by configuring MPLS on one or more specific

interfaces of the router. Meanwhile, MPLS protocol is added to the "protocol"

section in the configuration file.

11

• Configure MPLS-signaled LSPs

MPLS-signaled LSPs are created to enable traffic between the ingress router

and the egress router. Only the ingress router is configured to create the LSP;

all other routers need not to be configured.

To configure signaled LSPs, the first step is to create one or more named paths

on the ingress router. For each named path, some or all transit routers can be

specified in the path, or left empty. The second step is to create one or more

LSPs and define the properties associated with the LSP on the ingress router.

The name of the LSP comes from the named paths defined in the first step.

2.2.2 M P L S V P N

Virtual Private Network (VPN) technology is based on a tunneling strategy. Tun­

neling involves encapsulating packets in a base protocol format with some other

protocols. In MPLS V P N architecture, the packets are encapsulated with MPLS

packet format for forwarding purposes.

MPLS V P N architecture shown in Figure 2.1 consists of the following network

components[ll]:

C u s t o m e r E d g e Devices (C E) CEs provide customers the access to the service

provider networks over a data link to one or more provider edge routers.

P r o v i d e r E d g e Devices (P E) PEs exchange the routing information with the

connected CEs using static routing. PEs also exchange the routing informa­

tion with other PEs to learn remote routing information. In MPLS V P N

architecture, a PE plays another role as a LER. Hence the PE is responsible

for setting up the LSPs, assigning labels and removing labels from packets.

P r o v i d e r Devices (P) P routers are the routers that do not have a direct con­

nection to the CE devices. P routers function as transit LSRs in MPLS V P N

architecture to forward the packets.

12

VPN 2 VPN 2

Figure 2.1: Network Components of V P N Architecture

Each V P N is associated with one or more V P N Routing / Forwarding in­

stances (VRFs). A VRF defines the V P N membership of a customer site attached

to a PE router. The target V P N community is a set of sites within a V P N to

which a PE router distributes routes. The distribution of V P N routing information

is controlled through the use of V P N route target communities, implemented by

Border Gateway Protocol (BGP) extended communities. The basic MPLS V P N

configuration includes [11] [12]:

• Define VPNs

The definition of VPNs includes creating a VRF to be associated with one

specific V P N routing instance, creating a list of import and export route target

communities for the specified VRF, and associating a VRF with an interface.

The configuration of VPNs occurs only on the PE routers.

• Configuring BGP routing sessions between PE routers and CE routers

13

The BGP session is configured between a PE router and a CE router to set up

the connection between them. For each CE router, the PE router keeps one

specific VRF. Using the connection, the CE router advertises the site's local

V P N routes to the connected PE router and learns remote V P N routes from

the same PE router. The traffic from the CE router enters the V P N provider

network via PE routers and is distributed in the core network following the

specified V P N route target communities.

• Configuring BGP routing sessions between PE routers

The basic configuration of BGP is to configure the connection between the P E

routers. After exchanging the data with CE routers, the PE router continues

to exchange the routing information with neighbor PE routers using BGP. The

remote routing information is learned from the exchange.

• Configuring MPLS on P routers

The P routers play the role of the LSRs in MPLS V P N . MPLS must be enabled

on all P routers. The configuration of MPLS is the same as that introduced

in Section 2.2.1.

• Configuring MPLS LSP tunnel between PE routers

MPLS LSP tunnel is configured only on the ingress PE router that is the edge

router from where the traffic enters the provider network. The configuration

of MPLS LSP tunnels is the same as that introduced in Section 2.2.1.

2.3 Network Management

Rapid development in computer and network technology has led to an explosion

in the variety of equipment and networks offered by vendors. The network service

provider companies do not only rely on a single vendor and a relatively straight­

forward architecture to support customers' needs. They need strategies to manage

14

their existing equipment and the equipment they may acquire. Consequently net­

work management is an important area whose goal is to help the network operators

organize and monitor the network activities and resources.

Network management covers the areas of planning, configuring, controlling,

monitoring, fault correction and administration of networks. The purpose of network

management is to manage the network and its components to be used at a reasonable

cost and with optimum capacity [13].

A network management system consists of at least one management sta­

tion; several (potentially many) nodes, each with a processing entity, termed an

agent, which has access to management instrumentation; and a management proto­

col, used to convey management information between the agents and management

stations[14]. Operations of the protocol are carried out under an administrative

framework which defines both authentication and authorization policies.

There are several standards for TCP/IP network management. The Inter­

net Engineering Task Force (IETF) has recommended Simple Network Management

Protocol (SNMP)[15] as the standard network management protocol for Local Area

Networks (LANs). SNMP is used as the management protocol to communicate

values of variables stored in a Management Information Base (MIB)[16] that sum­

marizes the states of the router including basic traffic statistics. There are several

versions of SNMP. The first version, SNMPvl, is the original Internet-standard Net­

work Management Framework, is described in RFC1155, RFC1157, and RFC1212.

SNMP version 2, SNMPv2, which is described in RFCs 1902-1910, is the SNMPv2

Framework derived from the SNMPvl .

Management information is viewed as a collection of managed objects, resid­

ing in a virtual information store, termed the Management Information Base (MIB).

Collections of related objects are defined in MIB modules. These modules are writ­

ten using a subset of OSI's Abstract Syntax Notation One (ASN.1)[17], The MIBs

typically do not provide full details of the configuration of routing protocols and

15

access lists.

2.3.1 Integrated N e t w o r k M a n a g e m e n t S y s t e m

Multi-vendor is becoming a common term for describing today's network environ­

ment. In most of the current networks, there are products and services from different

vendors. The evolution of a typical network always starts with a small set of homo­

geneous products, and grows in size and complexity with a wide variety of complex,

interconnected technologies that cannot always be known beforehand.

The management of a multi-vendor network is complicated by the fact that

each vendor uses a different management system. The problems with having differ­

ent management systems are that they [3]:

• apply to a very limited and specific set of network components;

• use vendor-specific management data with its own syntax and semantics; and

• employ different interfaces to the network operator.

As a consequence, operators are required to be trained for each vendor-

specific management system. This training is needed because of the specific termi­

nology of each vendor-specific product used to describe the network components,

features, functions and states even though the underlying concepts and principles

are the same for similar products from different vendors.

One approach to address the need to efficiently and effectively manage multi-

vendor networks is to provide an Integrated Network Management System (INMS).

The INMS model shown in Figure 2.2 is based on the following architectural com­

ponents [3]:

• Unified user interface.

» Standards on presentation of network management information to users.

16

Unified User Interface

Conventions On Presentation Of Network Management Information To Users

Task Oriented INMA Task Oriented INMA

Service Provided

INMA Element INMA Element INMA Element INMA Element INMA Element INMA Element

Service Requested
Integrated Network Management Applications

Management Application-level Protocols

General Data Repository Network Management Gateway
Integrated

Network Management
System

(INMS)

Figure 2.2: INMS Model
17

• Family of Integrated Network Management application elements.

• Protocols on management application level.

• Management of data repository.

• A set of communication protocols and services.

Among these components, providing a unified and generic data repository

of a multi-vendor network is important because the management protocols, user

interface and INMS applications are all based on it. The key to the approach is

how to define the generic data repository to describe the managed information in

the network and how to map the real network information into the generic data

repository.

2.4 X M L and Related Technology

Extensible Markup Language (XML) has emerged as a new standard for data rep­

resentation and exchange. Many X M L related technologies make X M L a powerful

and useful technology..

2 . 4 . 1 X M L

XML[19] brings a set of markers, called tags that define the function and hierarchical

relationships of the parts of a document or data set, to data representation. The

tags are similar to Hypertext Markup Language (HTML) tags, but unlike HTML

X M L is used to define tags that best suit the data being marked.

An X M L document is a sequence of elements, each consisting of free text

and/or other elements. The element tags must match. For example, as shown in

Table 2.3, each <person> must match with </person>. The elements in X M L

loosely correspond to the objects in an object-oriented language. Nested X M L

elements represent fields of an object. For example, as shown in Table 2.3, treating

18

the element "person" as the "person" object, the element "telephone" is nested

as the child of the element "person" and represents one of the "person" object's

attribute fields. Users can produce X M L files with complex structure without first

having to define the schema. Furthermore users can define their own tags to describe

the objects. The advantages of X M L are followings:

• Flexibility

X M L is a semi-structured document language that lies between more struc­

tured documents such as relational database tables and completely unstruc­

tured free text documents. X M L uses tagged paragraphs of free text, where

each paragraph contains relevant information for a domain of interest.

X M L is more flexible in capturing data than database forms and structured

documents because there is no rigid structure requirement. X M L is easier

than free text documents in managing information since free text documents

require sequential access while X M L uses direct access.

X M L is more flexible in defining the tags or schema than HTML files and

relational database tables. The tags or schema of X M L file are not predeter­

mined. Users can define the name of tags and the relationship of the tags in

the way they prefer. Using tags the data content is separated from how it is

represented. Hence X M L can be used to express a huge range of document

types.

X M L is also flexible for its loose tree structure and arbitrary nesting. In a

relational database the structure of the datasets is fixed. The data schema

defines exactly how many elements one data field has. For example, if the

person's telephone number field is defined for only one value, there should

be no record with two telephone numbers. If the user wants to store the

information for people who have two or more telephone numbers the schema

must be changed. But changes to the schema will result in redundancy for

19

records with only one telephone number.

