
THE SHIP MODEL - A NEW COMPUTATIONAL MODEL FOR

DISTRIBUTED SYSTEMS

By

George William Phillips

B. Sc. (Computer Science) University of British Columbia, 1987

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

COMPUTER SCIENCE

We accept this thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

1992

© George William Phillips, 1992

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at

the University of British Columbia, I agree that the Library shall make it freely available

for reference and study. I further agree that permission for extensive copying of this

thesis for scholarly purposes may be granted by the head of my department or by his

or her representatives. It is understood that copying or publication of this thesis for

financial gain shall not be allowed without my written permission.

Computer Science

The University of British Columbia

2075 Wesbrook Place

Vancouver, Canada

V6T 1Z1

Date: (9(2, 11i2

Abstract

One of the fundamental goals of a distributed operating is to make a collection of corn—

puters connected by a network appear as a unified whole to the users of the system. The

system relies heavily on the network to help maintain this illusion. If the network is not

fast enough system performance will be noticeably affected and the system will fail to

achieve this primary goal. Since the network is used to allow two entities on different

machines to communicate with each other, it is possible to reduce the use of the network

by allowing entities to migrate between machines. Two entities on the same machine will

not require the network for their communication. A distributed system which supports

such a mobility mechanism has two primary benefits. First, it can increase the perfor

mance and usability of the system since decreased network communication can generally

increase performance. The performance gain is most notable over low speed networks

where decreased use of the network is vital for the system to perform adequately. Second,

it also makes the design of system interfaces simpler by removing features from the design

that are necessary only for good remote interaction. This thesis investigates a mechanism

that allows distributed programs to reduce their network usage by moving code segments

between computers. The general idea of moving code is developed into an abstract model

of distributed computation call the Ship Model. The Ship Model has a basic entity called

a ship which contains code and data. It uses mobility both as a way of moving code and

data between machines and as an inter-ship communication mechanism. In order to test

the viability of the model a prototype implementation is constructed. The prototype is

written in C and runs under UNIX with the two parts of the system connected either by a

high speed ethernet network or a slow speed dialup line. A few example applications are

11

implemented and tested under the prototype. Various measurements show that for many

applications the Ship Model can provide increased performance in a high speed network

setting as well as over a slow speed line. Various issues regarding the implementation of

the Ship Model are also discussed.

111

Table of Contents

Abstract ii

List of Tables vi

List of Figures vii

Acknowledgement viii

1 Introduction 1

2 Motivations 5

3 The Ship Model 8

3.1 Primitives 9

3.2 Implementation Issues 12

4 Implementation 15

5 Sample Applications 18

6 Comparison with Related Work 30

6.1 Emerald 30

6.2 NCL 32

6.3 NeWS 33

6.4 sam 34

iv

7 Conclusions 36

Appendices 39

A The prototype virtual machine 40

B Source code for the cat2 application 44

Bibliography 46

V

List of Tables

5.1 Times in seconds to copy a one megabyte file between two Sparcstation 2

class machines A and B 21

5.2 Cost of some basic ship operations in operations per second 23

5.3 File copy times in seconds over a 9600 baud serial link between a Sparc

station 2 and a Sun 3/50 25

5.4 Times to copy a 71459 byte file on a Sparcstation 2 when initiated from a

Sun 3/50 over a 9600 baud line 26

5.5 Times in seconds to list variously sized directories 26

vi

List of Figures

5.1 The simple copy program, cat. 19

5.2 A typical UNIX program which copies a file 20

5.3 copy, an efficient file copying program 22

5.4 is, a directory listing program 27

5.5 more, a file browsing program 29

vii

Acknowledgement

I would like to thank my supervisor, Sam Chanson without whose support this thesis

could not have been finished. I also thank Norm Hutchinson for his work as the second

reader.

I would also like to thank my wife, Tarmi, who has had the patience to deal with my

absences and prodded me to keep going.

Finally a thank-you to all those who have helped along the way, especially those who

have resisted enquiring on the state of my thesis.

viii

Chapter 1

Introduction

Computer systems are constantly becoming more interconnected. Phone lines and modems

connect home computers. Office computers are joined together with high speed local area

networks. Long haul networks connect universities, businesses and governments all over

the world. The trend is to make the standalone computer the exception rather than the

rule. Loosely speaking, these collections of computers connected by some communication

link are referred to as distributed systems. The basic goal of a distributed system is to

facilitate information sharing between the computers in the system. This goal relies on

physical hardware which lets the computers communicate at some physical level. The

hardware may be a slow dialup line which provides bandwidth on the order of hundreds

of characters per second or optically based cabling providing billions of characters per

second. In either case the distributed system will build some mechanism on the com

munications hardware. The system may provide only weak interconnection that requires

the user to carefully direct which other computer(s) to connect his computer to and what

specific information is to be transferred. Computers linked with dialup lines usually op

erate in this fashion as do most computers connected over long haul networks such as

the internet. The system might also provide strong interconnection between its coIn

puters. Here the user can interact with many systems without even being aware of the

physical separation of the machines. Indeed, the distributed system appears as a single

computer. Strongly interconnected distributed systems usually operate on a small scale,

typically encompassing a floor, a building or at most a few buildings, with high speed

1

Chapter 1. Introduction 2

communication links delivering on the order of millions of bytes per second.

A distributed operating system [11] is an operating system for a distributed system

that makes the system appear as a unified whole. System resources such as files or

printers are accessible on every machine on the system regardless of their actual location.

A uniform view of the system is desirable; the user will only be hampered by restrictions

on where certain operations can be performed. A distributed operating system makes

location unimportant. The location of the user and the location of the desired system

resources do not have any effect on the user’s ability to access those resources. The

system keeps track of resource location and makes sure that requests are directed to the

appropriate machines. Most distributed systems preserve the user’s uniform view at the

programmer’s level as well. This is a practical necessity since the alternative would be

to have every system application work to preserve the illusion of location independence.

The programmer uses the same routines to access both local and remote resources such

as files or other programs. The lowest levels of the system determine whether local or

remote accesses are needed. Support within the operating system removes the burden

from the applications programmer who can easily create location transparent programs.

There are some essential difficulties faced by distributed operating system designers.

Above all the system must be reliable. For all intents and purposes a single computer is

either running correctly or it is down. A distributed system can exhibit partial failures,

that is, particular computers or networks in the system can fail while others remain

up. A good distributed operating system must be able to make progress in the face of

partial failures, Reliability is also affected by the communication links between computers

in the system. The hardware will not provide absolutely reliable data transfer between

computer systems so the operating system must provide error recovery protocols to ensure

reliable data transfer. Performance is also a concern. The illusion of a single system

will not be very convincing or useful if access to remote resources is noticeably much

Chapter 1. Introduction 3

slower. Users will work to thwart remote accesses thereby negating the supposed benefit

of the distributed operating system. Fortunately, local area networks such as ethernet

mitigate the reliability and performance problems. They provide very low error rates

which essentially reduce reliability problems to those of individual computer failures.

They also provide high data rates which are sufficient to make remote accesses and

transfer of data fast enough that most applications run locally and remotely with little

perceived difference.

However, fast, reliable networks do little to help problems associated with hetero

geneity of computer architectures. Most modern operating systems, distributed or not,

present a uniform programmer interface to the system even across different hardware

platforms [1, 7]. The programmer only needs to re-compile the source code to get a

binary which can run on a different system. But once compiled the program can only

be run on some subset of the computer systems in a distributed system. Tying pro

grams to architectures in this way removes some of the transparency of the distributed

operating system since the user may not always be able to run a particular program. Het

erogeneity remains a largely unsolved problem in distributed operating system research.

Research into both interpreters and compilers is useful in approaching the problem, but

performance degradation is unavoidable.

The location of system resources is an important factor in a distributed system.

Location affects reliability. Access to resources can be lost if they do not reside locally.

