
R E A L - T I M E M O T I O N T R A C K I N G : A C A S E S T U D Y

I N P A R A L L E L I Z I N G V I S I O N A L G O R I T H M S

By

Scott Bulmer

B. Sc. (Computer Science / Mathematics) University of Victoria, 1992

A THESIS SUBMITTED IN PARTIAL F U L F I L L M E N T OF

T H E REQUIREMENTS FOR T H E DEGREE OF

M A S T E R OF SCIENCE

in

T H E FACULTY OF GRADUATE STUDIES

DEPARTMENT OF C O M P U T E R SCIENCE

We accept this thesis as conforming

to the required standard

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

F E B R U A R Y 1995

© SCOTT B U L M E R , 1995

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

Department of Z ^ K ^ t ^ £ ? Sennet
The University of British Columbia
Vancouver, Canada

Date

DE-6 (2/88)

A B S T R A C T

For real-time motion tracking the computational requirements suggest a parallel processing

solution be followed. This thesis describes the implementation of a parallel motion tracking

system. Focus is placed on the resulting system as well as some of the factors involved when

performing a conversion from an existing sequential system. Different parallelization meth­

ods are compared along with many of the other related issues involved in implementing vision

systems on multiple processors. The model-based motion tracking system uses detected line

segments from the image as features, and tracks these features with a least-squares solution

to match the model with the correct feature configuration. A pipelined multiprocessor system

was constructed which is able to achieve a high level of throughput using many features of the

TMS320C40 parallel processors. The system consists of six C40 processors which communicate

through ports controlled by a software router. A "handshaking" scheme is employed to coordi­

nate data transfers between processors. The motion tracking system was able to track moving

objects at the rate of about 4 frames per second.

ii

Table of Contents

Abstract i i

Table of Contents i i i

List of Tables v

List of Figures v i

Acknowledgements v i i

1 Introduction 1

2 Motion Tracking 4

2.1 Description of Motion Tracking 4

2.2 Applications of Motion Tracking 7

2.3 Previous Work in Motion Tracking 8

2.4 Parallel Tracking Systems 18

3 Parallel Systems for Computer Vis ion 21

3.1 Types of Parallelization 21

3.1.1 Data Parallelism 22

3.1.2 Task Parallelism 24

3.2 Parallel Vision Algorithms 27

3.3 Parallel Architectures for Vision 29

3.4 Parallelization Issues 37

iii

4 Motion Tracking in Parallel 40

. 4.1 The C40 Processors 40

4.2 System Description 45

4.2.1 Single Node Implementation 46

4.2.2 Pipeline Structure 46

4.2.3 Interprocessor Communication 55

4.3 Problems and Roadblocks 58

4.4 Performance Enhancing Modifications 61

4.5 The Data Parallelism Approach 63

5 Results 66

6 Conclusion 73

Bibliography 76

IV

List of Tables

4.1 History of system improvements 63

5.2 Grab node timings 69

5.3 Zero node timings 69

5.4 Link node timings 69

5.5 Match node timings 69

5.6 Display node timings 70

5.7 System iteration timings 70

v

List of Figures

1.1 C40 Network configuration 3

2.1 Thompson and Mundy's search strategy 11

2.2 Dickinson's snake tracking system overview 17

2.3 Hardware configuration of Stephens 18

2.4 Verghese, Gale, and Dyer system configuration 19

3.1 Processing levels and operation chaining for a typical vision based application. . 22

3.2 Data parallelism 23

3.3 The parallel decomposition form of task parallelism 25

3.4 The pipeline processing form of task parallelism 26

3.5 Edges which straddle strip boundaries 29

3.6 Parallel architecture taxonomy 31

3.7 Interconnection networks 35

4.1 Possible system configurations 44

4.2 The task ordering in the pipeline structure 48

4.3 Example of zero crossing boundary creation 51

4.4 Interprocessor communication 57

5.1 The motion tracking setup 67

5.2 Sample of edges detected from input image 68

5.3 Tracking file box model - frame 50 69

5.4 Tracking file box model - frame 100 70

5.5 Individual processor timings - trial 1 • 71

5.6 Individual processor timings - trial 2 72

vi

A C K N O W L E D G E M E N T S

I owe a great deal of gratitude to my thesis supervisor, Dr. David Lowe, for the completion

of this work. He provided considerable advice, guidance, and support, as well as helping to

maintain focus on the topic. I would also like to thank Dr. James Little for taking the time to

be the second reader of this thesis, and for initiating my interest in computer vision.

Thanks also to Rod Barman, who provided continued hardware support and advice, and

to Stewart Kingdon, who supplied the assembly language convolution code and other software

support.

When I started my graduate program at UBC, I had really no idea about the kind of work

and effort needed to complete a Master's thesis. I owe a special thanks to my family and friends

who have stood by me while I discovered what it was actually like to be a graduate student.

They have sacrificed a lot and have provided much needed encouragement.

Thank you to everyone who has contributed to make my experience at UBC a very rewarding

one. I have certainly learned a lot and have benefitted greatly from the entire experience.

vii

C H A P T E R 1

I N T R O D U C T I O N

Computer vision is concerned with the extraction of information about a scene from its images.

One important piece of information is the location of objects of importance. With static images,

the location task is arduous enough since no motion cues are present to aid in finding interesting

things in the image. However, with moving objects things become a lot more complicated. A

significant amount of computation time is still required to locate the object in each image, but

suddenly there is also a limit on the amount of computation time that can be allotted to any

single image, since the object is moving and could be lost while conducting a search. Thus only

a certain amount of time can be spent finding the object in any image, or the processing must

be restricted to a certain subset of the images received.

Motion tracking presents a solution to this problem. Instead of locating the object in each

image frame, the object is tracked through ensuing images. This procedure makes the problem

more tractable. In this way motion tracking differs from tasks such as object recognition; the

continuity between successive images can be used to give an approximate location of the object

in the scene.

If the location of the object is known in a previous frame, tracking the object reduces to

simply searching for the object in a small area around the previous location. This saves a lot of

computation time since the entire image does not need to be searched. Of course, as the object

is allowed to move with increased velocity, the size of the search area must also increase since

the spatial disparity between corresponding image features becomes larger. Although position

estimates based on velocity predictions can be used, a limit is usually placed on how far the

object can move between frames. This is commonly a certain number of pixels per frame.

For real-time motion tracking, however, the computation time is usually still too high to

1

Chapter 1: Introduction 2

process every incoming image. Therefore, only a certain number of images can be processed.

Care must be taken, of course, that the temporal gap between images does not become so great

as to risk losing important information about the scene and the objects it contains. Sampling the

images in larger intervals can also lead to difficulty in predicting object motion since the range

of potential motion increases. The number of images used is directly related to the throughput

of a real-time system, hence an attempt should be made to process as many incoming images

as possible.

The prevailing computational conditions (speed requirements, complexity, and data volume)

require that a different strategy be taken for motion tracking to become a feasible real-time

operation. Specially designed hardware can be used to aid this endeavor, but a more econom­

ical and flexible solution is gained through the employment of parallel processing techniques.

Parallel systems provide the resources necessary for real-time operations of this nature.

This thesis will focus on the implementation of a parallel motion tracking system and some

of the factors involved when performing a conversion from an existing sequential system. This

work is based on a system created by Lowe [43, 44]. Different parallelization methods will be

discussed, as well as many of the related issues involved in implementing vision systems on

multiple processors. The processors used in this system are the Texas Instruments TMS320C40

processors. The configuration of the motion tracking system is shown in Figure 1.1. This figure

displays the actual physical connections in the system and does not infer anything about the

information flow present. (Figure 4.4 depicts the flow of data and information in the system.)

Six C40 processors are connected in a network which is linked to a host Sun workstation. The

network was designed so that there is at most one intermediate node between any two C40s.

This will simplify the router's work in transferring information between processors. Images

are received from a CCD camera through a frame grabber. The frame grabber is physically

connected to one of the C40 nodes, so image acquisition must take place on this particular

node. Another node is connected to a frame buffer, so the system's display output is performed

from this node to a monitor via the frame buffer.

Chapter 1: Introduction 3

Host
Frame

Grabber

Frame
Buffer

Monitor

Figure 1.1: C40 Network configuration.

Figure 1.1 also shows the tasks which are necessary to perform in this motion tracking

system, and their mapping onto the C40 network. Three nodes handle the edge detection

process using a thresholded, magnitude-of-gradient operator for use in Marr-Hildreth edge de­

tection [46]. A fourth node creates correspondences between these edges and an object model in

a matching process. Since the object motion can be arbitrary, the resulting model pose dispar­

ity is unpredictable. Hence a position prediction is not made at this stage based on trajectory

estimates. A final processing node is responsible for displaying the tracking results. These tasks

will be discussed in detail in Section 4.2.

Chapter 2 will describe motion tracking in greater detail and will present a number of

possible applications and previous approaches that have been taken. Chapter 3 will discuss

different parallelization methods. Chapter 4 will present the implementation of the system,

describing the C40 processors and the issues confronted during the conversion. The execution

of the system will be examined in Chapter 5, tabulating some of the results obtained. Finally,

Chapter 6 will summarize the findings and will outline some of the future improvements which

could be made to this system.

C H A P T E R 2

M O T I O N T R A C K I N G

This chapter will further the discussion on motion tracking and will discuss possible applications

for this type of work. Some of the previous approaches which have been taken to this problem

will also be presented and reviewed.

2.1 D E S C R I P T I O N OF M O T I O N T R A C K I N G

"3D model-based vision" is concerned with finding the occurrence of a known 3D object within

an image, and obtaining a measure of the object's location in the image. The existence and loca­

tion of the object can then be used for tasks such as robotic manipulation, process monitoring,

vehicular control, and other applications discussed in Section 2.2.

"Model-based tracking" is model-based vision applied to a sequence of video images. It

appears initially to be a much more computationally intensive problem than model-based vision,

due to the high data-rate in an image sequence. However, the continuity between successive

images can lead to it being a less cumbersome task, because the position of the object can be

anticipated with some precision. Since there is the physical constraint that most moving objects

change visible structure only very slowly over time (or not at all for rigid objects), tracking

a small number of features into the next image gives us information about where the other

features should appear.

Some definitions must be made at this point in order to further the discussion on motion

tracking. A feature represents a pattern in an image and is characterized by a feature vector

whose value denotes the state of the pattern in the signal at any instant. For a visual tracking

system with a 2D image input, the features can be patterns such as points, line-segments, or

vertexes and attached edges. A feature configuration is a particular arrangement of feature

4

Chapter 2: Motion Tracking 5

vectors.

As only certain aspects of the object (such as the geometry of its edges) are utilized, these

aspects form a model of the object and it is the occurrence of the model that is sought. Hence,

a model can be described as a set of parameters representing the changeable state of an object,

together with geometric descriptions of fixed properties of the object. Each local model part

which can correspond to a single image feature is called a model feature. A model pose is a

certain configuration of its parameters which is represented by patterns in the image.

A geometric model is attractive to work with, because the strong geometric invariances

under perspective projection can provide reliability and computational simplicity. The utility

of a geometric model will be greatest for rigid objects, and for those that are simply joined

(e.g., a box with a hinged lid) or simply parameterized (e.g., a telescoping tube). The geometry

of flexible, malleable, and generically described objects is harder to use. Non-geometric models,

utilizing such attributes as colour and texture, may serve to reveal the existence of the object,

but not a quantitative measure of its 3D location.

The geometric models used for tracking must be simple to extract (i.e., computationally

cheap) if processing is to proceed at near video-rate. They must also be reliably present in

the images. Computationally expensive and unreliable model features, such as closed regions

representing surfaces, cannot be afforded. This indicates the use of simple local features such

as points (or "corners") and edges.

Edges can generally be extracted more cheaply and reliably from images than point features.

Straight edge segements also form good features since linearity is invariant under perspective

projection, and many strong geometric invariances can be used. However, unless specialized

image-processing hardware is used, straight-edge extraction over the entire image will be much

slower than video-rate. Other concerns apparent when using edges as image features include

fragmentation due to drop-out or clutter, and incomplete and variable termination at junctions.

A brute-force method of solving the motion problem, though not efficient, is to solve the

3D object recognition problem separately for each successive image frame. This would allow

Chapter 2: Motion Tracking 6

the position of the object to be known at certain time intervals, and other properties such as

the rate of motion of the object could be computed using the time interval between frames.

However, the recognition aspect of the method makes it computationally intensive and would

not result in a real-time solution. By the time the position of the object is determined for

one frame, it may have moved a significant distance. This method does not take advantage of

"temporal coherence"; knowing where the object is in a previous frame gives great insight into

where it can be in the next frame, provided that the interval between frames is not large.

Another more efficient method for solving the motion problem is to compute only the cor­

respondence between successive frames, that is, determine the change in the object's position

and orientation from one frame to the next. Assuming that the object (represented by a model)

corresponds to a set of simple features in the image, a change in the configuration of the features

denotes a change in the position of the object (and hence, the model). What must be done here

is to establish some sort of relationship between the changes in image feature configurations

and changes in poses of modeled structures. This relationship is bi-directional: one can either

determine the pose of a model from the configuration of the image features, or one can extract

the image features corresponding to a particular model pose.

Hence there are two possibilities for exploiting the known position of an object in a frame:

it can allow the use of image-based techniques in tracking the object into the next frame; or

it can constrain a model-based search for the object in the next frame. The former is faster,

but can fail; the latter allows recovery from such failure and is not overly complicated since

perspective projection is relatively easy to perform. This in turn leads to two general solution

paradigms [73]:

(i) motion-searching, which hypothesizes and tests 3D model poses, and

(ii) motion-calculating, which uses back-projection to directly estimate the model pose

from changes in image feature configuration.

Chapter 2: Motion Tracking 7

2.2 APPLICATIONS OF M O T I O N T R A C K I N G

The techniques described in the previous section can surprisingly be applied to many applica­

tions in a diverse range of fields. These varied usage possibilities confirm that motion tracking

research is a very worthwhile endeavor.

One application for a cheap, robust, fast object tracker is for the visual control of a robot [62].

Currently, the position of a robot's arm or grasping device is deduced from sensors positioned

on the joints, and is susceptible to a build-up of errors since the arm is not perfectly rigid.

Visual measurement of the position of the end-effector would be independent of the deflection

of the arm. The removal of the joint sensors would mean that the arm could be made of a lighter

and more flexible material. This would be highly desirable for the purposes of controlling the

robot, and would allow much faster and better controlled movements to be performed.

Motion tracking could be used by the Space Shuttle to retrieve a satellite [23]. If the satellite

is tumbling, it is necessary to match the motion of an arm to the motion of the satellite, so that

the arm can grasp the satellite and slowly bring it to rest without producing excessive forces

and torques. Other possible applications exist in assembling structures in space, since pieces of

structure may be floating in space or may be moving due to flexure in a large structure.