<person name = "David" >
•telephone number="1234567"/>

<person>

< person name = "Jane" >
<telephone number= "2347856" />
<telephone number= "1234568"/>

<person>

Table 2.3: Example of X M L

However, in X M L arbitrary nesting is permitted inside the structure. For

the same example mentioned above, the problem is solved using the X M L file

shown in Table 2.3.

Easy for transformation and query

X M L is not only a data representation language but also a data management

tool because of the availability of techniques for querying and transforming

X M L documents. These techniques include extensible Stylesheet Language

Transformation (XSLT) and X M L Query Language (XQL). XSLT enables

X M L files to be easily transformed into HTML, plain text, or X M L files with

different schemas. XQL enables querying about data represented in X M L

format.

Various application tools

Numerous application tools are implemented for browsing, editing and pro­

cessing X M L documents, offering cost savings in application development[20].

Such tools allow users to build X M L documents and update the content of

X M L documents. For example, the tools based on the Document Object

Model (DOM), which is designed to be used with any programming language,

enable users to navigate the X M L documents' structures and to add, modify

20

or delete elements and content from the X M L documents. Furthermore there

are many application tools for other XML-based application categories, for

example, XSLT engines provide Application Programming Interfaces (APIs)

for users to access an XSLT stylesheet and transform the X M L documents

into other formats, e.g., an HTML file. Those tools avoid the coding work for

developing XML-based applications.

2.4.2 Related Techniques

XSLT

XSLT[21] is designed as part of extensible Stylesheet Language (XSL), which is a

stylesheet language for X M L . The XSLT file defines the transformation rules. The

original X M L file can be transformed into another X M L file, HTML file or plain

text, by applying an XSLT file. If the output is in X M L format, the transformed

X M L file may have the same or different markup and structure compared with the

original X M L file.

XQL

As an increasing amount of information is stored, exchanged, and presented using

X M L , the ability to intelligently and efficiently query X M L data sources becomes

important. There are a few XML-based query techniques such as XML-QL[22],

XQuery[24], and XQL[25]. XQL is designed to be a language for addressing and

filtering the elements and text of X M L documents following the queries. The results

of XQL queries are also in X M L format. There are some good XQL engine tools

available, e.g., GMD-IPSI XQL engine from http://xml.darmstadt.gmd.de/xql. But

as yet there is no engine tool available for XML-QL and XQuery.

21

http://xml.darmstadt.gmd.de/xql

2.5 Related Work

There are several commercial configuration verification tools. Some of the tools are

distributed with the router products by the specific vendor. Some are distributed

for general configuration management use.

2.5.1 A T & T - N e t D B

NetDB[8] is a network configuration tool developed by AT&T for Cisco routers.

It comprises a network-wide view from the configuration files of all Cisco routers

for an IP network. Based on the network-wide view users can browse the network

structure and search for network components. NetDB also checks the possible router

configuration errors and configuration inconsistencies based on the knowledge of

Cisco IOS.

NetDB's internal data model[8] is implemented using Perl hash tables. The

keywords and their values in the configuration file are stored separately in two hash

tables. One table contains the keywords that are used in the original configuration

file and the other one contains the value for each keyword. Every time a specific

data field is queried, the keyword table is searched first and then the value table is

searched following the matched entry. Separating the entry and value increases the

processing time thus adding to the inefficiency of the system.

NetDB can only parse and validate Cisco IOS router configuration files [8]
and cannot be used in the multi-vendor network that consists of network devices

from vendor companies other than Cisco.

2.5.2 OPNet-NetDoctor

OPNet is a commercial simulation product developed by MIL3 Company. OPNet

provides a troubleshooting and validation tool named NetDoctor for network con­

figuration.

22

NetDoctor[4] allows users to identify potential or existing trouble spots in the

network, as well as determine whether or not the current network configuration is

the most optimized. NetDoctor seamlessly interfaces with OPNet's Virtual Network

Environment enabling users to preview the effects of various configuration changes

before implementing them in the operational network.

NetDoctor can parse the router configuration files from various vendors with

different technologies. OPNet's network model enables configuration files from dif­

ferent vendors such as Cisco, Juniper and Nortel, to be imported into the tool. It

also allows users to choose the network devices from the model family. Further­

more, NetDoctor provides an embedded rule library for checking the consistency of

configurations, against an established set of rules to identify configuration errors or

warnings. Users can add new rules to the set of rules when the devices are updated

with new features. The rules are implemented programmatically in the Python

scripting language where each rule is mapped to one specific Python script. Users

must be familiar with the Python script language and NetDoctor's representation

of the network to add new verification rules.

2.5.3 OpenNMS-BlueBird

The BlueBird project is a so-called "next-generation" network management tool[27]

which addresses the potential use of X M L and XSL into network management. X M L

plays the following roles in the BlueBird project[28]:

• Adaptive Configuration

Rule-based configuration promotes ease of administration and minimizes main­

tenance using easily understood drag/drop rule metaphors. The rules and all

configurations are stored in X M L so that any X M L editor tool can manipulate

them.

• Data Reporting

23

Report network information that is saved in X M L documents following user's

choice of formats with XSL transformation capabilities.

• Web presentation

Usage of Java, X M L and XSL provides a standard-based interface to the plat­

form that is easily accessible to internal and external user groups and easily

extendable with plug-in components.

2.5.4 Synopsis

Based on the existing projects and tools, a flexible, extendable, multi-functioned

configuration tool should:

• Enable verification for several router vendors

The verification tool for multi-vendor network should verify across the router

configuration files from various vendors.

• Enable users to add/create new configuration checking rules

The rule set should be extensible for users to create new rules to validate

configuration when new features are added to the devices.

• Combine new technologies into multi-vendor network management

New techniques for data management have emerged. For example, X M L , a new

data description language that has changed Web design and data exchange, can

be used as a general data repository for multi-vendor network management.

The BlueBird project is a good example of how X M L and XSL can be used

in a network management system.

24

Chapter 3

D e s i g n

The main goal of our XML-based Verification Tool (XVT) is to implement a config­

uration verification tool for routers from different vendors. Compared with existing

configuration verification tools mentioned in the chapter 2, X V T has the following

functions in common:

• Parses the input configuration files.

X V T provides the parser to process the input configuration files. The parser

extracts the configuration information from the configuration files and uses

the information to construct a global view, which is used for verification.

• Checks the configuration consistency errors following a predefined rule set.

X V T checks and reports the configuration consistency errors within one spe­

cific router as well as across the routers in the network following predefined

rules. The rules will be introduced in Section 3.1.2.

In addition to these functions in common with other tools, X V T contributes

to multi-vendor network management as follows:

• Enables configuration verification across the multi-vendor network.

There are many verification tools only designed for single-vendor networks, i.e.,

networks consist of routers from one specific company. OPNet's NetDoctor

25

is the most successful and well-known product implemented for multi-vendor

network. But it is not extensible because users cannot easily add new features

or update existing features of the system. In X V T new verification rules are

easily defined using a small set of predefined operators.

• Uses X M L to integrate network configuration data.

A problem for network management of multi-vendor network is that the net­

work components from different vendor companies use different standards. It

would be easier to have an integrated view of network management capability

by defining standards and using the standards across the multi-vendor net­

work. However, network companies are unlikely to abandon their own existing

standards and redesign their products following one universal standard. They

prefer to use private standards to highlight the aspects of their products that

differentiate them from their competitors. Furthermore, abandoning current

standards is costly to redesign and update existing equipment.

To integrate different standards requires the definition of a general data repos­

itory, or a universal network-wide view of these different configuration lan­

guages.

It is desirable that the general data repository have the following characteris­

tics [29]:

— provide a single logical view.

— provide a general naming structure so that the managed network objects

can be easily stored and retrieved in a uniform way across a heterogeneous

system.

— provide a simple and efficient interface through which application pro­

grams or processes can easily access the management information stored

in the repository.

26

— have international recognition so it has the potential to be accepted world­

wide.

- provide reasonable performance so that the repository wil l not become

the bottleneck.

The open issues for the general data repository include how to define it, how

to represent it, and how to map the network information into it. We choose

X M L for the representation of the data repository. There will be more details

about the reasons and the advantages of using X M L to implement the data

repository in section 3.2.1.

3.1 Parse and Check

3.1.1 A n a l y s i s of C o n f i g u r a t i o n F i l e s

There are various kinds of router products from different network device suppliers.

Cisco is the most popular router company, its router products have 85.5% share of

the global router market in the first quarter of 2002 [30]. Juniper network company

is the number two player behind Cisco which has 6.4% share of the global router

market in the same period[30]. Because of their dominant roles in the market, Cisco

and Juniper router configuration files were chosen for analysis since they represent a

significant portion of the router products in the market. The goal of the analysis is

to determine whether these two different configuration files can be mapped into one

general data repository. The analysis was carried out for the comparison between the

structure of the configuration files as well as the relationship among the configuration

data. The prerequisite for the analysis is that the configuration files are to implement

the same configuration tasks.

27

Structure

Cisco and Juniper use a different configuration command format and keyword defi­

nition. But there still exist similarities between the two configuration formats that

allow globalization.

The first similarity is the hierarchical structure of Juniper and Cisco configu­

ration files. There is a hierarchical relationship among the configuration commands

in both kinds of configuration files. Each router command has its own set of sub­

commands. Cisco router configuration files can be represented in a hierarchical tree

with commands as the nodes and subcommands as the children nodes. Because

Juniper's configuration files are represented in X M L format, they also have a clear

hierarchical structure. Hence Juniper configuration files can also be mapped into a

hierarchical tree with several children nodes and leaves.