Location also affects performance. It will generally be slower to access a remote rather

than a local resource. Even on a high speed network the performance drop can be

noticable. On a low speed network the performance drop can be devastating. While it

is in principle enough for the distributed operating system to provide remote access to a

resource, in practice low speed networks, large data transfers and frequent interactions

demand extra support. Some way of speeding up the communication is needed. The

Chapter 1. Introduction 4

direct solution is to get a faster network, but such upgrades are difficult even when

they are possible. If the network can not be made faster, then the resource and the

program must be brought closer together to speed up their communication. One way

is to replicate the resource at multiple locations so that the program will always have

some copy nearby. Replication can work well, but it can not always be used since some

resources like user input and output devices are too tied to a physical presence to be

replicated. Another possibility would be to move the resource so that it is close to the

program. This technique is similar to replication and suffers the same drawbacks. The

only other approach is to move the program closer to the resource. While heterogeneous

machines are a large obstacle to this approach, even migrating code between homogeneous

machines (machines of the same architecture) is difficult [15, 13, 16]. Any scheme which

allows resource or code migration to improve performance must face a general problem of

cost balancing. Will performance actually increase if a program or resource is moved? It

may not be possible for the system itself to answer this question, but even programs that

are directly involved will have difficulty deciding if something should move or not. While

using resource or program mobility to increase performance is difficult, it can provide

performance increases over high speed networks and actually make the operation of a

distributed operating system over low speed lines possible.

This thesis investigates the problem of resource location in distributed operating

systems. A model of distributed computation, the Ship Model, is presented as a solution

to the problem of resource location. This model is used in the construction of a prototype

distributed system which can operate over heterogenous machine architectures. Various

measurements of the prototype show the viability of the model both in high speed and,

most importantly, low speed network settings.

Chapter 2

Motivations

Communication overhead can be greatly increased if the location of resources and pro

grams are fixed. A good example of this is file copying. There are three important

locations when copying a file: the sites of the source file, the destination file and the

copying program. If all the locations are the same, the work done is entirely local. But

in this age of diskless workstations and file servers, it is often the case that the program

must run where none of the files are placed. Worse yet, the files are often at the same

location, on the file server for example. In this case the file is sent from the server to the

copy program and right back to the server. The natural solution to this problem is to

break the copy program into two parts. One part, the reader, reads the source file and

sends the data to the second part, the writer, which writes the data to the destination.

The operation of the copy program is to send the reader to the site of the source file

and the writer to the site of the destination file. This arrangement directly provides the

optimal communication path and gives the ideal case when presented with the common

case of a diskless workstation and a single file server. While any extra copying done is

disastrous only in a low speed setting, even high speed networks pay a price.

Designing a network resource is often a difficult struggle between making a simple

interface and providing good performance. Typical virtual terminal interfaces suffer this

fate. A call to read a character at a time would be sufficient for input, but must be

avoided because of the network overhead of transmitting a character at a time. Instead,

a line mode is provided and a block of characters is sent when a carriage return is entered.

5

Chapter 2. Motivations 6

But line mode is not good enough for a full screen editor which requires editing keys to

be transmitted immediately. More calls are added to the interface to describe which keys

must be sent immediately and which can be buffered. A tempting solution would be to

embed a programming language into the terminal interface. Programs wishing line mode

input would send a small program that reads characters ulltil a newline and passes the

complete line back at once. Programs such as editors can send more complex programs

that interact with the keyboard and display and greatly reduce the number of characters

sent back to the host. Putting all this functionality into a virtual terminal protocol

is clearly incorrect. Using some separate mechanism which allows programs to change

the granularity of a network resource by transferring code to ellhance the interface is a

better approach. This technique allows the interface to a resource to be as simple as

possible without degrading the performance of programs accessing the resource remotely.

The terminal only needs interfaces to read and write characters. Code moved near the

terminal can enhance the interface to provide line modes and other enhanced interfaces

necessary for good interactive response. Having programs move code to the terminal

gives us another advantage. A “novice” mistake that infuriates system administrators is

the “rlogin” chain. A user logs into a machine and then remotely logs into another, and

then remotely logs into another from there and so on. A number of machines and the

network experience extra load from shuffling this user’s characters among themselves.

If each shell were to talk directly to the user’s original terminal (by moving code there)

instead of the interposed pseudo-terminals, the communication graph would collapse into

a one level tree.

A primary motivation for minimizing network usage is to permit a distributed oper

ating system to utilize low speed communication lines. A possible criticism of any system

that supports low speed communication is that low speed lines will go away. There are

a number of responses to this claim. First, low speed lines will always be with us. The

Chapter 2. Motivations 7

advent of ISDN and broadband ISDN will eliminate them from some areas, but they will

still be around in many places for a long time. Even then the connections to a residence

will still be slower than the networks at places of work. Second, a model which works

well at low speed has benefits for high speed networks as well. Conservation of band

width is an easier way to increase the capability of a network than by installing more

wires. Third, similar arguments were proposed against virtual memory in the sixties and

seventies. It was argued that main memory would become so large that virtual memory

would be unnecessary; everything would fit in main memory. Virtual memory is still

thriving since software requirements have easily kept pace with increases in memory size.

Similarly, software’s usage of network bandwidth will continue to increase. Reducing that

usage will always be important. Finally, modern physics dictates that there are ultimate

speed limits. Propagation delays can only be reduced to a certain point. Schemes which

use code mobility capitalize on locality of reference will ultimately hold advantages over

those that do not.

A review of related work is given in Chapter 6.

Chapter 3

The Ship Model

The basic element of the Ship Model is the ship. A ship contains code and data and

represents a location. The code within a ship may have zero or more threads of control.

Ships are mobile and can move between locations. When a ship is at a particular location,

it is inside the ship which represents that location. While a ship is inside another ship,

it has access to the code and data of the containing ship. A ship can communicate

with another by moving into it and writing information into the data space of the ship.

Protection and security problems associated with this mode of operation will be addressed

in section 3.2.

Using ships as the container of a location allows fine control over when to differentiate

between locations. While it is up to the implementors to determine the boundaries of

locations, a good rule of thumb would be to differentiate two locations when commu

nication between them is significantly costly. Different hosts on a LAN, two nodes in

a multiprocessor, or even virtual address spaces on the same machine may be different

locations.

While some ships correspond to the traditional chunks of code and data we call

programs, others correspond to entities with roots in the physical world. Hosts, disks,

screens, keyboards and other pieces of hardware will be represented by ships. While it

is possible to move such ships, there are a number of substantial constraints on their

movement. Storage devices would have to be moved onto some other storage device.

Moving a keyboard or screen will also require informing the user to move as well. With

8

Chapter 3. The Ship Model 9

these heavily constrained ships, it may be just as well to consider them immobile. There

are a number of other reasons that we may decide to make a ship immobile, but those

depend on the particular usage of the Ship Model.

3.1 Primitives

A list of primitives used by ships to implement their functions is listed below. The

primitives are presented as function calls, but the actual interface will obviously depend

on the implementation.

move(sid)

This primitive moves the calling ship into the specified ship (indicated by the ship

ID sid). If sid is the special ID “oblivion”, the calling ship is destroyed. Any ships

contained in the calling ship are moved with it.

fork() —* thread_ID

This call creates another thread of control in the calling ship. It returns the created

thread’s ID to the calling thread and an invalid thread ID to the new thread.

kill(thread_ID)

Terminate the given thread of execution.

self(which) —* thread_or_ship_ID

Returns the ID of either the calling thread if which is 0, or the ID of the calling

ship if which is 1.

commission(code_ptr, data_ptr) —* ship_ID

This call creates a new ship within the calling ship. The code and data for the new

ship are indicated by the code and data pointers. The calling ship is returned the

Chapter 3. The Ship Model 10

ID of the created ship. The created ship has a single thread of control which begins

execution at the start of the code. A ship with no threads of control can have the

thread execute a kill(self(0)) call immediately.

lock(lock_ship, entry_ship)

A synchronization primitive which prevents every ship except entry_ship from mov

ing to lock_ship. Ships attempting to move into or lock a locked ship will be blocked.

unlock(lock_ship)

The call removes the lock on lock_ship and lets any ship move to it. Any ships

which were blocked because lock_ship was locked are resumed.

block (lock_ship)

The calling ship voluntarily blocks on lock_ship. It will be unblocked when the

lock_ship is unlocked by some ship executing the unlock primitive.

