
A C O M P A R A T I V E A N A L Y S I S O F M U L T I - D I M E N S I O N A L

I N D E X I N G S T R U C T U R E S F O R " E I G E N I M A G E S "

By

Andishe Samandari Sedighian

B . Sc. E E , University of Colorado at Colorado Springs, 1989

A T H E S I S S U B M I T T E D I N P A R T I A L F U L F I L L M E N T O F

T H E R E Q U I R E M E N T S F O R T H E D E G R E E O F

M A S T E R O F S C I E N C E

in

T H E F A C U L T Y O F G R A D U A T E S T U D I E S

C O M P U T E R S C I E N C E

We accept this thesis as conforming
to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

December, 1995

. © Andishe S. Sedighian, 1995

In presenting this thesis in partial fulfillment of the requirements for an advanced degree at

the University of British Columbia, I agree that the Library shall make it freely available for

reference and study. I further agree that permission for extensive copying of this thesis for

scholarly purposes may be granted by the head of my department or by his or her

representatives. It is understood that copying or publication of this thesis for financial gain

shall not be allowed without my written permission.

Computer Science

The University of British Columbia

2366 Main Mall

Vancouver, Canada

V6T 1Z4

Date:

Abstract

Content-based retrieval in image management systems requires indexing of image feature

vectors. Most feature vectors have a high number of dimensions (>20). This makes

indexing difficult since most existing multi-dimensional , indexing structures grow

exponentially in size as dimensions increase. We approach this problem in three stages: i)

reduce the dimensionality of the feature space, ii) evaluate existing multi-dimensional

indexing structures to determine which can best organize the new feature space, and iii)

customize one of the selected structures to improve search performance. To reduce the

dimensionality of the feature space without losing much information we apply a statistical

technique called Principal Component Analysis (PCA), using Turk and Pentland's

eigenfaces approach. We then conduct a comparative analysis of a wide range of existing

multi-dimensional indexing structures (quad trees, KD-trees, R-trees, gridfile, and

multipaging), selecting three of them (bucket adaptive KD-tree, gridfile, R-tree) for further

empirical comparisons. Tests show that the bucket adaptive KD-tree uses the least storage

and peforms the best during search. Finally, we customize the bucket adaptive KD-tree by

implementing techniques that take advantage of the characteristics of the transformed space

— namely ranked dimensions by decreasing variance and known dynamic ranges. This

prunes the search space and results in very efficient searches. The number of page accesses

are reduced significantly, some times leading to savings as high as 70%.

ii

Table of Contents

Abstract ii

List of Tables vi

List of Figures vii

Acknowledgement viii

1 INTRODUCTION 1

1.1 The Need for Image Database Management 1

1.2 Multi-dimensionality of Image Features.. 4

1.3 Multi-dimensional Indexing Structures 5

1.4 Similarity Matching and Search Operations 7

1.5 Problem Definition and Thesis Contributions..... 10

1.6 Outline of Thesis 14

2 R E L A T E D W O R K 15

2.1 Image Analysis and Reduction of Feature Dimensions. .-. 15

2.1.1 Color 16

2.1.2 Texture 17

2.1.3 Shape 18

2.1.4 Summary of Image Analysis and Feature Reduction 19

2.2 Feature Space Organization 21

2.3 Search Techniques 22

iii

3 PRINCIPAL C O M P O N E N T ANALYSIS 25

3.1 Mathematical Foundations of PCA 25

3.1.1 Definition of PCA 26

3.1.2 How to compute PCs 29

3.2 Calculating Eigenimages ..30

3.3 Implementation and Results 33

4 E V A L U A T I N G MULTI-DIMENSIONAL INDEXING S T R U C T U R E S 36

4.1 Review of Multi-dimensional Indexing Structures 36

4.1.1 Non-Hierarchical Data Structures 37

4.1.1.1 Gridfile 37

4.1.1.2 Multipaging 38

4.1.2 Hierarchical Data Structures 39

4.1.2.1 Point-Based Structures 39

4.1.2.2 Region-Based Structures.......! 41

4.1.2.3 Bucket Methods 41

4.2 Comparative Analysis 43

4.2.1 Criteria of the Analysis 43

4.2.2 Answers to the Criteria Questions. 45

4.2.3 Results of the Analysis 49

5 I M P L E M E N T A T I O N DETAILS & E X P E R I M E N T A L E V A L U A T I O N
O F T H E K D - T R E E , R - T R E E & GRIDFILE 51

5.1 Indexing Structure Implementations 52

5.1.1 Bucket Adaptive KD-Tree ...52

5.1.2 Deferred-Split R-Tree 57

5.1.3 Gridfile 59

iv

5.2 Data Testbed 61

5.3 Results of Experimental Evaluation .61

5.3.1 Storage Cost 62

5.3.2 Search Performance 64

5.4 Conclusion i 70

6 I M P L E M E N T A T I O N & E V A L U A T I O N O F OPTIMIZED B U C K E T
A D A P T I V E K D - T R E E .71

6.1 The Early Fail Test 73

6.2 The Early Success Test 75

6.3 Changes to Tree Structure 76

6.4 Search Algorithm 78

6.5 Results of Experimental Evaluation 79

7 CONCLUSIONS 90

7.1 Summary.. 90

7.2 Future Work 92

B I B L I O G R A P H Y 95

List of Tables

3.1 Reduced PCs for different % of Variance using M = 400 34

3.2 Reduced PCs for different % of Variance using M = 134 34

6.1 Dynamic Range and Spread of first 10 PCs for 8000 data points 72

6.2 Percent of Buckets saved from being accessed in the Opt. BA_KD-tree 87

6.3 Percent of Buckets saved that contain only 0 to 3 points that satisfy the Range
Search.. ..88

vi

List of Figures

3.1 Plot of 50 observations on two variables x l , x2 : 27

3.2 Plot of the 50 observations from Fig. 3.1 with respect to their PCs z l , z2 27

3.3 Centering and rotating a data set to fit its principal components 28

3.4 Twenty sample face images from our data set 32

3.5 Average of the twenty face images in Figure 3.4 32

3.6 The 4 eigenfaces of the images in Figure 3.4 32

5.1 Comparison of page usage of R-tree and KD-tree structures 63

5.2 Effect of increase in dimensions on capacity of R-tree and KD-tree pages 64

5.3 Discriminating Power of Indexing Structures 65

5.4 Comparison of # of Pages Accessed 1 67

5.5 Comparison of # of Pages Accessed II 67

5.6 Comparison of Overall Search Times I 68

5.7 Comparison of Overall Search Times II 69

6.1 No. of page accesses saved using Opt. BA_KD-tree and fixed-radius search 80

6.2 Ratio of # of pages accessed by Orig. BA_KD-tree over # of pages accessed by
Opt. BA_KD-tree for all dimensions 81

6.3 Percent savings in no. of pages accessed by Opt. BA_KD-tree for large data sets ...82

6.4 Overall search time saved using the Opt. BA_KD-tree and fixed-radius search 83

6.5 Ratio of overall search time of Orig. BA_KD-tree over overall search time of
Opt. BA_KD-tree for all dimensions 84

6.6 Percent savings in overall search time using the Opt. BA_KD-tree, for large data 1

sets 85

vii

Acknowledgement

First and foremost, I would like to express my sincere thanks to my supervisor, Dr.
Raymond Ng, for his guidance, assistance and understanding over the past two years. I
truly appreciate the fact that he always made the time to discuss concepts with me at length
and to clarify and refine ideas. Moreover, I am particularly grateful that he gave me the
time I needed to spend with my parents when my father was very ill .

Second, I would like to thank Dr. Robert Woodham who was the second reader on
my thesis. Eventhough, as Head of the Department, his schedule was very full, he
graciously accepted to spend the time necessary to review my work and provide me with
valuable and thought-provoking comments.

I would also like to thank my fellow students, Richard Pollock, David Hsu and
Michael McAllister, for the assistance they gave me at different times along the way.
Although they may not have thought it much, the discussions I had with them on different
aspects of my thesis helped me work through some of the harder concepts. I wish them all
the best of luck in their academic endeavors and future careers.

A special thank-you goes to Dr. Christos Faloutsos of the Department of Computer
Science at the University of Maryland, College Park, for allowing us to use code that he and
his students had developed for two of the multi-dimensional indexing structures we use in
this work: the gridfile (by C. Faloutsos and S. Hong) and the deferred-split R-tree (by M .
Bayraktar, C. Faloutsos, Y. Tan, J. Tang and W. Wang).

I would like to especially thank my dear husband, Karnran, for all the love, support,
and encouragement he gave me through thick and thin. In particular, I would like to thank
him for his invaluable comments on this document.

Finally, I thank the Lord for giving me the strength and ability to accomplish this
milestone, and for continuously granting me His abundant grace and bounties.

viii

Chapter 1

INTRODUCTION

1.1 The Need for Image Database Management

Conventional database management systems (DBMS's) are designed with alphanumeric data

in mind. Over the past thirty years much research has gone into designing these systems so

as to give users a seamless and transparent view into the data domain being managed

[GM92a]. As a result, DBMS's have been very successful and have proliferated in all areas

of business and industry. In the last decade, however, there has been a significant increase

in the generation of non-alphanumeric data such as graphics, maps, images, video and

audio. From business to academia, from medicine to land resource management, from

education to entertainment, more and more people are interacting with large image

databases. Although some early attempts were made to adapt traditional DBMS's to

support non-alphanumeric data [KWT74], it quickly became clear that traditional database

management techniques could not effectively handle image or other non-alphanumeric data.

New approaches have to be used for designing image information management systems.

Until very recently, most image database systems have generally fallen into one of

two categories: 1) databases with no image understanding capabilities, or 2) vision systems

which store images in a basic image repository [BPJ93, GM92a]. The first approach

requires recording textual annotations which describe each image. These annotations are

1

Chapter 1. Introduction 2

then entered into a traditional database and searches are performed based on keywords

stored in this database. The images themselves are not really part of the database but are

stored separately; they are only referenced by text strings and pointers. There are a number

of serious limitations to this approach. It is quite clear that such a method is labor-

intensive, involving the manual cataloging of thousands, if not hundreds of thousands, of

images. In addition, the complexity of the information embedded in the images cannot be

sufficiently described in a few keywords so as to distinguish a particular image from other

images. Finally, there is the difficulty of anticipating every user's needs when assigning

keywords to images; a user may not interpret an image in the same way the database system

designer may have interpreted it upon initial insertion.

The second approach originated in the image processing community. These systems

have the ability to accurately interpret complex image data. However, they are intended

strictly for vision applications and research, and therefore simply maintain the images in

basic image repositories. Support for database processes such as insertion, indexing,

querying, and so on is very limited, and only small numbers of images (i.e., tens or

hundreds) are used as testbeds. Researchers in the emerging field of Visual Information

Management Systems (VIMS) believe that the creation of mere image repositories is of

little value. Methods for fast retrieval of images based on their content must be devised for

data sets of realistic sizes, i.e., tens or hundreds of thousands of images [Jai93]. The

realization of such image management systems requires the development of new techniques

in the fields of databases, computer vision, and knowledge-based systems.

Chapter 1. Introduction 3

Since the beginning of the 1990's, researchers in the fields of image processing and

understanding, knowledge representation and knowledge based systems, and databases have

begun working together to face the challenges of designing new VIMS 1 . These groups

have approached the problem of content-based image retrieval in a variety of ways. As a

result, a number of different prototype image database systems have emerged. Below is a

sampling of these systems. A more extensive review of these systems is presented in

Chapter 2:

1) QBIC (Query By Image Content): developed at the IBM Almaden Research

Center, this system focuses on retrieving images from stocks of photo clip art

based on three types of image content — color, texture and shape [F+94, N+93].

2) ENIGMA: developed at the University of Amsterdam, this system works with

MRI images of the chest. Small image patches that frequently occur in the set of

MRI images are extracted and used as key features by which to search the

database [GS92].

3) Xenomania: developed at the University of Michigan, this is a visual

information system used for interactive face retrieval. Face features such as

eyes, nose, and mouth are used to locate a specific face in the database [BPJ93].

4) Face Photobook: developed at the Media Lab at M.I.T., this system is used for

face recognition. The eigenfaces approach of Turk and Pentland [TP91] is used

to represent and retrieve images from the database [PPS94].

The IRIS/IC-5 Project based in the Department of Computer Science at the University of British
Columbia is one such group of collaborators from various disciplines.

Chapter 1. Introduction 4

1.2 Multi-dimensionality of Image Features

The majority of current image database system prototypes represent and retrieve images

based on a variety of image content descriptors. The most common of these are color,

texture and shape. These content descriptors are commonly termed image features. An

image feature can be defined as a numerical value or a vector that is computed based on the

low-level properties of an image (such as pixel intensity values). Various current image

analysis techniques may be used to extract one or more image features from each image.

For example, color histograms are computed, edge properties are extracted, texture features

are calculated that represent coarseness, contrast or directionality, and shape features such

as area, circularity, and eccentricity are measured.

The important information in an image can also be represented using another

approach. This involves first somehow capturing the variation in the whole database of

images, independent of any explicit features, and then using this information to encode and

compare the individual images in the set [TP89, TP91]. The details of such a method are

explained in a later chapter. However, the important difference to remember between this

approach and the previous one is that in the former technique a specific feature vector (such

as a color histogram or a set of texture values) is extracted from each image and used to

represent it. In the latter technique each image in a database, with N rows and N columns

of pixels, is first converted into a single N2~element vector by concatenating the rows of

pixel intensity values. Then, using a statistical tool, the variation in the complete set of

image vectors is calculated. In mathematical terms, the principal components of the

distribution of images are found. Finally, each individual image is represented as a linear

combination of these components.

Chapter 1. Introduction 5

In both approaches, due to the complexity of the information, the images are

represented as points in a multi-dimensional space. Each point in this space is a unique k-

dimensional location represented by a vector x = [x i , X2 , ... , x^]. As an example, color is

usually a 3-valued tuple treated as a 3-dimensional point in a color space such as R, G, B.

It is common to have image vectors with 20 or more dimensions. In this thesis, we will

consider a point with over 20 dimensions as one that has high dimensionality, a point with

6 to 20 dimensions as one that has medium dimensionality, and a point with less than 6

dimensions as one that has low dimensionality.

The high dimensionality of image vectors can pose a real problem particularly when

one considers that usually real-life image databases store tens to hundreds of thousands of

images. This problem is many-faceted: 1) a large number of dimensions per image means

that a lot of space must be used just to store the image vectors; 2) if the dimensions are not

all independent then redundant information is stored; and 3) when calculating the similarity

between an image and a query, large numbers of dimensions means increased computation

time. Therefore, in order to retain reasonable storage requirements and low computation

time, techniques should either be developed or adopted that can efficiently analyze and

compress image vectors.

1.3 Multi-dimensional Indexing Structures

In traditional DBMS's various indexing techniques have been developed to facilitate

searches on alphanumeric data (e.g., B-trees and hashing). However, these conventional

methods are not suited for indexing multi-dimensional data' points. Research into

techniques for accessing spatial data has generated several indexing structures designed to

Chapter 1. Introduction 6

handle multi-dimensional points and spatial objects (such as rectangles) [Giit94]. The most

common spatial or multi-dimensional indexing structures include the quadtree and its family

[FB74, Sam90], the KD-tree and its variants [Ben75, Ben79, Sam90], the gridfile [NHS84,

Sam90], and the R-tree and its variants [Gut84, B+90, SRF87]. Since images can be

represented as points in a multi-dimensional feature space, these structures are suited for

organizing image feature data. Consequently, these structures have been adopted by some

researchers for this very purpose. In QBIC and [A+95], for instance, an R*-tree [B+90] (a

variant of the R-tree) is used to index shape and texture feature vectors respectively.

Although multi-dimensional point access methods are suited for accessing image

feature data, the fact that most image features have a high number of dimensions restricts

the efficacy of these methods. This is because most existing multi-dimensional indexing

structures cannot deal with high-dimensional data points. They often grow exponentially

with the number of dimensions — a phenomenon known as the "dimensionality curse"

[F+94, A+95]. The R-tree methods, however, seem to be the most robust with experiments

indicating that the R*-tree can handle up to 20 dimensions [F+94, A+95]. The inability of

existing multi-dimensional indexing structures to effectively handle the organization of high-

dimensional image feature vectors is a further reason why it is necessary to find ways of

compressing image feature spaces. The VIMS research community has recognized this

shortcoming of multi-dimensional indexing structures and has made the following

recommendation at the 1992 National Science Foundation workshop on VIMS:

Efficient indexing methods for high dimensions need to be developed,
balancing efficient use of index memory with efficient retrieval (i.e.
O(logn)) methods. Except in the field of information retrieval, current
'multi-dimensional' indexing methods are oriented toward relatively few
dimensions, say 10 to 20. [Jai93, p.63]

Chapter I. Introduction 7

1.4 Similarity Matching and Search Operations

Besides efficient multi-dimensional indexing, one of the main functionalities we need

from an image database is similarity matching. Here, an important distinction needs to be

made between searches performed on image databases and those performed on traditional

alphanumeric databases. In traditional DBMS's, the retrieval of data is based on exact

matches, for example, find all students in the database with the last name "Smith". Exact

match, however, is not possible with image databases. There are primarily two reasons why

a measure of similarity must be developed: 1) Users' queries are ordinarily rough

estimations of the image they are looking for; for example, find an image that has a

"reddish" ball, "about" this large, "somewhere" in this corner. In such a query, neither the

exact color of the object, nor its size, nor its precise location are provided by the user. The

user often just has a notion of what (s)he is looking for and cannot remember the exact

details of an image. 2) The introduction of noise and distortion is inherent in image

processing [GM92].

How can multi-dimensional indexing structures help with similarity matching?

There are two important characteristics of a multi-dimensional indexing structure that assist

in performing a similarity match. The first characteristic is the way in which the structure

organizes the data space so that during a search only parts of that space, and hence a subset

of the points in it, need to be considered to answer a query. This characteristic is important

for reducing the number of images for which the similarity metric needs to be computed.

