
TRANSFORMATIONS ON DEPENDENCY GRAPHS:
FORMAL SPECIFICATION AND EFFICIENT MECHANICAL

VERIFICATION

by

Sreeranga Prasannakumar Rajan

B.Tech., Indian Institute of Technology (Madras, India), 1986
MS., University of Southern California (Los Angeles), 1987

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

THE FACULTY OF GRADUATE STUDIES
(Department of Computer Science)

We accept this thesis as conforming
to the re uired standard

THE UNIITYRITISH COLUMBIA

October 1995

©Sreeranga Prasannakumar Rajan, 1995

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

(Signature)

Department of CO)pk%t Ci1.

The University of British Columbia
Vancouver, Canada

Date oL’e 2, itc,c

DE-6 (2/88)

Abstract

Dependency graphs are used to model data and control flow in hardware and

software design. In a transformational design approach, optimization and refine

ment transformations are used to transform dependency-graph-based specifications

at higher abstraction levels to those at lower abstraction levels. In this dissertation,

we investigate the formal specification and mechanical verification of transformations

on dependency graphs. Among formal methods, the axiomatic method provides a

mechanism to specify an object by asserting properties it should satisfy. We show

that an axiomatic specification coupled with an efficient mechanical verification is

the most suitable formal approach to address the verification of transformations on

dependency graphs.

We have provided a formal specification of dependency graphs, and verified the

correctness of a variety of transformations used in an industrial synthesis frame

work. Errors have been discovered in the transformations, and modifications have

been proposed and incorporated. Further, the formal specification has permitted us

to examine the generalization and composition of transformations. In the process,

we have discovered new transformations that could be used for further optimization

and refinement than were possible before. We have devised an efficient verifica

tion scheme that integrates model-checking and theorem-proving, the two major

techniques for formal verification, in a seamless manner.

11

First, we focus on the dependency graph formalism used in the high-level synthe

sis system part of the SPRITE project at Philips Research Labs. The transforma

tions in the synthesis system are used for refinement and optimization of descriptions

specified in a dependency graph language called SPRITE Input Language (SIL). SIL

is an intermediate language used during the synthesis of hardware described using

languages such as VHDL, SILAGE and ELLA. Besides being an intermediate lan

guage, it forms the backbone of the TRADES synthesis system of the University of

Twente. SIL has been used in the design of hardware for audio and video applica

tions.

Next, we present schemes for seamless integration of theorem-proving and model-

checking for efficient verification. We use the Prototype Verification System (PVS)

to specify and verify the correctness of the transformations. The PVS specification

language, based on typed higher order logic allows us to investigate the correct

ness using a convenient level of abstraction. The PVS verifier features automatic

procedures and interactive verification rules to check properties of specifications.

We have integrated efficient simplifiers and model-checkers with PVS to facilitate

verification.

Finally, we show how our method can be applied in the study of formalisms for

hybrid/real-time systems, optimizing compilers, data-flow languages, and software

engineering. Based on the applications of our method on such off-the-shelf for

111

malisms, we substantiate our claim - that an axiomatic specification coupled with

an efficient mechanical verification is the most suitable approach to specify and

verify transformations on dependency graphs independent of underlying behavior

models.

iv

Contents

Abstract ii

Table of Contents V

List of Tables ix

List of Figures xi

Acknowledgement xiv

Dedication xv

1 Introduction 1

1.1 Related Work 10

1.1.1 LAMBDA 12

1.1.2 Formal Ruby 13

1.1.3 Digital Design Derivation 14

1.1.4 Transformations in SAW 14

1.1.5 Verification of Transformations in SILAGE 15

1.1.6 Transformations in Software Design 15

2 Overview of SIL 17

v

2.1 Structural Aspects of SIL 18

2.2 Behavioral Aspects of SIL 19

2.3 Transformations in SIL 26

2.4 Operational and Denotational Semantics of Dependency Graphs 27

2.4.1 Operational Semantics of Dependency Graphs 30

2.4.2 Denotational Semantics of Dependency Graphs 32

3 Specification and Verification in PVS 33

3.1 PVS Specification Language 34

3.2 PVS Verification Features 35

3.3 Notes on Specification Notation 36

3.4 Specification and Verification Examples in PVS 39

4 Efficient Mechanical Verification 56

4.1 Introduction 56

4.2 Motivation 58

4.3 Terminology 60

4.4 Integration Scheme 61

4.5 PVS Specification Logic and Verification Architecture: Review . 63

4.6 Integration Algorithm 64

4.6.1 Supplying Contextual Information 64

4.7 Model-Checking within Theorem Proving 65

4.7.1 Propositional mu-calculus and Temporal Logic: Overview 67

4.7.2 mu-Calculus and fairCTL in PVS 68

4.7.3 Translation from PVS to mu-calculus 71

4.8 Example: BDD-based Propositional Simplification in PVS 74

4.9 Examples: BDD-based Model-Checking in PVS 82

vi

4.10 Discussion and Conclusions. 83

5 Specification of SIL Graph Structure in PVS 87

5.1 Port and Port Array 89

5.2 Edges 91

5.3 Node, Conditional Node and Graph 94

5.4 Well-formedness of a SIL Graph 100

6 Specification of SIL Graph Behavior and Refinement 105

6.1 Behavior 107

6.2 Refinement and Equivalence 109

6.2.1 Compositionality 127

6.3 Axiomatic Specification of Behavior and Refinement: A Synopsis . . 132

7 Specification and Verification of Transformations 140

7.1 Overview 142

7.2 Common Subexpression Elimination 144

7.3 Cross-Jumping Tail-Merging 148

7.4 Other Transformations and Proofs 151

7.5 Devising New Transformations 153

7.5.1 Generalization and Composition of Transformations 153

7.5.2 Investigations into “What-if?” Scenarios 155

8 Applications to Other Domains 162

8.1 Optimizing Compiler Transformations 164

8.2 Data-flow Languages 168

8.3 Structured Analysis and Design 170

8.3.1 DFD and STD 172

vii

8.3.2 Transformation of DFD to SIL 174

8.3.3 Example Illustration 176

8.3.4 Transformation to SIL 179

8.3.5 Specification in PVS 180

8.4 Constraint nets 184

8.4.1 Axiomatization of Constraint Nets 186

8.5 Separation of Control Flow from Data Flow 188

9 Discussion and Conclusions 190

9.1 Intent versus Implementation 192

9.2 From Informal to Formal Specification 193

9.3 Axiomatic Approach vs Other Formal Approaches 196

9.4 Conclusions and Directions for Further Research 199

A Peterson’s Mutual Exclusion Algorithm: Automatic verification 215

B Definitions, Axioms and Theorems 234

B.1 Definitions 234

B.2 Axioms 238

B.3 Theorems 242

C Proof Transcripts 248

C.1 Common Subexpression Elimination 248

C.2 Cross Jumping Tail Merging 254

viii

List of Tables

2.1 Example of a structured operational semantics rule 31

4.1 Parts of j-calculus theories in PVS 75

4.2 PVS theory for CTL operator definitions in terms of greatest and
least fixpoints 76

4.3 PVS theory for fairCTL operator definitions in terms of greatest and
least fixpoints 77

4.4 State machines and their properties in PVS: Mutual-Exclusion Pro
tocol Specification 84

5.1 PVS types for data-flow edge and sequence edge 92

5.2 PVS specification of conditional node as a record type 96

5.3 Node as a subtype of a conditional node 99

6.1 Using weights to enforce linear ordering of data-flow edges forming a
join: PVS specification 116

6.2 Using weights to determine join behavior 117

6.3 Weight when the condition on a conditional node is false 118

6.4 Absence of join: exclusive data-flow edge 119

6.5 Array version of exclusive data-flow edge 120

6.6 A theorem on join of exactly two data-flow edges 122

6.7 Order preserved by refinement and optimization 122

ix

6.8 Order preserved by refinement and exclusive data-flow edge 124

6.9 Graph refinement: property expressing relation between outputs and
inputs of graphs independent of underlying behavior 125

6.10 Predicates for expressing the sameness of nodes 126

7.1 Correctness of common subexpression elimination 147

7.2 PVS specification of preconditions for cross-jumping tail-merging 160

7.3 Correctness of cross- jumping tail-merging 161

7.4 Experimental results for proofs of various transformations on a Sparc
20 with 32 Mb memory 161

8.1 A typical program involving a branch: using pseudo code 164

8.2 A typical program involving a branch: using assembly language. . . 164

x

List of Figures

1.1 Cross jumping tail merging: incorrectly specified in informal document 4

1.2 Example of a dependency graph with control specification 6

1.3 SIL transformations and verification in PVS 8

2.1 Different kinds of SIL ports 18

2.2 An example of a SIL graph description 20

2.3 SIL node: informal description 21

2.4 SIL edges: informal description 22

2.5 SIL Join and Distribute: informal description 23

2.6 Combinational adder: SIL graph repeated over clock cycles 24

2.7 Cumulative adder: SIL graph with DELAY node 25

2.8 Cumulative adder: unfolded SIL graph 26

2.9 Partial specification of a multiplexor 27

2.10 Implementation specification of a multiplexor 28

2.11 Example SIL transformation: retiming 28

2.12 A simple node used as an example for operational semantics 30

4.1 BDD Integration Scheme 62

5.1 SIL data-flow and sequence edges 93

5.2 SIL conditional node 97

xi

5.3 Node as a subtype of a conditional node. 99

6.1 Example: refinement of ports due to non-deterministic choice being
made deterministic 110

6.2 Example: array refinement does not imply every individual port re
finement 113

6.3 Using weights for ordering data-flow edges 116

6.4 Using weights to determine join behavior 117

6.5 Weight when the condition on a conditional node is false 119

6.6 Absence of join: exclusive data-flow edge 120

6.7 Order preserved by refinement and optimization 123

6.8 Order preserved by refinement and exclusive data-flow edge 125

6.9 Graph refinement: property expressing relation between outputs and
inputs of graphs independent of underlying behavior 126

6.10 Compositionality of refinement 131

7.1 Common subexpression elimination 144

7.2 Cross-jumping tail-merging: corrected 148

7.3 Cross-jumping tail-merging: incorrectly specified in informal document. 149

7.4 Cross-jumping tail-merging: generalized and verified 151

7.5 Cross-jumping tail-merging: inapplicable when two nodes are merged
into one 155

7.6 Further optimization impossible using existing transformations. . . . 156

7.7 Inapplicability of cross-jumping tail-merging after common subex
pression elimination: due to precondition restrictions 157

7.8 Inapplicability of common subexpression elimination after cross-jumping
tail-merging: due to precondition restrictions 158

7.9 A simple new transformation: obvious, post-facto 159

8.1 A typical dependence flow graph involving a branch 165

xii

8.2 SIL dependency graph for program 167

8.3 Basic building blocks of a DFD 172

8.4 DFD to SIL Tiansformation 175

8.5 DFD for cruise control of an automobile 177

8.6 STD for cruise control of an automobile 178

8.7 SIL for cruise control of an automobile 179

8.8 Constraint net for modeling integral computation over continuous
time 186

xlii

Acknowledgment

I am indebted to Jeff Joyce for initiating me into mechanical verification. Jeff has
been an excellent advisor by consistently providing directions for research and giving
the freedom to boldly explore the ideas on my own. I am thankful to Paul Gilmore,
Alan Mackworth, and Mabo Ito for providing enlightening comments and discus
sions. I thank Carolyn Talcott of Stanford University for initiating me into formal
methods and semantics of programming languages. The members of the Integrated
Systems Laboratory at UBC provided a stimulating environment for research. A
major part of the work reported here was done while I was at Philips Research Lab
oratories, Eindhoven, The Netherlands from September 1993 till April 1994. The
author wishes to thank Ton Kostelijk for the invitation to work on this project, and
for providing illuminating suggestions, support and a homely environment. I am
grateful to Corrie Huijs, Wim Kloosterhuis, T. Krol, Jaap Hofstede, Peter Middel
hoek, and Wim Smits for the cooperation, review and corrections. Thanks to group
leader G. Beenker and CAD group members for a pleasant stay in Eindhoven.

I am grateful to SRI International for hosting me and providing support during
the last year. The idea of combining theorem-proving and model-checking would
not have matured without the excellent guidance of N. Shankar, M. Srivas, and J.
Rushby of SRI International. Thanks to David Cyrluk, Pat Lincoln, and Sam Owre
of SRI International, J.U. Skakkebaek of TU Denmark, and J. Hooman, G. Janssen
of TU Eindhoven, and D. Stringer-Calvert of York University (UK) for discussions.

I would not have embarked on pursuing this scientific enquiry without the con
stant support and encouragement of my illustrious parents: Sri K. Prasanna Kumar
and Smt. T. Nagarathnamma, and my celebrated brothers: Sri P. Venkat Rangan
and Sri P. Srihari Sampath Kumar, and the guiding light of my venerable Gu
rus Swami Chinmayanandaji, Paramahamsa Yoganandaji, and Matha Amrithanan
damayi. Finally, I am indebted to my wife, Suneetha, who has been an immense
source of inspiration and support for a successful culmination of this dissertation on
the auspicious occasion of Vijaya Dashami in the month of Dasara celebrations in
India.

xiv

Dedicated to my parents
Sri K. Prasanna Kumar and Smt. T. Nagarathnamma

To Know That by Knowing Which everything else becomes
Known.

— from the Upanishads, the fountain head of Sanathana Dharma of India.

Among creations, I am the beginning, the middle and also the
end, 0 Arjuna; among sciences I am the Science of the Self

and I am the logic in all arguments.
— from the Srimad Bhagawad Geeta, Chapter 10, Verse 32.

xv

Chapter 1

Introduction

Dependency graphs’ are graph-based specifications of data and control flow in a

system. They are used to model systems at a high level of abstraction in both

hardware and software design. Typically, dependency graphs are represented pic

torially as graph structures with an associated behavior. A transformation trans

forms one graph structure into another by removing or adding nodes and edges. In

high-level synthesis of hardware, a sequence of transformations is used for refine

ment of dependency-graph-based specifications at an abstract behavior level into

dependency-graph-based implementations at the register-transfer level. Further,

register-transfer-level implementations could be converted to concrete hardware de

11n the literature, they are also known as control-flow/data-flow graphs and signal-flow graphs.

1

signs by low-level logic synthesis. An informal representation of dependency graphs

would lead to subtle errors, making it difficult to verify the correctness of the trans

formations. The problem we have addressed in this work is, how the correctness of

transformations on dependency graphs can be formally specified and verified.

The behavioi of a dependency graph is the set of all tuples, where each tuple

has input data values and corresponding output data values of the dependency

graph. In a transformational design approach, a sequence of transformations is used

for refinement of specifications into concrete implementations. A transformation is

correct if the sequence of behaviors allowed by the implementation is a subsequence

of the behaviors permitted by the specification. Trivial implementations that allow

an empty sequence of behaviors can be ruled out by showing either, that at least one

behavior is allowed by the implementation, or that the implementation is equivalent

to its specification with respect to behavior. The solution to the problem of verifying

the correctness of transformations we have sought in this work, is independent of

models of behavior underlying dependency graphs.

A typical transformation employed in optimizing compilers is cross-jumping tail-

merging [EMH+ 93], shown in Figure 1.1. In this transformation, two identical nodes

on dependency paths that are never active at the same time are merged into one

node. However, as we found out using our approach explained in this paper, the

2Usually known as input/output behavior.

2

transformation does not preserve behavior. Informally, the reason is as follows. The

conditions True/False on open/filled bullets in Figure 1.1 on the bottom/top of the

nodes control the execution of the nodes. Further, we stipulate3 that the value of

p2 is determined by the edge that transmits a well-defined value to it - i.e. when c

is true, q20 determines the value of p2, while q21 determines its value otherwise. In

graph Gi, when c is false, the value of qlO is arbitrary, and so is the value of plO.

If we choose the value of ri to be that of plO, the value of rl is also arbitrary. In

graph G2, when c is false, the value of p2 is that of q21. In this case, the value of r2

is (yl * y2). Thus, the set of outputs for a given yi and y2 is the set of all values

allowed by the type of the output port in graph Gi. Whereas in graph G2, the set of

outputs is a singleton set containing the element (yl * y2). Since, with identical

inputs the corresponding sets of possible outputs are unequal, the behaviors of the

graphs are not equivalent. A corrected and generalized cross-jumping tail-merging

transformation is presented in Chapter 7.

The main contributions of this work are the following:

• A formal specification of dependency graphs, independent of underlying be

havior models, has been achieved.

• A set of optimization and refinement transformations on dependency graphs

3Section 2.2 explains this stipulation on how data conflicts at ports called joins, such as p2, are
resolved.

3

Gi G2

Behavior(G1) = Behavior(G2) =

IF cTHEN qIO=(xl + x2) IF C THEN q20= (xl + x2)
ELSE qi I = (yl * y2) ; ELSE q21 (yl *

•This is derived
(p10= qlO) AND (pll=qll); IF c THEN (p2=q20) •.fromthe
(rl = plO) OR (rI = P11) ELSE (p2 = q21); }

r2 = p2 determined by
the edge

7 whose source
Behavior(G1) = Behavior(G2) is well-defined.

Figure 1.1: Cross jumping tail merging: incorrectly specified in informal document.

have been verified. Generalization of transformations have also been proposed.

• Errors have been discovered in the transformations used in industrial strength

hardware design. Modifications for the erroneous transformations have been

proposed and incorporated.

• New transformations have been devised that could be used for further opti

mization and refinement than was possible before.

• An efficient verification scheme that provides a seamless integration of theorem

proving and model-checking - the two major formal verification techniques -

has been achieved.

4

• Application of our work in other domains such as modeling hybrid/real-time

systems, optimizing compilers, data-flow languages, and software engineering

has provided rigor for formalisms used in those domains.

Formal methods could be divided into two main categories: property-oriented

methods and model-oriented methods [Win9O]. In a property oriented method, the

system under consideration is specified by asserting properties of the system, min

imizing the details of how the system is constructed. While, in a model-oriented

method, the specification describes the construction of the system from its compo

nents. An axiomatic approach is a property-oriented method. Typically, a small set

of properties, called axioms, are asserted to be true, while other properties, called

theorems, are derived. In this work, we have chosen a property oriented method.

We propose an axiomatic specification coupled with an efficient verification method

to study the correctness of transformations on dependency graphs [Raj94aj. As we

discuss later in Chapter 9, an axiomatic approach does not require us to develop

a concrete behavioral model for dependency graphs, thus enabling it to be simpler

and more general than other formal approaches.

A dependency graph4 is a graph-based representation of the behavior of a system.

It consists of nodes representing operations or processes, and directed edges repre

senting data dependencies and data flow through the system. In addition, control

41n this dissertation, the term dependency graph includes control-flow/data-flow graphs and
signal-flow graphs.

5

r = d * (IF c THEN (a+b))

Figure 1.2: Example of a dependency graph with control specification.

flow could also be represented in a dependency graph in several ways. We show an

example of such a graph in Figure 1.2.

In order to present our work in a concrete context, we consider a transforma

tional design approach used in the high-level behavioral synthesis system as part

of the SPRITE project at Philips Research Labs (PRL). In this approach, trans

formations are used for optimization and refinement of descriptions specified using

the SPRITE Input Language (SIL). Descriptions in SIL at a register-transfer level

could eventually be converted to gate-level hardware designs by a logic synthesis

application such as PHIDEO at PRL.

SIL is an intermediate language used during the synthesis of hardware described

using hardware description languages such as VHDL {oEE88], SILAGE {Hi185j, and

ELLA [Compu9O]. It also forms the backbone of the TRADES synthesis system

at the University of Twente. Important features of SIL include hierarchy and de

sign freedom. Design freedom is provided by permitting several implementation

6

choices for a SIL description. Implementation choices are constrained by allowing

an implementation suggestion in a SIL description. The implementation sugges

tion may be tailored by using refinement and optimization transformations. SIL

has been used in the design of hardware for audio and video signal processing ap

plications such as a direction detector for the progressive scan conversion algo

rithm [vdWvMM94, Mid94a]. In one of the applications [Mid94bj, a reduction of

power consumption by 50% has been achieved.

Many of the optimization transformations used in SIL are inspired by those used

in compiler optimization, such as dead-code elimination and common subexpression

elimination. An optimized SIL graph has to satisfy the original graph with respect

to behavior. This satisfaction can be guaranteed by showing the correctness of

the optimization transformations. Correctness means that every behavior allowed

by an optimized SIL graph implementation is required to be one of the behaviors

allowed by its SIL graph specification. An informal specification of SIL has been

presented and documented as part of the SPRITE project [KeH92, KMN+92].

A detailed denotational semantics of SIL for showing the correctness of transfor

mations has been worked out earlier [HHK92, HK93]. The optimization and re

finement transformations have been specified informally as part of the SPRITE

project [EMH93, Mid93, Mid94b].

We use the Prototype Verification System (PVS) [OSR93b], an environment for

7

VHDL SILAGE

PHIDEO

GATE LEVEL

Figure 1.3: SIL transformations and verification in PVS

formal specification and verification. The PVS specification language, based on

typed higher order logic, permits an axiomatic method to develop specifications.

This entails expressing properties of a system at a convenient level of abstraction.

The choice of a high level of abstraction obviates the need to provide a detailed

definition of the behavior of data flow graphs. Thus, without specifying a detailed

behavioral model of a SIL description, we can still compare descriptions with respect

to their behavior, thus establishing the correctness of transformations [Raj94b].

However, we stress that this work addresses the transformations as intended in

their informal specification, and not verification of the software implementations of

transformations. We show SIL and our work in the context of the synthesis system

in Figure 1.3.

8

The rest of this dissertation is organized as follows: Chapter 2 gives an overview

of SIL. In Chapter 3, we give a brief description of the PVS formal system. We

discuss in Chapter 4 our work on integration of model-checking to PVS for efficient

verification. This work has enabled verification of many classes of hardware designs

to be fully automatic [KK94]. In Chapter 5, we describe the specification of struc

ture of SIL graphs, while in Chapter 6, we describe the specification of behavior,

refinement, and equivalence of SIL graphs. We present the specification and verifi

cation of transformations in Chapter 7. In Chapter 8, we show how our formalism

could be applied in other domains such as, modeling of real-time systems, compiler

optimization, data-flow languages, and structured methods in software design. Fi

nally, following a general discussion, conclusions are summarized in Chapter 9. A

compilation of the specification of SIL and its verified properties in PVS is given

in Appendix B. Transcripts of the verification in PVS for two transformations dis

cussed in detail in this paper are listed in Appendix C. The theories and proof

transcripts given in the appendices were automatically generated from the corre

sponding PVS specifications and proof runs. In the remainder of this chapter, we

discuss related work done in the past.

9

1.1 Related Work

There have been some efforts in analysis and verification of refinement transfor

mations in the past. One of the earliest efforts on formalizing the correctness of

optimization transformations is by Aho, Sethi and Uliman [ASU71]. They formal

ized a restricted class of transformations known as Finite Church-Rosser (FCR)

transformations, and provided simple tests to check properties of such transforma

tions. However, none of the past work has dealt with transformations on dependency

graphs in general. Most of the efforts have concentrated on specialized hardware de

scription languages and programming languages. Many other efforts have provided

a formal operational and denotational semantics for variations of dependency graph

formalisms. But, the operational and denotational semantics, unlike axiomatic se

mantics, are tied to a specific behavior model. This makes them unsuitable to verify

transformations on dependency graphs of arbitrary size. Further, it would not be

possible to extend such concrete operational or denotational models to dependency

graphs used in a multitude of formalisms such as in software engineering and real

time systems modeling.

A formal model was proposed for verifying correctness of high-level transforma

tions by McFarland and Parker {MP83]. Transformations used in YIF (Yorktown

Internal Form) [BCD+88] have been proved to be behavior preserving [Cam89]. In

this work, a strong notion of behavior equivalence based on an operational seman

10

tics tied to a particular model of representation is used. A formal system using

transformations for hardware synthesis has been discussed by Fourman [Fou9OJ. We

briefly discuss this work in Section 1.1.1. A synthesis system for a language based

on an algebraic formalism has been presented by Jones and Sheeran [JS9Oj, and its

formalization has been presented by Rossen [Ros9O]. This effort is explained briefly

in Section 1.1.2. Another algebraic approach to transformational design of hard

ware has been worked out by Johnson [Joh84]. A short discussion on this approach

is presented in Section 1.1.3. In the work on tying formal verification to silicon

compilation [JLR91], a preliminary study with an emphasis on the use of formal

verification at higher levels of VLSI design was presented. Correctness of register-

transfer-level transformations for scheduling and allocation has been dealt with in

[Vem9O]. An automatic method for functional verification of retiming, pipelining

and buffering optimization has been presented by Kostelijk [KvdW93]. It has been

implemented in a CAD tool called RetLab as part of PHIDEO. A formal analysis

of transformations used in Systems Architect Workbench (SAW) high-level synthe

sis was studied by McFarland [McF93]. This work is discussed briefly in Section

1.1.4. A post-facto verification method for comparing logic level designs against a

restricted class of data flow graphs in SILAGE was presented by Aelten and oth

ers [AAD93, AAD94]. A formalization of SILAGE transformations in HOL was

studied by Angelo [Ang94]. A concise description of this work appears in Section

1.1.5. An approach based on the execution model for representation languages in

11

BEDROC high-level synthesis system [CBL92] has been used to verify the correct

ness of optimization transformations. A formal verification of an implementation

of a logic synthesis system has been reported by Aagard and Leeser [AL94], but it

does not provide a mechanical verification for optimization and refinement trans

formations in high-level behavioral synthesis. In Section 1.1.6, we briefly discuss

the work on formal specification and verification of refinement transformation in

software design.

1.1.1 LAMBDA

LAMBDA [Fou9Oj is formal system based on higher order logic for designing hard

ware from high level specifications. In this formalism, a design state is represented

as an inference rule derived within the framework of higher order logic. A refinement

is a rule derived within this logic that can be applied to an abstract design state to

arrive at a concrete design state. The different kinds of refinements that are applied

are temporal, data and behavioral. However, a definite set of refinement and opti

mization transformations have not been presented. ELLA, a hardware description

language has been formalized in LAMBDA.

12

1.1.2 Formal Ruby

In this work, an algorithmic specification of sequential and combinational circuits

is specified in a language called Ruby [JS9O], based on an algebraic formalism. The

algebraic formalism consists of relations and operations on relations such as compo

sition, inversion and conjugation. Types are defined as equivalence relations. Data

structures such as lists and tuples are used to represent larger hardware structures.

A parallel composition operator allows specification of hardware composed of in

dependent modules. Other operators such as row and column are introduced for

succinct specification of regular structures such as systolic arrays.

Ruby has been formalized {Ros9O] in a proof checking system called ISABELLE.

ISABELLE, based on type theory, allows syntactic embedding of other logics. A

fragment of Ruby corresponding to combinational circuits, delay elements, serial

composition and parallel composition called Pure Ruby is specified as a type. Prop

erties and proof rules such as induction on Ruby terms are then derived on the type

definition. The rest of the language is then specified using this type.

The axiomatization specifies signals as functions of time and properties of rela

tions on signals. General properties of Ruby relations have been formalized. How

ever, in order to derive properties, the semantic embedding involves signals corre

sponding to a circuit implementation. A Ruby specification itself, and hence its

formalization even at a high level is geared to be directly translatable to a circuit

13

realization having a regular structure. Thus, this formalism is at a lower level of

abstraction than our formalization of SIL. A general concept of refinement is not

formalized. The formalism does not present a well-defined set of transformations,

to be used to refine and optimize Ruby programs, other than retiming.

1.1.3 Digital Design Derivation

This is an algebraic approach to transformational design of hardware [Joh84]. In

this formalism, a functional specification is translated into a representation of a

Deterministic Finite State Machine specification called behavior tables [RTJ93].

The behavior tables are transformed into a digital design. In a behavior table,

rows represent state transitions and columns represent both control and data flow.

Some examples of transformations are column merging, deletion and renaming. The

transformations are not formally verified.

1.1.4 Transformations in SAW

In this work, a formal analysis of transformations [McF93] used in System Architect’s

Workbench (SAW) [TDW88j is carried out. In this system, hardware described

at the register-transfer level or higher using ISPB {Bar8lj is translated into behav

ior expressions. Behavior expressions use sequences and relations on sequences to

14

represent the input/output behavior of the specified hardware. Optimization trans

formations are carried out on the behavior expressions representations. A number

of transformations such as constant folding and loop unwinding have been analyzed

revealing a few conceptual errors.

1.1.5 Verification of Transformations in SILAGE

SILAGE [Hil85] is an applicative hardware description language. This is used to

describe hardware represented as data flow graphs. Transformations such as com

mutativity and retiming are used to optimize and refine SILAGE descriptions. In

this work [Ang94], the syntax and semantics of SILAGE programs have been formal

ized as predicates in HOL [GM93] The denotational semantics of SILAGE have been

formalized in HOL. The equivalence of SILAGE programs is specified with respect

to this denotational semantics. The transformations are then specified as functions

from one formal SILAGE program to another. The correctness of transformations

are thus verified with respect to the denotational semantic notion of equivalence.

1.1.6 Transformations in Software Design

There have been several efforts in specification and verification of refinements used

in program development from high level specifications Most of the efforts choose a

15

specification formalism and develop a notion of correctness, and an associated set

of transformations based on the semantics of the formalism.

The refinement calculus [Bac88] for specifications based on Dijkstra’s guarded

command language and weakest precondition semantics has been formalized in

HOL [vWS91]. Transformations such as data refinement and superposition have

been verified to be correct. A formalization of incremental development of pro

grams from specifications for distributed real-time systems has been worked out in

PVS [Hoo94]. In this formalism, an assertional method based on a compositional

framework of classical Hoare triples is developed for step-wise refinement of specifi

cations into programs.

The KIDS [Smi9O]system is a program derivation system. High level specifica

tions written in a language called Refine are transformed by data type refinements

and optimization transformations such as partial evaluation, finite differencing, into

a Refine program.

