INDEXING STRUCTURES F OR "EIGENIMAGES"
. B |
Andishe Samandari Sedighian

‘B. Sc. EE, University of Colorado at Colorado Springs, 1989

-~ ACOMPARATIVE ANALYSIS OF MULTI-DIMENSIONAL |

|

‘ .

| o A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE VDEGREE OF

MASTER OF SCIENCE

" THE FACULTY OF GRADUATE STUDIES

'COMPUTER SCIENCE

We accept this thesis as conforming
to the required standard

December, 1995 '

. © Andishe S. Sedighian, 1995

| o THE UNIVERSITY OF BRITISH COLUMBIA

In presenting this thesis in partial fulfillment of the requirements for an advanced degree ‘at'
the University of British Columbia, I agree that the Library shall make it freely availablé for
reference and study. I further agree that permission for extensive copying of this thesis for
scholarly purposes may be granted iby the head of my department or by his or her
representatives. It is understood that copying or. publication of this thesis for financial gain

shall not be allowed without my written permission.

Computer Science

. The University of British Columbia
2366 Main Mall

Vancouver, Canada ‘

V6T 174

Date:

@ecem,éw K2 199s~

Abstract

Conteht-baséd fetrieval in image management systems requires indexing of image feature
vectors. Most feature vectors have a high nuﬁber of dimensions (>20). This makes
indexing difficult since most existing multi-dimensional . indexing structures. grow
exponentially in size as dimensions increase. We approach this problem in three stages: 1)
reduce the dimensionality of the feature spaée, 1) evéluate existing multi-dimensional
indexing structures to determine which can best organize the new feature space, and iii)
customize one of the selected structures to improve search performanée. To reduce the
dimensionality of the feature space without losing much information we apply a statistical
technique called Principal Component Analysis (PCA), using ‘Turk and Pentland's
eigenfaces approach. We then conduct a comparative analysis of a wide range of éxisting'
mﬁlti-dirhensional indexing structures (quad trees, KD-trees, R-trees, gridfile, and -
multipaging), selecting three of them (bucket adaptive KD—treé, gridfile, R-tree) for further
empirical comparisons. Tests show that the bucket adaptive KD-tree uses the least storage
and peforms the be‘st'during search.” Finally, we customize the bucket adaptive KD-tree by
implementihg techniques that take advantage of the éharacteristics of the transformed space
-- namely ranked dimensions by decreasiﬁg variance and known dyﬁarhic ranges. This

prunes the search space and results in very efficient searches. The number of page accesses

are reducéd significantly, some times leading to savings as high as 70%.

Table of Contents

Abstract.......... - O OO B
LISt Of TaDIES....cuuueereisissniieisssssnninesssnenesssssnneessssssssseesssssansensossssssssnesssosssssasssssosansasases vi
List of Figurescocveinniinincisisisesninininincnnnscsesnsnsnesencnnnes ‘ esssrsssesssssssssses .. Vil
Acknowledgement........ceeesee .> ... veees Vi
1 INTRODUCTION..cc.vevrrrrrrrrrren et iA AR nn R 1
1.1 The Need for Image Database Management........ e e e S ol
1.2 Multi-dimensionality of Image Features............ocervrvererererierereenereeneeeneenene 4
1.3 Multi-dimensional Indexing STrUCTUTES ..o e 5
1.4 Similarity Matching and Search Operations7
1.5' Problem Definition and Thesis Contributions............ e ‘10
1.6 Outling of ThesiS.......ccceiveerieviirienrieneereenieenieeneeens s e — 14
2 RELATED WORK.......... S — 15
2.1 Image Analysis and Reduction of Feature Dimensions.........ccoceceuveeeereinennas. 15
211 COLOT..oooeooeveeeeevoeoeseeseeeeeee e eeessssseses s 16
2.1.2 TEXMUIE ..eovevevereeeveeeereresseeeneens e, s 17
2.1.3 Shape.......cccevvevevcuennnnnnn et e 18
2.1.4 Summary of Image Analysis and Feature Reduction................... 19
2.2 Feature Space Orgamzatlon 21
2.3 Search Techniques..........ccocoeninne, e eeeeeeee 22

iii

3 PRINCIPAL COMPONENT ANALYSIS ceverusssaessaesanssRssEae bR Ree bR bR bR ns 25

‘ 3.1 Mathematical Fouﬁdations Of PCA...ccoevvriiiiiiin, e 25
1 3.1.1 Definition of PCA.........ooeco... et 26
| | 3.1.2 Howto corripute PCs .. 29 .
- 3.2 Calculating Eigenimagesoooovvimiiinnininiinicceen.. 30

3.3 Implementation and RESUIES .o eeseeseee st eeeseee e SR 33

4 EVALUATING MULTI-DIMENSIONAL INDEXING STRUCTURPiS........'..36

4.1 Review of Multi—dirﬁensional Indexing Structur'és '.....36

4.1.1 Non-Hierarchical Data Structures............c.c.coeeverveerernens. e 37

4.1.1.1 Gridfilecooooeoiiiiiiiiiiiiieccei e 37

4012 MUIGPAGIDG -..vrroorveeeoeeeoeeeeeess e 38

4.1.2 Hierarchiéal Data Structures PO 39

4.1.2.1 Point-Based Structures [39

4.1.2.2 Region-Based StrUCIUIes...........ccoeueurrrirrrieeieermnnecennan. 41

4.1.2.3 Bucket Methods................oooi reeeraee 41
4.2 Comparative Analysiscocceveerrerirseenenrennienineevennenn. JETSTRU N 43

42.1 Criteria of the AAYSISoooooooroooor ettt seneresaerern 43

4.2.2 Answers to the Criteria QUESHIONS........euvvuueuuaiiiiieeeereerreeereeeennnns 45

423 Results of the AnalysiS.....covvverevriienireeennne SR 49

5 IMPLEMENTATION DETAILS & EXPERIMENTAL EVALUATION

OF THE KD-TREE, R-TREE & GRIDFILE........einninnninarineccsssesssecessan 51

5.1 Indexing Structure Implementati_ons..t ... 52

5.1.1 Bucket Adapti\}e KD-Tree.....c.coceveurrennne. e .52

5.1.2 Deferred-Split R-Tree B PP P TP OORRRPPPPR 57

503 GHARIIC.....covvvvveoooeeeeeees el S 1+

5.2DataTestbedooeeeeeeeeeeeeeeeieeeeeesn e S 61

5.3 Results of Experimental Evaluation..........'.' e61
5.3.1 StorageCost 62
5.3.2 Seélrch Performance.............cccoooovvvviiiiiieniniennnnnn. T S 64
54 Conélusion SO TP PP 70
6 IMPLEMENTATION & EVALUATION. OF OPTIMiZEi) BUCKET
6.1 The Early Fail Test 73
6.2 The Early‘Success TESE et e 75
6.3 Changes t0 Tre€ SIIUCIUTE ...coc.uviiriiieiiiiee s iitee et ettt eeire e 76
6.4 SEarCh ALZOTII...occ.vvreverrrseerrsseere s ssssssssse s ssess s e 78
6.5 Results of Experimental Eﬁfaluation..........;; e, 79
7 CONCLUSIONScciiirisenisreccssneessnsssnsssasesssnsesssssessas 90
7.1 SUMMATY ettt 90
7.2¥ Future WOrK.......coccciniiiiiiiii 92
BIBLIOGRAPHY .. 95

. List of Tables

~ 3.1 Reduced PCs for different % of Variance using M =400......cccccceeieiiiiiiiiiniiinn. 34
3.2 Reduced PCs for different % on Variance using M =134 ..., 34
6.1 Dynamic .Range and Spread of first 10 PCs for 8000 data points...........cccconueeecrnnnn. 72
6.2 Percent of Buckets saved from being accessed in the Opt. BA_KD-tree.....I87

vi

List of Figures

- 3.1 Plot of 50 obseryations on two variables X1, X2.ccoocoiiiii . 27
3.2 Plot of the 50 observations from Fig. 3.1 with respect to tﬁeir PCszl,22............... 27
33 Centering and rotating a data set to fit its principal' comp(;nents. e SUTTRR 28
3.4 Twenty sample face images from our data set.L tennnnn———— 32
3.5 Averagé of the twenty face images in Figure 3.4............cccccoviiiin, 32
3.6 The 4 éigenfaées of the images in Figure 3.4...................... 32
5.1 Comparison of page‘ usage of R-tree and KD-tree structures............... e 63
5.2 Effect of increase in dimensioﬁs on capacity of R-tree and KD-tree pages...............64
5.3 Discriminating Power of Indexing Structures................c...c..... e ceeee. 05
5.4 Comparison of # of Pages Accessed I.......... .. 67
5.5 Comparison of # of Pages Accessed IL........c.ccccevveiiiiiiiiiiniiiiniini s 67
5.6 Comparison of Overall Search Times I 68
5.7 Comparison of Overall Sé_arch Times II...... e, SRR s 69
6.1 No. of page accesses saved using Opt. BA_KD-tree and fixed-radius search........... 80

6.2 Ratio of # of pages accessed by Orig. BA_KD-tree over # of pages accessed by
Opt. BA_KD-tree for all dimensions................c...... et er ettt aaa e e, 81

6.3 Percent savings in no. of pages accessed by Opt. BA_KD-tree for large data sets ...82

6.4 Overall search time saved using the Opt. BA_KD-tree and ﬁxed-radius search........ 83

6.5 Ratio of overall search time of Orig. BA_KD;tree over overall search time of
Opt. BA_KD-tree for all dimensions............ccocceeenrnnnnnn. e et 84

Acknowledgement

First and foremost, I would like to express my sincere thanks to my supervisor, Dr.
Raymond Ng, for his guidance, assistance and understanding over the past two years. I
-truly appreciate the fact that he always made the time to discuss concepts with me at length
and to clarify and refine ideas. Moreover, I am particularly grateful that he gave me the
time I needed to spend with my parents when my father was very ill.

Second, I would like to thank Dr. Robert Woodham who was the second reader on
my thesis. Eventhough, as Head of the Department, his schedule was very full, he
graciously accepted to spend the time necessary to review my work and provide me with
valuable and thought-provoking comments.

I would also like to thank my fellow students, Richard Pollock, David Hsu and
Michael McAllister, for the assistance they gave me at different times along the way.
Although they may not have thought it much, the discussions I had with them on different
aspects of my thesis helped me work through some of the harder concepts. I wish them all
the best of luck in their academic endeavors and future careers.

A special thank-you goes to Dr. Christos Faloutsos of the Department of Computer
Science at the University of Maryland, College Park, for allowing us to use code that he and
his students had developed for two of the multi-dimensional indexing structures we use in
this work: the gridfile (by C. Faloutsos and S. Hong) and the deferred-split R-tree (by M.
Bayraktar, C. Faloutsos, Y. Tan, J. Tang and W. Wang). ' ,

I would like to especially thank my dear husband, Kamran, for all the love, support,
and encouragement he gave me through thick and thin. In particular, I would like to thank
him for his invaluable comments on this document.

Finally, I thank the Lord for giving me the strength and ability to accomplish this
milestone, and for continuously granting me His abundant grace and bounties.

viii

Chapter 1
INTRODUCTION

1.1 The Need for Image Database Management

Conventional database management systems (DBMS's) are designed with alphanumeric data
in rmnd Over the past thirty years much research has gone into designing these systems S0
as to‘ give users a seamless ‘and transparent view into the data ciémajn being managed
[GM92a]. As a result, DBMS's have been very successful and have proliferated in all areas
of business and industry. In the last decade, however, there has been a significant increase
in the generation of non-alphanumeric data such as graphics, maps, images, video aﬁd
audio. From business to academia, from medicine to land resource management, from
education to entertainment, more and more people are interacting with large image
databases. Although some early attempts were made to adapt traditional DBMS's to
support noﬁ-alphanumeric data [KWT74], it quickly became clear that traditional database
managemeht techh_iques could not effectively héndle image or other non-alphanumeric data.

New approaches have to be used for designing image information management systems.

Until very recently, most image database systems have generally fallen into one of
two categories: 1) databases with no image understanding capabilities, or 2) vision systems

which store images in a basic image repository [BPJ93, GM92a]. The first approach

requires recording textual annotations which describe each image. These annotations are

* Chapter 1. Introduction ' ' 2

then entered into a traditional database and searches are performed based on kejrwords
stored in this database. The images themselves are not really part of the database but are
stored separately; they are only referenced by text strings and pointers. There are a number
of serious linlitations to this approach. It is quite clear that such a method is labor-
intensive, involving the manual cataioging of thousands, if not hundreds of fhousands, of
images. In addition, the complexity of the information embedded in the images cannot be
sufficiently described in a few keywords so as to distinguish a particular image from other
images. Finally, there is the difficulty of anticipating ’evei'y user's needs when assigning
keywords to images; a user may not interpret an image in the same way the database system

. designer may have interpreted it upon initial insertion.

The second approach originated in the image prdcessing community. These systems
have the abiﬁty to accurately interpret complex image data. However, they are intended
strictly for vision applications and research, and therefore simply maintain the images in
basic image repositories. Support for database processes such as insertion, indexing,
éuerying, and so on is very limited, and only small. numbers of images (i.e., tens or’
" hundreds) are used as testbeds. Researchers in the emerging field of Visual Information
Management Systemsﬂ(VIMS) believe that the creation of mere image repositories is of
little value. Methods for fast retrieval of images based on théir content must be devised for
. data sets of realistic sizes, ie., tens or hundreds 6f thousands of.images [Jai93]. The.

realization of such image management systems requires the developfnent of new techniques

in the fields of databases, computer vision, and knowledge-based systems.

Chapter 1. Introduction , » : 3

Since the beginning of the 1990's, researchers in the fields of image processing and
understénding, knowledge representation and knowledge based systems, and databases have
begun working together to face the challenges of designing new VIMS!. These groups
have approached the problem of content-based image retrieval in a variety of ways. As a
result, a number of different prototype image database systems have emerged. Below is a
sampling of these ‘.systems.- A more extensive review of these systems is presented in

Chapter 2:

1) QBIC ‘(Query By Image Content): developed at the IBM. Almaden Resgarch
Center, this system focuses on _retrieving images from stocks of photo clip art
Based on three types of image content -- color, texture and shape [F+94, N+93].

2) ENIGMA: developed at the University of Amé_térdam, this system works with~
MRI images of the chest. Small image patches that frequently occur in the set of
MRI images are extracted and used as key features by which to search the
database [GS92].

35 Xenomania: developed at the vUniversity of Michigan, this is a visual
informgtion system used for interactive face retrieval. Face. _featurés such as

~ eyes, nose, and mouth are used to locate a specific face in the database [BPJ93].

4) Face Photobook: developed at the Media Lab at M.LT., this system is used for
face recognition. The eigenfaces approach of Turk and Pentland [TP91] is used

to represent and retrieve images from the database [PPS94].

I' The IRIS/IC-5 Project based in the Department of Computer Science at the University of British
Columbia is one such group of collaborators from various disciplines.

Chapter 1. Introduction . ‘ .4

1.2 Multi-dimensionality of Image Features

T}ie majority of current iinage database system prototypés represent and retrieve images |
based on a variety of image content descriptors. The most common of these are coior,
toi(tute and shape. These content descriptots are commonly termed image features. An
' image feature can be defined as a numerical value or a vector that is computed based on the
low-level properties of an image (such as pixel intensity values). Various current image
analysis techniques may be used to extract one or more image features from each image.
For example, color histograms are computed, edge properties are extracted, texture features
are calculated that iepresent coarseness, contrast or directionality, and shape features such

as area, circularity, and eccentricity are measured.

The important information in an image can also be represented using another
approach. This involves first somehow capturing the variation in the whole database of :
images, independent of any explicit features, and then using this information to encode and
compare the iridividual images in the set [TP89, TP91]. The details of such a method are -
explained in a later chapter. However, the important difference to remember between this
approach an(i the previous one is that in the former technique a specific feature vector (such
as a color histogram or a set of texture values) is extracted from each image and used to
represent it. In the latter techni.que each image in a database, with N roi’vs and N columns
of pixels, is first converted into a single N2-element vector by concatenatihg the rows of
pixél intensity valuos. Then, using a statistical tool, the variation in the complete set of

' image vectors is oalculated. | In mathematicél terms, the principal components of the

distribution of images are found. Finally, each individual image is represented as a linear " -

combination of these components.

Chapter 1. Introduction S ' _ o 5

In both approaches, due' to the compl'exity of the inforrhation, the irﬁages afe
' .repre‘se‘nted as points in a multi-diﬁlenéional spéce. Each point 1in this space is a‘unique k-
dimensional location represented by a vector X = [X{, Xp , ... ,"xk]. As aﬁ éxatnplé color is
ﬁsually a 3‘-va1ued Atuple treated as a 3-dimensional point iﬁ a éolOr ‘spalce such as R, G, B.
It is common to have image Vectofs with 20 or mére dimensidns; In this thesis, we wﬂl ‘
coflsider a point with over 20 dimensior_ls as one that has high dimensionality; a point with
.6 to 20 ‘dimensions as one that has medium dimensionality,' and a point with less than 6

dimensions as one that has low dimensionality.

The high dimensionality of image vectors cém pose a real problem‘parAticularvly when
one considers that usually real-life image database's- store .tens to hundreds of thousands of
images. This problem is many-faceted: 1) a lz.yrge‘ number of dimenéions .per image means
that a lot of space must be used just to store the image vectors; 2) if the dimensions are not
all independent then redundant information is stored; and 3) Whén calculating the similarity
| between an imagé‘-and a query, large numbers of dimensions means increased computation
time. Therefore, in Order toﬂ‘retain1 reaSoriable sforage reqﬁirements and low computation
‘ tirﬁe, techniques should either Be developed or addpted that can efﬁ'ciently_’arllalyzé .and

- compréss image vectors.
1.3 Multi-dimensional Indexing Structures
In traditional DBMS's various indexing techhiques have been- developed to facilitate

searches on alphanumeric data (e.g., B-trees’ and hashing). However, these conventional

methods are not suited for indexing multi-dimensional data’ points. Research ‘into

techniques for accessing spatial data has generated several indexing structures designed to

Chapter 1. Introduction , 6

handle rnulti—dimensional pbints and spatial objects (such as rectangles) [Giit94]. The most
‘common spatial or rnulti-dimensional indexing structures include -the quadtree and its family
[FB74, Sam90], the KD-tree and its variants [Ben75, Ben79, Sam90], the gridfile [NHS84,
Sam90], and the R-tree and its variants [Gut84, B+90, SRF87]. Since images'can be
represented as points m a multi-dimensional feaiture space, these structures are suited for
organizing image:feature data. Cbnsequently, these structures have been adopted by some
| ‘ researchers for this very purpose. In QBIC and [A+95], for instance, an R*-tree [B+90] (a

variant of the R-tree) is used to index shape and texture feature vectors respectively.