The ratio of the reduced set of images to the full set of images is termed by Alexandrov, et

al. [A+95] as the discriminating power of the indexing structure. The smaller the ratio, the

greater the discriminating power. The second characteristic is the efficiency of the indexing

structure — i.e., how fast it can produce the reduced set of images for a fixed value of the

Chapter 1. Introduction 8

discriminating power. The efficiency is, among other things, dependent on the search

operation used. The appropriate indexing structure in conjunction with the right kind of

search operation can result in efficient processing of similarity match queries and a high

discriminating power.

There are several types of search operations that are useful for similarity matching.

These include range search, partial range search, nearest-neighbor search, and fixed-

radius near neighbor search. Following is a brief definition of each kind of search:

1) Range Search: The process of retrieving the appropriate records when given an

"orthogonal range query," i.e., find all records whose k key values fall within

specified ranges [BF79, BM80]. Partial Range Search is very similar except

that only n of the k key values (n < k) have specified ranges.

2) Nearest-Neighbor Search: This is also known as the "best-match" or "closest

point" search. It is the process of retrieving the record or m records that are

most similar to a query according to some (dis)sirnilarity measure. This

(dis)similarity measure is often a distance function [SW90].

3) Fixed-Radius Near Neighbor Search: The process of retrieving all records that

fall within some fixed radius r of a query [BM79].

These search algorithms can play two different roles during query processing in

image databases. They can be used as filters to reduce the number of images on which

similarity functions are implemented (e.g., first perform the proper range search and then

compute a detailed similarity metric on the returned images), or they can be used to perform

the complete search itself (e.g., perform nearest-neighbor search to get the m best matches).

Chapter 1. Introduction 9

Most often, search algorithms are used for the first purpose — to reduce the search space on

which the thorough matching is done.

In this thesis, we concentrate on finding all images that are within a fixed distance

from a query. There are two main reasons for this choice: 1) often, users are not interested

in the "best match" to their query but prefer to retrieve a number of similar images so that

they can further modify their query using these images [A+95]. The "fixed-distance-from-

query" notion of similarity fits this requirement quite well; and 2) this form of similarity

matching is often used in image database systems [PK93, F+94]. The distance metric that

we choose to work with is the Euclidean distance2. Our reasons are because Euclidean

distance is a natural and common notion of distance, and is used frequently for similarity

match in current image database prototypes [PK93, F+94].

The fixed-radius near neighbor problem in fc-dimensional space is not a simple one.

The distance function between two neighboring data points for this type of search could be

any vector space L^-norm, such as the Lj-norm or the I^-norm [FBF77]. Although fixed-

radius search is independent of the type of distance metric used, the metric must be a

summation of some difference between each dimension of the two points under

consideration. Much work has been done in this area [Ben75a, Yuv75, BSW77], however,

most multi-dimensional indexing structures still only approximate fixed-radius search.

Some simply use range search instead of fixed-radius search, setting the range in each

dimension equal to twice the length of the specified radius [Sam90]. Others take it one step

The Euclidean distance between two ^-dimensional points, x and y, is defined as:

d i s t 2 (x , y) = i (X / - y •) 2

(=1

Chapter 1. Introduction 10

further and actually compute the distance between the query and the points retrieved by the

range search, further refining the answer given to the user [F+94].

Range search differs greatly from fixed-radius search in that it considers each

dimension in a data point independently of the rest of the dimensions. The value of each

dimension is simply compared against the appropriate query range. For this reason, unless a

search requires that the dimensions be treated independently, using range search to find

points that are within a fixed distance from a query is a poor approximation of fixed-radius

search. Such an approximation means that the hyper-sphere of the radius search is

approximated by the hyper-rectangle of the range search. This results in the retrieval of

many false hits, i.e., images that are retrieved which in fact do not satisfy the query

constraints. For uniformly distributed data, this approximation gets poorer as the number of

dimensions of the feature vectors increases. Therefore, if a structure is used to find all

images whose distance from a query is below a fixed threshold, as in [PK93] and [F+94], it

would improve the discriminating power and the efficiency of the indexing structure if

fixed-radius near neighbor search is used rather than range search.

1.5 Problem Definition and Thesis Contributions

As we have seen, images in a database can be represented as vectors in a multi-dimensional

space. Frequently this image space has a high number of dimensions. This presents a few

challenges to designers of image management systems: 1) high dimensional feature vectors

can be costly in terms of storage and computation time; 2) most existing multi-dimensional

indexing structures cannot handle points with high numbers of dimensions, so they must be

chosen judiciously; and 3) more efficient search techniques need to be employed to reduce

Chapter 1. Introduction 11

CPU and I/O time (i.e., number of page accesses). This thesis addresses these issues by

investigating the following questions:

1) How can we compress or reduce the dimensionality of the image vector space?

2) What existing multi-dimensional indexing structures are suitable for organizing

the image space once it has been compressed?

3) How effective, in terms of computation time and page accesses, is range search

in approximating fixed-radius near neighbor search when looking for data points

within a fixed distance from a query?

In answering the first question, we chose and implemented a dimension-reducing,

distance-preserving technique called Principal Component Analysis3 (PCA). This technique

transforms the data space by removing dependent dimensions and converging most of the

information into the first few dimensions. Our implementation of PCA follows that of Turk

and Pentland in which full image vectors are used in the calculations [TP91]. Our

experiments confirm their results, demonstrating that PCA can effectively reduce high-

dimensioned image vectors (or high-dimensioned specific feature vectors) while retaining

most of the variance in the data set. Our findings further show that this technique works

well on relatively large data sets (400 images in our test bed versus 16 images in Turk and

Pentland's).

In answering the second question, we conducted a comparative analysis of existing

multi-dimensional indexing structures to determine which ones could best support image

3 PCA is also known in pattern recognition as the Karhunen-Loeve transform.

Chapter 1. Introduction 12

vectors that have been transformed using PCA. In this analysis, the issues of primary

concern are: i) how the storage cost of the structures scales up with increasing dimensions;

and ii) what kinds of searches the structures are suited for. The results of this analysis

indicate that 3 of the structures are the most reasonable for our purposes. These are the

bucket adaptive KD-tree, the family of R-trees, and multipaging. In order to get a concrete

understanding of the suitability of these structures we decided to implement all three

structures and carry out a thorough experimental evaluation of each. We implemented the

bucket adaptive KD-tree using Samet's text [Sam90] as reference. However, due to limited

time, we did not implement R*-tree and multipaging. Instead, we acquired an R-tree and a

gridfile structure from Christos Faloutsos at the University of Maryland. Although the R-

tree and gridfile implementations are not the structures we originally planned to evaluate,

they are still useful for our comparison because of their similarity to R*-tree and

multipaging. The experiments we conducted used data points that were extrapolated from a

set of 400 gray-scale face images. The dynamic ranges of the principal components of the

image vectors were initially extracted, then larger data sets, from 500 to 50,000 data points,

were generated based on this original data. To compare the performance4 of these

structures over a number of dimensions, we generated data points that varied from 2 to 10

dimensions for each data set size. Using this testbed, we compared storage costs and

performance of range search for the three indexing structures. The results indicate that the

bucket adaptive KD-tree is the most suitable structure for organizing PCA-transformed

data.

We measure performance by looking at overall search time and number of page accesses.

Chapter 1. Introduction 1 3

In answering the third question, we modified the bucket adaptive KD-tree5

implementation so that it could perform fixed-radius near neighbor search. Furthermore,

we implemented a number of the ideas outlined by Bentley [Ben75a] to improve the

performance of fixed-radius search. The two key techniques we implemented are termed by

us as the Early Fail Test and the Early Success Test. The Early Fail Test checks to see if

the sum of the squares of the minimum differences between a query point and the hyper-

rectangle of the range of a sub-tree is greater than a fixed threshold r 2, where r is the

distance (or radius) from the query point. If this sum exceeds r2, it indicates that the entire

sub-tree can be skipped. To reduce the number of calculations and speed up this test, we

compute the sum of the squares of the minimum differences only until they exceed r 2. The

Early Success Test is used to determine whether or not the hyper-rectangle of the range of a

sub-tree falls entirely within a fixed radius from the query point. If the sum of the squares

of the maximum differences between the query point and the hyper-rectangle is less than or

equal to r 2, this indicates that all data points under that subtree satisfy the query.

Therefore, further testing down that sub-tree is unnecessary. Again, to reduce the number

of calculations and speed up the Early Success Test, we compute the sum of the squares of

the maximum differences only until they exceed r 2. To implement both tests, we had to

store the minimum and maximum values of the dimensions of the hyper-rectangle of the

sub-tree at each node. Experiments comparing the performance of the optimized bucket-

adaptive KD-tree and the original bucket adaptive KD-tree indicate that, for a medium

number of dimensions, the optimized BA_KD-tree leads to a significant reduction in the

number of page accesses and overall search time6, sometimes as much as 70%.

5 In this thesis the term "original bucket adaptive KD-tree" will refer to the initial implementation of this
structure with only range search capability, and the term "optimized bucket adaptive KD-tree" will refer
to the modified version of this structure with optimized fixed-radius near neighbor search capability.

6 Overall search time for the optimized tree includes the extra computations necessary for performing the
Early Fail and Early Success Tests.

Chapter 1. Introduction 14

In summary, the work of this thesis: 1) confirms that PCA is a useful statistical

technique for reducing the dimensionality of image vector spaces; 2) determines that the

bucket adaptive KD-tree performs well for indexing PCA-transformed data; 3) verifies that

range search is a poor substitute for fixed-radius near neighbor search; and 4) demonstrates

that the bucket adaptive KD-tree can be modified to handle an optimized fixecl-radius

search operation that greatly improves the structure's performance in finding all images

within a fixed distance from a query.

1.6 Outline of Thesis

The remaining chapters contain the following: Chapter 2 describes related works. It

reviews some prototypes of image databases developed by various researchers in the image

processing and database communities. Chapter 3 focuses on the PCA technique. It first

explains the mathematical theory behind PCA, and then describes the eigenfaces approach

of Turk and Pentland which we adopt for analyzing the images in our database. Chapter 4

presents in detail the comparative analysis of a wide range of existing multi-dimensional

indexing structures. It explains the criteria on which our analysis is based, and gives the

reasons for our choice of structures. Chapter 5 describes the testbed used for this thesis,

covers the key aspects of the implementation of the three structures we chose in Chapter 4,

and presents the results of our experimental evaluation of each. Chapter 6 explains the

modifications that we made to the bucket adaptive KD-tree and the details of the

implementation of fixed-radius near neighbor search. It also presents the results of the

comparison of the performance of the optimized bucket adaptive KD-tree and the original

bucket adaptive KD-tree. Finally, Chapter 7 presents our conclusions and suggestions for

future work.

Chapter 2

R E L A T E D W O R K

In recent years there has been much research in the field of Visual Information Management

Systems. This has resulted in the development of many new prototypes. In this chapter we

examine a number of these prototypes (ENIGMA [GS92], AMSTERDAM [SSG92], ART

MUSEUM [HK92], TRADEMARK [Kat92], QBIC [N+93], Xenomania [BPJ93], Miyabi

[H+93], FINDIT [Swa93], Photobook [PPS94] and others) and see how they address the

three central issues of this thesis — namely, reduction of the number of dimensions of the

feature space, organization of the feature space, and application of an efficient search

technique.

2.1 Image Analysis and Reduction of Feature Dimensions

There are several kinds of image features that are used to describe the contents of images in

a database. In general, the systems we investigate in this thesis look at one or more of the

following features: color, texture, and shape. Below, we give a summary of the image

features used in several of these systems and examine how, or whether, they attempt to

reduce the dimensionality of the features that are extracted.

15

Chapter 2. Related Work 16

2.1.1 Color

One of the features most commonly extracted from an image is its color content. Swain and

Ballard state: "The color spectrum of multicolored objects provides a robust, efficient cue

for indexing into a large database of [images]" (p. 390) [SB90]. In [SB90], [SB91],

[BGS92], and [Swa93], color is used as the only indexing feature. In QBIC [N+93] and

[SSU94], color is used along with a few other features for indexing images. Images are

represented by color histograms, and a metric on the histogram space is used to determine

the similarity between two images. Histograms are usually compared sequentially across all

the images in a database. However, since this type of recognition scheme is linearly

dependent on the database size, computation time dramatically increases for large image

databases.

To reduce this time Swain and Ballard [SB91, Swa93] use a technique they call

incremental intersection which takes advantage of the fact that in a typical histogram a

small number of bins usually capture the majority of pixel counts. In this scheme only the

largest bins of the query and database image color histograms are compared and a partial

histogram intersection value is computed for the similarity match.

The QBIC project approaches this problem in a slightly different way. Instead of

reducing the number of bins used in the histogram comparison, QBIC reduces the number

of images on which a full histogram comparison is performed. To better understand their

approach, let us first review the QBIC definition of a full historgram comparison. The

distance between two color histograms x and y is defined as:

dL(x,y) = (x-y)TA(x-y) (2.1)

Chapter 2. Related Work 17

where x and y are (K x 1) vectors (K is the number of histogram bins), T denotes transpose,

and A is a K x K matrix which has entries â - that describe the similarity between color i and

color j. This distance takes into account the "cross-talk" between two colors such as

orange and red thereby correctly computing that orange images are similar to red images or

that half-red/half-blue images are quite different from all-purple ones [F+94]. To reduce the

computation necessary to compare a query image to the images in the database, Faloutsos,

et al. introduce the following filtering step. They first compute the Euclidean distance

davg(Xy) between the average color of the query image, x, and the average color of an

image in the database, y. The average color xavg of an image is defined as the average R,

G, and B values of the pixels in that image:

If davg(x,y) is greater than some threshold value e, then that image is dropped from the

search. But those images whose davg(x,y) is less than or equal to e go on to have the full

histogram distance computed. This technique acts as a filter on the database ensuring that

there are no false dismissals, but accepting some false hits. These false hits are later

discarded by performing full-histogram distancing on the set of images captured in the filter

step. In this way computation time is saved as it is much cheaper to perform the full

histogram comparison on only a subset of the images rather than on the whole image set.

2.1.2 Texture

Texture information is one of the basic cues on which patterns can be retrieved. Four of the

systems we investigate extract texture features with which to represent the images in their

database. QBIC's texture features include coarseness, contrast, and directionality [N+93].

Sakamoto, et al. define the texture of a region as its coarseness [SSU94]. In Texture

Chapter 2. Related Work 18

Photobook [PPS94] texture is represented by measurements of repetitiveness, directionality

and complexity. Alexandrov, et al. use a series of Gabor filters to capture 120 different

texture features [A+95]. The dimensionality of the texture features in the first three systems

is very low therefore they do not use any feature compression techniques. However, since

Alexandrov, et al. have a very high dimensioned feature measure, they develop a scheme for

determining the relative importance of the Gabor filters. The filter ordering is pattern

dependent and is based on the average spectral information of all the images in the database

[A+95]. They are able to reduce the dimensionality of the texture feature down to a

maximum of two dimensions.

2.1.3 Shape

Shape recognition has always been one of the major challenges in the field of computer

vision. It has also become one of the most challenging aspects of content-based image

retrieval. Several of the prototype systems extract shape features and use them for indexing

the images in their data set. Following is a brief listing of the types of shape features that

are extracted by the different systems we study: 1) Gary and Mehrotra [GM92b] use a set

of polygonal approximations of the actual object boundary to define an object; 2) Grosky

and Mehrotra [GM90] employ data-driven model-based shape recognition; 3) Grosky and

Jiang [GJ92] use vertex angles and the lengths of their adjacent edges as shape features; 4)

Hou, et al. [H+92] extract a sequence of feature vectors derived from the center-of-mass of

the individual objects in an image; 5) Pentland, et al. [PPS94] use Finite Element Method

models [SP93] of objects to align, compare, and describe objects; 6) Samadani, et al.

[SHK93] extract 15 different shape features from a specified sector of an image (global

features, such as total area and total intensity, and radial features, i.e., features along a

Chapter 2. Related Work 19

radial line, such as width and variation of width); and 7) in QBIC [N+93, F+93] they extract

a total of 20 shape features that include area, circularity, eccentricity, major axis orientation

and a set of algebraic moment invariants. Other systems such as ENIGMA [GS92], Miyabi

[H+93], and ART MUSEUM [HK92] use image segmentation to extract the outline of

objects in an image.

As seen above, shape feature vectors frequently have a high number of dimensions.

This high dimensionality makes computing the similarity between images expensive,

especially when dealing with large data set sizes. Despite this high cost, most of the

systems cited, with the exception of QBIC, do not try to alleviate the problem. QBIC uses

a method known in pattern recognition as the Karhunen-Loeve (KL) transform, to

decorrelate and compress the texture dimensions. The KL transform, known in statistics as

principal component analysis, is a data-dependent orthonormal transform. It requires using

a sample of the data set to compute the transformation matrix. The columns of the

transformation matrix correspond to the eigenvectors with the largest eigenvalues of the

covariance matrix of the feature vectors. To achieve dimensionality reduction, the first few

eigenvectors are selected since they contain most of the variance of the whole data set

[F+94]. The reduced-dimension shape feature vectors are then used to perform the

necessary distance calculations thus reducing the computation time.

2.1.4 Summary of Image Analysis and Feature Reduction

From the above review, we can see that most of the prototypes we examined do not

concern themselves with the high dimensionality of the feature vectors they extract. There

seems to be two reasons for this. First, the focus of the prototypes is primarily on

Chapter 2. Related Work 20

developing techniques for extracting relevant feature information from images in a database

and using this extracted data later for similarity calculations. Second, the image testbeds

used are, for the most part, small in size (i.e., from scores to a few thousand images).

Consequently, the problems that a large number of feature dimensions create, namely high

storage cost and expensive computations, are not an issue in these systems. This, however,

does not diminish the importance of dealing with the "dimensionality curse." If systems are

to handle realistic-sized databases such as digital libraries of images with tens to hundreds

of thousands of images, techniques for reducing the dimensionality of image features,

without suffering great loss of information, will have to be adopted or devised.