The abilities of motion detection, tracking, and estimation are essential to many automa­

tion tasks such as traffic flow monitoring and control, traffic speed monitoring, and tollway

billing [63]. Moving target detection and tracking is naturally of great interest to the defense

industry [75]. In coding of image sequences for transmission, effective bandwidth reduction

can be achieved through the estimation of motion in the image sequence. A large reduction of

bandwidth is particularly in demand for video conferencing and videophone systems. Estima­

tion, characterization, and understanding of human motion in athletic activities, dancing, pilot

training, and patient rehabilitation are of interest in several disciplines. The analysis of human

heart motion allows diagnosis of heart problems [69], and other anatomical structures can be

tracked in time sequences of magnetic resonance or ultrasound medical images [3]. Velocity

estimation for fluid flow is of interest to meteorology and experimental fluid mechanics with

Chapter 2: Motion Tracking 8

applications ranging from weather forecasting to aircraft design. Obstacle detection by a mov­

ing vehicle is necessary for collision avoidance and path planning for autonomous navigation.

Further applications include hand-eye coordination for robots [1, 4] and road-following [14, 51].

2.3 P R E V I O U S W O R K IN M O T I O N T R A C K I N G

Many different approaches to the motion tracking problem have been taken. Originally, moti­

vation for studying two-dimensional motion came from the desire to analyze a vast quantity of

satellite images of clouds [21, 36]. Many of these early attempts, however, were more concerned

with simply detecting the motion or separating objects of interest from the background without

actually tracking the motion of a certain object. Soon work was focused on actually following

the motion of an object, but initially tracking systems concentrated on line drawings or other

similar input images.

E A R L Y E F F O R T S

Tsuji, Osada, and Yachida [70], produced a dynamic scene analyzer which separated moving

objects from the background and followed their motion patterns in dynamic line images such

as cartoon films. They used flexible templates to analyze the motion of non-rigid objects.

Asada et al. [2] tracked moving objects in a scene which contained only polyhedral objects

(i.e., blocks-world scenes). 3D polyhedral models were employed using vertices as features. The

input was assumed to be perfect line drawings, and legal correspondences were labeled in the

image before processing. Problems of feature extraction and configuration were not addressed.

Roach and Aggarwal [57] used a modified least-squared error method to determine the three-

dimensional model and motion of an object. This approach required two or three views of the

object, and ignored the low-level processing tasks of extracting feature points.

Other early efforts in motion tracking handled either a sequence of stored images, or a num­

ber of "snapshot" images with large temporal gaps in between. In either case, these attempts

did not provide real-time processing. Other systems performed more "recognition-like" tasks,

Chapter 2: Motion Tracking 9

relocating the object in each input image.

Gilbert et al. [25] produced a real-time video tracking system (RTV) for missile and aircraft

identification and tracking. This system analyzed motion from videotape.

O'Rourke and Badler's visual tracking system [54] used a 3D model of the human body to

predict and track image sequences of human motion. For each image their system generated

predictions of the 3D structure of the human body, and then searched for predicted features in

certain regions of interest. They assumed that tracking a few locally-distinguishable features

(e.g., hand and foot) would be enough to determine the complete model parameters. The

Alven system [69] is similar to O'Rourke and Badler's system. The positions of markers (point

features) in the image of a beating heart individually determined the parameters of the model.

K A L M A N F I L T E R I N G

The use of Kalman filtering theory has been another popular approach to tracking. For the

purposes of real-time tracking, it is essential that the estimation of model poses proceed se­

quentially as new observations become available. This is the premise of Kalman filtering theory.

The Kalman filter operates by continuously updating an estimated state vector and an error co-

variance matrix. The Kalman filtering approach was first applied to the incremental estimation

of rigid object motion by Hallam [26], and has also been used in solutions by Broida and Chel-

lappa [7], Gennery [23], Schick and Dickmanns [59], Harris [28], Terzopolous and Szeliski [65],

and Matthies et al. [50].

Deriche and Faugeras [18] built a line segment based token tracker. Line segments were

tracked using a parameter prediction system, attaching a kinematics model to each parameter

of the object representation. A prediction is made, based on this model, of the position of the

parameter in the next frame, and then a search is conducted in this neighbourhood. A Kalman

filter provides estimates of regions where the matching process has to seek for a possible matches

between tokens.

RAPiD (Real-time Attitude and Position Determination), developed by Harris [28], is a

Chapter 2: Motion Tracking 10

model-based three-dimensional tracking algorithm for a known object executing arbitrary mo­

tion and viewed by a standard video-camera. The 3D object model consists of selected control

points on high contrast edges, which can be surface markings, folds, or profile edges. The use

of a Kalman filter permits rapid object motion to be tracked, and produces stable tracking

results. In uncluttered situations, RAPiD has maintained object tracking at object rotation

rates of 10 rad/s and angular accelerations of 100 rad/s2.

Schick and Dickmanns [59] use a generic parameterized model for the object types. They

solve the more general problem of estimating both the motion and the shape parameters. The

motion model of a car moving on a clothoid trajectory is applied including translational as well

as angular acceleration. The estimation machinery of the simple extended Kalman filter (EKF)

is used. So far, however, their approach has only been tested on synthetic line images.

Matteucci et al. [49] use a Kalman filter approach in a real-time surveillance system in

applications where unknown objects entering the working area of an autonomous vehicle have

to be detected and tracked. Subareas in the image are identified where changes have been

detected from a background image. Feature correspondences between two successive frames are

created and a tracking module uses a Kalman filter to measure and predict quantities relating

to the postition of the object.

M O T I O N - S E A R C H I N G M E T H O D S

Motion-searching involves utilizing object models to facilitate a search for possible object posi­

tions. Because a model-based approach is able to exploit global attributes of the object being

tracked, it can provide significant advantages over purely local methods for situations in which

the environment is cluttered, there are multiple moving objects, or there may be a large motion

of an object from one frame to the next.

Algorithms have been developed which do handle the full generality of the 3D model-based

visual tracking problem. Many recent motion tracking systems have concentrated on model-

based approaches, and have stressed the importance of throughput or computational speed.

Chapter 2: Motion Tracking 11

To aid in the processing speed of the systems, several parallel architecture systems have been

created.

Thompson and Mundy [68] perform a search for the correct model pose which "spirals"

outward from a best-guess model pose hypothesis based on trajectory estimates (see Figure 2.1).

The subsequently generated candidate hypotheses are tested using a pose-clustering technique.

Good matches between image and model vertex pairs add up "votes" for poses. Dense clusters

of such votes indicate global consistency^ and the centers of such clusters constitute the model

pose which corresponds to the image feature configuration. Thompson and Mundy's approach

c
Figure 2.1: Thompson and Mundy's search strategy.

suffers, however, because the voting procedure has similar space and time limitations that

Hough transform algorithms have. The system also allows the pose of an object in consecutive

images to vary by as much as 30 to 40 degrees. This means that the results obtained from the

Chapter 2: Motion Tracking 12

tracking algorithm do not portray a continuous representation of the object motion.

Tracking systems designed by Verghese, Gale, and Dyer [73] place great importance on

using the "spatiotemporal image assumption", which requires that the temporal sampling rate

of images be high with respect to the rate of spatial changes in the image. Adhering to this

assumption means that the object pose can change only slightly in successive frames, and that

the image features will persist over time and will change their geometric properties only very

slowly. They have devised two different methods which use this assumption.

Their first method uses the motion-searching paradigm, and requires real-time processing to

be performed on an infinite input stream of images, producing a corresponding output stream

of model poses. The throughput needed to satisfy the spatiotemporal image assumption is

obtained through the use of parallelism. New object pose hypotheses are generated and tested

in parallel by searching for the correct model pose in a neighbourhood around the previous

model pose. These hypotheses are correlated with a stream of edge-detected feature maps by

performing a logical "and" between the edge points and the model points projected from each

hypothesis.

A gradient-ascent algorithm is used by Worrall et al. [76] in order to estimate the pose of

a known object in a car sequence. Since no motion model is used, the previous estimate is

used at every time instant to initialize the iteration. Marslin, Sullivan, and Baker [48] have

enhanced the approach by incorporating a motion model of constant translational acceleration

and angular velocity. Their filter optimality, however, is affected by use of the speed estimates

as measurements instead of the image locations of features.

Koller, Daniilidis and Nagel [35] detect and track moving vehicles from road traffic scenes.

They used a parameterized vehicle model for an intraframe matching process, and a recursive

estimator based on a motion model is used for motion estimation. An illumination model was

required in order to avoid incorrect matches between model segments and image edge segments

due to shadows. The matching of image edge segments is based on the Mahalanobis distance of

line segment attributes as described by Deriche and Faugeras [18]. This system also calculated

Chapter 2: Motion Tracking 13

initial guesses from grouping nearby optical flow vectors.

Morgan et al. [51] guide the tracking of edge points through a sequence of images using

a simple model of a pair of road edges. An oriented "edge-finder" operator is described that

determines the edge point positions which are the data for a weighted least-squares curve fitting

process to determine the parameters of the model at each frame. Edge detection by correlation

with an edge template is performed after predictions from previous knowledge is stored as a

model. A circular arc model representation of a simply curving road is used, and guides selective

image processing.

An innovative system has been developed by Huttenlocher et al. [30], which addresses many

of the problems involved in motion tracking. The technique is model-based, but differs in that

the model can dynamically change shape and an a priori description of the model is not even

required. The idea is to split the image of a solid object moving in space into two components:

• a two-dimensional motion in the image, corresponding to the motion of the visible aspect

of the object, and

• a two-dimensional shape change, corresponding to a new aspect of the object becoming

visible or an actual shape change of the object.

The object can move about in the image in an unconstrained manner, providing its shape does

not change too much from one image to the next.

The model of the object is acquired dynamically from the image sequence. It is represented

as a sequence of binary images, one corresponding to each frame of the input image sequence, so

that the model is a subset of the image features at any time. The model changes from one frame

to the next as the object's shape in the image changes. The binary images are compared using

methods based on the Hausdorff distance to determine the new location of the object in the

next image. The models used in this method are 2D models providing no 3D object location

information. This method is not real-time and a trade-off also exists between the ability to

track non-rigid objects and tracking the background.

Chapter 2: Motion Tracking

M O T I O N - C A L C U L A T I N G M E T H O D S

Motion-calculation methods do not resort to an expensive model search to locate the object.

Instead, image-based techniques are used to implement edge tracking, from which the model

parameters can be reconstructed. These techniques usually have the drawback, however, of

not possessing an efficient method for error recovery, such as is evident in the motion-searching

processes.

Bray [6] created a system which was able to track polyhedral objects in 3-D space using

optic flow techniques. Line segments are tracked via a flow field computed between consecutive

frames. This takes advantage of surface texture and other contextual information. After taking

as input a precise position for the object, it projects the model at this position and uses image-

based techniques to predict features in the image. A recovery stage was implemented which

takes over processing if the tracker gets lost.

Stephens [62] describes a.,system.which uses a technique of localized image access that

enables it to achieve frame-rate operation without the need for any special-purpose hardware.

The direct access method also avoids the need for image segmentation. Multiple cameras and

a network of five transputers per camera are used to predict the location of a number of edges,

and then process the image in small regions to locate edges close to the predicted positions.

The lateral displacements of these edges from the predicted positions are collected from the

cameras, and they form a set of constraints which are solved using a Hough transform. Hough

transforms are intrinsically parallel, and they provide an efficient way of combining information

from two or more cameras. A central processor combines the Hough spaces from the different

cameras, and interprets it to update the position of the object. Stephens' system has been

demonstrated running in real-time at about 10 Hz.

Gennery [22, 23] has proposed another approach for tracking 3-D objects of known structure.

He uses a "feature tracker" to track a number of individual features, such as the vertices of a

polyhedron. Another module then uses the information from a number of cameras to compute

the three-dimensional positions of the features. This method has the advantage that, even if

Chapter 2: Motion Tracking 15

only a few features are seen by two cameras, this may be enough information to determine the

absolute three-dimensional information for all of the features, even those that are seen only

by one camera. The three-dimensional position and orientation parameters of the object are

determined by a model matcher, which creates correspondences between the image features and

a 2D projection of a predicted model pose. Finally, new data from the feature tracker (running

concurrently with the other modules) is used to update the object position and orientation to

the time of the most recent data.

Verghese, Gale, and Dyer's second motion tracking approach [73] performs spatiotemporal

tracking by determining the model pose directly from the feature configuration disparity. Each

individual 2D model feature is tracked directly to their dynamically evolving 2D image features.

Edge maps are passed to a feature tracker which keeps track of the position of each model edge.

The edges are tracked by performing a 2D search in the area around the previous position. Once

the position of all of the edge features is determined, a back-projection process is performed

to compute the model pose for that feature configuration. The back-projection procedure is

based on the Newton-Raphson iterative technique described by Lowe [41]. Because errors in

computation may invalidate some of the feature vectors (because of noise, occlusion, disocclu-

sion, and proximity of identical local features), these conditions are detected and corrected by

a validation process. This process will reinitialize the feature tracker when errors occur.

Other motion-calculating approaches have been followed by Murray, Castelow, and Bux­

ton [52]; and Crowley [15]. Crisman [14] has developed a system which specializes in detecting

unstructured roads and can detect intersections without map shape and location information.

It tracks the road by classifying pixels based on their colour.

A C T I V E C O N T O U R S

One of the more recent approaches to tracking involves utilizing active contour models, or

snakes, to aid in the tracking process. These deformable contours are actually energy-minimizing

splines which are guided by external constraint forces and influenced by simulated image forces

Chapter 2: Motion Tracking 16

that pull it toward features such as lines and edges. The snakes are 2D models which provide

no 3D information.

The idea of tracking objects in time-varying images using snakes was originally proposed by

Kass et al. [33]. Kass was seeking to design an energy function whose local minima comprised

the set of alternative solutions available to higher-level processes. These energy functions were

then applied to track a speaker's hps through dynamic forces generated from the images. Once

a snake finds a salient visual feature, it "locks on". If the feature then begins to move slowly,

the snake will simply track the same local minimum.

Terzopolous and Waters [64] describe a more thorough tracking of articulate facial features

using multiple snakes. Since snakes conform readily to complex biological structures, many

applications have been in the area of biomedical image interpretation [3, 37].

Cippolla and Blake [12, 13], and Curwen et al. [16] use real-time snakes to track the oc­

cluding contours of 3D objects as seen from a camera attached to a moving robot arm. These

applications have demonstrated that snakes are very well suited to tracking rigid and, especially,

nonrigid objects. As it tracks an object of interest, a snake can provide detailed quantitative

information about its position, velocity, acceleration, and its evolving shape in the image plane.

Terzopolous and Szeliski [65] construct "Kalman snakes" by constructing continuous Kalman

filters that incorporate the dynamic snake into their system and prior models.

Yuille and Hallinan [77] combine snake and model-based methods in their motion tracking

approach, exploiting advantages of both. A deformable template is used for feature recognition.

A flexible geometrical model and an imaging model are then used to detect a variety of examples

of the same basic feature under different light conditions. They show how this can be applied

to eye detection and high energy particle detection.

Curwen and Blake [17] achieve video-rate tracking performance using dynamic contours

combined with parallel computing in the form of a small transputer network. Dynamic con­

tours are elastic, as snakes are, but defined parametrically using B-splines [16]. They have

demonstrated the applications of such tracking in surveillance of people and vehicles, robotic

Chapter 2: Motion Tracking 17

path-planning, and grasp-planning.