16

Chapter 2

Overview of SIL

The descriptions in SIL are characterized as graphs. They are used to describe

synchronous systems. A denotational semantics of SIL has been worked out by

Huijs [HK93]. An operational semantics of data-flow graphs has been worked out

by de Jong [dJ93J. The behavior of a SIL graph is derived from the behaviors of

structural building blocks of the graph. We briefly explain the structural aspects

in section 2.1, the behavioral aspects in Section 2.2, and the transformational ap

proach in Section 2.3. Finally, we provide a brief overview of formal operational and

denotational semantics in Section 2.4.

17

0
Input Access point Non-inverted Condition Access point

.
Output Access point Inverted Condition Access point

Figure 2.1: Different kinds of SIL ports.

2.1 Structural Aspects of SIL

The basic building blocks of a SIL graph are the nodes for operations such as addi

tion, multiplication, and multiplexing. The nodes have ports (also known as access

points) for input, output, and an optional condition input. Every port is associated

with a type, which specifies the set of data values that the port can hold. We show

the different kinds of port in Figure 2.1.

While input and output ports can be of any type, a condition input port is

always Boolean. A node with condition input port is known as a conditional node

to stress the presence of the condition inputs.

The ports of the nodes are connected by edges. SIL has different kinds of edges,

of which, we address sequence edge and data-flow edge:

• A data-flow edge is used to specify the direction of communication of data

values from a source port to a sink port. Each data-flow edge has exactly one

port at its head and exactly one port at its tail. A source port can be the tail

of more than one data-flow edge, in which case it is called a distribute, and a

18

sink port the head of more than edge, in which case it is called a join.

• A sequence edge specifies an ordering between two ports. The ordering is used

to indicate that one of the ports has the overriding influence on the value

of the sink port, to which the two ports are connected by data-flow edges.

Each sequence edge has exactly one port as its tail and one port as its head.

Sequence edges are primarily used to resolve potential conflicts at joins. All

source ports that are tails of data-flow edges with a join as a head must be

linearly ordered by sequence edges.

• The nodes and edges form a SIL graph. A SIL graph itself can be viewed as

one single node, and used to construct another SIL graph in a hierarchical

manner. Figure 2.2 is an example of a SIL graph.

2.2 Behavioral Aspects of SIL

The behavior of a SIL graph is determined by the behavior of individual nodes and

their connectivity, which determines the data flow. By behavior, we mean the set

of tuples, where each tuple has input data values and corresponding data values of

internal and output ports. The values of internal and output ports are constrained

by the data relations of the nodes and the connectivity of the ports in the graph.

When the ports of interest are the outermost input / output (I/O) ports of the SIL

19

condition access point

node

graph, then it is called external or I/O behavior.

Each node is associated with a data relation and an order relation. The data

relation of a node constrains the outputs of the node according to the inputs of the

node. That this is a relation, and not a function, implies nondeterminism allowing

several implementation choices for the nodes. This contributes to design freedom.

Any state information implicit in the node is incorporated into its data relation. In

the case of a conditional node, the output is constrained by the data relation only

when the condition input of the node is true. When the condition input is false, the

output is not defined. The order relation specifies constraints such as, the output

port of a node assumes a value after the value of its input ports have been asserted.

This is particularly important in a hierarchically built node. We illustrate these

sequence edge

output access point
data

hierarchical

Figure 2.2: An example of a SIL graph description.

20

data relation = R

order relation = out appears_later_than i AND
out appears_later_than j

non-conditional nole conditional node with “FALSE condition

Figure 2.3: SIL node: informal description.

concepts in Figure 2.3.

The communication of data values in a SIL graph is modeled by a single token

flow concept, similar to the concept in Signal Flow Graphs (SFG) [Hi1851. A token

is an atomic symbol denoting data. A token generated at an output port (source)

is transmitted through a data-flow edge, emanating from the source, exactly once.

The token is consumed at an input port (sink) to which the edge is connected. The

action of communicating a token through a data-flow edge makes the sequence of

values that the sink can assume equal to the sequence of values that the source can

assume. However, there is one exception to this when a token communicated to the

conditional port of a conditional node denotes a data value that is false. In this

case, the output port, unconstrained by the data relation of the conditional node, is

not defined. When such an output is a source of a data-flow edge, we force the sink

of such a data-flow edge to assume some well-defined arbitrary value. If we do not

make this exception, the sink data values would also not be well-defined. Since a

J

out = undefined

J

21

data flow edge data flow edge

value=v value=v value = value =

undefined well-defined arbitrary

A sequence edge B
>

vi v2
v2 appears_later_than vi

Figure 2.4: SIL edges: informal description.

sink is an input port, it is undesirable to have undefined inputs in practice. In terms

of the token flow concept, a sequence edge from port A to port B describes that

the token fired from B determines the value of a sink port C connected to A and

B by data-flow edges, overriding the effect on the value of C due to the token fired

from A. In such a case, we say that the sequence edge orders port A less than port

B. A data-flow edge has an implicit sequence edge from its source to its sink. We

depict these ideas in Figure 2.4. It should be noted that the token flow concept is an

abstract model of the behavior of a SIL graph. The sequence edge is an artifact used

to resolve conflicts at joins. A sequence edge does not indicate temporal ordering of

the data values that ports would assume when a SIL graph is executed.

The ordering of token communication plays an important part in resolving con

flicts at ports. One such conflict occurs when multiple data-flow edges from different

sources connect into a single sink. Such a sink port is called a join, as shown in

Figure 2.5. To resolve the conflict at a join, first all the data-flow edges that have

sources that have assumed well-defined data values are selected. Then, among those

22

join distribute

Figure 2.5: SIL Join and Distribute: informal description.

selected data-flow edges, the edge that is responsible for communicating the last

token determines the behavior of the join. With the definition of SIL, there will

be exactly one such data-flow edge. Thus, the source ports are linearly ordered, so

that the last of the well-defined data values arriving at the sink is always specified.

If all the data-flow edges to the join originate from sources whose data values are

undefined, then the data value that can appear at the join is arbitrary.

The counterpart of a join is a source from which multiple data-flow edges orig

inate. Such a port, known as a distribute, is shown in Figure 2.5. If a distribute

is a source that assumes well-defined data values, then the sink to which it is con

nected by a data-flow edge, will assume a sequence of data values identical to the

distribute. Otherwise, if the data values that may appear at the distribute are not

defined, the sequence of data values that may appear at the corresponding sink ports

are arbitrary.

A SIL graph models the behavior of a system during a single clock cycle. There

is no explicit notion of state in a SIL graph. The repetition of a SIL graph, called

unfolding over multiple clock cycles gives the behavior of the system across clock

23

t=o

b(O)

b(1) c(1)= a(1) + b(1)
a(1)

t=2.

b(2) c (2) = a(2) + b(2)
a(2)

t=3

Figure 2.6: Combinational adder: SIL graph repeated over clock cycles.

cycles. We depict an example of a combinational adder in Figure 2.6 unfolded over

three clock cycles. The DELAY node, one of the primitive nodes in SIL is used to

model data flow between clock cycles, and thus encapsulates state information. We

can unfold the SIL graph shown in Figure 2.7 over multiple clock cycles to result in

a SIL graph without the DELAY node. The cumulative adder example in Figure 2.8

illustrates the unfolding of a SIL graph with a DELAY node. It should be noted

that comparing two graphs with respect to behavior would not involve the state

information encapsulated in a DELAY node - since the behavior of a SIL graph would

be a snapshot of the execution of the SIL graph in a single clock cycle. In contrast,

the execution histories would have to be taken into account for comparing two state

t=1

24

a c(t) = a(t) + c(t-1)

Figure 2.7: Cumulative adder: SIL graph with DELAY node.

machine models.

The ordering imposed by sequence edges reduce non-determinism. This leads to

a restriction on implementation choices allowed by its corresponding specification.

We illustrate the implementation of a simple multiplexor in Figure 2.10 by reducing

non-determinism in a specification shown in Figure 2.9 using a sequence edge. When

c is true, the value of d is a if the order is such that value of port p1 is communicated

rather than that of port p2. If the order is such that p2 has the overriding influence,

then the value of d is b. While, when c is false the value of b is determined by

the port p2, due to the behavior of the conditional port and join discussed earlier

in section 2.2. The sequence edge in the multiplexor implementation as given in

Figure 2.10, imposes that the value communicated to b is that of port p1 when c is

true. Again, when c is false, port p2 determines the value of b.

25

t=o

t=1

c(-1) = 0

c(t) = a(t) + c(t-1)

Figure 2.8: Cumulative adder: unfolded SIL graph.

2.3 Transformations in SIL

A transformation is viewed as modifying the structure of a graph into another graph.

The modification is done by removing and/or adding nodes and edges. Such modi

fications should not violate the behavior of the original graph.

In SIL, there are a number of optimization and refinement transformations

{EMH+ 93]. Many of the optimization transformations are inspired by optimizing

compiler transformation techniques such as Common Subexpression Elimination,

a c(O) = a(O) + 0

a

t=2

c(1) = a(l) + c(0)

a c(2) = a(2) + c(l)

t=3

26

C

d= (NOTc)

IMPLIES

b

Figure 2.9: Partial specification of a multiplexor.

Cross-Jumping Tail-Merging and algebraic transformations involving commutativ

ity, associativity, and distributivity. Other optimization transformations include

retiming. Refinement transformations include type transformations such as real to

integer, integer to Boolean, and implementing data relations of the nodes by concrete

operators {Mid94b]. We show a retiming transformation example in Figure 2.11

2.4 Operational and Denotational Semantics of De

pendency Graphs

In general, the formal semantics of a specification language can be provided by the

following three methods:

p1
a

b

p2

27

C

d= IFc
THEN a
ELSE b

Sequence edge from p2to p1 means that, the token at p1
overrides the token from p2 in determining the value at d

Figure 2.10: Implementation specification of a multiplexor.

• Axiomatic semantics: the properties corresponding to the basic syntax of the

language are asserted as axioms, and the method of deriving the semantics of

other language constructs is given by a set of inference rules. The axiomatic

specification of dependency graphs provided in this dissertation is an axiomatic

semantics.

• Operational semantics: the syntactic elements of the language are associated

with states, and the execution of the syntax is modeled as state transitions.

a

b

p2

Figure 2.11: Example SIL transformation: retiming.

28

Thus, it provides a computation model for the specification language - i.e.,

how computation is performed in the specification.

• Denotational semantics: the syntactic elements of the language are mapped to

an abstract domain of values by a semantic function. Thus, it describes what

a specification computes.

An axiomatic semantics is suited to reason about specification language in gen

eral, as well as particular instances of specifications written in the specification

language. An operational semantics of a specification language provides a mech

anism to an interpret a specification. The operational semantics described in an

inferential style is called structured operational semantics {Gun92]. Denotational

semantics provides a compositional semantic function for a specification language.

The overview of operational and denotational semantics of dependency graphs given

here is based on earlier work [dJ93, HK93].

We first define a dependency graph G as a 7-tuple (N, P2,PQ?, E, I, 0, C), where

• N is the set of nodes.

• is the set of input ports.

• Pout is the set of output ports.

• Pcd is the set of condition ports.

29

p2

Figure 2.12: A simple node used as an example for operational semantics

• E: P x PT UPd is the set of edges.

• I: V — Powerset(P2)is a mapping from nodes to input ports.

• 0: V — Powerset(P0t)is a mapping from nodes to output ports.

• C: V —* Powerset(Pd) is a mapping from nodes to condition ports.

2.4.1 Operational Semantics of Dependency Graphs

An operational semantics of dependency graphs describes how a computation in the

dependency graph takes place. We briefly outline here the structured operational

semantics of dependency graphs {dJ93]. In this style, the computation in a depen

dency graph is viewed as a sequence of state transitions, where each state transition

takes place by executing one node in the dependency graph. State transitions are

given in the form of inference rules. A state is represented by a mapping from pairs

of node, input ports to a domain of streams:

S: N x Pin Dtream

where Dtream is the domain on streams.

30

S(R,pll) —* S’(R,pll);S(R,p12) — S’(R,p12)
S(R1,p2) — S’(R1,p2)

Table 2.1: Example of a structured operational semantics rule. See Figure 2.12

Every state transition rule is based on an update rule that specifies the state

update on an execution of a node. The state update would cause the output stream

to be updated. We give an example of a semantic rule for the graph given in

Figure 2.12 where S (R,p) on a port p of node R denotes the stream obtained by

appending an element to the stream S(R,p). The expression in Table 2.1, above the

horizontal line describes the state transition of the input ports of the node given in

Figure 2.12. The expression below the horizontal line describes the state transition

of the output port of the node. Thus, the structured operational semantics rule

means that, if the state transition above the horizontal line is executed, then the

state transition below the horizontal line gets executed.

For verification, a comparison of two dependency graphs would be based on the

comparison of the output streams, obtained by the computation of the two graphs

with identical input streams for each of the graphs. A containment of streams would

indicate that the graph whose stream is contained in that of the other graph is a

refinement of that graph. However, because the operational model is at a lower level

of abstraction than the axiomatic model, as seen in the following chapters of this

dissertation, one would not be able to generalize the results for dependency flow

31

graphs of arbitrary structure and application domain. For example, a node with an

arbitrary or indefinite number of input/output ports would not be handled by the

operational semantics.

2.4.2 Denotational Semantics of Dependency Graphs

A denotational model specifies what a dependency graph computes. It is composi

tional. In a denotational semantic model, a meaning function maps syntactic objects

such as ports, edges and nodes to an abstract domain of semantic objects. Thus,

for example, if we define the meaning of a port p as:

I[1l = Dstream

C j[(p x p —* p)}j

where Dstream, the domain of streams, is associated with a partial order and

a least element ±. The denotational semantics of the graph shown in Figure 2.12 is

obtained by composing the denotations of the ports and the node:

= [R(I[p11I, I[l2)

32

Chapter 3

Specification and Verification

in PVS

The Prototype Verification System (PVS) [OSR93b, SOR93a] is an environment for

specifying entities such as hardware/software models and algorithms, and verifying

properties associated with the entities. An entity is usually specified by asserting

a small number of general properties that are known to be true. These known

properties are then used to derive other desired properties. The process of verifica

tion involves checking relationships that are supposed to hold among entities. The

checking is done by comparing the specified properties of the entities. For example,

33

one can compare if a register-transfer-level implementation of hardware satisfies the

properties expressed by its high-level specification.

PVS has been used for reasoning in many domains, such as in hardware verifica

tion [Cyr93, KK94], protocol verification, algorithm verification [LOR93, ORSvH95I,

and multimedia [RRV95]. We briefly give the features of the PVS specification lan

guage in Section 3.1, the PVS verification features in Section 3.2, and highlight the

syntax of the PVS specification language in Section 3.3. Finally, in Section 3.4 we

give some example specifications and verification sessions in PVS.

3.1 PVS Specification Language

The specification language [OSR93b] features common programming language con

structs such as arrays, functions, and records. It has built-in types for reals, integers,

naturals, and lists. A type is interpreted as a set of values. One can introduce new

types by explicitly defining the set of values, or indicating the set of values, by pro

viding properties that have to be satisfied by the values. The language also allows

hierarchical structuring of specifications. Besides other features, it permits over

loading of operators, as in some programming languages and hardware description

languages such as VHDL.

34

3.2 PVS Verification Features

The PVS verifier [SOR93aj is used to determine if the desired properties hold in

the specification of the model. The user interacts with the verifier by a small set of

commands. The verifier contains procedures for boolean reasoning, arithmetic and

(conditional) rewriting. In particular, Binary Decision Diagram (BDD) [BRB9O,

Jan93aj based simplification may be invoked for Boolean reasoning. It also features

a variety of general induction schemes to tackle large-scale verification. Moreover,

different verification schemes can be combined into general-purpose strategies for

similar classes of problems, such as verification of microprocessors [Cyr93, KK94].

A PVS specification is first parsed and type-checked. At this stage, the type of

every term in the specification is unambiguously known. The verification is done

in the following style: we start with the property to be checked and repeatedly

apply rules on the property. Every such rule application is meant to obtain another

property that is simpler to check. The property holds if such a series of applications

of rules eventually leads to a property that is already known to hold. Examples

illustrating the specification and verification in PVS are described in Section 3.4.

35

3.3 Notes on Specification Notation

In PVS specifications1,an object followed by a colon and a type indicates that the

object is a constant belonging to that type. If the colon is followed by the key word

VAR and a type, then the object is a variable belonging to that type.

For example,

x: integer

y: VAR integer

describes x as a constant of type integer, and y as a variable of type integer2.

Sets are denoted by {...}: they can be introduced by explicitly defining the

elements of the set, or implicitly by a characteristic function.

For example,

{O,1,2}

{x: integer I even(x) AND x / 2}

The symbol is read as such that, and the symbol 1= stands for not equal to in

general. Thus, the latter example above should be read as “set of all integers x,

such that x is an even number and x is not equal to 2”.

1PVS specifications in this dissertation are enclosed in framed boxes.
21n C, they would be declared as const mt x; mt y.

36

New types are introduced by a key word TYPE followed by its description as a

set of values. If the key word TYPE is not followed by any description, then it is

taken as an uninterpreted type.

Some illustrations are:

even_time: TYPE = {x: naturall even(x)}

unspecified_type: TYPE

One kind of type that is used widely in this work is the record type. A record

type is like the struct type in the C programming language. It is used to package

objects of different types in one type. We can then treat an object of such a type

as one single object externally, but with an internal structure corresponding to the

various fields in the record.

The following operators have their corresponding meanings:

FORALL x: p(x)

means for every x, predicate3 p(x) is true

3A predicate is a function returning a Boolean type: {true, false}.

37

EXISTS x: p(x)

means for at least a single x, predicate p(x) is true

We can impose constraints on the set of values for variables inside FORALL and

EXISTS as in the following example:

FORALL x, (yl y = 3*x): p(x,y)

which should be read as

for every x and y such that y is S times x, p(x,y) is true.

A property that is already known to hold without checking is labeled by a name

followed by a colon and the keyword AXIOM. A property that is checked using the

rules available in the verifier is labeled by a name followed by a colon and the

keyword THEOREM. The text followed by a h in any line is a comment in PVS.

We illustrate the syntax as follows:

38

axi: AXIOM Y. This is a simple axiom

FORALL (x:nat): even(x) = x divisible_by 2

thi: THEOREM ‘1. This is a simple theorem

FORALL (x:nat): prime(x) AND x / 2 IMPLIES NOT even(x)

We also use the terms axiom and theorem in our own explanation with the same

meanings. A proof is a sequence of deduction steps that leads us from a set of axioms

or theorems to a theorem.

3.4 Specification and Verification Examples in PVS

We illustrate here three examples from arithmetic. The first two examples are taken

from the tutorial [SOR93b]. The last example illustrates the use of a general purpose

strategy to automatically prove a theorem of arithmetic. The first example is the

sum of natural numbers up to some arbitrary finite number n is equal to n *(‘n+1)/2.

The specification is encapsulated in the sum THEORY. Following introduction of n as

a natural number nat, suxn(n) is defined as a recursive function with a termination

MEASURE as an identity function on n. Finally, the THEOREM labeled closed..±orin is

stated to be proved.

39

sum: THEORY

BEGIN

n: VAR nat

sum(n): RECURSIVE nat =

(IF n = 0 THEN 0 ELSE n + sum(n - 1) ENDIF)

MEASURE (LAMBDA n: n)

closed_form: THEOREM sum(n) = (a * (n + 1))/2

END sum

The THEORY is first parsed and type checked, and then the prover is invoked

on the closedlorm THEOREM. The proof is automatic by applying induction and

rewriting. The proof session is as follows:

closed_form

{1} (FORALL (n: nat): (sum(n) = (n * (n + 1)) / 2))

40

Running step: (INDUCT “n”)

Inducting on n, this yields 2 subgoals:

closed_f orm.1

{1} sum(O) = (0 * (0 + 1)) / 2

Running step: (EXPAND “sum”)

Expanding the definition of sum, this simplifies to:

closed_form.1

{1} 0=0/2

Rerunning step: (ASSERT)

Invoking decision procedures, this completes the proof of closedform. 1.

closed_form.2

{1} (FORALL (j: flat):

41

(surn(j) = Cj * Cj + 1)) / 2

IMPLIES sum(j + 1) = ((j + 1) * Ci + 1 + 1)) / 2))

Running step: (SKOLEM 1 (“j!l”))

For the top quantifier in 1, we introduce Skolem constants: (j ! 1), this simplifies to:

closed_forin.2

{1} sum(j!1) = (j!1 * (j!1 + 1)) / 2

IMPLIES sum((j!1 + 1)) = ((j!1 + 1) * ((j!1 + 1) + 1)) / 2

Running step: (FLATTEN)

Applying disjunctive simplification to flatten sequent,

this simplifies to:

closed_form.2

{—1} sumCj!1) = (j!1 * Cj!1 + 1)) / 2

{1} sum(Cj!1 + 1)) = (Cj!1 + 1) * ((j!1 + 1) + 1)) / 2

Running step: (EXPAND “sum” +)

42

Expanding the definition of sum,

this simplifies to:

closed_form.2

[—1] sum(j!1) = (j!1 * (j!1 + 1)) / 2

{1} (j!1 + 1) + sum(j!1) = (j!1 * j!1 + 2 * j!1 + (j!1 + 2)) / 2

Running step: (ASSERT)

Invoking decision procedures, this completes the proof of closedform.2.

Q.E.D.

Run time = 8.09 secs.

Real time = 9.89 secs.

NIL

>

The next example illustrates that decision procedures solve the steps involving

arithmetic and equality reasoning automatically. While, in the creative step of

43

supplying the proper instantiation for an existential quantification, the user has to

interact with the prover. We first present the following PVS THEORY specifying that

3 cent stamps and 5 cent stamps can be used in combination in place of any stamp

whose value is at least 8 cents.

stamps : THEORY

BEGIN

i, j, k: VAR nat

stamps: LEMMA (FORALL i: (EXISTS j, k: i+8 = 3*j + 5*k))

END stamps

stamps

The proof follows by induction:

{1} (FORALL i: (EXISTS j, k: i + 8 = 3 * j + 5 * k))

Rimning step: (INDUCT “i”)

Inducting on i, this yields 2 subgoals:

stamps.1

44

{1} (EXISTS (j: flat), (k: nat): (0 + 8 = 3 * j + 5 * k))

Here we have to supply an instantiation interactively.

Running step: (QUANT 1 (“1” “1”))

Instantiating the top quantifier in 1 with the terms: (11), this simplifies to:

stamps.1

{1} 0+8=3*1+5*1

Running step: (ASSERT)

Invoking decision procedures, this completes the proof of stamps. 1.

stamps.2

{1} (FORALL (j: nat):

((EXISTS (j_0: nat), (k: nat): (j + 8 = 3 * j_0 + 5 * k))

IMPLIES (EXISTS (j_1: nat), (k: nat):

(j + 1 + 8 = 3 * j_1 + 5 *

45

Running step: (SKOLEM 1 (“j!l”))

For the top quantifier in 1, we introduce Skolem constants: (j!1), this simplifies to:

stamps .2

{1} (EXISTS (j_O: nat), (k: flat): (j!1 + 8 = 3 * j_O + 5 * k))

IMPLIES (EXISTS (j_1: nat), (k: nat): (j!1 + 1 + 8 = 3 * j_1 + 5 * k))

Running step: (FLATTEN)

Applying disjunctive simplification to flatten sequent, this simplifies to:

stamps .2

{—1} (EXISTS (j_O: nat), (k: flat): (j!1 + 8 = 3 * j_O + 5 * k))

{1} (EXISTS (j_1: flat), (k: nat): (j!1 + 1 + 8 = 3 * j_1 + 5 * k))

Running step: (SKOLEM —1 (ujI2hI “k’l”))

For the top quantifier in -1, we introduce Skolem constants: (j!2k!1), this simpli

fies to:

stainps.2

46

{—1} j!1 + 8 = 3 * j!2 + 5 * k!1

[1] (EXISTS (j_1: flat), (k: nat): (j!1 + 1 + 8 = 3 * j_1 + 5 * k))

The following steps require user interaction:

Running step: (CASE “k!l=O”)

Case splitting on k!1=O, this yields 2 subgoals:

stamps.2.1

{—1} k!1 = 0

[—2] j!1 + 8 = 3 * j!2 + 5 * k!1

[1] (EXISTS (j_1: nat), (k: nat): (j!1 + 1 + 8 = 3 * j_1 + 5 * k))

Running step: (QUANT 1 (“j!2—3” “2”))

Instantiating the top quantifier in 1 with the terms: (j!2-3 2), this yields 2 subgoals:

stamps.2.1.1

[—1] k!1 = 0

[—2] j!1 + 8 = 3 * j!2 + 5 * k!1

47

{1} j!1 + 1 + 8 = 3 * (j!2 — 3) + 5 * 2

Running step: (ASSERT)

Invoking decision procedures, this completes the proof of stamps.2. 1.1.

stamps.2.1.2 (TCC):

[—1] k!1 = 0

[—2] j!1 + 8 = 3 * j!2 + 5 * k!1

{1} j’2—3>=O

Running step: (QUANT 2 (“j!2+2” “k!l—l”))

No suitable (+ve EXISTS/-ye FORALL) quantified formula found.

No change on: (QUANT 2 (j!2+2 k!l-1))

stamps.2.1.2 (TCC):

[—1] k!1 = 0

[—2] j!1 + 8 = 3 * j!2 + 5 * k!1

48

{1} j!2—3>=O

Running step: (ASSERT)

Invoking decision procedures, this completes the proof of stamps. 2.1.2. this com

pletes the proof of stamps.2.1.

stainps.2.2

[—1] j!1 + 8 = 3 * j!2 + 5 * k!1

{1} k!1 = 0

[2] (EXISTS (j_1: nat), (k: flat): (j!1 + 1 + 8 = 3 * j_1 + 5 * k))

Running step: (ASSERT)

Invoking decision procedures, this simplifies to:

stamps.2.2

[—1] j!1 + 8 = 3 * j!2 + 5 * k!1

[1] k’l=O

{2} (EXISTS (j_1: nat), (k: nat) (j1 + 9 3 * j_i + 5 * k))

49

Running step: (QUANT 2 (“j!2+2” “k!l—l”))

Instantiating the top quantifier in 2 with the terms: (j!2+2 k!l-l), this simplifies to:

stamps.2.2

[—1] j!1 + 8 = 3 * j!2 + * ii

[1] k!1 = 0

{2} j!1 + 9 = 3 * (j!2 + 2) + 5 * (k!1 — 1)

Running step: (ASSERT)

Invoking decision procedures, this completes the proof of stamps.2.2.

This completes the proof of stamps.2.

Q.E.D.

Run time = 10.67 secs.

Real time = 11.65 secs.

50

NIL

>

Finally, the following example illustrates the use of a general purpose strategy

induct -rewrite-bddsimp, that involves induction, rewriting and propositional sim

plification. The theorem is based on the property of a Fibonacci sequence: 1, 1,

2, 3, 5 Here, an element, except the first two, is the sum of the its two im

mediate predecessors. If we denote the sum of n (n > 0) elements in the sequence

by fibsum(n), then we are required to prove the property that the sum is equal to

fib(n+2) + 1. The PVS specification can be given as follows:

51

fib: ThEORY

BEGIN

n: VAR nat

fib(n): RECURSIVE nat =

IF ii = 0 THEN 1

ELSIF n = 1 THEN 1

ELSE fib(n - 2) + fjb(n - 1)

ENDIF

MEASURE LAMBDA n: n

fibsum(n): RECURSIVE nat =

IF n = 0 THEN 3

ELSE fib(n) + fibsum(n - 1)

ENDIF

MEASURE LAMBDA n: n

FibSumThm: THEOREM

fibsum(n) = fib(n + 2) + 1

END fib

52

The verification proceeds automatically by using a strategy based on induction,

rewriting and propositional simplification as follows:

FibSumThm

{1} (FORALL (n: nat): fibsum(n) = fib(n + 2) + 1)

Rule? (auto—rewrite—theory “fib”)

Adding rewrites from theory fib

Adding rewrite rule fib

Adding rewrite rule fibsum

Auto-rewritten theory fib

Rewriting relative to the theory: fib,

this simplifies to:

FibSumTbm

[1] (FORALL (n: nat): fibsuin(n) = fib(n + 2) + 1)

Rule? (induct—rewrite—bddsimp “n”)

fibsum rewrites fibsum(O)

53

to 3

fib rewrites fib(O)

to 1

fib rewrites fib(1)

to 1

fib rewrites fib(2)

to 2

fib rewrites fib(j ! 1 + 1)

to IF j!1 + 1 = 1 THEN 1 ELSE fib(j!1 + 1 — 2) + fib(j!1 + 1 — 1) ENDIF

fib rewrites fib(j ! 1 + 2)

to fib(j!1)

+ IF j!1 + 1 = 1 THEN 1

ELSE fib(j!1 + 1 — 2) + fib(j!1 + 1 — 1)

ENDIF

fibsum rewrites fibsum(j ! 1 + 1)

to IF j!1 + 1 = 1 THEN 1 ELSE fib(j!1 + 1 — 2) + fib(j!1 + 1 — 1) ENDIF

+ fibsum(j!1)

fib rewrites fib(j ! 1)

to IF j!1 = 1 THEN 1 ELSE fib(j!1 — 2) + fib(j!1 — 1) ENDIF

fib rewrites fib(j!1 + 3)

to IF j!1 + 1 = 1 THEN 1 ELSE fib(j!1 + 1 — 2) + fib(j!1 + 1 — 1) ENDIF

54

+ fib(j!1)

+ IF j!1 = 0 THEN 1

ELSE fib(j!1 — 1)

+ IF j!1 = 1 THEN 1

ELSE fib(j!1 — 2) + fib(j1 — 1)

ENDIF

ENDIF

fib rewrites fib(j !1)

to IF j!1 = 1 THEN 1 ELSE fib(j!1 — 2) + fib(j!1 — 1) ENDIF

By induction on n and rewriting,

Q.E.D.

Run time = 10.43 secs.

Real time = 30.62 secs.

55

Chapter 4

Efficient Mechanical

Verification

4.1 Introduction

In this chapter, we describe the seamless integration of decision procedures for ef

ficient model-checking and propositional simplification within a generic theorem

proving environment. The decision procedures are based on Binary Decision Dia

gram (BDD)’ [Bry92]. A survey by Gupta [Gup92] provides an overview of various

‘By BDD, we mean Reduced Ordered BDD (ROBDD).