Although multi-dimensional point access methods are suited for accessing image
feature data, the fact that most image features have a iligh number of dimensions restricts
the efficacy of these methods. This is because most existing multi-dimensional indexing
structures cannot deal with high;dirnensional data points. They often grow exponentially
with the number of dimensions - a phenomenon knoWn ns the "dimensionality curse"
[F+94, A+95]. The R-tree methods, however, seem to be the most robust with experiments
-indicating that the R*-treer‘can handle up to 20 dimensions [F+94, A+95]. The inability of
existing multi-dimensional indexing structures to effectively handle the organization of high-
dimensional imag{a feature vectors is a further reason why it is necessary to find ways of
éompressing image feature spaces. The VIMS research community has recognized this
shortcoming of multi-dimensional indexing structures and ‘has made the following

recommendation at the 1992 National Science Foundation workshop on VIMS:

Efficient indexing methods for high dimensions need to be developed,
'balancing efficient use of index memory with efficient retrieval (i.e.
O(logn)) methods. Except in the field of information retrieval, current
'multi-dimensional' indexing methods are oriented toward relatively few
dimensions, say 10 to 20. [Jai93, p.63] - :

Chapter 1. Iniroduction' o | 7

1.4 Similarity Matching and Search Operations

Besides efficient mﬁlti-dimensional indexing, one of the main functionalitieé'we need
from an image database is similarity matching. Here, an important distinction needs to be
made between searches performed on image détabases and those performed on traditiéhal
alphanumeric databases. In traditional DBMS's, the retrieval of data is based on exact
matches, for examﬁle, ﬁnd_ all students in the database with the last name "Smith". Exact
match, however, is not possible with image databases. There aré primarily two reasbns why
a measure of similarity rhust be developed: 1) Users' queries are ordinarily rpugh
estimations of the image they are looking for; fof example, find an irﬁage that has a
"reddish” ball, "about" this large, "somewhere" in this corner. In such a query, neither the -
exact color of the objéct, nor its sfze, nor its precise location are provided by the user. The
user often just has a notion of what (s)he is looking for and cannot remember the exact
details of an iﬁlage. 2) The introduction of noise and distortion is inherent in image

processing [GM92].

' How can ﬁulti-dimensionﬂ indexing structures help with similarity matchihg?
There a_ré two important characteristics of a multi-dimensional indexing structure that assist
in performing a similarity match. The first characteristic is the way in which the structure
orgaﬁizes the data space so that during a search only parts of that space, and hence a subset
of the points in it, need to be considered to answer a query.. This characteristic is important
for reducing the number of ifnages for which the similarity 'fnetric needs to be computed.
The ratio of the reduced set ‘oyf images to the full set of images is termed by Aléxandrov, et
al. [A+95] as fhe discriminating power of the indexing stfu‘cturé. The smaller the ratio, the

greater the discriminating power. The second characteristic is the efficiency of the indexing

structure -- i.e., how fast it can produce the reduced set of images for a fixed value of the

Chapter 1. Introduction ' 8

discriminating power. The efficiency is, among other things, dependent on the search
operation used. The appropriate indexing structure in co.njunction with the right kind of
search operation can result in efficient processing of similarity match queries and a high

discriminating power.

There are several types of search operations that are useful for similarity matching.
These include range search, partial range search, nearest-neighbor search, and fixed-

radius near neighbor search. Following is a brief definition of each kind of search:

1) Range Search: The process of retrieving the appropriate records when given an

’;orthogonal range query,” i.e., find all records whose k key Qalues fall within

| specified ranges [BF79, BM80]. Partial Range Search is very similar except
that only » of the k key values} (n < k) have speciﬁed ranges;.'

2) Nearest-Neighbor Search: This is also known as the "best-match” or "closest
p_oiﬁt" search. It is the process of retrieving the recoi‘dv or m records that are
most similar to a Query according to some (dis)similar-ity- measure. This
(dis)similarity measure is often a distance function [SW90]'.

3) Fixed-Radius Near Neighbor Search: The process of retrieving all records that

fall within sorﬁe fixed radius r of a query [BM79].

These search algorithms can play two different roles during query processing in
‘image databases. They can .be used as filters to reduce the number of images on which
similarity functions are implemented (e.g., first perform the proper range search and then

compute a detailed similarity metric on the returned images), or they can be used to perfofm

- the complete search itself (e.g., perform nearest-neighbor search to get the m best matches).

Chapfér 1. Introduction v : , ' 9

Most often, search algorithms are used for the first purpose -- to reduce the search space on

which the thorough matching is done.

- In this thesis, we concentrate-on finding all imageé that are within a fixed distance
from a query. There are two main reasons for this choice: 1) often, users are not interested .
in the "best match” to.their query but prefer to retrieve a number of similar images so 'fhat
they can further modify their query using these images [A+95]. The "ﬁxed-distance-from—
query" notion of similarity fits this requirerhent quite well; and 2) this form of similarity
matching is often used in image database systems [PK93, Ft94]. The distance métric that
we choose to work with is the Euclidean distance?. Our reasons are because Euclidean
distance is a natural and common notion of distance, and is used frequently for similarity

match in current image database prototypes [PK93, F+94].

The fixed-radius near neighbor problem in k-dimensional space is not a simple one.
The distance function between two neighboring data points for this type of search could be
any vector si)ace Lp-n()rm, such as the Ly-norm or the L,-norm [FBF77]. Although fixed-
radius search is independent of the type of distance metric used, the metric must be a
summation of some difference between each dimension of the two points under
consideration. Much work has been done in this area [Ben75a, Yuv75, BSW77], hoWever,
most multi-dimensional ih'dexing structures still only approximate fixed-radius search.
Some simply use range search instead of fixed-radius search, setting the range in each

dimension equal to twice the length of the specified radius [Sam90]. Others take it one stép

2 The Euclidean distance between two k-dimensional points, x and y, is defined as:

o |
distz(x,y)?zl(xi—}'i)2_
1=

Chapter 1. Introduétion ‘ ' 10

further and actually compute the distance between the query and the points .fetricved by the

range search, further refining the answer given to the user [F+94].

Rangé search differs greatly from fixed-radius search in that it cphsiders each
dimension in a data point independently of the rest of the dimensions. The value of each
dimension is simply compared against the appropriate query range. For this reason, unless a
search requires that the dimensions be treated independently, using range’ lsearch to find
points that are within a fixed distance from a query is a poor approximation of fixed-radius
search. Such an approximation meaﬁs that the hyper-sphere of the radius search is
approximated by the hyper-rectangle of the range search. This results in the retrieval of
many. false hits, i.e., images that are retrieved which in fact do not satisfy the query-
constraints. For ﬁniformly distributed data, this approximation gets poérer as the number of
dimensiong of the feature vectors increases. Therefor‘e,' if a structure is used to find all
images whbse distance from a query is below a fixed threshold, és in [PK93] and [F+94], it
would improve the discriminating power aﬁd the efficiency of the indexing structure if

fixed-radius near neighbor search is used rather than range search.

1.5 Problem Definition and Thesis Contributions

As we have seen, images in a database can be represented as-vectors in a multi-dimensional
space. Frequently this image space has a high number of dimensions. This presents a few
challenges to designers of image management systems: 1) high dimensional feature vectors
can be costly in terms of storage and computation time; 2) most existing multi-dimensional

indexing structures cannot handle points with high numbers of dimensions, so they must be

chosen judiciously; and 3) more efficient search techniques need to be employed to reduce

Chapter 1. Introduction s o _ ' 11

CPU and /O time (i.e.; number of page accesses). This thesis addresses these issues by

investigating the following questions:
1) How can we compress or reduce the dimensionality of the image vector space?

2) What existing multi-dimensional indexing structures are suitable for organizing

the image space once it has been compressed?

3) How effective, in terms of computation time and page accesses, is range search
in approximating fixed-radius near neighbor search when looking for data points

within a fixed distance from a query?

In answering the first question, we chose and implemented a dimension-reducing,
distance-preserving technique called Principal Component Analysis® (PCA). This technique
transforms the data space by removing dependent dimensions and converging most of the
information into the first few dimensions. Our implementation of PCA follows that of Turk
and Pentland in which full image vectors are used in the calculations [TP91]. Our
experiments confirm fheir results, demonstrating that PCA can effectively reduce hig.h—
dimensioned image vectors (or high-dimensioned specific feature Vectdrs) while retaining
rnbst of the variance in Vthe data set. Our findings further show that this technique works
well on relatively large data sets (400 images in our test bed versus 16 images in Turk and

-Pentland's).

In answering the second question, we conducted a comparathe analysis of existing

multi-dimensional indexing structures to determine which ones could best support image

3 PCA is also known in pattern recognition as the Karhunen-Loeve transform.

Chapter 1. Introduction 12

vectors that have been trar}s'formed using PCA. In this analysis, the issués of primary
concern are: i) how the storage cost of the structures scales up with increasing dimensions;
and ii) what kinds of séarches the structures are suited for. The results of this analysis
indicate that 3 of the structures are the most reasonable for our pufposes. These .are the
bucket .adap_tive KD-tree, the family of R-trees, and multipaging. In order to get a concrete
understanding of the suitability of these structures we decided to implement all three
structures and carry out a thorou'gh experimental evaluation of each. We implemented thé
‘bucket adaptive KD-tree usiﬁg Samet's text [Sam90] as. reference. However, due to limited
time, we did not implement R*-tree and multipaging. Instead, we acquired an R-tree and a
. gridfile structure from Christos Faloutsos at't‘-he University of Maryland. Although the R-
tree and gridﬁle implementations are not the structures we originally planned to evaluate,
they are still useful for our comparisén because of their similarity to R*-tree and
multipaging. The experiments we conducted use_:d dat'a points that were extrapolated from a
set of 400 gray-scale face images. Thé dyhami_c ranges of the principal components of the
image vectors were initially extracted, then larger data sets, from 500 to 50,000 data points,
were generated based. on this original data. To compare -the performance* of these
structures over a number of dimgnsions, we generated data points that varied from 2 to 10
dimensions for each data set size. Using this téstbed, we compared storage costs and
performance of range search for the three indéxing structures. The results indicate that the
bucket adaptive KD-tree is the most suitable structure for organizing PCA-transformed

data.

4 We measure performance by looking at overall search time and number of page accesses.

Chapter 1. Introduction c » 13

In answering the third qhestion, ‘we modified the bucket adaptive KD-trees ‘
implerﬁcntation so that it could perform fixed-radius near neighbor search. Furtheﬁnore, ‘
we implemented a number of the ideas outlined by Béntléy [Beﬁ75a] to improve the
performance of fixed-radius search. The two key techniques We implemented are termed by
us as t_hé Early Fail Test and the Eafly Success Test. The Early Fail Test checks to see if
the sum of the sQﬁares of the minimﬁm differences between a query point and the hyper-
rectangle of the range 6f_ a .sub-trec is greater than a fixed threshold r2, where r is the
distance (or radius) from the query point. If this sum exceeds r2, it indicates that the entire
sub-tree can be skipped. To reduce the numBer of calculations and speed up this test, we
compute the sum of the squares of the minimum differences oniy until they exceed r2. The
-Early Success Test is used to determine whether or not the hyper-rectangle of the range of a
sub-tree falls entifely within a ﬁxéd radius from the query point. If the sum of the squares
of the maximum différences between the query point and the hyper-rectangle is less than or
equal to r2, this indicates that all data points under that subtree -satisfy the query. |
Therefore, further testing down that sub-tree is unnecessary. Again, to reduce the number
of calculations aﬁd speed up the Early Success Test, we compute the sum of the squares of |
the maximum differences only until they exceed r2. To implement both tests, we had to
store the minimum and maximum values of the dimensions of the hyper-rectangle of the
sub-tree at each node. Experiments comparing the performance of the optimized bucket- |
“adaptive KD-tree and the originaI bucket adaptive KD-tree indicate -that, for a medium
number of dimensions, the optimized BA_KD-tree leads to a signiﬁcant reduction in the

number of page accesses and overall search time®, sometimes as much as 70%.

5 In this thesis the term "original bucket adaptive KD-tree" will refer to the initial implementation of this
structure with only range search capability, and the term "optimized bucket adaptive KD-tree" will refer.
to the modified version of this structure with optimized fixed-radius near neighbor search capability.

6 Overall search time for the optimized tree includes the extra computations necessary for performing the

" Early Fail and Early Success Tests. ' '

Chapter 1. Introduction ' | 14

A\

In summary, the work of this thesis: i) confirms tﬁat PCA is a useful statistical
technique for reducing the dimensionélity of image vector spaces; 2) determines that the
bucket adaptive KD-tree performs well for indexing PCA-transformed data; 3) verifies that
range search is a poor substitute for fixed-radius near neighbof search; and 4) demonstrates
* that the bucket adapﬁVe KD-tree can be modified to haﬁdle an optimized fixed-radius
search operation that greatly improves Vthe structure's performance in finding all images

within a fixed distance from a query.

1.6 Outline of Thesis

The remaining chapters contain the following: Chapter 2 describes related works. It
reviews some prototypes of image databases develop’edlby various‘ researchers in the image
processing and database communities. Ch_'apter 3 focuses on the PCA technique. It first
explains the mathematical theory behind PCA, and then describes the eigenfaces approach
of Turk and Pentland which we adopt for analyzing the images in our database. Chapter 4
presents -in detail the comparative analysis of é wide range of existing multi-dimensional
indexing structures. It explains the criteria on which our analysis is Based, and gives the
reasons for our choice of structures. Chapter 5 describes the testbed used for this thesis,
covers the key aspects of the implementation of the three structures we chose in Chapter 4,
and presents the results of our experimental evaluation of each. Chapter 6 explains the
modifications that we made to the bucket adaptive KD-tree and the detaﬂ_s of the
impleméntation of fixed-radius near neighbor search. It also presents the results of the
comparison of the performance of the optimized bucket adaptive KD-tree and the original .

" bucket adaptive KD-tree. Finally, Chapter 7 presents our conclusions and suggestions for

future work.

Chapter 2
. RELATED WORK

In recent years there has been much research in the field of Visuai Information Management
Systems. This has resulted in the development of many new prqtotypes. In this chapter we
examine a number of these prototypes (ENIGMA [GS92], AMSTERDAM [SSG92], ART
MUSEUM [HK92], TRADEMARK tKat92], QBIC [N+93], Xenomania [BPJ93], Miyabi
" [H+93], FINDIT [Swa93], Photobook [PPS94] ana others) and see how they address the
three central issues of this thesis -- namely, reduction of the number of dimensions of the
feature space, organization of the feature space, and application of an efficient search

technique.

- 2.1 Image Analysis and Reduction of Feature Dimensions

There are several kiﬁds of ifnage features that are used to déscribe the contents of images in
a database. In general, the systems we investigate in this thesis look at one or more of the
followiﬁg features: color, texture, and shape. Below, we give a summary of the image
featureé used in several (j)f these systems and examine how, or whether, they attempt to

reduce the dimensionality of the features that are extracted.

Chapter 2. Related Work A . N : - 16

2.1.1 Color

One of the features most commonly extracted from an image is its color content. Swain and
Ballard state: "The color spectrum of multicolored objects provides a robust, efficient cue
for indexing into a large database of [images]" (p. 396) [SB90]. In [SB90], [SB91‘],‘
[BGS92], and [SW;l93], color is used as the only indexing featﬁre. In QBIC [N+93] and
-[SSU9%4], color is used 'along with a few other features for indexing images. Images are |
represented by color histogralhs, and a metric on the histogram space is used td determine
the similarity between two images. Histograms are usually compared sequentially across all
the images in a database. However, since thfs type of recognition scheme is linearly
dependent on the database size, computation time dramatically increases for large image

databases.

To reduce this time Swain and Ballard [SB91, Swa93] use a téchnique they call
incremental intersection which takes advantage of the fact that in a typical histogrém a
small number of bins usually capture the majority of pixél counts. In this scheme only the
largest bins of the query and database irhage color histograms are compared and a partial

histogram intersection value is computed for the similarity match.

The QBIC prdject approéches this problém in a slightly different way. Instead of
reducing the number of bins used in the histogram comparison, QBIC reduces the number
of images on which a full histogram compafisoh is performed. To better understand their
approach, let us first review the QBIC deﬁnitién of a full histofgram comparison. The

distance between two color histograms x and y is defined as:

2 : - A
dhist_(x, y) =x-)TA(x-y) (2.1) :

~ Chapter 2. Related Work | ' : 17

where x and y are (K x 1) vectors (K is the number of histogram bins), T denotes transpose,
and A is a K x K matrix which has entries a;; that describe the similan'ty between color i and
color j. This distance takes into account the "cross;talk" between two éolors such as
ofange and red thereby correctly computing that orange images are similar to red images or
that half-red/half-blue images are quite different from all-purple ones [F+94]. To reduce the
co‘mputaﬁon necessary to compare a query. image to the images .in the database, Faloutsos,
et al. introduce the following filtering step. They first cbmpute the Euclidean distance
davg(x,y) between the average color of the query image, X, and the average color of an
image in'the database, y. The average color x,,,, of an image is defined as the average R,
G, and B values of the pixels in that image: |
Xavg = (Rayg » Gavg » Bayg)T | (22)

If dayg(x,y) is greater than somé threshold value €, then that image is dropped from the
search. But those images whose dqvé(x,y) is less than or equal to € go on to have the full
histogram distance computed. This technique acts as a filter on the database ensuring that
there are no false dismissals, but accepting some false hits. These false hits are later
discarded by performing full-histogram distancing on the set of imagés captured in the filter
step. In tﬁis way computation time is saved as it is much cheaper to perform the full

histogram comparison on only a subset of the images rather than on the whole image set.

2.1.2 Texture

Texture information is one of the basic cues on which patterns can be retrieved. Four of the
) i .)
systems we investigate extract texture features with which to represent the images in their

database. QBIC's texture features include coarseness, contrast, and directionality [N+93].

Sakamoto, et al. define the texture of a region as its coarseness [SSU94]. In Texture

Chapter 2. Related Work . ' ' : A 18

Photobook [PPS94] texture is represented by measurements of repetitiveness, directionality
and complexity. Alexandrov, ef al. use a series of Gabor filters to capture 120 different
texture features [Af95]. The dimensionality of the texture features in the first three systems
. is very low therefore they do not use any feature compression techniques. However, since
Alexandrov, et al. have a very high dimensioned feature measure, they develop a scheme for .
determining the relative importance of the Gabor filters. The filter ordering is pattern
dependent and is baséd on the average spectral information of all the images in the database
[A+95]. They are able io reduce the dimensionalify of the texture feature down to a

maximum of two dimensions.

- 2.1.3 Shape

Shape recognition has always been one of the major challenges in the field of computer
vision.. It has also become one of the most cﬁallenging aspects of content—base\d image-
retrieval. Several of the prototype systems extract shape features and use them for indexing
the images in their data set. Following is a brief listing of the types of shape .fe‘é\tures that
- are extracted by the different systems we stﬁdy: 1) Gary and Mehrotra [GM92b] use a set
of polygonal approximations of the actual object boﬁndary to define an object; ‘2) Grosky
and Mehrotra [GM90] employ data—driven model-based sha];;e recognition; 3) Grosky and
Jiang [GJ92] use vertex angles and the lengths.o‘f their adjacent edges as shape features; 4)
Hou; et al. [Ht92] extract a sequénce- of feature vectors derived from the center-of-mass of
the individual objects in an image; 5) Pentland, ef al. [PPS94] use Finite Elemént Method

" 'models [SP93] of objects to align, compare, and describe objects; 6) Saniadani, et al.

[SHK93] extract 15 different shape features from a specified sector of an image (global

features, such as total area and total intensity, and radial features, i.e., features along a

Chapter 2. Related Work . | 19

radial line, such as Width and variation of widthj; and 7) in QBIC [N+93, F+93] they extract
a total of 20 shape features that include area, circularity, eccentricity, major axis orientation
and a set of’ aigebrai'c moment invariants. Other systems such as ENIGMA [GS92], Miyabi
[H+93], dnd ART MUSEUM [HK92] uée image segmentation to extract the outline of

- objects in an image.

