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Abstract 

To reduce problems encountered in the later phases of the 

software life cycle, verification techniques can be used in the 

design phase to ensure that a design has the intended 

properties. The main advantage of using formal verification 

over other validation methods, such as simulation and testing, 

is that it reasons about all possible behaviours of a system. 

However, formal verification techniques have not yet been widely 

accepted in industry because most of them suffer from the state 

explosion problem or are too difficult to use. 

In this thesis, an automatic model checking verification 

system for communication protocols is developed that tackles the 

state explosion problem. The Ever symbolic verifier [HDDY92], 

which is a high-level specification language and symbolic 

reachability analysis tool for extended finite state machines, 

is used as a basis for this system. The system accepts a 

protocol specification written in Estelle.Y [Lu91], a variant of 

the Estelle formal protocol description language [IS089]. Each 

Estelle.Y module of the specification is translated into the 

Ever language and fed into the Ever symbolic verifier. The 

intended properties are written as CTL temporal logic formulae 

[CG87] expressed in terms of variables in the Estelle.Y 

specifications. These formulae are given to the verifier to 
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check that they are true in the model produced from the protocol 

specification. With this system one can assert that given 

safety and liveness properties are true in all possible 

behaviours of a protocol. When the system finds a given formula 

to be false, it is capable of producing a counterexample trace. 

This trace greatly assists the designer to correct the protocol 

specification and the temporal formulae of the intended 

properties. 

After the Estelle.Y to Ever translator was implemented, the 

original Ever verifier was extended to support model checking of 

CTL temporal formulae [CG87]. The extended verifier can check 

not only eventuality properties but also more general temporal 

properties such as precedences and invariances. The Ever 

verifier was also extended with the notion of fairness 

constraints [BCMD90] to allow the model to check only fair 

behaviours. These extensions enable incremental verification to 

be performed to reduce the overall checking time dramatically. 

This system was successfully applied to the specification of 

the alternating bit protocol [IS089] to demonstrate this new 

tool. Various safety and liveness properties expressed as CTL 

temporal formulae are described and explained in detail in this 

thesis. The CPU time and memory requirements for this 

verification are discussed. 
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Chapter 1: Introduction 

1.1. Motivation and Objectives 

The goal of this thesis is to develop a tool that will 

increase the likelihood that an implementation of a 

communication protocol will carry out its operations in exactly 

the way intended. 

Often bugs arise in software as a result of 

misunderstandings between specifiers and implementors. To 

resolve this problem, formal description techniques should be 

used to ensure all users of a specification interpret it in 

exactly the same way. 

The main objective of this thesis is to develop a validation 

tool that rigorously determines whether a specification will 

behave in the manner intended. The designer will write the 

specification in a formal protocol description language and 

write intended safety and liveness properties as temporal logic 

formulae. This system will determine whether a given temporal 

property is true in the system corresponding to the 

specification. If it determines the property to be false, a 

counterexample will be produced to assist the designer to find 

the cause of the inconsistency between the specification and the 

formula. The designer then can modify the specification 
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appropriately and repeat this process until conformity is 

reached. 

This tool is not intended to determine the performance of 

protocols. It is to ensure the protocol itself, regardless of 

the implementation's performance, conforms to its specification. 

The verification will reason about all possible timing 

behaviours of the specification, 

1.2. Thesis Contributions 

An automatic verification tool, based on the Ever verifier 

[HDDY92], was developed that checks whether a given Estelle.Y 

[Lu91] protocol specification satisfies given temporal 

properties written as temporal logic formulae. The Estelle.Y 

language was chosen because it is a variant of the Estelle 

standard protocol description language and is used for other 

protocol development tools at UBC. Ever was used because its 

command language is most suited for translation from Estelle.Y 

and it provides the best foundation upon which to build a CTL 

model checker. 

The BDD based Ever verifier [HDDY92,Hu92-93] was extended to 

implement CTL temporal logic model checking with fairness 

constraints. This component is the main part of the system for 

verifying that a temporal logic specification matches an 

extended state machine description. An improvement was made to 
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the verifier to make outputting of propositions meaningful to 

the user (i.e. printing symbolic names instead of numerical 

addresses of BDD variables). 

A translator was implemented to automate the entry of 

Estelle.Y protocol specifications into the verifier. 

A new approach for carrying out incremental verification of 

Estelle.Y specifications that does not suffer from the state 

explosion problem has been developed. The CTL model checker 

with fairness constraints is used. A nextstate relation for the 

behaviour of the Estelle.Y modules is produced by the translator 

mentioned above. A very simple nextstate relation for the 

surrounding environment is manually written in Ever code. Then 

fairness constraints are used to restrict the set of possible 

behaviours considered during verification. This method has 

successfully been applied to the alternating bit protocol. 

1.3. Thesis Outline 

In chapter 2, the major and common protocol verification 

methods are discussed with reasons for choosing the symbolic 

model checking approach. A number of existing tools that were 

considered are compared. The reasons for using the Ever 

verifier [HDDY92] are given. 
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In chapter 3, the theory of symbolic model checking upon 

which the Ever verifier is based is reviewed to give sufficient 

background theory for chapter 4. 

In chapter 4, the implementation of the Estelle.Y to Ever 

translator, esteile2ever, and the CTL model checking extensions 

to the Ever verifier are explained. The estelle2ever translator 

translates a set of Estelle.Y modules describing a system into a 

set of Ever propositions. The mappings from Estelle.Y commands 

and statements to Ever propositions are explained. 

The way the CTL symbolic model checking algorithms discussed 

in chapter 3 were integrated into the Ever verifier is 

described. A number of other improvements were made to the Ever 

system. These include printing meaningful names for referenced 

variables in displayed expressions, the addition of two new Ever 

commands (deffreevar and setdefaultnextstate). The purpose of 

these two new commands is given while discussing the model 

checking implementation. 

In chapter 5, this verification tool is applied to the 

alternating bit protocol. A strategy is proposed to prove the 

correctness of the protocol by showing that a number of internal 

properties are true and giving an argument as to why the 

protocol is correct when these internal properties are true. 

Additional internal properties specifying that data in the data 

packets are never modified in transit are verified to show that 

the control structure of the protocol is valid for all data 
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packet sizes. The quantities of CPU time and memory used to 

verify all these properties are discussed. A method for 

producing counterexample traces is proposed and demonstrated 

with an example from the alternating bit protocol. 

In chapter 6, some conclusions are drawn and some 

optimizations that should be implemented are discussed. 

The appendices contain listings of files used throughout the 

verification of the alternating bit protocol. Appendices 1 and 

2 contain source code for the specification in Estelle.Y and 

ASN.l, respectively. The Ever code produced by the estelle2ever 

translator is shown in Appendix 3. The Ever script file 

containing the commands for carrying out the verification is in 

Appendix 4. The final verification output is shown in 

Appendix 5. Commands and output for verification of a formula 

corrected after producing a counterexample trace, shown in 

Appendix 6, are in Appendices 7 and 8, respectively. 



Chapter 2: Overview of Verification 
Approaches and Tools 

In Section 2.1, a few common protocol verification 

techniques are reviewed, compared and contrasted with reasons 

for choosing symbolic model checking. 

In Section 2.2, the features of a number of tools considered 

for use as a basis for the research conducted in this thesis are 

briefly described. The reasons for choosing the Ever verifier 

are given. 

Chapter 3 reviews the theories of symbolic model checking 

upon which the implementation described in chapter 4 is based. 

2.1. Protocol verification methods 

2.1.1. Model checking 

Model checking refers to a method for determining whether a 

given structure (e.g. finite state machine) is a model of a 

given temporal formula. 

The first model checking algorithms explicitly represent the 

state space of the model being checked. Clarke and Grumberg 

review the history of temporal logic verifiers in [CG87]. 

Clarke and Emerson [CE81] designed the first automatic model 

checking verifier for CTL temporal logic. The performance was 
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polynomial in both the size of the model and the length of the 

temporal logic formula. Later, Clarke, Emerson and Sistla 

devised an improved CTL model checking algorithm [CES86] with 

complexity linear in the product of the length of the formula 

and the size of the global state graph. 

They added an extension to the algorithm to make it check 

only fair computations without any additional complexity expense 

because otherwise many formulae would be false in the model. 

For example, we are not interested in including the case where a 

data link between two systems is permanently disconnected. 

Gabbay et al. were one of the first to introduce the concept of 

fairness to temporal logic [CES86, GPSS80]. (When verifying a 

property of a system of concurrent processes, we wish to only 

consider execution sequences in which all processes execute 

infinitely often.) 

These algorithms check whether a given temporal logic 

formula is true in a given labelled transition system. A 

labelled transition system is a finite state machine graph with 

each node having a label containing a list of formulae which are 

true when the system is in that state. Initially the labels in 

the graph only contain atomic propositions. The algorithm works 

in stages. In the first stage, all subformulae of length 1 in 

the original formula are checked for truth in all the graph 

nodes. In the second stage, subformulae of length 2 are 

checked, and so on, until the original formula is checked. Each 



CHAPTER 2. OVERVIEW OF VERIFICATION APPROACHES AND TOOLS 8 

time a subformula is checked for truth at a node, an appropriate 

set of other related nodes (as defined by the top level operator 

of the subformula) are checked to determine the truth of the 

subformula at this node. For example, the EX next time operator 

of CTL temporal logic requires any one of the immediate 

successors of the node to have the EX operator's operand true. 

When the algorithm terminates, the original formula is true in 

all nodes that contain it in their labels. 

Sistla and Clarke analyzed the model checking problem for a 

variety of temporal logics and showed the problem is PSPACE 

complete for linear temporal logic [SC86]. 

Clarke and Grumberg introduced an algorithm for model 

checking concurrent systems with many similar processes [CG89]. 

2.1.2. Symbolic Model Checking 

Burch, Clarke, McMillan and Dill [BCMD90] have extended the 

temporal logic model checking algorithm by Clarke, Emerson and 

Sistla [CES86] to represent the state graph with binary decision 

diagrams [Bry86] instead of with an explicit labelled transition 

system. This BDD represents a predicate transformer from the 

current state to the next state. This avoids the explicit 

construction of the state graph. (Burch et al. acknowledge that 

Bose and Fisher [BF89] described a binary decision diagram (BDD) 

based algorithm for CTL model checking without support for 

fairness constraints.) For state spaces with some regularity, 
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this representation is often more efficient. Thus systems with 

extremely large numbers of states can be verified with this 

algorithm. They have demonstrated it with a specification of a 

synchronous pipelined design with approximately 5x10̂ ° states. 

Instead of representing the relationship between the current 

and the next states in a labelled transition system explicitly 

with a state graph, it is represented as a Boolean function of 

all the variables in the current and next states. For each 

possible combination of variable values in the current and next 

states, this function indicates whether a transition is possible 

(in the labelled transition system) from this current set of 

variable values to this next set of variable values. 

Bryant defined algorithms for carrying out basic operators 

on BDDs such as Boolean connectives (i.e. and, or, not), 

functional composition, computing restrictions for functions 

(i.e. substituting a constant for one of its arguments), and 

quantification over Boolean variables. These basic operations 

are used for computing values of state formulae (i.e. temporal 

logic formulae without any temporal operators). 

To compute the values of path formulae (i.e. those with 

temporal operators), Burch et al. devised new algorithms for 

computing values of temporal formulae in binary decision 

diagrams. Given a temporal formula f, and a transition relation 

R (represented as a HDD in the first version of the algorithm) , 

this new algorithm computes the set of current variable values 
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(a new BDD) for which the temporal formula fi is true in the 

labelled transition system associated with R. These algorithms 

are based on fixpoint characterizations of CTL temporal logic 

operators [BCMDH90, BCMD90]. A fixpoint of a function is a 

value at which the function applied to the value is the value 

itself (i.e. f(x)=x) [Tar55]. These fixpoint characterizations 

are explained in more detail later, 

Clarke et al' s explicit version of the model checking 

algorithm allows fairness constraints to be only state formulae 

(i.e. formulae without temporal operators). However, the 

symbolic model checking algorithm [BCMD90] allows fairness 

constraints to be arbitrary CTL formulae. According to Burch 

[Bur93], these are equivalent. 

Burch et al. suggest that their algorithm is the first BDD 

based model checking algorithm for CTL temporal logic for non-

deterministic labelled transition systems [BCMD90]. 

2.1.3. Protocol projections 

In an attempt to prevent the state explosion problem that 

can easily occur in reachability analysis. Lam and Shankar 

[LS82] devised a method of verification with protocol 

projections. Real life protocols typically have several 

distinguishable functions. To verify one of these functions. 

•"•The formula f is assumed to only refer to variables in the current phase. 
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one is to construct an image protocol that just specifies this 

one function in such a way as to satisfy a well-formed property. 

The complexity of the image protocol is shown to always be less 

than that of the original protocol. They show that if the image 

protocol satisfies the well-formed property then any safety and 

liveness properties that are valid in the image protocol are 

also valid in the original protocol. Thus with this method, one 

can verify properties in protocols that are larger than those 

that can be verified with reachability analysis alone. 

This method was not considered because it appears the 

procedure for constructing image protocols cannot be easily 

automated. 

2.1.4. Theorem proving 

Theorem proving is the most powerful method to carry out 

protocol verification because it is not constrained by the size 

of the specification. However, it probably is the most tedious 

because it requires a lot of human ingenuity to actually carry 

out the proof successfully [Pnl, ESI]. With an automatic 

theorem prover, typically most of the proof steps are generated 

automatically, but the crucial decisions on proof strategy have 

to be made manually. 

The claim to be proven is specified as a formula in the 

logic being used. The implementation of the protocol is 

translated into a series of assertions (formulae in the logic). 
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The set of axioms and inference rules of the logic are combined 

with the assertions to carry out a proof that the claim is true. 

One repeatedly uses the axioms and inference rules to derive the 

claim from the assertions. 

For example, Manna and Pneuli describe a global proof system 

for proving prepositional temporal logic properties in 

transition based implementations [Pnl,MP4]. The proof system 

has three parts: 

• The general part has proof methods for general temporal 

logic formulae expressed in terms of atomic proposition 

variables. Axioms, inference rules and tableau methods are 

used here for checking the validity and satisfiability of 

general temporal logic formulae. 

• The domain part uses axioms and inference rules of 

theories of data structures of variables (in the claim 

specification and implementation specification) (e.g. 

Booleans, integers, lists, sets) to prove assertions about 

these data structures. Inductive schemes are used to prove 

properties that apply to all sizes or values of these data 

types. 

• The program part transforms the implementation 

specification into a set of assertions expressed in the 

temporal logic. Atomic propositions in these assertions may 

be expressed as Boolean expressions of data structures used 
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in the program. These assertions are treated as assumptions 

(axioms) during the proof of the claim. 

Manna and Pnueli have defined an invariance rule and a few 

liveness rules for proving safety and liveness properties, 

respectively [Pnl,MP5]. 

This method was not chosen because one cannot generally 

develop a system that carries out the proofs automatically. The 

proofs most often involve a lot of human expertise. 

2.1.6. Simulation 

These systems translate a formal Estelle specification into 

an implementation [CLV93]. Then a simulator (interpreter) is 

used to execute the implementation in a debugging environment 

where variables, queues and module instance creations and 

destructions can be observed. Only a single execution path can 

be tested at a time with this approach. 

To test whether an implementation satisfies a given temporal 

formula, heuristics could be used to automatically select 

appropriate paths for testing. There is no guarantee when a 

finite number of tests have been performed that there does not 

exist an untested path that does not satisfy the temporal 

formula. 

This approach was not chosen because it does not attempt to 

cover all possible execution paths in the implementation. 
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2.1.7. Symbolic evaluation 

Clarke and Richardson describe three methods of symbolic 

evaluation of programs in [CR85]. First, path dependent 

symbolic evaluation analyzes a single given path through a 

routine. A symbolic expression in terms of the input variables 

for each output variable is derived. Clearly this method is not 

appropriate for verifying protocol specifications because there 

are just too many (possibly infinite) paths to check. 

Second, they describe dynamic symbolic evaluation which 

derives symbolic expressions for all output variables along the 

path determined by a given set of input variable values. To 

apply this method to protocol verification, one would have to 

apply it to every possible set of input values. Clearly, this 

is not appropriate. 

Third, they describe the global symbolic evaluation method. 

The goal here is to derive a global representation of a routine 

for all possible execution paths through the routine. 

Initially, input parameters are assigned symbolic names and 

internal variables are assigned constant values. As each 

program statement is processed, the symbolic expressions for the 

output variables are updated according to rules defined by the 

semantics of the current program statement. For example, when 

an assignment statement is processed, all references in current 

output expressions to the assigned variable are updated with the 

expression from the assignment statement. 
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The main limitation of this approach is the problem of 

deriving expressions for arbitrary loops. It tries to replace 

each loop, which can represent infinite paths, with a closed-

form expression that captures the effect of the loop. A 

symbolic expression for each output variable in terms of the 

state at the beginning of the loop has to be derived. (Here we 

briefly describe their loop analysis technique.) In order to do 

this, a conditional expression representing a final iteration 

count expressed in terms of symbolic values of variables at 

entry to the loop has to be determined. Also, for each variable 

modified by the code of the loop, the symbolic value at exit 

from the loop must be expressed in terms of both the final 

iteration count and the symbolic values of variables at entry to 

the loop. Recurrence relations for all variables modified in 

the loop are derived. A loop exit condition in teirms of the kth 

iteration of loop variable values is derived. Attempts are made 

to solve the recurrence relations to forms in terms of variables 

before entry to loop. Obtaining solutions for recurrence 

relations is not always straightforward and is sometimes 

impossible (e.g. interdependence between two recurrence 

relations, conditionals within loop exacerbate problem, exit 

conditions in terms of conditional expressions or minimum value 

expressions, etc.) 

This method seems to be suited for traditional programs that 

process input data and terminate with output data. Protocol 



CHAPTER 2. OVERVIEW OF VERIFICATION APPROACHES AND TOOLS 16 

implementations tend to be programs that run continuously. This 

method was not used because it does not reason about the state 

of a program from one time unit to the next. 

2.2. Tools considered 

A brief description of the advantages and disadvantages of 

each of following tools considered is given. The Ever tool was 

chosen because it provides a language for describing high level 

data structures and provides symbolic reachability analysis. 

2.2.1. LITE Tableau verifier 

The LITE Tableau verifier package was considered. It 

implements a tableau construction algorithm in Prolog for 

interval temporal logic. When given an interval temporal logic 

formula it generates a compatible state machine. If this tool 

was to be used, an algorithm would have to be developed to 

compare the state machine from the protocol specification with 

the one produced by the LITE tableau verifier. The problem of 

comparing automata is generally more complex than model 

checking. Thus this tool was not chosen. 

The advantage of using this tool would be that it reasons 

about interval temporal logic. This would be good for reasoning 

about the performance of protocols because this logic can 

express explicit discrete time intervals. 
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2.2.2. Murphi 

Murphi is a language and system for defining and verifying 

the behaviour of a system. A system is specified as a set of 

rules. I found by doing some trivial experiments that Murphi 

does its verification with explicit reachability analysis. No 

symbolic evaluation is used. 

Murphi provides no means for expressing properties with 

temporal operators. It can only express properties that are 

written in terms of only the current state of the system. 

2.2.3. VOSS 

VOSS is an interval temporal logic symbolic model checker 

with a hardware oriented specification language. The 

specification language is too clumsy for the purpose of 

translating protocol specifications in this thesis. 

2.2.4. Ever 

Ever is a binary decision diagram (BDD) based verifier with 

a high-level description language for defining data types, 

variables, propositions and predicates. 

It includes a routine for determining reachable states. One 

defines the behaviour of a system by transforming a high level 

language description into a nextstate relation. By avoiding the 
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complete evaluation of the nextstate relation. Ever efficiently 

implements a reachability analysis algorithm. 

This tool was chosen because it provides a specification 

language most suited for translation from Estelle.Y and provides 

a good foundation for implementing symbolic model checking 

algorithms. 

2.2.5. Hoi 

Hol is a very powerful theorem proving system based on high 

order logic. However, it is very difficult to do proofs in this 

system. The proofs cannot be completely automated. They 

require a lot of human intelligence to carry out. This method 

was not chosen because an automatic verification system is 

desired. 

2.2.6. EDT 

EDT (Estelle Development Toolkit) is a simulation package 

for Estelle specifications. It allows one to watch the 

execution of an Estelle specification with controlled or random 

input data. Various objects may be monitored such as variables, 

interaction queues, and creations and destructions of module 

instances. 

This tool is not appropriate for verification since it is 

not designed for reasoning about all possible execution paths. 
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2.2.7. SMV 

SMV is a CTL BDD based symbolic model checker with a 

specification language only at the bit level. 

It provides a limited notion of fairness. The only type of 

fairness supported is that all processes in a concurrent system 

are assumed to execute infinitely often. A user may wish to 

specify more specific types of fairness (e.g. that a message is 

sent by a sender infinitely often) . Perhaps, this type of 

fairness is sufficiently powerful to describe general fairness 

requirements. 

This tool was not chosen because its specification language 

is only at the bit level. 

2.3. Summary 

The symbolic model checking verification method 

[BCMD90,BCMDH90] was chosen because of its potential for 

reasoning about extremely large systems automatically. 

The Ever verifier [HDDY92] was chosen because it provides 

the best foundation upon which a symbolic model checking system 

could be developed. It also provides a high-level description 

language most suitable for translating Estelle.Y [Lu91] protocol 

specifications. 
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The theory of CTL model checking is presented in the next 

chapter to provide sufficient background material for the 

implementation described in chapter 4. 



Chapter 3: Theoretical Background 

In this chapter, the fundamental theories upon which this 

verification system's implementation, described in chapter 4, is 

based are explained. Algorithms and data structures of two main 

CTL model checking approaches are discussed. 

In section 3.1, the original explicit state space model 

checking algorithm is explained. This algorithm uses a labelled 

transition system data structure that explicitly represents each 

state with a node in the graph structure. Associated with each 

node is a label containing a list of atomic propositions true in 

the corresponding state. The model checking algorithm 

recursively evaluates subformulae of the given temporal formula 

by searching for nodes satisfying constraints defined by the 

subformulae operators. 

Section 3.2 explains the symbolic version of the model 

checker. This includes a brief description of binary decision 

diagrams which are used to represent binajry functions. The 

state space of a system is modelled with a binary function of 

all variables in the current and next states indicating whether 

a transition is possible from that given current state to that 

given next state. Temporal operators in temporal formulae are 

evaluated using the fixpoint characteristics of the CTL temporal 

logic. The notion of fairness constraints is explained with 

appropriate extensions to the model checking algorithm. 

21 
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3.1. Explicit CTL Model Checking 

Section 3.1.1 defines the data structures used by the model 

checking algorithm. Section 3.1.2 reviews a few different types 

of temporal logic and explains the advantages to using the CTL 

temporal logic. Sections 3.1.3 and 3.1.4 describe the algorithm 

without and with fairness constraints supported, respectively. 

3.1.1. Kripke structures for labelled transition systems 

All the temporal logics discussed below use the Kripke model 

of labelled transition systems for representing the system in 

which a given temporal logic formula is checked. The older 

versions of the model checking algorithms use the Kripke model 

explicitly [CES86]. The newer version of the CTL model checking 

algorithm represents the program with a binary decision diagram 

(BDD) that relates the current state with the next state. This 

HDD corresponds to a Boolean function of all program variables 

in the current and next states [BCMD90]. 

The labelled transition system is formally defined as a 3-

tuple: 

M = (S,R,L) where 

S is a set of states 

R c S X S is the transition relation (determining 
between which pairs of states 
transitions exist). R must be total, 
in other words, there must be at least 
one transition from each state s e S. 
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L: S —> 2̂ P Associated with each state is a list of 
atomic propositions which are true in 
that state. Note the absence of an 
atomic proposition implies that it is 
false in the state. This assumption is 
different from the interpretation in 
the new model. 

We define the notation S]_ —> S2 to indicate (Si,S2) 6 R, in 

other words, that there is a transition from s^ to S2 in the 

model. 

We define a path in the model M to be a sequence of states % 

= SQ/ si, ... such that for every i > 0, Sj_ -> Sj_+2.-

We use 7Ĉ  to denote the suffix of n starting at Sj_. 

3.1.2. CTL* Logic 

Temporal logic provides a formal system for describing and 

reasoning about the occurrence of events in time. 

This logic has the regular prepositional logic operators, a 

number of temporal operators and two path quantifier operators. 

The temporal operators allow the expression of properties of 

temporal systems such as invariances (properties that are always 

true), eventualities (properties that must becomes true at some 

future instant), and precedences (properties that state that one 

event must occur before another). 

The existential quantification operator indicates whether 

the given property must occur on one possible execution path 

from the current state. 
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The universal quantification operator indicates that the 

given property must occur on all possible execution paths from 

the current state. 

The set of CTL (computation tree logic) formulae is defined 

by the following formal rules. CTL has 2 types of formulae: 

state formulae (which are true in a given state) and path 

formulae (which are true along a specific path). 

Let AP be the set of atomic propositions. 

state formulae: 

A, if A e AP 

If f and g are state formulae, then —if and f v g are 
state formulae. 

if f is a path formula, then E(f) is a state formula. 

Path formulae: 

If f is a state formula, then f is a path formula. 

If f and g are path formulae, then —if, f v g, Xf, f U g 
are path formulae. 

The semantics of a CTL* formula are defined with respect to 

a Kripke structure representing the program. The standard 

notation to indicate that a state formula f is true in a 

structure M is M,s ^ f. This means that formula f is true at 

state s in structure M. When M is understood from the context, 

we simply write s [= f. 