In our study, we recognize that the high dimensionality of most image

representations are costly for the system. Hence, we adopt and implement an image

analysis and dimension-reducing technique, dubbed eigenfaces, that was developed by Turk

and Pentland at M.I.T. [TP91, TP89]. It is founded on the same principles as the technique

used in QBIC for reducing the dimensionality of its shape feature vectors. However,

instead of working with specific feature vectors, the eigenfaces technique is applied to

whole image vectors. It performs PCA on the pixel intensity values of a sub-set of the

images in a database, extracting a small number of vectors that carry most of the

information in the images. These vectors become the "basis vectors" by which the images in

the database are defined. Further details of this technique are given in Chapter 3.

Chapter 2. Related Work 21

2.2 Feature Space Organization

With a multi-dimensional vector representing each image in a database, the whole database

maps to a collection of Jt-dimensional points in a fc-dimensional space7. This space may then

be organized by an indexing structure to assist in performing searches. However, most of

the prototype systems we examine do not use any sort of indexing structure for organizing
r'

the image features they extract. They simply have the feature vectors stored in flat files or.

arrays and use them to sequentially compare images in the database to a given query [GJ92,

HK92, GS92, SSU94, PPS94, Kat92, H+93, BPJ93, Swa93, SB91]. A few systems use

one of the existing multi-dimensional indexing structures for feature organization: 1) QBIC

[F+94] and Alexandrov, et al. [A+95] use the R*-tree for indexing their shape and texture

features respectively; 2) Gary and Mehrotra [GM92b] state that any multi-dimensional point

access method can be used to form the index on the shape features they extract; and 3)

Binaghi, et al. [BGS92] use the R-tree for organizing the color information they extract

from images. Two/of the prototype systems [GM90, H+92] build binary search trees based

on the similarity distance between features but not based on the image feature vectors

themselves. Finally, one of the prototypes [SSG92] organizes the features it extracts into a

relational table.

As was mentioned above, most of the systems we investigate do not use an indexing

structure to organize the image feature space they generate. The reasons for this seem to

be, once again, twofold: indexing is not a focus of those studies and, more importantly,

small sized data sets do not prompt the need for sophisticated feature space organization.

We feel that an image management system that manages tens to hundreds of thousands of

Often, there is more than one multi-dimensional space that represents the images in a database since
several feature vectors may be extracted from each image.

Chapter 2. Related Work 22

images needs to utilize a suitable indexing structure, particularly one that can handle multi

dimensional points, if it is to answer queries efficiently. The selection of an indexing

structure must, however, be done carefully as not all multi-dimensional indexing structures

are well suited for any multi-dimensional data. In this thesis, before choosing an indexing

structure to organize our multi-dimensional image vectors, we conduct a thorough analysis

of existing multi-dimensional indexing structures to determine which one(s) would be most

appropriate for our use. This examination includes both a comparative analysis and an

experimental evaluation of a wide range of structures. Chapter 4 provides the details of this

study.

2.3 Search Techniques

Organizing the image feature space by using an indexing structure is important. This is

because indexing helps to reduce search time compared to sequential searching (search time

includes CPU time and I/O time). However, since most of the systems we investigate store

their feature vectors in non-indexed flat files, they simply perform a sequential search

through the entire database of images computing the similarity between the query and each

' image. This sequential process involves the following steps:

1) given a query image, a feature vector is extracted;

2) the distance between the feature vector of the query and the feature vector of

each image in the database is computed;

3) images whose computed distance is below a predefined threshold are retrieved.

Chapter 2. Related Work 23
r .

Step 3 in this process indicates that a fixed-radius query is the notion of sirnilarity match

that is commonly used. Additionally, the L^-norm, or Euclidean distance, is oftentimes the

distance metric of choice. For instance, in QBIC [N+93] and Texture Photobook [PK93],

shape and texture features, respectively, are matched using the weighted Euclidean distance

between two feature vectors. Swain and Ballard [SB91], however, measure the distance

between two color histogram features using the Li-norm8, or "city-block metric" [Str94];

and, as we saw in section 2.1.1, QBIC measures the distance between two color histograms,

x and y, using equation 2.1. Although this calculation differs from Euclidean distance, dhist

becomes the Euclidean distance between x and y in the special case where the matrix A is

the identity matrix I [F+94]. For the relatively small databases of these prototypes, using

sequential search with these distance metrics is acceptable. But, for real-life scientific and

commercial applications more sophisticated search techniques must be employed.

The Lj- and L2-norms used for sirnilarity measurement by the above mentioned

prototypes are ideal for fixed-radius near neighbor search. Nonetheless, the systems that

utilize an indexing structure perform range search to find the approximate number of

images that lie within the desired radius from a query [N+93, BGS92, GM92b]. Here, it is

important to recognize the difference between fixed-radius near neighbor search and range

search. As was explained in section 1.4, fixed-radius search uses an L^-norm as the

distance function. This type of metric is a summation of some difference between the

dimensions of the two feature vectors being compared. The resultant sum is checked to see

if it falls below a predefined threshold (i.e., within a specified radius). Range search,

however, is designed to work for "orthogonal" queries where each dimension is considered

independently of the rest. The dimensions no longer cumulatively satisfy the query

8 The Lj-norm is defined as the sum of the absolute differences between 2 ̂ -dimensional vectors, x and y:
k

distL1 (x, y) = Z | x r y , | ,

Chapter 2. Related Work 2 4

constraints. Therefore, we conjecture that using range search, out of convenience, to

approximate fixed-radius near neighbor search is a mistake. It could result in poor

performance, both in terms of number of false hits and overall search time. To test this

hypothesis we modify an existing indexing structure and enhance it with the ability to

effectively execute fixed-radius near neighbor search. We then compare the performance of

the modified structure using fixed-radius search to the original structure using a range

search approximation. The details of this comparison can be found in Chapter 6.

Chapter 3

PRINCIPAL C O M P O N E N T ANALYSIS

In this thesis we choose the eigenfaces method of image analysis and feature compression.

It was initially developed by Sirovich and Kirby [SK87, KS90] and later expanded by Turk

and Pentland [TP89, TP91]. This approach is based on a statistical technique called

Principal Component Analysis. In this chapter we first review the mathematical theory

behind PCA, then we discuss how the theory is implemented to create eigenimages of a

data set, and finally we share the important aspects of our implementation of this technique.

3.1 Mathematical Foundations of P C A

PCA is probably one of the oldest and best known techniques of multivariate analysis. I. T.

Jolliffe provides a clear and concise description of PCA in his text [J0I86, p.l]:

The central idea of principal component analysis (PCA) is to reduce
the dimensionality of a data set which consists of a large number of
interrelated variables, while retaining as much as possible of the
variation present in the data set. This is achieved by transforming
to a new set of variables, the principal components (PCs), which are
uncorrected, and which are ordered so that the first few retain most
of the variation present in all of the original variables.

25

Chapter 3. Principal Component Analysis 26

The principal components of a data set are essentially a rotation of the original orthogonal

dimensions, plus a ranking of the dimensions by decreasing variance. This ranking typically

captures most of the variation in the data set in the first few dimensions. This means that

one can define the original set of data points using only the higher ranked principal

components and still retain most of the information in the set. In addition, the Euclidean

distance between data points in the original feature space remains the same as in the

transformed feature space.

3.1.1 Definition of P C A

Let us first give a formal definition of principal components. Given that x is a vector

of p random variables, the first PC is a linear function 0C i T x of the elements of x which has a

maximum variance, where 0C] is a vector of p constants:

a l l> a12> A 1 3 ' ••• ' a\p •

So, the linear function becomes:
p

a i T x = OCi J X J + OL\2x2 +
 A 1 3 X 3 + • • • +

 alpxp = ^ a y x j (3.1)

The second PC is another linear function 0C2Tx, uncorrected with d i T x , which has

maximum variance. This holds for the rest of the PCs so that the kth PC is a linear function

CL/^x which has maximum variance subject to being uncorrected with otiTx, 0C2Tx, ... , a ^ .

i T x . Up to p PCs can be found, but in general, most of the variation in x will be accounted

for by m PCs, where m « p [J0I86, p.2]. The following example provides a graphical

depiction of the concept. Figure 3.1 is a plot of 50 observations on two highly correlated

variables xj and x 2 . Transforming these variables to the PCs zj and z 2 gives us the plot in

Figure 3.2. One can see that the axes went through a rotation such that there is now greater

Chapter 3. Principal Component Analysis 27

variation in the direction of Zi than in either of the original variables, but very little variation

in the direction of z 2 .

X X
X

Figure 3.1 Plot of 50 observations on two variables X i , x 2 .

P * x x

-G X X

Figure 3.2 Plot of the 50 observations from Fig. 3.1 with respect to their PCs , z 2 .

Chapter 3. Principal Component Analysis 28

If the data set of n points are not initially centered around the origin of the axis, as is the

case in Figure 3.3 below, then the coordinate frame of the data.set is first translated to a

new origin^ centered on the average point of the data set xavg where

avg = l/n X X,- ,
j ' = l

and then it is rotated to fit the PCs. This is also demonstrated in Figure 3.3.

I y

o

CENTERED
DATA POINT

= (x ,y)

DATA CENTERED O N
N SAMPLE AVERAGES (x, y)

DATA ORIGIN
(0.0)

ORIGINAL DATA POINT: (x'.y1)
CENTERED DATA POINT: (x, y)
ROTATED DATA COORDS: (a,,a2)
(All representing same data point P)

AXISOFxVALUES

(3.2)

Figure 3.3 Centering and rotating a data set to fit its principal components.

The coordinates of the data points can now be defined in terms of the PC axes by projecting

their centered values on to the principal components:

Original Data Point: x

Centered Data Point: t[) = x - xavg

Chapter 3. Principal Component Analysis 29

Rotated Data Coords: co = A ((()) where A T = [aiT, a 2

T , . . . ,ccp

T]

(i.e., each term in to is the projection of <|) onto each

of the PCs)

So the original vector x can now be represented as a linear combination of the PCs:

x = cojaj + co2a2' + ... + (npo:p (3.3)

This representation shows that oti, ... , ap form a basis of the transformed data space

[Pre88].

3.1.2 How to compute PCs

Now that PCs have been defined, let us look at how they are computed. Consider again the

vector of random variables x. Calculating the covariance matrix of this vector gives us a

matrix £ whose (i, j)-th element is the covariance between the ith and jth elements of x for

i ^ j, and the variance of the jth element of x for i=j. It turns out that the kth PC, for k =

1,2, ... , p, is given by = cĉ Tx where oĉ is an eigenvector of Z corresponding to its kth

largest eigenvalue X^. The derivation of this is given in any textbook on multivariate

analysis [J0I86, Pre88, Flu88]. It is important to note that var(z^) = X^; in other words, the

variance of the kth PC is equal to the kth largest eigenvalue of E. Therefore, the sum of the

eigenvalues of the covariance matrix gives the total variance of the data set:
p

total variance = X A,̂ (3.4)
k=l

This detail plays an important role in reducing the number of dimensions of the data. A

common heuristic for dimension reduction is to select the eigenvectors that contain between

60 to 80 percent of the variance in the data set [Diin89]. If the eigenvalues are sorted in

decreasing order (i.e., > m e n the first q of the p PCs can be chosen such that
q

0.60 < I Xk I (total variance) < 0.80 . (3.5)

Chapter 3. Principal Component Analysis 30

3.2 Calculating Eigenimages

The eigenfaces approach to image analysis and dimension reduction can be briefly

described in the following steps: 1) take a sample M from a set of n images in a database9;

2) find the M principal components of the distribution of the sample images; 3) select the

first M ' (« M) principal components (eigenfaces) as features by which to describe the

total face population; 4) represent each face in the database as a linear combination of these

M' eigenfaces. This method has similarities to the technique that was used in QBIC for

reducing the dimensionality of the shape feature vectors. However, the fundamental

difference lies in that here the full image is used in the PCA calculations, whereas with

QBIC only a specific feature vector that is initially extracted from each image is used in the

PCA calculation.

Following are the details of the eigenfaces approach. Let the images in a database

of size n be represented as vectors of intensity values, with dimension N 2 :

x,-;e R N * X 1 .fori= 1,.... ,n (3.6)

The vector x4- is formed by raster-scan ordering the rows of the image into one long vector

(i.e., each pixel becomes an element or attribute of the image vector). A training set of M

images is selected from this set, where M is less than n yet is representative of the total set

of images. First, the average image of the training set is calculated:
M

a = 1/M X x; (3.7)
7=1

Next, the covariance matrix of the set is computed:
M

C = 1 /MI (x:- a) (x:- a) T (3.8)
7=1 J J

where each term of the sum signifies a dyadic product [SK87].

9 Turk and Pentland use faces [TP91].

Chapter 3. Principal Component Analysis 31

If we set §j = (x.j - a) then we can write C as X X T where X is the N 2 x M matrix [c^

<r»2 §M]• C l s therefore an N 2 x N 2 symmetric positive matrix. By the laws of linear

algebra, a real symmetric matrix can be factored into C = Q A Q T with the orthonormal

eigenvectors of C in Q and the eigenvalues in the diagonal matrix A [Str88, p.296]. This

equation is equivalent to C Q = Q A so we can rewrite it as:

C q y = XX T q 7 - = Xflj for; = 1,... , M (3.9)

Therefore, each q y is an eigenvector of the covariance matrix C, having an associated

eigenvalue of . Since each row of C is a linear combination of fy, this means that C has

rank M - l , with only M - l (rather than N 2) non-zero eigenvectors [TP89]. This means that

we can save computation time by first solving for the eigenvectors Uj of the following

smaller dimension problem:

X T Xu y - = XjUj for ;=l , . . . , M (3.10)

Having obtained Uy, we can calculate the eigenvectors for C by pre-multiplying X on both

sides of the above equation to get:

XX T (Xu 7) = tyXuy) , for j = 1,... , M (3.11)

From equations 3.9 and 3.11 we see that the eigenvectors of C are qy = Xuy. The

associated eigenvalues are used to order the eigenvectors, beginning with the eigenvector

with the largest eigenvalue. These eigenvectors give the coefficients of the PCs of the

image space, and the ordering imposed by the eigenvalues maximizes the variance of the

corresponding PC. So, the PCs are linear combinations of the M training images giving rise

to the eigenimages. Figures 3.4 - 3.6 provide pictorial examples of the process of

eigenimage calculation. Figure 3.4 shows 20 sample images from our data set. Figure 3.5

shows the average of these 20 images, and Figure 3.6 shows the first 4 eigenimages

(eigenfaces) which carry 63.7% of the variance in the 20 images of Figure 3.4.

Chapter 3. Principal Component Analysis 32

Chapter 3. Principal Component Analysis 33

Using the heuristic for dimension reduction given by equantion 3.5, M ' of the M PCs

are chosen (where M ' is much less than M). All the images in the database can now be

transformed into their eigenimage components by projecting them into the new eigenspace.

This gives the following set of weights for each image :

(nk = uk

Ttyk tovlc= 1,... , M ' . (3.12)

Each image becomes a point in an M' dimensional space to = (coj , co2 , ... , (%[•). When a

query image is provided, it is also projected into this subspace. The appropriate sirnilarity-

metric between the weight vector of the query image and the weight vector of a database

image is then calculated.

3.3 Implementation and Results

To implement the eigenfaces approach, we used the Vista software environment

[PKL94] and the MATLAB math package. Vista is designed to support "the modular

implementation and execution of computer vision algorithms" [PL94]. The image testbed

consisted of 400 gray-scale face images which were acquired from an ftp-site of the Olivetti

Research Laboratory in the United Kingdom. The face images consisted of 10 different

pictures taken from each of 40 distinct individuals. For some of the subjects the lighting is

varied, the facial expressions are varied (i.e., open/closed eyes, smiling/not smiling, etc.),

and/or the facial details are varied (i.e., with/without glasses). All images are taken against

a dark homogeneous background with the subjects in an upright frontal position. Each

image is 112 x 92 pixels, with 256 possible gray levels per pixel. Before performing PCA,

we converted the face images from PGM to the Vista format. The dimensions of the

original image vectors were set at 10,304 (112x92). We ran experiments on 2 different

sizes of training sets and collected the following data:

Chapter 3. Principal Component Analysis 34

1. Using all 400 images as the training set (i.e., M = 400) we initially
extract 399 (M - 1) PCs. For different percentages of variance, we get
the following reduced number of PCs:

% Variance # of PCs
61.4% 11
70.0% 20
75.3% 30
80.1% 44

Table 3.1 Reduced PCs for different % of Variance using M = 400.

2. Using one-third of the 400 images as the training set (i.e., M = 134) we
initially extract 133 (M - 1) PCs.; For different percentages of variance,
we get the following reduced number of PCs:

% Variance # of PCs
60.4% 9
70.3% 16
75.4% 22
80.1% 30

Table 3.2 Reduced PCs for different % of Variance using M = 134.

These results are consistent with the work of Turk and Pentland [TP91]: for a test

case of M = 16 images they extract M ' = 7 principal components (they do not indicate what

percent variance they use). Furthermore, our test results show that this technique works

well for a much larger set of data. We also compare our results to QBIC's implementation

and find that in QBIC [F+94] PCA is applied to a specific set of 20 shape measurements

that are initially extracted from each image. Their results show that 75% of the variance in

their data set is captured in the first 2 PCs, thus reducing the dimensionality of the shape

feature space. Our experiments have demonstrated good results for spaces with much

higher dimensionality. This indicates that if specific image features are extracted with

dimensions much greater than 20, PCA can be very effective in reducing their

dimensionality without losing much of the information in the data.

Chapter 3. Principal Component Analysis 35

We acknowledge the fact that in our implementation we use a data set that is similar

to that of Turk and Pentland (both data sets consist of gray-scale face images). Face images

are fairly uniform in their content with limited scene variation. Our intent was to further

test this approach on a set of images with greater variety in their content, (e.g., pictures of

animals or an art gallery). However, due to time constraints we were unable to prepare and

test a second set of image data.