As seen above, shape feature vectors frequently have a high number of dirhensions.
This high dimehsionality makes computing fhe similarity between images expensive,
especially when dealing with large data set sizes. Despite this high cost, most of the
systems cited, with the excéption of QBIC,’ do not try to alleviate the problem. QBIC uses:
a method known in pattern recognition as the ‘Karhunen-Loeve (KL) transform, to
deco_rrelate and compress the texture dimensions. The KL transform, known in statistics as
principal compon.entl."analysis, is a data-dependent orthonormal transform. It requires using
‘a sample of the data set to compute the transformation matrix. The columns of the
transformation matrix correspond to the eigenvectors with the largest eigenvalues of the
cdvariance matrix of the feature vectors. To achieve dimensionality reduction, the first few
eigenvectors ére'selected since they contain most of ,the variance of the whole data set
[F+94]. The reduced-dimension shape feature vectors are then used to perform the

necessary distance calculations thus reducing the computation time.

2.1.4 Summary of Image Analysis and Feature Reduction

From the above review, we can see that most of the prototypes we examined do not

concern themselves with the high dimensionality of the feature vectors they extract. There

1,

seems to be two reasons for this. First, the focus of the prototypes is primarily on

Chapter 2. Related Work ‘ v 20

developing techniques fér extracting relevant feature information from images in a database
and using this extracted data later for similarity célculations. Second, the irhage testbeds
used are, for the most part, small in size (i.e., from scores to a few thousand images).
Consequently, the problems that a large number of feature dimensions create, namely high
storage cost and expensive computations, are not an issue in these systems. This, however,
does not diminish the importance of dealing with the "dimensionality curse." If systefns are
to handle realistiq-sized databases such as digital libraries of images with tens to-hundreds
of thousands of images, techniques for reducing the dimensionality of image features,

without suffering great loss of information, will have fo be adopted or devised.

In our study, we recognize that the high dimenéionality of ‘'most image
represenfations are costly for the system. Hence, we adopt and implement an image
analysis and dimension-reducing technique, dubbed eigenfaces, that was developed by Turk
and Pentland at M.LT. [TP91, TP89]. It is founded on the same principles as the technique
used in QBIC for reducing the dimensionality of its shape feature vectors. Hdwever, _
: ihétead of working with specific feature vecfors, the eigenfaces technique is applied to
whole image vectors. It performs PCA on the pixel intensity vélues of a sub;set of the
images in a database, extracting a small number of vectors that carry most of the

information in the images. These vectors become the "basis vectors" by which the images in

the database are defined. Further details of this technique are given in Chapter 3.

Chdpter 2. Related Work o 21

2.2 Feature Space Organization

With a multi-dimensional vector representing each image in a database, the whole database
maps to a collection of k-dimenéional points in a k-dimensional space’. This space may then
be organized by an indexing structure to assist in performing searches. However, most of
the prototype systems we examine do not use any sort of indexing structure for organizing
the image features they extract. They siiiiply havé the feature vectors stored in flat files or.
arrays and use them to sequentially compare images in the databas_e to a given query [G] 92>,
HK92, GS92, SSU94, PPS94, Kat92, H+93, BPJ93, Swa93, SB91].- A few sysfems use
‘one of the existing multi-dimensional indexing structures for featuie organization: 1) QBIC
[F+94] and Alexandrov, et al. [A+95] use the R*-tree fo_r indexing their shape and texture
features respectively; 2) Gary and Mehrotra [GM92b] St_ate that any multi-dimensional point
access method can be used to form the index on the shape features they extréct; and 3)
Binaghi, et al. [BGS92] use the R-tree forvorg'anizing. the color information they extract
from images. Two.of the prototype systems [GM90, H+92] bilild binary search trees based
on the similarity distance between features but not based on the image featur¢ vectors
themselves. Finally, one of the prototyPes [SSG92] organizes the features it extracts into zi

relational table.

As was mentioned above, most of the systems we investigate do not use an.indexing
struétu(e to organize the image feature space they generate. The reasons for this seem to
be, once again, twofoldi'indexing is not a focus of those studies and, more importantly,
small sized data sets do Iiot-prompt the peed for sophisticated feature spacé organizétion.

We feel that an image management system that manages tens to hundreds of thousands of

7 Often, there is more than one multi-dimensional space that represents the images in a database since
several feature vectors may be extracted from each image.

Chapter 2. Related Work | _ : 22

images needs to utilize a suitable indexing structure, particuiarly one that can handle multi-
aimensional points, if it is to answer queries efficiently. The éelection of an indexing
" structure must, howéver, be done carefully as not all multi-dimensional indexing structures
are well suited for any multi-dimensional data. In this thesis, before choosing an indexing
structure to _Qrganizé our multi-dimensional image Vectoré, we conduct a thorough analysis
of existing multi-diménsional indexing structures to determine which one(s) would be most’
appropriate ‘for our uSé. This examination includes both a comparative analysis and an
experimental evaluation of a wide range of structures. Chaptef 4 provides the details of this

study.

2.3 Search Techniques

Organizing the image feature space by using an indexing structure is important. This is
because indexing helps to reduce search time compared to sequential séarching (search time
includes CPU time and /O time). However, since most of the systems we investigéte store
their feature vectors in non-indexed flat ﬁles, they simply perform a sequential séarch
through the entire database of images computing the similarity between the query and each

"image. This sequential process involves the following steps:

1) given a query image, a feature vector is extracted;
2) the distance between the feature vector of the query and the feature vector of
each image in the database is computed;

~3) images whose computed distance is below a predefinéd threshold are retrieved.

Chapter 2. Related Work . 23

Step 3 in this process. indicates that a fixed-radius query is the notion of similarity match
that 1s c;ommonly used. Additionally, the Ly-norm, of Euclidean distance, is oftentimes the
distance metric of choice. For instance, in QBIC [N+93] and Texture Photobook [PK93],
shape and textﬁre features‘, respectively, afe matched using the weighted Euclidean distanée
between two feature vectors. Swain and Ballard [SB91], however, measure the distance
between two color histogram features using the Lj-norm8, or "city-block metric" [Str94]; A
ahd, as we saw in section 2. 1'.1’ QBIC measures the distance betwéen two color histograms, |
x and y, using ecjuation 21 Although thfs calculation differs from Euclidean distance, djjgz
becomes the Euclidean distance betweén x and y in the special case where the matrix A is
the identity matr.ix.I [F+94]. For the relatively small databases of these prototypes, using
sequential search with‘th‘ese'distance metrics is acceptable. But, for real-life scientific and

commercial applications more sophisticated search techniques must be employed.

The Lll- and Ly-norms used for similarity measurement by the above mentioned
prototypes are ideal for fixed-radius near neighbor search.l Nonetheless, the systems that
utilize an indexing structure perform range search to find the approximate number of
images that lié within the desired rédius from a query [N+93, BGS92, GM92b]. Hére,' in is
important to recognize the difference between fixed-radius near neighbor search and range
search. As wa‘s‘ explained in ‘section 1.4, ﬁxed-rédius search uses an Lp-'norm as the
distance function. This type of metric is a summation of some différence between the

' dimensions‘ovf the two feature. vectors being compared. The resultant sum is checked to see
if it falls below a predeﬁnéd threshold (i.e., within a specified radius). Range seérch,
however, is designed.to work for "orthogonal" queries where each dimension is considered

- independently of the rest. The dimensions no longer cumulatively satisfy the query

8 The L,-norm is defined as the sum of the absolute differences between 2 k-dimensional vectors, x and y:

: k
dist, (%, y)= Z |%;-yl

Chapter 2. Related Work , 24

constraints. Thérefore, we conjecture that using range search, out of convenience, to
approximate fixed-radius near neighbor search is a mistake. It could result in poor
performance, both in terms of number of false hits and overall éearch time. To test this
hypothesis We modify an existing indexing structure and enhance it with the ability to
effectively execute fixed-tadius near neighbor search. We then cornpare the performance of
the modified structure using fixed-radius sea‘rch to the original structure using a range

search approximation. The details of this comparison can be found in Chapter 6.

\

Chapter 3
PRINCIPAL COMPONENT ANALYSIS

In this thesis we choose the eigenféces method of image anaiysis and feature compression.
It was initially developed by Sirovich and Kirby [SK87, KS90j and later expanded by Turk
.. and Pentland [TP89, TP91]. This approach is based on a statistical technique called
Principal Coﬁlponent Anaiysis. in this chapter we first review the mathematical theory
behind PCA, then we discuss how the theory is implefnented to create eigenimages of a

data set, and finally we share the important aspects of our implementation of this technique.

31 Mathematical Foundations of PCA

PCA is probably one of the oldest and best known techniques of multivariate analysis. 1. T.

Jolliffe provides a clear and concise description of PCA in his text [Jol86, p.1]:

The central idea of principal component analysis (PCA) is to reduce

- the dimensionality of a data set which consists of a large number of
interrelated variables, while retaining as much as possible of the
~variation present in the data set. This is achieved by transforming
~ to a new set of variables, the principal components (PCs), which are
-uncorrelated, and which are ordered so that the first few retain most
of the wvariation present in all of the original variables.

25

Chapter 3. Principal Component Analysis ‘ © 26

The principal components of a data set are essentially a rotation of the original orthogonal
dimensions, plus a fanking of the dimensions by decreasing variance. This ranking typically

captures most of the variation in the data set in the first few dimensions. This means that

one can define the original set of data points using only the higher ranked principal -

components and still retain most of the information in the set. In addition, the Euclidean
distance between-.data points in the original feature space remains the same as in the

transformed feature space.

3.1.1 Definition of PCA

Let us first give a formal definition of principal compohents. Given that x is a vector
of p random variablés, the first PC is a linear function (xlTx of the elements of x which has a
maximum variance, where o] is a vector of p constants: |
Qs 012, 03, - Olpp -

So, the linear function becbomes:
p

alTx = 0L pX] + OlpoXp + OU3X3 + .o + 0L X, = szloclj X (3.1)
The secoﬂd PC is another linear function o,Tx, uncorrelated with aTx, which has
maximum variance. This holds for thé rest of the PCs so that the kth PC is a linear function
o, Tx which has maximum variance subject to being uncorrelated with a1 Tx, 0, Tx, ... , oty
{Tx. Up to p PCs can be found, but in general, most of the variation in x will be accounted
for by m PCs, where m << p [J0186,.p.2]. The following example provides a graphical
depiction‘ of the coﬁcept. ‘Figure 3.1 is a plot of 50 observations on two highly correlated

~ variables x| and x5 . Transforming these variables to the PCs z; and z, gives us the plot in

Figure 3.2. One can see that the axes went through a rotation such that there is now greatér

Chapter 3. Principal Component Analysis - ' 27 '

variation in the direction of Zy than in either of the original variables, but very little variation

1in the direction of z, .

. g,
t
! x
i
|
! x .
x
t b3
¢ x x)?(
x il
x
. x x .
x X
‘. XX Xp
b = X 1
log | % §
X§X x
X %
x
SRS N
! x X
; x
%
x
{ x
l: . s
Figure 3.1 Plot of 50 observations on two variables X, Xj.
T
!
! x
X x x
X
" . x X% qu &xx X V3 *x i
r XX X %X !
- Re 8 i
& " x X x):(« k¥ Xx x XxX 8 ;
x X
i
L))
|
|
i
; -

Figure 3.2 Plot of the 50 obser_vatiohs from Fig. 3.1 with respect to their PCs z1, z,.

Chapter 3. Principal Component Analysis ‘ ' 28

If the data set of n points are not initially centered around the origin of the axis, as is the
.case in Figure 3.3 below, then the coordinate frame of the data set is first translated to a

new origin; centered on the average point of the data set Xavg where
n

Xavg = g x;, (6D

and then it is rotated to fit the PCs. This is also demonstrated in Figure 3.3.

0 i i
i CENTERED .
; DATA POINT 32/’_- ‘
P=(x .,y) '
/ \
T T — — "~ —-— —-—
‘ y VAN

‘ ’ =7 1+ XX DATA CENTERED ON
i : ! /) t+ 7\ SAMPLE AVERAGES (X, 7)

Viyl . y . . \ |
. ' I ,

l

~I|

v .1 .
5 | ORIGINAL DATA POINT: (x'y')
< CENTERED DATA POINT: (x,y)
2 ROTATED DATA COORDS: (2,,2,)
o) (All representing same data point P)
g DATA ORIGIN l ,
%R0 | .
’ F f i AXIS OF x VALUES
x' x
L
I

=] i
X 1 '

Figure 3.3 Centering and rotating a data set to fit its principal components.

The coordinates of the data points can now be defined in terms of the PC axes by projecting
their centered values on to the principal components:

Original Data Point: x

V8

Centered Data Point: ¢ =x - x,

Chapter 3. Principal Component Analysis o ” 29

Rotated Data Coords: ® = A (¢) where AT=[o;T, oty T, ... ,ocpT]
(i.e., each term in ® is the projection of ¢ onto each
of the PCs)

So the original vector x can now be représented as a linear combination of the PCs:

X =010 + 005 + ... + 0,0, (3.3)
This representation shows that o, ..., o, form a basis of the transformed data space

[Pre88].
3.1.2 How to compute PCs

Now that PCs have been defined, let us look at how they are computed. Consider again the
vector of random variables x.. Calculating the covariance matrix of this vector gives us a
matrix ¥ whose (i,)-thelement is the covariance between the ith and jth elements of x for
l %], énd the v;ariance of the jth element of x for i = . It turns out that the kth PC, for k =
1,2, ..., p,is given by z; = o, Ix where oy, is an eigenvector of X corresponding to its kth
largest eigenvalue A;. The derivation of this is given in any textbook on multivariate
analysis [Jol86, Pre88, Flu88]. It is important'to note that var(z,) = A;; in other words, the
variance of the kth PC is equal to the kth large;t eigenvalue of £. Therefore, the sum of the

eigenvalues of the covariance matrix gives the total variance of the data set:
p

total variance =3 Ay ‘ , (3.4)
k=1 | : .
This detail plays an important role in reducing the number of dimensions of the data. A

common heuristic for dimension reduction is to select the eigenvectors that contain between

60 to 80 percent of the variance in the data.set [Dun89]. If the eigenvalues are sorted in

decreasing order (i.e., A; = A4,) then the first g of the p PCs can be chosen such that

q ,
0.60 < ¥ A / (total variance) <0.80 (3.5)
k=1 - : : _ .

.Chapter 3. Principal Component Analysis 30

3.2 Caléulating Eigenimages

The eigenfaces approach to image analysis and dimensi;)n redﬁcfion can ’bekbrieﬂy
described in the following steps: 1) take a sample M from a set of n images in a database®;
2) find the M principal components of the distribution of the sample images; 3) select the .
first M' («<M) principal components (eigenfaces) as features by which to describe the
total face population; 4) represent each face in the database as a linear combination of thgse
M' eigenfaces. This method haé siﬁﬂlmities to the technique that was used in QBIC for
reducing the dimensionality of the shape feature vectors. However, the fundamental
difference lies in that here the full imaée is used in the PCA calculations, whereas with
QBIC only-a specific feature vector that is initially extracted from each image is used}in the

PCA calculation.

Following are the details of the ei,;genfaces approach. Let the images in a database
of size n be-representéd as vector's.ofi intensity values, with dimension N2:
x; € RNX1 fori=1,.. . n (3.6
The vector x; is formed by raster-scan ordering the rows of the image into one long vector
(i.e., each pixél becomes an element or attribute of fhe image vector). A training set of M-
images is selected from this set, where M is less than n yet is represeﬁtative of the total set

of images. First, the average image of the training set is calculated:
M

ca=1/M32 X; 3.7
= »

Next, the covariance matrix of the set is computed:
' M
C=1UMX (x;-a) (x;- a)T : (3.8)
J=1 » .

where each .term of the sum signifies a dyadic product [SK87].

? Turk and Pentland use faces [TP91].

Chapter 3. Principal Component Analysis | 31

If we set ¢; = (X; - a) then we can write C as XXT where X is the N2xM matrix [0y
Oy ... Oy] Cis therefore an N2xN2 symmetric positive matfix. "By the laws of linear
algebra,- a real symmetric matrix can be factored into C=Q A QT with the orthonormal
eigenvectors of C in Q and the eigenvalues in the diégonal matrix A [Str88, p.296]. This
equation is equivalent to CQ = QA so we can rewrite it as: . | | '

- Cq;= XXqu= Ag; forj=1,..,M (3.9)

Therefore, each qj is an eigénvectorhof the covariance matrix C, having an associated
eigenvalue of kj . Since each row of C is a linear combination of ¢;, this means that C has
rank M-1, with only M-1 (réther than N2) non-zero eigenVectors [TP89]. This means that
we can save eompufation time by first solving for the eigenvectors u; of the following
- smaller dimension problem: .
XTXu=Au, forj=1,..,M ‘ (3.10)
- Having obtained u;, we can calculate thé eigenvectors for C by pre-multiplying X on both’

sides of the above equation to get:

r

XXT(Xu) = \(Xu)) . forj=1,..,M (3.11)

From ecjuations 3.9 and 3.11 we see that the eigenvectors of C are q; = Xu;. The
~ associated eigenyalues are used to order the eigenveétors, beginning with the eigenvector
with the largest eigenvalue. These eigenvectoré ‘give the coefficients of the PCs of the
| image space, and the ordering irhposed by th¢ eigenvalues maximizes tile variance of the
corresponding PC. So, the PCs are linear combinations of the M training imz;ges giving rise’
to the eigenimages. Figures 3.4 - 3.6 pro.vide pictorial examples of the process of
eigenimage calculation.. Figure 3.4 shows 20 sample images from our data set. Figure 3.5

shows the average of these 20 images, and Figure 3.6 shows the first 4 eigenimages

~ (eigenfaces) which carry 63.7% of the variance in the 20 images of Figure 34.

Figure 3.4 Twenty sample face images from our data set.

Figure 3.5 Average of the twenty face images in Figure 3.4.

Figure 3.6 The 4 eigenfaces of the images in Figure 3.4.

32

Chapter 3. Principal Component Analysis - ' . 33

Using the heuristic for dimension reductioﬁ given by equantion 3.5, M’ of the M PCs
are ‘chosen (where M' is much less than M). All the images in the database can now be
transformed into their eigenimage components by p.rojecting them into the new eigenspace.

This gives the following set of weights for each iinage : o “
o, =wT ¢, fork=1,. 6 M. (3.12)
Each image becomes a point in an M' dimensional space ® = (6)1 , Wy, ...,)y). Whena
query imége is provided, it is also projected into thils subspace. The appropriate similarity-
metric between the weight vector of the query image and the weight vector of a database

image is then calculated.