56

formal verification techniques including theorem-proving and model-checking.

In model-checking [McM93J, a typical implementation specification is a state-

machine. The verification that the implementation satisfies a property is carried

out by reachability analysis. The relationship that a model I satisfies a property S

is written as:

II=s

In generic theorem-proving, the specification could be of any form belonging to the

logical language2 of the theorem-prover. The verification of a property proceeds by

a series of application of deduction rules such as induction. The relationship that

an implementation I satisfies a property specification S is written as:

I- I S

Our seamless integration allows the model-checker to be invoked just like another

decision procedure inside the theorem-prover. We have applied our integrated sys

tem to verification of safety and liveness properties of a variety of hardware and

software examples, in which the entities may be of arbitrary size.

The rest of the chapter is organized as follows. We first give the motivation for

our work on integration in Section 4.2. Next, we give a brief account of terminol

2A typical logical language is based on typed higher-order logic.

57

ogy in Section 4.3. In Section 4.4 we describe, the integration scheme used in the

decision procedure. In Section 4.5, we recapitulate the PVS specification logic and

verification architecture. The algorithm used to implement the integration of the

decision procedure is described in Section 4.6, with a brief mention of supplying con

textual information and a proof of correctness. An integration of model-checking as

a decision procedure within theorem proving is described in Section 4.7. In section

4.8 we give a small illustration of using the decision procedure. Finally, discussion

and conclusions are summarized in section 4.10.

4.2 Motivation

Whereas generic theorem-proving provides powerful abstraction mechanisms, model-

checking based on BDDs provides efficient propositional simplification, and verifi

cation of properties of state-machine specifications. For example, model-checking

could be used to verify a typical cache-coherence protocol that has a small num

ber (typically 5) of processors, it suffers from the state-explosion problem [McM93,

BCM+90bj for a larger number of processors. Further, if we have an unspecified

arbitrary number of processors model-checking would not be able to handle the

verification problem. But, generic theorem-proving would be capable of handling

a verification problem that involves arbitrary structure. However, theorem-proving

does not provide efficient automatic procedures for propositional simplification and

58

state-machine verification.

The BDD-based decision procedures are used as efficient simplifiers for logical

formulas in the generic proof checker. This, essentially involves abstracting logical

formulas into well-formed expressions of boolean type, which are suitable for simpli

fication by an external BDD-based simplifier, and getting back simplified boolean

expressions. The simplified boolean expressions are then mapped back into corre

sponding well-formed logical formulas for further proof-checking. Additionally, the

BDD-based simplifier is supplied with contextual information associated with terms

of the logical formulas in the proof checker.

There has been earlier work on linking VOSS, a symbolic model-checker with

HOL, another proof checker [JS93]. Their work, in hardware verification, was the

first attempt to use a combined approach of theorem proving and BDD-based model

checking. However, the focus in that work was on using VOSS to eventually deter

mine the truth of a conjecture in hardware specification that has been sufficiently

reduced to a concrete specification using HOL. The model-checker was used only

in the final step of a proof. The form of logical formulas sent to the model-checker

was restricted due to a syntax-based interface scheme. One such restriction was

that the atomic terms of the formula had to be Boolean. There was no mechanism

for supplying contextual information from the proof checker to the model checker.

Also, a general facility to map back results obtained from VOSS into HOL was not

59

present.

Our work, on the other hand, does not impose any restrictions on the structure

of logical formulas. The components of a non-atomic Boolean term could be of

any arbitrary type. Further, it allows contextual information to be supplied to the

BDD-based simplifier. We use the BDD-based procedure as if, it is one of several

decision procedures available in the proof checker, by admitting results from the

simplifier to be mapped up into the logic domain. The simplifier uses Reduced Or

dered BDD (ROBDD), a canonical representation of boolean expressions [BRB9O],

to compute greatest (ii) and least () fixpoints [Eme9O, BCM9Ob]. Properties

expressed as temporal logic formulas are transformed into computation of greatest

and least fixpoints. Due to the canonicity property of ROBDDs, we can interpret

our scheme as using execution or computation to speed up proof checking. We

have implemented the system in Prototype Verification Systems (PVS) from SRI

International [OSR93b] using the BDD-based simplifier from TUE [Jan93a, vEJ94].

4.3 Terminology

Here, we briefly account the terms we use to describe the objects in the logic do

main. We follow the terminology employed in Gentzen’s sequent calculus succinctly

summarized by Rushby [Rus93].

60

• A term is a constant symbol, a variable symbol, or a function application.

• An atomic formula is a predicate symbol applied to a term.

• A propositional connective is one of “-‘, A, V, , and

IF-THEN-ELSE.

• A quantifier is either V or

• A well-formed formula (wff) is an atomic formula, a quantified wff or a series

of wff s combined using propositional connectives.

• A sentence is a wff that does not contain free (unbound) variables. The wff

is then said to be closed.

• A sequent is of the form P 1— z where P and are each a set of sentences.

The sentences in P are assumptions, while those in L are conclusions. The

meaning of a sequent, intuitively, is that the conjunction of assumptions implies

the disjunction of conclusions.

4.4 Integration Scheme

A sentence in a sequent is mapped to a tree structure, whose nodes are closed wffs

that are related by any one of the propositional connectives. The terminal leaves

of this tree are wffs which cannot be further mapped to such a tree structure (i.e.

61

wffO bo IvarO

Logic

______ ______ ______

fl wff2 <> boolvarl boolvar2 <> ROBDD
Sentence

wff2 wff3
boolvar2 boolvar3

Wffs related by LABF
Propositional connectives

Figure 4.1: BDD Integration Scheme

the terminal wffs do not have any more top-level propositional connectives). The

wffs are then substituted by variables of boolean type, with syntactically equal

wffs being replaced by a single variable. A new formula is reconstructed back after

substitution. We call this a Least Abstract Boolean Formula (LABF). Furthermore,

for each wff in the original tree, the global context in the logical domain is checked

for any other propositional relation (i.e. if it appears with a wff combined by a

propositional connective) with other wffs in that tree. Such contextual assertions

are also similarly mapped up to an LABF and contextual formulas formed. The

new formula and the contextual formulas are then sent to the BDD-based simplifier

for simplification3.A simplified formula is received back, and the variables in it are

substituted by their corresponding wffs. This simplified formula is introduced in

the original sequent. We illustrate this scheme in Figure 4.1.

3By simplification, we mean obtaining the simplest sum-of-cubes.

62

4.5 PVS Specification Logic and Verification Architec

ture: Review

We have described the PVS specification language and verification features in Chap

ter 3. In this section, we briefly review specification and verification in PVS de

scribed in detail in Chapter 3. PVS specification logic is based on typed higher-order

logic [OSR93b]. It supports reals, Abstract Data Type (ADT) definition, subtyping

and dependent typing. It also features common programming language constructs

such as arrays, tuples and records. The specification language also permits over

loading. Further, it allows parametric and hierarchical structuring of specifications.

The verification architecture consists of a type checker and a proof checker associ

ated with decision procedures for propositional reasoning, arithmetic, (conditional)

rewriting, beta reduction, and data type simplification among others. The user in

teracts with the system by a small set of proof commands. Besides other facilities,

one can combine proof commands into strategies (tactics). It provides internal hooks

to attach foreign decision procedures.

A PVS specification is first parsed and type-checked. The type-checker produces

type correctness conditions (tccs) that assures the well-formedness of the specifica

tion. The tcc obligations are discharged using, in part, the proof-checker. At this

stage, the type of every term in the specification is unambiguously known. The

63

proof checking is conducted using Gentzen’s style sequent calculus [OSR93b]. In

this backwards style, we start with the conjecture to be proved and repeatedly apply

deductive rules, which might use decision procedures. The conjecture is a theorem

if such a series of applications of proof rules eventually leads to an axiom or another

theorem.

4.6 Integration Algorithm

In our implementation of the BDD-based decision procedure integration, we use the

available internal PVS hooks for attaching the BDD-based simplifier to the proof

checker. A sentence in a sequent under consideration in a proof is recursively checked

for wffs combined by propositional connectives. Terms whose types are finite sets

are efficiently encoded in terms of boolean values. Such terms are generally used to

describe finite state machines, and properties of the state machines.

4.6.1 Supplying Contextual Information

• The terms in a sentence could be associated with facts in the global context of

the proof checking environment. This information has to be used, in general, by

decision procedures. A typical situation in which contextual information is used,

occurs due to the introduction of abstract data types (ADTs). The proof checker

64

generates axioms for enumerated type definitions, a kind of ADTs. Two kinds of

axioms are generated:

• Exclusivity axiom: this states that a variable declared as an enumerated type,

can only be exactly one member of the type at a time.

• Inclusivity axiom: this states that a variable declared as an enumerated type

is at least one of the members of the type.

The contextual information such as the above axioms are supplied to the BDD sim

plifier with the restriction operator. The restriction operation in the BDD simplifier

evaluates a boolean expression under the assumption that the other boolean formula

holds.

4.7 Model-Checking within Theorem Proving

The integration of a model-checker or any finite state enumeration tool with a theo

rem prover can be done using either a “shallow embedding” or a “deep embedding”

of the interface to the model-checker in the theorem prover. For example, in the

HOL/VOSS implementation [JS93], which uses a shallow embedding, only the lan

guage (a very restricted temporal logic) used to specify the properties to be proved

in VOSS was embedded in HOL. The model over which the validity of the proper

65

ties are checked exists only in the model-checker and is not defined in the theorem

prover. In a deep embedding, the approach used here, the semantics of the temporal

logic and the model are represented in the theorem prover. An advantage of deep

embedding is that it is possible to reason about the embedding and the model in

the theorem prover also. For example, the process of abstracting a model before it

is sent to the model-checker can be formalized in the theorem prover.

In our integration scheme [RSS95], Computation Tree Logic (CTL) [McM93]

operators that are parameterized with respect to a binary next-state relation N are

defined in PVS in terms of mu-calculus, which is itself embedded in the logic of

PVS. Temporal logic formulas involving a specific interpretation for N, also defined

in PVS, are transformed into mu-calculus formulas involving greatest and least fix-

points [BCM9Oa, Eme9O] by rewriting in PVS. For a class of temporal formulas,

where N is known to be finite, the simplified mu-calculus formulas are translated

and sent to an external BDD-based mu-calculus simplifier to compute greatest and

least fixpoints. If the simplifier returns true then the original temporal formula is

considered to be proved. The rewriting step, the translation process and the invo

cation of the simplifier is encapsulated as an automatic proof strategy that can be

invoked as a primitive PVS command called model-check.

66

4.7.1 Propositional mu-calculus and Temporal Logic: Overview

Propositional mu-calculus is an extension of propositional calculus that includes

universal and existential quantification on propositional variables4. In addition to

atomic propositional terms and predicates on propositional terms, propositional

terms may contain predicate variables bound by greatest (ii) and least () fixpoint

operators. It is strictly more expressive than CTL, and provides a framework to

express fairness (fairCTL) and extended temporal modalities [EL85].

There have been several variations of mu-calculus proposed in the past [C1e89,

EL85, Koz83, Par89, BCM9Oa]. We closely follow the formal definition of the

syntax of propositional mu-calculus from Clarke and others [BCM9Oaj that forms

the basis of the model-checker [Jan93b] used in this work. Let be a finite signature,

in which every symbol is a propositional variable or a predicate variable with a

positive arity. The two syntactic categories formulas and relational terms are defined

in the following manner. A formula is either a conventional propositional expression

or a relational term. A relational term is one of the following:

• Z, a predicate variable in E.

• Az, z2,. .. , z.f, where f is a formula and z1,z2,. .. ,z are propositional vari

ables in E.

4Quantification on propositional variables serves to succinctly express conjunction and disjunc
tion, and does not enhance expressive power.

67

• j.iZ.P[Z] is the least fixpoint of F, where Z is a predicate variable in E and F

is a relational term formally monotone in Z. Similarly, ziZ.P is the greatest

fixpoint of F, and is equivalent to the negation of the least fixpoint of -‘P[--Z}.

Temporal logics have proved to be feasible in specification and verification of

properties of concurrent programs and state-machines models [Eme9O, McM93].

Temporal logics such as CTL with extensions of fairness (fairCTL) and other tempo

ral modalities, and PLTL can be succinctly expressed using the mu-calculus [EL85,

BCM9Oa] defined above. Additionally, it has been shown that LTL model-checking

can be reduced to fairCTL model-checking [CGH94J.

4.7.2 mu-Calculus and fairCTL in PVS

We develop a fixpoint theory based on an ordering by logical implication as follows.

The membership of an element in a set is denoted by its characteristic predicate.

An ordering on the predicates corresponding to set inclusion is introduced by logical

implication on the predicates, i.e., Pi P2 V s: p1(s) p2(s). Monotonicity is

defined as a relation that preserves such an ordering. A fixpoint of a functional

pp, when applied to a predicate argument equals the predicate itself. The Greatest

Lower Bound gib of a set set_of _pred is the intersection of all members of the

set. The Least Upper Bound lub of a set set_of _pred is the union of all members

of the set. The least fixpoint (mu) of a monotonic functional pp is the gib of the

68

set of functions satisfying the property that the application of the functional to a

predicate p is less than or equal to the predicate p itself. The greatest fixpoint

(nu) of a monotonic functional pp is the LUB of the set of functions satisfying the

property that the application of the functional to a predicate p is greater than p

itself:

mu (pp) = gib (LAMBDA p: pp(p) <= p)

flu (pp) lub (LAMBDA p: pp(p) <= p)

We have mechanically verified in PVS, the property that predicates ordered by

logical implication constitute a complete lattice.

The mu-calculus theory thus developed is used to develop the PVS theory (shown

in Table 4.1 of the Appendix) for fairCTL. The fixpoint and fairCTL theories are

parametrized by an uninterpreted type t. In a state-machine model specification,

the type t is instantiated to the type of the state. In fairCTL theory, first the

next state relation N is defined as a binary predicate on a pair of states. The

temporal operators EX, EG, EU, and EF with existential path quantifiers are defined

in a standard manner, and the corresponding operators AX, AF, AG and AU with

universal path quantifiers are defined by introducing appropriate negations in the

corresponding existential versions. An example definition for EG is the following:

EG(N,f):pred[t] = nu (LAMBDA Q: (f AND EX(N,Q)))

69

Fairness

A fairness constraint expresses a condition that should hold sufficiently often along a

path [CG87]. Fairness constraints cannot be directly expressed in CTL. We use the

more expressive mu-calculus to specify the fair temporal logic operators as follows.

We first define fairEG(N,f)(Ff):

fairEG(N,f) (Ff) :pred[t] =

nu(LAMBDA P: EU(N, f, f AND Ff AND EX(N, P)))

“there exists a computation path in the state machine model defined by the next

state relation N, in which a fair formula Ff holds infinitely often and formula f holds

globally along the path”, where N is the next state relation, Ff is the formula that

has to hold infinitely often, and f is the formula that has to hold globally on all

such fair paths. The definition of fairness we have used above is based on the work

by Emerson and Lei [EL85], which also allows other notions of fairness. The other

fairCTL operators are defined by using the fairEG operator in the same manner as

Burch et al. [McM93, BCL+94]. The advantage of having an explicit formalization

of fairness in a verification system is that it allows one to check if there exists at

least one fair path in a given model. Without such an explicit formalization, there is

a danger of imposing fairness constraints that might lead to empty models in which

every property holds trivially.

70

4.7.3 Translation from PVS to mu-calculus

The PVS specification language {OSR93a] features basic types such as reals, integers,

naturals, and lists, and a rich set of common programming language constructs such

as scalars, arrays, functions, and records for structuring specifications. However,

since the low-level BDD-based mu-calculus model-checker accepts only the language

of propositional mu-calculus as discussed in Section 4.7.1, an automatic translation

is provided from a fragment of the PVS language to propositional mu-calculus.

The fragment of the PVS language that is translated into mu-calculus consists of

expressions whose types are hereditarily finite: i.e., types which are either themselves

finite or constructed from expressions which are of finite types. However, boolean

expressions in which subexpression types are not hereditarily finite are translated

into a single boolean variable. For example, the equality x = 1, where x is a variable

of type natural, is translated into a simple boolean variable bvarxl. This scheme

ensures that the output of translation is always a legal mu-calculus expression even

when the input contains a subterm of non-finite type.

Let the category t—expr denote the set consisting of propostional expressions,

scalars, records, tuples, arrays of a specified finite length, equalities on t—exprs, con

ditional expressions on t-exprs, t-exprs with quantifications on boolean variables,

and t-exprs quantified by bt or v. In the following, we give an abstract description

of the translation in terms of the function pvs-to—mu. The input to pvs—to—mu is

71

either a t—expr belonging to the PVS language, or a list whose elements are ei

ther t—exprs or nested lists of t—exprs. The output of pvs—to—mu is a mu-calculus

formula defined in Section 4.7.1.

1. pvs-to-mu(prop-expr) = prop-expr, where prop-expr is a propositional

expression. Thus, true, false, boolean variables, and boolean expressions

consisting of only simple boolean variables are translated without change.

2. pvs-to—mu(scalar) = binary-encoding(scalar), where a scalar is either

a variable or a constant of enumerated type, and binary-encoding is the cor

responding boolean representation of the scalar in a binary encoding scheme.

For example, let instr: TYPE = {jmp ,mov , add} be a scalar type, and x be

a scalar variable of instr type. Scalar constants jmp, mov, and add are trans

lated as lists [true, true], [true ,false], and [false ,false], respectively.

The scalar variable x is translated as a list [bvarl ,bvar2].

3. pvs—to-inu(nestedlist_of_t—expr) = flattened_tuple_of_t-expr

For example, [[bvarl ,bvar2] ,bvar3] is translated as bvarl ,bvar2 ,bvar3.

Such a translated tuple will eventually be incorporate as part of arguments

to predicates, and as variables bound by A and quantifiers. Thus P Cx, x) is

translated as P(bvarl,bvar2,bvarl,bvar2), where x = instr.

4. pvs—to—mu(record) = [pvs—to—mu(fieldl),. . .,pvs—to--mu(fieldN)],

72

where record = [# fieldi,.. .,fieldN #] and fieldi,...,fieldlJ are

t—exprs. A tuple is translated in a similar manner. For example, let state:

TYPE = [# xi,x2: instr #] be a record type, and si: VAR state be a

record variable. The translation output gives a list [bvar-xi ,bvar-xi ,bvar-x2,

bvar-x2]. This will eventually be translated into a mu-calculus expression via

rules 7,9, and 10. arguments to predicates

5. pvs-to-mu(array([O. . .N]—fType))

= [pvs—to—mu(e].i), . . . ,pvs—to—mu(elN)] where the range type fType is

hereditarily finite, eli,. . . ,elN are the elements of the array, and N is specified

and finite.

6. pvs-to-mu(t-exprl = t-expr2)

= (pvs—to-mu(t-expri) = pvs-to-inu(t—expr2)).

7. pvs—to—mu(nestedi.ist_of_t-expr_i = nestedlist_of..t—expr2) =

A pvs—to—mu(t—expri [i] = t—expr2 [i]), i.e., equality on lists is translated

to the conjunction of the equalities on the elements of the flattened lists.

8. pvs—to—mu(t—exprs = IF test THEN then—t-exprs ELSE else—t--exprs)

= IF test ThEN pvs-to-mu(t-expr = then-t-exprs)

ELSE pvs—to-mu(t—expr = else-t-exprs).

i.e., the inner IF expressions are lifted to the top.

73

9. pvs-to-mu(Vx.t-expr) = V pvs-to-mu(x). pvs-to-mu(t-expr). This trans

lation also holds for and A binders in place of V.

10. pvs—to—mu(.P(ei, e2,... , =

.P(pvs—to—mu(e1),pvs—to—mu(e2),..., pvs—to—mu(e)), where e1, e2,. .. , e,

are t-exprs. This translation also holds for z-’ binder in place of .

Other constructions such as functions and subtypes of hereditarily finite types could

also be translated The fragment of the PVS language given above is rich enough

to express specifications and properties of state-machine models in a structured

manner. In comparison to language front-ends for other model-checkers such as

SMV [McM93], the PVS language is more expressive, and has the significant advan

tage of a proof system for the language.

4.8 Example: BDD-based Propositional Simplification

in PVS

We give here a small example to illustrate a PVS specification for a part of a tiny

microprocessor. The simplicity of the example allows us to explain our approach

without digressing into many specification details. In this example, we define a

theory named tinymicro and, declare time as type real and instructions as an

74

mucalculus [t : TYPE]: THEORY
BEGIN

IMPORTING orders [pred [t]]
<=(pl,p2) = FORALL s: p1(s) IMPLIES p2(s)

ismono(pp) = (FORALL pl,p2: p1 < p2 IMPLIES pp(pl) < pp(p2))
isf ix (pp,p) = (pp(p) = p)
glb(set_of_pred)(s) = (FORALL p: member(p,set_of_pred) IMPLIES p(s))

‘h least fixpoint
mu (pp) = gib (LAMBDA p: pp(p) < p)
islfp (pp,pl) =

isf ix (pp,pl) AND
FORALL p2: isf ix (pp,p2) IMPLIES p1 < p2
lub (setofpred)(s):bool = EXISTS p: member(p,setofpred) AND p(s)

Y. greatest fixpoint
nu (pp) = lub (LAMBDA p: pp(p) < p)

ff: VAR [pred[t]—>predEt]]
lfp_is_lfp: THEOREM
ismono(ff) IMPLIES islfp(ff,lfp(ff))
END mucalculus

Table 4.1: Parts of bt-calculus theories in PVS

75

ctlops It: TYPE]: THEORY

BEGIN

IMPORTING mucalculus

u,v,w: VAR t
f,g,Q,P,pl,p2: VAR pred[t]
N: VAR [t, t—>bool]

h Higher order propositional connectives
AND(f,g)(u):bool = f(u) AND g(u);
OR(f,g)(u):bool = f(u) OR g(u)
NOT(f)(u):bool = NOT f(u);
IMPLIES(f,g)(u):bool = f(u) IMPLIES g(u);
IFF(f,g)(u):bool = ±(u) 1FF g(u)

Y. CTL operators
EX(N,f)(u):bool =

EG(N,f):pred[t] =

EU(N,f,g):predft]
EF(N,f):pred[t] =

AX(N,f):pred[t] =

AF(N,f):pred[t] =

AG(N,f):pred[t] =

AU(N,f,g):pred[t]
AND AF(N,g)

END ctlops

(EXISTS v: (f(v) AND N(u, v)))
nu (LAMBDA Q: (f AND EX(N,Q)))
= mu (LAMBDA Q: (g OR (f AND EX(N,Q))))
EU(N, (LAMBDA U: TRUE),f)
NOT EX(N, NOT f)
NOT EG(N, NOT f)
NOT EF(N, NOT f)
= NOT EU(N, NOT g, (NOT f AND NOT g))

Table 4.2: PVS theory for CTL operator definitions in terms of greatest and least
fixpoints.

76

fairctlops [t :TYPEJ: THEORY

BEGIN
IMPORTING ctlops
u,v,w: VAR t
t,g,Q,P,pi.p2: VAR pred[t]
N: VAR It, t—>bool]

X tairCTL operators: CTL extended with fairness
tairEG(N,f) CFt) :pred[tJ =

nu(LAMBDA Q: £ AND mu(LAMBDA P: EXCN, £ AND ((Ft AND Q) OR P))))

tairEXlist_tor_tairEG(N,t,P,Q)(Ftlist) Cu): RECURSIVE bool =

CASES Ft list OF
null: TRUE,
cons(x,y): EX(N, £ AND (Cx AND Q) OR P))(u) AND

tairEXlist_tor_tairEG(N,t,P,Q)(y)(u)
ENDCASES
MEASURE (LAMBDA N,f,P,Q: (LAMBDA Ft list: length(Ftlist)))

tairEG(N,t) (Ftlist) :pred[t) =

nu(LAMBDA P: EUCN, t, £ AND Ft AND EXCN, P)))

Fair?(N,Ft) :pred[t] = tairEG(N,LAMBDA u: TRUE) (Ft)
Fair?(N,Ft list) :predlt] = tairEG(N,LAMBDA u:TRUE)(Ftlist)

tairEX(N,t)(Ft):pred[t] = EX(N,t AND Fair’?(N,Ft))
£airEX(N,t)(Ftlist):pred[t] = EX(N,t AND Fair?(N,Ft list))
tairEU(N,t,g)(Ft):pred[t] = EU(N,f,g AND Fair?(N,Ft))
tairEU(N,t,g)(Ftlist):pred[t] = EU(N,t,g AND Fair?(N,Ftlist))
tairEF(N,t)(Ft):pred[t] = EF(N,t AND Fair?(N,Ft))
£airEF(N,t)(Ftlist):pred[t] = EF(N,t AND Fair?(N,Ftlist))
tairAX(N,t)(Ft):pred[t] = NOT tairEXCN, NOT t)(Ft)
tairAX(N,t)CFtlist):pred[t] = NOT fairEX(N, NOT t)(Ftlist)
tairAF(N,t)(Ft):pred[t] = NOT tairEG(N,NOT t)(Ft)
tairAF(N,t)(Ftlist):pred[t] = NOT £airEG(N,NOT t)(Ftlist)
£airAG(N,t)(Ft):pred[t] = NOT tairEFCN,NOT t)(Ft)
tairAG(N,t)(Ftlist):pred[t] = NOT tairEF(N,NOT t)(Ftlist)
tairAU(N,t,g)(Ft):pred[t] = NOT tairEU(N,NOT g,NOT £ AND NOT g)(Ft)

AND tairAF(N,g)(Ft)
END tairctlops

Table 4.3: PVS theory for fairCTL operator definitions in terms of greatest and
least fixpoints.

77

enumerated type of 3 elements. We then, declare variables t and instr. The function

symbol tinydef is declared as a predicate on the tuple [time ,instructions]. The

definition of tinydef is given using the IF-THEN-ELSE construct. The theorem

tinytheorem is to be proved.

tinymicro: THEORY

BEGIN

time: TYPE = real

instructions: TYPE = JMP, MOVE, NOOP

t: VAR time

instr: VAR instructions

tinydef: pred [[time ,instruct ions]]

tinydef(t, instr)

IF t < 2 THEN instr = NOOP

ELSE instr = JMP OR instr = MOVE OR instr = NOOP

ENDIF

tinytheorem: THEOREM

FORALL t, instr:

t > 2 IMPLIES tinydef(t, instr)

END tinymicro

78

We now elucidate the verification using ROBDD Decision Procedure in the con

text of the above example in PVS. A PVS goal appears in the following form: the

formulas above the dashed line (turnstile) are assumptions, and those below the line

are conclusions. The proof checking is done in a backwards style described in section

4.5.

We first set up the PVS goal and remove the universal quantifiers:

tinytheorem

{1} FORALL t, instr: t > 2 IMPLIES tinydef(t, instr)

For the top quantifier in 1, we introduce Skolem constants: (t!1 instr!1) this simplifies

to:

tinytheorem

{1} t!1 > 2 IMPLIES tinydef(t!1, instr!1)

Applying disjunctive simplification to flatten sequent, this simplifies to:

tinytheorem

79

{—1} t!1 > 2

{1} tinydef(t!1, instr!1)

Expanding the definition of tinydef this simplifies to:

tinytheorem

[—1] t!1 > 2

{1} IF t!1 < 2 THEN instr!1 = HOOP

ELSE instr!1 = JMP OR instr!1 = MOVE OR instr!1 = NOOP

ENDIF

Here, we choose to use our ROBDD decision procedure on formula 1 in the above

sequent. The integration algorithm, first constructs an LABF by assigning boolean

variables to the expression t!1 <2 and the equalities in THEN-branch and ELSE-

branch of the IF-THEN-ELSE expression. Then the contextual information is ex

tracted corresponding to instruction enumerated type defined in the tinymicro the

ory above. Here the contextual assertions are:

80

((iistr!1 = JMP) OR (instr!1 = MOVE) OR (instr!1 = NOOP) AND

(NOT ((instr!1 = JMP) AND (instr!1 = MOVE))) AND...

The BDD simplifier, then evaluates the IF-THEN-ELSE expression under the restriction

that the enumerated-type exclusive and inclusive axioms hold. In this example, only the

inclusive axiom is useful. We then get back a simplified expression as below:

tinytheorein

[—1] t!1 > 2

{i} instr!1 = NOD? OR NOT t!1 < 2

We then invoke built-in arithmetic and propositional decision procedures to finally arrive

at:

tinytheorein

81

C—i] t!i > 2

{i} TRUE

which is trivially true.

4.9 Examples: BDD-based Model-Checking in PVS

We illustrate here, a typical mutual-exclusion protocol due to Peterson [Pet8l}.

In this protocol, processors might be in one of the four states: idle, entering,

critical, exiting. However, no two processors might be in the critical section at

the same time. Using PVS, we can reduce an N-processor mutual-exclusion protocol

into 2-processor mutual-exclusion by successively running a tournament competition

for N/2 processors at each competition stage, until we arrive at a 2-processor corn

82

petition [Sha94]. At this stage, the BDD-based model-checking decision procedure

is called to verify the mutual-exclusion property of the reduced problem. We give

the PVS specification of the 2-processor mutual-exclusion protocol in Table 4.4. The

verification proceeds by rewriting temporal operators into ii and ji, and calling the

BDD-based simplifier to compute fixpoints and map back the results into PVS. The

automatic proof transcript is given in Appendix A .

