
HOW FAST CAN ASN.1 ENCODING RULES GO?

By

Michael Sample

B. Sc. (Computer Science) University of British Columbia

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

COMPUTER SCIENCE

We accept this thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

April 1993

© Michael Sample, 1993

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at

the University of British Columbia, I agree that the Library shall make it freely available

for reference and study. I further agree that permission for extensive copying of this

thesis for scholarly purposes may be granted by the head of my department or by his

or her representatives. It is understood that copying or publication of this thesis for

financial gain shall not be allowed without my written permission.

Computer Science

The University of British Columbia

2075 Wesbrook Place

Vancouver, Canada

V6T 1Z1

Date:

Abstract

The tasks of encoding and decoding complex data structures for network transmission are

more expensive in terms of processor time and memory usage than any other components

of the protocol stack. This problem can be partially addressed by simplifying the network

data encoding rules and streamlining their implementation.

We examined the performance of four network data representation standards: ASN.1

Basic Encoding Rules (BER) and Packed Encoding Rules (PER), Sun Microsystem's

External Data Representation (XDR) and HP/Apollo's Network Data Representation

(NDR). The sizes of the encoded values produced by each set of encoding rules are

compared and several implementations are measured for code size and throughput.

To help examine implementation issues, we designed the snacc ASN.1 compiler that

produces compile-based (C and C++) and table-based encoders and decoders as well

as type tables. The performance of the snacc, UBC CASN1(BER), NIDL(NDR), rpc-

gen(XDR) and ISODE(BER) tools was examined as well as a hand-coded PER imple-

mentation. The implementation issues investigated include compiled versus table-based

encoding and decoding, implementation language (C/C++), buffering techniques and

memory management.

We found that the areas crucial to efficient encoder and decoder implementations

are memory management, buffer management and the overall simplicity of the encoding

rules. Table-based encoders and decoders typically have considerably smaller code size

but perform less efficiently than their compiled counterparts. In contrast to popular

belief, it is possible to implement ASN.1 BER and PER encoders and decoders that

perform as well as their NDR and XDR counterparts.

ii

Table of Contents

Abstract^ ii

List of Tables^ vii

List of Figures^ viii

Acknowledgement^ ix

Dedication^ x

1 Introduction 1

1.1 The Need for Network Data Representations ^ 2

1.2 The Performance Problem ^ 3

1.3 Our Research Goal ^ 5

2 Data Definition Languages and Encoding Rules 7

2.1 Data Definition Languages ^ 9

2.2 General Aspects of Encoding Rules ^ 10

2.3 General Encoding and Decoding Procedures ^ 13

2.4 ASN.1: Abstract Syntax Notation One and its Encoding Rules ^ 13

2.4.1^ASN.1: The language ^ 14

2.4.2^BER: Basic Encoding Rules ^ 15

2.4.3^PER: Packed Encoding Rules ^ 16

2.5 XDR: External Data Representation ^ 32

iii

2.5.1 The XDR language ^ 32

2.5.2 XDR Encoding Rules ^ 32

2.6 NIDL/NDR ^ 33

2.6.1 NIDL: Network Interface Definition Language ^ 33

2.6.2 NDR: Network Data Representation ^ 34

2.7 C Based Encoding Rules ^ 36

3 Related Work
^

38

3.1 Performance Issues and Ideas^ 38

4 Performance Considerations for the Snacc ASN.1 Compiler^41

4.1 Snacc Design Process and Goals ^ 41

4.2 ASN.1 to C Data Structure Translation ^ 43

4.3 Generated C Encoder Design ^ 44

4.4 Generated C Decoder Design^ 46

4.5 Error Management ^ 48

4.6 Compiler Directives ^ 50

4.7 Buffer Management ^ 53

4.8 Memory Management ^ 55

4.9 Novel Non-performance Related Features ^ 56

4.10 C++ Design ^ 59

4.11 Table Driven Encoding and Decoding ^ 62

5 Implementation of the Snacc Compiler^ 64

5.1 Snacc Compiler Design ^ 64

5.2 Pass 1: Parsing the Useful Types Module ^ 65

5.3 Pass 2: Parsing ASN.1 Modules ^ 67

iv

5.4 Pass 3: Linking Types ^ 68

5.5 Pass 4: Parsing Values ^ 69

5.6 Pass 5: Linking Values ^71

5.7 Pass 6: Processing Macros ^ 72

5.8 Pass 7: Normalizing Types ^ 74

5.9 Pass 8: Marking Recursive Types ^ 75

5.10 Pass 9: Semantic Error Checking ^ 76

5.11 Pass 10: Generating C/C++ Type Information ^ 77

5.12 Pass 11: Sorting Types ^80

5.13 Pass 12: Generating Code ^ 83

6 Results and Evaluation^ 85

6.1 The PersonnelRecord Benchmark ^ 86

6.1.1 Tools Benchmarked ^ 86

6.1.2 Benchmark Design ^ 88

6.1.3 Benchmark Results and Analysis ^ 91

6.2 Primitive Type Benchmarks ^ 109

6.2.1 Benchmark Design ^ 110

6.2.2 Benchmark Results ^ 111

6.3 Benchmark of Implementation Features ^ 115

6.3.1 Benchmark Design ^ 115

6.3.2 Benchmark Results ^ 116

6.4 Execution Analysis ^ 119

7 Conclusions^ 121

Appendices^ 123

v

A C Example^ 124

B C++ Example^ 148

C The Type Table Data Structure^ 181

Bibliography^ 184

vi

List of Tables

2.1 PER field types and sizes for constrained whole numbers ^ 21

2.2 Examples of length upper and lower bounds for BIT STRING types .^25

2.3 Examples of upper and lower bounds for OCTET STRING types . .^26

2.4 Examples of upper and lower bounds for SEQUENCE OF types ^ 28

6.5 Tools and encoding rules tested with the PersonnelRecord Benchmark . . 87

6.6 Benchmark descriptions 92

6.7 Code size for the stripped .o files of PersonnelRecord specific code and the

stripped benchmark executable ^ 92

6.8 Timings for encoding and decoding the PersonnelRecord 1 million times ^ 93

6.9 Memory usage in # pieces memory/total # bytes for the local, interme-

diate and transfer (encoded) data representation ^ 93

6.10 Primitive type benchmark definitions ^ 112

6.11 Results for integer ^ 113

6.12 Results for real ^ 113

6.13 Results for string ^ 113

6.14 Benchmarks of BER implementation features ^ 117

6.15 Results for encoding and decoding the PersonnelRecord 1 million times^117

6.16 Results for encoding and decoding an X.500 ListResult 10,000 times . .^118

6.17 Overall cost of buffer and memory management for snacc's BER and PER

encoders and decoders ^ 119

vii

List of Figures

2.1 A typical compilation process ^8

2.2 An Internet Protocol (IP) header description ^9

2.3 The encoding and decoding process ^ 12

4.4 The snacc compiler produces C or C++ BER encode, BER decode, print

and free routines or a type table. ^42

4.5 The setjmp function is called before decoding ^ 50

4.6 The longjmp function is called to signal an error ^50

6.7 ASN.1 definition of the PersonnelRecord ^ 89

6.8 PersonnelRecord Value used in the benchmarks ^ 90

6.9 Time to encode and decode a PersonnelRecord 1 million times ^ 94

6.10 ISODE's local representation for the PersonnelRecord Value ^ 97

6.11 ISODE's PElement representation for the PersonnelRecord Value^98

6.12 CASN1 local representation for the PersonnelRecord Value ^ 100

6.13 CASN1's IDX buffer structure for the PersonnelRecord Value ^ 101

6.14 XDR PersonnelRecord Definition ^ 103

6.15 XDR's local representation for the PersonnelRecord Value ^ 104

6.16 NIDL's local representation for the PersonnelRecord Value ^ 106

6.17 NIDL PersonnelRecord Definition ^ 107

6.18 Snacc's local representation for the PersonnelRecord Value ^ 108

A.19 PersonnelRecord ASN.1 data structure ^ 125

viii

Acknowledgement

I would like to thank my loving parents for support and encouragement throughout my

scholastic endeavors. In particular, tolerance of my running off to play in the mountains

when I should have been studying.

I would also like to thank Gerald Neufeld, my supervisor and friend, for his guidance

and ideas. Without his encouragement I would not have entered the M. Sc. program.

Thanks also to Norm Hutchinson for plowing through this thesis.

Many thanks to Barry Brachman for the suggestions, X.500 data, incredible proof

reading and the jam sessions. Don Acton provided huge amounts of help with obscure

features of Latex, Emacs, Foiltex and other software packages. I also appreciated the

help and support of other friends in the department: Carlin, Frank, John, George, Ian,

Mike, Ming, Moyra, Murray, Peter, Stuart and Terry.

Thanks to the office staff: Carol, Evelyn, Gale, Grace, Joyce, Katie, Monica and Sun-

nie for cutting through the UBC bureaucracy and handling last minute courier packages.

ix

For Rick

x

Chapter 1

Introduction

Computer networks spawned the need for a mechanism to translate data between machine

architectures and applications. This translation process can be a significant part of the

time it takes to process received protocol data units (PDUs) [Clark89]. In addition, the

amazing speeds at which newer networks based on asynchronous transfer mode (ATM)

or fiber distributed data interchange (FDDI) can deliver data to computers has increased

the need for high performance translation mechanisms.

Using faster processors will help, but the gap between processor speed and network

speed is large. For example, if a computer receives a burst of data from a 150 Mbps

ATM connection, each byte of data must be processed in only 53 nanoseconds. This is

less than the memory cycle time on most workstations. To make matters worse, typical

protocol implementations make one or more copies of the PDU's data as it moves up the

protocol stack.

Flow control is another possible technique to avoid overwhelming a receiving host.

Flow control is a difficult issue because traffic can vary so much that a pessimistic flow

control mechanism may limit the network usage to much below its maximum bandwidth.

Optimistic flow control that allows bursts of traffic will not solve the problem.

There is no obvious single solution to the protocol performance problem. However,

we can start by improving the performance of time-consuming components of computer

communication, such as data translation to minimize the chances of overwhelming a

networked computer with too much data. This thesis examines the optimization of the

1

Chapter 1. Introduction^ 2

data translation part of computer communications.

1.1 The Need for Network Data Representations

The need for network data representations has been around since computers were con-

nected to networks. A canonical representation enables computers with different ar-

chitectures to exchange data and typically simplifies data transmission by grouping or

"marshalling" the data into a single logical block. Within the OSI protocol stack, en-

coding from a local machine representation to a canonical representation (as well as

decoding) is done at the Presentation Layer [OS188].

The need can be illustrated with the simple example of the big versus little endian

representation of integers. Consider an MC68000 based machine (big endian) and an

Inte180486 based machine (little endian) on a network. By sending the integer 17 in its

MC68000 representation from the MC68000 to the Inte180486 without translation, the

number will be interpreted as 16842752 on the Inte180486. This is clearly undesirable.

There are many representation issues involving integers alone, such as l's versus 2's

complement or 2 versus 4 byte or larger integers. Other types, such as real numbers and

character strings (e.g. ASCII or EBCDIC), add to the translation problems.

Converting simple types such as integers and strings is not enough. Data grouping

concepts like linked lists, structures (struct) in the C programming language and Pascal

records need to be supported as well.

There have been many data representation standards defined in the last two decades.

These include:

• ISO/CCITT's Basic Encoding Rules (BER) [BER88]

• ISO/CCITT's Packed Encoding Rules (PER) [PER92]

Chapter 1. Introduction^ 3

• Sun's eXternal Data Representation (XDR) [Sun87]

• HP/Apollo's Network Data Representation (NDR) [Kong90]

• Xerox's Courier [Xerox8l]

• NIST's Computer Based Message System [NBS83]

• Multi-Media Mail [Poste180]

These encoding rules all solve the same problems. The types they support are much

the same except that Multi-Media Mail proposed a shared reference type that is missing

from the others. A shared reference type is potentially useful for complex data structures

that have indexes and cycles.

1.2 The Performance Problem

The advent of high speed networks such as FDDI and ATM has moved the performance

bottleneck into the higher layers of the protocol stack. Work on optimizing transport

protocols indicates that some of the most expensive parts of a protocol implementation

are buffer management and memory copying [Clark89]. These problems also exist in the

Presentation Layer.

Perhaps the most expensive part of the OSI protocol stack is the Basic Encoding Rules

(BER) encoding and decoding done in the presentation layer. A substantial amount of

the protocol stack's processing total time can be used for encoding and decoding alone

[Clark90]. There are several possible ways to reduce this overhead:

• use non-standard data representations tuned for the application

• use non-standard data representations tuned for the implementation

Chapter 1. Introduction^ 4

• design and use lightweight encoding rules

• optimize implementations of existing encoding rules

Data representations that are tuned for a particular application or protocol can be

very efficient. TCP and IP packet definitions are examples of this technique. Unfortu-

nately, this method becomes cumbersome with more complex data structures that have

many optional or variable-sized components.

Assumptions based on the implementation and target environment can be used to

optimize encoding rules. For example, if the target environment is a network of Sun

workstations and the application is written in the same language on each host, complex

data structures may be exchanged simply by grouping the components and translating

pointers to offsets. This method works efficiently but is fragile with respect to the ar-

chitecture of the communicating hosts; it is not a general purpose solution. Adding a

machine with a different architecture to the network, such as a Inte180486 machine, would

cause problems. This solution also assumes that the data structure used by the sender

and receiver are identical.

Using lightweight encoding rules is a reasonable approach [Huitema89], however, some

flexibility may be sacrificed (e.g. using fixed-size integers) to simplify them. Optimizing

implementations of the existing general purpose encoding rules, if possible, is a desirable

solution as the protocol and application designers benefit from the rules' flexibility.

We did not attempt to design new encoding rules or examine the less general pur-

pose optimization techniques. Instead, we focussed on optimizing the implementation of

general purpose encoding rules such as BER.

Chapter 1. Introduction^ 5

1.3 Our Research Goal

We examined the performance of four network data representation standards: BER,

PER, XDR and NDR. BER, XDR and NDR are popular encoding rules. PER [PER92]

have recently been introduced and are likely to be widely used. We looked at the size

of the encoded values and the performance of several implementations to determine the

critical implementation issues.

The size of an encoded value generated by a given set of encoding rules can be

important when dealing with networks that are slow or have a high cost per packet.

Other considerations include storing data on machines with limited disk space. With

disks and memory becoming cheaper and networks becoming faster, a more important

consideration is throughput.

The throughput of several implementations of BER, XDR and NDR and a hand

coded PER implementation is measured. The object code size and dynamic memory

usage of these implementations is also examined. While the dollar cost of RAM memory

is small these days, code size and memory usage must be considered for their impact on

throughput.

To help examine implementation issues, we implemented the snacc (Sample Neufeld

ASN.1 to C/C++ Compiler) ASN.1 compiler which produces C and C++ BER encoders

and decoders as well as type tables. The performance of the snacc, UBC CASN1(BER),

NIDL(NDR), rpcgen(XDR) and ISODE(BER) tools is examined, as well as a hand-

coded PER implementation. The implementation issues investigated include compiled

versus table-based encoding and decoding, implementation language (C/C++), buffering

techniques and memory management.

This thesis assumes the reader is familiar with ASN.1 [ASN188], BER [BER88], XDR

[Sun87] and NDR [Kong90]. Several ASN.1 and BER tutorials are available [Steedman90]

Chapter 1. Introduction^ 6

[Neufeld92-1].

The next chapter introduces the concept of data definition languages and data for-

mats, covering the ASN.1, XDR and NIDL languages and the BER, PER, XDR and

NDR encoding rules. PER are described in depth since they are a very new standard

[PER92].

In Chapter three we survey previous efforts to improve the performance of encoding

rules. The performance-related aspects of the snacc compiler: its implementation and the

code it generates, are given in Chapters four and five. The metrics used to benchmark

the encoding rules, the tools that implement them and an analysis of the results are given

in Chapter six. The final chapter contains the conclusions drawn from our research. The

appendix contains a C and C++ example of snacc generated code and the type table's

ASN.1 data structure definition.

For those familiar with ASN.1, XDR and NDR, Chapters six and seven will likely be

the most interesting. Implementors may wish to focus on Chapters three, four and six

as well as the app^ endices. Users interested in using the snacc compiler sho

user manual [Sample93-1].

Chapter 2

Data Definition Languages and Encoding Rules

Data definition languages are used to specify the content and structure of data. The

encoding rules specify how a particular value of a data structure will be represented.

A data definition language is referred to as an abstract syntax notation. The transfer

syntax defines the way a particular instance of the application data structure is encoded.

A particular data structure in the abstract syntax notation is referred to as an abstract

syntax.

An example will clarify these definitions. If you wanted to specify a data structure

that contained the date (year, month, day), the abstract syntax in ASN.1 might look

like:

Date ::= SEQUENCE
{

year INTEGER,
month INTEGER (1..12),
day^INTEGER (1..31)

The Date value "May 1, 1993" encoded according to the BER transfer syntax is

(shown in hexadecimal):

300a020207c9020105020101

All of the transfer syntaxes (encoding rules) that we tested grouped the represented

values into a single logical block. The grouped or marshalled data can easily be passed

to the transport layer.

7

Chapter 2. Data Definition Languages and Encoding Rules^ 8

Data
Structure

Description

Figure 2.1: A typical compilation process

Typically the data definition languages are designed to be processed by a compiler

that generates encoders, decoders and other utility routines for the given data struc-

ture in a target programming language such as C or Pascal (see Figure 2.1). Other

approaches include extending a programming language's grammar to handle the data

definition language internally [Bochman89].

Data languages such as ASN.1 are used to define protocol data units (PDUs) in

protocol standards such as X.400 [MHS88] and X.500 [DS88]. The protocol definition

documents for protocols such as TCP and IP use ASCII drawings (see Figure 2.2) and

text that describe both the type content (abstract syntax) and representation (transfer

syntax) of their PDUs.

Using data definition languages with encoding rules separates the abstract syntax

from the transfer syntax. The data descriptions are more formal, with less chance for

ambiguity. Once a data definition language has been learned, it provides a high level way

to think about and design data structures. Another benefit of data languages is that they

can be compiled for automatic implementation of encoders, decoders and other routines.

The advantages of the TCP/IP style of PDU definition is that the definitions are self

contained (no other documents or language understanding is needed) and the PDUs can

be very compact. Also, by placing the fixed-sized components first, the decoding cost is

reduced or eliminated. The disadvantage is that the use of fixed-size types limits their

Chapter 2. Data Definition Languages and Encoding Rules^ 9

0^ 1^ 2^ 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
IVersionl IHL 'Type of Servicel^Total Length^I
+-+

I^Identification^'Flags'^Fragment Offset^I
+-+

I Time to Live I^Protocol^I^Header Checksum^I
+-+

I
^

Source Address^ I
+-+

I
^

Destination Address^ I
+-+

I
^

Options^ I^Padding^I
+-+

Figure 2.2: An Internet Protocol (IP) header description

expansion possibilities (e.g. the IP address space is now too small and cannot easily

grow). Also, this style of PDU definition becomes very cumbersome when the number of

components is large, especially if many of the components are not fixed in size.

2.1 Data Definition Languages

There are two main uses for data structures defined in a standardized data language.

One purpose is to specify the content and structure of a PDU for a certain protocol. For

example, the protocol definition documents for X.500, X.400, SNMP [snmp90], Kerberos

[Steiner88] [Koh192] and WAIS [Z39.50] use ASN.1 to define their PDUs.

The other use of the data specifications is to implement part of the protocol. Special-

purpose compilers are usually used to automatically generate the encode, decode and

utility routines for the PDUs.

The languages in our performance test used two different approaches to define the

Chapter 2. Data Definition Languages and Encoding Rules^ 10

language. NIDL and XDR are defined very closely to an existing programming language,

C, to simplify their usage by programmers already familiar with C. This advantage is

offset by the fact that it biases the protocol implementation towards a particular language.

This problem is highlighted by the fact that NIDL has a Pascal variant in addition to

the C version.

The data structures defined in these languages have extra information, such as

whether a component of a struct is referenced by a pointer. This is a local data

representation issue that should not be dictated by a protocol standard. The imple-

mentation language bias and local representation information in XDR and NIDL make

them unsuitable for heterogeneous protocol specification.

ASN.1 takes a different approach. The key concepts of data structures were abstracted

and separated from other implementation-specific concepts such as pointers. The fact

that ASN.1 did not evolve from an implementation language such as C leaves it free to

change independently of the implementation language. The disadvantage of the ASN.1

approach lies in the fact that implementors need to become familiar with a completely

new and complex language.

2.2 General Aspects of Encoding Rules

There are several approaches to network data representation:

• a single standardized data format

• data format defined by sending host

• data format defined by receiving host

Using a single standardized format means that each host only needs a single set of

encoding and decoding routines for each primitive type. The other techniques may be

Chapter 2. Data Definition Languages and Encoding Rules^ 11

optimal if the communicating hosts have the same architecture, but in general more

encoding and decoding routines will be needed. Specifically, if there are N machine

formats and the data format is defined by the sending host, each host will need N — 1

decoding routines.

Encoding rules can support self-defining values. Self-defining means that type in-

formation is included in the values. Other terms that have been used to describe this

include explicit (self-defining) and implicit type representation [DeShon86] [Partridge89].

Self defining values allow the implementation of "generic" decoders, useful for implemen-

tations and protocol testing.

One-pass encoding and decoding is defined as conversion between the local (non-

standardized) and transfer representation that can be done in one step, without using

intermediate representations. This improves performance.

Some encoding rules can produce canonical encodings where each abstract value maps

to exactly one encoding. This can be useful for generating digital signatures for security

purposes. A simple example of this is the encoding of boolean values. Some encoding

rules allow "true" to be encoded as any non-zero integer. The fact that "true" can be

encoded many ways implies that the encoding rules are not canonical.

Encoding rules that have relay safe encodings means that encoded values can be

relayed or otherwise handled by systems that do not know the values' abstract syntaxes.

It is important to distinguish between forward and backward encoding and decoding

techniques. In forward encoding, the first component of the encoded value is calculated

and written first with the following components appended to it. Backward encoding

is the process of writing the last component of an encoded value and prepending the

preceding components. The same terms can be applied to decoding, however, all of the

encoding rules and implementations we tested used forward decoders.

..<
decode

19590621
-->. James

^ R

>. Smith

encode

4
›̂.. Lisa

1
—›. M
5

Smith

5

>̂ Mary

L

›̂- Smith

14 ›̂.. John
^ The Big Cheese

99999
8
--›- 19820104

›̂.•

> E

.___,
—>. Smith

Chapter 2. Data Definition Languages and Encoding Rules^ 12

Local Representation

0060818c61101604
4a6f686e16014516
05536d697468a010
160e546865204269
6720436865657365
420301869fa10a43
0831393832303130
34a212611016044d
61727916014c1605
536d697468a34131
1f611116054a616d
6573160152160553
6d697468a00a4308
3139353730333130
311e611016044c69
736116014d160553
6d697468a00a4308
3139363130363231

Network Representation
(in hex)

Figure 2.3: The encoding and decoding process

Primitive types are types such as integers that are not composed of other types.

Constructed types are types such as lists and structures that are composed of one or more

primitive or constructed types. We shall refer to the types that make up a constructed

type as its components.

Another aspect of encoding rules that should be considered is their expected longevity.

Will they need to be modified as architectures move from 32 to 64 bit words and beyond?

Ideal encoding rules would be simple, canonical, relay safe and support fast encoding

and decoding as well as compact encodings.

Chapter 2. Data Definition Languages and Encoding Rules^ 13

2.3 General Encoding and Decoding Procedures

Encoding is the translation of a local representation of a data value to its network format

(see Figure 2.3). Generally, encoding consists of three parts:

• encoding primitive values into their network format

• allocating a send buffer as necessary

• writing the data in its network format into the send buffer

Decoding is the process of converting a value from the transfer or external format into

a local representation of the value. There are three main parts to the decoding process:

• reading from the receive buffer

• decoding primitive data in its network format into its local representation

• allocating space for the decoded value

The goal is to optimize each of these steps. The choice of buffer and memory manage-

ment schemes is very important as the encoding and decoding processes can make heavy

use of their services. The other consideration is the cost of translating the primitive types

between the local and network format.

2.4 ASN.1: Abstract Syntax Notation One and its Encoding Rules

ASN.1 and BER were initially designed as part of the 1984 ISO/CCITT X.400 electronic

mail standard [ASN184]. They are a flexible and robust means of defining protocol data

structures and representing their values.

Since many other applications and protocols could benefit from the general purpose,

robust nature of ASN.1/BER, they were moved out of the X.400 standard and became

Chapter 2. Data Definition Languages and Encoding Rules^ 14

separate standards in 1988, CCITT X.208 and X.209 (or ISO/IEC 8824 and 8825) re-

spectively. ASN.1 and BER were split into two separate standards for the reason that

more that one set of encoding rules could be used with ASN.1.

Between 1984 and 1988 many features were added to the ASN.1 language, such as

subtyping, a powerful type constraining mechanism. The 1992 version of ASN.1 solves

some of the parsing and semantic problems of ASN.1 '88.

2.4.1 ASN.1: The language

ASN.1 is a rich language that defines types. It does not contain imperative semantics

of typical programming languages nor is its syntax similar to any popular programming

language. It does allow very precise definition of types.

ASN.1 has eight basic primitive types and five constructor types. The primitive types

are:

• BOOLEAN

• INTEGER

• ENUMERATED

• NULL

• REAL

• OBJECT IDENTIFIER

• OCTET STRING

• BIT STRING

The constructor types are:

Chapter 2. Data Definition Languages and Encoding Rules^ 15

• SEQUENCE

• SET

• SEQUENCE OF

• SET OF

• CHOICE

Unlike other languages, ASN.1 has more than one set of encoding rules defined for

it. This allows implementors to choose encoding rules that support their needs without

rewriting a protocol's ASN.1 definition.

2.4.2 BER: Basic Encoding Rules

BER produce regular tag-length-content encodings, where the content can be composed

of more tag-length-content tuples or a primitive type's (e.g. INTEGER) value. The

components of a BER encoding are octet (8 bit) aligned.

The tag can provide information concerning the type of the content. BER produce

self-defining or explicitly typed values. The fact that type information is present in BER

encodings makes BER different from all of the other encoding rules we tested.

It should be noted that if implicit tagging is used, the type information in a BER

encoded value is not complete. For example, if UNIVERSAL tags are not used, a tag

may tell the decoder that the value is primitive (i.e. the content does not contain more

tag-length-content tuples) but not whether it is an INTEGER, BOOLEAN, REAL or

other primitive type.

The regular nature of BER encodings allows the implementation of encoders and

decoders without knowledge of the abstract syntax. This feature is used by some imple-

mentations to provide a common value form to pass to and receive from the presentation

Chapter 2. Data Definition Languages and Encoding Rules^ 16

layer. Some consider type information in values an unnecessary expense in time and size

since protocols typically know what type of data they will receive.

The encoding techniques for the primitive values are very flexible. BER allows arbi-

trarily large integer and string values. In practice these sizes are limited by the architec-

ture of the encoding host. This flexibility may increase the useful lifetime of BER.

There are two subsets of BER that provide canonical encodings. One is Distinguished

Encoding Rules (DER) and the other is Canonical Encoding Rules (CER).

BER has a feature that makes it difficult to implement one-pass BER encoders. En-

coding a definite length before a constructed value is difficult because the length itself is

a variable in size but it is only known after the components of the constructed value have

been encoded. Thus one needs a scheme to insert the length after the components have

been encoded. Unfortunately this usually results in a two pass encoder. Fortunately,

the indefinite length option does not have this problem. However, DER require definite

lengths so other solutions such as backwards encoding need to be employed to avoid

costly two pass encoding.

2.4.3 PER: Packed Encoding Rules

In this section most of the concepts of Packed Encoding Rules (PER) are described;

for the complete definition see [PER92]. There are some problems with the current

Committee Draft for PER that will be rectified before PER goes on to become a Draft

International Standard.

PER have evolved immensely since their initial draft [PER91]. Initially, PER were

basically an optimized BER that removed redundant tags and lengths as well as com-

pressing integers and booleans under special circumstances. The current version of PER

is described here.

PER were designed to produce compact encodings. Compact encodings are useful

Chapter 2. Data Definition Languages and Encoding Rules^ 17

when storing large amounts of data on disk or transmitting PDUs over a network in

which the cost per byte or packet is high. The amount of compression PER achieves over

BER can be very dependent on the encoded values' ASN.1 type definition.

Some aspects of ASN.1 type definitions that do not affect BER encodings will affect

PER encodings. PER use subtyping value range and size restrictions to improve com-

pression. Careful use of subtyping by ASN.1 writers can significantly reduce the size of

PER encodings.

PER Differences From BER

Many people are familiar with BER; here are the fundamental differences between PER

and BER.

In PER:

• Tags are not encoded.

• Subtyping information can affect the encoded value.

• The value range of ENUMERATED types can affect the encoded value.

• The values range of named bits in BIT STRINGs can affect the encoded value.

• Lengths are only encoded before non-fixed-size primitive values.

• The number of components in SET OF and SEQUENCE OF values is encoded

before the content instead of the content's encoded length.

• The components of SET and SET OF types are ordered.