3.3 Implementation and Results

To implement the eigenfaces approach, we used the Vista software environment
[PKL94] and the MATLAB math package. Vista is designed to support "the modular
implementation aﬁd execution of computef vision algorithms" [PL94]. The image teétbed
consistéd of 400 gray-scale face images which were acquired from an ftp-site .of the Olivetti
Research Laboratory in the United Kingdorln. The face images consisted of 10 different
pictures taken from each of 40 distinct iﬁdividuals. For some of the subjects the lighting is
varied, the facial expressions are varied (i.e., open/closed eyes, smiling/not smiling, etc.),
and/or the fécial details are varied (i.e., with/without glasses). All images are taken against |
a dark homogeneous background with the subjects in anv upright froptal position. Each
image is 112 x 92 pixels, with 256 possible gray levels per pixel. Before performing PCA,
we converted the face images from PGM to the Vista format. The dimensions of the

original image vectors were set at 10,304 (112x92). We ran experiments on 2 different

sizes of training sets and collected the following data:

Chapter 3. Principal Component Analysis « 34

1. Using all 400 images as the training set (i.e., M = 400) we initially
-extract 399 (M - 1) PCs. For different percentages of variance, we get
the following reduced number of PCs;:

% Variance # of PCs
61.4% 11
70.0% . 20
75.3% 30
80.1% 44

Table 3.1 Reduced PCs for different % of Variance using M = 400.

>2. Using one-third of the 400 images as the training set (i.e., M = 134) we
initially extract 133 (M - 1) PCs.. For different percentages of variance,
we get the following reduced number of PCs:

% Variance # of PCs
60.4% 9
70.3% 16
75.4% 22
80.1% 30

Table 3.2 Reduced PCs for different % of Variance using M = 134.

| These results are consistent with the work of Turk and Pentland [TP91]:. for a test

case of M = 16 images they extract M' = 7 principal components (they do not indicate what
percent variance they use). Furthermore, our test resulté sde that this technique works
well for a much largér set of data. We also compare our resﬁlts to QBIC's irﬁplenientation
and find that in QBIC [F+94] PCA is applied to a specific set of 20 .shape measurements
 that are initially extracted from each image. Their results shoW that.75% of the variance in
their data set is captured in the first 2 PCs, thus reducing the dimensionality of the shape
feature space. Our experiments have demonstrated good results for spaces with much
higher dimensionality. This indicates that if specific image features are extracted with

dimensions much greater than 20, PCA can be very effective in reducing their

dimensionality without losing much of the information in the data.

Chapter 3. Principal Component Analysis : , ' 35

We acknowledge the fact that in our implementation we use a data set that is similar
to that of Turk and Pentland (both.data sets consist of gray;scale face images). Face images
are fairly uniform in their content with limited scene variation. Our intent was to further
test this approach on a set of images with greater variety in their content, (e.g., pictures of

animals or an art.gallery). However, due to time constraints we were unable to prepare and

test a second set of image data.

L

Chapter 4
EVALUATING MULTI-DIMENSIONAL INDEXING STRUCTURES

Once an image space is transformed and compressed using PCA, it should be organized SO
that similarity match queries can be efficiently performed. A multi-dimensional indexing
structu_re should be'wisely chosen so that it can take advantage of the main characteristics
of PCA-transformed data. .These characteristics are: i) the components are ranked by
decreasing variance, ii) the dynamic range of the dimensions of the space are known, and m)
the number of dimensions is still fairly high. In order to find an appropriate structure, we
conducted a compreheﬁsive evaluation of a wide range of existing multi-dimensional
indexing structures. In this chapter, we first review the structures we looked at in our
evaluation. Then we discuss the criteria by which our comparative analysis was conducted.

Finally, we present the structures we chose and the rationale behind our choices.

4.1 Review of Multi-dimensional Indexing Structures
There are numerous data structuring techniques in use for representing multi-dimensional

point data. They can be divided into two major categories: hierarchical and non-hierarchical

data structures. Within these categories, some data structures organize the data while

36

Chapter 4. Evaluating Multi-Dimensional Indexing Structures ’ | 37

6thers ‘organize the embedding space from which the data are drawn [Sam90]. Below, we

begin with a reyiew of the structures we feel are the most relevant to our needs.

4.1.1 Non-Hierarchical Data Structures

Non-hierarchical -multi—dimensional data structures decompose a data space in a flat manner, -
that is, the data points are typically stored either in a sorted list or in the form of a k-
'dimensi(;nal array. Non-hierarchical structures ofganize the embedding space of the data
into regions that contai‘nb records. Both non-hierarchical data structures we consider below

are bucket methods.

4.1.1.1 Gridfile

The gridfile [NHS84, Sam90] expands on the idea of the fixed grid (or cell) method.
- The ﬁxec_i grid method, which divides the record space into equal-sized celis, is essentially a
directory in the form of a k-dimensional array with one record pér cell [Sam90]. Unlike the
grid method, however, the cell block sizes in the gridfile adapt fo the distribution of the
records and the data holding capeicity of the cell blocks. The size of the cell blocks afe
therefore not uniform. The gridfile aims at providing symmetric access to every key ﬁeld,
and tries to rﬁeet the foliowing 2 principles: 1) ‘retrieve records with at most two disk
accesses, and 2) handle range queries efﬁciently; It does this using a grid directory that
consists of 2 parts. The first is a dynamic k—dimensional array that contains one entry for

each cell or grid block. The second part is a set of k 1-dimensional arrays called linear

scales. These scales define the partitioning of each dimension. Each combination of scale

Chapter 4. Evaluating Multi-Dimensional Indexing Structures 38

partitionings acts as an address to a céll or grid block in the k-dimensional array, and each
cell contains a pointer to a data bucket that holds the values of the records that fall in the
correspohding grid block. As fecords are added or removed, the following split and merge
policy is used: all records in a grid block must be stoted in the same d’éta bucket and,
several grid blocks can share a single data bucket as long as this union of grid blocks forms
a k-dimensional hyper-rectangle .in the record space [NHS84]. Therefore, either the data

buckets split and merge or the k-dimensional array of the grid directory splits and mergés’.

4.1.1.2 Multipaging

Multidimensional paging, better known as multipaging [Mer78, Mer84], is
somewhat similar to the gridfile except that in multipaging the data is known a priori and
no updates are made to the record space. As in the gridfile, multipaging uses linear scales,
called axial arrays, that define the partitioning of each dimension. These ax_ial arrays are
pé.rtitionec} based on the distribution of the data points along each axis and the application
of certain constraints. The constraints used are: page capacity, load factor (total number of
data points/total capacity of all pages), tuple probe factor (number of tuple overflows/total
number of data points), and page probe factor (number of page overflows/total number of
péges). The goal is to have pages which, dn the whole, have neither too many nor too few
data points. Instead of using a k-dimensional array of pointers to the grid blocks,
multipaging accesses a data page using an address that is computed directly from the linear
scales. This saves space over the gridfile.at the cost of requiring bucket overflow areas for

densely populated areas of the record space. Multipaging, therefore, cannot guarantee

record retrieval with only two disk accesses, as in gridfile. This version of multipaging is

Chapter 4. Evaluating Multi-Dimensional Indexing Structures , 39

known as static multipaging [Mer78]. A second version, called dynamic multipaging

[MO82], also exists which provides the ability to dynamically update the record space.

4.1.2 Hierarchical Data Structures

Hierarchical multi-dimensional data structures are ones which recursively partition a set of
k-dimensional data points using a tree-like structure. The root of the tree contains the
entire hyper-surface of the data space. As one traverses down the structure, each node of

the tree contains a successively smaller hyper-surface of the data space.

4.1.2.1 Point-Based Structures

The point quad-tree [FB74] is a generalization of the binar'y.search tree for data with. kv.
dimensions. It recursively divides the data space into 2k partitions (e.g. 4 for 2-D data, 8
for 3-D data, etc.) using a sihglc record as each partition point or node of the tree. This,
however, makes deletion a complicated process. The pseudo quad-tree [OVL82] was
developed to alleviate this problem. Insfead of data points it uses.arbitréry points, not in the
data set, as the nodes of the tree. These points are chosen such.'that the remaining set is
split in the most balanced maﬂner. This recursive partitioning continues until each partition

contains, at most, a single data point of the original set.

The point KD-tree is a k-dimensional binary search tree that is also designed as a
generalization of the standard one-dimensional binary search tree [Ben75b, Ben79, BF79].

At each node a single record is used as the partition point and the tree is divided into 2 sub-

Chapter 4. Evaluating Multi-Dimeﬁsiorial Indexing Structures S 40

trees. Only one of the k keys is used for making branching decisions; this key is called the
discriminator key. Each dimension is used as the discriminator key-in a cyclic manner as
one progresses down the tree. In two difnensions tﬁis means ‘using the x coordinate for
making branching decisions at the root and even levels of the tree and the y coordinate for |
making branching decisions at odd levels. The pseudo KD-tree, like the pseudo quad-tree,
uses arbitrary peints that are not in the data set to split the data space' [OVL82]. The data

points themselves appear at the leaf nodes.

The adaptive KD-tree [BF79] is a static data st;‘uctu're meaniﬁg thai all points must -
be known a priori to build the tsee. It is designed in the spirit of the pseudo KD-tree so
that the data points are stored only at the leaf nodes. However, each interior node holds the
median (along a discriminator key) of the set of points that fall under that node; the
discriminator is chosen to be the key for which the spread!® of values is at a maximum.
Therefore, the choice of diserirrlinétors is no longer cyclieal, as in the KD-tree, and the

discriminators are not necessarily the same across nodes on the same level.

A range tree [BM80] is a data structure specifically designed for fast range -
searching in k dimensions at the expense of high preprocessing and storage costs. It is
- asymptotically faster than the point quad-tree and KD-tree, but has significantly higher

storage requirements [Sam90].

10The spread can be measured using any statistical measurement, such as the variance or the distance from
the minimum to the maximum value. ‘

v

Chapter 4. Evaluating Mﬁlti—Dimensional Indexing Structures . o : 41

4.1.2.2 Region-Based Structures

These structures partition the émbedding space of the data. "The point-region (PR) quad- _‘
tree recursively partitions a k-dimensional data space into 2k equal-sized regions until ther¢
is no more than oné data point per sub-division. All data points are contained 1n the leaf
nodes of the tree [Sam90]. The PR KD-tree is similar to thé PR Aquad—tree except that it
recursively partitions the space into 2 equa-l-sizéd regions along a single dimension [Sam90].
As in PR quad-trees, a sub-division contains no more than one data point and all data points

are found in the leaf nodes.

4.1.2.3 Bucket Methods

Bucket methods are designed to ensuré efficient access to data stored on disk. They »collrect
data points into sets that correspond to storage ﬁnité (i.e., pages) of the"disk. The bucket
PR quad-tree is analogous to the PR quad-tree describe_d above excepf that leaf nodes are
not reétricted to holding one record. The bucket capacity can be set ahéad of time to ¢ (¢ >
1). Similarly, in a bucket PR KD-tree regions are split in half until no leaf node 'has more

than ¢ data points [Sam90].

The bucket adaptive KD-tree splits the data space along the dimen_sion with -the
greatest spread, just as does the adaptive KD-tree. However, the leaf nodes are now

buckets with capacity ¢ (¢ > 1) [Sam90, MHNg4].

R-trees [Gut84, Gre89] are designed as index strugtur_e;s for k-dimensional

-rectangles or objects. They are height—b_alanced multiway trees, like the B-tree, and store a

-
{

Chapter 4. Evaluating Multi-Dimensional Indexing Structures ' 42

set of rectangles in each no_de.. At the leaf nodes thesé rectangles are the actual objeéts in
the data set. - In the non-leaf nodes the rectangular regions stored are the bounding
rectangles that enclose all rectangles in descendant nodes. The bounding boxes of non-leaf -
nodes on a given level can overlap. This poses a problem for R-trees because during search
the more sibling nodes there are that overlap, the more paths must be followed for a given

spatial query. : {

R*-trees [SRF87, Gre89] avoid this problem by clipping réctangleé that intersect at
the same intermediary level. This creates a search space that is divided into disjoint sub-
regions and ensures that no sibling bounding boxes overlap. However, the leaves of an R*-
tree contain duplicate entries so more space is required and thére can be more levels in the

search pathl.

R*-trees [B+90], Which support both point and regioh data, were developed to try
- to overcome some of the problems associated with R-trees and R*-trees. - Whereas R-trees
-are bound by the order in which rectangles are inserted, R*-trees. can forcibly reinsert as
many entries as. needed té dynamically re-organize the structure during insertion. This re-
distribution is done with the aim of reducing the area, perimeter and overlap of rectangles in

internal nodes. Experiments have' shown that R*-trees perform better than R-trees in

accessing region data, and can even outperform the gridfile in accessing point data [B+90].

Chapter 4. Evaluating Multi-Dimensional Inde}cing Structures - 43

4.2 Comparative Analysis 2

The following sections explain the criteria we used to select the best three candidates from

the above cited multi-dimensional indexing structures.

4.2.1 Criteria of the Analysis

Our observations of the qualities of PCA-transformed data led us to conclude that there are
a number of characteristics a multi-dimensional indexing structure should have which would
make it suitable for organizing this type of data. These characteristics, and why we feel

they are important for our analysis, are enumerated below in a question-and-answer format:

1) How does the size of the structure scale up with the number of dimensions in an
image space?
As we saw in Chapter 3, the djmenéions of the image Vect.ors we initially use are
extremely high. Therefore, even aftér transforming the feature space and
reducing the dimensionality with PCA, the new feature space still has a large
number of dimensions. Therefore, we look for structures that can handle large
numbers of dimensions without exploding in size.

}

2) Are thé attribﬂtes or diménsion$ prioritized diiring construction of the index?
(i.e., is'the structure symmetric or non-symmetric?) |
For ‘PCA-transformed data the components of the veétors are ranked by.

decreasing order of variance. This means the components are, in a sense,

prioritized since each successive component adds less to the overall information

Chapter 4. Evalua-ting Multi-Dimensional Indexing Structures ' 44

3)

4)
5)

6)

being stored in the data. Therefore, we look for structures that can capture this

prioritization.

What are the different kinds of searches this structure can handle?

As was mentionéd in the introduction, we are concerned with performing fixed-
radius near neighbor search. Therefore, we look for structures that can support
either fixed-radius search or range search (with which to approximate fixed-

radius).

Does the structure adapt to the distribution of the data in the récord space?

In particﬁlar, how does the structure- p.erform with non-uniformly distributed
data?‘ | ;

PCA-transformed data is typically not uniformly distributed. Therefore we look

for structures ‘that do not become seriously unbalanced with non-uniformly

distributed data and whose performance does not severely degrade.

Is the structure suitable for a static or a dynamic set of data?
For this thesis, we focus on the ability of the structure to perform efficient
searches rather than on its ability to handle updates. Therefore, we choose to

use a static data set for our experiments and do not concern ourselves with the

“ease with which data points can be inserted or deleted from the indexing

structure.

Chapter 4. Evaluating Multi-Dimensional Indexing Structures 45

4.2.2 . Answers to the Criteria Questions-

We can immediately eliminate the point-based hierafchical structures (point;quad- and KD-
trees, psveudlo quad- and KD-trees, and adaptive KD-tree) from further a;nalysis as they
explode in size for large numbers of multi-dimensional data points. The main reason for this
is that each node in these structures stores a single data point. The non-bucket region-
based “hierarchical structures can also be eliminated right away because they divide the
embedding space of the data into fixed-size regions that hold no more than one data point.
This again leads to an explosion in index size for large data sets. Therefore, we focus our.
analysis on those hierarchical and non-hierarchical indeXing structures that utilize buckets.
-Of the R-tree variants; the one that has been shown to be most suitable for .t'he:access of
point data is thé R*-tree [B+90]. Hence, we pfoceed our analysis with the followingb
structures: |

. Bucket PR qﬁad-tree (B_PR_Q-Tree) |

. Bucket PR KD-tree (B_PR_KD-tree)

. - Bucket adaptive KD-tree (BA_KD-tree)

. Gridfile

. Multipaging

. R*-tree ' ‘ :
Following are the answers of each of these structures to the questions we asked in the

previous section:

Chapter 4. Evaluating Multi-Dimensional Indexing Structures 46

1) How does the size of the structure scale up wzth the number of dimensions in
an image space?

" B_PR_Q-Tree: Each internal node splits into 2% sons, therefore the tree
' : branches explode out very quickly.
B_PR _KD-tree: Each internal node splits into 2 sons. Since the number of
: levels of the tree increases linearly as a multiple of the number
of dimensions, the number of nodes increases exponentially.
BA_KD-tree: The number of levels of the tree increase as the dimensions
' ‘ increase but not linearly, as in B_.PR_KD-tree. This 'is
because nodes are not required to divide in a cyclic manner
along every dimension. This also means that the increase in
number of nodes is not as sharp.
Gridfile: The designers claim that it works for up to 10 dimensions.
The grid directory array becomes too large and unwieldy with
, increasing numbers of dimensions. :
Multipaging: Since there is no grid directory array the structure does not
explode in size with increasing numbers of dimensions. It will,
however, take increased computation time to find appropriate
" linear scale partitions.
R*-Tree: If fan-out of the nodes remains > 2, it ‘seems to be quite
robust for higher dimensions. Experiments show that it will
work well for approximately 20 dimensions [F+94, A+95].

The BA_KD-tree, Gridfile, Multipaging and R*-tree are better than the top two at
~handling a large number of dimensions. Gridfile, however seems to be the weakest
of the four.

2) Are the attributes or dimensions prioritized during construction of the index?

B_PR_Q-Tree: No. All dimensions are treated equally.

B_PR _KD-tree: Yes. The dimensions are accessed at each level in a cyclical

: . predetermined order (usually dimension O, 1, ..., k).

BA_KD-tree: Yes. The dimensions are accessed at each level based on
which dimension has the greatest spread for the subset of data
points being examined..

Gridfile: No. It is designed for symmetric access where every
dimension is treated as a primary key.
Multipaging: No. Also considered to have symmetric access. .

R*-Tree: No. All dimensions are treated equally.

Chapter 4. Evaluating Multi-Dimensional Indexing Structures : 47

The KD-trees are the only structures that have the ability to prioritize 'dimensions.
The BA_KD-tree is especially interesting because it prioritizes dimensions based on
the spread of data points along each dimension.

3) What are the different kinds of searches this structure can handle?

B_PR_Q-Tree:

B PR KD-tree:

BA_KD-tree:

Gridfile:
Multipaging:
"R*-Tree:

Point, range, and fixed-radius near neighbor search.

Point, range, fixed-radius near neighbor, and n-nearest
neighbor search. '

Point, range, fixed-radius near nelghbor and -n-nearest
neighbor search.

~ Point and range search. ‘ . /

Point and range search.
Point, range, and n-nearest neighbor search.

The top three structures can handle ﬁxed-radius near neighbor ‘search, while the
bottom three can only approximate it by supporting range search.

4) Does the structure adapt to the distribution of the data in the record space?

B_PR_Q-Tree:

B_PR _KD-tree:

" BA_KD-tree:
Gridfile:
-Multipaging:

R *;Tree:-

No. It performs a regular decomposition of the embedding
space splitting it up along predefined lines.
No. It .performs a regular decomposition of the embedding

~ space splitting it up along predefined lines.

Yes. The record space is split up based on the distribution of
the data and not along predefined lines. :

Yes. The record space is split up based on the distribution of
the data and not along predefined lines.

~Yes. The record space is split up based on the distribution of

the data, not along predefined lines.
Yes. The record space is split up based on the dlstrlbutxon of
the data, not along predefined lines.

The last four structures are sensitive to the distribution of the data points and are
“less likely to be unbalanced, i.e., they will have fewer overflowed or underused

buckets.

5) In particular, how does the structure perform with non-uniformly distributed |

data?