The second similarity is that the configuration commands of Cisco and Ju­

niper configuration files can be grouped into the same sections. Cisco and Ju­

niper router configuration files both consist of four major configuration sections:

general settings, interface specification, filter specification, and routing protocol

specification[8][9]. Each section contains commands performing basic configuration

tasks. Following these sections, the commands in Juniper and Cisco router configu­

ration files can be grouped into the same four paragraphs. Each paragraph contains

related commands for one specific configuration section. In this way the configura­

tion files of Cisco and Juniper can be mapped into one tree with the same children

nodes and leaves.

Configuration Data

The answer to whether different configuration data can be mapped into the same

logical view also depends on whether there are certain logical relationships between

the data. More specifically, with respect to the MPLS V P N configuration task, we

compared Cisco and Juniper configuration files and found the following similarities:

28

Configure the V P N instances on PE routers

The V P N configuration examples in Figure 3.1 shows Cisco and Juniper both

implement the same following V P N configuration commands on PE routers.

— Define V P N routing instance

Cisco uses the command "ip vrf vrf-name" to define the V P N routing in­

stances while Juniper uses "<routing-instances> <instance> <name>"

to implement the same task.

— Create unique route distinguisher for each routing instance that has been

configured.

Cisco uses the command "rd rd-name" to define the route distinguisher

while Juniper uses " <route-distinguisher><rd-type>rd-name" to imple­

ment the same task.

— Configure the import or export policy

Cisco uses the command "route-target export export-policy-name" and

"route-target import import-policy-name" to define the import or export

policy while Juniper uses "<vrf-import><name> import-policy-name"

and "<vrf-export><name> export-policy-name" to implement the same

task.

In addtion to the V P N configuration on PE routers, there exist similaries for

the V P N configuration tasks on PE, P and CE routers.

— Configure BGP routing sessions between PE routers

As showed in Figure 3.2, Cisco uses "address-family vpnv4" and "neigh­

bor" commands to set up the BGP session between the PE routers and

their BGP neighbors while Juniper uses "<bgp><neighbor>" to imple­

ment the same task.

— Configure V P N routes between PE and CE routers

29

ip vrf vpnl
rd 100:1
route-target export 100:1
route-target import 100:1

Cisco VPN Configuration Example

<routing-instance>
<instance>
<name>vpnl</name>
<instance-type>vrf</instance-type>
<interface>

<name>so-6/0/0.0</name>
</interface>
<route-distinguisher>

<rd-type> 100: l</rd-type>
</route-distinguisher>
<vrf-import>

<name>VPN-A-import</name>
</vrf-import>
<vrf-export>

<name>VPN-A-export</name>
</vrf-export>
<protocols>

<bgp>
<group>
<name>vpnl-site2</name>
<peer-as>l</peer-as>
<neighbor>

<name>10.20.0.7</name>
</neighbor>

</group>
</bgp>

</protocols>
</instance>

</routing-instance>

Juniper VPN Configuration Example

Figure 3.1: Cisco and Juniper's MPLS V P N Configuration File Sample

30

router bgp 1
neighbor 10.10.10.12 remote-as 1
neighbor 10.10.10.12 update-source LoopbackO

<bgp>
<group>

<name>PE-1 -to-PE-2</name>
<type>internal</type>
<local-address> address-family vpnv4

neighbor 10.10.10.12 activate
neighbor 10.10.10.12 send-community both
exit-address-family

</local-address>
<neighbor>

10.10.10.12

<name> 10.10.10.11 </name>

Cisco's sample
</neighbor>

</group>
</bgp>

Juniper's sample

Figure 3.2: Cisco and Juniper's V P N BGP Session Configuration File Samples

Cisco uses "address-family ipv4 vrf vpnl" and "neighbor" commands

to set up the BGP session between PE and CE routers and the BGP

neighbors while Juniper uses "<protocol><bgp><groupXneighbor>"

to implement the same task.

• Configure MPLS

- Enable MPLS protocol on the routers

- Configure the explicit paths and Label Switched Path(LSP)

As shown in Figure 3.3, Cisco and Juniper both list the hops in the route

to configure the named path. Cisco uses "next-address" while Juniper uses

"<path-list><name>" to add hops into the named path.

After the configuration of explicit paths, Cisco and Juniper configure the LSPs

following the same principle: choose one path from the defined explicit paths

as a LSP. As shown in Figure 3.4, Cisco uses "tunnel mpls traffic-eng path-

option 1 explicit identifier explicit-path-name" to configure the LSP while

Juniper uses "<label-switched-path><name>" to implement the same task.

31

ip explicit-path identifier 1
next--address 131.0.1.1
next--address 131.0.2.1
next--address 131.0.3.1
next--address 131.0.6.5
next--address 131.0.7.1
next--address 131.0.13.1
next--address 131.0.14.2
next-

i
-address 131.0.16.1

<path>
<name>pe2-p9-p4-pel</name>
<path-list>
<name> 131.0.16.2</name>
<strict/>

</path-list>
<path-list>
<name>131.0.12.3</name>
<strict/>

</path-list>
<path-list>
<name> 131.0.10.3</name>
<strict/>

</path-list>
<path-list>
<name>131.0.4.2</name>
<strict/>

</path-list>
<path-list>
<name>131.0.2.2</name>
<strict/>

</path-list>
<path—list>
<name> 131.0.1.2</name>
<strict/>

</path-list>
</path>

Figure 3.3: Cisco and Juniper's Explicit Path Configuration File Samples

32

interface tunnel 1
ip unnumbered S1/2
tunnel destination 10.10.10.12
tunnel mode mpls traffic-eng
tunnel mpls traffic-eng badnwidth 100
tunnel mpls traffic-eng priority 11
tunnel mpls traffic-eng path-option 1 explicit identifier 1

<label-switched-path>
<name>lspl</name>
<to>10.10.10.11</to>
<hop-limit>32</hop-limit>
<bandwidth>10m</bandwidth>
<primary>
<name>pe2-p9-p5-p 1 -pe 1 </name>

</primary>
</label-switched-path> Cisco Label Switched Path Configuration Example

Juniper Label Switched Path Configuration Example

Figure 3.4: Cisco and Juniper's LSP Configuration File Samples

• Cisco and Juniper both implement the same tasks using similar commands

for other basic configurations for (1) interface configuration (2) global settings

configuration and (3) protocol configuration.

C o n c l u s i o n o f A n a l y s i s

Based on the same M P L S V P N architecture and a subset of the configuration com­

mands for the same configuration tasks from Cisco and Juniper configuration files,

the following conclusions can be drawn from the analysis:

• It is possible to have one general data repository for Cisco and Juniper con­

figuration languages

Each configuration file can be seen as a local view of each router in the network.

Although these local views are represented in different languages, each can be

represented in the same tree structure with similar configuration data as the

content.

• Different configuration languages can be mapped into the general data repos­

itory

33

A conceptually unified network-wide view of the data is permitted although

the data are heterogeneous. The configuration data in the local configuration

files will be mapped into the global data repository based on its configuration

category and functionality. For example, the data for interface IP address

configuration is mapped into the IP address field under interface category in

the global view.

3.1.2 Error Checking Rules

There are two kinds of variables in the configuration files: those that do not need

any knowledge of other variables and those that do. The dependencies between the

variables can be classified into the dependency within one router configuration file

as well as the dependency across the router configuration files.

For the dependency within one router configuration file, the variables refer­

ence variables in the same router configuration file. The dependencies within a file

can help to identify the relationship between interfaces, protocols, and other static

route objects. For example, an interface may be enabled with specific protocols,

and configured with a set of static routes.

There are two kinds of dependencies within one router configuration file—the

dependency within one section of the configuration file and the dependency across

the sections of the same configuration file. The section refers to the categories that

the configuration commands are grouped into, for example, global settings.

The dependency across the router configuration files can be exploited to

derive the links that represent the physical and logical connectivity between the

routers. The dependency across the routers also includes a consistent definition of

variables and consistent reference to remote nodes. Any inconsistency of these two

dependencies breaks the relationship between the routers and may lead to network

problems. For example, if the link between an ingress router and its next hop in

the LSP fails to be constructed, the traffic cannot go into MPLS network because

34

of the broken link.

Based on the analysis of the relationship among the variables in the configura­

tion files, the error checking rules can be classified into four categories as independent

variables, dependent variables within the section of the same router configuration

file, dependent variables across different sections within the same router configura­

tion file and dependent variables across different router configuration files.

3.2 Multi-vendor Network Management

3.2.1 Global View

Data Model

The general data repository, or the global view, is so important that parsing, check­

ing, and querying processes are all based on it. The requirements of the data model

of the global view should be:

• Flexible structure

Since we are considering large, multi-vendor networks with devices using differ­

ent configuration languages, the global view that represents the information

of this network should not be limited to the format following one vendor's

standard. Moreover, it should have a flexible structure to ease the mapping

of the various types of device files into the global view.

• Easily manipulated

The data structure of the global view should make the global view easy to ac­

cess and manipulate, otherwise it may be computationally expensive to parse,

check and query the global view.

• Easy for transformation

35

Transformation is important because the format of the error report may vary

depending on the user's requirement. For example, some network operators

may require an HTML file as the output error report so that users can browse

the error report online, while other operators may need an error report in

plain text so that it can be saved as the error log file. As a result, easily

transforming from one format into another one is important.

• Convenient for query

Users can obtain useful information by querying the configuration information

that is not showed in the error report. Hence the global view should be easily

accessed and queried.