The holds |= relation is defined inductively as follows: 

Assume fl, f2 are state formulae, gl,g2 are path formulae. 
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1. s ^ A «::» A € L(s). { atomic proposition A in label 
at state s } 

2. s 1= -,fl o -i(s H fl) 

3. S [: fl V f2 ^ S f: fl or S [: f2 

4. s ^ E(gl) ^=> tor some state t such that (sO,t) e R, 

t N gi 

5. 7C [= fl <=> s is the first state of path % and s [= fl 
(says that a state formula is true on a given path 
iff the state formula is true in the first state of 
the path) 

6. % Y - i g i <=> -•(K 1= g i ) • 

7 . 7t j: g l V g2 <=̂  7C f: g l o r 7t ^ g2 

8 . % Y X g l <=> Tul 1= g l , 

9. jr 1= gl U g2 4:̂  there exists k > 0 such that 7t̂  [= g2 
and for all 0 < j < k, TtJ ^ gl 

The following abbreviations are used: 

f A g = —I (-if V —ig) 

Ff = true U f 

A(f) = ^E(-if) 

Gf = -.F-if . 

These abbreviations are a consequence of duality properties 

of the prepositional logic and CTL* temporal logic. 

CTL* is the most expressive of the temporal logics presented 

here. 
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Two other temporal logics often discussed in the literature 

are LTL (linear temporal logic) and CTL (computation tree logic) 

which are both subsets of CTL* with less expressive power. 

The set of valid LTL formulae is defined by the following 

rules: 

A state formula is: 

Af where f is a path formula. 

A path formula is: 

A if A e AP (i.e. an atomic proposition) 

If f and g are path formulae, then —if, f v g, Xf, f U g 
are path formulae. 

CTL is the subset of CTL* restricting the use of path 

quantifiers to be combined with temporal operators X, U, G, and 

F. In other words, each path quantifier must be immediately 

followed by a temporal operator. 

Formally, the state formulae rules of CTL are the same as 
* 

those of CTL*. 

The path formulae are limited to the following: 

If f and g are state formulae, then Xf and f U g are 
path formulae. 

If f is a path formula, then —if is a path formula. 

Branching time temporal logics can express all the 

properties expressible in linear time logic and more [ES88]. 

Note, LTL formulae have no path quantifiers, thus all LTL 

formulae must state properties that are true on all paths in the 

model. 
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The model checking problem for linear temporal logic and 

CTL* is exponential in the length of the formula and linear in 

the size of the global state graph [LP85][CG87]. 

Clarke and Grumberg [CG87] show that the model checking 

algorithm for CTL is linear in the number of states and the 

number of transitions and is linear in the length of the 

formula. 

Since the complexity of the model checking problem for CTL 

is exponentially less than that of CTL* and LTL, and the 

expressive power of CTL seems more flexible than LTL, CTL was 

chosen. CTL allows one to describe properties that must apply 

on all possible execution paths or that must only apply on at 

least one path. LTL only allows properties that must apply on 

all paths to be expressed. 

3.1.3. Explicit enumerative model checking algorithm 

The model checking algorithm for CTL formulae in a Kripke 

model of a system [CES86] is described below. 

The goal of the algorithm is to determine whether there 

exists a state in a given Kripke structure M such that a given 

CTL temporal formula f is true (in that state). 

The steps of the algorithm are as follows: 

1. Normalize formula using duality properties of CTL 
logic to have formula expressed with only the 
operators given in earlier definitions (i.e. EX, 
EU, -1, V) . The duality properties are: 
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EFf = E[True U f] 

EGf = -lEF-if 

AXf = -iEX-if 

A[f U g] = -iE[-.g U (-if A -ig)] A -lEG-ig 

AGf = -lEF-if = -,E[True U -nf] 

AFf = A[True U f] 

2. Logically construct a parse tree for formula f 
(with operators at nodes and atomic propositions in 
leaves). 

3. Associate with each state in graph M = (S, R, L) a 
list of subformulae of f which are true at that 
state. Initially set all these lists to the empty 
list. 

4. Process all subformulae g of f, processing them in 
order of increasing length (i.e. all length 1 
subformulae, then length 2 subformulae, and so on) . 
For each subformula g, determine for each state seS 
whether the subformula is true in state s. If so, 
add subformula g to label at state s. The 
algorithms for determining the truth of subformulae 
at states are briefly described below. 

When iterative step 4 is finished, labels of all states in 

which original formula f is true will contain the original 

formula f. 
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In each iteration of step 4 above, an appropriate search of 

part of the graph and parse tree is performed to determine the 

truth of the current subformula. The part of the graph searched 

corresponds to the descriptions of the operators in the 

following table, 

atomic proposition true if same atomic proposition in 
state's label. 

fl V f2 

EXf 

AXf 

E[fl U f2] 

A[fl U f2] 

true if f not in state's label. 

true if either fl or 
label. 

f2 in state's 

true if there is at least one successor 
state of s containing f in its label. 

true if all successor states 
contain f in their labels. 

of 

true if there is at least one path with 
a state containing a label with f2 and 
which has fl in labels of all previous 
states on path. 

true if all paths lead to a state with 
f2 in its label with all previous 
states containing fl. 

3.1.4. Fairness constraints extension 

Often during verification of concurrent systems such as 

communication protocols, we are only interested in considering 

fair execution paths while model checking. [CES86] defines a 

fair path as one where a set of fairness constraints occur 

infinitely often. For example, when verifying a protocol 

implemented as two modules connected by an unreliable data link. 
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we are not interested in considering cases of when the data link 

continuously loses data or is disconnected. Without using 

fairness constraints, cases like this example would cause 

formulae we expect to be true under "normal conditions" to end 

up being false. 

Clarke et al. developed an extension to their model checking 

algorithm to handle fairness without any additional complexity 

(time and memory). 

The model is extended from a 3-tuple to a 4-tuple 

M=(S,R,L,F) with the first three members the same as before and 

F being a collection of state predicates (i.e. F c 2^). A path 

p is F-fair iff 

for each g e F, there are infinitely many states on p which 
satisfy predicate g. 

Since we have used a symbolic model checking algorithm, 

details of the explicit version of the fairness algorithm are 

not given here. See [CES86]. 

3.2. Symbolic CTL Model Checking 

The previous section explained the original version of the 

CTL model checking algorithm which uses a model that explicitly 

enumerates all the states of the implementation being checked. 

Burch et al. [BCMD90, BCMDH90] have devised a new improved 

model checking algorithm that does not enumerate all the states 

explicitly, but instead represents the state space as a 
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nextstate relation stating how all states in current time unit 

are related to all states in the next time unit. Bryant's 

binairy decision diagrams [Bry86] are used to represent Boolean 

functions. 

A number of other authors have developed other BDD based 

verification systems for deterministic systems such as 

combinational circuits [CBM89]. 

Burch et al. appear to be the first to have come up with a 

BDD based model checking algorithm for CTL that also supports 

fairness constraints. They claim that the fairness constraints 

can be arbitrary CTL formulae. The state enumeration version 

only allows fairness constraints to be state formulae (i.e. 

expressions that only depend on variables in current state with 

no temporal operators). Burch says these are equivalent 

[Bur93]. 

The arbitrary fairness constraints should give one the 

capability to reason about a pair of Estelle.Y modules that use 

an underlying reliable link as a communication channel. One 

should be able to specify temporal formulae that describe the 

behaviour of a reliable link as fairness constraints^. One also 

uses further fairness constraints to describe the behaviour of 

the users of the two modules that one wishes to assume takes 

place. For instance, one specifies that a sending user 

^Using a temporal formula rather than a state formula for a fairness 
constraint is likely to seriously degrade the performance of the model 
checker. 
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infinitely often sends requests and that a receiving user 

infinitely often sends receive requests. 

It is shown that using BDDs can significantly increase the 

size of systems that can be verified for certain useful classes 

of problems [BCMDH90]. Explicit state enumeration techniques 

are typically limited to systems with up to 10^ states. Burch 

et al. verified a well-structured system with over 10^0 states. 

Here, binairy decision diagrams and their operations are 

described. Then, the symbolic CTL model checking algorithm is 

described in detail. 

3.2.1. Binary Decision Diagrams 

A module that implements basic operators for manipulating 

Boolean functions in BDDs developed by Brace et al. [BRB90] is 

used in the CTL symbolic model checker. These operations 

include Boolean complement, conjunction and disjunction. 

A BDD is a directed acyclic graph with all leaf nodes 

containing representations of either value zero or one, and all 

intermediate nodes containing a label for a Boolean variable and 

references to two other BDD nodes. Each intermediate node 

represents the Boolean function corresponding to the left node 

if the variable equals one and the Boolean function 

corresponding to the right node if the variables equals zero. 

For example, consider the graph in Figure 1 for an even parity 

function of four Boolean variables a,b,c,d. 
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Figure 1. Binary Decision Diagram for Even Parity function of 
four Boolean variables 

There are many other BDDs that could represent this same 

even parity function. Bryant introduced a restriction to the 

structure of BDDs to ensure each distinct function has a single 

canonical representation. This restriction is that the 

variables referenced in every path from top to bottom of the 

graph must be in the same order. The practical advantage of 

this restriction is that testing for equivalence of two 

functions simply involves testing whether the two graphs match 

exactly. Brace has optimized his implementation to the point 

that this operation is just a constant time pointer comparison. 

As a consequence, one can test whether a function is 

satisfiable by just comparing the function's BDD with that of 

the zero function (i.e. False). In Brace's implementation, this 

operation takes constant time. 
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Brace's package supports a number of operations for 

manipulating a BDD to represent a database of Boolean functions. 

These include complement, conjunction, disjunction, composition 

of 2 functions (i.e. f(g(x)) ), testing for equivalence of 2 

functions, and existential and universal quantification. The 

time complexity of the complement operation is proportional to 

the size of the function graph of the argument. The worst case 

time complexity of operators with 2 arguments is proportional to 

the product of the graph sizes of the 2 arguments. 

The size of the BDD for a given function can be very 

sensitive to the chosen ordering of variables in the canonical 

BDD. Unfortunately, the problem of determining the best 

variable ordering for a given function is NP-complete (i.e. 

takes exponential time relative to the number of variables) 

[Bry86] . Malik et al. [MWBA88] consider heuristic strategies 

for determining the best ordering of variables for a given 

problem in an attempt to minimize the size of BDDs produced. 

Bryant says generally someone with a good understanding of the 

problem at hand can figure out a good variable ordering without 

much difficulty. 

There are some functions such as multiplication that create 

an exponential sized BDD (relative to word size) no matter what 

variable ordering is chosen. Fortunately, in protocol 

specifications, arbitrary multiplication is not used too often. 
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Multiplication by a constant can be modelled as a series of 

bitwise shifts and additions. 

3.2.2. Symbolic Model Checking Algorithm 

Instead of modelling the current state of the implementation 

with the set S in M = (S,R,L), it is modelled with an array of 

Boolean variables v. Suppose this array v has n elements. 

Then the number of states represented by v is 2". 

Instead of associating an explicit label of a set of atomic 

proposition variables with each state seS (namely L(s)), the 

state space v is defined by the implementation in such a way 

that the atomic propositions in a given state are derivable from 

the state v itself. Typically the implementation assigns an 

allocation of bits in v for control state information and the 

rest to logical variables in the source program. In fact, there 

are exactly n atomic propositions, one associated with each bit 

in V. Thus the set of atomic propositions true in a given 

state s exactly corresponds to the 1 bits in the value s. All 

the other atomic propositions are false in this state. 

Instead of representing the transition relation with 

/?CiSx5, it is represented as a Boolean predicate of the current 

and next state values: nextstate{y ,v'). Logically this nextstate 

predicate says that there is a transition from Vj to v^ if and 

only if nextstateiVj,Vj) = True. 

Thus a model in the symbolic algorithm is defined as 
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M = iv,R) where v is an array of n Boolean variables 

R:v XV-^ Boolean is a predicate on current 
and next states. 

Before explaining the symbolic model checking algorithm 

itself, the algorithm used by the printtrace command of the Ever 

verifier [HDDY92] is explained since ideas from it are used in 

the model checker's implementation. 

Both the printtrace command and the model checker use the 

above described model of a system. Given a start_state 

predicate, a next_state predicate, and a goal predicate, 

printtrace does a reachability computation to determine whether 

the goal is reachable from any state satisfying start_state, and 

if so outputs a trace to it, otherwise outputs the largest trace 

attempting to reach the goal. Start_state and goal are 

predicates on only the current state, i.e. they are Boolean 

functions of the current state v. Next_state is a Boolean 

function of the current and next states v and v'. Starting from 

the start_state predicate, which logically represents the set of 

state values satisfying the start state condition, the 

printtrace algorithm computes the set of states that would be 

reached in the next time unit. This step is repeated until the 

goal state is reached (the intersection of the goal set and the 

last computed reached set is not empty) or a cycle back to the 

start set is detected (in which case the goal is unreachable 

from any state in the start set). This computation is 

illustrated in Figure 2. 
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c o m p u t e _ f u r t h e s t _ r e a c h a b l e _ s t a t e ( s t a r t , n e x t , g o a l ) : := 
fu r thes t_ reached := s t a r t ; 
whi le ( ( f u r t h e s t _ r e a c h e d A goal) = FALSE) do 

begin 
fu r t he s t_ r eached := fu r thes t_ reached v 

3 s ' . ( ( s = s ' ) A 
f o r w a r d _ i m a g e ( f u r t h e s t _ r e a c h e d ( s ) , n e x t ( s , s ' ) ) ) 

{ N.B. forward_image{fur thest_reached(s) , n e x t ( s , s ' ) ) = 
3 s . f u r t h e s t _ r e a c h e d ( s ) A n e x t ( s , s ' ) } 

i f ( fu r thes t_ reached = s t a r t ) then break; { cyc le d e t e c t e d back t o s t a r t } 
end; 

i f ( ( f u r t h e s t _ r e a c h e d A goal) * FALSE) then goal reached; 
i f ( ( f u r t h e s t _ r e a c h e d = s t a r t ) then goal i s unreachab le ; 

{ i . e . goal i s always f a l s e } 

Figure 2 Computation of Furthest reachable state in Ever's 
printtrace command. 

Logically forward_image(state_set, next) is just 

3x.[state_setAnext{x,x')]. This is just the set of new states 

reachable from the original stateset stateset through the 

nextstate relation next. This is a Boolean function of a next 

state value saying whether that next state is reachable from one 

of the states in stateset through one iteration of the nextstate 

relation next. The first quantification operator in 

3x\iix = x')A3x.[state_setAnext(x,x')]) is necessary to move the state 

values in the next phase to the current phase for the next time 

unit. 

Once this algorithm has computed the furthest reached state, 

the same number of iterations of a reverse image computation are 

executed to print an example trace from the furthest reached 

state back to the start state. At each iteration, a particular 

state value is selected from the state set. This chosen state 
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value is printed out in terms of variables of the high-level 

Ever code specifying the nextstate relation. 

Then a backward image is computed from this one example 

state value for the next iteration. The backward image 

computation is logically just 3x'.[stateset'Anext(x,x'y\ where stateset' 

is the set of states in the current time unit. This is a 

Boolean function of the current state value saying whether there 

is a transition in the nextstate that leads from this current 

state value to a state value in stateset'. In other words, it 

is the characteristic function of the set of states that lead to 

stateset' with one invocation of the nextstate relation next. 

The above methods for computing forward and backward images 

are efficient provided the nextstate relation for the program 

specification has been fully evaluated as a BDD. For large 

problems, such as protocol specifications, it is not practical 

(in memory usage) to fully evaluate the nextstate relation 

[HDDY92]. Other researchers have proposed methods using Boolean 

Functional Vectors [CBM89,JPHS91, Fil91] that attempt to 

decompose the problem into a number of smaller problems whose 

results are later combined. Their systems only reason about 

deterministic systems. This is not sufficient for reasoning 

about the behaviour of communication protocols for modelling 

unpredictable events such as data loss on a noisy line. 

Fortunately, Hu et al. [HDDY92] show an efficient way of 

computing forward and backward images for non-deterministic 
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systems without building the BDD for the full nextstate 

relation. (They refer to this method as image computation with 

disjunctive partitions.) 

Let us denote the nextstate relation with Nix,x') where x is 

the current state and x' is the next state. They have derived 

the axioms in Tables 1 and 2 for forward and backward images, 

respectively, that reduce an image computation into the 

disjunction of a number of smaller images. X denotes a 

characteristic function of a set of states. 

Type of 
Nextstate 

composition 

condi t ional 

d i s junc t ion 

otherwise 

*conjunction 
of d i s junc t ion 

*conjunction 
of condi t ional 

Forward Image Axiom 

forward_ image(X,(N^ o.. .oJVj )(x, x')) = 

forward _ imaged forward _ image( X,Ni), 

iN„o...oN,)(x,x')) 

forward_ imagei X, if C(x) then N^ix, x') else iVj ( A;, X')) = 

forward_ image( X A C, A ĵ) v forward _ image{ Z A C, A ĵ) 

forward_ image{X,N^ {x, JcOv... vA „̂ {x, x')) = 

forward_image(X,N^)v...vforward_ image(X,N^) 

forward_image(X,N(x,x')) = 3x.[X(x)AN(x,x')) 

forward _ image( X,(a^v...va„)Ab) = 

forward_imagedZ,Oj A b)^...y forward_image{X,a^ Ab) 

forward_image{X,(if a then b else c) A c?) = 
forward _ image{X Aa,bAd)v forward _ image(X A —>a, CAd) 

Table 1. Forward Image Axioms 
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Type of 
Nextstate 

composition 

condi t ional 

d i s junc t ion 

otherwise 

*conjunction 
of d i s junc t ion 

conjunction 
of condi t ional 

Backward Image Axiom 

backward _ image(Y,(N„ o.. .oiVj )(x, x')) = 

backward _ image(backward_image(Y, ( A/'„ o.. .oÂ ^ )(x, x')), N^) 

backward _ image{Y, if C(jc) thenN^ else Â 2) = 

C A backward _ imageiY, N^)v 

C A backward_ image(Y, N2) 

backward _ image(Y, N^s/... vN„) = 

backward _image(Y, N^ )v.. .'^backward _ image(Y, N„) 

backward _image{Y ,N{x,x')) = 3x' .[Y{x') AN{X,X')] 

backward _ image{Y, (a^v... va„ )Ab) = 
backward_image{Y,a^ Ab)v...vbackward_image(Y,a^ Ab) 

backward_ image(Y, (if a then b else c)Ad) = 
(a A backward_ image{Y, bAd)v 
i-\a A backward_ imageiY,cAd) 

Table 2, Backward Image Axioms 

All these axioms will reduce the size of BDDs constructed 

during the computation of the image usually with a higher 

requirement for CPU time. 

An additional optimization for memory usage has been 

implemented for the computation of images. This is for the case 

of a nextstate relation that is a conjunction of disjunctions or 

a conjunction of conditionals. The corresponding additional 

axioms are marked with asterisks in Tables 1 and 2. 

The actual CTL symbolic model checking algorithm which was 

added to the Ever verifier is now described. 
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To model check a given temporal formula f in the model 

associated with a given nextstate relation, the formula f is 

evaluated just like any type of unevaluated proposition. In the 

Ever verifier, an unevaluated proposition is a parse tree data 

representation of a formula associated with the proposition. 

Often when an unevaluated proposition is referenced in an 

expression which is being evaluated, the unevaluated proposition 

must be evaluated. When an unevaluated proposition has been 

evaluated, its value represented as a binary decision diagram is 

stored in memory with the unevaluated proposition's data 

structure. This BDD represents the characteristic function of 

the set of states in which the proposition just evaluated is 

true in the model associated with the given nextstate relation. 

All the prepositional logic operators are evaluated as 

before. No changes were made here. These operators include 3 

basic operators {and, or, not), and high level operators that 

are essentially notational conveniences that are translated into 

the 3 basic operators (e.g. two integers being equal). These 

basic operators (i.e. and, or, not) are evaluated by invoking 

the primitives of Brace et al.'s BDD package [BRB90] 

Three of the CTL temporal logic operators are evaluated as 

described below. The others are evaluated by using the duality 

properties of CTL to express them in terms of the three basic 

ones. 
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Let us denote the assumed nextstate relation of the model as 

N(Vi,Vf). The unevaluated proposition EXf, which says there 

exists a path such that f is true in the next time unit, is 

evaluated as: 

3v̂ .[iV(V;,V̂ )A/(V̂ )] 

This expression is the same one as for a backward image. 

The EX operator is evaluated by computing the backward image of 

f with nextstate relation N. 

The unevaluated proposition E[f U g], which says there 

exists a path such that g is true sometime in the future and f 

is true in all preceding times along that path, is evaluated as 

the least fixed point of the expression Z = g^{f AEXZ) . This 

formula is derived from the following idea. Let us assume that 

Z represents the proposition E[f U g]. At all times on the path 

that satisfies f until g, g must be true now, or f must be true 

now and f until g must be true in the next time unit. Our goal 

is to find a function Z which satisfies this property 

^- g^if ^EXZ). Since this expression satisfies the monotone 

requirement of the Mu-calculus [BCMDH90] , i.e. all free 

occurrences of Z fall under an even number of negations, the 

function Z that satisfies this property is the least fixed point 

of gv(fAEXZ). Since this expression is monotone, it means each 

time the assignment Z:= gv(f AEXZ) is re-evaluated (starting from 

Z := False), the size of the characteristic function increases. 

Thus eventually after some number of iterations, Z must reach a 
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fixpoint (i.e. its value remains the same for two successive 

iterations) or reach the point of being a tautology which is the 

largest possible set. Once this value of Z has been reached, Z 

is equal to g\/{f AEXZ), so it satisfies the properties required 

by expression E[f U g], so must be the evaluated value of 

E[f U g]. The algorithm for this computation is illustrated in 

Figure 3. 

compute_eu(f,g) ::= 
Zl := False; 
do 
Z := Zl; 
Zl := g V (f A EXZ); 

u n t i l Z = Z l ; 
return Z; 

Figure 3 . Computation of E[f U g] as l e a s t f ixed p o i n t of 
Z=gv(fAEXZ) 

An unevaluated proposition EGf is computed in a similar way 

to E[f U g] by using the fixpoint characterization formula 

Z = fAEXZ. This is derived from the following property on a 

path making EGf true. At any state along such a path, f must be 

true now and EGf must be true in the following state (next time 

unit). Since this expression's primary operator is conjunction, 

it is a decreasing function, thus EGf is the greatest fixpoint 

of Z = f AEXf which is computed as illustrated in Figure 4. 
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comput e_eg(f) :: = 
Zl := True; 
do 
Z := Zl; 
Z l := f A EXZ; 

u n t i l Z = Z l ; 
r e t u r n Z; 

Figure 4 . Computation of EGf as g r e a t e s t f ixed p o i n t of 
Z=fAEXf 

Burch et al. [BCMDH90] present a technique for reducing the 

number of iterations needed for computing these fixpoints. It 

has not been implemented in this thesis. It is referred to as 

iterative squaring. 

The other temporal operators are evaluated using the the 

duality properties of CTL in Figure 5. 

EFf = E[True U f] 
AXf s -^EX-f 
A[f Ug] = -^[-.g U i-^f A -ng)] A -n£G-,g 
AGf = -nEF-f 
AFf^-.EG-f 

Figure 5. CTL Duality Properties 

3.2.3. Extension for fairness constraints 

Burch et al. [BCMD90] devised an extension to the algorithm 

to modify it to consider only execution paths in the model 

satisfying a set of fairness constraints given by the user. 

They are specified as arbitrary CTL temporal formulae which are 

interpreted to be required to occur infinitely often on all 

considered paths. All execution paths where these constraints 
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do not occur infinitely often are ignored by the extended 

algorithm. 

One should be able to specify desired assumptions of the 

environment's behaviour with these constraints. For example, 

with the alternating bit protocol, we want to verify its 

behaviour under the assumption that the users (sender and 

receiver) are infinitely often submitting requests to send and 

receive data, respectively. 

The computation of the temporal operators are changed as 

follows. The formula EGf under fairness constraints Ci,...,C„ 

means there exists a path from the current state in which f is 

globally true and all the constraints individually are true 

infinitely often along the path. This is characterized by the 

greatest fixed point of Z = f AEX{E[ZU{Z/KCJ\A...A.E[ZU{_Z AC„)\) . 

Note that each iteration in the fixpoint calculation involves 

the computation of n EU operators. These EU operators are 

presumably evaluated without fairness constraints, otherwise one 

would have endless recursion. 

For a given model (i.e. nextstate relation), a value 

Fair=EGTrue is calculated for use in computing the other 

temporal operators with fairness constraints. The computations 

for EX and EU are defined as follows: 

EXf = EX{f A Fair) 

E[fUg]^E[fU(gAFair)] 
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All the other temporal operators can be computed by using 

the duality properties of CTL mentioned earlier (Figure 5). 

3.3.Summary 

The theories of CTL model checking were presented to provide 

a foundation for the next chapter. The data structures and 

algorithms of two main CTL model checking approaches (i.e. 

explicit and symbolic) were explained. The second approach is 

used in the implementation described in chapter 4. This second 

approach has great potential for reasoning about extremely large 

state machine systems. 



Chapter 4: Implementation 

In this chapter, the implementation of tools necessary for 

carrying out model checking verification of communication 

protocols is described. In section 4.1, the features of the 

Estelle.Y protocol specification language are explained. In 

section 4.2, the syntax and semantics of the Ever verifier's 

specification language are described. In section 4.3, the 

design of the translator that transforms Estelle.Y 

specifications into Ever code is given. The mappings from 

Estelle.Y language elements to Ever propositions is explained. 

In section 4.4, the way in which the symbolic model checking 

theories discussed in chapter 3 were applied to extend the Ever 

verifier to support CTL model checking is explained. In section 

4.5, a number of minor enhancements made to Ever to make it more 

convenient for protocol verification are described. 

In section 4.6, a CTL tableau construction algorithm that 

was implemented, is briefly described. Doing experiments with 

relatively trivial CTL formulae, it was concluded that this 

algorithm is too impractical for use in protocol verification. 

In chapter 5, this implementation is applied to the 

alternating bit protocol. 