B;PR_Q-Tree:

Performs poorly with non-uniformly distributed data (i;e.,
data that has clusters). The tree will have many empty nodes

Chapter 4. Evaluating Multi-Dimensional Indexing Structures _ 48

B PR _KD-tree:

BA: KD-tree:
Gridfile:
Multipaging:

R*-Tree:

and will become unbalanced therefore decreasing the
efficiency of data retrieval.

Performs poorly with non-uniformly distributed data. Has the
same problems as B_PR_Q-Tree.

No significant effect on storage or retrieval efficiency with
non-uniformly distributed data since the structure is sensmve
to the distribution of the data.

No significant effect on storage or retrieval efﬁc1ency with
non-uniformly distributed data. Only exception is that it does
not perform particularly well on range queries.

- Performs poorly with non-uniformly distributed data. The

pages become unevenly occupied, 1.e., either overflowed or

empty pages.
Robust against non-uniformly distributed data.

Of the six structures, BA_KD-tree, Gridfile and R*-Tree deteriorate the least in
performance ‘with non-uniformly distributed data.

6. Is the structure suitable for a static or a dynamié set of data?

B_PR_Q-Tree:

B PR KD-tree:

BA_KD-tree: o
Gridfile:
Multipaging: .

R*-Tree:

Suitable for both, although updating data is somewhat
complex.

Suitable for both although updating data is somewhat
complex.

Suitable for static data only. ‘All data p01nts must be known a
priori.

Suitable for both, although it is typlcally used with dynamic
data.

There are 2 types of multipaging: one for static data and the
~ other for dynamic data. ‘

Suitable for both, although it is typlcally used w1th dynamic
data.

Any of the 6 structures can be used for organizing a static data set. BA_KD-tree,
however, is specifically designed for it.

Chapter 4. Evaluating Multi-Dimensional Indexing Structures - 49

4.2.3 Results of the Analysis

Out of the six structures examined above, the three multi-dimensional indexing structures

we chose for further experimental evaluation were:

. The Bucket Adaptive KD-tree
e The R*-Tree

e Multipaging

The reasohs for our choices are: 1) these structures do not seem to grow as fapidly as the
rest when the number of dimensions iricfeases; 2) all of these structures either approximate
fixed-radius near neighbor search using range search or they support thé operation itsc;,lf; 3)
all three structures are sensitive to the distribution of data and are not divided along'
predefmined lines; and 4) the performance of these structures doés not degenerate seriously
~with nqn—ﬁniformly distributed data. The added bonus that comes with the bucket adaptive
KD-tree is that it can prioritize access to dimensions according to the spread of data along
each dimension. Finally, we feel that it would be interesting t'o compare the performance of

3 structures that come from 3 different families of data structures.

Although we chose these structures for further experimental evaluation, due to time
constraints it became clear that we would only be able to implement the bucket adaptive
KD-tree ourselves. We .attempted to acquire the code for the two other étrﬁctures from
_elsewhere but were unable to. In their stead we made the following subsitutions: in.place
of the R*—tree'we used a deferred-split R-tree structure énd in place of rriultipaging we used
a ’gr'idﬁle structure. Both Were acquifed from the University of Maryland. We feel that the

deferred-split (D-S) R-tree is an acceptable substitution for the R*-tree because the D-S R-

i

Chapter 4. Evaluating Multi-Dimensional Indexing Structures : 50

tree has a similar data structure as the R*-tree and so has comparable storage requirements,
and the performance of the R*-tree deteriorates for large numbers of dimensions and data
set sizes [A+95] making it littlc better than the D-S R-tree. We feel that the gridfile is an
acceptable substitution fdr multipagiﬁg because both structures are non-hierarchical data
structures that provide symmetric, direct access to the records. At high dimensions and
large data set sizes multipaging may save space by not requiring a k-dimensional array, but
this is at the expense of requiring many overflow buckets [Sam90]. Thereforc; the search
performance of gridfile and multipaging should also be comparable. The irﬁplementation of

each structure and the results of the experimental evaluations we conducted are presented in

the next chapter.

Chapter 5
IMPLEMENTATION DETAILS & EXPERIMENTAL EVA}LUATI(_)N OF
THE KD-TREE, R-TREE & GRIDFILE

In this chapter we describe the implementation of the three multi-dimensional indexing
structures that were chosen as a result of the comparative analysis presented in Chapter 4.
We also present the results of the experimental evaluation of these structures and show why
the bucket adaptive KD-tree is the structure best suited for PCA-transformed data.

As was mentioned previously, the R-Tree vand gridfile structures were acquired, by
permission of Christos Faloutsos, from the Department of Computer Science at the
University of Marlyand, College Park. We implemented the bucket adaptive KD-treé
structure ourselves using Samet's description in The Design and Analysis of Spatial Data
Structures [Sam90]. The structures are all implemented in C source code and run on Sun

SPARC workstations. The opefating system is SunOS Release 4.1.3.

51

Chapter 5. Experimental Evaluation of KD-Tree, R-Tree & Gridfile 52

5.1 Indexing Structure Implementations
5.1.1 Bucket Adaptive KD-tree

5.1.1.1 Data Structures

* Our implementation of thé bucket adaptive KD-tree creates two files: a data file (.dat file)
that stores the data buckets or pages, and an index file (. dir file) that stores the internal
nodes of the tree. This irﬁplemeptation uses two page buffers: one is for writing and
reading data pages to and from the .dat file, and the other is for writi\ng and reading index
pages to and from the .dir file. The page size we use is 1024 bytes. This can be changed
to test the performance of the structure using larger (2048 or 4096 bytes) or smaller page
sizes (512 bytes). The number of dimensions of the data points can also be varied by

changing an option on the command line.

‘The data pdints are stored as ihtegers in data buckets that are referenced by the leaf
nodes of the tree. The data points can not be deleted since we treat the data set as a static
one. Each data bucket' is the size of a singlé page. A data bucket holds all k dimensions of
each of the data points in it along with a record identiﬁér or data ID, so the greater the

number of dimensions, the smaller is bucket capacity. In a bucket adaptive KD-tree the

data buckets will not all appéar on the same level.

Chapter 5. Experimental Evaluation of KD-Tree, R-Tree & Gridfile , 53

The layout on disk of a page from the data file for 2—dimensionai data points looks as

follows:

[<------ DATA_PT[0] ----- 3 |< -DATA_PT [buck_size- 1]-->|
rm==---o- TooTTToo Toommme Toommme o=\ e Tommomoos T Tommmmees 1
Ino_points|dim0_val|diml:_val|data_id|........ |d1m0 _val|diml_val|data_id|
[Lo Lo IR SR S S Lo o Lo Ao
| <-HEADER> |

[<=mmmmm- DATA_SIZE------- >|
|<--r-mm - PAGE_SIZE -—---------mmmmmmm e —m >

The total number of points stored ina data page or bucket is saved at the head of
the page. The maximum number of pomts that can be stored in a page is calculated as:

buck_size = (PAGE_SIZE - HEADER)/DATA_SIZE;

‘The internal nodes of the tree hold a discriminating coordinate and the median of
that coordinate, along with pointers to the left and right sons of the node. The data
structure that is used in the bucket adaptive KD-tree for both the internal and leaf nodes has

the following comp'onents:

typedef struct kd_intnode({
~int node_num;
int median;
int disc_coord;
int 1lt_buk_blkno;
int rt_buk_blkno;
struct kd_intnode *1t_son;
struct kd_intnode *rt_son;
} KD_INTNODE;

~ node_num: ~ is the number of the hode, which translates into the offset of the node
in the . dir file.

disc_coord: is the discriminating coordinate of the node.
median: is the median value of the diécriminating coordinate.
lt_son: is a pointer to the left son of the node; it is NIL if there is no left son or

if the left son is a data bucket.

Chapter 5. Experimental Evaluation of KD-Tree, R-Tree & Gridfile ' . 4

rt_son: is a pointer to the right son of the node; it is NIL if there is no right son
_ . ‘or if the right son is a data bucket. : ‘
lt'_buk_blkno': is the offset of the pagé in the .dat file that contains the data points
of the left data bucket. “ |
rt_buk_blkno: is the offset of the page in the .dat file that contains the data points
of the right data bucket. 4

‘The pages in the index (.dir) file contain information about the nodes in the tree;
" The information that is stored per node in the . dir file consists of the folloWing six i‘nteger.
vaiues:
1) the median vélue of the discriminating co_ordinate,
2) the discriminating coordinate,
3) a code that identifies the left son as either an intemal node or a leaf node,
4) the node number of the left son (if the left son is an internal node) or the page
offset into the . dat file (if the left son i a data bucket),
‘ S) acode that identifies the right son as either an internal node or a leaf node,
6) th¢_node number of the right son (if the right son is an internal node) or the page

offset into the . dat file (if the right son is a data bucket).

The layout on disk of a page from the index file looks as follows:

[<-===-mmmmmm - NODE (0] ------===mmmmmmmm o > | | <NODE [max-1]> |

. T-~"""- T-TTTTTTTo L I T\ e M\ ----- 71
-|no_nodes |median|disc_coord|1ft_code|lft_offset|rt_code|rt_offset]|....| .
S N IR N I —— S ISR SIS N [\\—-——-L-—d
| <HEADER> | .

<= NODE_SIZE --————-—--————————— > .
R et PAGE_SIZE ————= == oo oo >

The header of the first page of the index file holds the total number of pages in the file and

the number of nodes stored in the first page. The header of each remaining page only holds

Chapter 5. Experimental Evaluation of KD-Tree, R-Tree & Gridfile : 55

the number of nodes stored in that page. The maximum number of nodes that can be stored

" in an index page is calculate(i as: |
nodes_per_page = (PAGE_SIZE - HEADER) /NODE_SIZE;

Since data points are not stored at the nodes of the tree, the number of nodes that can fit

into a page of the index file does not change with an increase in the number of dimensions.

5.1.1.2 Insertion

To create the bucket adaptive KD-tree all the data points must be known a priori. This
means that instead of inserting the data points one-at-a-time into the tree structure, the
prbgfam is given a file with all of the k-dimensional data points. The following steps are

then taken recursively until all the data points in that file are placed into the KD-tree:

1. Calculate the variance along each dimension and find the dimension with the
greatest variance or. spread (we use the difference between the minimum and
maximum values of the points as the spread of each dimension). The dimension
with the greatest variance is called the discriminating coordinate. o

2. Find the median value of the discriminating coordinétc.

3. Allocate space for a new node. Store both the discrihlinating coordinate and its
median in the current node.

4; Compare the value of the discriminating coordinate for each data point to the

- median value. Place the data points with a value greater than or equal to the
median under the right son of the node and the data pomts with a value less than
the median under the left son of the node. :

5. If the number of data points under the left son is greater than the bucket capacity -
then repeat steps 1 - 5 for those data points. But, if the number of data points
under the left son is less than or equal to the bucket capacity then a data bucket
is created, the data points are stored in it, and it is inserted into the data file.

The same process is then applied to the data points under the right son.

Chapter 5. Experiméntal Evaluation of KD-Tree, R-Tree & Gridfile - 56

5.1.1.3 Search

There are two kinds of search operations available with the KD-tree structure: point search
and range search. We will concentrate on the range search implementation since point
search is not a concern of ours in this thesis. We perform range search at this stage of the
experimentation to approximate fixed-radius near neighbor search. Therefore, the queries
consist of a query point and a radius that define the hyper-éphere of the query. ’fhis hyper-
sphere is approximated by a hyper-rectangle which is generated by using the given radius to

calculate the range of the query along each dimension.

Rangé search is performed by descending down the tree stru&cture from its root,
comparing the query range to the median value of the discrinljﬁating coordinate of a node.
If the lower bound of the query range for the discriminating coordinate is greater than or
equal to the median, then the search continues down the right son. If the upper bound of
the query range for the discriminating coordinate is less than the median, then thé search
moves down the left son. If the query range fér the discriminating coordinate overlaps the
median, then the search continues down both the left and the right sons, starting with the_
left son. -When a data bucket is 'reached, a sequential search is performed on _all the data
points stored in the bucket checking all dimensions, to detcfmine which points fall within
_the query range. Those that fit within the bounds of the query range are returned as

answers to the query.

In our implementation, when performing a search operation, the complete tree
structure is placed into main memory. To get a proper count of the number of pages
: \

accessed during a search, and to correctly compute the search time, accessing an index page

is simulated. This means that every time a node is reached that resides on a page other than

the page that is currenfly in the index buffer, the new page is read from disk into the bu.ffer.

Chapter 5. Experimental Evaluation of KD-Tree, R-Tree & Gridfile ‘ 57

In this way a page access occurs even though the contents of that page are not actually used

‘in the course of the search.

5.1.2 Deferred-Split R-Tree

This implementation generates two files: the .rtree file that holds all the nodes of the
tree, and the . info file that keeps track of the space utilization of the tree for the purpose
of facilitating insertions and deletions. The data records are stored in the leaf nodes. Sihce
our records are points and not spat1a1 objects. we treat the pomts as "degenerated
rectangles” [B+90], that is, each point becomes a k-dimensional rectangle where, for
_ example in the 2-d case, the lower left corner and the upper right corner of the rectangle are '
both set to the x and y values of the ‘data point itself. Non-leaf nodes contain a k-
dimensional rectangle which is the minimum bounding rectangle (MBR) of all ;ectangles in

‘the lower node's entries.

Every pageinthe .rtree file is a node of the R-tree, whether internal or leaf node.
The page size is set at 1024 bytes, and the ﬁumber of in-memory page buffers is set at 50.
The swapping of index pages from memory to disk is based on a Least-Recently-Used 'page
scheme. To work with different dimensions lone must change the value of fhe dimension
constant in the header file and recombile the program. The branching factor (i.e., the
maximum number of entries per‘node) changes based on the page size and the number of

dimensions of the data points. The minimum requirement of entries per non-root node is set

at 50% of the bfanching factor. 1In the R-tree, all leaf nodes appear on the same level.

Chapter 5. Experimental Evaluation of KD-Tree, R-Tree & Gridfile 58

5.1.2.1 Insertion

The basic operations of the R-tree implementation which we are interested in are Insert and
Raﬁge Search. Data points are required to be inserted one-at-a-time as rectangles. In the
2-D case this means inputting the following values: low-x, low-y, high-x, high-y. A data ID ‘

~ is automatically generated for the inserted rectangle.

Insertion in an R-tree is similar to insertion in a B-tree. New index- rec_érdS are
added to the leaf nodes; nodes that overflow are split, and splits propagate up the tree. A
split works in the following manner: when a new entry needs to be added to a full node
containing M entties, it is-necessary. to divide the collection of M+1 entries between two
nodes. The division should be done in a way that makes it as unlikely as possible that both
new nocies will need to be examined on subseqtient searches. Since the decision to visit a
néde depends on whether its MBR overlaps the search area, the total area of the two
MBR's aftér a split should be minimized. This implementation provides several options for
techniques of deferred splitﬁng. However, since we use area enlargement, which is the
default splitting heuristic, we will not discuss the other options. This heuristic finds a
sibling node that has the minimum joint area with the overfull node. -This R-tree
implementation is functional only up to 11 dimensions, when using positive and negative

integers.

5.1.2.2 Search

To perform range search, this implementation requiresl the user to input a k-dimensional
search rectangle and the program returns all records that overlap with this rectangle.
Hdwever, since we want to approximate a fixed-radius near neighbor search we modified

the code so that we could input a query point and a radius and the program itself would

compute the appropriate search rectangle for the query. The search algorithm descends the

Chapter 5. Experimental Evaluation of KD-Tree, R-Tree & Gridfile A . 59

tree from the root in a manner similar to a B-tree, following the nodes whose MBR overlap
the search rectangle. More than one subtree under a node may need to be searched Our
modifications included adding code for countmg the number of pages accessed and

recording the time required to perform a search.

5.1:3 - Gridfile

In the gridfile the grid directory consists of 2 parts: i) a dynamic k-dimensional array that
contains one entry for each grid block (each entry is a pointer to the corresponding data
bucket), and ii) a set of k 1-dimensional arrays or scales that define the partitioning of each
dimension. There are 4 files that are generated by this program: the index (.dir) file that
stores the k-dimensional anay, the data (.dat) file that holds all the data buckets, ‘the

.sca ﬁle that stores the cutpoints of each linear scale, and the .info file that holds

general information about the gridfile structure. The page size is set at 1024 bytes and there |

are 2 page buffers that are utrhzed —- one for wr1t1ng to and readmg from the data file, and

the other for wrltlng to and readlng from the index file.

The product of the size of the k scales determines the size of the k-dimensional

array, and the positional value of the scale elements are the coordinates of the position (or

offset) of a grid block in the index file. The grid block (cell) stores an integer value that is

the page offset into the data file where the data bucket that holds the data points for that
grid block exists. (Each data bucket corresponds to a page in the data file.) There may be
several grid cells that point to the same page in the data file. Such a group of grid blocks is

termed a data block. The index file can hold a maximum of 512 data bucket references per

page.

Chapter 5. Experimental Evaluation of KD-Tree, R-Tree & Gridfile ‘ 60

5.1.3.1 Insertion

Again, we only look at the Insert and Range Search operations of the gridfile. When a new
gridﬁlé is created, the user is requested to first input the upper and lower bounds of each
dimenéion. Then, the data pointg must be inserted one-at—a—time; The progrém checks that .
the points do not fall outside éf the specified bounds. As the number of points increases
and a data block overflows the data block must be split. To perform a split, every
dimension is first tested té) see which allows a better distribution of the points in.that data
block. The dimension with the best distribution is chosen as the one along which the split is
to océur. The midpoint of that dimension for ‘that data block is then computed. The scale
of thét dimension is checked to see if the computed midpoint already exists as one of. the
_ cutpoints in the scale. If this is the case, the data poin‘ts are rejdistributed into 2 data
" buckets, and the index aﬁd data files are updated. If the midpoint is not a cutpoiﬁt of the
scale then a new cutpoint is added to the scale, the whole index file is restructured to
include the new resulting grid blocks, the data points are re-distributed into new data

buckets and the data file is updéted.

5.1.3.2 Search

| To perform a rahge search the user is required to input the upper and lower range for each
dimension of the search rectanglé. Since we approximate ﬁxed-fadius near neighbor search,
we modified this process so that we could input a query point and a radius. The search

rectangle is then automatically generated. The search aIgorithm looks for all data blocks

whose bounds overlap with the bounds of the searchvrectan'gle.

Chapter 5. Experirhental ‘Evaluation of KD-Tree, R-Tree & Gridfile 61

5.2 Data Testbed

The testbed of images we used for this thesis was explained in detail in Chapter 3.
We selected one-third fof the 400 images for the training set by choosing every third image.
After performiﬁg PCA on this training set we found that 70% of the variance of tﬁis éet was
captured in the ﬁrst 16 PCs. To get the weight vectors that would repr'esenti the whole
image set, we brojected each of the 400 images onto this set of 16 PCs. The resultiﬁg 16-
dimensional data points were converted into intégers and stored in a data file.

We used this initial set of .400 16—D.data points to generate iarger ;ets of data. This
was done by first extracting the dynamic range of ‘each dilhension, and then randomly
generating data points that were constrained by the bounds of the extracted dynamic ranges.
Each component of a data point was an integer value that was either positivc or negative.
Eight different data set sizes were geﬁerated in this way (400, 500, 1,000, 2,000, 4,000,
8,000, 16,000, and 50,000) for each of S different dimensions (2, 4, 6, 8 and 10.) The.
reason we only used up to 10 of the 16 dimensions is because, as we mentioned before, the
R-free implementation cou_ld'only manage up to 11 dimensions of positive and negative
integers before it crashed. We decided that rather than spend time trying to fix someone
else's code, we would limit our tests to a maximum of 10 dimensioﬁs and concentrate on

our research questions.