These primitives provide a basis for a working system. The move primitive is the

most important; it is the sole way in which ships can interact. In order for two ships to

exchange data, one of them must move illto the other. Thus the move primitive unifies

two distinct operations, inter-ship communication and ship mobility. If the destination

ship in a move is at a different location, the calling ship will first be moved to be close

to the destination and then into the destination. When the move is complete, the ships

may then exchange information since each will have access to the other’s code and data

spaces. Exactly how the ships interact is not specified since that will depend on the

implementation.

Primitives for creating new threads and new ships are also necessary. Any non

trivial program written ullder the Ship Model will consist of many cooperating ships.

Chapter 3. The Ship Model 11

Such a program will need to create new ships and threads as necessary to complete its

task. Ship creation will be used frequently in order to exploit the Ship Model’s ability

to minimize remote communication. If a ship needs to perform some operation it can

move to another ship and do so. However, the ship moved will likely contain extra code

and data not pertinent to the remote operation. It can instead create a new ship which

contains only the code necessary to the task thereby reducing the communication needed.

Any system with multiple processes needs some form of synchronization. The Ship

Model provides these with its lock, unlock and block primitives. Lock and unlock allow

cooperating ships to access a ship one at a time. The locked ship can ellcapsulate some

critical section or can serve as a synchronization point for some other operation. The

block primitive enhances a ship’s ability to synchronize. If a collection of ships merely

needs to guarantee that they move into some ship in a serial fashion, they ca use lock

and unlock. If each movement must occur in a particular order it is necessary to use

block. Each ship may enter the destination ship and check to see if it is its turn to run.

If so, it can continue; otherwise it will use block to wait until some other ship has updated

the conditions and signalled it has done so with unlock.

Some systems which allow for mobility provide an operation to make the system

guarantee that two objects will always be together at some location. Two objects will

typically desire guaranteed proximity if they plan on performing expensive or frequent

interactions whose efficiency would be severely hampered should the objects move apart.

Such a primitive is unnecessary in the Ship Model. The very nature of the move primitive

is to put two ships in close proximity. Since there is only a single mechanism for ship

interaction, it is not possible for two interacting ships to move away from each other.

It is entirely possible that a distributed program may wish to know the commullication

cost between locations so that it may make dynamic decisions about its distribution

amongst some locations. A primitive for measuring the “distance” between two locations

Chapter 3. The Ship Model 12

could have been added. However, a Ship program could empirically measure the cost

itself by sending a ship on a round trip between locations. This is the preferred solution

since it saves adding a primitive and the empirical measurement technique will give more

than adequate results.

3.2 Implementation Issues

There are a number of questions to be considered before a system or even partial im

plementation can be built. A representation for the ship code will be needed along with

protection mechanisms for ships. It is clear that moving a ship within a ship provides

inter-ship communication, but an exact method to do this must be described.

The basis of a system is the ships that represent hardware. A file ship will abstractly

represent the disk. Screen, keyboard and mice ships can represent some basic I/O devices.

Host ships would represent specific machines and so on. The mobility of these hardware

ships presents some interesting directions for future research, but for the time being

such ships must be considered immobile. Even some ships which are programs may

be immobile. Ships need to be hardware independent to be truly useful. If not, they

could not move between machines and there would be no way, for instance, to share

files between different machine architectures. A likely implementation would then be to

define an interpreted intermediate language that would be used to represent ship code and

data1. In non-CPU intensive programs, interpretive code would not be a major problem.

But for others it would be impossibly slow. Those programs which require speed could

be compiled into native code. The difficulty of moving such ships between different

architectures would lead them to be considered immobile. However, the immobile ships

can still use interpreted code ships where possible, thereby lending a reasonable but not

‘Heterogeneous native-code implementations need not be ruled out, but the implementation effort
would be much greater.

Chapter 3. The Ship Model 13

total degree of mobility. Compiling intermediate code is another technique that could

be applied. All the code of a ship could be compiled upon reaching its destination. This

would increase the cost of a move, but the extra execution speed could offset the extra

cost. Compiling the intermediate code as it executes is another possibility. This would

minimize the amount of compilation done while still yielding a gain in execution speed

if any significant amount of code is executed multiple times.

The primitives provided implement the Ship Model but do not ensure the integrity

of ship’s data. Ships that allow arbitrary code to access their data and code have no

assurance that that code will not corrupt their data. While research into the Ship Model

will inevitably gain from investigation of the uses of an unrestrictive system, a production

version would have to add primitives to address the data integrity problem. A simple but

effective solution would be to have ships specify exactly what kinds of ships may enter

them. A ship could then guarantee (through its entry restrictions) that only valid code

will be allowed to manipulate its data.

The Ship Model has a very general form of inter-ship communication. It is up to

a high level language that uses the Ship Model to define what semantics it provides

and how they are implemented. For illustrative purposes, we will show how a Remote

Procedure Call (RPC)[2] call ca be effected. The caller can create a new ship (called

a carrier) within itself that contains the parameters, entry point and ID of the callee in

its data space. The carrier ship’s code will obtain the ID of the caller and move to the

callee. The thread that initiated the call is suspended. Once the carrier is within the

callee, it can bind the entry point to the code, set up the parameters appropriately and

execute the procedure call. When the call is complete, the carrier can move back to the

caller, place returned data where it is expected, destroy the carrier ship and continue the

execution of the caller.

A production version of the Ship Model using RPC as its inter-ship communication

Chapter 3. The Ship Model 14

method could have a straightforward rule for ship entry restrictions: only ships of the

type carrier are allowed to enter other ships. Ships would effectively have RPC as their

communication mechanism and would otherwise not be able to access the data and code

of other ships. The ships that represent physical hosts would ileed to break the rule

so that ship mobility between hosts would not be restricted. However, these host ships

could use the same mobility restriction mechanism to implement user level access control.

Additions for security would have to be quite flexible. It should be noted that the mobility

restriction technique can lead to a performance improvement. If a ship is only willing

to let certain kinds of ship enter, it could store the code for those ships in itself. Only

the data of the entering ship need be moved into the ship’s address space. In the case of

RPC, the only data moved would be the procedure parameters and return values.

Chapter 4

Implementation

A prototype of the Ship Model was implemented in order to test the benefits of the model.

It is written in ANSI C and runs under SunOS on both SPARC and 68000 based Sun

workstations. The code is quite straightforward and will run without modification on

any modern UNIX workstation. The implementation consists of one or two Ship systems

which provide the ship and thread abstraction, a simple name service and the ability to

move ships betweell Ship systems. Each Ship system is a UNIX process. A single Ship

system is useful for simple tests and provides a more tenable debugging environment for

developing application software. Two Ship systems are used to run the real tests where

ships move across a network represented as a TCP/IP connection. Two Ship systems can

also communicate over a dialup serial line by each connecting to a serial line multiplexor.

The code of each ship is represented in terms of a virtual machine that has 14 general

purpose 32 bit registers along with a stack pointer and a program counter. The instruc

tions are similar to those found in traditional microprocessors. Ship model primitives are

implemented via a system call mechanism which halts the virtual machine interpreter

and runs some system code to effect the primitive. The application programmer uses the

assembler and works at the level of this virtual machine as high-level language compil

ers are not available. However, there is a set of perl1[14] subroutines which somewhat

mitigate the task of writing applications.

Files, directories, keyboards and displays are represented by pseudo-ships. These

‘An interpreted multi-purpose language.