One approach is to define the global view using relational database tables. Re­

lational database tables meet the "convenient for query" requirement but do

not meet other requirements because the structure of the relational database

files is fixed. It does not allow arbitrary elements. However for network man­

agement data there should be flexibility in the number of data elements, for

example, the number of interfaces of one specific router. Another disadvan­

tage of relational database tables is that the difficulty in changing the database

schema.

Lastly X M L is chosen as the representation of global view because:

• X M L is a language for "semi-structured data" in the sense that many different

formats of data can be fixed in the same schema. Furthermore X M L places no

restriction on tags, attribute names or nesting patterns. Hence X M L meets

the requirement of being a "flexible structure".

• The format of X M L document is hierarchical rather than relational or object-

oriented. Each X M L file can be represented as a tree with one root and several

levels of nodes that are the elements in the X M L file. The tree data structure

36

is simple and easy to manipulate as a basic data structure. There also are

many commercial parser tools for X M L documents. In this sense X M L is

easily manipulated by software. So X M L meets the requirement of "easily

manipulated".

• There is a X M L related technology named XSLT for X M L transformation.

There are a few successful XSLT engines, for example, Xalan[23], distributed

to programmers. The only task needed for transformation is writing the trans­

formation rules in XSLT. The source X M L documents can be transformed into

HTML, X M L , or plain text files by applying XSLT to the X M L document. So

X M L meets the requirement "easy for transformation".

• There are several XML-based query languages, for example, XQuery[24] and

XQL [25]. For some of these query languages there are a few query engines

available. The query languages are based on X M L Path Language (XPath)

that uses simple path information to address specific elements in X M L docu­

ments. So X M L meets the requirement "convenient for query".

Although X M L is a tree-structured language that is not suitable to represent

the graph-based network, and X M L query technology is not as mature as

database queries, XML's flexibility and the various tools that are available

make X M L a reasonable choise.

C o n t e n t

The second step is to decide how the configuration data is put into the global view

to correctly represent the collection of configuration data of the whole network. A

naive approach is to put all local variables and their values into the global view

to construct a superset of the configuration files. But there exist some variables

from different configuration files that define and describe the same configuration

data while using different keywords. Only collecting information together into one

37

file without any further processing cannot help to find the relationship between the

configuration data. The data is only syntactically collected but not semantically

collected.

The analysis of the configuration files has shown that for the same configu­

ration task there exists a lot of similar configuration commands although they use

different keywords. For example, to enable MPLS on the router, Cisco uses the "ip

cef distributed" command while Juniper uses the "family mpls" command. Hence

the collection of the keywords from the configuration files can be condensed to a

universal keyword set for the global view. The semantic-related keywords that im­

plement the same configuration task are mapped into the same keyword in the global

view. For example, the variable "LSP" in Juniper and the variable "tunnel" in Cisco

are mapped into the keyword "LSP" in the global view, "ip cef distributed" from

Cisco and "family mpls" from Juniper are mapped into the keyword "mplsenabled".

The keywords from the universal keyword set construct the X M L tags for

the global view. The values for the tags are the configuration data values from each

individual configuration file.

The tag definition of the global view in the X M L document is represented

in Figure 3.5. There are six sections in the global view, each section is represented

by matched 2-level tags. The "global" element is the 1-level tag. The configuration

data about the global setting is collected under the "hosts" tag. The name and IP

address of the router, the vendor's name, the setup of the path set in the network,

etc. are under the "hosts" tag. The data under the "interfaces" tag configures

the interface. The IP address and prefix of the interface as well as the enabled

protocols on individual interfaces appear under the "interface" tag. Under the "lsps"

tag is the data about label switched path information including the destination

of the path and its path name. The path name is referenced from the path set

in the global setting under the "hosts" tag. The "VPNS" tag is for MPLS V P N

configuration. The data under the "VPNS" tag includes the data for the import and

38

<?xml version="1.0" encoding="UTF-8"?>
<global>
<hosts>
<host>
<hostnamex/hostname>
<ip />
<type></type>
<mplsenabledx/mplsenabled>
<path name="">
<address/>

</path>
</host>
</hosts>
<interfaces>
<interface name=" " hostname="">

<ipaddress></ipaddress>
<submask></submask>
<protocolx/protocol>

</interface>
</interfaces>
<lsps>
<lsp name=" " hostname="">

<destinationx/destination>
<pathnamex/pathname>

</lsp>
</lsps>
<VPNS>
<VPN name="" hostname="">
<interfacex/interface>
<distinguisherx/distinguisher>
<importx/import>
<exportx/export>
<bgp>
<vpnname/>
<neighbor />

</bgp>
</VPN>

</VPNS>
<bgps>
<bgp>

<hostname />
<neighbor />

</bgp>
</bgps>
<topo>
<router host="">

<neighbor/>
</router>

</topo>
</global>

Figure 3.5: Global View
39

export policy, distinguishes etc.. The "bgps" tag is for BGP protocol configuration.

The data under this tag mainly consists of the BGP neighbor information. The

last tag is "topo". It is the section describing the links between routers and the

topology of the network. Al l data except topology information directly comes from

the original configuration file. The topology information is constructed based on

the configuration data of the interfaces. If the configuration data of the interfaces

changes, the topology information may change as well.

The global view shown in Figure 3.5 has the following characteristics:

• provides a single logical view.

• provides a general naming structure so that the managed configuration data

can be easily stored and retrieved in a uniform way across the heterogeneous

system.

• provides a simple and efficient interface through which application programs

or processes can easily access the management information stored in the repos­

itory.

• provides reasonable performance so that accessing the repository is not the

bottleneck.

3.2.2 Keyword Set

The keyword set is designed to define the mapping rules when the local keywords

are mapped into the keywords in the global view. How the keywords are defined

and how the mapping rules are defined is discussed in this section.

Keyword

The structure of the keyword set is a hierarchical tree. The configuration cate­

gories, such as global settings, interfaces, and protocols, are represented by different

40

<!ELEMENT keywordset(keywords)>
<!ELEMENT keywords(type,subset+)>
<!ELEMENT type(#PCDATA)>
<!ELEMENT subset(global, interface, lsp, vpn, bgp)>
<!ELEMENT global(keyword*)>
<!ELEMENT interface(keyword*)>
<!ELEMENT lsp(keyword*)>
<!ELEMENT vpn(keyword*)>
<!ELEMENT bgp(keyword*)>
<!ELEMENT keyword(#PCDATA)>

Figure 3.6: DTD of Keyword Set

nodes in the tree. For the original configuration files with the similar hierarchical

tree structure, the mapping of the structure between the global view and local con­

figuration files is easy because the mapping is between two similar trees. For the

original configuration files with no clear tree structure, they need to be mapped into

the tree-structured global view. The mapping procedure is to collect configuration

data in the original configuration files under specific configuration categories in the

global view.

The keyword set is presented in X M L format. A Document Type Definition

(DTD) for the keyword set is showed in Figure 3.6, and is shown pictorially in Figure

3.7.

In X V T there are two coded sets of keywords, one for Cisco and the other

one for Juniper. There are two types of commands in Cisco configuration files. The

first type of commands assigns values to the variables and follows "keyword value"

format. For example, "hostname p i" is the command to configure the router name.

The keyword is "hostname" and the value is "pi" . The second type of commands

enables conditional variables and follows "keyword" format. The keyword for this

kind of commands is the whole command and the data value is a boolean value.

For example, "tag-switching ip" is the command to enable MPLS protocol on one

41

Keyword set
V J

Cisco Juniper

Global

Setting
Interface LSP VPN BGP

Global

Setting
Interface LSP VPN BGP

Figure 3.7: The Structure of the Keyword Set

42

specific interface. The keyword is "tag-switching ip" and the data value is "true".

The keywords in the Juniper configuration files cannot be the single tag

name from one element because X M L file is context-sensitive. Hence the keyword

definition includes the path information to indicate the tag's ancestors that repre­

sent the configuration categories. For example, Table 3.1 is a Juniper configuration

file to configure the protocols. The same "interface" keyword in Table 3.1 under

different tags means different interface for different protocols. The keywords "pro-

tocols/mpls/interface" and "protocols/ldp/interface" define the interfaces for two

different protocols, "protocols/mpls/interface" means the "interface" is the child

element of "mpls" and the descendant of "protocols".

<protocol>
<mpls>

<interface>
<name>sO-0/0/0/0</name>

</interface>
</mpls>
<ldp>

<interface>
<name>sO-0/0/l/0</name>

</interface>
</ldp>

</protocol>

Table 3.1: Juniper's Configuration File Example

Mapping Rules

The original configuration files are parsed sequentially using the keywords in the

keyword set. The parsing procedure gets the data value for each keyword and

constructs the pair <local keyword, data value>. The local keyword is mapped to

the keyword in the global view based on its configuration category. For example,

the local keyword "neighbor" under the "VPN" category, which is used to configure

the neighbor in VPN, is mapped to the keyword representing V P N neighbor in the

43

Configuration File A1

Configuration File A2

Configuration File B l

Configuration File B2

Global View

Figure 3.8: Parsing and Mapping Procedure

global view, while the local keyword "neighbor" under "BGP" category which is

used to configure the neighbor in BGP, is mapped to the keyword representing BGP

neighbor in the global view. The data value is assigned to the element with the

global keyword as the tag in the global view. The updated global view is saved.

Figure 3.8 is an illustration of the procedure.