4.10 Discussion and Conclusions

Reasoning can be done by a series of applications of syntactic inference rules. How

ever, we can choose a representation for the formulas and the simplification done

at the representation level more efficiently. We can view this representation as a

semantic model of the formulas. The PVS architecture of decision procedures can

5The proofs were run on a SUN/Sparc-2 with 32 Meg memory

83

Peterson: THEORY
BEGIN
IMPORTING ctlops

‘I. four states for each processor
stateenum: TYPE ={idle, entering, critical, exiting}

‘I. global state for the 2 processors “pci” and “pc2”, a shared “try”

‘I. variable and “semi”,”sem2”: two semaphores each for processors “pc{i,2}’
staterec: TYPE = [# pci, pc2: stateenum, try, semi, sem2:boolean #)
s,si,s2: VAR staterec
state, statel, state2: VAR staterec

‘I. next state relation for processor pci
nextpi (state1, state2) =

IF idle?(pci(statei)) THEN
idle?(pci(state2)) OR (entering?(pci(state2)) AND try(state2))
ELSIF
entering?(pci(statel)) AND try(statei) AND NOT sem2(statei) THEN
critical? (pci (state2))
ELSIF critical?(pcl(statei)) THEN
(critical?(pci(state2)) AND try(state2)) OR (exiting?(pci(state2)) AND
NOT try(state2)) ELSE idle?(pci(state2)) ENDIF

‘1. similarly for nextp2 and nextsem; composite next state relation
N(statei,state2) = nextpi(statei,state2) AND nextp2(statei,state2) AND

nextsem(statei , state2)
Y. initial state for “pci”, “pc2” and semaphores

init(state): boolean = idle?(pci(state)) AND idle?(pc2(state))
initsem(state): boolean = NOT semi(state) AND NOT sem2(state)

‘I. No two processors are in the critical section at the same time
safe: THEOREM
FORALL state:
(init(state) AND initsem(state)) IMPLIES
AG(N, LAMBDA state: NOT (critical?(pci(state)) AND

critical? (pc2(state)))) (state)
‘I. There is at least one path from all states that lead eventually

‘I. to a state in which a process enters a critical section
live: THEOREM
AG(N, (LAMBDA s:entering?(pci(s)))=>EF(N, LAMBDA s: critical?(pci(s))))(s)

‘h Some paths could lead to deadlock (starvation)
not_live: THEOREM
AG(N, (LAMBDA s:entering?(pci(s)))=>AF(N, LAMBDA 5: critical?(pci(s))))(s)

‘h There is at least one fair departing path from the initial state
‘h Starvation (deadlock) freedom
fair: THEOREM
(mit(s) AND initsem(s)) => Fair?(N, LAMBDA 5: critical?(pci(s)))(s)

END Peterson

Table 4.4: State machines and their properties in PVS: Mutual-Exclusion Protocol
Specification

S4.

be viewed, in part, allowing the simplification to be done at a representation level.

Here, in our work, ROBDD is the representation level. Since, ROBDDs are canonical

representations of boolean expressions, we can view the reduction of a sentence to

ROBDD representation as performing computation or execution. From this perspec

tive, this work is an outgrowth of the work on studying executability of higher order

logic specifications [Raj92, RJS 93]. We have used our integrated system in a variety

of examples with dramatic improvements in speed up of propositional reasoning in

PVS. This has led to fully automatic proof procedures for many classes of hardware

designs including n-bit ALUs and pipelined microprocessors {KK94, SM95]. We have

used the combination of theorem-proving and model-checking for automatically ver

ifying hardware and software specifications, that would not have been possible by

either one of them.

The simplified form, we have chosen is the simplest sum-of-products form. How

ever, further minimization can be carried out using boolean optimization methods.

It should be noted, however, ROBDDs are sensitive to ordering of the variables ap

pearing in the ROBDD. In our implementation, we allow the ROBDD simplifier to

choose an arbitrary ordering, and appropriately trigger heuristic dynamic ordering

if the BDD graph grows large.

85

Another possible approach to using BDD-based simplification in proof checking

is to build deductive mechanisms starting from a BDD basis. However, such a

data structure based approach would pose limitations on the proof checker. The

HOL-VOSS approach [JS93] and our approach propose that proof checker form

the foundational basis. The deductive machinery would then have the flexibility

to use a variety of data structures and decision procedures apart from BDD-based

extensions.

In a few cases such as multipliers, the BDDs could grow unreasonably large. We

envisage that, in such cases, BDD-based simplification can be augmented with other

proof checking tools available in PVS. We also plan to explore the use of ROBDDs

in a wider context of proof checking and verification. Finally, our work has opened

avenues for integrating other specialized decision procedures (such as for hardware

verification) with other built-in powerful decision procedures available in a generic

verifier such as PVS. For this reason, our seamless integration that allows a model

checker to be used just as another decision procedures plays a key role in verification

in-the-large. The system has been used in verification of a core implementation of

the Fibre Channel Protocol [NRP95j.

86

Chapter 5

87

Specification of SIL Graph

Structure in PVS

A specification of the structure of SIL graphs is developed step by step in this

Chapter. We introduce an entity in a SIL graph, and give its specification in PVS.

We repeat some of the definitional concepts reviewed in Chapter 2 to put them in

the context of our specification. We explain the specification of ports in Section 5.1,

followed by the specification of edges in Section 5.2 and nodes and SIL graphs in

Section 5.3. Finally, in Section 5.4 we establish the properties that need to hold for

a SIL graph to be well-formed, and thus have a proper behavior.

88

5.1 Port and Port Array

A port is a placeholder for data values. The set of data values that it can hold

can be restricted, and such a set is denoted by a type. For example, a port that is

allowed to hold only true and false is of Boolean type. We would like to model a

SIL graph and associated transformations for any desired set of data values. We

define a port as a placeholder for an arbitrary set of data values, by defining it as

an uninterpreted type:

port: TYPE

We can create various ports by introducing names such as p0, p1, p2, and declar

ing them as variables (VAR) of type port:

89

p0, p1, p2: VAR port

An array of ports is defined as a record type containing two type fields. The first

field size of type nat — the set of natural numbers {0, 1, 2,. .
. } — specifies the size of

the array. The second field is the array of ports, whose size is equal to that specified

by the first field. Such a typing, in which the type of one field depends on another

field is known as dependent typing. The ARRAYis specified as a function that takes

a member from the set of natural numbers less than size and gives a member of type

port:

parray: TYPE = E# size:nat,

port_array: ARRAY[{i:natli<size} -> port]

90

5.2 Edges

An edge is a directed line connecting two ports. Mathematically, it is a relation on

two ports. For convenience, we will call the port from which the edge is directed the

source, and the port to which the edge is directed to the sink. There are two kinds

of edges in SIL: data-flow edge and sequence edge. A data-flow edge between two

ports indicates the flow of a token from the source to the sink. A sequence edge

between two ports specifies the ordering between them: we will say that a port A

is less than a port B if and only if, the token fired at B determines the value of a

sink port C connected to A and B, rather than the token fired at A. A data-flow

edge between two ports enforces an implicit ordering between the source and sink.

The source is strictly less than the sink. There is no token flow through a sequence

edge.

We specify both kinds of edges as relations on ports. They modify the behavior

of a SIL graph in different ways. We postpone the discussion of the properties of

these relations to the next chapter, and just specify the types of the relations as

predicates — pred — on pairs of ports. A true value of the predicate indicates the

91

dfe: pred[[port ,port)]
sqe: pred [[port ,port)]

Table 5.1:
PVS types for data-flow edge and sequence edge; see Figure 5.1.

presence of an edge between the ports, while a false value indicates the absence of

an edge between the ports. The predicate dfe is the data-flow edge relation, and sqe

is the sequence edge relation as shown in Table 5.1.

We can explicitly define corresponding relations between arrays of ports. For

example, we define the data-flow edges between arrays of ports as:

92

-€

dfe
sqe

Figure 5.1: SIL data-flow and sequence edges; see Table 5.1.

par, parO: parray

same_size(par,parO) =

size(par) = size(parO)

dfear(parO,(pari:{parlsame_size(par,parO)})) =

FORALL Ci i<size(parO)):

dfe(port..array(parO) Ci) ,port.array(pari) Ci))

The direction of the edges is from the first port to the second port. We illustrate

this in Figure 5.1.

93

5.3 Node, Conditional Node and Graph

A node is a structure that takes inputs and gives outputs, satisfying a data relation

associated with the node. Some of the typical nodes are adders and multiplexers

associated with corresponding addition and multiplexing data relations. We also

associate an order relation, which imposes an order on the inputs and outputs.

Externally, a node receives inputs at input ports, and delivers outputs at output

ports. Since a port is a placeholder for a definite set of data values — of a definite

type — the input and output values should belong to the type of the input and output

ports.

A conditional node is a node having special Boolean inputs, which control whether

the data relation between the inputs and outputs holds. Such inputs are known as

conditions. The conditions could appear either inverted or noninverted. If all of the

noninverted conditions on a node are true, and all the inverted conditions are false,

then the outputs and inputs of the node satisfy its data relation. But, if any one

of the noninverted conditions is false or any one of the inverted conditions is true,

then the output has an arbitrary value. In such a case, the output value is restricted

94

only by the type of the output port. Effectively, we can replace all the condition

ports of a conditional node by just one condition port, which takes the conjunction

of the condition inputs with appropriate inversions [EMH+93].

A graph is a structure constructed by using ports, edges, nodes, and conditional

nodes. However, we can hide the structure of a graph, and externally view it as

a node with input and output ports, data and order relations. We can then spec

ify graphs as nodes with internal structure and internal relations. This allows for

hierarchical construction of smaller graphs into larger graphs.

In our specification, we first introduce a conditional node in PVS as a record

type as shown in Table 5.2, where

• inports are the input ports declared as parray type — that is, they are taken

together as one array of an unspecified size.

• outport is an output port declared just as a port. In this work we consider a

95

cnode: TYPE =

inports: parray,
outport: port,
intports: parray,
condport: port,
cond:predtport],
datarel: pred[[{p:parraylsize(p)=size(inports)},port]],

orderrel :predt[{p:parraylsize(p)=size(inports)},port]],

intrel: pred [[parray , parray])

Table 5.2: PVS specification of conditional node as a record type; see Figure 5.2.

single output port for convenience in specification. However, in general, output

should also be declared as an array of ports, as is the case for hierarchically

built graphs and for primitive nodes such as SPLIT.

• intports are the internal ports declared as a parray type to specify the internal

ports the conditional node might have. Such a conditional node would be a

hierarchically built graph.

• condport is a single port providing access for the condition input.

• cond is a condition function giving the value of the condition on the condition

port: this can be either true or false. This is declared as a type pred/port] —

that is, a predicate on port.

• datarel is the data relation governing the output value based on the inputs.

This is declared as a predicate or relation pred on a tuple. The first type in

96

I
I

inports intports intrel

Figure 5.2: SIL conditional node; see Table 5.2.

the tuple is a subset of port arrays, whose size is the same as the inports, and

the second type is a port corresponding to the outport.

• orderrel is declared as exactly the same type as datarel. The difference lies

only in that, it governs the order of output and input values. This is not seen

in the structural type definition here.

• intrel is the internal relation corresponding to the internal structure and con

nectivity of the conditional node. This is derived from the internal ports and

the edges connecting the internal ports.

The conditional node is shown in Figure 5.2.

condport

—

datarel
— — orderel

1’

97

We introduce predicates to compare the structures of conditional nodes based

on their number of input ports:

cnO, cnl: cnode

same_size(cnO,cnl) =

size(inports(cnO)) = size(inports(cnl))

A node without a conditional port is modeled as a conditional node with the

condition on its conditional port being always true. The advantage of such a mod

eling is that it captures both an unconditional node and a conditional node whose

conditional port is always set to true. Since they have identical behavior, it mini

mizes our model by having just one structure for both. In PVS, a feature known as

subtyping allows one to define a type, which denotes a subset of values of an afready

defined type. We specify the node type in Table 5.3 by using this PVS subtyping

feature. The Figure 5.3 illustrates this specification.

98

node: TYPE = {n:cnodel cond(n) = LAMBDA (p:port):TRUE}

Table 5.3: Node as a subtype of a conditional node; see Figure 5.3.

Figure 5.3: Node as a subtype of a conditional node; see Table 5.3.

We model a graph exactly the same as a conditional node, since we have con

structed a conditional node to have internal structure and internal relation. This

allows for viewing a graph as another node, and thus allows for a hierarchical con

struction of larger graphs. We specify a graph as a type equal to a conditional node

type:

graph: TYPE = cnode

99

5.4 Well-formedness of a SIL Graph

A SIL graph has to satisfy certain structural rules governing the connectivity of

ports. Only then can the behavior of a SIL graph be well-defined. For example, we

cannot connect two input ports by a data-flow edge: a source has to be an output

port, while a sink has to be either an input port or a conditional port. The structural

rules are stated as axioms in PVS.

Every port has to be exactly one of an input port, output port, and conditional

port: no port can be left dangling. Even the terminal I/O ports at the SIL graph

boundary are associated with special I/O nodes. We express this as two axioms —

inclusivity and exclusivity — as follows:

100

port..inclusive_ax: AXIOM

FORALL (p:port): is_inport(p) OR is_outport(p) OR is_condport(p)

port_exclusive_ax: AXIOM

FORALL (p:port): is_inport(p) IMPLIES

NOT (is_outport(p) OR is_condport(p)) AND

is_outport (p) IMPLIES

NOT (is_inport(p) OR is_condport(p)) AND

is_condport (p) IMPLIES

NOT (is_inport(p) OR is_condport(p))

where isinport, is_outport, and is_condport are appropriately defined, asserting the

existence of a (conditional) node whose input/output/condition is the port being

considered, as indicated in the following PVS specification:

101

is_inport(p) = (EXISTS cn, (i:{j :natlj<size(inports(cn))}):

pinport (cn, i))

is_outport(p) = (EXISTS cn: poutport(cn))

is_condport(p) (EXISTS cn: p=condport(cn))

That a port can be one of the internal ports of a conditional node is consistent with

the properties defined here, because even internal ports should be one of the three

types of ports.

A data-flow edge is legal only if it connects an input port to an output or a

conditional port:

102

dfe_port_ax: AXIOM

FORALL pl,p2:

dfe(pl,p2) IMPLIES (is_outport(pl) AND

(is_inport(p2) OR is_condpor’t (p2)))

We can derive that self data-flow edges are forbidden by the properties of ports

and the data-flow edge from the above property. If we make p1 = p2 in the above

axiom, and use the port exclusivity axiom (given earlier) that any port can be

exactly one of input, output and condition, we get the corresponding theorem for

preventing self data-flow edges:

self _edge_not_th: THEOREM

FORALL (p:port): NOT dfe(p,p)

It should be noted that data-flow edges between output ports of a node and the

103

input ports of the same node are not prohibited.

Self sequence edges are also prohibited, since sequence edges impose strict or

dering on ports. This has to be asserted as an axiom, as we have not imposed any

restrictive property on the sequence edge:

self_seq_edge_not_ax: AXIOM

FORALL (p:port) NOT sqe(p,p)

Since sequence edge introduces ordering on ports, we expect sqe to be transitive.

But, in order to have a clear separation of structure and behavior, we do not impose

the property on sqe here. However, as we will see in Chapter 6, we formalize the

ordering due to the sequence edges, and due to the behavior of a condition node

when the condition port has a false value, by introducing weights on pairs of ports.

The transitivity property is then imposed on the ordering of weights.

104

Chapter 6

105

Specification of SIL Graph

Behavior and Refinement

We informally discussed in Chapter 2, the behavior of a SIL graph. We recall that

the behavior is the set of ordered tuples of data values that the ports of the graph

can assume, and an external or I/O behavior is the set of ordered tuples of values at

the I/O ports of the SIL graph. The behavior of a SIL graph is determined by the

data relations and order relations of the nodes, connectivity due to the data-flow

edges, and ordering imposed by sequence edges. Any implicit state information in

a SIL graph is contained in the data relations of the nodes. Thus, a comparison of

behaviors in any given clock cycle would not require comparing execution histories

due to possible implicit states in a SIL graph. We discuss behavior in Section 6.1,

followed by a presentation of refinement and equivalence in Section 6.2. Finally,

in Section 6.3, we give a brief synopsis of the axioms and theorems developed and

explained in earlier sections of this Chapter.

106

6.1 Behavior

A detailed definition of behavior would require establishing a concrete formal se

mantics of SIL, since the data values and ordering can be arbitrary. A denotational

semantics of SIL has been discussed by Huijs [HK93]. However, at the level of

abstraction we have chosen to specify, we bring about high-level properties of de

pendency graphs, refinement and equivalence that should hold independent of a

detailed behavior model. We thus obviate the need to specify a concrete behavioral

model of dependency graphs. Such mechanisms for specification (by defining the

properties that have to hold) constitute our axiomatic approach. As we will see in

the next chapter, we compare two SIL graphs by asserting the properties that need

to be satisfied by the graphs with respect to their behavior. We can thus establish

the correctness of transformations. A modification in the concrete behavioral model

faithful to the properties on which we have based our approach would not change

our specification and verification results. Further discussion of the advantages of

our approach is postponed to Chapter 9.

The behavior associated with an access point or a port is described by the same

107

uninterpreted type, as we used in the introduction of the structural specification of

a port:

port: TYPE

This is the stage where the specification of structure and behavior coincide. The

type denoting the set of values being unspecified gives us the freedom to model the

behavior (as with the structure) irrespective of the value type.

108

6.2 Refinement and Equivalence

We have developed specification techniques to describe concepts comparing SIL

graphs with respect to behavior. A SIL graph SG2 is a refinement of another SIL

graph SG1, if the behavior exhibited by SG2 is allowed by SG1. S02 can then be

an implementation of its specification SG 1. In order to define graph refinement,

we first describe port reflnement, and derive graph refinement from the structural

connectivity of a SIL graph.

We introduce an abstract refinement relation on ports:

silimp: pred[[port ,port]]

The refinement relation on ports could be interpreted as follows. A port p1 is

109

qi

q2 p2

q3 q3

value(pl) = (value I value = value(ql)}

value(p2) = (value I value = value(q 1) OR

value = value(q2) OR

value = value(q3)

value(pl) C value(p2)

silimp(pl,p2): p1 is a refinement of p2

Figure 6.1: Example: refinement of ports due to non-deterministic choice being
made deterministic.

a refinement of a port p2, if the set of data values allowed by p1. is a subset of

values allowed by p2. An instance of such a relation comes about due to the non

deterministic choice as illustrated in Figure 6.1. Another kind of refinement could

be a data type refinement: when one port is a subtype of another. The refinement

relation has to be reflexive and transitive. We do not impose antisymmetry to allow

the definition of equivalence as a special case of refinement:

110

silimp(pl,pl)

si].imp_trans_ax: AXIOM

silimp(pl,p2) AND si].imp(p2,p3) IMPLIES

silimp(pl ,p3)

The refinement relation between arrays of ports is introduced by a property stating

that a refinement relation between all corresponding ports of the port arrays implies

a refinement relation between the port arrays.

111

pan, par2: parray

silimpar(parl ,pan2)

silimpar_def_ax: AXIOM

FORALL panl,(par2lsame_size(parl,par2):

(FORALL (ii i< size(panl)):

EXISTS j: silimp(port_anray(parl) Ci) ,port_array(par2) Ci))) 1FF

silimpar(panl ,par2)

It should be noted that the refinement between port arrays does not necessarily

imply the refinement relation between corresponding individual ports of the port

arrays. We illustrate this notion with an example in Figure 6.2. The reason for

underconstraining the definition of port array refinement is to allow refinements for

graphs which might have different numbers of input and output ports. We can thus

allow behavioral refinement without overconstraining the structures of the graphs.

The properties of reflexivity and transitivity that have to be satisfied by the

112

fql1.. Sq21

ql q22

q23.

qi q2

silimp(ql 1,q22) AND silimp(q12,q22) AND silimp(q13,q22)
silimpar(q 1 ,q2)

Figure 6.2: Example: array refinement does not imply every individual port refine
ment.

refinement relation on port arrays are similar to those satisfied by the refinement

relation on ports:

si].impar_refl_th: THEOREM

silimpar (par ,par)

silimpar_trans_ax: AXIOM

si].impar(parl ,par2) AND si].impar(par2,par3) IMPLIES

silimpar(parl ,par3)

113

The equivalence of SIL graphs sileq is defined by introducing the symmetry

property in the refinement relations defined above:

sileq(pl,p2) = silimp(pl,p2) AND

silimp(p2,pl)

sileqar(parl,par2) = silimp(parl,par2) AND

silimp(par2,parl)

A data-flow edge connecting two ports modifies the behavior of the sink in accor

dance with other data-flow edges connecting the same edge output. If a port is the

sink of multiple data-flow edges, then the behavior of the sink port is determined by

an ordering of the source ports. Such a port is called a join. The sequence edges in a

SIL graph indicate such an ordering. However, since the ordering could be affected

by the behavior of a conditional node, we need a general mechanism to specify the

ordering. We model this ordering by associating weights with the data-flow edges,

rather than source ports. Introducing weights to represent sequence edges also, per

mits a clear separation of structure from and behavior: whereas a sequence edge is

114

a structural entity, weight is a behavioral entity that could be derived not only from

sequence edges, but also due the behavior of a conditional node. We first introduce

weight as an uninterpreted type. A function w on ports would return a weight, while

a function war on arrays of ports would return a weight:

weight: TYPE

w: [port,port -> weight]

war: [parray,parray -> weight]

The ordering is used to determine the behavior of a join. This means that we need

to compare the weights on the data-flow edges that form a join. The weights on data-

flow edges that do not form a join need not be compared. However, the definition

of SIL specifies that no two data-flow edges communicate tokens simultaneously

into a join, and no two weights on the edges forming a join can be equal. This

suggests that we need a reflexive, transitive, and antisymmetric ordering relation on

weights: such a relation is called partial order. We define a partial ordering relation

<= on weights, and assert the fact that the weights on a set of data-flow edges

are linearly ordered if and only if the associated data-flow edges form a join. Since

115

<: pred C tweight ,weight)]
partial_order (<=)

dfe_w_ax: AXIOM
FORALL (pO:port),(pl:port),(p2:port):
NOT (p0 = p1)
IMPLIES

dfe(pO,p2) AND dfe(pl,p2)
IMPLIES

((w(pO,p2) < w(pl,p2) OR
w(pl,p2) < w(pO,p2)) AND
w(pO,p2) / w(pl,p2))

Table 6.1: Using weights to enforce linear ordering of data-flow edges forming a join:
PVS; see Figure 6.3.

p0
w(pO,p2) <w (pl,p2)

df—-- P2
OR

w(p l,p2) < w(pO,p2)

& w(pl,p2)

p1
Figure 6.3: Using weights for ordering data-flow edges; see Table 6.1.

we do not compare the weights on edges that do not form a join, the weights are

partially ordered on the set of all data-flow edges in the graph. We give the PVS

specification of this property in Table 6.1 and illustrate it in Figure 6.3.

We describe the property that the behavior of a join depends on the ordering of

the data-flow edges, by comparing weights on the edges flowing into the join port.

116

Table 6.2: Using weights to determine join behavior; see Figure 6.4.

p1

w(pl,p2) is the maximum

IMPLIES

silimp(p l,p2)

Figure 6.4: Using weights to determine join behavior; see Table 6.2.

The greater the weight on a data-flow edge, the later the token is communicated

through it. We state the property that the join port is a refinement (an implemen

tation) of the source whose associated data-flow edge has the maximum weight in

the axiom shown in Table 6.2. It should be noted that we do not impose equivalence

sileq, a relation stronger than refinement silimp. This would give the freedom

to connect a port p1 to p2, when the set of data values allowed by p1 is always a

subset of the set of data values allowed by p2. The property is shown in Figure 6.4.

join_ax: AXIOM
FORALL pl,p2:

(FORALL p:
w(p,p2) <= w(pl,p2)) IMPLIES

silimp(pl,p2)

dfe

117

cond_bottom_ax: AXIOM
NOT cond(cn) (condport(cn)) IMPLIES

FORALL p:
dfe(outport(cn) ,p) IMPLIES
FORALL (n :node): dfe(outport(n) ,p) IMPLIES

w(outport(cn) ,p) <= w(outport(n) ,p)

Table 6.3: Weight when the condition on a conditional node is false; see Figure 6.5.

We still have to capture the notion of behavior of ports connected to the output

port of a conditional node. The behavior of the output port of a conditional node,

when the condition port holds a false value, is not defined. In the case where a join

port is connected to a conditional node, the behavior of the join is solely determined

by edges that propagate well-defined values. This situation is specified by making

the associated weight of the data-flow edge emanating out of a conditional node the

least of all the weights associated with other data-flow edges. The other data-flow

edges, with which the comparison is performed should be connecting the join port to

output ports of nodes or conditional nodes whose condition is never false. However,

this does not preclude a join port to have an arbitrary value - because, it does

not prohibit a graph construction where the join port is connected exclusively to

a single conditional node or multiple conditional nodes whose conditions are false,

and whose output ports are connected to the join port. The property is specified as

an axiom in Table 6.3, and illustrated in Figure 6.5.

118

w(outport(cn),p) is the LEAST

Figure 6.5: Weight when the condition on a conditional node is false; see Table 6.3.

xdfe(pl,p2) = dfe(pl,p2) AND
FORALL p:

(p /= p1) IMPLIES NT dfe(p,p2)

Table 6.4: Absence of join: exclusive data-flow edge; see Figure 6.6.

We can derive the behavior due to a data-flow edge whose sink is not the output

of any other data-flow edge. We will call such an edge an exclusive data-flow edge

— xdfe defined in Table 6.4 and shown in Figure 6.6.

We can explicitly define an exclusive data-flow edge relation for arrays of ports

as in Table 6.5. We can prove the property that an exclusive data-flow edge provides

a refinement relation between the source and the sink. However, for this property

to hold, we have to impose a restriction on the source port — that it has to be

outport(cn)

p

119

p1 p2 No other “dfe” coming into p2:
>® i.e. p2 is not a join.

xdfe

Figure 6.6: Absence of join: exclusive data-flow edge; see Table 6.4.

par, parO: parray

xdfear(parO, (parl:{parlsame...size(par,parO)})) =

FOPJLLL (ili<size(parO)):
xdfe(port_array(parO)(i) ,port_array(parl)(i))

Table 6.5: Array version of exclusive data-flow edge

an output port of a nonconditional node. If the source is an output port of a

conditional node, then the value false on the condition port will produce an undefined

value on its output port. However, a data-flow edge transforms the undefined value

into an arbitrary value of an appropriate type of sink. The undefined value is not

communicated by a data-flow edge because the sink could be an input to another

node. In practice, as we have pointed out in Chapter 2, an input is required to be

a well-defined value, while an output generated could be an undefined value:

120

xdfe_siliinp_th: THEOREM

FORALL (nl:node) , (p2:port):

xdfe(outport(nl) ,p2) IMPLIES silimp(outport(nl) ,p2)

We again point out that the relation between the source and the sink is a refinement

rather than equivalence. This weaker relation leads to more optimization than if it

were equivalence. This issue is discussed further in Chapter 7 as part of generaliza

tions of transformations.

A useful theorem involving a join of exactly two data-flow edges, shown in Ta

ble 6.6, states that the behavior of a join associated with exactly two data-flow

edges is equal to the behavior of the port from which the edge with a greater weight

emanates.

We postulate that the ordering on edges is preserved by behavioral refinement

(and therefore also equivalence). We express the property in PVS as an axiom in

121

d±e2_j oin_th: THEOREM
(dfe(pl,p3) AND dfe(p2,p3) AND

(FORALL p0:
dfe(pO,p3) IMPLIES ((p0 = p1) OR (p0 = p2))))

IMPLIES
IF w(pl,p3) <= w(p2,p3) THEN

sileq(p2 ,p3)
ELSE sileq(pl,p3)
END IF

Table 6.6: A theorem on join of exactly two data-flow edges

p0_preserve_ax: AXIOM
w(pO,p2) < w(pl,p2) AND

si].iznp(pO,pOO) AND
silimp(p2,p22) AND
dfe(pOO,p22) AND
dfe(pll,p22)

IMPLIES
w(pOO,p22) <= w(pll,p22)

Table 6.7: Order preserved by refinement and optimization; see Figure 6.7.

Table 6.7 and show it in Figure 6.7. We can then derive useful extensions of this

property of preserving order by behavioral refinement. One useful extension for

comparing SIL graphs expresses that the order is preserved with an introduction of

an exclusive data-flow edge between an output port of a node and another port. This

is shown in Figure 6.8. The statement of the property is the theorem in Table 6.8.

122

silimp

pl
silimp.

w(pO,pl) < w(pl,p2) IMPLIES w(pOO,p22) < w(pl 1,p22)

Figure 6.7: Order preserved by refinement and optimization; see Table 6.7.

Similarly, we have corresponding postulates and theorems for arrays of ports

instead of individual ports. However, we have to make a slight modification on com

paring port arrays for inequality — that is, we will interpret the inequality operator

1= to mean that the port arrays do not have any port in common. We have such

a facility of overloading operators and functions in PVS. In comparing behaviors of

SIL graphs, we find that the properties expressed using arrays of ports instead of

individual ports, make specifications more succinct and economical.

Finally, we need a refinement relation for graphs. A graph refines or imple

ments another graph, when the data relation of the implementing node is contained

in the data relation of the specification node. We call the implementing graph the

refinement of the specification node. Instead of describing the graph refinement by

123

po...preserve_xdfe_th: THEOREM
w(pO,p2) <= w(pl,p2) AND
siliinp (p2, outport (n3)) AND
xdfe(outport(n3) ,p4) AND

dfe(pOO,p44) AND
dfe(pll,p44) AND

silimp(pO,pOO) AND
silimp(pl,pll) AND
silimp (p4 ,p44)

IMPLIES
w(pOO,p44) < w(pll,p44)

Table 6.8: Order preserved by refinement and exclusive data-flow edge; see Figure
6.8.

describing containment of their data relations, we specify the relationship by using a

higher level property. It is the property that, when the inputs of the implementation

graph are a refinement of the inputs of the specification graph, then the outputs

of the implementation graph have to be refinements of the specification graph. It

should be noted that any state information implicit in a SIL graph is encapsulated in

the data relations, thus obviating the need to consider behavior histories, rather than

a single clock cycle behavior. Furthermore, to incorporate hierarchically structured

graphs, we extend the nodes to have multiple output ports. The PVS specification

in Table 6.9 illustrates the property in Figure 6.9.

This allows us to compare output ports, given a relationship among the input

124

p44

w(pO,p2) < w(pl,p2) IMPLIES w(pOO,p44) < w(pll,p44)

Figure 6.8: Order preserved by refinement and exclusive data-flow edge; see Table
6.8.