15

Chapter 4. Implementation 16

pseudo-ships are immobile and are handled by each Ship system. At the application

level they appear to be no different from ordinary ships and are accessed by exactly the

same mechanism. The name service of each Ship system (accessible via system calls) is

used to locate these pseudo-ships. While a real Ship Model implementation would have

permanent identifiers for every pseudo-ship, this prototype actually creates pseudo-ships

on the fly based on name server lookups. A real implementation would also determine

the actual location of a pseudo-ship, but this prototype uses a simple naming convention

(a “*“ prefix) to indicate if a pseudo-ship is remote.

Ship movement with a single Ship system only requires some updating of internal data

structures. Movement between systems causes writing of ship code and data along with

the context of any threads involved. Ship systems also transmit name lookups between

themselves. A special optimization was added that reduces communication bandwidth

by caching code segments of ships. Once a ship has moved to each Ship system, its code

will not be transmitted on subsequent moves as it is already available. After one ship

has moved into another a thread can copy data between the two ships using a few special

virtual machine instructions. Most of the instructions operate on the data portion of

the ship where the thread is executing. A few load and store instructions manipulate

data in a different area which is set to point to the ship’s data where the thread most

recently executed. In this way data can be moved between ships. This also provides a

notion similar to the containment hierarchy of the Ship Model, but more rigidly enforced.

Movement of ships which contain other ships is not allowed.

The virtual machine interpreter includes a single-stepping debugger for ship code.

With it the application programmer can set breakpoints, display register values, examine

ship memory and control the execution of a ship. The interpreter itself is generated

from a table describing the virtual assembly language. Even this descriptive table is

not created directly but generated by a program which handles the details of opcode

Chapter 4. Implementation 17

assignment and instruction decoding and encoding hints. The opcode table is used by

two different interpreter generators, both creating a C language based interpreter but

with one making much more aggressive use of switch statements for faster decoding.

The opcode table is also used by the assembler; this helps insure that inconsistencies

between the interpreter and assembler are minimal. This organization also makes it

fairly straightforward to change the virtual machine language, a feature which was utilized

modestly during development. A few criteria were placed on the choice of virtual machine

instructions. First, they should be fairly easy for a human to use since there would be rio

compiler. Second, any constructions which would unduly slow down an interpreter should

be avoided. Third, the machine should look reasonably conventional so that a compiler

could be easily written that generates code for it. Also, it is hoped that translation

of the virtual machine code into native machine code would be easy, automatic and

produce efficient code. The virtual machine has no flag register to address the second

consideration. Setting flags like “last result was equal to zero” is expensive in software

and very often the results are not used. Conditions are instead handled by branching on

immediate register tests. The third condition was followed to make the system as realistic

as possible. One possible path for an improved system would be one that uses a compiler

that generates intermediate code. The system could either interpret the intermediate

code directly or compile it down to native code for higher speed. By choosing a realistic

virtual machine, the results can show the possibilities of a more advanced system.

Ship, thread, and memory management are provided by a spartan but usable set of

system calls. Ships and threads can be created and destroyed. A ship’s data segment

can be expanded and contracted. A ship can also specify that notice of its destruction be

sent to another ship. This is accomplished by specifying a ship and entry point to which

the system will send a so-called ghost ship when a ship is destroyed. The prototype also

implements the lock, unlock and block synchronization primitives.

Chapter 5

Sample Applications

This chapter describes some of the applications written for the prototype implementation

and their performance. By themselves the applications are of interest as they show how

the Ship Model can be used. The performance analysis will show that the Ship Model

can realize gains both in high-speed and low-speed network settings. Three applications

will be presented. The first is a file copying program which creates a copy of a given file.

Three different implementations of that program (cat, cat2 and copy) were written and

studied. The second is a directory listing application (is) which displays all the files in

a given directory. The third is a file browsing application (more) which presents a file to

the user waiting for input before proceeded to the next page.

Two different sets of hardware were used for timing experiments. A pair of ethernet

connected Sparcstation 2 class machines with local SCSI disks were used for the tests

in the high-speed networking setting while a Sparcstation 2 and a Sun 3/50 were used

for the low-speed network tests. Their connection was through a 9600 baud dialup

port. The 3/50 had a modem directly connected to one of its serial ports while the

Sparcstation 2 commullicated with its modem over ethernet via an Annex III terminal

server. As was mentioned previously, the Ship systems oi both ends connected to a serial

line multiplexing process which did the actual communication with the serial port.

Timing of UNIX commands was done with a simple timing program which times the

running of a sub-process. Ship system timing was done automatically. When the first

thread starts running the system records the time. Whenever no threads are ready to

18

Chapter 5. Sample Applications 19

on

cat copies the file by moving to the source file (1) and reading a 1024 byte block of data.
It then moves to the destination file (2) and writes the data. This continues until the
entire file has been copied.

Figure 5.1: The simple copy program, cat.

run, the system records a potential finish time. When the Ship system is killed it prints

the elapsed time and possibly a warning message if the system was killed while things

were still happening.

The first version of the file copying program (cat) is very simple. It consists of a

single ship which looks up the source and destination files and then moves between the

two files copying a 1024 byte block of data each time. See figure 5.1 for an illustration of

its workings. Notice that when copying a file within a single Ship system cat operates in

the same way as a UNIX file copying program (see figure 5.2). When copying between two

different Ship systems cat effectively implements a stop-and-wait file transfer protocol.

cat has a rather large flaw that is corrected in cat 2, the second version of the file

copying program. In the first version, the data size of the ship was never changed. An

entire buffer full of data is transmitted on the return trip from the destination file back

to the source file. cat2 shrinks its data size down to a minimum before moving back into

the source file ship thereby saving an unnecessary transfer of data.

1

Chapter 5. Sample Applications 20

#include <stdio .h>

#include <sys/time . h>

main(argc, argv)

mt argc;
char* argv[];

{
FILE* src, *dst;

mt n;

char buf [1024];

struct timeval tO, ti;

mt sec_diff, usec_diff;

if (argc 3) { printf(”usage: filecopy src dst\n”); exit(1); }

gettimeofday(SctO, (struct timezone*)0);

src = fopen(argv[1], “r”);
dst = fopen(argv[2], “w”);

while (n = fread(buf, 1, 1024, src))
fwrite(buf, 1, n, dst);

fclose(src);

fclose(dst);

gettimeofday(&tl, (struct timezone*)0);

sec_diff = tl.tv_sec — tO.tv_sec;

if (tO.tv_usec > tl.tv_usec) {
usec_diff = 1000000 + tl.tv_usec — tO.tv_usec;

sec_diff--;

}
else

usec_diff = tl.tv_usec — tO.tv_usec;

printf(”elapsed time: y0d.Y006d seconds.\n”, sec_diff, usec_diff);
printf(”\nto: °hd Y006d\ntl: °hd Y006d\n”,

tO.tv_sec, tO.tv_usec, tl.tv_sec, tl.tv_usec);
exit (0)

}

Figure 5.2: A typical UNIX program which copies a file.

Chapter 5. Sample Applications 21

Program A to A from A A to A from B A to B from B A to B from A
cp 0.64
filecopy 2.6 8.0 2.8 7.6
cat 2.7 3.3 12.8 12.8
cat2 2.9 3.6 13.0 13.0
copy 1 3.7 3.8 12.1 12.1
copy 2 3.8 4.1 8.5 8.5
copy 3 3.6 4.2 8.4 8.4

Table 5.1: Times in seconds to copy a one megabyte file between two Sparcstation 2 class
machines A and B.

Despite the simple optimization, cat2 is still a stop-and-wait protocol. Figure 5.3

shows a third version of the file copying program which uses multiple cooperating ships.

By using more than one ship to transport the file data from source to destination, copyn

effects a windowed file transfer protocol. The n represents the number of transport ships

used. The multiple transport ships pass through the src_order and dst_order ships before

entering the source file and destination file ships so that the file data is read and written

in proper order. The src_order ship assigns sequence numbers to each transport ship

that enters it and makes sure that only one transport is reading the file at a time by

locking out any other transport until the current one has finished. The dst_order must

impose a stricter ordering based on the sequence numbers assigned to each transport.