• Type extension must be explicitly allowed by using the "..." extensions marker in

the ASN.1 definitions of the extensible types (ASN.1 '92 feature)

Chapter 2. Data Definition Languages and Encoding Rules^ 18

PER uses a preamble-length-content format, each of which may be empty. The pream-

ble is only present for SEQUENCEs, SETs and CHOICEs to indicate which components

are present. Subtyping and other information that restricts the encoded length of a value

will be used to compress or eliminate the length determinant. Subtyping and other infor-

mation that restricts the value range of a type will be used to compress or eliminate the

encoded values of that type. Thus, the PER preamble-length-content format is context

sensitive (to the ASN.1 definition), unlike the regular structure of the BER tag-length-

content format. Hence generic (abstract syntax ignorant) decoders cannot be written for

PER values.

Extensions Marker

ASN.1 '92 introduces the concept of the extension marker. It is briefly described here

because it affects how values are encoded in PER.

The extensions marker is expected to be used by ASN.1 designers in types that will

likely have components added or removed in future versions of their ASN.1 specification.

The extensions marker can be used in the ASN.1 definition of SETs, SEQUENCEs,

CHOICEs, BIT STRINGs with named bits and ENUMERATED types.

BER supports type extension by the use of new tags on added SET, SEQUENCE or

CHOICE components and the fact that named bits and ENUMERATED values do not

affect their encoding technique. This form of extension does not work with PER because

tags are not encoded and the named bit and ENUMERATED value information is used

to help compact the encoding (i.e. it affects the way values are encoded).

Colourl ::= ENUMERATED { red(0), orange(1), yellow(2), green(3)}

Colour2 ::= ENUMERATED { red(0), orange(1), yellow(2), green(3), ...I

The Colour2 type above is an extensible version of Colourl since it uses the "..."

Chapter 2. Data Definition Languages and Encoding Rules^ 19

extensions marker. A future version of Colour2 could be:

Colour2 ::= ENUMERATED { red(0), orange(1), yellow(2), green(3), ..., blue(4)}

PER decoders that were designed to handle the original version of Colour2 will be

able to detect the presence of an extended Colour2 value and deal with it accordingly.

This could include discarding the PDU or something else depending on the protocol.

PER decoders for the above version of Colourl would not be able to decode values of

the following extended version of Colourl because the extensions marker was not used

in the original and new definition.

Colourl ::= ENUMERATED { red(0), orange(1), yellow(2), green(3), blue(4)}

The addition of an extensions marker affects the way types are encoded (i.e. the

bits on the line will be different); a decoder for Colour2 will not be able to handle an

encoding of Colourl and vise-versa. This is why it is recommended that types that are

likely to be extended in future versions of the protocol be given an extensions marker.

Flavors of PER

There are four different flavors of PER resulting from combinations of two features:

BASIC or RELAY-SAFE-CANONICAL, and ALIGNED or UNALIGNED. Each flavor

has its own OBJECT IDENTIFIER for use when negotiating a presentation connection

and in other situations. The OBJECT IDENTIFIERs are:

{ joint-iso-ccitt asnl(1) packed-encoding(3) basic(0) aligned(0) }

{ joint-iso-ccitt asnl(1) packed-encoding(3) basic(0) unaligned(0) }

{ joint-iso-ccitt asnl(1) packed-encoding(3) relay-safe-canonical(0)

aligned(0) }

{ joint-iso-ccitt asnl(1) packed-encoding(3) relay-safe-canonical(0)

unaligned(0) }

Chapter 2. Data Definition Languages and Encoding Rules^ 20

BASIC PER is the most general form of PER. RELAY-SAFE-CANONICAL PER is a

restriction of BASIC PER that makes an encoded value both relay safe and canonical.

The UNALIGNED version of PER allows the components of the encoded value to

be written without octet alignment so that no bits are wasted between the components,

yielding a very compact value.

Each type is designated an "octet aligned bit field" or a "bit field". The only time

alignment is performed is when appending a type that is an octet aligned bit field while

using an ALIGNED flavor of PER. When alignment occurs, the existing encoding is

padded with zero bits until it is an integral number of octets in length, then the type

that required the alignment is appended.

The concepts of constrained whole numbers, semi-constrained whole numbers and

unconstrained whole numbers are used to describe encoded lengths, INTEGERs, ENU-

MERATED values and other features of PER. For simplicity, they are defined here. For

positive binary integers and two's complement binary integers the leading bit is the most

significant and the trailing bit is the least significant.

A constrained whole number is a whole number that has both an upper and a lower

bound. The upper and lower bounds can be used to reduce the number of bits needed

to represent the value.

Given a constrained whole number, x, with an upper bound ub, and a lower bound

lb such that lb < x < ub, its value range is ub — lb + 1. The value x will be encoded as

a positive binary integer of value x — lb. The number of bits or octets that are used to

hold x's encoded value are shown in Table 2.1.

For example, a value of type INTEGER (4..7) needs only two bits to represent its

range of values. From Table 2.1 we can see that this value would be encoded as a positive

binary integer in a bit field 2 bits long.

Chapter 2. Data Definition Languages and Encoding Rules^ 21

value range size
1 0 bits

2 to 255 bit field of the minimum number of bits
large enough to hold the value range

256 octet aligned bit field 1 octet long
257 to 65,536 octet aligned bit field 2 octets long

larger than 65,536 octet aligned field the minimum number
of octets needed to hold the value

Table 2.1: PER field types and sizes for constrained whole numbers

A semi-constrained whole number is a whole number that has a lower bound but no

upper bound. A semi-constrained value, x, with a lower bound lb, is encoded as a positive

binary integer with value x — lb in an octet aligned bit field of the minimum number of

octets needed for the value.

An unconstrained whole number has no upper or lower bound. They are encoded as

two's complement binary integers in an octet aligned bit field of the minimum number

of octets in length for the value.

Tags

PER does not encode the tag information from ASN.1 definitions. Different mechanisms

are used in the areas where BER needs tags to identify the presence of optional SET or

SEQUENCE components or which CHOICE component is present. These mechanisms

involve the preamble and will be discussed with their respective types.

Lengths

BER-like length determinants are only encoded before primitive values such as INTE-

GERs and REALs that are not a fixed-size. If the size of the encoded value is constrained

Chapter 2. Data Definition Languages and Encoding Rules^ 22

by any subtyping or other information, this information will be used to shrink the length.

PER lengths may be an octet count, bit count or component count depending on the

type they precede.

Lengths are either constrained or semi-constrained whole numbers. They cannot be

unconstrained because lengths are always positive.

If a length is constrained and its upper bound is less then 65,536, it is encoded as a

constrained whole number. For example, the length of values of type OCTET STRING

(SIZE (3..6)) have a lower bound of three and an upper bound of six, which means their

length will be encoded in two bits, with '00' mapping to three and so on. For all other

lengths, the following rules apply. Note that the lower bound does not affect how the

following lengths are encoded.

If length < 128, the length is encoded as the positive binary integer representing

length in a one octet long octet aligned bit field.

Otherwise, if 128 < length < 16, 384, the length is encoded as the positive binary

integer representing length in a two octet long octet aligned bit field and the most

significant bit is set to one.

For lengths of 16,384 or larger, a flat fragmentation scheme is used such that the

maximum length of any part of a primitive value is less than 65,536 octets.

Open Types

Open types are semantically similar to the ANY type in ASN.1 but are encoded a special

way. The type contained in the open type is encoded normally and preceded by its length

in bits. This length allows decoders that do not know the type contained in the open

type to skip the open type's value and continue decoding the rest of the value.

The length encoded before the contained type's encoding is encoded as a semi-

constrained whole number with a lower bound of zero.

Chapter 2. Data Definition Languages and Encoding Rules^ 23

BOOLEAN

BOOLEAN values are encoded in one bit long bit fields. The bit is set to one to represent

TRUE and zero for FALSE. They are not preceded by a preamble or a length determinant.

INTEGER

INTEGERs are encoded as constrained, semi-constrained or unconstrained whole num-

bers. They never have a preamble but require a length determinant in the semi-con-

strained and unconstrained cases.

INTEGERs with an upper and a lower bound such as INTEGER (10..20) are encoded

as constrained whole numbers. The encoded integer is preceded by its length determi-

nant only if its value range is 65,536 or greater. This is because the length of encoded

constrained whole numbers is variable when their value range is 65,536 and over.

INTEGERs, such as INTEGER (0..MAX), with a lower bound but no upper bound

are encoded as semi-constrained whole numbers and are preceded by their length deter-

minant.

INTEGERs with no constraints, such as INTEGER, are encoded as unconstrained

whole numbers and preceded by their length determinant.

ENUMERATED

ENUMERATED values are typically encoded as constrained INTEGERs. To calcu-

late the constraints, the defined ENUMERATED values are sorted in ascending order

and each is assigned an index starting with 0 for the first value, 1 for the second and

so on. The index of the value is encoded as a constrained integer whose constraints are

INTEGER(0..MAX-INDEX), where MAX-INDEX is the highest index in the ENUMER-

ATED type.

Chapter 2. Data Definition Languages and Encoding Rules^ 24

Fool ::= ENUMERATED { spring(7), summer(12), fall(16), winter(19) }

The value summer from Fool would be encoded like the value 1 of the type INTE-

GER(0..3). The resulting encoding would be a bit field with the bits '01'. The bits are

not preceded by a length determinant because the values of Fool are always 2 bits long.

Foo2 ::= ENUMERATED { spring(7), summer(12), fall(16), winter(19), ...I

If the extensions marker is present in an ENUMERATED type as in Foo2, the val-

ues cannot be completely constrained due to the possibility of future additions to the

ENUMERATED values. In these cases, ENUMERATED values are encoded as semi-

constrained INTEGERs with a lower bound of zero.

REAL

REAL values are encoded the same way as BER REAL values into an octet aligned bit

field. They have no preamble and are preceded by a length determinant. When using a

RELAY-SAFE-CANONICAL encoding flavor of PER, the CER[CDER92] REAL rules

are used.

BIT STRING

BIT STRINGs are encoded with no preamble and in some cases will be preceded by a

length determinant. The upper bound ub and lower bound lb on a BIT STRING's length,

as determined from SIZE subtyping or named bits, affect the way they are encoded.

BIT STRINGs with named bits are special because the named bits constrain the

encoded size of the BIT STRING much like a SIZE constraint. Using n to represent the

highest named bit number, BIT STRINGs with named bits are constrained as though

they were a BIT STRING (SIZE(0..(n+1))). For the FooBits type, lb = 0 and ub = 20.

Chapter 2. Data Definition Languages and Encoding Rules^ 25

type lower bound upper bound
BIT STRING 0 unset
BIT STRING (SIZE 6) 6 6
BIT STRING (SIZE (3..20)) 3 20
BIT STRING {night(0), day(1)} 0 2
BIT STRING {night(0), day(1),...} 0 unset

Table 2.2: Examples of length upper and lower bounds for BIT STRING types

If an extensions marker is present in the named bits, then the upper bound on size is

undefined ("unser) instead of (n + 1). Values of BIT STRING types with named bits

have their trailing zero bits removed.

FooBits ::= BIT STRING {spring(7), summer(12), fall(16), winter(19)}

The following rules are used to encode BIT STRING values. If ub equals zero, the

encoding is empty, with no length determinant.

If lb equals ub and lb is less than or equal to 16 bits, the bits are encoded in a bit

field of length lb bits without a length determinant.

If lb equals ub and lb is greater than 16 bits, the bits are encoded in an octet aligned

bit field of length lb bits without a length determinant.

Otherwise, the bits are encoded in an octet aligned bit field preceded by the length

determinant in bits as constrained by lb and ub. There is no unused bits octet as in BER.

OCTET STRING

OCTET STRINGs are encoded in a way similar to BIT STRINGs. They are encoded

with no preamble and in some cases will be preceded by a length determinant. As with

BIT STRINGS, the OCTET STRING encoding depends on the upper bound ub, and

lower bound lb of its size.

Chapter 2. Data Definition Languages and Encoding Rules^ 26

type lower bound upper bound
OCTET STRING 0 unset
OCTET STRING (SIZE 6) 6 6
OCTET STRING (SIZE (0..20)) 0 20

Table 2.3: Examples of upper and lower bounds for OCTET STRING types

If ub equals zero, the encoding is empty, with no length determinant.

If lb equals ub and lb is less than or equal to two octets, the octets are encoded in a

bit field of length lb octets and are not preceded by a length determinant.

If lb equals ub and lb is greater than two octets, the octets are encoded in an octet

aligned bit field of length lb octets and are preceded by length a determinant.

Otherwise, the octets are encoding an octet aligned bit field preceded by the length

determinant as constrained by lb and ub.

OBJECT IDENTIFIER

PER OBJECT IDENTIFIERs are encoded into an octet aligned bit field in the same

way as BER OBJECT IDENTIFIERs. They have no preamble and are always preceded

by their length determinant.

NULL

Nothing is encoded for a NULL value (no preamble, length or content).

SEQUENCE

SEQUENCE values usually have a preamble, never have a length determinant and their

content is their encoded components in the order of their declaration.

Chapter 2. Data Definition Languages and Encoding Rules^ 27

The SEQUENCE preamble contains information about extensions to the SEQUENCE

type definition and the presence of OPTIONAL and DEFAULT components.

If a SEQUENCE's ASN.1 definition has an extensions marker ("..."), the first bit

of the preable indicates whether components that were not in the original SEQUENCE

declaration are present in the encoding. If extension components are present in the

encoding, this bit is one otherwise it is zero.

The following bits in the preamble are for the optional or default elements of the

SEQUENCE, if any. There is one bit for each optional/default element and they are in

the order of their declaration. A value of 1 indicates that the element is present and a

0 means that the element is absent. Optional and default elements that are after the

extensions marker (if any) do not have bits in the preamble. If there are more than

65,536 optional or default elements, fragmentation is used for the preamble.

The preamble is written as a bit field and followed by the encodings of each of the

SEQUENCE's components in the order they were declared in.

In the RELAY-SAFE-CANONICAL case, default values will always be included in

the encoding with their bit in the preamble set to one.

There is a special procedure for encoding the components declared after the extensions

marker. There is a "presence" bit string that has a bit for each extension component; it

is encoded as if it were a BIT STRING (SIZE (1..MAX)). The extension components are

encoded as open types. As before, default values will always be included in the encoding

with their bit in the preamble set to one for the RELAY-SAFE-CANONICAL cases.

SET

SETs are encoded the same way as SEQUENCEs after ordering the SET's components

according to their tag values. This is different from BER, where SET components can

be encoded in any order. The ordering in PER removes the need for tags.

Chapter 2. Data Definition Languages and Encoding Rules^ 28

type lower bound upper bound
SEQUENCE OF Foo 0 unset
SEQUENCE (SIZE 10) OF Foo 10 10
SEQUENCE (SIZE (1..10)) OF Foo 1 10

Table 2.4: Examples of upper and lower bounds for SEQUENCE OF types

First, a SET's component's tags are sorted by class with UNIVERSAL first, followed

by APPLICATION, CONTEXT and PRIVATE. Within each of the class groupings, the

tags are sorted in ascending order of tag code. This order defines the order of a SET's

components such that the SET can be treated as a SEQUENCE.

For example, the SET Bari would be encoded in the same was as the SEQUENCE

Bar2.

Barl ::= SET
{

a [1] INTEGER,
b INTEGER,
c [0] INTEGER

}

Bar2 ::= SEQUENCE
{

b INTEGER,
c [0] INTEGER,
a [1] INTEGER

}

SEQUENCE OF

The SEQUENCE OF type's encoding consists of the number of components followed by

the ordered encoding of each component. Upper and lower bounds on the number of

components can affect how the number of components is encoded.

Chapter 2. Data Definition Languages and Encoding Rules^ 29

If the number of components in the SEQUENCE OF type is constant (upper bound

equals the lower bound), the number of components is not encoded. Otherwise, the

number of components is encoded as a length determinant. If the number of components

exceeds 65,536, the SEQUENCE OF encoding will be fragmented.

SET OF

The SET OF type is treated as if it were a SEQUENCE OF type. This means that the

ordering of SET OF types is significant, unlike BER.

CHOICE

In BER, tags are used to indicate which CHOICE component is present. In PER, the

index of the component is used instead. First, the CHOICE components are sorted by

their tags in the same manner as SET components. The first component is given the

index zero, the second component's index is one and so on. CHOICEs are encoded as

the index of the present CHOICE component followed by the encoded component.

If there is no extensions marker in the CHOICE's definition, the index is encoded as

a constrained whole number with a lower bound of zero and upper bound equal to the

index of the last component. The component is encoded as PER defines for its type and

appended to the encoded index.

If the CHOICE's definition contains an extensions marker, the index is encoded as

a semi-constrained whole number with a lower bound of zero. If the component from

the extensions root (i.e. it is declared before the "..." symbol in the CHOICE), then

it is encoded normally and appended to the encoded index. If the component is in the

extension additions (i.e. declared after the "..."), it is encoded as an open type.

Chapter 2. Data Definition Languages and Encoding Rules^ 30

Implementation Comments

Examination of PER shows that one pass, forward encoding and decoding can be sup-

ported. There appear to be no problems, such as BER's definite lengths for constructed

values, that require more than one pass. It is possible that the fragmentation required

for PER open types whose contained encoding is longer than 65,536 bits may require

more than one pass.

In most cases, the tag sorting operations for SETs and CHOICEs can be done at the

time the ASN.1 is compiled. No overhead needs to be incurred during the encoding and

decoding processes. Types whose first tag depends on their value (untagged CHOICE

and untagged ANY types) are the exceptions that may require some runtime sorting.

The potentially unaligned nature of PER encodings requires more powerful buffer

management routines to handle arbitrary bit alignment.

The lack of tags in PER simplifies code design. For BER implementations, tags are

difficult to deal with since a class and code of a type's tag is set by its enclosing type

(sometimes) but the tag's form is handled by the type itself (see Section 4.3). This can

lead to clumsy implementations.

ASN.1 compilers will need to do more work to generate PER encoders and decoders,

since more aspects of ASN.1, such as subtyping, affect PER. BER encoders and decoders

can be generated without using the subtyping information.

PER Summary

PER are an alternative to BER when more compact encodings are desired, however they

are less flexible. PER encodings cannot be decoded without knowing the original abstract

syntax. That is, PER encodings are not self-defining. There are four types of PER, based

on two factors: BASIC-PER versus RELAY-SAFE-CANONICAL PER, and ALIGNED

Chapter 2. Data Definition Languages and Encoding Rules^ 31

versus UNALIGNED. The RELAY-SAFE-CANONICAL PER is a restriction on some

options in BASIC PER such that a given value has exactly one encoding. This is a useful

feature for generating digital signatures. The UNALIGNED version of PER allows the

components of the encoded value to be written without octet alignment so that no bits

are wasted between the components, yielding a very compact transfer sytnax.

SETs are encoded the same way as SEQUENCEs after their elements have been sorted

according to their tag's class and code; note that this is a compile time operation (in

most cases) and therefore does not decrease performance. SET OF values are encoded

as if they were SEQUENCE OF values.

Tags are not encoded at all. Bitmaps before SEQUENCEs and SETs indicate the

presence of OPTIONAL and DEFAULT elements. For CHOICEs, the elements are sorted

by tags like SETs and each element is then assigned an index starting from zero. This

index is encoded before the CHOICE to indicate which element is present.

Only some primitive values will have their length encoded. Constructed values do

not have their length encoded; instead they rely on their components to define their

length. SET OF and SEQUENCE OF values have the number of components they

contain encoded before the components. For large OCTET STRING and BIT STRING

values, a general purpose, flat fragmentation scheme is used that allows the fragments to

be a maximum of 64K bytes long.

Subtyping information is used extensively by PER to reduce the size of the encoded

value. Specifically, value range information on INTEGERs and ENUMERATED types,

and size information on other types is used. For example, if an OCTET STRING is a

fixed-size, its length is not encoded. For ENUMERATED types and INTEGERS with

value ranges, the minimum number of bits that can represent the required range of values

is usually used.

Chapter 2. Data Definition Languages and Encoding Rules^ 32

2.5 XDR: External Data Representation

2.5.1 The XDR language

XDR [Sun87] was developed around 1984 to help implement Sun's Network File System

(NFS).

Rpcgen is Sun Microsystems' RPC (Remote Procedure Call) stub generator. It parses

remote procedure declarations and C-like data structures written in the XDR language

and produces the C data structures, RPC stubs and the XDR encoder and decoder source

code for the given data structures.

The rpcgen or XDR language is similar to C data structure definitions. This simplifies

implementing a protocol in C.

2.5.2 XDR Encoding Rules

XDR provides a set of encoding rules that operate optimally if the encoding and de-

coding hosts have 4 byte words, big endian integers and use the IEEE floating point

representation.

The eleven XDR primitive types are:

• int - 4 byte long integer, big endian 2's complement

• unsigned int - 4 byte long integer, big endian, positive binary number

• hyper - 8 byte long integer, big endian, 2's complement

• unsigned hyper - 8 byte long integer, big endian, positive binary number

• enum - encoded as an int

• bool - encoded as an int, 0 for false, 1 for true

Chapter 2. Data Definition Languages and Encoding Rules^ 33

• float - 4 bytes, IEEE float

• double - 8 bytes, IEEE double

• opaque - fixed or variable length uninterpreted data

• string - fixed or variable length ASCII data

• void - not encoded

The three XDR constructor types are:

• array - fixed or variable length array of variable or fixed-size elements

• struct

• discriminated union

XDR uses a "Basic Block Size". This means each component of an XDR encoding

is aligned to a 4 byte boundary to simplify decoding on machines with this architecture.

The alignment requirement may introduce padding bytes. Any padding bytes that are

necessary to maintain the basic block size are set to zeros. This and the careful design

of other parts of XDR, such as the bool boolean type, make XDR encodings canonical.

The typing information in XDR is implicit. If a protocol needs explicit type informa-

tion, one can easily modify an XDR specification to contain it.

2.6 NIDL/NDR

2.6.1 NIDL: Network Interface Definition Language

Apollo Computer's NIDL compiler for C is similar to rpcgen except that NDR encoders

are generated. There is also a different NIDL language and compiler to support Pascal.

Chapter 2. Data Definition Languages and Encoding Rules^ 34

NIDL has stronger remote procedure call semantics than XDR. For example, an

RPC may be defined as idempotent. NIDL and NDR are part of HP/Apollo's Network

Computing Architecture [Kong90].

NIDL/NDR have been adopted by the OSF/DCE [OSF/RPC90]. This may not be a

wise decision as NDR have difficulty in handling the aggregation of variable sized types.

For example, a structure can only contain one array with a variable number of elements;

all components of a structure except the last one must be of fixed size. Pointers cannot

be used to get around this limitation as NDR do not allow pointers. Because of the two

byte length fields for strings and arrays, NDR limits the number of characters in a string

and the number of array elements to less than 65,536. These limitations may lead to

overly restrictive data structures. Fortunately, the OSF/DCE RPC mechanism allows

negotiation of the encoding rules that are used for a connection.

2.6.2 NDR: Network Data Representation

The NDR [Zahn90] encoding rules are unique in that parts of the encoding rules are

defined by the host that does the encoding. For example, if running on a Sun, integers,

character strings and real numbers will be encoded in Sun's standard representation,

namely big endian integers, ASCII strings and IEEE real numbers. The encoded value

includes a format label that defines which type representations were used. The receiv-

ing host is responsible for converting these values to its internal representation when it

decodes the value.

This technique optimizes NDR for communication between hosts with the same archi-

tecture. Thus, hosts only need one encoding routine for each primitive type but they must

have different decoding routines for each type to support all of the other representations.

NIDL has twenty-five abstract types that map into nineteen NDR transfer types. In

addition to these types, there is a 4 byte long format label type to define how the integers,

Chapter 2. Data Definition Languages and Encoding Rules^ 35

reals and strings were encoded.

The primitive NIDL types are:

• small - 8 bit long, 2's complement integer

• short - 16 bit long, 2's complement integer

• int - 32 bit long, 2's complement integer

• long - 32 bit long, 2's complement integer

• hyper - 64 bit long, 2's complement integer

• unsigned small - 8 bit long binary integer

• unsigned short - 16 bit long binary integer

• unsigned int - 32 bit long binary integer

• unsigned long - 32 bit long binary integer

• unsigned hyper - 64 bit long binary integer

• short enum - 16 bit long 2's complement integer

• enum - 32 bit long 2's complement integer

• byte - 8 bits long uninterpreted data

• float - 32 bits

• double - 64 bits

• char - always unsigned, ASCII or EBCDIC

• boolean - 1 byte, 0 for false, non-zero for true

Chapter 2. Data Definition Languages and Encoding Rules^ 36

• bitset enum 32 bits

• short bitset enum 16 bits

• string() - null terminated string, ASCII or EBCDIC

• void - not encoded

The constructor NIDL types are:

• struct

• union

• array

NDR aligns values to 2, 4 or 8 byte boundaries depending on their type. This align-

ment technique can yield smaller encodings (fewer padding bytes) than by using XDR's

4 byte alignment.

All of the components of a struct, except the last one must be a fixed size. This

restriction alone makes it difficult to specify some complex data structures in NIDL.

There is a "transmit-as" mechanism to translate complex data structures into simpler

ones that can be encoded in NDR, but it does not solve the problem very well and another

layer is added to encoding and decoding.

2.7 C Based Encoding Rules

For comparison purposes, we defined C Based Encoding Rules. They show what per-

formance can be achieved by assuming that the communicating hosts share the same

architecture and that their protocol implementations use the same language and possibly

compiler. These encoding rules would only be viable under these restricted conditions.

Chapter 2. Data Definition Languages and Encoding Rules^ 37

When encoding with these encoding rules, we assume that the C data structure's

components have been carefully allocated contiguously from a single block of memory

and that the base address of this block and its size are known. The encoding process

simply traverses the C data structure in a depth first fashion and converts any non-null

pointers into an offset from the start of the block. Null (zero) pointers are left as is.

Since a zero offset could be a valid "address" (i.e. reference to the first component of the

encoding), pointer references cannot be made to the first component in the block.

The encoding process could also be done by sending the base address of the block

with the block instead of translating the pointers. The decoder would then subtract the

original base address from the pointers before adding the current base address. This

would eliminate the zero offset/null pointer ambiguity. We did not use this improvement

in our tests.

For decoding, we assume that the encoded value is in a contiguous representation

and that the base address of the encoded value's memory block is known. The decoding

process simply adds the current base address to the offsets while traversing the data

structure in a top down manner.

The C based encoding rules do not allow for cycles in the data structure or components

to be referenced more than once by pointer as this would complicate the algorithm and

provide a feature not found in the other encoding rules. This is not to say these features

could be not implemented.

Chapter 3

Related Work

3.1 Performance Issues and Ideas

There is a general notion that BER encoders and decoder are slow and produce large en-

codings. This may be due to the richness of ASN.1 and BER or existing widely-available

implementations such as ISODE. On this assumption people have devised optimizations

to BER: new "light-weight" encoding rules and compaction-oriented encoding rules.

BER encodings contain explicit type information that is often unnecessary for many

protocols since the receivers usually know the data types of the PDUs they receive. New

encoding rules such as PER have been devised to produce very compact encodings that

contain no type information.

To improve throughput, attempts have been made to minimize the cost of translation

between the local representation and the transfer representation. These "light weight"

encoding rules often resort to using fixed-size types that use the same representation as

commonly used CPUs.

Huitema, Chave and Doghri [Huitema89] defined "Light Weight" Encoding Rules

(LWER) as a faster replacement for BER. These rules used fixed-size integers and use

offsets for "pointers" .

Their later research [Huitema92] showed that their improved BER implementation

actually had throughput similar to LWER. LWER encoded values are also considerably

38

Chapter 3. Related Work^ 39

larger than equivalent BER values due to the use of fixed size types. Their other bench-

marks showed that BER can perform as well or better than XDR in some situations.

These tests show how important implementation can be.

In optimizing their BER implementation, they found the CPU intensive areas to be

memory management for decoding (35-50%) and procedure call overhead.

Fieldbus networks are designed to connect sensors, controllers and other related de-

vices for process and industrial control applications [Thomesse87]. Fieldbus applications,

due to real time constraints (bounded response times), need fast encoding rules. Com-

pact encodings are also desirable due to the limited bandwidth in Fieldbus networks.

The size of the implementation is also considered important for helping support low-cost

hardware.

Fieldbus PDUs are expressed in ASN.1 to help compatibility with MMS [MMS87]

but BER are deemed to be too slow. Several researchers have designed fast, Fieldbus

oriented replacements for BER.

Pimentel [Pimente188] defined a subset of BER for Fieldbus applications. Tags and

lengths are often combined into a single octet and no indefinite length encodings are per-

mitted. On average, the special encodings were 61% of the size of their BER equivalent.

Although no implementation results were presented, the overall throughput is assumed to

improve since smaller values can be sent faster and the assumption that smaller encodings

reduce the complexity of the encoding and decoding implementations.

Cardoso and Tovar [Cardoso92] also present a set of encoding rules optimized for

Fieldbus applications. These encoding rules are somewhat specialized in that they include

protocol information such as PDU type (request, response, error). They support explicit

and implicit type information. The authors note that handling OPTIONAL components

is expensive in BER and provide a simpler but limited mechanism for handling them.

No implementation benchmarks were presented.

Chapter 3. Related Work^ 40

Prasad and Gonzalo [Prasad93] found that Pimentel's encoding rules did not improve

throughput significantly. They defined another set of Fieldbus oriented encoding rules

similar to XDR to improve throughput while maintaining small encoded values.

In their rules, the only constructor types supported are SEQUENCE and CHOICE.

OPTIONAL SEQUENCE elements are not permitted. Only UNIVERSAL tags are used

and then only to determine the content of a CHOICE. All other types except strings

were fixed in size.