Chapter 4

E V A L U A T I N G MULTI-DIMENSIONAL INDEXING S T R U C T U R E S

Once an image space is transformed and compressed using PCA, it should be organized so

that similarity match queries can be efficiently performed. A multi-dimensional indexing

structure should be wisely chosen so that it can take advantage of the main characteristics

of PCA-transformed data. These characteristics are: i) the components are ranked by

decreasing variance, ii) the dynamic range of the dimensions of the space are known, and iii)

the number of dimensions is still fairly high. In order to find an appropriate structure, we

conducted a comprehensive evaluation of a wide range of existing multi-dimensional

indexing structures. In this chapter, we first review the structures we looked at in our

evaluation. Then we discuss the criteria by which our comparative analysis was conducted.

Finally, we present the structures we chose and the rationale behind our choices.

4.1 Review of Multi-dimensional Indexing Structures

There are numerous data structuring techniques in use for representing multi-dimensional

point data. They can be divided into two major categories: hierarchical and non-hierarchical

data structures. Within these categories, some data structures organize the data while

36

Chapter 4. Evaluating Multi-Dimensional Indexing Structures 37

others organize the embedding space from which the data are drawn [Sam90]. Below, we

begin with a review of the structures we feel are the most relevant to our needs.

4.1.1 Non-Hierarchical Data Structures

Non-hierarchical multi-dimensional data structures decompose a data space in a flat manner,

that is, the data points are typically stored either in a sorted list or in the form of a k-

dimensional array. Non-hierarchical structures organize the embedding space of the data

into regions that contain records. Both non-hierarchical data structures we consider below

are bucket methods.

4.1.1.1 Gridfile

The gridfile [NHS84, Sam90] expands on the idea of the fixed grid (or cell) method.

The fixed grid method, which divides the record space into equal-sized cells, is essentially a

directory in the form of a ̂ -dimensional array with one record per cell [Sam90]. Unlike the

grid method, however, the cell block sizes in the gridfile adapt to the distribution of the

records and the data holding capacity of the cell blocks. The size of the cell blocks are

therefore not uniform. The gridfile aims at providing symmetric access to every key field,

and tries to meet the following 2 principles: 1) retrieve records with at most two disk

accesses, and 2) handle range queries efficiently. It does this using a grid directory that

consists of 2 parts. The first is a dynamic fc-dimensional array that contains one entry for

each cell or grid block. The second part is a set of k 1-dimensional arrays called linear

scales. These scales define the partitioning of each dimension. Each combination of scale

Chapter 4. Evaluating Multi-Dimensional Indexing Structures 38

partitionings acts as an address to a cell or grid block in the ^-dimensional array, and each

cell contains a pointer to a data bucket that holds the values of the records that fall in the

corresponding grid block. As records are added or removed, the following split and merge

policy is used: all records in a grid block must be stored in the same data bucket and,

several grid blocks can share a single data bucket as long as this union of grid blocks forms

a ^-dimensional hyper-rectangle in the record space [NHS84]. Therefore, either the data

buckets split and merge or the /̂ -dimensional array of the grid directory splits and merges.

4.1.1.2 Multipaging

Multidimensional paging, better known as multipaging [Mer78, Mer84], is

somewhat similar to the gridfile except that in multipaging the data is known a priori and

no updates are made to the record space. As in the gridfile, multipaging uses linear scales,

called axial arrays, that define the partitioning of each dimension. These axial arrays are

partitioned based on the distribution of the data points along each axis and the application

of certain constraints. The constraints used are: page capacity, load factor (total number of

data points/total capacity of all pages), tuple probe factor (number of tuple overflows/total

number of data points), and page probe factor (number of page overflows/total number of

pages). The goal is to have pages which, on the whole, have neither too many nor too few

data points. Instead of using a ^-dimensional array of pointers to the grid blocks,

multipaging accesses a data page using an address that is computed directly from the linear

scales. This saves space over the gridfile.at the cost of requiring bucket overflow areas for

densely populated areas of the record space. Multipaging, therefore, cannot guarantee

record retrieval with only two disk accesses, as in gridfile. This version of multipaging is

Chapter 4. Evaluating Multi-Dimensional Indexing Structures 39

known as static multipaging [Mer78]. A second version, called dynamic multipaging

[M082], also exists which provides the ability to dynamically update the record space.

4.1.2 Hierarchical Data Structures

Hierarchical multi-dimensional data structures are ones which recursively partition a set of

^-dimensional data points using a tree-like structure. The root of the tree contains the

entire hyper-surface of the data space. As one traverses down the structure, each node of

the tree contains a successively smaller hyper-surface of the data space.

4.1.2.1 Point-Based Structures

The point quad-tree [FB74] is a generalization of the binary search tree for data with k

dimensions. It recursively divides the data space into 2^ partitions (e.g. 4 for 2-D data, 8

for 3-D data, etc.) using a single record as each partition point or node of the tree. This,

however, makes deletion a complicated process. The pseudo quad-tree [OvL82] was

developed to alleviate this problem. Instead of data points it uses arbitrary points, not in the

data set, as the nodes of the tree. These points are chosen such that the remaining set is

split in the most balanced manner. This recursive partitioning continues until each partition

contains, at most, a single data point of the original set.

The point KD-tree is a ^-dimensional binary search tree that is also designed as a

generalization of the standard one-dimensional binary search tree [Ben75b, Ben79, BF79].

At each node a single record is used as the partition point and the tree is divided into 2 sub-

Chapter 4. Evaluating Multi-Dimensional Indexing Structures 40

trees. Only one of the k keys is used for making branching decisions; this key is called the

discriminator key. Each dimension is used as the discriminator key in a cyclic manner as

one progresses down the tree. In two dimensions this means using the x coordinate for

making branching decisions at the root and even levels of the tree and the y coordinate for

making branching decisions at odd levels. The pseudo KD-tree, like the pseudo quad-tree,

uses arbitrary points that are not in the data set to split the data space [OvL82]. The data

points themselves appear at the leaf nodes.

The adaptive KD-tree [BF79] is a static data structure meaning that all points must

be known a priori to build the tree. It is designed in the spirit of the pseudo KD-tree so

that the data points are stored only at the leaf nodes. However, each interior node holds the

median (along a discriminator key) of the set of points that fall under that node; the

discriminator is chosen to be the key for which the spread10 of values is at a maximum.

Therefore, the choice of discriminators is no longer cyclical, as in the KD-tree, and the

discriminators are not necessarily the same across nodes on the same level.

A range tree [BM80] is a data structure specifically designed for fast range

searching in k dimensions at the expense of high preprocessing and storage costs. It is

asymptotically faster than the point quad-tree and KD-tree, but has significantly higher

storage requirements [Sam90].

The spread can be measured using any statistical measurement, such as the variance or the distance from
the minimum to the maximum value.

Chapter 4. Evaluating Multi-Dimensional Indexing Structures 41

4.1.2.2 Region-Based Structures

These structures partition the embedding space of the data. The point-region (PR) quad

tree recursively partitions a ^-dimensional data space into 2k equal-sized regions until there

is no more than one data point per sub-division. A l l data points are contained in the leaf

nodes of the tree [Sam90]. The P R KD-tree is similar to the P R quad-tree except that it

recursively partitions the space into 2 equal-sized regions along a single dimension [Sam90].

A s in PR quad-trees, a sub-division contains no more than one data point and all data points

are found in the leaf nodes.

4.1.2.3 Bucket Methods

Bucket methods are designed to ensure efficient access to data stored on disk. They collect

data points into sets that correspond to storage units (i.e., pages) of the disk. The bucket

P R quad-tree is analogous to the P R quad-tree described above except that leaf nodes are

not restricted to holding one record. The bucket capacity can be set ahead of time to c (c >

1). Similarly, in a bucket P R KD-tree regions are split in half until no leaf node has more

than c data points [Sam90].

The bucket adaptive KD-tree splits the data space along the dimension with the

greatest spread, just as does the adaptive KD-tree. However, the leaf nodes are now

buckets with capacity c (c> 1) [Sam90, M H N 8 4] .

R-trees [Gut84, Gre89] are designed as index structures for ^-dimensional

rectangles or objects. They are height-balanced multiway trees, like the B-tree, and store a

Chapter 4. Evaluating Multi-Dimensional Indexing Structures 4 2

set of rectangles in each node. At the leaf nodes these rectangles are the actual objects in

the data set. In the non-leaf nodes the rectangular regions' stored are the bounding

rectangles that enclose all rectangles in descendant nodes. The bounding boxes of non-leaf

nodes on a given level can overlap. This poses a problem for R-trees because during search

the more sibling nodes there are that overlap, the more paths must be followed for a given

spatial query. {

R+-trees [SRF87, Gre89] avoid this problem by clipping rectangles that intersect at

the same intermediary level. This creates a search space that is divided into disjoint sub-

regions and ensures that no sibling bounding boxes overlap. However, the leaves of an R+-

tree contain duplicate entries so more space is required and there can be more levels in the

search path.

R*-trees [B+90], which support both point and region data, were developed to try

to overcome some of the problems associated with R-trees and R+-trees. Whereas R-trees

are bound by the order in which rectangles are inserted, R*-trees can forcibly reinsert as

many entries as needed to dynamically re-organize the structure during insertion. This re

distribution is done with the aim of reducing the area, perimeter and overlap of rectangles in

internal nodes. Experiments have shown that R*-trees perform better than R-trees in

accessing region data, and can even outperform the gridfile in accessing point data [B+90].

Chapter 4. Evaluating Multi-Dimensional Indexing Structures 43

4.2 Comparative Analysis *

The following sections explain the criteria we used to select the best three candidates from

the above cited multi-dimensional indexing structures.

4.2.1 Criteria of the Analysis

Our observations of the qualities of PCA-transformed data led us to conclude that there are

a number of characteristics a multi-dimensional indexing structure should have which would

make it suitable for organizing this type of data. These characteristics, and why we feel

they are important for our analysis, are enumerated below in a question-and-answer format:

1) How does the size of the structure scale up with the number of dimensions in an

image space?

As we saw in Chapter 3, the dimensions of the image vectors we initially use are

extremely high. Therefore, even after transforming the feature space and

reducing the dimensionality with PCA, the new feature space still has a large

number of dimensions. Therefore, we look for structures that can handle large

numbers of dimensions without exploding in size.

2) Are the attributes or dimensions prioritized during construction of the index?

(i.e., is the structure symmetric or non-symmetric?)

For PCA-transformed data the components of the vectors are ranked by

decreasing order of variance. This means the components are, in a sense,

prioritized since each successive component adds less to the overall information

i

Chapter 4. Evaluating Multi-Dimensional Indexing Structures 44

being stored in the data. Therefore, we look for structures that can capture this

prioritization.

3) What are the different kinds of searches this structure can handle?

As was mentioned in the introduction, we are concerned with performing fixed-

radius near neighbor search. Therefore, we look for structures that can support

either fixed-radius search or range search (with which to approximate fixed-

radius).

4) Does the structure adapt to the distribution of the data in the record space?

5) In particular, how does the structure perform with non-uniformly distributed

data?

PCA-transformed data is typically not uniformly distributed. Therefore we look

for structures that do not become seriously unbalanced with non-uniformly

distributed data and whose performance does not severely degrade.

6) Is the structure suitable for a static or a dynamic set of data?

For this thesis, we focus on the ability of the structure to perform efficient

searches rather than on its ability to handle updates. Therefore, we choose to

use a static data set for our experiments and do not concern ourselves with the

ease with which data points can be inserted or deleted from the indexing

structure.

Chapter 4. Evaluating Multi-Dimensional Indexing Structures 45

4.2.2 Answers to the Criteria Questions

We can immediately eliminate the point-based hierarchical structures (point ;quad- and KD-

trees, pseudo quad- and KD-trees, and adaptive KD-tree) from further analysis as they

explode in size for large numbers of multi-dimensional data points. The main reason for this

is that each node in these structures stores a single data point. The non-bucket region-

based hierarchical structures can also be eliminated right away because they divide the

embedding space of the data into fixed-size regions that hold no more than one data point.

This again leads to an explosion in index size for large data sets. Therefore, we focus our

analysis on those, hierarchical and non-hierarchical indexing structures that utilize buckets.

Of the R-tree variants, the one that has been shown to be most suitable for the access of

point data is the R*-tree [B+90]. Hence, we proceed our analysis with the following

structures:

• Bucket PR quad-tree (B_PR_Q-Tree)

Bucket PR KD-tree (B_PR_KD-tree)

• Bucket adaptive KD-tree (BA_KD-tree)

Gridfile

• Multipaging

• R*-tree '

Following are the answers of each of these structures to the questions we asked in the

previous section:

Chapter 4. Evaluating Multi-Dimensional Indexing Structures 46

1) How does the size of the structure scale up with the number of dimensions in
an image space?

B_PR_Q-Tree:

B PR KD-tree:

BA KD-tree:

Gridfile:

Multipaging:

R*-Tree:

Each internal node splits into 2k sons, therefore the tree
branches explode out very quickly.
Each internal node splits into 2 sons. Since the number of
levels of the tree increases linearly as a multiple of the number
of dimensions, the number of nodes increases exponentially.
The number of levels of the tree increase as the dimensions
increase but not linearly, as in B_PR_KD-tree. This is
because nodes are not required to divide in a cyclic manner
along every dimension. This also means that the increase in
number of nodes is not as sharp.
The designers claim that it works for up to 10 dimensions.
The grid directory array becomes too large and unwieldy with
increasing numbers of dimensions.
Since there is no grid directory array the structure does not
explode in size with increasing numbers of dimensions. It will,
however, take increased computation time to find appropriate
linear scale partitions.
If fan-out of the nodes remains > 2, it seems to be quite
robust for higher dimensions. Experiments show that it will
work well for approximately 20 dimensions [F+94, A+95].

The BA_KD-tree, Gridfile, Multipaging and R*-tree are better than the top two at
handling a large number of dimensions. Gridfile, however, seems to be the weakest
of the four.

2) Are the attributes or dimensions prioritized during construction of the index?

B_PR_Q-Tree:
B_PR _KD-tree:

BA KD-tree:

Gridfile:

Multipaging:
R*-Tree:

No. All dimensions are treated equally.
Yes. The dimensions are accessed at each level in a cyclical
predetermined order (usually dimension 0, 1 , k) .
Yes. The dimensions are accessed at each level based on
which dimension has the greatest spread for the subset of data
points being examined.
No. It is designed for symmetric access where every
dimension is treated as a primary key.
No. Also considered to have symmetric access.
No. All dimensions are treated equally.

Chapter 4. Evaluating Multi-Dimensional Indexing Structures 47

The KD-trees are the only structures that have the ability to prioritize dimensions.
The BA_KD-tree is especially interesting because it prioritizes dimensions based on
the spread of data points along each dimension.

3) What are the different kinds of searches this structure can handle?

B_PR_Q-Tree: Point, range, and fixed-radius near neighbor search.
B_PR _KD-tree: Point, range, fixed-radius near neighbor, and -̂nearest

neighbor search.
BA_KD-tree: Point, range, fixed-radius near neighbor, and -̂nearest

neighbor search.
Gridfile: Point and range search. , f

Multipaging: Point and range search.
R*-Tree: Point, range, and n-nearest neighbor search.

The top three structures can handle fixed-radius near neighbor search, while the
bottom three can only approximate it by supporting range search.

4) Does the structure adapt to the distribution of the data in the record space?

B_PR_Q-Tree: No. It performs a regular decomposition of the embedding
space splitting it up along predefined lines.

B_PR _KD-tree: No. It.performs a regular decomposition of the embedding
space splitting it up along predefined lines.

BA_KD-tree: Yes. The record space is split up based on the distribution of
the data and not along predefined lines.

Gridfile: Yes. The record space is split up based on the distribution of
the data and not along predefined lines.

Multipaging: Yes. The record space is split up based on the distribution of
the data, not along predefined lines.

R*-Tree: Yes. The record space is split up based on the distribution of
the data, not along predefined lines.

The last four structures are sensitive to the distribution of the data points and are
less likely to be unbalanced, i.e., they will have fewer overflowed or underused
buckets.

5) In particular, how does the structure perform with non-uniformly distributed
data?

B_PR_Q-Tree: Performs poorly with non-uniformly distributed data (i.e.,
data that has clusters). The tree will have many empty nodes

Chapter 4. Evaluating Multi-Dimensional Indexing Structures 4 8

and will become unbalanced therefore decreasing the
efficiency of data retrieval.

B_PR _KD-tree: Performs poorly with non-uniformly distributed data. Has the
same problems as B_PR_Q-Tree.

BA_KD-tree: No significant effect on storage or retrieval efficiency with
non-uniformly distributed data since the structure is sensitive
to the distribution of the data.

Gridfile: No significant effect on storage or retrieval efficiency with
non-uniformly distributed data. Only exception is that it does
not perform particularly well on range queries.

Multipaging: Performs poorly with non-uniformly distributed data. The
pages become unevenly occupied, i.e., either overflowed or
empty pages.

R*-Tree: Robust against non-uniformly distributed data.

Of the six structures, BA_KD-tree, Gridfile and R*-Tree deteriorate the least in
performance with non-uniformly distributed data.

6. Is the structure suitable for a static or a dynamic set of data?

B_PR_Q-Tree: Suitable for both, although updating data is somewhat
complex. ,

B_PR _KD-tree: Suitable for both, although updating data is somewhat
complex.

BA_KD-tree: Suitable for static data only. All data points must be known a
priori.

Gridfile: Suitable for both, although it is typically used with dynamic
data.

Multipaging:. There are 2 types of multipaging: one for static data and the
other for dynamic data.

R*-Tree: Suitable for both, although it is typically used with dynamic
data.

Any of the 6 structures can be used for organizing a static data set. BA_KD-tree,
however, is specifically designed for it.