Each transport arriving will run within the dst_order ship. If it does not have the correct

sequence number, it will voluntarily block. Otherwise, it continues on to the destination

file, writes its data, updates the sequence number and unlocks the dst_order ship. Any

transports blocked waiting to get into the dst_order ship will be unblocked by the unlock

and proceed as usual to check the sequence number.

Table 5.1 summarizes the measurements performed on several versions of the file

copying program running in the high-speed network setting. The tests can be broken

Chapter 5. Sample Applications 22

After the srcorder and dst_order ships have been located near the source and destination
files respectively, one or more transport ships work to copy the file. Each one first moves
into the src_order ship (1) which guarantees the only one transport will read from the
file at a time. The transport ship then moves into the source file (2) to read a 1024 byte
block of data. It then moves to the dst_order ship (3) which ensures that the transports
write their data blocks in the correct order based on sequence numbers generated by the
src_order ship. Finally the transport ship moves into the destination file and writes the
data. The cycle is repeated from step one until the transport ships have copied the entire
file.

...

Figure 5.3: copy, an efficient file copying program.

Chapter 5. Sample Applications 23

down into four general cases. The first is when the copy of the file will ultimately reside

on the same disk and all operations are executed locally. The second is when the file is

to be copied onto the same disk but the operations are initiated remotely. The third and

fourth cases are copying a file between disks on different machines.

Completely local tests show the baseline performance of each method. As expected

the fastest times are from the native UNIX cp program and the C filecopy program. It

is strange that cp is so much faster when copying files on a local disk, but this is because it

uses SunOS’ mmap() routine to read and write the files instead of the traditional UNIX

readQ and write() routines. Presumably mmap() can avoid some buffer copying and

utilize kernel level parallelism to gain such an increase in speed. The Ship system times

lag slightly behind filecopy with the more complex versions paying an extra small time

penalty because of the extra operations involved. Table 5.2 shows the cost of three basic

Operation Sparc 2 3/50
instructions 260,000/s 45,000/s
move operations 20,000/s 2,000/s
data area resizes 14,000/s 1,200/s

Table 5.2: Cost of some basic ship operations in operations per second.

ship operations. An instruction is one virtual machine instruction. A move operation

represents the cost of moving one ship into another in a single Ship system. A data area

resize is when an individual ship either increases or decreases the data space available

to it. Table 5.2 can be used to determine the cost of the extra operations in cat2 and

copy. They both require two data resize operations per block of file data copied which

will impose approximately a 0.14 second penalty. This is a relatively small increase and

does not show up well in the cat2 timings. However, where cat only does four moves

per block of data, copy does twelve. The extra 0.4 seconds required for these moves has

Chapter 5. Sample Applications 24

a noticable effect on the timillgs.

Local copying that is initiated remotely gives the Ship system the best advantage.

After the initial setup of locating the files and moving a few ships, the ship programs

will execute exactly the same as their purely local invocations. This setup is reflected

in their times as each requires just a bit longer than the local versions. The time for

copying increases slightly with the number of transport ships used in the copy program.

As it stands the Ship system does not provide fair scheduling and only checks its network

connection when no threads are running. A transport moving between two files in a

single Ship system will run without blocking. Therefore the first transport ship across in

the copy program starves the others out until the copy is finished causing a small extra

delay when the rest arrive and promptly exit.

Copying files between machines differentiates the ship programs and reveals an asym

metry in NFS [10]. While cat2 could have an advantage over cat, none is shown since

the extra cost of data on the return trip is relatively small, copy improves with the num

ber of transport ships used since its effectively windowed protocol now has an advantage

over the stop-and-wait nature of cat and cat2. When the filecopy program runs on

the machine storing the destination file it goes much faster than when it runs on the

machine storing the source file. This is because NFS requires that write operations not

be acknowledged until the data is written to disk so writing is much slower than reading.

The results of some file copy tests over the slow speed line are shown in table 5.3.

The test files used were compressed versions of ordinary files to minimize any artificial

effects due to the modem’s data compression feature. Here the ship implementations

are well differentiated because the line speed dominates the transfer times. cat2 is

considerably faster than cat because of a greatly reduced return time due to its data

segment shrinking optimization. When given more than a single transport ship, copy

outperforms the others because of its effective windowing protocol. The startup cost of

Chapter 5. Sample Applications 25

Program Copy time for 20635 bytes Copy time for 71459 bytes
cat 56.5 (365 char/s)
cat2 35.4 (582 char/s)
copy 1 36.1 (572 char/s) 118.1 (605 char/s)
copy 2 24.6 (835 char/s) 76 (940 char/s)
copy 3 24.8 (838 char/s) 75.4 (947 char/s)
kermit (1K packets) 34 (607 char/s) 114 (627 char/s)
kermit (windowed) 26 (794 char/s) 85 (840 char/s)
zmodem 21(982 char/s) 66 (1083 char/s)
raw 18.6 (1109 char/s) 63 (1134 char/s)

Table 5.3: File copy times in seconds over a 9600 baud serial link between a Sparcstation
2 and a Sun 3/50.

sending the code of each ship the first time can be seen in that the large file gives slightly

greater throughput due to the amortization of the startup cost. It is interesting to note

the similar performance of the stop-and-wait cat2 ship and the stop-and-wait version

of kermit. A similar similarity is seen between the “windowed” copy and the windowed

version of kermit. While competitive with kermit, the best ship file copier cannot keep

up with the very efficient zmodem protocol. This difference is mainly due to the 136

byte overhead associated with each transport ship. This effectively increases the file size

by 13 percent. With this overhead factored in we see that the copy program is using

1070 characters per second or almost all of the serial line’s bandwidth. Since much of the

thread context transmitted is uimecessary (the virtual machine registers are transmitted

but they are also typically saved on the stack), a system hint could reduce the overhead

to 80 bytes. Simple compression techniques as used on serial line TCP/IP packets [5, 9]

could lower this overhead even more. If both techniques were applied, the overhead could

be dropped to 20 bytes or less giving an estimated throughput of 1050 characters per

second.

Table 5.4 gives the results of initiating a file copy on the 3/50 which copies a 70K file

Chapter 5. Sample Applications 26

Program Time to copy a 71459 byte file (seconds)
cat 2.3
cat2 1.8
copy 1 2.2
copy 2 2.3
copy 3 2.3

Table 5.4: Times to copy a 71459 byte file on a Sparcstation 2 when initiated from a Sun
3/50 over a 9600 baud line.

50 files 100 files 200 files
UNIX is 0.49 0.78 1.3
ship ls 0.15 0.34 0.74

Table 5.5: Times in seconds to list variously sized directories.

on a Sparcstation 2 (both the source and destination file are on a single machine). The

copying time is largely dominated by the time to get the ships to the remote site. While

the result is completely as expected, it serves to illustrate that the general mechanism of

the Ship Model can achieve tremendous results over location-rigid programs. This result

is not comparable with either kermit or zmodem since those programs are designed to

copy files between machines; they are the tools of a loosely coupled distributed system.

A remote file system such as NFS would score very poorly on this test. Even ignoring

protocol overhead, if the 3/50 used NFS to copy the file it would end up transferring the

file to the 3/50 and then back to the Sparcstation 2 requiring at least 63 seconds for each

transfer giving a lower bound of 126 seconds.

A directory listing application called is was created to show another advantage of the

Ship Model. Under UNIX, reading a directory is similar in cost to reading a small file.

But a directory listing with extra information such as file type requires not only reading

the directory but also performing an operation for each file to get the extra information.

Ghaper 5. Sample Applications 27

The is ship starts by moving to the directory (1) and reading all the directory entries. It
then creates a displayer ship (2) which contains the directory information and moves to
the display (3) and prints the information for the user.

Figure 5.4: is, a directory listing program.

Table 5.5 compares UNIX is against the ship ls for directories with various numbers of

files. Notice that each time increases approximately linearly with the number of files but

that the ship is is consistently faster. Figure 5.4 shows the operation of is. It gains its

advantage by performing all the per-file operations on the file server rather than doing

each one separately.