A unique approach to the problem has recently been taken by Dickinson et al. [19]. This

method is able to perform tracking with little or no knowledge of the 3-D object, but differ

from active contour methods in that it is able to track not only the position of the object, but

also the orientation. The tracking is performed by detecting visual events in the image, such

adaptive adjacency graph
(active contour network)

Figure 2.2: Dickinson's snake tracking system overview.

as the appearance or disappearance of object faces. A network of active contours called an

adaptive adjacency graph [32] tracks and monitors aspects of the object from one frame to the

next. An aspect graph is constructed whose nodes correspond to different views of the object,

so that the tracking strategy simply involves moving from node to node in the aspect graph

(see Figure 2.2). This method does not provide accurate poses of the object. However, it does

qualitatively describe the motion of the object without specifying the object's exact geometry.

Chapter 2: Motion Tracking 18

Also, the method cannot handle occlusion since the aspect graph only contains nodes where all

object faces in a given viewpoint are present.

2.4 P A R A L L E L T R A C K I N G S Y S T E M S

The majority of new motion tracking systems are parallel systems designed to satisfy real-time

constraints. These systems range from implementations executing on a small network of parallel

processors to others using large arrays or specialized parallel image processing hardware.

The system devised by Stephens [62] was tested on a single T800 transputer, but for real­

time implementation the system shown in Figure 2.3 would be used. Images from the cameras

are captured by two framestores, each of which is accessed by a T800 transputer, and all of

the edge displacement measurements are performed by these processors so there is no need to

communicate image data.

To Camera 1

Frame-
store

To Camera 2

Figure 2.3: Hardware configuration of Stephens.

The worker processors are T800 transputers, and they carry out two tasks: projection of

the model edge points into the image, and the formation of the Hough transform. The Hough

transform is parallelized by dividing the edge points up among the workers, so the major

Chapter 2: Motion Tracking 19

communication overhead in the system is that of summing the Hough spaces from all workers.

The workers are configured to minimize the communication overhead. A central transputer

combines the Hough spaces from the different cameras, and interprets it to update the position

of the object.

Verghese, Gale, and Dyer [73] constructed systems for motion tracking using two multi­

processor subsystems: an 8-stage Aspex Pipe and a Sequent Symmetry (see Figure 2.4). The

two-level organization corresponds to the two kinds of processing requirements in computer

vision. The low-level, iconic image'processing is performed by Pipe and the high-level, sym­

bolic processing is done using the Sequent. The system was able to track objects moving up to

15 pixels/sec with a time in the critical path of 266.7 msec.

Stage 1 Stage 2 Stage 3 Stage 8 Ismap

Camera >4 Camera

Aspex Pipe Sequent Symmetry

Figure 2.4: Verghese, Gale, and Dyer system configuration.

Pipe is a linearly-connected set of eight pipeline processing stages [34]. The computations

in the stages are all performed in one Pipe cycle (1/60 sec).so that communication between

stages is synchronous. Output from Pipe to the Sequent Symmetry is achieved through the

Ismap processing stage. Ismap's image and histogram buffers are memory-mapped into the

Sequent's address space so that these buffers can be directly read or written by either Pipe

or the Sequent. The Sequent Symmetry is a tightly-coupled, shared-memory multiprocessor.

Communication between Pipe and Sequent is asynchronous.

The main parallel programming techniques in used in these implementations are pipelining

on the Pipe and semaphores between the Sequent and the Pipe. Synchronously, all stages receive

Chapter 2: Motion Tracking 20

input from their predecessors, perform their computation, and send output to their successors.

Thus, during a single Pipe cycle, all stages send images forward. New images can be input at

the rate of transformation completion (one cycle) rather than task completion (several cycles).

Semaphores are designed so that the two subsystems can coordinate their computations; the

Pipe can wait for the Sequent to complete some computation before proceeding to subsequent

operations or vice versa.

The motion-calculating method of Verghese et al. is inherently more parallel than their

motion-searching method. The motion-searching method cannot be completely parallelized be­

cause of data dependencies between the operations in the search-update loops, though multiple

model pose hypotheses can be generated and tested in parallel. On the other hand, the motion-

calculation operations of feature tracking and back-projection can be separated and performed

concurrently. Independence of the image feature tracking process means it can be performed

synchronously with the image acquisition and feature extraction operations.

Rygol et al. [58] have developed a parallel stereo tracking algorithm which.is able to return

the position and orientation of a moving object in 3D every 200 ms. They track an object

by individually tracking a set of 3D line segments that comprise the object. The tracking al­

gorithm thus employs featural parallelism, in that the features are tracked concurrently. The

algorithm operates on the MARVIN system (Multiprocessor ARchitecture for VIsioN), which is

composed of 25 T800 transputers wired as a regular, fully-connected mesh. In addition, MAR­

VIN provides a hybrid processing scheme with the addition of frame-rate pipelined hardware

for the computation of low-level image operations. The image data is dispersed among the

processing array using 4 video buses and a specially developed transputer card which allows

the simultaneous acquisition of up to 4 image streams.

The tracker is structured internally as a processor farm. The master of the farm is known

as the virtual tracker and each worker in the farm is a feature tracker. The system exploits

featural parallelism to perform real-time object tracking by decomposing the object into a set

of visible component features which are tracked concurrently.

C H A P T E R 3

P A R A L L E L S Y S T E M S FOR C O M P U T E R VISION

Computer vision tasks require an enormous amount of computation, especially when the data

is in image form, demanding high-performance computers for practical, real-time applications.

Parallelism appears to be the only economical way to achieve the level of performance required

for many vision tasks. Researchers in human and machine vision share the belief that massive

parallel processing characterizes low-level vision.

Low level (or early) vision is characterized by the local nature of its computations. There are

few conceptual difficulties in designing parallel algorithms for these tasks and several existing

systems do many of these tasks in parallel. Intermediate level vision involves segmentation - a

reduction of the incoming visual information to a form that will be effective for the recognition

step of high level vision. High level vision involves the cognitive use of knowledge. In general,

parallelism is not immediately evident for the recognition step.of high level vision. Figure 3.1

displays the various processing levels and the types of data associated with these computations.

3.1 T Y P E S OF P A R A L L E L I Z A T I O N

The objective of parallel processing is to perform a task more quickly and efficiently by dis­

tributing the work over a number of processors. Parallel processing is most effective when the

work being carried out by each processor is equal to and independent of the workload of the

other processors. Consequently, load balancing is a challenge involved in parallel systems which

is absent in sequential systems. In order to efficiently utilize the added computing power, the

processing load, programs, and data must be distributed among the processors in a balanced

way in order to keep the resources active as much of the time as possible.

The two paradigms of programming parallel systems are:

21

Chapter 3: Parallel Systems for Computer Vision 22

Low Level

ACQUISITION

i
Image Image Processing

Mainly pre-processing and segmentation

Medium Level Image
Image

-5»- Image OR
Data Structures

Processing

Mainly feature extraction

High Level

USER KNOWLEDGE
_ i i i

Data Structures Data Structures
Processing

Mainly recognition and understanding
FEEDBACK

ACTION(S)

Figure 3.1: Processing levels and operation chaining for a typical vision based application.

(i) data parallelism and

(ii) task parallelism.

3 . 1 . 1 D A T A P A R A L L E L I S M

Data parallelism involves partitioning the data, in this case an image, such that each part or

sub-image is processed by a different processor. Each processor accepts its portion of the image

and executes the same program or series of tasks on the sub-image. Results are then combined

from the separate processors once the computations have completed.

The image partitioning can be performed in different ways, exploiting the inherent geomet­

rical parallelism present in digital images. A large two-dimensional array of processors can be

Chapter 3: Parallel Systems for Computer Vision 23

Subimages Processors
Figure 3.2: Data parallelism.

used to allot one processor per pixel. Of course, by current technological standards, this type

of arrangement is not possible for large images, approximately exceeding 128x128 pixels. The

image is customarily segmented into square blocks or strips, and each segment is assigned a

specific processor. A problem encountered in this solution is the border effects that are created

due to the image split and recreation in many processors. These effects can be diminished by

slightly overlapping adjacent segments with the side-effects of requiring increased memory and

communication. The amount of overlap required can be high for some operations. Hence data

parallelism involves operators of the form:

Y = F{X) = F(x1 o x2 o x3 o x4) = F(xi) o F(x2) o F(x3) o F(x4)

where X is an image which is divided into 4 parts, and o denotes data composition. Figure 3.2

depicts such an operation.

Local neighbourhood operations can be handled very effectively with data parallelism. These

operations take the form:

yij = f(xi+rj+s) (r,s) G A

Chapter 3: Parallel Systems for Computer Vision 24

where Xij, yij are the input and output images respectively. T is an operator (linear or nonlinear)

and A is its processing window. In this case a local processor must have access or communication

to the neighbour data or processors.

Another method of partitioning the data involves decomposing an image into b bit planes,

where b is the number or bits in the image pixel (usually b=l or 8). Several image processing

operators can be applied to each bit plane independently. The arithmetic that is performed on

bit planes is called distributed arithmetic:

The communication overhead involved in data parallelism is not too substantial, since only

small portions of the image are involved in any communication segment. Also, if the image is

divided up into equal portions, the load will automatically be balanced across processors since

each processor is performing the same task on the same amount of data.

3 . 1 . 2 T A S K P A R A L L E L I S M

Task parallelism involves the partitioning of various elements of the task or algorithm into sub-

tasks such that each processor carries out a different sub-task. Each processor usually performs

its computations on the entire data set rather than just a portion, and the data must commonly

pass through a number of these tasks during execution.

When the number of processors grow, task parallelism is difficult to apply as there is a

maximum number of sub-tasks in the algorithm. With data parallelism, however, the image

can efficiently be divided into smaller subimages creating more data sets and allowing all of the

processors to be utilized.

The communication becomes more involved with task parallelism. The data is usually

transmitted through a number of processors before computations are complete. This data will

likely occur in different forms as well, so that the communication is not homogeneous and must

also take different forms. Moreover, there are synchronization and load balancing issues to

consider since some processors will complete their work before others.

Two different types of task parallelism exist, and which type is utilized depends on the

Chapter 3: Parallel Systems for Computer Vision 25

Processors
Figure 3.3: The parallel decomposition form of task parallelism.

algorithm and how data must be processed. They are: pipelining and parallel decomposition.

Parallel decomposition involves operators of the form:

Y = F(X) = F1(X)\\F2(X)\\...\\Fn(X)

where || denotes parallel execution. This can be used with algorithms which perform separate,

independent functions on the same data, and these different tasks can be performed concurrently

on separate processors. Figure 3.3 shows the parallel decomposition of an algorithm onto 4

processors.

Pipelining is more commonly used, and can be expressed by:

Y = F(X) = Fn(Fn_1(...F2(F1(X))...))

where X is the input image or image subregion, Y is the output image, F is an operator and

F{, i = l , . . . , n is its cascade decomposition. This type of processing takes data and passes it

along a sequence of processing stages. Each stage in the pipeline is assigned a different function,

Chapter 3: Parallel Systems for Computer Vision 26

performing the same operation on every data set that flows through. Pipelined processing pro­

vides the possibility of processing the image in real-time since input data can be taken directly

from the sensing device, no storage of intermediate results is required, and communication be­

tween stages is relatively uncomplicated. Images can continuously be passed to the system as

F4(F3(F2(Fl(X))))

Input Image Processors Output Data

Figure 3.4: The pipeline processing form of task parallelism.

the first processor becomes idle, resulting in a number of images being processed in the pipeline

at any given time. However, this form of processing has the drawback of lower flexibility, espe­

cially processors specifically developed for the pipelined processing of certain algorithms. Once

set up for this particular algorithm, no changes can be made. Figure 3.4 portrays a pipeline

with 4 processing stages.

Analysis of a pipelined implementation reveals:

• A pipelined implementation suffers from unbalanced dataflow. For example, the output

of a convolution stage would result in a large dataflow to the next module while the

amount of data to be exchanged in subsequent modules may be notably decreased. This

exacerbates the problem of maintaining optimal use of the processors in the pipeline.

• A pipelined architecture optimizes throughput rather than minimizing latency. If a

pipeline comprises N stages, each requiring an execution time of t (for an optimal pipeline),

the temporal latency between receiving input data and producing output data is clearly

Nt. This may not be acceptable for some systems which require rapid response to visual

Chapter 3: Parallel Systems for Computer Vision 21

stimuli. Some pipelined systems reduce latency by transferring partial results to the next

processor. For example, the Datacube passes on each pixel after it is processed.

• Pipelining the modules requires the dismantling and rebuilding of the interconnected

data structures as they are transferred from the local memory of one processor to the

local memory of another.

• The length of a pipeline is limited to the maximum number of modules in the pipeline;

this limits the number of processors available to efficiently implement the pipeline.

Most often, data parallelism seems to be better suited for implementing low-level vision

algorithms on parallel systems. These algorithms use techniques which involve a great number

of computations, usually in the form of elementary arithmetic and logic operators, performed

on large pixel arrays of image data. It would be a laborious chore to split these computations

into a number of different tasks. For high-level vision algorithms, for which data structures are

manipulated containing more symbolic data and not large numeric arrays, the task parallelism

approach is better suited.

Often a combination of the two paradigms is the best way to implement many vision al­

gorithms. Initially the image can be divided into sub-images on which low-level computations

can be performed, and then these results can be used to concurrently perform different tasks on

separate processors. Alternatively, the processing can be pipelined, utilizing data parallelism

in some stages where the data can be successfully decomposed.

The motion tracking system described in Chapter 4 follows a pipelining approach. The

reasons for this decision are provided in Section 4.2.2.

3.2 P A R A L L E L VISION A L G O R I T H M S

Parallel algorithms for a myriad of other operations, have been researched, including visual

recognition, smoothing, histogram generation, clustering, edge thinning, contour extraction,

template matching, region growing, segmentation, stereo analysis, and object recognition [10].

Chapter 3: Parallel Systems for Computer Vision 28

The first stage of edge detection involving convolution by a mask is inherently simpler

to implement on parallel hardware than the final stages of linking, grouping, and thinning

operations. This is because the amount of processing required for any sub-image is predictable

and equal to all of the others. It is an ideal situation to employ data parallelism.

The convolution operation is easily parallelized by dividing the image into equal-sized re­

gions, possibly overlapping, with each processor receiving one partition. Templates are gener­

ated for the convolving function and applied by each processor to its corresponding sub-image.

Many different implementations on various computer platforms have been published, ranging

from hardware pipelines on systolic arrays to mesh-connected array processors.

The Canny edge detector [9] is implemented on MARVIN [8] using data parallelism with

the image partitioned into a number of horizontal strips distributed over 16 transputers. A

subsequent joining operation must then be employed to connect together edges which straddle

a strip boundary; see Figure 3.5. A quadratic interpolation procedure is introduced to locate

the precise edge position to sub-pixel accuracy.

A histogram of gray level content of an image provides a global description of an image.

Conceptually, the image is divided into equal sub-images and histograms generated for each

sub-image, which are then combined in a second pass to form the histogram for the entire image.

Little et al. [38] use the Connection machine [29], where each processor determines whether its

left neighbour is less than itself. Each processor for which this holds sends its cube address

to the histogram table, resulting in a cumulative frequency distribution table which is easily

converted to a histogram.

The Hough transform is a technique by which straight line segments are extracted by de­

tecting global consistencies in the image data. It involves the mapping of candidate edge points

in the image into a two-dimensional (p, 8) accumulator or Hough parameter space. The Hough

space is defined in such a way that collinear sets of pixels in the image give rise to peaks in the

Hough space.