47 
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4.1. Estelle.Y and ASN.l Protocol Specification 
Language 

Estelle.Y [Lu91] is a variant of the Estelle [IS089] formal 

protocol description language. It is a language for describing 

a single module extended state machine containing a major state, 

internal variables, explicit timers and points of control and 

observation (PCOs). 

The PCOs provide the module interfaces to the outside 

environment. Associated with each PCO is a queue in the module 

for holding interactions received from the environment awaiting 

servicing by this module. Zero or more input interactions 

(input service primitives (ISPs)) and zero or more output 

interactions (output service primitives (OSPs)) are associated 

with each PCO. These associations are defined in the ISP and 

OSP declaration sections of the Estelle.Y specification. Each 

interaction may contain a number of data fields. The names and 

types of these fields are defined in a corresponding type 

definition in the ASN.l source file. 

For example, the alternating bit protocol specification (see 

Appendices 1 and 2) has two points of control and observation: 

UAccessPoint (interface to user), NAccessPoint (interface to 

underlying link (network)). The interactions associated with 

these PCOs are illustrated in Table 3. 
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PCO 
UAccessPoint 
UAccessPoint 
NAccessPoint 

ISP 
SENDreguest(x) 
RECEIVErequest 
DATAinteraction(id,conn,datum,seq) 

PCO 
UAccessPoint 
UAccessPoint 
NAccessPoint 

OSP 
SENDconfirm 
RECEIVEresponse(x) 
DATAinteraction (id, conn, datiom, seq) 

Table 3. List of interaction service primitives (ISPs) for 
points of control and observation (PCOs) in Alternating Bit 

Protocol Specification 

The behaviour of an Estelle.Y module is defined by the set 

of transitions in the transition section. Each transition 

defines an action to be performed whenever a given condition is 

true. The action is specified with a Pascal-like compound 

statement that manipulates the data elements of the 

specification (namely, internal variables and timers) and some 

clauses shown in the output section of the table below. The 

condition is specified as a list of clauses whose types are 

given in Table 4. 

Clause 
FROM state 
WHEN isp 

PROVIDED 
boolean_expression 
PRIORITY num 

TO state 

OUTPUT osp 

Description 
true when module in given state 
true when an interaction of type 
isp is awaiting processing 
true when given expression is 
true 
assigns this transition a 
priority 
output clause stating new state 
after execution of transition 
states that transition output an 
interaction of type osp 

Table 4. Estelle.Y transition clauses 
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The Pascal statements allowed in actions of Estelle.Y 

transitions are assignments, if statements, while statements and 

compound statements. 

One or more timers are defined in the timer section of the 

specification. Each timer is assigned a name and a constant 

defining its upper count limit. Four additional statement types 

for timers are allowed in transition action code shown in 

Table 5. 

Timer statement 
START{t) 
STOP{t) 
RESET(t) 

SET(t,num) 

Description 
put timer in running mode 
put timer in stopped mode 
reset timer's counter to zero 
and put it in stopped mode 
set the timer's counter to 
given value 

Table 5. Estelle.Y timer statements 

Five types of timer expressions may be used in expressions 

of Pascal statements and in the PROVIDED clause of transitions, 

see Table 6. 

Timer 
expressions 
TIMED_OUT(t) 

STARTED{t) 
STOPPED(t) 
RESETED(t) 

READCt) 

Description 

timer counter reached limit 
defined in timer section 
timer in running mode 
timer in stopped mode 
timer in stopped mode with 
counter equal to zero 
returns value of timer's counter 

Table 6. Estelle.Y timer expressions 
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The data type of each internal variable defined in the 

variable declaration section must be Boolean, Integer or 

character string. 

A complete specification of the syntax of the Estelle.Y 

language is given in [Lu91], 

Note it is not necessary for an Estelle.Y specification to 

be written in such a way as to have exactly one transition 

enabled at a time (i.e. does not have to be deterministic). If 

more than one transition is enabled, the specification says that 

the implementation must choose one of them. If none are 

enabled, this module must remain in its current state (i.e. 

major state and internal variables) until one becomes enabled. 

4.2. Ever specification language 

Ever is a language for specifying deterministic and non-

deterministic state machines with high-level language type 

constructs. It is also a tool for doing reachability analysis 

of systems specified in its language. The syntax of types, 

variables, bit vectors, propositions and predicates is 

described. Then Ever's main function called printtrace for 

displaying a trace after doing reachability analysis is 

explained. 

First, it provides commands for defining the data types and 

variables used in the specification. All types ultimately 
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reduce to sequences of bits. The types are sequences of bits, 

records and arrays. A new named type is defined with the 

deftype command: 

deftype typename typedefinition; 

Valid types are illustrated in Table 7. 

Type 
(bits n) 

(array i u type) 

(record fl tl ... fn tn) 

Description 
sequence of n bits containing 
values 0 through 2" — 1 
array indexed from lower bound 1 to 
upper bound u containing elements 
of type type 
structure containing fields named 
fl through fn of types tl through 
tn, respectively 

Table 7, Ever data types 

Variables are defined with the defvar command as follows: 

defvar varname type; 

where varname is name assigned to variable 

type is named type or an actual type 

definition 
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The values of all variables are bit vectors. There are some 

bit vector operators for manipulating values. Thus bit vectors 

are numerical constants, references to variables, and various 

operators on sequences of bits such as arithmetic operations. 

Some are shown in Table 8. 

Bit vector 
c 

's i ze ' c 

v^c 

v^n 

v^p 

(add vl ... vn) 
(sub vl v2) 

Description 
numerical constant c represented in as 
few bits as possible 
numerical constant c represented in size 
bits 
reference to variable v in current phase 
which can be a reference to an element of 
an array or a field of a record 
reference to variable v in next phase 
which can be a reference to an element of 
an array or a field of a record 
reference to variable v in previous phase 
which can be a reference to an element of 
an array or a field of a record 
the sum of the bit vectors vl through vn 
the difference between bit vectors vl and 
v2 

Table 8. Ever bit vector types 

Third, Ever provides commands for defining propositions that 

may depend on the defined variables in the current and next 

phases. (Ever also provides syntax for dealing with variables 

in the previous phase but the reachability analysis algorithm is 

not designed to use it properly.) The main types of 

propositions are shown in Table 9. 
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Proposition 
TRUE 
FALSE 
CurNextEq 

(and pi ... pn) 

(or pi . . . pn) 

(not p) 
(implies a c) 

(equiv pi p2) 
(eq hvl bv2) 

(gt bvl bv2) 

(ge bvl bv2) 

(It i>vl i>v2) 

(le bvl bv2) 

(if c pi) 

(if c pi p2) 

(becomes v^n bv) 

(compose pi ... pn) 

Description 
returns true 
returns false 
returns true when each variable has same value in 
current and next phases. 
returns true when all propositions pi through pn are 
true 
returns true when at least one of the propositions pi 
through pn is true 
return true when proposition p is false 
return true when antecedent proposition a is false or 
consequent proposition c is true 
returns true when propositions pi and p2 are identical 
returns true when bit vector bvl is equal to bit 
vector bv2 
returns true when bit vector bvl is greater than bit 
vector bv2 
returns true when bit vector bvl is greater or equal 
to bit vector bv2 
returns true when bit vector bvl is less than bit 
vector bv2 
returns true when bit vector bvl is less than or equal 
to bit vector bv2 
returns true if c is false and returns true if c is 
true and pi is true-'-
returns true if c is true and pi is true or if c is 
false and p2 is true. 
returns true if all variables except v have same value 
in current and next phases and variable v has value of 
bit vector bv in the next phase.^ 
returns true if when the values of the variables in 
the current and next phases are related in a way 
equivalent to the effect of applying the relations (of 
current and next phases) pi through pn in succession.-̂  

Table 9. Ever propositions 

^The conditional proposition if assumes the condition c is a proposition only 
on variables in the current phase. 
^The becomes proposition assumes that the variable v is in the next phase, v 
may be reference to an array element or a field of a record. 
^The compose proposition assumes that the propositions pi through pn are 
relations between all variables in current and next phases (i.e. becomes, 
compose, conditionals with propositions relating current and next phases in 
then and else parts) propositions. 
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Ever supports a notion of predicates which are just a 

syntactic convenience to avoid having to rewrite propositions 

with same structure but different constants substituted in 

places. It is a parameterized proposition whose actual 

definition depends on the set of values passed to the predicate 

when it is instantiated. The syntax is as follows: 

defpred predicate_name {pi ... pn) proposition; 

where pi through pn are named constants whose 
values are determined when the predicate is 
instantiated 

proposition is a proposition whose 
definition may reference named constants pi 
through pn 

Ever's main function, printtrace, given a nextstate 

proposition attempts to find a execution trace from any state 

that satisfies the given start proposition to any state that 

satisfies the given goal proposition. The nextstate proposition 

is assumed to relate the current and next phases of the model in 

which a trace is being searched. In other words, the nextstate 

proposition evaluates to true when given a pair of current and 

next phase variable value sets that can occur in the 

corresponding model (i.e. when the next phase variable values 

set can be reached from the current variable values set in one 

time step). If such a trace is found, it is printed as a set of 

current variable values for each time step from one satisfying 

the start proposition to one satisfying the goal proposition. 

If no such trace is found, the longest one tried is printed. 
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The t h e o r y upon which t h i s a l g o r i t h m i s b a s e d was d e s c r i b e d i n 

t h e p r e v i o u s c h a p t e r . 

4 . 3 . E s t e l l e . Y t o Ever t r a n s l a t o r 

In t h i s sect ion, the t r a n s l a t i o n from Este l le .Y to Ever i s 

descr ibed. The procedure for the user to carry out t h i s 

t r a n s l a t i o n i s described. The way a set of Este l le .Y modules i s 

represented in Ever i s explained. Then a descr ip t ion of the 

algorithm i s given. 

Given a l i s t of p a i r s of source f i l e s (Estel le .Y f i l e and 

ASN.l binary f i l e ) for the types of modules to be included, 

estelle2ever produces corresponding Ever code in the standard 

output . For example to produce code for two a l t e rna t i ng b i t 

protocol modules d i r e c t l y t i e d together , the user invokes 

estelle2ever as follows. Note the u s e r ' s responses are shown in 

i t a l i c s . See the Este l le .Y source code of the a l t e rna t ing b i t 

protocol in Appendix 1. 

1% estelle2ever abpS.estelle abp5.tt > abp5.output 
Nimiber of instances of module 'abp5' : 2 
connect abp5[0].UAccessPoint t o : 
connect abp5[0].NAccessPoint t o : abp5[1].NAccessPoint 
connect abp5[1].UAccessPoint t o : 
2% 
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To g e n e r a t e code f o r a s y s t e m w i t h o u t t h e two m o d u l e s ' 

N A c c e s s P o i n t i n t e r a c t i o n p o i n t s d i r e c t l y t i e d t o g e t h e r t h e 

s e s s i o n would b e : 

1% estelle2ever abp5.estelle abp5.tt > abp5.output 
Number of i n s t a n c e s of module ' abp5 ' : 2 
connect abp5[0].UAccessPoint t o : 
connect abp5[0].NAccessPoint to : 
connect abp5[1].UAccessPoint t o : 
2% 

The representation of a set of Estelle.Y module instances in 

Ever code is described. (For each Estelle.Y source file given 

on the command line, types are defined for its internal 

variables, timers, major state and points of control and 

observation (PCOs).) An array variable is defined for each 

Estelle.Y source file to hold all the internal variables, major 

state and timers of all instances of the corresponding module. 

For the alternating bit protocol these definitions are as 

follows: 
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— V a r i a b l e s : 
def type abp4_loca lvars ( record 

Send_seq ( b i t s 1) 
Recv_seq ( b i t s 1) 
Recv_buffer_empty ( b i t s 1) 
Recv_buffer_datum ( b i t s 1) 
Recv_buffer_seq ( b i t s 1) 
Send_buffer_empty ( b i t s 1) 
Send_buffer_datum ( b i t s 1) 
Send_buffer_seq ( b i t s 1 ) ) ; 

— Timers: rexmi t_ t imer 
def type abp4_timers_type ( record 

rexmi t_ t imer ( record running ( b i t s 1) counter ( b i t s 2 ) ) ) ; 

- - S t a t e s : ack_wait e s t a b 
def type abp4_mainstate ( b i t s 1 "ack_wait" " e s t a b " ) ; 

- - Ever v a r i a b l e s for module abp4 s t a t e s 
defvar abp4 (a r ray 0 1 ( record s t a t e abp4_mainstate v a r s abp4_loca lvars 

t imers abp4_ t imers_ type) ) ; 

An array var iab le i s defined for each ro le of each PCO type 

encountered in a l l the modules in the spec i f i ca t ion . The PCOs 

need to be s tored separa te ly from the modules' other var iables 

because they need to be accessed by code of more than one module 

type. The a l t e r n a t i n g b i t protocol has two PCOs: UAccessPoint 

and NAccessPoint. The two ro les of the UAccessPoint PCO are 

d i f fe ren t and the ro les of the NAccessPoint PCO are the same. 

The NAccessPoint ro les were defined in a way to be the same to 

allow one to d i r e c t l y connect a pa i r of Este l le .Y a l t e rna t ing 

b i t protocol modules. The t r a n s l a t o r only allows matching ro les 

to be connected. 
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— ISPs: SENDrecjuest RECEIVErequest DATAinteraction 

-- OSPs: RECEIVEresponse DATAinteraction SENDconfirm 

-- PDUs: Junk 

-- PCOs: 
deftype UAccessPoint_inqueue (record 

kind (bits 1) 
RECEIVErequest ( record dummy ( b i t s 1)) 
SENDrequest ( record udata ( b i t s 1 ) ) ) ; 

def type UAccessPoint_outqueue ( record 
k ind ( b i t s 1) 
SENDconfirm (record duirany ( b i t s 1)) 
RECEIVEresponse ( record uda ta ( b i t s 1 ) ) ) ; 

def type NAccessPoint_queue (record 
DATAinteraction ( record ndata ( record i d ( b i t s 1) conn ( b i t s 1) 

da ta ( b i t s 1) seq ( b i t s 1 ) ) ) ) ; 

- - Ever v a r i a b l e s for i n t e r a c t i o n queues 
defvar UAccessPoint_in (a r ray 0 1 

( record base ( b i t s 0) queued ( b i t s 1) 
con ten t (a r ray 0 0 UAccessPoint_inqueue))) ; 

defvar UAccessPoint_out (a r ray 0 1 
( record base ( b i t s 0) queued ( b i t s 1) 

con ten t (a r ray 0 0 UAccessPoint_outqueue))) ; 
defvar NAccessPoint (a r ray 0 1 

( record base ( b i t s 0) queued ( b i t s 1) 
con ten t (a r ray 0 0 NAccessPoint_queue))) ; 

A specia l var iab le i s defined for the implementation of 

t imers . This var iab le i s specia l because i t i s defined to be 

free meaning tha t i t i s excluded from the set of var iab les that 

must remain s tab le in a becomes p ropos i t ion . In other words 

t h i s v a r i a b l e ' s current value i s t o t a l l y non-determinis t ic . I t s 

value i s used in the nex t s t a t e r e l a t i o n to decide whether to 

t r e a t t imers or t r a n s i t i o n s in the current time u n i t . During 

v e r i f i c a t i o n , two fa i rness cons t ra in t s are defined to ensure 

t h i s va r i ab le i s i n f i n i t e l y often t rue and i s i n f i n i t e l y often 
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f a l s e . These cons t ra in t s are used to make the ve r i f i c a t i on 

consider only execution paths where both t r a n s i t i o n s and timers 

are regula r ly executing, 

deffreevar clock_tick (bi ts 1); 

For each type of Estel le .Y module in the spec i f ica t ion , a 

pa i r of Ever p red ica tes are defined for each t r a n s i t i o n in the 

module. The f i r s t predica te defines the enabling condit ion of 

the t r a n s i t i o n . The parameters of the predica te are a module 

instance number and indices to a l l input and output service 

pr imi t ives arrays used by the module. I t i s a conjunction 

proposi t ion of proposi t ions t r ans l a t ed from the clauses of the 

t r a n s i t i o n s as shown in Table 10. 

Clause 
FROM State 
WHEN isp 

PROVIDED 
boolean_expression 
PRIORITY num 
OUTPUT osp 

Propositions 
(eq modulename[n] .state'^c state_code) 
(not (eg pco_roIe[i].queued^c 0)) 
(eq pco__role[l] .content [pco_roie[i] .base'̂ c] .kind'̂ c 
isp_code) 
Ever code for boolean_expression 

(not implemented) 
(It pco_roie/"o7 .queued'̂ c QSIZE)* 

Table 10. Ever proposi t ions for Este l le .Y t r a n s i t i o n clauses 

The second pred ica te defines the r e l a t i onsh ip between the 

s t a t e before and a f t e r the act ion code of the t r a n s i t i o n i s 

executed. I t s parameters are a module instance number, and 

%ote QSIZE i s a constant defining the ntimber of elements in a l l in teract ion 
queues. This condition blocks a t r ans i t ion that would normally add an 
in te rac t ion to a queue from executing when the queue i s already fu l l . 
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i n d i c e s t o u s e d ISP a r r a y s and OSP a r r a y s . I t i s a compose 

p r o p o s i t i o n c o n t a i n i n g a p r o p o s i t i o n f o r e a c h P a s c a l - l i k e 

s t a t e m e n t i n t h e t r a n s i t i o n a c t i o n c o d e . The s t a t e m e n t s a r e 

t r a n s l a t e d a s i n d i c a t e d i n T a b l e 1 1 . 

statement 
V := expr 
if c then si 
if c then si 
else s2 
begin si ... sn 
end; 
while c si 
START(t) 
STOP(t) 
RESET(t) 
SET{t,num) 

Proposition 
(becomes v^n expr) 
(if c si (becomes modname^n modname^c))^ 
(if c si s2) 

(compose si ... sn) 

not implemented 
(becomes modrzaineEn] .timers, t.running'̂ n 1) 
(becomes j77odname[n] .timers, t-runninĝ 'n 0) 
(becomes inodname[n] .timers, t̂ n 0) 
(becomes modname[n] .timers, t.counter'̂ n num) 

Table 11. Ever proposi t ions for Estel le .Y statements 

The des t ina t ion var iab le in the assignment statement i s 

t r a n s l a t e d as the following i f v i s an in t e rna l va r iab le of the 

module: 

modname[n].vars.v 

I t i s t r a n s l a t e d as the following if the des t ina t ion var iab le i s 

in an output service p r imi t ive : 

pco_roJe[o] . con ten t [ (add pco_roJe[o] .base'^c pco_roJe[o] .queued'^c) ] .osp_name 

Additional ac t ions must be performed for t r a n s i t i o n s with the 

following clauses to complete the t ransac t ion of executing the 

t r a n s i t i o n (see Table 12). 

% o t e t h e b ina ry if needs the dummy becomes p r o p o s i t i o n in i t s else p a r t t o 
s t a t e t h a t a l l v a r i a b l e s must remain t h e same i n t h a t c a s e . Otherwise, the 
TRUE p r o p o s i t i o n would be p laced in the else p a r t which would mean t h a t 
any th ing can happen when t h e cond i t i on of the i f s ta tement i s f a l s e . 



CHAPTER 4. IMPLEMENTATION 62 

Clause 
TO s t a t e 
WHEN isp 

OUTPUT 
osp 

Additional Actions 
(becomes modname[n].state^n s ta te_code) 
(becomes p c o _ r o I e [ i ] .baseTi (add p c o _ r o I e [ i ] .base'^c 1)) 
(becomes pco_role[i] .qaened^n (sub pco_ roJe [ i ] .gueued'^c 1)) 
(becomes pco_roJe[o] . con ten t [ (add pco_roJe[o] .base'^c 

pco_role[o] .queued'^c ) ] .kind'^n 
osp_code) 

(becomes p c o _ r o I e [ i ] .queued^n (add p c o _ r o I e [ i ] .queued'^c 1)) 

Table 12. Ever propositions for actions for completing Estelle.Y 
transitions 

Next a predicate is defined for handling counting of timers. 

For each timer, the timer's counter is incremented if it in the 

running mode and the maximum count has not been reached. If 

none of the timers are running, this predicate is a dummy 

jbecomes proposition to keep all (non-free) variables stable. 

For the alternating bit protocol, it is as follows: 

defpred abp6_timertick (n) (compose 
(if (and (eq abp6 [n] .timers.rexmit_timer.running'^c 1) 

(It abp6 [n] .timers.rexmit_timer.counter'^c 3)) 
(becomes abp6[n] .timers.rexmit_timer.counter'^n 

(add abp6 [n] .timers .rexmit_timer.counter'^c 1)) 
(becomes abp6 [n] .timers-^n abp6 [n] .timers^'c) ) ) ; 

A predicate defining the overall behaviour of a module 

instance is defined. It is a disjunction of all possible 

actions that the module may perform at each time unit: service 

counting of timers if variable clock_tick is true, and service 

each enabled transition if variable clock_tick is false. It is 

a disjunction because we want the specification to be non-

deterministic allowing any enabled transition to be serviced. 

This disjunction includes a case to keep all variables stable 
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when a l l t r a n s i t i o n s a r e d i s a b l e d . I f t h i s s p e c i a l c a s e were 

n o t i n c l u d e d , t h e whole p r o p o s i t i o n would e v a l u a t e t o a f a l l a c y 

l e a d i n g t o a d e a d l o c k when a l l t r a n s i t i o n s a r e d i s a b l e d . T h i s 

p r e d i c a t e i n t h e a l t e r n a t i n g b i t p r o t o c o l s p e c i f i c a t i o n i s a s 

f o l l o w s . (Note each t r a n s i t i o n i s d e f i n e d w i t h an if 

p r o p o s i t i o n w i t h a f a l s e else p a r t . T h i s i s done t o p e r s u a d e 

t h e backward image compu t ing a l g o r i t h m d i s c u s s e d i n t h e n e x t 

s e c t i o n t o u s e i t s p a r t i t i o n e d n e x t s t a t e e v a l u a t i o n t e c h n i q u e . ) 

defpred abp6_nex t s t a t e (n iO oO i l o l ) (or 
( i f (eq clock_tick '^c 0) (or 

( i f (abp6_Ctransl n iO oO 11 o l ) (abp6_Atransl n iO oO i l ol) FALSE) 
( i f (abp6_Ctrans2 n iO oO i l o l ) (abp6_Atrans2 n 10 oO 11 ol) FALSE) 
( i f (abp6_Ctrans3 n 10 oO 11 o l ) (abp6_Atrans3 n 10 oO 11 ol) FALSE) 
(If (abp6_Ctrans4 n 10 oO 11 ol) (abp6_Atrans4 n 10 oO 11 ol) FALSE) 
(If (abp6_Ctrans5 n 10 oO 11 ol) (abp6_Atrans5 n 10 oO 11 ol) FALSE) 
(If (abp6_Ctrans6 n 10 oO 11 o l ) (abp6_Atrans6 n 10 oO 11 ol) FALSE) 
(If (abp6_Ctrans7 n 10 oO 11 ol) (abp6_Atrans7 n 10 oO 11 ol) FALSE) 
(If (and 

(not (abp6_Ctransl n 10 oO 11 o l ) ) 
(not (abp6_Ctrans2 n 10 oO 11 ol) ) 
(not (abp6_Ctrans3 n 10 oO 11 ol) ) 
(not (abp6_Ctrans4 n 10 oO 11 o l ) ) 
(not (abp6_Ctrans5 n 10 oO 11 ol) ) 
(not (abp6_Ctrans6 n 10 oO 11 o l ) ) 
(not (abp6_Ctrans7 n 10 oO 11 ol) ) ) 

(becomes abpS'^n abpG'-c) FALSE) ) FALSE) 
(If (eg c lock_ t l ck ' ' c 1) (abp6_t lmer t lck n) FALSE)); 

Fina l ly , the overa l l nex t s t a t e r e l a t i o n for a l l instances of 

a l l modules i s defined tha t invokes the modules' nex t s ta te 

p red ica te with d i f fe ren t parameters for each module ins tance. 

The parameters specify the index of each PCO array to be used by 

each module ins tance . 

defprop n e x t s t a t e (or 
(abp4_nexts ta te 0 0 0 0 1) 
(abp4_nexts ta te 1 1 1 1 0 ) ) ; 
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A p r e d i c a t e i s d e f i n e d f o r e a c h module t y p e t o d e f i n e t h e 

i n i t i a l s t a t e of t h a t modu le . For example , 

defpred abp4_ in i t (n oO ol) (and 
(eq abp4 [n] . s ta te '^c 1) 
(eq NAccessPoint [ol] .base'^c 0) 
(eq NAccessPoint [ol] .queued'^c 0) 
(eq UAccessPoint_out [oO] •base'^c 0) 
(eq UAccessPoint_out[oO].queued^c 0) 
(eq abp4 [n] .vars .Send_seq ' 'c 0) 
(eq abp4 [n] .vars.Recv_seq'^c 0) 
(eq abp4 [n] .vars.Send_buffer_empty'^c 1) 
(eq abp4 [n] .vars.Recv_buffer_empty'"c 1) 
(eq abp4 [n] . t imers '^c 0 ) ) ; 

Then a p r o p o s i t i o n for the o v e r a l l i n i t i a l s t a t e of a l l 

modules i s d e f i n e d . For example, 

defprop i n i t (and 
(abp4_in i t 0 0 0) 
(abp4_in i t 1 1 1) ) ; 

The a lgo r i t hm for g e n e r a t i n g Ever code from a s e t of 

E s t e l l e . Y s p e c i f i c a t i o n s i s now d e s c r i b e d . Each of t h e 

s p e c i f i c a t i o n s i s pa r sed wi th a s l i g h t l y modif ied copy of the 

pdsparseO r o u t i n e from TESTGEN (a t e s t sequence g e n e r a t i o n 

pac]<:age for E s t e l l e . Y ) i n t o a p r o t o c o l d a t a s t r u c t u r e (PDS) 

[Lu91,VHLMD93]. 