An interactive page browsing program was the final application tested. As shown in

figure 5.5, it is very similar in construction to the copy program. The transport ships

move the file data to a buffer ship which holds the data for the viewer ship which actually

moves the data from the buffer to the display. The advantage of this more is that the file

is transferred while the user is viewing the file. As long as the user reads more slowly than

the file data is transferred each new page of data is presented quickly, more quickiy than

the iow speed line can deliver the data. In fact the user wili typicaliy have a hard time

Chapter 5. Sample Applications 28

keeping up with even a slow serial line since human reading speed is quite slow. However,

it should be noted that sometimes a human will outpace even high speed pagers when

scanning for some particular bit of text. A simple calculation shows that executing the

interpreted code of the viewer ship can outpace the slow-line data rate. The viewer code

scans the input data so that it can count lines displayed and pause after a screen full.

The scanning imposes an overhead of eleven instructions per character. Even the 3/50

can outpace the 1100 character per second speed by being able to process 4100 characters

per second. A sparc 2 class machine does much better. These numbers can quite safely

be viewed as lower bounds since there is room for improvement in the C interpreter and

an assembly language version would likely run at least twice as fast.

Chapter 5. Sample Applications 29

Two subsystems work concurrently to present a file to the user. One or more transport
ships order their file reads by moving to src_order (1) which gives them a sequence
number. They then proceed to read a 1024 byte chunk of the file (2) and then move to
the buffer ship (3) where they copy the file data in order based on their sequence numbers
into the buffer ship. The transport ships repeat this process until the buffer ship contains
the entire file. Meanwhile, a viewer ship moves into the buffer ship (A), reads a line
and moves to the display (B) until a full page has been presented. It then moves to the
keyboard (C) and waits for a key to be pressed before proceeding from the start. During
setup the src_order ship is located near the source file and the buffer ship is located near
the display so that most of the ship moves are entirely local.

/ /////////llh// /
keyboard

Figure 5.5: more, a file browsing program.

Chapter 6

Comparison with Related Work

This chapter presents several systems that address the object location problem and shows

that the Ship Model is a general model capable of satisfying the goals of each of the

systems. Thus the chapter is intended to show the power aild generality of the Ship

Model as well as some useful applications.

6.1 Emerald

Emerald is a distributed operating system and language developed at the University of

Washington [3]. Emerald provides a single object model and explicit support for object

mobility [6]. It is designed to operate in a local area network with a modest number of ho

mogeneous hosts. Although Emerald allows different object implementations, they are all

defined and accessed with a single, uniform set of semantics. Emerald objects optionally

contain a process and multiple threads of control are synchronized with monitors.

The primitives for object mobility are: locate X, move X to Y, fix X at Y, unfix X

and refix X at Y. Any object may be used to specify a location. The location indicated

by an object is simply the location of that object. Special objects called node objects are

used to specify a particular location by having them permanently attached to a location.

Emerald uses remote and local procedure calls for communication between objects.

All parameters are object references. Emerald takes advantage of its fine-grained object

mobility to make the RPC efficient by allowing objects to migrate to the site of a remote

operation. The migrated objects may return when the call is finished (call by visit) or

30

Chapter 6. Comparison with Related Work 31

remain at the remote site (call by move).

Object mobility presents a difficulty for RPC in Emerald. A local invocation can turn

into a remote invocation if the invoking object or the invoked object moves to a different

location. Emerald handles this by moving activation records with the call.

The move primitives of Emerald and the Ship Model differ in that the move primitive

is treated as a hint by Emerald and no move is necessarily done. The Ship Model does

not have any primitives like fix because they are easily implemented in terms of the Ship

Model (see section 3.1). There is a careful distinction to make between Emerald’s and

the Ship Model’s notion of location. In the Ship Model, a ship is a location while in

Emerald an object identifier evaluates to its location, but is not actually a location itself.

Emerald and the Ship Model use very different forms of inter-object and inter-ship

communication. Emerald allows objects to communicate via procedure calls. The pro

cedure calls may be either local or remote and the semantics of both are the same. The

Ship Model uses ship mobility as its communication method. Since ship mobility can

simulate remote procedure calls, the Ship Model has the advantage of a more general

communication mechanism — other forms of communication can be simulated including

techniques not found in other systems. With mobile objects to consider, the procedure

call mechanism in Emerald becomes more complicated. An implementation must be pre

pared to translate local procedure calls into remote ones. This results in the state of a

process being spread across many machines. In the Ship Model, processes (threads of

control) are always contained on a single machine which makes process control schemes

easy to implement.

Emerald uses object mobility to enhance RPC communication between objects in a

distributed system. The Ship Model has mobility as an end instead of a means. These

different foci constitute the main difference between the two approaches.

Chapter 6. Comparison with Related Work 32

6.2 NCL

The Network Command Language (NCL) [4] is part of a prototype heterogeneous dis

tributed system developed at DEC. The main goal of this system was to link together the

diverse products offered by DEC. To that end, a client/server model was chosen. How

ever, there remained some difficulty as to how to implement the system. The problem

was a general one of server interface design. The servers had to provide an interface for

a number of different clients based on the original interface that the client’s old system

provided. One possible solution is to simply provide all the different types of client in

terfaces. But the resulting server would be unwieldy and complicated to implement. An

elegant solution is to make the server implement a “lowest common denominator” inter

face made of primitives that can be combined to create the desired client interface. This

approach makes the servers simpler, but a single logical client operation often results in

a number of actual server requests. Efficiency suffers as a result.

NCL was created to solve the server design problem. It is a lisp-like command lan

guage implemented by all servers on the network. When a client makes a request, it

formulates it in terms of NCL and sends the NCL expression to the server. The server

evaluates the NCL expression and returns the results to the client. The expression may

execute many different server requests thereby effecting many remote operations with

only a single remote request. By using NCL, a server may implement a simple interface

without penalty to those clients who make many requests to fill a single logical request.

A client/server distributed system could use ships in the same way it might use NCL.

The client would create a ship which moves to the server, interacts with the server locally

and then moves back to the client to return its results. This method would provide the

advantages of NCL, namely doing many remote operations locally. The Ship model would

enhance this method of operation since a ship has its own thread of control. In NCL, the

Chapter 6. Comparison with Related Work 33

expression is evaluated by the server. Servers must be careful that NCL expressions do

not use up too many resources since their responsiveness depends on dealing with client

requests quickly. A ship interacting locally with a server does not require the server to

monitor the execution of the ship. Indeed, the long term interactions give ships extra

opportunity to exploit locality. NCL could not implement the file copying example since

a large file would cause the copying expression to be terminated by the server.

6.3 NeWS

Sun Microsystem’s NeWS (Network Extensible Windowing System) [12] bears some sim

ilarities to the Ship Model. NeWS uses a client/server Model. The servers mediate access

to the display, keyboard and mouse of a workstation. The clients are the applications

programs which wish to use bitmapped displays for output and keyboards and mice for

user input. What makes NeWS interesting is that the clients use a PostScript-like lan

guage to communicate their requests to the server. In essence, the server is an interpreter

— it evaluates expressions and returns the results to the clients. The expressions can draw

images on the screen or read keyboard and mouse input. The expressions can also define

procedures. This is what makes NeWS extensible. The idea is that a client will define

operations appropriate to its function and will only need to send the names of those

operations instead of the entire operation each time.

NeWS gains in many ways from its approach. The PostScript-like language serves

also as an external data representation. Extensibility means that the server only needs

to implement basic graphic and input operations. Clients who need to draw a square

can define a new primitive based on line drawing operations. Communication between

client and server is reduced since local code can handle many functions by itself without

remote client intervention. In fact, there are many NeWS programs which are completely

Chapter 6. Comparison with Related Work 34

local to the server (i.e., are just a PostScript program). The Ship Model strives for many

of the same goals as NeWS. It too can exploit locality of reference through ship mobility.