Table 6.9: Graph refinement: property expressing relation between outputs and
inputs of graphs independent of underlying behavior; see Figure 6.9.

ports and the relationship between the nodes. It should be noted that this represents

a typical example of how we express a property for comparing ports, without a

detailed representation of the input/output ports and data relations of the nodes.

We also introduce convenient predicates in Table 6.10 to express that two nodes,

having the same number of input ports (i.e., they are of the same..size), have an

equates relationship if they are refinements of each other. In model-theoretic terms,

the data relations of two nodes having equates relationship are identical. However,

silimp
• .p0o

w(pOO,p22)

w(pl,p2)

p1

w(pl l,p22)

refinement_ax: AXIOM
FORALL (nO:node),(nl:node)saine_size(nO,nl)):
ref ines (nO ,nl) AND silimpar(inports(nO) , inports(nl)) IMPLIES
silimpar (outports (nO) , outports (ni))

125

Figure 6.9: Graph refinement: property expressing relation between outputs and
inputs of graphs independent of underlying behavior; see Table 6.9.

Table 6.10: Predicates for expressing the sameness of nodes

in our axiomatic approach, we obviate the need to refer to data relations.

silimpar silimp

equates(cnO, (cnl. I same_size(cnl,cnO))) =

ref ines(cnO, cnl) AND ref ines(cnl, cn0)

sks(cn0,cnl) =

saine_size(cn0,cnl) AND equates(cno,cnl)

126

6.2.1 Compositionality

The refinement axiom presented in Table 6.9 allows us to provide a compositional

proof of correctness of transformations: i.e., the refinement of component subgraphs

of a graph G ensures the refinement of G. This allows us to assert that if a transfor

mation is applied locally to a subgraph g of a graph G, leaving the rest of the graph

unchanged, then the graph G undergoes a global refinement transformation.

Thus, we can state the following theorem:

Theorem (Compositionality of Refinement):

Let g, ga,. . .,g be the component subgraphs of G, and g, g,. . .,g the subgraphs

of G -. If every g’ is a refinement of gj, then G - is a refinement of G. i.e.,

(V i. refines(g,g)) ref ines(G’,G)

Proof:

We carry out the proof by induction on the graph structure. The base case is

straightforward by considering any one of the subgraph components 9j, whose re

finement is given as g. Thus, the statement that every subgraph component g is

a refinement of g holds trivially by the precondition given in the statement of the

theorem:

127

V i. refines(g,g1)

The induction step as shown in Figure 6.10 consists of showing that given a graph

G’ consisting of subgraphs G, whose inputs are connected to the outputs of G’h and

outputs are connected to the inputs of G, is a refinement of a graph G consisting

of subgraphs Gh, G: and G, whose corresponding refinements are G, G and

G. Assuming that the inputs to the graphs are in silinipar relationship, i.e.

silimpar(inputs(G’),inputs(G)), we shall show that the outputs of the graphs

are in silimpar relationship: i.e.,

silimpar(outputs (G’) , outputs (G)).

Due to the refinement relationship G’h refines Gh:

refines(G,Gh),

128

and since the inputs to G, G’ are the same as the inputs to Gh and G, by refinement

axiom of Table 6.9, every output of G’h is also an output of Gh:

silimpar (outputs (G) ,outputs (Gh)).

Since the outputs of G’h and Gh are connected to the inputs of G and G2, therefore

every input of G is also an input of G:

si1impar(inputs(G) ,inputs(G)),

which together with the fact that G refines G2:

refines(G,G2),

129

ensures that the every output of G is also an output of G2:

siliiupar(outputs (G) ,outputs (Ge)).

By a similar argument, we can deduce that every output of G, is also an output of

G3:

silimpar(outputs(G’,) ,outputs(G3)),

which in turn is equivalent to the statement that every output of G’ is also an output

of G:

silimpar(outputs(G’) ,outputs(G)).

130

refines(G’h , A refines(G , G) A refines(G’ , G) refines(G’,G)

Figure 6.10: Compositionality of refinement.

Thus, by the refinement axiom, @ refines G:

Q.E.D

ref ines(G’, G).

131

6.3 Axiomatic Specification of Behavior and Refine

ment: A Synopsis

In this section, we provide a synopsis of the key axioms and theorems presented in

this chapter. We first provide a set of notations and definitions, following which we

give the axiomatic specification. Let r be the set of ports, and II be the power set

of ir. Also, let B = {TRUE, FALSE} indicate the Boolean domain. We define a

dependency graph I’ as a tuple: <I,O,Int,C,Cond,Drel,Orel,Intrel>

where

I E II is the set of input ports

o € H is the set of output ports

mt e H is the set of internal ports - these are the ports of internal nodes that

hierarchically constitute the top-level conditional node

C E II is the set of conditional ports

Cond: r — B is the Boolean condition on a port

Drel: [I, 0] — B is the data relation relating inputs and outputs.

Ore 1: [I, 0] — B is the order relation relating inputs and outputs.

Intrel: [mt , Int] —p B is the internal data/order relation relating internal ports.

132

A simple dependency graph F.9, without any boolean conditional ports is equiv

alent to a dependency graph with all the conditions on the conditional ports always

being TRUE: i.e., Vp E C: Cond(p) = TRUE.

Let denote refinement on ports: p P2 indicates that that the set of values

port P1 can assume is a subset of the values port P2 can assume. The relation

is a partial order, i.e., a reflexive, antisymmetric, and transitive relation. We shall

denote equivalence between ports by the notation Let denote refinement on

dependency graphs: y -y indicates that the behavior of 71 is contained in that

of 72•

The data flow edge between two ports is formalized by dfe, a relation on ports

- i.e., dfe(pi,p2)indicates a data flow edge from P1 to P2. A sequence edge is for

malized by introducing weights on data flow edges, and providing a partial ordering

on the weights. However, weights on the data flow edges forming a join are lin

early ordered. Let w(pi ,P2) indicate the weight associated with the data flow edge

connecting P1 to p2 We are now ready to provide the axioms.

133

Axiom 6.3.1 (Outputs and Inputs are constrained by datarel)

V-yEF. Cond(C(-y)) D Drel(7)(I(’y),O(-y))

Axiom 6.3.2 (Weights on data flow edges are linearly ordered)

Vpo,pi,p E ir.

P0 P1

D (dfe(po,p2)A dfe(pi,p2))

D ((w(po,p2) w(pl,p2) V v(p1,p2) w(po,p)) A w(po,p2) w(pl,p2))

Axiom 6.3.3 (Ordering of weights is preserved by)

VPO,POo,P1,P11,P2,P22 E ir.

(w(po,p2) w(pl,p2) Ap0 P00 Ap2 P22 A dfe(poo,p22) A dfe(pii,p22))

134

D

w(poo,p22) w(p11,p2)

Axiom 6.3.4 (Effect of FALSE value on the condition port)

V7 E r,p1 E 0(y).

Cond(C(y))

D V p E ir.

dfe(p1,p)

D V 7s E F8, P2 E O(7).

dfe(p2,p) D w(p1,p) w(p2,p)

Axiom 6.3.5 (Behavior of a join)

135

V P1,P2 E ir.

dfe(p1,p2)

A V p E ir.

dfe(p,p2)

D w(p,p2) w(p1,p2))

D P1 P2

Axiom 6.3.6 (Refinement of Dependency Graphs)

V70,71 E F8,j0 E I(7o),pi e I(7),pj e O(70),poi E 0(71).

70 7 A Pio Pu

D PoO Pol

Definition 6.3.1 (Exclusive data flow edge)

xdfe(pi,p2)
dJ

de(p1,p2)A Vp.(p P1) D dfe(p,p2))

136

Theorem 6.3.1 (An xdfe enforces equivalence)

V7EI’3,p1,p2Elr,p3 E 0(7). xdfe(O(7),p2)D (0(7) P2)

Proof: Mechanically verified in PVS.

Theorem 6.3.2 (Behavior of a join of two data flow edges)

V P1,P2,P3 E ir.

dfe(pi,p3) A dfe(p2,p3)

A V P0 E ir.

((P0 P1) V (P0 P2))

D -‘ dfe(po,p3))

D IF w(pi,p3) w(p2,p3) THEN

137

P2 P3

ELSE P1 P3

Proof: Mechanically verified in PVS.

Theorem 6.3.3 (Compositionality of Refinement)

Let ‘yi, 72, . .‘YN be the component subgraphs of F,

and -y,. . .,-y be the subgraphs of F’.

If every 7 is a refinement of “y, then F’ is a

refinement of F.

i.e.,

(Vi. (y 7))DF’ F)

138

Proof:

Proof follows by induction on the graph structure, as presented in Section 6.2.1.

139

Chapter 7

140

Specification and Verification

of Transformations

The formal model of the SIL graph structure and behavior can be used to specify and

verify the correctness of transformations. Here, we present optimization transforma

tions, such as Common Subexpression Elimination and Cross-Jumping Tail-Merging.

We have verified the correctness of other optimization transformations, and a similar

technique can be adopted for verifying the correctness of refinement transformations.

We present an overview of specification and verification of transformations in Sec

tion 7.1. We explain in detail common subexpression elimination in Section 7.2 and

cross-jumping tail-merging in Section 7.3. We briefly mention specification and ver

ification of other transformations and proofs in Section 7.4, and generalization and

composition of transformations in Section 7.5.1. In Section 7.5.2, we illustrate with

an example the usefulness of the axiomatic specification in investigating “what-if”

scenarios. Finally, in Section 7.5, we illustrate a new transformation devised in the

process of generalization and “what-if” analysis. This transformation can be used

141

for further optimization and refinement. This could not have been achieved by the

existing transformations defined in the current synthesis framework.

7.1 Overview

The general method we employ to specify and verify transformations consists of the

following steps:

1. Specify the structure of SIL graph on which the transformation is to be applied.

The structure specification could be of graph templates or classes of SIL graphs

rather than a particular concrete graph.

2. Assert that the structure of the SIL graph satisfies the preconditions imposed

on its structure for applying the transformation. The preconditions would

142

consist of constraints imposed on structural connectivity and ordering through

sequence edges.

3. Specify the structure of the SIL graph expected after the transformation is

applied.

4. In the case of verifying refinement, we impose the constraint that the corre

sponding inputs of the SIL graphs before and after transformation are silimpar

— that is, the set of input values to the SIL graph after transformation is a

subset of the set of input values to the SIL graph before the transformation.

For behavioral equivalence, the constraint is imposed as sileqar: the sets of

input values to both graphs are identical.

5. Verify the property that the outputs of the SIL graph before transformation

are silimpar — that is, the outputs of SIL graph after transformation are

refinements of corresponding outputs of the SIL graph before transformation.

In the case of behavior preserving transformation, the corresponding outputs

are verified to be sileqar.

143

par

In this transformation, two nodes of the same kind, which take identical inputs, are

merged into one node as shown in the Figure 7.1.

We first specify the preconditions imposed on the nodes and the input ports

connected to the nodes:

parr

p2
p1

-

Figure 7.1: Common subexpression elimination; see Table 7.1.

7.2 Common Subexpression Elimination

144

• The nodes must be of the same kind

• The ports connected to the input ports of one node must be identical to those

connected to the input ports of the other node.

• The input ports should not be left dangling: they are required to have an

incoming data-flow edge.

For convenience, we will assume that the joins at the input ports of the nodes

have been resolved. Such a resolution of the joins would leave exactly one data-flow

edge connecting each input port of the nodes. Relaxing that assumption would not

change our verification of correctness of the transformation, except for an additional

step of resolving the joins before the transformation is applied:

145

preconds(dotO,(dotl:{dotllequates(dotO,doti)})) :boolean =

7. input ports of dotO and doti are connected to identical ports,

7. and there exists at least one such set of ports

(FORALL (par I is_outportar(par) AND same_size(par, inports(dotO))):

xdfear (par, inports(dotO)) 1FF xdfear(par, inports(dotl))) AND

(EXISTS (par I is_outportar(par) AND same_size(par, inports(dotO))):

xdfear (par, inports (dotO)))

We then specify the structure of the graphs before and after applying the trans

formation. The statement of correctness is asserted as a theorem that, if the inputs

for the graph are sileq then the outputs of the graph are sileq. The theorem is stated

in Table 7.1.

146

CSubE: THEOREM
FORALL dotO, (dotllequates(dotl ,dotO)),

(dotO1equates(dotO1,dotO)):
((
preconds(dotO ,dotl) AND

‘1. structure before transformation
(FORALL (par I is_outportar(par) AND same_size(par,inports(dotO))):

xdfear (par, inports (dotO)) 1FF
(EXISTS (parrlis_outportar(parr) AND

same_size (parr, inports (dotO))):
‘I. ports connecting to dotO and dotOl are equivalent

(sileqar(par,parr) AND xdfear(parr,inports(dotOl)))))
)

IMPLIES

h corresponding output ports of graphs before and after transformation ar
Y. equivalent
(FORALL pl,p2:
((xdfe(outport(dotO) ,pl) OR

xdfe(outport(dotl) ,pl)) AND
xdfe(outport(dotOl) ,p2)) IMPLIES

sileq(pl ,p2))
)

Table 7.1: Correctness of common subexpression elimination; see Figure 7.1.

147

pp00

Figure 7.2: Cross-jumping tail-merging: corrected.

7.3 Cross-Jumping Tail-Merging

In the cross-jumping tail-merging transformation, two conditional nodes whose out

put ports connect to the same sink are checked for being mutually exclusive — that is,

if the conditions on both of the conditional ports are not true (or false) at the same

time (when exactly one of them is true at any time). In such a case, the two nodes

can be merged into one unconditional node of the same kind, and the conditions

moved to the nodes of the subgraph connecting it. We show this transformation in

Figure 7.2.

In the course of our specification in PVS, we found a mistake in the informal

148

qOO

C

Figure 7.3: Cross-jumping tail-merging: incorrectly specified in informal document.

specification of the transformation. We show the erroneous transformation that was

given in the original informal specification in Figure 7.3.

However, the same mistake was discovered later by inspection of the informal

specification [K1o94] independently, without the aid of our formalization. The error

that occurred in the original informal specification was the incorrect placing of the

conditions on the nodes. With such a placing, the correctness of the transformation

depends on the ordering of the output ports of dotO and doti. When condition c

is true, the values at qi and so ri are arbitrary, while the values at qO and rO are

well-defined. Thus if an ordering is imposed such that the port ppO gets the value

at ri, then that value would be arbitrary. However, in the transformed figure, the

condition c being true results in an ordering such that rOl gets the value of qOO,

and vice-versa when c is false. Thus, the transformation would not be correctness

qi 1

149

preserving.

The placing of the conditions as given in Figure 7.3 is leads to violation of precon

ditions - because it prohibits comparing two ports joined exclusively to conditional

nodes — that is, xdfe(pJ,p) AND is_outport_of_conditionalnode(pl) does not ensure

sileq(pl,p2). We found this violation at the very early stage of stating the theorem

corresponding to the transformation. Further, we could relax the mutual exclusive

ness constraint. We introduce a weak assumption that the ordering of the data-flow

edges coming out of the nodes dot0 and dotl in the original graph is the same as

the ordering of the data-flow edges coming into the node dot0l in the optimized

graph. We have suitably modified, generalized, and verified the transformation.

The generalized transformation is shown in Figure 7.4. The PVS specification of

the preconditions is shown in Table 7.2, and the theorem statement is shown in

Table 7.3.

150

pp00

Figure 7.4: Cross-jumping tail-merging: generalized and verified; see Table 7.3.

7.4 Other Transformations and Proofs

We have specified and verified other transformations, such as copy propagation, con

stant propagation, common subexpression insertion, commutativity, associativity,

distributivity and strength reduction described by Engelen and others [EMH93j.

In general, the proofs of transformations, proceed by rewriting, using axioms

and proved theorems, and finally simplifying to a set of Boolean expressions con

taining only relations between ports and port arrays. At this final stage the BDD

simplifier in PVS is used to determine that the conjunction of Boolean expressions

is indeed true. We show the experimental results for verifying the various trans

wO < wi 1FF warO < wan

par00
wO

pan wi parll
wan

151

formations in Table 7.4. The proofs are semi-automatic. A few intermediate steps

such as instantiation of existentially quantified variables need manual interaction,

while other steps are automatic. Examples of inference rules [SOR93a] used in the

proofs are skolem’ for removing universal quantifiers, assert to apply arithmetic

decision procedures and rewriting, bddsimp for Boolean reasoning using BDD, and

inst? for heuristic instantiation of existential quantifiers. The PVS decision pro

cedures for rewriting, and arithmetic and Boolean reasoning use a number of lower

level inference rules that are hidden from the user. Examples of proof transcripts

for common subexpression elimination and cross-jumping tail-merging are given in

Appendix C.

152

7.5 Devising New Transformations

Having a mechanized formal approach such as ours, as opposed to approaches that

are informal or formal approaches not mechanized has an advantage in the aspect

of modifying specifications - the experiments of modifying specifications could be

performed in a framework, that allows one to rapidly verify that the modifications

do not violate the correctness properties. In this section, we show how we could

develop new transformations using our mechanized formal approach.

7.5.1 Generalization and Composition of Transformations

We have seen earlier, in Chapter 7.3, that the specification has assisted in gener

alizing the transformation. In addition, we can make other observations on using

153

our work to generalize many transformations. For example, by replacing the equiv

alence relation sileq by silimp, we find that the optimization transformations can

be generalized as refinement transformations, and the preconditions imposed by the

transformations could be relaxed.

The general technique to investigate composition of transformations is to de

termine that the preconditions imposed by one transformation are satisfied by an

other transformation. This also applies in the case where a transformation could

be applied on one subgraph, while another could be applied on a disjoint subgraph,

without having to take into account the effect of one transformation on the pre

conditions imposed by another. For example, common subexpression elimination

(CsubE) produces a subgraph with an output port that is a distribute. Whereas,

copy propagation (Cppy Prop) [EMH93] can be applied only to a subgraph that

does not have a distribute output port. We can determine in our specification that

if we perform CsubE, the conjunction of the subgraph relation thus obtained and

the preconditions for performing Copy Prop on the same subgraph are false.

154

NOT (wO < wi 1FF warO < wan)

parOO

wO
P1’0°

wan
panll

Figure 7.5: Cross-jumping tail-merging: inapplicable when two nodes are merged
into one.

7.5.2 Investigations into “What-if?” Scenarios

One of the benefits of our formalism is that it allows us to provide answers to ques

tions on the applicability of transformations, and provide formal justifications that

support the answer. A question that comes up quite often in a transformational

design process is whether a transformation that has been applied on a graph could

still be applied with small changes in the graph. We illustrate this point in the

context of a situation that resulted during the tranìsformational design of a direc

tion detector [Mid94a]. It involved a variation of the cross-i umping tail-merging

transformation. In Figure 7.4, if we merge the nodes nodes dotO and doti in the

graph before applying the transformation, the precondition for the transformation

would no longer be true. This is shown in Figure 7.5.

pan

155

a

b

Figure 7.6: Further optimization impossible using existing transformations.

Since the nodes are merged, wO = wi. While, due the ordering imposed by join,

either warO < wan or wan < warO. Thus the equivalence relation wO < wi 1FF

wanO < wan no longer holds, and so the precondition for the application of the

transformation is violated. This precludes the application of the transformation on

the modified graph.

In Section 7.5.2, we argued that cross-jumping tail-merging could not be applied

in cases as shown in Figure 7.5. However, we would like to have such a transforma

tion for further optimization in cases as shown in Figure 7.6. We can view this as a

transformation derived from the process of generalizing cross-jumping tail-merging

Data relations of nO, n 1, nO 1 = RI
Data relations of dotO, doti, dotOl = R2

pp00

ppO = IF c THEN R2(R1(a,b)) ppOO = R2(R1(a,b))

ELSE R2(R1(a,b))

156

Data relations of nO, n 1, nO I = R 1

Data relations of dotO, dot 1, dotOl = R2

a

b

Figure 7.7: Inapplicability of cross-jumping tail-merging after common subexpres
sion elimination: due to precondition restrictions.

and common subexpression elimination. In this transformation, two identical nodes

with mutually exclusive conditions (i.e exactly one node will be active at any time)

have inputs from identical nodes, which in turn have identical inputs. At first, it ap

pears that we could apply a combination of common subexpression elimination and

cross-jumping tail-merging. If we apply common subexpression elimination first, to

obtain a single node whose output is connected to the mutually exclusive nodes,

then we cannot apply cross-jumping tail-merging as shown in Figure 7.7. On the

other hand, if we apply cross-jumping tail-merging first, the outputs of the other

pair of identical nodes form a join at the input of the single node obtained. In this

case, we cannot apply common subexpression elimination as shown in Figure 7.8.

pp0

157

Data relations of nO, ni, nOl = Ri

Data relations of dotO, dot 1, dotO 1 = R2

a

Figure 7.8: Inapplicability of common subexpression elimination after cross-jumping
tail-merging: due to precondition restrictions.

The problem can be solved by devising a new and simple transformation as

follows. In the description of common subexpression elimination shown in Figure 7.1,

the outputs of nodes dotOl and doti were required to be not connected to join ports.

However, we can relax this constraint, and provide a new and simple transformation

that can be used to optimize a dependency graph. We show the new transformation

in Figure 7.9. We could have arrived at the transformation in an ad hoc manner

simply by examining the semantics of a conditional expression. However, we devised

the transformation after examining by doing a “what-if” analysis formally in the

problem of composing two transformations. This suggests that our formal model

can be used to devise new transformations in a methodical manner.

pp0

158

a data relation of node ni = Ri
data relation of node n2 = R2

-

IF c THEN p1 = R1(a,b)
ELSE p1 R2(a,b)
refines(n2,ni) AND
refines(n2,nl) IMPLIES R2 c Ri

pl =Rl(a,b)

Figure 7.9: A simple new transformation: obvious, post-facto.

159

sks(cnl:cnode,cn2:cnode) = equates(cnl,cn2) AND same_size(cni,cn2)
preconds

(dotO,
(doti :{dot Isks (dot ,dotO)}),
(dotOl : {dot I sks(dot , dotO)}),
(parO : {parl is_outportar(par)&same_size(par, inports(dotO))}),
(pan :{panl is_outportar(par)&same_size(par, inports(dotO))}),
(parOO : {panl is_outportar (par)&same_size (par, inports(dotO))}),
(parli : {panlis_outportar(par)&sarne_size(par,inports(dotO))}),

ppo ,ppOO)

h connectivity at the input ports of SIL graph before transformation
xdfear (parO, inports(dotO)) AND xdfear(pani, inports(doti)) AND
(w(outport(dotO),ppO) < w(outport(dotl),ppO) 1FF
war(parOO,inports(dotOi)) < war(parii,inports(dotOl))) AND

‘h connectivity at the output ports of SIL graph before transformation
dfe(outport(dotO),ppO) AND dfe(outport(doti),ppO) AND
(FORALL pp: ((pp 1= outport(dotO)) OR (pp 1= outport(doti)))
IMPLIES NOT dfe(pp,ppO)) AND

h connectivity at the input ports of SIL graph after transformation
dfear(parOO,inports(dotOi)) AND dfear(parii,inports(dotOl)) AND
(FORALL (par Isize(par)=size(parOO)):
(par /= parOO AND par / parli)
IMPLIES NOT dfear(par,inports(dotOl))) AND

‘h connectivity at the output ports of SIL graph after transformation
xdfe(outport(dotOi) ,ppOO) AND

‘h corresponding input ports of graph before and after transformation
are equivalent

sileqar(parO,parOO) AND sileqar(parl,panii)

Table 7.2: PVS specification of preconditions for cross-jumping tail-merging

160

CjtM: THEOREM
FORALL (dotO: cnode)
LET

sks = LAMBDA (cnO:cnode),(cnl:cnode):
same_size(cnO,cnl) AND equates(cnO,cnl),

sk = LAMBDA (n:cnode):sks(n,dotO),
ios = LAMBDA par: is_outportar (par) & same_size (par, inports (dotO))
IN
FORALL (doti Isk(dotl)),

(dotOl Isk(dotOl)),
(parO ios (parO)),
(parllios(parl)),
(parOO i ios (parOO)),
(par11ios(par11))

‘h structure and preconditions on graphs before and after transformation
preconds(dotO,dotl ,dotOl ,par0,parl ,paroO,parll,ppo,ppOO)
IMPLIES

/ corresponding output ports are equivalent
sileq(ppO ,ppOO)

Table 7.3: Correctness of cross-jumping tail-merging; see Figure 7.4.

_Transformation] Run time in Seconds]

Common subexpression elimination 30
Common subexpression insertion 25
Cross-jumping tail-merging 56
Copy propagation 10
Constant propagation 2
Strength reduction 2
Commutativity 3
Associativity 3
Distributivity 3
Retiming 3
Self-inverse 1

Table 7.4: Experimental results for proofs of various transformations on a Sparc-20
with 32 Mb memory

161

Chapter 8

162

Applications to Other Domains

In this chapter we discuss how we could apply our formal approach to investigate

formalisms used in modeling real-time systems, optimizing compilers, data-flow lan

guages, and Structured Analysis and Design (SA/SD). We give a high-level gen

eral methodology of application in each of the formalisms. Section 8.1 describes

the graph-based formalism used in optimizing compilers. Data-flow languages that

have data-flow graphs as the foundational basis are the subject of Section 8.2. In

Section 8.3, we show how we can capture the data-flow diagrams used in SA/SD

approach in our formalism. In Section 8.4, we discuss briefly the constraint net

formalism used in modeling real-time systems. Finally, in Section 8.5, we give a

brief discussion of separation of control-flow and data-flow.

163

X 1
Y : 2

IF CX 1) THEN Y : 3

Table 8.1: A typical program involving a branch. See Figure 8.1

MVI #1,X
MVI #2, Y
CMP X,#1
JZ Label

Label: MVI #3, Y

Table 8.2: A typical program involving a branch: assembly language version of
program in Figure 8.1.

8.1 Optimizing Compiler Transformations

There are a variety of transformations described in literature [AC72, EMH+93] for

optimization and refinement in optimizing compilers. A notion similar to depen

dency graphs known as dependence graphs [PBJ+91], are used as an intermediate

representation of a program during the process of compilation. Like dependency

graphs, dependence flow graphs also combine control-flow and data-flow into one

graph. We consider a typical program [PBJ91] given in Table 8.1, whose low-level

assembly program is given in Table 8.2. The associated dependence flow graph

representation is given in Figure 8.1.

164

Figure 8.1: A typical dependence flow graph involving a branch. See Table 8.1

165

In Figure 8.1, the load operator reads the contents of a storage location and

outputs the value as a token. While, the store operator is the inverse of the load

operator receives a value on a token and stores it into a memory location. De

pendence arcs that sequence operations on location y go into switch and merge

operators, which implement flow of control. These operators serve to combine con

trol information with data dependencies. We provide a simple transformation of

the dependence flow graph of Figure 8.1 to a dependency graph such as SIL. The

corresponding dependency graph is shown in Figure 8.2.

The straight-forward transformation from dependence flow graphs to depen

dency graphs suggests that the formal model developed for dependency graphs such

as SIL could be applied for specification and verification of transformations used

in optimizing compilers [Raj95b]. A number of transformations such as common

subexpression-elimination and cross-jumping tail-merging, whose specification and

verification have been discussed in Chapter 7 have direct origins in optimizing com

pilers.

166

Figure 8.2: SIL dependency graph for program. See Table 8.1

Y

Y

167

8.2 Data-flow Languages

Data-flow languages [WP94] are based on the data-flow graph paradigm. In this

paradigm, a program is modeled as a set of operator nodes, with input and output

ports. The ports are connected by edges that carry data. Because of the absence

of control specification, every operator node executes whenever the data is available

on its input ports. Thus, it models concurrent execution implicitly. The data-flow

paradigm is based on a single-assignment property [Cha79, WP94]. The single-

assignment property means that the variables are assigned exactly once. Because

the execution of statements need not be in the lexical order of the written program,

a statement gets executed as soon as all the variables in the statement are well

defined. Thus, the single-assignment property ensures that the execution of the

program is well-defined.

The main characteristics of data-flow languages are the following:

168

• Absence of side effects.

• Single assignment semantics.

• Inherent concurrency.

• Absence of sequencing.

Because of implicit concurrency and transparent control flow, deadlocks happen

less often. Lucid [AW77, WP94] is one of the early data-flow languages designed

to be amenable to program transformations and formal verification. Although it

developed as a simple non-procedural language with temporal logic operators to

prove properties of programs, it has grown to be an intensional multidimensional

programming language with applications in parallel computing [AFJWed]. Lus

tre [HFB93], a synchronous declarative language based on the data-flow paradigm

has been used to specify synchronous hardware and real-time systems. Programs

written in Lustre are compiled into a sequential code. Its control structure is a

finite automaton obtained by exhaustive simulation of Boolean variables appearing

in the program. Id [WP94], another data-flow language developed for programming

a data-flow computer, has been designed as a block-structured, expression-oriented,

single-assignment language avoiding notions of sequential control. SISAL [WP94] is

169

a stream-oriented single-assignment applicative language. An intermediate depen

dency graph called IF1 [WP94] is used to represent SISAL programs between pars

ing and machine code generation. IF1 is an acyclic graph representation with four

components: operator nodes, edges denoting data-flow, types denoting data types

on edges, and graph boundaries surrounding groups of nodes and edges. Optimiza

tion and refinement transformations such as common-subexpression-elimination and

introduction of explicit memory management operations are performed to obtain an

other IF1 graph at a lower abstraction level.

8.3 Structured Analysis and Design

Structured methods in software design are used to capture and analyze the require

ments of the system under consideration. A majority of the methods use informal

graphical notations for requirements capture. One of the most widely used meth

170

ods is Structured Analysis/Design (SA/SD) approach [DeM79, Won94] for software

analysis. In this approach, a combination of data flow diagrams (DFD) and control

specifications such as state transition diagrams (STD) are used as graphical nota

tions among others. Thus, there is a clear separation of data flow and control flow.

There is also an associated data dictionary that contains more information on the

data described in the data flow diagram. There have been some efforts in providing

a formal sematics for DFD in VDM [LPT93]. However, they do not address control

specifications and transformations on DFDs.