A l l t h e PDS s t r u c t u r e s a r e scanned t o b u i l d a l i s t of a l l 

PCOs i n a l l modules. This l i s t i s scanned t o query t h e u se r for 

in fo rmat ion about number of i n s t a n c e s of each E s t e l l e . Y module 

and which p a i r s of PCOs a r e t o be connected . Type and v a r i a b l e 

d e c l a r a t i o n s for a l l t h e PCOs a r e produced. A module i n s t a n c e 

d a t a s t r u c t u r e i s c r e a t e d for each i n s t a n c e of each E s t e l l e . Y 
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module. It includes a module instance number, index numbers to 

elements of PCO arrays from which this module instance shall 

receive interactions, and index numbers to elements of PCO 

arrays to which this module instance shall send interactions. 

These module instance structures are not used until the global 

nextstate relation and initial state propositions are produced. 

For each module type, Ever predicates (as described above) 

for the transitions conditions and actions are produced from 

information in the PDS. 

The global nextstate and initial state propositions are 

generated from the module instance data structures. 

While statements are not supported because loop analysis 

techniques of symbolic evaluation would have to be used to 

derive expressions for the overall effect of loops. Ever does 

not support such a construct. 

If a while loop in the action code of an Estelle.Y 

transition were to be translated to a series of transitions 

handling each iteration of the loop, a Boolean variable would be 

needed to indicate that the loop is executing. This would be 

necessary to indicate that no input events can be processed 

while executing the loop. The action code of an Estelle.Y 

transition is supposed to be atomic. 

Prioritized transitions were not implemented. The algorithm 

could be enhanced to generate a more sophisticated expression 

for deciding which transitions are enabled. 
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Arbitrairy integer multiplication and division is not 

supported because these operations are not supported in Ever. 

BDDs are known to blow up badly with these operations. 

It would be useful if the Estelle.Y language allowed one to 

specify an explicit data size when declaring (internal) integer 

variables. For example, the LAPS specification uses 3-bit 

sequence numbers. In the alternating bit protocol 

specification. Boolean variable declarations were used for the 

1-bit sequence number variables to avoid this problem. 

4.4. Ever extensions for CTL Model Checking 

This section describes procedures added to the Ever verifier 

to support the evaluation of CTL temporal logic formulae. These 

procedures were added to the evaluate_proposition() routine 

where all types of expressions are evaluated. Non-temporal 

expressions are directly evaluated by invoking primitives of 

Brace's BDD package. The EX, EU and EG operators are computed 

as described below. The other five operators (EF, AX, AU, AG, 

AF) are computed by expressing them in terms of the first three 

using duality properties of the CTL logic. 

The expression EXf is evaluated by doing some manipulations 

to move from the current phase of variables to the next phase of 

variables and computing the backward image of the characteristic 

set of f. The routine is illustrated below: 
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bdd_ex( f ,nex t ) : := 
{ fo l lowing l i n e produces a c h a r a c t e r i s t i c funct ion for f of 

v a r i a b l e s in next phase i n s t e a d of in c u r r e n t phase as 
when passed t o t h i s funct ion } 

tempi := 3 c u r _ v a r s . ( ( n e x t _ v a r s = cur_vars) A f ( c u r _ v a r s ) ; 

{ determine s e t of s t a t e s from which a l l p o s s i b l e t r a n s i t i o n s 
w i l l reach s e t of s t a t e s def ined by tempi } 

{ tempi i s a c h a r a c t e r i s t i c funct ion of v a r i a b l e s i n the next phase . 
Compute_backward_image r e t u r n s a c h a r a c t e r i s t i c funct ion of 
v a r i a b l e s in c u r r e n t phase . } 

r e t u r n compute_backward_image(tempi, n e x t ) ; 

The rout ine for computing backward images for Ever 's 

printtrace command i s used. This rout ine uses a p a r t i t i o n i n g 

technique to avoid evaluating the complete nex t s t a t e r e l a t i on 

whenever poss ib le . This technique dramatical ly reduces the 

amount of memory required. The axioms used for t h i s 

p a r t i t i o n i n g are as follows ( reca l l Table 2 on page 40): 

{ backward image of a composit ion } 
backward_image(Y, (NnO...ONl) ( x , x ' ) ) s 

backward_image(backward_image(Y, {NnO...o N2) ( x , x ' ) ) , Nl) 

{ backward image of a cond i t i on ( i . e . i f then e l s e s ta tement) } 
backward_image(y, i f C{x) then Nl e l s e N2) = 

C A backward_image(Y, Nl) v -iC A backward_image(Y, N2) 

{ backward image of a d i s j u n c t i o n } 
backward_image(Y, Nl v ... v Nn) = 

backward_image(Y, Nl) v ... v backward_image(Y, Nn) 

{ backward image i s g e n e r a l l y def ined as } 
backward_image(Y, N{x ,x ' ) ) = 3 x ' . ( Y ( x ' ) A N ( X , X ' ) ) 

EU expressions are evaluated by performing a l ea s t fixpoint 

computation by repeatedly using the EX computation procedure 

u n t i l a fixed value i s reached: 
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bdd_eu( f ,g ,nex t ) : := 
Zl := F a l s e ; 
do 

Z := Z l ; 

Z l := g V ( f A E X Z ) ; 
u n t i l Z = Z l ; 

EG expressions are evaluated by performing a fixpoint 

computation by repeatedly using the EX procedure until a fixed 

value is reached: 

bdd_eg(f,next) ::= 
Zl := True; 
do 

Z := Zl; 
Zl := f A EXZ 

until Z = Zl 

The other CTL operators are evaluated by using the duality 

properties to express them in terms of the three operators 

above: 

EFf = E[True U g] 

AXf = -lEX-if 
A[f U g] = -,E[-,g U (-if A -,g) ] A -,EG-.g 
AGf = -,EF-.f 
AFf = -,EG-if 

Further enhancements were made to these routines to support 

fairness constraints. The computation of the EG operator was 

modified to replace z := f A EXZ with the following where Cl 

through Cn are the fairness constraints: 

Zl := f A EX(E[Z U (Z A Cl)] A ... A EX(E[Z U (Z A Cn)]) 
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Note the EU expressions within this assignment statement are 

evaluated without using the fairness constraints. This would 

result in an infinite loop computing fairness constraints. 

The EX and EU operators are evaluated as follows under 

fairness constraints where Fair = EG True. Fair is evaluated with 

fairness constraints and the two expressions below for the EX 

and EU operators are evaluated using the procedure without 

fairness constraints. 

EXf : EX(f A Fair) 
E[f U g] : E[ f U (g A F a i r ) ] 

4 . 5 . Improvement t o Ever p r i n t i n g o f p r o p o s i t i o n s 

The o r ig ina l version of Ever pr in ted proposi t ions without 

any symbolic names for referenced va r i ab l e s . An improvement was 

made to have meaningful names p r in ted . This improvement grea t ly 

eases reading and in t e rp re t ing r e s u l t s from the v e r i f i e r . 

Figures 6 and 7 i l l u s t r a t e the difference between the old and 

new vers ions.^ 

^The printsop command p r i n t s a BDD r e s u l t as a sum of p roduc t s (d i s junc t ion 
of c o n j u n c t i o n s ) . 
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1% ever 
Limited memory recycling for debugging is ON 
memory cycle length: 10000 
added overhead: 160000 bytes 
set/reset by defining BDD_MEMORY_DEBUG in bdd.h to 1/0 

Command> defvar p (bits 1); 
Command> defvar x (bits 3); 
Command> printprop (eq p^c 1); 
(:301024:2:1) 
Command> printsop (eq p^c 1); 
(:301024:2:1) 
Command> printprop (eq x^c 6); 
! ( : 3 0 2 3 8 4 : 5 : 4 

[1] 
! ( : 3 0 3 9 3 6 : 8 : 7 

(:301504:11:10) 
[0])) 

Command> printsop (eq x^c 6) ; 
! (:302384:5:4 

[1] 
!(:303936:8:7 

(:301504:11:10) 
[0])) 

Command> end; 
2% 

Figure 6. Demonstration of Ever without proposition printing 
improvement 
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1% ever 
Limited memory recycling for debugging is ON 
memory cycle length: 10000 
added overhead: 160000 bytes 
set/reset by defining BDD_MEMORY_DEBUG in bdd.h to 1/0 

Command> defvar p (bits 1); 
Coitimand> defvar x (bits 3); 
Command> printprop (eg p^c 1); 
(P'c) 
Command> printsop (eq p^c 1) ; 
p'̂ c + 
Command> printprop (eg x^c 6); 
!(x.bitO^c 

[1] 
! (x.bitl'̂ c 

(x.bit2'"c) 
[0])) 

Command> printsop (eg x^c 6); 
Ix.bitO'̂ c & x.bitl'̂ c & x.bit2'̂ c + 
Command> end; 
2% 

Figure 7. Demonstration of Ever with proposition printing 
improvement 

Brace's BDD package [BRB90] provides a capability to store 

user defined information with each bit variable. A data 

structure was defined to refer back to the original definition 

of the variable in a way so that a meaningful name can be 

printed for all variables references including array elements 

and record fields. 

4.6. Addition of Ever deffreev^ar command 

The deffreevar command allows one to define a variable which 

will not be assumed to have its value remain stable from one 

time unit to the next when no other assumption is specified. 
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The becomes Ever proposition operator normally generates a 

proposition saying that the specified destination variable shall 

hold the value of the given expression in the next time unit and 

that all other variables shall remain stable. The deffreevar 

command excludes its variables from the set of variables to 

remain stable in becomes propositions. 

This command was necessary to model a non-deterministic 

(i.e. not predetermined by model) sequence of input data being 

sent by a sending module when verifying the alternating bit 

protocol. In other words, this command allowed the verification 

of the alternating bit protocol to reason about all possible 

input data sequences. 

Figure 8 illustrates the effect of the deffreevar command. 

Note, the printsop command prints a proposition as a sum of 

products. The becomes expressions for assigning the value 0 to 

variable p does not require the variable g to remain stable 

because g is defined to be free. 

1% ever 
Limited memory r e c y c l i n g for debugging i s ON 

memory cyc l e l e n g t h : 10000 
added overhead: 160000 by tes 
s e t / r e s e t by de f in ing BDD_MEMORY_DEBUG i n bdd.h t o 1/0 

Command> defvar p (bits 1); 
Command> deffreevar q (bits 1); 
Command> printsop (becomes p^n 0); 
!p''n + 
Command> printsop (becomes q^n 0); 
p'^c & p'^n & Iq'^n + 
Ip'-c & ip'^n & Iq-^n + 
Command> end; 
2% 

Figure 8. Demonstrat ion of new de f f r eeva r Ever command 
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4.7. Addition of setdefaultnextstate command 

All the CTL temporal operators in Ever when originally-

implemented required a nextstate relation to be explicitly-

specified. This command was added to provide a notational 

convenience for the user. With this new command, when no 

nextstate relation is specified with a CTL operator, the default 

is assumed. 

The implementation of the fairness constraints support was 

done in such a way as to only work correctly when the default 

nextstate relation is used. The value of Fair=EGTrue is stored 

with the value of the default nextstate relation. Fair=EGTrue 

is evaluated when the first temporal expression requiring its 

value is evaluated. 

4.8. Temporal logic to Nextstate relation translation 
algorithm 

A strategy for carrying out incremental verification was 

attempted that combines model checking and tableau construction 

techniques. From a few simple experiments, we concluded that 

this approach is infeasible because the complexity of the 

tableau construction algorithm is exponential and formulae to 

express simple properties are surprisingly large. The strategy 

and algorithms are briefly described below. 

The tableau construction algorithm [CE81] is used to 

translate a CTL formula describing the behaviour of the 
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environment surrounding the Estelle.Y modules (being verified) 

into a tableau representation. Clarke and Emerson describe a 

method [CE81] to derive a model from the constructed tableau. 

However, we need to produce a non-deterministic finite state 

machine representing all possible models satisfying the property 

defined by the input CTL temporal logic foinnula. The tableau is 

translated into a non-deterministic finite state machine with an 

extension made to the tableau algorithm. This machine is 

transformed into a nextstate relation. 

The Estelle.Y modules are translated into Ever code with the 

estelle2ever translator. A non-deterministic finite state 

machine for all the Estelle.Y modules is produced. 

A global nextstate relation is defined as the conjunction of 

all the nextstate relations for the environment behaviour and 

the Estelle.Y modules' behaviour. Conjunction is used to model 

the parallel execution of all the components. 

Disjunction could not be used because it would include 

invalid behaviours. The tableau produces a graph representing 

all possible behaviours of a given formula. The problem is that 

the tableau has no notion of input variables and includes 

behaviours that are contradictory with other modules' outputs. 

A conjunction of the nextstate relations of all the components 

cancels out contradictory behaviours. If a disjunction could be 

used, the model checking would use far less memory because the 
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partitioned nextstate evaluation techniques in Ever could be 

used. See section 4.4 above. 

This global nextstate relation is then passed to the model 

checker to check properties of the global system. 

Clarke and Emerson's tableau construction algorithm for CTL 

formulae [CE81] was implemented to experiment with this 

strategy. 

A new algorithm was developed to produce a non-deterministic 

state machine representing all possible behaviours of the input 

CTL formula from the tableau constructed by the tableau 

algorithm. 

4.9. Summary 

Before presenting the Estelle.Y to Ever translator 

algorithm, the syntax and semantics of the Estelle.Y and Ever 

languages were reviewed. Then the conventions about how a 

number of Estelle.Y modules are represented in the Ever language 

were explained before describing the translation algorithm 

itself. 

The Ever verifier was extended to support CTL model checking 

with fairness constraints. In the process of integrating the 

symbolic model checking algorithms, discussed in chapter 3, into 

the verifier, a few new commands and features were added to 

support the model checking. 



Chapter 5: Experiments and results 

In this chapter the tools developed in the previous 

chapters are applied to the alternating bit protocol. Section 

5.1. explains the strategy used to verify the control structure 

of the protocol. It proposes to prove the correctness of the 

protocol by showing that a number of internal properties are 

true and giving an argument as to why the protocol is correct 

when these internal properties are true. Further properties 

are specified to show that the protocol is valid for all data 

packet sizes. 

Section 5.2 discusses the results of the verification. The 

main result is that all the formulae verified to be tautologies 

and that they evaluated in finite time and memory. A method 

for producing counterexample traces is proposed and 

demonstrated with an example from the alternating bit protocol. 

5.1. Verifying the Alternating Bit Protocol 

The alternating bit protocol is a classical protocol for 

providing a reliable flow of messages from a sending process to 

a receiving process over an unreliable channel that may delay, 

(repeat) and lose messages (but not reorder the sequence of 

messages on the channel). 

76 
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Its Estelle [IS089] specification was manually translated 

into Estelle.Y and ASN.l (listed in Appendices 1 and 2). The 

modular decomposition of this specification is illustrated in 

Figure 9. 

Sending User 

ABP Sender Module 

Receiving User 

ABP Receiving Module 

Unreliable link 

Figure 9. Modular Decomposition of Alternating Bit Protocol 
Specification 

The following assumptions were made during the translation 

from Estelle. The data contained in each message is a single 

bit. This choice was made to minimize the size of the BDD 

produced during verification. We argue that this data size is 

sufficient for proving properties of the control structure of 

the protocol. We assume that the underlying unreliable link 

drops packets that are corrupted by noise on the channel. 
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The interaction queues of the Estelle.Y modules only have 

sufficient capacity for holding one request at a time. Under 

the assumption that the users of the protocol module obey an 

interface protocol (i.e. never fail to respond to interactions 

delivered to the interfaces in an appropriate manner), we show 

that the ABP protocol provides a reliable service. 

It is not sufficient to give the model checker only a 

specification of the protocol modules behaviour. Since the 

model checker needs a description of a whole system, we must 

add information about the behaviour of the user modules and the 

underlying data link. 

We specified all the possible behaviours of the user 

modules in the simplest way possible to minimize the complexity 

of the system given to the model checker. For the sending 

user, we specify two possible actions: 

1. Whenever the send queue to ABP sending module is 

empty, the user may add a random data send request to 

the queue. 

2. Whenever a SendConfirm interaction is in the queue 

from the ABP sending module, the sending user may 

dequeue this interaction. 

For the receiving user, we specify two possible actions: 

1. Whenever the request queue to the receiving ABP 

module is empty, the receiving user may submit a 

ReceiveRequest interaction to the queue. 
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2. Whenever a ReceiveResponse interaction is in the 

queue from the receiving ABP module, the receiving 

user may dequeue this interaction (i.e. receive the 

data originally sent by the sending user). 

We model the behaviour of the underlying data link by just 

tying the lower interaction points of the ABP modules directly 

together when translating the Estelle.Y specification into Ever 

code. This is shown in Figure 10. This is sufficient for 

modelling a system with a reliable underlying link. 

ABP Sender 

"TTs" 
out 

ABP Receiver 

n 

"7K" 
out 

Figure 10. Alternating Bit Protocol module configuration 
for modelling reliable underlying link and modelling unreliable 

link that can only lose data packets 

For an unreliable link that only may lose data but not 

duplicate data or reorder data, (from an Ever specification 

with an 2 element NAccessPoint array) , we add more possible 

behaviours to describe the underlying link: 

1. At any time, when there is an interaction from one 

ABP module to the other, the unreliable link may 

remove the interaction from the queue before it is 

seen by the peer ABP module. 
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See predicates user_next and unrellable_link_next in Appendix 4 

for code that defines these actions of the environment. 

From a version of Ever code produced without explicitly 

tying the NAccessPoint interaction points of the two ABP 

modules (Figure 11), more properties of an unreliable link can 

be modelled, namely delay, data duplication and data loss. An 

extra interaction queue is used between the pair of ABP modules 

in each direction as illustrated in the following diagram. 

ABP Sender 

h out 

/ \ 

NT 
A. 

q u e u e 

ABP Receiver 

i i out 

/ \ 

C-^ 
queue 

Figure 11. Alternating Bit Protocol module configuration 
for modelling unreliable underlying link that can lose, 
duplicate and repeat packets but not reorder packets 

To do this we add the following possible behaviours to the 

actions of the underlying link: 

1. Whenever one of the intermediate queues is full and 

the queue of the ABP module downstream is empty, the 

unreliable link may transfer the data from the 

intermediate queue to the next one downstream (i.e. 

complete a reliable transfer of a data packet), or 
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duplicate the data in the intermediate queue and 

place the duplicate in the next queue downstream 

(i.e. duplicate the data packet in transit). 

2. Whenever one of the intermediate queues is full, the 

unreliable link may dequeue the data in the queue 

(i.e. model data loss). 

Next we must specify a set of assumptions to restrict the 

set of possible behaviours to be considered by the model 

checker. We wish it to consider only fair executions, i.e. 

ones where the sending user regularly sends data, the receiving 

user regularly receives data, the unreliable link regularly 

transfers data (i.e. does not stay disconnected forever), and 

the timer clock ticks regularly. All these assumptions are 

specified as fairness constraints. 

To prove the specification always delivers messages to the 

receiver in the same order as they are submitted, we prove 

properties about the ordering of various internal events of the 

specification. We will show that this applies to all sizes of 

data packets. 

First, let us define the events used in the formulae that 

we are going to verify. Note an abbreviated form analogous to 

a WITH statement in the Pascal programming language is used in 

the formulae given with these events. 

USend(x) : true when a SENDrequest has been submitted 

by the sending user and is awaiting processing by the 



CHAPTER 5. EXPERIMENTS AND RESULTS 82 

ABP send module and the datum value of this request is 

X. The formula for this is: 

UAccessPoint_ out[0]. (queued = 7 A content[0]. kind = 0A 
SENDrequest. udata = x) 

USendConfirm(): true when a SENDconfirm has been submitted 

by the ABP sender module and is awaiting processing by 

the sending user. The formula is: 

UAccessPoint_ outfOJ. (queued = 7 A content[0]. kind = 1) 

ASend(x,s): true when data packet containing datum 

value X and sequence number s has been submitted for 

transmission by the ABP sender module and is awaiting 

transfer over the underlying link. The formula (for the 

case with a reliable underlying link) is 

NAccessPointflJ. (queued = i A 
content [0]. DATAinteraction. ndata. (id = 0A conn = 0A 

data = XA seq = s)) 

ASendNothing() : true when ABP sender module has no request 

to transmit a packet over underlying link pending. 

NAccessPointfl]. queued = 0 

ARcv(x,s): true when a data packet containing datum 

value X and sequence number s is delivered to the ABP 

receiver module by the underlying link and has not yet 
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been processed by the ABP receiver module. The formula 

is the same as ASend(x,s), namely: 

NAccessPointfl]. (queued = i A 
content[0].DATAinteraction.ndata.(id = 0 A conn = 0 

data = x A seq = s)) 

Note this formula is not accurate in the model of a 

unreliable link without two extra queues (first diagram 

above) because data loss can be modelled by removing an 

interaction in this queue after it has arrived in the 

receive queue of the ABP receive module. However this 

inaccuracy does not cause inaccuracies in the 

verification done below because the verified formulae 

specify that the interaction must stay in the queue 

until the ABP receiver module dequeues it. This formula 

would be a completely accurate representation of the 

ARcv event in the model with two extra queues in the 

data link (second diagram above). 

ARcvNothing(): true when there is no packet pending 

receipt by the ABP receiver module in its queue from the 

underlying link: 

NAccessPoint[l]. queued = 0 

AAcksend(s) : true when the ABP receiver module has 

submitted a request to transmit an acknowledgement 
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packet containing sequence number s. The formula for 

this is: 

NAccessPoint[0 ]. (queued = 1 A 
content[0]. DATAinteraction. ndata. (id = 7 A conn = 0 A seq = s)) 

AAckrcv(s): true when an acknowledgement packet 

containing sequence number s has been delivered to the 

ABP sender module by the underlying link. Note this 

formula is inaccurate for the simpler unreliable link 

model in the same way as ARcv(x,s). The formula is: 

NAccessPoint[0]. (queued = 1 A 
content[0]. DATAinteraction. ndata. (id = 1 A conn = 0 A seq-s)) 

URcv{x): true when a RECEIVEresponse interaction 

containing datum value x has been submitted by the ABP 

receiver module and has not been processed by the 

receiving user module. The formula is: 

UAccessPoint_ out[l]. (queued = 1 A 
content[0]. (kind = 0 A RECEIVEresponse. udata = x)) 

URcvreq(): true when a RECEIVErequest has been 

submitted by the receiving user and is awaiting 

processing by the ABP receive module. The formula is: 

UAccessPoint_ in[l]. (queued = 1 A content[0]. kind = 1) 

Our goal is to show that this specification of the ABP 

protocol has the following properties when certain assumptions 

of its environment are made. We want to show that when the 
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user sends two requests, the receiving user will receive the 

same two requests in the same order. The assumption of the 

environment that must be made is that the underlying link is 

connected sufficiently often for long enough to transfer a data 

packet reliably. 

The ideal formula to prove is of the form: 

V;c, y.AG(USend(x) A nextUSend(y) •=> AF(URcv(x) A nextURcv(y))) 

A weaker form of this formula, namely 

VA:, y. AG (send(x) A nextsend (y) =) EF(rcv(x) A nextrcv( y))) 

was model checked. Unfortunately, one can only show directly 

this weaker liveness property. It states that if there exists 

a computation path such that the user sends two requests then 

there exists a computation such that those same two requests 

will be later received. The problem with this statement is 

that the two messages received can be a consequence of 

different send requests from the ones intended because it is 

assumed that the sending user keeps sending random data send 

requests. 

The problem with checking the stronger liveness property is 

that the antecedent (containing universal quantification 

operators) is never true in the model of the system. It is 

false because the ABP Ever specification has too much non-

determinism. It is never possible to write a formula to be 

true on all execution paths in this model that states that a 

given pair of send data requests are sent by the sending user. 
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This is not possible because the specification of the sending 

user's data is non-deterministic. Since this antecedent is 

false, the implication would be true for the wrong reason. 

A considered solution was to change the actions of the 

sending user to always know the next two data values to be 

sent. But this idea is unnatural and unrealistic. 

This type of problem may not have occurred if theorem 

proving was being used. In theorem proving, one states a set 

of assumptions and attempts to derive the goal from the 

assumptions using axioms and inference rules. In model 

checking, one cannot state an assumption about the behaviour of 

the model and ignore all its other behaviours because all 

formulae are evaluated using the model's nextstate relation. 

In the problem at hand, the assumptions correspond to the 

proposition "when the sending user sends a particular pair of 

data requests". The goal corresponds to the proposition "an 

identical pair of data requests will be later delivered to the 

receiving user". 

Therefore, one has to verify the protocol a piece at a time 

and use logical reasoning to tie all the pieces' results 

together to make an overall conclusion. This approach is 

applied to the alternating bit protocol below. 

For each send data request usend(x) from the sending user, 

the sender (i.e. ABP sender module) will repeatedly send a data 
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p a c k e t f o r t h e c u r r e n t s e q u e n c e number Send_seq u n t i l an 

acknowledgement f o r i t i s r e c e i v e d a t which t i m e i t i s r e a d y t o 

p r o c e s s t h e n e x t s e n d d a t a r e q u e s t . The s e n d e r w i l l be i n t h e 

ESTAB s t a t e o n l y when i t i s n o t a w a i t i n g r e c e i p t of an 

a c k n o w l e d g e m e n t . The s e n d e r module w i l l o n l y a c c e p t a d a t a 

s e n d r e q u e s t from t h e u s e r w h i l e i n t h e ESTAB s t a t e . 

When t h e ABP r e c e i v e r module i s r e a d y t o r e c e i v e a new d a t a 

p a c k e t ( i . e . when Recv_buffer_empty=TRUE), 

1 . an acknowledgement i s s e n t f o r e a c h d a t a p a c k e t t h a t 

i s r e c e i v e d . 

