
PROTOCOL VERIFICATION USING SYMBOLIC MODEL

CHECKING

by

CHARLES G. MATHIESON

B.Sc, The University of British Columbia, 1986

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

Department of Computer Science

We accept this thesis as conforming
to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

DECEMBER 1993

© Charles G. Mathieson, 1993

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

(Signature)

Department of Q o m P o - r g - f t . * ^ c . \ & N i O e

The University of British Columbia
Vancouver, Canada

Date TP^NUftRY \^-, l'= '̂̂ V

DE-6 (2/88)

Abstract

To reduce problems encountered in the later phases of the

software life cycle, verification techniques can be used in the

design phase to ensure that a design has the intended

properties. The main advantage of using formal verification

over other validation methods, such as simulation and testing,

is that it reasons about all possible behaviours of a system.

However, formal verification techniques have not yet been widely

accepted in industry because most of them suffer from the state

explosion problem or are too difficult to use.

In this thesis, an automatic model checking verification

system for communication protocols is developed that tackles the

state explosion problem. The Ever symbolic verifier [HDDY92],

which is a high-level specification language and symbolic

reachability analysis tool for extended finite state machines,

is used as a basis for this system. The system accepts a

protocol specification written in Estelle.Y [Lu91], a variant of

the Estelle formal protocol description language [IS089]. Each

Estelle.Y module of the specification is translated into the

Ever language and fed into the Ever symbolic verifier. The

intended properties are written as CTL temporal logic formulae

[CG87] expressed in terms of variables in the Estelle.Y

specifications. These formulae are given to the verifier to

u

check that they are true in the model produced from the protocol

specification. With this system one can assert that given

safety and liveness properties are true in all possible

behaviours of a protocol. When the system finds a given formula

to be false, it is capable of producing a counterexample trace.

This trace greatly assists the designer to correct the protocol

specification and the temporal formulae of the intended

properties.

After the Estelle.Y to Ever translator was implemented, the

original Ever verifier was extended to support model checking of

CTL temporal formulae [CG87]. The extended verifier can check

not only eventuality properties but also more general temporal

properties such as precedences and invariances. The Ever

verifier was also extended with the notion of fairness

constraints [BCMD90] to allow the model to check only fair

behaviours. These extensions enable incremental verification to

be performed to reduce the overall checking time dramatically.

This system was successfully applied to the specification of

the alternating bit protocol [IS089] to demonstrate this new

tool. Various safety and liveness properties expressed as CTL

temporal formulae are described and explained in detail in this

thesis. The CPU time and memory requirements for this

verification are discussed.

Ill

TABLE OF CONTENTS

Abstract ii

TABLE OF CONTENTS iv

LIST OP TABLES viii

LIST OP PIGURES ix

ACKNOWLEDGEMENT xi

Chapter 1: Introduction 1

1.1. Motivation and Objectives 1

1.2. Thesis Contributions 2

1.3. Thesis Outline 3

Chapter 2; Overview of Verification Approaches and Tools 6

2.1. Protocol verification methods 6

2.1.1. Model checking 6

2.1.2. Symbolic Model Checking 8

2.1.3. Protocol projections 10

2.1.4. Theorem proving 11

2.1.5. Simulation 13

2.1.7. Symbolic evaluation 14

2.2. Tools considered 16

2.2.1. LITE Tableau verifier 16

IV

2.2.2. Murphi 17

2.2.3. VOSS 17

2.2.4. Ever 17

2.2.5. Hoi 18

2.2.6. EDT 18

2.2.7. SMV 19

2.3. Summary 19

Chapter 3: Theoretical Background 21

3.1. Explicit CTL Model Checking 22

3.1.1. Kripke structures for labelled transition

systems 22

3.1.2. CTL* Logic 23

3.1.3. Explicit enumerative model checking

algorithm 27

3.1.4. Fairness constraints extension 29

3.2. Symbolic CTL Model Checking 3 0

3.2.1. Binary Decision Diagrams 32

3.2.2. Symbolic Model Checking Algorithm 35

3.2.3. Extension for fairness constraints 44

3.3. Summary 46

Chapter 4: Implementation 47

4.1. Estelle.Y and ASN.l Protocol Specification

Language 48

4.2. Ever specification language 51

V

4.3. Estelle.Y to Ever translator 56

4.4. Ever extensions for CTL Model Checking 66

4.5. Improvement to Ever printing of propositions 69

4.6. Addition of Ever deffreevar command 71

4.7. Addition of setdefaultnextstate command 73

4.8. Temporal logic to Nextstate relation

translation algorithm 73

4.9. Summary 75

Chapter 5: Experiments and results 76

5.1. Verifying the Alternating Bit Protocol 7 6

5.2. Results of experiments on alternating bit

protocol 103

5.2.1. Resource Usage 105

5.2.2. Method to generate counterexample traces 107

5.2.3. Application of Counterexample Method Ill

Chapter 6: Conclusions and Future Work 116

6.1. Conclusions 116

6.2. Future Work 119

BIBLIOGRAPHY 123

Appendix 1: Estelle.Y Alternating Bit Protocol Specification 127

Appendix 2: ASN.l Alternating Bit Protocol Specification 130

Appendix 3: Ever code for Alternating Bit Protocol 132

vi

Appendix 4: Ever command file for verification 138

Appendix 5: Output of verification 150

Appendix 6: Example counterexample trace 154

Appendix 7: Ever command file for corrected formula 164

Appendix 8; Ever output for corrected formula 165

Vll

LIST OF TABLES

Table Page

Table 1. Forward Image Axioms 3 9

Table 2. Backward Image Axioms 40

Table 3. List of interaction service primitives (ISPs)
for points of control and observation (PCOs)
in Alternating Bit Protocol Specification 49

Table 4. Estelle.Y transition clauses 49

Table 5, Estelle.Y timer statements 50

Table 6. Estelle.Y timer expressions 50

Table 7 . Ever data types 52

Table 8. Ever bit vector types 53

Table 9. Ever propositions 54

Table 10. Ever propositions for Estelle.Y transition

clauses 60

Table 11. Ever propositions for Estelle.Y statements 61

Table 12. Ever propositions for actions for completing
Estelle.Y transitions 62

Table 13. List of Abbreviations used in formulae
describing properties of alternating bit
protocol 88

Table 14. CPU Time and Memory used during Verification .. 105

Table 15. Analysis of a counterexample trace 113

Table 16. Descriptions of steps in counterexample trace . 114

viu

LIST OF FIGURES

Figure

Figure 1.

Figure 2

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8,

Figure 9,

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Page

Binary Decision Diagram for Even Parity
function of four Boolean variables 33

Computation of Furthest reachable state in
Ever ' s print trace command 37

Computation of E[f U g] as least fixed
point of Z=gv(fAEXZ) 43

Computation of EGf as greatest fixed point
of Z=fAEXf 44

CTL Duality Properties 44

Demonstration of Ever without proposition
printing improvement 7 0

Demonstration of Ever with proposition
printing improvement 71

Demonstration of new deffreevar Ever
command 72

Modular Decomposition of Alternating Bit
Protocol Specification 77

Alternating Bit Protocol module
configuration for modelling reliable
underlying link and modelling unreliable
link that can only lose data packets 7 9

Alternating Bit Protocol module
configuration for modelling unreliable
underlying link that can lose, duplicate
and repeat packets but not reorder packets... 80

Interval between successive user send
requests in Alternating Bit Protocol 93

Interval between successive user receive
requests in Alternating Bit Protocol 98

IX

Figure 14. Interval from time data request submitted
by send user to time at which it is
received by receive user 102

ACKNOWLEDGEMENT

I wish to sincerely thank my co-supervisors. Dr. Samuel

Chanson and Dr. Son Vuong, for their invaluable guidance and

support given throughout my research work.

I wish to acknowledge the partial financial support from the

Canadian Institute of Telecommunications Research and the

Department of Computer Science of UBC.

I wish to thank the staff of the Computer Science department

for providing an environment most suitable for carrying out my

research.

I wish to acknowledge R.A.C.E. Technologies, Inc., where I

worked in the first three years of my part-time studies, for

providing a work environment that gave me the inspiration to

find the interesting research topic covered in this thesis.

XI

Chapter 1: Introduction

1.1. Motivation and Objectives

The goal of this thesis is to develop a tool that will

increase the likelihood that an implementation of a

communication protocol will carry out its operations in exactly

the way intended.

Often bugs arise in software as a result of

misunderstandings between specifiers and implementors. To

resolve this problem, formal description techniques should be

used to ensure all users of a specification interpret it in

exactly the same way.

The main objective of this thesis is to develop a validation

tool that rigorously determines whether a specification will

behave in the manner intended. The designer will write the

specification in a formal protocol description language and

write intended safety and liveness properties as temporal logic

formulae. This system will determine whether a given temporal

property is true in the system corresponding to the

specification. If it determines the property to be false, a

counterexample will be produced to assist the designer to find

the cause of the inconsistency between the specification and the

formula. The designer then can modify the specification

CHAPTER 1. INTRODUCTION

appropriately and repeat this process until conformity is

reached.

This tool is not intended to determine the performance of

protocols. It is to ensure the protocol itself, regardless of

the implementation's performance, conforms to its specification.

The verification will reason about all possible timing

behaviours of the specification,

1.2. Thesis Contributions

An automatic verification tool, based on the Ever verifier

[HDDY92], was developed that checks whether a given Estelle.Y

[Lu91] protocol specification satisfies given temporal

properties written as temporal logic formulae. The Estelle.Y

language was chosen because it is a variant of the Estelle

standard protocol description language and is used for other

protocol development tools at UBC. Ever was used because its

command language is most suited for translation from Estelle.Y

and it provides the best foundation upon which to build a CTL

model checker.

The BDD based Ever verifier [HDDY92,Hu92-93] was extended to

implement CTL temporal logic model checking with fairness

constraints. This component is the main part of the system for

verifying that a temporal logic specification matches an

extended state machine description. An improvement was made to

CHAPTER 1. INTRODUCTION

the verifier to make outputting of propositions meaningful to

the user (i.e. printing symbolic names instead of numerical

addresses of BDD variables).

A translator was implemented to automate the entry of

Estelle.Y protocol specifications into the verifier.

A new approach for carrying out incremental verification of

Estelle.Y specifications that does not suffer from the state

explosion problem has been developed. The CTL model checker

with fairness constraints is used. A nextstate relation for the

behaviour of the Estelle.Y modules is produced by the translator

mentioned above. A very simple nextstate relation for the

surrounding environment is manually written in Ever code. Then

fairness constraints are used to restrict the set of possible

behaviours considered during verification. This method has

successfully been applied to the alternating bit protocol.

1.3. Thesis Outline

In chapter 2, the major and common protocol verification

methods are discussed with reasons for choosing the symbolic

model checking approach. A number of existing tools that were

considered are compared. The reasons for using the Ever

verifier [HDDY92] are given.

CHAPTER 1. INTRODUCTION

In chapter 3, the theory of symbolic model checking upon

which the Ever verifier is based is reviewed to give sufficient

background theory for chapter 4.

In chapter 4, the implementation of the Estelle.Y to Ever

translator, esteile2ever, and the CTL model checking extensions

to the Ever verifier are explained. The estelle2ever translator

translates a set of Estelle.Y modules describing a system into a

set of Ever propositions. The mappings from Estelle.Y commands

and statements to Ever propositions are explained.

The way the CTL symbolic model checking algorithms discussed

in chapter 3 were integrated into the Ever verifier is

described. A number of other improvements were made to the Ever

system. These include printing meaningful names for referenced

variables in displayed expressions, the addition of two new Ever

commands (deffreevar and setdefaultnextstate). The purpose of

these two new commands is given while discussing the model

checking implementation.

In chapter 5, this verification tool is applied to the

alternating bit protocol. A strategy is proposed to prove the

correctness of the protocol by showing that a number of internal

properties are true and giving an argument as to why the

protocol is correct when these internal properties are true.

Additional internal properties specifying that data in the data

packets are never modified in transit are verified to show that

the control structure of the protocol is valid for all data

CHAPTER 1. INTRODUCTION

packet sizes. The quantities of CPU time and memory used to

verify all these properties are discussed. A method for

producing counterexample traces is proposed and demonstrated

with an example from the alternating bit protocol.

In chapter 6, some conclusions are drawn and some

optimizations that should be implemented are discussed.

The appendices contain listings of files used throughout the

verification of the alternating bit protocol. Appendices 1 and

2 contain source code for the specification in Estelle.Y and

ASN.l, respectively. The Ever code produced by the estelle2ever

translator is shown in Appendix 3. The Ever script file

containing the commands for carrying out the verification is in

Appendix 4. The final verification output is shown in

Appendix 5. Commands and output for verification of a formula

corrected after producing a counterexample trace, shown in

Appendix 6, are in Appendices 7 and 8, respectively.

Chapter 2: Overview of Verification
Approaches and Tools

In Section 2.1, a few common protocol verification

techniques are reviewed, compared and contrasted with reasons

for choosing symbolic model checking.

In Section 2.2, the features of a number of tools considered

for use as a basis for the research conducted in this thesis are

briefly described. The reasons for choosing the Ever verifier

are given.

Chapter 3 reviews the theories of symbolic model checking

upon which the implementation described in chapter 4 is based.

2.1. Protocol verification methods

2.1.1. Model checking

Model checking refers to a method for determining whether a

given structure (e.g. finite state machine) is a model of a

given temporal formula.

The first model checking algorithms explicitly represent the

state space of the model being checked. Clarke and Grumberg

review the history of temporal logic verifiers in [CG87].

Clarke and Emerson [CE81] designed the first automatic model

checking verifier for CTL temporal logic. The performance was

CHAPTER 2. OVERVIEW OF VERIFICATION APPROACHES AND TOOLS 7

polynomial in both the size of the model and the length of the

temporal logic formula. Later, Clarke, Emerson and Sistla

devised an improved CTL model checking algorithm [CES86] with

complexity linear in the product of the length of the formula

and the size of the global state graph.

They added an extension to the algorithm to make it check

only fair computations without any additional complexity expense

because otherwise many formulae would be false in the model.

For example, we are not interested in including the case where a

data link between two systems is permanently disconnected.

Gabbay et al. were one of the first to introduce the concept of

fairness to temporal logic [CES86, GPSS80]. (When verifying a

property of a system of concurrent processes, we wish to only

consider execution sequences in which all processes execute

infinitely often.)

These algorithms check whether a given temporal logic

formula is true in a given labelled transition system. A

labelled transition system is a finite state machine graph with

each node having a label containing a list of formulae which are

true when the system is in that state. Initially the labels in

the graph only contain atomic propositions. The algorithm works

in stages. In the first stage, all subformulae of length 1 in

the original formula are checked for truth in all the graph

nodes. In the second stage, subformulae of length 2 are

checked, and so on, until the original formula is checked. Each

CHAPTER 2. OVERVIEW OF VERIFICATION APPROACHES AND TOOLS 8

time a subformula is checked for truth at a node, an appropriate

set of other related nodes (as defined by the top level operator

of the subformula) are checked to determine the truth of the

subformula at this node. For example, the EX next time operator

of CTL temporal logic requires any one of the immediate

successors of the node to have the EX operator's operand true.

When the algorithm terminates, the original formula is true in

all nodes that contain it in their labels.

Sistla and Clarke analyzed the model checking problem for a

variety of temporal logics and showed the problem is PSPACE

complete for linear temporal logic [SC86].

Clarke and Grumberg introduced an algorithm for model

checking concurrent systems with many similar processes [CG89].

2.1.2. Symbolic Model Checking

Burch, Clarke, McMillan and Dill [BCMD90] have extended the

temporal logic model checking algorithm by Clarke, Emerson and

Sistla [CES86] to represent the state graph with binary decision

diagrams [Bry86] instead of with an explicit labelled transition

system. This BDD represents a predicate transformer from the

current state to the next state. This avoids the explicit

construction of the state graph. (Burch et al. acknowledge that

Bose and Fisher [BF89] described a binary decision diagram (BDD)

based algorithm for CTL model checking without support for

fairness constraints.) For state spaces with some regularity,

CHAPTER 2. OVERVIEW OF VERIFICATION APPROACHES AND TOOLS i

this representation is often more efficient. Thus systems with

extremely large numbers of states can be verified with this

algorithm. They have demonstrated it with a specification of a

synchronous pipelined design with approximately 5x10̂ ° states.

Instead of representing the relationship between the current

and the next states in a labelled transition system explicitly

with a state graph, it is represented as a Boolean function of

all the variables in the current and next states. For each

possible combination of variable values in the current and next

states, this function indicates whether a transition is possible

(in the labelled transition system) from this current set of

variable values to this next set of variable values.

Bryant defined algorithms for carrying out basic operators

on BDDs such as Boolean connectives (i.e. and, or, not),

functional composition, computing restrictions for functions

(i.e. substituting a constant for one of its arguments), and

quantification over Boolean variables. These basic operations

are used for computing values of state formulae (i.e. temporal

logic formulae without any temporal operators).

To compute the values of path formulae (i.e. those with

temporal operators), Burch et al. devised new algorithms for

computing values of temporal formulae in binary decision

diagrams. Given a temporal formula f, and a transition relation

R (represented as a HDD in the first version of the algorithm) ,

this new algorithm computes the set of current variable values

CHAPTER 2. OVERVIEW OF VERIFICATION APPROACHES AND TOOLS Ifl.

(a new BDD) for which the temporal formula fi is true in the

labelled transition system associated with R. These algorithms

are based on fixpoint characterizations of CTL temporal logic

operators [BCMDH90, BCMD90]. A fixpoint of a function is a

value at which the function applied to the value is the value

itself (i.e. f(x)=x) [Tar55]. These fixpoint characterizations

are explained in more detail later,

Clarke et al' s explicit version of the model checking

algorithm allows fairness constraints to be only state formulae

(i.e. formulae without temporal operators). However, the

symbolic model checking algorithm [BCMD90] allows fairness

constraints to be arbitrary CTL formulae. According to Burch

[Bur93], these are equivalent.

Burch et al. suggest that their algorithm is the first BDD

based model checking algorithm for CTL temporal logic for non-

deterministic labelled transition systems [BCMD90].

2.1.3. Protocol projections

In an attempt to prevent the state explosion problem that

can easily occur in reachability analysis. Lam and Shankar

[LS82] devised a method of verification with protocol

projections. Real life protocols typically have several

distinguishable functions. To verify one of these functions.

•"•The formula f is assumed to only refer to variables in the current phase.

CHAPTER 2. OVERVIEW OF VERIFICATION APPROACHES AND TOOLS H

one is to construct an image protocol that just specifies this

one function in such a way as to satisfy a well-formed property.

The complexity of the image protocol is shown to always be less

than that of the original protocol. They show that if the image

protocol satisfies the well-formed property then any safety and

liveness properties that are valid in the image protocol are

also valid in the original protocol. Thus with this method, one

can verify properties in protocols that are larger than those

that can be verified with reachability analysis alone.

This method was not considered because it appears the

procedure for constructing image protocols cannot be easily

automated.

2.1.4. Theorem proving

Theorem proving is the most powerful method to carry out

protocol verification because it is not constrained by the size

of the specification. However, it probably is the most tedious

because it requires a lot of human ingenuity to actually carry

out the proof successfully [Pnl, ESI]. With an automatic

theorem prover, typically most of the proof steps are generated

automatically, but the crucial decisions on proof strategy have

to be made manually.

The claim to be proven is specified as a formula in the

logic being used. The implementation of the protocol is

translated into a series of assertions (formulae in the logic).

CHAPTER 2. OVERVIEW OF VERIFICATION APPROACHES AND TOOLS 12

The set of axioms and inference rules of the logic are combined

with the assertions to carry out a proof that the claim is true.

One repeatedly uses the axioms and inference rules to derive the

claim from the assertions.

For example, Manna and Pneuli describe a global proof system

for proving prepositional temporal logic properties in

transition based implementations [Pnl,MP4]. The proof system

has three parts:

• The general part has proof methods for general temporal

logic formulae expressed in terms of atomic proposition

variables. Axioms, inference rules and tableau methods are

used here for checking the validity and satisfiability of

general temporal logic formulae.

• The domain part uses axioms and inference rules of

theories of data structures of variables (in the claim

specification and implementation specification) (e.g.

Booleans, integers, lists, sets) to prove assertions about

these data structures. Inductive schemes are used to prove

properties that apply to all sizes or values of these data

types.

• The program part transforms the implementation

specification into a set of assertions expressed in the

temporal logic. Atomic propositions in these assertions may

be expressed as Boolean expressions of data structures used

CHAPTER 2. OVERVIEW OF VERIFICATION APPROACHES AND TOOLS 13

in the program. These assertions are treated as assumptions

(axioms) during the proof of the claim.

Manna and Pnueli have defined an invariance rule and a few

liveness rules for proving safety and liveness properties,

respectively [Pnl,MP5].

This method was not chosen because one cannot generally

develop a system that carries out the proofs automatically. The

proofs most often involve a lot of human expertise.

2.1.6. Simulation

These systems translate a formal Estelle specification into

an implementation [CLV93]. Then a simulator (interpreter) is

used to execute the implementation in a debugging environment

where variables, queues and module instance creations and

destructions can be observed. Only a single execution path can

be tested at a time with this approach.

To test whether an implementation satisfies a given temporal

formula, heuristics could be used to automatically select

appropriate paths for testing. There is no guarantee when a

finite number of tests have been performed that there does not

exist an untested path that does not satisfy the temporal

formula.

This approach was not chosen because it does not attempt to

cover all possible execution paths in the implementation.

CHAPTER 2• OVERVIEW OF VERIFICATION APPROACHES AND TOOLS 14

2.1.7. Symbolic evaluation

Clarke and Richardson describe three methods of symbolic

evaluation of programs in [CR85]. First, path dependent

symbolic evaluation analyzes a single given path through a

routine. A symbolic expression in terms of the input variables

for each output variable is derived. Clearly this method is not

appropriate for verifying protocol specifications because there

are just too many (possibly infinite) paths to check.

Second, they describe dynamic symbolic evaluation which

derives symbolic expressions for all output variables along the

path determined by a given set of input variable values. To

apply this method to protocol verification, one would have to

apply it to every possible set of input values. Clearly, this

is not appropriate.

Third, they describe the global symbolic evaluation method.

The goal here is to derive a global representation of a routine

for all possible execution paths through the routine.

Initially, input parameters are assigned symbolic names and

internal variables are assigned constant values. As each

program statement is processed, the symbolic expressions for the

output variables are updated according to rules defined by the

semantics of the current program statement. For example, when

an assignment statement is processed, all references in current

output expressions to the assigned variable are updated with the

expression from the assignment statement.

CHAPTER 2. OVERVIEW OF VERIFICATION APPROACHES AND TOOLS 15.

The main limitation of this approach is the problem of

deriving expressions for arbitrary loops. It tries to replace

each loop, which can represent infinite paths, with a closed-

form expression that captures the effect of the loop. A

symbolic expression for each output variable in terms of the

state at the beginning of the loop has to be derived. (Here we

briefly describe their loop analysis technique.) In order to do

this, a conditional expression representing a final iteration

count expressed in terms of symbolic values of variables at

entry to the loop has to be determined. Also, for each variable

modified by the code of the loop, the symbolic value at exit

from the loop must be expressed in terms of both the final

iteration count and the symbolic values of variables at entry to

the loop. Recurrence relations for all variables modified in

the loop are derived. A loop exit condition in teirms of the kth

iteration of loop variable values is derived. Attempts are made

to solve the recurrence relations to forms in terms of variables

before entry to loop. Obtaining solutions for recurrence

relations is not always straightforward and is sometimes

impossible (e.g. interdependence between two recurrence

relations, conditionals within loop exacerbate problem, exit

conditions in terms of conditional expressions or minimum value

expressions, etc.)

This method seems to be suited for traditional programs that

process input data and terminate with output data. Protocol

CHAPTER 2. OVERVIEW OF VERIFICATION APPROACHES AND TOOLS 16

implementations tend to be programs that run continuously. This

method was not used because it does not reason about the state

of a program from one time unit to the next.

2.2. Tools considered

A brief description of the advantages and disadvantages of

each of following tools considered is given. The Ever tool was

chosen because it provides a language for describing high level

data structures and provides symbolic reachability analysis.

2.2.1. LITE Tableau verifier

The LITE Tableau verifier package was considered. It

implements a tableau construction algorithm in Prolog for

interval temporal logic. When given an interval temporal logic

formula it generates a compatible state machine. If this tool

was to be used, an algorithm would have to be developed to

compare the state machine from the protocol specification with

the one produced by the LITE tableau verifier. The problem of

comparing automata is generally more complex than model

checking. Thus this tool was not chosen.

The advantage of using this tool would be that it reasons

about interval temporal logic. This would be good for reasoning

about the performance of protocols because this logic can

express explicit discrete time intervals.

CHAPTER 2. OVERVIEW OF VERIFICATION APPROACHES AND TOOLS 17

2.2.2. Murphi

Murphi is a language and system for defining and verifying

the behaviour of a system. A system is specified as a set of

rules. I found by doing some trivial experiments that Murphi

does its verification with explicit reachability analysis. No

symbolic evaluation is used.

Murphi provides no means for expressing properties with

temporal operators. It can only express properties that are

written in terms of only the current state of the system.

2.2.3. VOSS

VOSS is an interval temporal logic symbolic model checker

with a hardware oriented specification language. The

specification language is too clumsy for the purpose of

translating protocol specifications in this thesis.

2.2.4. Ever

Ever is a binary decision diagram (BDD) based verifier with

a high-level description language for defining data types,

variables, propositions and predicates.

It includes a routine for determining reachable states. One

defines the behaviour of a system by transforming a high level

language description into a nextstate relation. By avoiding the

CHAPTER 2. OVERVIEW OF VERIFICATION APPROACHES AND TOOLS 18

complete evaluation of the nextstate relation. Ever efficiently

implements a reachability analysis algorithm.

This tool was chosen because it provides a specification

language most suited for translation from Estelle.Y and provides

a good foundation for implementing symbolic model checking

algorithms.

2.2.5. Hoi

Hol is a very powerful theorem proving system based on high

order logic. However, it is very difficult to do proofs in this

system. The proofs cannot be completely automated. They

require a lot of human intelligence to carry out. This method

was not chosen because an automatic verification system is

desired.

2.2.6. EDT

EDT (Estelle Development Toolkit) is a simulation package

for Estelle specifications. It allows one to watch the

execution of an Estelle specification with controlled or random

input data. Various objects may be monitored such as variables,

interaction queues, and creations and destructions of module

instances.

This tool is not appropriate for verification since it is

not designed for reasoning about all possible execution paths.

CHAPTER 2. OVERVIEW OF VERIFICATION APPROACHES AND TOOLS 19

2.2.7. SMV

SMV is a CTL BDD based symbolic model checker with a

specification language only at the bit level.

It provides a limited notion of fairness. The only type of

fairness supported is that all processes in a concurrent system

are assumed to execute infinitely often. A user may wish to

specify more specific types of fairness (e.g. that a message is

sent by a sender infinitely often) . Perhaps, this type of

fairness is sufficiently powerful to describe general fairness

requirements.

This tool was not chosen because its specification language

is only at the bit level.

2.3. Summary

The symbolic model checking verification method

[BCMD90,BCMDH90] was chosen because of its potential for

reasoning about extremely large systems automatically.

The Ever verifier [HDDY92] was chosen because it provides

the best foundation upon which a symbolic model checking system

could be developed. It also provides a high-level description

language most suitable for translating Estelle.Y [Lu91] protocol

specifications.

CHAPTER 2. OVERVIEW OF VERIFICATION APPROACHES AND TOOLS 20

The theory of CTL model checking is presented in the next

chapter to provide sufficient background material for the

implementation described in chapter 4.

Chapter 3: Theoretical Background

In this chapter, the fundamental theories upon which this

verification system's implementation, described in chapter 4, is

based are explained. Algorithms and data structures of two main

CTL model checking approaches are discussed.

In section 3.1, the original explicit state space model

checking algorithm is explained. This algorithm uses a labelled

transition system data structure that explicitly represents each

state with a node in the graph structure. Associated with each

node is a label containing a list of atomic propositions true in

the corresponding state. The model checking algorithm

recursively evaluates subformulae of the given temporal formula

by searching for nodes satisfying constraints defined by the

subformulae operators.

Section 3.2 explains the symbolic version of the model

checker. This includes a brief description of binary decision

diagrams which are used to represent binajry functions. The

state space of a system is modelled with a binary function of

all variables in the current and next states indicating whether

a transition is possible from that given current state to that

given next state. Temporal operators in temporal formulae are

evaluated using the fixpoint characteristics of the CTL temporal

logic. The notion of fairness constraints is explained with

appropriate extensions to the model checking algorithm.

21

CHAPTER 3 . THEORETICAL BACKGROUND 22

3.1. Explicit CTL Model Checking

Section 3.1.1 defines the data structures used by the model

checking algorithm. Section 3.1.2 reviews a few different types

of temporal logic and explains the advantages to using the CTL

temporal logic. Sections 3.1.3 and 3.1.4 describe the algorithm

without and with fairness constraints supported, respectively.

3.1.1. Kripke structures for labelled transition systems

All the temporal logics discussed below use the Kripke model

of labelled transition systems for representing the system in

which a given temporal logic formula is checked. The older

versions of the model checking algorithms use the Kripke model

explicitly [CES86]. The newer version of the CTL model checking

algorithm represents the program with a binary decision diagram

(BDD) that relates the current state with the next state. This

HDD corresponds to a Boolean function of all program variables

in the current and next states [BCMD90].

The labelled transition system is formally defined as a 3-

tuple:

M = (S,R,L) where

S is a set of states

R c S X S is the transition relation (determining
between which pairs of states
transitions exist). R must be total,
in other words, there must be at least
one transition from each state s e S.

CHAPTER 3 . THEORETICAL BACKGROUND 23

L: S —> 2̂ P Associated with each state is a list of
atomic propositions which are true in
that state. Note the absence of an
atomic proposition implies that it is
false in the state. This assumption is
different from the interpretation in
the new model.

We define the notation S]_ —> S2 to indicate (Si,S2) 6 R, in

other words, that there is a transition from s^ to S2 in the

model.

We define a path in the model M to be a sequence of states %

= SQ/ si, ... such that for every i > 0, Sj_ -> Sj_+2.-

We use 7Ĉ to denote the suffix of n starting at Sj_.

3.1.2. CTL* Logic

Temporal logic provides a formal system for describing and

reasoning about the occurrence of events in time.

This logic has the regular prepositional logic operators, a

number of temporal operators and two path quantifier operators.

The temporal operators allow the expression of properties of

temporal systems such as invariances (properties that are always

true), eventualities (properties that must becomes true at some

future instant), and precedences (properties that state that one

event must occur before another).

The existential quantification operator indicates whether

the given property must occur on one possible execution path

from the current state.

CHAPTER 3. THEORETICAL BACKGROUND 2±

The universal quantification operator indicates that the

given property must occur on all possible execution paths from

the current state.

The set of CTL (computation tree logic) formulae is defined

by the following formal rules. CTL has 2 types of formulae:

state formulae (which are true in a given state) and path

formulae (which are true along a specific path).

Let AP be the set of atomic propositions.

state formulae:

A, if A e AP

If f and g are state formulae, then —if and f v g are
state formulae.

if f is a path formula, then E(f) is a state formula.

Path formulae:

If f is a state formula, then f is a path formula.

If f and g are path formulae, then —if, f v g, Xf, f U g
are path formulae.

The semantics of a CTL* formula are defined with respect to

a Kripke structure representing the program. The standard

notation to indicate that a state formula f is true in a

structure M is M,s ^ f. This means that formula f is true at

state s in structure M. When M is understood from the context,

we simply write s [= f.

The holds |= relation is defined inductively as follows:

Assume fl, f2 are state formulae, gl,g2 are path formulae.

CHAPTER 3. THEORETICAL BACKGROUND 25

1. s ^ A «::» A € L(s). { atomic proposition A in label
at state s }

2. s 1= -,fl o -i(s H fl)

3. S [: fl V f2 ^ S f: fl or S [: f2

4. s ^ E(gl) ^=> tor some state t such that (sO,t) e R,

t N gi

5. 7C [= fl <=> s is the first state of path % and s [= fl
(says that a state formula is true on a given path
iff the state formula is true in the first state of
the path)

6. % Y - i g i <=> -•(K 1= g i) •

7 . 7t j: g l V g2 <=̂ 7C f: g l o r 7t ^ g2

8 . % Y X g l <=> Tul 1= g l ,

9. jr 1= gl U g2 4:̂ there exists k > 0 such that 7t̂ [= g2
and for all 0 < j < k, TtJ ^ gl

The following abbreviations are used:

f A g = —I (-if V —ig)

Ff = true U f

A(f) = ^E(-if)

Gf = -.F-if .