The performance of their encoding rules and implementation were measured and

compared to an ISODE based version. For larger PDUs, their values were 77% of the size

of the BER equivalent and the encoders and decoders took 29% and 72%, respectively, of

the time ISODE implementations used. For smaller PDUs, their encoding rules performed

better.

These papers indicate that simplifying encoding and decoding of primitive types and

their structuring can improve performance, but also that other implementation factors

are very important. Our goal was to find out what these factors are and how to simplify

their implementation. We also address how encoding rules can be designed to reduce the

impact of these factors on the cost of encoding and decoding.

Chapter 4

Performance Considerations for the Snacc ASN.1 Compiler

4.1 Snacc Design Process and Goals

In this section we present the techniques the snacc generated encoders and decoders use

to improve performance. A more in-depth presentation of using the compiler and the

generated code can be found in [Sample93-1].

Snacc was designed primarily to provide high-performance encoders and decoders. We

examined other ASN.1 compiler output and models to find problem areas. From these

observations we designed a model for our ASN.1 compiler to use. This model was tested

by implementing several encoders and decoders by hand before the compiler was written.

Finally, snacc was written to produce encoders and decoders that used our design model.

The following general considerations guided the design of the encoder and decoder

code generated by snacc:

• Do not make decisions at runtime that can be made at the time the ASN.1 is

compiled.

• Avoid decoding tags more than once.

• Minimize memory allocations and copying.

• Streamline everything.

41

ASN.1
Data

Structure
Definition

/
Type
Table

ASN.1
Useful
Types

or

Chapter 4. Performance Considerations for the Snacc ASN.1 Compiler^42

Figure 4.4: The snacc compiler produces C or C++ BER encode, BER decode, print
and free routines or a type table.

Key areas to optimize are buffer and memory management. Buffers are used to

hold encoded values and the memory management is used when building the internal

representation of values when decoding. These services are provided in the library that

supports the code snacc generates. Their interfaces were abstracted such that different

implementations of the buffer and memory managers could be used without modifying

the generated code. This simplifies the testing and optimizing of buffer and memory

management.

Another area that caused performance problems is the handling of BER definite

lengths on constructed values. The typical solution involves using an intermediate data

structure between the local and transfer representations. To avoid the memory allocation

and copying required by this technique, snacc implements backwards BER encoders.

C macros are used where possible to eliminate function call overhead for small, com-

monly used routines. Using macros with constant expressions as parameters allows

Chapter 4. Performance Considerations for the Snacc ASN.1 Compiler^43

smarter C compilers to do some of the calculations at compile time. In general, any

short-cuts that could be taken without sacrificing the robustness of code or bloating the

code size too much were used. Even so, the generated code can be quite large; large

reductions in the size of the binaries can be achieved by using optimizing C compilers.

Snacc behaves as follows. For each ASN.1 type an equivalent C data type, a BER

encoding routine, a BER decoding routine, a printing routine and a freeing routine are

generated. C values will also be generated from simple ASN.1 values. Each aspect of the

C code generation will be discussed in the next sections.

Snacc can also produce type tables that allow interpreted or table based encoding and

decoding. This is different from the compiled technique in that no code is generated for

the ASN.1 data structures. Instead, a machine readable description of the ASN.1 data

structure (defined in ASN.1 and stored in BER) is used to drive a generic encoding and

decoding engine. This technique has potential code size benefits but is not designed for

speed.

4.2 ASN.1 to C Data Structure Translation

Every ASN.1 type definition maps into a C typedef. SETs and SEQUENCEs map into

C structures and other simple types map into their obvious C counterpart.

Memory allocations can be expensive so snacc makes efforts to consolidate the data

structures. Small, simple types such as INTEGERs, BOOLEANs and REALs are directly

included in the structs of their enclosing SEQUENCE, SET or CHOICE unless they are

OPTIONAL. Snacc handles OPTIONAL OCTET STRING, BIT STRING and OBJECT

IDENTIFIER types in a special way to reduce memory allocations and frees.

The standard technique for handling OPTIONAL SET or SEQUENCE elements is

to reference the element type by pointer from the SET or SEQUENCE's C struct. If the

Chapter 4. Performance Considerations for the Snacc ASN.1 Compiler^44

pointer is NULL, then the component is not present. OCTET STRINGs, BIT STRINGs

and OBJECT IDENTIFIERs are included by value even when they are OPTIONAL

because they are small and contain an internal pointer that can be used to determine

their presence.

The SET OF and SEQUENCE OF types map into a generic list type which is doubly

linked and NULL terminated. The reverse link on the lists allows for simpler backwards

encoding.

4.3 Generated C Encoder Design

Snacc can generate two kinds of encoding routines for each ASN.1 type definition. One is

PDU oriented and encodes the type's tag, length and content and the other only encodes

the type's content. The generated encoders only call the content encoders, except in the

case of ANY and ANY DEFINED BY types where tagging information is not known in

the calling routine.

The most interesting thing about snacc generated encoders is the fact that they

encode backwards [Steedman90]. Instead of writing the first component of an encoding

and appending the rest in order, snacc encoders encode the last component and prepend

the others in order.

This "backwards" encoding technique simplifies the use of definite lengths on con-

structed values. Other encoders that encode forwards, such as those of CASN1 [Yang88]

[Neufeld90], use an intermediate buffer format so that a buffer containing the encoded

length of a constructed value can be inserted before its encoded content, after the con-

tent has been encoded. Use of intermediate representations can hurt performance. Other

compilers' approaches have been to only encode the indefinite length alternative for con-

structed values, however, this will not support some encoding rules such Distinguished

Chapter 4. Performance Considerations for the Snacc ASN.1 Compiler^45

Encoding Rules (DER) [CDER92] that require definite lengths.

The drawback of encoding backwards is that BER values cannot be written to stream

oriented connections as they are encoded. This removes the possibility of pipelining the

encode and transmission tasks.

Both definite and indefinite length encodings for constructed values' lengths are sup-

ported. The choice is made when compiling the generated code.

Handling tags for BER encoders and decoders is bothersome. The shared nature of

tag information between the enclosing type and the type itself is the root of the problem'.

Encoding tags is a common operation for BER encoders so it must be optimized.

For example, a SET may override the UNIVERSAL tag on an OCTET STRING

component by using IMPLICIT tagging. The SET controls the class and code of the tag

but the OCTET STRING itself handles the form of the tag. A typical implementation

would have the SET pass the tag's class and code as parameters to the OCTET STRINGs

encoding routine.

For all types except OCTET STRINGs, BIT STRINGs and those derived from them,

their tag form is known when the ASN.1 is compiled. OCTET STRING and BIT

STRING types are primitive types that can have "constructed" encodings so their tag

form can be either primitive or constructed. BER allows encoder implementations to

choose between the constructed and primitive forms. To avoid an encode time deci-

sion to determine the form, snacc supports only the non-constructed encoding of these

types. Snacc decoders will decode the constructed string types so BER conformance is

not sacrificed.

With the above restrictions, snacc can calculate the exact encoding of every tag at

ASN.1 compile time. To "encode" a tag, snacc generated encoders simply copy octet(s)

'The tag class and code can be defined by the enclosing type (via implicit tagging) while the type
itself defines the tag's form bit.

Chapter 4. Performance Considerations for the Snacc ASN.1 Compiler^46

to the buffer; the tag octet(s) are constants and require no encode time calculations.

4.4 Generated C Decoder Design

Snacc uses special techniques for representing and handling tags and provides a light-

weight memory manager to optimize the decoding process. As with encoding routines,

snacc can generate two kinds of decoding routines for each ASN.1 type definition. One

is PDU oriented and the other only decodes the type's content.

Tag representation is very important for decoding. Tag comparison is a common

decoding operation; it is used for determining which type is next or to verify that a

particular type is present. To simplify tag comparison and passing tags as parameters,

snacc uses long ints to hold tag values.

To streamline the decoding of tags, the encoded tag is copied directly into a long

int. The first octet of the tag is placed in the high byte of the long int with the rest

following. If a tag is only one octet long, the remaining bytes of the long int are zeroed.

This technique imposes a restriction on the maximum tag code that can be handled. For

a system with four byte long ints, the maximum tag code that can be represented is

221 ; this is far higher than can realistically be expected.

The shared nature of tag information can lead to tags being decoded more than once

in some implementations. For example, due to the unordered nature of SETs, SET

decoders need to decode the next tag to determine which component is to be decoded.

The CASN1 decoders decode the tag once in the SET decoder routine and again in the

component's decoding routine. This technique hurts performances and requires that the

value being decoded be held in a buffer that allows "backing up" so the tag can be

decoded again.

Snacc avoids decoding tags twice in these situations by passing the decoded tag in

Chapter 4. Performance Considerations for the Snacc ASN.1 Compiler^47

its long int form into every content decoding routine. All types have the tag and

length pairs on the content decoded by their enclosing type (e.g. SET), and the last

pair is passed to the content decoding routine. This allows the enclosing type and the

component type to use the tag information without decoding it twice 2 .

To support this technique, CHOICE types are a special case. If a type such as a

SET encloses an untagged CHOICE type it must decode the first tag in the CHOICE's

content. To handle this uniformly for tagged and untagged CHOICEs, the enclosing

type always decodes all of the tag and length pairs until the first tag and length of the

CHOICE content is decoded. Thus, the CHOICE decoding routine expects to be passed

the tag that determines which element is present in its value.

During the decoding process, memory is allocated to hold the local representation of

the value. Complex data structures can require many allocations and after the value has

been processed it is usually freed. Snacc generated decoders call the memory manager in

such a way that different memory management can easily be used. Section 4.8 describes

this in further detail.

Some decoder implementations use a special stack to hold tag and length information

while decoding. This stack must be large enough or be able to dynamically grow to

handle some large complex values. To eliminate the need for this stack and perhaps

improve memory locality, snacc uses local variables in each generated decode routine for

the tags and lengths. This technique may also make the code easier to understand for

users.

Snacc decoders ignore redundant length information. Explicit tagging in ASN.1 def-

initions yields encodings that have extra tag and length pairs before a value. Snacc

decoders only verify that the innermost length is correct (definite length cases only).

'Passing tag values on the stack is less costly than the CASN1 technique of decoding twice which calls
an extra routine. Only OCTET STRING, BIT STRING and CHOICE decoding routines will actually
use the tag parameter. Optimizing compilers can eliminate it for the routines that do not use it.

Chapter 4. Performance Considerations for the Snacc ASN.1 Compiler^48

To save memory, decoders generated by some other tools build values that reference

the data in the encoded PDU for types like OCTET STRING. Snacc decoded values do

not reference the BER data in any way for several reasons. One, the encoded value may be

held in some bizarre buffer making access to the value difficult. Two, with more encoding

rules being formalized, this technique may not always work since the encoded format may

be different from the desired internal format. Three, snacc decoders concatenate any

constructed BIT and OCTET STRINGs values when decoding, to simplify processing in

the application. The penalty for this is an extra copy for the string type components.

Some protocol implementations may benefit from directly referencing data in the

PDU buffer from the local representation. For example, the performance of an X.400 3

email implementation that receives PDUs from the transport layer in a single memory

block could save a copy by referencing the data directly. However, if UNALIGNED PER

were used to encode the X.400 PDU, the referenced string may not be octet aligned,

which limits the benefit of this technique.

4.5 Error Management

Error management is important but it must be implemented without incurring too much

cost for the common case where there are no errors. One method of streamlining error

management is to eliminate it by assuming that the decoded values are always correct.

This is not acceptable for a reliable implementation.

Snacc decoders can detect a variety of errors. All tagging errors are reported. SETs

must contain all non-OPTIONAL components and SEQUENCEs must be in order and

contain all non-OPTIONAL components. Extra components in SETs and SEQUENCEs

are considered an error. Errors will also be reported if you attempt to decode values that

3 X.400 PDUs are dominated by a large string body part.

Chapter 4. Performance Considerations for the Snacc ASN.1 Compiler^49

exceed the limitations of the internal representation (e.g. an integer that is larger than

a long int allows).

Snacc encoders only do minimal error checking; they assume that the value to be

encoded is well formed. The buffer writing routines called by the encoders will set a flag

if the buffer overflows or no memory is available to extend the buffer. After the buffer

write error flag is set, future buffer writes are treated as no-ops. When the encoding

routine returns, the user can check the status of this flag to ensure that the value was

encoded properly.

The decoding process is much more prone to errors. The value being decoded may

have errors from network transmission or a faulty encoder. Local resource errors, such

as insufficient memory, can also cause decoding errors.

To implement a complete yet light-weight error management scheme for the decoders,

we used the setjmp and longjmp functions [Kernighan88]. Previously, the availability

of these functions was very system dependent, however, they are now part of the ANSI

Standard C Library.

Before decoding begins, setjmp is called to record the current environment (processor

registers etc.). The environment value set by setjmp is then passed into the decoding

routine. Every decoding routine takes this parameter.

When the decoding routines encounter a serious error such as running out of memory

for the decoded value, they call longjmp with the environment value they were given as

a parameter, along with a unique error code. This "returns" execution directly to where

setjmp was called along with the error code.

The setjmp and longjmp based error management is simple and does not impact the

performance of decoding correctly encoded values (other than an extra parameter to

each decoding routine). Other error management techniques such as passing back error

codes that the calling functions must check will affect the decoding performance even for

Chapter 4. Performance Considerations for the Snacc ASN.1 Compiler^50

jmp_buf env;

if ((val = setjmp(env)) == 0)
BDecPersonnelRecord(&buf, &pr, &decodedLen, env);

else
{

decodeErr = TRUE;
fprintf(stderr,"ERROR - Decode routines returned 74\n",val);

}

Figure 4.5: The set jmp function is called before decoding

if (mandatoryElmtCount1 != 2)
{

Asn1Error("BDecChildInformationContent: ERROR - non-optional elmt\
missing from SET.\n");

longjmp(env, -108);
)-

Figure 4.6: The longjmp function is called to signal an error

correctly encoded values.

Figures 4.5 and 4.6 show code fragments that illustrate how snacc decoders use set jmp

and longjmp for error handling.

4.6 Compiler Directives

Snacc attempts to produce a C data structure definition that is compact while not too

restrictive. However, users can often make optimizations that snacc cannot. To allow this

form of optimization, snacc provides compiler directives that allow users to influence the

generated C data structure and the encoding and decoding routines. These can be used

to consolidate the data structure (by removing pointer references thus saving memory

allocations) or to replace the encode and decode routines with more efficient ones that

Chapter 4. Performance Considerations for the Snacc ASN.1 Compiler^51

are tailored to the target environment.

The compiler directives have the form:

--snacc <attribute>:"<value>" <attribute>:"<value>" .

The attribute is the name of one of the snacc defined attributes and the value

is what the attribute's new value will be. The attribute value pairs can be listed in

a single --snacc comment or spread out is a list of consecutive comments. Since these

directives are in ASN.1 comments, they do not make the ASN.1 unusable by other ASN.1

tools.

Compiler directives are only accepted in certain places in the ASN.1 code. Depending

on their location, the compiler directives affect type definitions or type references. The

directives for type definitions and references are different.

The following example illustrates their use. Assume a data structure always deals

with PrintableStrings that are null terminated. The default snacc string type is a

structure that includes a length and a pointer to the string's octets. To change the

default type to a simple pointer (char*) the best way would be define a new string type,

MyString as follows:

Foo ::= SET

{
si [0] MyString OPTIONAL,
s2 [1] MyString,

i1 [2] INTEGER
}

Bar ::= CHOICE

{
s1 MyString,
i1 INTEGER

}

Chapter 4. Performance Considerations for the Snacc ASN.1 Compiler^52

Bell ::= MyString

MyString ::= --snacc isPtrForTypeDef:"FALSE"
--snacc isPtrForTypeRef:"FALSE"
--snacc isPtrInChoice:"FALSE"
--snacc isPtrForOpt:"FALSE"
--snacc optTestRoutineName:"MYSTRING_NON_NULL"
--snacc genPrintRoutine:"FALSE"

--snacc genEncodeRoutine:"FALSE"
--snacc genDecodeRoutine:"FALSE"

--snacc genFreeRoutine:"FALSE"

--snacc printRoutineName:"printMyString"
--snacc encodeRoutineName:"EncMyString"

--snacc decodeRoutineName:"DecMyString"
--snacc freeRoutineName:"FreeMyString"
PrintableString --snacc cTypeName:"char*"

All but the last --snacc comment bind with the MyString type definition. The last

directive comment binds with the PrintableString type. The C data structure resulting

from the above ASN. 1 and snacc compiler directives is the following:

typedef char* MyString; /* PrintableString */

typedef struct Foo /* SET */
{

MyString s1; /* [0] MyString OPTIONAL */
MyString s2; /* [1] MyString */
Asnlnt il; /* [2] INTEGER */

} Foo;

typedef struct Bar /* CHOICE */
{

enum BarChoiceld
{

BAR_Sl,
BAR_I1

choiceld;

union BarChoiceUnion
{

MyString sl; /* MyString */

Chapter 4. Performance Considerations for the Snacc ASN.1 Compiler^53

Asnlnt ii; /* INTEGER */
} a;

} Bar;

typedef MyString Bell; /* MyString */

The compiler directives used on the MyString type have some interesting effects. No-

tice that MyString is not referenced by pointer in the CHOICE, SET, or type definition,

Bell. The snacc compiler directives are described fully in [Sample93-1].

4.7 Buffer Management

Encoding and decoding performance is greatly affected by the cost of writing to and

reading from buffers. Thus, efficient buffer management is necessary. Flexibility is also

important to allow integration of the generated encoders and decoders into existing envi-

ronments. To provide both of these features, the calls to the buffer routines are actually

macros that can be configured as desired. They must be configured prior to compiling

the encode/decode library and the generated code. Since virtually all buffer calls are

made from the encode/decode library routines, buffer routine macros should not bloat

code size significantly.

If a single, simple buffer type can be used in the target environment, the buffer routine

macros can be defined to call the macros for the simple buffer type. This results in the

buffer type being bound at the time the generated code is compiled, with no function call

overhead from the encode or decode routines. However, this also means that the encode

and decode library will only work with that buffer type.

If multiple buffer formats must be supported at runtime, the buffer macros can be

defined like the ISODE buffer calls, where a buffer type contains pointers to the buffer

routines and data of user defined buffer type. This approach will hurt performance since

each buffer operation will be an indirect function call.

Chapter 4. Performance Considerations for the Snacc ASN.1 Compiler^54

The backwards encoding technique used by snacc requires special buffer primitives

that write from the end of the buffer towards the front. The decoder routines require

forward buffer reading routines.

The encode and decode library routines deal with buffers via the BUF_TYPE type and

nine buffer routines with the following names and prototypes:

• unsigned char BufGetByte(BUF_TYPE b);

• unsigned char BufPeekByte(BUF_TYPE b);

• char* BufGetSeg(BUF_TYPE b, unsigned long int* lenPtr);

• void BufCopy(char* dst, BUF_TYPE b, unsigned long int* lenPtr);

• void BufSkip(BUF_TYPE b, unsigned long int len);

• void BufPutByteRvs(BUF_TYPE b, unsigned char byte);

• void BufPutSegRvs(BUF_TYPE b, char* data, unsigned long int len);

• int BufReadError(BUF_TYPE b);

• int BufWriteError(BUF_TYPE b);

To map the library's calls to buffer routines to your own buffer routines, a configura-

tion header file is used. For example, to configure snacc to use the buffer type MyBuffer,

the following would appear in the configuration file.

#include "my-buf.h"
#define BUF_TYPE MyBuffer**
#define BufGetByte(b)
#define BufGetSeg(b, lenPtr)
#define BufCopy(dst, b, lenPtr)
#define BufSkip(b, len)
#define BufPeekByte(b)

MyBufGetByte(b)
MyBufGetSeg(b, lenPtr)

MyBufCopy(dst, b, lenPtr)
MyBufSkip(b, len)
MyBufPeekByte(b)

Chapter 4. Performance Considerations for the Snacc ASN.1 Compiler^55

#define BufPutByteRv(b, byte)^MyBufPutByteRv(b, byte)
#define BufPutSegRv(b, data, len) MyBufPutSegRv(b, data, len)
#define BufReadError(b)^MyBufReadError(b)
#define BufWriteError(b)^MyBufWriteError(b)

4.8 Memory Management

Like buffer management, memory management is very important for efficient decoders.

Snacc decoders allocate memory to hold the decoded value. After the decoded value

has been processed it is usually freed. The decoding and freeing routines in the library

and the ones generated by snacc both use the memory manager. The decoders allocate

memory with the AsnlAlloc routine and the freeing routines call AsniFree.

The configuration header file allows the user to change the default memory manager

prior to compiling the library and the generated code. Snacc provides a particularly

efficient memory manager, discussed shortly, called "nibble memory".

The memory manager must provide three routines: AsnlAlloc, AsniFree and

CheckAsnlAlloc. These memory routines should have the following interfaces:

void* AsnlAlloc(unsigned long int size);
void AsnlFree(void* ptr);
int^CheckAsnlAlloc(void* ptr, ENV_TYPE env);

The decoders assume that AsnlAlloc returns a zeroed block of memory. This saves

explicit initialization of OPTIONAL elements with NULL in the generated decoders.

The ENV_TYPE parameter is used with the error management system for calls to longjmp.

To change the memory management system the configuration file needs to be edited.

For example, if performance is not an issue and you want to use calloc and free, the

configuration file would be as follows:

#include "malloc.h"

#define AsnlAlloc(size) calloc(1, size)

Chapter 4. Performance Considerations for the Snacc ASN.1 Compiler^56

#define AsnlFree(ptr)^free(ptr)
#define CheckAsnlAlloc(ptr, env)\

if ((ptr) == NULL)\
longjmp(env, -27);

The nibble memory system does not need explicit frees of each component so the

generated free routines are not needed. However, if you change the memory management

to use something like malloc and free you should use the generated free routines.

By default, snacc uses a nibble memory scheme to provide efficient memory man-

agement. Nibble memory works by getting a large block of memory from the 0/S for

allocating smaller requests. When the decoded PDU is no longer required by the applica-

tion the entire space allocated to the PDU can be freed by calling a routine that simply

resets a pointer. There is no need to use the snacc generated free routines to traverse

the entire data structure, freeing a piece at a time.

If calla c and free are used for memory management instead of nibble memory, the

generated free routines must be used to free the values. The generated free routines

hierarchically free all of a PDU's memory using a depth first algorithm

4.9 Novel Non-performance Related Features

In this section, the method snacc uses to handle the encoding and decoding of ANY

DEFINED BY types is described.

The ANY and ANY DEFINED BY type are classically the most irritating ASN.1

types for compiler writers. They rely on mechanisms outside of ASN.1 to specify what

types they contain. The 1992 ASN.1 standard has rectified this by adding much stronger

typing semantics and eliminating macros.

The ANY DEFINED BY type can be handled automatically by snacc if the SNMP

OBJECT-TYPE [snmp90] macro is used to specify the identifier value to type mappings.

Chapter 4. Performance Considerations for the Snacc ASN.1 Compiler^57

The identifier can be an INTEGER or OBJECT IDENTIFIER. Handling ANY types

properly will require modifications to the generated code since there is no identifier

associated with the type.

The general approach used by snacc to handle ANY DEFINED BY types is to lookup

the identifier value in a hash table for the identified type. The hash table entry contains

information about the type such as the routines to use for encoding and decoding.

Two hash tables are used, one for INTEGER to type mappings and the other for

OBJECT IDENTIFIER to type mappings. Snacc generates an InitAny routine for each

module that uses the OBJECT-TYPE macro. This routine adds entries to the hash

table(s). The InitAny routine(s) is called once before any encoding or decoding is done.

The hash tables are constructed such that an INTEGER or OBJECT IDENTIFIER

value will hash to an entry that contains:

• the anyId

• the INTEGER or OBJECT IDENTIFIER that maps to it

• the size in bytes of the identified data type

• a pointer to the type's PDU encode routine

• a pointer to the type's PDU decode routine

• a pointer to the type's print routine

• a pointer to the type's free routine

The referenced encode and decode routines are PDU oriented in that they encode the

type's tag(s) and length(s) as well as the type's content.

Snacc builds an enum called AnyId that enumerates each mapping defined by the

OBJECT-TYPE macros. The name of the value associated with each macro is used

Chapter 4. Performance Considerations for the Snacc ASN.1 Compiler^58

as part of the enumerated identifier. The anyld in the hash table holds the identified

type's AnyId enum value. The anyld is handy for making decisions based on the received

identifier, without comparing OBJECT IDENTIFIERs. If the identifiers are INTEGERs

then the anyld is less useful.

With ANY DEFINED BY types, it is important to have the identifier decoded before

the ANY DEFINED BY type is decoded. Hence, an ANY DEFINED BY type should not

be declared before its identifier in a SET since SETs are un-ordered. An ANY DEFINED

BY type should not be declared after its identifier in a SEQUENCE. Snacc will print a

warning if either of these situations occur.

The hash tables may be useful to plain ANY types which do not have an identifier field

like the ANY DEFINED BY types; the OBJECT-TYPE macro can be used to define the

mappings and the SetAnyTypeBylnt or SetAnyTypeByDid routine can be called with the

appropriate identifier value before encoding or decoding an ANY value. The compiler

will insert calls to these routines where necessary with some of the arguments left as

"???" . There will usually be a "/* ANY - Fix me ! *1" comment before code that

needs to be modified to correctly handle the ANY type. The code generated from an

ASN.1 module that uses the ANY type will not compile without modifications.

OPTIONAL ANYs and ANY DEFINED BY types that have not been tagged are a

special problem for snacc. Unless they are the last element of a SET or SEQUENCE,

the generated code will need to be modified. Snacc will print a warning message when it

encounters one of these cases.

To illustrate how ANY DEFINED BY values are handled, we present typical encoding

and decoding scenarios. Each ANY or ANY DEFINED BY type is represented in C by

the AsnAny type which contains only a void* named value to hold a pointer to the value

and a AnyInfo* named ai which points to a hash table entry.

When encoding, before the ANY DEFINED BY value is encoded, SetAnyTypeBy0id

Chapter 4. Performance Considerations for the Snacc ASN.1 Compiler^59

or SetAnyTypeBylnt (depending on the type of the identifier) is called with the current

identifier value to set the AsnAny value's ai pointer to the proper hash table entry. Then

to encode the ANY DEFINED BY value, the encode routine pointed to from the hash

table entry is called with the value void* from the AsnAny value. The value void* in

the AsnAny should point to a value of the correct type for the given identifier, if the user

set it up correctly. Note that setting the void* value is not type safe; one must make

sure that the value's type is the same as indicated by the identifier.

For decoding, the identifier must be decoded prior to the ANY DEFINED BY value

otherwise the identifier will contain an uninitialized value. Before the ANY or ANY

DEFINED BY value is decoded, SetAnyTypeByOid or SetAnyTypeBylnt (depending on

the type of the identifier) is called to set the AsnAny value's ai pointer to the proper

hash table entry. Then a block of memory of the size indicated in the hash table entry

is allocated, and its pointer stored in the AsnAny value's void* entry. Then the decode

routine pointed to from the hash table entry is called with the newly allocated block as

its value pointer parameter. The decode routine fills in the value assuming it is of the

correct type.

There is a problem with snacc's method for handling ANY DEFINED BY types for

specifications that have two or more ANY DEFINED BY types that share some identifier

values. Since only two hash tables are used and they are referenced using the identifier

value as a key, duplicate identifiers will cause unresolvable hash collisions.

4.10 C++ Design

The C++ backend of snacc was designed after the C backend had been written. The

basic model that the generated C++ uses is similar to that of the generated C, but

benefits from the object oriented features of C++.

Chapter 4. Performance Considerations for the Snacc ASN.1 Compiler^60

Some cleaner designs were rejected either due to their poor performance or the in-

ability of the available C++ compiler to handle certain language features.

Tags and lengths would fit nicely into their own classes but performance was consid-

erably worse than the technique used in the C model. The C design was retained in the

C++ model for this reason.

For error management, C++'s try and catch [Stroustrup9l] are obvious replacements

for the setjmp and longjmp used by the C decoders. Unfortunately, this is a newer C++

feature and was not yet supported.

C++ templates are very attractive for type safe lists (for SET OF and SEQUENCE

OF) without duplicating code. Since template support was weak in the available C++

compiler, templates were rejected. Instead, each SET OF and SEQUENCE OF type

generates its own new class with all of the standard list routines.

Every ASN.1 type is represented by a C++ class with the following characteristics:

1. inherits from the AsnType base class

2. has a parameterless constructor

3. has a clone method, Clone

4. has a PDU encode and decode method, BEnc and BDec

5. has a content encode and decode method, BEncContent and BDecContent

6. has top level interfaces to the PDU encode and decode methods (handles the setjmp

etc.) for the user, BEncPdu and BDecPdu

7. has print method, Print

The following C++ fragment shows the class features listed above in greater detail:

Chapter 4. Performance Considerations for the Snacc ASN.1 Compiler^61

class Foo : public AsnType
{

// data members

public:

Foo(); // requires parameterless constructor

// PDU (tags/lengths/content) encode and decode routines
AsnLen BEnc(BUF_TYPE b);

void BDec(BUF_TYPE b, AsnLen& bytesDecoded, ENV_TYPE env);

// content encode and decode routines
AsnLen BEncContent(BUF_TYPE b);

void BDecContent(BUF_TYPE b, AsnTag tag, AsnLen elmtLen,
AsnLen& bytesDecoded, ENV_TYPE env);

// methods most likely to be used by your code.
// Returns non-zero for success

int BEncPdu(BUF_TYPE b, AsnLen& bytesEncoded);
int BDecPdu(BUF_TYPE b, AsnLen& bytesDecoded);

void Print(ostream& os);
AsnType* Clone();

In brief, the AsnType provides a base class that has virtual BEnc, BDec and Clone

routines. The purpose of this class is to provide a generic ASN.1 type class that can

be used to handle ANY and ANY DEFINED BY types. The Clone 4 routine is used to

generate a new instance (not a copy) of the object by calling the constructor of the object

that it is invoked on. This allows the ANY DEFINED BY type decoder to create a new,

initialized object of the correct type from one stored in a hash table when decoding.