It can also reduce the complexity of server design since locality can be exploited. While

extensibility is not a direct part of the Ship Model, an implementation could support

the concept. In order to do this, the implementation would move a ship in two parts.

First, the data of the ship would be moved. Then, if the code of the ship was not already

available on the remote machine, the code would be moved. The code may be available

because of caching or it may be on a local disk on the remote machine.

Even though both the Ship Model and NeWS both seek to use locality of reference

to their advantage, it is unfair to compare them overall. NeWS is not intended to be

more than a windowing system while the Ship Model is designed to be a general purpose

system. It is interesting to note that NeWS programmers face some problems because of

their flexible environment. While a file may be available on the client machine, it may not

be on the machine running the NeWS server. A program to display a file must be careful

to read the file on the client machine and send the information to the server. But the file

location problem is a general one and the solution should not have to be programmed

for each client. Also, if the client and server are on the same machine, data is travelling

unnecessarily through the client. With the Ship Model in place, a ship could get the file

name, move to the machine where the file is and transmit the file back to the server. Not

only does it reduce client complexity, it also makes for an optimal communication path.

6.4 sam

sam the text editor was designed to run on a Blit terminal [8]. The Blit is a simple graphics

terminal that allows code to be downloaded and run. Because of this, sam was designed as

two processes. One runs on the main host while the other runs on the Blit. The process

Chapter 6. Comparison with Related Work 35

on the But handles keyboard and mouse input and screen updates. The process on the

host does all the changes to the file. To reduce the amount of communication between

the host side and the But side, the Blit side maintains a data structure which keeps track

of the information it knows about a file. When a part of the file must be displayed, the

But side looks at this data structure and uses the information there whenever possible. If

it does not have the information to update the screen, it then interacts with the host side

and adds the new data to its data structure. In this way the But side provides good user

interaction since much of the editing process displays good locality of reference. While

sam has a number of features which make it desirable as an editor, one of its primary

benefits is its ability to provide good interaction over a relatively slow serial line. The

Ship Model is designed to exploit locality of reference and an editor written using the

model has the potential to be as useful as sam.

sam can be run in a slightly different three process configuration. In this setup, the

But side remains the same and the host side is put on a file server. The third process is

on the machine to which the But is physically connected and simply passes data between

the two original parts. It has been noted that this can lead to superior performance since

accessing the files directly on the server is faster and often the file server is a much more

powerful machine. Although sam initially sought to increase the usefulness of editing over

slow serial lines, a side benefit was to make a faster editor over high speed networks. The

Ship Model is also primarily designed to make slow lines more useful, but sam illustrates

that there are potential benefits in applying low speed techniques to high speed networks

as well.

The implementation of sam differs from the Ship Model because no code (except the

initial Blit program download) is dynamically moved between the host and the Blit.

The host/Blit interaction protocol in sam is specially defined and is not used for other

purposes.

Chapter 7

Conclusions

The Ship Model was developed to address the problem of resource location in a dis

tributed system. While remote access to a resource is a necessary part of a distributed

operating system, it is undesirable or even acceptable when communication with that

remote resource is slow because of substantial bandwidth requirements or low speed

communication links. The Ship Model addresses this problem by allowing programs to

move code and data encapsulated in ships to remote sites. The mechanism has two ef

fects on communication requirements. First, it allows a program to use the most direct

paths of communication. This advantage was shown in the file copying application. The

file data being copied was guaranteed to be sent no more than once over the network.

Moreover, in the case where the file was to be copied to the same machine the file data

was not sent over the network at all. A typical file server arrangement such as NFS may

require the file data to cross the network twice for a single copy in some cases. Second, a

program can coalesce multiple remote operations into a single ship move. This translates

the cost of n remote operations into the cost of a single remote operation and n local

operations. While network usage will probably be reduced because the overhead of n — 1

remote operations is eliminated, the performance advantage is more significant since n—i

round trips are eliminated. The gains from using the Ship Model in this way were seen

in the directory listing application.

A nice side effect of the Ship Model is the simplification of device interfaces. Take,

for example, a terminal. There are only two necessary interface routines: read some

36

Chapter 7. Conclusions 37

characters and write some characters. Extending the interface for remote access will

require that more routines be added lest response be lowered and network bandwidth

be wasted on single characters going back and forth. Since the Ship Model allows the

programmer to send a ship to the terminal, the terminal interface can remain simple. The

system interface to the terminal is kept simple and the decision on what user input will

generate network traffic is left to the application. The prototype system demonstrates

this property in that its terminal interface is broken down even further into keyboard

and display interfaces. The keyboard has a single routine which returns a key while the

display has a single routine which displays characters.

There are some weaknesses in the Ship Model. Experiments with the prototype

showed that the Ship Model is slower to copy files when the file is moved over a high

speed network. It is also slightly slower than some file transfer programs when operating

over a low speed serial line. In part these problems can be explained by limitations of the

prototype. Since the prototype is implemented on top of UNIX, it is limited to utilizing

the intermachine communication provided by UNIX which imposes its own overhead and

inefficiencies on the prototype. In the case of file copying over a high speed network,

a more finely tuned Ship system or one implemented independently of UNIX should be

able to equal or surpass UNIX’s performance. In comparing the prototype against other

serial line file transfer protocols it should be noted that the Ship Model provides a general

mechanism while those protocols are designed for the sole purpose of transferring files

from one system to another. Despite this, the performance gap is not great and could be

closed with some extra work on reducing the communication overhead.

The Ship Model’s ability to work across heterogeneous machine architectures presents

some difficulties. The solution taken by the prototype — representing ship code in terms of

a virtual machine — was chosen for its simplicity. Fortunately, the overhead of interpreting

code has little effect on many applications as demonstrated by the file copying and

Chapter 7. Conclusions 38

directory listing programs. The file browser faced a potential bottleneck because of the

interpreter but the interpreter’s speed was still several times faster than that required

for the job. However, there will be applications where the interpreter is too limiting.

Fortunately there are other ways to approach the heterogeneity problem. An intermediate

code representation with compilation to native code would produce faster running ships.

Or multiple versions of a ship’s code for each machine type in the system could be tracked

with the ship’s data represented in some machine independent form.

The prototype provides a minimal system in which to explore the Ship Model. It can

not address the question of what it is really like to use the model at a high level. The main

concern is that carefully structuring a program to minimize network communication will

overwhelm the programmer. This structuring was not a problem with the prototype since

other concerns such as writing assembly-like code were much more difficult to deal with.

Only experience with a high-level language for the Ship Model will answer this question,

but some extrapolations can be made. At the design level the Ship Model will be of some

help since the programmer can at least recognize when network communication is taking

place. Any move represents possible network use and nothing else does. It can also be

expected that low communication systems can be encapsulated into library ships for ease

of use and re-use. A ship for reading a line at a time from a terminal is a likely example,

but even more complex mechanisms such as the transport ship system used in the copy

program could be made into library ships.

There are three main areas for future research: the basic mechanics of an implemen

tation, creating a usable system and creating a high level language. Any implementation

must deal with heterogenous machine architectures. Devising a scheme to speed up the

code running speed of a ship is a difficult but worthwhile goal. An implementation which

can equal or beat UNIX in copying files over a high-speed network would be an important

step in demonstrating the viability of the Ship Model. A system that could be used on

Chapter 7. Conclusions 39

a day to day basis would be valuable. The prototype was set up only to run one-shot

experiments. Using the system on a long term basis to do real work will show that the

Ship Model can provide overall benefits, This will be especially true when operating over

a serial line — the interaction will be better than terminal emulators or even remote X

servers. How the Ship Model would be used by a high level language or in the design

of a high level language remains unanswered. It will be interesting to see if the poten

tial design complexity can be managed while still producing communication bandwidth

stingy programs.

Appendix A

The prototype virtual machine

The prototype uses a virtual machine with sixteen 32 bit general purpose registers named

r0 through r15. r15 is used as the program counter while r14 is used as the stack pointer.