5.3 Results of Experimental Evaluation

These structures were compared both in terms of their space efficiency and their

performance at range search. Unfortunately, the gridfile implementation had several bugs

Chapter 5. Experimental Evaluation of KD-Tree, R-Tree & Gridfile 62

when it was first acquired. Even after necessary modifications were made; it would crash
when we tried to index more than 2;000 data points that had greater than 2 dimensions, and
when we tried indexing. more than 4,000 data points that had 2 dimensions. As the
dimensions and the data set size increased, the gridfile structure would take longer and
longer to insert data points, until it would eventually hang indefinitely. This was
undoubtedly because the k-dimensional array would become prohibitively large with high
dimensions and large déta set sizes. We ran some range searches on those gridfile indexes
we were able to build but found that their performance was woefully bad. For 2
dimensional data the gridfile accessed up to 5 times more pages than the R—tree‘ and up to 8
times more pages than the bucket adaptive KD-tree. As a result of these problems, we
decided to concentrate our experimental evaluation only' on the two tree structures. The

following sections present the results of tests run on the bucket adaptive KD-tree and the

| deferred-split R-tree.

- 5.3.1 Storage Cost

The storage cost of the KD-tree and the R-tree, in terms of total number of pages

required, is displayed in Figure 5.1 on the next page. The page size is set at 1024 bytés.

t Chapter 5. Experimental Evaluation of KD-Tree, R-Tree & Gridfile | 63

Comparison of Stdrage Requirements

6000 - —&—RTR-2D
—#—RTR-4D
—+—RTR-6D
—A—‘RTR.-SD
—@—RTR10D
- - © - -KDTR-2D"
- - & - -KDTR-4D
- - % - - KDTR-6D

- - & - -KDTR-8D
- - O - -KDTR-10D

Number of Pages

0 10000 20000 30000 40000 50000
Data Set Size

Figure 5.1 Comparison of page usage of R-tree and KD-tree structures over increasing
: data set sizes and increasing dimensions

For both structures, the storage requirements’rise linearly with an'increase in the
data set size, but our implementation of the KD-tree uses less space thé_ln- the R-tree. The.
KD-tree structure requires, on average, '1.57 timies less storage than the R-tree structure. In ‘
comparing the two implémentations we find that for the R-tree the greatest cost in storage

- comes from th¢ number of nodes in the tree, whereas for the KD-tree the greatest cost in
storage comes from the number of data buckets and not the internal nodes. As the number

| of dimensions incr'easc, the number of entries per node of the R-tree decreases thus
increasing the number of nodes in the tree and hence the total number of storage pages
required. In the KD-tree, however, an increase in the number of dimensions creates a

decrease in the capacity of the data buckets, thus increasing the number of data buckets

Chapter 5. Experimental Evaluation of KD-Tree, R-Tree & Gridfile . 64

(i.e., storage pagés) required. But, as we see in Figure 5.2 below, the capacity of the KD-
tree data buckets is always approximately twice that of the R-tree nodes. Therefore, as
dimensions increase, the increase in storage requirements for the KD-tree is not as great as
it is for the R-tree. The page capacities seen here are dependent on the particular

implementations we used and may compare differently if other implementations were used..

Effect of # of Dimensidns on Page Capacity

90 -

m (85) —A— RTREE
sod —&— KDTREE

70 4
60 A
50 A
w0l

30
g (23)

Nodes (Data Pbints) per Page

20 -

10 - 12

Number of Dimensions

Figure 5.2 Effect of increase in dimensions on capacity of R-tree nodes and KD-tree data '
buckets.

5.3.2 Search Performance

To test the range search performance of the KD-tree and R-tree, 10 queries were used. The
query points were generated the same way as were the data points for the testbed.

Numbers were generated for each dimension of the query such that they would fall within

Chapter 5. Experimental Evaluation of KD-Tree, R-Tree & Gridfile - 65

the dynamic ranges of the respective dimensions. We createdvthe query poihté in this way
to ensure thét they would not be far from the data space.‘ A radius was élso specified for
each data set. The radii were chosen vsuch thét for each data set sizes there would be
approximately 50 data boints that would actually fall within the hyﬁer-sphere of the query..
The average overall search time and the average number of pag‘e accesses required by eacéh

structure was recorded and compared.

The discriminating power '(i.e"., the ratio of the number of retrieved. data points to
the total number of points in the set) of both the strlictures turned out to be the same
because both strdctures compared the data points at the leaf nodes to the query rectangle,
and retrieved only those data points that fell within the query .range. The graph in Figure

5.3 shows the change in discriminating power as the number of dimensions increases.

Discriminating Power of Indexing Structures over various
data set sizes performing Range Search

60 -
<
© 4 50 ¢ L
S ‘ —e—400
g & 8 | —8—s500
5 407 —&— 1000
3=
5 . . | 2000
O 304 —¥— 4000
% : - | —e— 8000
§ » ., |——16000
§ 201 ~ | —8—50000
" . & . 4
[«
(o] .
£ 10 3 X
[a]
(] . r r :
0 2 4 6 8 10

Number of Dimensions

Figure 5.3 Discriminating Power of Indexing Stmctufes

Chapter 5. Experimental Evaluation of KD—Tfee, R-Tree & Gridfile 66
.)’

The interesting aspect of the graph in Figure 5.3 is that the ratio of points retrieved
in résponse to the query to the total number of points in the data set decreases steadily from
2 to 6 dimensions (i.e., the discriminating power improves). However, it remains the same
from 6 to 10 dimensions. This indicates that, when performing range searcﬁ; the addition of
dimensions does not improve the discriminating po§ver of the structures. We conjecture
that there are two factors for this phenomenon: 1) the data points are PCA-transformed so
the later dimensions have significantly smaller dynamic rahges than the first few dimensions
and E;dd leés information about the data points; 2) we are using range search therefore each
dimension is treated independently of the other. These two factors in combination mean
‘that: a) the ranges of the higher dimensions fall completely within the range of the query
rectangle so the higher dimension values will always satisfy the query, and b) since each
dimension is tested independently of the rest, only the first few dimensions that overlap the
query ranges actually provide discriminating power to the structure -- the later dimensions
are unable to further refine the discriminating power. We will come back to this point in the

next chapter when we look at the design of the optimized BA_KD-tree.

~ The more dramatic difference between the performance of the two structures lies in
‘a compariédn of the number of pages accessed and the overall search time during thé range
search. The number of pages accessed is a count of the total number of both index and data
pages that are entered during the search. It is not just a count of the number of disk reads.
In this way, the type of buffering scheme used by each structure does not affect the number
of pages accessed. We nee.ded to do this since the buffering scheme for the R-tree and the

KD-tree were different. Figures 5.4 and 5.5 on the next page graphically demonstrate the

average number of pagé accesses made by the KD-tree and the R-tree over the 10 qlieries.

Chapter 5. Experimental Evaluation of KD-Tree, R-Tree & Gridfile) 67

of Pages Accessed using Range Search on 400, 500,
1,000, and 2,000 Data Points

180 -
160 -
3140-
@ —&—RTR-400
81207 —&— RTR-500
< —&—RTR-1K
«n 100 1
g —e—RTR-2K
o 80 - - < - - KDTR-400)
s - - £} - -KDTR-500)
& 601 - - & - -KDTR-1K
k- - - O - -KDTR-2K
= 401 _
20 4
o L L] L] v 1
0 2 4 6 8 10

Number of Dimensions

Figure 5.4 Comparison of # of page accesses for 400, 500, 1K, and 2K data points.

of Pages Accessed using Range Search on 4000, 8,000,

16,000 & 50,000 Data Points
3500
3000 4
: ——RTR4K
§ 2500 - —&— RTR-8K
g_ —&— RTR-16K
S 2000 - —@— RTR-50K
§, - - ¢ - -KDTR-4K
[\ - - - =
£ 1500 1 ¥ - -KDTR8K |
5 - - #r - - KDTR-16K
o - - O - -KDTR-50K
2 1000
500 -
0
0

Number of Dimensions

Figure 5.5 Comparison of # of page accesses for 4K, 8K, 16K and 50K data points.

§

Chapter 5. Experimental Evaluation of KD-Tree, R-Tree & Gridfile 68

¢

The x-axis in these figures is the number of dimensions and the y-axis is the average number
of pages accessed. Each line in the graph represents a different data set size: from 400 to

12,000 data points in Figure 5.4, and from 4,000 to 50,000 data points in Figure 5.5.

" From these graphs we can see that the bucket adaptive KD-tree performs range
search with much fewef page accesses than does the R-tree structure. This distinction is
particularly noticeable as the size of the data set increases and the number of dimensions
increase. At the highest level, with 50,000 data points and 10 dimensions, the number of
page accesses made by the KD-tree is approximately 7.6 times less than thé_lt of the R-tree.
The average dverall search time for the IQ queries are shown in Figures 5.6 and 5.7 below.

Overall search time includes CPU time and /O time.

~ Overall Search Times using Range Search on 400, 500,
' ‘ 1,000 & 2,000 data points

200 -
180 -
% 160 ——RTR-400
E 140 4 —&— RTR-500
s —&—RTR-1K
E 120 —e—RTR2K
S 1004 - - < - -KDTR-400
g o - - & - -KDTR-500
= - - & - -KDTR-1K
§ 60 - - - O - -KDTR-2K
6
s) 40 -
20 4
0
0

Number of Dimensions

Figure 5.6 Comparison of overall search times for 400, 500, 1K and 2K data points.

Chapter 5. Experimental Evaluation of KD-Tree, R-Tree & Gridfile . » 69

Overall Search Times using Range Search on 4,000, 8,000,

16,000 & 50,000 Data Points
6000 - :
5000 -
/]
8 —<—RTR4K
E —&—RTR-8K
= 4000
o —#&—RTR-16K
& —@—RTR-50K
'E, 3000 == <« «KDTR-4K
g {} - -KDTR-8K
= : - - 4 - -KDTR-16K
g 2000 © - -KDTR-50K
)
o
2
1000 -
0+
0

Number of Dimensions

Figure 5.7 Comparison of overall search times for 4K, 8K, 16K and 50K data points.

The x-axis in Figures 5.6 and 5.7 is the number of dimensions and the y-axis is the average
overall search time in milliseconds. Each line in the graph represents a different data set
size: from 400 to 2,000 data points in Figure 5.6, and from 4,000 to 50,000 data poirits in

Figure 5.7.

In Figures 5.6 and.5.7, just as in the previous two figures, one can see that the
performance of the R-tree deteriorates more rapidly than that of the KD-tree as the d_ata
size and the dimensions increase. For 50,000 data points with 10 dimensions the KD-tree is |
7.4 times faster than the R-tree. How‘ever:, in Figure 5.6 we see that for 400 and 500 data

points, although the R-tree accesses more pages than the KD-tree, its overall search time is

less. This is due to the fact that the R—tree uses 50 page buffers, in comparison to the KD-

' Chapfer 5. Experimental Evaluation of KD-Tree, R-Tree & Gridfile ' 70

tree's 2 page buffers, resulting in much fewer page faults. It seems that the rate of increase
in the overall search time for both structures follows the rate of increase of the number of
page accesses. This indicates that, particularly for high dimensions and large data sets, the

search time is dominated by I/O time (i.e., page accesses).

5.4 Conclusion

.The results of the comparative analysis and the experimental evaluation indicate that the
bucket ‘adaptive KD-tree is the best choice of the three structures for handling large
numbers of multi-dimensional PCA-transformed data. From the expgrimental evaluation we
find that the BA_KDQtree clearly outperfornis the other structures in range search, in terms
of both number of pages acceséed and overall search time, and that the storage cost of our
implementation of the BA_KD—tree is much less. than.the gridfile and almost two-thirds that
of the R-tree. From the comparative analysis in Chapter 4 we find that the KD-tree édapts
to the distribution of points in the data space and is able.to handle non-uniformly distributed
data without becoming very unbalanced. More impoﬁantly, in the construction of the KD- -
tree the dimensions are pribritized based on the one with the greatest spread.. This means
that in the highest levels of the tree, the discriminating coordinates of the nodes aré the first
~ few PCs. This, in turn, indicates that in a search, the initial pruning decisions are based on
the dimensions which carry most of the information about the data set. This feature can be
used to help us optimize the tree and quickly reduce search space. Finally, the BA_KD-tree

is designed for use with a static data set which is what we need for the work of this thesis.

Chapter 6
IMPLEMEN TATION & EVALUATION OF OPTIMIZED BUCKET ADAPTIVE
KD-TREE

In this chapter we discuss'the implementation of thé optimized bﬁcket actaptive KD-tree
structure and we describe the fixed-radius near nelghbor search algorlthm Then we
compare the performance of the optlmlzed structure to its original version.

In Chaptér.S we observed that the discriminating power of the indexing structures
we e\./al.uated increased only over the first 6 di'rnensions- (see Figure 5.3). Adding mdre,
'dimensions to the data points did not improv¢ the discriminating power of these structures.
We probed further into this phenomenon and found that our, conjecture in Chapter 5 was

’ right. Dﬁe to the fact that the data points are PC_A—transformed, the dimensions with less
* variance have significantly smaller dynamit: rangés than those with greater Vartance. This
means that the ranges of the former dimensions are a subset of the corresponding.ranges of |
the query rectangle. Below is a sample of the dynamic ranges for the first 10 dimensions of

the data set with 8000 points: ' , . -

Chapter 6. | Implementatioﬁ & Evaluation of Optimized Bucket Adaptive KD-Tree T2

Dimension Upper Lower Spread
Number . Bound Bound ‘
1 709 -634 1343
2 620 -596 1216
3 292 - =275 567
4 291 -285 576
5 257" -300 557
6 228 -167 - 395
7 157 -126 283 -
8 114 -109 223
9 111 -88 199
10 85 - -115 200

Table 6.1 Dynamic Range and Spread of first 10 PCs for 8000 data points.
Since we use range search for the evaluation, we define it in the following manner:
A (dist(x,q)<r) - (6.1)

i=1 :
where x is a data point, q is the query point, k is the number of dimensions, r is the distance
from the query point, and dis’tib() is the difference bétWéen the i-th elements of x and q.
Each dimension is compared against the query ranges. indepe;ndent of the other dimensions.

Therefore, given our type of data, the values of the higher dimensions will always satisfy the

query constraints and hence will not contribute to further ﬁmning the search space.

Fixed-radius near neighbor search would be much more effective in pruning the
. space because the values of the dimensions are not treated independently but are used in a
summation. This means that each dimension adds to the total distance between a data point

and the query. As the number of dimensions increase, the resulting distance value is more

and more refined. This can be represented in the following equation:

k | |
Y (dist(x;, q)2<r2 62)

=1

Chaj)ter 6. Implementation & Evaluation of Optimized Bucket Adaptive KD-Tree = 73

where all variables are deﬂned. the same as for equation 6.1. We optimize the original
bucket adaptive KD-tree and implement ﬁxed—rédius- near neighbor search to see if we can
improve over the performance of thé original tree. Furthermore, we make the search more
efficient by incorporating a few of the ideas that were outlined by Bentley in 1975
" [Ben75a]. The two key techniques we implement are what we call the Early Fail Test and

the Early Success Test. These are explained in detail below.

6.1 The Early Fail Test

The Early Fail Test (EFT) checks to see if the minimum distance between a query point and
the hyper—reétangle of the range of a sub-tree is greater than a ﬁxéd threshold r2, where r is
the distance (or radius)\ from the quer}'/ point. If the minimum disiance exceeds r2 it
indicates that the entire sub-tree is outside of the hyper-sphere of the query and hence that -

sub-tree can be eliminated from the search space.

To calculéte the minimum distance bétween a query point and a hyper-rectangle, the
sum of the squares of thé minimﬁm differences between the elements of the query point and
the cbrresponding rangves of the hyper-rectangle is combuted. To find the minimum
difference between the i-th element of a query point and the i-th range of a hyper-rectangle,

there are 3 conditions that need to be checked:

a) if the i-th element of the query point is larger than the maximum value of the
i-th range of the hyper-rectangle,. as in the diagram,

<---range;~—->

T 1]
L] 1

MIN - MAX qQ

Chapter 6. Implementation & Evaluation of Optimized Bucket Adaptive KD-Tree 74

then the minimum difference is: q; — MAX(range;)

b) if the i-th element of the query point is smaller than the minimum value of
the i-th range of the hyper-rectangle, as in the diagram,

<---range;-—->
| I 1
| L 1
q; MIN MAX

then the minimum difference is: MIN(range;) - q;

<) if the i-th element of the query point intersects with the i-th range of the.
hyper-rectangle, as in the diagram,

<----range;——-->"

I] 1
L 1 1
MIN q; MAX

then the minimum difference is zero.

To reduce the number of calculations and speed up this test, we note that the we

only need to know if -

J |
Y (dist(x;, q;))2>r2 wherej<k. (6.3)
i=1 » _ |

As we sum the squares of the minimum differences of the elements, the summation may
exceed the threshold before every element is examined. Therefore, we can save some
computation time by summing the squares of the minimum differences only until they

exceed r2. This works particularly well with PCA-transformed data since most of the

information of the data is stored in the first few dimensions.

Chapter 6. Implementat?'on & Evaluation of Optimized Bucket Adaptive KD-Tree 75

6.2 The Early Success Test

The Early Success Test (EST) is used to determine whether or not the hyper-rectangle‘of
the range of a sub-tree falls entirely within a fixed radius from the query point. If this is
true, then it indicates that all of the data points in the leaf nodes under that sub-tree satisfy
the query, hence further testing down that sub-tree is not needed. To find oﬁt whether the
hyper-rectangle is within a fixed radius from the quéry point one must compute the
maximum distance between the elements of the query point and the corresponding ranges of
the hyper-rectangle. If this distance is less than or equal to r2 (as defined previously), it

indicates- that the hyper-rectangle is indeed within the hyper-sphere of the qucry.

The maximum distance is computed by summing the squares of the maximum
differences between the elemenis of the quéry point and the corresponding ranges of the
hyper-rectangle. To find the maximum difference between the i-th element of a query point
and the i-th range of a hyper-rectangle, there are again 3 conditions that need to be
checked:

a) if the i-th element of the query is larger than the maximum value of the i-th
range of the hyper-rectangle, as'in the diagram,
<———rangéi———>

I] :]
L . I
MIN MAX q;

then the maximum difference is: q; — MIN(range;).

b) if the i-th element of the query is smaller than the minimum value of the i-th
range of the hyper-rectangle, as in the diagram,

<---range;,——-->
I 1

I L]

q; MIN MAX

Chapter 6. Implementation & Evaluation of Optimized Bucket Adaptive KD-Tree 76

then the maximum difference is: MAX(range;) — q;.

c) if the i-th element of the query intersects with the i-th range of the hyper-

rectangle, as in the diagram,

| P] 1
L 1 i

MIN q; MAX

then the maximum difference is: MAX[MAX(range;) — q; , q; — MIN(range;)].

In the EST, to save computation time, we also sum the squares of the maximum differences

only until they exceed r2.

6.3 Changes to Tree Structure

The EFT and EST can only work if certain modifications are made to the tree structure.
Added information must be stored in the internal and leaf nodes. We_ describe the features
of the new structure below. The page size is set to 1024 bytes and we use two page

buffers, just as in the original BA_KD-tree structure.