The virtual BDec method of the newly created object is called from AsnAny class's BDec

method. When encoding, the AsnAny objects call the virtual BDec method of the type

they contain.

4 Clone is a poorly chosen name. NewInstance would be better.

Chapter 4. Performance Considerations for the Snacc ASN.1 Compiler^62

4.11 Table Driven Encoding and Decoding

Snacc can generated type tables as well as source code. Type tables can be used instead of

generated routines for encoding and decoding. A type table can be loaded during runtime

and table routines from the library can use the ASN.1 type information in the type table

to encode, decode and for other things. The current table routines only support C.

No C code specific to the ASN.1 data structure in a type table is used by the table

routines. When decoding using a type table, the decoding routine builds a data structure

for the local representation using some simple rules.

The rules for building a C data structure during decoding are as follows. For SE-

QUENCEs and SETs the decoder will allocate an array of void* types. The array has

one entry for each SET component. Each entry in the array points to a value of the

expected type.

The standard snacc library types are used for the primitive and list types. CHOICE

types are similar to the ones snacc generates except the union is replaced with a void*

since no type checking is done. CHOICEs are represented by a struct with a long

int to define the element that is present and void* to point to the component of the

CHOICE that is present.

The table driven encoder expects values passed to it for encoding to be of the same

structure.

Dealing with a complex data structure is difficult without a C definition for it. Type

tables can be used to generate a header file that contains a friendly, properly typed

version of the data structure that the table routines will use for the given type table.

The table routines do not use this header file but the user can in his code.

Appendix C contains the ASN.1 definition of the type tables snacc generates. The

type table data structure was defined in ASN.1 so that type tables are simple to encode

Chapter 4. Performance Considerations for the Snacc ASN.1 Compiler^63

to disk by using the snacc generated encoding routines. Conceivably, these type tables

could be sent over a network to dynamically configure a network device or to configure

network management and protocol testing tools.

Chapter 5

Implementation of the Snacc Compiler

5.1 Snacc Compiler Design

The snacc compiler is implemented with yacc, lex (actually GNU's equivalents, bison

and flex), and C. Despite the shortcomings of lex and yacc, they provide reasonable

performance without too much programming effort. Since yacc parsers are extremely

difficult to modify during runtime, any macro that the compiler is to handle must be

hand coded into the ASN.1 yacc grammar followed by recompilation of snacc. Macro

definitions do not need special consideration since they are skipped by the compiler.

Macro definitions and complex value notation are kept as text in the data structure

resulting from a parse. This text can be parsed (via modifying the compiler) if desired.

The syntax of the ASN.1 language was not initially designed with machine processing

in mind. The ASN.1 grammar contains several ambiguities, and features such as macros

allow users to change the grammar. The fact that types can be referenced before they

are defined complicates parsing.

To handle the anti-compiler nature of ASN.1's syntax, snacc makes several passes on

the parse tree data structure when compiling. The term "pass" is a bit misleading as

none of these traversals creates temporary files; this allows snacc to process large ASN.1

specifications quite quickly. The compiler passes are explained in the next sections. The

main passes of the compiler are executed in the following order:

1. Parse useful types ASN.1 module.

64

Chapter 5. Implementation of the Snacc Compiler^ 65

2. Parse all user specified ASN.1 modules.

3. Link local and imported type references in all modules.

4. Parse values in all modules.

5. Link local and imported value references in all modules.

6. Process any macro types.

7. Normalize types.

8. Mark recursive types and signal any recursion related errors.

9. Check for semantic errors in all modules.

10. Generate C/C++ type information for each ASN.1 type.

11. Sort the types from least dependent to most dependent.

12. Generate the C/C++ encoders and decoders.

5.2 Pass 1: Parsing the Useful Types Module

The ASN.1 useful types are not hardwired into snacc. Instead they have been placed in

a separate ASN.1 module. This allows the user to define his own useful types or re-define

the existing ones without modifying snacc . This also has the benefit that names of useful

types are not key words in the lexical analyzer. This step is not really a compiler pass

on the module data, however it is described as one for simplicity.

Snacc handles the useful types module differently from the other modules. Instead

of parsing the module and generating code for it, snacc parses the module and makes

the types in it accessible to all of the other modules being parsed. Note that the other

Chapter 5. Implementation of the Snacc Compiler^ 66

modules do not need to explicitly import from the useful types module. See Section 5.4

for more information on how useful types affect linking.

The encode, decode and other routines for the useful types are in the runtime library.

Currently, the useful types library routines are the same as the ones the compiler would

normally generate given the useful types module. However, since they are in the library,

they can be modified. For example, one could check character sets (string types), or use

local time formats to represent their BER equivalent (UTCTime, GeneralizedTime).
The following types are in the useful types module:

ASN-USEFUL DEFINITIONS ::=
BEGIN

ObjectDescriptor ::= [UNIVERSAL 7] IMPLICIT OCTET STRING
NumericString ::= [UNIVERSAL 18] IMPLICIT OCTET STRING
PrintableString ::= [UNIVERSAL 19] IMPLICIT OCTET STRING
TeletexString^::= [UNIVERSAL 20] IMPLICIT OCTET STRING
T61String^::= [UNIVERSAL 20] IMPLICIT OCTET STRING
VideotexString^::= [UNIVERSAL 21] IMPLICIT OCTET STRING
IA5String^::= [UNIVERSAL 22] IMPLICIT OCTET STRING
GraphicString^::= [UNIVERSAL 25] IMPLICIT OCTET STRING
VisibleString^::= [UNIVERSAL 26] IMPLICIT OCTET STRING
IS0646String^::= [UNIVERSAL 26] IMPLICIT OCTET STRING
GeneralString^::= [UNIVERSAL 27] IMPLICIT OCTET STRING
UTCTime^::= [UNIVERSAL 23] IMPLICIT OCTET STRING
GeneralizedTime ::= [UNIVERSAL 24] IMPLICIT OCTET STRING

EXTERNAL
^

[UNIVERSAL 8] IMPLICIT SEQUENCE
{

direct-reference^OBJECT IDENTIFIER OPTIONAL,
indirect-reference^INTEGER OPTIONAL,
data-value-descriptor ObjectDescriptor OPTIONAL,
encoding CHOICE

single-ASN1-type [0] OCTET STRING, -- should be ANY
octet-aligned^[1] IMPLICIT OCTET STRING,
arbitrary^[2] IMPLICIT BIT STRING

}

END

Chapter 5. Implementation of the Snacc Compiler^ 67

5.3 Pass 2: Parsing ASN.1 Modules

During this pass, all of the specified modules are parsed into the Module data structure.

The ASN.1 source files are not consulted again. Yacc and lex are doing the work in this

step.

A lexical tie-in is where the yacc parser puts the lexical analyzer into a different mode

(and is usually considered a hack). The different modes tokenize symbols differently,

which is useful for skipping well delimited sections that cannot be parsed easily by a

yacc parser on the first pass. Lexical tie-ins are used in two places to simplify the ASN.1

grammar sufficiently for yacc and lex . There are two special modes in the lexical analyzer,

one for ASN.1 macro definitions and the other for ASN.1 values enclosed in {}'s.

The lexical tie-in for scanning macro definition bodies works with macro definitions

of the following form:

<upper case identifier> MACRO ::= BEGIN ... END

Everything between the BEGIN and END is stuffed into a string by lex and passed

back as single token to the yacc parser.

Values within {}'s are parsed in a similar way. Value parsing cannot really be done at

this stage since complete type information is needed and the types are not fully parsed

or linked yet.

Most syntax errors are reported during this pass. If syntax errors are encountered,

snacc will report as many as it can from the offending module before the parser is hope-

lessly lost. If the types and values are separated with semi-colons, the parser can recover

after a syntax error and attempt to find more errors in that module before exiting.

Chapter 5. Implementation of the Snacc Compiler^ 68

5.4 Pass 3: Linking Types

The third pass links all type references 1 . Snacc attempts to resolve any currently visible

(i. e. not in macro definitions or constructed values) type reference. This includes type

references in simple value definitions and subtyping information. The useful types module

(if given) is linked first.

Snacc will exit after this pass if any type references could not be resolved. Error

messages with file and line number information will be printed to stderr.

First, each module identifier is checked for conflicts with the others. If the module

identifier includes an OBJECT IDENTIFIER, snacc only checks for conflicts with the

other module identifier OBJECT IDENTIFIERs. When only a module name is pro-

vided, snacc checks for conflicts with the other module names, even if the other module

identifiers include OBJECT IDENTIFIERs. If the OBJECT IDENTIFIER of a module

identifier contains any value references, it will be ignored for module look-up purposes.

Note that value references within the module identifier OBJECT IDENTIFIERs are not

allowed in the 1992 version of ASN.1 due to the difficulty in module name resolution.

Two modules with the same name but different OBJECT IDENTIFIERs are not

considered an error within ASN.1. However, because the generated files use the module

name as part of their name, the code generation pass will fail.

Next, each module's import lists are resolved by finding the named modules and then

verifying that the named module contains all of the types imported from it. Then for each

module, each type reference (except those of the form modulename. typename) is assumed

to be a local type reference and the linker attempts to find a local type definition of the

same name. If a matching local definition is found, the type reference is resolved and the

linker continues with the next type reference.

'This pass also counts and stores the number of times a type definition is referenced locally and from
other modules. This information is used during the type sorting pass.

Chapter 5. Implementation of the Snacc Compiler^ 69

For each type reference of the form modulename.typename, the linker looks in the

module with name modulename for the type typename. If the type is found the reference

is resolved, otherwise a linking error is reported. Note that this form of type reference

provides a special scope that does not conflict with other local or imported types in

that module. For type references that failed to resolve locally and are not of the form

modulename.typename, the linker looks in the import lists of the current type reference's

module for a type to resolve with. If the type is found in the import lists, the reference

is resolved.

For the remaining unresolved type references (failed local and legal import resolution

and are not of the form modulename.typename), the linker looks in the useful types

module. If the type is found in the useful types module then the reference is resolved,

otherwise a linking error is reported. Note that when a useful types module is specified,

it is globally available to all modules, but it has the lowest linking priority. That is, if a

type reference can be resolved legally without the useful types module, it will be.

Some type checking must be done in this pass to link certain types properly. These

include:

• a SELECTION type must reference a field of a CHOICE type.

• a COMPONENTS OF type in a SET must reference a SET.

• a COMPONENTS OF type in a SEQUENCE must reference a SEQUENCE.

5.5 Pass 4: Parsing Values

The fourth pass attempts to parse any value that is enclosed in {}'s. INTEGERS, REALs

and BOOLEANS that are not enclosed in braces are parsed in the first pass. The value

parser uses each value's type information to help parse the value. Values within {}'s

Chapter 5. Implementation of the Snacc Compiler^ 70

hidden within types such as default values and parts of subtypes are not parsed. Since

subtypes and default values do not affect the generated code, upgrading the value parser

in this respect is not very useful.

The only type of value in {}'s that is parsed is the OBJECT IDENTIFIER. All of

the OBJECT IDENTIFIER value forms are supported but snacc loosens the restrictions

on using arc names defined in the OBJECT IDENTIFIER tree. ASN.1 allows OBJECT

IDENTIFIER values to reference special built-in arc names from the OBJECT IDEN-

TIFIER tree defined in Annexes B, C and D of CCITT X.208. For example the first

arc in an OBJECT IDENTIFIER value can be either ccitt, iso or joint-iso-ccitt. The

acceptable arc names are context dependent; for example the second arc can be one of

standard, registration-authority, member-body or identified-organization only if the first

arc was iso or 1.

Snacc uses a simplified algorithm to handle references to the arc names defined in the

OBJECT IDENTIFIER tree. Any arc value that is represented by a single identifier is

checked to see if it is one of the arc names defined in the OBJECT IDENTIFIER tree;

context is ignored. If the identifier matches one of the arc names then its value is set

accordingly. The lack of context sensitivity in snacc's algorithm may cause the arc name

to link with an arc name from the OBJECT IDENTIFIER tree when a local or imported

INTEGER was desired. If this happens, snacc will produce an erroneous C/C++ value

definition for that OBJECT IDENTIFIER. The following is the list of special arc names

that snacc understands.

• ccitt = 0

• iso = 1

• joint-iso-ccitt = 2

• standard = 0

Chapter 5. Implementation of the Snacc Compiler^ 71

• registration-authority = 1

• member-body = 2

• identified-organization = 3

• recommendation = 0

• question = 1

• administration = 2

• network-operator = 3

5.6 Pass 5: Linking Values

The fifth pass links value references. The value linker looks for value references to resolve

in value definitions and type definitions, including default values and subtyping infor-

mation. The value linking algorithm is virtually identical to the type linking pass (see

Section 5.4).

Currently the value parsing is limited to OBJECT IDENTIFIER values. Simple

values that are not between {}'s are parsed in the first pass. Here is an example that

illustrates the OBJECT IDENTIFIER parsing and linking The following values:

foo OBJECT IDENTIFIER ::= { joint-iso-ccitt 2 88 28 }

bar OBJECT IDENTIFIER ::= { foo 1 }

bell INTEGER ::= 2

gumby OBJECT IDENTIFIER ::= { foo bell }

pokie OBJECT IDENTIFIER ::= { foo stimpy(3)}

are equivalent to this:

foo OBJECT IDENTIFIER ::= { 2 2 88 28 }

Chapter 5. Implementation of the Snacc Compiler^ 72

bar OBJECT IDENTIFIER ::= { 2 2 88 28 1 }

bell INTEGER ::= 2

gumby OBJECT IDENTIFIER ::= { 2 2 88 28 2}

pokie OBJECT IDENTIFIER ::= { 2 2 88 28 3}

5.7 Pass 6: Processing Macros

The fifth pass processes macros. For all macros currently handled, snacc converts type

definitions inside the macro to type references and puts the type definition in the normal

scope. This way, the code generator does not have to know about macros to generate

code for the types defined within them.

The only macro that receives any special processing is the SNMP OBJECT-TYPE

macro. This macro's information defines an OBJECT IDENTIFIER or INTEGER to

type mapping for use with any ANY DEFINED BY type. Note that the OBJECT-

TYPE macro has been extended beyond its SNMP definition to allow integer values for

INTEGER to type mappings.

ASN.1 allows you to define new macros within an ASN.1 module; this can change

the grammar of the ASN.1 language. Since snacc is implemented with yacc and yacc

grammars cannot be modified easily during runtime, snacc cannot change its parser in

response to macro definitions it parses.

Any macro that snacc can parse has been explicitly added to the yacc grammar before

compiling snacc . When a macro that snacc can parse is parsed, a data structure that

holds the relevant information from the macro is added to the parse tree. The type and

value linking passes as well as the macro processing and possibly the normalization pass

need to be modified to handle any new macros that you add.

The following macros are parsed:

Chapter 5. Implementation of the Snacc Compiler^ 73

• OPERATION (ROS)

• ERROR (ROS)

• BIND (ROS)

• UNBIND (ROS)

• APPLICATION-SERVICE-ELEMENT (ROS)

• APPLICATION-CONTEXT

• EXTENSION (MTSAS)

• EXTENSIONS (MTSAS)

• EXTENSION-ATTRIBUTE (MTSAS)

• TOKEN (MTSAS)

• TOKEN-DATA (MTSAS)

• SECURITY-CATEGORY (MTSAS)

• OBJECT (X.407)

• PORT (X.407)

• REFINE (X.407)

• ABSTRACT-BIND (X.407)

• ABSTRACT-UNBIND (X.407)

• ABSTRACT-OPERATION (X.407)

Chapter 5. Implementation of the Snacc Compiler^ 74

• ABSTRACT-ERROR (X.407)

• ALGORITHM (X.509)

• ENCRYPTED (X.509)

• PROTECTED (X.509)

• SIGNATURE (X.509)

• SIGNED (X.509)

• OBJECT-TYPE (SNMP)

However, no code is generated for these macros. As stated above, only the OBJECT-

TYPE macro affects the encoders and decoders.

5.8 Pass 7: Normalizing Types

The sixth pass normalizes the types to make code generation simpler. The following is

done during normalization:

1. COMPONENTS OF types are replaced with the contents of the SET or SE-

QUENCE components that they reference.

2. SELECTION types are replaced with the type they reference.

3. SEQUENCE, SET, CHOICE, SET OF and SEQUENCE OF definitions embedded

in other types are made into separate type definitions.

4. For modules in which "IMPLICIT TAGS" is specified, tagged type references such

as " [APPLICATION 2] Foo" are marked IMPLICIT if the referenced type ("Foo"

in this case) is not an untagged CHOICE or untagged ANY type.

Chapter 5. Implementation of the Snacc Compiler^ 75

5. INTEGERs with named numbers, BIT STRINGs with named bits and ENUMER-

ATED types embedded in other types are made into separate type definitions.

The COMPONENTS OF and SELECTION type simplifications are obvious but the

motivation for the others may not be so obvious. The third type of simplification makes

type definitions only one level deep. This simplifies the decoding routines since snacc

uses local variables for expected lengths, running length totals and tags instead of stacks.

The implicit references caused by "IMPLICIT TAGS" are marked directly on type

references that need it. This saves the code generators from worrying about whether

implicit tagging is in effect and which types can be referenced implicitly.

The types with named numbers or bits are made into a separate type to allow the

C++ back end to simply make a class that inherits from the INTEGER or BIT STRING

class and defines the named numbers or bits inside an enum in the new class.

5.9 Pass 8: Marking Recursive Types

This pass marks recursive types and checks for recursion related errors. To determine

whether a type definition is recursive, each type definition is traced to its leaves, checking

for references to itself. Both local and imported type references within a type are followed

to reach the leaves of the type. A leaf type is a simple (non-aggregate) built-in type such

as an INTEGER or BOOLEAN. At the moment, recursion information is only used

during the type dependency sorting pass.

Snacc attempts to detect two types of recursion related errors. The first type of error

results from a recursive type that is composed solely of type references. Types of this

form contain no real type information and would result in zero-sized values. For example

the following recursive types will generate this type of warning:

A : := B

Chapter 5. Implementation of the Snacc Compiler^ 76

B : := C

C : := A

The other recursion related error results from a type whose value will always be infinite

in size. This is caused by recursion with no optional component that can terminate the

recursion. If the recursion includes an OPTIONAL member of a SET or SEQUENCE, a

CHOICE member, or a SET OF or SEQUENCE OF, the recursion can terminate.

Both of the recursion errors generate warnings from snacc but will not stop code

generation.

5.10 Pass 9: Semantic Error Checking

The ninth pass checks for semantic errors in the ASN.1 specification that have not been

checked already. Both the type linking pass and the recursive type marking pass do some

error checking as well. Snacc attempts to detect the following errors in this pass:

• Elements of CHOICE and SET types must have distinct tags.

• CHOICE, ANY and ANY DEFINED BY types cannot be implicitly tagged.

• Type and value names within the same scope must be unique.

• Field names in a SET, SEQUENCE or CHOICE must be distinct. If a CHOICE

is a member of a SET, SEQUENCE or CHOICE and has no field name, then

the embedded CHOICE's field names must be distinct from its parents to avoid

ambiguity in value notation.

• An APPLICATION tag code can only be used once per module.

• Each value in a named bit list (BIT STRINGs) or named number list (INTEGERs

and ENUMERATED) must be unique within its list.

Chapter 5. Implementation of the Snacc Compiler^ 77

• Each identifier in a named bit list or named number list must be unique within its

list.

• The tags on a series of one or more consecutive OPTIONAL or DEFAULT SE-

QUENCE elements and the following element must be distinct.

• A warning is given if an ANY DEFINED BY type appears in a SEQUENCE before

its identifier or in a SET. These would allow encodings where the ANY DEFINED

BY value was prior to its identifier in the encoded value; ANY DEFINED BY

values are difficult to decode without knowing their identifier.

Snacc does not attempt to detect the following errors due to the limitations of the

value parser.

• SET and SEQUENCE values can be empty ({}) only if the SET or SEQUENCE

type was defined as empty or all of its elements are marked as OPTIONAL or

DEFAULT.

• Each identifier in a BIT STRING value must be from that BIT STRING's named

bit list (this could be done in an improved value linker instead of this pass).

5.11 Pass 10: Generating C/C++ Type Information

This pass fills in the target language type information. The process is different for the

C and C++ back ends since the C++ ASN.1 model is different and was developed later

(more design flaws have been corrected for the C++ backend).

For C and C++ there is an array that contains the type definition information for

each built-in type. For each built-in ASN.1 type, the C array holds:

typename the C typedef name for this type definition.

Chapter 5. Implementation of the Snacc Compiler^ 78

isPdu TRUE if this type definition is a PDU. This is set for types used in ANY and ANY

DEFINED BY types and those indicated by the user via compiler directives. Ad-

ditional interfaces to the encode and decode routines are generated for PDU types.

The SNMP OBJECT-TYPE macro is the current means of indicating whether a

type is used within an ANY or ANY DEFINED BY type.

isPtrForTypeDef TRUE if other types defined solely by this type definition are defined

as a pointer to this type.

isPtrForTypeRef TRUE if type references to this type definition from a SET or SE-

QUENCE are by pointer.

isPtrForOpt TRUE if OPTIONAL type references to this type definition from a SET

or SEQUENCE are by pointer.

isPtrInChoice TRUE if type references to this type definition from a CHOICE are by

pointer.

optTestRoutineName name of the routine to test whether an OPTIONAL element of

this type in a SET or SEQUENCE is present. It is usually just the name of a C

macro that tests for NULL.

printRoutineName name of this type definition's printing routine.

encodeRoutineName name of this type definition's encoding routine.

decodeRoutineName name of this type definition's decoding routine.

freeRoutineName name of this type definition's freeing routine.

The C++ type definition array is similar to C's. It contains:

Chapter 5. Implementation of the Snacc Compiler^ 79

classname holds the C++ class name for this type definition.

isPdu same as C isPdu except that is does not affect the code generation since the C++

back end includes the extra PDU encode and decode routines by default.

isPtrForTypeDef same as C isPtrForTypeDef.

isPtrForOpt same as C isPtrForOpt.

isPtrInChoice same as C isPtrInChoice

isPtrInSetAndSeq whether type references to this class from a SET or SEQUENCE

are by pointer.

isPtrInList whether type references to this class from a SET OF or SEQUENCE OF

are by pointer.

optTestRoutineName name of the routine to test whether an OPTIONAL element of

this type in a SET or SEQUENCE is present. It is usually just the name of a C

macro that tests for NULL.

The first step of this pass uses the type arrays to fill in the C or C++ type definition

information for each module's ASN.1 type definitions. This is done for the useful types

module as well.

The next step goes through each constructed type and fills in the type reference

information for each reference to a built-in, user defined or useful type. Much of the type

reference information is taken from the referenced type's definition information. The

type reference information contains the following (for both C and C++):

fieldName field name for this type if it is referenced from a CHOICE, SET or SE-

QUENCE.

Chapter 5. Implementation of the Snacc Compiler^ 80

typeName type name of the referenced type.

isPtr whether this reference is by pointer.

namedElmts named elements for INTEGER, ENUMERATED or BIT STRING types

with their C names and values.

choiceIdValue if this type reference is in a CHOICE, this holds the value of the

CHOICE's choiceld that indicates the presence of this field.

choiceIdSymbol if this type reference is in a CHOICE, this holds the C enum value

symbol that has the choiceldValue value.

optTestRoutineName name of the routine or macro to test for the presence of this

element if it is an OPTIONAL element of a SET or SEQUENCE.

5.12 Pass 11: Sorting Types

This pass sorts the type definitions within each module in order of dependence. ASN.1

does not require the types to be defined before they are referenced, but both C and C++

do. Without this pass, the generated types/classes would probably not compile due to

type dependency problems. There is no attempt to order the modules; command line

order is used for the module dependence. If there are problems with mutually dependent

modules, the simplest approach is to combine the dependent modules into a single ASN.1

module.

Some compilers such as CASN1 [Neufeld90] require the user to order the types within

the ASN.1 modules. This can be tedious and since snacc may generate new type defini-

tions from nested aggregate type definitions in the normalization pass, the user does not

have complete control over the order of every type definition.

Chapter 5. Implementation of the Snacc Compiler^ 81

Snacc attempts to sort the types from least dependent to most dependent using the

following ad-hoc algorithm:

First, separate the type definitions within a module into the following groups:

1. Type definitions that are defined directly from simple built-in types such as INTE-

GER.

2. Types such as SET, SEQUENCE, SET OF, SEQUENCE OF and CHOICE that

contain no references to types defined in this module. That, is they are defined

from only simple built-in types, imported types or useful types.

3. Type definitions that reference locally defined types.

4. Type definitions that are not referenced by any local types.

Only the 3rd group of type definitions needs more sorting. After it has been sorted,

the groups are merged in the order 1, 2, 3, 4 to yield a sorted type definition list.

Now we describe how the 3rd group of type definitions is sorted.

1. For each type definition in the third group, a list of its local type references is built

and attached to it. This type reference list only goes one level deep; it does not

follow type references to find more type references.

2. All of the linearly-dependent types are removed and sorted. This is done by re-

peatedly removing type definitions that do not directly depend on any other type

definitions that remain in the 3rd group. The process of removing the type defini-

tions sorts them.

3. The type definitions that were not removed in step 2 are divided into two groups:

recursive and non-recursive. The non-recursive types depend on the recursive ones

since they are still in the list after step 2.

Chapter 5. Implementation of the Snacc Compiler^ 82

4. The non-recursive types from step 3 are sorted as in step 2. All of them should

sort linearly since none are recursive.

5. If the target language is C, any SET OF or SEQUENCE OF types are separated

from the recursive type definitions built in step 3. This is done because the C

representation of a list type is generic (uses a void* to reference the list element)

and therefore does not really depend on the list's element type.

6. The list of local type references for the recursive types from step 3 is re-generated

as in step 1 using a relaxation: types referenced as pointers are not added to a

type's reference list.

7. The recursive types from step two are re-sorted as in step 2 using their new local

type reference lists. Two lists are formed, those that sorted linearly and those that

did not. The latter list should be empty.

To form a sorted third group, the lists are merged in the following order:

• linearly sorted types from step 2

• separated list types (C only) from step 5

• sorted recursive types from step 7

• unsorted recursive types from step 7 (hopefully empty)

• sorted non-recursive types from step 4

In C, the code generator defines both typedef names and struct tags (names). For

example,

Foo ::= SET { a INTEGER, b BOOLEAN }

Bar ::= SEQUENCE { a OBJECT IDENTIFIER, b Foo }

Chapter 5. Implementation of the Snacc Compiler^ 83

translates to the following C data types:

typedef struct Foo /* SET */
{

Asnlnt a; /* INTEGER */
AsnBool b; /* BOOLEAN */

} Foo;

typedef struct Bar /* SEQUENCE */
{

AsnOid a; /* OBJECT IDENTIFIER */
struct Foo* b; /* Foo */

} Bar;

Note that both the struct and the typedef have the name Foo. Also note that the

Bar type references the Foo via struct Foo*.

For types such as Bar that contain the Foo type, Foo is referenced as struct Foo*

instead of just Foo* because C allows you to use the type struct Foo* (incomplete

type) in defining types even prior to the actual declaration of the the struct Foo. The

Foo type can only be used after the Foo typedef declaration. The use of incomplete

types can often overcome recursion related type ordering problems (not relevant in this

example since they are not recursive).

5.13 Pass 12: Generating Code

This pass creates and fills the source files with C or C++ code. The purpose of the nor-

malization, sorting and error detection passes is to simplify this pass. The normalization

pass simplified the ASN.1 types in various ways to make C/C++ type and code gener-

ation simpler. The type sorting pass hopefully eliminates type dependency problems in

the generated code. The C/C++ type generator simply proceeds through the ordered

type list writing the C/C++ type definitions to a header file.

Chapter 5. Implementation of the Snacc Compiler^ 84

The error detection and linking passes will make snacc exit if errors are found, so the

code generation pass can assume the ASN.1 types are virtually error free. This usually

allows snacc to exit gracefully instead of crashing due to an undetected error.

Chapter 6

Results and Evaluation

We did a number of experiments to evaluate the performance of different encoding rules

and different implementations. We also ran experiments to evaluate the performance

cost of various buffer and memory management features.

The encoding rules we examined are HP/Apollo's NDR, Sun Microsystem's XDR,

BER and PER (BASIC-ALIGNED). We also tested the simple and limited C based

encoding rules to provide information on the maximum throughput that can be achieved

if many assumptions are made. These encoding rules were described in Chapter 2.

We tested the implementations provided by five tools. The NIDL compiler produces

C based NDR encoders and decoders. Rpcgen produces C based XDR encoding and

decoding routines. The other three tools, snacc, CASN1 and ISODE's POSY/PEPY,

compile ASN.1 to produce BER routines in C. Hand-coded implementations were used

for PER and C based encoding rules

The encoders and decoders were compared for their throughput, the size of the en-

coded values and the size of their object code. The throughput is the most important

aspect of these implementations. The size of encoded values can be important when

dealing with expensive networks or for archiving purposes. The object code size of an

implementation becomes a consideration when building embedded applications such as

SNMP ASN.1 management for a network device.