These abbreviations are a consequence of duality properties

of the prepositional logic and CTL* temporal logic.

CTL* is the most expressive of the temporal logics presented

here.

CHAPTER 3. THEORETICAL BACKGROUND 26

Two other temporal logics often discussed in the literature

are LTL (linear temporal logic) and CTL (computation tree logic)

which are both subsets of CTL* with less expressive power.

The set of valid LTL formulae is defined by the following

rules:

A state formula is:

Af where f is a path formula.

A path formula is:

A if A e AP (i.e. an atomic proposition)

If f and g are path formulae, then —if, f v g, Xf, f U g
are path formulae.

CTL is the subset of CTL* restricting the use of path

quantifiers to be combined with temporal operators X, U, G, and

F. In other words, each path quantifier must be immediately

followed by a temporal operator.

Formally, the state formulae rules of CTL are the same as
*

those of CTL*.

The path formulae are limited to the following:

If f and g are state formulae, then Xf and f U g are
path formulae.

If f is a path formula, then —if is a path formula.

Branching time temporal logics can express all the

properties expressible in linear time logic and more [ES88].

Note, LTL formulae have no path quantifiers, thus all LTL

formulae must state properties that are true on all paths in the

model.

CHAPTER 3 . THEORETICAL BACKGROUND 27

The model checking problem for linear temporal logic and

CTL* is exponential in the length of the formula and linear in

the size of the global state graph [LP85][CG87].

Clarke and Grumberg [CG87] show that the model checking

algorithm for CTL is linear in the number of states and the

number of transitions and is linear in the length of the

formula.

Since the complexity of the model checking problem for CTL

is exponentially less than that of CTL* and LTL, and the

expressive power of CTL seems more flexible than LTL, CTL was

chosen. CTL allows one to describe properties that must apply

on all possible execution paths or that must only apply on at

least one path. LTL only allows properties that must apply on

all paths to be expressed.

3.1.3. Explicit enumerative model checking algorithm

The model checking algorithm for CTL formulae in a Kripke

model of a system [CES86] is described below.

The goal of the algorithm is to determine whether there

exists a state in a given Kripke structure M such that a given

CTL temporal formula f is true (in that state).

The steps of the algorithm are as follows:

1. Normalize formula using duality properties of CTL
logic to have formula expressed with only the
operators given in earlier definitions (i.e. EX,
EU, -1, V) . The duality properties are:

CHAPTER 3. THEORETICAL BACKGROUND 28 _

EFf = E[True U f]

EGf = -lEF-if

AXf = -iEX-if

A[f U g] = -iE[-.g U (-if A -ig)] A -lEG-ig

AGf = -lEF-if = -,E[True U -nf]

AFf = A[True U f]

2. Logically construct a parse tree for formula f
(with operators at nodes and atomic propositions in
leaves).

3. Associate with each state in graph M = (S, R, L) a
list of subformulae of f which are true at that
state. Initially set all these lists to the empty
list.

4. Process all subformulae g of f, processing them in
order of increasing length (i.e. all length 1
subformulae, then length 2 subformulae, and so on) .
For each subformula g, determine for each state seS
whether the subformula is true in state s. If so,
add subformula g to label at state s. The
algorithms for determining the truth of subformulae
at states are briefly described below.

When iterative step 4 is finished, labels of all states in

which original formula f is true will contain the original

formula f.

CHAPTER 3. THEORETICAL BACKGROUND 29

In each iteration of step 4 above, an appropriate search of

part of the graph and parse tree is performed to determine the

truth of the current subformula. The part of the graph searched

corresponds to the descriptions of the operators in the

following table,

atomic proposition true if same atomic proposition in
state's label.

fl V f2

EXf

AXf

E[fl U f2]

A[fl U f2]

true if f not in state's label.

true if either fl or
label.

f2 in state's

true if there is at least one successor
state of s containing f in its label.

true if all successor states
contain f in their labels.

of

true if there is at least one path with
a state containing a label with f2 and
which has fl in labels of all previous
states on path.

true if all paths lead to a state with
f2 in its label with all previous
states containing fl.

3.1.4. Fairness constraints extension

Often during verification of concurrent systems such as

communication protocols, we are only interested in considering

fair execution paths while model checking. [CES86] defines a

fair path as one where a set of fairness constraints occur

infinitely often. For example, when verifying a protocol

implemented as two modules connected by an unreliable data link.

CHAPTER 3 . THEORETICAL BACKGROUND 30.

we are not interested in considering cases of when the data link

continuously loses data or is disconnected. Without using

fairness constraints, cases like this example would cause

formulae we expect to be true under "normal conditions" to end

up being false.

Clarke et al. developed an extension to their model checking

algorithm to handle fairness without any additional complexity

(time and memory).

The model is extended from a 3-tuple to a 4-tuple

M=(S,R,L,F) with the first three members the same as before and

F being a collection of state predicates (i.e. F c 2^). A path

p is F-fair iff

for each g e F, there are infinitely many states on p which
satisfy predicate g.

Since we have used a symbolic model checking algorithm,

details of the explicit version of the fairness algorithm are

not given here. See [CES86].

3.2. Symbolic CTL Model Checking

The previous section explained the original version of the

CTL model checking algorithm which uses a model that explicitly

enumerates all the states of the implementation being checked.

Burch et al. [BCMD90, BCMDH90] have devised a new improved

model checking algorithm that does not enumerate all the states

explicitly, but instead represents the state space as a

CHAPTER 3. THEORETICAL BACKGROUND 31

nextstate relation stating how all states in current time unit

are related to all states in the next time unit. Bryant's

binairy decision diagrams [Bry86] are used to represent Boolean

functions.

A number of other authors have developed other BDD based

verification systems for deterministic systems such as

combinational circuits [CBM89].

Burch et al. appear to be the first to have come up with a

BDD based model checking algorithm for CTL that also supports

fairness constraints. They claim that the fairness constraints

can be arbitrary CTL formulae. The state enumeration version

only allows fairness constraints to be state formulae (i.e.

expressions that only depend on variables in current state with

no temporal operators). Burch says these are equivalent

[Bur93].

The arbitrary fairness constraints should give one the

capability to reason about a pair of Estelle.Y modules that use

an underlying reliable link as a communication channel. One

should be able to specify temporal formulae that describe the

behaviour of a reliable link as fairness constraints^. One also

uses further fairness constraints to describe the behaviour of

the users of the two modules that one wishes to assume takes

place. For instance, one specifies that a sending user

^Using a temporal formula rather than a state formula for a fairness
constraint is likely to seriously degrade the performance of the model
checker.

CHAPTER 3. THEORETICAL BACKGROUND 12

infinitely often sends requests and that a receiving user

infinitely often sends receive requests.

It is shown that using BDDs can significantly increase the

size of systems that can be verified for certain useful classes

of problems [BCMDH90]. Explicit state enumeration techniques

are typically limited to systems with up to 10^ states. Burch

et al. verified a well-structured system with over 10^0 states.

Here, binairy decision diagrams and their operations are

described. Then, the symbolic CTL model checking algorithm is

described in detail.

3.2.1. Binary Decision Diagrams

A module that implements basic operators for manipulating

Boolean functions in BDDs developed by Brace et al. [BRB90] is

used in the CTL symbolic model checker. These operations

include Boolean complement, conjunction and disjunction.

A BDD is a directed acyclic graph with all leaf nodes

containing representations of either value zero or one, and all

intermediate nodes containing a label for a Boolean variable and

references to two other BDD nodes. Each intermediate node

represents the Boolean function corresponding to the left node

if the variable equals one and the Boolean function

corresponding to the right node if the variables equals zero.

For example, consider the graph in Figure 1 for an even parity

function of four Boolean variables a,b,c,d.

CHAPTER 3• THEORETICAL BACKGROUND 33

Figure 1. Binary Decision Diagram for Even Parity function of
four Boolean variables

There are many other BDDs that could represent this same

even parity function. Bryant introduced a restriction to the

structure of BDDs to ensure each distinct function has a single

canonical representation. This restriction is that the

variables referenced in every path from top to bottom of the

graph must be in the same order. The practical advantage of

this restriction is that testing for equivalence of two

functions simply involves testing whether the two graphs match

exactly. Brace has optimized his implementation to the point

that this operation is just a constant time pointer comparison.

As a consequence, one can test whether a function is

satisfiable by just comparing the function's BDD with that of

the zero function (i.e. False). In Brace's implementation, this

operation takes constant time.

CHAPTER 3 • THEORETICAL BACKGROUND 34

Brace's package supports a number of operations for

manipulating a BDD to represent a database of Boolean functions.

These include complement, conjunction, disjunction, composition

of 2 functions (i.e. f(g(x))), testing for equivalence of 2

functions, and existential and universal quantification. The

time complexity of the complement operation is proportional to

the size of the function graph of the argument. The worst case

time complexity of operators with 2 arguments is proportional to

the product of the graph sizes of the 2 arguments.

The size of the BDD for a given function can be very

sensitive to the chosen ordering of variables in the canonical

BDD. Unfortunately, the problem of determining the best

variable ordering for a given function is NP-complete (i.e.

takes exponential time relative to the number of variables)

[Bry86] . Malik et al. [MWBA88] consider heuristic strategies

for determining the best ordering of variables for a given

problem in an attempt to minimize the size of BDDs produced.

Bryant says generally someone with a good understanding of the

problem at hand can figure out a good variable ordering without

much difficulty.

There are some functions such as multiplication that create

an exponential sized BDD (relative to word size) no matter what

variable ordering is chosen. Fortunately, in protocol

specifications, arbitrary multiplication is not used too often.

CHAPTER 3. THEORETICAL BACKGROUND 35.

Multiplication by a constant can be modelled as a series of

bitwise shifts and additions.

3.2.2. Symbolic Model Checking Algorithm

Instead of modelling the current state of the implementation

with the set S in M = (S,R,L), it is modelled with an array of

Boolean variables v. Suppose this array v has n elements.

Then the number of states represented by v is 2".

Instead of associating an explicit label of a set of atomic

proposition variables with each state seS (namely L(s)), the

state space v is defined by the implementation in such a way

that the atomic propositions in a given state are derivable from

the state v itself. Typically the implementation assigns an

allocation of bits in v for control state information and the

rest to logical variables in the source program. In fact, there

are exactly n atomic propositions, one associated with each bit

in V. Thus the set of atomic propositions true in a given

state s exactly corresponds to the 1 bits in the value s. All

the other atomic propositions are false in this state.

Instead of representing the transition relation with

/?CiSx5, it is represented as a Boolean predicate of the current

and next state values: nextstate{y ,v'). Logically this nextstate

predicate says that there is a transition from Vj to v^ if and

only if nextstateiVj,Vj) = True.

Thus a model in the symbolic algorithm is defined as

CHAPTER 3 • THEORETICAL BACKGROUND 36

M = iv,R) where v is an array of n Boolean variables

R:v XV-^ Boolean is a predicate on current
and next states.

Before explaining the symbolic model checking algorithm

itself, the algorithm used by the printtrace command of the Ever

verifier [HDDY92] is explained since ideas from it are used in

the model checker's implementation.

Both the printtrace command and the model checker use the

above described model of a system. Given a start_state

predicate, a next_state predicate, and a goal predicate,

printtrace does a reachability computation to determine whether

the goal is reachable from any state satisfying start_state, and

if so outputs a trace to it, otherwise outputs the largest trace

attempting to reach the goal. Start_state and goal are

predicates on only the current state, i.e. they are Boolean

functions of the current state v. Next_state is a Boolean

function of the current and next states v and v'. Starting from

the start_state predicate, which logically represents the set of

state values satisfying the start state condition, the

printtrace algorithm computes the set of states that would be

reached in the next time unit. This step is repeated until the

goal state is reached (the intersection of the goal set and the

last computed reached set is not empty) or a cycle back to the

start set is detected (in which case the goal is unreachable

from any state in the start set). This computation is

illustrated in Figure 2.

CHAPTER 3 . THEORETICAL BACKGROUND 37

c o m p u t e _ f u r t h e s t _ r e a c h a b l e _ s t a t e (s t a r t , n e x t , g o a l) : :=
fu r thes t_ reached := s t a r t ;
whi le ((f u r t h e s t _ r e a c h e d A goal) = FALSE) do

begin
fu r t he s t_ r eached := fu r thes t_ reached v

3 s ' . ((s = s ') A
f o r w a r d _ i m a g e (f u r t h e s t _ r e a c h e d (s) , n e x t (s , s ')))

{ N.B. forward_image{fur thest_reached(s) , n e x t (s , s ')) =
3 s . f u r t h e s t _ r e a c h e d (s) A n e x t (s , s ') }

i f (fu r thes t_ reached = s t a r t) then break; { cyc le d e t e c t e d back t o s t a r t }
end;

i f ((f u r t h e s t _ r e a c h e d A goal) * FALSE) then goal reached;
i f ((f u r t h e s t _ r e a c h e d = s t a r t) then goal i s unreachab le ;

{ i . e . goal i s always f a l s e }

Figure 2 Computation of Furthest reachable state in Ever's
printtrace command.

Logically forward_image(state_set, next) is just

3x.[state_setAnext{x,x')]. This is just the set of new states

reachable from the original stateset stateset through the

nextstate relation next. This is a Boolean function of a next

state value saying whether that next state is reachable from one

of the states in stateset through one iteration of the nextstate

relation next. The first quantification operator in

3x\iix = x')A3x.[state_setAnext(x,x')]) is necessary to move the state

values in the next phase to the current phase for the next time

unit.

Once this algorithm has computed the furthest reached state,

the same number of iterations of a reverse image computation are

executed to print an example trace from the furthest reached

state back to the start state. At each iteration, a particular

state value is selected from the state set. This chosen state

CHAPTER 3. THEORETICAL BACKGROUND 38.

value is printed out in terms of variables of the high-level

Ever code specifying the nextstate relation.

Then a backward image is computed from this one example

state value for the next iteration. The backward image

computation is logically just 3x'.[stateset'Anext(x,x'y\ where stateset'

is the set of states in the current time unit. This is a

Boolean function of the current state value saying whether there

is a transition in the nextstate that leads from this current

state value to a state value in stateset'. In other words, it

is the characteristic function of the set of states that lead to

stateset' with one invocation of the nextstate relation next.

The above methods for computing forward and backward images

are efficient provided the nextstate relation for the program

specification has been fully evaluated as a BDD. For large

problems, such as protocol specifications, it is not practical

(in memory usage) to fully evaluate the nextstate relation

[HDDY92]. Other researchers have proposed methods using Boolean

Functional Vectors [CBM89,JPHS91, Fil91] that attempt to

decompose the problem into a number of smaller problems whose

results are later combined. Their systems only reason about

deterministic systems. This is not sufficient for reasoning

about the behaviour of communication protocols for modelling

unpredictable events such as data loss on a noisy line.

Fortunately, Hu et al. [HDDY92] show an efficient way of

computing forward and backward images for non-deterministic

CHAPTER 3. THEORETICAL BACKGROUND 39

systems without building the BDD for the full nextstate

relation. (They refer to this method as image computation with

disjunctive partitions.)

Let us denote the nextstate relation with Nix,x') where x is

the current state and x' is the next state. They have derived

the axioms in Tables 1 and 2 for forward and backward images,

respectively, that reduce an image computation into the

disjunction of a number of smaller images. X denotes a

characteristic function of a set of states.

Type of
Nextstate

composition

condi t ional

d i s junc t ion

otherwise

*conjunction
of d i s junc t ion

*conjunction
of condi t ional

Forward Image Axiom

forward_ image(X,(N^ o.. .oJVj)(x, x')) =

forward _ imaged forward _ image(X,Ni),

iN„o...oN,)(x,x'))

forward_ imagei X, if C(x) then N^ix, x') else iVj (A;, X')) =

forward_ image(X A C, A ĵ) v forward _ image{ Z A C, A ĵ)

forward_ image{X,N^ {x, JcOv... vA „̂ {x, x')) =

forward_image(X,N^)v...vforward_ image(X,N^)

forward_image(X,N(x,x')) = 3x.[X(x)AN(x,x'))

forward _ image(X,(a^v...va„)Ab) =

forward_imagedZ,Oj A b)^...y forward_image{X,a^ Ab)

forward_image{X,(if a then b else c) A c?) =
forward _ image{X Aa,bAd)v forward _ image(X A —>a, CAd)

Table 1. Forward Image Axioms

CHAPTER 3• THEORETICAL BACKGROUND 40

Type of
Nextstate

composition

condi t ional

d i s junc t ion

otherwise

*conjunction
of d i s junc t ion

conjunction
of condi t ional

Backward Image Axiom

backward _ image(Y,(N„ o.. .oiVj)(x, x')) =

backward _ image(backward_image(Y, (A/'„ o.. .oÂ ^)(x, x')), N^)

backward _ image{Y, if C(jc) thenN^ else Â 2) =

C A backward _ imageiY, N^)v

C A backward_ image(Y, N2)

backward _ image(Y, N^s/... vN„) =

backward _image(Y, N^)v.. .'^backward _ image(Y, N„)

backward _image{Y ,N{x,x')) = 3x' .[Y{x') AN{X,X')]

backward _ image{Y, (a^v... va„)Ab) =
backward_image{Y,a^ Ab)v...vbackward_image(Y,a^ Ab)

backward_ image(Y, (if a then b else c)Ad) =
(a A backward_ image{Y, bAd)v
i-\a A backward_ imageiY,cAd)

Table 2, Backward Image Axioms

All these axioms will reduce the size of BDDs constructed

during the computation of the image usually with a higher

requirement for CPU time.

An additional optimization for memory usage has been

implemented for the computation of images. This is for the case

of a nextstate relation that is a conjunction of disjunctions or

a conjunction of conditionals. The corresponding additional

axioms are marked with asterisks in Tables 1 and 2.

The actual CTL symbolic model checking algorithm which was

added to the Ever verifier is now described.

CHAPTER 3. THEORETICAL BACKGROUND 41

To model check a given temporal formula f in the model

associated with a given nextstate relation, the formula f is

evaluated just like any type of unevaluated proposition. In the

Ever verifier, an unevaluated proposition is a parse tree data

representation of a formula associated with the proposition.

Often when an unevaluated proposition is referenced in an

expression which is being evaluated, the unevaluated proposition

must be evaluated. When an unevaluated proposition has been

evaluated, its value represented as a binary decision diagram is

stored in memory with the unevaluated proposition's data

structure. This BDD represents the characteristic function of

the set of states in which the proposition just evaluated is

true in the model associated with the given nextstate relation.

All the prepositional logic operators are evaluated as

before. No changes were made here. These operators include 3

basic operators {and, or, not), and high level operators that

are essentially notational conveniences that are translated into

the 3 basic operators (e.g. two integers being equal). These

basic operators (i.e. and, or, not) are evaluated by invoking

the primitives of Brace et al.'s BDD package [BRB90]

Three of the CTL temporal logic operators are evaluated as

described below. The others are evaluated by using the duality

properties of CTL to express them in terms of the three basic

ones.

CHAPTER 3 • THEORETICAL BACKGROUND 41

Let us denote the assumed nextstate relation of the model as

N(Vi,Vf). The unevaluated proposition EXf, which says there

exists a path such that f is true in the next time unit, is

evaluated as:

3v̂ .[iV(V;,V̂)A/(V̂)]

This expression is the same one as for a backward image.

The EX operator is evaluated by computing the backward image of

f with nextstate relation N.

The unevaluated proposition E[f U g], which says there

exists a path such that g is true sometime in the future and f

is true in all preceding times along that path, is evaluated as

the least fixed point of the expression Z = g^{f AEXZ) . This

formula is derived from the following idea. Let us assume that

Z represents the proposition E[f U g]. At all times on the path

that satisfies f until g, g must be true now, or f must be true

now and f until g must be true in the next time unit. Our goal

is to find a function Z which satisfies this property

^- g^if ^EXZ). Since this expression satisfies the monotone

requirement of the Mu-calculus [BCMDH90] , i.e. all free

occurrences of Z fall under an even number of negations, the

function Z that satisfies this property is the least fixed point

of gv(fAEXZ). Since this expression is monotone, it means each

time the assignment Z:= gv(f AEXZ) is re-evaluated (starting from

Z := False), the size of the characteristic function increases.

Thus eventually after some number of iterations, Z must reach a

CHAPTER 3. THEORETICAL BACKGROUND 43

fixpoint (i.e. its value remains the same for two successive

iterations) or reach the point of being a tautology which is the

largest possible set. Once this value of Z has been reached, Z

is equal to g\/{f AEXZ), so it satisfies the properties required

by expression E[f U g], so must be the evaluated value of

E[f U g]. The algorithm for this computation is illustrated in

Figure 3.

compute_eu(f,g) ::=
Zl := False;
do
Z := Zl;
Zl := g V (f A EXZ);

u n t i l Z = Z l ;
return Z;

Figure 3 . Computation of E[f U g] as l e a s t f ixed p o i n t of
Z=gv(fAEXZ)

An unevaluated proposition EGf is computed in a similar way

to E[f U g] by using the fixpoint characterization formula

Z = fAEXZ. This is derived from the following property on a

path making EGf true. At any state along such a path, f must be

true now and EGf must be true in the following state (next time

unit). Since this expression's primary operator is conjunction,

it is a decreasing function, thus EGf is the greatest fixpoint

of Z = f AEXf which is computed as illustrated in Figure 4.

CHAPTER 3. THEORETICAL BACKGROUND 44

comput e_eg(f) :: =
Zl := True;
do
Z := Zl;
Z l := f A EXZ;

u n t i l Z = Z l ;
r e t u r n Z;

Figure 4 . Computation of EGf as g r e a t e s t f ixed p o i n t of
Z=fAEXf

Burch et al. [BCMDH90] present a technique for reducing the

number of iterations needed for computing these fixpoints. It

has not been implemented in this thesis. It is referred to as

iterative squaring.

The other temporal operators are evaluated using the the

duality properties of CTL in Figure 5.

EFf = E[True U f]
AXf s -^EX-f
A[f Ug] = -^[-.g U i-^f A -ng)] A -n£G-,g
AGf = -nEF-f
AFf^-.EG-f

Figure 5. CTL Duality Properties

3.2.3. Extension for fairness constraints

Burch et al. [BCMD90] devised an extension to the algorithm

to modify it to consider only execution paths in the model

satisfying a set of fairness constraints given by the user.

They are specified as arbitrary CTL temporal formulae which are

interpreted to be required to occur infinitely often on all

considered paths. All execution paths where these constraints

CHAPTER 3. THEORETICAL BACKGROUND 15.

do not occur infinitely often are ignored by the extended

algorithm.

One should be able to specify desired assumptions of the

environment's behaviour with these constraints. For example,

with the alternating bit protocol, we want to verify its

behaviour under the assumption that the users (sender and

receiver) are infinitely often submitting requests to send and

receive data, respectively.

The computation of the temporal operators are changed as

follows. The formula EGf under fairness constraints Ci,...,C„

means there exists a path from the current state in which f is

globally true and all the constraints individually are true

infinitely often along the path. This is characterized by the

greatest fixed point of Z = f AEX{E[ZU{Z/KCJ\A...A.E[ZU{_Z AC„)\) .

Note that each iteration in the fixpoint calculation involves

the computation of n EU operators. These EU operators are

presumably evaluated without fairness constraints, otherwise one

would have endless recursion.

For a given model (i.e. nextstate relation), a value

Fair=EGTrue is calculated for use in computing the other

temporal operators with fairness constraints. The computations

for EX and EU are defined as follows:

EXf = EX{f A Fair)

E[fUg]^E[fU(gAFair)]

CHAPTER 3 • THEORETICAL BACKGROUND 46.

All the other temporal operators can be computed by using

the duality properties of CTL mentioned earlier (Figure 5).

3.3.Summary

The theories of CTL model checking were presented to provide

a foundation for the next chapter. The data structures and

algorithms of two main CTL model checking approaches (i.e.

explicit and symbolic) were explained. The second approach is

used in the implementation described in chapter 4. This second

approach has great potential for reasoning about extremely large

state machine systems.

Chapter 4: Implementation

In this chapter, the implementation of tools necessary for

carrying out model checking verification of communication

protocols is described. In section 4.1, the features of the

Estelle.Y protocol specification language are explained. In

section 4.2, the syntax and semantics of the Ever verifier's

specification language are described. In section 4.3, the

design of the translator that transforms Estelle.Y

specifications into Ever code is given. The mappings from

Estelle.Y language elements to Ever propositions is explained.

In section 4.4, the way in which the symbolic model checking

theories discussed in chapter 3 were applied to extend the Ever

verifier to support CTL model checking is explained. In section

4.5, a number of minor enhancements made to Ever to make it more

convenient for protocol verification are described.

In section 4.6, a CTL tableau construction algorithm that

was implemented, is briefly described. Doing experiments with

relatively trivial CTL formulae, it was concluded that this

algorithm is too impractical for use in protocol verification.

In chapter 5, this implementation is applied to the

alternating bit protocol.

47

CHAPTER 4. IMPLEMENTATION 48

4.1. Estelle.Y and ASN.l Protocol Specification
Language

Estelle.Y [Lu91] is a variant of the Estelle [IS089] formal

protocol description language. It is a language for describing

a single module extended state machine containing a major state,

internal variables, explicit timers and points of control and

observation (PCOs).

The PCOs provide the module interfaces to the outside

environment. Associated with each PCO is a queue in the module

for holding interactions received from the environment awaiting

servicing by this module. Zero or more input interactions

(input service primitives (ISPs)) and zero or more output

interactions (output service primitives (OSPs)) are associated

with each PCO. These associations are defined in the ISP and

OSP declaration sections of the Estelle.Y specification. Each

interaction may contain a number of data fields. The names and

types of these fields are defined in a corresponding type

definition in the ASN.l source file.

For example, the alternating bit protocol specification (see

Appendices 1 and 2) has two points of control and observation:

UAccessPoint (interface to user), NAccessPoint (interface to

underlying link (network)). The interactions associated with

these PCOs are illustrated in Table 3.

CHAPTER 4. IMPLEMENTATION 49

PCO
UAccessPoint
UAccessPoint
NAccessPoint

ISP
SENDreguest(x)
RECEIVErequest
DATAinteraction(id,conn,datum,seq)

PCO
UAccessPoint
UAccessPoint
NAccessPoint

OSP
SENDconfirm
RECEIVEresponse(x)
DATAinteraction (id, conn, datiom, seq)

Table 3. List of interaction service primitives (ISPs) for
points of control and observation (PCOs) in Alternating Bit

Protocol Specification

The behaviour of an Estelle.Y module is defined by the set

of transitions in the transition section. Each transition

defines an action to be performed whenever a given condition is

true. The action is specified with a Pascal-like compound

statement that manipulates the data elements of the

specification (namely, internal variables and timers) and some

clauses shown in the output section of the table below. The

condition is specified as a list of clauses whose types are

given in Table 4.

Clause
FROM state
WHEN isp

PROVIDED
boolean_expression
PRIORITY num

TO state

OUTPUT osp

Description
true when module in given state
true when an interaction of type
isp is awaiting processing
true when given expression is
true
assigns this transition a
priority
output clause stating new state
after execution of transition
states that transition output an
interaction of type osp

Table 4. Estelle.Y transition clauses

CHAPTER 4. IMPLEMENTATION 50

The Pascal statements allowed in actions of Estelle.Y

transitions are assignments, if statements, while statements and

compound statements.

One or more timers are defined in the timer section of the

specification. Each timer is assigned a name and a constant

defining its upper count limit. Four additional statement types

for timers are allowed in transition action code shown in

Table 5.

Timer statement
START{t)
STOP{t)
RESET(t)

SET(t,num)

Description
put timer in running mode
put timer in stopped mode
reset timer's counter to zero
and put it in stopped mode
set the timer's counter to
given value

Table 5. Estelle.Y timer statements

Five types of timer expressions may be used in expressions

of Pascal statements and in the PROVIDED clause of transitions,

see Table 6.

Timer
expressions
TIMED_OUT(t)

STARTED{t)
STOPPED(t)
RESETED(t)

READCt)

Description

timer counter reached limit
defined in timer section
timer in running mode
timer in stopped mode
timer in stopped mode with
counter equal to zero
returns value of timer's counter

Table 6. Estelle.Y timer expressions

CHAPTER 4. IMPLEMENTATION 51

The data type of each internal variable defined in the

variable declaration section must be Boolean, Integer or

character string.

A complete specification of the syntax of the Estelle.Y

language is given in [Lu91],

Note it is not necessary for an Estelle.Y specification to

be written in such a way as to have exactly one transition

enabled at a time (i.e. does not have to be deterministic). If

more than one transition is enabled, the specification says that

the implementation must choose one of them. If none are

enabled, this module must remain in its current state (i.e.

major state and internal variables) until one becomes enabled.

4.2. Ever specification language

Ever is a language for specifying deterministic and non-

deterministic state machines with high-level language type

constructs. It is also a tool for doing reachability analysis

of systems specified in its language. The syntax of types,

variables, bit vectors, propositions and predicates is

described. Then Ever's main function called printtrace for

displaying a trace after doing reachability analysis is

explained.

First, it provides commands for defining the data types and

variables used in the specification. All types ultimately

CHAPTER 4. IMPLEMENTATION 32

reduce to sequences of bits. The types are sequences of bits,

records and arrays. A new named type is defined with the

deftype command:

deftype typename typedefinition;

Valid types are illustrated in Table 7.

Type
(bits n)

(array i u type)

(record fl tl ... fn tn)

Description
sequence of n bits containing
values 0 through 2" — 1
array indexed from lower bound 1 to
upper bound u containing elements
of type type
structure containing fields named
fl through fn of types tl through
tn, respectively

Table 7, Ever data types

Variables are defined with the defvar command as follows:

defvar varname type;

where varname is name assigned to variable

type is named type or an actual type

definition

CHAPTER 4. IMPLEMENTATION 53

The values of all variables are bit vectors. There are some

bit vector operators for manipulating values. Thus bit vectors

are numerical constants, references to variables, and various

operators on sequences of bits such as arithmetic operations.

Some are shown in Table 8.

Bit vector
c

's i ze ' c

v^c

v^n

v^p

(add vl ... vn)
(sub vl v2)

Description
numerical constant c represented in as
few bits as possible
numerical constant c represented in size
bits
reference to variable v in current phase
which can be a reference to an element of
an array or a field of a record
reference to variable v in next phase
which can be a reference to an element of
an array or a field of a record
reference to variable v in previous phase
which can be a reference to an element of
an array or a field of a record
the sum of the bit vectors vl through vn
the difference between bit vectors vl and
v2

Table 8. Ever bit vector types

Third, Ever provides commands for defining propositions that

may depend on the defined variables in the current and next

phases. (Ever also provides syntax for dealing with variables

in the previous phase but the reachability analysis algorithm is

not designed to use it properly.) The main types of

propositions are shown in Table 9.

CHAPTER 4. IMPLEMENTATION 54

Proposition
TRUE
FALSE
CurNextEq

(and pi ... pn)

(or pi . . . pn)

(not p)
(implies a c)

(equiv pi p2)
(eq hvl bv2)

(gt bvl bv2)

(ge bvl bv2)

(It i>vl i>v2)

(le bvl bv2)

(if c pi)

(if c pi p2)

(becomes v^n bv)

(compose pi ... pn)

Description
returns true
returns false
returns true when each variable has same value in
current and next phases.
returns true when all propositions pi through pn are
true
returns true when at least one of the propositions pi
through pn is true
return true when proposition p is false
return true when antecedent proposition a is false or
consequent proposition c is true
returns true when propositions pi and p2 are identical
returns true when bit vector bvl is equal to bit
vector bv2
returns true when bit vector bvl is greater than bit
vector bv2
returns true when bit vector bvl is greater or equal
to bit vector bv2
returns true when bit vector bvl is less than bit
vector bv2
returns true when bit vector bvl is less than or equal
to bit vector bv2
returns true if c is false and returns true if c is
true and pi is true-'-
returns true if c is true and pi is true or if c is
false and p2 is true.
returns true if all variables except v have same value
in current and next phases and variable v has value of
bit vector bv in the next phase.^
returns true if when the values of the variables in
the current and next phases are related in a way
equivalent to the effect of applying the relations (of
current and next phases) pi through pn in succession.-̂

Table 9. Ever propositions

^The conditional proposition if assumes the condition c is a proposition only
on variables in the current phase.
^The becomes proposition assumes that the variable v is in the next phase, v
may be reference to an array element or a field of a record.
^The compose proposition assumes that the propositions pi through pn are
relations between all variables in current and next phases (i.e. becomes,
compose, conditionals with propositions relating current and next phases in
then and else parts) propositions.