The two main strategies to implement the Hough transform on a distributed system are

Chapter 3: Parallel Systems for Computer Vision 29

line segments must be joined

Figure 3.5: Edges which straddle strip boundaries.

either to distribute the image memory or to distribute the accumulator memory array across

the processors. Images can be partitioned into horizontal strips or rectangular windows, but

these methods could lead to memory contention when updating the accumulator. Alternatively,

the Hough space could be split into a number of angle or line orientation intervals with each

processor being responsible for a different range of 6. Memory contention at the input while

reading the image is possible in this case. Finally, each of the P processors can be allocated a

unique angle, evaluating the first P tasks in parallel and then processing the next P tasks.

3.3 P A R A L L E L A R C H I T E C T U R E S FOR VISION

The past decade has witnessed the introduction of a wide variety of new computer architectures

for parallel processing that complement and extend the major approaches to parallel computing

developed beginning in the 1960s. The recent proliferation of parallel processing technologies

has included new parallel hardware architectures (systolic and hypercube), interconnection

Chapter 3: Parallel Systems for Computer Vision 30

technologies (multistage switching topologies), and programming paradigms (applicative pro­

gramming). New architectures for parallel computer vision are constantly being proposed as

hardware and theoretical advances are made.

A parallel architecture provides an explicit, high-level framework for the development of

parallel programming solutions by providing multiple processors, whether simple or complex,

that cooperate to solve problems through concurrent execution.

Various attempts have been made to classify parallel architectures. A central problem

for specifying a taxonomy for modern parallel architectures is to satisfy the following set of

imperatives [20]:

• exclude architectures incorporating only low-level parallel mechanisms that have become

commonplace features of modern computers,

• base taxonomy on useful elements of instruction and data streams, and

• include pipelined vector processors and other architectures that intuitively seem to merit

inclusion as parallel architectures, but which are difficult to accommodate.

Duncan [20] outlines a possible taxonomy of parallel architectures which is presented in Fig­

ure 3.6.

In this figure, the architectures are classified into three broad categories:

(i) Synchronous - concurrent operations are coordinated in lockstep through global

clocks or central control units.

(ii) MIMD - concurrent operations are performed by multiple processors in a largely

autonomous manner.

(iii) MIMD-based architectural paradigms - these architectures have MIMD character­

istics but are also based on a distinctive organizing principle which is fundamental

to its overall design.

Chapter 3: Parallel Systems for Computer Vision 31

Synchronous

• Vector

•SIMD
Processor Array

Associative Memory

M U D

MIMD Paradigm

• Systolic

• Distributed Memory

• Shared Memory

- MIMD/SIMD

• Dataflow

- Reduction

- Wavefront

Figure 3.6: Parallel architecture taxonomy.

The items in the third category can be generally described as everything that doesn't fit into

either of the first two classifications. These architectures are all grouped together to create a

somewhat orderly taxonomy. Still, the two basic types of multiprocessor systems are Single

Instruction Multiple Data (SIMD), and Multiple Instruction Multiple Data (MIMD) systems.

Each type will now be examined in closer detail.

S I M D A R C H I T E C T U R E S

A SIMD machine is composed of a set of identical synchronized processing elements which

simultaneously perform the same task on different data. Vector and array processors are ma­

chines of this type; in general the interconnection network connects each processor only to its

neighbours. Generalized information may be broadcast to all processors simultaneously but

Chapter 3: Parallel Systems for Computer Vision 32

more processor specific information can take a long time to disseminate as it must be prop­

agated from processor to processor in single steps. Data movement through large processor

arrays can be a major problem. Generally, simple and efficient algorithms are used for data

movement through large processor arrays. This may mean that several processors remain idle,

but this is less complicated than trying to keep all of the processors busy by routing tasks and

information around the large array.

These machines are well suited to localized, low-level vision tasks and global operations

performed over the entire image. Such tasks include convolution, linear image transforms,

image correlation, histogram generation, and component labeling. These architectures are not,

however, well suited to data dependent operations such as edge linking and tracking.

Processor array structures for numerical SIMD execution have often been employed for large-

scale scientific calculations, such as image processing and nuclear energy modeling. Various

interconnection network schemes have been used to provide processor-to-processor or processor-

to-memory communications, with mesh and crossbar approaches among the most popular.

M I M D A R C H I T E C T U R E S

MIMD machines are those composed of multiple processors which are fully programmable and

are able to execute different series of instructions. Thus, MIMD computers support parallel so­

lutions that require processors to operate in a largely autonomous manner. Although sortware

processes executing on MIMD architectures are synchronized by passing messages through an

interconnection network or by accessing data in shared memory units, MIMD architectures are

asynchronous computers, characterized by decentralized hardware control. MIMD machines

may behave in a way similar to SIMD machines simply by arranging that each processor per­

forms the same operation at the same time.

Data dependent vision tasks are better performed by MIMD architectures as processors

may carry out different operations on various parts of the image. For most intermediate and

high-level vision tasks though, the computations are not very regular and parallelism is not

Chapter 3: Parallel Systems for Computer Vision 33

immediately evident. The main difficulty with these architectures is that of workload distribu­

tion among the processors. An example of this is the Hough transform; the operations to be

performed are data dependent and are only executed in certain areas of the memory which can

lead to work starvation of the processors. Processor farming is an effective method for load

balancing when the amount of processing required for each data packet is unpredictable at the

time of configuration. With this technique, tasks are allocated to processors as they become

free.

A further classification of MIMD machines is into those which have memory distributed

among processors and those which have a shared common memory. In shared memory comput­

ers, the processors all access the same memory through a central switching mechanism. Global

image processing parallel algorithms particularly require memory of this type since this allows

the access of each processor to all of the image pixels. Shared memory computers do not have

some of the problems encountered by message-passing architectures, such as message sending

latency as data is queued and forwarded by intermediate nodes. However, other problems, such

as data access synchronization and cache coherency must be solved.

In the case of distributed memory architectures, each processor has its own private memory,

and all communication and synchronization is completed via message passing between proces­

sors. Processing nodes are connected with a processor-to-processor interconnection network.

The messages are passed using multiple communication channels, each one establishing a point-

to-point processor communication path. These architectures have principally been constructed

in an effort to provide a multiprocessor architecture that will "scale" (accommodate a signif­

icant increase in processors) and will satisfy the performance requirements of large scientific

applications characterized by local data references.

I N T E R C O N N E C T I O N N E T W O R K S

In all of the parallel computers, whether it is SIMD, MIMD, shared memory, or distributed mem­

ory, the processors need to be able to communicate with each other. Various interconnections

Chapter 3: Parallel Systems for Computer Vision 34

between processors have been suggested, each with its unique properties. The interconnections

used in commercial machines include mesh, pyramid, shuffle-design, hypercube, butterfly, and

cube-connected cycles. Some of these will be briefly described here, though a good overview is

given in [56]. The basic structure of some of these networks is depicted in Figure 3.7.

Ring topology architectures are simple networks most appropriate for a small number of

processors executing algorithms not dominated by data communications. The communication

diameter can be reduced by adding chordal connections.

A two-dimensional mesh, or lattice, topology has n2 nodes, each connected to its four

immediate neighbours. Wraparound connections at the edges or additional diagonal links are

sometimes provided to reduce the communication diameter. The topological correspondence

between meshes and matrix-oriented algorithms encourages mesh-based architecture research.

Tree topology architectures have been constructed to support divide-and-conquer algorithms

for searching and sorting, image processing algorithms, and dataflow and reduction program­

ming paradigms.

A Boolean n-cube or "hypercube" topology uses N = 2n processors arranged in an re-

dimensional cube, where each node has log2 N bidirectional links to adjacent nodes. Hypercube

architecture has been strongly influenced by the desire to develop a scalable architecture that

supports the performance requirements of 3D scientific applications.

Although distributed memory architectures possess an underlying physical topology, recon-

figurable topology architectures provide programmable switches that allow users to select a

logical topology matching application communication patterns. A single architecture can act

as many special-purpose architectures that efficiently support the communications patterns of

particular algorithms.

S P E C I A L - P U R P O S E S Y S T E M S

Systolic architectures were proposed to solve the problems of special-purpose systems that

must often balance intensive computations with demanding I/O bandwidths. Systolic arrays

Chapter 3: Parallel Systems for Computer Vision 35

Figure 3.7: Interconnection networks: (a) ring, (b) mesh, (c) tree, (d) hypercube.

are pipelined multiprocessors in which data is pulsed in rhythmic fashion from memory through

a network of processors before returning to memory. This pipelined data flow is synchronized,

and consists of operands obtained from memory and partial results to be used by each processor.

During each time interval these processors execute a short, invariant sequence of instructions.

Systolic arrays address the performance requirements of special-purpose systems by achiev­

ing significant parallel computation and by avoiding I/O and memory bandwidth bottlenecks.

A high degree of parallelism is obtained by pipelining data through multiple processors, typi­

cally in two-dimensional fashion. Once a piece of data enters the systolic array, it is passed to

any processor that needs it, without an intervening store to memory. Only processors at the

topological boundaries of the array perform I/O to and from memory.

Processors with specific characteristics for the implementation of distributed memory MIMD

systems have been developed. The INMOS transputer was the first microprocessor designed for

Chapter 3: Parallel Systems for Computer Vision 36

this purpose [31]. The transputer is a small complete Von Neumann computer, and a number

of transputers are usually assembled into a network or array. The transputer provides specific

hardware for context switching between processes on the same processor, four serial links for

connecting processors on a point-to-point basis, on-chip memory, and efficient direct memory

access mechanisms for data transfer, in and out of the links.

MARVIN [8] is a transputer based general purpose vision engine capable of employing dif­

ferent types of parallelism within a single overall application. It consists of 25 T800 transputers

organized as a regular, fully-connected mesh with 3 rows and 8 columns. One row of processors

consists of special locally developed transputer cards (named T M A X) provided with data buses

used to route large amounts of image data around the system and provide fast data transit. The

MARVIN system has its own software infrastructure which allows the programmer to ignore

the physical topology of the system and to work with a logical topology which may be chosen

and changed dynamically.

The very different nature of various computer visions algorithms means that no one archi­

tecture is ideally suited to all stages. What appears to be required to implement a complete

vision system is a front end processor performing global operations and employing data paral­

lelism with a more sophisticated later stage to implement task parallelism for the data dependent

higher level vision operations. An early attempt at just such an architecture is the Disputer [55]

which employs a combination of a 256 processor SIMD and a 42 processor MIMD machine in

order to optimize the strongest properties of both.

Little et al. [40] constructed a "Vision Engine" to support various levels of vision compu­

tation. The system consists of a Datacube MaxVideo-20 image processor for low-level vision

tasks, and a MIMD multicomputer (16 transputers) for intermediate and high-level processing.

The system is pipelined and the connections between the Datacube and the transputer subsys­

tem pass through a crossbar so that the data can be sent to independent transputers for each

module.

Other examples of work in this field include HBA [74], Kiwivision-2 [71], NETRA [11], the

Chapter 3: Parallel Systems for Computer Vision 37

Image Understanding Architecture [60], and the Warwick Pyramid Machine [53].

The Hierarchical Bus Architecture (HBA) [74] consists of 24 processors built around a

digital video I/O bus. The Apply routine [27] is used which enables the vision programmer to

write image-to-image transformations without regard to the details of parallelism, looping, or

boundary conditions. NETRA [11] is a scalable architecture whose topology is a recursively

defined tree-type structure. The leaf nodes consist of a cluster of processors which can operate in

SIMD, MIMD, or systolic-like modes. The internal nodes are scheduling processors which handle

task scheduling, load balancing, and global memory management. The Image Understanding

Architecture (IUA) [60] was developed to embed three abstract levels of vision processing into

an architecture. At the high level IUA is a MIMD parallel processor, the low level operates in

pure SIMD mode, while the intermediate level operates in synchronous-MIMD or MIMD mode.

Communication and data transfer between different levels is achieved using a shared memory.

3.4 P A R A L L E L I Z A T I O N ISSUES

When parallelizing an existing system or constructing a new one, a lot of implementation

decisions will depend upon the capabilities of the hardware that is available. For simplicity, we

will assume that a collection of distributed memory MIMD processors are used.

The type of parallelism that should be used depends upon the form of the data and the

types of tasks that have to be performed. Data parallelism should be used for low-level vision

tasks involving local operations performed on large arrays, while task parallelism should be

employed for higher-level tasks involving the manipulation of data structures. The data will

usually be in the form of images initially, and thus will be well suited for data parallelism.

A parallel implementation may also be based on a hybrid approach, using methods of both

multiple-processor paradigms.

If data parallelism is selected, the next obvious task is to decide how to divide the data

among the processors. Different methods that have been used are splitting the image into

blocks, strips, individual pixels, or bit-planes. Other non-image partition methods may be used

Chapter 3: Parallel Systems for Computer Vision 38

for such operations as the Hough transform, which partitions the Hough space. In any case, the

type and extent of data partitioning depends upon the form of the data, the pending operations,

and how many processors are available for use.

When combining the results after computation, adjustments must be made for any data

partitioning effects which may have altered the data. This includes such things as convolution

border effects, and line segment truncation during edge detection.

The first task in a task parallel conversion of a sequential algorithm should be the complete

implementation of the algorithm, if possible, on a single processor. This should be relatively

straightforward since only hardware dependent code should need to be altered. There are no

communication concerns, no synchronization methods to establish, and no restructuring of the

data required. Of course, with only one processor there are other concerns which must be

addressed, such as memory, and hence it may not be possible to implement all features of the

system, but the general functionality of the system should be attained.

Constructing this system initially has several advantages. Firstly, it will be very easy to

tell quickly if it is possible for the hardware to support the system. If the algorithm cannot

be executed on one processor there is not a great likelihood that it will run on a network of

processors. Secondly, it results in a working system from which results can be displayed. Once

parallelization of the algorithm begins, it will facilitate the subsequent division of the system

onto separate processors with the ability to run the complete system while observing results to

make sure that everything is functioning properly. Once the initial system on a single processor

is constructed, work can then begin on splitting off tasks in a modular fashion onto separate

processors, one at a time, checking the validity of incremental results.

The benefits of a parallel system may be lost if an effective data communication plan is not

conceived. The topology of the interconnection network will depend on the types and amount of

data which will be transferred between processors. Complex routing algorithms will be required

in some cases to transfer data between non-adjacent processors limiting the amount of lag and

intermediate storage.

Chapter 3: Parallel Systems for Computer Vision 39

Other parallelization issues will be discussed in the next chapter, when the motion tracking

case study is presented.

C H A P T E R 4

M O T I O N T R A C K I N G IN P A R A L L E L

This chapter will focus on the motion tracking system and how it was parallelized. The C40

processor will be described and will be evaluated based on many of its features for parallel

systems. The implementation of the motion tracking system in parallel will then be discussed,

including many of the decisions that were made and problems that were faced. Finally, a

discussion will be presented which will describe how the system could be implemented using a

data parallelism approach.

4.1 T H E C 4 0 PROCESSORS

The need for parallel processing in today's computing world is quickly growing. Single processors

alone cannot attain the performance required for real-time systems. Processors not designed for

parallel processing are inadequate for the task as their device I/O capabilities cannot maintain

reliable interprocess communication without degrading computing efficiency. Processors have

been designed to meet some of the requirements of today's parallel processing applications.