Chapter 4. Evaluating Multi-Dimensional Indexing Structures 49

4.2.3 Results of the Analysis

Out of the six structures examined above, the three multi-dimensional indexing structures

we chose for further experimental evaluation were:

• The Bucket Adaptive KD-tree

• The R*-Tree

• Multipaging

The reasons for our choices are: 1) these structures do not seem to grow as rapidly as the

rest when the number of dimensions increases; 2) all of these structures either approximate

fixed-radius near neighbor search using range search or they support the operation itself; 3)

all three structures are sensitive to the distribution of data and are not divided along

predefmined lines; and 4) the performance of these structures does not degenerate seriously

with non-uniformly distributed data. The added bonus that comes with the bucket adaptive

KD-tree is that it can prioritize access to dimensions according to the spread of data along

each dimension. Finally, we feel that it would be interesting to compare the performance of

3 structures that come from 3 different families of data structures.

Although we chose these structures for further experimental evaluation, due to time

constraints it became clear that we would only be able to implement the bucket adaptive

KD-tree ourselves. We attempted to acquire the code for the two other structures from

elsewhere but were unable to. In their stead we made the following subsitutions: in place

of the R*-tree we used a deferred-split R-tree structure and in place of multipaging we used

a gridfile structure. Both were acquired from the University of Maryland. We feel that the

deferred-split (D-S) R-tree is an acceptable substitution for the R*-tree because the D-S R-

Chapter 4. Evaluating Multi-Dimensional Indexing Structures 50

tree has a similar data structure as the R*-tree and so has comparable storage requirements,

and the performance of the R*-tree deteriorates for large numbers of dimensions and data

set sizes [A+95] making it little better than the D-S R-tree. We feel that the gridfile is an

acceptable substitution for multipaging because both structures are non-hierarchical data

structures that provide symmetric, direct access to the records. At high dimensions and

large data set sizes multipaging may save space by not requiring a ^-dimensional array, but

this is at the expense of requiring many overflow buckets [Sam90]. Therefore, the search

performance of gridfile and multipaging should also be comparable. The implementation of

each structure and the results of the experimental evaluations we conducted are presented in

the next chapter.

Chapter 5

I M P L E M E N T A T I O N DETAILS & E X P E R I M E N T A L E V A L U A T I O N O F

T H E K D - T R E E , R - T R E E & GRIDFILE

In this chapter we describe the implementation of the three multi-dimensional indexing

structures that were chosen as a result of the comparative analysis presented in Chapter 4.

We also present the results of the experimental evaluation of these structures and show why

the bucket adaptive KD-tree is the structure best suited for PCA-transformed data.
t

As was mentioned previously, the R-Tree and gridfile structures were acquired, by

permission of Christos Faloutsos, from the Department of Computer Science at the

University of Marlyand, College Park. We implemented the bucket adaptive KD-tree

structure ourselves using Samet's description in The Design and Analysis of Spatial Data

Structures [Sam90]. The structures are all implemented in C source code and run on Sun

SPARC workstations. The operating system is SunOS Release 4.1.3.

51

Chapter 5. Experimental Evaluation of KD-Tree, R-Tree & Gridfile 52

5.1 Indexing Structure Implementations

5.1.1 Bucket Adaptive KD-tree

5.1.1.1 Data Structures

Our implementation of the bucket adaptive KD-tree creates two files: a data file (. dat file)

that stores the data buckets or pages, and an index file (. d i r file) that stores the internal

nodes of the tree. This implementation uses two page buffers: one is for writing and

reading data pages to and from the . dat file, and the other is for writing and reading index

pages to and from the . d i r file. The page size we use is 1024 bytes. This can be changed

to test the performance of the structure using larger (2048 or 4096 bytes) or smaller page

sizes (512 bytes). The number of dimensions of the data points can also be varied by

changing an option on the command line.

The data points are stored as integers in data buckets that are referenced by the leaf

nodes of the tree. The data points can not be deleted since we treat the data set as a static

one. Each data bucket is the size of a single page. A data bucket holds all k dimensions of

each of the data points in it along with a record identifier or data ID, so the greater the

number of dimensions, the smaller is bucket capacity. In a bucket adaptive KD-tree the

data buckets will not all appear on the same level.

Chapter 5. Experimental Evaluation of KD-Tree, R-Tree & Gridfile 53

The layout on disk of a page from the data file for 2-dimensional data points looks as

follows:

D A T A _ P T [0] >| | < - D A T A _ P T [b u c k _ s i z e - l] — > |

R T T T T \ \ T T T T ~

| n o _ p o i n t s | d i m O _ v a l | d i m l _ v a l | d a t a _ i d | | d i m O _ v a l | d i m l _ v a l | d a t a _ i d |
L X _ X _ X _ X \ \ X X X _ _ X

I < -HEADER>|

| < D A T A _ S I Z E > |

|< PAGE S I Z E

The total number of points stored in a data page or bucket is saved at the head of

the page. The maximum number of points that can be stored in a page is calculated as:

buck_size = (PAGE_SIZE - HEADER)/DATA_SIZE;

The internal nodes of the tree hold a discriminating coordinate and the median of

that coordinate, along with pointers to the left and right sons of the node. The data

structure that is used in the bucket adaptive KD-tree for both the internal and leaf nodes has

the following components:

typedef s t r u c t kd_intnode{
- i n t node_num;

i n t median;
i n t d i s c _ c o o r d ;
i n t l t _buk_b lkno ;
i n t r t_buk_blkno;
s t r u c t kd_intnode * l t _ s o n ;
s t r u c t kd_intnode *r t_son;

}" K D _ I N T N O D E ;

node_num:

d i s c _ c o o r d :
median:
I t son:

is the number of the node, which translates into the offset of the node
in the . d i r file.
is the discriminating coordinate of the node.
is the median value of the discriminating coordinate.
is a pointer to the left son of the node; it is NIL if there is no left son or
if the left son is a data bucket.

Chapter 5. Experimental Evaluation of KD-Tree, R-Tree & Gridfile 54

r t _ s o n : is a pointer to the right son of the node; it is NIL if there is no right son
or if the right son is a data bucket.

l t _ b u k _ b l k n o : is the offset of the page in the . dat file that contains the data points
of the left data bucket.

rt_buk_blkno : is the offset of the page in the . dat file that contains the data points
of the right data bucket.

The pages in the index (. d i r) file contain information about the nodes in the tree.

The information that is stored per node in the . d i r file consists of the following six integer

values:

1) the median value of the discriminating coordinate,

2) the discriminating coordinate,

3) a code that identifies the left son as either an internal node or a leaf node,

4) the node number of the left son (if the left son is an internal node) or the page

offset into the . dat file (if the left son is a data bucket),

5) a code that identifies the right son as either an internal node or a leaf node,

6) the node number of the right son (if the right son is an internal node) or the page

offset into the . dat file (if the right son is a data bucket).

The layout on disk of a page from the index file looks as follows:

|< N O D E [0] >| | < N O D E [m a x - l] > |

r T T T , T _ _• T _ T _ | \ \ -T \ \ T - |
| n o _ n o d e s | m e d i a n | d i s c _ c o o r d | I f t _ c o d e | I f t _ o f f s e t | r t _ c o d e | r t _ o f f s e t | | | |
L X X _ X X ^ _ X X X _ \ \ _ X \ \ X _ —I
|<HEADER>|

|< N O D E _ S I Z E - > |

|< . P A G E _ S I Z E >|

The header of the first page of the index file holds the total number of pages in the file and

the number of nodes stored in the first page. The header of each remaining page only holds

Chapter 5. Experimental Evaluation of KD-Tree, R-Tree & Gridfile 55

the number of nodes stored in that page. The maximum number of nodes that can be stored

in an index page is calculated as:

node s_pe r _page = (PAGE_SIZE - H E A D E R) / N O D E _ S I Z E ;

Since data points are not stored at the nodes of the tree, the number of nodes that can fit

into a page of the index file does not change with an increase in the number of dimensions.

5.1.1.2 Insertion

To create the bucket adaptive KD-tree all the data points must be known a priori. This

means that instead of inserting the data points one-at-a-time into the tree structure, the

program is given a file with all of the /̂ -dimensional data points. The following steps are

then taken recursively until all the data points in that file are placed into the KD-tree:

1. Calculate the variance along each dimension and find the dimension with the
greatest variance or. spread (we use the difference between the minimum and
maximum values of the points as the spread of each dimension). The dimension
with the greatest variance is called the discriminating coordinate.

2. Find the median value of the discriminating coordinate.

3. Allocate space for a new node. Store both the discriminating coordinate and its
median in the current node.

4; Compare the value of the discriminating coordinate for each data point to the
median value. Place the data points with a value greater than or equal to the
median under the right son of the node and the data points with a value less than
the median under the left son of the node.

5. If the number of data points under the left son is greater than the bucket capacity
then repeat steps 1 - 5 for those data points. But, if the number of data points
under the left son is less than or equal to the bucket capacity then a data bucket
is created, the data points are stored in it, and it is inserted into the data file.
The same process is then applied to the data points under the right son.

Chapter 5. Experimental Evaluation ofKD-Tree, R-Tree & Gridfile 56

5.1.1.3 Search

There are two kinds of search operations available with the KD-tree structure: point search

and range search. We will concentrate on the range search implementation since point

search is not a concern of ours in this thesis. We perform range search at this stage of the

experimentation to approximate fixed-radius near neighbor search. Therefore, the queries

consist of a query point and a radius that define the hyper-sphere of the query. This hyper-

sphere is approximated by a hyper-rectangle which is generated by using the given radius to

calculate the range of the query along each dimension.

Range search is performed by descending down the tree structure from its root,

comparing the query range to the median value of the discriminating coordinate of a node.

If the lower bound of the query range for the discriminating coordinate is greater than or

equal to the median, then the search continues down the right son. If the upper bound of

the query range for the discriminating coordinate is less than the median, then the search

moves down the left son. If the query range for the discriminating coordinate overlaps the

median, then the search continues down both the left and the right sons, starting with the

left son. When a data bucket is reached, a sequential search is performed on all the data

points stored in the bucket checking all dimensions, to determine which points fall within

the query range. Those that fit within the bounds of the query range are returned as

answers to the query.

In our implementation, when performing a search operation, the complete tree

structure is placed into main memory. To get a proper count of the number of pages

accessed during a search, and to correctly compute the search time, accessing an index page

is simulated. This means that every time a node is reached that resides on a page other than

the page that is currently in the index buffer, the new page is read from disk into the buffer.

Chapter 5. Experimental Evaluation ofKD-Tree, R-Tree & Gridfile 57

In this way a page access occurs even though the contents of that page are not actually used

in the course of the search.

5.1.2 Deferred-Split R-Tree

This implementation generates two files: the . r t r e e file that holds all the nodes of the

tree, and the . i n f o file that keeps track of the space utilization of the tree for the purpose

of facilitating insertions and deletions. The data records are stored in the leaf nodes. Since

our records are points and not spatial objects, we treat the points as "degenerated

rectangles" [B+90], that is, each point becomes a ^-dimensional rectangle where, for

example in the 2-d case, the lower left corner and the upper right corner of the rectangle are

both set to the x and y values of the data point itself. Non-leaf nodes contain a k-

dimensional rectangle which is the minimum bounding rectangle (MBR) of all rectangles in

the lower node's entries.

Every page in the . r t r e e file is a node of the R-tree, whether internal or leaf node.

The page size is set at 1024 bytes, and the number of in-memory page buffers is set at 50.

The swapping of index pages from memory to disk is based on a Least-Recently-Used page

scheme. To work with different dimensions one must change the value of the dimension

constant in the header file and recompile the program. The branching factor (i.e., the

maximum number of entries per node) changes based on the page size and the number of

dimensions of the data points. The minimum requirement of entries per non-root node is set

at 50% of the branching factor. In the R-tree, all leaf nodes appear on the same level.

Chapter 5. Experimental Evaluation ofKD-Tree, R Tree & Gridfile 58

5.1.2.1 Insertion

The basic operations of the R-tree implementation which we are interested in are Insert and

Range Search. Data points are required to be inserted one-at-a-time as rectangles. In the

2-D case this means inputting the following values: low-x, low-y, high-x, high-y. A data ID

is automatically generated for the inserted rectangle.

Insertion in an R-tree is similar to insertion in a B-tree. New index records are

added to the leaf nodes; nodes that overflow are split, and splits propagate up the tree. A

split works in the following manner: when a new entry needs to be added to a full node

containing M entries, it is necessary to divide the collection of M+l entries between two

nodes. The division should be done in a way that makes it as unlikely as possible that both

new nodes will need to be examined on subsequent searches. Since the decision to visit a

node depends on whether its MBR overlaps the search area, the total area of the two

MBR's after a split should be minimized. This implementation provides several options for

techniques of deferred splitting. However, since we use area enlargement, which is the

default splitting heuristic, we will not discuss the other options. This heuristic finds a

sibling node that has the minimum joint area with the overfull node. This R-tree

implementation is functional only up to 11 dimensions, when using positive and negative

integers.

5.1.2.2 Search

To perform range search, this implementation requires the user to input a ^-dimensional

search rectangle and the program returns all records that overlap with this rectangle.

However, since we want to approximate a fixed-radius near neighbor search we modified

the code so that we could input a query point and a radius and the program itself would

compute the appropriate search rectangle for the query. The search algorithm descends the

Chapter 5. Experimental Evaluation of KD-Tree, R-Tree & Gridfile 59

tree from the root in a manner similar to a B-tree, following the nodes whose MBR overlap

the search rectangle. More than one subtree under a node may need to be searched. Our

modifications included adding code for counting the number of pages accessed and

recording the time required to perform a search.

5.1.3 Gridfile

In the gridfile the grid directory consists of 2 parts: i) a dynamic ̂ -dimensional array that

contains one entry for each grid block (each entry is a pointer to the corresponding data

bucket), and ii) a set of k 1-dimensional arrays or scales that define the partitioning of each

dimension. There are 4 files that are generated by this program: the index (. d i r) file that

stores the fc-dimensional array, the data (. dat) file that holds all the data buckets, the

. sea file that stores the outpoints of each linear scale, and the . i n f o file that holds

general information about the gridfile structure. The page size is set at 1024 bytes and there

are 2 page buffers that are utilized — one for writing to and reading from the data file, and

the other for writing to and reading from the index file.

The product of the size of the k scales determines the size of the ^-dimensional

array, and the positional value of the scale elements are the coordinates of the position (or

offset) of a grid block in the index file. The grid block (cell) stores an integer value that is

the page offset into the data file where the data bucket that holds the data points for that

grid block exists. (Each data bucket corresponds to a page in the data file.) There may be

several grid cells that point to the same page in the data file. Such a group of grid blocks is

termed a data block. The index file can hold a maximum of 512 data bucket references per

page.

Chapter 5. Experimental Evaluation ofKD-Tree, R-Tree & Gridfile 60

5.1.3.1 Insertion

Again, we only look at the Insert and Range Search operations of the gridfile. When a new

gridfile is created, the user is requested to first input the upper and lower bounds of each

dimension. Then, the data points must be inserted one-at-a-time. The program checks that

the points do not fall outside of the specified bounds. As the number of points increases

and a data block overflows the data block must be split. To perform a split, every

dimension is first tested to see which allows a better distribution of the points in.that data

block. The dimension with the best distribution is chosen as the one along which the split is

to occur. The midpoint of that dimension for that data block is then computed. The scale

of that dimension is checked to see if the computed midpoint already exists as one of the

cutpoints in the scale. If this is the case, the data points are re-distributed into 2 data

buckets, and the index and data files are updated. If the midpoint is not a cutpoint of the

scale then a new cutpoint is added to the scale, the whole index file is restructured to

include the new resulting grid blocks, the data points are re-distributed into new data

buckets and the data file is updated.

5.1.3.2 Search

To perform a range search the user is required to input the upper and lower range for each

dimension of the search rectangle. Since we approximate fixed-radius near neighbor search,

we modified this process so that we could input a query point and a radius. The search

rectangle is then automatically generated. The search algorithm looks for all data blocks

whose bounds overlap with the bounds of the search rectangle.

Chapter 5. Experimental Evaluation of KD-Tree, R-Tree & Gridfile 61

5.2 DataTestbed

The testbed of images we used for this thesis was explained in detail in Chapter 3.
We selected one-third of the 400 images for the training set by choosing every third image.

After performing PCA on this training set we found that 70% of the variance of this set was

captured in the first 16 PCs. To get the weight vectors that would represent the whole

image set, we projected each of the 400 images onto this set of 16 PCs. The resulting 16-

dimensional data points were converted into integers and stored in a data file.

We used this initial set of 400 16-D data points to generate larger sets of data. This

was done by first extracting the dynamic range of each dimension, and then randomly

generating data points that were constrained by the bounds of the extracted dynamic ranges.

Each component of a data point was an integer value that was either positive or negative.

Eight different data set sizes were generated in this way (400, 500, 1,000, 2,000, 4,000,

8,000, 16,000, and 50,000) for each of 5 different dimensions (2, 4, 6, 8 and 10.) The

reason we only used up to 10 of the 16 dimensions is because, as we mentioned before, the

R-tree implementation could only manage up to 11 dimensions of positive and negative

integers before it crashed. We decided that rather than spend time trying to fix someone

else's code, we would limit our tests to a maximum of 10 dimensions and concentrate on

our research questions.

5.3 Results of Experimental Evaluation

These structures were compared both in terms of their space efficiency and their

performance at range search. Unfortunately, the gridfile implementation had several bugs

Chapter 5. Experimental Evaluation ofKD-Tree, R-Tree & Gridfile 62

when it was first acquired. Even after necessary modifications were made, it would crash

when we tried to index more than 2,000 data points that had greater than 2 dimensions, and

when we tried indexing more than 4,000 data points that had 2 dimensions. As the

dimensions and the data set size increased, the gridfile structure would take longer and

longer to insert data points, until it would eventually hang indefinitely. This was

undoubtedly because the ^-dimensional array would become prohibitively large with high

dimensions and large data set sizes. We ran some range searches on those gridfile indexes

we were able to build but found that their performance was woefully bad. For 2

dimensional data the gridfile accessed up to 5 times more pages than the R-tree and up to 8

times more pages than the bucket adaptive KD-tree. As a result of these problems, we

decided to concentrate our experimental evaluation only on the two tree structures. The

following sections present the results of tests run on the bucket adaptive KD-tree and the

deferred-split R-tree.