We first give a brief overview of DFD and STD in Section 8.3.1. In Section 8.3.2,

we present a transformation of DFD to SIL. The SIL specification could then be rep

resented in PVS using the formalism described in Chapter 5. Section 8.3.3 describes

this process with an example. We present a brief discussion on the separation of

control from data in Section 8.5

171

8.3.1 DFD and STD

Control Flow Edge

Data Flow Edge

Control Specification Bar
(Eg: STD)

DFDs are used to describe flow of data through a network of processes that act

on the data. The building blocks which form a DFD shown in Figure 8.3 are the

following:

State

Data Transformer

Data Store

T External

L Process J

EventiAction

DFD Basics STD Basics

Figure 8.3: Basic building blocks of a DFD

172

• Data transformers: system processes represented as nodes perform an action

on inputs and produce outputs.

• Data flow edges: directed edges between data transformers representing flow

of data.

• Control specification bar: a vertical bar representing a control specification

such as an STD. It is used as a link between data specification and control

specification.

• Control flow edges: directed edges carrying di screte valued data into data

transformers. Control flow data are generated by control specifications such

as STDs.

• Data stores: used as memory elements for storage of data.

• External process: processes part of the environment to indicate inputs to the

system.

STDs represent states and state transitions of the system. A transition is labelled

by an event that enables it, and the action triggered by it. A transition could trigger

an action that can either be setting the value of a control signal in the DFD or

activating a process. We show a simple STD in Figure 8.3. The control signals

173

generated by STD are communicated to the control flow edges of the DFD through

a vertical bar that represents the STD.

8.3.2 Transformation of DFD to SIL

We present a transformation from DFDs into SIL as shown in Figure 8.4. In SIL,

unlike in SA/SD, control flow is integrated with data flow. So, we can represent both

control information present in the STD specification and data flow description of

DFDs in SIL. We represent both data transformers and data stores as (conditional)

nodes in SIL. Data stores are represented as nodes whose operation is to produce

an output equal to the input it was given sometime in the past. Such a node

is called a delay node in SIL. External processes are represented by input nodes.

Every node except the input nodes have specific input, output and conditional ports.

Input nodes have only output ports. Data flow edges of DFDs are transformed into

data flow edges in SIL except that they connect output ports to input ports of

174

Conditional nodeData Transformer

Data Store

External

L Process

Data Flow Edge

Control Flow Edge

Data Flow Edge

>.
Data Flow Edge

Sequence Edge

0 Conditional Port

Control Specification Bar Join
(Eg: STD)

Figure 8.4: DFD to SIL Transformation

175

nodes rather than nodes in DFDs. Control flow edges are data flow edges in SIL

that connect output ports to conditional ports. They communicate only binary

data values. A discrete valued data could be encoded in terms of binary data

values. Additional sequentiality and additional control information present in an

STD are captured by the data flow edges and the notion of join in SIL. Once this

transformation is done, we can use our formalization of SIL in PVS to specify systems

that have been specified and analyzed using SA/SD approach.

8.3.3 Example Illustration

In order to describe how our formalism can address the specification problem in

SA/SD, we consider an example often used to illustrate the SA/SD approach [Tea9l].

The example we have chosen is based on the cruise control of an automobile. A

specification in the SA/SD approach is as shown using DFD in Figure 8.5 and STD

shown in Figure 8.6.

176

Cruise .. STD

Resume.

Accelerate_on

Accelerate_off

Deactivate - - -

Des. Speed

Actual_speed __,/ - - -

-
. Throttle_Setting_Increase

Throttle_Setting_decrease

Figure 8.5: DFD for cruise control of an automobile

The capture_speed process captures the current value of the actual speed, and

stores it as the desired speed in the data store. The control_speed process computes

the difference between the actual speed and desired speed, and increases/decreases

or does not change the throttle_setting. The increas_speed process retrieves the

desired speed, and updates it by increasing it according to a predetermined amount.

The control signals are generated as given in the STD.

S

S
S

177

I

Cruise
Control
Idle

“Capture_Speed;
enable “Control_Speed” Cruisel

trigger “Capture_Speed;
enable “Control_Speed’

— Deactivate! I
Ready _

kill “Control_Speed” Cruise_Controller_

Resume Is_In_Control___j

Resume!
enable “Control_Speed”

Accelerate_Off! Accelerate_On!
kill “Increase_Speed” enable “Increase_Speed”

Accelerating

Deactivate/
kill “Control_Speed”;
kill “Increase_Speed”

Figure 8.6: STD for cruise control of an automobile

178

Cruise Resume & Deactivate

Actual Speed

8.3.4 Transformation to SIL

We transform the SA/SD specification into the data flow graph formalism of SIL

as shown in Figure 8.7. An important point that should be noted is the join at

the input port of the Desired Speed node. Depending on which one of the control

signals: cruise control or the deactivate & accelerate on/off is true, the input ports

get the value from the output of the node whose condition is true. This incorporates

the specification expressed by the STD.

Actual Speed

Throttle
Setting

Deactivate & Accelerate on/off

Figure 8.7: SIL for cruise control of an automobile

179

8.3.5 Specification in PVS

We use the axiomatic specification of SIL presented in Chapter 5 to represent the

SIL description of cruise control in PVS. We first specify the data relations of each

of the nodes as uninterpreted constants of proper types as follows:

control_speed: [port, port —> port]

capture_speed, desired_speed, increase_speed: [port -> port]

We specify each of the nodes by instantiating a general conditional node with

the required number of input/output/conditional ports, a data relation and an order

relation.

180

capture_speed_node(cn:cnode) :cnode =

cn WITH [inports:= inports(cn) WITH [size := 1]]

WITH [outport:= outport(cn)]

WITH [condport:= condport(cn)]

WITh [datarel:= LAMBDA (par:parray) , (p:port):

p= capture_speed(port..array(par) (0))]

WITH [orderrel: = LAMBDA (par :parray), (p :port):

p < port_array(par)(0)]

control_speed_node(cn:cnode) :cnode =

cn WITH [inports:= inports(cn) WITH [size : 2]]

WITH [outport:= outport(cn)]

WITH [condport:= condport(cn)]

WITH [datarel : LAMBDA (par:parray) , (p:port):

p control_speed (port_array (par) (0),

port_array(par) (1))]

WITH [orderrel : LAMBDA (par :parray) , (p :port):

p < port_array(par)(O)]

181

increase_speed_node(cn:cnode) :cnode =

cn WITH [inports:= inports(cn) WITH [size : 1]]

WITH [outport:= outport(cn)]

WITH [condport:= condport(cn)]

WITH [datarel : LAMBDA (par:parray) (p:port):

p= control_speed(port_array(par)(O))]

WITH [orderrel:= LAMBDA (par:parray) , (p:port):

p < port_array(par)(O)]

desiredspeednode(cn:cnode) :cnode =

cn WITH [inports:= inports(cn) WITH [size : 1]]

WITH [outport: outport(cn)]

WITH [condport:= condport(cn)]

WITH [datarel : LAMBDA (par :parray), (p:port):

p= desired_speed(port_array(par) (0))]

WITH [orderre). LAMBDA (par :parray) , (p:port):

p < port_array(par)(0)]

182

The connectivity of the graph is specified using data flow edges expressed by the

PVS relation sileq.

cruise_control(cruise ,actuai_speed,deactivate,acce].erator,

resi.ime , throttlesettling,

cnl,cn2,cn3) =

sileq(inports(capture_speed(cnl) (0)) ,actual_speed) AND

sileq(condport(capture_speed(cnl)) ,cruise) AND

si].eq(condport(increase_speed(cn3)), deactivate&accelerate) AND

sileq(inport(control_speed(cn4))(O) ,actual_speed) AND

sileq(outport(control_speed(cn4)) ,throttle_setting) AND

sileq(outport(capture_speed(cnl)) ,inport(desired_speed(cn2))) AND

sileq(outport(desired_speed(cn2)) ,inport(increase_speed(cn3))) AND

sileq(outport(increase_speed(cn3)) , inport(desired_speed(cn2))) AND

sileq(outport(desired_speed(cn2)), inport(control_speed(cn4)) (1))

183

8.4 Constraint nets

A constraint net [ZM92, Zha94, ZM93, ZM94, ZM95j is a network of nodes rep

resenting functions and locations, and edges representing flow of data between in

put/output ports of the nodes. Thus, a constraint network represents a set of

constraints on input/output traces. Constraint nets are used to model both discrete

and continuous behavior of hybrid/real-time systems. In order to relate constraint

nets to dependency graph formalism, we depart slightly from the description given

by Zhang and Mackworth [ZM93, ZM95]. A constraint net is a five-tuple CN =

<L,I,O,T,E>, where

• L is a finite set of locations or stores.

• I is a finite set of input ports.

• 0 is a finite set of output ports.

• T: Powerset(I) — 0 is a function label with a special name called transduction

label.

184

• E:L x I UO is a set of edges between locations and ports.

where Powerset(I) is the set of all subsets of I.

A transduction associated with a node is causal function that maps traces on

input ports to a trace on an output port. The traces could be continuous or discrete

data streams. A constraint net can be viewed as a set of equations whose least

solution gives its meaning. An constraint net example that models the computation

of the distance as an integration of velocity over time is shown in Figure 8.8. The

nodes drawn as boxes indicate transductions, while circles indicate locations. The

value xO is the initial value of the integral (i.e distance at the initial time). The

transduction Vt i5 the velocity at time t.

185

Figure 8.8: Constraint net for modeling integral computation over continuous time

8.4.1 Axiomatization of Constraint Nets

A constraint net, with transductions restricted to simple time-independent functions

on traces can be viewed as a typical dependency graph without non-determinism.

However, our formalization of dependency graphs allows general transductions to

be specified by instantiating uninterpreted type for input port to be a trace of data,

and having the type of output port as data, while data itself is an uninterpreted

type:

186

data: TYPE h uninterpreted

trace: sequence [data]

input_port: TYPE = trace

output_port: TYPE = data

time: TYPE = rca].

transduction: TYPE = [Einput_port,time] -> output_port]

The causality in dependency graphs is specified by sequence edges, and control

specification in dependency graphs. The locations have to be viewed as a special

kind of a node called store node. Thus, a constraint net can be viewed as a depen

dency graph, where the transductions would be associated with data relations that

could be functions involving time as an additional parameter. Since, we have left

the data type uninterpreted in our axiomatization of refinement (silimp), we have

the freedom to extend it to cover higher refinement on higher order relations and

thus, refinements for constraint nets. Such extensions would be difficult with an op

erational or denotational semantic framework. There are however, some restrictions

to be imposed to make further use of our axiomatization of dependency graphs. For

example, we have to restrict the number of output ports to one, for every node, and

joins should not be allowed. Thus, the axiomatic specification we have provided

187

for dependency graphs could be used with minor modifications to specify constraint

nets.

8.5 Separation of Control Flow from Data Flow

As we have observed in earlier sections, control flow description is separated from

data flow description in SA/SD, while control and data form an integrated speci

fication in SIL. Both approaches have some advantages and disadvantages. As an

advantage, if the control flow is decoupled from data flow, a data flow could then

be associated with a choice of control flow specification. The disadvantage with

this approach would be the difficulty of applying transformations: one would have

to have separate sets of transformations for each, and a precise definition of the

interface between control flow and data flow. The advantage with having an inte

grated control and data flow specification, as in SIL, is the ability to precisely define

188

an integrated set of optimization and refinement transformations that involve both

control flow and data flow.

189

Chapter 9

190

Discussion and Conclusions

One of the goals of a transformational design approach is to achieve designs that are

correct by construction. We recall from Chapter 1 that a transformation is correct

if the set of behaviors allowed by the implementation derived from the transfor

mation is a subset of the behaviors permitted by the original specification. In

this work, we have attempted to help accomplish the goal of correctness by con

struction in verifying the correctness of transformations used in dependency graph

formalisms [Raj95a]. However, we have to note the distinction between the transfor

mations as documented and intended by the informal specification and the transfor

mations actually implemented in software. We explain this distinction in Section 9.1.

In Section 9.2, we briefly present our experience in developing a formal specification

from an informal document. We highlight the advantages of an axiomatic approach

in Section 9.3. Finally, Section 9.4 summarizes the conclusions.

191

9.1 Intent versus Implementation

Our verification has addressed the transformations as documented and intended

by the informal specification, and not the transformations actually implemented in

software. One has to determine manually if the implemented transformations do,

in fact, carry out the intended transformations that have been verified. In general,

there is no practical mechanized method to check if software programs (such as

those implemented in C) satisfy their specifications. But, in order to check the

correctness of the implemented transformations, one has to first ensure that the

intended transformations as documented are correct.

The correctness problem of the implemented transformations could be partly

tackled in another manner. We can compare the dependency graph that is taken

as the input by the software for transformation with the dependency graph that is

the output of the software after applying the transformation. However, this would

entail developing concrete behavioral models of the dependency graphs. But, a

concrete behavior model basis would make the applicability of the formalization

more restricted.

192

9.2 From Informal to Formal Specification

The most difficult part in this investigation has been developing a proper formal

specification from informal specifications. Even though the informal specifications

were well-documented, creating a formal specification required expressing informal

ideas such as behavior and mutual exclusiveness in mathematically precise terms.

One particular detail in this respect is the following: the informal document de

scribes a value of a conditional node as undefined when the condition on its con

dition port is false. Introducing a notion of undefined value would need a special

entity to be introduced for every data type. Further, we would also have to associate

a meaning with such special entities. To avoid specification difficulties in stating

what undefined means, we chose to specify how an undefined value affects the overall

behavior of a subgraph in which such a node is embedded. Such choices have to be

made with care towards specification and verification ease.

One of the first tasks that aids the specification process is the choice of abstrac

tion level: how much of the detail present in the informal document should the

specification represent? The choice could be based on how the formal specification

193

has to be verified. For example, we chose not to represent behavior at all: we could

express behavioral equivalence (refinement) by an equivalence (refinement) relation,

and express the properties that needed to be satisfied by the SIL graphs.

Another important issue in developing a formal specification from an informal

document is deciding on data structures to represent entities specified informally. It

is desirable to have a formal specification that very closely resembles the informal

document. This is essential to map a formal specffication back to its informal doc

ument. It is essential also for understanding a formal specification, and for tracing

errors that have been found in the specification back to its informal representation.

We can highlight one such data structure that PVS allows us to use: the record

type. As we have seen in Table 5.2, it permits us to package all the fields of a

conditional node cn, and then access the individual fields such as inports of the cn

by inports (cn). This syntax closely resembles the informal specification. Besides

providing a simple syntax, the record type also allows making the type of one field

depend on the type of another field. We have seen such dependent typing in our

definition of arrays of ports parray in Chapter 5. Alternatively, we could have used

Abstract Data Types (ADT) in our formal specification. This would have an advan

tage of encapsulating well-formedness of the structure of dependency graphs within

194

the behavior specification. However, this would mean imposing an abstract syntax

structure for the behavior. Since our investigation primarily involves transforma

tions which transform structure, it would be difficult to work with a specification

that has an integrated structure and behavior.

The properties we have tabled in our formalism could form the basis of studying

how we could formulate a composite behavior from smaller behavioral relations. In

an earlier work at the register-transfer level [KvdW93j, an automatic procedure for

functional verification of retiming, pipelining and buffering optimization has been

implemented in RetLab as part of the PHIDEO tool at PRL. We have arrived at

proofs of properties that could form the basis of a semiautomatic procedure for

checking refinement and equivalence at higher levels.

195

9.3 Axiomatic Approach vs Other Formal Approaches

The advantage in an axiomatic framework is that we could assert properties of SIL

graphs that have to hold, without having to specify in detail the behavioral relations

or their composition and equivalence. We could therefore embed off-the-shelf data-

flow diagrams used in the Structured Analysis/Design approach [DeM79, Won94]

in our formalism. One particular example of the advantage of our approach is

establishing refinement and equivalence, without expressing the concrete relation

between outputs and inputs of nodes. This property, expressed in Table 6.9 and

Figure 6.9, does not use any information on the concrete data and order relations

of the nodes. Moreover, the automatic verification procedures, simple interactive

commands, and many features such as editing and rerunning proofs in PVS made

the task of checking properties and correctness much easier than anticipated.

In contrast to an axiomatic approach, a model-oriented approach would compare

two dependency graph models with respect to behavior. Such a model-comparison

method would involve verifying that the behavior of the transformed model satisfies

the behavior of the original model. However, this entails developing concrete behav

196

ioral models of the dependency graphs, and formulating the meaning of behavioral

refinement, and equivalence. Such concrete modeling of behavior, refinement and

equivalence would impose restrictions on the domains where the formalization could

be applied. For instance, we laid down the definition of refines between two graphs

in Section 6.2 axiomatically instead of proposing a subset relationship between the

data relations of the graphs. Furthermore, such a modeling would make it inconve

nient to study the correctness of transformations on graphs with arbitrary structure.

For example, in our approach, we could handle nodes with an unspecified number

of ports in studying the correctness problem. On the other hand, an operational

or denotational model of a language relates closely to a computation model of the

language. This implies that it would be difficult to reason about the properties of

the language without reference to the undelying behavior model. For example, we

have pointed out earlier in Section 8.4 that, we would not be able to use the oper

ational/denotational semantics developed for dependency graphs [dJ93, HK93] to

reason about constraint nets without major modifications to the semantics. How

ever, in our axiomatic specification, we could interpret a port as representing a

trace, and data relations as higher-order functions on traces with an optional time

parameter. Such a simple interpretation suggested that the axiomatic specifica

tion developed for dependency graphs in this dissertation could be used to specify

and reason about constraint nets. However, denotational and operational models

worked out by de Jong and Huijs [dJ93, HK93] could be used as a concrete model

197

that satisfies the axiomatic specification.

As a typical example, we are given the behavioral relations of the nodes in a

SIL graph and the structural connectivity of the graph. There is no general way to

compose these relations into a single behavioral relation for comparison with that

obtained from another SIL graph. Moreover, from the behavioral description in

SIL, it is not possible in general to extract a state machine or a finite automaton

model, and use state machine or automata comparison techniques. This is due to

the generality of the dependency graph behavior. In addition, since many synthesis

transformations are applied to descriptions of behavior within a single clock cycle,

there is no explicit notion of state in such a description. This reinforces the judgment

that state machine or automata comparison techniques are not suitable.

198

9.4 Conclusions and Directions for Further Research

In this work, we have provided an axiomatic specification for a general dependency

graph specification language. We have given a small set of axioms that capture a gen

eral notion of refinement and equivalence of dependency graphs. We have specified

and verified about a dozen of the optimization and refinement transformations. We

found errors in this process, and suggested corrections. We have also generalized the

transformations by weakening the preconditions for applying the transformations,

and verified their correctness. In this process, we have devised new transformations

for further optimization and refinement than would have been possible before.

The preconditions for transformations that existed in the SPRITE and TRADES

transformational design prior to our specification and verification task were stronger

than necessary in order to make them purely syntactic checks made at run-time.

However, precondition weakening resulting from our formal approach, involves com

paring weights on edges as illustrated in Figure 7.4. If the weights on the edges are

the result of an execution of a subgraph in SIL, then run-time checks for precon

ditions would have to be enhanced to compute the weights, and then compare the

199

resulting weights. The tool used for designing systems in SIL could communicate

with PVS by sending a SIL graph with the computed weights on the edges, and

receive a possible set of transformed graphs. Our work has also aided investigating

interactions between the transformations, and thus the importance of the order of

applying the transformations. The transformations we have verified are being used

in industry to design hardware from high level specifications.

We have enhanced existing theorem proving technqiues by integrating efficient

simplifiers such as model-checkers based on BDD. This enabled an efficient mechan

ical verification of the correctness of transformations on dependency graphs. Our

enhancement to theorem proving techniques has facilitated automatic techniques

to solve large verification problems in hardware and software that could not have

been tackled by either model-checking or theorem proving alone. The transforma

tions we have verified are being used in industry to design hardware from high level

specifications.

An investigation into the correctness of other transformations such as those in

volving scheduling and resource allocation in dependency graphs could form a part

200

of further research. Another direction for extending the research is to study how

verification techniques and results could be seamlessly integrated with Very Large

Scale Integration (VLSI) Computer-Aided Design (CAD) tools, software/hardware

co-synthesis/co-design tools, and Computer-Aided Software Engineering (CASE)

tools. The approach we have used, based on expressing properties at a high level,

does not depend on the underlying model of behavior. This enabled us to use our

formalism for dependency graph specifications in other areas such as structured

analysis in software design. Thus, the ability to capture an off-the-shelf formal

ism underpins our thesis that an axiomatic specification coupled with an efficient

mechanical verification is the most suitable approach to investigate the correctness

of transformations on generic dependency graphs, independent of the underlying

behavior models.

201

Bibliography

[AAD93] F.V. Aelten, J. Allen, and S. Devadas. Verification of relations
between synchronous machines. IEEE Transactions on Computer-
Aided Design, 12(12), December 1993.

[AAD94] F.V. Aelten, J. Allen, and S. Devadas. Even-based verification
of synchronous globally controlled logic designs against signal flow
graphs. IEEE Transactions on Computer-Aided Design, 13(1), Jan
uary 1994.

[AC72] Francis E. Allen and John Cocke. A catalogue of optimization trans
formations. In Randall Rustin, editor, Design and Optimization of
Compilers, Courant Computer Symposium 5. Prentice Hall, Inc.,
Englewood Cliffs, NJ, March 1972.

[AFJWed] E.A. Aschroft, A.A. Faustini, R. Jagannathan, and W.W. Wadge.
Multidimensional Declarative Programming. Oxford University
Press, Oxford, U.K., to be published.

[AL94] M. Aagaard and M. Leeser. PBS: Proven boolean algorithm. IEEE
Transactions on Computer-Aided Design, 13(4), January 1994.

202

[Ang94] C. Angelo. Formal Hardware Verification in a Silicon Compilation
Environment by means of theorem proving. PhD thesis, K.U. Leu
ven/IMEC, Belgium, February 1994.

[ASU71} A.V. Aho, Ravi Sethi, and J. D. Ullman. Code optimization and
finite church-rosser systems. In Randall Rustin, editor, Design and
Optimization of Compilers, Courant Computer Symposium 5. Pren
tice Hall, Inc., Englewood Cliffs, NJ, March 1971.

[AW77] E.A. Aschroft and W.W. Wadge. Lucid: A nonprocedural language
with iteration. CA CM, 20(7):519—526, 1977.

[Bac88] R.J.R. Back. A calculus of refinements for program derivations.
Acta Informatica, 25:593—624, 1988.

[Bar8l] M. R. Barbacci. Instruction set processor specifications (isps): The
notation and applications. ieeetc, C-30(1):24—40, 1981.

[BCD88] R.K. Brayton, R. Camposano, C. DeMicheli, R.H.J.M. Otten, and
J.T.J. van Eijndhoven. The yorktown silicon compiler system. In
D. Gajski, editor, The Yorktown Silicon Compiler System. Addison-
Wesley, 1988.

[BCL94] J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and
D. L. Dill. Symbolic model checking for sequential circuit verifi
cation. IEEE Transactions on Computer-Aided Design, 13(4):401—
424, April 1994.

[BCM90aJ J. R. Burch, E. M. Clarke, K. L McMillan, D. L. Dill, and L. J.
Hwang. Symbolic model checking: 1020 states and beyond. In
5th Annual IEEE Symposium on Logic in Computer Science, pages
428—439, Philadelphia, PA, June 1990. IEEE Computer Society.

[BCM90b] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and J. Hwang.
Symbolic model checking: 1020 states and beyond. In Proceedings

203

of the Fifth Annual Symposium on Logic in Computer Science. As
sociation for Computing Machinery, July 1990.

[BRB9O] K.S. Brace, R.L. Rudell, and R.E. Bryant. Efficient implementation
of a BDD package. In Proceedings of the 27th ACM/IEEE Design
Automation Conference, pages 40—45. Association for Computing
Machinery, 1990.

[Bry92] Randal E. Bryant. Symbolic boolean manipulation with ordered
binary-decision diagrams. ACM Computing Surveys, 24(3):293—318,
September 1992.

[Cam89] R. Camposano. Behavior preserving transformations in high level
synthesis. In Hardware Specification, Verification and Synthesis:
Mathematical Aspects, pages 106—128, Ithaca, NY, July 1989. Vol
ume 408 of Lecture Notes in Computer Science, Springer-Verlag.

[CBL92I R. Chapman, G. Brown, and M. Leeser. Verified high-level syn
thesis in BEDROC. In Proceedings of the 1992 European Design
Automation Conference. IEEE Press, March 1992.

[CG87] E.M. Clarke and 0. Grumberg, editors. Annual Review of Com
puter Science, Volume 2. Annual Reviews, Inc., Palo Alto, CA,
1987.

[CGH94] E. Clarke, 0. Grumberg, and K. Hamaguchi. Another look at LTL
model checking. In David Dill, editor, Computer-Aided Verifica
tion, CAV ‘94, pages 415—427, Stanford, CA, June 1994. Volume
818 of Lecture Notes in Computer Science, Springer-Verlag.

[Cha79] Donald D. Chamberlin. The “single-assignment” approach to par
allel processing. Selected papers on Data Flow Architecture, Part 1,
May 1979.

[Cle89] R. Cleaveland. Tableau-based model checking in the propositional
mu-calculus. Technical Report 2/89, University of Sussex, March

204

1989.

[Compu9o} Computer General Electronic Design U.K. The ELLA Language
Reference Manual. Computer General Electronic Design The New
Church Henry St. Bath BA1 1JR U.K., 1990.

[Cyr93] D. Cyrluk. Microprocessor verification in PVS: A methodology and
simple example. Technical report, SRI International, December
1993. Report CSL-93-12.

[DeM79] Tom DeMarco. Structured Analysis and System Specification. Your-
don Press, New Jersey, 1979.

[dJ93] G.G de Jong. Generalized data flow graphs: theory and applications.
PhD thesis, Eindhoven University of Technology, The Netherlands,
October 1993.

[EL85j E.A. Emerson and C.L Lei. Efficient model checking in fragments
of the propositional mu-calculus. In Proceedings of the 10th Sympo
sium on Principles of Programming Languages, pages 84—96, New
Orleans, LA, January 1985. Association for Computing Machinery.

[Eme9O] E. Allen Emerson. Temporal and modal logic. In Jan van Leeuwen,
editor, Handbook of Theoretical Computer Science, volume B: For
mal Models and Semantics, chapter 16, pages 995—1072. Elsevier
and MIT press, Amsterdam, The Netherlands, and Cambridge,
MA, 1990.

[EMH93] W.J.A Engelen, P.F.A. Middeihoek, C. Huijs, J. Hofstede, and
Th. Krol. Applying software transformations to SIL. Technical
Report SPRITE deliverable Ls.a.5. 2/UT/Y5/M6/ 1A, Philips Re
search Laboratories, Eindhoven The Netherlands, April 1993.

[Fou9O} M. P. Fourman. Formal system design. In J. Staunstrup, editor,
Formal Methods for VLSI Design. IFIP, North-Holland, 1990.

205

[GM93] M. J. C. Gordon and T. F. Meiham, editors. Introduction to HOL:

A Theorem Proving Environment for Higher-Order Logic. Cam

bridge University Press, Cambridge, UK, 1993.

[Gun92] Carl A. Gunter. Semantics of programming languages : structures

and techniques. MIT Press, Cambridge, MA, 1992.

{Gup92] Aarti Gupta. Formal hardware verification methods: A survey. For

mal Methods in Systems Design, 1(2/3):151—238, October 1992.

[HFB93] N. Halbwachs, J-C. Fernandez, and A. Bouajjani. An executable

temporal logic to express safety properties and its connection with

the language lustre. In Sixth International Symposium on Lucid

and Intensional Programming. Universite Laval, April 1993.

[HHK92] C. Huijs, J. Hofstede, and Th. Krol. Transformations and se

mantical checks for SIL-1. Technical Report SPRITE deliverable

LS .a.5.1 /UT/Y4/M6/ 1, Philips Research Laboratories, Eindhoveri

The Netherlands, November 1992.

[Hi185] P. N. Hiffinger. Silage: a high-level language and silicon compiler

for digital signal processing. In Proceedings of IEEE Custom In
tegrated Circuits Conference, pages 213—216, Portland, OR, May
1985. IEEE.

[HK93j C. Huijs and Th. Krol. A formal semantic model to fit SIL for
transformational design. In Proceedings of Euromicro Micropro
cessing and Microprogramming 39, liverpool, September 1993.

[Hoo94] Jozef Hooman. Correctness of real time systems by construction.
In H. Langmaack, W.-P. de Roever, and J. Vytopil, editors, Formal
Techniques in Real- Time and Fault- Tolerant Systems, pages 19—40,
Lübeck, Germany, September 1994. Volume 863 of Lecture Notes
in Computer Science, Springer-Verlag.

206

[Jan93a] G. L. J. M. Janssen. ROBDD Software. Department of Electrical
Engineering, Eindhoven University of Technology, October 1993.

[Jan93b] G. L. J. M. Janssen. ROBDD Software. Department of Electrical
Engineering, Eindhoven University of Technology, October 1993.

[JLR91] J. Joyce, E. Liu, J. Rushby, N. Shankar, R. Suaya, and F. von
Henke. From formal verification to silicon compilation. In IEEE
Compcon, pages 450—455, San Francisco, CA, February 1991.

[Joh84] S. D. Johnson. Synthesis of Digital Designs from Recursion Equa
tions. MIT Press, Cambridge MA, 1984.

[Joh95J Steven D. Johnson, editor. CHDL ‘95: 12th Conference on
Computer Hardware Description Languages and their Applications,
Chiba, Japan, August 1995. Proceedings published in a single vol
ume jointly with ASP-DAC ‘95, CHDL ‘95, and VLSI ‘95, IEEE
Catalog no. 95TH8102.

[JS9Oj G. Jones and M. Sheeran. Circuit design in ruby. In J. Staunstrup,
editor, Formal Methods for VLSI Design. IFIP, North-Holland,
1990.

[JS93j Jeffrey J. Joyce and Carl-Johan H. Seger. Linking Bdd-based sym
bolic evaluation to interactive theorem proving. In Proceedings of
the 30th Design Automation Conference. Association for Comput
ing Machinery, 1993.