One such processor is the Texas Instrument TMS320C40, which was the processor used to

implement the motion tracking system described in this chapter. The TMS320C40 (henceforth

referred to as the C40) is a floating-point processor well suited to the types of computations

which must be performed in such a system. Some of the C40 device features include [66]:

• Six communication ports for high speed interprocessor communication.

• Six-channel DMA coprocessor for concurrent I/O and CPU operation, thereby maximizing

sustained CPU performance by alleviating the CPU of burdensome I/O.

• High-performance CPU capable of 275 MOPS and 320 Mbytes/sec under ideal conditions.

40

Chapter 4'- Motion Tracking in Parallel 41

• Two identical external data and address buses supporting shared memory systems and

high data rate, single-cycle transfers.

• On-chip analysis module supporting efficient, state of the art parallel processing debug.

• On-chip program cache and dual-access/single cycle R A M for increased memory access

performance.

• Separate internal program, data, and DMA coprocessor buses for support of massive

concurrent I/O of program and data throughput, thereby maximizing sustained CPU

performance.

A few of these features will now be examined in slightly more detail.

C O M M U N I C A T I O N P O R T S

The C40 processors are designed for multiprocessor use, and this is accomplished via the C40's

six communication ports. These ports are capable of transferring 20 Mbytes of data each

second between two processors in either direction. Al l data transfers are buffered, both input

and output, so that no requests or data packets are lost. These ports greatly increase processor

throughput since the communication need no longer take place through the external memory

interfaces, keeping memory accesses and communication operations free from conflict.

D M A C O P R O C E S S O R

The C40 possesses an on-chip DMA (direct memory access) coprocessor which is a very impor­

tant feature for parallel performance and is one of the most important architectural differences

between the C40 and its predecessors. The DMA coprocessor, allows the CPU to focus all of

its power on computations without also having to transfer data within the processor's memory

map. The DMA handles the I/O tasks, and is able to read'and write to any location in the

memory map through its six channels. This is especially beneficial when interfacing with slow

Chapter 4- Motion Tracking in Parallel 42

external memories and peripherals. Dedicated DMA address and data buses minimize conflicts

between the CPU and DMA coprocessor.

M E M O R Y O R G A N I Z A T I O N

The C40 has a 16-Gbyte continuous address space for reaching program and data memory,

as well as registers affecting timers, communication ports, and DMA channels. The system

designer can choose to locate programs and data at any desired location, resulting in a great

deal of flexibility in designing system memory use. Tables, coefficients, program code, and data

can be stored in either R A M or ROM. Each R A M and ROM block is also capable of supporting

two memory accesses in a single cycle to notably increase performance, especially when data

resides in on-chip R A M .

The on-chip R A M takes the form of a 512-byte instruction cache. This feature is provided

to store often-repeated sections of code or chunks of data, thus greatly reducing the number

of needed off-chip memory accesses. Code can thus be stored off-chip in slower, lower-cost

memories. Utilizing the cache also frees the external buses for use by the DMA, external

memory fetches, or other devices in the system.

I N T E R N A L B U S E S

A large portion of the TMS320C40's high performance is due to internal busing and parallelism.

Separate buses allow for parallel program fetches, data accesses (read and write), and DMA

operations. These buses connect all of the physical spaces (on-chip memory, off-chip memory,

and on-chip peripherals) supported by the C40. The CPU can, for example, access two data

values in one R A M block and perform an external program fetch in parallel with the DMA

coprocessor loading another R A M block, all within a single cycle. As for external buses, two

identical external interfaces are present: the global memory interface and the local memory

interface. Both buses can be used to address external program and data memory or I/O space.

These external buses have a high port data-transfer rate of 100 Mbytes/sec.

Chapter 4- Motion Tracking in Parallel 43

P I P E L I N E D A R C H I T E C T U R E

As is the case with most other modern processors, the internal operations of the C40 are

pipelined to minimize the instruction cycle time. The major units of the C40 pipeline structure

are as follows:

• instruction fetching,

• instruction decoding and address generation,

• operand reads,

• instruction execution, and

• DMA transfer.

These functional units operate in parallel to aid in achieving the high throughput that is evident.

Altogether, the C40 CPU is capable of eleven operations per cycle throughput including

computations, data-accesses, address register modifications, and counter updates. This results

in a high-degree of parallelism and sustained CPU performance.

E X T E R N A L I N T E R F A C E S

The interface design of the C40 can be used to implement a wide variety of system configura­

tions. The two external buses and DMA capability provide a flexible parallel 32-bit interface to

various devices; the communication ports provide an interface to other C40s; and the interrupt

interface, communication ports, and general-purpose digital I/O provide communications with

different peripherals. Each interface is independent of the others, and different operations may

be performed simultaneously on each interface.

The global and local buses implement the primary memory-mapped interfaces to the device.

These interfaces allow external devices such as DMA controllers and other microprocessors to

share resources with one or more C40s through a common bus. Devices that can be interfaced

to the C40 include memory, DMA devices, and numerous parallel and serial peripherals and

Chapter 4- Motion Tracking in Parallel 44

I/O devices. Figure 4.1 illustrates a typical configuration of a C40 system with different types

of external devices and the interfaces to which they are connected.

Memory

Peripherals

Peripherals

Bit I/O

Analog I/O

Local Bus

Interrupt
Interface

External
Flags

Global Bus

TMS320C40

System
Control

Timer
Interfaces

Communication Ports
/\

/ s

Clock and Reset
Generators, etc.

Peripherals

Memory

Peripherals

l<= s*
s =>

I/O Devices

TMS320C40S

Figure 4.1: Possible system configurations.

D E B U G G E R

The C40 C source debugger is a software interface that aids in developing, testing, and refining

C40 C programs and assembly language programs. The data displays provided by the debugger

allow the values of variables, arrays, data structures, and pointers to be changed, while this

information is continuously updated on the screen. The C40 debugger allows the usual contol

over program execution with features such as breakpoints, conditional execution, and single-

stepping. Individual breakpoints can be set on any or all processing nodes in the system. Also,

a memory map can be defined which identifies portions of the target memory that the debugger

can access.

Supplementing the standard debugger features is an analysis module which allows the user

Chapter 4- Motion Tracking in Parallel 45

to monitor the operations of the target system. The analysis module captures C40 bus cycle

information in real time and reacts to this information through actions such as hardware break­

points and event counting. Such features supply the ability to stop the processor and track the

path that the program took before reaching the breakpoint or event. Types of information that

can be monitored include bus accesses, CPU clock cycles, branches, interrupts, and instruction

fetches.

In addition to the basic debugging environment, a profiling environment is available. The

profiling environment provides a method for collecting execution statistics about specific areas

in the code. This can provide immediate feedback on the system's performance. The types of

statistics that can be gathered include:

• the number of times each area was entered during the profiling session, and

• total execution time of an area, including or excluding the execution time of any subrou­

tines called from within the area.

These statistics can aid in identifying bottlenecks which are hindering the performance of the

application.

See Section 4.3 for more discussion about the debugger.

4.2 S Y S T E M D E S C R I P T I O N

This section will describe the underlying motion tracking algorithm and the major modifica­

tions to the system which were required to construct the parallel implementation. Obviously,

in any parallel conversion, one of the major changes will be the addition of interprocessor com­

munication, and the form that this communication took in the motion tracking system will

be described. Also the division of labour onto the C40 nodes and the resulting tasks will be

discussed.

Chapter J: Motion Tracking in Parallel 46

4 . 2 . 1 S I N G L E N O D E I M P L E M E N T A T I O N

The first task in the pipelined parallel conversion of a sequential algorithm should be the

complete implementation of the algorithm, if possible, on a single processor. This step was

previously discussed in Section 3.4.

The motion tracking system was implemented on a single node with a couple of modifica­

tions. Since the image capture and display capabilities reside on separate processors, it was

necessary to allow the system to acquire and process images originating from an input file. Also

a loop iteration scheme was not followed initially; only one image would be processed before

termination. This enabled the meticulous examination of results after one iteration from which

conclusions could be drawn regarding their validity. Once the results obtained from this version

were deemed satisfactory, a few iterations were executed in order to totally initialize the system,

fill up the pipeline, and check all communication passages including the message transfer from

the final node back to the image grabbing node.

At the time of implementation, the system was running on a single node in about 2 seconds

per loop. Once the system was running acceptably on one node, the chore of dividing up the

work between processors was begun.

4 . 2 . 2 P I P E L I N E S T R U C T U R E

As was previously mentioned, it was decided to follow a pipeline approach in parallelizing the

motion tracking system. The reasons for reaching this decision are as follows:

• A pipelined implementation is analogous to the logical flow of data and information

present in the system.

• The motion tracking system can be readily and sensibly split up into 5 or 6 separate sub-

tasks which can be executed in sequence. This corresponds to the number of available

C40 processors.

Chapter 4' Motion Tracking in Parallel

• A pipelined version of the system can be easily implemented with few changes needed to

the original algorithm. Compared to the data parallelism paradigm, this method requires

much less effort.

• No edge effect problems are present when combining results as in the data parallelism

scheme.

• A simple communication strategy is possible; synchronous communication occurs when

adjacent nodes have both completed processing on their current data structures.

• A pipelined approach is much more reasonable for the types of operations that will be

performed. Data parallel approaches cannot intuitively decompose high-level operations

without creating severely unbalanced processing loads and major communication over­

head.

• Computation time, following this approach is relatively similar for all tasks; any one pro­

cessor will not require a disproportionate amount of processor attention. This results in

efficient use of resources and reasonably balanced processing loads.

• This method makes it easy to gauge progress; programming for each sub-task can be

completed and the results displayed without a lot of extra work. The data parallelism

approach would require combining results at the end of every stage to determine the

validity of the data.

The decision to follow a pipeline approach is not without problems, however. Some of the

disadvantages associated with pipelining are as follows:

• Unbalanced dataflow is present. The early stages transfer complete images while nodes

later in the pipeline are communicating much smaller data structures.

• Temporal latency becomes a problem. There is a lag of about 4 frames between receiving

input data and producing output data. This is not propitious for a lot of real-time appli­

cations. On the other hand, it does optimize throughput since new images are constantly

Chapter 4' Motion Tracking in Parallel 48

fed into the system, and results are continually displayed. This helps to minimize the loss

of information.

• Data structures must be dismantled and reconstructed for communication between pro­

cessors.

• It is not clear how the system can be expanded if more processors become available.

A pipeline cannot be "lengthened", and adding processors to aid in the completion of

subtasks may hinder the efficiency of the algorithm, although certain processing modules

are amenable to spatial decomposition.

• The linking and matching procedures have variable execution times since they depend on

the complexity of the scene, amount of spatial disparity, and the total number of edges

detected in the image. This could lead to unbalanced processor loads.

It is important to note here that the temporal lag problem does not mean that the system

is tracking on "old", outdated information. The system is constantly fed new data, but the

results are not available until the pipeline computations have completed.

The pipeline structure implemented takes as input a stream of images, and each iteration

of loop produces a single element in the output stream of model poses. The following sections

will now address the construction of the sub-tasks on the individual nodes. Figure 4.2 displays

the ordering of sub-tasks in the pipeline.

Image Grab
and

Convolution

Zero
—»

Edge Linking
and Line

Construction
—- Model — Display

Image Grab
and

Convolution Crossings m

Edge Linking
and Line

Construction Matching ^>
Display

Figure 4.2: The task ordering in the pipeline structure.

P R O C E S S O R l - I M A G E C A P T U R E A N D C O N V O L U T I O N

The initial processor in the pipelined structure is responsible for receiving the input images and

for the convolution of these images with a convolution kernel. The images are received from

Chapter 4- Motion Tracking in Parallel 49

the frame grabber in a compressed format; four pixel values are packed into each word. Hence

images are entered into a large table, row by row, leaving space for the subsequent expansion of

the data. The images are then stored as sequential arrays with an indexed lookup array which

stores the address of the first pixel of each row. This provides an efficient method for image

pixel access. The image size used was 512x460 pixels. This image size is a lot larger than the

standard 256x256 used in most previous applications.

The input image needed to be modified because of the interlaced nature of the camera data.

Since two scans are performed for the capture of each image, the first for the odd rows and

the second for the even rows, it is important to only use every second row of the input image.

This is especially crucial for moving objects since the object could be in a different position

for the second set of scan lines, resulting in a jagged and incoherent image. Hence an image

compression or vertical scaling operation was performed by discarding every second horizontal

row. This has effects on later stages, as the image needs to be expanded again before the results

are displayed. The edge endpoint locations are stored properly with the use of a scaling variable

which holds the amount of vertical scaling applied to the image.

The convolution routines for this system are entirely new as the convolution was previously

performed on special hardware. For speed, assembly language convolution routines were for­

mulated so that the on-board memory of the C40s are utilized. For each row of the image,

pixel values and data from the kernel are simultaneously stored in the on-chip memory of the

C40 so that convolution operations can be performed without expensive memory accesses and

indexing.

The method carried out is a Laplacian of Gaussian convolution operation, which applies

a Laplacian operator smoothed with a Gaussian mask to the image. Hence the Laplacian of

Gaussian operator may be shown to equal

log = S2G(x,y) = (l/7ra4)(r2/2a2 - l)exp(-r2/2a2)

where r2 = x2 + y2. New 5x5 and 7x7 convolution kernels were designed in this manner.

The convolution routines were created with the ability to specify an image starting address,

Chapter 4- Motion Tracking in Parallel 50

a row width, and an image width and height. This allows for the flexibility of convolving only a

subimage if the object of interest has been tracked to a certain location. In this case, an output

row width can also be specified so that the convolution result can be packed into a smaller

output buffer.

P R O C E S S O R 2 - Z E R O C R O S S I N G S

The zero crossings processor takes as input a convolved image, and from this delineates the

boundaries between positive and negative intensities (zero crossings of the first derivative).

This task is fairly straightforward and required few changes for use in a parallel system.

Zero crossings in the convolved image occur in places where there is a sign change between

a pixel and its right neighbour or lower neighbour. The value of the zero-crossing pixel is

then taken to be the local gradient - the difference between the two values, or the maximum

difference if there is a sign change in both directions. Al l other pixels are marked with a zero.

The result is an array of pixel values, non-zero every place where a zero-crossing occured in the

convolved image. There may be gaps in some of these zero crossing segments, as any pixels

below a certain gradient threshold level are dropped. This will help to reduce the number of

less prominent edges. The gradient values themselves can be used in the next stage to remove

shorter edges from the feature configurations.

P R O C E S S O R 3 - E D G E C O N S T R U C T I O N

The edge construction phase is composed of two tasks: the Unking of edge points and line

segment formation. These operations are performed consecutively on a single processor since

together the amount of time required to complete these tasks is comparable to the work per­

formed on the other processors.

The processor receives as input an image consisting of non-zero values everywhere a zero

crossing occurred in the convolved image. These points are linked together into structures by

tracking zero crossing segments and storing the points in a linked list. A Canny hysteresis

Chapter 4- Motion Tracking in Parallel 51

+

+ +

- - - - + + + + + + + + +

- - - + + + + + + + + + +

- - - + + + + + + + + + +

- - + + + + + - - - - + +

+ + + + + + : + +

- + + + + + .+ +

- - + + - - - - + + + +

- - - + + + + + - + + + +

- - - - + + + + + + + + +

Figure 4.3: Example of zero crossing boundary creation.

thresholding technique is used [39]. The points are traversed looking for non-zero values, and

if the gradient is above a certain selected high threshold value, a new edge is started. Since the

initial pixel is likely in the middle of some edge, this edge is tracked in both directions from the

first pixel.