Advantages

The advantages of using keyword set are its simplicity, its extensibility, and its ease

for evolution. Network technology evolves quickly. The introduction of new concepts

always triggers new features to be added into the configuration files. The keyword

set allows new keywords to be easily added to incorporate new features as they are

introduced.

44

3.2.3 Query

How to define the user query format is discussed in this section.

One extreme for queries is to use the XML-based query engine's syntax.

Using the query engine's syntax reduces the processing time because users' queries

are not transformed into machine accessible format. Using the query engine's syntax

also reduces programming labor because there are query engines available. But users

are required to be familiar with the query engine's syntax.

Another extreme is to use natural language for queries. The query processing

is too complicated in this case.

A middle approach is for users to follow the syntax of a higher level meta

language. The requirements of this meta language are:

• easy to use

The meta language should be small and easy for users to learn..

• network-oriented

Since the application is for network management the meta language should be

equipped with network-oriented features, for example, graph-based queries.

We chose to implement an operator-oriented meta language as the query

language. Users do not need to worry about the lower level query process. They

can write the query requests using the provided operators in the same way they

write mathematical formula. In this way, users can easily understand the query and

it is not difficult to become familiar with the few operators in the language.

45

Chapter 4

Implementation

In this chapter the details of the implementation of X V T tool will be introduced.

X V T tool is decomposed into several modules as shown in Figure 4.1. These modules

will be explained in detail.

• Parser

The parser takes the configuration files and the pre-defined keyword set as

input. The parser then parses the configuration files to obtain the value for

each keyword in the predefined keyword set.

• Translator

The translator maps the keyword from the local configuration file into the

keyword in the global view. In addition, it assigns the global keyword the

value of the local keyword.

• Topology Extractor

The extractor extracts the topology information including connectivity infor­

mation from the global view. A graphical representation of the topology is

shown.

• Checker

46

Cisco configuration file A —1

Cisco's keyword set

Cisco configuration file B

0<Local keyword,/^ ^\<Global keyword, [
data value> ^ T r a n l ator J d a t a Value>

[luniper configuration file A

Juniper's keyword set

[Juniper configuration file B [-1

Figure 4.1: Modules of X V T

The checker checks the configuration errors within one router as well as across

routers. The errors are saved in an error report.

• Explorer

The explorer allows users to browse the final error report. Users can browse

the error report by using a browser if the error report is an HTML file.

• Query

The query enables users to access to the configuration information that is not

provided by the error report. For example, users can query the name of routers

that are configured with MPLS protocol.

47

<keywords>
<cisco>

<global>
<keyword>hostname</keyword>
<keyword>ip address</keyword>
<keyword>ip cef</keyword>
<keyword>explicit-path identifier</keyword>

</global>
<interface>

<keyword>interface</keyword>
<keyword>ip address</keyword>

</interface>

</cisco>
</keywords>

Figure 4.2: Example of Keyword Set

4.1 Parser

The parser reads through the configuration files to parse the file following the order

of keywords in the predefined keyword set. The keywords are predefined following

the router's configuration documentation. Each router vendor may have different

keyword sets because it uses a different configuration language.

The keywords in the keyword sets are parsed sequentially. Once the keyword

is found in the configuration file, the value for the matched keyword is fetched

from the original configuration file. The <keyword, value> pair is returned to

"Translator" module for further parsing. This process repeats until all the keywords

in the keyword sets are extracted from the original configuration file.

An example of Cisco keyword set is shown in Figure 4.2. In this example

there are four keywords in the configuration file that are parsed for configuration

data as part of the global settings. The parser first searches the keyword "hostname"

in the configuration file. Once it is found, the parser looks up the value for keyword

"hostname" from Table 4.2. The parser continues to search for the next keyword

48

"ip address" after keyword "hostname" is parsed. The process continues until all

keywords in the keyword set are parsed.

For Juniper configuration files, the single keyword cannot indicate one spe­

cific configuration command as was discussed in Section 3.2.2. Hence the keyword

for Juniper needs to include the path information. For example, the keyword for

the IP address configuration is "system/inet" to indicate that the IP address is con­

figured under "inet" tag with "system" as the parent tag. The parser uses XSLT to

parse the keyword, extract the value for the "system/inet" keyword and output the

pair <system/inet, data value>.

Configuration File Keyword Output pair
<system>

< host-name > x
</system>

system/host-name <system/host-name, x>

<system>
<inet> x

</system>

system/inet <system/inet, x>

< protocols >
<mpls>

</protocol>

protocols/mpls <protocols/mpls, yes>

<system>
<path>

<name/>x
<path-list>

</name>
y i

</name>
</path-list >

</path>
</system>

system / path/name

system/path/path-list / name

< system/path/name, x >

< system / path/path-list
/name, y l>

Table 4.1: Parsing Global Setting Variables for Juniper Configuration Files

49

Configuration File Keyword Output
hostname x; hostname < hostname,x>
ip address x; ip address <ip address, x>
ip cef; ip cef <ip cef, yes>
ip explicit-path
identifier x;

ip explicit-path
identifier

<ip explicit-path
identifier ,x>

Table 4.2: Parsing Global Setting Variables for Cisco Configuration Files

4.2 Translator

The translator obtains the pair <local keyword,' data value> from the parser and

maps the local keyword into the keyword in the global view.

The input to the translator module is the pair <local keyword, data value>.

The translator maps the local keyword into the keyword in the global view based

on the mapping rules that will be explained next. The translator saves the value

under the global keyword field found in the global view.

The mapping rules are given in Table 4.3 to Table 4.7. Different tables

represent different categories of keywords.

Global View Juniper Cisco
<host>

<hostname/>x
<system/host-name,x> <hostname,x>

<ip/>x <system/inet,x> <ip address,x>
<mplsenable/> yes < protocols / mpls,yes > <ip cef,yes >
<path name=x >

< address >
y i

</address >
</path>

</host>

< system / path / name,x>

< system / path / path-list
/name,yl>

<ip explicit-path
identifier ,x>
<next-address,yl>

Table 4.3: Mapping for Global Setting Variables

There are two different addressing schemes. The traditional scheme is that

50

Global View Juniper Cisco
<interface name=x> <interfaces/interface/name, x> <interface,x>

<protocol/>mpls < interfaces / interface/unit/family
mpls,yes>

<tag-switching ip,
yes>

<ipaddress>
X

</ipaddress>
< prefix > y < / prefix >

</interface>

< interfaces / interface / unit /
family / inet/address / name,x/y >

<ip address,x/y>

Table 4.4: Mapping for Interface Variables

the addresses are assigned into three classes: class A, class B and class C. The prefix

for classes A, B and C are 8, 16 or 24 bits. Another scheme is called Classless Inter-

Domain Routing (CIDR)[31] that is a replacement for the old process of assigning

class A, B and C addresses with a generalized network prefix. CIDR currently uses

prefixes from 13 to 27 bits. The prefixes are represented by using integer numbers.

For example, in the CIDR address 206.13.01.48/25, "25" indicates the first 25 bits

are used to identify the unique network.

For these two addressing schemes the translator translates the prefix of the

interface into the common 32-bit format. For example, for the interface configured

as 144.103.1.3/25, the value 25 is mapped into 255.255.255.1.

Global View Juniper Cisco
<lsp name=x> <label-switched-path/name,x> <interface tunnel,x>

<pathname/>x <label-switched-path/primary/
name,x>

< tunnel mpls trafhc-eng
path explicit identifier,x>

<destination/>y
</lsp>

<label-switched-path/to,y> <tunnel destination,y>

Table 4.5: Mapping for MPLS Label Switched Path Variables

An example is given to demonstrate how the translator works. The input

is a text line from a Cisco configuration file, say, "route-target export 100:1". The

translator extracts the pair <route-target export, 100:1> from the parser. Following

51

Global View Juniper Cisco
<VPN>

<vrfname/>x
< routing-instances / instance /
name,x>

<ip vrf,x>

< distinguisher/>x <routing-instances/instance /
route-distinguisher,x>

<rd,x>

<import/>x <routing-instances/instance
vrf-import / name,x>

<route-target
import,x>

<export/>x < routing-instances / instance /
vrf-export/name,x>

< route-target
export,x>

<bgp>
<vpnname/>x
<neighbor/>y

</bgp>
</VPN>

< routing-instances / instance /
protocols/bgp/group / name,x>
<routing-instances / instance /
protocols/bgp/group/neighbor /
name,y>

< address-family
ipv4 vrf,x>
< neighbor
remote-as
as-system- number,
y>

Table 4.6: Mapping for MPLS V P N Variables

Global View Juniper Cisco
<bgp>

< neighbor/>x
</bgp>

<protocol/bgp,x> <neighbor activate,x>

Table 4.7: Mapping for BGP Variables

the mapping rules given in Table 4.6 the translator finds that the matched keyword

is <export> in the global view represented by X M L . As a result the data value under

the "export" tag in the global view is changed to 100:1. Finally the translator saves

all the changes to the global view.

4.3 Checker

The checker follows predefined rules for error checking. The checking rules are

classified into three categories: within the section of the same router configuration

file, across different sections within the same router configuration file, and across

52

different router configuration files.

4.3.1 Within the Section of the Same Router Configuration File

Checking the variables within a section is separated into two categories, indepen­

dent checking and dependent checking. Independent checking occurs whenever the

process does not have to be compared with any other variables. In the case of de­

pendent variables it is necessary to compare their values with other values in the

configuration files.