This chapter consists of four parts:

• The comparison and analysis of different encoding rules and implementations with

85

Chapter 6. Results and Evaluation^ 86

a structured value.

• The comparison and analysis of different encoding rules with the integer, real and

string primitive types.

• The evaluation of the performance cost of various memory and buffer management

techniques.

• The execution analysis (profiling) of snacc BER encoders and decoders.

6.1 The PersonnelRecord Benchmark

6.1.1 Tools Benchmarked

The BER encoders and decoders of three ASN.1 tools, snacc, CASN1 and ISODE's

POSY/PEPY, were benchmarked and analyzed. We also benchmarked the encoders and

decoders generated by rpcgen (XDR) and NIDL (NDR). These tests are shown in Table

6.5.

For each of these tools except snacc , we used the "out of the box" implementation

they produced. For configuration options that had to be set by the user, such as the

buffering mechanism, the fastest option was chosen. Section 6.2 looks into the costs of

implementation features such as these.

Three very different BER implementations from the snacc tool were used. We tested

the C, C++ and table based versions that snacc produced.

NIDL and rpcgen were described in Chapter 2 and snacc was discussed in depth in

Chapters 4 and 5. The CASN1 and ISODE tools are briefly described here.

CASN1 [Neufeld90] is an older ASN.1 compiler developed at UBC. It produces C

encoders and decoders from an ASN.1 specification. It has been used in at least one

Chapter 6. Results and Evaluation^ 87

tool language encoding rules
rpcgen XDR XDR
NIDL NIDL NDR

ISODE ASN.1 BER
CASN1 ASN.1 BER
snacc ASN.1 BER

(by hand) ASN.1 PER
(by hand) ASN.1 old PER
(by hand) C ptr to offset

Table 6.5: Tools and encoding rules tested with the PersonnelRecord Benchmark

commercial application, and in several other research projects. CASN1 supports 1984

ASN.1 and some ROSE [ROS88] macros.

ISODE [Rose90] is a freely available ISO protocol development environment. Because

of the development-oriented nature of ISODE , flexibility was more of a design consider-

ation than performance. ISODE includes several ASN.1 tools. The POSY tool accepts

an ASN.1 abstract syntax and produces C data structures for the ASN.1 types and an

input file for PEPY. The PEPY input file consists of the original abstract syntax aug-

mented with compiler directives, action statements, control statements and value passing

statements that tell PEPY how to create correct BER encoding and decoding routines

for the C data structure produced by POSY.

PEPY supports type references to other ASN.1 modules provided that the referenced

ASN.1 module has already been processed by PEPY. It produces a file containing tagging

and other information for each ASN.1 file it processes. Macro support requires the use

of other tools such as ROSY that remove the macros from the abstract syntax and

replace them with the appropriate type definitions as necessary so the resulting file can

be processed by POSY/PEPY.

Chapter 6. Results and Evaluation^ 88

6.1.2 Benchmark Design

The aim of this benchmark is to compare the performance of different data represen-

tations and implementations thereof in handling a structured data value. We chose a

"PersonnelRecord" type shown in Figure 6.7, with the value shown in Figure 6.8 for this

benchmark. In retrospect, a better choice of data structure may have been the Mix-Tree

type from [Huitema92] that allows arbitrarily "deep" values. Perhaps an even better

choice would be an X.400 PDU, but specifying it in anything other than ASN.1 (e.g.

NIDL) would be a difficult task.

To highlight the costs of the structuring mechanisms and the overall implementation,

the PersonnelRecord is mostly composed of string types. The simple string types have

similar translation costs for all of the encoding rules tested because the characters in

the string require no real translation. Primitive types such as integers and reals are

likely to vary considerably in performance between BER, PER, XDR and NDR; these

are benchmarked in the next section.

Each encoder was benchmarked on the time taken to encode the PersonnelRecord

value in Figure 6.8 and free the resulting encoded value one million times. Each decoder

was benchmarked on the time required to decode the encoded PersonnelRecord, delete

the resulting data structure and reset the reference to the encoded data one million times.

To provide more uniform results, the size of the buffer for the encoded values was set

large enough to hold the entire encoded PDU. Thus, no "buffer faults" occurred during

encoding (writing) or decoding (reading).

The timings were obtained by calling the UNIX getrusage system call [GRU90] im-

mediately before and after both the encode and decode loop. The timings in the tables

represent the difference in user time between the first and last getrusage call.

All encoders and decoders, including their support libraries, were compiled with the

Chapter 6. Results and Evaluation^ 89

PersonnelRecord ::= [APPLICATION 0] IMPLICIT SET
{

Name,
title^[0] IA5String,

EmployeeNumber,
dateOfHire^[1] Date,
nameOfSpouse [2] Name,
children^[3] IMPLICIT SEQUENCE

OF Childlnformation
DEFAULT {}

Childlnformation ::= SET
{

Name,
dateOfBirth [0] Date

Name ::= [APPLICATION 1] IMPLICIT SEQUENCE
{

givenName IA5String,
initial IA5String,
familyName IA5String

}

EmployeeNumber ::= [APPLICATION 2] IMPLICIT INTEGER

Date ::= [APPLICATION 3] IMPLICIT IA5String^YYYYMMDD

Figure 6.7: ASN.1 definition of the PersonnelRecord

Chapter 6. Results and Evaluation^ 90

givenName "John",
initial^"E",
familyName "Smith"

},

title "The Big Cheese",
99999,
dateOfHire "19820104",
nameOfSpouse
{

givenName "Mary",
initial^"L",
familyName "Smith"

I,
children
{

givenName "James",

^

initial^"R",
familyName "Smith"

I,
dateOfBirth "19570210"

1 ,

{

givenName "Lisa",
initial^"M",
familyName "Smith"

I,
dateOfBirth "19590621"

{

Figure 6.8: PersonnelRecord Value used in the benchmarks

Chapter 6. Results and Evaluation^ 91

MIPS cc compiler, using the -0 compiler switch. All benchmarks were run on a MIPS

R3260 (18.2 specmarks) with 48 megabytes of RAM, running version 4.51 of the MIPS

UNIX operating system. The tests were run during a time when the system usage was

minimal, however, this did not appear to affect the results.

Table 6.6 holds a brief description of each benchmark we performed for this section.

Each benchmark (referenced by its "benchmark id" from Table 6.6) is defined concisely

in the next sections. All BER encoders used the definite length option.

We tested the optimal case for XDR and NDR. The optimal case for XDR is encoding

and decoding on a machine with four byte words, big endian integers and IEEE float and

double representation. NDR is always optimal for encoding because it uses the host's

representation. Our NDR decoding benchmark was optimal because the decoding host

was the same architecture (actually the same machine). The next section looks at the

non-optimal case for NDR and XDR.

The snacc C encoders and decoders for BER, PER91 and PER92 in this test were

minimal implementations. The buffers were simply a contiguous block of memory and

the nibble memory system had its expansion capability disabled. The buffer reading and

writing routines did no range checking, allowing buffer overflows. Section 6.3 examines

the costs of using safer buffer and memory systems. The snacc C++ and table based

versions used in this benchmark were considerably more robust.

6.1.3 Benchmark Results and Analysis

The benchmark results for encoding and decoding the PersonnelRecord value shown

in Figure 6.8 one million times are shown in Table 6.8. The memory usage during the

benchmark for each implementation is shown in Table 6.9. The code sizes are shown in

Table 6.7. The results are briefly presented here.

The C based encoding rules were by far the fastest, but the encoded size was the

Chapter 6. Results and Evaluation^ 92

benchmark id encoding rules description
1.01 BER POSY/PEPY encoder and decoder with no

modifications. String type "Presentation Stream"
(buffer). ISODE version 6.

1.02 BER CASN1 encoder and decoder with no modifications.
1.03 XDR XDR encoder and decoder with no modifications.
1.04 NDR NIDL generated NDR encoder and decoder.

Version 1.51 of the NIDL compiler.
1.05 C hand coded C pointer to offset encoder and decoder.
1.06 BER minimal snacc encoder and decoder.
1.07 PER91 minimal snacc encoder and decoder hand modified to

support 1991 Packed Encoding Rules (obsolete).
1.08 PER92 minimal snacc encoder and decoder hand modified to

support 1992 Packed Encoding Rules.
1.09 BER snacc C++ encoder and decoder.
1.10 BER minimal snacc table driven encoder and decoder in C.

Table 6.6: Benchmark descriptions

benchmark id enc/dec .o executable
1.01 12044 49152
1.02 3876 61440
1.03 884 40960
1.04 4028 159744
1.05 660 32768
1.06 8020 45056
1.09 34708 212992
1.10 Ot 86016

tTable based tools have no abstract sytax specific code. A 660 byte
type table was loaded for the PersonnelRecord instead.

Table 6.7: Code size for the stripped .o files of PersonnelRecord specific code and the
stripped benchmark executable

Chapter 6. Results and Evaluation^ 93

benchmark
id

encoding
time (s)

decoding
time (s)

encoded
size (bytes)

1.01 982.51 1291.71 143
1.02 826.46 403.19 143
1.03 186.54 311.67 180
1.04 165.65 78.74 145
1.05 7.62 8.19 248
1.06 114.70 230.64 143
1.07 91.17 176.93 119
1.08 89.77 122.92 101
1.09 80.73 330.20 143
1.10 473.41 894.79 143

Table 6.8: Timings for encoding and decoding the PersonnelRecord 1 million times

benchmark id local intermediate transfer
1.01 42/560 47/1552 1/143
1.02 32/436 152/1260t 1/143
1.03 17/208 0 1/180
1.04 1/2056 0 1/145
1.05 1/248 0 1/248$
1.06 26/328 0 1/143
1.07 26/328 0 1/119
1.08 26/328 0 1/101
1.09 - 1/143
1.10 43/396 0 1/143

f An intermediate representation was only used during encoding in CASN1.
The transfer value is in the same memory as the local value.

Table 6.9: Memory usage in # pieces memory/total # bytes for the local, intermediate
and transfer (encoded) data representation

ISODE CASN1
BER^BER

XDR NDR C snacc^snacc^snacc^snacc
BER^PER92 C++ BER table BER

Chapter 6. Results and Evaluation 94

1400

1200

1000

S
e 800

C
0
n 600

d
s

400

200

El encoding time (s) - decoding time (s)

Tools and Encoding Rules

Figure 6.9: Time to encode and decode a PersonnelRecord 1 million times

Chapter 6. Results and Evaluation^ 95

largest, over twice as large as PER's, and the limitations of C make them non-viable for

protocol implementation. The C encoding rules managed over 240 Mbps for encoding

and decoding.

PER92, the fastest standard encoding, only managed approximately 12 Mbps (pro-

jected speed if macros are used for buffer I/O and memory allocation). PER92 also

produced the smallest encoding. The PER92 decoder was third, after CER and NDR.

The NDR decoder's speed can be attributed to two things. First, the NDR encoding

was already in the decoding host's native format so no real data conversion was required.

Second, there were no allocations required for the local data value since the limitations of

NDR permit the use of a flat local data structure (i.e. the size of the local data structure

is fixed so it can easily be pre-allocated).

The poor performance of the PEPY/POSY encoder and decoder and the CASN1

encoder can be directly attributed to their use of an intermediate data representation

between the local and transfer representations (see Table 6.9).

The table based implementation was roughly 3-4 times slower than the best of the

compiled BER, PER, NDR and XDR versions. Surprisingly, the snacc C++ encoder

implementation performed better than the stripped down snacc C version. Unlike the

C version, the C++ implementation used safe buffer management and even used "ex-

pensive" C++ features such as virtual functions. The gcc C++ compiler may use more

effective optimizations than the MIPS C compiler. The C++ decoder was considerably

slower than the C version; this can most likely be attributed to the use of C++ built in

new and delete operators versus the light-weight nibble memory.

For the PersonnelRecord data structure PER92 is both faster and produces smaller

encodings than BER. Both the PER and BER PersonnelRecord tested contained 16

octet strings and 1 INTEGER and decoders allocated the same number of elements. The

difference is in the number of tags and lengths that were encoded, resulting in the speed

Chapter 6. Results and Evaluation^ 96

and size difference. BER encoded 30 tags, 13 constructed value lengths, and 17 primitive

value lengths, resulting in a 143 byte encoding. PER encoded no tags, the number of

elements in the SEQUENCE OF, and 17 primitive value lengths yielding a 101 byte

encoding. If the sizes of types such as the Date and the initial in the Name had been

given in the ASN.1 via the SIZE subtype, their lengths would not need to be encoded by

PER, allowing further compression.

Using intermediate data representations (CASN/ and POSY/PEP)') greatly slows

encoding and decoding. This is clearly seen by comparing the three examples using

intermediate data structures to the snacc version that has similar features except for the

intermediate data structure. CASN1's encoder (Benchmark 1.02 vs. 3.04) was over 7

times slower, POSY/PEPY's encoder (Benchmark 1.01 vs. 3.08) was 8.5 times slower,

and the POSY/PEPY decoder was over 4 times slower. Encoding rules should be designed

to support one pass encoding and decoding, eliminating the need for costly intermediate

data structures. One pass, forwards encoding allows an application to encode directly to

a stream oriented protocol such as TCP.

Table 6.7 shows the code sizes of the stripped . o files for the PersonnelRecord specific

files, and the sizes of the stripped benchmark programs. The most important result is

that table based encoders and decoders have no code specific to an abstract sytnax;

instead they load a type table. The type tables are considerably smaller that their

corresponding code. The PersonnelRecord type table was only 660 bytes. The code size

of the snacc generated encoders, decoders, print and free routines for the X.500 '88 ASN.1

specification was 450 kilobytes. The type table for the same specification was only 27

kilobytes.

POSY/PEPY

POSY/PEPY encoders consist of two separate stages: the conversion of a value in an

Chapter 6. Results and Evaluation^ 97

Figure 6.10: ISODE's local representation for the PersonnelRecord Value

The Big Cheese

Smith

19570210

Lisa

Chapter 6. Results and Evaluation^ 98

Figure 6.11: ISODE's PElement representation for the PersonnelRecord Value

Chapter 6. Results and Evaluation^ 99

abstract syntax specific data structure (see Figure 6.10) into the BER based PElement

tree (see Figure 6.11) and then conversion of the PElement tree into the send buffer

format (a contiguous block for benchmarking purposes). Each PElement contains a tag,

a length, a pointer to its data (primitive data or a child PElement), a pointer to its

sibling (next element in the same SET or SEQUENCE) and other information. The use

of the PElement tree is costly; each PElement is 48 bytes (see Table 6.9). The decoders

use the inverse of the encoding process.

ISODE encoders and decoders provide flexible buffer management that supports dif-

ferent buffer types at runtime by using the "Presentation Stream" data structure. The

Presentation Stream data type contains pointers to the buffer routines and data; call-

ing buffer functions indirectly will hurt performance. The memory primitives used for

the decoded values and the PElements were malloc and free. Data items are freed by

hierarchically traversing the data structure.

CASN1

CASN1's approach to encoding is to encode forwards into small, linked "IDX" buffers,

maintaining a stack of buffer pointers and a corresponding stack of lengths for length

calculation of constructed types (see Figure 6.13). When the components of a constructed

value have been encoded, the length on the length stack is encoded into its own IDX buffer

and inserted after the buffer on the buffer stack.

This encoding process results in every tag, end-of-contents and most lengths having

their own IDX buffer. The ratio of memory used by the IDX structures to actual BER

data is very high for some abstract syntaxes; for the 143 byte encoded length of the

PersonnelRecord value used in the benchmarking, 76 IDX buffers were used. This is a

6.4 to 1 ratio between the memory used for IDX buffers and actual BER data. Even for

indefinite lengths, the same length insertion process is used. The IDX buffers' data are

Chapter 6. Results and Evaluation^ 100

Figure 6.12: CASN1 local representation for the PersonnelRecord Value

Chapter 6. Results and Evaluation^ 101

^1
^

1
^

1
^

4
^

1

^

r^ r^r
T^L^T

^
L
^

T
^

L
^

John

^1
^

1
^

1
^

14

Smith^T
^

L
^

T^L The Big Chee se

^1
^

1
^

1
^

8
^

1

^

r^v
T^L 99999
^

L
^

T
^

L
^

19820104 T^L

^1
^

1
^

1

T^L^T^L^Mary^T
^

L
^

L^T

^1
^

1
^

1

1

L
^

Smith^T
^

L
^

T
^

L
^

T
^

L

^1
^

1
^

1
^

1
^

5

r
L^James^L

^
R
^

T
^

L
^

Smith^T

^1
^

1
^

1

r

^

19570210 T
^

L
^

T^L^T

^

1
^

1
^

5

^

r^r
Lisa^T^L

^
M^T

^
L
^

Smith^T

T = encoded tag

L = encoded length

L^19590621

Figure 6.13: CASN1's IDX buffer structure for the PersonnelRecord Value

Chapter 6. Results and Evaluation^ 102

serialized (copied) into a single buffer for transmission.

CASN1 decoding is very similar to snacc decoding except tags can be decoded more

than once. When decoding the elements of a SET, the SET decoder peeks ahead in

the buffer and decodes the next tag to determine which element to decode. When the

element decoding routine is called, the tag is decoded again. Tags may also be decoded

more than once when decoding OPTIONAL elements of a SEQUENCE. When dealing

with simple type definitions, such as Foo : := Bar, CASN1 generates routines for the

Foo type that simply call the Bar type's routines. This introduces unnecessary function

calls for encoding and decoding Foo when they could easily be avoided by calling the Bar

type's routines directly.

Decoders produced with CASN1 have the drawback of requiring the PDU to be de-

coded to be in a contiguous buffer and no range checking is done by the decoding routines.

Thus, a malformed BER PDU can cause a segmentation fault (e.g. too long a length on

a primitive data value).

For allocating space for decoded values, a nibble memory scheme with range checking

was used when benchmarking the CASN1 decoder.

Rpcgen

The rpcgen/XDR version of the PersonnelRecord is shown in Figure 6.14. Note that

this definition contains much more information than the ASN.1 version with respect to

the local representation's format. The XDR local representation for the PersonnelRecord

value is shown in Figure 6.15. Its simplicity reduces the allocation needs of the decoder.

For each type, rpcgen produces a single XDR routine that handles encoding, decoding

and freeing. The generated routines take an "XDR" type argument that is similar to

ISODE's Presentation Stream type, except that it includes the operation: encode, decode

or free. The XDR routine for each type checks the "XDR" type to determine whether to

Chapter 6. Results and Evaluation^ 103

typedef string IA5String<>;

typedef IA5String Date;

typedef int EmployeeNumber;

struct Name

{
IA5String givenName;
IA5String initial;
IA5String familyName;

} ;

struct Childlnformation
{

Name namel;
Date dateOfBirth;

1 ;

struct PersonnelRecord
{

Name^namel;
IA5String^title;
EmployeeNumber employeeNumber3;
Date^dateOfHire;
Name^nameOfSpouse;
Childlnformation children<>; /* var-sized array */

1 ;

Figure 6.14: XDR PersonnelRecord Definition

Chapter 6. Results and Evaluation^ 104

Figure 6.15: XDR's local representation for the PersonnelRecord Value

Chapter 6. Results and Evaluation^ 105

encode, decode or free.

The xdrinem buffer type, a simple contiguous block, was used for the benchmarks. We

benchmarked XDR with its default memory scheme where the decoded value is allocated

using malloc and free using a hierarchical free. By replacing the memory management

with nibble memory, the XDR decoding time improves by a factor of two.

NIDL

The NIDL version of the PersonnelRecord is shown in Figure 6.17. As with the XDR

version, it contains much more information about the local representation's format.

The NIDL local representation for the PersonnelRecord is shown in Figure 6.16. The

use of fixed-size strings makes the entire PersonnelRecord a fixed-size type. The fixed-

size nature allows the NDR decoder to pre-allocate the entire PersonnelRecord; this is

the main reason that the NDR decoder performed so well.

NDR encoders are a single routine that first calculates the encoded length of the

given value and then encodes it into a buffer of appropriate size. NDR encoders encode

the data in the local host's format and include a format identifier so the receiving host

knows how to decode the data. Thus the decoding routine must choose the appropriate

decoding rules on the basis of format identifier. However, for this benchmark, the format

used in the PDU was the same as the decoder's internal format; this is the optimal case

for NDR decoders.

Snacc

Snacc generates "backwards" BER encoders [Steedman901. This allows snacc to trans-

late directly from its local representation (see Figure 6.18) to the network format.

Indefinite lengths are encoded by writing a special octet where the definite length

normally goes and writing an End-Of-Contents (EOC) marker after the content. The

Chapter 6. Results and Evaluation^ 106

Figure 6.16: NIDL's local representation for the PersonnelRecord Value

Chapter 6. Results and Evaluation^ 107

typedef stringO[128] IA5String; /* fixed-size locally */

typedef IA5String Date;

typedef int EmployeeNumber;

typedef struct {
IA5String givenName;
IA5String initial;
IA5String familyName;

} Name;

typedef struct {
Name namel;
Date dateOfBirth;

} Childlnformation;

typedef [handle] struct {
Name namel;
IA5String title;
EmployeeNumber employeeNumber3;
Date dateOfHire;
Name nameOfSpouse;
long lastIndex;
Childlnformation [last_is(lastIndex)] children[];

} PersonnelRecord;

Figure 6.17: NIDL PersonnelRecord Definition

Chapter 6. Results and Evaluation^ 108

Figure 6.18: Snacc's local representation for the PersonnelRecord Value

Chapter 6. Results and Evaluation^ 109

EOC is two zero octets. Indefinite lengths cannot be used on non-constructed values

because the EOC may be indistinguishable from the value's data.

Note that backwards encoding requires encoding the entire PDU before sending it,

therefore stream-oriented communication, where parts of the PDU are sent as they are

encoded, cannot be used effectively. Using the indefinite length option for constructed

values exclusively eliminates the advantage of backwards encoders at the expense of a

slightly larger encoded value (see the next section). Snacc can use both definite and

indefinite lengths with similar performance.

6.2 Primitive Type Benchmarks

The translation of the integer and real primitive types is very different in NDR, XDR,

BER and PER. NDR and XDR used fixed-size representations, whereas BER and PER

used variable-size representations. Simple string types do not typically involve much

translation unless different character sets are used. We tested the performance of the

encoding rules for integer, real and string types to confirm these assumptions. We also

include the cost of a memcpy of the same size as the encode array for each array to provide

a lower bound for performance.

This benchmark is useful for evaluating encoding rules with respect to the types

used in an abstract syntax. For example, implementors of application protocols such as

X.400 and X.500, whose PDUs are mostly structures and lists of strings, need not worry

about the integer or real type performance. However, writers of an application, such as a

distributed spread-sheet, should be very concerned about the integer and real encoding

and decoding performance.

Chapter 6. Results and Evaluation^ 110

6.2.1 Benchmark Design

Table 6.10 shows the benchmarks we performed on primitive types. In this test we

wanted to avoid implementation issues, so each test used the same memory and buffer

management. Only the actual code that performed the encoding and decoding of the

primitive type varied. This technique allows a more accurate gauge of the encoding rules

themselves instead of just their implementation. In some cases (as indicated in Table

6.10) the primitive type encoding and decoding routines were functions while in other

cases they were placed "inline".

No allocations or frees were done during the integer and real type benchmarks. Malloc

and free were used during the string decoding benchmarks.

For each set of encoding rules, the same buffer was overwritten for each encoding

iteration. This buffer was then used for each decoding iteration. The same, randomly-

generated integers and reals were used for all of the integer and real type benchmarks.

As mentioned in the last section, there are certain conditions under which NDR and

XDR operate optimally. In this section we look at both the optimal and non-optimal

cases for the real and integer types. Since the non-optimal case of XDR affects both its

encoding and decoding, we used an extra XDR benchmark to represent both the XDR

and NDR non-optimal case. NDR is always optimal for encoding.

For the integer tests, we encoded and decoded one hundred random integers 10,000

times. All of the integer tests used the same local representation for the integers, an

array of 100 long ints.

All real values were internally represented by the double type. The real test was

conducted in the same manner with 100 random double precision real values.

All strings were represented by a struct that contained a char* for the string and a

long int for the length of the string. The string benchmarks encoded and decoded an

Chapter 6. Results and Evaluation^ 111

array containing 100 "Hello World" strings, 10,000 times. The content of the string did

not affect the encoding or decoding process in any of the cases. Each string benchmark

was run as a separate program so the memory manager would be in the same state when

the benchmarks started.

We also tested a fixed-size string type for PER (Benchmark 2.16 in Table 6.10). The

performance of the other encoding rules for this will be the same as for the unconstrained

OCTET STRING, however, PER can eliminate the length encoding for the string since

it is a fixed-size. The benchmark for this type uses the same array value and number of

iterations as the other string benchmarks.

For each array that was encoded, we benchmarked the cost of doing a memcpy of the

same size as the encoded array, 10,000 times. This provides a lower bound for both

encoding and decoding cost. Conceivably, encoding rules such as C based encoding rules

could be used to eliminate the need for any copying (i.e. the local representation is not

copied but modified in place).

BER primitive values consist of the type's (UNIVERSAL) tag, length and content.

PER primitive type encodings are just the length and content except in special fixed-size

cases where they consist solely of the content. The XDR and NDR integer and real types

were four and eight bytes long, respectively. The XDR string encodings are preceded

by a four byte length determinant. NDR strings are encoded similarly except the length

determinant is only two bytes. XDR requires all components to be aligned to four byte

boundaries. NDR allows 2, 4 or 8 byte alignment depending on the type.

The indefinite length form was used when encoding the BER SEQUENCE OF values.

6.2.2 Benchmark Results

For the integer array, the optimal XDR and NDR cases are almost five times faster

than the PER and BER versions. However, if XDR is used on a little endian host, the

Chapter 6. Results and Evaluation^ 112

benchmark id encoding rules description
2.01 NDR integer, optimal case, inline

int intArray [100]
2.02 XDR integer, optimal case, inline

int intArray [100]
2.03 XDR integer, big to little endian conversion, inline

int intArray [100]
2.04 BER integer, inline

SEQUENCE (SIZE 100) OF INTEGER
2.05 BER integer, fcn call

SEQUENCE (SIZE 100) OF INTEGER
2.06 PER92 integer, inline

SEQUENCE (SIZE 100) OF INTEGER
2.07 NDR real, optimal case, inline

double realArray [100]
2.08 XDR real, optimal case, inline

double realArray [100]
2.09 XDR real, translating as if on a Vax, fcn call

double realArray [100]
2.10 BER real, fcn call

SEQUENCE (SIZE 100) OF REAL
2.11 PER92 real, fcn call

SEQUENCE (SIZE 100) OF REAL
2.12 NDR string, inline

string() strArray [100]
2.13 XDR string, inline

string strArray [100]
2.14 BER string, inline

SEQUENCE (SIZE 100) OF OCTET STRING
2.15 PER92 string, inline

SEQUENCE (SIZE 100) OF OCTET STRING
2.16 PER92 fixed size string, inline

SEQUENCE (SIZE 100) OF OCTET STRING (SIZE 11)

Table 6.10: Primitive type benchmark definitions

Chapter 6. Results and Evaluation^ 113

benchmark
id

encoding
time (s)

decoding
time (s)

copy
time (s)

encoded
size (bytes)

2.01 0.62 0.61 0.14 400
2.02 0.62 0.61 0.14 400
2.03 1.30 1.32 0.14 400
2.04 2.86 2.99 0.22 603
2.05 3.09 2.71 0.22 603
2.06 2.46 2.74 0.18 499

Table 6.11: Results for integer

benchmark
id

encoding
time (s)

decoding
time (s)

copy
time (s)

encoded
size (bytes)

2.07 1.12 0.84 0.27 800
2.08 1.12 0.84 0.27 800
2.09 6.24 4.27 0.26 800
2.10 9.36 34.30 0.41 1204
2.11 8.58 34.11 0.37 1100

Table 6.12: Results for real

benchmark
id

encoding
time (s)

decoding
time (s)

copy
time (s)

encoded
size (bytes)

2.12 4.28 6.05 0.52 1400
2.13 3.89 7.20 0.52 1600
2.14 3.53 6.95 0.44 1304
2.15 2.92 6.59 0.40 1200
2.16 2.54 5.81 0.37 1100

Table 6.13: Results for string

Chapter 6. Results and Evaluation^ 114

costs double due to the conversion between big and little endian format. This implies

that NDR decoding time will double when the receiver's architecture has the opposite

"endian-ness" from the sender.

Due to the elimination of tags, the PER integer encoding is one byte smaller for

every integer encoded than the BER encoding. PER also eliminates the tag and length

on the fixed-size SEQUENCE OF type. The BER and PER integer encodings are larger

than the XDR and NDR versions. This is mostly due to the random number generator

choosing the more common four byte values. For applications that use integers closer to

zero, the BER and PER encodings may be smaller than the NDR or XDR ones.

The function call overhead difference between Benchmarks 2.04 and 2.05 did not

appear to have much affect. In the encoding case, the function call overhead slowed it

somewhat but in the decoding case it was actually faster. The integer and real encoders

and decoders for the optimal NDR and XDR cases were very small (2 lines of C) and used

no temporary variables; this simplified inlining them. The other encoding and decoding

routines were more complex and larger, especially in the case of the BER and PER real

routines.