As it is added to an edge, the pixel is removed from the image buffer by being zeroed out

so that it is not included in another edge segment. Tracking on the edge continues until the

gradient drops below a low threshold value. Further stipulations require that the endpoint

gradients be above the high threshold level, and that the lines have a minimum length. The

resulting edges include only sharp intensity discontinuities and shorter edges which would not

aid in the tracking have been removed.

A change was made in the way in which these structures are created and stored. Once a

complete edge segment has been tracked the number of points it contains is known, so instead

of allocating an object for each point structure, an array of point values can be allocated. This

implementation is likely more efficient than using pointers and is likely to result in better cache

Chapter 4'- Motion Tracking in Parallel 52

coherence. Each element contains the x, y coordinates of the point as well as the gradient value

across the zero crossing. A linked list of edge segments is formed to hold the point arrays for

each segment, and to enable the addition of subsequent edges.

Since a lot of memory is manipulated at this stage, an efficient method is required to handle

memory allocation. This allocation is performed by a number of utility routines which grab

small chunks of memory from a large storage pool. Memory can be taken as required, and

rather than allowing each structure to be freed individually, it is only possible to free an entire

pool of storage at once. This is not a limitation since each image will initially require an empty

workspace. This method is a much more efficient means of allocating small objects, as there is

no overhead for remembering all the information needed to free each object. Also, since objects

are allocated in blocks, small chunks can be taken from these blocks without any allocation

overhead by simply manipulating pointers in this block. Finally, it is possible to free all objects

associated with some particular pool without having to link them all together and traverse a

list to free them.

Once all of the linked edge structures have been constructed, the edge structures are used

to construct straight lines. This results in a large reduction of data, since only the endpoints

of the straight lines need to be stored and not every pixel, and this will also convert the data

into a form which is consistent with the form of the model parameters so that matching can be

readily performed.

A recursive subdivision procedure is used to find the best straight line segmentation for the

input edges. These straight lines correspond to edges detected in the image. The procedure

begins by subdividing the list of points into two segments at the point where the deviation from

the line joining the first and last points is the greatest. The routine is then called recursively

on each segment. The routine returns when the significance of a segment (based on a length

to deviation ratio) falls below a predetermined lower limit, and combines smaller segments of

lower significance into longer segments. Hence a number of straight lines can be created from

one linked pixel list.

Chapter 4- Motion Tracking in Parallel 53

In addition to this line construction method, a least-squares line fitting capability was also

added to the system, and an option file allowed the user to select which type of line fitting

would be performed. A further option introduced to the system allows the tracking loop to halt

at this stage and simply display the edges detected in each image frame.

P R O C E S S O R 4 - M A T C H I N G

The next processor in the pipeline controls the matching operations. The matching procedure

is used to identify correspondences between image edges and model edges projected from the

current model position. The process begins by storing the current position of the model so

that these parameters can be recovered if the matching process fails. Next, the edges that were

detected in the image are partitioned into different bins depending on their orientation and the

location of the midpoint. All image edges are processed and indexed in this way.

For each projected model segment, its current orientation and location bins are searched

for potentially matching image segments. Match records are created if the candidate edges

are within the appropriate bounds for the model edge. To aid in the classification of matches,

probabilities that the image edge matches some model edge are estimated, based on the locations

of the midpoints, the difference in orientations, and the difference in line lengths. A pair of

edges are given higher evaluations if they have connecting endpoints when their corresponding

model edges are also connected. These values are then used to rank the matches, and the

"best" candidate matches are used in a least-squares solution. This best-first search procedure

minimizes the time spent searching for correct sets of matches, and also eliminates the need

to treat outliers. The most reliable initial matches are used to reduce the parameter variance

on further iterations, minimizing the amount of search required for matching more ambiguous

features. Initially, only enough feature matches are selected to constrain the degrees of freedom

of the object.

A least-squares solution is performed, and the residual is examined to evaluate the consis­

tency of matches. If the match is rejected, then at least one of the segments in the match set

Chapter 4- Motion Tracking in Parallel 54

must be in error. The probabilities for all of these edge segments are reduced, which will cause

new matches to be considered in the next search. Successful matching enables the viewpoint

and model parameters to be updated, and subsequent iterations involving more model features

are performed from this new viewpoint following Newton-Raphson convergence. A couple of

iterations of this convergence are usually sufficient to accurately determine the object's po­

sition. Details of the least-squares solution and Newton-Raphson convergence are given by

Lowe [41, 43, 44].

P R O C E S S O R 5 - C O N T R O L A N D D I S P L A Y

The final processor in the pipeline is responsible for displaying the tracking results, and for the

overall coordination of the system. Once the new position of the model has been determined,

it is projected onto the image frame so that it can be displayed. The model is drawn in red if

the previous match failed, and only visible edges from the current viewpoint are displayed.

Splitting the matching and display code onto separate processing nodes requires a lot of

data to be passed between these nodes: model projection information (possibly one set for each

convergence sequence), the edges that were detected in the image, and the edges which were

matched in the matching process. To make this data transfer more efficient, a data structure

was constructed consisting of a number of line entries, containing information about endpoints

and line type. Thus model, match, and detected edge information could all be transferred via

the same structure.

Hence the display node receives as input a list of lines which correspond to the new pose

of the model and outputs a set of lines depicting the projected model edges at the object's

new position. Optionally, this node is capable of displaying the edges detected in the image

and the lines used for matching. Other information received from the matching node includes

the portion of the original image which was processed and has been passed through the entire

pipeline. This image is displayed in the background so that the validity of the tracking can

be examined as the system is running. Once all of the pertinent information has been output,

Chapter 4- Motion Tracking in Parallel 55

the new position of the model must be transferred back to the beginning of the pipeline to

aid in speeding the computations. This is accomplished by forming a bounding box around

the projected model position, and passing the coordinates of this box to the grab node. The

dimensions of the box are increased by a few pixels in each direction to allow for possible model

movement between iterations. All future computations will then be confined to this processing

"window".

The display node also receives asynchronous status messages from all of the previous nodes.

These messages can contain information such as the number of bytes transferred between nodes

and timing statistics. This information was useful in constructing and debugging the system

since communication with the user in the form of output to the host was unreliable.

4 . 2 . 3 I N T E R P R O C E S S O R C O M M U N I C A T I O N

Once a pipeline approach was decided upon, the most important implementation decisions that

remained dealt with interprocessor communication. How should data be passed between nodes?

What data should be communicated? What form should the communication take? How should

communication between all of the nodes be coordinated?

Enter the worm-hole router. The TMS320C40 router is a software controlled message pass­

ing system. It provides the means to pass messages of arbitrary size between processors not

directly connected. These communications follow a worm-hole approach. This means that

the messages are passed through intermediate nodes to reach their destination, but unlike

some routers (such as the store-and-forward router), these intermediate nodes do not store

the message in local memory. Instead it is transferred immediately from an input port to the

corresponding output port. This makes communication more efficient because it is faster and

doesn't require any additional memory in the intermediate nodes.

Figure 4.4 shows the interprocessor communication that occurs in the motion tracking sys­

tem. It is important to realize that if two nodes are adjacent in the system pipeline, it does

not necessarily mean that they are connected physically. In fact, Figure 1.1 shows that the

Chapter 4- Motion Tracking in Parallel 56

zero crossing and links nodes, as well as the match and display nodes, are not actually phys­

ically linked. Forming a complete, connected network would result in a chaotic mass of wires

and would complicate later additions to the network. The router's efficiency is evident since

communications proceed as if all of the nodes do have physical interconnections.

Since the router is software based, routing decisions and high level control functions are ex­

ecuted by the CPU. These functions are decentralized so that each intermediate node makes its

own routing decisions. The C40 multichannel DMA is then responsible for handling the actual

message transfer. A connectivity matrix is specified at the outset to select which communication

ports on all of the nodes will be utilized.

The data transfer between processors in the pipeline is synchronous and uses a "handshak­

ing" style. The destination node signals that it is finished its computations and ready to start

communicating by sending a single byte to the source node. After receiving this status byte,

the source node proceeds to transfer its results. If a receive request is issued before the source

node is ready, the request is queued and the receiving node will wait, blocked from doing further

work. Similarly, if the send request is issued before the destination node is ready, the message

will be sent and queued in local memory at its destination until the appropriate receive request

is issued.

The synchronous method was required to control the processing speed of certain nodes.

Without this check, earlier nodes in the pipeline may execute too quickly, filling up the message

buffers on later nodes, and ultimately crashing the system. Also, asynchronous methods could

not perform efficiently when passing large image messages.

The type of data that is sent depends on the stage of the pipeline where the transfer is

occurring. Data passed from the convolution node to the zero crossing node and then to the

edge Unking node is in image form (a large two-dimensional array of values) and is passed in

a sequential array format since the receiving node knows the dimensions of the image. Data

passed from the edge Unking node to the matching node and then on to the display node

is greatly transformed. It now is a large structure of Une segment entries, and must be in

Chapter 4- Motion Tracking in Parallel 57

Image
Capture

Status
Messages

Convolution -Convolution

\

Processing
l Results

Zero Crossing

\ I Model

Edge Linking Position

\ 1

Model Match

\ 1

Display y Display

Tracking
Results

Figure 4.4: Interprocessor communication.

array form (each data structure entry a single element in the array) with no pointers so that

the information is sequential and will be valid after transfer. (Obviously, if only pointers are

passed, there is no correspondence to what will appear at the corresponding address in the

destination node's memory!) The receiving node can determine how many line entries occur in

the message since it knows the total length of the message and the size of each line segment

record.

In addition to the previously mentioned data communication through the pipeline, a second

piece of information is passed at the same time. The original image (or portion of) is transferred

Chapter 4' Motion Tracking in Parallel 58

by way of a second set of send/receive pairs down the pipeline. A simpler and more effective

method may have been to pass the image directly from the initial node to the display node.

Reasons why this was not done are given in Section 4.3.

The final type of communication present in the motion tracking system is the asynchronous

transfer of status messages from all nodes to the display node. This message passing is asyn­

chronous since the sending nodes issue a single send request and then continue processing

without waiting for the message to be received. At the end of each processing loop, the display

node will then clean out its status message queue, displaying any necessary data, and then

prepare to receive it's next set of match data. The originator of each status message is known

since the source node id is attached to the message header.

4.3 P R O B L E M S A N D R O A D B L O C K S

This section will address some of the problems which were encountered when parallelizing this

system, and will focus on a number of alternative actions taken to overcome these difficulties.

Various roadblocks encountered included communication problems, programming bugs, and

hardware difficulties. Problems were even created by an optimizing bug existing on the C40

compiler which caused the compiler to incorrectly interpret a double-assignment with post­

increment instruction.

When the system was initially being constructed, an easy way to get information about the

validity of data that was being computed was to output intermediate results or status messages

to the display of the host. This creates problems in this sort of parallel system since print

statements will need to communicate information through the network. The problem is not as

evident when the statements are issued by the node which is directly connected to the host,

but when intermediate nodes are required to transfer the information to the host problems

can arise. Not only are communication ports being occupied, but conflicts can occur with the

regular data communications. This often caused the system to terminate prematurely.

As previously mentioned, it would have been desirable to send the captured image directly

Chapter 4- Motion Tracking in Parallel 59

from the grab node to the display node, and thus avoid many extra transfers down the pipeline.

Since the image would arrive at the display node before the processed data made its way through

each subtask, a scheme was devised whereby each image would be given a unique identifier,

and a number of images would be stored at the display node until the matching process is

complete. This would greatly accelerate the communication between all nodes in the pipeline.

However, much more memory would be required on the output node. The synchronization

of communications turned out to be the demise of this plan. The image could not be passed

synchronously without seriously hindering the ongoing synchronous pipeline communication.

Asynchronous communication was attempted, but the size of this communication caused it to

be too slow.

A great deal of effort was expended in attempts to speed up the tracking loop, and some of

the improvements that were made can be found in Section 4.4. When an early version of the

edge linking procedure was taking far longer than expected, it was discovered that the memory

freeing routines were not very efficient. At the time, memory for the edge structures was being

allocated as needed and linked to the end of the existing list. When the loop was completed,

the list would be deleted, releasing all of the memory at once. This required a number of calls

to the memory freeing routine which turned out to be very slow. The memory pool scheme

turned out to be much more efficient, allocating and releasing large blocks of memory at once.

A further improvement to this method was made when the memory in use was not released

after each iteration, but the blocks were maintained, adding new elements to the front and

keeping a pointer to the end of the list.

Many problems were encountered attempting to get reliably detected edges from the image in

question. Camera focus and scene illumination turned out to be important factors in aiding the

detection of edges, as well as the flicker effect produced by flourescent lights. For some reason,

edges could be detected very reliably on the full image, but when the vertical scale variable

was increased, many detected edges became either jagged, fragmented, or they disappeared

altogether. An attempt was made to use only alternating horizontal pixels (horizontal scaling)

Chapter 4- Motion Tracking in Parallel 60

to see if this, combined with the vertical scaling, would produce reliable edges, but a lot more

information was lost this way.

By far the most important part of parallelizing the motion tracking system was getting the

interprocessor communication working smoothly and faultlessly. At times the communication

was suspected to be unreliable, as the system would halt execution seemingly waiting for data to

be transmitted somewhere in the pipeline. Many different possible solutions were examined to

facilitate more robust and efficient data transfers. Large messages were broken down into smaller

pieces and processors were given different tasks (to correspond to correct physical pipelining)

in attempts to improve communications. Another programming language, Parallel C, was even

investigated to see if its communication primitives would be of use in this system. However,

Parallel C does not support communication between nodes which aren't physically connected,

so it proved unusable. These efforts aided in the understanding of the factors involved, but did

not improve the overall communication performance.

The biggest hindrance to establishing dependable communications and enabling the expedi­

ent implementation of the system was the absence of a reliable debugging utility. It is extremely

important in parallel programming to have a reliable debugger working on all nodes simultane­

ously to help solve problems. This debugger must have the capability to set breakpoints at any

stage of execution on any node, and display different variables and data structures. Most nodes

in any multiple processor system will not have any display capabilities to show their current

status, so debuggers are invaluable in this capacity.

Unfortunately, debuggers are also very difficult to institute into parallel processing systems.

There are a large number of synchronization issues to deal with, such as displaying variable

information when blocked and waiting for communication. The C40 debugger was available for

use, but could not be set up to work faultlessly. The alternative to using a debugger was to

output as many status messages as possible to learn about the state of all nodes on the system.

This was a very difficult and inefficient way of obtaining information, especially since execution

had to be halted to gain much of this knowledge. Also, the variable nature of the incoming

Chapter 4- Motion Tracking in Parallel 61

data caused each execution to be different, leading to problems in different stages of execution

for every trial.

To aid in the gathering of information about the system, many routines were added to

enable partial results to be displayed. For example, the system has the ability to show all of

the edges that were detected in the image, as well as all line segments used in the matching

process.

4.4 P E R F O R M A N C E E N H A N C I N G MODIFICATIONS

This section will summarize the changes to the system which resulted in drastically improved

overall system performance. Most modifications were performed in attempts to relieve bot­

tlenecks in the system since attaining more efficient performance in these stages would have

immediate effects on the execution of the system as a whole.