Independent Checking within a Section

Independent checking within a section includes:

• Whether the variable value is a valid IP address

An IP address is a 32 bit binary number represented as four decimal values,

each representing eight bits, separated by decimal points, i.e., x.x.x.x. Each

decimal value should be in the range 0 to 255 (known as octet).

The specific variables checked for this rule include:

— IP address for each interface

— IP address for each router

— IP address for each hop in the explicit path

— IP address for the neighbor configuration in BGP protocol

— IP address for the "destination" address for a label switched path

— IP address for the neighbor configuration in an V P N BGP section

Although Juniper and Cisco routers can check the format of IP address, check­

ing IP address is valid or not is implemented for the worst case that routers

do not provide such checking.

53

• Whether the IP prefix is defined valid

The IP prefix is represented in the same way as IP. So the format of the IP

prefix should be as x.x.x.x. Each decimal value in the IP prefix cannot be

greater than 255.

The specific variables for this rule include:

- Prefix for each interface

• Whether the keywords are assigned a value

X V T generates the error if the value field in the pair <keyword, value> is

null. This error occurs when a keyword in the configuration file has not been

assigned a value and may indicate a problem. For example, the "destination"

field cannot be null for a label switched path if MPLS protocol is enabled on

the router.

D e p e n d e n t C h e c k i n g w i t h i n O n e S e c t i o n

Dependent checking within one section includes:

• Checks the uniqueness of variables

Some variables are required to be assigned a unique value. For example, if two

interfaces are assigned the same name "sO-0/0/0.0" on the same router but

with different protocols, the router does not know which protocol to follow if

packets are forwarded through the interface. These kind of errors are checked

within each section of the configuration files. For example, checking within

the "interface" section to see whether there are two interfaces are assigned the

same name.

The specific variables for this rule include:

— Name of the interfaces within each router

54

- Name of the Label switched paths within each ingress router

- Name of VPNs within each router

- Name of the explicit paths within each router

4.3.2 Across Different Sections within the Same Router Configu­

ration File

The consistency check across different sections within the same router configuration

file includes:

• Whether the referenced variables are consistent

The meaning of "referenced" is that the value of "referenced" variables should

come from a predefined value set. If the referenced value is not equal to any

in the value set, there are consistency problems. For example, both Juniper

and Cisco follow the same rules to define an explicit label switched path: they

configure a set of named paths with its name and hops first in the global setting

section, then they configure the explicit path by referencing the path name

from the defined named path sets. When the router requires the next hop

address before the label is assigned, it first gets the explicit path name from

the configuration file. If the explicit path is defined, then it searches the path

set in the global setting section to get the matched named path. Following the

configuration of the named path the router gets the next hop information. If

the explicit path name is not referenced from the path set, the packets cannot

be forwarded to the next hop.

The specific variables for the reference rule include:

- LSP name in the MPLS "protocol" section should be referenced from the

path set in the "global setting" section

• Whether the protocols and related attributes are configured correctly.

55

The rules for protocols and attributes include:

- If MPLS protocol is not enabled on the router in the "global setting"

section, the MPLS-related attributes in the "protocol" section cannot be

assigned any value.

- If MPLS protocol is enabled in the "global setting" section, there should

be at least one label switched path configured in MPLS "protocol" sec­

tion. The attribute "destination" and "label switched path name" in

MPLS "protocol" section also should be assigned the value.

4.3.3 Across Different Router Configuration Files

The consistency check across different router configuration files includes:

• The links between the hops in the label switched path should be set up by the

interface configuration. For example, If A is configured as B's next hop in the

named path, router A and router B should have the interface configuration to

set up the corresponding link.

• BGP neighbor should be consistent. If A's BGP neighbor is B, then B's BGP

neighbor should be configured as A.

• The hops indicated in the label switched path should match the router IP

address or interface address.

4.3.4 Implementation of Rules

In X V T , all rules except IP/prefix address and link check are coded in XSLT. The

reason why these two rules are coded separately is that XSLT does not have a "bit

wise and" operator. The reason of using XSLT is for easy transformation to produce

a final error report as well as its XML-based query capability.

56

<xsl:for-each select="VPNS/VPN">
<xsl: variable name="hostname"xxsl:value-of select=''@hostnarne7></xsl:variable>
<xsl:variablename="vpn"xxsl:value-of select="@name"/></xsl:variable>
<xsl:if test="count(following::VPN[@hostname=$hostname and @name=$vpn])>=i">

<error>
<rule> Rule2:check invalid unique variables </rule>
<type> dependent variable </type>
<description>The V P N name <xsl:value-of select="$vpn"/> in the router

<xsl:value-of select="$hostname7> should be unique
</description>

</error>
</xsl:if>

</xsl:for-each>

Figure 4.3: Example of Rules Defined in XSLT

Figure 4.3 is the rule defined in XSLT to discover the variable "VPN name"
that violates the uniqueness requirement. If there is more than one VPN name that
is defined within one router, the error is reported and the output consists of the type
of errors (dependent or independent variables), the rule it violated and the place
where the error occurs. The error is saved in a temporary XML file and the XML
file is later transformed into an HTML formatted error report.

4 . 4 Topology Extractor

The topology extractor obtains the network topology information from the global
view. The extracted information includes connectivity for IP networks.

The extractor determines the connectivity for the IP network based on the
interface configuration data. If two interfaces have the same subnet, there is a
link between these two interfaces. After searching all links, the network topology
is drawn to represent the node and link information. The output of the topology
extractor is shown in Figure 4.4.

57

Figure 4.4: Topology

58

B G P connectivities are determined by B G P neighbors in the B G P protocol

configuration. Connectivity for B G P protocol is not shown in the topology graph.

4.5 Explorer

The explorer is used to show the final error report. The error report is in H T M L

format and can be viewed in an H T M L browser. Figure 4.5 is the example of the

error report. It consists of the violated rules, error type and the place where the

error occurs in the individual configuration file.

4.6 Query

Since the explorer only provides configuration error information about the network,

query is used to give users access for more network information. Furthermore the

query operators help users to create new verification rules.

4.6.1 The Query Language

A meta query language is designed to help simplify user queries. The meta language

is based on a few operators so that the user can query the global view by using a

combination of given operators. The Command Line Interface (CLI) and a simple

graphical interface both can be used for the query.

A n Extended Backus-Naur Form (EBNF) for the query language is showed

in Figure 4.6.

Overview

The predefined operators are listed in Table 4.8. Since X M L is a tree-structured lan­

guage that is not suitable to present the graphs, the operator "nodeAdj" is designed

for graph-based querying. The "nodeAdj" command provides two graph-based views

of the network: one is the B G P network graph and the other is the M P L S network

59

*3l The result for error-checking - Microsoft; Internet Explorer ' H I
File Edit View-Favorites Topis;; • Help:^*

Back Ffi'i-rdi Stop ̂ ; Refresh Home Search Favorites
0

History Mail Print Edit.
B

Discuss.

Address |g] Z:\pcHhwang\thesis\src\error.html

Links SjCustomize Links 'SjFree Hotmail,. J|)W[ndows ^)Windows Media

rule
Rule3:check invalid
referenced variables
RuleS: check invalid BGP
neighbor

ip address/prefix error

ip address/prefix error

ip address/prefix error

undefined link

7 unmatched variable

8 unmatched variable

9 unmatched variable

10 unmatched variable

11 unmatched variable

error

1

2

3

4

5

6

type
dependent
variable
dependent
variable
independent
variable
independent
variable
independent
variable

dependent
variable
dependent
variable

dependent
variable

dependent
variable

dependent
variable

dependent
variable

description
The label-switched-path pathnamepe2-pl0-pll-pel of
router pe2 should be referenced from named path sets
pel's configuration field address-family vpnv4/neighbor is
not correct
the format of field inet 10.10.10. of host pe2 should be
xx.xx.xx.xx
submask address 255.255.255.355. of host pi should
less than 256
the format of submask address 255.255. of host pi
should be xx.xx.xx.xx

interface addressl32.0.0.1 of host pi should have at least
one link to plO

path hop 131.0.10.3 has no matched host

path hop 131.0.10.3 has no matched host

path hop 131.0.4.2 has no matched host

path hop 131.0.0.3 has no matched host

path hop 131.0.0.3 has no matched host

SlDone. ...a

Figure 4.5: Error Report Example

60

file://Z:/pcHhwang/thesis/src/error.html
http://xx.xx.xx.xx

Input ::= atomic-expression | advanced-expression
atomic-expression := 2-arg-atomic-expression 13-arg-atomic-expression
advanced-expression : := 1-arg-advanced-expression 12-arg-advanced-expression
2-arg-atomic-expression := 2-arg-atomic-operator'(' variable',' variable')'
3-arg-atomic-expression := 3-arg-atomic-operator'(' variable',' variable','

'BGP ' I 'IF') '
1-arg-advanced-expression := 1-arg-advanced-operator'(' variable')'
2-arg-advanced-expression := 2-arg-advanced-operator'(' variable',' variable')'

| check-operator'(' variable',' 'IP'fsubmask'')'
2-arg-atomic-operator ::='match'|'matchv'
3-arg-atomic-operator ::='nodeAdj'
1 -arg-advanced-operator :='unique'
2-arg-advanced-operator :='join'
check-operator ::='check'
variable ::=sequence of characters

Figure 4.6: EBNF for Query Language

61

graph. The "protocol" argument to the "nodeAdj" command is used to choose

between these two views.