The registers can be accessed in 8, 16 and 32 bits at a time and most instructions support

these accesses as byte, word and longword modes. The virtual machine can access two

separate data segments. Most instructions only use the primary data segment, but some

instructions manipulate data in the secondary segment. The second data segment is used

to allow data to be copied between two different ships.

Here is a list of instructions. Unless otherwise specified, every instruction can use the

virtual machine registers in byte, word or longword mode. That is, the instruction will

operate on the lower 8, 16 or 32 bits of the registers involved.

add r,ri: The immediate value ii is added to register r.

add r,r3: Register r3 is added to register r.

and r,n: Register r is logically anded with the immediate value n.

and r,r3: Register r is logically anded with register r3.

div r,n: Register r is divided by the immediate value n.

div r,r3: Register r is divided by register r3.

mul r,n: Register r is multiplied by the immediate value n.

40

Appendix A. The prototype virtual machine 41

mul rj,r: Register r is multiplied by register r.

or r,ri: Register r is logically ored with the immediate value ri.

or r,r: Register r is logically ored with register r.

sub r,rr: The immediate value n is subtracted from register r.

sub r,r: Register r3 is subtracted from register r.

xor r,n: Register r is exclusive ored with the immediate value n.

xor r,r3: Register r is exclusive ored with register r3.

cpl r: The contents of register r are twos complemented.

not r: The contents of register r are ones complemented.

shl r, r3: The contents of register r are shifted left by the number of bits specified in

register r3.

shi r, n: The contents of register r are shifted left by ii bits.

shr r, r: The contents of register r are shifted right by the number of bits specified in

register r3.

shr r, n: The contents of register r are shifted right by n bits.

sys ii: System entry point n is called (i.e., break out of the interpreter).

push regma.sk: Register r, is pushed on the stack if bit i of regmask is set. All registers

may be pushed with one instruction, but only the longword form of this instruction

is available.

Appendix A. The prototype virtual machine 42

pusho regmask: Same as push except that the registers are placed in the secondary

data segment.

pop regmask: Register r, is popped from the stack if bit i of regmask is set. All

registers may be popped with one instruction, but only the longword form of this

instruction is available.

popo vegmask: Same as pop except that the registers are retrieved from the secondary

data segment.

load r,n: Register r is loaded with the immediate value n. Note that loading r15 with

a value effects a goto.

load r,r: Register r1, is loaded with the contents of register r3.

load r,(r): Register r is loaded with the contents of the primary memory segment

location pointed to by r.

loado r,(r): Register r, is loaded with the contents of the secondary memory segment

location pointed to by r.

store r,(n): Store the contents of register r, into the primary memory segment location

Ti.

storeo r,(n): Store the contents of register r into the secondary memory segment

location n.

store r,(r): Store the contents of register r into the primary memory segment location

pointed to by rj.

storeo r,(r3): Store the contents of register r into the secondary memory segment

location pointed to by r.

Appendix A. The prototype virtual machine 43

loadO r,r,rk: Load register r3 with the contents of register rk if register r is equal to

zero. If r3 is r15 this is effectively a conditional branch instruction.

loadc rj,n,r,rk: Load register r3 with the contents of register r is the uth bit of register

r is one.

Appendix B

Source code for the cat2 application

The source code for the applications is actually a pen script which generates the assembly

language virtual machine code. The “fooO” constructs are calls to library routines

which handle various tasks such as allocating registers and building stack frames. The

code is not fully explained but should still give the reader a feel for what a ship program

looks like.

44

Appendix B. Source code for the cat2 application 45

#! /cs/local/bin/perl

Copy “fuel” to “file2” as specified by argv[O] and argv[1]

Slightly improved over cat.sp in that we shrink down between moves...

require ‘../macros.pl’;

$thisship = ‘cat2’;

&import (“file”);

&main;

Scneedargs(2);

$bufsize = 1024;

$srcfile = Scgetreg;

$dstfile = &getreg;

$buf = Scgetreg;

$len = &getreg;

&get_argv($srcfile, 0);

&get_argv($dstfile, 1);

Sclocate($srcfile, $srcfile);

&locate($dstfile, $dstfile);
&lastmem($buf);

&label(”loop”);

&movenear($srcfile);

&load($len, $bufsize);
&sbrk($len);

&move($srcfile, “file.read”, $buf, $len, ‘, $len);
&if($len, ‘, 0, “done”);

Scmove($dstfile, “file.write”, $buf, $len, ‘‘, $len);
&sbrk(-$bufsize);

&goto(”loop”);

&label(”done”);

&move($dstfile, “file.close”, ‘a>);

&finishup;

Bibliography

[1] Eric J. Bergiund, “An Introduction to the V-System” IEEE Micro, Aug. 1986,

pp. 35-52

[2] Andrew D. Birrell and Bruce Jay Nelson “Implementing Remote Procedure
Calls” ACM Transactions on Computer Systems, Vol. 2, No. 1 (Feb. 1984),

pp. 40-59.

[3] Andrew Black, Norman Hutchinson, Eric Jul and Henry Levy “Object Struc
ture in the Emerald System” In Proceedings of the 1986 ACM Symposium on
Object Oriented Programs, Systems, Languages and Applications, Sept. 1986,

pp. 78-86.

[4] Joseph R. Falcone, “A Programmable Interface Language for Heterogeneous
Distributed Systems” ACM Transactions on Computer Systems, Vol. 5, No. 4
(Nov. 1987), pp. 330-351.

[5] V. Jacobson, Compressing TCP/IP Headers for Low-Speed Serial Links.
Arpanet Working Group Requests for Comment, DDN Network Information
Center, SRI International, Menlo Park, CA, Feb. 1990. RFC-1144.

[6] Eric Jul, Henry Levy, Norman Hutchinson and Andrew Black “Fine-Grained
Mobility in the Emerald System” ACM Transactions on Computer Systems,
Vol. 6, No. 1 (Feb. 1988), pp. 109-133.

[7] S. J. Mullender and A. S. Tanenbaum “The Design of a Capability-Based
Distributed Operating System” The Computer Journal, Vol. 29, No. 4 (Aug.
86), pp. 289-299.

[8] R. Pike. “The Text Editor sam” Software — Practice and Experience, Vol. 17,
No. 11 (Nov. 1987), pp. 813-845.

[9] W. Simpson, The Point-to-Point Protocol (PPP) for the Transmission of
Multi-protocol Datagrams over Point-to-Point Links. Arpanet Working Group
Requests for Comment, DDN Network Information Center, SRI International,
Menlo Park, CA, May 1992. RFC-1331.

[10] R. Sandberg, D. Goldberg, S. Kleiman, D. Wals and B. Lyon “Design and
Implementation of the Sun Network Filesystem” Sun Microsystems, Inc. Tech
nical Report, 1985.

46

Bibliography 47

[11] Andrew S. Tanenbaum and Robbert Van Renesse “Distributed Operating Sys
tems” Computing Surveys, Vol. 17, No. 4, Dec. 1985, pp. 419-470

[12] Technical Reference Manual for NeWS, Sun Microsystems.

[13] Marvin M. Theimer, Keith A. Lantz and David R. Cheriton “Preemptable
Remote Execution Facilities for the V-System” 24CM 10th 50SF, Dec. 1985,

pp. 2 - 12.

[14] Larry Wall and Randal L. Schwartz, Programming Pen. O’Reilly & Associates,
Inc., Sebastopol, California, 1990.

[15] Bruce J. Walker, Gerald J. Popek, Robert English, Charles Kline and Greg
Thiel “The LOCUS Distributed Operating System” ACM SIGOPS Operating
Systems Review (Ninth ACM Symposium on Operating Systems Principles),
Vol. 17, No. 5, (Oct. 1983), pp. 49-70

[16] E. Zayas, “Attacking the Process Migration Bottleneck” ACM 11th 50SF,
Nov. 1987, pp. 13-24.