After a new convolution routine was written and optimized to be as efficient as possible,

full image convolutions were still taking about 6 seconds to complete. The institution of a fast

and efficient assembly language convolution routine using on-board memory, along with the use

of smaller convolution kernels, improved the performance of the system to the point where the

convolution routine was no longer the computational bottleneck (see results in Chapter 5). The

use of vertical scaling further improved the convolution performance.

The edge linking process effectiveness was enhanced through the addition of the memory

allocation routines. Also, the way in which data structures were constructed aided the perfor­

mance. The points are completely gathered for each edge segment before the edge structure is

allocated in case the sequence of points is too short to merit a new edge. Also, an array struc­

ture is used since the number of points is now known at allocation time. This also precludes

the necessity of disassembling the data structure before communication.

A major decrease in execution time was gained through the use of the C40 library's cache

routines. These routines allowed the use of the on-chip memory caches, and drastically im­

proved performance on large loops and computationally intensive sections of code. The caches

Chapter 4- Motion Tracking in Parallel 62

store often-repeating sections of code, thus greatly reducing the number of needed off-chip ac­

cesses. The external buses are also freed for other DMA operations or memory fetches. The

CACHE_ON() call sets the Cache Enable Bit allowing the cache to be used. The CACHE_OFF()

call in turn disables the cache. The cache routines were utilized with the convolution, linking,

and zero crossing routines, and any other code sections where data manipulation was performed

on the image. These changes resulted in improved task performance, sometimes by a few orders

of magnitude.

Another large increase in performance resulted from selective processing of only the relevant

portion of the input image, namely that region which contains the object. The most recent

object position information can be obtained from the display node. When the model is projected

for display, the horizontal and vertical extrema can be noted, and a "window" created in the

image outside of which no processing will be performed. This window is enlarged slightly to

allow for some object movement between frames.

Convolving a smaller region of the image will obviously speed up the convolution and zero

crossing stages of the process, and a smaller image also means fewer line segments so that

the edge linking, line creation, and matching processes are improved as well. The amount of

improvement depends on the size of the object and its proximity to the camera, but speed-ups

of 4x were not uncommon. Communication performance was also improved as a result since

only a portion of the previous image needed to be transferred. This also meant that the sub-

image needed packing to remain sequential and occupy less space. The zero crossing sub-image

is unpacked at the edge Unking phase so that edge tracking can be performed gathering the

correct pixel coordinates for the edge data. The hitchhiking original sub-image does not need

to be unpacked until the display stage.

FoUowing the same idea, a further improvement was garnered by initiaUy uncompressing

only the relevant rows in the input image. The remaining rows are ignored at the convolution

stage. Further improvements to the motion tracking system included the addition of least-

squares Une fitting, and the introduction of an option file to change run-time parameters.

Chapter 4- Motion Tracking in Parallel 63

Table 4.1 outlines the major improvements and their effect on the system's performance.

Many smaller fine-tuning improvements were made but are omitted from this table. Some of

the earlier entries are only approximate since not all of the improvements and features had yet

been added.

Improvement Resulting loop time (sec)

Dynamically allocate edge structures (160x160 image) 18.0

Cache routines in linking 14.2

Addition of free memory pool (512x460 image) 20.5

Assembly convolution routine on a 2nd node 3.68

Vertical scaling 3.24

Separate zero crossing and linking nodes 2.52

Window processing for zero and link 1.59

Split matching onto 5th node 0.75

Window processing - convolution and zero 0-420

Cache routines for zero crossing 0.400

Communicate only relevant subimage 0.265

Table 4.1: History of system improvements.

4.5 T H E D A T A P A R A L L E L I S M A P P R O A C H

A completely different approach could have been taken in parallelizing the motion tracking

system. Instead of splitting the job into sub-tasks and distributing these sub-tasks among

processors in a pipelined fashion, the data parallelism paradigm could have alternatively been

employed.

To recap (see Section 3.1), data parallelism involves partitioning the image into parts or

sub-images which are each processed by a different node. Each node performs the same tasks

on the sub-images, and results are combined when complete. This method would have its

Chapter 4'- Motion Tracking in Parallel 64

advantages and disadvantages.

This type of implementation would be favourable for the following reasons:

• When more processing power became available in the form of additional C40 nodes, it

would be a more straightforward task to incorporate these processors into the system

to improve performance. The data parallel edge detection tasks could be supplemented

simply by partitioning the image into more pieces and processing on all available nodes.

• More individual communications may be necessary to divide and recombine data, but

these are all similar in nature, smaller in size, and simple to control. Analyzing these

transfers would reveal that all image division and result collection would involve as much

data as two individual communication stages in the task parallelism scheme (less if move­

ment of the original image is not required). In the end, fewer total communication stages

would be necessary and the total amount of data passed between processors would be

decreased.

• More balanced dataflow would result.

• Temporal latency would be reduced, though total system throughput would also be re­

duced.

• Much less dismantling and reconstruction of data structures would be required.

The disadvantages of a data parallelism approach are summarized in the following list:

• Many more modifications to the algorithm would be required for this approach.

• Edge effects are present when combining results.

• Some form of pipelining must still be employed due to the high-level matching operations.

• It is not as easy to gauge implementation progress; results must be combined from all

nodes after each modification is made to see if the system is working properly.

Chapter 4- Motion Tracking in Parallel 65

• Processing loads may be very uneven if different areas of the image are more interesting

or complicated.

The most common data parallelism configuration would involve reserving two C40 nodes;

one for image capture and distribution, the other for collection of results and output; and

employing the remaining processors as worker nodes which could process the subimages. The

edge detection processes could be performed on each node, creating a number of sets of line

segments found in the image.

In attempting to exploit the data parallelism for as long as possible, one may be tempted to

then index these line segments and select candidate matches in parallel. The Newton-Raphson

convergence method requires the availability of all matched segments, so at this point, all of

the candidate matches would need to be communicated to a single node which would complete

the solving process. The problem in this approach is that line segments corresponding to model

edges may be divided across subimage boundaries, and thus exist partially on two separate

nodes. For valid matching to be performed, these segments must be joined before the matching

starts. Hence, the results of the edge detection performed on all subimages must be combined

on a central processor where matching can be performed.

A strict data parallelism scheme would see the edge detection results passed back to the

same node which partitioned the image initially. An advantage of this approach would be that

the original image would still be stored here and would not have to be transferred to another

node for display. Otherwise, a separate transfer sequence would have to occur. Alternatively,

the worker nodes could save their sub-images and pass them unchanged to the matching node

where the original could be reconstructed.

As can be plainly seen, any data parallelism approach must necessarily embody some

pipeline mechanisms, hence it would be more of a hybrid approach. The ultimate system

would likely contain elements of both paradigms.

C H A P T E R 5

RESULTS

Processing time results were gathered by utilizing the timers on each C40 node. The execution

times for various stages of computation would be compiled and passed to the display node in

the form of a status message. This information could then be passed to the system user.

A file box model was used as the object to be tracked. This model is quite simple with

straight edges, and a hinged, translucent lid. The dimensions of the box are 7x6x6 inches, and

it was situated about 5 feet from the camera so that it subtended an angle of about 6 degrees.

This resulted in a spatial extent of about 145x135 pixels in the image plane. The image size

stored by the system is 512x460 pixels, so the model takes up about 10% of the total image

area. This makes some tasks more difficult such as model edge detection. However, at this

distance the model has more freedom of movement while still being within a trackable velocity

range.

Figure 5.1 shows the setup of the experiment, and Figure 5.2 gives an example of the edges

that are detected in the image. A 5x5 convolution kernel was used with least-squares line fitting.

Tables 5.2 through 5.6 give the timing results for the individual processing nodes, showing

how long each step of the task took to perform. The timing data was collected and averaged

over a number of iterations. Some operations, especially the Unking and matching routines,

have a quite high variance of ± 15 ms.

The results displayed in table 5.7 show the complete execution times for each processing

loop, including interprocessor communication. The duration of each loop was approximately

265 ms, but this value is highly dependent on the proximity of the object and the complexity

of the background and other nearby objects. The time spent completing the required sub-tasks

is given, along with the communication time in receiving and sending data. These values also

66

Chapter 5: Results 61

Figure 5.1: The motion tracking setup.

include the time spent waiting for other processors to complete computations. The "data in"

time for the grab node refers to the time spent acquiring the input image. The "data out" time

for the display node refers to all operations performed in order to display the results.

A sample of the display is given in Figure 5.3 which shows how the tracking system was

able to "lock on" to the object model. Figure 5.4 shows another frame from the same tracking

sequence. In this case, the convergent nature of the least-squares matching iterations is dis­

played. Each iteration produces a model position which more closely corresponds to the correct

object position than the previous result.

It is a little difficult to determine what is happening on each processor in Table 5.7, so

a slightly different layout is presented in Figure 5.5. This figure shows the processing and

communications times, and also depicts the amount of time that the processor is "blocked"

waiting for data from the previous processor or waiting for the next processor to finish its

Chapter 5: Results 68

Figure 5.2: Sample of edges detected from input image.

work so it can pass its results down the pipeline. This type of diagram makes it easy to spot

bottlenecks.

Another execution with a slightly different setup is given in Figure 5.6. This experiment is

important because it shows that with only a few minor changes, the display node can become

the bottleneck. The processors in this case are blocked at the completion of their work as they

wait for the display node to become free. It is also seen that the display node seems to be taking

far too much time for the tasks it performs. This is because it spends a lot of time preparing

the original image for display. One way to speed this part of the processing up would be to

give the option of completely suppressing the display of the image. This would speed the rest

of the pipeline up as well since a lot less information would need to be communicated. The

final display would then consist only of the model's edges projected from its current position,

not overlaid on the original image.

Chapter 5: Results (if)

task time (ms)

Image capture 36

Vertical scaling 40

Decompression 20

Convolution (5x5) 140

Pack image 20

Total execution time 245

Table 5.2: Grab node timings.

task time(ms)

Convert to float

Find zero crossings

10

27

Total execution time 37

Table 5.3: Zero node timings.

task time(ms)

Unpack image 20

Link zero crossings 40

Show edges 10

Make line segments 27

Total execution time 97

Table 5.4: Link node timings.

task time(ms)

Create edge structure 10

Create line array 10

Project model 20

Matching 75

Total execution time 115

Table 5.5: Match node timings.

Figure 5.3: Tracking file box model - frame 50.

Chapter 5: Results 70

task time(ms)

Unpack image 20

Show lines 20

Copy to RGB 60

Unscale image 83

DMA image copy 46

Clear message queue 11

Total execution time 240

Table 5.6: Display node timings.

task grab zero link match display

Data in 105 207 161 145 23

Process 140 37 97 115 103

Data out 20 20 12 20 137

total 265 265 265 265 265

Table 5.7: System iteration timings. All values in ms.

Figure 5.4: Tracking file box model - frame 100.

Chapter 5: Results 71

265 ms

GRAB

245 20

ZERO

188 20 37 20

LINK

136 20 97 12

MATCH

118 12 115 20

DISPLAY

5 20 240

execution

blocked

communication

Figure 5.5: Individual processor timings - trial 1 (ms).

Chapter 5: Results 72

GRAB

ZERO

LINK

MATCH

DISPLAY

255 ms-

230

14 23

14 84

201

11 14

14

10

10

147

165

10

70 10

245

execution

blocked

communication

Figure 5.6: Individual processor timings - trial 2 (ms).

C H A P T E R 6

C O N C L U S I O N

This paper has described some of the factors and issues involved in converting a sequential

system to a multiprocessor system. It did this using the concrete example of a motion tracking

system, converting it to a real-time parallel implementation. This motion tracking system

was described, discussing many implementation alternatives and decisions, and some of the

problems that were encountered.

If anything, this experiment showed that the parallelization of sequential systems is not an

automatic, uncomplicated procedure. Many issues must be considered, and a lot of unforeseen

complications are bound to arise. It also stressed the importance of a reliable debugging util­

ity, as many of the issues faced could have been simplified or even avoided with this type of

programming aid.

The present performance of the motion tracking sytem may not be adequate for use in many

current real-time applications; however, certain modifications could be performed to the system

which would increase system effectiveness to the point where real-time operations are possible.

P O S S I B L E E X T E N S I O N S

Some different approaches that could be taken include the use of specialized hardware, further

distribution of the processing load among more processors, increased use of the DMA capabili­

ties, and the employment of further vision techniques to make the motion tracking system more

robust.

A large chunk of processing time is due to the convolution routine. A quick way to improve

performance would be to split the image acquisition and convolution routines onto separate

processors. The grab node would then perform all necessary image scaling and decompression

73

Chapter 6: Conclusion

and pass the image's processing window to the convolution node. This node would then be able

to concentrate all of it's computation cycles on performing the convolution. This operation

could in turn be improved by applying data parallelism and using a number of processors to

convolve the image at this stage. The results would be combined and passed to the zero crossing

processor with limited edge effects.

The other method of speeding certain operations, including the convolution, would be to

utilize specially designed hardware. A "convolution engine" could process images in speeds

approaching video rate.

The system could also make far better use of the capabilities of the DMA coprocessor.

Currently, the DMA is utilized only during communication and image display. The input and

some computation stages could also benefit, such as performing concurrent convolution and

image acquisition operations. Perhaps the DMA could also be used to communicate partial

results between processors. This could decrease the idle time on some processors and the overal

system latency without adding too much communication overhead.

The latency of the system could be reduced by formulating a scheme in which partial results

are passed along to the next processor. This processor can then begin computations without

waiting for the rest of the data to arrive. Regions of the convolved image or partial zero crossing

results could be processed in this manner. Also, as single edges are detected in the linking and

line creation stage, they can be immediately transferred to the matching stage for indexing and

ordering.

Another idea that has been discussed is to supress the display of the original image. The

observable results would then involve only the projected model edges. The exact position of

the object would still be known and the processing time of the final display node would be

dramatically decreased. The processor's duties would be reduced to receiving and displaying

the model pose information, handling status messages, and communicating model pose data

back to the grab node. These steps could be executed in as quickly as 40 ms\

The image supression would also hasten communications throughout the pipeline, and would

Chapter 6: Conclusion 75

also alleviate the processing load on the grab node.. Further DMA and scaling improvements

to the grab node could then lead to the matching node being the system bottleneck, with loop

times around 160 ms. This processing rate is becoming attractive for real-time systems.

If additional processors became available they could be utilized to speed the computations

at some stages of the pipeline. Data parallelism could be employed at the convolution stage, or

all of the edge detection tasks could be combined into one stage, utilizing a number of processors

to detect edges in different regions of the image.

There are many other long-term research areas in motion tracking. Advances in these areas

could result in systems which improved performance and tracking capabilities. More efficient

methods of specifying object model parameters are required. Motion tracking could also be

extended to track models with curved edges by finding smooth image curves [45]. Currently,

the system uses only object edges as features, but vertices, cylindrical, and spherical surfaces

giving rise to "horizon lines" could also be modeled.

B I B L I O G R A P H Y

[I] R. Anderson, "The Design of a Ping-Pong Playing Robot", MIT Press, Cambridge, 1988.

[2] M . Asada, M . Yachida, S. Tsuji, "Analysis of Three-Dimensional Motions in Blocks World",
Pattern Recognition, 17, 1984, pp 57-71.