Operator Detail Return Value
1 match(x,y) select data x from field y The matched

element sets
2 matchv(x,y) select x

whose value is y
Matched variables

3 join (x,y) join two selected
x and y results

The matched
element sets

4 check(x,ip) check whether x
is IP format valid

Boolean value.
If x is a valid IP
return true;
Else return false

5 check(x,prefix) check whether x
is a valid prefix

Boolean value.
If x is a valid prefix
return true;
Else return false

6 unique (x) check whether x is unique Boolean value.
If x is unique
return true;
Else return false

7 nodeAdj (x,y,protocol) check whether x and y
are adjacent nodes
based on the protocol

Boolean value.
If x and y are adjacent,
return true; Else false

Table 4.8: Predefined Operators

Atomic Operators

An "atomic operator" is an operator that can be used as the operand to other

operators. For example, if F(x,y) is defined as an atomic operator, F(x,y) can be

used in operator S(F(x,y),z) as an operand. Atomic operators can also be used by

themselves as operands. For given example F(F(x,y),z) is also a valid expression.

An "atomic query" consists of an atomic operator and the operands required for the

operator.

The atomic operators defined in the query language are:

62

• match(x,y)

match(x,y) selects data x from field y.

This operator locates the entries whose ancestor elements are y. For example,

to search all router names in the network, the query is "match (hostname,

host)". This query locates the name entries of all routers. The output of the

query is the total number of matched hostname.

• matchv(x,y)

matchv(x,y) selects data x whose value is y.

This operator is the variant of match (x,y) operator. It locates the entries

whose value matches the parameter y. For example, to search for the interface

in the router with name SO-0/0/0, the query is "matchv(interface, SO-0/0/0)".

The output of the query is the matched interface information in the global

view.

• nodeAdj (x,y,protocol)

nodeAdj (x,y,protocol) checks whether x and y are adjacent nodes based on IP

and BGP protocols. The concept of "adjacent" is different for each protocol.

For IP, the "adjacent nodes" means the nodes are in the same subnet. For

BGP, the "adjacent nodes" means the nodes are configured as BGP neighbors.

The operand x and y can be router names, or the IP addresses.

For example, "nodeAdj(pi, p2, IP)" checks whether router p i and p2 are

connected for IP protocol while "nodeAdj(132.1.6.3, 142.1.5.2, BGP)" checks

whether these two addresses are BGP neighbors. The output is a boolean

value.

Composition Operators

"Composition Operator" allows one level of composition for atomic operators. The

operator itself cannot be used as the operand for other operators. For example, if

63

A(x,y) is defined as an atomic operator, C(X,Y) is defined as a composition operator,

then C(A(x,y),z) is valid while C(C(A(x,y),z),z) is not valid since C(X,Y) operator

cannot be used as the operand. The defined composition operators are:

• join(x,y)

join(x,y) combines x and y together as the result.

For example, to search all interface information and label switched path data,

the query is "join(match(interface,interfaces),match(lsp, lsps))". Two "match"

atomic operators are used as the operands to search the interface and LSP data

separately. The "join" operator then combines the two results together. The

output is a list of the matched information.

• check(x,ip/prefix)

check(x,ip/prefix) checks whether x is a valid IP/prefix.

For example, to check whether the IP address of an interfaces is correct, the

query is "check(match(ipaddress, interface),ip)". The "match" operator is

used to get the IP address of the interface. The "check" operator checks

whether the matched IP addresses are valid. The output is a boolean value.

If the prefix needs to be checked, the query is "check(match(ipaddress, inter­

face),prefix)".

• unique(x)

unique (x) checks whether the value of x is unique in the same configuration

file.

For example, to check whether the interface name is unique within one router,

the query is "unique(match(name, interface))". The "match" operator is used

to get the interface names for each router. The "unique" operator checks

whether the name is unique. The output is a boolean value.

64

4.6.2 Rules and Query Language

The error checking rules can also be implemented by using these operators. Hence

users can use the combination of the operators to create new verification rules.

Table 4.9 gives more details about the predefined rules and corresponding operator

combinations.

4.7 Tools for Implementation

X V T is implemented using Java and X M L .

4.7.1 X M L Document Parser

The parser used for X M L documents is J D O M from http://www.jdom.org. The

J D O M parser provides a Java-based solution for accessing, manipulating, and out-

putting X M L data from Java code.

4.7.2 X S L T Engine

The X S L T (extensible Stylesheet Language Transformation) engine used in the ap­

plication is Xalan-Java (version 2.3.1) from http://xml.apache.org. Xalan-Java is

an X S L T processor for transforming X M L documents into H T M L , text, or other

X M L document types. It implements the W3C Recommendations for X S L Trans­

formations (XSLT) and the X M L Path Language (XPath). It is used as a module

in the program.

4.7.3 X Q L Engine

The X Q L (X M L Query Language) engine used in the application is GMD-IPSI X Q L

engine (Version 1.0.2) from http://xml.darmstadt.gmd.de/xql/. The GMD-IPSI

X Q L engine is a Java based storage and query application for large X M L documents.

65

http://www.jdom.org
http://xml.apache.org
http://xml.darmstadt.gmd.de/xql/

It provides a persistent implementation of W 3 C - D O M Document objects and a full

implementation of the XQL language.

4.7.4 Visualization

A Java applet, graph.java, is used for the visualization of the router nodes and

links in the Topology Extractor. The applet is a free open source tool from http://

www.gg.caltech.edu/ dhl/java/test/graph/graph.html that draw the nodes and links

which are fundamental for the network topology representation. Furthermore the

positions of nodes and links are not fixed in the display. The nodes can be dragged

and the topology can be spread or folded.

66

http://
http://www.gg.caltech.edu/

Rule Operator Combination
1 "destination" field for

label switched path cannot be null
match(destination,
lsp)!=null

2 The V P N name must
be unique in each router

unique(match(name,
VPN)))=true

3 The path name in the named path set
must be unique in each router

unique (match (
name,path))=true

4 The interface name must be unique
in each router

unique(match(
name,interface))=true

5 The label switched path name should
be unique in each router

unique(match(
name,lsp))=true

6 There should be at least
one label switched path

match(lsp,lsps)!=null

7 BGP neighbor cannot
be itself

nodeAdj (x,x,bgp) =false

8 The BGP neighbors match each other nodeAdj (x,y,bgp)=true
9 The label switched path should

be referenced from the named path
match(match(pathname,lsp),
match(name,path))=true

10 IP address of each interface
is valid

check(match(ipaddress,
interface) ,ip)=true

11 IP address of each router is valid check(match(
ip,host),ip)=true

12 IP address of each hop in
named path is valid

check(match(
address,path),ip)=true

13 IP address of BGP neighbor is valid check (match (
neighbor,bgp) ,ip) =true

14 Label switched path destination is valid check(match(
destination,lsp) ,ip) =true

15 IP address of neighbor of
V P N BGP is valid

check (mat ch (neighb or,
match(bgp,VPN),ip)=true

16 Subnet Prefix of each interface is valid check(match(prefix,
interface) ,prefix) =true

17 The links defined in the explicit path
should be configured

nodeAdj(hopl,hop2,IP)

Table 4.9: Error Rules Expressed by Operators

67

Chapter 5

Test

5.1 Simulation of Environment

5.1.1 Network Topology

The network topology used for simulation is shown in Figure 5.1.

(1) There are four CE routers. CE1 and CE3 are in VPN1, while CE2 and

CE3 are in VPN2.

(2) There are two PE routers, each one connected with two CE routers from

different VPNs. One of the PE routers is configured as a Cisco router; the other

one is configured as a Juniper router.

(3) There are ten P routers in the V P N core. Routers PI, P3, P4, P7 and P10

are configured as Cisco routers, while routers P2, P5, P6, P8 and P9 are configured

as Juniper routers.

(4) There are two LSP tunnels in the topology. Both of them are configured

as explicit-path LSPs.

We create the configuration files for all routers mentioned above and collect

these files beforehand.

68

VPN2

Figure 5.1: Network Topology

69

5.1.2 Router Configuration Files

All configuration files are collected before they are checked by X V T . X V T executes

as an off-line tool and there is no data transfer between routers to be checked and

the machine running X V T .

There are two types of router configuration files. One is for Cisco routers

while another is for Juniper routers. Since there is no real router to set up the config­

uration files, the company's online router configuration manuals and documentation

were used to create the configuration files.

5.2 Error Report

The output error report is shown in Figure 5.2 for the defined topology. The error

report consists of verification rules, error types and detailed description of the errors.

5.3 Results

The X V T tool is tested on a Linux machine with 128MB memory and Pentinum

II 266 Mega Hertz(MHZ) CPU. The sizes of tested configuration files are from 400

bytes to 7548 bytes.