The BER and PER real encoders and decoders are much slower than the XDR and

NDR implementations. The optimal NDR and XDR encoders and decoders simply copy

the eight byte double value to encode it. Benchmark 2.09 shows that an extra cost is

incurred if the local real representation is not IEEE format (Vax Gloating in this case).

BER and PER real types performed poorly in all respects compared to the XDR

and NDR versions. The most expensive operation is BER and PER real decoding. Their

performance is over 40 times worse than the XDR and NDR decoders. This can be traced

to the use of floating point operations (pow from UNIX C math library). The encoders

were 9 times slower than the XDR and NDR ones. The BER and PER real encoding

routines are not as bad as their decoding routines in performance because they assumed

Chapter 6. Results and Evaluation^ 115

that their host used the IEEE double format. Thus, they did not need to do floating

point operations to encode.

The size of the BER and PER encodings were 1.4 to 1.5 times larger than the XDR

and NDR versions. BER and PER would vastly improve their performance for real

numbers if they used the IEEE double representation for reals.

The NDR strings are smaller than XDR due to their small, but more limiting, length

determinant. NDR strings include a null-terminator character unlike XDR, however it

did not affect the value we tested (XDR inserted one padding byte).

The PER and BER strings are smaller than the XDR and NDR ones because the

length determinant is encoded in the minimum number of bytes and no alignment is

required. The PER encoding and decoding of the fixed-size OCTET STRING was faster

and smaller than the others due to the elimination of the string's length determinant.

6.3 Benchmark of Implementation Features

6.3.1 Benchmark Design

In this section we look at the implementation issues and costs for memory and buffer

management as well as the cost of definite versus indefinite lengths in BER. We use both

the PersonnelRecord value from Section 6.1 and an X.500 ListResult value.

To observe the impact on performance, two buffer management schemes are used with

snacc encoders and decoders. The first scheme uses one fixed-size block for reading and

writing. Two variations of this were benchmarked, one that does range checking and

one that does not. Range checking (checking for buffer overrun on reads and writes) is

essential for preventing segmentation faults when decoding an improperly encoded value.

The second buffer scheme uses linked buffers consisting of two separate parts, a buffer

index portion and a data portion. The index part has pointers to the data block and the

Chapter 6. Results and Evaluation^ 116

next index part (if any) along with some additional information. Data blocks contain

only data and are allocated from a fixed-size pool of free blocks. The index parts are

allocated from another pool of index-sized blocks.

Decoders can do many allocations when building the local value while decoding so

three memory allocation schemes were tested. The first method "nibbles" chunks from

a fixed-size block, allowing the entire decoded value to be freed by resetting a pointer.

Two variants of the nibble memory allocation scheme were tested; one that checks for

allocations past the end of the block and one that does not. The second method is like

the first except that more blocks for nibbling can be allocated as needed (range checking

is required for this feature). The third scheme uses malloc with "hierarchical" freeing.

Hierarchical freeing means that the data structure is freed by traversing it with freeing

routines specific to that data structure.

An interesting memory management scheme that was not tested is using memory

protection and mapping in paged memory systems. A sequence of contiguously mapped

pages are used for a nibble block, with the last page being protected. A protection fault

to this page would result in the allocation and mapping of more pages onto the end of the

nibble block. This scheme could be used for buffers as well, where protection faults from

writes allocate more pages or return an end-of-data indicator for reads. This method has

two benefits: range checking overhead can be eliminated and contiguous data is easier to

process.

We also measured the performance improvement that can be achieved from using

macros instead of functions calls for memory allocation and buffer reads (decoding) and

writes (encoding).

6.3.2 Benchmark Results

Chapter 6. Results and Evaluation^ 117

benchmark id encoding rules description
3.01 BER minimal snacc encoder and decoder.

Reference implementation.
3.02 BER same as 3.01 except indefinite length form

used where possible.
3.03 BER same as 3.01 except range checking is done for

buffer reads and writes.
3.04 BER same as 3.01 except range checking is done for

memory allocations (decoding only).
3.05 BER same as 3.01 except uses linked buffer scheme.
3.06 BER same as 3.01 except nibble memory pool can grow

with demand (decoding only).
3.07 BER same as 3.01 except buffer reads/writes and memory

allocations are macros.
3.08 BER same as 3.01 except memory management uses

malloc and hierarchical free.

Table 6.14: Benchmarks of BER implementation features

benchmark
id

encoding
time (s)

decoding
time (s)

encoded
size (bytes)

3.01 114.70 230.64 143
3.02 124.60 267.19 168
3.03 141.48 256.96 143
3.04 114.69 230.42 143
3.05 163.36 272.93 143
3.06 114.66 238.96 143
3.07 84.50 171.29 143
3.08 116.26 303.93 143

Table 6.15: Results for encoding and decoding the PersonnelRecord 1 million times

Chapter 6. Results and Evaluation^ 118

benchmark
id

encoding
time (s)

decoding
time (s)

encoded
size (bytes)

3.01 46.41 88.26 5074
3.02 44.17 95.48 6152
3.03 46.60 100.46 5074
3.04 47.60 90.37 5074
3.05 61.30 146.30 5074
3.06 38.26 130.86 5074
3.07 31.16 69.77 5074

Table 6.16: Results for encoding and decoding an X.500 ListResult 10,000 times

Benchmarks 3.01 to 3.08 measure the costs of adding various features to snacc gen-

erated encoders and decoders. Using indefinite lengths (where possible) when encoding

was 9% more expensive for the PersonnelRecord yet 5% cheaper for the ListResult. De-

coding was, respectively, 16% and 8% more expensive. The sizes of the indefinite length

encodings were 17% larger for the PersonnelRecord and 21% larger for the ListResult.

Benchmarks 3.01 and 3.03 show that range checking on buffer writes can increase

the encoding time by up to 23%. Range checking for buffer reads can add 11 to 14% to

the decoding time. Benchmarks 3.01 and 3.05 show that using a linked buffer scheme

(requires range checking) that can expand as necessary, can add 32 to 42% to the encoding

time and 18 to 65% to the decoding time. The performance cost of the range checking

will increase as the number of writes and reads increases. For example, range checking

will be more of an issue when doing 100 one byte buffer writes than when doing one

100 byte buffer write. If the encoding rules, abstract syntax or protocol permit, it is

advantageous to do a simple length calculation before encoding so that the actual size of

the send buffer can be determined. This allows a much simpler buffering scheme such as

a single buffer with no range checking on writes to be used.

Using macros for the buffer reading and writing and memory allocation caused the

Chapter 6. Results and Evaluation^ 119

data
structure

benchmark
id

% time encoder
uses for

buffer writes

% time decoder
uses for

buffer reads

% time decoder
uses for

memory mgmt.
PersonnelRecord
PersonnelRecord
X.500 ListResult

3.01
3.08
3.01

47
47
36

25
19
18

8
28
11

Table 6.17: Overall cost of buffer and memory management for snacc's BER and PER
encoders and decoders

most significant speed up (21-33%), without a huge increase in the compiled size. How-

ever, the compiled size of our implementations increased dramatically if the primitive

type encoding and decoding routines were macros.

An anomaly appears in Benchmark 3.06 of the ListResult (see Table 6.16). The

encoding time should not be different from that of Benchmark 3.01 since the only differ-

ence between them is the allocation scheme for decoding. The difference was traced to a

compiler optimization that was possible in Benchmark 3.06 but not Benchmark 3.01.

Using a malloc-like memory allocator with a hierarchical free instead of the simpler

nibble scheme caused a 32% increase in decoding time. An environment which permits

decoding into a single buffer or set of buffers that can be freed in one operation will

significantly improve the performance. Such a scheme is provided in the programming

environment used in implementing the EAN X.500 system [Neufeld92-2]. Snacc provides

support for this type of memory management in its runtime library.

6.4 Execution Analysis

We used "pixie" [PIX90] basic block profiling to determine the component costs of

snacc's encoders and decoders (see Table 6.17). The results showed that snacc's BER

encoder, using an extremely simple buffer format (contiguous block, no range checking),

can spend almost half of their CPU cycles simply writing to the buffer. With the same

Chapter 6. Results and Evaluation^ 120

buffer format, decoders spent up to 28% of their time just reading from the buffer.

Decoders using simple nibble allocation used from 8% to 10% of their time in memory

management; however, using a malloc and hierarchical free memory system instead

pushes the cost to 28%.

Buffer and memory management accounted for less of the X.500 ListResult's encoder's

and decoder's processing time than those of the PersonnelRecord. This seems to indicate

that as the abstract syntax for a type becomes more complex, the cost of traversing

(encoding) or assembling (decoding) the local representation value increases. The pixie

profiling also indicated that only about 20% to 40% of the encoding and decoding time

was spent in the routines generated by the compiler for the abstract syntax. The rest

was spent in the library routines for the primitive types which in turn called the buffer

and memory routines.

Chapter 7

Conclusions

Our study revealed that the majority of encoding and decoding time is spent in the

following areas:

• writing to the send buffer during encoding

• reading from a receive buffer when decoding

• memory allocation for the decoded value's data structure

• freeing the decoded data structure

Each of these areas is examined to determine how they can be improved. However,

even after optimization, these areas still consume a significant portion of the processor

time during encoding and decoding.

The results of the analysis indicate that the majority of time is being spent in primitive

type encoding and decoding routines (which contain most of the calls to the buffer and

memory routines) rather than the routines generated by the compilers. It is clear from

these results that efficient encoders and decoders must be tuned to work well with the

buffer structure and memory model being used. Even highly tuned encoding rules such

as PER92 only achieved about 12 Mbps on a MIPS R3260. Either faster processors and

memory or faster encoding and decoding techniques are necessary for the presentation

layer to keep up with the potential rate at which data can arrive on today's high speed

121

Chapter 7. Conclusions^ 122

networks. Our results suggest several design rules that can aid in the development of

efficient encoders and decoders:

• Avoid intermediate representations such as IDX buffers between the local represen-

tation and the fully encoded representation.

• Choose the simplest buffer management system that your encoding rules and envi-

ronment will allow. Using "inline" procedures or macros is a significant advantage.

• Choose a memory allocation/free model that supports cheap allocations and frees.

Avoid hierarchical freeing if possible.

• Design local data structures that minimize the number of allocations by eliminating

unnecessary pointers.

• Use a simple pre-encoding length calculation if the abstract syntax, protocol or

encoding rules permit, to simplify buffer management for encoders.

For the PersonnelRecord data structure, PER92 is better than BER in performance

and compression. However, the extent of the improvement greatly depends on the ab-

stract syntax of the values being processed. Abstract syntaxes that use subtyping may

allow PER92 to produce smaller encodings possibly at the cost of encoding and decoding

speed.

One-pass forward PER92 encoders can be implemented; this allows performance and

streaming to transport connections. Finally, both BER and PER encoders and decoders

performed well in comparison to XDR and NDR encoders and decoders. However, the

BER and PER performance will decrease as the data becomes more numerically oriented.

The snacc tool generates useful, efficient implementations. Obvious future develop-

ment would include handling the new language features of ASN.1 '92 and supporting

Chapter 7. Conclusions^ 123

different encoding rules such as PER, XDR, and possibly C based encoding rules (useful

when archiving to disk). The snacc generated type tables need to be improved such that

they contain subtyping information; subtyping information is necessary for PER encoders

and decoders.

In general, the maximum throughput of encoding rules is limited by the lower bound

of a simple memory copy of the PDU. In certain, limited cases, such as C based encoding

rules, this can be improved upon by encoding in place.

Future research on the performance of encoding rules is necessary. Perhaps parallelism

can be used to improve their throughput. C based encoding rules demonstrated that if

certain assumptions can be made, a large performance increase can be had. For example,

if hardware producers could use a common machine data representation standard then

this type of performance improvement could be made. The translation of primitive types,

which can be expensive (e.g. BER real values), would not be necessary.

Support for commonly used data structure features, such as multiple references to

the same value and even cyclic references, should be examined. Perhaps ASN.1 can be

extended with new language features and encoding rules to support this.

Appendix A

C Example

This appendix contains an example of the C code snacc will generate for an ASN.1

data structure. Snacc generated two files for the following PersonnelRecord ASN.1 data

structure, p_rec.c and p_rec.h.

124

Appendix A. C Example^ 125

P-REC DEFINITIONS ::=
BEGIN

PersonnelRecord ::= --snacc isPdu:"TRUE" -- [APPLICATION 0] IMPLICIT SET
{

Name,
title^[0] IA5String,

EmployeeNumber,
dateOfHire^[1] Date,
nameOfSpouse [2] Name,
children^[3] IMPLICIT SEQUENCE OF Childlnformation DEFAULT {}

Childlnformation ::= SET
{

Name,
dateOfBirth [0] Date

Name ::= [APPLICATION 1] IMPLICIT SEQUENCE
{

givenName IA5String,
initial IA5String,
familyName IA5String

}

EmployeeNumber ::= [APPLICATION 2] IMPLICIT INTEGER

Date ::= [APPLICATION 3] IMPLICIT IA5String^YYYYMMDD

END

Figure A.19: PersonnelRecord ASN.1 data structure

Appendix A. C Example^ 126

Snacc generated C file p_rec.h

Appendix A. C Example^ 127

/*
• p_rec.h
*
• "P-REC" ASN.1 module C type definitions and prototypes
*
• This .h file was by snacc on Sun Apr 11 02:17:21 1993
*
• UBC snacc written compiler by Mike Sample
*
• NOTE: This is a machine generated file - editing not recommended
*/

#ifndef _p_rec_h_
#define _p_rec_h_

typedef Asnlnt EmployeeNumber; /* [APPLICATION 2] IMPLICIT INTEGER */

#define BEncEmployeeNumberContent BEncAsnlntContent

#define BDecEmployeeNumberContent BDecAsnlntContent
#define PrintEmployeeNumber PrintAsnlnt

#define FreeEmployeeNumber FreeAsnlnt

typedef struct Name /* [APPLICATION 1] IMPLICIT SEQUENCE */
{

IA5String givenName; /* IA5String */
IA5String initial; /* IA5String */
IA5String familyName; /* IA5String */

} Name;

AsnLen BEncNameContent PROTO((BUF_TYPE b, Name* v));
void BDecNameContent PROTO((BUF_TYPE b, AsnTag tagIdO, AsnLen elmtLen0,
Name* v, AsnLen* bytesDecoded, ENV_TYPE env));
void PrintName PROTO((FILE* f, Name* v, unsigned short int indent));
void FreeName PROTO((Name* v));

typedef IA5String Date; /* [APPLICATION 3] IMPLICIT IA5String */
#define BEncDateContent BEncIA5StringContent

#define BDecDateContent BDecIA5StringContent
#define PrintDate PrintlA5String

Appendix A. C Example^ 128

#define FreeDate FreeIA5String

typedef struct Childlnformation /* SET */
{

struct Name* name; /* Name */
Date dateOfBirth; /* [0] Date */

Childlnformation;

AsnLen BEncChildInformationContent PROTO((BUF_TYPE b, Childlnformation* v));
void BDecChildlnformationContent PROTO((BUF_TYPE b, AsnTag tagIdO,
AsnLen elmtLenO, Childlnformation* v, AsnLen* bytesDecoded, ENV_TYPE env));
void PrintChildlnformation PROTO((FILE* f, Childlnformation* v,
unsigned short int indent));

void FreeChildInformation PROTO((Childlnformation* v));

typedef AsnList PersonnelRecordSeq0f; /* SEQUENCE OF Childlnformation */
AsnLen BEncPersonnelRecordSeq0fContent PROTO((BUF_TYPE b,
PersonnelRecordSeq0f* v));

void BDecPersonnelRecordSeq0fContent PROTO((BUF_TYPE b, AsnTag tagIdO,

AsnLen elmtLenO, PersonnelRecordSeq0f* v, AsnLen* bytesDecoded, ENV_TYPE env));
void PrintPersonnelRecordSeq0f PROTO((FILE* f, PersonnelRecordSeq0f* v,
unsigned short int indent));

void FreePersonnelRecordSeq0f PROTO((PersonnelRecordSeq0f* v));

typedef struct PersonnelRecord /* [APPLICATION 0] IMPLICIT SET */
{

struct Name* name; /* Name */

IA5String title; /* [0] IA5String */

EmployeeNumber employeeNumber; /* EmployeeNumber */
Date dateOfHire; /* [1] Date */

struct Name* nameOfSpouse; /* [2] Name */
PersonnelRecordSeq0f* children;

/* [3] IMPLICIT PersonnelRecordSeq0f DEFAULT

snacc warning: can't parse this value yet --{^*/
PersonnelRecord;

AsnLen BEncPersonnelRecord PROTO((BUF_TYPE b, PersonnelRecord* v));
void BDecPersonnelRecord PROTO((BUF_TYPE b, PersonnelRecord* result,

Appendix A. C Example^ 129

AsnLen* bytesDecoded, ENV_TYPE env));
AsnLen BEncPersonnelRecordContent PROTO((BUF_TYPE b, PersonnelRecord* v));

void BDecPersonnelRecordContent PROTO((BUF_TYPE b, AsnTag tagIdO,
AsnLen elmtLenO, PersonnelRecord* v, AsnLen* bytesDecoded, ENV_TYPE env));
void PrintPersonnelRecord PROTO((FILE* f, PersonnelRecord* v,
unsigned short int indent));
void FreePersonnelRecord PROTO((PersonnelRecord* v));

#endif /* conditional include of p_rec.h */

Appendix A. C Example^ 130

Snacc generated C file p_rec.c

Appendix A. C Example^ 131

/*
* p_rec.c
*

* "P-REC" ASN.1 module encode/decode/print/free C src.
*

* This file was generated by snacc on Sun Apr 11 02:17:21 1993
*

* UBC snacc written by Mike Sample
*

* NOTE: This is a machine generated file - editing not recommended
*/

#include "asn_incl.h"
#include "p_rec.h"

AsnLen

BEncNameContent PARAMS((b, v),
BUF_TYPE b _AND_
Name* v)

{
AsnLen totalLen = 0;

AsnLen itemLen;
AsnLen listLen;
void* component;

itemLen = BEncIA5StringContent(b, (&v->familyName));

itemLen += BEncDefLen(b, itemLen);
itemLen += BEncTagl(b, UNIV, PRIM, 22);

totalLen += itemLen;

itemLen = BEncIA5StringContent(b, (&v->initial));
itemLen += BEncDefLen(b, itemLen);
itemLen += BEncTagl(b, UNIV, PRIM, 22);

totalLen += itemLen;

itemLen = BEncIA5StringContent(b, (&v->givenName));
itemLen += BEncDefLen(b, itemLen);
itemLen += BEncTagl(b, UNIV, PRIM, 22);

Appendix A. C Example^ 132

totalLen += itemLen;

return (totalLen);

} /* BEncNameContent */

void

BDecNameContent PARAMS((b, tagIdO, elmtLenO, v, bytesDecoded, env),
BUF_TYPE b _AND_

AsnTag tagId0 _AND_
AsnLen elmtLenO _AND_
Name* v AND
AsnLen* bytesDecoded _AND_
ENV_TYPE env)
{

int seciDone = FALSE;

AsnLen totalElmtsLen1 = 0;
AsnLen elmtLenl;

AsnTag tagldi;
int mandatoryElmtCountl = 0;

tagldi = BDecTag(b, &totalElmtsLenl, env);

if (((tagldi == MAKE_TAG_ID(UNIV, PRIM, IA5STRING_TAG_CODE)) II
(tagldi == MAKE_TAG_ID(UNIV, CONS, IA5STRING_TAG_CODE))))

{
elmtLenl = BDecLen (b, &totalElmtsLenl, env);
BDecIA5StringContent(b, tagId1, elmtLenl, (&v->givenName),

&totalElmtsLenl, env);
tagldi = BDecTag(b, &totalElmtsLenl, env);
}

else
longjmp(env, -100);

if (((tagldi == MAKE_TAG_ID(UNIV, PRIM, IA5STRING_TAG_CODE)) II
(tagldi == MAKE_TAG_ID(UNIV, CONS, IA5STRING_TAG_CODE))))

{

elmtLenl = BDecLen (b, &totalElmtsLenl, env);
BDecIA5StringContent(b, tagId1, elmtLenl, (&v->initial),

Appendix A. C Example^ 133

&totalElmtsLenl, env);
tagIdl = BDecTag(b, &totalElmtsLenl, env);
}

else
longjmp(env, -101);

if (((tagId1 == MAKE_TAG_ID(UNIV, PRIM, IA5STRING_TAG_CODE)) II

(tagId1 == MAKE_TAG_ID(UNIV, CONS, IA5STRING_TAG_CODE))))

{
elmtLenl = BDecLen (b, &totalElmtsLenl, env);

BDecIA5StringContent(b, tagIdl, elmtLenl, (&v->familyName),
&totalElmtsLenl, env);

sepone = TRUE;

if (elmtLen0 == INDEFINITE_LEN)
BDecEoc(b, &totalElmtsLenl, env);

else if (totalElmtsLenl != elmtLen0)
longjmp(env, -102);

}

else
longjmp(env, -103);

if (!segDone)
longjmp(env, - 104);

(*bytesDecoded) += totalElmtsLenl;
} /* BDecNameContent */

void
PrintName PARAMS((f, v, indent),
FILE* f _AND_
Name* v AND
unsigned short int indent)
{

if (v == NULL)
return;

fprintf(f,"{ -- SEQUENCE --\n");

Indent(f, indent + stdIndentG);

Appendix A. C Example^ 134

fprintf(f,"givenName ");

PrintlA5String(f, (&v->givenName), indent + stdIndentG);
fprintf(f, ",\n");
Indent(f, indent + stdlndentG);
fprintf(f,"initial ");

PrintlA5String(f, (&v->initial), indent + stdlndentG);
fprintf(f, ",\n");
Indent(f, indent + stdlndentG);

fprintf(f,"familyName ");
PrintlA5String(f, (&v->familyName), indent + stdlndentG);
fprintf(f,"\n");

Indent(f, indent);
fprintf(f,"}");

/* PrintName */

void

FreeName PARAMS((v),
Name* v)
{

if (v == NULL)

return;
FreeIA5String((&v->givenName));

FreeIA5String((&v->initial));

FreeIA5String((&v->familyName));

} /* FreeName */

AsnLen

BEncChildlnformationContent PARAMS((b, v),
BUF_TYPE b _AND_

ChildInformation* v)
{

AsnLen totalLen = 0;
AsnLen itemLen;

AsnLen listLen;
void* component;

Appendix A. C Example^ 135

BEncEoclfNec(b);
itemLen = BEncDateContent(b, (&v->dateOfBirth));
itemLen += BEncDefLen(b, itemLen);

itemLen += BEncTagl(b, APPL, PRIM, 3);
itemLen += BEncConsLen(b, itemLen);
itemLen += BEncTagl(b, CNTX, CONS, 0);

totalLen += itemLen;

BEncEoclfNec(b);
itemLen = BEncNameContent(b, (v->name));
itemLen += BEncConsLen(b, itemLen);

itemLen += BEncTagl(b, APPL, CONS, 1);

totalLen += itemLen;

return (totalLen);

} /* BEncChildlnformationContent */

void

BDecChildlnformationContent PARAMS((b, tagldO, elmtLenO, v, bytesDecoded, env),
BUF_TYPE b _AND_
AsnTag tagId0 _AND_
AsnLen elmtLenO _AND_
Childlnformation* v AND
AsnLen* bytesDecoded _AND_
ENV_TYPE env)

{
int sepone = FALSE;
AsnLen totalElmtsLenl = 0;
AsnLen elmtLenl;
AsnTag tagIdl;

int mandatoryElmtCountl = 0;
AsnLen totalElmtsLen2 = 0;
AsnLen elmtLen2;
AsnTag tagld2;

for (; (totalElmtsLenl < elmtLen0) 11 (elmtLen0 == INDEFINITE_LEN);)

Appendix A. C Example^ 136

{
tagIdl = BDecTag(b, &totalElmtsLenl, env);

if ((tagIdl == EOC_TAG_ID) && (elmtLen0 == INDEFINITE_LEN))
{

BDEC_2ND_EOC_OCTET(b, &totalElmtsLenl, env)

break; /* got EOC so can exit this SET's for loop*/
}

elmtLenl = BDecLen (b, &totalElmtsLenl, env);
switch(tagIdl)

{

case(MAKE_TAG_ID(APPL, CONS, 1)):
(v->name) = (Name*) Asn1Alloc(sizeof(Name));
CheckAsn1Alloc((v->name), env);

BDecNameContent(b, tagIdl, elmtLenl, (v->name), &totalElmtsLenl, env);
mandatoryElmtCountl++;
break;

case(MAKE_TAG_ID(CNTX, CONS, 0)):
tagId2 = BDecTag(b, &totalElmtsLenl, env);

if ((tagId2 != MAKE_TAG_ID(APPL, PRIM, 3)) &&
(tagId2 != MAKE_TAG_ID(APPL, CONS, 3)))
{

AsnlError("Unexpected Tag\n");
longjmp(env, -106);

elmtLen2 = BDecLen (b, &totalElmtsLenl, env);

BDecDateContent(b, tagId2, elmtLen2, (&v->dateOfBirth),

&totalElmtsLenl, env);
if (elmtLenl == INDEFINITE_LEN)

BDecEoc(b, &totalElmtsLenl, env);
mandatoryElmtCount1++;
break;

default:

AsnlError("BDecChildlnformationContent: ERROR - Unexpected tag\
in SET\n");

longjmp(env, -107);
break;
} /* end switch */

Appendix A. C Example^ 137

/* end for */

if (mandatoryElmtCount1 != 2)
{

AsnlError("BDecChildlnformationContent: ERROR - non-optional elmt\
missing from SET\n");

longjmp(env, -108);
}

(*bytesDecoded) += totalElmtsLenl;
/* BDecChildInformationContent */

void

PrintChildlnformation PARAMS((f, v, indent),
FILE* f _AND_

Childlnformation* v _AND_
unsigned short int indent)

if (v == NULL)
return;

fprintf(f,"{ -- SET --\n");

Indent(f, indent + stdIndentG);

PrintName(f, (v->name), indent + stdIndentG);
fprintf(f, ",\n");

Indent(f, indent + stdIndentG);
fprintf(f,"dateOfBirth ");

PrintDate(f, (&v->dateOfBirth), indent + stdIndentG);
fprintf(f,"\n");
Indent(f, indent);
fprintf(f,"}");

} /* PrintChildInformation */

void

FreeChildInformation PARAMS((v),
Childlnformation* v)
{

if (v == NULL)
return;

FreeName((v->name));
Asn1Free((v->name));

Appendix A. C Example^ 138

FreeDate((&v->dateOfBirth));

} /* FreeChildInformation */

AsnLen
BEncPersonnelRecordSeq0fContent PARAMS((b, v),
BUF_TYPE b _AND_

PersonnelRecordSeq0f* v)

{
AsnLen totalLen = 0;

AsnLen itemLen;
AsnLen listLen;
void* component;

listLen = 0;
FOR_EACH_LIST_ELMT_RVS(component, v)
{

BEncEoclfNec(b);

itemLen = BEncChildlnformationContent(b, component);
itemLen += BEncConsLen(b, itemLen);
itemLen += BEncTagl(b, UNIV, CONS, 17);

listLen += itemLen;
}

return (listLen);

} /* BEncPersonnelRecordSeq0fContent */

void

BDecPersonnelRecordSeq0fContent PARAMS((b, tagldO, elmtLen0, v,
bytesDecoded, env),
BUF_TYPE b _AND_
AsnTag tagId0 _AND_

AsnLen elmtLen0 _AND_
PersonnelRecordSeq0f* v _AND_
AsnLen* bytesDecoded _AND_
ENV_TYPE env)

Appendix A. C Example^ 139

int seqDone = FALSE;
AsnLen totalElmtsLenl = 0;
AsnLen elmtLenl;
AsnTag tagIdl;

int mandatoryElmtCountl = 0;

for (totalElmtsLenl = 0; (totalElmtsLenl < elmtLen0) II
(elmtLen0 == INDEFINITE_LEN);)

{

Childlnformation** tmpVar;
tagIdl = BDecTag(b, &totalElmtsLenl, env);

if ((tagIdl == EOC_TAG_ID) && (elmtLen0 == INDEFINITE_LEN))
{

BDEC_2ND_EOC_OCTET(b, &totalElmtsLenl, env)

break; /* got EOC so can exit this SET OF/SEQ OF's for loop*/
}

if ((tagIdl == MAKE_TAG_ID(UNIV, CONS, SET_TAG_CODE)))
{

elmtLenl = BDecLen (b, &totalElmtsLenl, env);
tmpVar = (ChildInformation**) AsnListAppend(v);

(*tmpVar) = (ChildInformation*) AsnlAlloc(sizeof(Childlnformation));
CheckAsnlAlloc((*tmpVar), env);
BDecChildlnformationContent(b, tagIdl, elmtLenl, (*tmpVar),

&totalElmtsLenl, env);
} /* end of tag check if */
else /* wrong tag */
{

Asn1Error("Unexpected Tag\n");
longjmp(env, -109);

}

} /* end of for */

(*bytesDecoded) += totalElmtsLenl;
} /* BDecPersonnelRecordSeq0fContent */

void
PrintPersonnelRecordSeq0f PARAMS((f, v, indent),
FILE* f _AND_

Appendix A. C Example^ 140

PersonnelRecordSeq0f* v _AND_
unsigned short int indent)

{
Childlnformation* tmp;
if (v == NULL)

return;

fprintf(f,"{ -- SEQUENCE OF -- \n");
FOR_EACH_LIST_ELMT(tmp, v)

{
Indent(f, indent+ stdIndentG);