CHAPTER 4. IMPLEMENTATION 55

Ever supports a notion of predicates which are just a

syntactic convenience to avoid having to rewrite propositions

with same structure but different constants substituted in

places. It is a parameterized proposition whose actual

definition depends on the set of values passed to the predicate

when it is instantiated. The syntax is as follows:

defpred predicate_name {pi ... pn) proposition;

where pi through pn are named constants whose
values are determined when the predicate is
instantiated

proposition is a proposition whose
definition may reference named constants pi
through pn

Ever's main function, printtrace, given a nextstate

proposition attempts to find a execution trace from any state

that satisfies the given start proposition to any state that

satisfies the given goal proposition. The nextstate proposition

is assumed to relate the current and next phases of the model in

which a trace is being searched. In other words, the nextstate

proposition evaluates to true when given a pair of current and

next phase variable value sets that can occur in the

corresponding model (i.e. when the next phase variable values

set can be reached from the current variable values set in one

time step). If such a trace is found, it is printed as a set of

current variable values for each time step from one satisfying

the start proposition to one satisfying the goal proposition.

If no such trace is found, the longest one tried is printed.

CHAPTER 4 . IMPLEMENTATION 56

The t h e o r y upon which t h i s a l g o r i t h m i s b a s e d was d e s c r i b e d i n

t h e p r e v i o u s c h a p t e r .

4 . 3 . E s t e l l e . Y t o Ever t r a n s l a t o r

In t h i s sect ion, the t r a n s l a t i o n from Este l le .Y to Ever i s

descr ibed. The procedure for the user to carry out t h i s

t r a n s l a t i o n i s described. The way a set of Este l le .Y modules i s

represented in Ever i s explained. Then a descr ip t ion of the

algorithm i s given.

Given a l i s t of p a i r s of source f i l e s (Estel le .Y f i l e and

ASN.l binary f i l e) for the types of modules to be included,

estelle2ever produces corresponding Ever code in the standard

output . For example to produce code for two a l t e rna t i ng b i t

protocol modules d i r e c t l y t i e d together , the user invokes

estelle2ever as follows. Note the u s e r ' s responses are shown in

i t a l i c s . See the Este l le .Y source code of the a l t e rna t ing b i t

protocol in Appendix 1.

1% estelle2ever abpS.estelle abp5.tt > abp5.output
Nimiber of instances of module 'abp5' : 2
connect abp5[0].UAccessPoint t o :
connect abp5[0].NAccessPoint t o : abp5[1].NAccessPoint
connect abp5[1].UAccessPoint t o :
2%

CHAPTER 4 . IMPLEMENTATION S I

To g e n e r a t e code f o r a s y s t e m w i t h o u t t h e two m o d u l e s '

N A c c e s s P o i n t i n t e r a c t i o n p o i n t s d i r e c t l y t i e d t o g e t h e r t h e

s e s s i o n would b e :

1% estelle2ever abp5.estelle abp5.tt > abp5.output
Number of i n s t a n c e s of module ' abp5 ' : 2
connect abp5[0].UAccessPoint t o :
connect abp5[0].NAccessPoint to :
connect abp5[1].UAccessPoint t o :
2%

The representation of a set of Estelle.Y module instances in

Ever code is described. (For each Estelle.Y source file given

on the command line, types are defined for its internal

variables, timers, major state and points of control and

observation (PCOs).) An array variable is defined for each

Estelle.Y source file to hold all the internal variables, major

state and timers of all instances of the corresponding module.

For the alternating bit protocol these definitions are as

follows:

CHAPTER 4 . IMPLEMENTATION 5 8

— V a r i a b l e s :
def type abp4_loca lvars (record

Send_seq (b i t s 1)
Recv_seq (b i t s 1)
Recv_buffer_empty (b i t s 1)
Recv_buffer_datum (b i t s 1)
Recv_buffer_seq (b i t s 1)
Send_buffer_empty (b i t s 1)
Send_buffer_datum (b i t s 1)
Send_buffer_seq (b i t s 1)) ;

— Timers: rexmi t_ t imer
def type abp4_timers_type (record

rexmi t_ t imer (record running (b i t s 1) counter (b i t s 2))) ;

- - S t a t e s : ack_wait e s t a b
def type abp4_mainstate (b i t s 1 "ack_wait" " e s t a b ") ;

- - Ever v a r i a b l e s for module abp4 s t a t e s
defvar abp4 (a r ray 0 1 (record s t a t e abp4_mainstate v a r s abp4_loca lvars

t imers abp4_ t imers_ type)) ;

An array var iab le i s defined for each ro le of each PCO type

encountered in a l l the modules in the spec i f i ca t ion . The PCOs

need to be s tored separa te ly from the modules' other var iables

because they need to be accessed by code of more than one module

type. The a l t e r n a t i n g b i t protocol has two PCOs: UAccessPoint

and NAccessPoint. The two ro les of the UAccessPoint PCO are

d i f fe ren t and the ro les of the NAccessPoint PCO are the same.

The NAccessPoint ro les were defined in a way to be the same to

allow one to d i r e c t l y connect a pa i r of Este l le .Y a l t e rna t ing

b i t protocol modules. The t r a n s l a t o r only allows matching ro les

to be connected.

CHAPTER 4. IMPLEMENTATION , SI

— ISPs: SENDrecjuest RECEIVErequest DATAinteraction

-- OSPs: RECEIVEresponse DATAinteraction SENDconfirm

-- PDUs: Junk

-- PCOs:
deftype UAccessPoint_inqueue (record

kind (bits 1)
RECEIVErequest (record dummy (b i t s 1))
SENDrequest (record udata (b i t s 1))) ;

def type UAccessPoint_outqueue (record
k ind (b i t s 1)
SENDconfirm (record duirany (b i t s 1))
RECEIVEresponse (record uda ta (b i t s 1))) ;

def type NAccessPoint_queue (record
DATAinteraction (record ndata (record i d (b i t s 1) conn (b i t s 1)

da ta (b i t s 1) seq (b i t s 1)))) ;

- - Ever v a r i a b l e s for i n t e r a c t i o n queues
defvar UAccessPoint_in (a r ray 0 1

(record base (b i t s 0) queued (b i t s 1)
con ten t (a r ray 0 0 UAccessPoint_inqueue))) ;

defvar UAccessPoint_out (a r ray 0 1
(record base (b i t s 0) queued (b i t s 1)

con ten t (a r ray 0 0 UAccessPoint_outqueue))) ;
defvar NAccessPoint (a r ray 0 1

(record base (b i t s 0) queued (b i t s 1)
con ten t (a r ray 0 0 NAccessPoint_queue))) ;

A specia l var iab le i s defined for the implementation of

t imers . This var iab le i s specia l because i t i s defined to be

free meaning tha t i t i s excluded from the set of var iab les that

must remain s tab le in a becomes p ropos i t ion . In other words

t h i s v a r i a b l e ' s current value i s t o t a l l y non-determinis t ic . I t s

value i s used in the nex t s t a t e r e l a t i o n to decide whether to

t r e a t t imers or t r a n s i t i o n s in the current time u n i t . During

v e r i f i c a t i o n , two fa i rness cons t ra in t s are defined to ensure

t h i s va r i ab le i s i n f i n i t e l y often t rue and i s i n f i n i t e l y often

CHAPTER 4. IMPLEMENTATION .M

f a l s e . These cons t ra in t s are used to make the ve r i f i c a t i on

consider only execution paths where both t r a n s i t i o n s and timers

are regula r ly executing,

deffreevar clock_tick (bi ts 1);

For each type of Estel le .Y module in the spec i f ica t ion , a

pa i r of Ever p red ica tes are defined for each t r a n s i t i o n in the

module. The f i r s t predica te defines the enabling condit ion of

the t r a n s i t i o n . The parameters of the predica te are a module

instance number and indices to a l l input and output service

pr imi t ives arrays used by the module. I t i s a conjunction

proposi t ion of proposi t ions t r ans l a t ed from the clauses of the

t r a n s i t i o n s as shown in Table 10.

Clause
FROM State
WHEN isp

PROVIDED
boolean_expression
PRIORITY num
OUTPUT osp

Propositions
(eq modulename[n] .state'^c state_code)
(not (eg pco_roIe[i].queued^c 0))
(eq pco__role[l] .content [pco_roie[i] .base'̂ c] .kind'̂ c
isp_code)
Ever code for boolean_expression

(not implemented)
(It pco_roie/"o7 .queued'̂ c QSIZE)*

Table 10. Ever proposi t ions for Este l le .Y t r a n s i t i o n clauses

The second pred ica te defines the r e l a t i onsh ip between the

s t a t e before and a f t e r the act ion code of the t r a n s i t i o n i s

executed. I t s parameters are a module instance number, and

%ote QSIZE i s a constant defining the ntimber of elements in a l l in teract ion
queues. This condition blocks a t r ans i t ion that would normally add an
in te rac t ion to a queue from executing when the queue i s already fu l l .

CHAPTER 4 . IMPLEMENTATION 61

i n d i c e s t o u s e d ISP a r r a y s and OSP a r r a y s . I t i s a compose

p r o p o s i t i o n c o n t a i n i n g a p r o p o s i t i o n f o r e a c h P a s c a l - l i k e

s t a t e m e n t i n t h e t r a n s i t i o n a c t i o n c o d e . The s t a t e m e n t s a r e

t r a n s l a t e d a s i n d i c a t e d i n T a b l e 1 1 .

statement
V := expr
if c then si
if c then si
else s2
begin si ... sn
end;
while c si
START(t)
STOP(t)
RESET(t)
SET{t,num)

Proposition
(becomes v^n expr)
(if c si (becomes modname^n modname^c))^
(if c si s2)

(compose si ... sn)

not implemented
(becomes modrzaineEn] .timers, t.running'̂ n 1)
(becomes j77odname[n] .timers, t-runninĝ 'n 0)
(becomes inodname[n] .timers, t̂ n 0)
(becomes modname[n] .timers, t.counter'̂ n num)

Table 11. Ever proposi t ions for Estel le .Y statements

The des t ina t ion var iab le in the assignment statement i s

t r a n s l a t e d as the following i f v i s an in t e rna l va r iab le of the

module:

modname[n].vars.v

I t i s t r a n s l a t e d as the following if the des t ina t ion var iab le i s

in an output service p r imi t ive :

pco_roJe[o] . con ten t [(add pco_roJe[o] .base'^c pco_roJe[o] .queued'^c)] .osp_name

Additional ac t ions must be performed for t r a n s i t i o n s with the

following clauses to complete the t ransac t ion of executing the

t r a n s i t i o n (see Table 12).

% o t e t h e b ina ry if needs the dummy becomes p r o p o s i t i o n in i t s else p a r t t o
s t a t e t h a t a l l v a r i a b l e s must remain t h e same i n t h a t c a s e . Otherwise, the
TRUE p r o p o s i t i o n would be p laced in the else p a r t which would mean t h a t
any th ing can happen when t h e cond i t i on of the i f s ta tement i s f a l s e .

CHAPTER 4. IMPLEMENTATION 62

Clause
TO s t a t e
WHEN isp

OUTPUT
osp

Additional Actions
(becomes modname[n].state^n s ta te_code)
(becomes p c o _ r o I e [i] .baseTi (add p c o _ r o I e [i] .base'^c 1))
(becomes pco_role[i] .qaened^n (sub pco_ roJe [i] .gueued'^c 1))
(becomes pco_roJe[o] . con ten t [(add pco_roJe[o] .base'^c

pco_role[o] .queued'^c)] .kind'^n
osp_code)

(becomes p c o _ r o I e [i] .queued^n (add p c o _ r o I e [i] .queued'^c 1))

Table 12. Ever propositions for actions for completing Estelle.Y
transitions

Next a predicate is defined for handling counting of timers.

For each timer, the timer's counter is incremented if it in the

running mode and the maximum count has not been reached. If

none of the timers are running, this predicate is a dummy

jbecomes proposition to keep all (non-free) variables stable.

For the alternating bit protocol, it is as follows:

defpred abp6_timertick (n) (compose
(if (and (eq abp6 [n] .timers.rexmit_timer.running'^c 1)

(It abp6 [n] .timers.rexmit_timer.counter'^c 3))
(becomes abp6[n] .timers.rexmit_timer.counter'^n

(add abp6 [n] .timers .rexmit_timer.counter'^c 1))
(becomes abp6 [n] .timers-^n abp6 [n] .timers^'c))) ;

A predicate defining the overall behaviour of a module

instance is defined. It is a disjunction of all possible

actions that the module may perform at each time unit: service

counting of timers if variable clock_tick is true, and service

each enabled transition if variable clock_tick is false. It is

a disjunction because we want the specification to be non-

deterministic allowing any enabled transition to be serviced.

This disjunction includes a case to keep all variables stable

CHAPTER 4 . IMPLEMENTATION ^

when a l l t r a n s i t i o n s a r e d i s a b l e d . I f t h i s s p e c i a l c a s e were

n o t i n c l u d e d , t h e whole p r o p o s i t i o n would e v a l u a t e t o a f a l l a c y

l e a d i n g t o a d e a d l o c k when a l l t r a n s i t i o n s a r e d i s a b l e d . T h i s

p r e d i c a t e i n t h e a l t e r n a t i n g b i t p r o t o c o l s p e c i f i c a t i o n i s a s

f o l l o w s . (Note each t r a n s i t i o n i s d e f i n e d w i t h an if

p r o p o s i t i o n w i t h a f a l s e else p a r t . T h i s i s done t o p e r s u a d e

t h e backward image compu t ing a l g o r i t h m d i s c u s s e d i n t h e n e x t

s e c t i o n t o u s e i t s p a r t i t i o n e d n e x t s t a t e e v a l u a t i o n t e c h n i q u e .)

defpred abp6_nex t s t a t e (n iO oO i l o l) (or
(i f (eq clock_tick '^c 0) (or

(i f (abp6_Ctransl n iO oO 11 o l) (abp6_Atransl n iO oO i l ol) FALSE)
(i f (abp6_Ctrans2 n iO oO i l o l) (abp6_Atrans2 n 10 oO 11 ol) FALSE)
(i f (abp6_Ctrans3 n 10 oO 11 o l) (abp6_Atrans3 n 10 oO 11 ol) FALSE)
(If (abp6_Ctrans4 n 10 oO 11 ol) (abp6_Atrans4 n 10 oO 11 ol) FALSE)
(If (abp6_Ctrans5 n 10 oO 11 ol) (abp6_Atrans5 n 10 oO 11 ol) FALSE)
(If (abp6_Ctrans6 n 10 oO 11 o l) (abp6_Atrans6 n 10 oO 11 ol) FALSE)
(If (abp6_Ctrans7 n 10 oO 11 ol) (abp6_Atrans7 n 10 oO 11 ol) FALSE)
(If (and

(not (abp6_Ctransl n 10 oO 11 o l))
(not (abp6_Ctrans2 n 10 oO 11 ol))
(not (abp6_Ctrans3 n 10 oO 11 ol))
(not (abp6_Ctrans4 n 10 oO 11 o l))
(not (abp6_Ctrans5 n 10 oO 11 ol))
(not (abp6_Ctrans6 n 10 oO 11 o l))
(not (abp6_Ctrans7 n 10 oO 11 ol)))

(becomes abpS'^n abpG'-c) FALSE)) FALSE)
(If (eg c lock_ t l ck ' ' c 1) (abp6_t lmer t lck n) FALSE));

Fina l ly , the overa l l nex t s t a t e r e l a t i o n for a l l instances of

a l l modules i s defined tha t invokes the modules' nex t s ta te

p red ica te with d i f fe ren t parameters for each module ins tance.

The parameters specify the index of each PCO array to be used by

each module ins tance .

defprop n e x t s t a t e (or
(abp4_nexts ta te 0 0 0 0 1)
(abp4_nexts ta te 1 1 1 1 0)) ;

CHAPTER 4 . IMPLEMENTATION £4.

A p r e d i c a t e i s d e f i n e d f o r e a c h module t y p e t o d e f i n e t h e

i n i t i a l s t a t e of t h a t modu le . For example ,

defpred abp4_ in i t (n oO ol) (and
(eq abp4 [n] . s ta te '^c 1)
(eq NAccessPoint [ol] .base'^c 0)
(eq NAccessPoint [ol] .queued'^c 0)
(eq UAccessPoint_out [oO] •base'^c 0)
(eq UAccessPoint_out[oO].queued^c 0)
(eq abp4 [n] .vars .Send_seq ' 'c 0)
(eq abp4 [n] .vars.Recv_seq'^c 0)
(eq abp4 [n] .vars.Send_buffer_empty'^c 1)
(eq abp4 [n] .vars.Recv_buffer_empty'"c 1)
(eq abp4 [n] . t imers '^c 0)) ;

Then a p r o p o s i t i o n for the o v e r a l l i n i t i a l s t a t e of a l l

modules i s d e f i n e d . For example,

defprop i n i t (and
(abp4_in i t 0 0 0)
(abp4_in i t 1 1 1)) ;

The a lgo r i t hm for g e n e r a t i n g Ever code from a s e t of

E s t e l l e . Y s p e c i f i c a t i o n s i s now d e s c r i b e d . Each of t h e

s p e c i f i c a t i o n s i s pa r sed wi th a s l i g h t l y modif ied copy of the

pdsparseO r o u t i n e from TESTGEN (a t e s t sequence g e n e r a t i o n

pac]<:age for E s t e l l e . Y) i n t o a p r o t o c o l d a t a s t r u c t u r e (PDS)

[Lu91,VHLMD93].

A l l t h e PDS s t r u c t u r e s a r e scanned t o b u i l d a l i s t of a l l

PCOs i n a l l modules. This l i s t i s scanned t o query t h e u se r for

in fo rmat ion about number of i n s t a n c e s of each E s t e l l e . Y module

and which p a i r s of PCOs a r e t o be connected . Type and v a r i a b l e

d e c l a r a t i o n s for a l l t h e PCOs a r e produced. A module i n s t a n c e

d a t a s t r u c t u r e i s c r e a t e d for each i n s t a n c e of each E s t e l l e . Y

CHAPTER 4. IMPLEMENTATION 65

module. It includes a module instance number, index numbers to

elements of PCO arrays from which this module instance shall

receive interactions, and index numbers to elements of PCO

arrays to which this module instance shall send interactions.

These module instance structures are not used until the global

nextstate relation and initial state propositions are produced.

For each module type, Ever predicates (as described above)

for the transitions conditions and actions are produced from

information in the PDS.

The global nextstate and initial state propositions are

generated from the module instance data structures.

While statements are not supported because loop analysis

techniques of symbolic evaluation would have to be used to

derive expressions for the overall effect of loops. Ever does

not support such a construct.

If a while loop in the action code of an Estelle.Y

transition were to be translated to a series of transitions

handling each iteration of the loop, a Boolean variable would be

needed to indicate that the loop is executing. This would be

necessary to indicate that no input events can be processed

while executing the loop. The action code of an Estelle.Y

transition is supposed to be atomic.

Prioritized transitions were not implemented. The algorithm

could be enhanced to generate a more sophisticated expression

for deciding which transitions are enabled.

CHAPTER 4. IMPLEMENTATION 66

Arbitrairy integer multiplication and division is not

supported because these operations are not supported in Ever.

BDDs are known to blow up badly with these operations.

It would be useful if the Estelle.Y language allowed one to

specify an explicit data size when declaring (internal) integer

variables. For example, the LAPS specification uses 3-bit

sequence numbers. In the alternating bit protocol

specification. Boolean variable declarations were used for the

1-bit sequence number variables to avoid this problem.

4.4. Ever extensions for CTL Model Checking

This section describes procedures added to the Ever verifier

to support the evaluation of CTL temporal logic formulae. These

procedures were added to the evaluate_proposition() routine

where all types of expressions are evaluated. Non-temporal

expressions are directly evaluated by invoking primitives of

Brace's BDD package. The EX, EU and EG operators are computed

as described below. The other five operators (EF, AX, AU, AG,

AF) are computed by expressing them in terms of the first three

using duality properties of the CTL logic.

The expression EXf is evaluated by doing some manipulations

to move from the current phase of variables to the next phase of

variables and computing the backward image of the characteristic

set of f. The routine is illustrated below:

CHAPTER 4 . IMPLEMENTATION 67

bdd_ex(f ,nex t) : :=
{ fo l lowing l i n e produces a c h a r a c t e r i s t i c funct ion for f of

v a r i a b l e s in next phase i n s t e a d of in c u r r e n t phase as
when passed t o t h i s funct ion }

tempi := 3 c u r _ v a r s . ((n e x t _ v a r s = cur_vars) A f (c u r _ v a r s) ;

{ determine s e t of s t a t e s from which a l l p o s s i b l e t r a n s i t i o n s
w i l l reach s e t of s t a t e s def ined by tempi }

{ tempi i s a c h a r a c t e r i s t i c funct ion of v a r i a b l e s i n the next phase .
Compute_backward_image r e t u r n s a c h a r a c t e r i s t i c funct ion of
v a r i a b l e s in c u r r e n t phase . }

r e t u r n compute_backward_image(tempi, n e x t) ;

The rout ine for computing backward images for Ever 's

printtrace command i s used. This rout ine uses a p a r t i t i o n i n g

technique to avoid evaluating the complete nex t s t a t e r e l a t i on

whenever poss ib le . This technique dramatical ly reduces the

amount of memory required. The axioms used for t h i s

p a r t i t i o n i n g are as follows (reca l l Table 2 on page 40):

{ backward image of a composit ion }
backward_image(Y, (NnO...ONl) (x , x ')) s

backward_image(backward_image(Y, {NnO...o N2) (x , x ')) , Nl)

{ backward image of a cond i t i on (i . e . i f then e l s e s ta tement) }
backward_image(y, i f C{x) then Nl e l s e N2) =

C A backward_image(Y, Nl) v -iC A backward_image(Y, N2)

{ backward image of a d i s j u n c t i o n }
backward_image(Y, Nl v ... v Nn) =

backward_image(Y, Nl) v ... v backward_image(Y, Nn)

{ backward image i s g e n e r a l l y def ined as }
backward_image(Y, N{x ,x ')) = 3 x ' . (Y (x ') A N (X , X '))

EU expressions are evaluated by performing a l ea s t fixpoint

computation by repeatedly using the EX computation procedure

u n t i l a fixed value i s reached:

CHAPTER 4 . IMPLEMENTATION 68

bdd_eu(f ,g ,nex t) : :=
Zl := F a l s e ;
do

Z := Z l ;

Z l := g V (f A E X Z) ;
u n t i l Z = Z l ;

EG expressions are evaluated by performing a fixpoint

computation by repeatedly using the EX procedure until a fixed

value is reached:

bdd_eg(f,next) ::=
Zl := True;
do

Z := Zl;
Zl := f A EXZ

until Z = Zl

The other CTL operators are evaluated by using the duality

properties to express them in terms of the three operators

above:

EFf = E[True U g]

AXf = -lEX-if
A[f U g] = -,E[-,g U (-if A -,g)] A -,EG-.g
AGf = -,EF-.f
AFf = -,EG-if

Further enhancements were made to these routines to support

fairness constraints. The computation of the EG operator was

modified to replace z := f A EXZ with the following where Cl

through Cn are the fairness constraints:

Zl := f A EX(E[Z U (Z A Cl)] A ... A EX(E[Z U (Z A Cn)])

CHAPTER 4. IMPLEMENTATION 69

Note the EU expressions within this assignment statement are

evaluated without using the fairness constraints. This would

result in an infinite loop computing fairness constraints.

The EX and EU operators are evaluated as follows under

fairness constraints where Fair = EG True. Fair is evaluated with

fairness constraints and the two expressions below for the EX

and EU operators are evaluated using the procedure without

fairness constraints.

EXf : EX(f A Fair)
E[f U g] : E[f U (g A F a i r)]

4 . 5 . Improvement t o Ever p r i n t i n g o f p r o p o s i t i o n s

The o r ig ina l version of Ever pr in ted proposi t ions without

any symbolic names for referenced va r i ab l e s . An improvement was

made to have meaningful names p r in ted . This improvement grea t ly

eases reading and in t e rp re t ing r e s u l t s from the v e r i f i e r .

Figures 6 and 7 i l l u s t r a t e the difference between the old and

new vers ions.^

^The printsop command p r i n t s a BDD r e s u l t as a sum of p roduc t s (d i s junc t ion
of c o n j u n c t i o n s) .

CHAPTER 4. IMPLEMENTATION 70

1% ever
Limited memory recycling for debugging is ON
memory cycle length: 10000
added overhead: 160000 bytes
set/reset by defining BDD_MEMORY_DEBUG in bdd.h to 1/0

Command> defvar p (bits 1);
Command> defvar x (bits 3);
Command> printprop (eq p^c 1);
(:301024:2:1)
Command> printsop (eq p^c 1);
(:301024:2:1)
Command> printprop (eq x^c 6);
! (: 3 0 2 3 8 4 : 5 : 4

[1]
! (: 3 0 3 9 3 6 : 8 : 7

(:301504:11:10)
[0]))

Command> printsop (eq x^c 6) ;
! (:302384:5:4

[1]
!(:303936:8:7

(:301504:11:10)
[0]))

Command> end;
2%

Figure 6. Demonstration of Ever without proposition printing
improvement

CHAPTER 4. IMPLEMENTATION 71

1% ever
Limited memory recycling for debugging is ON
memory cycle length: 10000
added overhead: 160000 bytes
set/reset by defining BDD_MEMORY_DEBUG in bdd.h to 1/0

Command> defvar p (bits 1);
Coitimand> defvar x (bits 3);
Command> printprop (eg p^c 1);
(P'c)
Command> printsop (eq p^c 1) ;
p'̂ c +
Command> printprop (eg x^c 6);
!(x.bitO^c

[1]
! (x.bitl'̂ c

(x.bit2'"c)
[0]))

Command> printsop (eg x^c 6);
Ix.bitO'̂ c & x.bitl'̂ c & x.bit2'̂ c +
Command> end;
2%

Figure 7. Demonstration of Ever with proposition printing
improvement

Brace's BDD package [BRB90] provides a capability to store

user defined information with each bit variable. A data

structure was defined to refer back to the original definition

of the variable in a way so that a meaningful name can be

printed for all variables references including array elements

and record fields.

4.6. Addition of Ever deffreev^ar command

The deffreevar command allows one to define a variable which

will not be assumed to have its value remain stable from one

time unit to the next when no other assumption is specified.

CHAPTER 4. IMPLEMENTATION 72

The becomes Ever proposition operator normally generates a

proposition saying that the specified destination variable shall

hold the value of the given expression in the next time unit and

that all other variables shall remain stable. The deffreevar

command excludes its variables from the set of variables to

remain stable in becomes propositions.

This command was necessary to model a non-deterministic

(i.e. not predetermined by model) sequence of input data being

sent by a sending module when verifying the alternating bit

protocol. In other words, this command allowed the verification

of the alternating bit protocol to reason about all possible

input data sequences.

Figure 8 illustrates the effect of the deffreevar command.

Note, the printsop command prints a proposition as a sum of

products. The becomes expressions for assigning the value 0 to

variable p does not require the variable g to remain stable

because g is defined to be free.

1% ever
Limited memory r e c y c l i n g for debugging i s ON

memory cyc l e l e n g t h : 10000
added overhead: 160000 by tes
s e t / r e s e t by de f in ing BDD_MEMORY_DEBUG i n bdd.h t o 1/0

Command> defvar p (bits 1);
Command> deffreevar q (bits 1);
Command> printsop (becomes p^n 0);
!p''n +
Command> printsop (becomes q^n 0);
p'^c & p'^n & Iq'^n +
Ip'-c & ip'^n & Iq-^n +
Command> end;
2%

Figure 8. Demonstrat ion of new de f f r eeva r Ever command

CHAPTER 4 • IMPLEMENTATION 21

4.7. Addition of setdefaultnextstate command

All the CTL temporal operators in Ever when originally-

implemented required a nextstate relation to be explicitly-

specified. This command was added to provide a notational

convenience for the user. With this new command, when no

nextstate relation is specified with a CTL operator, the default

is assumed.

The implementation of the fairness constraints support was

done in such a way as to only work correctly when the default

nextstate relation is used. The value of Fair=EGTrue is stored

with the value of the default nextstate relation. Fair=EGTrue

is evaluated when the first temporal expression requiring its

value is evaluated.

4.8. Temporal logic to Nextstate relation translation
algorithm

A strategy for carrying out incremental verification was

attempted that combines model checking and tableau construction

techniques. From a few simple experiments, we concluded that

this approach is infeasible because the complexity of the

tableau construction algorithm is exponential and formulae to

express simple properties are surprisingly large. The strategy

and algorithms are briefly described below.

The tableau construction algorithm [CE81] is used to

translate a CTL formula describing the behaviour of the

CHAPTER 4. IMPLEMENTATION H

environment surrounding the Estelle.Y modules (being verified)

into a tableau representation. Clarke and Emerson describe a

method [CE81] to derive a model from the constructed tableau.

However, we need to produce a non-deterministic finite state

machine representing all possible models satisfying the property

defined by the input CTL temporal logic foinnula. The tableau is

translated into a non-deterministic finite state machine with an

extension made to the tableau algorithm. This machine is

transformed into a nextstate relation.

The Estelle.Y modules are translated into Ever code with the

estelle2ever translator. A non-deterministic finite state

machine for all the Estelle.Y modules is produced.

A global nextstate relation is defined as the conjunction of

all the nextstate relations for the environment behaviour and

the Estelle.Y modules' behaviour. Conjunction is used to model

the parallel execution of all the components.

Disjunction could not be used because it would include

invalid behaviours. The tableau produces a graph representing

all possible behaviours of a given formula. The problem is that

the tableau has no notion of input variables and includes

behaviours that are contradictory with other modules' outputs.

A conjunction of the nextstate relations of all the components

cancels out contradictory behaviours. If a disjunction could be

used, the model checking would use far less memory because the

CHAPTER 4. IMPLEMENTATION 75

partitioned nextstate evaluation techniques in Ever could be

used. See section 4.4 above.

This global nextstate relation is then passed to the model

checker to check properties of the global system.

Clarke and Emerson's tableau construction algorithm for CTL

formulae [CE81] was implemented to experiment with this

strategy.

A new algorithm was developed to produce a non-deterministic

state machine representing all possible behaviours of the input

CTL formula from the tableau constructed by the tableau

algorithm.

4.9. Summary

Before presenting the Estelle.Y to Ever translator

algorithm, the syntax and semantics of the Estelle.Y and Ever

languages were reviewed. Then the conventions about how a

number of Estelle.Y modules are represented in the Ever language

were explained before describing the translation algorithm

itself.

The Ever verifier was extended to support CTL model checking

with fairness constraints. In the process of integrating the

symbolic model checking algorithms, discussed in chapter 3, into

the verifier, a few new commands and features were added to

support the model checking.

Chapter 5: Experiments and results

In this chapter the tools developed in the previous

chapters are applied to the alternating bit protocol. Section

5.1. explains the strategy used to verify the control structure

of the protocol. It proposes to prove the correctness of the

protocol by showing that a number of internal properties are

true and giving an argument as to why the protocol is correct

when these internal properties are true. Further properties

are specified to show that the protocol is valid for all data

packet sizes.

Section 5.2 discusses the results of the verification. The

main result is that all the formulae verified to be tautologies

and that they evaluated in finite time and memory. A method

for producing counterexample traces is proposed and

demonstrated with an example from the alternating bit protocol.

5.1. Verifying the Alternating Bit Protocol

The alternating bit protocol is a classical protocol for

providing a reliable flow of messages from a sending process to

a receiving process over an unreliable channel that may delay,

(repeat) and lose messages (but not reorder the sequence of

messages on the channel).

76

CHAPTER 5. EXPERIMENTS AND RESULTS 77

Its Estelle [IS089] specification was manually translated

into Estelle.Y and ASN.l (listed in Appendices 1 and 2). The

modular decomposition of this specification is illustrated in

Figure 9.