2 . when a d a t a p a c k e t c o n t a i n i n g s e q u e n c e number e q u a l 

t o Recv_seq i s r e c e i v e d , i t i s p a s s e d o n t o t h e 

r e c e i v i n g u s e r and Recv_seq i s i n c r e m e n t e d . 

When t h e ABP r e c e i v e r module i s n o t r e a d y t o r e c e i v e a new d a t a 

p a c k e t ( i . e . when Recv_buffer__empty=FALSE), r e c e i v e d d a t a 

p a c k e t s a r e d e q u e u e d and no acknowledgement s a r e s e n t ^ . 

The s e n d i n g u s e r r e p e a t e d l y a l t e r n a t e l y s e n d s a random d a t a 

r e q u e s t t o t h e ABP s e n d i n g modu le , and w a i t s f o r a SENDconfirm 

r e s p o n s e from t h e ABP s e n d i n g m o d u l e . Some of t h e s p e c i f i e d 

f a i r n e s s c o n s t r a i n t s e n s u r e t h a t o n l y c a s e s of d a t a b e i n g s e n t 

i n f i n i t e l y o f t e n a r e c o n s i d e r e d . 

^Only the l a t e s t version of the Estelle.Y a l t e rna t ing b i t protocol 
specif icat ion does have t h i s properly. The or iginal version derived from 
the ISO Es te l le specif icat ion [IS089] loaded each received data packet into 
the current buffer even when the previous request had not been received by 
the user . 
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The receiving user repeatedly alternately requests to 

receive a data packet from the ABP receiving module, and 

receives a data packet. Some of the fairness constraints 

ensure that only cases of the receiving user's behaviour where 

data is infinitely often requested are considered. 

With all the formulae given below, we show that they are 

consequences of the initial state of the whole system. Namely, 

for each formula / below we want to show that initial_state zif is a 

tautology. The following abbreviations are used: 

Abbrevi at i on 
s t a t e 
Send_buf fer_empty 
Send_buffer_seq 
Send_bu f f er_dattun 
Send_seq 

Full Ever var iable name 
a b p [ 0 ] . s t a t e 
abp[0] .vara .Send_buffer_empty 
abp[0] .vars .Send_buf fe r_seq 
abp [ 0 ] . v a r s . Send_buf fer_datiim 
abp[0] .va r s .Send_seg 

Table 13. List of Abbreviations used in formulae describing 
properties of alternating bit protocol 

Noted with each formula is the name which is used in the Ever 

command file listed in Appendix 4. 

First, to show that the sending module is only in the ESTAB 

state when it is not busy sending a data packet, verify 

AGiistate = ESTAB) =) ASendNothingO) 

Formula ag_state_eq_ESTAB_iinplies_ASendNothing 
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We also claim that the ABP send module holds a data packet 

in an internal buffer only while in the ACK_WAIT state, 

AGi(state= ACK _WAIT) = {Send_buffer_empty = FALSE)). 

Formula ag_send_buffer_empty_equiv_estab_state 

While the send buffer is full, (i.e. while in ACK_WAIT 

state), the sequence number of the packet being retransmitted 

is equal to Send_seq, 

AG(—iSend_buffer_empty z> {Send_buffer_seq = Send_seq)) . 

Formula ag_not_Send_buffer_empty_implies_Send_buffer_seq_eq_Send_seq 

The ABP sender module is always in the ESTAB state or the 

ACK_WAIT state, 

AG ((state = ESTAB) v (state = ACK _ WAIT )) 

Formula ag_state_estab_or_ackwait 

We claim that the ABP sender module never deadlocks under 

the specified fairness constraints, 

AG (AF (state = ESTAB) A AF (state = ACK _WAIT)) 

Formula ag_af_state_ESTAB_and_af_state_ACKWAIT 
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If a send data request is submitted while in the ACK_WAIT 

state (i.e. while processing a previous request), it will 

remain in the request queue until at least the time at which 

the state returns to ESTAB. 

yx.AG(USend(x) A (state = ACK_ WAIT) => 

A[USend(x) U {USend(x) A (state = ESTAB))]) 

Formula forall_x_one_send_request_at_a_time 

In other words, the request is not processed while in the 

ACK_WAIT state; it is held in the queue until the state returns 

to ESTAB. When a request is in the queue while in the ESTAB 

state, a corresponding packet will be repeatedly transmitted 

until an acknowledgement is received. 

\/x. AG((state = ESTAB) =) A[(ASendNothing() A (state = ESTAB)) U 
A[((ASendNothing() v ASend(x, Send_ seq)) A 

(state ==ACK_WAIT))U 
(state = ESTAB)]]) 

Formula forall_x_repeat_transimt_packet 

When an acknowledgement is received for current sequence 

number while in ACK_WAIT state, the state will be eventually 

returned to ESTAB and the current sequence number will be 

incremented. 

Vi', X. AG(((state = ESTAB) A(S = Send_ seq) A 
AAckRcv(s) A(X = Send_ buffer _ datum)) 3 

A[(ASend(x,s)\/ ASendNothingO) U 
((state = ESTAB) A (Send_ seq = (s +1)))]) 

Formula foralI_x_s_ack_rcvd_leads_to_incr_seq_num_and_estab 
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In each cycle of the sending ABP module going from state 

ESTAB, ACK_WAIT and back to ESTAB, only the following events 

occur over the underlying link. 

yx,s. AG{{USend{x) A {state = ESTAB) A(S = Send_seq)) => 
A[i(ASend_ NothingO v AAckRcvis -1)) A (state = ESTAB)) U 

A[(ASend(x, s) v ASendNothingO v ARcvNothingO v 
ARcv{x,s)v AAckSend(x)v AAckRcv(s)) U 

({state = ESTAB) A (Send_ seq = (s +1)))]] 

Formula forall_x_s_send_cycle2 

We h a v e a l r e a d y shown t h a t e x a c t l y one s e n d r e q u e s t from 

t h e u s e r c o r r e s p o n d s t o e a c h ESTAB->ACK_WAIT->ESTAB s t a t e 

c y c l e . However, we have n o t shown t h a t t h e Send_seq v a r i a b l e 

i s i n c r e m e n t e d e x a c t l y once f o r e a c h main s t a t e c y c l e . T h i s i s 

i n c l u d e d i n t h e d i s c u s s i o n b e l o w . 

Now, we show t h a t e ach s e n d r e q u e s t from t h e u s e r 

c o r r e s p o n d s t o e x a c t l y one r e c e i v e r e q u e s t a t t h e o t h e r end . 

T h i s i s done i n f o u r s t e p s from t h e s e n d i n g u s e r t h r o u g h t h e 

u n d e r l y i n g l i n k o n t o t h e r e c e i v i n g u s e r a t t h e o t h e r end . 

F i r s t , we show t h a t t h e v a r i a b l e Send_buffer_datum i s f i l l e d 

and e m p t i e d o n c e f o r e a c h s e n d d a t a r e q u e s t . Second , we show 

t h a t t h e s e n d s e q u e n c e number v a r i a b l e Send_seq i s i n c r e m e n t e d 

e x a c t l y once f o r e a c h t i m e t h e send b u f f e r i s f i l l e d and 

e m p t i e d . T h i r d , we show t h a t t h e r e c e i v e s e q u e n c e number 

^Previous send data packet may be retransmitted af ter an acknowledgement for 
i t has been received if i t was sent to the underlying l ink before the 
acknowledgement was received and was s t i l l pending servicing by the 
underlying l ink when the acknowledgement was processed. 
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i?ecv_seg is incremented exactly once for each time the receive 

buffer is filled and emptied in the ABP receiver module. Also 

we show that the send sequence number is always equal to the 

receive sequence number at the instant that the receive buffer 

is filled. This shows that the send and receive sequence 

number match provided they match initially. Fourth, we show 

that there is exactly one receive request from the user for 

each time the receive buffer is filled and emptied. 

In the ABP sender module, the send data buffer is always 

filled at exactly the same instant that the user's request is 

dequeued from the input interaction queue at PCO NAccessPoint. 

(This corresponds to the action of transition 1 in the 

Estelle.Y specification.) The times at which the next user 

request is enqueued in the NAccessPoint PCO and at which the 

send data buffer is emptied can be anytime before the next user 

request is dequeued. The possible behaviours are illustrated 

in Figure 13. 
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not (USenc3Nothing) 

Send_buffer_einpty 

T 

XJ 
OR ; 

I -U-Tl 

A B C D A B C D 

BEtants: 

A: user recjuest cSequeued and send data buffer filled. 

B: either send data buffer emptied or another user recjuest enqueued. 

C: event opposite to that which occuced at B. 

D: start of new cycle, next user request dequeued and send buffer filled. 

Irtenals; 

A-B: \jser request in buffer waiting for an ack. and no new user request yet. 

B-C: either previous user request processed (ack received) and waiting for 
next user reguest or 

next user request pending and s t i l l waiting for ack for previous xjser reguest. 

C-D: next user request pending and previous request processed. 

Figure 12. In te rva l between successive user send requests 
in Al ternat ing Bit Protocol 

Now the formula usend_matches_send_buffer_fill says tha t 

whenever the re i s a user send request pending, the following 

sequence of events must occur: 

1 There may ex i s t an in t e rva l of time from now to a 

point in the future such tha t the user request 

remains pending and the send buffer i s f u l l . The 

length of t h i s in t e rva l can be zero. 

2 There must be an in t e rva l of length of a t l eas t one 

time uni t through which the user request s t i l l 

file:///jser
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remains pending and the send buffer is empty. This 

corresponds to the interval before A in Figure 13. 

3 There must exist an interval from A to B of length of 

at least one time unit in which there is no pending 

user request and the send data buffer is full. 

4 There may exist an interval between B and C (length 

zero or more) in which there is no new user request 

pending and the send buffer is empty (present request 

processed) or a new user request is pending and send 

buffer is still full (present request still being 

processed) . 

5 Finally there must be an interval from C to D of at 

least one time unit in length in which a new user 

request is pending and the send buffer is empty. In 

this interval the previous request has been 

completely processed and is waiting to process the 

next request (already pending). Immediately 

following this interval at D, there must be an 

instant at which the new user request has been 

dequeued and the send buffer is full. 
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The formula specifying tha t t h i s sequence must occur i s :^ 

AG(-,USendNothingO => 
A[—\USendNothingO A —Send_ buffer_ empty U 

{-lUSendNothingO A Send_ buffer_ empty A 
A[—iUSendNothingO A Send_ buffer_empty U 

(USendNothingO A -Send_ buffer_ empty A 
A[USendNothingO A -Send_ buffer_empty U 

A[(USendNothmg() A Send_ buffer_empty v 
-dJSendNothingO A -xSend_ buffer_ empty) U 
(—lUSendNothingO A Send_buffer_empty A 
A{-~iUSendNothingQ A Send_buffer_empty U 

(USendNothingO A -nSend_ buffer _ empty)])]])])]) 

Formula usend_matches_send_buffer_fill 

The send sequence number variable, Send_seq, always 

contains the sequence number of the current data packet. While 

in the ESTAB state, this number is the sequence number that 

will be assigned to the next send data request received from 

the sending user. While in the ACK_WAIT state, this number is 

the sequence number of the data packet currently being 

retransmitted. Formula send_buffer_fill_sequence below 

specifies that this sequence number must remain constant 

throughout the send cycle except at the instant when a 

corresponding acknowledgement is received and the send buffer 

in the ABP sender module is emptied. In Figure 13, point B is 

the time at which this sequence number is incremented (i.e. 

when the Send_buffer_empty variable becomes true). 

^Note USenc3Nothing is equivalent to 3x.USend(x) 



CHAPTER 5 . EXPERIMENTS AND RESULTS 16 

AG{Send_ buffer _ empty •=> 
3s.A[Send_buffer_empty U 

(—Send_ buffer_ empty A (Send_ seq = 5) A 
A[—iSend_ buffer_ empty A {Send_ seq = s) U 

(Send_ buffer_ empty A (Send_ seq = is +1)) A 
A[(Send_ buffer_ empty A {Send_ seq = {s +1))) U 

{—Send_ buffer_ empty A (Serui_ seq = (s +1)))])])]) 

Formula send_buffer_fill_matches_seq_nuinber 

The r e c e i v e s e q u e n c e number v a r i a b l e i n t h e ABP r e c e i v e r 

modu le , Recv__seq, a l w a y s c o n t a i n s t h e s e q u e n c e number of t h e 

n e x t e x p e c t e d d a t a p a c k e t t o be r e c e i v e d . Whenever a d a t a 

p a c k e t w i t h t h i s s e q u e n c e number i s r e c e i v e d and t h e r e c e i v e 

b u f f e r i s empty , a s i n d i c a t e d by t h e v a r i a b l e 

Recv_buffer_empty, t h e datum from t h e p a c k e t i s l o a d e d i n t o 

Recv_buffer_datum and t h e r e c e i v e s e q u e n c e number i s 

i n c r e m e n t e d . At a l l o t h e r t i m e s t h r o u g h o u t t h e r e c e i v e c y c l e , 

t h e r e c e i v e s e q u e n c e v a r i a b l e r e m a i n s c o n s t a n t . Formula 

receive_huf_filled_matches_seq_no s p e c i f i e s t h i s p r o p e r t y . 

AG{Recv_ buffer _ empty 3 
3s.A[Recv_buffer_empty U 

{—\Recv_ buffer_ empty A {Recv_ seq = S)A 
A[(-Ti?ecv_ buffer_ empty A (Recv_ seq = s)) U 

(Recv_ buffer_ empty A 
A[{Recv_, buffer_ empty A (Recv_ seq = s)) U 

{—Recv_ buffer_ empty A (Recv_ seq = (s +1))])])]) 

Formula receive_buf_filled_matches_seq_no 

In the ABP receiver module, the receive buffer, 

Recv_buffer_datum, is always emptied at exactly the same 

instant the received datum is enqueued into the interaction 

file://{�/Recv_
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queue to the receive user. Each receive cycle starts at this 

instant and is followed by the following intervals: 

1. a period of at least one time unit in which the 

received datum is still pending receipt by the user 

and the receive buffer in the ABP receiver module is 

empty. 

2. a (optional) period of any length in which either the 

received datum is still awaiting dequeuing by the 

user and the receive buffer has been filled, or the 

received datum has been dequeued and the receive 

buffer is still empty awaiting the next data packet, 

3. a period of at least one time unit in which the user 

interaction queue is empty (ready for delivery of the 

next data packet) and the receive buffer is full 

(i.e. the next data packet has already been 

received). 

These intervals are illustrated in Figure 13. 
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not(URcvNothing) 

Recv_buffer_empty 

J 

J-1 
OR 

r J 

r 

IS 

A B C A B C D 

Instants: 

A: received data is delivered to i;iser and receive buffer is etrptied. 

B: either another data packet is received or user has dequeued 
previous data interaction 

C: event opposite to that vMch occurred at B-

D: start of new cycle, next received data packet is delivered to user and 
receive buffer is arptied 

MiBcvals; 

A-B: received data packet in user in terac t ion quaie and waiting for 
next data packet frcm underlying l ink. 

B-C: e i ther received packet s t i l l poiding receipt t y laser and next 
da ta packet received or 
user dequeued received packet and s t i l l waiting for next 
data packet frati underlying l ink. 

C-D: user reac^ for del ivery of next data packet and next data packet 
already received frcm underlying l ink. 

Figure 13. In te rva l between successive user receive 
requests in Al ternat ing Bit Protocol 
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AGiURcvNothing 3 
A[(URcvNothing A Recv_ buffer_ empty) U 

{URcvNothing A —iRecv_buffer_ empty A 
A[( URcvNothing A -iRecv_ buffer_ empty) U 

(—yURcvNothing A Recv_ buffer_ empty A 
A[(-^URcvNothing A Recv_ buffer_ empty) U 

A[i{URcvNothing A i?ecv_ buffer _ empty) v 
{—URcvNothing A -nRecv_ buffer_ empty)) U 
(URcvNothing A -T/?ecv_ buffer_ empty A 
A[(URcvNothing A -i/?ecv_buffer_ empty) U 

{—JJRcvNothing A /?ecv_ buffer _ empty)])]])])]) 

Formula urcv_matches_recv_buff_fill 

We have shown that each of the four phases above always 

corresponds to a single send data request. Now to show that 

the control structure of the protocol is correct for any packet 

data size, we must show that the data in a send data request is 

always preserved from the time the request is submitted to the 

time it is received by the receiving user. This is specified 

in formula forall_x_data_preserved. It says that whenever a 

send request is submitted by the sending user, the following 

series of intervals illustrated in Figure 14 must occur: 

1. An optional interval in which ABP sender state is 

ACK_WAIT and user's send request is still pending 

servicing. This interval only occurs when the user's 

send request is submitted while the ABP sender module 

is processing a previous request. This interval 

corresponds to A-B in Figure 14. 
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2. An interval of at least one time unit in which the 

ABP sender state is ESTAB and the user's send request 

is pending servicing. This corresponds to B-C in 

Figure 14. 

3. An interval that must start with a time unit in which 

the ABP sender state is ACK_WAIT and the user's send 

request has been transferred to the send buffer 

Send_buffer_datum. During this interval, the 

previous and current send request packets are being 

sent and received. It must end with a phase in which 

the ABP receiver module receive buffer 

Recv_buffer_datum is empty. This interval ends when 

the ABP receiver module fills its receive buffer with 

the current send data packet. This corresponds to C-

E in Figure 14. 

4. This interval corresponds to the period between when 

the ABP receiver's receive buffer is filled and the 

time at which the data packet is delivered to the 

receive user. The ABP receiver's receive buffer is 

full throughout this interval. It ends with a phase 

in which the interaction queue to the user is empty. 

It may begin with a phase in which this interaction 

queue is still filled with the previous data packet 

awaiting the user to retrieve it. This corresponds 

to E-G in Figure 14. 
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5. In the last interval, the ABP receiver's receive 

buffer is empty and the received packet is in the 

interaction queue to the user awaiting the user to 

dequeue it. This is G-H in Figure 14, 
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USend(x) 

state=ACK_WAIT 

Send_bu f fer_empty 

Recv_buf fer_empty 

URcvNothing 

URcv(x) 

J 1 

r 
\ _ri r 

A B D 

J 

F G H 

liBtantis: 

A: user subxdts a request to send datum x 
B: ABP sender module f inished sending previous request 
C: ABP sender s t a r t s processir^ current request 
D: ABP r e c e i v e r ' s rece ive buffer beccmes a tp ty 

( i . e . transfers previous padkd: t o user ' s interacticn queue) 
E: current packet loaded into ABP rece iver ' s receive buffer 
F: use r has dequeued previous packet from i n t e r a c t i o n queue 
G: current packet i s loaded in to u s e r ' s in terac t icn queue 
H: u se r has dequeued cur ren t packet 

Bta:\als: 

*A-B: use r send request stibmitted v M l e ABP sender module busy processing 
previous request. 

B-C: use r request suhnitted, ABP sender module id l e , waiting for ABP sender 
to s t a r t poDcessing request. 

*C-D: data packet being re t ransmit ted while ABP rece iver module rece ive 
buffer i s full containing previous packet. 

D-E: da ta packet being re t ransmit ted vdiile ABP receiver module receive 
buffer i s new atpty. 

*E-F: data packet received t y ABP receive module in to i t s receive buffer and 
previous packet awaiting user t o dequeue i t . 

F-G: d a t a packet rece ived by ABP rece ive module and 
in t e rac t ion queue t o user arpty . 

G-H: da ta packet loaded in to in te rac t ion queue to user , 
v\aiting for user to dequaje i t . 

Intervals marked with as ter i sks xoay have zero length. 

Figure 14. 
send user to 

Interval from time data request submitted by 
time at which it is received by receive user. 
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AGiUSend(x) 3 
A[((state = ACK_ WAIT) A USend(x)) U 

{(state = ESTAB) A USendix) A 
Aiiistate = ESTAB) A USend(x)) U 

((state = ACK_ WAIT) A USendNothing A (Send_bujfer_ datum = X)A 
A[((state = ACK_ WAIT) A -J?ecv_ buffer_ empty A 

(ASendNothing v ASend(x, Send_seq) v 3y.ASend(y, Send_seq -1))) U 
(Recv_ buffer_ empty A (ARcvNothing v ARcv(jc, Send_ seq) v 

By. ARcv(y, Send_ seq -1)) A 
A[(Recv_buffer_emptyA 

(ARcvNothing v Ai?cv(A:, Send_ seq) v 
3y. A/?cv(y, ̂ enflf. 5e^ -1))) U 

(—iRecv_ buffer_ empty A (Recv_ buffer_ datum = X)A 
A[(—tRecv_ buffer_ empty A (Recv_ buffer_ datum = X)A 

3y.URcv(y))U 
(-\Recv_ buffer_ empty A (Recv_ buffer_ datum = X)A 
URcvNothing A 
A[(—iRecv_ buffer_ empty A 

(Recv_buffer_datum = X)A URcvNothing) U 
(Recv_ buffer_ empty A URCV(X) A 
A[URcv(x) U URcvNothing])])])])])])]) 

Formula forall_x_data_preserved 

5.2. Results of experiments on alternating bit protocol 

This section discusses the results obtained from running 

the formulae in the previous section through the model checker 

with the model containing an unreliable underlying link which 

only delivers and loses packets. All the formulae evaluated as 

tautologies confirming the truth of the corresponding 

properties in the alternating bit protocol specification. 

Section 5.2.1. reports figures on the time and memory 

resources used to compute the formulae in the previous section. 

The main result is that the system did not suffer from the 

file://-/Recv_
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state explosion problem. Some explanation on why the 

evaluation of some formulae took longer than others is given. 

Section 5.2.2. proposes a method for generating 

counterexamples for some classes of CTL formulae. In section 

5.2.3. this method is applied to the first formula 

ag_state_eq_ESTAB_implies_ASendNothing which was originally 

specified incorrectly. A corrected formula is proposed and 

shown to verify as correct. 

For detailed information on the verification, refer to the 

appendices. The alternating bit protocol specification written 

in Estelle.Y and ASN.l is given in Appendices 1 and 2, 

respectively. Appendix 3 shows the Ever code produced by the 

estelle2ever translator. The Ever command file for carrying 

out the verification of these formulae is given in Appendix 4. 

Actual output from the model checker is shown in Appendix 5. 

Appendix 4 contains Ever commands for: 

1. defining the actions of the user modules (sender and 

receiver) 

2. defining the actions of the modelled underlying 

unreliable link. 

3. defining the set of fairness constraints 

4. defining the global nextstate relation 

5. setting the default nextstate relation and fairness 

constraints to be used by all formulae being verified 
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6. specifying and verifying properties discussed in the 

previous section. 

5 . 2 . 1 . Resource Usage 

Table 14 gives the f igures of time and memory used to 

ver i fy each of the formulae discussed in sect ion 5 . 1 . For more 

de t a i l ed s t a t i s t i c s see the appendices. 

Formula Name 

ag_state_eq_ESTAB_implies_ASendNothing 
ag_send_buffer_empty_equiv_estab_state 
ag_not_Send_buffer_empty_implies_Send_buffer_seq_ 
eq_Send_seq 
ag_state_estab_or_ackwait 
ag_af_state_ESTAB_and_af_state_ACKWAIT 
forall_x_one_send_request_at_a_time 
forall_x_repeat_transmit_packet^ 
forall_x_s_ack_rcvd_leads_to_incr_seq_num_and_estab 
forall_x_s_send_cycle 
usend_matches_send_buffer_fill5 
s end_bu f f er_f i 1 l_mat che s_s eq_nuinber 
receive_buf_filled_matches_seq_no 
urcv_matches_recv_buff_fill 
data_preserved 

CPU 
time 
(mins) 
57:18 
0:06 
0:05 

0:01 
61:01 
94:39 
184:38 
251:57 
404:20 
353:34 
506:02 
576:16 
466:20 
2412:22 

Memory at 
completion 
(kb) 
4157 
4157 
4157 

4157 
4157 
4189 
4189 
4253 
7197 
4253 
7133 
12765 
12829 
24477 

Table 14. CPU Time and Memory used during Ver i f ica t ion 

*The t e s t was r e s t a r t e d from he re , so the accumulated CPU time f igu res for 
subsequent formulae a r e h igher than i f t e s t was run a l l a t once . They could 
be exagera ted by as much as the time for formula 
ag_state_eg_ESTAB_implies_ASencMothing ( the smal le r of 
ag_state_eg_ESTAB_implies_ASendNothing and forall_x_repeat_transmit_packet) 
because t e s t s ag_state_eg_ESTAB_implies_ASendNothing and 
forall_x_repeat_transmit_packet inc lude t ime for computing EG True for 
f a i r n e s s c o n s t r a i n t s . 
Â new t e s t was s t a r t e d h e r e , so t h i s inc ludes computation of EGTrue. 
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The main result is that all these formulae were evaluated 

in finite time and memory. All the formulae evaluated as 

tautologies confirming that all the formulae are true in the 

alternating bit protocol specification thus allowing the 

argument given in section 4.1 to be used to prove the protocol 

correct for all packet sizes. 

Formulae ag_send_buffer_empty_equiv_estab_state, 

ag_not_Send_buffer_empty_implies_Send_buffer_seg_eg_Send_seg 

and ag_state_estab_or_ackwait took very little time because 

they are safety properties. For these the model checker only 

needs to check whether these properties are maintained from one 

time unit to the next. These formulae are all of the form AGf. 

The dual of this formulae, namely —lEF-if, is evaluated. With 

fairness constraints, this is evaluated as —,EF(—if A Fair) 

without using the fairness constraints where Fair was 

previously evaluated as EGTrue with the fairness constraints. 

This expression is evaluated as —iE[True U (-yf A Fair)] which 

is computed as the least fixed point ot Z = (-if A Fair) v 

EXZ. If f is a valid safety property, this fixpoint 

computation will only take one iteration because by definition 

a safety property is maintained from one time unit to the next. 

Formula ag_af_state_ESTAB_and_af_state_ACKWAIT took far 

longer than the previous formulae because it required a 

complete analysis of all possible execution paths in the system 
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to determine whether either state can always be reached in the 

future. 