[KeH92} W.E.H. Kloosterhuis, M.R.R. eyckmans, J. Hofstede, C. Huijs, Th.
Krol, O.P. McArdle, W.J.M. Smits, and L.G.L. Svensson. The
SPRITE input language SIL-1, language report. Technical Report
SPRITE, deliverable Ls.a.a / Philips / Y3 / M12 / 2, Philips Re
search Laboratories, Eindhoven The Netherlands, October 1992.

[KK94] Ramayya Kumar and Thomas Kropf, editors. Preliminary Pro
ceedings of the Second Conference on Theorem Provers in Circuit

207

Design, Bad Herrenaib (Blackforest), Germany, September 1994.
Forschungszentrum Informatik an der Universität Karisruhe, FZI
Publication 4/94.

[K1o94] W.E.H. Kloosterhuis. Personal communication. January 1994.

[KMN92] Th. Krol, J.v. Meerbergen, C. Niessen, W. Smits, and J. Huisken.
The SPRITE input language, an intermediate format for high level
synthesis. In Proceedings of European Design Automation Confer
ence, pages 186—192, Brussels, March 1992.

[Koz83j D. Kozen. Results on the propositional mu-calculus. Theoretical
Computer Science, pages 333—354, December 1983.

[KvdW93] A. P. Kostelijk and A. van der Werf. Functional verification for
retiming and rebuffering optimization. In Proceedings of The Eu
ropean Conference on Design Automation with the European Event
in ASIC Design, Paris, February 1993. IEEE Computer Society.

[LOR93] Patrick Lincoln, Sam Owre, John Rushby, N. Shankar, and
Friedrich von Henke. Eight papers on formal verification. Technical
Report SRI-CSL-93-4, Computer Science Laboratory, SRI Interna
tional, Menlo Park, CA, May 1993.

[LPT93] P.G. Larsen, N. Plat, and H. Toetenel. A formal semantics of data
flow diagrams. Formal Aspects of Computing, 3(1), 1993.

[McF93] M.C. McFarland. Formal analysis of correctness of behavioral trans
formations. Formal Methods in System Design, 2(3):231—257, June
1993.

[McM93] Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic
Publishers, Boston, MA, 1993.

[Mid93] P.F.A. Middelhoek. Transformational design of digital circuits. In
Proceedings of the Seventh Workshop Computersystems, Eindhoven

208

The Netherlands, November 1993.

[Mid94a] P.F.A. Middeihoek. Transformational design of a direction detec
tor for the progressive scan conversion algorithm. Technical report,
Computer Science, University of Twente, Enschede, The Nether
lands, May 1994. Preliminary.

[Mid94b] P.F.A. Middeihoek. Transformational design of digital signal pro
cessing applications. In Proceedings of the ProRISC/IEEE work
shop on CSSP, pages 175—180, Eindhoven The Netherlands, March
1994.

[MP83] M.C. McFarland and A.C. Parker. An abstract model of behavior
for hardware descriptions. IEEE Transactions on Computers, C
32(7):621—636, July 1983.

[NRP95] Vijay Nagasamy, Sreeranga P. Rajan, and Preeti R. Panda. Fiber
channel protocol: Formal specification, verification, and design
trade-off/analysis. In Proceedings of the 1995 Silicon Valley Net
working Conference and Exposition. Systech Research, April 1995.

[0EE88] The Institute of Electrical and Electronics Engineers. IEEE Stan
dard VHDL Language Reference Manual 1076-88. IEEE Press, New
York, 1988.

[ORSvH95] Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von
Henke. Formal verification for fault-tolerant architectures: Pro
legomena to the design of PVS. IEEE Transactions on Software
Engineering, 21(2):107—125, February 1995.

[OSR93a] S. Owre, N. Shankar, and J. M. Rushby. The PVS Specification
Language (Beta Release). Computer Science Laboratory, SRI In
ternational, Menlo Park, CA, February 1993.

[OSR93b] S. Owre, N. Shankar, and J. M. Rushby. User Guide for the PVS
Specification and Verification System (Beta Release). Computer

209

Science Laboratory, SRI International, Menlo Park, CA, February
1993.

[Par89] D. Park. Finiteness is mu-effable. Technical Report 3, The Univer
sity of Warwick, March 1989. Theory of Computation Report.

[PBJ91] Keshav Pingali, Micah Beck, Richard Johnson, Mayan Moudgill,
and Paul Stodghill. Dependence flow graphs: An algebraic approach
to program dependencies. In 18th ACM Symposium on Principles
of Programming Languages, pages 6 7—78, January 1991.

[Pet8l] G.L. Peterson. Myths about the mutual exclusion problem. Infor
mation Processing Letters, 12:115—116, 1981.

[Raj92] Sreeranga P. Rajan. Executing hol specifications: Towards an eval
uation semantics for classical higher order logic. In L. Claesen and
M. Gordon, editors, Higher Order Logic Theorem Proving and its
Applications (5th International Workshop, HUG ‘92), Leuven, Bel
gium, September 1992. North-Holland.

[Raj94a] Sreeranga P. Rajan. Transformations in high-level synthesis: For
mal specification and efficient mechanical verification. Technical
Report SRI-CSL-94- 10, SRI International, Menlo Park, California,
October 1994.

[Raj94b] Sreeranga P. Rajan. Transformations in high level synthesis: Spec
ification and verification. Technical Report NL-TN 118/94, Philips
Research Laboratories, Eindhoven, The Netherlands, April 1994.

[Raj95a] Sreeranga P. Rajan. Correctness of transformations in high level
synthesis. In Johnson [Joh95], pages 597—603.

[Raj95bj Sreeranga P. Rajan. Formal verification of transformations on de
pendency graphs in optimizing compilers. In Proceedings of the
California Software Engineering Symposium. IRUS, University of
California, Irvine, March 1995.

210

[RJS93] Sreeranga P. Rajan, J.J. Joyce, and C-J. Seger. From abstract data
types to shift registers. In Jeffrey J. Joyce and Carl-Johan H. Seger,
editors, Higher Order Logic Theorem Proving and its Applications
(6th International Workshop, HUG ‘93), Vancouver, Canada, Au
gust 1993. Number 780 in Lecture Notes in Computer Science,
Springer-Verlag.

[Ros9O] Lars Rossen. Formal ruby. In J. Staunstrup, editor, Formal Meth
ods for VLSI Design. IFIP, North-Holland, 1990.

[RRV95] Sreeranga P. Rajan, P. Venkat Rangan, and Harrick M. Vin. A for
mal basis for structured multimedia collaborations. In Submitted to
2nd IEEE International Conference on Multimedia Computing and
Systems, Washington, D.C., 1995. IEEE Press.

[RSS95] Sreeranga P. Rajan, N. Shankar, and M. Srivas. An integration of
model-checking with automated proof checking. In 7th Conference
on Computer-Aided Verification, July 1995.

[RTJ93] Kamlesh Rath, M. Esen Thna, and Steven D. Johnson. An intro
duction to behavior tables. Technical report, Computer Science
Department, Indiana University, Bloomington, IN, December 1993.
No. 392.

[Rus93] John Rushby. Formal methods and certification of critical sys
tems. Technical Report SRI-CSL-93-7, Computer Science Labo
ratory, SRI International, Menlo Park, CA, December 1993. Also
available as NASA Contractor Report 4551, December 1993.

[Sha94] N. Shankar. Personal communication. October 1994.

[5M95] Mandayam K. Srivas and Steven P. Miller. Applying formal verifi
cation to a commercial microprocessor. In Johnson [Joh95], pages
493—502.

211

{Smi9O] Douglas R. Smith. Kids: A semi-automatic program development
system. IEEE Transactions on Software Engineering, SE-16(9),
September 1990.

[SOR93a] N. Shankar, S. Owre, and J. M. Rushby. The PVS Proof Checker:
A Reference Manual (Beta Release). Computer Science Laboratory,
SRI International, Menlo Park, CA, February 1993.

[SOR93b] N. Shankar, S. Owre, and J. M. Rushby. PVS Tutorial. Computer
Science Laboratory, SRI International, Menlo Park, CA, February
1993. Also appears in Tutorial Notes, Formal Methods Europe ‘93:
Industrial-Strength Formal Methods, pages 357—406, Odense, Den
mark, April 1993.

[TDW88] D. Thomas, E.M. Dirkes, R.A. Walker, J.V. Rajan, J.A. Nestor,
and R.L. Blackburn. The system architect’s workbench. In Pro
ceedings of the 25th ACM/IEEE Design Automation Conference,
pages 337—343. Association for Computing Machinery, 1988.

[Tea9l] Teamwork. Teamwork CASE Tool Manuals, 1991.

[vdWvMM94] A. van der Werf, J.L. van Meerbergen, 0. McArdle, P.E.R. Lippens,
W.F.J. Verhaegh, and D. Grant. Processing unit design. In Pro
ceedings of the SPRITE workshop on “VLSI Synthesis for DSP”,
Eindhoven, March 1994. Philips Research Labs.

[vEJ94] C. A. J. van Eijk and G. L. J. M. Janssen. Exploiting structural
similarities in a BDD-based verification method. In Kumar and
Kropf [KK94J, pages 151—166.

[Vem9O] R. Vemuri. How to prove the completeness of a set of register level
design transformations. In Proceedings of the 27th A CM/IEEE De
sign Automation Conference, pages 207—212. Association for Com
puting Machinery, 1990.

212

[vWS91] J. von Wright and K. Sere. Program transformations and refine
ments in hol. In M. Archer, J.J. Joyce, K.N. Levitt, and P.J. Wind
ley, editors, Higher Order Logic Theorem Proving and its Applica
tions (4th International Workshop, HUG ‘91), Davis, CA, August
1991. IEEE Computer Society.

{Win9O] Jeannette M. Wing. A specifier’s introduction to formal methods.
IEEE Computer, 23(9):8—22, September 1990.

{Won94] M. Wong. Informal, semi-formal, and formal approaches to the
specification of software requirements. Technical report, Depart
ment of Computer Science, UBC, Vancouver, Canada, September
1994.

[WP94] P.G. Whiting and R.S.V. Pascoe. A history of data-flow languages.
Technical Report TR-SA-94-02, Division of Information Technol
ogy, Commonwealth Scientific and Industrial Research Organiza
tion, Carlton, Australia, March 1994.

[Zha94} Y. Zhang. A foundation for the design and analysis of robotic sys
tems and behaviors. Technical report, Department of Computer
Science, UBC, Vancouver, Canada, September 1994.

[ZM92] Y. Zhang and A.K. Mackworth. Constraint nets: A semantic model
of real-time embedded systems. Technical Report 92-10, Depart
ment of Computer Science, UBC, Vancouver, Canada, 1992.

[ZM93j Y. Zhang and A. K. Mackworth. Constraint programming in con
straint nets. In First Workshop on Principles and Practice of Con
straint Programming, pages 303—312, 1993.

[ZM94j Y. Zhang and A. K. Mackworth. Will the robot do the right thing?
In Proceedings of Artificial Intelligence, pages 255—262, Banif, Al
berta, May 1994.

213

[ZM95] Y. Zhang and A. K. Mackworth. Constraint nets: a semantic model
for hybrid dynamic systems. Theoretical Computer Science, 138(1),
February 1995.

214

Appendix A

Peterson’s Mutual Exclusion
Algorithm: Automatic
verification

safe

{1} (FORALL
(state: staterec):

(init(state) AND initsem(state))
IMPLIES
AG (N,

LAMBDA

215

state:
NOT

(critical?(pcl(state))

AND critical?(pc2(state))))(state))

Running step: (Model—Check)

mit rewrites mit (state’ 1)
to idle?(pcl(state!1)) AND idle?(pc2(state!1))

initsem rewrites initsem(state!1)
to NOT seml(state!1) AND NOT sem2(state!1)

EU rewrites

EU(N, (LAMBDA U: TRUE),
NOT LAMBDA state: NOT (critical?(pcl(state)) AND

critical? (pc2 (state))))
to mu(LAMBDA

(Q: pred[staterecj):

(NOT
LAMBDA
state: NOT (critical?(pcl(state)) AND

critical? (pc2 (state)))
OR ((LAMBDA U: TRUE) AND EX(N, Q))))

EF rewrites

EF(N, NOT LAMBDA state: NOT (critical?(pcl(state)) AND
critical? (pc2 (state))))

to mu(LAMBDA
(Q: pred[staterec]):

(NOT
LAMBDA
state: NOT (critical?(pcl(state)) AND

critical? (pc2(state)))
OR ((LAMBDA U: TRUE) AND EX(N, Q))))

AG rewrites

AG(N, LAMBDA state: NOT (critical?(pcl(state)) AND
critical? (pc2(state))))

to NOT

mu (LAMBDA
(Q: pred[staterecj):

(NOT
LAMBDA

state: NOT (critical?(pcl(state)) AND

216

critical? (pc2(state)))
OR ((LAMBDA U: TRUE) AND EX(N, Q))))

NOT rewrites
(NOT

mu (LAMBDA
(Q: pred [staterec]):

(NOT
LAMBDA
state: NOT (critical?(pci(state)) AND

critical? (pc2 (state)))
OR ((LAMBDA U: TRUE) AND EX(N, Q)))))(state!i)

to NOT
mu (LAMBDA

(Q: pred[staterec]):

(NOT
LAMBDA

state: NOT (critical?(pci(state)) AND
critical? (pc2 (state)

OR ((LAMBDA U: TRUE) AND EX(N, Q))))(state’i)
nextpi rewrites nextpl (u, v)

to IF idle?(pci(u)) THEN idle?(pci(v)) OR
(entering?(pci(v)) AND try(v))

ELSIF entering?(pci(u)) AND try(u) AND NOT sem2(u) THEN
critical? (pci Cv))

ELSIF critical?(pci(u)) THEN (critical?(pci(v)) AND try(v))
OR (exiting?(pci(v)) AND NOT try(v))

ELSE idle?(pci(v))
ENDIF

nextp2 rewrites nextp2(u, v)
to IF idle?(pc2(u)) THEN idle?(pc2(v)) OR

(entering?(pc2(v)) AND NOT try(v))
ELSIF entering?(pc2(u)) AND NOT semi(u) THEN critical?(pc2(v))
ELSIF critical?(pc2(u)) THEN (critical?(pc2(v)) AND NOT try(v))

OR (exiting?(pc2(v)) AND tryCv))
ELSE idle?(pc2(v))
ENDIF

nextsem rewrites nextsem(u, v)
to IF

(entering? (pci (u))
OR entering?(pc2(u)) OR exiting?(pci(u)) OR

exiting? (pc2(u)))

217

THEN (entering?(pci(u)) IMPLIES senti(v))
AND (entering?(pc2(u)) IMPLIES sem2(v))

AND (exiting?(pci(u)) IMPLIES NOT semi(v))
AND (exiting?(pc2(u)) IMPLIES NOT sem2(v))

ELSE (senii(v) = semi(u)) AND (sem2(v) = sem2(u))
ENDIF

N rewrites N(u, v)
to IF idle?(pciCu)) THEN idle?(pci(v)) OR

(entering?(pci(v)) AND try(v))
ELSIF entering?(pci(u)) AND try(u) AND NOT sem2Cu) THEN

critical? (pci Cv))
ELSIF critical?(pci(u)) THEN (critical?(pci(v)) AND try(v))

OR (exiting?(pci(v)) AND NOT try(v))
ELSE idle? (pci Cv))
ENDIF

AND

IF idle?(pc2(u)) THEN idle?Cpc2(v))
OR (entering?(pc2(v)) AND NOT try(v))

ELSIF entering?Cpc2(u)) AND NOT seml(u) THEN critical?(pc2(v))
ELSIF critical?(pc2Cu)) THEN (critical?Cpc2(v)) AND NOT try(v))

OR Cexiting?(pc2(v)) AND tryCv))
ELSE idle?Cpc2Cv))
ENDIF

AND

IF

Centering? (pci Cu))
OR entering? Cpc2 Cu))

OR exiting?(pci Cu)) OR exiting?Cpc2Cu)))
THEN Centering?CpciCu)) IMPLIES semiCv))

AND (entering?Cpc2Cu)) IMPLIES sem2Cv))
AND Cexiting?CpclCu)) IMPLIES NOT semiCv))

AND

(exiting? Cpc2 Cu))
IMPLIES NOT sem2Cv))

ELSE (semlCv) = semiCu)) AND (sem2(v) = sem2Cu))
ENDIF

By rewriting and mu-simplifying,

Rim time = 3i.66 secs.

218

Real time = 40.55 secs.
NIL
>

The proof transcript of the liveness property proceeds in the same manner as
above:

live

{1} (FORALL
(s: staterec):

AG(N,
(LAMBDA s: entering?(pcl(s)))

IMPLIES EF(N, LAMBDA s: critical?(pcl(s))))(s))

Running step: (Model—Check)
EU rewrites EU(N, (LAMBDA U: TRUE), LAMBDA s: critical?(pcl(s)))

to mu(LAMBDA
(Q: pred[staterec]):

(LAMBDA s: critical?(pcl(s)) OR ((LAMBDA u: TRUE) AND EX(N, Q))))
EF rewrites EF(N, LAMBDA s: critical?(pcl(s)))

to mu(LAMBDA
(Q: predEstaterec]):

(LAMBDA s: critical?(pcl(s)) OR ((LAMBDA U: TRUE) AND EX(N, Q))))
EU rewrites

EU(N, (LAMBDA U: TRUE),
NOT

((LAMBDA s: entering?(pcl(s)))
IMPLIES
mu (LAMBDA

(Q: pred [staterec]):
(LAMBDA s: critical?(pcl(s))

219

OR ((LAMBDA U: TRUE) AND EX(N, Q))))))
to mu(LAMBDA

(Q: pred[staterec]):

(NOT

((LAMBDA s: entering?(pcl(s)))
IMPLIES
mu (LAMBDA

(Q: predEstaterec]):

(LAMBDA s: critical?(pcl(s))
OR ((LAMBDA U: TRUE) AND EX(N, Q)))))

OR ((LAMBDA U: TRUE) AND EX(N, Q))))
EF rewrites

EF(N,
NOT

((LAMBDA s: entering?(pcl(s)))
IMPLIES
mu (LAMBDA

(Q: pred[staterec]):

(LAMBDA s: critical?(pcl(s))

OR ((LAMBDA U: TRUE) AND EX(N, Q))))))
to mu(LAMBDA

(Q: pred[staterec]):

(NOT
((LAMBDA s: entering?(pcl(s)))

IMPLIES
mu (LAMBDA

(Q: predistaterec]):

(LAMBDA s: critical?(pcl(s))
OR ((LAMBDA U: TRUE) AND EX(N, Q)))))

OR ((LAMBDA u: TRUE) AND EX(N, Q))))
AG rewrites

AG (N,

(LAMBDA s: entering?(pcl(s)))
IMPLIES
mu (LAMBDA

(Q: predEstaterec]):

(LAMBDA s: critical?(pcl(s))
OR ((LAMBDA u: TRUE) AND EX(N, Q)))))

to NOT
mu (LAMBDA

(Q: predEstaterec]):

220

(NOT

((LAMBDA s: entering?(pcl(s)))
IMPLIES
mu (LAMBDA

(Q: predEstaterec]):

(LAMBDA 5: critical?(pcl(s))
OR ((LAMBDA U: TRUE) AND EX(N, Q)))))

OR ((LAMBDA u: TRUE) AND EX(N, Q))
NOT rewrites

(NOT
mu (LAMBDA

(Q: pred[staterec]):

(NOT

((LAMBDA s: entering?(pcl(s)))
IMPLIES
mu (LAMBDA

(Q: pred[staterec]):

(LAMBDA s: critical?(pcl(s))
OR ((LAMBDA u: TRUE) AND EX(N, Q)))))

OR ((LAMBDA U: TRUE) AND EX(N, Q)))))(s!1)
to NOT

mu (LAMBDA
(Q: pred[staterec]):

(NOT
((LAMBDA s: entering?(pcl(s)))

IMPLIES
mu (LAMBDA

(Q: pred[staterec]):

(LAMBDA s: critical?(pcl(s))
OR ((LAMBDA U: TRUE) AND EX(N, Q)))))

OR ((LAMBDA U: TRUE) AND EX(N, Q))))(s!1)
nextpl rewrites nextpl(u, v)

to IF idle?(pcl(u)) THEN idle?(pcl(v)) OR
(entering?(pcl(v)) AND try(v))

ELSIF entering?(pcl(u)) AND try(u) AND NOT sem2(u) THEN
critical? (pcl(v))

ELSIF critical?(pcl(u)) THEN (critical?(pcl(v)) AND try(v))
OR (exiting?(pcl(v)) AND NOT try(v))

ELSE idle? (pci (v))
ENDIF

nextp2 rewrites nextp2(u, v)

221

to IF idle?(pc2(u)) THEN idle?(pc2(v)) OR
(entering?(pc2(v)) AND NOT try(v))

ELSIF entering?(pc2(u)) AND NOT semi(u) THEN critical?(pc2(v))
ELSIF critical?(pc2(u)) THEN (critical?Cpc2(v)) AND NOT try(v))

OR (exiting?(pc2(v)) AND try(v))
ELSE idle? (pc2(v))
ENDIF

nextsem rewrites nextsem(u, v)
to IF

(entering? (pci Cu))
OR entering?(pc2(u)) OR exiting?(pci(u)) OR

exiting? Cpc2 Cu)))
THEN (entering?(pci(u)) IMPLIES semiCv))

AND (entering?(pc2(u)) IMPLIES sem2(v))
AND Cexiting?CpciCu)) IMPLIES NOT semiCv))

AND Cexiting?(pc2(u)) IMPLIES NOT sem2(v))
ELSE (senii(v) = semi(u)) AND (sem2(v) = sem2(u))
ENDIF

N rewrites N(u, v)
to IF idle?Cpci(u)) THEN idle?Cpci(v)) OR

(entering?Cpci(v)) AND tryCv))
ELSIF entering?(pciCu)) AND tryCu) AND NOT sem2(u) THEN

critical? (pci Cv))
ELSIF critical?(pciCu)) THEN (critical?Cpci(v)) AND try(v))

OR (exiting?(pci(v)) AND NOT try(v))
ELSE idle? (pci Cv))
ENDIF

AND
IF idle?(pc2(u)) THEN idle?(pc2(v))

OR Centering?Cpc2Cv)) AND NOT try(v))
ELSIF entering?(pc2(u)) AND NOT semiCu) THEN critical?(pc2(v))
ELSIF critical?(pc2(u)) THEN (critical?Cpc2Cv)) AND NOT tryCv))

OR Cexiting?Cpc2(v)) AND tryCv))
ELSE idle? (pc2 Cv))
ENDIF

AND
IF

Centering? Cpci Cu))
OR entering? (pc2 Cu))

OR exiting?(pciCu)) OR exiting?(pc2(u)))
THEN (entering?CpciCu)) IMPLIES semi(v))

222

AND (entering?(pc2(u)) IMPLIES sem2(v))
AND (exiting?(pci(u)) IMPLIES NOT semi(v))

AND
(exiting? (pc2 (u))

IMPLIES NOT seiu2(v))
ELSE (semi(v) = sezni(u)) AND (sem2(v) = sem2(u))
END IF

nextpl rewrites nextpi(u, v)
to IF idle?(pci(u)) THEN idle?(pci(v)) OR

(entering?(pci(v)) AND try(v))
ELSIF entering?(pci(u)) AND try(u) AND NOT sem2(u) THEN

critical?(pci(v))
ELSIF critical?(pci(u)) THEN (critical?(pci(v)) AND try(v))

OR (exiting?(pci(v)) AND NOT try(v))
ELSE idle? (pci Cv))
ENDIF

nextp2 rewrites nextp2(u, v)
to IF idle?(pc2(u)) THEN idle?(pc2(v)) OR

(entering?(pc2(v)) AND NOT try(v))
ELSIF entering?(pc2(u)) AND NOT semi(u) THEN critical?(pc2(v))
ELSIF critical?(pc2(u)) THEN (critical?(pc2(v)) AND NOT try(v))

OR (exiting?(pc2(v)) AND try(v))
ELSE idle? (pc2 Cv))
END IF

nextsem rewrites nextsem(u, v)
to IF

(entering? (pci Cu))
OR entering?(pc2(u)) OR exiting?Cpci(u)) OR

exiting? (pc2 Cu)))
THEN (entering?(pciCu)) IMPLIES semlCv))

AND (entering?Cpc2Cu)) IMPLIES seni2(v))
AND Cexiting?(pci(u)) IMPLIES NOT semi(v))

AND (exiting?Cpc2(u)) IMPLIES NOT sem2Cv))
ELSE (semi(v) = semi(u)) AND (sem2(v) = sein2(u))
END IF

N rewrites N(u, v)
to IF idle?(pci(u)) THEN idle?(pci(v)) OR

(entering?(pci(v)) AND try(v))
ELSIF entering?(pci(u)) AND try(u) AND NOT sem2(u) THEN

critical? (pci Cv))
ELSIF critical?(pci(u)) THEN Ccritical?(pclCv)) AND try(v))

223

OR (exiting?(pci(v)) AND NOT try(v))
ELSE idle? (pci Cv))
ENDIF

AND
IF idle?(pc2(u)) THEN idle?(pc2(v))

OR (entering?(pc2(v)) AND NOT try(v))
ELSIF entering?(pc2(u)) AND NOT seml(u) THEN critical?Cpc2(v))
ELSIF critical?(pc2(u)) THEN (critical?(pc2(v)) AND NOT try(v))

OR Cexiting?(pc2(v)) AND try(v))
ELSE idle?(pc2(v))
ENDIF

AND

IF

Centering? (pci Cu))
OR entering? (pc2 Cu))

OR exiting?(pci Cu)) OR exiting?(pc2(u)))
THEN Centering?Cpci(u)) IMPLIES semi(v))

AND (entering?(pc2Cu)) IMPLIES sem2(v))
AND (exiting?(pci(u)) IMPLIES NOT semiCv))

AND

(exiting? (pc2 Cu))
IMPLIES NOT sem2(v))

ELSE (serai(v) = semi(u)) AND (seni2(v) = sem2(u))
ENDIF

By rewriting and mu-simplifying,
Q.E.D.