PrintChildlnformation(f, tmp, indent + stdIndentG);
if (tmp != (Childlnformation*)LAST_LIST_ELMT(v))

fprintf(f,",\n");
}

fprintf(f,"\n");
Indent(f, indent);

fprintf(f,"}");

} /* PrintPersonnelRecordSeq0f */

void

FreePersonnelRecordSeq0f PARAMS((v),
PersonnelRecordSeq0f* v)
{

AsnListNode* 1;
AsnListNode* tmp;

if (v == NULL)
return;

for (1 = FIRST_LIST_NODE(v); 1 != NULL;)
{

FreeChildInformation((1->data));
tmp = 1->next;
AsnlFree(1->data);
AsnlFree(1);

1 = tmp;
}

} /* FreePersonnelRecordSeq0f */

Appendix A. C Example^ 141

AsnLen BEncPersonnelRecord PARAMS((b, v),
BUF_TYPE b _AND_
PersonnelRecord* v)

{
AsnLen 1;

BEncEoclfNec(b);
1 = BEncPersonnelRecordContent(b, v);
1 += BEncConsLen(b, 1);

1 += BEncTagl(b, APPL, CONS, 0);
return(1);

} /* BEncPersonnelRecord */

void BDecPersonnelRecord PARAMS((b, result, bytesDecoded, env),
BUF_TYPE b _AND_
PersonnelRecord* result AND
AsnLen* bytesDecoded _AND_
ENV_TYPE env)

{
AsnTag tag;
AsnLen elmtLenl;

if (((tag = BDecTag(b, bytesDecoded, env)) !=

MAKE_TAG_ID(APPL, CONS, 0)))

{
Asn1Error("BDecPersonnelRecord: ERROR - wrong tag\n");

longjmp(env, -110);
}

elmtLenl = BDecLen(b, bytesDecoded, env);
BDecPersonnelRecordContent(b, tag, elmtLenl, result, bytesDecoded, env);

} /* BDecPersonnelRecord */

AsnLen
BEncPersonnelRecordContent PARAMS((b, v),
BUF_TYPE b _AND_
PersonnelRecord* v)

{
AsnLen totalLen = 0;

AsnLen itemLen;
AsnLen listLen;
void* component;

Appendix A. C Example^ 142

if (NOT_NULL((v->children)))
{

BEncEoclfNec(b);

itemLen = BEncPersonnelRecordSeq0fContent(b, (v->children));
itemLen += BEncConsLen(b, itemLen);

itemLen += BEncTagl(b, CNTX, CONS, 3);

totalLen += itemLen;
}

BEncEoclfNec(b);
BEncEoclfNec(b);

itemLen = BEncNameContent(b, (v->nameOfSpouse));

itemLen += BEncConsLen(b, itemLen);
itemLen += BEncTagl(b, APPL, CONS, 1);
itemLen += BEncConsLen(b, itemLen);
itemLen += BEncTagl(b, CNTX, CONS, 2);

totalLen += itemLen;

BEncEoclfNec(b);

itemLen = BEncDateContent(b, (&v->dateOfHire));
itemLen += BEncDefLen(b, itemLen);
itemLen += BEncTagl(b, APPL, PRIM, 3);
itemLen += BEncConsLen(b, itemLen);
itemLen += BEncTagl(b, CNTX, CONS, 1);

totalLen += itemLen;

itemLen = BEncEmployeeNumberContent(b, (&v->employeeNumber));
BEncDefLenTo127(b, itemLen);
itemLen++;

itemLen += BEncTagl(b, APPL, PRIM, 2);

totalLen += itemLen;

BEncEoclfNec(b);

itemLen = BEncIA5StringContent(b, (&v->title));
itemLen += BEncDefLen(b, itemLen);

itemLen += BEncTagl(b, UNIV, PRIM, 22);
itemLen += BEncConsLen(b, itemLen);

Appendix A. C Example^ 143

itemLen += BEncTagl(b, CNTX, CONS, 0);

totalLen += itemLen;

BEncEoclfNec(b);

itemLen = BEncNameContent(b, (v->name));
itemLen += BEncConsLen(b, itemLen);
itemLen += BEncTagl(b, APPL, CONS, 1);

totalLen += itemLen;

return (totalLen);

/* BEncPersonnelRecordContent */

void

BDecPersonnelRecordContent PARAMS((b, tagldO, elmtLenO, v, bytesDecoded, env),
BUF_TYPE b _AND_

AsnTag tagId0 _AND_
AsnLen elmtLenO _AND_
PersonnelRecord* v AND
AsnLen* bytesDecoded _AND_
ENV_TYPE env)
{

int sepone = FALSE;
AsnLen totalElmtsLenl = 0;
AsnLen elmtLenl;
AsnTag tagId1;
int mandatoryElmtCountl = 0;

AsnLen totalElmtsLen2 = 0;
AsnLen elmtLen2;
AsnTag tagld2;

for (; (totalElmtsLenl < elmtLen0) II (elmtLen0 == INDEFINITE_LEN);)

{
tagId1 = BDecTag(b, &totalElmtsLenl, env);

if ((tagIdl == EOC_TAG_ID) && (elmtLen0 == INDEFINITE_LEN))

{
BDEC_2ND_EOC_OCTET(b, &totalElmtsLenl, env)

Appendix A. C Example^ 144

break; /* got EOC so can exit this SET's for loop*/
}

elmtLenl = BDecLen (b, &totalElmtsLenl, env);

switch(tagldl)
{

case(MAKE_TAG_ID(APPL, CONS, 1)):
(v->name) = (Name*) Asn1Alloc(sizeof(Name));
CheckAsnlAlloc((v->name), env);

BDecNameContent(b, tagId1, elmtLenl, (v->name), &totalElmtsLenl, env);
mandatoryElmtCountl++;
break;

case(MAKE_TAG_ID(CNTX, CONS, 0)):
tagId2 = BDecTag(b, &totalElmtsLenl, env);

if ((tagId2 != MAKE_TAG_ID(UNIV, PRIM, IA5STRING_TAG_CODE)) &&
(tagId2 != MAKE_TAG_ID(UNIV, CONS, IA5STRING_TAG_CODE)))
{

AsnlError("Unexpected Tag\n");
longjmp(env, -111);

elmtLen2 = BDecLen (b, &totalElmtsLenl, env);

BDecIA5StringContent(b, tagId2, elmtLen2, (&v->title),

&totalElmtsLenl, env);
if (elmtLenl == INDEFINITE_LEN)

BDecEoc(b, &totalElmtsLenl, env);
mandatoryElmtCountl++;
break;

case(MAKE_TAG_ID(APPL, PRIM, 2)):
BDecEmployeeNumberContent(b, tagId1, elmtLenl, (&v->employeeNumber),

&totalElmtsLenl, env);
mandatoryElmtCount1++;
break;

case(MAKE_TAG_ID(CNTX, CONS, 1)):
tagId2 = BDecTag(b, &totalElmtsLenl, env);

if ((tagId2 != MAKE_TAG_ID(APPL, PRIM, 3)) &&
(tagId2 != MAKE_TAG_ID(APPL, CONS, 3)))
{

AsnlError("Unexpected Tag\n");

Appendix A. C Example^ 145

longjmp(env, -112);

elmtLen2 = BDecLen (b, &totalElmtsLenl, env);
BDecDateContent(b, tagId2, elmtLen2, (&v->dateOfHire),

&totalElmtsLenl, env);
if (elmtLenl == INDEFINITE_LEN)

BDecEoc(b, &totalElmtsLenl, env);

mandatoryElmtCount1++;
break;

case(MAKE_TAG_ID(CNTX, CONS, 2)):
if (BDecTag(b, &totalElmtsLenl, env) != MAKE_TAG_ID(APPL, CONS, 1))

{
AsnlError("Unexpected Tag\n");
longjmp(env, -113);

elmtLen2 = BDecLen (b, &totalElmtsLenl, env);
(v->nameOfSpouse) = (Name*) AsnlAlloc(sizeof(Name));
CheckAsnlAlloc((v->nameOfSpouse), env);

BDecNameContent(b, tagId2, elmtLen2, (v->nameOfSpouse),

&totalElmtsLenl, env);
if (elmtLenl == INDEFINITE_LEN)

BDecEoc(b, &totalElmtsLenl, env);
mandatoryElmtCount1++;
break;

case(MAKE_TAG_ID(CNTX, CONS, 3)):
(v->children) = AsnListNew(sizeof(char*));
CheckAsn1Alloc((v->children), env);

BDecPersonnelRecordSeq0fContent(b, tagIdl, elmtLenl, (v->children),

&totalElmtsLenl, env);
break;

default:
Asn1Error("BDecPersonnelRecordContent: ERROR - Unexpected tag

in SET\n");
longjmp(env, -114);
break;

/* end switch */

Appendix A. C Example^ 146

} /* end for */
if (mandatoryElmtCountl != 5)

{
AsnlError("BDecPersonnelRecordContent: ERROR - non-optional elmt\

missing from SET\n");

longjmp(env, -115);
}

(*bytesDecoded) += totalElmtsLenl;
} /* BDecPersonnelRecordContent */

void

PrintPersonnelRecord PARAMS((f, v, indent),
FILE* f _AND_

PersonnelRecord* v AND

unsigned short int indent)

{
if (v == NULL)

return;

fprintf(f,"{ -- SET --\n");

Indent(f, indent + stdIndentG);

PrintName(f, (v->name), indent + stdIndentG);
fprintf(f, ",\n");

Indent(f, indent + stdIndentG);
fprintf(f,"title ");

PrintlA5String(f, (&v->title), indent + stdIndentG);
fprintf(f, ",\n");

Indent(f, indent + stdlndentG);

PrintEmployeeNumber(f, (&v->employeeNumber), indent + stdlndentG);
fprintf(f, ",\n");

Indent(f, indent + stdlndentG);
fprintf(f,"date0fHire ");

PrintDate(f, (&v->date0fHire), indent + stdIndentG);
fprintf(f, ",\n");

Indent(f, indent + stdlndentG);
fprintf(f,"nameOfSpouse ");

PrintName(f, (v->nameOfSpouse), indent + stdlndentG);
if (NOT_NULL((v->children)))
{

fprintf(f,",\h");

Appendix A. C Example^ 147

Indent(f, indent + stdIndentG);
fprintf(f,"children ");
PrintPersonnelRecordSeq0f(f, (v->children), indent + stdIndentG);
}

fprintf(f,"\n");
Indent(f, indent);
fprintf(f,"1");

} /* PrintPersonnelRecord */

void
FreePersonnelRecord PARAMS((v),

PersonnelRecord* v)
{

if (v == NULL)
return;

FreeName((v->name));
AsnlFree((v->name));

FreeIA5String((&v->title));

FreeEmployeeNumber((&v->employeeNumber));

FreeDate((&v->date0fHire));

FreeName((v->nameOfSpouse));

AsnlFree((v->nameOfSpouse));

if (NOT_NULL((v->children)))
{

FreePersonnelRecordSeq0f((v->children));
AsnlFree((v->children));
}

/* FreePersonnelRecord */

Appendix B

C++ Example

This appendix contains an example of the C++ code snacc will generate for an ASN.1

data structure. Snacc generated two files for the PersonnelRecord ASN.1 data structure,

prec.0 and prec.h.

148

Appendix B. C++ Example^ 149

Snacc generated C++ file prec.h

Appendix B. C++ Example^ 150

//
// p_rec.h - class definitions for ASN.1 module P-REC
//
// This file was generated by snacc on Sun Apr 11 03:17:42 1993
// UBC snacc by Mike Sample

// NOTE: this is a machine generated file - editing not recommended

//

#ifndef _p_rec_h_
#define _p_rec_h_

// forward declarations

class EmployeeNumber;
class Name;
class Date;
class Childlnformation;
class PersonnelRecordSeq0f;
class PersonnelRecord;

/* [APPLICATION 2] IMPLICIT INTEGER */
class EmployeeNumber : public Asnlnt
{

public:
EmployeeNumber(): AsnInt() {}
EmployeeNumber(int i): Asnlnt(i) {}
AsnType* Clone() { return new EmployeeNumber; }
AsnLen BEnc(BUF_TYPE b)
{

AsnLen 1;
1 = BEncContent(b);

1 += BEncConsLen(b, 1);
1 += BEncTagl(b, APPL, PRIM, 2);
return(1);

void BDec(BUF_TYPE b, AsnLen& bytesDecoded, ENV_TYPE env)
{

AsnTag tag;
AsnLen elmtLenl;

Appendix B. C++ Example^ 151

if (((tag = BDecTag(b, bytesDecoded, env)) !=
MAKE_TAG_ID(APPL, PRIM, 2)))

{
Asn1Error("EmployeeNumber::BDec: ERROR - wrong tag\n");
longjmp(env, -100);

}

elmtLenl = BDecLen(b, bytesDecoded, env);
BDecContent(b, tag, elmtLenl, bytesDecoded, env);

int BEncPdu(BUF_TYPE b, AsnLen& bytesEncoded)

{
bytesEncoded = BEnc(b);
return(!b.WriteError());

int BDecPdu(BUF_TYPE b, AsnLen& bytesDecoded)
{

ENV_TYPE env;
int val;

bytesDecoded = 0;
if ((val = setjmp(env)) == 0)
{

BDec(b, bytesDecoded, env);
return(!b.ReadError());

}

else

return(FALSE);

};

class Name : public AsnType

{
public:

IA5String givenName;
IA5String initial;
IA5String familyName;

Appendix B. C++ Example^ 152

Name() {}
void Print(ostream& os);

AsnType* Clone() { return new Name; }
AsnLen BEnc(BUF_TYPE b)

{
AsnLen 1;
1 = BEncContent(b);

1 += BEncConsLen(b, 1);
1 += BEncTagl(b, APPL, CONS, 1);
return(1);

void BDec(BUF_TYPE b, AsnLen& bytesDecoded, ENV_TYPE env)

{

AsnTag tag;
AsnLen elmtLen1;

if ((tag = BDecTag(b, bytesDecoded, env)) !=
MAKE_TAG_ID(APPL, CONS, 1))

AsnlError("Name::BDec: ERROR - wrong tag\n");
longjmp(env, -101);

}

elmtLen1 = BDecLen(b, bytesDecoded, env);
BDecContent(b, tag, elmtLen1, bytesDecoded, env);

AsnLen BEncContent(BUF_TYPE b);
void BDecContent(BUF_TYPE b, AsnTag tag, AsnLen elmtLen,

AsnLen& bytesDecoded, ENV_TYPE env);

int BEncPdu(BUF_TYPE b, AsnLen& bytesEncoded)

{
bytesEncoded = BEnc(b);
return(!b.WriteError());

int BDecPdu(BUF_TYPE b, AsnLen& bytesDecoded)

{

ENV_TYPE env;

Appendix B. C++ Example^ 153

int val;

bytesDecoded = 0;

if ((val = setjmp(env)) == 0)

{
BDec(b, bytesDecoded, env);
return(!b.ReadError());

}

else
return(FALSE);

1 ;

/* [APPLICATION 3] IMPLICIT IA5String */

class Date : public IA5String

{
public:

Date(): IA5String() {}

Date(const char* str): IA5String(str) {}

Date(const char* str, const unsigned long int len): IA5String(str,len) {}
Date(const IA5String& o): IA5String(o) {}

Date& operator=(const Date& o) {ReSet(o); return *this;}

Date& operator=(const char* str) {ReSet(str); return *this;}
AsnType* Clone() { return new Date; }

AsnLen BEnc(BUF_TYPE b)

{
AsnLen 1;

1 = BEncContent(b);
1 += BEncDefLen(b, 1);

1 += BEncTagl(b, APPL, PRIM, 3);

return(1);

void BDec(BUF_TYPE b, AsnLen& bytesDecoded, ENV_TYPE env)
{

AsnTag tag;
AsnLen elmtLenl;

if (((tag = BDecTag(b, bytesDecoded, env)) !=

Appendix B. C++ Example^ 154

MAKE_TAG_ID(APPL, PRIM, 3))&&
(tag != MAKE_TAG_ID(APPL, CONS, 3)))

{
AsnlError("Date::BDec: ERROR - wrong tag\n");
longjmp(env, -106);

}

elmtLenl = BDecLen(b, bytesDecoded, env);
BDecContent(b, tag, elmtLenl, bytesDecoded, env);

int BEncPdu(BUF_TYPE b, AsnLen& bytesEncoded)

{
bytesEncoded = BEnc(b);

return(!b.WriteError());

int BDecPdu(BUF_TYPE b, AsnLen& bytesDecoded)

{
ENV_TYPE env;
int val;

bytesDecoded = 0;
if ((val = setjmp(env)) == 0)

{
BDec(b, bytesDecoded, env);
return(!b.ReadError());

}

else
return(FALSE);

} ;

class Childlnformation : public AsnType

{
public:

Name* name;
Date dateOfBirth;

Childlnformation() {}

Appendix B. C++ Example^ 155

void Print(ostream& os);
AsnType* Clone() { return new Childlnformation; }

AsnLen BEnc(BUF_TYPE b)

{
AsnLen 1;

1 = BEncContent(b);
1 += BEncConsLen(b, 1);
1 += BEncTagl(b, UNIV, CONS, SET_TAG_CODE);

return(1);

void BDec(BUF_TYPE b, AsnLen& bytesDecoded, ENV_TYPE env)

{
AsnTag tag;
AsnLen elmtLenl;

if ((tag = BDecTag(b, bytesDecoded, env)) !=
MAKE_TAG_ID(UNIV, CONS, SET_TAG_CODE))

{
AsnlError("ChildInformation::BDec: ERROR - wrong tag\n");
longjmp(env, -107);

}

elmtLenl = BDecLen(b, bytesDecoded, env);
BDecContent(b, tag, elmtLenl, bytesDecoded, env);

AsnLen BEncContent(BUF_TYPE b);
void BDecContent(BUF_TYPE b, AsnTag tag, AsnLen elmtLen,

AsnLen& bytesDecoded, ENV_TYPE env);

int BEncPdu(BUF_TYPE b, AsnLen& bytesEncoded)

{
bytesEncoded = BEnc(b);
return(!b.WriteError());

int BDecPdu(BUF_TYPE b, AsnLen& bytesDecoded)

{
ENV_TYPE env;
int val;

Appendix B. C++ Example^ 156

bytesDecoded = 0;
if ((val = setjmp(env)) == 0)
{

BDec(b, bytesDecoded, env);
return(!b.ReadError());

}

else
return(FALSE);

1 ;

class PersonnelRecordSeq0f : public AsnType
{

protected:

unsigned long int count;
struct AsnListElmt
{

struct AsnListElmt* next;
struct AsnListElmt* prey;

Childlnformation* elmt;
} *first, *curr, *last;

public:
void Print(ostream& os);
AsnType* Clone() { return new PersonnelRecordSeq0f; }

PersonnelRecordSeq0f 0 { count = 0; first = curr = last = NULL; }
void SetCurrElmt(unsigned long int index);
unsigned long int GetCurrElmtIndex();
void SetCurrToFirst() { curr = first; }
void SetCurrToLast() { curr = last; }
// reading member fcns

int Count() { return count; }

Childlnformation* First() { if (count > 0) return(first->elmt) ;
else return(NULL); }

Childlnformation* Last() { if (count > 0) return(last->elmt) ;

else return(NULL); }
Childlnformation* Curr() { if (curr != NULL) return(curr->elmt) ;

else return(NULL); }
Childlnformation* Next() { if ((curr != NULL)&& (curr->next != NULL))

Appendix B. C++ Example^ 157

return(curr->next->elmt) ; else return(NULL); }
Childlnformation* Prev() { if ((curr != NULL)&& (curr->prev != NULL))

return(curr->prev->elmt) ; else return(NULL); }

// routines that move the curr elmt
Childlnformation* GoNext() { if (curr != NULL) curr = curr->next;

return(Curr()); }
Childlnformation* GoPrev() { if (curr != NULL) curr = curr->prev;

return(Curr()); }

// write & alloc fcns - returns new elmt

Childlnformation* Append(); // add elmt to end of list
Childlnformation* Prepend(); // add elmt to beginning of list
Childlnformation* InsertBefore(); //insert elmt before current elmt
Childlnformation* InsertAfter(); //insert elmt after current elmt

// write & alloc & copy - returns list after copying elmt

PersonnelRecordSeq0f& AppendCopy(Childlnformation& elmt);
PersonnelRecordSeq0f& PrependCopy(Childlnformation& elmt);
PersonnelRecordSeq0f& InsertBeforeAndCopy(Childlnformation& elmt);
PersonnelRecordSeq0f& InsertAfterAndCopy(Childlnformation& elmt);

// encode and decode routines
AsnLen BEnc(BUF_TYPE b)
{

AsnLen 1;

1 = BEncContent(b);
1 += BEncConsLen(b, 1);

1 += BEncTagl(b, UNIV, CONS, SEQ_TAG_CODE);
return(1);

void BDec(BUF_TYPE b, AsnLen& bytesDecoded, ENV_TYPE env)
{

AsnTag tag;
AsnLen elmtLenl;

if ((tag = BDecTag(b, bytesDecoded, env)) !=
MAKE_TAG_ID(UNIV, CONS, SEQ_TAG_CODE))

AsnlError("PersonnelRecordSeq0f::BDec: ERROR - wrong tag\n");

Appendix B. C++ Example^ 158

longjmp(env, -111);
}

elmtLenl = BDecLen(b, bytesDecoded, env);
BDecContent(b, tag, elmtLenl, bytesDecoded, env);

AsnLen BEncContent(BUF_TYPE b);
void BDecContent(BUF_TYPE b, AsnTag tag, AsnLen elmtLen,

AsnLen& bytesDecoded, ENV_TYPE env);

PDU_MEMBER_MACROS

} ;

class PersonnelRecord : public AsnType

{
public:

Name* name;

IA5String title;

EmployeeNumber employeeNumber;
Date dateOfHire;

Name* nameOfSpouse;
PersonnelRecordSeq0f* children;

PersonnelRecord()

f
/* init optional/default elements to NULL */
children = NULL;

void Print(ostream& os);
AsnType* Clone() { return new PersonnelRecord; }
AsnLen BEnc(BUF_TYPE b)

f
AsnLen 1;
1 = BEncContent(b);

1 += BEncConsLen(b, 1);
1 += BEncTagl(b, APPL, CONS, 0);
return(1);

Appendix B. C++ Example^ 159

void BDec(BUF_TYPE b, AsnLen& bytesDecoded, ENV_TYPE env)

{
AsnTag tag;

AsnLen elmtLenl;

if ((tag = BDecTag(b, bytesDecoded, env)) !=
MAKE_TAG_ID(APPL, CONS, 0))

{
AsnlError("PersonnelRecord::BDec: ERROR - wrong tag\n");
longjmp(env, - 113);

}

elmtLenl = BDecLen(b, bytesDecoded, env);
BDecContent(b, tag, elmtLenl, bytesDecoded, env);

AsnLen BEncContent(BUF_TYPE b);

void BDecContent(BUF_TYPE b, AsnTag tag, AsnLen elmtLen,
AsnLen& bytesDecoded, ENV_TYPE env);

int BEncPdu(BUF_TYPE b, AsnLen& bytesEncoded)

{
bytesEncoded = BEnc(b);
return(!b.WriteError());

int BDecPdu(BUF_TYPE b, AsnLen& bytesDecoded)

{
ENV_TYPE env;
int val;

bytesDecoded = 0;

if ((val = setjmp(env)) == 0)

{
BDec(b, bytesDecoded, env);

return(!b.ReadError());
}

else
return(FALSE);

} ;

Appendix B. C++ Example^ 160

// externs for value defs

#endif /* conditional include of p_rec.h */

Appendix B. C++ Example^ 161

Snacc generated C++ file p_rec.0

Appendix B. C++ Example^ 162

//

// p_rec.0 - class member functions for ASN.1 module P-REC
//

// This file was generated by snacc on Sun Apr 11 03:17:42 1993
// UBC snacc written by Mike Sample

// NOTE: this is a machine generated file - editing not recommended
//

#include "asn_incl.h"

#include "p_rec.h"

// value defs

AsnLen

Name::BEncContent(BUF_TYPE b)

{
AsnLen totalLen = 0;
AsnLen 1;

1 = familyName.BEncContent(b);
1 += BEncDefLen(b, 1);

1 += BEncTagl(b, UNIV, PRIM, IA5STRING_TAG_CODE);
totalLen += 1;

1 = initial.BEncContent(b);

1 += BEncDefLen(b, 1);

1 += BEncTagl(b, UNIV, PRIM, IA5STRING_TAG_CODE);
totalLen += 1;

1 = givenName.BEncContent(b);
1 += BEncDefLen(b, 1);

1 += BEncTagl(b, UNIV, PRIM, IA5STRING_TAG_CODE);
totalLen += 1;

return(totalLen);
} /* Name::BEncContent */

Appendix B. C++ Example^ 163

void
Name::BDecContent(BUF_TYPE b, AsnTag tag°, AsnLen elmtLen0,

AsnLen& bytesDecoded, ENV_TYPE env)

{
AsnTag tagl;

AsnLen seqBytesDecoded = 0;
AsnLen elmtLenl;

tagl = BDecTag(b, seqBytesDecoded, env);

if ((tagl == MAKE_TAG_ID(UNIV, PRIM, IA5STRING_TAG_CODE)) II
(tagl == MAKE_TAG_ID(UNIV, CONS, IA5STRING_TAG_CODE)))

{

elmtLenl = BDecLen(b, seqBytesDecoded, env);
givenName.BDecContent(b, tag1, elmtLenl, seqBytesDecoded, env);
tagl = BDecTag(b, seqBytesDecoded, env);

}

else
{

Asn1Error("ERROR - SEQUENCE is missing non-optional elmt.\n");
longjmp(env, -102);

if ((tagl == MAKE_TAG_ID(UNIV, PRIM, IA5STRING_TAG_CODE)) II
(tagi == MAKE_TAG_ID(UNIV, CONS, IA5STRING_TAG_CODE)))

{

elmtLenl = BDecLen(b, seqBytesDecoded, env);
initial.BDecContent(b, tagl, elmtLenl, seqBytesDecoded, env);
tagl = BDecTag(b, seqBytesDecoded, env);

}

else
{

AsnlError("ERROR - SEQUENCE is missing non-optional elmt.\n");
longjmp(env, -103);

if ((tagi == MAKE_TAG_ID(UNIV, PRIM, IA5STRING_TAG_CODE)) II

(tagl == MAKE_TAG_ID(UNIV, CONS, IA5STRING_TAG_CODE)))

{

elmtLenl = BDecLen(b, seqBytesDecoded, env);
familyName.BDecContent(b, tagl, elmtLenl, seqBytesDecoded, env);

Appendix B. C++ Example^ 164

}

else
{

AsnlError("ERROR - SEQUENCE is missing non-optional elmt.\n");
longjmp(env, -104);

bytesDecoded += seqBytesDecoded;

if (elmtLen0 == INDEFINITE_LEN)

{
BDecEoc(b, bytesDecoded, env);
return;

}

else if (seqBytesDecoded != elmtLen0)
{

AsnlError("ERROR - Length discrepancy on sequence.\n");
longjmp(env, -105);

}

else

return;
/* Name::BDecContent */

void
Name::Print(ostream& os)
{

os << "{ -- SEQUENCE --" << endl;
indentG += stdIndentG;
Indent(os, indentG);
os << "givenName ";

os << givenName;
os << "," << endl;
Indent(os, indentG);

os << "initial ";
os << initial;

os << "," << endl;
Indent(os, indentG);
os << "familyName ";

os << familyName;
os << endl;
indentG -= stdIndentG;
Indent(os, indentG);

Appendix B. C++ Example^ 165

os << "1";

} 1* Name::Print */

AsnLen
ChildInformation::BEncContent(BUF_TYPE b)

{
AsnLen totalLen = 0;
AsnLen 1;

BEncEoclfNec(b);
1 = dateOfBirth.BEncContent(b);

1 += BEncDefLen(b, 1);
1 += BEncTagl(b, APPL, PRIM, 3);
1 += BEncConsLen(b, 1);

1 += BEncTagl(b, CNTX, CONS, 0);
totalLen += 1;

BEncEoclfNec(b);

1 = name->BEncContent(b);
1 += BEncConsLen(b, 1);
1 += BEncTagl(b, APPL, CONS, 1);
totalLen += 1;

return(totalLen);

} /* ChildInformation::BEncContent */

void

ChildInformation::BDecContent(BUF_TYPE b, AsnTag tag°, AsnLen elmtLen0,
AsnLen& bytesDecoded, ENV_TYPE env)

{
AsnTag tag1;
AsnLen setBytesDecoded = 0;

unsigned int mandatoryElmtsDecoded = 0;
AsnLen elmtLenl;
AsnLen elmtLen2;

for(; (setBytesDecoded < elmtLen0) II (elmtLen0 == INDEFINITE_LEN);)
{

tagl = BDecTag(b, setBytesDecoded, env);

Appendix B. C++ Example^ 166

if ((elmtLen0 == INDEFINITE_LEN) && (tag1 == EOC_TAG_ID))
{

BDEC_2ND_EOC_OCTET(b, setBytesDecoded, env)
break; /* exit for loop */

}

elmtLenl = BDecLen (b, setBytesDecoded, env);
switch(tagl)
{

case(MAKE_TAG_ID(APPL, CONS, 1)):
name = new Name;

name->BDecContent(b, tag1, elmtLenl, setBytesDecoded, env);
mandatoryElmtsDecoded++;
break;

case(MAKE_TAG_ID(CNTX, CONS, 0)):
tag1 = BDecTag(b, setBytesDecoded, env);
if ((tags != MAKE_TAG_ID(APPL, PRIM, 3)) &&

(tagl != MAKE_TAG_ID(APPL, CONS, 3)))

AsnlError("Unexpected Tag\n");
longjmp(env, -108);

elmtLen2 = BDecLen (b, setBytesDecoded, env);
dateOfBirth.BDecContent(b, tag1, elmtLen2, setBytesDecoded, env);

if (elmtLenl == INDEFINITE_LEN)

BDecEoc(b, setBytesDecoded, env);

mandatoryElmtsDecoded++;
break;

default:

AsnlError("Unexpected Tag on SET elmt.\n");
longjmp(env, -109);

/* end switch */
/* end for loop */

bytesDecoded += setBytesDecoded;
if (mandatoryElmtsDecoded != 2)

AsnlError("ERROR - non-optional SET element missing.\n");

Appendix B. C++ Example^ 167

longjmp(env, -110);
}

} /* ChildInformation::BDecContent */

void

ChildInformation::Print(ostream& os)

{

os << "{ -- SET --" << endl;
indentG += stdIndentG;
Indent(os, indentG);
os << *name;

os << "," << endl;
Indent(os, indentG);

os << "dateOfBirth ";
os << dateOfBirth;
os << endl;

indentG -= stdIndentG;
Indent(os, indentG);
os << "1";

} /* Childlnformation - operator<< */

void PersonnelRecordSeq0f::Print(ostream& os)

{

os << "-I -- SEQUENCE/SET OF -- " << endl;
indentG += stdIndentG;

SetCurrToFirst();

for (; Curr() != NULL; GoNext())

{
Indent(os, indentG);
os << *Curr();

if (Curr() != Last())
os << ",";

os << endl;
}

indentG -= stdIndentG;
Indent(os, indentG);
os << "1";

} /* Print */

Appendix B. C++ Example^ 168

void PersonnelRecordSeq0f::SetCurrElmt(unsigned long int index)
{

unsigned long int i;

curr = first;
for(i = 0; (i < (count-1)) && (i < index); i++)

curr = curr->next;
}

} /* PersonnelRecordSeq0f::SetCurrElmt */

unsigned long int PersonnelRecordSeq0f::GetCurrElmtIndex()
{

unsigned long int i;
struct AsnListElmt* tmp;
if (curr != NULL)
{

for(i = 0, tmp = first; tmp != NULL; i++)
{

if (tmp == curr)

return(i);
else

tmp = tmp->next;

}

return(count);
} /* PersonnelRecordSeq0f::GetCurrElmtIndex */

// alloc new list elmt, put at end of list
// and return the component type
Childlnformation* PersonnelRecordSeq0f::Append()
{

struct AsnListElmt* newElmt;

newElmt = new struct AsnListElmt;
newElmt->elmt = new Childlnformation;
newElmt->next = NULL;
if(last == NULL)
{

newElmt->prev = NULL;
first = last = newElmt;

Appendix B. C++ Example^ 169

}

else

{
newElmt->prev = last;

last->next^= newElmt;
last^= newElmt;

}

count++;
return(newElmt->elmt);

} /* PersonnelRecordSeq0f::Append */

// alloc new list elmt, put at begining of list
// and return the component type
Childlnformation* PersonnelRecordSeq0f::Prepend()

{
struct AsnListElmt* newElmt;
newElmt = new struct AsnListElmt;

newElmt->elmt = new Childlnformation;
newElmt->prev = NULL;
if(first == NULL)

{
newElmt->next = NULL;
first = last = newElmt;

}

else

newElmt->next = first;

first->prev = newElmt;
first^= newElmt;

}

count++;

return(newElmt->elmt);
} /* PersonnelRecordSeq0f::Prepend */

// alloc new list elmt, insert it before the

// current element and return the component type
// if the current element is null, the new element
// is placed at the beginning of the list.