The primary change in the node structure is that the minimum and maximum values
of the rahge of the hyper-rectangle of a sub-tree are stored at each node along with the page

- offset values of the data buckets that can be found under that sub-tree. There are two data -

structures that are used to define the internal and leaf nodes:

. () ' .
Chapter 6. Implementation & Evaluation of Optimized Bucket Adaptive KD-Tree 77

1) NXT_INFO structure:

typedef struct nxt_info

{
int **bkt_rng;
char *bkt_nums;
} NXT_INFO;

bkt_rng: is a pointer to a two-dimensional array that holds the minimum and
maximum values of the range of a hyper-rectangle. bkt_rng [0] holds
the &k minimum values and bkt_rng[1] holds the k¥ maximum values.
bkt_nums: is a pointer to a string that holds the page offsets of all the data buckets
' , that fall under a sub-tree. '

2) KD_INTNODE structure:

typedef struct kd_intnode
A ‘
int node_num;
int median;
int disc_coord;
int 1t_buk_blkno;
int rt_buk_blkno;
struct kd _intnode *1lt_son;
struct kd_intnode *rt_son;
NXT_ INFO *1lt_nxt_info;
NXT_INFO *rt_nxt_info;
struct kd_intnode *parent;
-} KD_INTNODE;

node_num, median, disc_coord, 1lt_buk blkno, rt_buk_blkno,
lt_son, rt_son: .
' These elements of the structure are identical to those in the original
bucket adaptive KD-tree and so will not be re-defined here.
1t_nxt_info: isa pointer to a NXT_ INFO structure that holds pertinent information on
' the left son. -
rt_nxt_info: is a pointer to a NXT_INFO structure that holds pertinent information on
the right son. ' ‘
parent: pointer to the parent of the node.

A leaf node is distinguished from an internal node because a leaf node will have the
lt_buk_blk_no and rt_buk_blkno filled with a data bucket page offset Qalue and

. the 1t_son, rt__sdn, lt_nxt_infoand rt_nxt_info all setto NIL.

Chapter 6. Implementation & Evaluation of Optimized Bucket Adaptive KD-Tree 78

With this scheme, the header of a data bucket page in the .dat file is changed to
include tﬁe upper and lower ranges 6f the data points in that page. As we build the tree,
when a data bucket is feached, the upper and lower ranges of the data points are extfactcd
from the header of the bucket and passed up to its parent leaf node. These ranges are
m@rgéd and recursively passed hp to the .parent nodes all the way to the root. Siﬁﬁlarly, the
data bucket pége offsets (i.e., the page numbers of the data buckets in the .dat file) are

passed up and stored at each node.

During execution of a search we store the entire tree in main memory. Therefore,
the coﬁténts of the nodes sfored in the index (.dir) file remain the same as they were for
the original KD-tree: discriminating coordinate- of node, median value of discriminating
coordinate, left son code identifier, left son offset value, right son code identifier, and right
son offset value. Howe\}er, it would be more natural to keep the index on disk and shﬁply
bring into memory those index pages that are required. If this is done, it means that what is
stored on disk for each node would have to include.the following additional data: 1) the
upper and lower ranges of the sub-trees of the left and right sons, and ii) the first and the
last data bucket identifiers (i.e., page offsets) from the list of data buckefs that fall under the

sub-tree rooted at that node.

- 6.4 Search Algorithm

The hew fixed-radius near neighbor search is performed in the following manner:

Step 1: Starting at the root of the tree, the left son undergoes the EFT. To do this
we use the information that is stored at the root about the son. If the left son does not -
- fail, i.e., X dist;2 < r2, then, ' : ‘

Chapter 6. Implementation & Evaluation of Optimized Bucket Adaptive KD-Tree - 79

Step 1.1: ~ the left son undergoes the EST. To do this, once again we use the
information that is stored at the root about the son. If the left son passes this test,
i.e., the whole sub-tree rooted at the son satisfies the query, then

Step 1.1.1: the search down that -path ends and the data bucket page
offsets that are also stored at the root are used to sequentially read the data
buckets into memory and retrieve the data points in them as answers to the

query.

Step 1.2: If the left son does not-pass the EST then the search continues down
the left son repeating Steps 1 - 1.2. If the left son is a data bucket and not an internal
node then that data bucket is read into memory and its contents are checked for
matching data points. ' :

Step 2: If the left son does fail in the EFT, i.e. T dist;2 > r2, then the search down
that path ends and we begin testing the right son, starting with Step 1.

6.5 Results of Experimental Evaluation

To test the performance of the optimized bucket-adaptive KD-tree we rén the same 10 ,
queries that were used in the previous experimental evaluation. We compared the results of
these runs to those of the original bucket adaptive KD-tree. In the best case, when the
entire tree is stored in main-memory and the number of nodes per page of the index file is
the same as that of the origiﬁal BA_KD-tree, wé find that the optimized BA_KDjtfee leads
toa significant reduction iﬁ the number of page accesses and overall search time. For
50,000 data points and 10 dimensions we observe a reduction of 70% for both the number
of page accesses and the overall search time. The overall search time for the b_ptimized

BA_KD-tree includes the extra computations necessary for performing the EFT and EST.

The graphs in Figures 6.1 and 6.2 illustrate these savings.

Chaptef 6. Implementation & Evaluation of Optimized Bucket Adaptive KD-Tree 80

Number of Pages Saved with Optimized KD-Tree

350 W

—6—400

300 -

250 -

200

150

of Pages Saved

100

50 1

Number of Dimensions

Figure 6.1 Number of Page Accesses Saved using the Optimized BA_KD-tree and fixed-
radius search, for 8 different data set sizes and 5 different dimensions

In Figure 6.1 the x-axis is the number of dimensions of the data points and the y-axis is the
- average number of page accesses sav_ed by the optimized. bucket adaptive KD-tree over the
10 queries. Each line in the graph represents the savings for a particular data set size, from
400 data points_ at the bottom, to 50,000 data points at the top. One can see thét at low
dimensions and small data set sizes, the savings in number of pages accessed is fairly small.
But, as the dimensions increase and the data set sizes get large the optimized BA_KD-tree
saves an increasing number of pvage' accesses. At 10 dimensioné, for the lafgest data set
(50,000), the optimized tree saves over 300 page accesses. Figure 6.2 below shows the

ratio of the number of pages accessed by the original BA_KD-tree over the number of

pages accessed by the optimized B/A_KD-tree for all data set sizes and all dimensions. We

Chapter 6. Implementation & Evaluation of Optimized Bucket Adaptive KD-Tree 81

find that there is an asymptotic increase in the inagnitude of this ratio as the data set sizes

increase, and that this magnitude is larger for greater numbers of dimensions.

Ratio of No. of Pages acéessed by Orig. tree over No. of Pages
accessed by Opt. tree for 5 dimensions

3.5 1

——10D
—&—8D
—4—6-D
—e—4-D
—%—2-D

Ratio of # of Pages Accessed: Orig/Optim

0.5 -

0 L) - T L] T L]
0 10000 20000 30000 40000 50000

Data Set Sizes

Figure 6.2 Ratio of no. of pages accessed by Original BA_KD-tree over no. of pages '
accessed by Optimized BA_KD-tree for all dimensions.

At the high end of the savings, we find that for a data set of 400 10-dimensional data points
the optimized BA_KD-tree accesses 1.19 times fewer pages than the original BA_KD-tree,
while for a data set of 50,000 10-dimensional data points the optimized BA_KD-tree

accesses 3.28 times fewer pages.

The percentage of savings in pages accessed over the original BA_KD-tree are

shown in Figure 6.3 for the larger data set sizes.

Chapter 6. Implementation & Evaluation of Optimized Bucket Adaptive KD-Tree 82

% Savings in # of Pages Accessed using Optimized
Bucket Adaptive KD-Tree

'470-

% Savings in # of Accessed Pages

10 -

0 .2 4 6 8 10

~ Number of Dimensions

. Figure 6.3 Percentage of Savihgs in # of Pages Accessed by Optimized BA_KD-treé for
large data sets.

The x-axis represents the number of dimensions of the data points and the y-axis shows the
percentage of savings in the number of pages accessed by the optimized KD-tree. Each line
in the graph represents the savings for a particular data set size, from 4,000 data points at

the bottom, to 50,000 data points at the top.

The savings vary from 12.5% on the low end (i.e., for 4,000 data points and 2
dimensions) to 69.5% on the high end (i.e., for 50,000 data points and 10 dimensions).‘ For
all of these data set sizes, the savings rise dramatically from 2 to 6 dimensions then begin to

level off at higher dimensions. Nevertheless, this leveling happens at over 40% in savings.

The large peréeﬁtage of savings at the high end of the spectrum is very encouraging as this

Chapter 6. Implementation & Evaluation of Optimized Bucket Adaptive KD-Tree 83

is where the performance of all existing multi-dimensional indexing structures typically

begins to rapidly deteriorate.

The overall search time saved by using the optimized KD-tree is shown in Figure
6.4.

Overall Search Time Saved using Optimized KD-Tree -

500 -
—6— 400
aso{ [~H—S00
—A—1000
" 400 - —i— 2000
’ —e— 4000
3504 |—e—s000
-*| —a— 16000
3001 [—e—s50000

250 -
200 1

150

Search Time Saved (in msecs)

100 -

50 4

Number of Dimensions

Figure 6.4 Overall Search Time Saved using the Optimized BA_ KD-tree and fixed-radius ’
search, for 8 different data set sizes and 5 different dimensions.

The x-axis repreéents the ’number of dimensions of the data points and the y-axis shows the
average overall search time, in milliseconds, saved by the: optimized bucket adaptive KD-
tree over the 10 queries. Each line in the graph represénts the savings.for a particular data
set size, from 400 data points at the bottom,.to‘ 50,000 data points at the top. As we saw in
Chapter 5, the major cost to the bv¢rall search time comes from page accesses. Therefore,

it comes as no surprise that the savings in overall search time, as dimensions and data set

Chapter 6. Implementation & Evaluation of Optimized Bucket Adaptive KD-Tree - 84

sizes increase, follows the same trend as the savings in nﬁmbér of page accesses.” At low
dimensions and small data set sizes, the savings in overall sea}rch time ié small. But, as the
dimensions and the data set sizes increase, the savjngs in search time increases. At 10
dimen‘sions, for the largest data set (50,000), vthe “optimized BA_KD-tree saves
approximately 0.5 seconds over the original BA_KD-tree. Figure 6.5 below shows the ratio
of the overall search time of the origfnal BA_KD-tree over the overall search time of the
-optimized BA_KD-tree for all data set sizes and all dimensions. We find that there is again
an asymptotic increase in the magnitude of this ratio as the data set sizes increase, and that

this magnitude gets larger for greater numbers of dimensions.

Overall search time of Orig. tree over overall search time of Opt. tree for
all dimensions

3.5 1

2.5 4

15

——10-D

Ratio of overall search time: Orig/Optim

1 ——8D-
—&—6D
, , ‘ ‘ —o—4D
0.5 —%—2D
1] T Y T Y T Y T T T v -
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Data Set Size

Figure 6.5 Ratio of overall search time of Original BA_KD-tree over overall search time of
‘ Optimized BA_KD-tree for 10-D data.

Chapter 6. Implementation & Evaluation of Optimized Bucket Adaptive KD-Tree 85 .

At the high end of the savings, we find that for a data set of 400 10-dimensional data points
the optimized BA_KD—treé is 1.74 times faster than the original BA_KD-tree in performing
a search, and for a data set of 50,000 10-dimensional data points it is 3.10 times faster than

the original BA_KD-tree.

The percentage of savings in overall search time over the original BA_KD-tree are

shown in Figure 6.6 for the larger data set sizes.

% Savings in Average Overall Search Time for Optimized
Bucket Adaptive KD-Tree

70 -

% Savings in Overall Search Time

10 -

0 L] Ll L] T L]
0 2 4 6 8 10

Number of Dimensions

Figure 6.6 Percentage of savings in overall search time using Optimized BA__KD-tree, for
o large data sets.

Chapter 6. Implementation & Evaluation of Optimized Bucket Adaptive KD-Tree 86

The x-axis represents the number of dimensions of the data points and the y-axis shows the
percentage of savings in the overall search time, in milliseconds, of the optimized BA_KD-
tree over the original BA_KD-tree. Each line in the graph renresents the Sai'ings for a
particular data set size, from 4,QOO data points at the bottom, to 50,000 data points at the

top.

The savings in overall search time vary from 24.5% on the low end (i.e., for 4,000
data points and 2 dimensions) to 67.8% on the high end (i.e., for 50,000 data points and 10
' dimensions). For all of fhese data set sizes, the savings rise dramatically from 2 to 6
dimensions then begin to level off at higher dimensions. Nevertheless, this leveling happens
at O\ier 50% in savings. Again, this large percentage of savings at the high end of the

spectrum is very encouraging.

Our investigations into where most of the savings in nage accesses occur, led us to V
discover that many of the data buckets that are accessed during the range search performed
“on the original BA_KD-tree are never retrieved during the fixed-radius séarch performed on
the optimized BA_KD-tree. Moreover, the majority ‘of these data buckets have zero or
vei’y few data points in them that even satisfy the range query, and all nf these data points .
are, in fact, false hits. This means that a lot of /O and CPU time is wasted by the range
search as it accesses andvexarnines data pages that only hold false hits. The fixed-radius
near neighbor search on the optimized BA_KD—trée saves this time by eliminating the need

to even access these pages.

Table 6.2 on the next page shows us the percentage 6f the data buckets retrieved by

range search that are no longer retrieved by fixed-radius search. These are average values

over the 10 queries.

Chapter 6. Implementation & Evaluation of Optimized Bucket Adaptive KD-Tree 87
Data Set # of False :
Size hits found 2-D 4-D - 6-D 8-D 10-D
in Bucket (%Bkts) (%Bkts) (%Bkts) (%Bkts) (%Bkts)
0 0.0 0.0 2.17 4.87 - 6.72
. 1 0.0 3.61 4.22 3.83 3.67 -
400 2 1.25 0.0 63 1.01 1.38
3 1.67 1.25 1.00 1.67 0.56
4-8 0.0 0.0 2.25 2.71 2.48
0 2.5 143 1.11 2.29 ©1.98
1 0.0 0.0 0.0 2.54 2.28
500 2 1.67 1.11 1.58 2.40 2.56
3 1.25 83 0.67 1.74 2.00
4-9 0.0 1.67 3.43 2.90 438
0 1.11 1.53 1.98 4.06 3.91
1 - 0.83 208 2.15 4.51 441
1000 2 0.0 "1.39 1.62 2.21 2.12
3 0.0 1.39 3.00 3.28 3.56
4-13 3.34 3.34 2.79 2.44 2.39
0 0.0 5.00 5.86 8.00 8.51
1 1.22 2.08 2.28 3.85 4.06
2000 2 1.11 1.18 2.19 3.18 3.16
3 0.0 2.29 1.45 2.71 2.60
4-14 6.28 4.81 4.48 2.83 '2.86
0 1.42 497 15.5 20.39 21.13
1 0.78 442 9.58 11.16 11.46
4000 2 0.32 - 4.36 4.81 5.52 575
3 0.0 2.00 5.55 3.69 3.76
4-30 7.71 10.31- 4.02 2.87 3.03
0 0.37 2.14 6.86 10.35. 10.96
1 0.19 2.71 7.91 10.92 11.24
8000 2 10.19 2.64 8.02 8.44 7.89
3 0.47 3.00 6.31 6.34 6.41
4 0.29 2.68 3.75 3.62 3.67
5-53 9.52 14.36 7.74 5.39 4.90
0 0.14 10.56 19.89 25.59 26.75
1 0.68 6.08 11.27 10.16 13.23
16000 2 0.41 428 6.17 6.65 7.76
3 0.42 4.01 3.61 4.63 4.48
4 0.14 2.57 2.69 2.67 2.76
5-66 10.13 10.24 4.83 2.85 . 343

Table 6.2 Percent of Buckets saved from being accessed in the Optifrljzed BA_KD-tree.

‘The table shows the distribution of the percentage of these buckets acdording to the number

of data points (starting from 0) found in them th.at satisfy the range query. As the number

of dimensions and data set sizes increase, the percentage of these "dud" data buckets

Chapter 6. Implementation & Evaluation of Optimized Bucket Adaptive KD-Tree = 88

increases. For example, for the set of 400 10-D data points, approximately 7% of these
data buckets are ones in which 0 data poinfs satisfy thé range query, anvd for the set vo_f
16,000 10-D data points 27% of these data buckets are ones in which O data points satisfy
the range query. Within a data set, the percent of "dud" data buckets decreases with an
increase in the number of false hits returned, with this trend becoming clearer for larger
numbers of dimensions. For example, for 4,000 8 dimensional data points, over 20% of the
"dud" data buckets have O false hits and only about 3% have 4 or more false hits. So, a
greater percentage of these "dﬁd" data buckets are ones from which very few false hits are .
~returned. On the whole, the table shows that from 3% to 60% of the data buckets retrieved

in range search return only false hits.

Table 6.3 presents highlights of the data in Table 6.2. It focuses on the percent of
"dud" data buckets accessed using range search on the original BA_KD-tree from which
only 0 to 3 false hits are retrieved. The table shows the variation in these percentdges as the

data set sizes increase (down the rows), and the number of dimensions increase (across the

columns).
Data Set 2-D 4-D 6-D 8-D 10-D
~ Size (% Bkts) (% Bkts) (%Bkts) (%Bkts) (% Bkts)
400 2.92 4.86 8.02 11.38 12.33
500 .542 3.37 3.36 8.97 8.82
1000 1.94 6.39 8.75 14.06 14.00
2000 233 10.55 11.78 17.74 18.33 .
4000 2.52 15.75 - 35.44 40.76 42.10
8000 1.22 10.49 29.10 36.05 36.50
16000 1.65 24.93 40.94 47.03 52.22
Table 6.3 Percentage of Buckets saved that contain only O to 3 points that satisfy the

Range Search.

-«

Chapter 6. Imple}nentation & Evaluation of Optimized Bucket Adaptive KD-Tree 89

As the dimensions increase over a single data set size, we see that the percentage of "dud”
data buckets with only 0 to 3 false hits increases -- particularly in the larger data sets.. For
example, for 16,000 data points, the "dud" data buckets retrieved by range search increase
from less than 2% ét 2-D to over 52% at 10-D. As the data set sizes increase over a single
dimension we also see that the percentage of "dud" data buckets increases. Again, this is

clearer for larger dimensions.

The data presented in Tables 6.2 and 6.3 highlights the fact that the optimized

BA_KD-tree with fixed-radius near neighbor search eliminates the need to access many

unnecessary pages and hence precipitates a marked increase in overall savings.

Chapter 7
CONCLUSIONS

7.1 - .Summéry

There are fnany‘research problems that need to be addressed in the design of useful and
usable visual information management systems. In this thesis we examine three issues
which we feel are esséﬁtial: 1) the reduction of image vector dimensionality§ 2) the choice
of a multi-dimensional indexing structure that is suitable for organizing the reduced image
space; and 3) the choice of a search algorithm that is effective and efﬁcient in finding images

<.

that are within a fixed distance from a query.