5.2.2. Method to generate counterexample traces 

The system discussed so far implements a facility for 

evaluating CTL formulae in a given model. A formula evaluates 

to a Boolean characteristic function of the set of states 

(combinations of all Ever variable values in current phase) 

that satisfy the formula in the current time unit. Usually 

during verification, one wishes to confirm that a given CTL 

formula is a tautology when evaluated in the model. And if 

not, one would prefer to see a trace of an execution path that 

violates the formula (to assist the designer find the flaw in 

the formula or the specification). 

Some proposed procedures for producing counterexamples for 

formulae of a few syntactic forms are described below in terms 

of invoking Ever's printtrace facility. 

Recall, when verifying properties of a finite state machine 

based system, one is interested in considering only execution 

paths that start in an initial state. Thus formulae to be 

evaluated are often of the form initial__state Z) f. If the 

model checker produces a tautology, one is finished. 

Otherwise, one should evaluate f A initial_state to see if f 

is satisfiable in the model (i.e. true in any of the initial 

states). 
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Let nextstate denote the nextstate relation of the finite 

state machine. Recall, the parameters for the printtrace 

command are: initial, a proposition defining the set of initial 

states; nextstate, the nextstate relation of the model; and 

goal, a proposition defining a set of states. Printtrace 

attempts to find a path from any state in the initial states to 

any state in the goal set using the given nextstate relation. 

Note printtrace will always find such a path for the types of 

formulae discussed below because we only use it when the 

original formula failed to evaluate as a tautology. 

Suppose formula f is of the form AGg with g non-temporal. 

This form is typical of safety properties. If AGg is false, 

then its complement (defined by the duality properties of CTL) 

EF—,g must be true. This formula is interpreted as: there 

exists a path to a state in which —ig is true. One can produce 

such a path with printtrace TRUE nextstate -ig. 

Note one would want to show a formula of the form AGg is a 

tautology only in a system intended to start in any possible 

state. To find a counterexample of a safety property AGg in a 

system with initial states init, one is to find a 

counterexample of formula init 3 AGg. Since formula init 3 

AGg is false when init A —lAGg = init A EF-^g is true 

(property of implications, CTL duality properties), such a 

counterexample is a trace to —ig from any state satisfying 

proposition init. To do this, we change the set of initial 
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states passed to the printtrace command, namely 

printtrace init nextstate —ig. 

The printtrace routine could be modified to handle the more 

general case with g temporal. The phase of printtrace that 

repeatedly calculates forward images could be extended to apply 

this counterexample algorithm again when a goal state is 

reached. In this nested application of this algorithm the 

start state would be the set of states just reached and the 

goal set would be defined by the temporal formula g. For 

example, consider formula f => AG(g ID AFh) . First, this 

algorithm is applied to find a trace from a state satisfying f 

to a state satisfying —i fg r? AFh). Then the algorithm is 

called again to find a trace from the state reached so far to 

one violating g 3 AFh, namely g A —lAFh. The algorithm 

described below for AU operators would be used since AFh = 

A[True U h]. 

Suppose formula f is of the form A[g U h]. To produce a 

counterexample of this formula, one has to produce a trace 

satisfying the properties expressed by the complement of A[g U 

h] . The CTL duality properties state A[g U h] = -,EHh U (-,g A 

—ih)] A —lEG-ih. By DeMorgan's Boolean logic laws, the 

complement of this expression is E[—ih U (—ig A —th)] v EG-th. 

This says that a counterexample would be: 

• any trace that leads to a state with —ig A —ih true 
and has h false in all preceding states. 
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• any infinite trace with h false throughout 

To support finding a trace of the first type above, a copy 

of the printtrace routine would need to be modified. The 

difference between the original printtrace routine and the new 

one would be that at each step (each time a forward image is 

computed) , the set of states would be restricted to those in 

the computed set satisfying formula —ih. This new routine would 

be invoked with —ig A —ih specified as the goal. 

To support finding a trace of the second type above, a copy 

of the printtrace routine would need to be modified in a 

similar way. In each step the set of states would be 

restricted to those in the original method's computed set 

satisfying —ih. This routine would also have to detect loops in 

the state graph. Once one such loop is found, it can be used 

as a counterexample trace. 

It should be possible to combine these two algorithms into 

a single routine which repeatedly computes forward images for 

both types of traces. 

This new routine should be invoked with start state TRUE 

for formulae f of the form A[g U h] and with start state init 

for formulae f of the form init z> A[g U h] . 

To produce a counterexample trace for a fomnula f of form 

AXg or init z> AXg, one can evaluate the negation of these 

formulae with the model checker and derive the first state of 

the two state trace from the BDD output. 
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To produce a counterexample trace for a formula of the form 

AFg, the definition AFg = A[True U g] can be applied. 

So far methods for producing counterexamples of temporal 

formulae with universal quantification have been discussed. 

The duality properties define the negation of universally 

quantified formulae to be existential formulae. The printtrace 

algorithm can only be applied to these because only one path 

satisfying a given goal need be found. 

To find a counterexample of an existentially quantified 

temporal formula would require showing that all possible paths 

satisfy a given property. 

Fortunately when verifying systems, one is usually only 

interested in verifying properties that are true in all 

possible execution paths 

For all of the above algorithms, the printtrace should be 

modified to consider the fairness constraints when computing 

forward images to ensure unfair paths are ignored. 

The above algorithm for formulae of the form init z> AGg is 

manually applied to one of the properties of the alternating 

bit protocol in the next section. 

5.2.3. Application of Counterexample Method 

The original version of several of the formulae for 

properties of the alternating bit protocol given in section 5.1 

evaluated to false in all the initial states. One of the 
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counterexample generating methods described in the previous 

section was applied to formula 

ag_state_eq_ESTAB_implies_ASendNothing specified in section 

5.1. The counterexample points out a misunderstanding in the 

original specification of the formula. The intended meaning of 

the original formula was "whenever the ABP sender module is in 

the ESTAB state, the module never initiates a send request to 

the underlying data link." The formula was specified as: 

AG((state = ESTAB) 3 ASendNothing) where 
ASendNothing = (NAccessPoint[1].queued = 0) 

The trace output in Appendix 6 for this formula is 

explained. Since the Ever code for the alternating bit 

protocol specification specifies a condition that all initial 

states must satisfy, the method for generating counterexamples 

for formulae of form init z? AGg is used. A printtrace command 

with initial state glohal_init, nextstate relation 

global_nextstate and goal —i( (state = ESTAB) 3 ASendNothing) is 

used. Propositions global_init and global_nextstate are 

defined in the Ever command file (see Appendix 4) . The trace 

output is in reverse order (i.e. the end of the trace (a state 

satisfying the goal) is printed first) . For each step in the 

trace, the values of all the variables in their current phase 

are printed. The state at the beginning of each step in the 

trace is shown in terms of the abbreviations used in section 

5.1 in the following table: 
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time 
unit 
0 
1 
2 
3 
4 
5 
6 
7 
8 

clock 
tick 
F 
F 
T 
T 
T 
F 
F 
F 
F 

State 

ESTAB 
ESTAB 

ACKWAIT 
ACKWAIT 
ACKWAIT 
ACKWAIT 
ACKWAIT 
ACKWAIT 
ESTAB 

USend 
(0) 
F 
T 
F 
F 
F 
F 
F 
F 
F 

USend 
Confirm 
F 
F 
T 
T 
T 
T 
T 
T 
T 

ASend 
(0,0) 
F 
F 
T 
T 
T 
T 
F 
T 
T 

AAckSend 
(0) 
F 
F 
F 
F 
F 
F 
T 
T 
F 

timer running, 
timer counter 
F 
F 
T,0 
T,l 
T,2 
T,3 
T,3 
T,0 
F 

Table 15. Analysis of a counterexample trace 

In this case, the value of ASendNothing is the complement of 

ASend (0,0). At time unit 8, the invariant claimed by the 

formula is violated. 



CHAPTER 5• EXPERIMENTS AND RESULTS 114 

Time 
unit 
0 

1 

2 

3 and 
4 

5 

6 

7 

8 

Description of state before 
action 
Initial state 

The ABP module is in its ESTAB 
state waiting for a request and 
there is a send request pending 
servicing in the interaction 
between the sending user and 
the ABP sender module. 
The ABP sender has moved to the 
ACKWAIT state, sent a confirm 
message back to the sending 
user, requested the underlying 
data link to send a data 
packet, and has started its 
retransmit timer. 
Time has passed and the 
retransmit timer counter has 
been incremented. 
The retransmit timer's counter 
has reached its maximum value, 
the data packet has been 
delivered to the ABP receiver 
module. 
The data packet has been 
removed off the data link by 
the ABP receiver module, the 
ABP sender retransmit timer is 
still expired awaiting 
processing, and an 
acknowledgement is in transit. 
The second retransmission of 
the data packet is still in 
transit, the acknowledgement 
has been delivered into the ABP 
sender's receive interaction 
queue from the underlying link. 
The ABP sender module has 
received the acknowledgement 
packet and returned to the 
ESTAB state with the second 
retransmission of the data 
packet still in transit 
(contradicting the claimed 
invariant). 

Action taken 

sending user submits a send data 
request to ABP sender 
ABP sender sends data packet to 
underlying data link (transl) 

ABP sender timer tick. 

ABP sender timer tick. 

ABP receiver receives data packet 
and sends an acknowledgement to 
the underlying data link 
(transV). 

ABP sender retransmits data 
packet because timer has expired 
(trans4). 

ABP sender receives the 
acknowledgement and returns to 
the ESTAB state. 

Table 16. Descriptions of steps in counterexample trace 
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This trace shows that the correct interpretation of the 

original formula would have been "whenever the ABP sender 

module is in the ESTAB state, it never has a send request 

pending processing by the underlying data link.". 

To express the intended property correctly, the formula 

must be modified to: 
AG((state = ESTAB) 3 

A[ ( Oy,s.ASend(y,s) v 
A[((state = ESTAB) A ASendNothing) U (state = ACK_WAIT)])) U 

(state = ACK_WAIT)]) 

This formula says that the if the state is now ESTAB, the 

following must be true until state becomes ACK_WAIT. During 

this interval, any send request to the underlying data link may 

be pending servicing or if no send request is pending no others 

may be submitted for the rest of the interval. In other words, 

this formula states that no new send request may be initiated 

while in the ESTAB state. The Ever command file and output 

file are shown in Appendices 7 and 8, respectively. Applying 

the new version of this formula to the model checker produced a 

tautology. 

This section has demonstrated that the tool can be used to 

analyze a protocol specification and force the specifier to 

grasp a solid understanding of the specification and its 

properties. 
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6.1. Conclusions 

A system has been developed for carrying out incremental 

verification of communication protocols. A complete set of 

internal properties of an Estelle.Y [Lu91] specification of the 

alternating bit protocol (containing over 10'̂  possible states) 

was successfully verified using less than 25 megabytes of memory 

and less than 100 hours CPU time on a Sun Sparc 10/15 computer. 

This set of verified internal properties were combined with 

some reasoning to show that the structure of the protocol is 

valid for all packet data sizes. 

A proposed method for generating counterexamples (not yet 

integrated into Ever) was applied to the original version of one 

of the formulae. It pointed out a misunderstanding in the 

formula's original specification. The formula was revised and 

confirmed to be a tautology by the verification system. This 

example demonstrated that this tool can be used for 

troubleshooting formulae and the protocol specification itself. 

After one temporal property involving all modules in the 

specification has been verified, it appears that this system 

does not consume significant additional memory as each 

additional property is verified. This suggests that the size of 

116 
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the specification is the key factor in determining the amount of 

memory required because once all the nextstate relation's 

partitions have been evaluated into BDDs they can be reused for 

later computations. 

The author realized that model checking is limited to only 

checking properties that are strictly "observational" of the 

model being verified. One cannot use temporal formulae of the 

form "assumed input behaviour implies expected output behaviour" 

as one does in theorem proving and expect the actions associated 

with the "assumed input behaviour" to be added to the model 

during the verification. One has to build a model that includes 

all the behaviours that one wishes to treat as antecedents in 

implications to be verified. Then the model checking can 

restrict the sets of behaviours it considers. 

The overall liveness property of the alternating bit 

protocol, stating that any given pair of send data requests 

always results in a pair of data packets with same data values 

being delivered to the receiving user in the same order (i.e. 

V xl,x2.AG(send(xl)A nextsend(x2)z:3 AF(recv(xl)A 

nextrecv(x2)))}, cannot be directly verified with model checking 

because it is impossible to produce a model that includes all 

possible behaviours of the antecedent of this formula. Each 

antecedent behaviour of this formula needs to be expressed with 

universal quantification operators to make the formula express 

the desired overall liveness property. It is not possible for 
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any model with a non-deterministic data source to satisfy the 

antecedent for every possible pair of data values at the same 

time. If a non-deterministic data source is not used, the model 

is not sufficiently general to verify the protocol. Because of 

this problem, the protocol had to be verified by combining model 

checking of the protocol's internal properties with reasoning 

about how the internal properties are related. 

This system is suitable for verifying properties of a 

protocol whose environment's behaviour can be described by a 

simple state machine and a number of optional conditions that 

must occur infinitely often in the state machine. The 

alternating bit protocol environment was described by three 

simple state machines (for the sending and receiving users and 

the underlying link) and a set of fairness constraints limiting 

the set of behaviours considered during verification. 

The complexity of the tableau construction algorithm is too 

large to be practical even for trivial formulae (e.g. reliable 

link specification). 

Small maximum timer count values can be used in Estelle.Y 

specifications given to this system because the verification 

considers all possible timing interleavings of Estelle.Y module 

actions and timer tick actions. The maximum timer values only 

have significance when two or more timers are started in a 

Estelle.Y transition and they are specified to expire at 

different times. These small values allow the size of the 
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specification to be minimized (in terms of niimbers of bits for 

timers in BDDs). 

6.2.Future Work 

A number of features that should be implemented to optimize 

the memory and CPU time usage of the Ever model checker are 

discussed. 

Instantiations of Ever predicates (i.e. predicate name and 

actual parameters) should be cached so that unnecessary 

recomputation of predicates with same parameters is eliminated. 

Predicates with temporal operators can take a significant time 

to evaluate. 

When a proposition with operands (e.g. (and pi ... pn) } has 

been evaluated, the BDDs of its operands should be freed if no 

other unevaluated propositions refer to these operands. This 

would eliminate unnecessary use of memory. 

The algorithms discussed in chapter 5 for producing 

counterexample traces should be implemented. 

The Estelle.Y language should be extended to allow the 

explicit specification of a size for each internal variable. 

For example, the LAPB protocol uses 3-bit sequence numbers. The 

1-bit sequence number variables in the alternating bit protocol 

were declared as Boolean variables to avoid unnecessary use of 

BDD bit variables in the nextstate relation. 
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It would be convenient to the user if the Ever interface 

supported aborting of the evaluation of propositions without 

stopping the whole program. Since verification commands can 

take hours, it would be beneficial to be able to abort a command 

without losing the results of previous work when one realizes 

that a mistake was made in a command. 

With a few changes to this system, the behaviour of the 

environment could be specified as Estelle.Y modules instead of 

having to be written directly in Ever. The Estelle.Y language 

would need to be extended with a new command for defining free 

variables to allow a module to introduce non-deterministic data 

into the model. Also, one should be allowed to define arrays of 

PCOs. For example, the underlying data link of the alternating 

bit protocol could be represented with a module that has two 

NAccessPoint PCOs, one tied to each of the ABP sender and ABP 

receiver modules. 

Perhaps some scheme could be devised to allow fairness 

constraints to be automatically derived from information in the 

Estelle.Y modules defining the environment's behaviour. 

A feature to automatically check for protocol independent 

properties such as deadlock, unreachable transitions and 

ambiguous transitions in Estelle.Y modules could be implemented. 

Presence of deadlock is represented with a formula of the form 

3 i.(initz> EF(EG(state=i)) . 
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A transition is unreachable if its enabling condition is always 

false i.e. 

inifiD AG(—i transition_condition) . 

There exists unreachable transitions if 

3 i.(initz> AG (—i transition •[_condit ion) ) . 

A module has ambiguous transitions (i.e. is non-deterministic) 

if 

3 i,j.(initZ3 AF (trans it ion j__conditionA transitionj_condition)) . 

As a notational convenience to the Ever user and the 

Estelle.Y translator, the forall and exists operators should be 

implemented. In the Ever command files for verifying the 

alternating bit protocol, the exists operator was manually 

specified as a disjunction and the forall operator was manually 

specified as a conjunction. A new notion of metavariables 

should be introduced into Ever so that expressions with 

quantified variables can be used without adding more variables 

to the BDD. Brace's BDD package includes a primitive for 

evaluating exists and forall operators with the quantifier 

variable being an existing BDD variable. 

To reduce the number of bit variables produced in the BDD 

from the data structures for PCOs which logically contain arrays 

of variant records. Ever should be extended to support variant 

record types. 

TESTGEN [VHLMD93] is a tool for generating test cases from 

an Estelle.Y protocol specification. The test case generation 
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is guided by a set of user-defined constraints. These 

constraints specify the values of data fields to be tested and 

the minimum and maximum number of times each protocol element 

shall occur in each generated test. A protocol element is 

defined as a major state, transition, constant, variable, input 

service primitive, output service primitive, or timer. The 

method of generating counterexamples in the Ever tool could be 

modified to produce execution traces associated with a given 

property expressed as a temporal logic formula. This would 

provide an interesting way to produce test cases associated with 

a particular function of a protocol. 

Since the verification tool discussed in this thesis uses 

the Estelle.Y language and its internal protocol data structure 

(PDS), this tool could be integrated with TESTGEN in the overall 

integrated protocol engineering environment developed by the 

Protocol Engineering Group in the UBC Computer Science 

department. 
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Appendix 1: Estelle.Y Alternating 
Protocol Specification 

Bit 

Specification ABP; 

CONST 
junkconst = 0 

VAR 
Send_seq: 
Recv_seq: 
Recv_buffer_empty: 
Recv_buf f er_datxam: 
Recv_buf fe r_seq: 
Send_buffer_empty: 
Send_buf f er_dat\im: 
Send_buffer_seq: 

ISP 
SENDrequest 
RECEIVErequest 
DATAinteraction 

OSP 
RECEIVEresponse 
DATAinteraction 
SENDconfirm 

mt; 

boolean; 
boolean; 
boolean; 
boolean; 
boolean; 
boolean; 
boolean; 
boolean; 

UAccessPoint; 
UAccessPoint; 
NAccessPoint; 

UAccessPoint; 
NAccessPoint; 
UAccessPoint; 

PDU 
Junk sent_in NAccessPoint; 

TIMER 
rexmi t_t imer 

STATE 
ack_wait, estab; 

INITIALIZATION 
TO estab 

2; 

BEGIN 
Send_seq 
Recv_seq 

:= 0; 
:= 0; 

S end_bu f f e r_empty 
Recv_bu f fer_empty 
END; 

TRUE; 
TRUE; 

TRANS { transl } 
FROM estab 

TO ack_wait 
WHEN SENDrequest 

OUTPUT DATAinteraction, 
BEGIN 
Send_buffer_empty : 
Send_buffer_datum : 
Send_buffer_seq 
DATAinteraction.ndata.id := 0; 
DATAinteraction.ndata.conn := 0; 
DATAinteraction.ndata.data := Send_buffer_datum; 
DATAinteraction.ndata.seq := Send_buffer_seq; 
RESET(rexmit_timer); 
START(rexmit_timer) 
END; 

SENDconfirm 

;= FALSE; 
;= SENDrequest.udata; 
Send_seq; 

127 
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TRANS { t r a n s 2 } 
FROM a c k _ w a i t 

TO a c k _ w a i t 
WHEN RECEIVErequest 

PROVIDED n o t (Recv_buf fe r_empty = TRUE) 
OUTPUT RECEIVEresponse 

BEGIN 
RECEIVEresponse .uda ta := R e c v _ b u f f e r _ d a t \ m ; 
Recv_buf fe r_empty 
END; 

TRUE 

TRANS { trans3 } 
FROM estab 

T̂ O o "̂  t~ nb 
WHEN RECEIVErequest 

PROVIDED not (Recv_buffer_empty = TRUE) 
OUTPUT RECEIVEresponse 

BEGIN 
RECEIVEresponse.udata 
Recv_buffer_empty 
END; 

Recv_bu f fer_datum; 
TRUE 

TRANS 
FROM ack_wait 

TO ack_wait 
PROVIDED TIMEOUT(rexmit_timer) 

OUTPUT DATAinteraction 
BEGIN 
DATAinteraction.ndata.id := 
DATAinteraction.ndata.conn 
DATAinteraction.ndata.data 
DATAinteraction.ndata.seq : 
RESET{rexmit_timer); 
START(rexmit_timer) 
END; 

{ trans4 } 

;= 0; 
;= Send_buf fer_dattim; 
= Send_buffer_seq; 

{ transS } TRANS 
FROM ack_wait 

TO estab 
WHEN DATAinteraction 

PROVIDED (DATAinteraction.ndata.id = 1) AND 
(DATAinteraction.ndata.seq = Send_seq) 

BEGIN 
Send_buffer_empty := TRUE; 
IF (Send_seq = TRUE) THEN 

Send_seq := FALSE 
ELSE Send_seq := TRUE; 
RESET(rexmit_timer) 
END; 

TRANS { trans6 } 
FROM ack_wait 

TO ack_wait 
WHEN DATAinteraction 

PROVIDED (DATAinteraction.ndata.id = 0) AND 
(Recv_buffer_empty = TRUE) 

OUTPUT DATAinteraction 
BEGIN 
DATAinteraction.ndata.id := 1; 
DATAinteraction.ndata.conn := 0; 
DATAinteraction.ndata.data := 0; 
DATAinteraction.ndata.seq := 

DATAinteraction.ndata.seq; 
IF DATAinteraction.ndata.seq = Recv_seq THEN 

BEGIN 
Recv_buffer_empty := FALSE; 
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Recv_buffer_datum := DATAinteraction.ndata.data; 
Recv_buffer_seq := DATAinteraction.ndata.seq; 
IF Recv_seq = TRUE THEN 

Recv_seq := FALSE 
ELSE Recv_seq := TRUE 
END 

END; 

TRANS { trans? } 
FROM estab 

TO estab 
WHEN DATAinteraction 

PROVIDED (DATAinteraction.ndata.id = 0) AND 
(Recv_buffer_empty = TRUE) 

OUTPUT DATAinteraction 
BEGIN 
DATAinteraction.ndata.id := 1; 
DATAinteraction.ndata.conn := 0; 
DATAinteraction.ndata.data := 0; 
DATAinteraction.ndata.seq := 

DATAinteraction.ndata.seq; 
IF DATAinteraction.ndata.seq = Recv_seq THEN 

BEGIN 
Recv_buffer_empty := FALSE; 
Recv_buffer_datum := DATAinteraction.ndata.data; 
Recv_buffer_seq := DATAinteraction.ndata.seq; 
IF Recv_seq = TRUE THEN 

Recv_seq := FALSE 
ELSE Recv_seq := TRUE 
END 

END; 

TRANS { trans8 } 
FROM estab 

TO estab 
WHEN DATAinteraction 

PROVIDED (DATAinteraction.ndata.id = 0) AND 
(Recv_buffer_empty = FALSE) 

BEGIN 
Recv_buffer_empty := Recv_buffer_empty 
END; 

TRANS { trans9 } 
FROM ack_wait 

TO ack_wait 
WHEN DATAinteraction 

PROVIDED (DATAinteraction.ndata.id = 0) AND 
(Recv_buffer_empty = FALSE) 

BEGIN 
Recv_buffer_empty := Recv_buffer_empty 
END; 

END. 



Appendix 2: ASN.l Alternating Bit Protocol 
Spec i f i cat ion 

ABP DEFINITIONS ::= 
BEGIN 

UAccessPoint ::= CHOICE 
{ 
SENDrequest, 
SENDconfirm, 
RECEIVErequest, 
RECEIVEresponse 
} 

NAccessPoint ::= CHOICE 
{ 
DATAinteraction 
} 

WireEndPoint ::= 
{ 
NETdata 
} 

Pdu : : = 

CHOICE 

Junk 

UDataType : 

NDataType ; 
{ 
id 
conn 
data 
seq 
} 

SENDrequest :; 
{ 
udata 
} 

SENDconfirm :: 
{ 
dummy 
} 

RECEIVErequest 
{ 
dummy 
} 

CHOICE 
{ 
Junk 
} 

SEQUENCE 
{ 
dummy INTEGER (0. .1) 
} 

INTEGER (0..1) 

SEQUENCE 

INTEGER {data(O) 
INTEGER (0..1), 
UDataType, 
INTEGER (0, 

ack(l)} (0..1), 

.1) 

-- user data 

type of message 
conn id of sender 
user data 
sequence number 

= SEQUENCE 

UDataType 

= SEQUENCE 

INTEGER {0.. 

;:= SEQUENCE 

INTEGER (0.. 