Childlnformation* PersonnelRecordSeq0f::InsertBefore()

Appendix B. C++ Example^ 170

{

struct AsnListElmt* newElmt;
newElmt = new struct AsnListElmt;

newElmt->elmt = new Childlnformation;
if (curr == NULL)

{
newElmt->next = first;
newElmt->prev = NULL;
first = newElmt;
if (last == NULL)

last = newElmt;
}

else

{
newElmt->next = curr;

newElmt->prev = curr->prev;
curr->prev = newElmt;
if (curr == first)

first = newElmt;
else

newElmt->prev->next = curr;
}

count++;

return(newElmt->elmt);
} /* PersonnelRecordSeq0f::InsertBefore */

// alloc new list elmt, insert it after the

// current element and return the component type
// if the current element is null, the new element
// is placed at the end of the list.

Childlnformation* PersonnelRecordSeq0f::InsertAfter()
{

struct AsnListElmt* newElmt;
newElmt = new struct AsnListElmt;
newElmt->elmt = new Childlnformation;
if (curr == NULL)
{

newElmt->prev = last;
newElmt->next = NULL;
last = newElmt;

Appendix B. C++ Example^ 171

if (first == NULL)

first = newElmt;
}

else

{
newElmt->prev = curr;

newElmt->next = curr->next;
curr->next = newElmt;

if (curr == last)
last = newElmt;

else

curr->next->prev = newElmt;
}

count++;

return(newElmt->elmt);
} /* PersonnelRecordSeq0f::InsertAfter */

PersonnelRecordSeq0f& PersonnelRecordSeq0f::AppendCopy(
Childlnformation& elmt)
{

struct AsnListElmt* newElmt;
newElmt = new struct AsnListElmt;

newElmt->elmt = new Childlnformation;
*newElmt->elmt = elmt;
newElmt->next = NULL;

if(last == NULL)
{

newElmt->prev = NULL;
first = last = newElmt;

}

else

{
newElmt->prev = last;

last->next^= newElmt;
last^= newElmt;

}

count++;
return(*this);

} /* AppendCopy */

PersonnelRecordSeq0f& PersonnelRecordSeq0f::PrependCopy(

Appendix B. C++ Example^ 172

ChildInformation& elmt)
{

struct AsnListElmt* newElmt;
newElmt = new struct AsnListElmt;
newElmt->elmt = new Childlnformation;
*newElmt->elmt = elmt;
newElmt->prev = NULL;
if(first == NULL)
{

newElmt->next = NULL;
first = last = newElmt;

}

else
{

newElmt->next = first;
first->prev = newElmt;

first^= newElmt;
}

count++;

return(*this);

} /* PersonnelRecordSeq0f::PrependCopy */

// alloc new list elmt, insert it before the
// current element, copy the given elmt into the new elmt
// and return the component type.

// if the current element is null, the new element
// is placed at the beginning of the list.

PersonnelRecordSeq0f& PersonnelRecordSeq0f::InsertBeforeAndCopy(
Childlnformation& elmt)

{
struct AsnListElmt* newElmt;

newElmt = new struct AsnListElmt;

newElmt->elmt = new ChildInformation;
*newElmt->elmt = elmt;

if (curr == NULL)

{
newElmt->next = first;
newElmt->prev = NULL;

Appendix B. C++ Example^ 173

first = newElmt;
if (last == NULL)

last = newElmt;
}

else

{
newElmt->next = curr;

newElmt->prev = curr->prev;
curr->prev = newElmt;
if (curr == first)

first = newElmt;
else

newElmt->prev->next = curr;
}

count++;
return(*this);

} /* PersonnelRecordSeq0f::InsertBeforeAndCopy */
// alloc new list elmt, insert it after the
// current element, copy given elmt in to new elmt
// and return the component type
// if the current element is null, the new element

// is placed at the end of the list.
PersonnelRecordSeq0f& PersonnelRecordSeq0f::InsertAfterAndCopy(
Childlnformation& elmt)

{
struct AsnListElmt* newElmt;

newElmt = new struct AsnListElmt;
newElmt->elmt = new Childlnformation;
*newElmt->elmt = elmt;
if (curr == NULL)

{
newElmt->prev = last;
newElmt->next = NULL;
last = newElmt;
if (first == NULL)

first = newElmt;
}

else

{
newElmt->prev = curr;

Appendix B. C++ Example^ 174

newElmt->next = curr->next;
curr->next = newElmt;
if (curr == last)

last = newElmt;
else

curr->next->prev = newElmt;
}

count++;
return(*this);

} /* PersonnelRecordSeq0f::InsertAfterAndCopy */
AsnLen PersonnelRecordSeq0f::BEncContent(BUF_TYPE b)
{

struct AsnListElmt* currElmt;
AsnLen elmtLen;
AsnLen totalLen = 0;

for (currElmt = last; currElmt != NULL; currElmt = currElmt->prev)

{
BEncEoclfNec(b);

elmtLen = currElmt->elmt->BEncContent(b);
elmtLen += BEncConsLen(b, elmtLen);
elmtLen += BEncTagl(b, UNIV, CONS, SET_TAG_CODE);

totalLen += elmtLen;
}

return(totalLen);

} /* PersonnelRecordSeq0f::BEncContent */

void PersonnelRecordSeq0f::BDecContent(BUF_TYPE b, AsnTag tag°,
AsnLen elmtLen0, AsnLen& bytesDecoded, ENV_TYPE env)
{

Childlnformation* listElmt;
AsnTag tagl;
AsnLen listBytesDecoded = 0;
AsnLen elmtLenl;

while ((listBytesDecoded < elmtLen0) II (elmtLen0 == INDEFINITE_LEN))

{
tagl = BDecTag(b, listBytesDecoded, env);
if ((tagl == EOC_TAG_ID) && (elmtLen0 == INDEFINITE_LEN))
{

BDEC_2ND_EOC_OCTET(b, listBytesDecoded, env);

Appendix B. C++ Example^ 175

break;
}

if ((tagl != MAKE_TAG_ID(UNIV, CONS, SET_TAG_CODE)))

{
AsnlError("Unexpected Tag\n");
longjmp(env, -112);

elmtLenl = BDecLen (b, listBytesDecoded, env);
listElmt = Append();

listElmt->BDecContent(b, tagl, elmtLenl, listBytesDecoded, env);

bytesDecoded += listBytesDecoded;
} /* PersonnelRecordSeq0f::BDecContent */

AsnLen

PersonnelRecord::BEncContent(BUF_TYPE b)

{
AsnLen totalLen = 0;
AsnLen 1;

if (NOT_NULL(children))

{
BEncEoclfNec(b);

1 = children->BEncContent(b);
1 += BEncConsLen(b, 1);
1 += BEncTagl(b, CNTX, CONS, 3);
totalLen += 1;
}

BEncEoclfNec(b);
BEncEoclfNec(b);

1 = nameOfSpouse->BEncContent(b);
1 += BEncConsLen(b, 1);
1 += BEncTagl(b, APPL, CONS, 1);
1 += BEncConsLen(b, 1);
1 += BEncTagl(b, CNTX, CONS, 2);
totalLen += 1;

Appendix B. C++ Example^ 176

BEncEoclfNec(b);

1 = dateOfHire.BEncContent(b);
1 += BEncDefLen(b, 1);

1 += BEncTagl(b, APPL, PRIM, 3);
1 += BEncConsLen(b, 1);

1 += BEncTagl(b, CNTX, CONS, 1);
totalLen += 1;

1 = employeeNumber.BEncContent(b);
BEncDefLenTo127(b, 1);
1++;

1 += BEncTagl(b, APPL, PRIM, 2);
totalLen += 1;

BEncEoclfNec(b);
1 = title.BEncContent(b);
1 += BEncDefLen(b, 1);

1 += BEncTagl(b, UNIV, PRIM, IA5STRING_TAG_CODE);
1 += BEncConsLen(b, 1);
1 += BEncTagl(b, CNTX, CONS, 0);
totalLen += 1;

BEncEoclfNec(b);
1 = name->BEncContent(b);
1 += BEncConsLen(b, 1);
1 += BEncTagl(b, APPL, CONS, 1);
totalLen += 1;

return(totalLen);

} /* PersonnelRecord::BEncContent */

void

PersonnelRecord::BDecContent(BUF_TYPE b, AsnTag tagO, AsnLen elmtLenO,
AsnLen& bytesDecoded, ENV_TYPE env)

{

AsnTag tagl;
AsnLen setBytesDecoded = 0;

unsigned int mandatoryElmtsDecoded = 0;
AsnLen elmtLenl;
AsnLen elmtLen2;

Appendix B. C++ Example^ 177

for(; (setBytesDecoded < elmtLenO) II (elmtLenO == INDEFINITE_LEN);)

{
tag1 = BDecTag(b, setBytesDecoded, env);

if ((elmtLenO == INDEFINITE_LEN) && (tagl == EOC_TAG_ID))

{
BDEC_2ND_EOC_OCTET(b, setBytesDecoded, env)
break; /* exit for loop */

}

elmtLenl = BDecLen (b, setBytesDecoded, env);

switch(tagl)

{

case(MAKE_TAG_ID(APPL, CONS, 1)):

name = new Name;
name->BDecContent(b, tagl, elmtLenl, setBytesDecoded, env);

mandatoryElmtsDecoded++;
break;

case(MAKE_TAG_ID(CNTX, CONS, 0)):
tagl = BDecTag(b, setBytesDecoded, env);

if ((tagl != MAKE_TAG_ID(UNIV, PRIM, IA5STRING_TAG_CODE)) &&
(tagl != MAKE_TAG_ID(UNIV, CONS, IA5STRING_TAG_CODE)))

{

AsnlError("Unexpected Tag\n");
longjmp(env, -114);

elmtLen2 = BDecLen (b, setBytesDecoded, env);
title.BDecContent(b, tagl, elmtLen2, setBytesDecoded, env);

if (elmtLenl == INDEFINITE_LEN)
BDecEoc(b, setBytesDecoded, env);

mandatoryElmtsDecoded++;

break;

case(MAKE_TAG_ID(APPL, PRIM, 2)):
employeeNumber.BDecContent(b, tagl, elmtLenl, setBytesDecoded, env);

mandatoryElmtsDecoded++;

break;

Appendix B. C++ Example^ 178

case(MAKE_TAG_ID(CNTX, CONS, 1)):
tagl = BDecTag(b, setBytesDecoded, env);
if ((tagl != MAKE_TAG_ID(APPL, PRIM, 3)) &&

(tagl != MAKE_TAG_ID(APPL, CONS, 3)))

AsnlError("Unexpected Tag\n");
longjmp(env, -115);

elmtLen2 = BDecLen (b, setBytesDecoded, env);
dateOfHire.BDecContent(b, tag1, elmtLen2, setBytesDecoded, env);

if (elmtLenl == INDEFINITE_LEN)
BDecEoc(b, setBytesDecoded, env);

mandatoryElmtsDecoded++;
break;

case(MAKE_TAG_ID(CNTX, CONS, 2)):

tagl = BDecTag(b, setBytesDecoded, env);

if (tagl != MAKE_TAG_ID(APPL, CONS, 1))

{
AsnlError("Unexpected Tag\n");
longjmp(env, -116);

}

elmtLen2 = BDecLen (b, setBytesDecoded, env);
nameOfSpouse = new Name;

nameOfSpouse->BDecContent(b, tag1, elmtLen2, setBytesDecoded, env);
if (elmtLenl == INDEFINITE_LEN)

BDecEoc(b, setBytesDecoded, env);

mandatoryElmtsDecoded++;
break;

case(MAKE_TAG_ID(CNTX, CONS, 3)):
children = new PersonnelRecordSeq0f;

children->BDecContent(b, tag1, elmtLenl, setBytesDecoded, env);
break;

default:

AsnlError("Unexpected Tag on SET elmt.\n");

Appendix B. C++ Example^ 179

longjmp(env, -117);
} /* end switch */

} /* end for loop */

bytesDecoded += setBytesDecoded;
if (mandatoryElmtsDecoded != 5)
{

AsnlError("ERROR - non-optional SET element missing.\n");
longjmp(env, -118);

}

} /* PersonnelRecord::BDecContent */

void

PersonnelRecord::Print(ostream& os)

{
os << "{ -- SET --" << endl;
indentG += stdIndentG;
Indent(os, indentG);
os << *name;

os << "," << endl;

Indent(os, indentG);
os << "title ";

os << title;
os << "," << endl;
Indent(os, indentG);
os << employeeNumber;
os << "," << endl;

Indent(os, indentG);
os << "dateOfHire ";
os << dateOfHire;

os << "," << endl;
Indent(os, indentG);
os << "nameOfSpouse ";

os << *nameOfSpouse;
if (NOT_NULL(children))

{
os << ","<< endl;
Indent(os, indentG);
os << "children ";
os << *children;
}

os << endl;

Appendix B. C++ Example^ 180

indentG -= stdIndentG;
Indent(os, indentG);
os « "1";

} /* PersonnelRecord - operator« */

Appendix C

The Type Table Data Structure

This appendix contains the definitions of the type table data structure.

-- TBL types describe ASN.1 data structures.
-- These can be used in generic, interpretive encoders/decoders.

-- The type table is defined in ASN.1 to provide a simple (BER)
-- file format for tables. It also allows tables be sent over a
-- network for dynamic re-configuration of encoders/decoders.

-- MS 93

TBL DEFINITIONS ::=
BEGIN

-- imports nothing

-- exports nothing

TBL ::= --snacc isPdu:"TRUE" -- SEQUENCE

{
totalNumModules INTEGER, -- these totals can help allocation
totalNumTypeDefs INTEGER, -- when decoding (ie use arrays)
totalNumTypes^INTEGER,
totalNumTags^INTEGER,
totalNumStrings INTEGER,

totalLenStrings INTEGER,
modules SEQUENCE OF TBLModule

TBLModule ::= SEQUENCE

{
name^[0] IMPLICIT PrintableString,

181

Appendix C. The Type Table Data Structure^ 182

id^[1] IMPLICIT OBJECT IDENTIFIER OPTIONAL,
typeDefs [2] IMPLICIT SEQUENCE OF TBLTypeDef

}

TBLTypeDef ::= SEQUENCE
{

typeDefId TBLTypeDefId,
typeName PrintableString OPTIONAL,
type^TBLType

}

TBLType ::= SEQUENCE
{

typeld^[0] IMPLICIT TBLTypeId,
optional [1] IMPLICIT BOOLEAN,
tagList^[2] IMPLICIT SEQUENCE OF TBLTag OPTIONAL,

content^[3] TBLTypeContent,
fieldName [4] IMPLICIT PrintableString OPTIONAL

TBLTypeContent ::= CHOICE
{

primType [0] IMPLICIT NULL,
elmts^[1] IMPLICIT SEQUENCE OF TBLType,
typeRef [2] IMPLICIT TBLTypeRef

TBLTypeRef ::= SEQUENCE

{
typeDef TBLTypeDefId,

implicit BOOLEAN

TBLTypeId ::= ENUMERATED
{

tbl-boolean(0),
tbl-integer(1),
tbl-bitstring(2),
tbl-octetstring(3),

tbl-null(4),
tbl-oid(5),

Appendix C. The Type Table Data Structure^ 183

tbl-real(6),
tbl-enumerated(7),
tbl-sequence(8),

tbl-set(9),

tbl-sequenceof(10),
tbl-setof(11),
tbl-choice(12),
tbl-typeref(13)

}

TBLTypeDefId ::= INTEGER

TBLTag ::= SEQUENCE

tclass TBLTagClass,

code INTEGER (0..MAX)

TBLTagClass ::= ENUMERATED { universal(0), application(1),

context(2), private(3)}

END

Bibliography

[ASN184] CCITT, "Recommendation X.409, Presentation Transfer Syntax and No-
tation", Data Communications Networks Message Handling Systems, Red
Book, Volume VIII, Fascicle VIII.7, pages 62-93, Omnicom, 115 Park St.,
S.E., Vienna, VA 22180 USA, Oct. 1985.

[ASN188] CCITT, "Recommendation X.208, Specification of Abstract Syntax No-
tation One (ASN. 1)", Data Communications Networks Open systems In-
terconnection (OSI) Model and Notation, Service Defintion, Blue Book,
volume VIII, Fascicle VIII.4, pages 57-130, Omnicom, 115 Park St., S.E.,
Vienna, VA 22180 USA, Nov. 1989.

[BER88] CCITT, "Recommendation X.209, Specification of Basic Encoding Rules
for Abstract Syntax Notation One (ASN.1)", Data Communications Net-
works Open systems Interconnection (OSI) Model and Notation, Service
Defintion, Blue Book, Volume VIII, Fascicle VIII.4, pages 130-151, Om-
nicom, 115 Park St., S.E., Vienna, VA 22180 USA, Nov. 1989.

[Bochman89] G. von Bochman and M. Deslouriers, "Combining ASN1 Support with
the LOTOS Language", Proceedings of the International Symposium on
Protocol Specification, Testing, and Verification IX, North Holland Pub-
lishers, 1989.

[Caneschi87]

[Cardoso92]

[CDER92]

[Clark89]

F. Caneschi and E. Merelli,^"An Architecture for an ASN.1 En-
coder/Decoder", Computer Networks and ISDN Systems, 14:297-303,
1987.

Artur Cardoso and Eduardo Tovar, "Defining More Efficient Transfer
Syntax for Application Layer PDUs in Field Bus Applications", Sigcomm
Computer Communication Review, 22(3):98-105, Jul. 1992.

ISO/IEC, "DIS 8825-3: Specification of ASN.1 Encoding Rules - Part 3:
Distinguished and Canonical Encoding Rules" , Jun. 1992.

David D. Clark, Van Jacobson, John Romkey and Howard Salwen, "An
Analysis of TCP Processing Overhead" , IEEE Communications Maga-
zine, pages 23-29, Jun. 1989.

184

Bibliography

[Clark90]

[DeShon86]

[DS88]

[Gaudette89]

[GRU90]

[PIX90]

[Herlihy82]

[Huitema89]

[Huitema92]

[Kernighan88]

[Koh192]

[Kong90]

[MHS88]

185

David D. Clark and David L. Tennenhouse, "Architectural Considera-
tions for a New Generation of Protocols", Sigcomm '90, 20(4):200-208,
Sep. 1990.

Annette L. DeSchon, "A Survey of Data Representation Standards (RFC
971)", Network Information Center, SRI International, Jan. 1986.

CCITT, "Recommendation X.500, OSI:Specification of the Distributed
Directory System", Data Communication Networks, Blue Book, Volume
VIII, Fascicle VIII.8, pages 131-151, Omnicom, 115 Park St., S.E., Vi-
enna, VA 22180 USA, Nov. 1989.

Phillip Gaudette, Steve Trus and Sarah Collins, "The Free Value Tool
for ASN.1", National Institute of Standards and Technology, Feb. 1989.

MIPS Computer Inc., "GETRUSAGE(2-BSD)", RISC/os Reference
Manual, Aug. 1990.

MIPS Computer Inc., "PIXIE(1-SysV)", RISC/os Reference Manual,
Aug. 1990.

M. Herlihy and B. Liskov, "A Value Transmission Method For Abstract
Data Types", ACM Transactions on Programming Languages and Sys-
tems, 4(4):527-551, Oct. 1982.

Christian Huitema and Assem Doghri, "Defining Faster Transfer Syn-
taxes for the OSI Presentation Layer", Sigcomm Computer Communica-
tion Review, 19(5):44-55, Oct. 1989.

Christian Huitema and Ghislain Chave, "Measuring the Performances of
an ASN.1 Compiler", Upper Layer Protocols, Architectures and Appli-
cations, pages 99-112, May 1992.

Brian W. Kernighan and Dennis M. Ritchie, "The C Programming Lan-
guage, 2nd Edition", Prentice-Hall, 1988.

John Kohl and B. Clifford Neuman, "Internet-draft: The Kerberos Net-
work Authentication Service (v5)", Sep. 1992

Mike Kong, "Network Computing System Reference Manual", Prentice-
Hall, Inc., 1990.

CCITT, Recommendations X.400-X.420, Data Communication Networks
Message Handling Systems, Blue Book, Volume VIII, Fascicle VIII.7,
Omnicom, 115 Park St., S.E., Vienna, VA 22180 USA, Nov. 1989.

Bibliography

[MMS87]

[NBS83]

[Neufeld90]

[Neufeld92-1]

[Neufeld92-2]

[OSF/RPC90]

[OS188]

[Partridge89]

[PER91]

[PER92]

[Pimente188]

186

ISO/IEC, "9506: Manufacturing Message Specification (MMS)", Jun.
1987.

National Bureau of Standards, "Specification for Message Format for
Computer Based Message Systems", (also published as RFC 841), Federal
Information Processing Standards Publication 98, Jan. 1983.

Gerald Neufeld and Yeuli Yang, "An ASN.1 to C Compiler", IEEE
Transactions on Software Engineering, 16(10):1209-1220, Oct. 1990.

Gerald Neufeld and Son Vuong, "An Overview of ASN.1", IEEE Net-
works and ISDN Systems, 23(5):393-415, Feb. 1992.

Gerald Neufeld, Barry Brachman, Murray Goldberg and Duncan Stick-
ings, "The EAN X.500 Directory Service", Internetworking: Research
and Experience, 3:55-81, 1992.

Open Software Foundation Inc. (OSF), "OSF/DCE Remote Procedure
Call in a Distributed Computing Environment" , 1990.

CCITT, "Recommendation X.200, Reference Model of Open Systems In-
terconnection for CCITT Applications" , Data Communications Networks
Open Systems Interconnection (OSI) Model and Notation, Service Defin-
tion, Blue Book, Volume VIII, Fascile VIII.4, pages 3-56, Omnicom, 115
Park St., S.E., Vienna, VA 22180 USA, Nov. 1989.

Craig Partridge and Marshall T. Rose, "A Comparison of External Data
Formats" , IFIP '89: Message Handling Systems and Distributed Applica-
tions, pages 233-245, Elsevier Science Publishers B.V. (North Holland),
1989.

ISO/IEC, "8825-2, 1st CD: Specification of ASN.1 Encoding Rules - Part
2: Packed Encoding Rules", Oct. 1991.

ISO/IEC, "8825-2, 2nd CD: Specification of ASN.1 Encoding Rules -
Part 2: Packed Encoding Rules", Jun. 1992.

J.R. Pimentel, "Efficient Encoding of Application Layer PDUs for Field-
bus Networks", Sigcomm Computer Communication Review, 18(3):14-
44, May 1988.

[Pope84]
^

Arthur Pope, "Encoding CCITT X.409 Presentation Transfer Syntax",
Sigcomm Computer Communication Review, 14(4):4-10, Oct. 1984.

Bibliography^ 187

[Poste180]^J. Postel, "Internet Message Protocol (RFC 759)" , Network Information
Center, SRI International, Aug. 1980.

[Prasad93]^Raja Prasad and Ulloa Gonzalo, "A Simple Encoder for Fieldbus Appli-
cations", Sigcomm Computer Communication Review, 23(1):34-44, Jan.
1993.

[ROS88]^CCITT, "Remote Operations: Model, Notation and Service Definition",
Data Communications Networks Open Systems Interconnection (OSI)
Model and Notation, Service Defintion, Blue Book, Volume VIII, Fas-
cicle VIII.4, pages 465-502, Omnicom, 115 Park St., S.E., Vienna, VA
22180 USA, Nov. 1989.

[Rose90]^Marshall T. Rose, "ISODE, The ISO Development Environment: User
Manual", Wollongong Group, 1129 San Antonio Rd., Palo Alto, Califor-
nia, USA, Feb. 1990.

[Sample93-1] Michael Sample, "Snacc 1.0: A High Performance ASN.1 to C/C++
Compiler (User Manual)". University of British Columbia, Feb. 1993.

[Sample93-2] Michael Sample and Gerald Neufeld, "Implementing Efficient Encoders
and Decoders for Network Data Representations", IEEE INFOCOM '93
Proceedings, Volume 3, pages 1144-1153, Mar. 1993.

[snmp90]^M. Rose and K. McCloghrie, "Structure and Identification of Manage-
ment Information for TCP/IP-based Internets (RFC 1155)", Network
Information Center, SRI International, May 1990.

[Steedman90] Douglass Steedman, "ASN.1, The Tutorial and Reference", Technology
Appraisals Ltd., 1990.

[Steiner88]^J. Steiner, C. Neuman, and J. Schiller, "Kerberos: An Authentication
Service for Open Network Systems", Proceedings of the USENIX Winter
Conference, Feb. 1988.

[Stroustrup9l] Bjarne Stroustrup, "The C++ Programming Language", 2nd Edition,
Addison-Wesley Publishing Co., 1991.

[Sun87]^Sun Microsystems Inc., "XDR: External Data Representation Standard
(RFC 1014)", Network Information Center, SRI International, Jun. 1987.

[Thomesse87] J.P. Thomesse and J.L. Delcuvellerie, "FIP: A Field Bus Proposal", NBS
Workshop on Factory Communications, Gaithersburg, Md., March 1987.

Bibliography^ 188

[White89]^James E. White, "ASN.1 and ROS: The Impact of X.400 on OSI" , IEEE
Journal on Selected Areas in Communications, 7(7):1060-1072, Sep. 1989.

[Xerox81]^XEROX Corporation, "Courier: The Remote Procedure Call Protocol",
xsis-038112, Dec. 1981.

[Yang88]^Yueli Yang, "ASN.1-C Compiler for Automatic Protocol Implementa-
tion" , Master's thesis, University of British Columbia, Oct. 1988.

[Z39.50]^ANSI, "Z39.50/V2D3", May 1991.

[Zahn90]^Lisa Zahn, "Network Computing Architecture", Prentice-Hall, Inc.,
1990.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199