Sending User

ABP Sender Module

Receiving User

ABP Receiving Module

Unreliable link

Figure 9. Modular Decomposition of Alternating Bit Protocol
Specification

The following assumptions were made during the translation

from Estelle. The data contained in each message is a single

bit. This choice was made to minimize the size of the BDD

produced during verification. We argue that this data size is

sufficient for proving properties of the control structure of

the protocol. We assume that the underlying unreliable link

drops packets that are corrupted by noise on the channel.

CHAPTER 5. EXPERIMENTS AND RESULTS

The interaction queues of the Estelle.Y modules only have

sufficient capacity for holding one request at a time. Under

the assumption that the users of the protocol module obey an

interface protocol (i.e. never fail to respond to interactions

delivered to the interfaces in an appropriate manner), we show

that the ABP protocol provides a reliable service.

It is not sufficient to give the model checker only a

specification of the protocol modules behaviour. Since the

model checker needs a description of a whole system, we must

add information about the behaviour of the user modules and the

underlying data link.

We specified all the possible behaviours of the user

modules in the simplest way possible to minimize the complexity

of the system given to the model checker. For the sending

user, we specify two possible actions:

1. Whenever the send queue to ABP sending module is

empty, the user may add a random data send request to

the queue.

2. Whenever a SendConfirm interaction is in the queue

from the ABP sending module, the sending user may

dequeue this interaction.

For the receiving user, we specify two possible actions:

1. Whenever the request queue to the receiving ABP

module is empty, the receiving user may submit a

ReceiveRequest interaction to the queue.

CHAPTER 5. EXPERIMENTS AND RESULTS 79

2. Whenever a ReceiveResponse interaction is in the

queue from the receiving ABP module, the receiving

user may dequeue this interaction (i.e. receive the

data originally sent by the sending user).

We model the behaviour of the underlying data link by just

tying the lower interaction points of the ABP modules directly

together when translating the Estelle.Y specification into Ever

code. This is shown in Figure 10. This is sufficient for

modelling a system with a reliable underlying link.

ABP Sender

"TTs"
out

ABP Receiver

n

"7K"
out

Figure 10. Alternating Bit Protocol module configuration
for modelling reliable underlying link and modelling unreliable

link that can only lose data packets

For an unreliable link that only may lose data but not

duplicate data or reorder data, (from an Ever specification

with an 2 element NAccessPoint array) , we add more possible

behaviours to describe the underlying link:

1. At any time, when there is an interaction from one

ABP module to the other, the unreliable link may

remove the interaction from the queue before it is

seen by the peer ABP module.

CHAPTER 5. EXPERIMENTS AND RESULTS 80

See predicates user_next and unrellable_link_next in Appendix 4

for code that defines these actions of the environment.

From a version of Ever code produced without explicitly

tying the NAccessPoint interaction points of the two ABP

modules (Figure 11), more properties of an unreliable link can

be modelled, namely delay, data duplication and data loss. An

extra interaction queue is used between the pair of ABP modules

in each direction as illustrated in the following diagram.

ABP Sender

h out

/ \

NT
A.

q u e u e

ABP Receiver

i i out

/ \

C-^
queue

Figure 11. Alternating Bit Protocol module configuration
for modelling unreliable underlying link that can lose,
duplicate and repeat packets but not reorder packets

To do this we add the following possible behaviours to the

actions of the underlying link:

1. Whenever one of the intermediate queues is full and

the queue of the ABP module downstream is empty, the

unreliable link may transfer the data from the

intermediate queue to the next one downstream (i.e.

complete a reliable transfer of a data packet), or

CHAPTER 5. EXPERIMENTS AND RESULTS

duplicate the data in the intermediate queue and

place the duplicate in the next queue downstream

(i.e. duplicate the data packet in transit).

2. Whenever one of the intermediate queues is full, the

unreliable link may dequeue the data in the queue

(i.e. model data loss).

Next we must specify a set of assumptions to restrict the

set of possible behaviours to be considered by the model

checker. We wish it to consider only fair executions, i.e.

ones where the sending user regularly sends data, the receiving

user regularly receives data, the unreliable link regularly

transfers data (i.e. does not stay disconnected forever), and

the timer clock ticks regularly. All these assumptions are

specified as fairness constraints.

To prove the specification always delivers messages to the

receiver in the same order as they are submitted, we prove

properties about the ordering of various internal events of the

specification. We will show that this applies to all sizes of

data packets.

First, let us define the events used in the formulae that

we are going to verify. Note an abbreviated form analogous to

a WITH statement in the Pascal programming language is used in

the formulae given with these events.

USend(x) : true when a SENDrequest has been submitted

by the sending user and is awaiting processing by the

CHAPTER 5. EXPERIMENTS AND RESULTS 82

ABP send module and the datum value of this request is

X. The formula for this is:

UAccessPoint_ out[0]. (queued = 7 A content[0]. kind = 0A
SENDrequest. udata = x)

USendConfirm(): true when a SENDconfirm has been submitted

by the ABP sender module and is awaiting processing by

the sending user. The formula is:

UAccessPoint_ outfOJ. (queued = 7 A content[0]. kind = 1)

ASend(x,s): true when data packet containing datum

value X and sequence number s has been submitted for

transmission by the ABP sender module and is awaiting

transfer over the underlying link. The formula (for the

case with a reliable underlying link) is

NAccessPointflJ. (queued = i A
content [0]. DATAinteraction. ndata. (id = 0A conn = 0A

data = XA seq = s))

ASendNothing() : true when ABP sender module has no request

to transmit a packet over underlying link pending.

NAccessPointfl]. queued = 0

ARcv(x,s): true when a data packet containing datum

value X and sequence number s is delivered to the ABP

receiver module by the underlying link and has not yet

CHAPTER 5. EXPERIMENTS AND RESULTS 81

been processed by the ABP receiver module. The formula

is the same as ASend(x,s), namely:

NAccessPointfl]. (queued = i A
content[0].DATAinteraction.ndata.(id = 0 A conn = 0

data = x A seq = s))

Note this formula is not accurate in the model of a

unreliable link without two extra queues (first diagram

above) because data loss can be modelled by removing an

interaction in this queue after it has arrived in the

receive queue of the ABP receive module. However this

inaccuracy does not cause inaccuracies in the

verification done below because the verified formulae

specify that the interaction must stay in the queue

until the ABP receiver module dequeues it. This formula

would be a completely accurate representation of the

ARcv event in the model with two extra queues in the

data link (second diagram above).

ARcvNothing(): true when there is no packet pending

receipt by the ABP receiver module in its queue from the

underlying link:

NAccessPoint[l]. queued = 0

AAcksend(s) : true when the ABP receiver module has

submitted a request to transmit an acknowledgement

CHAPTER 5. EXPERIMENTS AND RESULTS 84

packet containing sequence number s. The formula for

this is:

NAccessPoint[0]. (queued = 1 A
content[0]. DATAinteraction. ndata. (id = 7 A conn = 0 A seq = s))

AAckrcv(s): true when an acknowledgement packet

containing sequence number s has been delivered to the

ABP sender module by the underlying link. Note this

formula is inaccurate for the simpler unreliable link

model in the same way as ARcv(x,s). The formula is:

NAccessPoint[0]. (queued = 1 A
content[0]. DATAinteraction. ndata. (id = 1 A conn = 0 A seq-s))

URcv{x): true when a RECEIVEresponse interaction

containing datum value x has been submitted by the ABP

receiver module and has not been processed by the

receiving user module. The formula is:

UAccessPoint_ out[l]. (queued = 1 A
content[0]. (kind = 0 A RECEIVEresponse. udata = x))

URcvreq(): true when a RECEIVErequest has been

submitted by the receiving user and is awaiting

processing by the ABP receive module. The formula is:

UAccessPoint_ in[l]. (queued = 1 A content[0]. kind = 1)

Our goal is to show that this specification of the ABP

protocol has the following properties when certain assumptions

of its environment are made. We want to show that when the

CHAPTER 5. EXPERIMENTS AND RESULTS

user sends two requests, the receiving user will receive the

same two requests in the same order. The assumption of the

environment that must be made is that the underlying link is

connected sufficiently often for long enough to transfer a data

packet reliably.

The ideal formula to prove is of the form:

V;c, y.AG(USend(x) A nextUSend(y) •=> AF(URcv(x) A nextURcv(y)))

A weaker form of this formula, namely

VA:, y. AG (send(x) A nextsend (y) =) EF(rcv(x) A nextrcv(y)))

was model checked. Unfortunately, one can only show directly

this weaker liveness property. It states that if there exists

a computation path such that the user sends two requests then

there exists a computation such that those same two requests

will be later received. The problem with this statement is

that the two messages received can be a consequence of

different send requests from the ones intended because it is

assumed that the sending user keeps sending random data send

requests.

The problem with checking the stronger liveness property is

that the antecedent (containing universal quantification

operators) is never true in the model of the system. It is

false because the ABP Ever specification has too much non-

determinism. It is never possible to write a formula to be

true on all execution paths in this model that states that a

given pair of send data requests are sent by the sending user.

CHAPTER 5. EXPERIMENTS AND RESULTS 86

This is not possible because the specification of the sending

user's data is non-deterministic. Since this antecedent is

false, the implication would be true for the wrong reason.

A considered solution was to change the actions of the

sending user to always know the next two data values to be

sent. But this idea is unnatural and unrealistic.

This type of problem may not have occurred if theorem

proving was being used. In theorem proving, one states a set

of assumptions and attempts to derive the goal from the

assumptions using axioms and inference rules. In model

checking, one cannot state an assumption about the behaviour of

the model and ignore all its other behaviours because all

formulae are evaluated using the model's nextstate relation.

In the problem at hand, the assumptions correspond to the

proposition "when the sending user sends a particular pair of

data requests". The goal corresponds to the proposition "an

identical pair of data requests will be later delivered to the

receiving user".

Therefore, one has to verify the protocol a piece at a time

and use logical reasoning to tie all the pieces' results

together to make an overall conclusion. This approach is

applied to the alternating bit protocol below.

For each send data request usend(x) from the sending user,

the sender (i.e. ABP sender module) will repeatedly send a data

CHAPTER 5 . EXPERIMENTS AND RESULTS 87

p a c k e t f o r t h e c u r r e n t s e q u e n c e number Send_seq u n t i l an

acknowledgement f o r i t i s r e c e i v e d a t which t i m e i t i s r e a d y t o

p r o c e s s t h e n e x t s e n d d a t a r e q u e s t . The s e n d e r w i l l be i n t h e

ESTAB s t a t e o n l y when i t i s n o t a w a i t i n g r e c e i p t of an

a c k n o w l e d g e m e n t . The s e n d e r module w i l l o n l y a c c e p t a d a t a

s e n d r e q u e s t from t h e u s e r w h i l e i n t h e ESTAB s t a t e .

When t h e ABP r e c e i v e r module i s r e a d y t o r e c e i v e a new d a t a

p a c k e t (i . e . when Recv_buffer_empty=TRUE),

1 . an acknowledgement i s s e n t f o r e a c h d a t a p a c k e t t h a t

i s r e c e i v e d .

2 . when a d a t a p a c k e t c o n t a i n i n g s e q u e n c e number e q u a l

t o Recv_seq i s r e c e i v e d , i t i s p a s s e d o n t o t h e

r e c e i v i n g u s e r and Recv_seq i s i n c r e m e n t e d .

When t h e ABP r e c e i v e r module i s n o t r e a d y t o r e c e i v e a new d a t a

p a c k e t (i . e . when Recv_buffer__empty=FALSE), r e c e i v e d d a t a

p a c k e t s a r e d e q u e u e d and no acknowledgement s a r e s e n t ^ .

The s e n d i n g u s e r r e p e a t e d l y a l t e r n a t e l y s e n d s a random d a t a

r e q u e s t t o t h e ABP s e n d i n g modu le , and w a i t s f o r a SENDconfirm

r e s p o n s e from t h e ABP s e n d i n g m o d u l e . Some of t h e s p e c i f i e d

f a i r n e s s c o n s t r a i n t s e n s u r e t h a t o n l y c a s e s of d a t a b e i n g s e n t

i n f i n i t e l y o f t e n a r e c o n s i d e r e d .

^Only the l a t e s t version of the Estelle.Y a l t e rna t ing b i t protocol
specif icat ion does have t h i s properly. The or iginal version derived from
the ISO Es te l le specif icat ion [IS089] loaded each received data packet into
the current buffer even when the previous request had not been received by
the user .

CHAPTER 5. EXPERIMENTS AND RESULTS 88

The receiving user repeatedly alternately requests to

receive a data packet from the ABP receiving module, and

receives a data packet. Some of the fairness constraints

ensure that only cases of the receiving user's behaviour where

data is infinitely often requested are considered.

With all the formulae given below, we show that they are

consequences of the initial state of the whole system. Namely,

for each formula / below we want to show that initial_state zif is a

tautology. The following abbreviations are used:

Abbrevi at i on
s t a t e
Send_buf fer_empty
Send_buffer_seq
Send_bu f f er_dattun
Send_seq

Full Ever var iable name
a b p [0] . s t a t e
abp[0] .vara .Send_buffer_empty
abp[0] .vars .Send_buf fe r_seq
abp [0] . v a r s . Send_buf fer_datiim
abp[0] .va r s .Send_seg

Table 13. List of Abbreviations used in formulae describing
properties of alternating bit protocol

Noted with each formula is the name which is used in the Ever

command file listed in Appendix 4.

First, to show that the sending module is only in the ESTAB

state when it is not busy sending a data packet, verify

AGiistate = ESTAB) =) ASendNothingO)

Formula ag_state_eq_ESTAB_iinplies_ASendNothing

CHAPTER 5. EXPERIMENTS AND RESULTS 89

We also claim that the ABP send module holds a data packet

in an internal buffer only while in the ACK_WAIT state,

AGi(state= ACK _WAIT) = {Send_buffer_empty = FALSE)).

Formula ag_send_buffer_empty_equiv_estab_state

While the send buffer is full, (i.e. while in ACK_WAIT

state), the sequence number of the packet being retransmitted

is equal to Send_seq,

AG(—iSend_buffer_empty z> {Send_buffer_seq = Send_seq)) .

Formula ag_not_Send_buffer_empty_implies_Send_buffer_seq_eq_Send_seq

The ABP sender module is always in the ESTAB state or the

ACK_WAIT state,

AG ((state = ESTAB) v (state = ACK _ WAIT))

Formula ag_state_estab_or_ackwait

We claim that the ABP sender module never deadlocks under

the specified fairness constraints,

AG (AF (state = ESTAB) A AF (state = ACK _WAIT))

Formula ag_af_state_ESTAB_and_af_state_ACKWAIT

CHAPTER 5. EXPERIMENTS AND RESULTS 9j0

If a send data request is submitted while in the ACK_WAIT

state (i.e. while processing a previous request), it will

remain in the request queue until at least the time at which

the state returns to ESTAB.

yx.AG(USend(x) A (state = ACK_ WAIT) =>

A[USend(x) U {USend(x) A (state = ESTAB))])

Formula forall_x_one_send_request_at_a_time

In other words, the request is not processed while in the

ACK_WAIT state; it is held in the queue until the state returns

to ESTAB. When a request is in the queue while in the ESTAB

state, a corresponding packet will be repeatedly transmitted

until an acknowledgement is received.

\/x. AG((state = ESTAB) =) A[(ASendNothing() A (state = ESTAB)) U
A[((ASendNothing() v ASend(x, Send_ seq)) A

(state ==ACK_WAIT))U
(state = ESTAB)]])

Formula forall_x_repeat_transimt_packet

When an acknowledgement is received for current sequence

number while in ACK_WAIT state, the state will be eventually

returned to ESTAB and the current sequence number will be

incremented.

Vi', X. AG(((state = ESTAB) A(S = Send_ seq) A
AAckRcv(s) A(X = Send_ buffer _ datum)) 3

A[(ASend(x,s)\/ ASendNothingO) U
((state = ESTAB) A (Send_ seq = (s +1)))])

Formula foralI_x_s_ack_rcvd_leads_to_incr_seq_num_and_estab

CHAPTER 5 • EXPERIMENTS AND RESULTS 91

In each cycle of the sending ABP module going from state

ESTAB, ACK_WAIT and back to ESTAB, only the following events

occur over the underlying link.

yx,s. AG{{USend{x) A {state = ESTAB) A(S = Send_seq)) =>
A[i(ASend_ NothingO v AAckRcvis -1)) A (state = ESTAB)) U

A[(ASend(x, s) v ASendNothingO v ARcvNothingO v
ARcv{x,s)v AAckSend(x)v AAckRcv(s)) U

({state = ESTAB) A (Send_ seq = (s +1)))]]

Formula forall_x_s_send_cycle2

We h a v e a l r e a d y shown t h a t e x a c t l y one s e n d r e q u e s t from

t h e u s e r c o r r e s p o n d s t o e a c h ESTAB->ACK_WAIT->ESTAB s t a t e

c y c l e . However, we have n o t shown t h a t t h e Send_seq v a r i a b l e

i s i n c r e m e n t e d e x a c t l y once f o r e a c h main s t a t e c y c l e . T h i s i s

i n c l u d e d i n t h e d i s c u s s i o n b e l o w .

Now, we show t h a t e ach s e n d r e q u e s t from t h e u s e r

c o r r e s p o n d s t o e x a c t l y one r e c e i v e r e q u e s t a t t h e o t h e r end .

T h i s i s done i n f o u r s t e p s from t h e s e n d i n g u s e r t h r o u g h t h e

u n d e r l y i n g l i n k o n t o t h e r e c e i v i n g u s e r a t t h e o t h e r end .

F i r s t , we show t h a t t h e v a r i a b l e Send_buffer_datum i s f i l l e d

and e m p t i e d o n c e f o r e a c h s e n d d a t a r e q u e s t . Second , we show

t h a t t h e s e n d s e q u e n c e number v a r i a b l e Send_seq i s i n c r e m e n t e d

e x a c t l y once f o r e a c h t i m e t h e send b u f f e r i s f i l l e d and

e m p t i e d . T h i r d , we show t h a t t h e r e c e i v e s e q u e n c e number

^Previous send data packet may be retransmitted af ter an acknowledgement for
i t has been received if i t was sent to the underlying l ink before the
acknowledgement was received and was s t i l l pending servicing by the
underlying l ink when the acknowledgement was processed.

CHAPTER 5 • EXPERIMENTS AND RE.SULTS 92

i?ecv_seg is incremented exactly once for each time the receive

buffer is filled and emptied in the ABP receiver module. Also

we show that the send sequence number is always equal to the

receive sequence number at the instant that the receive buffer

is filled. This shows that the send and receive sequence

number match provided they match initially. Fourth, we show

that there is exactly one receive request from the user for

each time the receive buffer is filled and emptied.

In the ABP sender module, the send data buffer is always

filled at exactly the same instant that the user's request is

dequeued from the input interaction queue at PCO NAccessPoint.

(This corresponds to the action of transition 1 in the

Estelle.Y specification.) The times at which the next user

request is enqueued in the NAccessPoint PCO and at which the

send data buffer is emptied can be anytime before the next user

request is dequeued. The possible behaviours are illustrated

in Figure 13.

CHAPTER 5. EXPERIMENTS AND RESULTS 93

not (USenc3Nothing)

Send_buffer_einpty

T

XJ
OR ;

I -U-Tl

A B C D A B C D

BEtants:

A: user recjuest cSequeued and send data buffer filled.

B: either send data buffer emptied or another user recjuest enqueued.

C: event opposite to that which occuced at B.

D: start of new cycle, next user request dequeued and send buffer filled.

Irtenals;

A-B: \jser request in buffer waiting for an ack. and no new user request yet.

B-C: either previous user request processed (ack received) and waiting for
next user reguest or

next user request pending and s t i l l waiting for ack for previous xjser reguest.

C-D: next user request pending and previous request processed.

Figure 12. In te rva l between successive user send requests
in Al ternat ing Bit Protocol

Now the formula usend_matches_send_buffer_fill says tha t

whenever the re i s a user send request pending, the following

sequence of events must occur:

1 There may ex i s t an in t e rva l of time from now to a

point in the future such tha t the user request

remains pending and the send buffer i s f u l l . The

length of t h i s in t e rva l can be zero.

2 There must be an in t e rva l of length of a t l eas t one

time uni t through which the user request s t i l l

file:///jser

CHAPTER 5. EXPERIMENTS AND RESULTS 94

remains pending and the send buffer is empty. This

corresponds to the interval before A in Figure 13.

3 There must exist an interval from A to B of length of

at least one time unit in which there is no pending

user request and the send data buffer is full.

4 There may exist an interval between B and C (length

zero or more) in which there is no new user request

pending and the send buffer is empty (present request

processed) or a new user request is pending and send

buffer is still full (present request still being

processed) .

5 Finally there must be an interval from C to D of at

least one time unit in length in which a new user

request is pending and the send buffer is empty. In

this interval the previous request has been

completely processed and is waiting to process the

next request (already pending). Immediately

following this interval at D, there must be an

instant at which the new user request has been

dequeued and the send buffer is full.

CHAPTER 5 . EXPERIMENTS AND RESULTS 95

The formula specifying tha t t h i s sequence must occur i s :^

AG(-,USendNothingO =>
A[—\USendNothingO A —Send_ buffer_ empty U

{-lUSendNothingO A Send_ buffer_ empty A
A[—iUSendNothingO A Send_ buffer_empty U

(USendNothingO A -Send_ buffer_ empty A
A[USendNothingO A -Send_ buffer_empty U

A[(USendNothmg() A Send_ buffer_empty v
-dJSendNothingO A -xSend_ buffer_ empty) U
(—lUSendNothingO A Send_buffer_empty A
A{-~iUSendNothingQ A Send_buffer_empty U

(USendNothingO A -nSend_ buffer _ empty)])]])])])

Formula usend_matches_send_buffer_fill

The send sequence number variable, Send_seq, always

contains the sequence number of the current data packet. While

in the ESTAB state, this number is the sequence number that

will be assigned to the next send data request received from

the sending user. While in the ACK_WAIT state, this number is

the sequence number of the data packet currently being

retransmitted. Formula send_buffer_fill_sequence below

specifies that this sequence number must remain constant

throughout the send cycle except at the instant when a

corresponding acknowledgement is received and the send buffer

in the ABP sender module is emptied. In Figure 13, point B is

the time at which this sequence number is incremented (i.e.

when the Send_buffer_empty variable becomes true).

^Note USenc3Nothing is equivalent to 3x.USend(x)

CHAPTER 5 . EXPERIMENTS AND RESULTS 16

AG{Send_ buffer _ empty •=>
3s.A[Send_buffer_empty U

(—Send_ buffer_ empty A (Send_ seq = 5) A
A[—iSend_ buffer_ empty A {Send_ seq = s) U

(Send_ buffer_ empty A (Send_ seq = is +1)) A
A[(Send_ buffer_ empty A {Send_ seq = {s +1))) U

{—Send_ buffer_ empty A (Serui_ seq = (s +1)))])])])

Formula send_buffer_fill_matches_seq_nuinber

The r e c e i v e s e q u e n c e number v a r i a b l e i n t h e ABP r e c e i v e r

modu le , Recv__seq, a l w a y s c o n t a i n s t h e s e q u e n c e number of t h e

n e x t e x p e c t e d d a t a p a c k e t t o be r e c e i v e d . Whenever a d a t a

p a c k e t w i t h t h i s s e q u e n c e number i s r e c e i v e d and t h e r e c e i v e

b u f f e r i s empty , a s i n d i c a t e d by t h e v a r i a b l e

Recv_buffer_empty, t h e datum from t h e p a c k e t i s l o a d e d i n t o

Recv_buffer_datum and t h e r e c e i v e s e q u e n c e number i s

i n c r e m e n t e d . At a l l o t h e r t i m e s t h r o u g h o u t t h e r e c e i v e c y c l e ,

t h e r e c e i v e s e q u e n c e v a r i a b l e r e m a i n s c o n s t a n t . Formula

receive_huf_filled_matches_seq_no s p e c i f i e s t h i s p r o p e r t y .

AG{Recv_ buffer _ empty 3
3s.A[Recv_buffer_empty U

{—\Recv_ buffer_ empty A {Recv_ seq = S)A
A[(-Ti?ecv_ buffer_ empty A (Recv_ seq = s)) U

(Recv_ buffer_ empty A
A[{Recv_, buffer_ empty A (Recv_ seq = s)) U

{—Recv_ buffer_ empty A (Recv_ seq = (s +1))])])])

Formula receive_buf_filled_matches_seq_no

In the ABP receiver module, the receive buffer,

Recv_buffer_datum, is always emptied at exactly the same

instant the received datum is enqueued into the interaction

file://{�/Recv_

CHAPTER 5. EXPERIMENTS AND RESULTS 97

queue to the receive user. Each receive cycle starts at this

instant and is followed by the following intervals:

1. a period of at least one time unit in which the

received datum is still pending receipt by the user

and the receive buffer in the ABP receiver module is

empty.

2. a (optional) period of any length in which either the

received datum is still awaiting dequeuing by the

user and the receive buffer has been filled, or the

received datum has been dequeued and the receive

buffer is still empty awaiting the next data packet,

3. a period of at least one time unit in which the user

interaction queue is empty (ready for delivery of the

next data packet) and the receive buffer is full

(i.e. the next data packet has already been

received).

These intervals are illustrated in Figure 13.

CHAPTER 5. EXPERIMENTS AND RESULTS 98

not(URcvNothing)

Recv_buffer_empty

J

J-1
OR

r J

r

IS

A B C A B C D

Instants:

A: received data is delivered to i;iser and receive buffer is etrptied.

B: either another data packet is received or user has dequeued
previous data interaction

C: event opposite to that vMch occurred at B-

D: start of new cycle, next received data packet is delivered to user and
receive buffer is arptied

MiBcvals;

A-B: received data packet in user in terac t ion quaie and waiting for
next data packet frcm underlying l ink.

B-C: e i ther received packet s t i l l poiding receipt t y laser and next
da ta packet received or
user dequeued received packet and s t i l l waiting for next
data packet frati underlying l ink.

C-D: user reac^ for del ivery of next data packet and next data packet
already received frcm underlying l ink.

Figure 13. In te rva l between successive user receive
requests in Al ternat ing Bit Protocol

CHAPTER 5 . EXPERIMENTS AND RESULTS 99

AGiURcvNothing 3
A[(URcvNothing A Recv_ buffer_ empty) U

{URcvNothing A —iRecv_buffer_ empty A
A[(URcvNothing A -iRecv_ buffer_ empty) U

(—yURcvNothing A Recv_ buffer_ empty A
A[(-^URcvNothing A Recv_ buffer_ empty) U

A[i{URcvNothing A i?ecv_ buffer _ empty) v
{—URcvNothing A -nRecv_ buffer_ empty)) U
(URcvNothing A -T/?ecv_ buffer_ empty A
A[(URcvNothing A -i/?ecv_buffer_ empty) U

{—JJRcvNothing A /?ecv_ buffer _ empty)])]])])])

Formula urcv_matches_recv_buff_fill

We have shown that each of the four phases above always

corresponds to a single send data request. Now to show that

the control structure of the protocol is correct for any packet

data size, we must show that the data in a send data request is

always preserved from the time the request is submitted to the

time it is received by the receiving user. This is specified

in formula forall_x_data_preserved. It says that whenever a

send request is submitted by the sending user, the following

series of intervals illustrated in Figure 14 must occur:

1. An optional interval in which ABP sender state is

ACK_WAIT and user's send request is still pending

servicing. This interval only occurs when the user's

send request is submitted while the ABP sender module

is processing a previous request. This interval

corresponds to A-B in Figure 14.

CHAPTER 5. EXPERIMENTS AND RESULTS 100

2. An interval of at least one time unit in which the

ABP sender state is ESTAB and the user's send request

is pending servicing. This corresponds to B-C in

Figure 14.

3. An interval that must start with a time unit in which

the ABP sender state is ACK_WAIT and the user's send

request has been transferred to the send buffer

Send_buffer_datum. During this interval, the

previous and current send request packets are being

sent and received. It must end with a phase in which

the ABP receiver module receive buffer

Recv_buffer_datum is empty. This interval ends when

the ABP receiver module fills its receive buffer with

the current send data packet. This corresponds to C-

E in Figure 14.

4. This interval corresponds to the period between when

the ABP receiver's receive buffer is filled and the

time at which the data packet is delivered to the

receive user. The ABP receiver's receive buffer is

full throughout this interval. It ends with a phase

in which the interaction queue to the user is empty.

It may begin with a phase in which this interaction

queue is still filled with the previous data packet

awaiting the user to retrieve it. This corresponds

to E-G in Figure 14.

CHAPTER 5. EXPERIMENTS AND RESULTS 101

5. In the last interval, the ABP receiver's receive

buffer is empty and the received packet is in the

interaction queue to the user awaiting the user to

dequeue it. This is G-H in Figure 14,

CHAPTER 5• EXPERIMENTS AND RESULTS 102

USend(x)

state=ACK_WAIT

Send_bu f fer_empty

Recv_buf fer_empty

URcvNothing

URcv(x)

J 1

r
\ _ri r

A B D

J

F G H

liBtantis:

A: user subxdts a request to send datum x
B: ABP sender module f inished sending previous request
C: ABP sender s t a r t s processir^ current request
D: ABP r e c e i v e r ' s rece ive buffer beccmes a tp ty

(i . e . transfers previous padkd: t o user ' s interacticn queue)
E: current packet loaded into ABP rece iver ' s receive buffer
F: use r has dequeued previous packet from i n t e r a c t i o n queue
G: current packet i s loaded in to u s e r ' s in terac t icn queue
H: u se r has dequeued cur ren t packet

Bta:\als:

*A-B: use r send request stibmitted v M l e ABP sender module busy processing
previous request.

B-C: use r request suhnitted, ABP sender module id l e , waiting for ABP sender
to s t a r t poDcessing request.

*C-D: data packet being re t ransmit ted while ABP rece iver module rece ive
buffer i s full containing previous packet.

D-E: da ta packet being re t ransmit ted vdiile ABP receiver module receive
buffer i s new atpty.

*E-F: data packet received t y ABP receive module in to i t s receive buffer and
previous packet awaiting user t o dequeue i t .

F-G: d a t a packet rece ived by ABP rece ive module and
in t e rac t ion queue t o user arpty .

G-H: da ta packet loaded in to in te rac t ion queue to user ,
v\aiting for user to dequaje i t .

Intervals marked with as ter i sks xoay have zero length.

Figure 14.
send user to

Interval from time data request submitted by
time at which it is received by receive user.

CHAPTER 5. EXPERIMENTS AND RESULTS 103

AGiUSend(x) 3
A[((state = ACK_ WAIT) A USend(x)) U

{(state = ESTAB) A USendix) A
Aiiistate = ESTAB) A USend(x)) U

((state = ACK_ WAIT) A USendNothing A (Send_bujfer_ datum = X)A
A[((state = ACK_ WAIT) A -J?ecv_ buffer_ empty A

(ASendNothing v ASend(x, Send_seq) v 3y.ASend(y, Send_seq -1))) U
(Recv_ buffer_ empty A (ARcvNothing v ARcv(jc, Send_ seq) v

By. ARcv(y, Send_ seq -1)) A
A[(Recv_buffer_emptyA

(ARcvNothing v Ai?cv(A:, Send_ seq) v
3y. A/?cv(y, ̂ enflf. 5e^ -1))) U

(—iRecv_ buffer_ empty A (Recv_ buffer_ datum = X)A
A[(—tRecv_ buffer_ empty A (Recv_ buffer_ datum = X)A

3y.URcv(y))U
(-\Recv_ buffer_ empty A (Recv_ buffer_ datum = X)A
URcvNothing A
A[(—iRecv_ buffer_ empty A

(Recv_buffer_datum = X)A URcvNothing) U
(Recv_ buffer_ empty A URCV(X) A
A[URcv(x) U URcvNothing])])])])])])])

Formula forall_x_data_preserved

5.2. Results of experiments on alternating bit protocol

This section discusses the results obtained from running

the formulae in the previous section through the model checker

with the model containing an unreliable underlying link which

only delivers and loses packets. All the formulae evaluated as

tautologies confirming the truth of the corresponding

properties in the alternating bit protocol specification.

Section 5.2.1. reports figures on the time and memory

resources used to compute the formulae in the previous section.