.1) 

1) 

RECEIVEresponse ::= SEQUENCE 
{ 
udata UDataType 

130 
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} 

DATAinteraction ::= SEQUENCE 
{ 
ndata NDataType 
} 

NETdata ::= SEQUENCE 
{ 
ndata NDataType 
} 

END 



Appendix 3: Ever code for A l t ernat ing Bi t 
Protocol 

-- Specification id = ABP 
— yyparseO = 0 

-- Constants: junkconst 
-- Variables: 
deftype abp7_localvars (record 

Send_seq (bits 1) 
Recv_seq (bits 1) 
Recv_buffer_empty (bits 1) 
Recv_buffer_datum (bits 1) 
Recv_buffer_seq (bits 1) 
Send_buffer_empty (bits 1) 
Send_buffer_datuin (bits 1) 
Send_buffer_seq (bits 1)); 

-- ISPs: SENDrequest RECEIVErequest DATAinteraction 

-- OSPs: RECEIVEresponse DATAinteraction SENDconfirm 

-- PDUs: Junk 

-- Timers: rexmit_timer 
deftype abp7_timers_type (record 

rexinit_timer (record running (bits 1) counter (bits 2))); 

-- States: ack_wait estab 
deftype abp7_mainstate (bits 1 "ack_wait" "estab"); 
-- PCOs: 
deftype UAccessPoint_inqueue (record 

kind (bits 1) 
RECEIVErequest (record dummy (bits 1)) 
SENDrequest (record udata (bits 1))); 

deftype UAccessPoint_outqueue (record 
kind (bits 1) 
SENDconfirm (record diimmy (bits 1) ) 
RECEIVEresponse (record udata (bits 1))); 

deftype NAccessPoint_queue (record 
DATAinteraction (record ndata (record id (bits 1) conn (bits 1) 

data (bits 1) seq (bits 1)))); 

-- Free variable for clock ticking 
deffreevar clock_tick (bits 1); 

— Ever variables for interaction queues 
defvar UAccessPoint_in (array 0 1 (record base (bits 0) queued (bits 1) 

content (array 0 0 
AccessPoint_inqueue))); 
defvar UAccessPoint_out (array 0 1 

(record base (bits 0) queued (bits 1) 
content (array 0 0 

AccessPoint_outqueue))); 
defvar NAccessPoint (array 0 1 

(record base (bits 0) queued (bits 1) 
content (array 0 0 NAccessPoint_queue))); 

132 
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- - Ever v a r i a b l e s for module abp7 s t a t e s 
defvar abp7 (a r ray 0 1 ( record s t a t e abp7_mainstate 

va r s abp7_loca lvars 
t imer s abp7_ t imers_ type) ) ; 

- - Ever p r e d i c a t e s for module abp7 
defpred abp7_Ctransl (n iO oO i l ol) (and 

(eq abp7[n] .state-^c 1) 
(not (eq UAccessPoint_in[iO] .queued'^c 0)) 
(eq UAccessPoint_in[iO] .content [UAccessPoint_in[iO] .base'^c] .kind'̂ c 0) 
(It NAccessPoint [ol] .queued'^c 1) 
(It UAccessPoint_out [oO] .queued'^c 1) ) ; 

defpred abp7_Atransl (n 10 oO 11 ol) 
(compose 
(becomes abp7[n].vars.Send_buffer_empty^n 0) 
(becomes abp7 [n] .vars.Send_buffer_datum'^n 

UAccessPoint_in[iO].content[UAccessPoint_in[10].base^c]. 
SENDrequest.udata^c) 

(becomes abp7[n].vars.Send_buffer_seq'^n abp7[n].vars.Send_seq^c) 
(becomes NAccessPoint [ol] .content [ (add NAccessPoint [ol] .base'̂ c 

NAccessPoint [ol] .queued'^c) ] .DATAlnteractlon.ndata. id'-n 0) 
(becomes NAccessPoint [ol] .content [ (add NAccessPoint [ol] .base'̂ c 

NAccessPoint [ol] .queued'^c) ] .DATAlnteractlon.ndata.conn'^n 0) 
(becomes NAccessPoint [ol] .content [ (add NAccessPoint [ol] .basê 'c 

NAccessPoint [ol] .queued'^c) ] .DATAlnteraction.ndata.data'^n 
abp7 [n] .vars.Send_buf fer_datum''c) 

(becomes NAccessPoint [ol] .content [ (add NAccessPoint [ol] .base'̂ c 
NAccessPoint [ol] .queued'^c) ] .DATAinteraction.ndata. seq'̂ n 
abp7 [n] .vars.Send_buffer_seq'^c) 

(becomes abp7 [n] .timers.rexmit_timer''n 0) 
(becomes abp7[n].timers.rexmit_timer.running^n 1) 
(becomes UAccessPoint_in[iO].base^n (add UAccessPoint_in[iO].base'^c 

D) 
(becomes UAccessPoint_in[iO] .queued'^n (sub 

UAccessPoint_in[iG] .queued'^c 1) ) 
(becomes NAccessPoint [ol] .queued'^n (add NAccessPoint [ol] .queued^c 

D) 
(becomes UAccessPoint_out[oO].content[(add 

UAccessPolnt_out[oO].base^c 
UAccessPoint_out [oO] .queued'^c)] .kind^n 1) 

(becomes UAccessPoint_out [oO] .queued'^n (add 
UAccessPoint_out[oO].queued^c 1)) 

(becomes abp7 [n] .state'^n 0)); 

defpred abp7_Ctrans2 (n 10 oO 11 ol) (and 
(eq abp7 [n] .state'^c 0) 
(not (eq UAccessPoint_in[iO] .queued'^c 0)) 
(eq UAccessPoint_in[iO] .content [UAccessPoint_in[ 10] .base'^c] .kind'̂ c 1) 
(not (eq abp7[n].vars.Recv_buffer_empty^c 1)) 
(It UAccessPoint_out [oO] .queued'^c 1)); 

defpred abp7_Atrans2 (n 10 oO il ol) 
(compose 
(becomes UAccessPoint_out[oO].content[(add 

UAccessPoint_out[oO].base^c 
UAccessPoint_out [oO] .queued^c)] .RECEIVEresponse.udata'~n 
abp7[n].vars.Recv_buffer_datum^c) 

(becomes abp7 [n] .vars.Recv_buffer_empty'^n 1) 
(becomes UAccessPoint_in[10] .base'̂ n (add UAccessPoint_in[iO] .base'̂ c 

D) 
(becomes UAccessPoint_in[iO] .queued'^n (sub 

UAccessPoint_in[iO] •queued'^c 1)) 
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(becomes UAccessPoint_out[oO].content[ (add 
UAccessPoint_out [oO] .base'^c 
UAccessPoint_out [oO] .(jueued'^c) ] .kind^n 0) 

(becomes UAccessPoint_out [oO] .cjueued'^n (add 
UAccessPoint_out [oO] .cjueued'^c 1) ) 

(becomes abp7 [n] . s ta te^ 'n 0) ) ; 

defpred abp7_Ctrans3 (n iO oO i l ol) (and 
(eq abp7[n] . s ta te '^c 1) 
(not (eq UAccessPoint_in[iO] .queued'-c 0)) 
(eq UAccessPoin t_ in[ iO] .conten t [UAccessPoin t_ in[ iO] .base '^c] .k ind le 1) 
(not (eq abp7[n] .vars .Recv_buffer_empty^c 1)) 
( I t UAccessPoint_out [oO] .(jueued^c 1 ) ) ; 

defpred abp7_Atrans3 (n iO oO i l o l ) 
(compose 
(becomes UAccessPoint_out[oO].content [ (add 

UAccessPoint_out [oO] .base'^c 
UAccessPoint_out [oO] .(jueued^c) ] .RECEIVEresponse.udata'^n 
abp7 [n] .vars.Recv_buf fer_datum''c) 

(becomes abp7 [n] .vars.Recv_buffer_empty'~n 1) 
(becomes UAccessPoint_in[iO] .base'-n (add UAccessPoint_in[iO] .base^'c 

D) 
(becomes UAccessPoint_in[iO] .(jueued'̂ n (sub 

UAccessPoint_in[iO].queued^c 1)) 
(becomes UAccessPoint_out[oO].content[(add 

UAccessPoint_out [oO] •base'̂ c 
UAccessPoint_out [oO] .(gueued^c)] .kind^n 0) 

(becomes UAccessPoint_out [oO] .(jueued'̂ n (add 
UAccessPoint_out [oO] .queued'^c 1)) 

(becomes abp7 [n] .state'^n 1)) ; 

defpred abp7_Ctrans4 (n iO oO il ol) (and 
(eq abp7[n] .state'^c 0) 
(ge abp7 [n] .timers.rexmit_timer.counter'^c 2) 
(It NAccessPoint [ol] .(gueued^c 1) ) ; 

defpred abp7_Atrans4 (n iO oO il ol) 
(compose 
(becomes NAccessPoint [ol] .content [ (add NAccessPoint [ol] .basê 'c 

NAccessPoint[ol].queued^c)].DATAinteraction.ndata.id'^n 0) 
(becomes NAccessPoint [ol] .content [ (add NAccessPoint [ol] .base'̂ c 

NAccessPoint [ol] .(jueued^c)] .DATAinteraction.ndata.conn'^n 0) 
(becomes NAccessPoint [ol] .content [ (add NAccessPoint [ol] .base-̂ c 

NAccessPoint [ol] .igueued'̂ c) ] .DATAinteraction.ndata.data'^n 
abp7 [n] . vars. Send_buf f er_dat\am'̂ c) 

(becomes NAccessPoint [ol] .content [ (add NAccessPoint [ol] .base'̂ c 
NAccessPoint [ol] .(jueued'-c) ] .DATAinteraction.ndata. seq'̂ n 
abp7 [n] .vars.Send_buffer_seq'^c) 

(becomes abp7[n].timers.rexmit_timer^n 0) 
(becomes abp7 [n] .timers.rexmit_timer.running'^n 1) 
(becomes NAccessPoint[ol].cjueued^n (add NAccessPoint[ol].queued^c 

D) (becomes abp7 [n] . state'^n 0)) 

defpred abp7_Ctrans5 (n iO oO il ol) (and 
(eq abp7[n] .state'^c 0) 
(not (eq NAccessPoint [il] .queued'^c 0)) 
(and (eq NAccessPoint [il] .content [NAccessPoint [il] .base-^c] . 

DATAinteraction.ndata.id'^c 1) 
(eq NAccessPoint [il] .content [NAccessPoint [il] .base'^c] . 

DATAinteraction.ndata.seq^c abp7[n].vars.Send_seq^c)) 

defpred abp7_Atrans5 (n iO oO il ol) 
(compose 
(becomes abp7[n].vars.Send_buffer_empty^n 1) 
(if (eq abp7 [n] .vars.Send_seq'^c 1) 
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D) 

(becomes abp7 [n] .vars.Send_seq'^n 0) 
(becomes abp7 [n] .vars.Send_seq'"n 1)) 
(becomes abp7 [n] .timers.rexmit_timer'^n 0) 
(becomes NAccessPoint [il] .base'̂ n (add NAccessPoint [il] .base-̂ c 1)) 
(becomes NAccessPoint [il] .queued'-n (sub NAccessPoint [il] .queued'̂ 'c 

(becomes abp7 [n] .state'^n 1)); 

defpred abp7_Ctrans6 (n iO oO il ol) (and 
(eq abp7[n].state^c 0) 
(not (eq NAccessPoint [il] .queued'^c 0)) 
(and (eq NAccessPoint[il].content[NAccessPoint[il].base' 

DATAinteraction.ndata.id'^c 0) 
(eq abp7[n].vars.Recv_buffer_empty^c 1)) 

(It NAccessPoint[ol].queued^c 1)); 

c] 

defpred 

D) 

D) 

abp7_Atrans6 (n iO oO il ol) 
(compose 
(becomes NAccessPoint[ol].content[(add NAccessPoint[ol].base^c 

NAccessPoint [ol] .queued^c) ] .DATAinteraction.ndata. id'̂ n 1) 
(becomes NAccessPoint [ol] .content [ (add NAccessPoint [ol] .base'̂ c 

NAccessPoint [ol] .queued'^c)] .DATAinteraction.ndata.conn'^n 0) 
(becomes NAccessPoint [ol] .content [ (add NAccessPoint [ol] .base'̂ c 

NAccessPoint [ol] .queued'^c) ] .DATAinteraction.ndata.data'^n 0) 
(becomes NAccessPoint [ol] .content [ (add NAccessPoint [ol] .base'̂ c 

NAccessPoint [ol] .queued'^c) ] . 
DATAinteraction.ndata. seq̂ 'n 

NAccessPoint [il] .content [NAccessPoint [il] .base'^c] . 
DATAinteraction. ndata. seq'^c) 

(if (eq NAccessPoint [il] .content [NAccessPoint [il] .base'^c] . 
DATAinteraction.ndata. seq'̂ c abp7[n] .vars .Recv_seq''c) 

(compose 
(becomes abp7 [n] .vars .Recv_buffer_empty''n 0) 
(becomes abp7[n].vars.Recv_buffer_datum^n 

NAccessPoint [il] .content [NAccessPoint [il] .base'^c] . 
DATAinteraction.ndata.data^c) 

(becomes abp7[n].vars.Recv_buffer_seq^n 
NAccessPoint [il] .content [NAccessPoint [il] .base'^c] . 
DATAinteraction. ndata. seq'^c) 

(if (eq abp7 [n] .vars.Recv_seq''c 1) 
(becomes abp7[n].vars.Recv_seq^n 0) 
(becomes abp7 [n] .vars.Recv_seq'^n 1))) 

(becomes abp7'^n abp7'~c) ) 
(becomes NAccessPoint [il] .base'̂ n 
(becomes NAccessPoint[il].queued' 

(add NAccessPoint [il] .base'̂ c 1)) 
n (sub NAccessPoint [il] .queued'^c 

(becomes 

(becomes 

NAccessPoint[ol] 

abp7[n] 

queued^n (add NAccessPoint [ol] .queued'^c 

state'^n 0) ) ; 

defpred abp7_Ctrans7 (n iO oO il ol) (and 
(eq abp7[n] .state-^c 1) 
(not (eq NAccessPoint [il] .queued'^c 0)) 
(and (eq 

NAccessPoint[il].content[NAccessPoint[il].base'^c].DATAinteraction.ndata.id^c 
0) 

(eq abp7[n].vars.Recv_buffer_empty^c 1)) 
(It NAccessPoint[ol].queued^c 1)); 

defpred abp7_Atrans7 (n iO oO il ol) 
(compose 
(becomes NAccessPoint[ol].content[(add NAccessPoint[ol].base'^c 

NAccessPoint[ol].queued^c)].DATAinteraction.ndata.id'^n 1) 
(becomes NAccessPoint[ol].content[(add NAccessPoint[ol].base^c 

NAccessPoint [ol] .queued'^c)] .DATAinteraction.ndata.conn''n 0) 
(becomes NAccessPoint [ol] .content [ (add NAccessPoint [ol] .base'̂ c 

NAccessPoint [ol] .queued'^c)] .DATAinteraction.ndata.data'^n 0) 
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(becomes NAccessPoint[ol].content[(add NAccessPoint[ol].base^c 
NAccessPoint[ol].queued^c)].DATAinteraction.ndata.seq'^n 
NAccessPoint [il] .content [NAccessPoint [il] .base'̂ c] . 
DATAinteract ion. ndata. seq'̂ c) 

(if (eq NAccessPoint [il] .content [NAccessPoint [il] .base'-c] . 
DATAinteraction.ndata.seq^c 

abp7[n].vars.Recv_seq^c) 
(compose 
(becomes 
(becomes 

D) 

D) 

abp7[n].vars.Recv_buffer_empty^n 0) 
abp7 [n] .vars.Recv_buffer_datum'^n 

NAccessPoint [il] .content [NAccessPoint [il] .basê 'c] 
DATAinteract ion. ndata. data'̂ c) 

(becomes abp7 [n] .vars.Recv_buffer_seq'^n 
NAccessPoint [il] .content [NAccessPoint [il] .basê 'c] 
DATAinteraction.ndata.seq^c) 

(if (eq abp7 [n] .vars.Recv_seq'̂ c 1) 
(becomes abp7[n].vars.Recv_seq^n 0) 
(becomes abp7 [n] .vars.Recv_seq'̂ n 1))) 
(becomes abp7^n abp7'̂ c) ) 
(becomes NAccessPoint[il].base^n 
(becomes NAccessPoint[il].queued 

(add NAccessPoint[il].base^c 1)) 
n (sub NAccessPoint [il] .queued'̂ c 

(becomes NAccessPoint[ol].queued^n (add NAccessPoint[ol].queued^'c 

(becomes abp7 [n] .state'-n 1)) ; 

(and defpred abp7_Ctrans8 (n iO oO il ol) 
(eq abp7[n] .state'-c 1) 

(eq NAccessPoint [il] .queued'̂ c 0)) 
(eq NAccessPoint[il].content[NAccessPoint[il] 

DATAinteraction.ndata. id'̂ c 0) 
(eq abp7 [n] .vars.Recv_buf fer_empty'̂ c 0) )) ; 

(not 
(and base^c] 

defpred abp7_Atrans8 (n iO oO il ol) 
(compose 
(becomes abp7[n].vars.Recv_buffer_empty^n 

abp7[n].vars.Recv_buffer_empty^c) 
(becomes NAccessPoint[il].base'^n (add NAccessPoint[il].base^c 1)) 
(becomes NAccessPoint [il] .queued'̂ n (sub NAccessPoint [il] .queued'-c 

(becomes abp7[n].state^n 1)); 
1) 

defpred abp7_Ctrans9 (n iO oO il ol) (and 
(eq abp7[n].state^c 0) 
(not (eq NAccessPoint [il] .queued'̂ c 0)) 
(and (eq NAccessPoint [il] .content [NAccessPoint [il] .base'̂ c] . 

DATAinteraction.ndata.id^c 0) 
(eq abp7 [n] .vars.Recv_buffer_empty'^c 0) )) ; 

defpred abp7_Atrans9 (n iO oO il ol) 
(compose 
(becomes abp7 [n] .vars.Recv_buffer_empty''n 

abp7 [n] .vars.Recv_buf fer_empty''c) 
(becomes NAccessPoint [il] .base'̂ n (add NAccessPoint [il] .base'̂ c 1)) 
(becomes NAccessPoint [il] .queued^n (sub NAccessPoint [il] .queued̂ 'c 

D) 
(becomes abp7[n] .state'̂ n 0) ) ; 

defpred abp7_timertic]c (n) (compose 
(if (and (eq abp7 [n] .timers.rexmit_timer.running'^c 1) 

(It abp7[n].timers.rexmit_timer.counter^c 2)) 
(becomes abp7[n].timers.rexmit_timer.counter^n 

(add abp7 [n] .timers .rexmit_timer.counter'^c 1)) 
(becomes abp7 [n] .timers'̂ n abp7 [n] .timers^c)) ) ; 

defpred abp7_nextstate (n iO oO il ol) (or 
(if (eq clock_tick:'̂ c 0) (or 
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(if 

(if (abp7_Ctransl n iO oO 
(if (abp7_Ctrans2 n iO oO 
(if (abp7_Ctrans3 n iO oO 
(if (abp7_Ctrans4 n iO oO 
(if {abp7_Ctrans5 n iO oO 
(if (abp7_Ctrans6 n iO oO 
(if (abp7_Ctrans7 n iO oO 
(if (abp7_Ctrans8 n iO oO 
(if (abp7_Ctrans9 n iO oO 
(if (and 

(not 
(not 
(not 
(not 
(not 
(not 
(not 
(not 
(not 

(becomes abp7 
(eq clock_tick'"c 1 

il ol) 
il ol) 
il ol) 
il ol) 
il ol) 
il ol) 
il ol) 
il ol) 
il ol) 

(abp7. 
(abp7. 
(abp7 
(abp7 
(abp7 
(abp7 
(abp7. 
(abp7. 
(abp7. 

.Atransl n 

.Atrans2 n 
Atrans3 n 
.Atrans4 n 
AtransS n 
Atrans6 n 
.Atrans7 n 
.AtransS n 
.Atrans9 n 

iO oO 
iO oO 
iO oO 
iO oO 
iO oO 
iO oO 
iO oO 
iO oO 
iO oO 

il ol) 
il ol) 
il ol) 
il ol) 
il ol) 
il ol) 
il ol) 
il ol) 
il ol) 

FALSE) 
FALSE) 
FALSE) 
FALSE) 
FALSE) 
FALSE) 
FALSE) 
FALSE) 
FALSE) 

Ctransl n iO oO il ol) 
Ctrans2 n iO oO il ol) 
.Ctrans3 n iO oO il ol) 
Ctrans4 n iO oO il ol) 
CtransS n iO oO il ol) 
Ctrans6 n iO oO il ol) 

(abp7 
(abp7 
(abp7, 
(abp7 
(abp7 
(abp7 _ 
(abp7_Ctrans7 n iO oO il ol 
(abp7 ' " 
(abp7 ) 

CtransS n iO oO il ol) 
_Ctrans9 n iO oO il ol), 
n abp7''c) FALSE) ) FALSE) 
) (abp7_timertick n) FALSE)); 

(and defpred abp7_init (n oO ol) 
(eq abp7 [n] . state-^c 1) 

(eq NAccessPoint [ol] •base'̂ c 0) 
(eq NAccessPoint [ol] .queued'^c 0) 
(eq UAccessPoint_out [oO] .base'̂ c 0) 
(eq UAccessPoint_out [oO] •queued'^c 

abp7 [n] .vars.Send_seq'^c 0) 
" .vars.Recv_seq''c 0) 
.vars.Send_buf fer_empty'^c 1) 
.vars.Recv_buffer_empty^c 1) 
.timers'^c 0) ) ; 

(eq 
(eq 
(eq 

0) 

abp7[n] 
abp7[n] 

(eq abp7[n] 
(eq abp7[n] 

defprop init (and 
(abp7_init 0 0 0) 
(abp7_init 1 1 1)); 

defprop nextstate (or 
(abp7_nextstate 0 0 0 0 1) 
(abp7_nextstate 1 1 1 1 0)); 



Appendix 4: Ever command f i l e for 
v e r i f i c a t i o n 

-- Ever source file for specifying behaviour of sender 
-- and receiver modules for alternating bit protocol. 

— same as original except all universal quantifiers 
— changed to existential (0lNovl993) 

-- In definitions of receive_datum_x, changed original 
-- AX (intended for within scope of a single module) from 
— (x /\ AXx') to (x /\ AXA[x U X']). (04NOV1993) 

-- Want to test send_datum_x and receive_datum_x definitions 
-- with universal operators in them to see if they are 
-- totally false. (05Novl993) 

-- Modified for case with unreliable underlying link 
-- and implementation of timers in abp specification. 
-- (Tue 16NOV1993) 

-- Added action code for data loss in unreliable link. (Tue 16Novl993) 

-- Added 2 fairness constraints to specify that 
-- unreliable link regularily delivers data reliably. (Tue 16Novl993) 

-- Added 2 fairness constraints for timer implementation. (Tue 16Novl993) 

-- Define two unconstrained variables for user data 
deffreevar user_txdatum (bits 1); 
deffreevar user_rxdatxim (bits 1); 

-- Define nextstate relation of user modules 
defprop user_next (or 

-- SendRequest (send one whenever possible) 
(if (eq UAccessPoint_in[0] .queued'̂ c 0) 

(compose 
(becomes UAccessPoint_in[0].content[0].SENDrequest.udata^n 

user_txdatiim'̂ c) 
(becomes UAccessPoint_in[0] .content [0] .kind'̂ n 0) 
(becomes UAccessPoint_in[0].queued^n 1)) 

FALSE) 
-- SendConfirm (dequeue SendConfirm whenever one is delivered) 
(if (and (gt UAccessPoint_out [0] .queued̂ 'c 0) 

(eq UAccessPoint_out [0] .content [0] .kind'̂ c 1)) 
(becomes UAccessPoint_out [0] .queued'̂ n 0) 
FALSE) 

-- ReceiveRequest (send one whenever possible) 
(if (eq UAccessPoint_in[l].queued^c 0) 

(compose 
(becomes UAccessPoint_in[l] .content [0] .kind'̂ n 1) 
(becomes UAccessPoint_in[l] .queued'̂ n 1)) 

FALSE) 
-- ReceiveResponse (dequeue one whenever one arrives) 
(if (and (gt UAccessPoint_out [1] .queued'̂ c 0) 

(eq UAccessPoint_out[l] .content [0] .kind̂ 'c 0)) 
(compose 

(becomes user_rxdatum''n 
UAccessPoint_out [1] .content [0] .RECEIVEresponse.udata'^c) 

(becomes UAccessPoint_out [1] .queued'̂ n 0)) 
FALSE) 

138 
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-- Otherwise (always allow a no-op step without confining free 
variables) 

(becomes UAccessPoint_in[0] .queued'̂ n UAccessPoint_in[0] .queued'̂ c) 

-- Define nextstate relation of unreliable link (Tuel6Novl993) 
defprop unreliable_link_next (or 

(if (gt NAccessPoint[0].queued^c 0) 
(becomes NAccessPoint [0] .queued'̂ n 0) FALSE) 

(if (gt NAccessPoint [1] .queued'~c 0) 
(becomes NAccessPoint [1] .queued'̂ n 0) FALSE) 

(becomes NAccessPoinfn NAccessPoinfc) ) ; 

— Fairness constraints 

— 1. sender sends SENDrequest requests infinitely often. 
-- 2. sender dequeues SENDconfirm responses infinitely often.* 
— 3. receiver sends RECEIVErequest requests infinitely often. 
-- 4. receiver dequeues RECEIVEresponse responses infinitely often.* 

-- * Maybe should make these happen immediately in user_next nextstate 
relation. 