Run time = 47.86 secs.
Real time = 66.98 secs.
NIL
>

The following proof that every path is free of deadlock fails as expected:

224

not_live

{1} (FORALL

Cs: staterec):
AG (N,

(LAMBDA s: entering?(pcl(s)))
IMPLIES AF(N, LAMBDA s: critical?(pcl(s))))(s))

Rule? (Model-Check)
EG rewrites EG(N, NOT LAMBDA s: critical?(pcl(s)))

to nu(LAMBDA
(Q: pred[staterec]): (NOT LAMBDA s: critical?(pcl(s)) AND

EX(N, Q)))
AF rewrites AF(N, LAMBDA s: critical?(pcl(s)))

to NOT

flu (LAMBDA
(Q: pred[staterec]):

(NOT LAMBDA s: critical?(pcl(s)) AND EX(N, Q)))
EU rewrites

EU(N, (LAMBDA U: TRUE),
NOT

((LAMBDA s: entering?(pcl(s)))
IMPLIES NOT

flu (LAMBDA
(Q: pred[staterec]):

(NOT LAMBDA s: critical?(pcl(s)) AND

EX(N, Q)))))
to mu(LAMBDA

(Q: predEstaterec]):

(NOT

((LAMBDA s: entering?(pcl(s)))
IMPLIES NOT

nu (LAMBDA
(Q: predistaterec]):

(NOT LAMBDA s: critical?(pcl(s))
AND EX(N, Q))))

OR ((LAMBDA U: TRUE) AND EX(N, Q))))
EF rewrites

EF (N,
NOT

225

((LAMBDA s: entering?(pcl(s)))
IMPLIES NOT

flu (LAMBDA
(Q: pred[staterec]):

(NOT LAMBDA s: critical?(pcl(s)) AND

EX(N, Q)))))
to mu(LAMBDA

(Q: pred[staterec]):

(NOT

((LAMBDA s: eflteriflg?(pcl(s)))
IMPLIES NOT

flU (LAMBDA
(Q: pred[staterec]):

(NOT LAMBDA s: critical?(pcl(s))

AND EX(N, Q))))
OR ((LAMBDA u: TRUE) AND EX(N, Q))))

AG rewrites
AG(N,

(LAMBDA s: efltering?(pcl(s)))
IMPLIES NOT

flu (LAMBDA
(Q: predEstaterec]):

(NOT LAMBDA s: critical?(pcl(s)) AND EX(N, Q))))
to NOT

mu (LAMBDA
(Q: pred[staterec]):

(NOT
((LAMBDA s: entering?(pcl(s)))

IMPLIES NOT

flu (LAMBDA
(Q: pred[staterec]):

(NOT LAMBDA s: critical?(pcl(s))
AND EX(N, Q))))

OR ((LAMBDA U: TRUE) AND EX(N, Q))))
NOT rewrites

(NOT
mu (LAMBDA

(Q: pred[staterec]):
(NOT

((LAMBDA s: entering?(pcl(s)))
IMPLIES NOT

226

flu (LAMBDA
(Q: predEstaterec]):

(NOT LAMBDA s: critical?(pci(s))
AND EX(N, Q))))

OR ((LAMBDA U: TRUE) AND EX(N, Q)))))(s!i)
to NOT

mu (LAMBDA
(Q: predEstaterec]):

(NOT

((LAMBDA s: entering?(pci(s)))
IMPLIES NOT

flu (LAMBDA
(Q: pred[staterec]):

(NOT LAMBDA s: critical?(pci(s))
AND EX(N, Q))))

OR ((LAMBDA u: TRUE) AND EX(N, Q))))(s!i)
rtextpi rewrites nextpi(u, v)

to IF idle?(pci(u)) THEN idle?(pci(v)) OR
(entering?(pci(v)) AND try(v))

ELSIF entering?(pcl(u)) AND try(u) AND NOT sem2(u) THEN
critical? (pci(v))

ELSIF critical?(pci(u)) THEN (critical?(pcl(v)) AND try(v))
OR (exiting?(pci(v)) AND NOT try(v))

ELSE idle? (pci Cv))
END IF

nextp2 rewrites nextp2(u, v)
to IF idle?(pc2(u)) THEN idle?(pc2(v)) OR

(entering?(pc2(v)) AND NOT try(v))
ELSIF eriteriflg?(pc2(u)) AND NOT semi(u) THEN critical?(pc2(v))
ELSIF critical?(pc2(u)) THEN (critical?(pc2(v)) AND NOT try(v))

OR (exiting?(pc2(v)) AND try(v))
ELSE idle? (pc2 (v))
ENDIF

nextsem rewrites nextsem(u, v)
to IF

(enterifig? (pci Cu))
OR entering?(pc2(u)) OR exiting?Cpci(u)) OR

exiting? (pc2 Cu)))
THEN Centering?(pci(u)) IMPLIES semi(v))

AND (entering?(pc2(u)) IMPLIES sem2(v))
AND (exiting?(pci(u)) IMPLIES NOT semi(v))

227

AND (exiting?(pc2(u)) IMPLIES NOT sem2(v))
ELSE (semi(v) = semi(u)) AND (sem2(v) = sem2(u))
ENDIF

N rewrites N (u, v)
to IF idle?(pci(u)) THEN idle?(pci(v)) OR

(entering?(pci(v)) AND try(v))
ELSIF entering?(pci(u)) AND tryCu) AND NOT sem2(u) THEN

critical? (pci Cv))
ELSIF critical?(pci(u)) THEN (critical?(pci(v)) AND try(v))

OR (exiting?(pci(v)) AND NOT try(v))
ELSE idle? (pci Cv))
ENDIF

AND
IF idle?(pc2(u)) THEN idle?(pc2(v))

OR (entering?(pc2(v)) AND NOT try(v))
ELSIF entering?(pc2(u)) AND NOT semiCu) ThEN critical?(pc2(v))
ELSIF critical?(pc2(u)) THEN (critical?(pc2(v)) AND NOT try(v))

OR Cexiting?(pc2(v)) AND try(v))
ELSE idle? (pc2 Cv))
ENDIF

AND

IF
(entering? (pci Cu))

OR entering? (pc2 Cu))
OR exiting?CpciCu)) OR exiting?(pc2Cu)))

THEN (entering?(pci(u)) IMPLIES semiCv))
AND Centering?(pc2(u)) IMPLIES sem2(v))

AND (exiting?Cpci(u)) IMPLIES NOT semi(v))
AND

(exiting? (pc2 Cu))
IMPLIES NOT sem2(v))

ELSE (semi(v) = semiCu)) AND (sem2Cv) = sem2(u))
END IF

nextpi rewrites nextpiCu, v)
to IF idle?(pci(u)) THEN idle?CpciCv)) OR

(entering?(pciCv)) AND tryCv))
ELSIF entering?CpciCu)) AND try(u) AND NOT sem2Cu) THEN

critical? (pci Cv))
ELSIF critical?CpciCu)) THEN (critical?(pciCv)) AND try(v))

OR (exiting?(pci(v)) AND NOT tryCv))
ELSE idle? (pci Cv))

228

END IF
nextp2 rewrites nextp2 Cu, v)

to IF idle?(pc2(u)) THEN idle?(pc2(v)) OR
(entering?(pc2(v)) AND NOT try(v))

ELSIF entering?(pc2(u)) AND NOT semi(u) THEN critical?(pc2(v))
ELSIF critical?(pc2(u)) THEN (critical?(pc2(v)) AND NOT try(v))

OR (exiting?(pc2(v)) AND try(v))
ELSE idle?(pc2(v))
ENDIF

nextsem rewrites nextsem(u, v)
to IF

(entering? (pci(u))
OR entering?(pc2(u)) OR exiting?(pci(u)) OR

exiting? (pc2 Cu)))
THEN (entering?(pci(u)) IMPLIES seml(v))

AND (entering?(pc2(u)) IMPLIES sem2(v))
AND (exiting?(pci(u)) IMPLIES NOT semi(v))

AND (exiting?(pc2(u)) IMPLIES NOT sein2(v))
ELSE (semi(v) = semi(u)) AND (sem2(v) = sem2(u))
ENDIF

N rewrites N(u, v)
to IF idle?(pci(u)) THEN idle?(pci(v)) OR

(entering?(pci(v)) AND try(v))
ELSIF entering?(pci(u)) AND tryCu) AND NOT sem2(u) THEN

critical? (pci Cv))
ELSIF critical?(pci(u)) THEN (critical?(pci(v)) AND try(v))

OR (exiting?(pci(v)) AND NOT try(v))
ELSE idle? (pci Cv))
ENDIF

AND

IF idle?(pc2(u)) THEN idle?(pc2(v))
OR (entering?Cpc2Cv)) AND NOT try(v))

ELSIF entering?(pc2(u)) AND NOT semi(u) THEN critical?(pc2(v))
ELSIF critical?(pc2(u)) THEN (critical?(pc2(v)) AND NOT tryCv))

OR (exiting?(pc2(v)) AND try(v))
ELSE idle? Cpc2 Cv))
ENDIF

AND
IF

(entering? (pci(u))
OR entering? (pc2 (u))

229

OR exiting?(pcl(u)) OR exiting?(pc2(u)))
THEN (entering?(pcl(u)) IMPLIES seml(v))

AND (entering?(pc2(u)) IMPLIES sem2(v))
AND (exiting?(pcl(u)) IMPLIES NOT seml(v))

AND
(exiting? (pc2 Cu))

IMPLIES NOT sem2(v))
ELSE (semlCv) = seml(u)) AND Csem2(v) = sem2(u))
ENDIF

By rewriting and mu-simplifying,
this simplifies to:
not_live

{-1} TRUE

Rule? q
Do you really want to quit? (Y or N): y

Run time = 31.82 secs.
Real time = 59.33 secs.
>

The following proof illustrates the use of fairCTL operators to verify the property
that there is at least one departing fair path from the initial state.

fair

{1} (FORALL
Cs: staterec):

Unit(s) AND initsem(s))
IMPLIES Fair?(N, LAMBDA s: critical?(pcl(s)))Cs))

230

Running step: (Model-Check)
mit rewrites mit (s! 1)

to idle?(pci(s!i)) AND idle?(pc2(s!i))
initsem rewrites initsem(s!i)

to NOT seiui(s!i) AND NOT sem2(s!i)
fairEG rewrites fairEG(N, (LAMBDA U: TRUE))(LAMBDA s:

critical? (pci(s)))
to nu(LAMBDA

(Q: pred[staterec]):
(LAMBDA U: TRUE)

AND
mu (LAMBDA

(P: pred[staterec]):
EX (N,

(LAMBDA U: TRUE)
AND

((LAMBDA s: critical?(pci(s)) AND Q)
OR P))))

Fair? rewrites Fair?(N, LAMBDA s: critical?(pci(s)))
to nu(LAMBDA

(Q: predEstaterec]):
(LAMBDA U: TRUE)

AND
mu (LAMBDA

(P: pred[staterec]):
EX (N,

(LAMBDA U: TRUE)
AND

((LAMBDA s: critical?(pci(s)) AND Q)
OR P))))

nextpi rewrites nextpi(u, v)
to IF idle?(pci(u)) THEN idle?(pci(v)) OR

(entering?(pcl(v)) AND try(v))
ELSIF entering?(pci(u)) AND try(u) AND NOT sem2(u) THEN

critical? (pci Cv))
ELSIF critical?(pci(u)) THEN (critical?(pci(v)) AND try(v))

OR (exiting?(pci(v)) AND NOT try(v))
ELSE idle?(pci (v))
ENDIF

nextp2 rewrites nextp2 (u, v)

231

to IF idle?(pc2(u)) THEN idle?(pc2(v)) OR
(entering?(pc2(v)) AND NOT try(v))

ELSIF entering?(pc2(u)) AND NOT semi(u) THEN critical?(pc2(v))
ELSIF critical?(pc2(u)) THEN (critical?(pc2(v)) AND NOT try(v))

OR Cexiting?(pc2(v)) AND try(v))
ELSE idle?(pc2(v))

ENDIF
nextsem rewrites nextsem(u, v)

to IF

(entering? (pci Cu))
OR entering?(pc2Cu)) OR exiting?Cpci(u)) OR

exiting? (pc2 Cu)))
THEN Centering?(pci(u)) IMPLIES semi(v))

AND (entering?Cpc2(u)) IMPLIES sem2(v))
AND (exiting?CpciCu)) IMPLIES NOT semi(v))

AND (exiting?(pc2(u)) IMPLIES NOT sem2(v))
ELSE (semi(v) = semi(u)) AND (sem2(v) = sem2(u))
ENDIF

N rewrites N(u, v)
to IF idle?(pci(u)) THEN idle?(pciCv)) OR

(entering?Cpci(v)) AND tryCv))
ELSIF entering?Cpci(u)) AND try(u) AND NOT sem2(u) THEN

critical? (pci(v))
ELSIF critical?(pci(u)) THEN (critical?(pci(v)) AND try(v))

OR (exiting?(pci(v)) AND NOT tryCv))
ELSE idle?(pci(v))

ENDIF
AND

IF idle?Cpc2Cu)) THEN idle?(pc2(v))
OR (entering?(pc2(v)) AND NOT try(v))

ELSIF entering?(pc2(u)) AND NOT semi(u) THEN critical?(pc2(v))
ELSIF critical?(pc2(u)) THEN (critical?(pc2(v)) AND NOT tryCv))

OR Cexiting?(pc2(v)) AND try(v))
ELSE idle? (pc2 Cv))
ENDIF

AND
IF

(entering? (pci Cu))
OR entering? (pc2 Cu))

OR exiting?Cpci(u)) OR exiting?(pc2(u)))

THEN (entering?(pci(u)) IMPLIES semi(v))

232

AND Centering?(pc2(u)) IMPLIES sem2(v))
AND (exiting?(pcl(u)) IMPLIES NOT seml(v))

AND
(exiting? (pc2 Cu))

IMPLIES NOT sem2(v))
ELSE (seml(v) = seml(u)) AND (sem2(v) = sem2(u))
ENDIF

By rewriting and mu-simplifying,
Q.E.D.

Run time = 12.84 secs.
Real time = 25.13 secs.
NIL
>

233

Appendix B

Definitions, Axioms and
Theorems

B.1 Definitions

definitions: THEORY

BEGIN

port: TYPE

234

parray:
TYPE = [# size: nat, porLarray: ARRAY[{i: nat i < size} — port] #1

cnode:
TYPE =

[# inports: parray,
outport: port,
intports: parray,
condport: port,
condit: pred[port],
datarel : pred[[{p: parray size(p) = size(inports)}, port]],
orderrel: pred[[{p: parray I size(p) size(inports)}, port]],
intrel: pred[[parray, parray]] #1

node: TYPE = {n: cnode condit(n) = A (p: port): TRUE}

cnO, cnl: VAR cnode

par, parr, parO, pan, parOO, parli, par2, par3: VAR parray

same..size(cnO, cnl) : boolean = size(inports(cnO)) size(inports(cnl))

same..size(parO, pan) : boolean = size(parO) size(parl)

refines(cnO, cnl) : bool

equates(cnO, cnl) : bool = refines(cnO, cnl) A refines(cnl, cnO)

sks(cnO, cnl) : boolean = sam&size(cnO, cnl) A equates(cnO, cnl)

silimp : pred[[port, port]]

po,P1,P2,P3,P4: VAR port

i: VAR nat

silimpar(panl, (par2 : {par I same..size(par, panl)})) : boolean

sileqar(panl, (par2 : {par I samesize(par, parl)}))
boolean = silimpar(parl, par2) A silimpar(par2, pan)

sileq(pi,p2): boolean = silimp(pl,p2) A silimp(p2,pi)

weight: TYPE

IMPORTING orders[weight]

235

pred[[weight, weight]]

dfe: [port, port —+ boolean]

U: [port, port —* weight]

cn, cn2, cn3: VAR cnode

n,n0,n1,n2,n3:VAR node

p: VAR port

inport(cn, (i : {j : nat j < size(inports(cn))}))
port = (port_array(inports(cn))) (i)

intport(cn, (i : {j : nat j < size(intports(cn))}))
port = (port_array(intports(cn)))(i)

is.outport(p): boolean = (3 cn: p = outport(cn))

isinport(p): boolean
(3 cn, (i : {j : nat j < size(inports(cn))}) : p = inport(cn, i))

iscondport(p): boolean = (3 cn: p = condport(cn))

xdfe(pi,p2): boolean =

dfe(p1,p2) A (Vp: (p # P1) D —dfe(p,p2))

war: [parray, parray — weight]

dfear(parO, (pan: {par I same..size(par, parO)})) : boolean =

(V (i : nat i < size(parO))
dfe(port_array(parO) (i), port_array(parl) (i)))

xdfear(parO, (pan: {par same..size(par, parO)})): boolean =

(V (i : nat i < size(parO))
xdfe(port_array(parO) (i), port_array(panl) (i)))

i&.node.outport(p): boolean = 3 n: p = outport(n)

is.outportar(par): boolean =

V (i : nat i < size(par)) : isnode_outport(port_array(par)(i))

iscnod&outport(p): boolean = 3 (cn: cnode) : p = outport(cn)

236

is.cnoutportar(par): boolean =

V (i nat i < size(par)) : is_cnode_outport(port_array(par)(i))

END definitions

237

B.2 Axioms

axioms: THEORY

BEGIN

IMPORTING definitions

cn, cnO, cnl, cn2, cn3: VAR cnode

cnodeax: AXIOM

V cn
condit (cn) (condport(cn))

D datarel(cn) (inports(cn), outport(cn))

par, parO, pan, par2, par3: VAR parray

i: VARnat

P,Po,P1,P2,P3,P4: VAR port

siimpar.ax: AXIOM

V pan, (par2: parray I same.Aze(parl, par2)):
V (i : nat i < size(panl))

silimp (port.array(panl) (i), port_array(par2) (i))
D silimpar(panl, par2)

sileqrefi..ax: AXIOM sileq(pi ,Pi)

si1eq.sym_ax: AXIOM sileq(pi,p2) = sileq(p2,pl)

sileq.transax: AXIOM

Vpo,pi,p2:
(sileq(po,p1) A sileq(pl,p2) D sileq(po,p2))

refinement,ax: AXIOM

V (no : node), (ni : node I same..size(no,ni))
refines(no, n1) A silimpar(inports(no), inports(n1))

D silimp(outport(no), outport(nj))

edgeax: AXIOM partiaLorder?(: pred[[weight, weight]])

238

n,no,ni,rl.25n3:VAR node

dfe_portaxl: AXIOM dfe(p1,p2) D is_outport(pi)

dfeporLax2: AXIOM dfe(p1,P2) D (isinport (pa) V is.condport (P2))

selLedge..noLax: AXIOM -, dfe(p,p)

df&wax: AXIOM

Vp0,p11p2

P0 P1

D
((dfe(po,p2) A dfe(p1,p2))

D
(w(po,p2) w(pj,p)

V w(p1,p2) w(po,p2)))

cond.bottom.ax: AXIOM

(condit(cn) (condport(cn)))

D
(V p:

dfe(outport(cn)
,
p)

D

(V P0:
dfe(pi

,
p)

D w(outport(cn),po) w(pi,po)))

jOinax: AXIOM

(dfe(p1,p2)A (Vp: dfe(P,p2) D w(p,p2) w(pi,p2)))

D sileq(p1,P2)

distrbax: AXIOM xdfe(p,p1) A xdfe(p,p2) D sileq(p1,p2)

Poo,P11,P22,P33,P44 : VAR port

popreserveax: AXIOM

(w(po,p2) w(p,p)

A sileq(po,poo)

A sileq(p1,p11)
A sileq(p2,p22)

A dfe(poo,p22) A dfe(pii,p22))

D w(poo,p22) w(p11,p22)

joinarax: AXIOM

V pan, (par2: parray samesize(par2, pan))

(dfear(parl, par2)

239

A

(V (par: parray I sam&size(par, pan)):
dfear(par, par2)

D war(par, par2) war(parl, par2)))
D sileqan(panl, par2)

dfe.war.ax: AXIOM

V parO,
(pan: parray I same.size(parl, parO)),
(par2: parray same..size(par2, parO))

(dfear(parO, par2) A dfear(parl, par2))

(war(parO, par2) war(panl, par2)
V war(parl, par2) war(parO, par2))

END axioms

240

\

TJ7

B.3 Theorems

theorems: THEORY

BEGIN

IMPORTING axioms

Po,P1,P2,P3,P4: VAR port

par, parr, parO, pan, parOO, panil, par2, par3: VAR parray

n,n0,fl1,fl2,n3:VAR node

node_data.ith: THEOREM V n: datarel(n)(inports(n), outport(n))

sileqtransinv.th: THEOREM

Vpo,p1,p2
(sileq(po,p1) A sileq(po,p2) D sileq(pl,p2))

i: VAR nat

sileqar(parl, (par2 : {par I samesize(par, panl)})) : boolean =

V (i I i < size(parl))
sileq(port_array(parl) (i), port_array(par2) (i))

si1eqarefLth: THEOREM sileqar(panl, pan)

sileqar.symth: THEOREM

V pan, (par2: {par same.size(par, parl)})

sileqar(parl, par2) sileqar(par2, pan)

sileqartransth: THEOREM

V pan,
(par2: {par same..size(par, parl)}),

(par3: {par same.size(par, parl)})

(sileqar(parl, par2) A sileqar(par2, par3))

D sileqar(parl, par3)

sileqar.transinv..th: THEOREM

V pan,
(par2: {par I same.size(par, parl)}),

242

(par3: {par same..size(par, parl)})

(sileqar(parl, par2) A sileqar(parl, par3))

D sileqar(par2, par3)

in.eqarimpouteq: THEOREM

V (no: node),(ni : node sks(no,ni))

sileqar(inports(no), inports(ni))

D sileq(outport(no), outport(nj))

cn, cnO, cnl, cn2, cn3: VAR cnode

xdfe.sileq_th: THEOREM xdfe(outport(ni),p2)D sileq(outport(nl),p2)

xdfe2.sileq.th: THEOREM

(xdfe(outport(no), P1)

A xdfe(outport(n2),p3)A sileq(outport(no), outport(n2)))

D sileq(pi,p3)

Poo,P11,P22,P33,P44 : VAR port

po_preserv&xdfe.th: THEOREM

(w(po,p2) w(p,p)

A sileq(p2, outport(n3))
A xdfe(outport(n3),p4)

A dfe(poo,p44)
A dfe(pii,p44)

A sileq(po,poo)
A sileq(pi,pii)

A sileq(p4,p44))

D w(poo,p44) w(p,p)

dfe2.jointh: THEOREM

(dfe(p1,p3)
A dfe(p2,p3)

A
(V p0:

((P0 Pi) V (po P2)) D — dfe(po,p3)))

D IF w(p1,p3) < w(p2,p) THEN sileq(p2,p3)

ELSE sileq(p1,p3)
ENDIF

inports...sileqarth: THEOREM

V (nd: node):
V (no : node same_size(no, rid)),

(ni : node I samesize(ni, nd))

((V (i I i < size(inports(nd))), n

243

xdfe(outport(n), inport(no, i))

(3 (nn: node)
sileq(outport(n), outport(nn))

A xdfe(outport(nn), inport(n1,i))))

A

(V (i < size(inports(nd)))

3 n : xdfe(outport(n), inport(no,i)))

D sileqar(inports(no), inports(ni)))

inportseqar.th: THEOREM

V (no : node), (nj node same..size(no, n1))

((V (i I i < size(inports(no))),n

xdfe(outport(n), inport(no, i))

. xdfe(outport(n), inport(ni, i)))

A

(V (i I i < size(inports(no)))

3 n: xdfe(outport(n), inport(no, i)))

D sileqar(inports(no), inports(n)))

xdfearsileqarth: THEOREM

V (parO is_outportar(parO)), (pan I same.size(parl, paro))
xdfear(parO, pan) D sileqar(paro, pan)

inportsar.eqar_th: THEOREM

V (no node), (n1 node same..size(no,ni))

(((V (par I is_outportar(par) A same...size(par, inports(no)))

xdfear(par, inports(no)) xdfear(par, inports(n1)))

A

(3 (par

isoutportar(par)
A same..size(par, inports(rio)))

xdfear(par, inports(no))))

D sileqar(inports(no), inports(ni)))

inportsar..sileqarth: THEOREM

V (no node), (n1 : node I same.size(no,ni))

(((V (par is_outpontar(par) A samesize(par, inports(no)))

xdfear(par, inports(mo))

(3 (parr

isoutportar(par)
A sam&size(parr, inports(no)))

(sileqar(par, parr)

244

A xdfear(parr, inports(ni)))))
A

3 (par

is_outportar(par) A same.size(par, inports(no)))

xdfear(par, inports(no)))
D sileqar(inports(no), inports(ni)))

dfear2join.th: THEOREM

V pan,
(par2 I same..size(par2, pan)), (par3 I samesize(par3, pan))

(dfear(panl, par3) A dfear(par2, par3))
A

(V (par I samesize(par, pan))
(par pan V par $ par2) D —‘ dfean(par, par3))

D IF war(parl, par3)
war(par2, par3) THEN sileqar(par2, par3)

ELSE sileqar(parl, par3)
ENDIF

dot, dotO, doti, dotOO, dotOl: VAR node

preconds(dotO, (doti : {doU I equates(dotO, dotl)})) : boolean

(V (par I is_outportar(par) A same...size(par, inports(dotO)))

xdfear(par, inports(dotO)) xdfear(par, inports(dotl)))

A

(3 (par is_outportar(par) A same.size(par, inports(dotO)))

xdfear(par, inports(dotO)))

CSubE: THEOREM

V dotO,
(doti I equates(dotl, dotO)), (dotOl I equates(dotOl, dotO))

((preconds(dotO, doti)
A

(V (par

isoutportar(par)
A same.size(par, inports(dotO)))

xdfear(par, inports(dotO))

(3 (parr

is.outportan(parr)
A same..size(parr, inports(dotO)))

(sileqar(pan, parr)
A xdfear(parr, inports(dotOl))))))

245

D

(Vpi,p2:
((xdfe(outport(dotO),pi) V xdfe(outport(dotl),pi))

A xdfe(outport(dotOl) ,p))
D sileq(pi,p2)))

pp, ppO, ppOO: VAR port

cn22, cn33: VAR cnode

preconds(dotO, (doti: {dot I sks(dot, dotO)}),
(dotOO : {dot I sks(dot, dotO)}),
(parO: {par I is_outportar(par) A same.size(par, inports(dotO))}),
(pan : {par I is_outportar(par) A same..size(par, inports(dotO))}),
(parOO: {par I is_outportan(par) A same.size(par, inports(dotO))}),
(panli : {par I is_outportar(par) A same.size(par, inports(dotO))}),
ppO, ppOO)

boolean =

xdfear(panO, inports(dotO))
A xdfear(parl, inports(dotl))

A

(war(parO, inports(dotO)) war(panl, inports(dotl))
= w(outport(dotO), ppO) w(outport(dotl), ppO))

A

(war(parO, inports(dotO)) war(parl, inports(dotl))
= war(parOO, inports(dotOO))

war(panll, inports(dotOO)))
A dfe(outport(dotO), ppO)

A dfe(outport(dotl), ppO)
A

(V pp:
((pp outport(dotO))

V (pp outport(dotl)))
D dfe(pp, ppO))

A

dfear(parOO,
inports (dotOO))

A

dfear(parll,
inports(dotOO))

A

(V (par

size(par)
= size(parOO))

(par parOO

246

V par $ paril)

dfear(par,
inports(dotOO)))

A

xdfe
(outport(dotOO),

ppoo)
A

sileqar(parO,
parOO)

A

sileqar(parl,
paril)

CjtM: THEOREM

V dotO:
LET sk = n: sks(n, dotO),

ios =)par:
is_outportar(par) A same.size(par, inports(dotO))

IN

V (doti sk(dotl)),
(dotOO I sk(dotOO)),
(parO ios(parO)),
(pan I ios(parl)),(parOO I ios(parOO)),(panll I ios(panll))

preconds(dotO, dot 1, dotOO, parO,
pan, parOO, panil, ppO, ppOO)

D sileq(ppO, ppOO)

END theorems

247

Appendix C

Proof Transcripts

C.1 Common Subexpression Elimination

Terse proof for CSubE.

248

CSubE:

{1} V dotO, (doti I sameicind(dotl, dotO)),
(dotOl I sameicind(dotOl, dotO))
((preconds(dotO, doti)

A
(V (par I is_outportar(par) A size(par) = size(inports(dotO)))

xdfear(par, inports(dotO))

(3 (parr

I is_outportar(parr) A size(parr) = size(inports(dotO)))
(sileqar(par, parr) A xdfear(parr, inports(dotOl))))))

D
(V p,

P2:
((xdfe(outport(dotO) ,pi) V xdfe(outport(dotl) ,pi))

A xdfe(outport(dotOl) ,P2))
D sileq(pi,p2)))

Expanding the definition of preconds,

For the top quantifier in 1, we introduce Skolem constants: (dotO!1 dotl!1 dotOl!1),

Applying disjunctive simplification to flatten sequent,

249

Applying inportsareqar_th where n0 gets dotO!1, ni gets dotl!1,

Replacing using formula -2,

Replacing using formula -3,

Invoking decision procedures,

Applying inportsar..sileqar_th where no gets dotO! 1, n1 gets dotOl ! 1,

Replacing using formula -5,

Replacing using formula -4,

Invoking decision procedures,

250

Deleting some formulas,

For the top quantifier in 1, we introduce Skolem constants: (p ps),

Applying sileqar_transinv_th where pan gets inports(dotO! 1), par2 gets inports(dotl 1),
par3 gets inports(dotOl!1),

Invoking decision procedures,

Applying ineqarimpouteq where no gets dotO!1, n1 gets dotOl!1,

Applying ineqarimpouteq where no gets dotl!1, n1 gets dotOl!1,

Applying xdf&sileqth where

251

Instantiating quantified variables,

Instantiating quantified variables,

Instantiating quantified variables,

Invoking decision procedures,

Deleting some formulas,

Applying sileq_transinvth where

Instantiating the top quantifier in-i with the terms: outport(dotO!i), p, outport(dotOl!1),

Instantiating the top quantifier in-i with the terms: outport(doti ! 1), p, outport(dotOi! 1),

252

Applying sileq..transax where

Instantiating the top quantifier in -1 with the terms: p, outport(dotOl!l), p,

Applying bddsimp, which is trivially true. This completes the proof of CSubE.

Q.E.D.

253

C.2 Cross Jumping Tail Merging

Terse proof for CjtM.

CjtM:

{1} (V (ppO, ppOO: port)
V (dotO: node)

LET sk: [node — bool] =

A (n: node): same..size(n, dotO) A sameicind(n, dotO),
ios: [parray — bool] =

A (par: parray) : is_outportar(par)
A size(par) = size(inports(dotO))

IN V (doti: node I sk(dotl)), (dotOl: node I sk(dotOl)),
(parO : parray I ios(parO)), (pan : parray I ios(parl)),
(parOO: parray I ios(parOO)),
(parli : parray I ios(parll))

preconds(dotO, doti, dotOl, parO, pan, parOO, parli, ppO, ppOO)
D sileq(ppO, ppOO))

Expanding the definition of preconds,

254

For the top quantifier in 1, we introduce Skolem constants: (ppO!1 ppOO!1),

For the top quantifier in 1, we introduce Skolem constants: (dotO!1),

For the top quantifier in 1, we introduce Skolem constants: (dotl!1 dotOl!1 parO!1
parl!1 parOO!1 parll!1),

Applying disjunctive simplification to flatten sequent,

Applying xdfear.sileqarth where

Instantiating quantified variables,

Instantiating quantified variables,

255

Applying dfe2join_th where

Instantiating the top quantifier in-i with the terms: outport(dotO!l), outport(dotl!1),
ppO! 1,

Replacing using formula -8,

Replacing using formula -9,

Replacing using formula -10,

Applying dfear2jointh where

Instantiating the top quantifier in-i with the terms: parOo!i, parll!1, inports(dotol!1),

256

Replacing using formula -12,

Replacing using formula -13,

Replacing using formula -14,

Letting warOl name war(parO!1, inports(dotO!1)) war(parl!1, inports(dotl!1)),

Letting warOOl name war(parOO! 1, inports(dotOl ! 1)) < war(parl 1! 1, inports(dotOl ! 1)),

Letting w01 name w(outport(dotO!1), ppO!1) w(outport(dotl!1), ppO!1),

Replacing using formula -1,

Hiding formulas: -1,

257

Replacing using formula -1,

Hiding formulas: -1,

Replacing using formula -1,

Hiding formulas: -1,

Invoking decision procedures,

Deleting some formulas,

Deleting some formulas,

Replacing using formula -6,

258

Replacing using formula -5,

Hiding formulas: -5, -6,

Applying sileqar.transinv.th where

Instantiating the top quantifier in -1 with the terms: parO!1, inports(dotO!1),
parOO!1,

Instantiating the top quantifier in -1 with the terms: parl!1, inports(dotl!1),
pan 1! 1,

Applying ineqanimpouteq where

Instantiating the top quantifier in -1 with the terms: dotO!l, dotOl!1,

259

Instantiating the top quantifier in -1 with the terms: dotl!1, dotOl!l,

Applying xdfesileqth where

Instantiating quantified variables,

Invoking decision procedures,

Deleting some formulas,

Applying sileqartransth where

Instantiating the top quantifier in -1 with the terms: inports(dotl!1), parll!1,
inports(dotOl!1),

260

Instantiating the top quantifier in -1 with the terms: inports(dotO!1), parOO!1,
inports(dotOl !1),

Invoking decision procedures,

Deleting some formulas,

Applying sileqtransinvth where

Instantiating the top quantifier in -1 with the terms: outport(dotO!1), ppO!l,
outport(dotOl 1),

Instantiating the top quantifier in -1 with the terms: outport(dotl!1), ppO!l,
outport(dotOl!1),

Applying sileq.trans...ax where

261

Instantiating the top qnantifie in-i with the terms: ppO!i, outpart(dotOi!i),
ppOO!i,

Applying bddsimp,

which is trivisily true.

This completes the proof of C3tX.

Q.E.D.

262