The main result is that the system did not suffer from the

file://-/Recv_

CHAPTER 5. EXPERIMENTS AND RESULTS 104

state explosion problem. Some explanation on why the

evaluation of some formulae took longer than others is given.

Section 5.2.2. proposes a method for generating

counterexamples for some classes of CTL formulae. In section

5.2.3. this method is applied to the first formula

ag_state_eq_ESTAB_implies_ASendNothing which was originally

specified incorrectly. A corrected formula is proposed and

shown to verify as correct.

For detailed information on the verification, refer to the

appendices. The alternating bit protocol specification written

in Estelle.Y and ASN.l is given in Appendices 1 and 2,

respectively. Appendix 3 shows the Ever code produced by the

estelle2ever translator. The Ever command file for carrying

out the verification of these formulae is given in Appendix 4.

Actual output from the model checker is shown in Appendix 5.

Appendix 4 contains Ever commands for:

1. defining the actions of the user modules (sender and

receiver)

2. defining the actions of the modelled underlying

unreliable link.

3. defining the set of fairness constraints

4. defining the global nextstate relation

5. setting the default nextstate relation and fairness

constraints to be used by all formulae being verified

CHAPTER 5. EXPERIMENTS AND RESULTS 105

6. specifying and verifying properties discussed in the

previous section.

5 . 2 . 1 . Resource Usage

Table 14 gives the f igures of time and memory used to

ver i fy each of the formulae discussed in sect ion 5 . 1 . For more

de t a i l ed s t a t i s t i c s see the appendices.

Formula Name

ag_state_eq_ESTAB_implies_ASendNothing
ag_send_buffer_empty_equiv_estab_state
ag_not_Send_buffer_empty_implies_Send_buffer_seq_
eq_Send_seq
ag_state_estab_or_ackwait
ag_af_state_ESTAB_and_af_state_ACKWAIT
forall_x_one_send_request_at_a_time
forall_x_repeat_transmit_packet^
forall_x_s_ack_rcvd_leads_to_incr_seq_num_and_estab
forall_x_s_send_cycle
usend_matches_send_buffer_fill5
s end_bu f f er_f i 1 l_mat che s_s eq_nuinber
receive_buf_filled_matches_seq_no
urcv_matches_recv_buff_fill
data_preserved

CPU
time
(mins)
57:18
0:06
0:05

0:01
61:01
94:39
184:38
251:57
404:20
353:34
506:02
576:16
466:20
2412:22

Memory at
completion
(kb)
4157
4157
4157

4157
4157
4189
4189
4253
7197
4253
7133
12765
12829
24477

Table 14. CPU Time and Memory used during Ver i f ica t ion

*The t e s t was r e s t a r t e d from he re , so the accumulated CPU time f igu res for
subsequent formulae a r e h igher than i f t e s t was run a l l a t once . They could
be exagera ted by as much as the time for formula
ag_state_eg_ESTAB_implies_ASencMothing (the smal le r of
ag_state_eg_ESTAB_implies_ASendNothing and forall_x_repeat_transmit_packet)
because t e s t s ag_state_eg_ESTAB_implies_ASendNothing and
forall_x_repeat_transmit_packet inc lude t ime for computing EG True for
f a i r n e s s c o n s t r a i n t s .
Â new t e s t was s t a r t e d h e r e , so t h i s inc ludes computation of EGTrue.

CHAPTER 5. EXPERIMENTS AND RESULTS 106

The main result is that all these formulae were evaluated

in finite time and memory. All the formulae evaluated as

tautologies confirming that all the formulae are true in the

alternating bit protocol specification thus allowing the

argument given in section 4.1 to be used to prove the protocol

correct for all packet sizes.

Formulae ag_send_buffer_empty_equiv_estab_state,

ag_not_Send_buffer_empty_implies_Send_buffer_seg_eg_Send_seg

and ag_state_estab_or_ackwait took very little time because

they are safety properties. For these the model checker only

needs to check whether these properties are maintained from one

time unit to the next. These formulae are all of the form AGf.

The dual of this formulae, namely —lEF-if, is evaluated. With

fairness constraints, this is evaluated as —,EF(—if A Fair)

without using the fairness constraints where Fair was

previously evaluated as EGTrue with the fairness constraints.

This expression is evaluated as —iE[True U (-yf A Fair)] which

is computed as the least fixed point ot Z = (-if A Fair) v

EXZ. If f is a valid safety property, this fixpoint

computation will only take one iteration because by definition

a safety property is maintained from one time unit to the next.

Formula ag_af_state_ESTAB_and_af_state_ACKWAIT took far

longer than the previous formulae because it required a

complete analysis of all possible execution paths in the system

CHAPTER 5. EXPERIMENTS AND RESULTS 107

to determine whether either state can always be reached in the

future.

5.2.2. Method to generate counterexample traces

The system discussed so far implements a facility for

evaluating CTL formulae in a given model. A formula evaluates

to a Boolean characteristic function of the set of states

(combinations of all Ever variable values in current phase)

that satisfy the formula in the current time unit. Usually

during verification, one wishes to confirm that a given CTL

formula is a tautology when evaluated in the model. And if

not, one would prefer to see a trace of an execution path that

violates the formula (to assist the designer find the flaw in

the formula or the specification).

Some proposed procedures for producing counterexamples for

formulae of a few syntactic forms are described below in terms

of invoking Ever's printtrace facility.

Recall, when verifying properties of a finite state machine

based system, one is interested in considering only execution

paths that start in an initial state. Thus formulae to be

evaluated are often of the form initial__state Z) f. If the

model checker produces a tautology, one is finished.

Otherwise, one should evaluate f A initial_state to see if f

is satisfiable in the model (i.e. true in any of the initial

states).

CHAPTER 5. EXPERIMENTS AND RESULTS 108

Let nextstate denote the nextstate relation of the finite

state machine. Recall, the parameters for the printtrace

command are: initial, a proposition defining the set of initial

states; nextstate, the nextstate relation of the model; and

goal, a proposition defining a set of states. Printtrace

attempts to find a path from any state in the initial states to

any state in the goal set using the given nextstate relation.

Note printtrace will always find such a path for the types of

formulae discussed below because we only use it when the

original formula failed to evaluate as a tautology.

Suppose formula f is of the form AGg with g non-temporal.

This form is typical of safety properties. If AGg is false,

then its complement (defined by the duality properties of CTL)

EF—,g must be true. This formula is interpreted as: there

exists a path to a state in which —ig is true. One can produce

such a path with printtrace TRUE nextstate -ig.

Note one would want to show a formula of the form AGg is a

tautology only in a system intended to start in any possible

state. To find a counterexample of a safety property AGg in a

system with initial states init, one is to find a

counterexample of formula init 3 AGg. Since formula init 3

AGg is false when init A —lAGg = init A EF-^g is true

(property of implications, CTL duality properties), such a

counterexample is a trace to —ig from any state satisfying

proposition init. To do this, we change the set of initial

CHAPTER 5. EXPERIMENTS AND RESULTS 109

states passed to the printtrace command, namely

printtrace init nextstate —ig.

The printtrace routine could be modified to handle the more

general case with g temporal. The phase of printtrace that

repeatedly calculates forward images could be extended to apply

this counterexample algorithm again when a goal state is

reached. In this nested application of this algorithm the

start state would be the set of states just reached and the

goal set would be defined by the temporal formula g. For

example, consider formula f => AG(g ID AFh) . First, this

algorithm is applied to find a trace from a state satisfying f

to a state satisfying —i fg r? AFh). Then the algorithm is

called again to find a trace from the state reached so far to

one violating g 3 AFh, namely g A —lAFh. The algorithm

described below for AU operators would be used since AFh =

A[True U h].

Suppose formula f is of the form A[g U h]. To produce a

counterexample of this formula, one has to produce a trace

satisfying the properties expressed by the complement of A[g U

h] . The CTL duality properties state A[g U h] = -,EHh U (-,g A

—ih)] A —lEG-ih. By DeMorgan's Boolean logic laws, the

complement of this expression is E[—ih U (—ig A —th)] v EG-th.

This says that a counterexample would be:

• any trace that leads to a state with —ig A —ih true
and has h false in all preceding states.

CHAPTER 5. EXPERIMENTS AND RESULTS 110

• any infinite trace with h false throughout

To support finding a trace of the first type above, a copy

of the printtrace routine would need to be modified. The

difference between the original printtrace routine and the new

one would be that at each step (each time a forward image is

computed) , the set of states would be restricted to those in

the computed set satisfying formula —ih. This new routine would

be invoked with —ig A —ih specified as the goal.

To support finding a trace of the second type above, a copy

of the printtrace routine would need to be modified in a

similar way. In each step the set of states would be

restricted to those in the original method's computed set

satisfying —ih. This routine would also have to detect loops in

the state graph. Once one such loop is found, it can be used

as a counterexample trace.

It should be possible to combine these two algorithms into

a single routine which repeatedly computes forward images for

both types of traces.

This new routine should be invoked with start state TRUE

for formulae f of the form A[g U h] and with start state init

for formulae f of the form init z> A[g U h] .

To produce a counterexample trace for a fomnula f of form

AXg or init z> AXg, one can evaluate the negation of these

formulae with the model checker and derive the first state of

the two state trace from the BDD output.

CHAPTER S. EXPERIMENTS AND RESULTS 111

To produce a counterexample trace for a formula of the form

AFg, the definition AFg = A[True U g] can be applied.

So far methods for producing counterexamples of temporal

formulae with universal quantification have been discussed.

The duality properties define the negation of universally

quantified formulae to be existential formulae. The printtrace

algorithm can only be applied to these because only one path

satisfying a given goal need be found.

To find a counterexample of an existentially quantified

temporal formula would require showing that all possible paths

satisfy a given property.

Fortunately when verifying systems, one is usually only

interested in verifying properties that are true in all

possible execution paths

For all of the above algorithms, the printtrace should be

modified to consider the fairness constraints when computing

forward images to ensure unfair paths are ignored.

The above algorithm for formulae of the form init z> AGg is

manually applied to one of the properties of the alternating

bit protocol in the next section.

5.2.3. Application of Counterexample Method

The original version of several of the formulae for

properties of the alternating bit protocol given in section 5.1

evaluated to false in all the initial states. One of the

CHAPTER 5. EXPERIMENTS AND RESULTS 112

counterexample generating methods described in the previous

section was applied to formula

ag_state_eq_ESTAB_implies_ASendNothing specified in section

5.1. The counterexample points out a misunderstanding in the

original specification of the formula. The intended meaning of

the original formula was "whenever the ABP sender module is in

the ESTAB state, the module never initiates a send request to

the underlying data link." The formula was specified as:

AG((state = ESTAB) 3 ASendNothing) where
ASendNothing = (NAccessPoint[1].queued = 0)

The trace output in Appendix 6 for this formula is

explained. Since the Ever code for the alternating bit

protocol specification specifies a condition that all initial

states must satisfy, the method for generating counterexamples

for formulae of form init z? AGg is used. A printtrace command

with initial state glohal_init, nextstate relation

global_nextstate and goal —i((state = ESTAB) 3 ASendNothing) is

used. Propositions global_init and global_nextstate are

defined in the Ever command file (see Appendix 4) . The trace

output is in reverse order (i.e. the end of the trace (a state

satisfying the goal) is printed first) . For each step in the

trace, the values of all the variables in their current phase

are printed. The state at the beginning of each step in the

trace is shown in terms of the abbreviations used in section

5.1 in the following table:

CHAPTER 5. EXPERIMENTS AND RESULTS 113

time
unit
0
1
2
3
4
5
6
7
8

clock
tick
F
F
T
T
T
F
F
F
F

State

ESTAB
ESTAB

ACKWAIT
ACKWAIT
ACKWAIT
ACKWAIT
ACKWAIT
ACKWAIT
ESTAB

USend
(0)
F
T
F
F
F
F
F
F
F

USend
Confirm
F
F
T
T
T
T
T
T
T

ASend
(0,0)
F
F
T
T
T
T
F
T
T

AAckSend
(0)
F
F
F
F
F
F
T
T
F

timer running,
timer counter
F
F
T,0
T,l
T,2
T,3
T,3
T,0
F

Table 15. Analysis of a counterexample trace

In this case, the value of ASendNothing is the complement of

ASend (0,0). At time unit 8, the invariant claimed by the

formula is violated.

CHAPTER 5• EXPERIMENTS AND RESULTS 114

Time
unit
0

1

2

3 and
4

5

6

7

8

Description of state before
action
Initial state

The ABP module is in its ESTAB
state waiting for a request and
there is a send request pending
servicing in the interaction
between the sending user and
the ABP sender module.
The ABP sender has moved to the
ACKWAIT state, sent a confirm
message back to the sending
user, requested the underlying
data link to send a data
packet, and has started its
retransmit timer.
Time has passed and the
retransmit timer counter has
been incremented.
The retransmit timer's counter
has reached its maximum value,
the data packet has been
delivered to the ABP receiver
module.
The data packet has been
removed off the data link by
the ABP receiver module, the
ABP sender retransmit timer is
still expired awaiting
processing, and an
acknowledgement is in transit.
The second retransmission of
the data packet is still in
transit, the acknowledgement
has been delivered into the ABP
sender's receive interaction
queue from the underlying link.
The ABP sender module has
received the acknowledgement
packet and returned to the
ESTAB state with the second
retransmission of the data
packet still in transit
(contradicting the claimed
invariant).

Action taken

sending user submits a send data
request to ABP sender
ABP sender sends data packet to
underlying data link (transl)

ABP sender timer tick.

ABP sender timer tick.

ABP receiver receives data packet
and sends an acknowledgement to
the underlying data link
(transV).

ABP sender retransmits data
packet because timer has expired
(trans4).

ABP sender receives the
acknowledgement and returns to
the ESTAB state.

Table 16. Descriptions of steps in counterexample trace

CHAPTER 5. EXPERIMENTS AND RESULTS 115

This trace shows that the correct interpretation of the

original formula would have been "whenever the ABP sender

module is in the ESTAB state, it never has a send request

pending processing by the underlying data link.".

To express the intended property correctly, the formula

must be modified to:
AG((state = ESTAB) 3

A[(Oy,s.ASend(y,s) v
A[((state = ESTAB) A ASendNothing) U (state = ACK_WAIT)])) U

(state = ACK_WAIT)])

This formula says that the if the state is now ESTAB, the

following must be true until state becomes ACK_WAIT. During

this interval, any send request to the underlying data link may

be pending servicing or if no send request is pending no others

may be submitted for the rest of the interval. In other words,

this formula states that no new send request may be initiated

while in the ESTAB state. The Ever command file and output

file are shown in Appendices 7 and 8, respectively. Applying

the new version of this formula to the model checker produced a

tautology.

This section has demonstrated that the tool can be used to

analyze a protocol specification and force the specifier to

grasp a solid understanding of the specification and its

properties.

Chapter 6: Conclusions and Future Work

6.1. Conclusions

A system has been developed for carrying out incremental

verification of communication protocols. A complete set of

internal properties of an Estelle.Y [Lu91] specification of the

alternating bit protocol (containing over 10'̂ possible states)

was successfully verified using less than 25 megabytes of memory

and less than 100 hours CPU time on a Sun Sparc 10/15 computer.

This set of verified internal properties were combined with

some reasoning to show that the structure of the protocol is

valid for all packet data sizes.

A proposed method for generating counterexamples (not yet

integrated into Ever) was applied to the original version of one

of the formulae. It pointed out a misunderstanding in the

formula's original specification. The formula was revised and

confirmed to be a tautology by the verification system. This

example demonstrated that this tool can be used for

troubleshooting formulae and the protocol specification itself.

After one temporal property involving all modules in the

specification has been verified, it appears that this system

does not consume significant additional memory as each

additional property is verified. This suggests that the size of

116

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 117

the specification is the key factor in determining the amount of

memory required because once all the nextstate relation's

partitions have been evaluated into BDDs they can be reused for

later computations.

The author realized that model checking is limited to only

checking properties that are strictly "observational" of the

model being verified. One cannot use temporal formulae of the

form "assumed input behaviour implies expected output behaviour"

as one does in theorem proving and expect the actions associated

with the "assumed input behaviour" to be added to the model

during the verification. One has to build a model that includes

all the behaviours that one wishes to treat as antecedents in

implications to be verified. Then the model checking can

restrict the sets of behaviours it considers.

The overall liveness property of the alternating bit

protocol, stating that any given pair of send data requests

always results in a pair of data packets with same data values

being delivered to the receiving user in the same order (i.e.

V xl,x2.AG(send(xl)A nextsend(x2)z:3 AF(recv(xl)A

nextrecv(x2)))}, cannot be directly verified with model checking

because it is impossible to produce a model that includes all

possible behaviours of the antecedent of this formula. Each

antecedent behaviour of this formula needs to be expressed with

universal quantification operators to make the formula express

the desired overall liveness property. It is not possible for

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 118

any model with a non-deterministic data source to satisfy the

antecedent for every possible pair of data values at the same

time. If a non-deterministic data source is not used, the model

is not sufficiently general to verify the protocol. Because of

this problem, the protocol had to be verified by combining model

checking of the protocol's internal properties with reasoning

about how the internal properties are related.

This system is suitable for verifying properties of a

protocol whose environment's behaviour can be described by a

simple state machine and a number of optional conditions that

must occur infinitely often in the state machine. The

alternating bit protocol environment was described by three

simple state machines (for the sending and receiving users and

the underlying link) and a set of fairness constraints limiting

the set of behaviours considered during verification.

The complexity of the tableau construction algorithm is too

large to be practical even for trivial formulae (e.g. reliable

link specification).

Small maximum timer count values can be used in Estelle.Y

specifications given to this system because the verification

considers all possible timing interleavings of Estelle.Y module

actions and timer tick actions. The maximum timer values only

have significance when two or more timers are started in a

Estelle.Y transition and they are specified to expire at

different times. These small values allow the size of the

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 119

specification to be minimized (in terms of niimbers of bits for

timers in BDDs).

6.2.Future Work

A number of features that should be implemented to optimize

the memory and CPU time usage of the Ever model checker are

discussed.

Instantiations of Ever predicates (i.e. predicate name and

actual parameters) should be cached so that unnecessary

recomputation of predicates with same parameters is eliminated.

Predicates with temporal operators can take a significant time

to evaluate.

When a proposition with operands (e.g. (and pi ... pn) } has

been evaluated, the BDDs of its operands should be freed if no

other unevaluated propositions refer to these operands. This

would eliminate unnecessary use of memory.

The algorithms discussed in chapter 5 for producing

counterexample traces should be implemented.

The Estelle.Y language should be extended to allow the

explicit specification of a size for each internal variable.

For example, the LAPB protocol uses 3-bit sequence numbers. The

1-bit sequence number variables in the alternating bit protocol

were declared as Boolean variables to avoid unnecessary use of

BDD bit variables in the nextstate relation.

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 120

It would be convenient to the user if the Ever interface

supported aborting of the evaluation of propositions without

stopping the whole program. Since verification commands can

take hours, it would be beneficial to be able to abort a command

without losing the results of previous work when one realizes

that a mistake was made in a command.

With a few changes to this system, the behaviour of the

environment could be specified as Estelle.Y modules instead of

having to be written directly in Ever. The Estelle.Y language

would need to be extended with a new command for defining free

variables to allow a module to introduce non-deterministic data

into the model. Also, one should be allowed to define arrays of

PCOs. For example, the underlying data link of the alternating

bit protocol could be represented with a module that has two

NAccessPoint PCOs, one tied to each of the ABP sender and ABP

receiver modules.

Perhaps some scheme could be devised to allow fairness

constraints to be automatically derived from information in the

Estelle.Y modules defining the environment's behaviour.

A feature to automatically check for protocol independent

properties such as deadlock, unreachable transitions and

ambiguous transitions in Estelle.Y modules could be implemented.

Presence of deadlock is represented with a formula of the form

3 i.(initz> EF(EG(state=i)) .

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 121

A transition is unreachable if its enabling condition is always

false i.e.

inifiD AG(—i transition_condition) .

There exists unreachable transitions if

3 i.(initz> AG (—i transition •[_condit ion)) .

A module has ambiguous transitions (i.e. is non-deterministic)

if

3 i,j.(initZ3 AF (trans it ion j__conditionA transitionj_condition)) .

As a notational convenience to the Ever user and the

Estelle.Y translator, the forall and exists operators should be

implemented. In the Ever command files for verifying the

alternating bit protocol, the exists operator was manually

specified as a disjunction and the forall operator was manually

specified as a conjunction. A new notion of metavariables

should be introduced into Ever so that expressions with

quantified variables can be used without adding more variables

to the BDD. Brace's BDD package includes a primitive for

evaluating exists and forall operators with the quantifier

variable being an existing BDD variable.

To reduce the number of bit variables produced in the BDD

from the data structures for PCOs which logically contain arrays

of variant records. Ever should be extended to support variant

record types.

TESTGEN [VHLMD93] is a tool for generating test cases from

an Estelle.Y protocol specification. The test case generation

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 122

is guided by a set of user-defined constraints. These

constraints specify the values of data fields to be tested and

the minimum and maximum number of times each protocol element

shall occur in each generated test. A protocol element is

defined as a major state, transition, constant, variable, input

service primitive, output service primitive, or timer. The

method of generating counterexamples in the Ever tool could be

modified to produce execution traces associated with a given

property expressed as a temporal logic formula. This would

provide an interesting way to produce test cases associated with

a particular function of a protocol.

Since the verification tool discussed in this thesis uses

the Estelle.Y language and its internal protocol data structure

(PDS), this tool could be integrated with TESTGEN in the overall

integrated protocol engineering environment developed by the

Protocol Engineering Group in the UBC Computer Science

department.

BIBLIOGRAPHY

[BCMD90:

[BCMDH90]

[BF89]

[BRB90]

[Bry86]

[Bur93]

[CBM89]

[CE81]

[CE81]

J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill,
"Sequential Circuit Verification Using Symbolic
Model Checking", 27th ACM/IEEE Design Automation
Conference, pp. 46-51, 1990

J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill,
L.J. Hwang, "Symbolic Model Checking: lÔ** States
and Beyond", Proceedings of the Fifth Annual
Symposium on Logic in Computer Science, June 1990.

S. Bose, A.Fisher, "Automatic verification of
synchronous circuits using symbolic logic
simulation and temporal logic", IMEC-IFIP
International Workshop on Applied Formal Methods
for Correct VLSI Design, 1989.

K.S. Brace, R.L. Rudell, R.E. Bryant, "Efficient
Implementation of a BDD Package", 27th ACM/IEEE
Design Automation Conference, pp. 40-45, 1990.

R.E. Bryant, "Graph-based algorithms for Boolean
function manipulation", IEEE Trans. Comput., C-
35(8), 1986.

Jerry Burch, Stanford University, electronic mail
correspondence.

O. Coudert, C. Berthet, J.C. Madre, "Verification
of synchronous sequential machines based on
symbolic execution". In J. Sifakis, editor.
Automatic Verification methods for Finite State
Systems, International Workshop, Grenoble, France,
volume 407 of Lecture Notes in Computer Science,
Springer-Verlag, June 1989.

Clarke, Emerson, "Synthesis of synchronization
skeletons for branching time temporal logic", Proc.
Workshop on Logic of Programs, Yorktown Heights,
NY: Springer-Verlag, pp. 52-71, 1981.

E.M. Clarke, E.A. Emerson, "Design and Synthesis of
Synchronization Skeletons Using Branching Time
Temporal Logic", Logics of Programs Proceedings,
Lecture Notes in Computer Science 131, 1981.

123

BIBLIOGRAPHY 124

[CES85] Clarke, Emerson, Sistla, "Automatic verification of
finite-state concurrent systems using temporal
logic specifications", ACM Trans. Program. Lang.
Syst. 892): 244-263, 1986.

[CG87] E.M. Clarke, O. Grumberg, "Research on Automatic
Verification of Finite State Concurrent Systems",
Ann. Rev. Comput. Sci. 2:269-290, 1987.

[CG89] E.M. Clarke, O Grumberg, "The Model Checking
Problem for Concurrent Systems with Many Similar
Processes", Temporal Logic in Specifications
Proceedings, Lecture Notes in Computer Science 3 98,
pp. 188-201.

[CLV93] S. Chanson, A. Loureiro, S. Vuong, "On Tools
supporting the use of Formal Description Techniques
in Protocol Development", Computer Networks & ISDN
Systems, Vol. 25, pp. 723-739, 1993.

[CR85] Lori A. Clarke, Debra J. Richardson, "Applications
of Symbolic Evaluation", The Journal of Systems and
Software 5, 15-35 (1985).

[ES88] E.A. Emerson, J. Srinivasan, "Branching Time
Temporal Logic" Linear Time, Branching Time and
Partial Order in Logics and Models for Concurrency
School/Workshop, Noordwijkerhout, Norway, 3 0 May -
3 June 1988

[Fil91] Thomas Filkorn, "Functional Extension of Symbolic
Model Checking", Proceedings of the Workshop on
Computer-Aided Verification, July 1-4, 1991.

[GPSS80] D. Gabbay, A. Pnueli, S. Shelah, J. Stavi, "The
temporal analysis of fairness". Proceedings 7th ACM
Symposium on Principles of Programming Languages
(Las Vegas, Jan. 1980), pp. 163-173.

[HDDY92] Alan J. Hu, David L. Dill, Andreas J. Drexler, C.
Han Yang, "High-Level Specification and
Verification with BDDs", Computer Science
Department, Stanford University, 20 May 1992.

[H083] Brent T. Hailpern, Susan S. Owicki, "Modular
Verification of Computer Communication Protocols",
IEEE Transactions on Communications, vol. Com-31,
No. 1, January 1983, pp. 56-68.

[Hu92-93] Alan J. Hu, electronic mail correspondence.

BIBLIOGRAPHY 125

[IS089] Information Processing System - Open System
Interconnection - Estelle - A Formal Description
Technique Based on an Extended State Transition
Model, IS 9074, 1989.

[JPHS91] S.-W. Jeong, B. Plessier, G.D. Hachtel, F. Somenzi,
"Variable Ordering for FSM Traversal", Proceedings
of the International Workshop on Logic Synthesis,
MCNC, Research Triangle Park, NC, May 1991.

[LP85] 0. Lichtenstein, A. Pnueli, "Checking that finite
state concurrent programs satisfy their linear
specification", Conf. Rec. Twelfth Annu. ACM Symp.
Principles Program. Lang., new Orleans, pp. 97-
107., 1985.

[LS82]

[Lu91]

[MP4]

S.S. Lam, A.U. Shankar, "An Illustration of
Protocol Projections", Protocol, Specification,
Testing and Verification, 1982, pp. 343-360.

Ying Lu, "On TESTGEN, An Environment for Protocol
Test Sequence Generation, And Its Application to
the FDDI MAC Protocol", M.Sc. Thesis, Aug. 1991,
University of British Columbia, Canada.

Z. Manna, A. Pnueli, "Verification of Concurrent
Programs: A Temporal Proof System", Foundations of
Computer Science IV, J.W. Debakker, J. Van Leeuwen,
Eds., Mathematical Center Tracts 159, Amsterdam
(1983) 163-255.

[MP5] Z. Manna, A. Pnueli, "Adequate Proof Principles for
Invariance and Liveness Properties of Concurrent
Programs", Science of Computer Programming 4 (1984)
257-289.

[MWBA88] Sharad Malik, Albert R. Wang, Robert K. Brayton,
Alberto Sangiovanni-Vincentelli, "Logic
Verification using BDDs in a Logic Synthesis
Environment", Proc. Int. Conf. CAD (ICCAD-88), pp.
6-9, Nov. 1988.

[Pnl] A Pnueli, "Applications of Temporal Logic to the
Specification and Verification of Reactive Systems:
A Survey of Current Trends", Proceedings of Current
Trends in Concurrency, Lecture Notes in Computer
Science 224.

[SC86] Sistla, Clarke, "Complexity of prepositional
temporal logics", J. ACM 32(3): 733-749, 1986.

BIBLIOGRAPHY 126

[Tar55] A. Tarski, "A Lattice-Theoretical Fixpoint Theorem
and its Applications", Pacific Journal of
Mathematics, vol. 5, pp. 285-309, 1955.

[VHLMD93] S.T. Vuong, H. Janssen, Y. Lu, C. Mathieson, B. Do,
"TESTGEN: An Environment for Test Suite Generation
and Selection," Computer Communication, March 1993.

Appendix 1: Estelle.Y Alternating
Protocol Specification

Bit

Specification ABP;

CONST
junkconst = 0

VAR
Send_seq:
Recv_seq:
Recv_buffer_empty:
Recv_buf f er_datxam:
Recv_buf fe r_seq:
Send_buffer_empty:
Send_buf f er_dat\im:
Send_buffer_seq:

ISP
SENDrequest
RECEIVErequest
DATAinteraction

OSP
RECEIVEresponse
DATAinteraction
SENDconfirm

mt;

boolean;
boolean;
boolean;
boolean;
boolean;
boolean;
boolean;
boolean;

UAccessPoint;
UAccessPoint;
NAccessPoint;

UAccessPoint;
NAccessPoint;
UAccessPoint;

PDU
Junk sent_in NAccessPoint;

TIMER
rexmi t_t imer

STATE
ack_wait, estab;

INITIALIZATION
TO estab

2;

BEGIN
Send_seq
Recv_seq

:= 0;
:= 0;

S end_bu f f e r_empty
Recv_bu f fer_empty
END;

TRUE;
TRUE;

TRANS { transl }
FROM estab

TO ack_wait
WHEN SENDrequest

OUTPUT DATAinteraction,
BEGIN
Send_buffer_empty :
Send_buffer_datum :
Send_buffer_seq
DATAinteraction.ndata.id := 0;
DATAinteraction.ndata.conn := 0;
DATAinteraction.ndata.data := Send_buffer_datum;
DATAinteraction.ndata.seq := Send_buffer_seq;
RESET(rexmit_timer);
START(rexmit_timer)
END;

SENDconfirm

;= FALSE;
;= SENDrequest.udata;
Send_seq;

127

APPENDIX 1 : ESTELLE.Y ALTERNATING BIT PROTOCOL SPECIFICATION 128

TRANS { t r a n s 2 }
FROM a c k _ w a i t

TO a c k _ w a i t
WHEN RECEIVErequest

PROVIDED n o t (Recv_buf fe r_empty = TRUE)
OUTPUT RECEIVEresponse

BEGIN
RECEIVEresponse .uda ta := R e c v _ b u f f e r _ d a t \ m ;
Recv_buf fe r_empty
END;

TRUE

TRANS { trans3 }
FROM estab

T̂ O o "̂ t~ nb
WHEN RECEIVErequest

PROVIDED not (Recv_buffer_empty = TRUE)
OUTPUT RECEIVEresponse

BEGIN
RECEIVEresponse.udata
Recv_buffer_empty
END;

Recv_bu f fer_datum;
TRUE

TRANS
FROM ack_wait

TO ack_wait
PROVIDED TIMEOUT(rexmit_timer)

OUTPUT DATAinteraction
BEGIN
DATAinteraction.ndata.id :=
DATAinteraction.ndata.conn
DATAinteraction.ndata.data
DATAinteraction.ndata.seq :
RESET{rexmit_timer);
START(rexmit_timer)
END;

{ trans4 }

;= 0;
;= Send_buf fer_dattim;
= Send_buffer_seq;

{ transS } TRANS
FROM ack_wait

TO estab
WHEN DATAinteraction

PROVIDED (DATAinteraction.ndata.id = 1) AND
(DATAinteraction.ndata.seq = Send_seq)

BEGIN
Send_buffer_empty := TRUE;
IF (Send_seq = TRUE) THEN

Send_seq := FALSE
ELSE Send_seq := TRUE;
RESET(rexmit_timer)
END;

TRANS { trans6 }
FROM ack_wait

TO ack_wait
WHEN DATAinteraction

PROVIDED (DATAinteraction.ndata.id = 0) AND
(Recv_buffer_empty = TRUE)

OUTPUT DATAinteraction
BEGIN
DATAinteraction.ndata.id := 1;
DATAinteraction.ndata.conn := 0;
DATAinteraction.ndata.data := 0;
DATAinteraction.ndata.seq :=

DATAinteraction.ndata.seq;
IF DATAinteraction.ndata.seq = Recv_seq THEN

BEGIN
Recv_buffer_empty := FALSE;

APPENDIX 1: ESTELLE.Y ALTERNATING BIT PROTOCOL SPECIFICATION 12 9

Recv_buffer_datum := DATAinteraction.ndata.data;
Recv_buffer_seq := DATAinteraction.ndata.seq;
IF Recv_seq = TRUE THEN

Recv_seq := FALSE
ELSE Recv_seq := TRUE
END

END;

TRANS { trans? }
FROM estab

TO estab
WHEN DATAinteraction

PROVIDED (DATAinteraction.ndata.id = 0) AND
(Recv_buffer_empty = TRUE)

OUTPUT DATAinteraction
BEGIN
DATAinteraction.ndata.id := 1;
DATAinteraction.ndata.conn := 0;
DATAinteraction.ndata.data := 0;
DATAinteraction.ndata.seq :=

DATAinteraction.ndata.seq;
IF DATAinteraction.ndata.seq = Recv_seq THEN

BEGIN
Recv_buffer_empty := FALSE;
Recv_buffer_datum := DATAinteraction.ndata.data;
Recv_buffer_seq := DATAinteraction.ndata.seq;
IF Recv_seq = TRUE THEN

Recv_seq := FALSE
ELSE Recv_seq := TRUE
END

END;

TRANS { trans8 }
FROM estab

TO estab
WHEN DATAinteraction

PROVIDED (DATAinteraction.ndata.id = 0) AND
(Recv_buffer_empty = FALSE)

BEGIN
Recv_buffer_empty := Recv_buffer_empty
END;

TRANS { trans9 }
FROM ack_wait

TO ack_wait
WHEN DATAinteraction

PROVIDED (DATAinteraction.ndata.id = 0) AND
(Recv_buffer_empty = FALSE)

BEGIN
Recv_buffer_empty := Recv_buffer_empty
END;

END.