5.3.1 Storage Cost

The storage cost of the KD-tree and the R-tree, in terms of total number of pages

required, is displayed in Figure 5.1 on the next page. The page size is set at 1024 bytes.

Chapter 5. Experimental Evaluation of KD-Tree, R-Tree & Gridfile 63

Comparison of Storage Requirements

6000

10000 20000 30000

Data Set Size

40000 50000

Figure 5.1 Comparison of page usage of R-tree and KD-tree structures over increasing
data set sizes and increasing dimensions

For both structures, the storage requirements rise linearly with an increase in the

data set size, but our implementation of the KD-tree uses less space than the R-tree. The

KD-tree structure requires, on average, 1.57 times less storage than the R-tree structure. In

comparing the two implementations we find that for the R-tree the greatest cost in storage

comes from the number of nodes in the tree, whereas for the KD-tree the greatest cost in

storage comes from the number of data buckets and not the internal nodes. As the number

of dimensions increase, the number of entries per node of the R-tree decreases thus

increasing the number of nodes in the tree and hence the total number of storage pages

required. In the KD-tree, however, an increase in the number of dimensions creates a

decrease in the capacity of the data buckets, thus increasing the number of data buckets

Chapter 5. Experimental Evaluation of KD-Tree, R-Tree & Gridfile 64

(i.e., storage pages) required. But, as we see in Figure 5.2 below, the capacity of the KD-

tree data buckets is always approximately twice that of the R-tree nodes. Therefore, as

dimensions increase, the increase in storage requirements for the KD-tree; is not as great as

it is for the R-tree. The page capacities seen here are dependent on the particular

implementations we used and may compare differently if other implementations were used.

Effect of # of Dimensions on Page Capacity

Number of Dimensions

Figure 5.2 Effect of increase in dimensions on capacity of R-tree nodes and KD-tree data
buckets.

5.3.2 Search Performance

To test the range search performance of the KD-tree and R-tree, 10 queries were used. The

query points were generated the same way as were the data points for the testbed.

Numbers were generated for each dimension of the query such that they would fall within

Chapter 5. Experimental Evaluation of KD-Tree, R-Tree & Gridfile 65

the dynamic ranges of the respective dimensions. We created the query points in this way

to ensure that they would not be far from the data space. A radius was also specified for

each data set. The radii were chosen such that for each data set sizes there would be

approximately 50 data points that would actually fall within the hyper-sphere of the query.

The average overall search time and the average number of page accesses required by each

structure was recorded and compared.

The discriminating power (i.e., the ratio of the number of retrieved data points to

the total number of points in the set) of both the structures turned out to be the same

because both structures compared the data points at the leaf nodes to the query rectangle,

and retrieved only those data points that fell within the query range. The graph in Figure

5.3 shows the change in discriminating power as the number of dimensions increases.

Discriminating Power of Indexing Structures over various
data set sizes performing Range Search

Number of Dimensions

Figure 5.3 Discriminating Power of Indexing Structures

Chapter 5. Experimental Evaluation ofKD-Tree, R-Tree & Gridfile 66

The interesting aspect of the graph in Figure 5.3 is that the ratio of points retrieved

in response to the query to the total number of points in the data set decreases steadily from

2 to 6 dimensions (i.e., the discriminating power improves). However, it remains the same

from 6 to 10 dimensions. This indicates that, when performing range search, the addition of

dimensions does not improve the discriminating power of the structures. We conjecture

that there are two factors for this phenomenon: 1) the data points are PCA-transformed so

the later dimensions have significantly smaller dynamic ranges than the first few dimensions

and add less information about the data points; 2) we are using range search therefore each

dimension is treated independently of the other. These two factors in combination mean

that: a) the ranges of the higher dimensions fall completely within the range of the query

rectangle so the higher dimension values will always satisfy the query, and b) since each

dimension is tested independently of the rest, only the first few dimensions that overlap the

query ranges actually provide discriminating power to the structure — the later dimensions

are unable to further refine the discriminating power. We will come back to this point in the

next chapter when we look at the design of the optimized BA_KD-tree.

The more dramatic difference between the performance of the two structures lies in

a comparison of the number of pages accessed and the overall search time during the range

search. The number of pages accessed is a count of the total number of both index and data

pages that are entered during the search. It is not just a count of the number of disk reads.

In this way, the type of buffering scheme used by each structure does not affect the number

of pages accessed. We needed to do this since the buffering scheme for the R-tree and the

KD-tree were different. Figures 5.4 and 5.5 on the next page graphically demonstrate the

average number of page accesses made by the KD-tree and the R-tree over the 10 queries.

Chapter 5. Experimental Evaluation of KD-Tree, R-Tree & Gridfile 67

of Pages Accessed using Range Search on 400,500,
1,000, and 2,000 Data Points

180 n

160

-o 140 a> in in
8120
o

<
io100 a> ui re „„ a. 80
"o
* 60
>
< 40 H

20 H

—I 1 1 I

2 4 6 8

Number of Dimensions

10

- • RTR-400
-B RTR-500
-A—RTR-1K
-® RTR-2K
O - - KDTR-400
O • - KDTR-500
•h - - KDTR-1K
O - -KDTR-2K

Figure 5.4 Comparison of # of page accesses for 400, 500, IK, and 2K data points.

of Pages Accessed using Range Search on 4000,8,000,
16,000 & 50,000 Data Points

3500

3000

H! 2500 in in
v
o
u <
in a
O) n o.

o

>
<

2000

1500

1000 H

500 H

- • RTR-4K
HI RTR-8K
-A RTR-16K
-9 RTR-50K
•0- - - KDTR-4K
O- - - KDTR-8K
•A- - - KDTR-16K
O - - KDTR-50K

Number of Dimensions

Figure 5.5 Comparison of # of page accesses for 4K, 8K, 16K and 50K data points.

Chapter 5. Experimental Evaluation of KD-Tree, R-Tree & Gridfile 68

The x-axis in these figures is the number of dimensions and the y-axis is the average number

of pages accessed. Each line in the graph represents a different data set size: from 400 to

2,000 data points in Figure 5.4, and from 4,000 to 50,000 data points in Figure 5.5.

From these graphs we can see that the bucket adaptive KD-tree performs range

search with much fewer page accesses than does the R-tree structure. This distinction is

particularly noticeable as the size of the data set increases and the number of dimensions

increase. At the highest level, with 50,000 data points and 10 dimensions, the number of

page accesses made by the KD-tree is approximately 7.6 times less than that of the R-tree.

The average overall search time for the 10 queries are shown in Figures 5.6 and 5.7 below.

Overall search time includes CPU time and I/O time.

Overall Search Times using Range Search on 400,500,
1,000 & 2,000 data points

200 -j

180-1

I 1«H
c 140 H

.1 120 J

o 100 H
to
w 80 H

§> 60 H

o
OJ 40 H
<

20-I

- • RTR-400
-®-—RTR-500
-A RTR-1K
-® RTR-2K
•0- - - KDTR-400
O - -KDTR-500
•it - -KDTR-1K
O- - - KDTR-2K

2 4 6 8

Number of Dimensions

—i
10

Figure 5.6 Comparison of overall search times for 400, 500, IK and 2K data points.

Chapter 5. Experimental Evaluation of KD-Tree, R Tree & Gridfile 69

Overall Search Times using Range Search on 4,000,8,000,
16,000 & 50,000 Data Points

6000 •

in o a> in
E

o
E

5000 -I

4000

o 3000 H
V

>
0
01
>
<

2000 A

iooo H

• RTR-4K
• RTR-8K
* RTR-16K

— ® RTR-50K
- - • © • • • KDTR-4K
- - O - - KDTR-8K
- - - - KDTR-16K
- - O - - KDTR-50K

2 4 6 8

Number of Dimensions

Figure 5.7 Comparison of overall search times for 4K, 8K, 16K and 50K data points.

The x-axis in Figures 5.6 and 5.7 is the number of dimensions and the y-axis is the average

overall search time in milliseconds. Each line in the graph represents a different data set

size: from 400 to 2,000 data points in Figure 5.6, and from 4,000 to 50,000 data points in

Figure 5.7.

In Figures 5.6 and 5.7, just as in the previous two figures, one can see that the

performance of the R-tree deteriorates more rapidly than that of the KD-tree as the data

size and the dimensions increase. For 50,000 data points with 10 dimensions the KD-tree is

7.4 times faster than the R-tree. However, in Figure 5.6 we see that for 400 and 500 data

points, although the R-tree accesses more pages than the KD-tree, its overall search time is

less. This is due to the fact that the R-tree uses 50 page buffers, in comparison to the KD-

Chapter 5. Experimental Evaluation ofKD-Tree, R-Tree & Gridfile 70

tree's 2 page buffers, resulting in much fewer page faults. It seems that the rate of increase

in the overall search time for both structures follows the rate of increase of the number of

page accesses. This indicates that, particularly for high dimensions and large data sets, the

search time is dominated by I/O time (i.e., page accesses).

5.4 Conclusion

The results of the comparative analysis and the experimental evaluation indicate that the

bucket adaptive KD-tree is the best choice of the three structures for handling large

numbers of multi-dimensional PCA-transformed data. From the experimental evaluation we

find that the BA_KD-tree clearly outperforms the other structures in range search, in terms

of both number of pages accessed and overall search time, and that the storage cost of our

implementation of the BA_KD-tree is much less than the gridfile and almost two-thirds that

of the R-tree. From the comparative analysis in Chapter 4 we find that the KD-tree adapts

to the distribution of points in the data space and is able to handle non-uniformly distributed

data without becoming very unbalanced. More importantly, in the construction of the KD-

tree the dimensions are prioritized based on the one with the greatest spread. This means

that in the highest levels of the tree, the discriminating coordinates of the nodes are the first

few PCs. This, in turn, indicates that in a search, the initial pruning decisions are based on

the dimensions which carry most of the information about the data set. This feature can be

used to help us optimize the tree and quickly reduce search space. Finally, the BA_KD-tree

is designed for use with a static data set which is what we need for the work of this thesis.

Chapter 6

I M P L E M E N T A T I O N & E V A L U A T I O N O F OPTIMIZED B U C K E T A D A P T I V E

K D - T R E E

In this chapter we discuss the implementation of the optimized bucket adaptive KD-tree

structure and we describe the fixed-radius near neighbor search algorithm. Then we

compare the performance of the optimized structure to its original version.

In Chapter 5 we observed that the discriminating power of the indexing structures

we evaluated increased only over the first 6 dimensions (see Figure 5.3). Adding more

dimensions to the data points did not improve the discriminating power of these structures.

We probed further into this phenomenon and found that our, conjecture in Chapter 5 was

right. Due to the fact that the data points are PCA-transformed, the dimensions with less

variance have significantly smaller dynamic ranges than those with greater variance. This

means that the ranges of the former dimensions are a subset of the corresponding ranges of

the query rectangle. Below is a sample of the dynamic ranges for the first 10 dimensions of

the data set with 8000 points: -~

71

Chapter 6. Implementation & Evaluation of Optimized Bucket Adaptive KD-Tree 72

Dimension
Number

Upper
Bound

Lower
Bound

Spread

1 709 -634 1343
2 620 -596 1216
3 292 -275 567
4 291 -285 576
5 ' 257v -300 557
6 228 -167 395
7 157 -126 283
8 114 -109 223
9 111 -88 199
10 85 -115 200

Table 6.1 Dynamic Range and Spread of first 10 PCs for 8000 data points.

Since we use range search for the evaluation, we define it in the following manner:
k
A (distj(x, q) < r) (6.1)
i=l

where x is a data point, q is the query point, k is the number of dimensions, r is the distance

from the query point, and dist,() is the difference between the i-th elements of x and q.

Each dimension is compared against the query ranges independent of the other dimensions.

Therefore, given our type of data, the values of the higher dimensions will always satisfy the

query constraints and hence will not contribute to further pruning the search space.

Fixed-radius near neighbor search would be much more effective in pruning the

space because the values of the dimensions are not treated independently but are used in a

summation. This means that each dimension adds to the total distance between a data point

and the query. As the number of dimensions increase, the resulting distance value is more

and more refined. This can be represented in the following equation:
k
I (dist(x/, q(-))2 < r2 (6.2).

1

Chapter 6. Implementation & Evaluation of Optimized Bucket Adaptive KD-Tree 73

where all variables are defined the same as for equation 6.1. We optimize the original

bucket adaptive KD-tree and implement fixed-radius near neighbor search to see if we can

improve over the performance of the original tree. Furthermore, we make the search more

efficient by incorporating a few of the ideas that were outlined by Bentley in 1975

[Ben75a]. The two key techniques we implement are what we call the Early Fail Test and

the Early Success Test. These are explained in detail below.

6.1 The Early Fail Test

The Early Fail Test (EFT) checks to see if the minimum distance between a query point and

the hyper-rectangle of the range of a sub-tree is greater than a fixed threshold r2, where r is

the distance (or radius) from the query point. If the minimum distance exceeds r2 it

indicates that the entire sub-tree is outside of the hyper-sphere of the query and hence that

sub-tree can be eliminated from the search space.

To calculate the mjjiimum distance between a query point and a hyper-rectangle, the

sum of the squares of the minimum differences between the elements of the query point and

the corresponding ranges of the hyper-rectangle is computed. To find the minimum

difference between the z'-th element of a query point and the z'-th range of a hyper-rectangle,

there are 3 conditions that need to be checked:

a) if the z'-th element of the query point is larger than the maximum value of the

z'-th range of the hyper-rectangle, as in the diagram,

< range,- >
[] - r —

MIN MAX q,-

Chapter 6. Implementation & Evaluation of Optimized Bucket Adaptive KD-Tree 74

then the minimum difference is: q,- - MAX(range,-)

b) if the i-th element of the query point is smaller than the minimum value of

the i-th range of the hyper-rectangle, as in the diagram,

< range,- >
h []

q, MIN MAX

then the minimum difference is: MIN(range,) - q,-

c) if the i-th element of the query point intersects with the i-th range of the

hyper-rectangle, as in the diagram,

< range,- >
[1 —]

MIN q,- MAX

then the minimum difference is zero.

To reduce the number df calculations and speed up this test, we note that the we

only need to know if

j „ .
X (dist(x,-, q,))2 > r2 where j < k. (6.3)
i=\

As we sum the squares of the minimum differences of the elements, the summation may

exceed the threshold before every element is examined. Therefore, we can save some

computation time by summing the squares of the minimum differences only until they

exceed r2. This works particularly well with PCA-transformed data since most of the

information of the data is stored in the first few dimensions.

Chapter 6. Implementation & Evaluation of Optimized Bucket Adaptive KD-Tree 75

6.2 The Early Success Test

The Early Success Test (EST) is used to determine whether or not the hyper-rectangle of

the range of a sub-tree falls entirely within a fixed radius from the query point. If this is

true, then it indicates that all of the data points in the leaf nodes under that sub-tree satisfy

the query, hence further testing down that sub-tree is not needed. To find out whether the

hyper-rectangle is within a fixed radius from the query point one must compute the

maximum distance between the elements of the query point and the corresponding ranges of

the hyper-rectangle. If this distance is less than or equal to r2 (as defined previously), it

indicates that the hyper-rectangle is indeed within the hyper-sphere of the query.

The maximum distance is computed by summing the squares of the maximum

differences between the elements of the query point and the corresponding ranges of the

hyper-rectangle. To find the maximum difference between the /-th element of a query point

and the i-th range of a hyper-rectangle, there are again 3 conditions that need to be

checked:

a) if the i-th element of the query is larger than the maximum value of the i-th

range of the hyper-rectangle, as in the diagram,

< range,- >
[-] I

MIN MAX q,

then the maximum difference is: q,- - MIN(range,-).

b) if the i-th element of the query is smaller than the minimum value of the i-th

range of the hyper-rectangle, as in the diagram,

< range,—-->
1 [:]

q, MIN MAX

Chapter 6. Implementation & Evaluation of Optimized Bucket Adaptive KD-Tree 76

then the maximum difference is: MAX(range,) - q,-.

c) if the i-th element of the query intersects with the i-th range of the hyper-

rectangle, as in the diagram,

< -range,- >
[— 1 —] —

MIN q, MAX

then the maximum difference is: MAX[MAX(range,-) - q,-, q,- - MIN(range,-)].

In the EST, to save computation time, we also sum the squares of the maximum differences

only until they exceed r2. , .

6.3 Changes to Tree Structure

The EFT and EST can only work if certain modifications are made to the tree structure.

Added information must be stored in the internal and leaf nodes. We describe the features

of the new structure below. The page size is set to 1024 bytes and we use two page

buffers, just as in the original BA_KD-tree structure.

The primary change in the node structure is that the minimum and maximum values

of the range of the hyper-rectangle of a sub-tree are stored at each node along with the page

offset values of the data buckets that can be found under that sub-tree. There are two data

structures that are used to define the internal and leaf nodes:

(

Chapter 6. Implementation & Evaluation of Optimized Bucket Adaptive KD-Tree 11

1) NXTJNFO structure:

typedef struct nxt_info
{

i n t **bkt_rng;
char *bkt_nums;

} NXT_INFO;

bk t_ rng : is a pointer to a two-dimensional array that holds the minimum and
maximum values of the range of a hyper-rectangle. bk t_rng [0] holds
the k minimum values and bkt_rng [1] holds the k maximum values.

bkt_nums : is a pointer to a string that holds the page offsets of all the data buckets
that fall under a sub-tree.