[3] N . Ayache, I. Cohen, I. Herlin, "Medical Image Tracking", Active Vision, A. Blake and A.
Yuille eds., MIT Press, Cambridge, 1992, pp 285-302.

[4] A. Blake, "Computational Modeling of Hand-Eye Coordination", Phil. Trans. Royal Soc.
London, 1992.

[5] Jon Bradley, "TMS320C40 Hardware Applications", Digital Signal Processing Applications
with the TMS320 Family, vol 3, P. Papamichalis ed., Texas Instruments Inc., 1990, pp
333-363.

[6] Alistair J. Bray, "Tracking Objects using Image Disparities", Image and Vision Computing,
8(1), 1990, pp 4-9.

[7] T.J. Broida, R. Chellappa, "Kinematics and Structure of a Rigid Object From a Sequence
of Noisy Images", Proc. Workshop on Motion: Representation and Analysis, IEEE, 1986,
pp 95-100.

[8] C.R. Brown, M . Rygol, "MARVIN: Multiprocessor Architecture for Vision", Applying
Transputer Based Parallel Machines (Proc. OUG-10), IOS Press, 1989.

[9] John Canny, "A Computational Approach to Edge Detection", IEEE Transactions on Pat­
tern Analysis and Machine Intelligence, 8(6), 1986, pp 679-698.

[10] Vipin Chaudhary, J.K. Aggarwal, "Parallelism in, Computer Vision: A Review", Parallel
Algorithms for Machine Intelligence and Vision, V. Kumar et al eds., Springer-Verlag, New
York, 1990, pp 271-309.

[II] A .N . Choudhary, S. Das, N . Ahuja, J.H. Patel, "A Reconfigurable and Hierarchical Par­
allel Processing Architecture: Performance Results for Stereo Vision", Proc. IEEE 10th
International Conf. on Pattern Recognition, Vol 2, 1990, pp 389-393

[12] R. Cipolla, A. Blake, "The Dynamic Analysis of Apparent Contours", Proc. of the Third
International Conference on Computer Vision, Osaka, 1990, pp 616-623.

[13] R. Cipolla, A. Blake, "Motion Planning Using Image Divergence and Deformation", Active
Vision, A. Blake and A. Yuille eds:, MIT Press, 1992, pp 189-201.

76

Bibliography 77

[14] Jill D. Crisman, "Color Region Tracking for Vehicle Guidance", Active Vision, A. Blake
and A. Yuille eds., MIT Press, Cambridge, 1992, pp 107-122.

[15] J. Crowley, P. Stelmaszyk, C. Discours, "Measuring Image Flow by Tracking Edge-lines",
Proc. of the Second International Conference on Pattern Recognition, Rome, 1988, IEEE
Press, pp 658-664.

[16] R. Curwen, A. Blake, R. Cipolla, "Parallel Implementation of Lagrangian Dynamics for
Real-Time Snakes", British Machine Vision Conference, P. Mowforth ed., Glasgow, 1991,
pp 29-35.

[17] Rupert Curwen, Andrew Blake, "Dynamic Contours: Real-Time Active Splines", Active
Vision, A. Blake and A. Yuille eds., MIT Press, Cambridge, 1992, pp 39-58.

[18] R. Deriche, O.D. Faugeras, "Tracking Line Segments", Image and Vision Computing, 8,
1990, pp 261-270.

[19] Sven J. Dickinson, Piotr Jasiobedzki, Goran Olofsson, Henrik I. Christensen, "Qualitative
Tracking of 3-D Objects using Active Contour Networks", Proc. Conf. Computer Vision
and Pattern Recognition, Seattle, 1994, pp 812-817.

[20] R. Duncan, "A Survey of Parallel Computer Architectures", IEEE Computer, 23(2), 1990,
pp 5-16. •" .• . .. •.

[21] R .M. Endlich, D.E. Wolf, D.J. Hall, A .E . Brain, "Use of a Pattern Recognition Technique
for Determining Cloud Motions from "Sequences''of Satellite Photographs", Jour. Appl. Me-
teroi, 10, 1971, pp 105-117.

[22] D. Gennery, "Tracking Known Three-Dimensional Objects", Proc. National Conference on
Artificial Intelligence, Pittsburgh, 1982, pp 13-17.

[23] Donald B. Gennery, "Stereo Vision for the Acquisition and Tracking of Moving Three-
Dimensional Objects", Techniques for 3-D Machine Perception, A. Rosenfeld ed., Elsevier
Science Publishers B.V., 1986, pp 53-73.

[24] D. Gennery, "Visual Tracking of Known Three-Dimensional Objects", International Jour­
nal of Computer Vision, 7(3), 1990.

[25] A.L . Gilbert, M.K. Giles, G.M. Flachs, R.B. Rogers, Y . H . U, "A Real-Time Video Tracking
System", IEEE Transactions on Pattern Analysis and Machine Intelligence, 2(1), 1980, pp
47-56.

[26] J. Hallam, "Resolving Observer Motion by Object Tracking", Proc. 8th International Joint
Conference on Artificial Intelligence, vol 2, 1983, pp 792-798.

[27] L. Harney, J. Webb, I. Wu, "Low-Level Vision on Warp and Apply Programming Model",
Parallel Computation and Computers for Artificial Intelligence, Ed. J. Kowalik, Kluwer
Academic, Boston, 1987.

Bibliography 78

[28] Chris Harris, "Tracking with Rigid Models", Active Vision, A. Blake and A. Yuille eds.,
MIT Press, Cambridge, 1992, pp 59-74.

[29] W.D. Hillis, "The Connection Machine: A Computer Architecture based on Cellular Au­
tomata", Physica, 1984.

[30] Daniel P. Huttenlocher, Jae J. Noh, William J. Rucklidge, "Tracking Non-Rigid Objects
in Complex Scenes", Fourth International Conference on Computer Vision, Berlin, 1993,
pp 93-101.

[31] INMOS Ltd., "Transputer Technical Notes", Prentice-Hall, 1989.

[32] P. Jasiobedzki, "Adaptive Adjacency Graphs", Proc. SPIE Geometric Methods in Com­
puter Vision, San Diego, 1993, pp 294-303.

[33] M . Kass, A. Witkin, D. Terzopolous, "Snakes: Active Contour Models", International
Journal of Computer Vision, 1(4), 1988, pp 321-331.

[34] E. Kent, M . Shneier, R. Lumia, "Pipe - Pipelined Image Processing Engine", Journal of
Parallel and Distributed Computing, 2(1), 1985, pp 50-78.

[35] D. Koller, K. Daniilidis, H.H. Nagel, "Model-Based Object Tracking in Monocular Image
Sequences of Road Traffic Scenes", International Journal of Computer Vision, 10(3), 1993,
pp 257-281.

[36] J.A. Leese, C.S. Novak, V.R. Taylor, "An Automated Technique for Obtaining Cloud Mo­
tion from Geosynchronous Satellite Data Using Cross-Correlation", Jour. Appl. Meteoroi,
10, 1971, pp 118-132.

[37] F. Leymaire, "Tracking and Describing Deformable Objects Using Active Contour Models",
Technical Report TR-CIM-90-9, McGill Research Center for Intelligent Machines, McGill
University, Montreal.

[38] J.J. Little, G. Blelloch, T. Cass, "Parallel Algorithms of Computer Vision on the Connec­
tion Machine", International Conference on Computer Vision, 1987.

[39] James J. Little, Guy E. Blelloch, Todd A. Cass, "Algorithmic Techniques for Computer
Vision on a Fine-Grained Parallel Machine", IEEE Transactions on Pattern Analysis and
Machine Intelligence, 11(3), 1989, pp 244-257.

[40] J.J. Little, R. Barman, S. Kingdon, J. Lu, "Computational Architectures for Responsive
Vision: The Vision Engine", University of British Columbia, Department of Computer Sci­
ence, TR 91-25, November, 1991.

[41] David G. Lowe, Perceptual Organization and Visual Recognition, Kluwer Academic Pub­
lishers, Boston, 1985.

[42] David G. Lowe, "Three-Dimensional Object Recognition From Single Two-Dimensional
Images", Artificial Intelligence, 31(3), 1987, pp 355-395.

Bibliography 79

[43] David G. Lowe, "Fitting Parameterized Three-Dimensional Models to Images", IEEE
Transactions on Pattern Analysis and Machine Intelligence, 13(5), 1991, pp 441-450.

[44] David G. Lowe, "Robust Model-Based Motion Tracking Through the Integration of Search
and Estimation", International Journal of Computer Vision, 8(2), 1992, pp 113-122.

[45] David G. Lowe, "Organization of Smooth Image Curves at Multiple Scales", International
Journal of Computer Vision, 3, 1989, pp 119-130.

[46] David Marr, Ellen Hildreth, "Theory of Edge Detection", Proc. Royal Society of London,
B, 207, 1980, pp 187-217.

[47] Stephen Marshall, "Parallel Edge Detection and Related Algorithms", Parallel Algorithms
for Digital Image Processing, Computer Vision and Neural Networks, I. Pitas ed., John
Wiley & Sons Ltd., Chichester, 1993, pp 91-122.

[48] R.F. Marslin, G.D. Sullivan, K.D. Baker, "Kalman Filters in Constrained Model-based
Tracking", Proc. Brit. Mach. Vis. Conf., Glasgow, 1991, pp 371-374.

[49] P. Matteucci, C.S. Regazzoni, G.L. Foresti, "Real-Time Approach to 3-D Object Tracking
in Complex Scenes", Electronics Letters, 30(6), 1994, pp 475-477.

[50] L.H. Matthies, T. Kanade, R. Szeliski, "Kalman Filter-Based Algorithms for Estimating
Depth from Image Sequences", International Journal of Computer Vision, 3, 1989, pp 209-
236.

[51] A.D. Morgan, E.L. Dagless, D.J. Milford, B.T. Thomas, "Road Edge Tracking for Robot
Road Following: A Real-Time Implementation", Image and Vision Computing, 8(3), 1990,
pp 233-240.

[52] D.W. Murray, D.A. Castelow, B.F. Buxton, "From Image Sequences to Recognized Moving
Polyhedral Objects", International Journal of Computer Vision, 3, 1989, pp 181-209.

[53] G.R. Nudd, T.J. Atherton, N.D. Francis, R .M. Howarth, D.J. Kerbyson, R.A. Packwood,
G.J. Vaudin, "A Hierarchical Multiple-SIMD Architecture for Image Analysis", Proc. IEEE
10th International Conf. on Pattern Recognition, vol 2, 1990, pp 642-647.

[54] Joseph O'Rourke, Norman I. Badler, "Model-Based Image Analysis of Human Motion
Using Constraint Propagation", IEEE Transactions on Pattern Analysis and Machine In­
telligence, 2(6), 1980, pp 522-536.

[55] I. Page, "The Disputer: A Dual Paradigm Parallel Processor for Graphics and Vision", in
Parallel Architectures and Computer Vision, Clarendon Press, Oxford, 1988, pp 201-216.

[56] Michael J. Quinn, "Designing Efficient Algorithms for Parallel Computers", McGraw-Hill,
1987.

Bibliography 80

[57] John W. Roach, J.K. Aggarwal, "Determining the Movement of Objects from a Sequence
of Images", IEEE Transactions on Pattern Analysis and Machine Intelligence, 2(6), 1980,
pp 554-562.

[58] M . Rygol, S. Pollard, C. Brown, J. Mayhew, "A Parallel 3D Vision System", Active Vision,
A. Blake and A. Yuille eds., MIT Press, Cambridge, 1992, pp 239-262.

[59] J. Schick, E.D. Dickmanns, "Simultaneous Estimation of 3D Shape and Motion of Objects
by Computer Vision", Proc. IEEE Workshop on Visual Motion, Princeton, 1991, pp 256-
261.

[60] D.B. Shu, J.G. Nash, C.C. Weems, "A Multiple-Level Heterogeneous Architecture for
Image Understanding", Proc. IEEE 10th Conf. on Pattern Recognition, vol 2, 1990, pp
629-634.

[61] Lenoel Sousa, Moises Piedade, "Low Level Parallel Image Processing", Parallel Algorithms
for Digital Image Processing, Computer Vision and Neural Networks, I. Pitas ed., John
Wiley & Sons Ltd., Chichester, 1993, pp 25-52.

[62] R.S. Stephens, "Real-Time 3-D Object Tracking", , Image and Vision Computing, 8(1),
1990, pp 91-96.

[63] G. Sullivan, "Visual Interpretation of Known Objects in Constrained Scenes", Phil. Trans.
Royal Soc. London, 1992.

[64] D. Terzopolous, K. Waters, "Analysis of Facial Images Using Physical and Anatomical
Models", Third International Conference on Computer Vision, Osaka, 1990, pp 727-732.

[65] D. Terzopolous, R. Szeliski, "Tracking with Kalman Snakes", Active Vision, A. Blake and
A. Yuille eds., MIT Press, Cambridge, 1992, pp 3-20.

[66] "TMS320C4x User's Guide", Texas Instruments Inc., 1991.

[67] "TMS320C4x C Source Debugger User's Guide", Texas Instruments Inc., 1992.

[68] D.W. Thompson, J.L. Mundy, "Model-Based Motion Analysis: Motion From Motion",
Robotics Research: The Fourth International Symposium, R. Bolles and B. Roth eds., MIT
Press, Cambridge, 1988, pp 299-309.

[69] J. Tsotsos, J. Mylopoulos, H. Covvey, S. Zucker, "A Framework for Visual Motion Under­
standing", IEEE Transactions on Pattern Analysis and Machine Intelligence, 2(6), 1980,
pp 563-573.

[70] S. Tsuji, M . Osada, M . Yachida, "Tracking and Segmentation of Moving Objects in Dy­
namic Line Images", IEEE Transactions on Pattern Analysis and Machine Intelligence,
2(6), 1980, pp 516-522.

[71] R.J. Valkenburg, C.C. Bowman, "Kiwivision-2 - A Hybrid Pipelined / Multi-transputer
Architecture for Machine Vision", Proc. SPIE 1004, M.J.W. Chen ed., 1989, pp 91-96.

Bibliography 81

[72] G. Verghese, C.R. Dyer, "Real-Time Model-Based Tracking of Three-Dimensional Ob­
jects", University of Wisconsin, Computer Sciences TR 806, November 1988.

[73] G. Verghese, K. Gale, C.R. Dyer, "Real-Time, Parallel Motion Tracking of Three-
Dimensional Objects from Spatiotemporal Sequences", Parallel Algorithms for Machine
Intelligence and Vision, Kumar et al eds., Springer-Verlag, New York, 1990.

[74] R. Wallace, M.D. Howard, "HBA Vision Architecture: Built and Benchmarked", IEEE
Trans. Pattern Analysis and Machine Intelligence, 11(3), 1989, pp 227-232.

[75] J. Weng, T.S. Huang, N. Ahuja, Motion and Structure from Image Sequences, Springer-
Verlag, New York, 1993.

[76] A.D. Worrall, R.F. Marslin, G.D. Sullivan, K.D. Baker, "Model-based Tracking", Proc.
Brit. Mach. Vis. Conf, Glasgow, 1991, pp 310-318.

[77] Alan Yuille, Richard Szeliski, "Deformable Templates", Active Vision, A. Blake and A.
Yuille eds., MIT Press, Cambridge, 1992, pp 21-38.