Appendix 2: ASN.l Alternating Bit Protocol
Spec i f i cat ion

ABP DEFINITIONS ::=
BEGIN

UAccessPoint ::= CHOICE
{
SENDrequest,
SENDconfirm,
RECEIVErequest,
RECEIVEresponse
}

NAccessPoint ::= CHOICE
{
DATAinteraction
}

WireEndPoint ::=
{
NETdata
}

Pdu : : =

CHOICE

Junk

UDataType :

NDataType ;
{
id
conn
data
seq
}

SENDrequest :;
{
udata
}

SENDconfirm ::
{
dummy
}

RECEIVErequest
{
dummy
}

CHOICE
{
Junk
}

SEQUENCE
{
dummy INTEGER (0. .1)
}

INTEGER (0..1)

SEQUENCE

INTEGER {data(O)
INTEGER (0..1),
UDataType,
INTEGER (0,

ack(l)} (0..1),

.1)

-- user data

type of message
conn id of sender
user data
sequence number

= SEQUENCE

UDataType

= SEQUENCE

INTEGER {0..

;:= SEQUENCE

INTEGER (0..

.1)

1)

RECEIVEresponse ::= SEQUENCE
{
udata UDataType

130

APPENDIX 2: ASN.l ALTERNATING BIT PROTOCOL SPECIFICATION 131

}

DATAinteraction ::= SEQUENCE
{
ndata NDataType
}

NETdata ::= SEQUENCE
{
ndata NDataType
}

END

Appendix 3: Ever code for A l t ernat ing Bi t
Protocol

-- Specification id = ABP
— yyparseO = 0

-- Constants: junkconst
-- Variables:
deftype abp7_localvars (record

Send_seq (bits 1)
Recv_seq (bits 1)
Recv_buffer_empty (bits 1)
Recv_buffer_datum (bits 1)
Recv_buffer_seq (bits 1)
Send_buffer_empty (bits 1)
Send_buffer_datuin (bits 1)
Send_buffer_seq (bits 1));

-- ISPs: SENDrequest RECEIVErequest DATAinteraction

-- OSPs: RECEIVEresponse DATAinteraction SENDconfirm

-- PDUs: Junk

-- Timers: rexmit_timer
deftype abp7_timers_type (record

rexinit_timer (record running (bits 1) counter (bits 2)));

-- States: ack_wait estab
deftype abp7_mainstate (bits 1 "ack_wait" "estab");
-- PCOs:
deftype UAccessPoint_inqueue (record

kind (bits 1)
RECEIVErequest (record dummy (bits 1))
SENDrequest (record udata (bits 1)));

deftype UAccessPoint_outqueue (record
kind (bits 1)
SENDconfirm (record diimmy (bits 1))
RECEIVEresponse (record udata (bits 1)));

deftype NAccessPoint_queue (record
DATAinteraction (record ndata (record id (bits 1) conn (bits 1)

data (bits 1) seq (bits 1))));

-- Free variable for clock ticking
deffreevar clock_tick (bits 1);

— Ever variables for interaction queues
defvar UAccessPoint_in (array 0 1 (record base (bits 0) queued (bits 1)

content (array 0 0
AccessPoint_inqueue)));
defvar UAccessPoint_out (array 0 1

(record base (bits 0) queued (bits 1)
content (array 0 0

AccessPoint_outqueue)));
defvar NAccessPoint (array 0 1

(record base (bits 0) queued (bits 1)
content (array 0 0 NAccessPoint_queue)));

132

APPENDIX 3 : EVER CODE FOR ALTERNATING BIT PROTOCOL 133

- - Ever v a r i a b l e s for module abp7 s t a t e s
defvar abp7 (a r ray 0 1 (record s t a t e abp7_mainstate

va r s abp7_loca lvars
t imer s abp7_ t imers_ type)) ;

- - Ever p r e d i c a t e s for module abp7
defpred abp7_Ctransl (n iO oO i l ol) (and

(eq abp7[n] .state-^c 1)
(not (eq UAccessPoint_in[iO] .queued'^c 0))
(eq UAccessPoint_in[iO] .content [UAccessPoint_in[iO] .base'^c] .kind'̂ c 0)
(It NAccessPoint [ol] .queued'^c 1)
(It UAccessPoint_out [oO] .queued'^c 1)) ;

defpred abp7_Atransl (n 10 oO 11 ol)
(compose
(becomes abp7[n].vars.Send_buffer_empty^n 0)
(becomes abp7 [n] .vars.Send_buffer_datum'^n

UAccessPoint_in[iO].content[UAccessPoint_in[10].base^c].
SENDrequest.udata^c)

(becomes abp7[n].vars.Send_buffer_seq'^n abp7[n].vars.Send_seq^c)
(becomes NAccessPoint [ol] .content [(add NAccessPoint [ol] .base'̂ c

NAccessPoint [ol] .queued'^c)] .DATAlnteractlon.ndata. id'-n 0)
(becomes NAccessPoint [ol] .content [(add NAccessPoint [ol] .base'̂ c

NAccessPoint [ol] .queued'^c)] .DATAlnteractlon.ndata.conn'^n 0)
(becomes NAccessPoint [ol] .content [(add NAccessPoint [ol] .basê 'c

NAccessPoint [ol] .queued'^c)] .DATAlnteraction.ndata.data'^n
abp7 [n] .vars.Send_buf fer_datum''c)

(becomes NAccessPoint [ol] .content [(add NAccessPoint [ol] .base'̂ c
NAccessPoint [ol] .queued'^c)] .DATAinteraction.ndata. seq'̂ n
abp7 [n] .vars.Send_buffer_seq'^c)

(becomes abp7 [n] .timers.rexmit_timer''n 0)
(becomes abp7[n].timers.rexmit_timer.running^n 1)
(becomes UAccessPoint_in[iO].base^n (add UAccessPoint_in[iO].base'^c

D)
(becomes UAccessPoint_in[iO] .queued'^n (sub

UAccessPoint_in[iG] .queued'^c 1))
(becomes NAccessPoint [ol] .queued'^n (add NAccessPoint [ol] .queued^c

D)
(becomes UAccessPoint_out[oO].content[(add

UAccessPolnt_out[oO].base^c
UAccessPoint_out [oO] .queued'^c)] .kind^n 1)

(becomes UAccessPoint_out [oO] .queued'^n (add
UAccessPoint_out[oO].queued^c 1))

(becomes abp7 [n] .state'^n 0));

defpred abp7_Ctrans2 (n 10 oO 11 ol) (and
(eq abp7 [n] .state'^c 0)
(not (eq UAccessPoint_in[iO] .queued'^c 0))
(eq UAccessPoint_in[iO] .content [UAccessPoint_in[10] .base'^c] .kind'̂ c 1)
(not (eq abp7[n].vars.Recv_buffer_empty^c 1))
(It UAccessPoint_out [oO] .queued'^c 1));

defpred abp7_Atrans2 (n 10 oO il ol)
(compose
(becomes UAccessPoint_out[oO].content[(add

UAccessPoint_out[oO].base^c
UAccessPoint_out [oO] .queued^c)] .RECEIVEresponse.udata'~n
abp7[n].vars.Recv_buffer_datum^c)

(becomes abp7 [n] .vars.Recv_buffer_empty'^n 1)
(becomes UAccessPoint_in[10] .base'̂ n (add UAccessPoint_in[iO] .base'̂ c

D)
(becomes UAccessPoint_in[iO] .queued'^n (sub

UAccessPoint_in[iO] •queued'^c 1))

APPENDIX 3 : EVER CODE FOR ALTERNATING BIT PROTOCOL 134

(becomes UAccessPoint_out[oO].content[(add
UAccessPoint_out [oO] .base'^c
UAccessPoint_out [oO] .(jueued'^c)] .kind^n 0)

(becomes UAccessPoint_out [oO] .cjueued'^n (add
UAccessPoint_out [oO] .cjueued'^c 1))

(becomes abp7 [n] . s ta te^ 'n 0)) ;

defpred abp7_Ctrans3 (n iO oO i l ol) (and
(eq abp7[n] . s ta te '^c 1)
(not (eq UAccessPoint_in[iO] .queued'-c 0))
(eq UAccessPoin t_ in[iO] .conten t [UAccessPoin t_ in[iO] .base '^c] .k ind le 1)
(not (eq abp7[n] .vars .Recv_buffer_empty^c 1))
(I t UAccessPoint_out [oO] .(jueued^c 1)) ;

defpred abp7_Atrans3 (n iO oO i l o l)
(compose
(becomes UAccessPoint_out[oO].content [(add

UAccessPoint_out [oO] .base'^c
UAccessPoint_out [oO] .(jueued^c)] .RECEIVEresponse.udata'^n
abp7 [n] .vars.Recv_buf fer_datum''c)

(becomes abp7 [n] .vars.Recv_buffer_empty'~n 1)
(becomes UAccessPoint_in[iO] .base'-n (add UAccessPoint_in[iO] .base^'c

D)
(becomes UAccessPoint_in[iO] .(jueued'̂ n (sub

UAccessPoint_in[iO].queued^c 1))
(becomes UAccessPoint_out[oO].content[(add

UAccessPoint_out [oO] •base'̂ c
UAccessPoint_out [oO] .(gueued^c)] .kind^n 0)

(becomes UAccessPoint_out [oO] .(jueued'̂ n (add
UAccessPoint_out [oO] .queued'^c 1))

(becomes abp7 [n] .state'^n 1)) ;

defpred abp7_Ctrans4 (n iO oO il ol) (and
(eq abp7[n] .state'^c 0)
(ge abp7 [n] .timers.rexmit_timer.counter'^c 2)
(It NAccessPoint [ol] .(gueued^c 1)) ;

defpred abp7_Atrans4 (n iO oO il ol)
(compose
(becomes NAccessPoint [ol] .content [(add NAccessPoint [ol] .basê 'c

NAccessPoint[ol].queued^c)].DATAinteraction.ndata.id'^n 0)
(becomes NAccessPoint [ol] .content [(add NAccessPoint [ol] .base'̂ c

NAccessPoint [ol] .(jueued^c)] .DATAinteraction.ndata.conn'^n 0)
(becomes NAccessPoint [ol] .content [(add NAccessPoint [ol] .base-̂ c

NAccessPoint [ol] .igueued'̂ c)] .DATAinteraction.ndata.data'^n
abp7 [n] . vars. Send_buf f er_dat\am'̂ c)

(becomes NAccessPoint [ol] .content [(add NAccessPoint [ol] .base'̂ c
NAccessPoint [ol] .(jueued'-c)] .DATAinteraction.ndata. seq'̂ n
abp7 [n] .vars.Send_buffer_seq'^c)

(becomes abp7[n].timers.rexmit_timer^n 0)
(becomes abp7 [n] .timers.rexmit_timer.running'^n 1)
(becomes NAccessPoint[ol].cjueued^n (add NAccessPoint[ol].queued^c

D) (becomes abp7 [n] . state'^n 0))

defpred abp7_Ctrans5 (n iO oO il ol) (and
(eq abp7[n] .state'^c 0)
(not (eq NAccessPoint [il] .queued'^c 0))
(and (eq NAccessPoint [il] .content [NAccessPoint [il] .base-^c] .

DATAinteraction.ndata.id'^c 1)
(eq NAccessPoint [il] .content [NAccessPoint [il] .base'^c] .

DATAinteraction.ndata.seq^c abp7[n].vars.Send_seq^c))

defpred abp7_Atrans5 (n iO oO il ol)
(compose
(becomes abp7[n].vars.Send_buffer_empty^n 1)
(if (eq abp7 [n] .vars.Send_seq'^c 1)

APPENDIX 3: EVER CODE FOR ALTERNATING BIT PROTOCOL 135

D)

(becomes abp7 [n] .vars.Send_seq'^n 0)
(becomes abp7 [n] .vars.Send_seq'"n 1))
(becomes abp7 [n] .timers.rexmit_timer'^n 0)
(becomes NAccessPoint [il] .base'̂ n (add NAccessPoint [il] .base-̂ c 1))
(becomes NAccessPoint [il] .queued'-n (sub NAccessPoint [il] .queued'̂ 'c

(becomes abp7 [n] .state'^n 1));

defpred abp7_Ctrans6 (n iO oO il ol) (and
(eq abp7[n].state^c 0)
(not (eq NAccessPoint [il] .queued'^c 0))
(and (eq NAccessPoint[il].content[NAccessPoint[il].base'

DATAinteraction.ndata.id'^c 0)
(eq abp7[n].vars.Recv_buffer_empty^c 1))

(It NAccessPoint[ol].queued^c 1));

c]

defpred

D)

D)

abp7_Atrans6 (n iO oO il ol)
(compose
(becomes NAccessPoint[ol].content[(add NAccessPoint[ol].base^c

NAccessPoint [ol] .queued^c)] .DATAinteraction.ndata. id'̂ n 1)
(becomes NAccessPoint [ol] .content [(add NAccessPoint [ol] .base'̂ c

NAccessPoint [ol] .queued'^c)] .DATAinteraction.ndata.conn'^n 0)
(becomes NAccessPoint [ol] .content [(add NAccessPoint [ol] .base'̂ c

NAccessPoint [ol] .queued'^c)] .DATAinteraction.ndata.data'^n 0)
(becomes NAccessPoint [ol] .content [(add NAccessPoint [ol] .base'̂ c

NAccessPoint [ol] .queued'^c)] .
DATAinteraction.ndata. seq̂ 'n

NAccessPoint [il] .content [NAccessPoint [il] .base'^c] .
DATAinteraction. ndata. seq'^c)

(if (eq NAccessPoint [il] .content [NAccessPoint [il] .base'^c] .
DATAinteraction.ndata. seq'̂ c abp7[n] .vars .Recv_seq''c)

(compose
(becomes abp7 [n] .vars .Recv_buffer_empty''n 0)
(becomes abp7[n].vars.Recv_buffer_datum^n

NAccessPoint [il] .content [NAccessPoint [il] .base'^c] .
DATAinteraction.ndata.data^c)

(becomes abp7[n].vars.Recv_buffer_seq^n
NAccessPoint [il] .content [NAccessPoint [il] .base'^c] .
DATAinteraction. ndata. seq'^c)

(if (eq abp7 [n] .vars.Recv_seq''c 1)
(becomes abp7[n].vars.Recv_seq^n 0)
(becomes abp7 [n] .vars.Recv_seq'^n 1)))

(becomes abp7'^n abp7'~c))
(becomes NAccessPoint [il] .base'̂ n
(becomes NAccessPoint[il].queued'

(add NAccessPoint [il] .base'̂ c 1))
n (sub NAccessPoint [il] .queued'^c

(becomes

(becomes

NAccessPoint[ol]

abp7[n]

queued^n (add NAccessPoint [ol] .queued'^c

state'^n 0)) ;

defpred abp7_Ctrans7 (n iO oO il ol) (and
(eq abp7[n] .state-^c 1)
(not (eq NAccessPoint [il] .queued'^c 0))
(and (eq

NAccessPoint[il].content[NAccessPoint[il].base'^c].DATAinteraction.ndata.id^c
0)

(eq abp7[n].vars.Recv_buffer_empty^c 1))
(It NAccessPoint[ol].queued^c 1));

defpred abp7_Atrans7 (n iO oO il ol)
(compose
(becomes NAccessPoint[ol].content[(add NAccessPoint[ol].base'^c

NAccessPoint[ol].queued^c)].DATAinteraction.ndata.id'^n 1)
(becomes NAccessPoint[ol].content[(add NAccessPoint[ol].base^c

NAccessPoint [ol] .queued'^c)] .DATAinteraction.ndata.conn''n 0)
(becomes NAccessPoint [ol] .content [(add NAccessPoint [ol] .base'̂ c

NAccessPoint [ol] .queued'^c)] .DATAinteraction.ndata.data'^n 0)

APPENDIX 3: EVER CODE FOR ALTERNATING BIT PROTOCOL 136

(becomes NAccessPoint[ol].content[(add NAccessPoint[ol].base^c
NAccessPoint[ol].queued^c)].DATAinteraction.ndata.seq'^n
NAccessPoint [il] .content [NAccessPoint [il] .base'̂ c] .
DATAinteract ion. ndata. seq'̂ c)

(if (eq NAccessPoint [il] .content [NAccessPoint [il] .base'-c] .
DATAinteraction.ndata.seq^c

abp7[n].vars.Recv_seq^c)
(compose
(becomes
(becomes

D)

D)

abp7[n].vars.Recv_buffer_empty^n 0)
abp7 [n] .vars.Recv_buffer_datum'^n

NAccessPoint [il] .content [NAccessPoint [il] .basê 'c]
DATAinteract ion. ndata. data'̂ c)

(becomes abp7 [n] .vars.Recv_buffer_seq'^n
NAccessPoint [il] .content [NAccessPoint [il] .basê 'c]
DATAinteraction.ndata.seq^c)

(if (eq abp7 [n] .vars.Recv_seq'̂ c 1)
(becomes abp7[n].vars.Recv_seq^n 0)
(becomes abp7 [n] .vars.Recv_seq'̂ n 1)))
(becomes abp7^n abp7'̂ c))
(becomes NAccessPoint[il].base^n
(becomes NAccessPoint[il].queued

(add NAccessPoint[il].base^c 1))
n (sub NAccessPoint [il] .queued'̂ c

(becomes NAccessPoint[ol].queued^n (add NAccessPoint[ol].queued^'c

(becomes abp7 [n] .state'-n 1)) ;

(and defpred abp7_Ctrans8 (n iO oO il ol)
(eq abp7[n] .state'-c 1)

(eq NAccessPoint [il] .queued'̂ c 0))
(eq NAccessPoint[il].content[NAccessPoint[il]

DATAinteraction.ndata. id'̂ c 0)
(eq abp7 [n] .vars.Recv_buf fer_empty'̂ c 0))) ;

(not
(and base^c]

defpred abp7_Atrans8 (n iO oO il ol)
(compose
(becomes abp7[n].vars.Recv_buffer_empty^n

abp7[n].vars.Recv_buffer_empty^c)
(becomes NAccessPoint[il].base'^n (add NAccessPoint[il].base^c 1))
(becomes NAccessPoint [il] .queued'̂ n (sub NAccessPoint [il] .queued'-c

(becomes abp7[n].state^n 1));
1)

defpred abp7_Ctrans9 (n iO oO il ol) (and
(eq abp7[n].state^c 0)
(not (eq NAccessPoint [il] .queued'̂ c 0))
(and (eq NAccessPoint [il] .content [NAccessPoint [il] .base'̂ c] .

DATAinteraction.ndata.id^c 0)
(eq abp7 [n] .vars.Recv_buffer_empty'^c 0))) ;

defpred abp7_Atrans9 (n iO oO il ol)
(compose
(becomes abp7 [n] .vars.Recv_buffer_empty''n

abp7 [n] .vars.Recv_buf fer_empty''c)
(becomes NAccessPoint [il] .base'̂ n (add NAccessPoint [il] .base'̂ c 1))
(becomes NAccessPoint [il] .queued^n (sub NAccessPoint [il] .queued̂ 'c

D)
(becomes abp7[n] .state'̂ n 0)) ;

defpred abp7_timertic]c (n) (compose
(if (and (eq abp7 [n] .timers.rexmit_timer.running'^c 1)

(It abp7[n].timers.rexmit_timer.counter^c 2))
(becomes abp7[n].timers.rexmit_timer.counter^n

(add abp7 [n] .timers .rexmit_timer.counter'^c 1))
(becomes abp7 [n] .timers'̂ n abp7 [n] .timers^c))) ;

defpred abp7_nextstate (n iO oO il ol) (or
(if (eq clock_tick:'̂ c 0) (or

APPENDIX 3: EVER CODE FOR ALTERNATING BIT PROTOCOL 137

(if

(if (abp7_Ctransl n iO oO
(if (abp7_Ctrans2 n iO oO
(if (abp7_Ctrans3 n iO oO
(if (abp7_Ctrans4 n iO oO
(if {abp7_Ctrans5 n iO oO
(if (abp7_Ctrans6 n iO oO
(if (abp7_Ctrans7 n iO oO
(if (abp7_Ctrans8 n iO oO
(if (abp7_Ctrans9 n iO oO
(if (and

(not
(not
(not
(not
(not
(not
(not
(not
(not

(becomes abp7
(eq clock_tick'"c 1

il ol)
il ol)
il ol)
il ol)
il ol)
il ol)
il ol)
il ol)
il ol)

(abp7.
(abp7.
(abp7
(abp7
(abp7
(abp7
(abp7.
(abp7.
(abp7.

.Atransl n

.Atrans2 n
Atrans3 n
.Atrans4 n
AtransS n
Atrans6 n
.Atrans7 n
.AtransS n
.Atrans9 n

iO oO
iO oO
iO oO
iO oO
iO oO
iO oO
iO oO
iO oO
iO oO

il ol)
il ol)
il ol)
il ol)
il ol)
il ol)
il ol)
il ol)
il ol)

FALSE)
FALSE)
FALSE)
FALSE)
FALSE)
FALSE)
FALSE)
FALSE)
FALSE)

Ctransl n iO oO il ol)
Ctrans2 n iO oO il ol)
.Ctrans3 n iO oO il ol)
Ctrans4 n iO oO il ol)
CtransS n iO oO il ol)
Ctrans6 n iO oO il ol)

(abp7
(abp7
(abp7,
(abp7
(abp7
(abp7 _
(abp7_Ctrans7 n iO oO il ol
(abp7 ' "
(abp7)

CtransS n iO oO il ol)
_Ctrans9 n iO oO il ol),
n abp7''c) FALSE)) FALSE)
) (abp7_timertick n) FALSE));

(and defpred abp7_init (n oO ol)
(eq abp7 [n] . state-^c 1)

(eq NAccessPoint [ol] •base'̂ c 0)
(eq NAccessPoint [ol] .queued'^c 0)
(eq UAccessPoint_out [oO] .base'̂ c 0)
(eq UAccessPoint_out [oO] •queued'^c

abp7 [n] .vars.Send_seq'^c 0)
" .vars.Recv_seq''c 0)
.vars.Send_buf fer_empty'^c 1)
.vars.Recv_buffer_empty^c 1)
.timers'^c 0)) ;

(eq
(eq
(eq

0)

abp7[n]
abp7[n]

(eq abp7[n]
(eq abp7[n]

defprop init (and
(abp7_init 0 0 0)
(abp7_init 1 1 1));

defprop nextstate (or
(abp7_nextstate 0 0 0 0 1)
(abp7_nextstate 1 1 1 1 0));

Appendix 4: Ever command f i l e for
v e r i f i c a t i o n

-- Ever source file for specifying behaviour of sender
-- and receiver modules for alternating bit protocol.

— same as original except all universal quantifiers
— changed to existential (0lNovl993)

-- In definitions of receive_datum_x, changed original
-- AX (intended for within scope of a single module) from
— (x /\ AXx') to (x /\ AXA[x U X']). (04NOV1993)

-- Want to test send_datum_x and receive_datum_x definitions
-- with universal operators in them to see if they are
-- totally false. (05Novl993)

-- Modified for case with unreliable underlying link
-- and implementation of timers in abp specification.
-- (Tue 16NOV1993)

-- Added action code for data loss in unreliable link. (Tue 16Novl993)

-- Added 2 fairness constraints to specify that
-- unreliable link regularily delivers data reliably. (Tue 16Novl993)

-- Added 2 fairness constraints for timer implementation. (Tue 16Novl993)

-- Define two unconstrained variables for user data
deffreevar user_txdatum (bits 1);
deffreevar user_rxdatxim (bits 1);

-- Define nextstate relation of user modules
defprop user_next (or

-- SendRequest (send one whenever possible)
(if (eq UAccessPoint_in[0] .queued'̂ c 0)

(compose
(becomes UAccessPoint_in[0].content[0].SENDrequest.udata^n

user_txdatiim'̂ c)
(becomes UAccessPoint_in[0] .content [0] .kind'̂ n 0)
(becomes UAccessPoint_in[0].queued^n 1))

FALSE)
-- SendConfirm (dequeue SendConfirm whenever one is delivered)
(if (and (gt UAccessPoint_out [0] .queued̂ 'c 0)

(eq UAccessPoint_out [0] .content [0] .kind'̂ c 1))
(becomes UAccessPoint_out [0] .queued'̂ n 0)
FALSE)

-- ReceiveRequest (send one whenever possible)
(if (eq UAccessPoint_in[l].queued^c 0)

(compose
(becomes UAccessPoint_in[l] .content [0] .kind'̂ n 1)
(becomes UAccessPoint_in[l] .queued'̂ n 1))

FALSE)
-- ReceiveResponse (dequeue one whenever one arrives)
(if (and (gt UAccessPoint_out [1] .queued'̂ c 0)

(eq UAccessPoint_out[l] .content [0] .kind̂ 'c 0))
(compose

(becomes user_rxdatum''n
UAccessPoint_out [1] .content [0] .RECEIVEresponse.udata'^c)

(becomes UAccessPoint_out [1] .queued'̂ n 0))
FALSE)

138

APPENDIX 4: EVER COMMAND FILE FOR VERIFICATION 139

-- Otherwise (always allow a no-op step without confining free
variables)

(becomes UAccessPoint_in[0] .queued'̂ n UAccessPoint_in[0] .queued'̂ c)

-- Define nextstate relation of unreliable link (Tuel6Novl993)
defprop unreliable_link_next (or

(if (gt NAccessPoint[0].queued^c 0)
(becomes NAccessPoint [0] .queued'̂ n 0) FALSE)

(if (gt NAccessPoint [1] .queued'~c 0)
(becomes NAccessPoint [1] .queued'̂ n 0) FALSE)

(becomes NAccessPoinfn NAccessPoinfc)) ;

— Fairness constraints

— 1. sender sends SENDrequest requests infinitely often.
-- 2. sender dequeues SENDconfirm responses infinitely often.*
— 3. receiver sends RECEIVErequest requests infinitely often.
-- 4. receiver dequeues RECEIVEresponse responses infinitely often.*

-- * Maybe should make these happen immediately in user_next nextstate
relation.

-- Should add fairness constraints for 0 datum sent infinitely often
— and 1 datum sent infinitely often. Probably best to restrict
— fairness constraint #1 below to datum 0 and add a new similar
-- fairness constraint for datiim 1. Fr 290ctl993
-- See fairla_basic and fairlb_basic below Sun 310ctl993

defprop fairl_basic (and
(eq UAccessPoint_in[0] .queued'̂ c 1)
(eq UAccessPoint_in[0] .content [0] .kind'̂ c 0));

defprop fairla_basic (and
(eq UAccessPoint_in[0] .queued-̂ c 1)
(eq UAccessPoint_in[0] .content [0] .kind'̂ c 0)
(eq UAccessPoint_in[0] .content [0] .SENDrequest.udata'^c 0));

defprop fairlb_basic (and
(eq UAccessPoint_in[0] .queued'̂ c 1)
(eq UAccessPoint_in[0] .content [0] .kind'̂ c 0)
(eq UAccessPoint_in[0] .content [0] .SENDrequest.udata'^c 1));

defprop fair2_basic (eq UAccessPoint_out [0] .queued'̂ c 0) ;

defprop fair3_basic (and
(eq UAccessPoint_in[l] .queued'̂ c 1)
(eq UAccessPoint_in[l] .content [0] .kind'̂ c 1));

defprop fair4_basic (eq UAccessPoint_out [1] .queued'̂ c 0) ;

-- Additional fairness constraints for unreliable link (Tuel6Novl993)
defprop unreliable_fairl (eq NAccessPoint [0] .queued'̂ c 1) ;
defprop unreliable_fair2 (eq NAccessPoint[1].queued^c 1);

-- Additional fairness constraints for time implementation (Tuel6Novl993)
defprop timer_fairl (eq clock_tick'̂ c 0);
defprop timer_fair2 (eq clock_tick'̂ c 1) ;

-- Commands for evaluating (EG TRUE) under basic fairness constraints

APPENDIX 4: EVER COMMAND FILE FOR VERIFICATION 140

-- defprop global_nextstate (or (nextstate) (user_next)); — version of
31oct

-- Version of Olnov that include a "keep stable" statement in
-- global disjunction of nextstate relation,
defprop global_nextstate (or (nextstate) (user_next)

(unreliable_link_next));

setdefaultnextstate (global_nextstate)
(fairla_basic) (fairlb_basic)
(fair2_basic) (fair3_basic) (fair4_basic)
(unreliable_fairl) (unreliable_fair2)
(timer_fairl) (timer_fair2);

defprop global_init (and (init) (eq UAccessPoint_in'^c 0));

-- Output [1] on Tue 16 Nov 1993.
— defprop egtrue (EG TRUE);
-- printstring "EG TRUE";
-- printprop (egtrue);
-- printsize (egtrue);

-- First, define a set of events in send and receive users,
-- and ABP protocol modules.