We demonstrate that the eigenfaces approac'h to image analysis is a useful téchni.que
fdr reducing Very—high-dimensioned- image vectors while retaining most of the information
in the image data set. In our irhblementation of this technique, the process of extracting
ﬁrincipai components and projecting the image data points onto this new set of axes takes ,
approximately one—_'émd—.a-half hours;for 400 images. We are able to reduce image vectors
Wiﬂ"l. over 10,000 dimensions to vectors with around 20 dimensions, while retaining 70% of
the variance of the images. We feel this indicates that high-dimensionéd vectors of specific

~image features can also be effectively reduced using principal éomponent analysis.

90

Chapter 7. Conclusions : : 91 -

A thorough comparativé analysis of many existing multi-dimensional indexing
structures, pius a subsequent experimental evaluation of three of these structures, '
demonstrate that the bucket adaptive KD-tree is quite suitable for indexing PCA-
transformf;d data points. This structure is particularly suited for PCA-transformed data
because it partitions the data space based on the dimensions with the greatest spread. Since
the first few PCs have the greatest variance they also typically have the greatest spread.
This means that the structure partitions the data space and performs searches primarily
using the first few dimensions. The internal nodes of the tree structure hold a small amount
of information which does not grow with an increase in the number of dimensions. This and
the previous factor provide for a fairly well-balaﬂcéd tree that is not prohibitive in size. Our
implementation of the bucket adaptive KD-tree requires on average 1.57 times less storage
space than the R-tree structure. More significantly, it can perform range search up to 7.4

times faster than the R-tree.

Finally, we show that range search is a poor substitute for fixed-radius near neighbor
search if one wants to find all images that are Within a fixed distance from a query. The
optimi_zed bucket adaptive KD-tree with fixed-radius near neighbor search greatly improves
the efficiency of the search and assists in reducing the number of false hits. The
combination of the optimized structure and the ﬁxed—radius search saves as much as 70% in
the number of pages accessed during search and. performs the search up to 3 timés faster

than the original BA_KD-tree structure using range search.

In summary, to efficiently index high-dimensioned image vectors that have been
transformed by principal component analysis the optimized bucket adaptive KD-tree is
shown to be the best suited multi-dimensional indexing structure, and it is seen to perform

very well using fixed-radius near neighbor search to find images that are within a fixed

Chapter 7. Conclusions ‘ 92

distance from a query. We note, however, that in the experimental results one can see
asymptotic behavior when the data poi.nts have greater than 6 dimensions. We feel that this
is linked to the particular data testbed we used (i.e., gray-scale face images). Had other
kinds of data, such as color images, been used they might have éllowed fuller testing of this
Structure with truly hjghedimensioned image vectors. This issue is discussed further in the

next section.

7.2 Future Work

The results of this research are very promising. However, there are many aspects that
should be examined further to ensure the usefulness of the technique we have implemented.
In this section we consider two general areas in which further work can be pufsued. The
first involves issues that are directly related to what was done in this thesis work, and the

second involves issues that would be interesting for future researchers to examine.

~
i

In the first category, i.e., issues Vdirectly related to this thesis, there are a number of
things that can be done to refine our findings.

First, it would be preferable if we could acquire or implement an R*-tree structure
(rather than an R-tree structure) and multipaging so as to do a true experimental evaluation
of the three multi-dimensional indexing structureé we originally chose in the comparative
analysis. This would give us a better understanding of how the optimized BA_KD-tree
compares to other structures that are claimed to efficiently handle high-dimensioned point
data.

Second, in order to obtain a more realistic reﬂection of the storage costs and

performance of both the original and the optimized BA_KD-tree structures it would be

s

Chapter 7. Conclusions ' 93

preferable for us to implement them such that the entire tree is not stored in main memory.
The performance of the optimized BA_KD-tree would be directly affected since the size of
the nodes in the tree would increase because the upper and lower range of the hyper-
rectangle of the sub-trees of each child are stored at the nodes; this reduces the capacity of
the index pages and, as the dimensions of the data increase, the index page capacity
decreasés (i.e., fewer nodes can be stored per index page). This will increase the storage
space required by the optimized BA_KD-tree and will, in turn, effect its search
performance. - It would be interesting to see how much the optimized BA_KD-tree
_ performance would deteriorate.

Third, it would be interesting to further investigate the effectiveness of the Early Fail
and Early Success Tests. One could determine at what levels they are successful the most
and use this information to limit the number of levels at which the ranges qf the hyper-
rectangles of sub-trees are stored. Furthermore, it would be interesting to determine what
is the savings in search space that these tests precipitate, i.e., what is the reduction in the
number of nodes visited in the optimized BA_KD-tree versus the original BA_KD-tree as a
result of EFT and EST. |

Foﬁrth, in order to have more statistically reliable data it would be preferable to use

a much larger number of queries, for example 1,000 or 2,000, rather than 10.

In the second category, i.e., issues for future research, there are also a number of
items that would be interesting to pursue.

First, to fuﬁher probe the issue of image analysis and feature reduction, it would be
interesting to use an image testbed that is not a set of gray-scale face images. Collections of
face images are fairly homogeneous in their content. This makes them ideal for use with the
eigenfaces approach since most of the variance in the image set can be captured in a few

dimensions. However, an image database that contains images of an art gallery or of

Chapter 7. Conclusions ‘ 94

animals may not be as convenient for the eigenfaces approach since there would be great
variation in the contents of the images. Therefore, a varied image set should be used to see
how well the eigenfaces approach can reduce the dimensions of image vectors from such a
set. |

Second, one of the elements that Bentley [Ben75a] brings up in his discussion on
fixed-radius near neighbor search is that one could use different indexing structures for
different parfs of the search problem. In the two KD-tree structures we use in this thesis,
the multi-dimensional points in the data buckets are se(juent_ially examined to determine if
they satisfy the query. Rather than use this brute force technique, it would be interesting to
test the effect on performance of sorting the data points in a bucket by one of the
dimensions. With PCA-transformed, the first dimension may be ideal for such a scheme
since it carries most of thé information in the data points.

Third, it would be interésting to compare the performance of fixed-radius near
neighbor search to n-nearest neighbor search since the latter search technique has frequently
been used for similarity matching, not only in image databases but also in several other types
of applications such as pattern classification, estimating multivz'iriate density, and minimizing

head movement on direct access I/O devies [SW90].

[A+95]

[Ben75a]

[Ben75b]

[Ben79]

[BF79]

[BGS92]

[BM79]

[BMS0]

BIBLIOGRAPHY

A. D. Alexandrov, W. Y. Ma, A. El Abbadi, and B. S. Manjunath.
"Adaptive Filtering and Indexing for Image Databases." SPIE Proceedings,
Storage and Retrieval for Image and Video Databases, 111, Vol. 2420, pp.
12-23, February 1995.

Jon Louis Bentley. "A Survey of Techniques for Fixed Radius Near
Neighbor Searching." Stanford Linear Accelerator Center Technical
Report, No. 186, August 1975.

J. L. Bentley. "Multidimensional Binary Search Trees Used for Associative
Searching." Communications of the ACM, Vol. 8, No. 9: 509-517,
September 1975.

J. L. Bentley. "Multidimensional Binary Search Trees in Database
Applications." IEEE Transactions on Software Engineering, Vol. SE-5,
No. 4: 333-340, July 1979. -

J. L. Benﬂey and J. H. Friedman. "Data Structures for Range Searching.”
Computing Surveys, Vol. 11, No. 4: 397-409, December 1979.

Elisabetta Binaghi, Isabella Gagliardi, and Raimondo Schettini. "Indexing
and Fuzzy Logic-Based Retrieval of Color Images." Visual Database
Systems, II, IFIP Transactions A-7, pp. 79-92, 1992.

J. L. Bentley and H. A. Maurer. "A Note on Euclidean Near Neighbor
Searching in the Plane." Information Processing Letters, Vol. 8, No. 3:
133-136, March 1979. '

J. L. Bentley and H. A. Maurer. "Efficient Worst-Case Data Structures for
Range Searching." Acta Informatica, Vol. 13, pp. 155-168, 1980.

95

Bibliography

[BPJ93]
[BS75]
[BSW77]
[B+90]

[Dund9]
[FB74]

[FBF77]
[Flu88]
[F+94]
[GI92]
{GM90]

[GM92a]

96

Jeffrey R. Bach, Santanu Paul and Ramesh Jain. "A Visual Information
Management System for the Interactive Retrieval of Faces." IEEE
Transactions on Knowledge and Data Engineering, Vol. 3, No. 4: 619-628,
August 1993. '

J. L. Bentley and D. F. Stanat. "Analysis of Range Searches in Quad Trees."
Information Processing Letters, Vol. 3, No. 6: 170-173, July 1975.

J. L. Bentley, D. F. Stanat, and E. H. Williams, Jr. "The Complexity of
Finding Fixed-Radius Near Neighbors." Information Processing Letters,
Vol. 6, No. 8: 209-212, December 1977.

N. Beckman, H. P. Kriegel, R. Schneider, and B. Seeger. "Th¢ R*-Tree: An
Efficient and Robust Access Method for Points and Rectangles."
Proceedings of the ACM SIGMOD Conference, pp. 322-331, 1990.

George H. Dunteman. - Principal Components Analysis. SAGE
Publications, Newbury Park, California, 1989. =

R. A. Finkel and J. L. Bentley. "Quad Trees: A Data Structure for Retrieval
on Composite Keys." Acta Informatica, Vol. 4, pp. 1-9, 1974.

Jerome H. Friedman, J. L. Bentley and Raphael Ari Finkel. "An Algorithm

for Finding Best Matches in Logarithmic Expected Time." ACM
Transactions on Mathematical Software, Vol. 3, No. 3: 209-226, September
1977.

Bernhard Flury. Common Principal Componernts and Related Multivariate
Models. John Wiley & Sons, New York, NY, 1988.

_C. Faloutsos, W. Equitz, M. Flickner, W. Niblack, D. Petkovic, and R.

Barber. "Efficient and Effective Querying by Image Content." Journal of
Intelligent Information Systems, Vol. 3, No. 3/4: 231-262, 1994.

William I. Grosky and Zhaowei Jiang. "A hierarchical approach to feature
indexing." SPIE Proceedings, Image Storage and Retrieval Systems, Vol.
1662, pp. 9-20, 1992. '

William I. Grosky and Rajiv Mehrotra. "Index-Based Object Recognition in
Pictorial Data Management." Computer Vision, Graphics, and Image
Processing, Vol. 52, pp. 416-436, 1990.

William I. Grosky and Réjiv Mehrotra. "Image Database Management."
Advances in Computers, Vol. 35, pp. 237-291, 1992.

Bibliography

[GM92b]
[Gre89]
[GS.92]

[Gut84]

[Giit94]

[HK92]

[H+92]
[H+93]

[Jai93]
[Jol86]

[Kat92]

97

James E. Gary and Rajiv Mehrotra. "Shape Similarity-Based Retrieval in
Image Database Systems." SPIE Proceedings, Image Storage and Retrieval
Systems, Vol. 1662, pp. 2-8, 1992.

Diane Greene. "An Implementation and Performance Analysis of Spatial
Data Access Methods." IEEE Proceedings of the 5th International
Conference on Data Engineering, Los Angeles, pp. 606-615, 1989.

T. Gevers and A. W. M. Smeulders. "Indexing of Images by Pictorial
Information.” Visual Database Systems, 11, IFIP Transactions A-7, pp. 93-
100, 1992.

A. Guttman. "R-Trees: A Dynamic Index Structure for Spatial Searching."
Proceedings of the ACM SIGMOD Conference, pp. 47-57, June 1984.

Ralf Hartmut Giiting. "An Introduction to Spatial Database Systems."
Invited contribution to a special issue on Database Systems of the VLDB
Journal, Vol. 3, No. 4, October 1994.

Kyoji Hirata and Toshikazu Kato. "Query by Visual Example - Content

based Image Retrieval." Advances in Database Technology EDBT '92,
Third International Conference on Extending Database Technology, pp. 56-
71, March 1992. '

T.-Y. Hou, A. Hsu, P. Liu, and M.-Y. Chiu. "A content-based indexing

technique using relative geometry features." SPIE Proceedings, Image
Storage and Retrieval Systems, Vol. 1662, pp. 59-68, 1992.

K. Hirata, Y. Hara, N. Shibata, and F. Hirbayashi. "Media-based Navigation
for Hypermedia Systems." Hypertext '93 Proceedings, pp. 159-173,
November 1993.

Ramesh Jain. "NSF Workshop on Visual Information Management
Systems." SIGMOD RECORD, Vol. 22, No. 3: 57-75, September 1993.

I. T. Jolliffe. Principal Component Analysis. Spnnger Verlag, New York,
NY, 1986.

Toshikazu Kato. "Database architecture for content-based image retrieval."
SPIE Proceedings, Image Storage and Retrieval Systems Vol. 1662 pp-
112-123, 1992.

Bibliography

[KS90]

98

M. Kirby and L. Sirovich. "Application of the Karhunen-Loeve Procedure

- - for the Characterization of Human Faces." IEEE Transactions on Pattern

[KWT74]

[Mer78]

[Mer84]

[MHN84]
[MOVF8'2]
[N+93]
[NHS84]
[OvL82]
[PK93]

[PKL94]

Analysis and Machine Intelligence, Vol. 12, No. 1: 103-108, January 1990.

T. Kunii, S. Weyl and J. M. Tennebaum. "A Relational Database Schema

for Describing Complex Pictures with Color and Texture." Proceedings of

the Second International Joint Conference on Pattern Recognition, Lyngby-
Copenhagen, Denmark, pp. 310-316, August 1974. :

T. H. Merrett. "Multidimensional paging for efficient database querying.”
Proceedings of ICMOD 78, International Conference on Data Base
Management Systems, Milano, Italy, pp. 277-290, June 1978.

T. H. Merrett. Relational Information Systems. Reston Publishing
Company, Inc., Reston, Virginia, 1984.

T. Matsuyama, L. V. Hao and M. Nagao. "A File Organization for
Geographic Information Systems Based on Spatial Proximity." Computer
Vision, Graphics, and Image Processing, Vol. 26, pp. 303-318, 1984.

T. H. Merrett and E. J. Otoo. "Dynamic Multipaging: A Storage Structure
For Large Shared Data Banks." Improving Database Usability and
Responsiveness, P. Scheuermann ed., Jerusalem, pp.-237-256, June 1982.

W. Niblack, et al. "The QBIC Project: Querying Images By Content Using
Color, Texture, and Shape."- Proceedings IS&T and SPIE, Electronic
Imaging '93, Vol. 1908, pp. 173-181, 1993.

J. Nievergelt, H. Hinterberger and K. C. Sevcik. "The Grid File: An
Adaptable, Symmetric Multikey File Structure." ACM Transactions on
Database Systems, Vol. 9, pp. 38-71, 1984.

Mark H. Overmars and Jan van Leeuwen. "Dynamic Multi-Dimensional
Data Structures Based on Quad- and KD-trees." Acta Informatica, Vol. 17,
pp. 267-285, 1982.

R. W. Picard and T. Kabir. "Finding Similar Patterns in Large Image
Databases." M.I.T. Media Laboratory Perceptual Computmg Section
Technical Report, No. 205, 1993.

Art Pope, Daniel Ko, and David Lowe. Introduction to Vista Programming
for Vista V2.1 (on-line programmer’s manual), June 1994.

Bibliography

© [PL94]

[PPS94]

[Pre‘88]
[Sam90]

[SB90]

[SB91]

[SHK93]
[SK87]

[SP93]

[SRF87]

[SSG92]

99

Art Pope and David Lowe. "Vista: A Software Environment for Computer
Vision Research." Proceedings 1994 IEEE Computer Society Conference
on Computer Vision & Pattern Recognition, pp. 768-772, Seattle, WA,
June 1994. '

A. Pentland, R. W. Picard and S. Sclaroff. "Photobook: Tools for Content-

Based Manipulation of Image Databases." SPIE Proceedings, Storage and
Retrieval for Image and Video Databases 11, Vol. 2185, pp. 34-47, 1994.

Rudolph W. Preisendorfer. Principal component analysis in meteorology
and oceanography. Elsevier Sciencc Pub. Co., New York, NY, 1988.

Hanan Samet. The Design and Analysis, of Spatial Data Structures.
Addison-Wesley, New York, NY, 1990.

Michael J. Swain and Dana H. Ballard. "Indexing Via Color Histograms."
IEEE Proceedings, 3rd International Conference on Computer Vision, pp.
390—393, December, 1990.

Michael J. Swain and Dana H. Ballard. "Color Indexing." International
Journal of Computer Vision, Vol. 7, No. 1:.11-32, 1991.

Ramin Samadani, Cecilia Han and Lalitesh K. Katragadda. "Content-Based
Event Selection From Satellite Images of the Aurora." Proceedings IS&T
and SPIE, Electronic Imaging '93, Vol. 1908, pp. 50-55, 1993.

L. Sirovich and M. Kirby. "Low-dimensional procedure for the
characterization of human faces." Journal of the Optical Society of America
A, Vol. 4, No. 3, pp. 519-524, March 1987. '

S. Sclaroff and A. Pentland. "A finite-element framework for
correspondence and matching." 4th International Conference on Computer
Vision, pp. 308-313, May 11-14, 1993, Berlin, Germany. (Also available as:
M.LT. Media Laboratory Perceptual Computing Technical Note No. 201.)

T. Sellis, N. Roussopoulos and C. Faloutsos. "The R*-Tree: A Dynamic
Index for Multi-Dimensional Objects." Proceedings of the 13th VLDB
Conference, pp. 507-518, Brighton 1987.

P. L. Stanchev, A. W. M Smeulders and F. C. A. Groen. "An Approach to
Image Indexing of Documents." Visual Database Systems, I, IFIP
Transactions A-7, pp. 63-77, 1992. -~

Bibliography

[SSU%4]

[Str88]

[Str94]
[SW90]

[Swa93]

[TP89]

[TP91]

[Yuv75]

100

Hiroaki Sakamoto, Hideharu Suzuki and Akira Uemori. "Flexible Montage
Retrieval for Image Data" SPIE Proceedings, Storage and Retrieval for
Image and Video Databases 11, Vol. 2185, pp. 25-33, 1994.

Gilbert Strang. Linear Algebra and its Applications. 3rd edition. Harcourt,
Brace, Jovanovich Publishers, San Diego, California, 1988.

Markus A. Stricker. "Bounds for the discrimination power of color indexing
techniques." SPIE Proceedings, Storage and Retrieval for Image and Video
Databases 11, Vol. 2185, pp. 15-24, 1994. '

Dennis Shasha and Tsong-Li Wang. "New Techniques for Best-Match
Retrieval." ACM Transactions on Information Systems, Vol. 8, No. 2: 140-
158, April 1990.

Michael J. Swain. "Interactive Indexing .into Image Databases.”
Proceedings IS&T/SPIE, International Symposium on Electronic Imaging:
Storage and Retrieval for Image and Video Databases, Vol. 1908, pp. 95-
103, February 1993.

Matthew Turk and Alex Pentland. "Face Processing: Models For
Recognition." SPIE Proceedings, Intelligent Robots and Computer Vision
VIII: Algorithms and Techniques, Vol. 1192, pp. 22-32, 1989.

Matthew Turk and Alex Pentland. "Eigenfaces for Recognition." Journal of
Cognitive Neuroscience, Vol. 3, No. 1: 71-86, 1991.

Gideon Yuval. ."Finding Near Neighbours in K-Dimensional Space.”
Information Processing Letters, Vol. 3, No. 4: 113-114, March 1975.