2) KD_iNTNODE structure:

typedef s t r u c t kd_intnode
.{

i n t node_num;
i n t median;
i n t d i s c _ c o o r d ;
i n t l t _buk_b lkno ;
i n t r t_buk_blkno;
s t r u c t kd_intnode * l t _ s o n ;
s t r u c t kd_intnode *r t_son;
NXT_INFO * l t _ n x t _ i n f o ;
NXT_INFO *rt_nxt_infob
s t r u c t kd_intnode *parent;

} KD_INTNODE;

node_num, median, d i s c _ c o o r d , l t _buk_b lkno , r t_buk_blkno ,
l t _ s o n , r t _ s o n :

These elements of the structure are identical to those in the original
bucket adaptive KD-tree and so will not be re-defined here.

l t _ n x t _ i n f o: is a pointer to a NXT_INFO structure that holds pertinent information on
the left son.

r t _ n x t _ i n f o: is a pointer to a NXT_INFO structure that holds pertinent information on
the right son.

pa ren t : pointer to the parent of the node.

A leaf node is distinguished from an internal node because a leaf node will have the

l t_buk_blk_no and r t_buk_blkno filled with a data bucket page offset value and

the l t _ s o n , r t_son, l t _ n x t _ i n f o and r t _ n x t _ i n f o all set to NIL.

Chapter 6. Implementation & Evaluation of Optimized Bucket Adaptive KD-Tree 78

With this scheme, the header of a data bucket page in the . dat file is changed to

include the upper and lower ranges of the data points in that page. As we build the tree,

when a data bucket is reached, the upper and lower ranges of the data points are extracted

from the header of the bucket and passed up to its parent leaf node. These ranges are

merged and recursively passed up to the parent nodes all the way to the root. Similarly, the

data bucket page offsets (i.e., the page numbers of the data buckets in the . dat file) are

passed up and stored at each node.

During execution of a search we store the entire tree in main memory. Therefore,

the contents of the nodes stored in the index (. d i r) file remain the same as they were for

the original KD-tree: discriminating coordinate of node, median value of discriminating

coordinate, left son code identifier, left son offset value, right son code identifier, and right

son offset value. However, it would be more natural to keep the index on disk and simply

bring into memory those index pages that are required. If this is done, it means that what is

stored on disk for each node would have to include the following additional data: i) the

upper and lower ranges of the sub-trees of the left and right sons, and ii) the first and the

last data bucket identifiers (i.e., page offsets) from the list of data buckets that fall under the

sub-tree rooted at that node.

6.4 Search Algorithm

The new fixed-radius near neighbor search is performed in the following manner:

Step I: Starting at the root of the tree, the left son undergoes the EFT. To do this
we use the information that is stored at the root about the son. If the left son does not
fail, i.e., X dist,-2 < r 2, then,

Chapter 6. Implementation & Evaluation of Optimized Bucket Adaptive KD-Tree 79

Step 1.1: the left son undergoes the EST. To do this; once again we use the
information that is stored at the root about the son. If the left son passes this test,
i.e., the whole sub-tree rooted at the son satisfies the query, then

Step 1.1.1: the search down that path ends and the data bucket page
offsets that are also stored at the root are used to sequentially read the data
buckets into memory and retrieve the data points in them as answers to the
query.

Step 1.2: If the left son does not pass the EST then the search continues down
the left son repeating Steps 1-1.2. If the left son is a data bucket and not an internal
node then that data bucket is read into memory and its contents are checked for
matching data points.

Step 2: If the left son does fail in the EFT, i.e. Z dist,-2 > r 2, then the search down
that path ends and we begin testing the right son, starting with Step 1.

6.5 Results of Experimental Evaluation

To test the performance of the optimized bucket-adaptive KD-tree we ran the same 10

queries that were used in the previous experimental evaluation. We compared the results of

these runs to those of the original bucket adaptive KD-tree. In the best case, when the

entire tree is stored in main-memory and the number of nodes per page of the index file is

the same as that of the original BA_KD-tree, we find that the optimized BA_KD-tree leads

to a significant reduction in the number of page accesses and overall search time. For

50,000 data points and 10 dimensions we observe a reduction of 70% for both the number

of page accesses and the overall search time. The overall search time for the optimized

BA_KD-tree includes the extra computations necessary for performing the EFT and EST.

The graphs in Figures 6.1 and 6.2 illustrate these savings.

Chapter 6. Implementation & Evaluation of Optimized Bucket Adaptive KD-Tree 80

Number of Pages Saved with Optimized KD-Tree

350 -i

Number of Dimensions

Figure 6.1 Number of Page Accesses Saved using the Optimized B A_KD-tree and fixed-
radius search, for 8 different data set sizes and 5 different dimensions

In Figure 6.1 the x-axis is the number of dimensions of the data points and the y-axis is the

average number of page accesses saved by the optimized, bucket adaptive KD-tree over the

10 queries. Each line in the graph represents the savings for a particular data set size, from

400 data points at the bottom, to 50,000 data points at the top. One can see that at low

dimensions and small data set sizes, the savings in number of pages accessed is fairly small.

But, as the dimensions increase and the data set sizes get large the optimized BA_KD-tree

saves an increasing number of page accesses. At 10 dimensions, for the largest data set

(50,000), the optimized tree saves over 300 page accesses. Figure 6.2 below shows the

ratio of the number of pages accessed by the original BA_KD-tree over the number of

pages accessed by the optimized BA_KD-tree for all data set sizes and all dimensions. We

Chapter 6. Implementation & Evaluation of Optimized Bucket Adaptive KD-Tree 81

find that there is an asymptotic increase in the magnitude of this ratio as the data set sizes

increase, and that this magnitude is larger for greater numbers of dimensions.

Ratio of No. of Pages accessed by Orig. tree over No. of Pages
accessed by Opt. tree for 5 dimensions

3.5 i

0 -I 1 —i 1 1 1

0 10000 20000 30000 40000 50000

Data Set Sizes

Figure 6.2 Ratio of no. of pages accessed by Original BA_KD-tree over no. of pages
accessed by Optimized BA_KD-tree for all dimensions.

At the high end of the savings, we find that for a data set of 400 10-dimensional data points

the optimized BA_KD-tree accesses 1.19 times fewer pages than the original BA_KD-tree,

while for a data set of 50,000 10-dimensional data points the optimized BA_KD-tree

accesses 3.28 times fewer pages.

The percentage of savings in pages accessed over the original BA_KD-tree are

shown in Figure 6.3 for the larger data set sizes.

Chapter 6. Implementation & Evaluation of Optimized Bucket Adaptive KD-Tree 82

% Savings in # of Pages Accessed using Optimized
Bucket Adaptive KD-Tree

10 H

o -I 1 1 — i r - 1

0 2 4 6 8 10
Number of Dimensions

Figure 6.3 Percentage of Savings in # of Pages Accessed by Optimized BA_KD-tree for
large data sets.

The x-axis represents the number of dimensions of the data points and the y-axis shows the

percentage of savings in the number of pages accessed by the optimized KD-tree. Each line

in the graph represents the savings for a particular data set size, from 4,000 data points at

the bottom, to 50,000 data points at the top.

The savings vary from 12.5% on the low end (i.e., for 4,000 data points and 2

dimensions) to 69.5% on the high end (i.e., for 50,000 data points and 10 dimensions). For

all of these data set sizes, the savings rise dramatically from 2 to 6 dimensions then begin to

level off at higher dimensions. Nevertheless, this leveling happens at over 40% in savings.

The large percentage of savings at the high end of the spectrum is very encouraging as this

Chapter 6. Implementation & Evaluation of Optimized Bucket Adaptive KD-Tree 83

is where the performance of all existing multi-dimensional indexing structures typically

begins to rapidly deteriorate.

The overall search time saved by using the optimized KD-tree is shown in Figure

6.4.

Overall Search Time Saved using Optimized KD-Tree

500

0 2 4 6 8 10

Number of Dimensions

Figure 6.4 Overall Search Time Saved using the Optimized BA_KD-tree and fixed-radius
search, for 8 different data set sizes and 5 different dimensions.

The x-axis represents the number of dimensions of the data points and the y-axis shows the

average overall search time, in milliseconds, saved by the* optimized bucket adaptive KD-

tree over the 10 queries. Each line in the graph represents the savings for a particular data

set size, from 400 data points at the bottom, to 50,000 data points at the top. As we saw in

Chapter 5, the major cost to the overall search time comes from page accesses. Therefore,

it comes as no surprise that the savings in overall search time, as dimensions and data set

Chapter 6. Implementation & Evaluation of Optimized Bucket Adaptive KD-Tree 84

sizes increase, follows the same trend as the savings in number of page accesses. At low

dimensions and small data set sizes, the savings in overall search time is small. But, as the

dimensions and the data set sizes increase, the savings in search time increases. At 10

dimensions, for the largest data set (50,000), the optimized BA_KD-tree saves

approximately 0.5 seconds over the original BA_KD-tree. Figure 6.5 below shows the ratio

of the overall search time of the original BA_KD-tree over the overall search time of the

optimized BA_KD-tree for all data set sizes and all dimensions. We find that there is again

an asymptotic increase in the magnitude of this ratio as the data set sizes increase, and that

this magnitude gets larger for greater numbers of dimensions.

Overall search time of Orig. tree over overall search time of Opt. tree for
all dimensions

3.5 i

0 I i 1 1 — ! 1 1 1 1 1 1 1

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Data Set Size

Figure 6.5 Ratio of overall search time of Original BA_KD-tree over overall search time of
Optimized BA_KD-tree for 10-D data.

Chapter 6. Implementation & Evaluation of Optimized Bucket Adaptive KD-Tree 85

At the high end of the savings, we find that for a data set of 400 10-dimensional data points

the optimized BA_KD-tree is 1.74 times faster than the original BA_KD-tree in performing

a search, and for a data set of 50,000 10-dimensional data points it is 3.10 times faster than

the original BA_KD-tree.

The percentage of savings in overall search time over the original BA_KD-tree are

shown in Figure 6.6 for the larger data set sizes.

% Savings in Average Overall Search Time for Optimized
Bucket Adaptive KD-Tree

10 H

CH T 1 1 1 1

0 2 4 6 8 10
Number of Dimensions

Figure 6.6 Percentage of savings in overall search time using Optimized BA_KD-tree, for
large data sets.

Chapter 6. Implementation & Evaluation of Optimized Bucket Adaptive KD-Tree 86

The x-axis represents the number of dimensions of the data points and the y-axis shows the

percentage of savings in the overall search time, in milliseconds, of the optimized BA_KD-

tree over the original BA_KD-tree. Each line in the graph represents the savings for a

particular data set size, from 4,000 data points at the bottom, to 50,000 data points at the

top.

The savings in overall search time vary from 24.5% on the low end (i.e., for 4,000

data points and 2 dimensions) to 67.8% on the high end (i.e., for 50,000 data points and 10

dimensions). For all of these data set sizes, the savings rise dramatically from 2 to 6

dimensions then begin to level off at higher dimensions. Nevertheless, this leveling happens

at over 50% in savings. Again, this large percentage of savings at the high end of the

spectrum is very encouraging.

Our investigations into where most of the savings in page accesses occur, led us to

discover that many of the data buckets that are accessed during the range search performed

on the original BA_KD-tree are never retrieved during the fixed-radius search performed on

the optimized BA_KD-tree. Moreover, the majority of these data buckets have zero or

very few data points in them that even satisfy the range query, and all of these data points

are, in fact, false hits. This means that a lot of I/O and CPU time is wasted by the range

search as it accesses and examines data pages that only hold false hits. The fixed-radius

near neighbor search on the optimized BA_KD-tree saves this time by eliminating the need

to even access these pages.

Table 6.2 on the next page shows us the percentage of the data buckets retrieved by

range search that are no longer retrieved by fixed-radius search. These are average values

over the 10 queries.

Chapter 6. Implementation & Evaluation of Optimized Bucket Adaptive KD-Tree 87

Data Set # of False
Size hits found 2-D 4-D 6-D 8-D 10-D

in Bucket (%Bkts) (%Bkts) (%Bkts) (%Bkts) (%Bkts)
0 0.0 0.0 2.17 4.87 6.72
l 0.0 3.61 4.22 3.83 3.67

400 2 1.25 0.0 .63 1.01 1.38
3 1.67 1.25 1.00 1.67 0.56

4-8 0.0 0.0 2.25 2.71 2.48
0 2.5 1.43 1.11 2.29 1.98
1 0.0 0.0 0.0 2.54 2.28

500 2 1.67 1.11 1.58 2.40 2.56
3 1.25 .83 0.67 1.74 2.00

4-9 0.0 1.67 3.43 2.90 4.38
0 1.11 1.53 1.98 4.06 3.91
1 0.83 2.08 2.15 4.51 4.41

1000 2 0.0 1.39 1.62 2.21 2.12
3 0.0 1.39 3.00 3.28 3.56

4-13 3.34 3.34 2.79 2.44 2.39
0 0.0 5.00 5.86 8.00 8.51
1 1.22 2.08 2.28 3.85 4.06

2000 2 1.11 1.18 2.19 3.18 3.16
3 0.0 2.29 1.45 2.71 2.60

4-14 6.28 4.81 4.48 2.83 2.86
0 1.42 4.97 15.5 20.39 21.13
1 0.78 4.42 9.58 11.16 11.46

4000 2 0.32 • 4.36 4.81 5.52 5.75
3 0.0 2.00 5.55 3.69 3.76

4-30 7.71 10.31 4.02 2.87' ' 3.03
0 0.37 2.14 6.86 10.35. 10.96
1 0.19 2.71 7.91 10.92 11.24

8000 2 0.19 2.64 8.02 8.44 7.89
3 0.47 3.00 6.31 6.34 6.41
4 0.29 2.68 3.75 3.62 3.67

5-53 9.52 14.36 7.74 5.39 4.90

0 0.14 10.56 19.89 25.59 26.75
1 0.68 6.08 11.27 10.16 13.23

16000 2 0.41 4.28 6.17 6.65 7.76
3 0.42 4.01 3.61 4.63 4.48
4 0.14 2.57 2.69 2.67 2.76

5-66 10.13 10.24 4.83 2.85 3.43

Table 6.2 Percent of Buckets saved from being accessed in the Optimized BA_KD-tree.

The table shows the distribution of the percentage of these buckets according to the number

of data points (starting from 0) found in them that satisfy the range query. As the number

of dimensions and data set sizes increase, the percentage of these "dud" data buckets

Chapter 6. Implementation & Evaluation of Optimized Bucket Adaptive KD-Tree 88

increases. For example, for the set of 400 10-D data points, approximately 7% of these

data buckets are ones in which 0 data points satisfy the range query, and for the set of

16,000 10-D data points 27% of these data buckets are ones in which 0 data points satisfy

the range query. Within a data set, the percent of "dud" data buckets decreases with an

increase in the number of false hits returned, with this trend becoming clearer for larger

numbers of dimensions. For example, for 4,000 8 dimensional data points, over 20% of the

"dud" data buckets have 0 false hits and only about 3% have 4 or more false hits. So, a

greater percentage of these "dud" data buckets are ones from which very few false hits are

returned. On the whole, the table shows that from 3% to 60% of the data buckets retrieved

in range search return only false hits.

Table 6.3 presents highlights of the data in Table 6.2. It focuses on the percent of

"dud" data buckets accessed using range search on the original BA_KD-tree from which

only 0 to 3 false hits are retrieved. The table shows the variation in these percentages as the

data set sizes increase (down the rows), and the number of dimensions increase (across the

columns).

Data Set 2-D 4-D 6-D 8-D 10-D
Size (%Bkts) (%Bkts) (%Bkts) (%Bkts) (%Bkts)
400 2.92 4.86 8.02 11.38 12.33
500 . 5.42 3.37 3.36 8.97 8.82
1000 1.94 6.39 8.75 14.06 14.00
2000 2.33 10.55 11.78 17.74 18.33
4000 2.52 15.75 35.44 40.76 42.10
8000 . 1.22 10.49 29.10 36.05 36.50
16000 1.65 24.93 40.94 47.03 52.22

Table 6.3 Percentage of Buckets saved that contain only 0 to 3 points that satisfy the
Range Search.

. (

Chapter 6. Implementation & Evaluation of Optimized Bucket Adaptive KD-Tree 89

As the dimensions increase over a single data set size, we see that the percentage of "dud"

data buckets with only 0 to 3 false hits increases — particularly in the larger data sets. For

example, for 16,000 data points, the "dud" data buckets retrieved by range search increase

from less than 2% at 2-D to over 52% at 10-D. As the data set sizes increase over a single

dimension we also see that the percentage of "dud" data buckets increases. Again, this is

clearer for larger dimensions.

The data presented in Tables 6.2 and 6.3 highlights the fact that the optimized

BA_KD-tree with fixed-radius near neighbor search eliminates the need to access many

unnecessary pages and hence precipitates a marked increase in overall savings.

Chapter 7

CONCLUSIONS

7.1 Summary

There are many research problems that need to be addressed in the design of useful and

usable visual information management systems. In this thesis we examine three issues

which we feel are essential: 1) the reduction of image vector dimensionality; 2) the choice

of a multi-dimensional indexing structure that is suitable for organizing the reduced image

space; and 3) the choice of a search algorithm that is effective and efficient in finding images

that are within a fixed distance from a query.

We demonstrate that the eigenfaces approach to image analysis is a useful technique

for reducing very-high-dimensioned image vectors while retaining most of the information

in the image data set. In our implementation of this technique, the process of extracting

principal components and projecting the image data points onto this new set of axes takes

approximately one-and-a-half hours for 400 images. We are able to reduce image vectors

with over 10,000 dimensions to vectors with around 20 dimensions, while retaining 70% of

the variance of the images. We feel this indicates that high-dimensioned vectors of specific

image features can also be effectively reduced using principal component analysis.

90

Chapter 7. Conclusions 91

A thorough comparative analysis of many existing multi-dimensional indexing

structures, plus a subsequent experimental evaluation of three of these structures,

demonstrate that the bucket adaptive KD-tree is quite suitable for indexing PCA-

transformed data points. This structure is particularly suited for PCA-transformed data

because it partitions the data space based on the dimensions with the greatest spread. Since

the first few PCs have the greatest variance they also typically have the greatest spread.