-- true when a SENDrequest has been submitted by the sending
-- user and is awaiting processing by the ABP send module and
-- the datum value of this request is x.
defpred usend (x) (and

(eq UAccessPoint_in[0] .queued'̂ c 1)
(eq UAccessPoint_in[0] .content [0] .kind-̂ c 0)
(eq UAccessPoint_in[0] .content [0] .SENDrequest .udata'̂ c x)) ;

-- true when the sending user has no send request pending servicing
--by ABP sender
defprop usendnothing (eq UAccessPoint_in[0] .queued'̂ c 0) ;

-- true when a SENDconfirm has been submitted by
-- the ABP sender module and is awaiting processing by the
-- sending user.
defprop usendconfirm (and

(eq UAccessPoint_out [0] .queued'̂ c 1)
(eq UAccessPoint_out [0] .content [0] .kind'̂ 'c 1)) ;

-- true when data packet containing datum value x and sequence
-- number seq has been submitted for transmission by the
-- ABP sender module and is awaiting transfer over the
-- underlying link.
defpred asend (x seq) (and

(eq NAccessPoint [1] .queued'̂ c 1)
(eq NAccessPoint[1].content[0].DATAinteraction.ndata.id^c 0)
(eq NAccessPoint[1].content[0].DATAinteraction.ndata.conn'^c 0)
(eq NAccessPoint [1] .content [0] .DATAinteraction.ndata.data'^c x)
(eq NAccessPoint [1] .content [0] .DATAinteraction.ndata. seq'̂ c seq)) ;

-- true when ABP sender module has no request to transmit a packet
-- over underlying link pending.
-- N.B. This is valid for reliable underlying link and for

unreliable link which can only lose data but not duplicate it.
defprop asendnothing (eq NAccessPoint [1] .queued'̂ c 0) ;

-- true when a data packet containing datum value x and
-- sequence number seq is delivered to the ABP receiver module by the
-- underlying link and has not yet been processed by
-- the ABP receiver module.
-- (in model of underlying unreliable link supporting only

APPENDIX 4 : EVER COMMAND FILE FOR VERIFICATION 141

-- data loss, this predicate is not accurate because data can
-- be delivered and subsequently removed by actions of
-- underlying unreliable link before ABP receiver processes
-- delivered data)
— (would be accurate with model of unreliable underlying link
-- with 2 extra queues between pair of ABP modules)
defpred arcv (x seq) (and

(eq NAccessPoint[1].queued^c 1)
(eq NAccessPoint[1].content[0].DATAinteraction.ndata.id^c 0)
(eq NAccessPoint [1] .content [0] .DATAinteraction.ndata.conn'^c 0)
(eq NAccessPointil] .content [0] .DATAinteraction.ndata.data''c x)
(eq NAccessPoint[1].content[0].DATAinteraction.ndata.seq'^c seq));

— true when there is no packet pending receipt by the ABP receiver
-- module in its queue from the underlying link.
defprop arcvnothing (eq NAccessPoint [1] .queued'̂ c 0);

— true when the ABP receiver module has submitted a request to transmit
— an acknowledgement packet with sequence number seq.
— (not accurate in model of unreliable link with only data loss).
defpred aacksend (seq) (and

(eq NAccessPoint [0] .queued̂ 'c 1)
(eq NAccessPoint [0] .content [0] .DATAinteraction.ndata.id'^c 1)
(eq NAccessPoint [0] .content [0] .DATAinteraction.ndata.conn'^c 0)
(eq NAccessPoint[0].content[0].DATAinteraction.ndata.seq^c seq));

— true when an acknowledgement packet containing sequence number
-- seq has been delivered to the ABP sender module by the underlying link.
-- (not accurate in model of unreliable link with only data loss).
defpred aackrcv (seq) (and

(eq NAccessPoint [0] .queued'̂ c 1)
(eq NAccessPoint [0] .content [0] •DATAinteraction.ndata.id'^c 1)
(eq NAccessPoint [0] .content [0] .DATAinteraction.ndata.conn'^c 0)
(eq NAccessPoint [0] .content [0] .DATAinteraction.ndata. seq̂ 'c seq)) ;

-- true when a RECEIVEresponse containing value x has been submitted
-- by the ABP receiver module and has not been processed by the
-- receiving user,
defpred urcv (x) (and

(eq UAccessPoint_out [1] .queued'̂ c 1)
(eq UAccessPoint_out[1].content[0].RECEIVEresponse.udata^c x)
(eq UAccessPoint_out[1].content[0].kindle 0));

— true when there is no RECEIVEresponse pending servicing by receiving
-- user in queue from ABP receiver.
defprop urcvnothing (eq UAccessPoint_out [1] .queued'̂ c 0) ;

-- true when a RECEIVErequest has been submitted by the receiving
-- user and is awaiting processing by the ABP receive module,
defprop urcvreq (and

(eq UAccessPoint_in[l].queued^c 1)
(eq UAccessPoint_in[l] .content [0] .kind'̂ c 1)) ;

-- Properties to verify
-- All properites p are to be evaluated in context of
-- (implies (global_init) (p)) ;

-- Assert that no data requests are sent by ABP sender module
-- while it is in the ESTAB state.
— AG((state=ESTAB) implies ASendNothing))
defprop ag_state_eq_ESTAB_implies_ASendNothing

(AG (implies (eq abp6[0].state^c 1) (asendnothing)));

defprop init_implies_ag_state_eq_ESTAB_implies_ASendNothing
(implies (global_init)

(ag_state_eq_ESTAB_implies_ASendNothing));

APPENDIX 4: EVER COMMAND FILE FOR VERIFICATION 142

printstring "init_implies_ag_state_eq_ESTAB_implies_ASendNothing";
printprop (init_implies_ag_state_eq_ESTAB_implies_ASendNothing);
printsize (init_implies_ag_state_eq_ESTAB_implies_ASendNothing);

-- Assert that Send_buffer_empty true iff main state is ESTAB.
defprop ag_send_buffer_empty_equiv_estab_state

(AG (equiv (eq abp6[0].vars.Send_buffer_empty^c 1)
(eq abp6[0] .state-̂ c 1)));

-- printstring "ag_send_buffer_empty_equiv_estab_state";
-- printprop (ag_send_buffer_empty_equiv_estab_state);
-- printsize (ag_send_buffer_empty_equiv_estab_state);

defprop init_implies_ag_send_buffer_empty_equiv_estab_state
(implies (global_init)

(ag_send_buffer_empty_equiv_estab_state));

printstring "init_implies_ag_send_buffer_empty_equiv_estab_state";
printprop (init_implies_ag_send_buffer_empty_equiv_estab_state);
printsize (init_implies_ag_send_buffer_empty_equiv_estab_state);

— Assert that whenever sendbuffer is not empty that Send_buffer_seq
-- variable equals Send_seq variable.
-- AG(not(Send_buffer_empty) implies (Send_buffer_seq = Send_seq))
defprop ag_not_Send_buffer_empty_implies_Send_buffer_seq_eq_Send_seq

(AG (implies (not (eq abp6 [0] .vars.Send_buffer_empty'^c 1))
(eq abp6[0] .vars.Send_buf fer_seq'̂ c

abp6[0].vars.Send_seq^c)));

defprop init_ag_not_Send_buffer_empty_implies_Send_buffer_seq_eq_Send_seq
(implies (global_init)

(ag_not_Send_buffer_empty_implies_Send_buffer_seq_eq_Send_seq));

printstring
"init_ag_not_Send_buffer_empty_implies_Send_buffer_seq_eq_Send_seq";
printprop
(init_ag_not_Send_buffer_empty_implies_Send_buffer_seq_eq_Send_seq);
printsize
(init_ag_not_Send_buffer_empty_implies_Send_buffer_seq_eq_Send_seq);

— Assert that the ABP sender module is always in the ESTAB (1) state
— or the ACK_WAIT (0) state,
defprop ag_state_estab_or_ackwait

(AG (or (eq abp6 [0] .state'̂ c 0)
(eq abp6[0] .state-̂ c 1)));

defprop init_ag_state_estab_or_ackwait
(implies (global_init)

(ag_state_estab_or_ackwait));

printstring "init_ag_state_estab_or_ackwait";
printprop (init_ag_state_estab_or_ackwait);
printsize (init_ag_state_estab_or_ackwait);

-- Assert that the ABP sender module never stays in
-- either state permanently.
-- AG(AF(state=ESTAB) and AF(state=ACK_WAIT))
defprop ag_af_state_ESTAB_and_af_state_ACKWAIT

(AG (and (AF (eq abp6 [0] .state-̂ c 0))
(AF (eq abp6[0] .state'̂ c 1)))) ;

defprop init_ag_af_state_ESTAB_and_af_state_ACKWAIT

APPENDIX 4 : EVER COMMAND FILE FOR VERIFICATION 143

(impl ies (g l o b a l _ i n i t)
(ag_af_state_ESTAB_and_af_state_ACKWAIT));

printstring "init_ag_af_state_ESTAB_and_af_state_ACKWAIT";
printprop (init_ag_af_state_ESTAB_and_af_state_ACKWAIT);
printsize (init_ag_af_state_ESTAB_and_af_state_ACKWAIT);

-- Assert that only one request is processed for each ESTAB->ACK_WAIT->ESTAB
-- cycle in the ABP sender module.
— (formula fl)
defpred one_send_request_at_a_time (x)

(AG (implies (and (usend x) (eq abp6 [0] .state'̂ c 0))
(AU (usend x)

(and (usend x) (eq abp6[0].state^c 1))))) ;

defprop forall_x_one_send_request_at_a_time
(and (one_send_request_at_a_time 0)

(one_send_request_at_a_time 1));

defprop init_forall_x_one_send_request_at_a_time
(implies (global_init) (forall_x_one_send_request_at_a_time));

printstring "init_forall_x_one_send_request_at_a_time";
printprop (init_forall_x_one_send_request_at_a_time);
printsize (init_forall_x_one_send_request_at_a_time);

— Assert that a packet will be repeatedly transmitted until an
-- acknowledgement is received when a send request is in the
-- queue from the user when in the ESTAB state,
defpred repeat_transmit_packet (x)

(AG (implies (and (eq abp6 [d] .state'̂ c 1) (usend x))
(AU (and (asendnothing) (eq abp6 [0] .state'̂ c 1))

(AU (and (or (asendnothing)
(asend x abp6[0] .vars.Send_seq''c))

(eq abp6[0] .state-̂ c 0))
(eq abp6[0] .state-̂ c 1))))) ;

defprop forall_x_repeat_transmit_packet
(and (repeat_transmit_packet 0)

(repeat_transmit_packet 1));

defprop init_forall_x_repeat_transmit_packet
(implies (global_init)

(forall_x_repeat_transmit_packet));

printstring "init_forall_x_repeat_transmit_packet";
printprop (init_forall_x_repeat_transmit_packet);
printsize (init_forall_x_repeat_transmit_packet);

— (Mon 06Decl993)
— Ever command file for rerunning verification
-- on corrections to formulae that did evaluate to
-- tautologies in original test (run_29nov).

-- Assert that when an acknowledgement is received for current sequence
— number while in ACK_WAIT state, the state will be eventually
-- returned to ESTAB and the current sequence number will be incremented.
-- (formula f3)
defpred new_ack_rcvd_leads_to_incr_seq_num_and_estab (x s)

(AG (implies
(and (eq abp6 [0] .state-̂ c 0)

(eq abp6[0].vars.Send_seq^c s)
(aackrcv s)

APPENDIX 4: EVER COMMAND FILE FOR VERIFICATION 144

(eq abp6[0] .vars .Send_buffer_datum^c x))
(AF (and (eq abp6 [0] . s ta te '^c 1)

(eq abp6[0] .vars .Send_seq ' 'c (add s 1)))))) , •

defprop new_forall_x_s_ack_rcvd_leads_to_incr_seq_num_and_estab
(and (new_ack_rcvd_leads_to_incr_seq_niiin_and_estab 0 0)

(new_ack_rcvd_leads_to_incr_seq_niam_and_estab 0 1)
{new_ack_rcvd_leads_to_incr_seq_nuin_and_estab 1 0)
(new_ack_rcvd_leads_to_incr_seq_niiin_and_estab 1 1));

defprop init_new_forall_x_s_ack_rcvd_leads_to_incr_seq_num_and_estab
(implies (global_init)

(new_forall_x_s_ack_rcvd_leads_to_incr_seq_nuin_and_estab)) ;

printstring " init_new_f orall_x_s_ack_rcvd_leads_to_incr_seq_niim_and_estab" ;
printprop (init_new_forall_x_s_ack_rcvd_leads_to_incr_seq_num_and_estab);
printsize (init_new_forall_x_s_ack_rcvd_leads_to_incr_seq_num_and_estab);

— Assert that only following events occur after a send request
-- is received by the ABP sender module.
-- While still in ESTAB state, only can receive acks from previous

request.
Eventually will change to ACK_WAIT state.

— While in ACK_WAIT state, can send retransmissions of data packet,
ABP receiver module can receive packet, ABP receiver module
can send acknowledgement packets and ABP sender module
can receive acknowledgement packets.
Eventually will return to ESTAB state with Send_seq variable
incremented.

-- (formula f4)
defpred exists_y_asend_y_s_minus_l (s)

(and (eq NAccessPoint[1].queued^c 1)
(eq NAccessPoint [1] .content [0] .DATAinteraction.ndata.id''c 0)
(eq NAccessPointfl].content[0].DATAinteraction.ndata.conn'^c 0)
(eq NAccessPoint[1].content[0].DATAinteraction.ndata.seq''c

(sub s 1)));

defpred new_send_cycle (x s)
(AG (implies

(and (usend x) (eq abp6[0].state^c 1)
(eq abp6[0].vars.Send_seq^c s))

(AU (and (eq abp6 [0] .state'̂ c 1)
(or (asendnothing)

(aackrcv (sub si))
(exists_y_asend_y_s_minus_l s)))

(AU (and (eq abp6 [0] .state-̂ c 0)
(or (asend x s) (asendnothing)

(arcvnothing) (arcv x s)
(aacksend s) (aackrcv s)))

(and (eq abp6 [0] .state'̂ c 1)
(eq abp6 [0] .vars.Send_seq'~c (add s 1))))))) ;

defprop new_forall_x_s_send_cycle
(and (new_send_cycle 0 0) (new_send_cycle 0 1)

(new_send_cycle 1 0) (new_send_cycle 1 1));

defprop init_new_forall_x_s_send_cycle
(implies (global_init) (new_forall_x_s_send_cycle));

printstring "init_new_forall_x_s_send_cycle";
printprop (init_new_forall_x_s_send_cycle) ;
printsize (init_new_forall_x_s_send_cycle) ;

((test run on 09 dec 1993))
-- Ever command file for formulae to show that exactly
-- one send data request from sending user matches

APPENDIX 4: EVER COMMAND FILE FOR VERIFICATION 145

-- exactly one receive data request from the receiving user.

-- Abbreviations
defprop sendbufferempty (eq abp7[0].vars.Send_buffer_empty''c 1);
defprop recvbufferempty (eq abp7[1].vars.Recv_buffer_empty''c 1);

-- First show one exists x.USend(x) per time Send_buffer filled
defprop usend_matches_send_buffer_fill_nest5

(AU (and (not (usendnothing)) (sendbufferempty))
(and (usendnothing) (not (sendbufferempty))));

defprop usend_matches_send_buffer_fill_nest4
(AU (not (xor (usendnothing) (sendbufferempty))) -- optional interval

(and (not (usendnothing)) (sendbufferempty)
(usend_matches_send_buffer_fill_nest5)));

defprop usend_matches_send_buffer_fill_nest3
(AU (and (usendnothing) (not (sendbufferempty)))

(usend_matches_send_buffer_fill_nest4));

defprop usend_matches_send_buffer_fill_nest2
(AU (and (not (usendnothing)) (sendbufferempty))

(and (usendnothing) (not (sendbufferempty))
(usend_matches_send_buffer_fill_nest3)));

defprop usend_matches_send_buffer_fill_nestl
(AU (and (not (usendnothing)) (not (sendbufferempty))) — optional

interval
(and (not (usendnothing)) (sendbufferempty)

(usend_matches_send_buffer_fill_nest2)));

defprop usend_matches_send_buffer_fill
(AG (implies

(not (usendnothing))
(usend_matches_send_buffer_fill_nestl)));

defprop init_usend_matches_send_buffer_fill
(implies (global_init) (usend_matches_send_buffer_fill));

printstring "init_usend_matches_send_buffer_fill";
printprop (init_usend_matches_send_buffer_fill);
printsize (init_usend_matches_send_buffer_fill);

-- Second, show one Send_buffer fill event per send sequence number
defpred send_buffer_fill_sequence (s)
(AU (sendbufferempty)

(and (not (sendbufferempty)) (eq abp7 [0] .vars.Send_seq'̂ c s)
(AU (and (not (sendbufferempty)) (eq abp7 [0] .vars.Send_seq'̂ c s))

(and (sendbufferempty) (eq abp7 [0] .vars.Send_seq''c (add s 1))
(AU (and (sendbufferempty) (eq abp7 [0] .vars.Send_seq''c

(add si)))
(and (not (sendbufferempty)) (eq

abp7[0] .vars.Send_seq''c (add s 1))))))
));

defprop send_buffer_fill_matches_seq_number
(AG (implies (sendbufferempty)

(or (send_buffer_fill_sequence 0)
(send_buffer_fill_sequence 1)))) ;

defprop init_send_buffer_fill_matches_seq_number
(implies (global_init) (send_buffer_fill_matches_seq_number));

printstring "init_send_buffer_fill_matches_seq_number";
printprop (init_send_buffer_fill_matches_seq_number);

APPENDIX 4 : EVER COMMAND FILE FOR VERIFICATION 146

p r i n t s i z e (in i t_send_buffer_f i l l_matches_seq_number) ;

- - Third , show one send sequence number for each r e c e i v e sequence
- - number and each t ime Recv_buffer f i l l e d Recv_seq i s incremented,
defpred r ecv_buf fe r_ f i l l_ sequence (s)

(AU (recvbufferempty)
(and (not (recvbufferempty))

(eq abp7[1] .vars .Recv_seq^c s)
(AU (and (not (recvbufferempty)) (eq abp7 [1] .vars.Recv_seq'̂ c s))

(and (recvbufferempty)
(AU (and (recvbufferempty) (eq abp7 [1] .vars.Recv_seq'̂ c

s))
(and (not (recvbufferempty))

(eq abp7[l] .vars.Recv_seq''c (add s 1)))))))),•

defprop recv_buffer_fill_sequence_0 (recv_buffer_fill_sequence 0);
defprop recv_buffer_fill_sequence_l (recv_buffer_fill_sequence 1);

defprop receive_buf_filled_matches_seq_no
(AG (implies (recvbufferempty)

(or (recv_buffer_fill_sequence_0)
(recv_buffer_fill_sequence_l))));

defprop init_receive_buf_filled_matches_seq_no
(implies (global_init)

(receive_buf_filled_matches_seq_no));

printstring "init_receive_buf_filled_matches_seq_no";
printprop (init_receive_buf_filled_matches_seq_no);
printsize (init_receive_buf_filled_matches_seq_no);

— Fourth, show one Recv_buffer fill event per exists x.URcv(x) event,
defprop urcv_buff_fill_seq_nest5

(AU (and (urcvnothing) (not (recvbufferempty)))
(and (not (urcvnothing)) (recvbufferempty)));

defprop urcv_buff_fill_seq_nest4
(AU (not (xor (urcvnothing) (recvbufferempty))) -- optional interval

(and (urcvnothing)
(not (recvbufferempty))
(urcv_buff_fill_seq_nest5)));

defprop urcv_buff_fill_seq_nest3
(AU (and (not (urcvnothing)) (recvbufferempty))

(urcv_buff_fill_seq_nest4)) ;

defprop urcv_buff_fill_seq_nest2
(AU (and (urcvnothing) (not (recvbufferempty)))

(and (not (urcvnothing)) (recvbufferempty)
(urcv_buff_fill_seq_nest3)));

defprop urcv_buff_fill_seq
(AU (and (urcvnothing) (recvbufferempty)) — optional interval

(and (urcvnothing) (not (recvbufferempty))
(urcv_buff_fill_seq_nest2))) ;

defprop urcv_matches_recv_buff_fill
(AG (implies (urcvnothing)

(urcv_buff_fill_seq)));

defprop init_urcv_matches_recv_buff_fill
(implies (global_init)

(urcv_matches_recv_buff_fill)) ;

printstring "init_urcv_matches_recv_buff_fill";

APPENDIX 4: EVER COMMAND FILE FOR VERIFICATION 147

printprop (init_urcv_matches_recv_buff_fill);
printsize (init_urcv_matches_recv_buff_fill) ;

((test run on 12 dec 1993))
-- Ever command file to verify property that data value
-- of a user's send request is preserved from time of
-- user submitting the request to time of the receiving
-- user receiving the data.

-- Interval when data packet has been received by ABP receiver
-- module and receiving user has submitted a receive request
-- until received read the data,
defpred data_preserved_interval7 (x)

(and (eq abp7 [1] .vars.Recv_buffer_empty'^c 1)
(urcv x)
(AU (urcv x)

(urcvnothing)));

— Interval when data packet has been received by ABP receiver
-- module and is waiting for receive user to submit a
-- receive request.
-- This interval must have a length of at least one.
defpred data_preserved_interval6 (x)

(and (eq abp7 [1] .vars.Recv_buffer_empty'^c 0)
(eq abp7 [1] .vars .Recv_buf fer_datum'^c x)
(urcvnothing)
(AU (and (eq abp7[1].vars.Recv_buffer_empty^c 0)

(eq abp7[1].vars.Recv_buffer_datum^c x)
(urcvnothing))

(data_preserved_interval7 x)));

-- Interval from when data packet has been delivered to the
-- ABP receiver module and the receiving user has not
-- processed the previous received data packet yet.
-- This interval may have a length of zero.
defprop exists_y_urcv_y

(and (eq UAccessPoint_out [1] .queued'^c 1)
(eq UAccessPoint_out [1] .content [0] .kind'̂ c 0)) ;

defpred data_preserved_interval5 (x)
(and (eq abp7[1].vars.Recv_buffer_empty^c 0)

(eq abp7[1].vars.Recv_buffer_datum^c x)
(AU (and (eq abp7 [1] .vars.Recv_buffer_empty'^c 0)

(eq abp7 [1] .vars.Recv_buf fer_datum'^c x)
(exists_y_urcv_y))

(data_preserved_interval6 x)));

-- Interval when the data packet is retransmitted while the
-- ABP receiver module's Receive buffer is empty. This interval
-- must have a length of at least 1.
defpred arcv_x_Send_seq (x)

(and (eq NAccessPoint[1].queued^c 1)
(eq NAccessPointil] .content [0] .DATAinteraction.ndata.id'^c 0)
(eq NAccessPoint [1] .content [0] .DATAinteraction.ndata.data'^c x)
(eq NAccessPoint [1] .content [0] .DATAinteraction.ndata.seq-^c

abp7 [0] .vars. Send_seq''c)) ;

defprop exists_y_arcv_y_Send_seq_minus_l
(and (eq NAccessPoint [1] .queued'^c 1)

(eq NAccessPoint [1] .content [0] .DATAinteraction.ndata.id'^c 0)
(eq NAccessPoint [1] .content [0] .DATAinteraction.ndata.seq'^c

(sub abp7 [0] . vars. Send_seq'^c 1))) ;

defpred data_preserved_interval4 (x)
(and (eq abp7 [1] .vars.Recv_buffer_empty''c 1)

(or (exists_y_arcv_y_Send_seq_minus_l)

APPENDIX 4 : EVER COMMAND FILE FOR VERIFICATION 148

(arcv_x_Send_seq x)
(a rcvnothing))

(AU (and (eq abp7 [1] .vars.Recv_buffer_einpty^c 1)
(or (exiSts_y_arcv_y_Send_seq_minus_l)

(arcv_x_Send_seq x)
(a rcvnoth ing)))

(da t a_p rese rved_ in t e rva l5 x))) ;

- - I n t e r v a l when t h e da ta packet i s r e t r a n s m i t t e d whi le t h e
- - ABP r e c e i v e r module 's Receive buf fe r s t i l l con t a in s t h e
- - p rev ious d a t a packe t . This i n t e r v a l may have a l eng th of z e r o .
defpred asend_x_Send_seq (x)

(and (eq NAccessPoint[1] .queued^c 1)
(eq NAccessPoint i l] . con ten t [0] .DATAinteract ion.ndata. id '~c 0)
(eq NAccessPo in t [1] . con ten t [0] .DATAin te rac t ion .nda ta .da ta ' ' c x)
(eq NAccessPoint [1] . content [0] .DATAinteraction.ndata.seq^^c

abp7 [0] .vars.Send_seq'^c)) ;

defprop exists_y_asend_y_Send_seq_minus_l
(and (eq NAccessPoint [1] .queued'^c 1)

(eq NAccessPo in t [1] . con ten t [0] .DATAin te rac t ion .nda ta . id^c 0)
(eq NAccessPoin t [1] .conten t [0] .DATAinterac t ion .nda ta . seq '^c

(sub abp7 [0] . v a r s . Send_seq'*'c 1))) ;

defpred d a t a _ p r e s e r v e d _ i n t e r v a l 3 (x)
(and (eq abp7 [0] . s t a t e ' - c 0)

(usendnothing)
(eq abp7 [0] .vars.Send_buffer_datum'^c x)
(AU (and (eq a b p 7 [0] . s t a t e ^ c 0) (eq abp7[1] .vars .Recv_buffer_empty^c

0)
(or (asendnothing) (asend_x_Send_seq x)

(exists_y_asend_y_Send_seq_minus_l)))
(data_preserved_interval4 x)));

-- Interval when user send request enqueued and waiting for
— ABP sender module to start processing it
defpred data_preserved_interval2 (x)

(and (eq abp7 [0] . state'̂ c 1) (usend x)
(AU (and (eq abp7[0].state^c 1) (usend x))

(data_preserved_interval3 x)));

-- Interval in which a previous user send request is
-- being processed and current request is awaiting service.
-- This interval may have a length of 0.
defpred data_preserved_intervall (x)

(AU (and (eq abp7 [0] .state-̂ c 0) (usend x))
(data_preserved_interval2 x));

defpred data_preserved (x)
(AG (implies (usend x)

(data_preserved_intervall x)));

defprop data_preserved_0 (data_preserved 0);
defprop data_preserved_l (data_preserved 1);

defprop init_data_preserved_0
(implies (global_init) (data_preserved_0));

defprop init_data_preserved_l
(implies (global_init) (data_preserved_l));

defprop forall_x_data_preserved
(and (data_j)reserved_0)

(data_preserved_l)) ;

APPENDIX 4 : EVER COMMAND FILE FOR VERIFICATION 149

defprop i n i t _ f o r a l l _ x _ d a t a _ p r e s e r v e d
(impl ies (g l o b a l _ i n i t)

(f o r a l l _ x _ d a t a _ p r e s e r v e d)) ;

- - P r i n t r e s u l t s
p r i n t s t r i n g " in i t _da t a_p re se rved_0" ;
p r i n t p r o p (i n i t _ d a t a _ p r e s e r v e d _ 0) ;
p r i n t s i z e (i n i t _ d a t a _ p r e s e r v e d _ 0) ;

p r i n t s t r i n g " i n i t _ d a t a _ p r e s e r v e d _ l " ;
p r i n t p r o p { i n i t _ d a t a _ p r e s e r v e d _ l) ;
p r i n t s i z e (i n i t _ d a t a _ p r e s e r v e d _ l) ;

p r i n t s t r i n g " i n i t _ f o r a l l _ x _ d a t a _ p r e s e r v e d " ;
p r i n t p r o p { i n i t _ f o r a l l _ x _ d a t a _ p r e s e r v e d) ;
p r i n t s i z e (i n i t _ f o r a l l _ x _ d a t a _ p r e s e r v e d) ;

Appendix 5: Output of v e r i f i c a t i o n

Corranand> Taking input from run_29nov...
init_implies_ag_state_eq_ESTAB_implies_ASendNothing
evaluated (AG 1394ac 0) size=31 totalBDDsize=127650 57:18 mins 4157 Kb
(UAccessPoint_in[0] .queued'̂ c
[1]
(UAccessPoint_in[0].content[0].kindle
[1]
(UAccessPoint_in[0].content[0].RECEIVErequest.dummy"c
[1]
(UAccessPoint_in[0].content[0].SENDrequest.udata^c
[1]
(UAccessPoint_in[l].gueued^c
[1]
{UAccessPoint_in[l].content[0].kindle
[1]
(UAccessPoint_in[l] .content [0] .RECEIVErequest .dummy'̂ c
[1]
(UAccessPoint_in[l] .content [0] .SENDrequest.udata'^c
[1]
(UAccessPoint_out[0].queued^c
[1]
(UAccessPoint_out [1] .queued'̂ c
[1]
(NAccessPoint [0] .gueued'̂ c
[1]
(NAccessPoint [1] .queued'̂ c
[1]
(abp6[0] .state'̂ c
(abp6[0].vars.Send_seq^c
[1]
(abp6[0] .vars.Recv_seq'̂ c
[1]
(abp6 [0] .vars.Recv_buffer_empty'^c
(abp6 [0] .vars .Send_buf fer_empty'̂ c

[i]')
[1])))

[1])))))))))))))
Unevaluated Size: 28
init_implies_ag_send_buffer_empty_equiv_estab_state
evaluated (AG 3e486c 0) size=35 totalBDDsize=61614 57:24 mins 4157 Kb
[1]
Unevaluated Size: 0
init_ag_not_Send_buffer_empty_implies_Send_buffer_seq_eq_Send_seq
evaluated (AG 3e552c 0) size=29 totalBDDsize=78162 57:29 mins 4157 Kb
[1]
Unevaluated Size: 0
init_ag_state_estab_or_ackwait
evaluated (AG 3e606c 0) size=0 totalBDDsize=78162 57:30 mins 4157 Kb
[1]
Unevaluated Size: 0
ini t_ag_a f_s tat e_ESTAB_and_af_state_ACKWAIT
evaluated (AF 3e666c 0) size=0 totalBDDsize=124310 83:08 mins 4157 Kb
evaluated (AF 3e69ec 0) size=0 totalBDDsize=108789 118:31 mins 4157 Kb
evaluated (AG 3e6aac 0) size=0 totalBDDsize=108789 118:31 mins 4157 Kb
[1]
Unevaluated Size: 0
init_forall_x_one_send_request_at_a_time
evaluated (AU 40962c 409c2c 0) size=32 totalBDDsize=66046 165:45 mins 4189
Kb
evaluated (AG 408dac 0) size=0 totalBDDsize=66046 165:45 mins 4189 Kb

150

APPENDIX S: OUTPUT OF VERIFICATION 1 5 1

eva lua ted (AU 40ae6c 40b46c 0) size=32 totalBDDsize=70902 213:10 mins 4189
Kb
evaluated (AG 40a5ec 0) size=0 totalBDDsize=70902 213:10 mins 4189 Kb
[1]
Unevaluated Size: 0
init_forall_x_repeat_transmit_packet
evaluated (AU 1442ec 1453ec 0) size=79 totalBDDsize=94992 92:53 mins 4189 Kb
evaluated (AU 143f6c 1442ac 0) size=79 totalBDDsize=127221 119:50 mins 4189
Kb
evaluated (AG 1436ec 0) size=0 totalBDDsize=127221 119:50 mins 4189 Kb
evaluated (AU 1462ec 1473ec 0) size=79 totalBDDsize=74929 157:39 mins 4189
Kb
evaluated (AU 145f6c 1462ac 0) size=79 totalBDDsi2e=77048 184:38 mins 4189
Kb
evaluated (AG 1456ec 0) size=0 totalBDDsize=77048 184:38 mins 4189 Kb
[1]
Unevaluated Size: 0
((output from test of 06 dec 1993))
((program previous restarted with CPU 103:07 mins. accumulated before this
test))
Command> Taking input from run_06dec...
init_new_forall_x_s_ack_rcvd_leads_to_incr_seq_num_and_estab
evaluated (AF 40b66c 0) size=0 totalBDDsize=84255 151:15 mins 0 Kb
evaluated (AG 40a72c 0) size=0 totalBDDsize=84255 151:15 mins 0 Kb
evaluated (AF 40cc6c 0) size=0 totalBDDsize=106744 200:20 mins 32 Kb
evaluated (AG 40bd2c 0) size=0 totalBDDsize=106744 200:20 mins 32 Kb
evaluated (AF 40e26c 0) size=0 totalBDDsize=123197 248:54 mins 32 Kb
evaluated (AG 40d32c 0) size=0 totalBDDsize=123197 248:55 mins 32 Kb
evaluated (AF 3e78ac 0) size=0 totalBDDsize=120039 298:18 mins 32 Kb
evaluated (AG 40e96c 0) size=0 totalBDDsize=120039 298:18 mins 32 Kb
[1]
Unevaluated Size: 0
init_new_forall_x_s_send_cycle
evaluated (AU 3f2eac 3f5eec 0) size=66 totalBDDsize=69565 348:06 mins 128 Kb
evaluated (AU 3fl72c 3f2e6c 0) size=102 totalBDDsize=124396 383:02 mins 128
Kb
evaluated (AG 3f0cec 0) size=79 totalBDDsize=104255 387:37 mins 128 Kb
evaluated (AU 41076c 4137ac 0) size=66 totalBDDsize=109530 438:36 mins 160
Kb
evaluated (AU 3f6fec 41072c 0) size=102 totalBDDsize=105066 474:20 mins 160
Kb
evaluated (AG 3f65ac 0) size=79 totalBDDsize=115778 479:04 mins 160 Kb
evaluated (AU 41602c 3f906c 0) size=66 totalBDDsize=113697 529:35 mins 160
Kb
evaluated (AU 4148ac 415fec 0) size=102 totalBDDsize=119707 565:08 mins 160
Kb
evaluated (AG 413e6c 0) size=79 totalBDDsize=105884 569:51 mins 160 Kb
evaluated (AU 3fb92c 3fe96c 0) size=66 totalBDDsize=122377 621:27 mins 160
Kb
evaluated (AU 3falac 3fb8ec 0) size=102 totalBDDsize=92572 657:53 mins 160
Kb
evaluated (AG 3f976c 0) size=79 totalBDDsize=129949 662:43 mins 160 Kb
[1]
Unevaluated Size: 0
((test run on 09 dec 1993))
((program restarted here))
Command> Taking input from run_09decB...
init_usend_matches_send_buffer_fill
evaluated (AU 40b06c 40blec 0) size=59 totalBDDsize=92726 142:42 mins 4253
Kb
evaluated (AU 40b3ac 40b5ac 0) size=40 totalBDDsize=80530 203:52 mins 4253
Kb
evaluated (AU 3fa7ec 40b5ec 0) size=10 totalBDDsize=74233 232:57 mins 4253
Kb