The performance results are shown in Figure 5.3. As the number of config­

uration files increases, the parsing time and checking time increases as well. The

parsing time increases more rapidly than checking time for configuration files of dif­

ferent size. The reason is that parsing time is directly proportional to the number

of configuration files while checking time is related to the time needed to query the

global view. The global view is represented in an X M L file and checking is per­

formed by using XSLT so that the searching time is dependent on the processing

speed of the XSLT engine. Although increasing the number of configuration files

also increases the content of the global view, the XSLT engine reads the arbitrary

X M L elements without scanning the whole global view. As a result increasing the

70

'3 The result for error-checking - Microsoft: Internet Explorer M l
| File Edit View Favortes T o d s , Help , , , J *KB1

[•"«,-" 3 * r; § v. ' 1 T ! ^ p ?
| Back rjor^rdj * StĉD Refresh Home ' Search Favorites Media History • 1 Mai Print

0
Edit

. B »
DBCUSS

[Address | § Z:\pd\hwang\thesis\src\error,html pj| f><&
: Links. j §] Customize L H s @ Free Hotmail (^Windows £ Windows Media

error

1

2

3

4

5

6

7

8

9

10

11

rule

Rule3:check invalid
referenced variables

type
dependent
variable

Rule5: check invalid BGP dependent
variable neighbor

ip address/prefix error

ip address/prefix error

ip address/prefix error

undefined link

unmatched variable

unmatched variable

unmatched variable

unmatched variable

unmatched variable

independent
variable
independent
variable
independent
variable
dependent
variable
dependent
variable

dependent
variable

dependent
variable

dependent
variable
dependent
variable

description
The label-switched-path pathname pe2-pl0-pll-pel of
router pe2 should be referenced from named path sets
pel's configuration field address-family vpnv4/neighbor is
not correct
the format of field inet 10.10.10. of host pe2 should be
XX.XX.XX.XX

submask address 255.255.255.355. of host pi should
less than 256

the format of submask address 255.255. of host pi
should be xx.xx.xx.xx
interface addressl32.0.0.1 of host pi should have at least
one link to plO

path hop 131.0.10.3 has no matched host

path hop 131.0.10.3 has no matched host

path hop 131.0.4.2 has no matched host

path hop 131.0.0.3 has no matched host

path hop 131.0.0.3 has no matched host

,52 Done
il~l) 1) ilQI Local incranec"

Figure 5.2: Error Report Example

71

1.5
- checking

0:5.

4 6 8 10

Numberof conflguation files

12-

Figure 5.3: Performance Chart

number of configuration files does not greatly influence the checking time but does

affect the parsing time.

72

Chapter 6

Conclusion

6.1 Conclusion

In order to support the various requirements of customers due to the growth of In­

ternet services, network service provider companies have acquired network elements

from various vendors. Multi-vendor configuration management, which is partly con­

cerned with configuration verification, is complicated by the fact that each vendor

uses a different configuration language.

The design of a general router verification tool over multi-vendor network is

motivated by the idea of generalizing configuration data from different routers. X M L

is chosen as the general data repository. X M L , which brings a mark-up language

to data representation, is useful in data integration due to its ability to be machine

accessible but in a human understandable way. The use of X M L in our tool helps

to express different document types because of its separation of data content from

how it is represented.

We have implemented a router configuration verification tool, X V T , for

multi-vendor networks. X V T currently can parse MPLS configuration files from

Cisco and Juniper companies. X V T also can verify these configuration files against

the predefined rules. Compared with existing tools such as OPNet's NetDoctor

X V T provides predefined operators for users to define new verification rules. X M L

73

is used in X V T to integrate various router configuration files into one uniform global

view that is used later for verification purpose. The advantages of using X M L are

its flexibility in data representation, its ability to be easily transformed into HTML

or plain text and the available XML-based application tools. Although X M L is

not suitable to represent the graph-viewed network topology, we have defined a set

of graph-based query operators to overcome that disadvantage. Our experimental

result showed that X V T can successfully verify the router configuration files from

Cisco and Juniper against the predefined error checking rules.

6.2 Future work

The X V T tool described in this thesis is used offline. In the future we will enable

X V T to collect the configuration files remotely from routers instead of using local

files.

X V T only examines part of the router configuration files that is for MPLS

protocol as well as related interface and global variables configuration. X V T only

can parse and validate the configuration files from Cisco and Juniper. X V T could

be extended to other protocols and vendors. A potential problem for the extension

is that the design of a general parser for different types of router configuration

files may be complicated because of various configuration languages used by the

vendors. A possible solution is to provide a resource library which includes the

router configuration language parsers for most of the router vendors. Each router

configuration file will have a parser to interpret and map its data into the global

view. If one specific kind of router configuration files is imported, the corresponding

parser from the resource library is chosen to parse the newly added configuration

files.

Our current verification operators are useful for verifying the consistency of

configuration as well as links between two routers. Although most of our predefined

verification rules can be represented by using these operators, it is still possible

74

that these operators are insufficient if X V T is to be extended to other protocols

or other vendors. There may be new verification rules that cannot be represented

by our operators. For example, there is no operator to test whether the area ID is

contiguous or not for the Open Shortest Path First (OSPF) protocol.

75

Bibl iography

[1] Anja Feldmann, "IP network configuration for intradomain traffic engineering",

IEEE Network, Volume 15 Issue 5, Sept.-Oct, 2001.

[2] C.Alaettinoglu and C.Villamlizar, "Routing Policy Specification Lan-

guage(RPSL)", RFC 2622, June 1999.

[3] L.Feldkhum, "Integrated Network Management Systems", Proceeding of the first

International Symposium Integrated Network Mangement, 1989, Pages 279-301.

[4] OPNet Networks, Inc., http://www.opnet.com/products/modules/netdoctor.html.

[5] Lucent Networks, Inc., http://www.lucent.com/press/0399/990318.nsb.html.

[6] Dorado Software, Inc., http://www.doradosoftware.com/html/about/press/vpn-

sc.shtml.

[7] William Stalling, "Network Management", IEEE Computer Society Press,

1993, Pages 1-11.

[8] Anja Feldmann, "Netdb: IP network configuration debugger/database", AT&T

lab, draft, 1999.

[9] Juniper Networks, Inc., "Juniper JUNOS Internet Configuration Guide", Ju­

niper JUNOS Internet Software documentation Release 5.3, May.01, 2002.

[10] Cisco NetWorks, Inc., "IOS Switching Services Configuration Guide".

76

http://www.opnet.com/products/modules/netdoctor.html
http://www.lucent.com/press/0399/990318.nsb.html
http://www.doradosoftware.com/html/about/press/vpn-

[11] Chunk Semeria, "RFC2547bis: BGP/MPLS V P N Fundamentals", White Pa­

per, Juniper Networks, Inc., March, 2001.

[12] Cisco Networks, Inc., "MPLS Virtual Private Networks", White Paper.

[13] B.Neumair, Technical University of Munich, "Modelling resources for Inte-

greated Performance Management", Integrated Network Management III, 1993,

Pages 109-121.

[14] J.Case, K.McCloghrie, M.Rose and S.Waldbusser, "Management Information

Base for SNMPv2", RFC 1450, April 1993.

[15] J.Case, K.McCloghrie, M.Rose and S.Waldbusser, "Introduction to

Community-based SNMPv2", RFC 1901, January 1996.

[16] J.Case, K.McCloghrie, M.Rose and S.Waldbusser, "Structure of Manage­

ment Information for version 2 of the Simple Network Management proto-

cols(SNMPv2)", RFC 1442, April 1993.

[17] International Organization for Standardization(IOS), "Specification of Abstract

Synta Notation One (ASN.l)", International Standard 8824, December, 1987.

[18] Do-Hyeon Kim, You-Ze Cho, "An Efficient Integrated Network Management for

heterogeneous LANs and WANs", High Performance Computing in the Asia-

Pacific Region. The Fourth International Conference/Exhibition, vol.1, 2000,

Pages 61-64.

[19] W3C organization, "W3C Recommendation X M L 1.0", http://www.w3.org/

TR/ REC-xml , Oct.6, 2000.

[20] David Lewis and Jens D.Mouritzsen, "The Role of X M L in T M N Evolution",

Integrated Network Management Proceedings IEEE/IFIP International Sympo­

sium, 2001.

77

http://www.w3.org/

[21] W3C organization, "W3C Recommendation XSLT 1.0", http://www.w3.org/

TR/ xslt, Nov.16, 1999.

[22] W3C organization, "W3C work draft XML-QL" , http://www.w3.org/TR/

NOTE-xml-ql, Aug.19, 1998.

[23] Xalan-Java, a XSLT processor, http://xml.apache.org/xalan-j/.

[24] W3C organization, "W3C work draft XQuery 1.0", http://www.w3.org/TR/

2001/WD-xquery-20011220/, Dec.20, 2001.

[25] W3C organization, "W3C work draft XQL", http://www.w3.org/TandS/QL/

QL98/pp/xql. html.

[26] Anja Feldmann, Albert Greenberg, Carsten Lund, Nick Reingold, and Jennifer

Rexford, "NetScope: Traffic Engineering for IP Networks", IEEE Network Mag­

azine, Special issue on Internet traffic engineering, AT&T lab, 2000.

[27] Shane O'Donnell, "Network Management: Open source solutions to propri-

etarty problems", SIGUCCS 2000, Oct.29, 2000, Pages 214-216.

[28] OpenNMs organization, "OpenNMS brochure", www.opennms.org/files/misc/

opennms5a.pdf.

[29] James W.Hong, Michael A.Bauer and J.Michael Bennett, Departmeent of Com­

puter Science, University of Western Ontario, "Integration of the Directory Ser­

vice in the Network Management Framework", Integrated Network Management

III, 1993, Pages 149-160.

[30] Yahoo Reuters Internet Report, "Cisco Router Market Share Edges Higher",

http://biz.yahoo.com/ri/020516/tech-ciscostudy-2.html, May 16, 2002.

[31] Network Working Group, "An Architecture for IP Address Allocation with

CIDR", RFC1518, Sept.1993.

78

http://www.w3.org/
http://www.w3.org/TR/
http://xml.apache.org/xalan-j/
http://www.w3.org/TR/
http://www.w3.org/TandS/QL/
http://www.opennms.org/files/misc/
http://biz.yahoo.com/ri/020516/tech-ciscostudy-2.html