This means that the structure partitions the data space and performs searches primarily

using the first few dimensions. The internal nodes of the tree structure hold a small amount

of information which does not grow with an increase in the number of dimensions. This and

the previous factor provide for a fairly well-balanced tree that is not prohibitive in size. Our

implementation of the bucket adaptive KD-tree requires on average 1.57 times less storage

space than the R-tree structure. More significantly, it can perform range search up to 7.4

times faster than the R-tree.

Finally, we show that range search is a poor substitute for fixed-radius near neighbor

search if one wants to find all images that are within a fixed distance from a query. The

optimized bucket adaptive KD-tree with fixed-radius near neighbor search greatly improves

the efficiency of the search and assists in reducing the number of false hits. The

combination of the optimized structure and the fixed-radius search saves as much as 70% in

the number of pages accessed during search and performs the search up to 3 times faster

than the original BA_KD-tree structure using range search.

In summary, to efficiently index high-dimensioned image vectors that have been

transformed by principal component analysis the optimized bucket adaptive KD-tree is

shown to be the best suited multi-dimensional indexing structure, and it is seen to perform

very well using fixed-radius near neighbor search to find images that are within a fixed

Chapter 7. Conclusions 92

distance from a query. We note, however, that in the experimental results one can see

asymptotic behavior when the data points have greater than 6 dimensions. We feel that this

is linked to the particular data testbed we used (i.e., gray-scale face images). Had other

kinds of data, such as color images, been used they might have allowed fuller testing of this

structure with truly higl>dimensioned image vectors. This issue is discussed further in the

next section.

7.2 Future Work

The results of this research are very promising. However, there are many aspects that

should be examined further to ensure the usefulness of the technique we have implemented.

In this section we consider two general areas in which further work can be pursued. The

first involves issues that are directly related to what was done in this thesis work, and the

second involves issues that would be interesting for future researchers to examine.

•j

In the first category, i.e., issues directly related to this thesis, there are a number of

things that can be done to refine our findings.

First, it would be preferable if we could acquire or implement an R*-tree structure

(rather than an R-tree structure) and multipaging so as to do a true experimental evaluation

of the three multi-dimensional indexing structures we originally chose in the comparative

analysis. This would give us a better understanding of how the optimized BA_KD-tree

compares to other structures that are claimed to efficiently handle high-dimensioned point

data.

Second, in order to obtain a more realistic reflection of the storage costs and

performance of both the original and the optimized BA_KD-tree structures it would be

Chapter 7. Conclusions 93

preferable for us to implement them such that the entire tree is not stored in main memory.

The performance of the optimized BA_KD-tree would be directly affected since the size of

the nodes in the tree would increase because the upper and lower range of the hyper-

rectangle of the sub-trees of each child are stored at the nodes; this reduces the capacity of

the index pages and, as the dimensions of the data increase, the index page capacity

decreases (i.e., fewer nodes can be stored per index page). This will increase the storage

space required by the optimized BA_KD-tree and will, in turn, effect its search

performance. It would be interesting to see how much the optimized BA_KD-tree

performance would deteriorate.

Third, it would be interesting to further investigate the effectiveness of the Early Fail

and Early Success Tests. One could determine at what levels they are successful the most

and use this information to limit the number of levels at which the ranges of the hyper-

rectangles of sub-trees are stored. Furthermore, it would be interesting to determine what

is the savings in search space that these tests precipitate, i.e., what is the reduction in the

number of nodes visited in the optimized BA_KD-tree versus the original BA_KD-tree as a

result of EFT and EST.

Fourth, in order to have more statistically reliable data it would be preferable to use

a much larger number of queries, for example 1,000 or 2,000, rather than 10.

In the second category, i.e., issues for future research, there are also a number of

items that would be interesting to pursue.

First, to further probe the issue of image analysis and feature reduction, it would be

interesting to use an image testbed that is not a set of gray-scale face images. Collections of

face images are fairly homogeneous in their content. This makes them ideal for use with the

eigenfaces approach since most of the variance in the image set can be captured in a few

dimensions. However, an image database that contains images of an art gallery or of

Chapter 7. Conclusions 94

animals may not be as convenient for the eigenfaces approach since there would be great

variation in the contents of the images. Therefore, a varied image set should be used to see

how well the eigenfaces approach can reduce the dimensions' of image vectors from such a

set.

Second, one of the elements that Bentley [Ben75a] brings up in his discussion on

fixed-radius near neighbor search is that one could use different indexing structures for

different parts of the search problem. In the two KD-tree structures we use in this thesis,

the multi-dimensional points in the data buckets are sequentially examined to determine if

they satisfy the query. Rather than use this brute force technique, it would be interesting to

test the effect on performance of sorting the data points in a bucket by one of the

dimensions. With PGA-transformed, the first dimension may be ideal for such a scheme

since it carries most of the information in the data points.

Third, it would be interesting to compare the performance of fixed-radius near

neighbor search to n-nearest neighbor search since the latter search technique has frequently

been used for similarity matching, not only in image databases but also in several other types

of applications such as pattern classification, estimating multivariate density, and minimizing

head movement on direct access I/O devies [SW90].

BIBLIOGRAPHY

[A+95] A. D. Alexandrov, W. Y. Ma, A. El Abbadi, and B. S. Manjunath.
"Adaptive Filtering and Indexing for Image Databases." SPIE Proceedings,
Storage and Retrieval for Image and Video Databases, III, Vol. 2420, pp.
12-23, February 1995.

[Ben75a] Jon Louis Bentley. "A Survey of Techniques for Fixed Radius Near
Neighbor Searching." Stanford Linear Accelerator Center Technical
Report, No. 186, August 1975.

[Ben75b] J. L. Bentley. "Multidimensional Binary Search Trees Used for Associative
Searching." Communications of the ACM, Vol. 8, No. 9: 509-517,
September 1975.

[Ben79] J. L. Bentley. "Multidimensional Binary Search Trees in Database
Applications." IEEE Transactions on Software Engineering, Vol. SE-5,
No. 4: 333-340, July 1979.

[BF79] J. L. Bentley and J. H. Friedman. "Data Structures for Range Searching."
Computing Surveys, Vol. 11, No. 4: 397-409, December 1979.

[BGS92] Elisabetta Binaghi, Isabella Gagliardi, and Raimondo Schettini. "Indexing
and Fuzzy Logic-Based Retrieval of Color Images." Visual Database
Systems, II, IFIP Transactions A-7, pp. 79-92, 1992.

[BM79] J. L. Bentley and H. A. Maurer. "A Note on Euclidean Near Neighbor
Searching in the Plane." Information Processing Letters, Vol. 8, No. 3:
133-136, March 1979.

[BM80] J. L. Bentley and H. A. Maurer. "Efficient Worst-Case Data Structures for
Range Searching." Acta Informatica, Vol. 13, pp. 155-168, 1980.

95

Bibliography 96

[BPJ93]

[BS75]

[BSW77]

[B+90]

[Dun89]

[FB74]

[FBF77]

Jeffrey R. Bach, Santanu Paul and Ramesh Jain. "A Visual Information
Management System for the Interactive Retrieval of Faces." IEEE
Transactions on Knowledge and Data Engineering, Vol. 3, No. 4: 619-628,
August 1993.

J. L. Bentley and D. F. Stanat. "Analysis of Range Searches in Quad Trees."
Information Processing Letters, Vol. 3, No. 6: 170-173, July 1975.

J. L. Bentley, D. F. Stanat, and E. H. Williams, Jr. "The Complexity of
Finding Fixed-Radius Near Neighbors." Information Processing Letters,
Vol. 6, No. 8: 209-212, December 1977.

N. Beckman, H. P. Kriegel, R. Schneider, and B. Seeger. "The R*-Tree: An
Efficient and Robust Access Method for Points and Rectangles."
Proceedings of the ACM SIGMOD Conference, pp. 322-331, 1990.

George H. Dunteman. Principal Components Analysis.
Publications, Newbury Park, California, 1989.

SAGE

R. A. Finkel and J. L. Bentley. "Quad Trees: A Data Structure for Retrieval
on Composite Keys." Acta Informatica, Vol. 4, pp. 1-9, 1974.

Jerome H. Friedman, J. L. Bentley and Raphael Ari Finkel. "An Algorithm
for Finding Best Matches in Logarithmic Expected Time." ACM
Transactions on Mathematical Software, Vol. 3, No. 3: 209-226, September
1977.

[Flu88] Bernhard Flury. Common Principal Components and Related Multivariate
Models. John Wiley & Sons, New York, NY, 1988.

[F+94] C. Faloutsos, W. Equitz, M. Flickner, W. Niblack, D. Petkovic, and R.
Barber. "Efficient and Effective Querying by Image Content." Journal of
Intelligent Information Systems, Vol. 3, No. 3/4: 231-262, 1994.

[GJ92] William I. Grosky and Zhaowei Jiang. "A hierarchical approach to feature
indexing." SPIE Proceedings, Image Storage and Retrieval Systems, Vol.
1662, pp. 9-20, 1992.

[GM90] William I. Grosky and Rajiv Mehrotra. "Index-Based Object Recognition in
Pictorial Data Management." Computer Vision, Graphics, and Image
Processing, Vol. 52, pp. 416-436, 1990.

[GM92a] William I. Grosky and Rajiv Mehrotra. "Image Database Management."
Advances in Computers, Vol. 35, pp. 237-291, 1992.

Bibliography

[GM92b]

[Gre89]

[GS92]

[Gut84]

[Gut94]

[HK92]

[H+92]

[H+93]

[Jai93]

[J0I86]

[Kat92]

97

James E. Gary and Rajiv Mehrotra. "Shape Similarity-Based Retrieval in
Image Database Systems." SPIE Proceedings, Image Storage and Retrieval
Systems, Vol. 1662, pp. 2-8, 1992.

Diane Greene. "An Implementation and Performance Analysis of Spatial
Data Access Methods." IEEE Proceedings of the 5th International
Conference on Data Engineering, Los Angeles, pp. 606-615, 1989.

T. Gevers and A. W. M . Smeulders. "Indexing of Images by Pictorial
Information." Visual Database Systems, II, IFIP Transactions A-7, pp. 93-
100, 1992.

A. Guttman. "R-Trees: A Dynamic Index Structure for Spatial Searching."
Proceedings of the ACM SIGMOD Conference, pp. 47-57, June 1984.

Ralf Hartmut Giiting. "An Introduction to Spatial Database Systems."
Invited contribution to a special issue on Database Systems of the VLDB
Journal, Vol. 3, No. 4, October 1994.

Kyoji Hirata and Toshikazu Kato. "Query by Visual Example - Content
based Image Retrieval." Advances in Database Technology EDBT '92,
Third International Conference on Extending Database Technology, pp. 56-
71, March 1992.

T.-Y. Hou, A. Hsu, P. Liu, and M.-Y. Chiu. "A content-based indexing
technique using relative geometry features." SPIE Proceedings, Image
Storage and Retrieval Systems, Vol. 1662, pp. 59-68, 1992.

K. Hirata, Y. Hara, N. Shibata, and F. Hirbayashi. "Media-based Navigation
for Hypermedia Systems." Hypertext '93 Proceedings, pp. 159-173,
November 1993.

Ramesh Jain. "NSF Workshop on Visual Information Management
Systems." SIGMOD RECORD, Vol. 22, No. 3: 57-75, September 1993.

I. T. Jolliffe. Principal Component Analysis. Springer-Verlag, New York,
NY, 1986.

Toshikazu Kato. "Database architecture for content-based image retrieval."
SPIE Proceedings, Image Storage and Retrieval Systems, Vol. 1662, pp.
112-123,1992.

Bibliography 98

[KS90] M . Kirby and L. Sirovich. "Application of the Karhunen-Loeve Procedure
for the Characterization of Human Faces." IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 12, No. 1: 103-108, January 1990.

[KWT74] T. Kunii, S. Weyl and J. M . Tennebaum. "A Relational Database Schema
for Describing Complex Pictures with Color and Texture." Proceedings of
the Second International Joint Conference on Pattern Recognition, Lyngby-
Copenhagen, Denmark, pp. 310-316, August 1974.

[Mer78] T. H. Merrett. "Multidimensional paging for efficient database querying."
Proceedings of ICMOD 78, International Conference on Data Base
Management Systems, Milano, Italy, pp. 277-290, June 1978.

[Mer84] T. H. Merrett. Relational Information Systems. Reston Publishing
Company, Inc., Reston, Virginia, 1984.

[MHN84] T. Matsuyama, L. V. Hao and M . Nagao. "A File Organization for
Geographic Information Systems Based on Spatial Proximity." Computer
Vision, Graphics, and Image Processing, Vol. 26, pp. 303-318, 1984.

[M082] T. H. Merrett and E. J. Otoo. "Dynamic Multipaging: A Storage Structure
For Large Shared Data Banks." Improving Database Usability and
Responsiveness, P. Scheuermann ed., Jerusalem, pp. 237-256, June 1982.

[N+93] W. Niblack, et al. "The QBIC Project: Querying Images By Content Using
Color, Texture, and Shape." Proceedings IS&T and SPIE, Electronic
Imaging '93, Vol. 1908, pp. 173-181, 1993.

[NHS84] J. Nievergelt, H. Hinterberger and K. C. Sevcik. "The Grid File: An
Adaptable, Symmetric Multikey File Structure." ACM Transactions on
Database Systems, Vol. 9, pp. 38-71, 1984.

[OvL82] Mark H. Overmars and Jan van Leeuwen. "Dynamic Multi-Dimensional
Data Structures Based on Quad- and KD-trees." Acta Informatica, Vol. 17,
pp. 267-285, 1982.

[PK93] R. W. Picard and T. Kabir. "Finding Similar Patterns in Large Image
Databases." M.I.T. Media Laboratory Perceptual Computing Section
TechnicalReport,No. 205, 1993.

[PKL94] Art Pope, Daniel Ko, and David Lowe. Introduction to Vista Programming
for Vista V2.1 (on-line programmer's manual), June 1994.

Bibliography 99

[PL94] Art Pope and David Lowe. "Vista: A Software Environment for Computer
Vision Research." Proceedings 1994 IEEE Computer Society Conference
on Computer Vision & Pattern Recognition, pp. 768-772, Seattle, WA,
June 1994.

[PPS94] A. Pentland, R. W. Picard and S. Sclaroff. "Photobook: Tools for Content-
Based Manipulation of Image Databases." SPIE Proceedings, Storage and
Retrieval for Image and Video Databases II, Vol. 2185, pp. 34-47, 1994.

[Pre88] Rudolph W. Preisendorfer. Principal component analysis in meteorology
and oceanography. Elsevier Science Pub. Co., New York, NY, 1988.

[Sam90] Hanan Samet. The Design and Analysis of Spatial Data Structures.
Addison-Wesley, New York, NY, 1990.

[SB90] Michael J. Swain and Dana H. Ballard. "Indexing Via Color Histograms."
IEEE Proceedings, 3rd International Conference on Computer Vision, pp.
390-393, December, 1990.

[SB91] Michael J. Swain and Dana H. Ballard. "Color Indexing." International
Journal of Computer Vision, Vol. 7, No. 1: 11-32, 1991.

[SHK93] Ramin Samadani, Cecilia Han and Lalitesh K. Katragadda. "Content-Based
Event Selection From Satellite Images of the Aurora." Proceedings IS&T
and SPIE, Electronic Imaging '93, Vol. 1908, pp. 50-55, 1993.

[SK87] L. Sirovich and M . Kirby. "Low-dimensional procedure for the
characterization of human faces." Journal of the Optical Society of America
A, Vol. 4, No. 3, pp. 519-524, March 1987.

[SP93] S. Sclaroff and A. Pentland. "A finite-element framework for
correspondence and matching." 4th International Conference on Computer
Vision, pp. 308-313, May 11-14, 1993, Berlin, Germany. (Also available as:
M.I.T. Media Laboratory Perceptual Computing Technical Note No. 201.)

[SRF87] T. Sellis, N. Roussopoulos and C. Faloutsos. "The R+-Tree: A Dynamic
Index for Multi-Dimensional Objects." Proceedings of the 13th VLDB
Conference, pp. 507-518, Brighton 1987.

[SSG92] P. L. Stanchev, A. W. M . Smeulders and F. C. A. Groen. "An Approach to
Image Indexing of Documents." Visual Database Systems, II, IFIP
Transactions A-7, pp. 63-77', 1992.

Bibliography 100

[SSU94] Hiroaki Sakamoto, Hideharu Suzuki and Akira Uemori. "Flexible Montage
Retrieval for Image Data" SPIE Proceedings, Storage and Retrieval for
Image and Video Databases II, Vol. 2185, pp. 25-33, 1994.

[Str88] Gilbert Strang. Linear Algebra and its Applications. 3rd edition. Harcourt,
Brace, Jovanovich Publishers, San Diego, California, 1988.

[Str94] Markus A. Strieker. "Bounds for the discrimination power of color indexing
techniques." SPIE Proceedings, Storage and Retrieval for Image and Video
Databases II, Vol. 2185, pp. 15-24, 1994.

[SW90] Dennis Shasha and Tsong-Li Wang. "New Techniques for Best-Match
Retrieval." ACM Transactions on Information Systems, Vol. 8, No. 2: 140-
158, April 1990.

[Swa93] Michael J. Swain. "Interactive Indexing into Image Databases."
Proceedings IS&T/SPIE, International Symposium on Electronic Imaging:
Storage and Retrieval for Image and Video Databases, Vol. 1908, pp. 95-
103, February 1993.

[TP89] Matthew Turk and Alex Pentland. "Face Processing: Models For
Recognition." SPIE Proceedings, Intelligent Robots and Computer Vision
VIII: Algorithms and Techniques, Vol. 1192, pp. 22-32, 1989.

[TP91] Matthew Turk and Alex Pentland. "Eigenfaces for Recognition." Journal of
Cognitive Neuroscience, Vol. 3, No. 1: 71-86, 1991.

[Yuv75] Gideon Yuval. "Finding Near Neighbours in Zf-Dimensional Space."
Information Processing Letters, Vol. 3, No. 4: 113-114, March 1975.

3