APPENDIX 5: OUTPUT OF VERIFICATION 152

AU 3faa6c 3fac6c 0) size=60 totalBDDsize=96120 292:01 mins 4253

AU 3faeec 3fb0ec 0) size=38 totalBDDsize=104638 353:30 mins 4253

AG 3fb2ac 0) size=10 totalBDDsize=105520 353:34 mins 4253 Kb

evaluated
Kb
evaluated
Kb
evaluated
[1]
Unevaluated Size: 0
init_send_buffer_fill_raatches_seq_number

(AU 3fc36c 3fc7ec 0) si2e=35 totalBDDsize=146881 439:27 mins 7101 evaluated
Kb
evaluated
Kb
evaluated
Kb
evaluated
Kb
evaluated
Kb
evaluated
Kb
evaluated
[1]
Unevaluated Size
init_receive_buf_filled_matches_seq_no
evaluated
Kb
evaluated
Kb
evaluated
12765 Kb
evaluated
12765 Kb
evaluated
12765 Kb
evaluated
12765 Kb
evaluated
[1]
Unevaluated Size: 0
init_urcv_matches_recv_buff_fill
evaluated (AU 4c2ac 6a502c 0) size=53 totalBDDsize=417658 1545:31 mins 12765
Kb
evaluated
12829 Kb
evaluated
Kb
evaluated
12829 Kb
evaluated
12829 Kb
evaluated
[1]
Unevaluated Size: 0
Command>

AU 3fbaac 3fbeac 0) size=35 totalBDDsize=128849 521:22 mins 7101

AU 4094ec 40966c 0) size=36 totalBDDsize=155532 605:27 mins 7101

AU 3fdd6c 3felec 0) size=35 totalBDDsize=148037 689:14 mins 7101

AU 3fd4ac 3fd8ac 0) size=35 totalBDDsize=161202 774:11 mins 7133

AU 3fceec 3fd06c 0) size=36 totalBDDsize=212023 859:36 mins 7133

AG 3fe7ac 0) size=0 totalBDDsize=212023 859:36 mins 7133 Kb

AU 6d36ac 6cla6c 0) size=32 totalBDDsize=196910 963:59 mins 7133

AU 6d306c 6d346c 0) size=31 totalBDDsize=224682 1054:22 mins 7133

AU 6d2aac 6d2c2c 0) size=32 totalBDDsize=351280 1155:27 mins

AU 6c2dac 6c316c 0) size=32 totalBDDsize=451911 1252:41 mins

AU 6c276c 6c2b6c 0) size=31 totalBDDsize=430945 1334:37 mins

AU 6c21ac 6c232c 0) size=32 totalBDDsize=502851 1435:52 mins

AG 6c58ac 0) size=0 totalBDDsize=502851 1435:52 mins 12765 Kb

AU 6a51ec 6a53ec 0) size=31 totalBDDsize=316709 1654:01 mins

AU 6a562c 6a542c 0) size=0 totalBDDsize=359758 1682:14 mins 12829

AU 6c60ac 6c62ac 0) size=53 totalBDDsize=505725 1793:24 mins

AU 6c64ac 6c66ac 0) si2e=30 totalBDDsize=330621 1902:12 mins

AG c3e82c 0) size=0 totalBDDsize=330621 1902:12 mins 12829 Kb

((test run on 12 dec 1993))
Command> Taking input from run_12dec...
init_data_preserved_0
evaluated (AU c81eec c824ec 0) size=31 totalBDDsize=474048 1962:36 mins
13021 Kb
evaluated (AU c8112c c8166c 0) size=78 totalBDDsize=450272 2179:49 mins
13117 Kb
evaluated (AU c803ec c80bac 0) size=32 totalBDDsize=486156 2391:16 mins
13181 Kb
evaluated (AU c7e8ac c7ffec 0) size=248 totalBDDsize=332950 2542:02 mins
13181 Kb

APPENDIX 5 : OUTPUT OF VERIFICATION 153

eva lua t ed (AU c7b86c c7dl2c 0) size=245 totalBDDsize=919959 2788:32 mins
24349 Kb
evaluated (AU c7ab2c c7b32c 0) size=170 totalBDDsize=714383 2963:48 mins
24349 Kb
evaluated (AU c79aec c7a2ec 0) size=113 totalBDDsize=957107 3111:03 mins
24349 Kb
evaluated (AG c7946c 0) size=119 totalBDDsize=653332 3116:35 mins 24349 Kb
[1]
Unevaluated Size: 0
init_data_preserved_l
evaluated (AU c8b42c c8ba2c 0) size=31 totalBDDsize=998219 3175:29 mins
24349 Kb
evaluated (AU c8a66c cSabac 0) size=78 totalBDDsize=815171 3386:21 mins
24349 Kb
evaluated (AU c8992c cSaOec 0) size=32 totalBDDsize=865586 3588:13 mins
24477 Kb
evaluated (AU c87dec c8952c 0) size=248 totalBDDsize=672335 3731:32 mins
24477 Kb
evaluated (AU c84dac c8666c 0) size=245 totalBDDsize=772383 3974:43 mins
24477 Kb
evaluated (AU c8406c c8486c 0) size=170 totalBDDsize=716458 4154:13 mins
24477 Kb
evaluated (AU c8302c c8382c 0) size=113 totalBDDsize=736906 4308:55 mins
24477 Kb
evaluated (AG c829ac 0) size=119 totalBDDsize=994813 4314:34 mins 24477 Kb
[1]
Unevaluated Size: 0
init_forall_x_data_preserved
[1]
Unevaluated Size: 0
Command>

Appendix 6: Example counterexample t race

Coinmand> printtrace (global_init)
(global_next state)

(and (eq
ahp6[0] .state'^c 1) (not
(asendnothing)));
Start of printtrace.
Clock 319678/100 seconds.
Memory 0 bytes.
Garbage Collecting...
BDD 42152 nodes.

Evaluating start condition...
Done evaluating start condition.
Start condition size = 28 or 28
Clock 319718/100 seconds.
Memory 0 bytes.
Garbage Collecting...
BDD 42152 nodes.

Evaluating goal/invariant...
Done evaluating goal/invariant.
Goal/invariant size = 2 or 2
Clock 319733/100 seconds.
Memory 0 bytes.
Garbage Collecting...
BDD 42152 nodes.

Starting reachability...bO=gcf, as
hYPOthesized.
Sizes:

whole =28
diff = 28

{32)b0=gcf, as hypothesized.
Sizes:

whole =32
diff = 32

{71)b0=gcf, as hypothesized.
Sizes:

whole =71
diff = 70

(172)b0=gcf, as hypothesized.
Sizes:

whole = 172
diff = 156

(319)b0=gcf, as hypothesized.
Sizes:

whole = 319
diff = 293

(518)b0=gcf, as hypothesized.
Sizes:

whole = 518
diff = 475

(683)b0=gcf, as hypothesized.
Sizes:

whole = 683
diff = 635

(825)b0=gcf, as hypothesized.
Sizes:

whole = 825
diff = 729

154

APPENDIX 6: EXAMPLE COUNTEREXAMPLE TRACE 155

(1041)A POSSIBLE END STATE
(invariant violated/goal reached):
clock_tick^c = 0
UAccessPoint_in

[0]

[1]

.base^c = 0

.queued'^c = 0

.content
[0]

.kind'̂ c = 0

.RECEIVErequest
.dummy'^c = 0

.SENDrequest
.udata'^c = 0

.base'̂ c = 0

. queued'^c = 0

.content
[0]

.kind'̂ c = 0

.RECEIVErequest
.dummy'^c = 0

.SENDrequest
.udata'^c = 0

UAccessPoint out
[0]

[1]

.base^c = 0

.queued'^c = 1

.content
[0]

.kind'̂ c = 1

.SENDconfirm
.duiranŷ c = 0

.RECEIVEresponse
.udata'^c = 0

.base'̂ c = 0

.queued'^c = 0

.content
[0]

.kindle = 0

.SENDconfirm
.duitimy'̂ c = 0

.RECEIVEresponse
.udata'^c = 0

NAccessPoint
[0]

[1]

.base'^c = 0

.queued'^c = 0

.content
[0]

.DATAinteraction
.ndata

.id-̂ c = 1

.conn-̂ c = 0

.data-̂ c = 0

.seq'̂ c = 0

.base'̂ c = 0

.queued^c = 1

.content
[0]

.DATAinteraction
.ndata

.id'-c = 0

.conn'̂ c = 0

.data^c = 0

abp6
[0]

[1]

.seq'̂ c =

.state'^c = estab

.vars
.Send_seq''c = 1
.Recv_seq''c = 0
. Recv_buf f er_empty'^c
. Recv_buf f er_datum''c
.Recv_buf fer_seq'~c =
. Send_buf f er_empty'^c
.Send_buffer_datum^c
.Send_buf fer_seq'^c =

.timers
. rexmit_t imer

.running'^c = 0

.counter'-c = 0

.state^c = estab

.vars
.Send_seq^c = 0
.Recv_seq^c = 1
.Recv_buffer_empty^c
. Recv_buf f er_datum'^c
.Recv_buf fer_seq'^c =
. Send_buf f er_empty'"c
. Send_buf f er_datum''c
.Send_buffer_seq''c =

.timers
. rexrai t_t imer

. running'^ c = 0

.counter^c = 0
user_txdatuin'^c = 0
user_rxdatum^c = 0

0

=
=
0
=
=
0

=
=
0
=
=
0

1
0

1
0

0
0

1
0

APPENDIX 6: EXAMPLE COUNTEREXAMPLE TRACE 156

A POSS
clock.
UAcces

[0

IBLE PREDECESSOR STATE;
tick-^C = 0
sPoint_in

abp6

.base'̂ c

.queued

.content
[0]

= 0
c = 0

[1]

.kind-̂ c = 0

.RECEIVErequest
.duirany''c = 0

.SENDrequest
.udata-^c = 0

.base'̂ c •

. queued'^!

.content
[0]

UAccessPoint out
[0]

.base^c :

.queued'^i

.content
[0]

= 0
0 = 0

.kindle = 0

.RECEIVErequest
. dummy'^c =

.SENDrequest
.udata'^c =

= 0
c = 1

0

0

[1]
.base^c
.queued
.content

[0]

.kind-^c = 1

.SENDconfirm
.diimmy^'c = 0

.RECEIVEresponse
.udata'^c = 0

= 0
•c = 0

.kind'^c = 0

.SENDconfirm
.dummy'^c = 0

,RECEIVEresponse
.udata'-c = 0

NAccessPoint
[0]

[1]

.base'^c = 0

.queued'^c = 1

.content
[0]

.DATAinteraction
.ndata

.id-^c = 1

.conn'^c = 0

.data'^c = 0

.seq'^c = 0

.base'^c = 0

.queued'^c = 1

.content
[0]

.DATAinteraction
.ndata

.id^c = 0

.conn-^c = 0

.data-^c = 0

.seq-^c = 0

[0]

[1]

. state'^c = ack_wait
,vars

.Send_seq'^c = 0

.Recv_seq'^c = 0

.Recv_buf fer_empty"c

. Recv_buf f er_datum''c

.Recv_buffer_seq''c =

. Send_buf f er_empty'^c

. Send_buf f er_datum'^c

.Send_buf fer_seq''c =
.timers

.rexmi t_t imer
.running^c = 1
.counter-^c = 0

.state'^c = estab

. vars
.Send_seq'^c = 0
.Recv_seq'^c = 1
. Re c v_bu f f e r_emp ty "̂ c
. Recv_buf f er_dat\am'^c
.Recv_buf fer_seq'^c =
.Send_buffer_empty^c
. Send_buf f er_datum''c
.Send_buf fer_seq''c =

.timers
.rexmit_t imer

. running'^c = 0

.counter'^'c = 0
user_txdatum'^c = 0
user rxdatum^c = 0

APPENDIX 6: EXAMPLE COUNTEREXAMPLE TRACE 157

IBLE PREDECESSOR STATE:
tick'̂ C = 0

A POSS
clock.
UAccessPoint_in

[0

abp6

)]
0

tl]

.base'̂ c =

. queued'^ c = 0

.content
[0]

.kindle = 0

.RECEIVErequest
. dummy'"'c = 0

.SENDrequest
.udata'^c = 0

.base'̂ c = 0

.cjueued̂ 'c = 0

.content
[0]

.kindle = 0

.RECEIVErequest
.dummy'^c = 0

.SENDrequest
.udata'^c = 0

UAccessPoint_out
[0]

.base^c = 0

. queued'^ c = 1

.content
[0]

.kind-̂ c = 1

.SENDconfirm
.dummy^c = 0

. RECEIVEresponse
.udata^'c = 0

[1]

NAcces
[0

[1]

base^c = 0
. queued'^c = 0
.content

[0]
.kind'̂ c = 0
.SENDconfirm

.dummy^c = 0
.RECEIVEresponse

.udata-^c = 0
sPoint
]

.base'̂ c = 0

.queued'^c = 1

.content
[0]

.DATAinteraction
.ndata

.id'-c = 1

.conn'*~c =

.data'̂ c =
• seq-̂ c = (

.base'̂ c = 0

.queued^c = 0

.content
[0]

.DATAinteraction
.ndata

.id'̂ c = 0

.conn'̂ c = 0

.data-̂ c = 0

.seq-̂ c = 0

[0]

[1]

. state'^c = ack_wait

.vars
.Send_seq'^c = 0
.Recv_seq^c = 0
. Recv_buf f er_empty •̂c
. Recv_buf f er_datum'~c
.Recv_buf fer_seq'^c =
. Send_buf f er_empty'^c
. Send_buf f er_datum''c
.Send_buf fer_seq'^c =

.timers
.rexmi t_t imer

.running'^c = 1

.counter'^c = 3

• state^'c = estab
.vars

.Send_seq'^c = 0

.Recv_seq'^c = 1

.Recv_buffer_empty^c

. Recv_buf f er_datum'^c

.Recv_buffer_seq^c =

. Send_buf f er_empty'^c

. Send_buf f er_dat\jm''c

. Send_buf f er_seq'^c =
.timers

. rexmi t_t imer
. running^c = 0
. counter^c = 0

user_txdat\am'^c = 0
use r rxdatuTO'^c = 0

APPENDIX 6: EXAMPLE COUNTEREXAMPLE TRACE 158

A POSSIBLE PREDECESSOR STATE:
clock_tick^c = 0
UAccessPoint in

[0]

[1]

•base^c = 0
. queued''c = 0
.content

[0]
.kind'-c = 0
.RECEIVErequest

.dummy'^c = 0
.SENDrequest

.udata-^c = 0

.base-̂ c = 0
• queued'^c = 0
.content

[0]
.kind-̂ c = 0
.RECEIVErequest

.dummy'^c = 0
.SENDrequest

.udata^c = 0
UAccessPoint out

[0]

[1]

.base^c = 0

.queued'~c = 1

.content
[0]

.kind-̂ c = 1

.SENDconfirm
.dummy'^c = 0

.RECEIVEresponse
.udata'*'c = 0

.base'̂ c = 0

. queued'^c = 0

.content
[0]

.kind'̂ c = 0

abp6
[0]

[1]

. state'^c = ack_wait

.vars
.Send_seq'^c = 0
.Recv_seq''c = 0
. Rec v_bu f f er_empty"" c
. Recv_buf f er_datum''c
.Recv_buf fer_seq''c =
.Send_buffer_empty^c
. Send_buf f er_datuiii'̂ c
.Send_buffer_seq^c =

.timers
. rexmi t_t imer

. running'^c = 1

.counter^c = 3

.state'^c = estab

.vars
.Send_seq''c = 0
.Recv_seq'^c = 0
. Recv_buf f er_empty •̂c
. Recv_buf f er_datum'^c
.Recv_buf fer_seq'^c =
. Send_buf f er_empty'^c
. Send_buf f er_datiain'̂ c
.Send_buf fer_seq'^c =

.timers
.rexmi t_t imer

. running'^c = 0

.counter'^c = 0
user_txdatuin'^c = 0
user_rxdatum^c = 0

=
=
0
=
=
0

=
=
0
=
=
0

1
0

0
0

1
0

1
0

.SENDconfirm
.dummy'^c = 0

.RECEIVEresponse
.udata'^c = 0

NAccessPoint
[0]

.base'̂ c = 0

.queued^c = 0

.content
[0]

.DATAinteraction
.ndata

0

[1]

.id^c

.conn'̂ c = 0

.data'̂ c = 0

. seq'̂ c = 0

.base'̂ c =

.queued'^c

. content
[0]

0
= 1

.DATAinteraction
.ndata

.id^c = 0

.conn'̂ c = 0

.data'-c = 0

.seq'̂ c = 0

APPENDIX 6: EXAMPLE COUNTEREXAMPLE TRACE 159

A POSSIBLE PREDECESSOR STATE:
clock._tick'^c = 1
UAccessPoint in

[0]

[1]

.base'̂ c = 0

.queued^c = 0

.content
[0]

• kind'^c = 0
.RECEIVErequest

• duminy^c = 0
.SENDrequest

.udata'^c = 0

.base'̂ c = 0

. queued'^ c = 0

.content
[0]

.kind'̂ c = 0
•RECEIVErequest

.duiranŷ c = 0
.SENDrequest

.udata'^c = 0
UAccessPoint out

[0]
.base'̂ c = 0
.queued'^c = 1
.content

[0]
.kind'̂ c = 1
.SENDconfirm

.duininy'̂ c = 0
.RECEIVEresponse

abp6
[0]

[1]

• state-^c = ack_wait
.vars

.Send_seq'^c = 0

.Recv_seq'^c = 0

. Recv_buf f er_empty'^c

. Recv_buf f er_datuin^c

.Recv_buf fer_seq'^c =

. Send_buf f er_empty "̂c

. Send_buf f er_datum'^c

.Send_buf fer_seq''c =
.timers

.rexmi t_t imer
.running'^c = 1
.counter^c = 2

.state^c = estab

.vars
.Send_seq''c = 0
.Recv_seq''c = 0
. Recv_buf f er_einpty'̂ c
. Recv_buf f er_dat\im''c
.Recv_buffer_seq''c =
. Send_buf f er_einpty^c
. Send_buf f er_datum'^c
.Send_buf fer_seq'^c =

.timers
.rexmit_timer

.running'^c = 0

.counter'^c = 0
user_txdatum'^c = 0
user_rxdatum'^c = 0

=
=
0
=
=
0

=
=
0
=
=
0

1
0

0
0

1
0

1
0

[1]
.udata-^c = 0

.base'̂ c

. queued'

.content
[0

= 0
c = 0

.kind'̂ c = 0

.SENDconfirm
.dummy^c = 0

.RECEIVEresponse
.udata'^c = 0

NAcces
[0
sPoint
]

.base^c

.queued

.content
[0]

= 0
c = 0

[1]

.DATAinteraction
.ndata

.id^c = 0

.conn'̂ c = 0

.data'̂ c = 0

.seq'̂ c = 0

•base^c = 0
. queued'^c = 1
. content

[0]
.DATAinteraction

.ndata
.id'̂ c = 0
.conn'̂ c = 0
.data'̂ c = 0
.seq'̂ c = 0

APPENDIX 6: EXAMPLE COUNTEREXAMPLE TRACE 160

A POSSIBLE PREDECESSOR STATE:
clock_tick''c = 1
UAccessPoint in

[0]

[1]

.base'^c = 0

.queued'^c = 0

.content
[0]

.kind'-c = 0

.RECEIVErequest
• dunimy'^c = 0

.SENDrequest
.udata'^c = 0

.base'^c = 0

. queued''c = 0

.content
[0]

.kindle = 0

.RECEIVErequest
.duinmy''c = 0

•SENDrequest
.udata'^c = 0

UAccessPoint out
[0]

[1]

.base^c = 0

.queued'^c = 1

.content
[0]

.kind'^c = 1

.SENDconfirm
.d'uirany'̂ c = 0

.RECEIVEresponse
.udata'^c = 0

.base'^c = 0

.queued^c = 0

.content
[0]

.kind-^c = 0
•SENDconfirm

• dtjiratiŷ c = 0
•RECEIVEresponse

•udata^c = 0
NAccessPoint

[0]

[1]

.base'^c = 0

.queued'^c = 0

.content
[0]

.DATAinteraction
•ndata

•id^c = 0
• conn'^c = 0
• data-^c = 0
• seq'-c = 0

• base'^c = 0
• queued'^c = 1
.content

[0]
•DATAinteraction

.ndata
•id^c = 0
• conn'^c = 0
• data'^c = 0
• seq'^c = 0

abp6
[0]

• state^'c = ack_wait
• vars

• Send_seq'^c = 0
.Recv_seq'^c = 0
• Recv_buf f er_empty'^c
• Recv_buf f er_datuin'^c
.Recv_buffer_seq^c =
. Send_buf f er_empty''c
• Send_buf f er_datum''c
.Send_buf fer_seq'^c =

•timers
• rexmi t_t imer

• running-^c = 1
.counter'^c = 1

[1]
• state'-c = estab
• vars

.Send_seq^c = 0

.Recv_seq'"c = 0

. Recv_buf f er_empty'^c

.Recv_buffer_datum^c

.Recv_buf fer_seq'^c =

. Send_buf f er_empty'~'c

. Send_buf f er_datum''c
• Send_buffer_seq'^c =

•timers
•rexmit_timer

• running'^c = 0
• counter'^c = 0

user_txdatum''c = 0
user_rxdatum'^c = 0

APPENDIX 6: EXAMPLE COUNTEREXAMPLE TRACE 161

A POSSIBLE PREDECESSOR STATE:
clock_tick'"c = 1
UAccessPoint_in

[0]
.basê 'c = 0
.queued'̂ c = 0
.content

[0]
.kind'̂ c = 0
.RECEIVErequest

.duimtŷ c = 0
.SENDrequest

.udata-̂ c = 0
[1]

.base'̂ c = 0

.queued'̂ c = 0

.content
[0]

.kindle = 0

.RECEIVErequest
.dijitimy'^c = 0

.SENDrequest
.udata'^c = 0

UAccessPoint_out
[0]

.basê 'c = 0

. queued"^ c = 1

.content
[0]

.kind-̂ c = 1

.SENDconfirm
.dummy'^c = 0

.RECEIVEresponse
.udata'^c = 0

abp6
[0]

[1]

NAcces
[0

base'̂ 'c = 0
.queued'^c = 0
.content

[0]
.kindle = 0
.SENDconfirm

.dummy'^c = 0
.RECEIVEresponse

.udata'^c = 0
sPoint
]

.base'̂ c = 0

.queued'^c = 0

.content
[0]

.DATAinteraction
.ndata

.id-̂ c = 0

[1]

.conn̂ 'c = 0

.data'̂ c = 0

.seq'̂ c = 0

.base'̂ c = 0

.queued'^c = 1

.content
[0]

.DATAinteraction
.ndata

.id'̂ c = 0

.conn'̂ c = 0

.data'̂ c = 0

.seq'̂ c = 0

state^c = ack_wait
vars

.Send_seq^c = 0

.Recv_seq''c = 0

. Recv_buf f er_empty'"c

.Recv buffer datum^c

.Recv buffer seq^c =

.Send buffer_empty'~c
• Send buffer datum'^c
.Send_buf fer_seq''c =

timers
.rexmit timer

. running'" c = 1

.counter^c = 0

=
=
0
=
=
0

1
0

0
0

[1]
'c = estab . state

.vars
. Send_seq''c = 0
.Recv_seq'"c = 0
. Recv_buf f er_empty'"c
. Recv_buf f er_datum''c
.Recv_buf fer_seq'"c =
. Send_buf f er_empty''c
. Send_buf f er_datum''c
.Send_buf fer_seq'^c =

.timers
. r exmi t_t imer

.running'^c = 0

.counter'"c = 0
user_txdatum''c = 0
user_rxdatum'^c = 0

APPENDIX 6 : EXAMPLE COUNTEREXAMPLE TRACE 1 6 2

A POSS
c l o c k _ '
UAcces

[0

IBLE PREDECESSOR STATE:
t i c k ' - C = 0
s P o i n t _ i n

abp6

.base '^c

. q u e u e d

. c o n t e n t
[0]

= 0
c = 1

[1]

.kindle = 0

.RECEIVErequest
.dummy'^c = 0

.SENDrequest
.udata'^c = 0

• base'^c =
. queued"^!
.content

[0]

UAccessPoint out
[0]

.base'̂ c =

. queued'̂ c

.content
[0]

= 0
:; = 0

.kind'̂ c = 0

.RECEIVErequest
.duirany'̂ c =

.SENDrequest
.udata'-c =

= 0
:: = 0

'o
0

[1]
.base'̂ c
.queued
.content

[0]

.kind'-c = 0

.SENDconfirm
.dummy'^c = 0

.RECEIVEresponse
.udata^c = 0

= 0
•c = 0

.kind'̂ c = 0

.SENDconfirm
.duinitiy'"c = 0

.RECEIVEresponse
.udata^c = 0

NAccessPoint
[0]

[1]

.base'̂ c = 0

.queued'^c = 0

.content
[0]

.DATAinteraction
.ndata

.id'̂ c = 0

.conn'̂ c =

.data^c =

. seq'̂ c = 0

.base^c = 0

.queued^c = 0

. content
[0]

.DATAinteraction
.ndata

.id'̂ c = 0
• conn'̂ c = 0
.data'̂ c = 0
.seq'̂ c = 0

[0]

[1]

.state'^c = estab

.vars
.Send_seq^c = 0
.Recv_seq'^c = 0
. Recv_buf f er_empty''c
. Recv_buf f er_datum''c
.Recv_buf fer_seq'^c =
. Send_buf f er_empty''c
. Send_buf f er_datum'^c
.Send_buf fer_seq''c =

.timers
.rexmit_t imer

.running^c = 0

.counter^c = 0

.state'^c = estab
• vars

.Send_seq''c = 0

.Recv_seq'"c = 0

. Recv_buf f er_empty'^c

.Recv_buf fer_datum^c

.Recv_buf fer_seq'^c =

. Send_buf f er_empty'~'c

. Send_buf f er_datum''c

.Send_buf fer_seq'^c =
.timers

. r exmi t_t imer
.running^c = 0
. counter'^c = 0

user_txdatum''c = 0
user rxdatum'^c = 0

APPENDIX 6: EXAMPLE COUNTEREXAMPLE TRACE 163

A POSSIBLE PREDECESSOR STATE:
clock_tick''c = 0
UAccessPoint_in

[0]
.base'̂ c = 0
.queued'^c = 0
.content

abp6
[0]

[o:

[1]

.kind'̂ c = 0

.RECEIVErequest
.diimmy'̂ c = 0

•SENDrequest
.udata'^c = 0

.base'̂ c = 0

.queued'^c = 0

.content
[0]

.kind'̂ c = 0

.RECEIVErequest
.dummy'^c = 0

.SENDrequest
.udata^c = 0

UAccessPoint_out
[0]

.base^c = 0

.queued^c = 0

.content
[0]

.kind'̂ c = 0

.SENDconfirm
.diimmy^c = 0

.RECEIVEresponse
.udata-^c = 0

[1]
.basê 'c = 0
.queued'^c = 0
.content

[0]
.kind'̂ c = 0
.SENDconfirm

.dimmiy'̂ c = 0
.RECEIVEresponse

.udata'^c = 0
NAccessPoint

[0]
.base^c = 0
.queued'^c = 0
.content

[0]
.DATAinteraction

.ndata
.id'̂ c = 0
.conn'̂ c = 0
.data'̂ 'c = 0
.seq'̂ c = 0

[1]
.basê 'c = 0
.queued''c = 0
.content

[0]
.DATAinteraction

.ndata
.id^c = 0
.conn'-c = 0
.data'̂ c = 0
.seq'̂ c = 0

[1]

.state'^c = estab

. vars
.Send_seq'^c = 0
.Recv_seq''c = 0
.Recv_buf fer_empty'^c = 1
.Recv_buffer_datum'^c = 0
.Recv_buffer_seq'^c = 0
.Send_buf fer_empty'^c = 1
.Send_buf fer_datiim''c = 0
.Send_buf fer_seq'"c = 0

.timers
.rexmi t_t imer

.running'^c = 0
• counter^'c = 0

• state'^c = estab
.vars

.Send_seq'^c = 0

.Recv_seq^c = 0

.Recv_buf fer_empty'^c = 1

.Recv_buffer_datum^c = 0

.Recv_buffer_seq^c = 0

.Send_buf fer_empty'^c = 1

.Send_buf fer_datum''c = 0

.Send_buf fer_seq'^c = 0
•timers

.rexmi t_t imer
.running^c = 0
.counter^c = 0

user_txdatum''c = 0
user_rxdatum'^c = 0

End of printtrace.
Clock 322971/100 seconds.
Memory 0 bytes.
BDD 110710 nodes.
Garbage Collecting...
BDD 42152 nodes.
Next state relation uses 7144 bdd
nodes.

Command>

Appendix 7: Ever command f i l e for
correc ted formula

-- Ever command file for evaluating new version of formula
-- that states that no send data requests are submitted to
-- the underlying link by the ABP sender module while it
— is in the ESTAB state. (Sat 04 Dec 1993)

-- Note, only suitable for model of underlying link with
-- only data packet delivery and data loss.

-- Proposition for exists y,s. ASend(y,s).
defprop exists_y_s_asend (eq NAccessPoint[1].queued^c 1);

-- Define consequent of formula in case need to produce counterexamples,
defprop consequent

(AU (or (exists_y_s_asend)
(AU (and (eq abp6 [0] . state-̂ c 1)

(asendnothing))
(eq abp6[0].state^c 0)))

(eq abp6[0] .state'̂ c 0));

defprop estab_implies_no_asends_initiated
(AG (implies (eq abp6[0].state^c 1)

(consequent)));

defprop init_estab_implies_no_asends_initiated
(implies (global_init) (estab_implies_no_asends_initiated));

printstring "init_estab_implies_no_asends_initiated";
printprop (init_estab_implies_no_asends_initiated);
printsize (init_estab_implies_no_asends_initiated);

-- Do following in case previous output not a tautology,
printstring "global_init and estab_implies_no_asends_initiated";
printprop (and (global_init) (estab_implies_no_asends_initiated));

164

Appendix 8: Ever output for correc ted
formula

init_estab_implies_no_asends_initiated
evaluated (AU 3e6bac 3e6e6c 0) size=17 totalBDDsize=124058 77:53 mins 0 Kb
evaluated (AU 3e6f2c 3e71ec 0) size=16 totalBDDsize=124469 102:09 mins 0 Kb
evaluated (AG 3e762c 0) size=41 totalBDDsize=85852 103:07 mins 0 Kb
[1]
Unevaluated Size: 0
global_init and estab_implies_no_asends_initiated
! (UAccessPoint_in[0] .queued'^c

[1]
(UAccessPoint_in[0] .content [0] .kind'̂ c

[1]
(UAccessPoint_in[0] .content [0] .RECEIVErequest .dummy^'c

[1]
(UAccessPoint_in[0] .content [0] .SENDrequest .udata'^c
[1]
(UAccessPoint_in[l] .queued'^c

[1]
(UAccessPoint_in[l] .content[0] .kind'̂ c

[1]
(UAccessPoint_in[l] .content [0] .RECEIVErequest .dummy'^c

[1]
(UAccessPoint_in[l] .content[0] .SENDrequest.udata'^c

[1]
(UAccessPoint_out [0] .queued'^c

[1]
(UAccessPoint_out[1].queued^c

[1]
(NAccessPoint[0].queued^c

[1]
(NAccessPoint [1] .queued'^c

[1]
(abp6[0] .state'^c

(abp6 [0] . vars. Send_seq'^c
[1]
(abp6[0] .vars.Recv_seq'"c
[1]
(abp6[0].vars.Recv_buffer_empty^c
(abp6 [0] .vars.Send_buf fer_empty'^c

[ii)
[1])))

[1])))))))))))))

165