-- Should add fairness constraints for 0 datum sent infinitely often 
— and 1 datum sent infinitely often. Probably best to restrict 
— fairness constraint #1 below to datum 0 and add a new similar 
-- fairness constraint for datiim 1. Fr 290ctl993 
-- See fairla_basic and fairlb_basic below Sun 310ctl993 

defprop fairl_basic (and 
(eq UAccessPoint_in[0] .queued'̂ c 1) 
(eq UAccessPoint_in[0] .content [0] .kind'̂ c 0)); 

defprop fairla_basic (and 
(eq UAccessPoint_in[0] .queued-̂ c 1) 
(eq UAccessPoint_in[0] .content [0] .kind'̂ c 0) 
(eq UAccessPoint_in[0] .content [0] .SENDrequest.udata'^c 0)); 

defprop fairlb_basic (and 
(eq UAccessPoint_in[0] .queued'̂ c 1) 
(eq UAccessPoint_in[0] .content [0] .kind'̂ c 0) 
(eq UAccessPoint_in[0] .content [0] .SENDrequest.udata'^c 1)); 

defprop fair2_basic (eq UAccessPoint_out [0] .queued'̂ c 0) ; 

defprop fair3_basic (and 
(eq UAccessPoint_in[l] .queued'̂ c 1) 
(eq UAccessPoint_in[l] .content [0] .kind'̂ c 1)); 

defprop fair4_basic (eq UAccessPoint_out [1] .queued'̂ c 0) ; 

-- Additional fairness constraints for unreliable link (Tuel6Novl993) 
defprop unreliable_fairl (eq NAccessPoint [0] .queued'̂ c 1) ; 
defprop unreliable_fair2 (eq NAccessPoint[1].queued^c 1); 

-- Additional fairness constraints for time implementation (Tuel6Novl993) 
defprop timer_fairl (eq clock_tick'̂ c 0); 
defprop timer_fair2 (eq clock_tick'̂ c 1) ; 

-- Commands for evaluating (EG TRUE) under basic fairness constraints 
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-- defprop global_nextstate (or (nextstate) (user_next)); — version of 
31oct 

-- Version of Olnov that include a "keep stable" statement in 
-- global disjunction of nextstate relation, 
defprop global_nextstate (or (nextstate) (user_next) 

(unreliable_link_next)); 

setdefaultnextstate (global_nextstate) 
(fairla_basic) (fairlb_basic) 
(fair2_basic) (fair3_basic) (fair4_basic) 
(unreliable_fairl) (unreliable_fair2) 
(timer_fairl) (timer_fair2); 

defprop global_init (and (init) (eq UAccessPoint_in'^c 0)); 

-- Output [1] on Tue 16 Nov 1993. 
— defprop egtrue (EG TRUE); 
-- printstring "EG TRUE"; 
-- printprop (egtrue); 
-- printsize (egtrue); 

-- First, define a set of events in send and receive users, 
-- and ABP protocol modules. 

-- true when a SENDrequest has been submitted by the sending 
-- user and is awaiting processing by the ABP send module and 
-- the datum value of this request is x. 
defpred usend (x) (and 

(eq UAccessPoint_in[0] .queued'̂ c 1) 
(eq UAccessPoint_in[0] .content [0] .kind-̂ c 0) 
(eq UAccessPoint_in[0] .content [0] .SENDrequest .udata'̂ c x) ) ; 

-- true when the sending user has no send request pending servicing 
--by ABP sender 
defprop usendnothing (eq UAccessPoint_in[0] .queued'̂ c 0) ; 

-- true when a SENDconfirm has been submitted by 
-- the ABP sender module and is awaiting processing by the 
-- sending user. 
defprop usendconfirm (and 

(eq UAccessPoint_out [0] .queued'̂ c 1) 
(eq UAccessPoint_out [0] .content [0] .kind'̂ 'c 1)) ; 

-- true when data packet containing datum value x and sequence 
-- number seq has been submitted for transmission by the 
-- ABP sender module and is awaiting transfer over the 
-- underlying link. 
defpred asend (x seq) (and 

(eq NAccessPoint [1] .queued'̂ c 1) 
(eq NAccessPoint[1].content[0].DATAinteraction.ndata.id^c 0) 
(eq NAccessPoint[1].content[0].DATAinteraction.ndata.conn'^c 0) 
(eq NAccessPoint [1] .content [0] .DATAinteraction.ndata.data'^c x) 
(eq NAccessPoint [1] .content [0] .DATAinteraction.ndata. seq'̂ c seq) ) ; 

-- true when ABP sender module has no request to transmit a packet 
-- over underlying link pending. 
-- N.B. This is valid for reliable underlying link and for 

unreliable link which can only lose data but not duplicate it. 
defprop asendnothing (eq NAccessPoint [1] .queued'̂ c 0) ; 

-- true when a data packet containing datum value x and 
-- sequence number seq is delivered to the ABP receiver module by the 
-- underlying link and has not yet been processed by 
-- the ABP receiver module. 
-- (in model of underlying unreliable link supporting only 
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-- data loss, this predicate is not accurate because data can 
-- be delivered and subsequently removed by actions of 
-- underlying unreliable link before ABP receiver processes 
-- delivered data) 
— (would be accurate with model of unreliable underlying link 
-- with 2 extra queues between pair of ABP modules) 
defpred arcv (x seq) (and 

(eq NAccessPoint[1].queued^c 1) 
(eq NAccessPoint[1].content[0].DATAinteraction.ndata.id^c 0) 
(eq NAccessPoint [1] .content [0] .DATAinteraction.ndata.conn'^c 0) 
(eq NAccessPointil] .content [0] .DATAinteraction.ndata.data''c x) 
(eq NAccessPoint[1].content[0].DATAinteraction.ndata.seq'^c seq)); 

— true when there is no packet pending receipt by the ABP receiver 
-- module in its queue from the underlying link. 
defprop arcvnothing (eq NAccessPoint [1] .queued'̂ c 0); 

— true when the ABP receiver module has submitted a request to transmit 
— an acknowledgement packet with sequence number seq. 
— (not accurate in model of unreliable link with only data loss). 
defpred aacksend (seq) (and 

(eq NAccessPoint [0] .queued̂ 'c 1) 
(eq NAccessPoint [0] .content [0] .DATAinteraction.ndata.id'^c 1) 
(eq NAccessPoint [0] .content [0] .DATAinteraction.ndata.conn'^c 0) 
(eq NAccessPoint[0].content[0].DATAinteraction.ndata.seq^c seq)); 

— true when an acknowledgement packet containing sequence number 
-- seq has been delivered to the ABP sender module by the underlying link. 
-- (not accurate in model of unreliable link with only data loss). 
defpred aackrcv (seq) (and 

(eq NAccessPoint [0] .queued'̂ c 1) 
(eq NAccessPoint [0] .content [0] •DATAinteraction.ndata.id'^c 1) 
(eq NAccessPoint [0] .content [0] .DATAinteraction.ndata.conn'^c 0) 
(eq NAccessPoint [0] .content [0] .DATAinteraction.ndata. seq̂ 'c seq) ) ; 

-- true when a RECEIVEresponse containing value x has been submitted 
-- by the ABP receiver module and has not been processed by the 
-- receiving user, 
defpred urcv (x) (and 

(eq UAccessPoint_out [1] .queued'̂ c 1) 
(eq UAccessPoint_out[1].content[0].RECEIVEresponse.udata^c x) 
(eq UAccessPoint_out[1].content[0].kindle 0)); 

— true when there is no RECEIVEresponse pending servicing by receiving 
-- user in queue from ABP receiver. 
defprop urcvnothing (eq UAccessPoint_out [1] .queued'̂ c 0) ; 

-- true when a RECEIVErequest has been submitted by the receiving 
-- user and is awaiting processing by the ABP receive module, 
defprop urcvreq (and 

(eq UAccessPoint_in[l].queued^c 1) 
(eq UAccessPoint_in[l] .content [0] .kind'̂ c 1) ) ; 

-- Properties to verify 
-- All properites p are to be evaluated in context of 
-- (implies (global_init) (p)) ; 

-- Assert that no data requests are sent by ABP sender module 
-- while it is in the ESTAB state. 
— AG( (state=ESTAB) implies ASendNothing) ) 
defprop ag_state_eq_ESTAB_implies_ASendNothing 

(AG (implies (eq abp6[0].state^c 1) (asendnothing))); 

defprop init_implies_ag_state_eq_ESTAB_implies_ASendNothing 
(implies (global_init) 

(ag_state_eq_ESTAB_implies_ASendNothing)); 
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printstring "init_implies_ag_state_eq_ESTAB_implies_ASendNothing"; 
printprop (init_implies_ag_state_eq_ESTAB_implies_ASendNothing); 
printsize (init_implies_ag_state_eq_ESTAB_implies_ASendNothing); 

-- Assert that Send_buffer_empty true iff main state is ESTAB. 
defprop ag_send_buffer_empty_equiv_estab_state 

(AG (equiv (eq abp6[0].vars.Send_buffer_empty^c 1) 
(eq abp6[0] .state-̂ c 1))); 

-- printstring "ag_send_buffer_empty_equiv_estab_state"; 
-- printprop (ag_send_buffer_empty_equiv_estab_state); 
-- printsize (ag_send_buffer_empty_equiv_estab_state); 

defprop init_implies_ag_send_buffer_empty_equiv_estab_state 
(implies (global_init) 

(ag_send_buffer_empty_equiv_estab_state)); 

printstring "init_implies_ag_send_buffer_empty_equiv_estab_state"; 
printprop (init_implies_ag_send_buffer_empty_equiv_estab_state); 
printsize (init_implies_ag_send_buffer_empty_equiv_estab_state); 

— Assert that whenever sendbuffer is not empty that Send_buffer_seq 
-- variable equals Send_seq variable. 
-- AG( not(Send_buffer_empty) implies (Send_buffer_seq = Send_seq) ) 
defprop ag_not_Send_buffer_empty_implies_Send_buffer_seq_eq_Send_seq 

(AG (implies (not (eq abp6 [0] .vars.Send_buffer_empty'^c 1)) 
(eq abp6[0] .vars.Send_buf fer_seq'̂ c 

abp6[0].vars.Send_seq^c))); 

defprop init_ag_not_Send_buffer_empty_implies_Send_buffer_seq_eq_Send_seq 
(implies (global_init) 

(ag_not_Send_buffer_empty_implies_Send_buffer_seq_eq_Send_seq)); 

printstring 
"init_ag_not_Send_buffer_empty_implies_Send_buffer_seq_eq_Send_seq"; 
printprop 
(init_ag_not_Send_buffer_empty_implies_Send_buffer_seq_eq_Send_seq); 
printsize 
(init_ag_not_Send_buffer_empty_implies_Send_buffer_seq_eq_Send_seq); 

— Assert that the ABP sender module is always in the ESTAB (1) state 
— or the ACK_WAIT (0) state, 
defprop ag_state_estab_or_ackwait 

(AG (or (eq abp6 [0] .state'̂ c 0) 
(eq abp6[0] .state-̂ c 1))); 

defprop init_ag_state_estab_or_ackwait 
(implies (global_init) 

(ag_state_estab_or_ackwait)); 

printstring "init_ag_state_estab_or_ackwait"; 
printprop (init_ag_state_estab_or_ackwait); 
printsize (init_ag_state_estab_or_ackwait); 

-- Assert that the ABP sender module never stays in 
-- either state permanently. 
-- AG( AF(state=ESTAB) and AF(state=ACK_WAIT) ) 
defprop ag_af_state_ESTAB_and_af_state_ACKWAIT 

(AG (and (AF (eq abp6 [0] .state-̂ c 0)) 
(AF (eq abp6[0] .state'̂ c 1) ) ) ) ; 

defprop init_ag_af_state_ESTAB_and_af_state_ACKWAIT 
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( impl ies ( g l o b a l _ i n i t ) 
(ag_af_state_ESTAB_and_af_state_ACKWAIT)); 

printstring "init_ag_af_state_ESTAB_and_af_state_ACKWAIT"; 
printprop (init_ag_af_state_ESTAB_and_af_state_ACKWAIT); 
printsize (init_ag_af_state_ESTAB_and_af_state_ACKWAIT); 

-- Assert that only one request is processed for each ESTAB->ACK_WAIT->ESTAB 
-- cycle in the ABP sender module. 
— (formula fl) 
defpred one_send_request_at_a_time (x) 

(AG (implies (and (usend x) (eq abp6 [0] .state'̂ c 0)) 
(AU (usend x) 

(and (usend x) (eq abp6[0].state^c 1))))) ; 

defprop forall_x_one_send_request_at_a_time 
(and (one_send_request_at_a_time 0) 

(one_send_request_at_a_time 1)); 

defprop init_forall_x_one_send_request_at_a_time 
(implies (global_init) (forall_x_one_send_request_at_a_time)); 

printstring "init_forall_x_one_send_request_at_a_time"; 
printprop (init_forall_x_one_send_request_at_a_time); 
printsize (init_forall_x_one_send_request_at_a_time); 

— Assert that a packet will be repeatedly transmitted until an 
-- acknowledgement is received when a send request is in the 
-- queue from the user when in the ESTAB state, 
defpred repeat_transmit_packet (x) 

(AG (implies (and (eq abp6 [d] .state'̂ c 1) (usend x)) 
(AU (and (asendnothing) (eq abp6 [0] .state'̂ c 1)) 

(AU (and (or (asendnothing) 
(asend x abp6[0] .vars.Send_seq''c) ) 

(eq abp6[0] .state-̂ c 0)) 
(eq abp6[0] .state-̂ c 1)) ) ) ) ; 

defprop forall_x_repeat_transmit_packet 
(and (repeat_transmit_packet 0) 

(repeat_transmit_packet 1)); 

defprop init_forall_x_repeat_transmit_packet 
(implies (global_init) 

(forall_x_repeat_transmit_packet)); 

printstring "init_forall_x_repeat_transmit_packet"; 
printprop (init_forall_x_repeat_transmit_packet); 
printsize (init_forall_x_repeat_transmit_packet); 

— (Mon 06Decl993) 
— Ever command file for rerunning verification 
-- on corrections to formulae that did evaluate to 
-- tautologies in original test (run_29nov). 

-- Assert that when an acknowledgement is received for current sequence 
— number while in ACK_WAIT state, the state will be eventually 
-- returned to ESTAB and the current sequence number will be incremented. 
-- (formula f3) 
defpred new_ack_rcvd_leads_to_incr_seq_num_and_estab (x s) 

(AG (implies 
(and (eq abp6 [0] .state-̂ c 0) 

(eq abp6[0].vars.Send_seq^c s) 
(aackrcv s) 
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(eq abp6[0] .vars .Send_buffer_datum^c x)) 
(AF (and (eq abp6 [0] . s ta te '^c 1) 

(eq abp6[0] .vars .Send_seq ' 'c (add s 1) ) ) ) ) ) , • 

defprop new_forall_x_s_ack_rcvd_leads_to_incr_seq_num_and_estab 
(and (new_ack_rcvd_leads_to_incr_seq_niiin_and_estab 0 0) 

(new_ack_rcvd_leads_to_incr_seq_niam_and_estab 0 1) 
{new_ack_rcvd_leads_to_incr_seq_nuin_and_estab 1 0) 
(new_ack_rcvd_leads_to_incr_seq_niiin_and_estab 1 1)); 

defprop init_new_forall_x_s_ack_rcvd_leads_to_incr_seq_num_and_estab 
(implies (global_init) 

(new_forall_x_s_ack_rcvd_leads_to_incr_seq_nuin_and_estab) ) ; 

printstring " init_new_f orall_x_s_ack_rcvd_leads_to_incr_seq_niim_and_estab" ; 
printprop (init_new_forall_x_s_ack_rcvd_leads_to_incr_seq_num_and_estab); 
printsize (init_new_forall_x_s_ack_rcvd_leads_to_incr_seq_num_and_estab); 

— Assert that only following events occur after a send request 
-- is received by the ABP sender module. 
-- While still in ESTAB state, only can receive acks from previous 

request. 
Eventually will change to ACK_WAIT state. 

— While in ACK_WAIT state, can send retransmissions of data packet, 
ABP receiver module can receive packet, ABP receiver module 
can send acknowledgement packets and ABP sender module 
can receive acknowledgement packets. 
Eventually will return to ESTAB state with Send_seq variable 
incremented. 

-- (formula f4) 
defpred exists_y_asend_y_s_minus_l (s) 

(and (eq NAccessPoint[1].queued^c 1) 
(eq NAccessPoint [1] .content [0] .DATAinteraction.ndata.id''c 0) 
(eq NAccessPointfl].content[0].DATAinteraction.ndata.conn'^c 0) 
(eq NAccessPoint[1].content[0].DATAinteraction.ndata.seq''c 

(sub s 1))); 

defpred new_send_cycle (x s) 
(AG (implies 

(and (usend x) (eq abp6[0].state^c 1) 
(eq abp6[0].vars.Send_seq^c s)) 

(AU (and (eq abp6 [0] .state'̂ c 1) 
(or (asendnothing) 

(aackrcv (sub si)) 
(exists_y_asend_y_s_minus_l s))) 

(AU (and (eq abp6 [0] .state-̂ c 0) 
(or (asend x s) (asendnothing) 

(arcvnothing) (arcv x s) 
(aacksend s) (aackrcv s))) 

(and (eq abp6 [0] .state'̂ c 1) 
(eq abp6 [0] .vars.Send_seq'~c (add s 1) )))))) ; 

defprop new_forall_x_s_send_cycle 
(and (new_send_cycle 0 0) (new_send_cycle 0 1) 

(new_send_cycle 1 0) (new_send_cycle 1 1)); 

defprop init_new_forall_x_s_send_cycle 
(implies (global_init) (new_forall_x_s_send_cycle)); 

printstring "init_new_forall_x_s_send_cycle"; 
printprop (init_new_forall_x_s_send_cycle) ; 
printsize (init_new_forall_x_s_send_cycle) ; 

(( test run on 09 dec 1993 )) 
-- Ever command file for formulae to show that exactly 
-- one send data request from sending user matches 
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-- exactly one receive data request from the receiving user. 

-- Abbreviations 
defprop sendbufferempty (eq abp7[0].vars.Send_buffer_empty''c 1); 
defprop recvbufferempty (eq abp7[1].vars.Recv_buffer_empty''c 1); 

-- First show one exists x.USend(x) per time Send_buffer filled 
defprop usend_matches_send_buffer_fill_nest5 

(AU (and (not (usendnothing)) (sendbufferempty)) 
(and (usendnothing) (not (sendbufferempty)))); 

defprop usend_matches_send_buffer_fill_nest4 
(AU (not (xor (usendnothing) (sendbufferempty))) -- optional interval 

(and (not (usendnothing)) (sendbufferempty) 
(usend_matches_send_buffer_fill_nest5))); 

defprop usend_matches_send_buffer_fill_nest3 
(AU (and (usendnothing) (not (sendbufferempty))) 

(usend_matches_send_buffer_fill_nest4)); 

defprop usend_matches_send_buffer_fill_nest2 
(AU (and (not (usendnothing)) (sendbufferempty)) 

(and (usendnothing) (not (sendbufferempty)) 
(usend_matches_send_buffer_fill_nest3))); 

defprop usend_matches_send_buffer_fill_nestl 
(AU (and (not (usendnothing)) (not (sendbufferempty))) — optional 

interval 
(and (not (usendnothing)) (sendbufferempty) 

(usend_matches_send_buffer_fill_nest2))); 

defprop usend_matches_send_buffer_fill 
(AG (implies 

(not (usendnothing)) 
(usend_matches_send_buffer_fill_nestl))); 

defprop init_usend_matches_send_buffer_fill 
(implies (global_init) (usend_matches_send_buffer_fill)); 

printstring "init_usend_matches_send_buffer_fill"; 
printprop (init_usend_matches_send_buffer_fill); 
printsize (init_usend_matches_send_buffer_fill); 

-- Second, show one Send_buffer fill event per send sequence number 
defpred send_buffer_fill_sequence (s) 
(AU (sendbufferempty) 

(and (not (sendbufferempty)) (eq abp7 [0] .vars.Send_seq'̂ c s) 
(AU (and (not (sendbufferempty)) (eq abp7 [0] .vars.Send_seq'̂ c s) ) 

(and (sendbufferempty) (eq abp7 [0] .vars.Send_seq''c (add s 1)) 
(AU (and (sendbufferempty) (eq abp7 [0] .vars.Send_seq''c 

(add si))) 
(and (not (sendbufferempty)) (eq 

abp7[0] .vars.Send_seq''c (add s 1)))))) 
)); 

defprop send_buffer_fill_matches_seq_number 
(AG (implies (sendbufferempty) 

(or (send_buffer_fill_sequence 0) 
(send_buffer_fill_sequence 1)))) ; 

defprop init_send_buffer_fill_matches_seq_number 
(implies (global_init) (send_buffer_fill_matches_seq_number)); 

printstring "init_send_buffer_fill_matches_seq_number"; 
printprop (init_send_buffer_fill_matches_seq_number); 



APPENDIX 4 : EVER COMMAND FILE FOR VERIFICATION 146 

p r i n t s i z e ( in i t_send_buffer_f i l l_matches_seq_number) ; 

- - Third , show one send sequence number for each r e c e i v e sequence 
- - number and each t ime Recv_buffer f i l l e d Recv_seq i s incremented, 
defpred r ecv_buf fe r_ f i l l_ sequence (s) 

(AU (recvbufferempty) 
(and (not (recvbufferempty)) 

(eq abp7[1] .vars .Recv_seq^c s) 
(AU (and (not (recvbufferempty)) (eq abp7 [1] .vars.Recv_seq'̂ c s) ) 

(and (recvbufferempty) 
(AU (and (recvbufferempty) (eq abp7 [1] .vars.Recv_seq'̂ c 

s)) 
(and (not (recvbufferempty)) 

(eq abp7[l] .vars.Recv_seq''c (add s 1) ))))))),• 

defprop recv_buffer_fill_sequence_0 (recv_buffer_fill_sequence 0); 
defprop recv_buffer_fill_sequence_l (recv_buffer_fill_sequence 1); 

defprop receive_buf_filled_matches_seq_no 
(AG (implies (recvbufferempty) 

(or (recv_buffer_fill_sequence_0) 
(recv_buffer_fill_sequence_l)))); 

defprop init_receive_buf_filled_matches_seq_no 
(implies (global_init) 

(receive_buf_filled_matches_seq_no)); 

printstring "init_receive_buf_filled_matches_seq_no"; 
printprop (init_receive_buf_filled_matches_seq_no); 
printsize (init_receive_buf_filled_matches_seq_no); 

— Fourth, show one Recv_buffer fill event per exists x.URcv(x) event, 
defprop urcv_buff_fill_seq_nest5 

(AU (and (urcvnothing) (not (recvbufferempty))) 
(and (not (urcvnothing)) (recvbufferempty))); 

defprop urcv_buff_fill_seq_nest4 
(AU (not (xor (urcvnothing) (recvbufferempty))) -- optional interval 

(and (urcvnothing) 
(not (recvbufferempty)) 
(urcv_buff_fill_seq_nest5))); 

defprop urcv_buff_fill_seq_nest3 
(AU (and (not (urcvnothing)) (recvbufferempty)) 

(urcv_buff_fill_seq_nest4)) ; 

defprop urcv_buff_fill_seq_nest2 
(AU (and (urcvnothing) (not (recvbufferempty))) 

(and (not (urcvnothing)) (recvbufferempty) 
(urcv_buff_fill_seq_nest3))); 

defprop urcv_buff_fill_seq 
(AU (and (urcvnothing) (recvbufferempty)) — optional interval 

(and (urcvnothing) (not (recvbufferempty)) 
(urcv_buff_fill_seq_nest2))) ; 

defprop urcv_matches_recv_buff_fill 
(AG (implies (urcvnothing) 

(urcv_buff_fill_seq))); 

defprop init_urcv_matches_recv_buff_fill 
(implies (global_init) 

(urcv_matches_recv_buff_fill) ) ; 

printstring "init_urcv_matches_recv_buff_fill"; 
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printprop (init_urcv_matches_recv_buff_fill); 
printsize (init_urcv_matches_recv_buff_fill) ; 

(( test run on 12 dec 1993 )) 
-- Ever command file to verify property that data value 
-- of a user's send request is preserved from time of 
-- user submitting the request to time of the receiving 
-- user receiving the data. 

-- Interval when data packet has been received by ABP receiver 
-- module and receiving user has submitted a receive request 
-- until received read the data, 
defpred data_preserved_interval7 (x) 

(and (eq abp7 [1] .vars.Recv_buffer_empty'^c 1) 
(urcv x) 
(AU (urcv x) 

(urcvnothing))); 

— Interval when data packet has been received by ABP receiver 
-- module and is waiting for receive user to submit a 
-- receive request. 
-- This interval must have a length of at least one. 
defpred data_preserved_interval6 (x) 

(and (eq abp7 [1] .vars.Recv_buffer_empty'^c 0) 
(eq abp7 [1] .vars .Recv_buf fer_datum'^c x) 
(urcvnothing) 
(AU (and (eq abp7[1].vars.Recv_buffer_empty^c 0) 

(eq abp7[1].vars.Recv_buffer_datum^c x) 
(urcvnothing)) 

(data_preserved_interval7 x))); 

-- Interval from when data packet has been delivered to the 
-- ABP receiver module and the receiving user has not 
-- processed the previous received data packet yet. 
-- This interval may have a length of zero. 
defprop exists_y_urcv_y 

(and (eq UAccessPoint_out [1] .queued'^c 1) 
(eq UAccessPoint_out [1] .content [0] .kind'̂ c 0) ) ; 

defpred data_preserved_interval5 (x) 
(and (eq abp7[1].vars.Recv_buffer_empty^c 0) 

(eq abp7[1].vars.Recv_buffer_datum^c x) 
(AU (and (eq abp7 [1] .vars.Recv_buffer_empty'^c 0) 

(eq abp7 [1] .vars.Recv_buf fer_datum'^c x) 
(exists_y_urcv_y)) 

(data_preserved_interval6 x))); 

-- Interval when the data packet is retransmitted while the 
-- ABP receiver module's Receive buffer is empty. This interval 
-- must have a length of at least 1. 
defpred arcv_x_Send_seq (x) 

(and (eq NAccessPoint[1].queued^c 1) 
(eq NAccessPointil] .content [0] .DATAinteraction.ndata.id'^c 0) 
(eq NAccessPoint [1] .content [0] .DATAinteraction.ndata.data'^c x) 
(eq NAccessPoint [1] .content [0] .DATAinteraction.ndata.seq-^c 

abp7 [0] .vars. Send_seq''c)) ; 

defprop exists_y_arcv_y_Send_seq_minus_l 
(and (eq NAccessPoint [1] .queued'^c 1) 

(eq NAccessPoint [1] .content [0] .DATAinteraction.ndata.id'^c 0) 
(eq NAccessPoint [1] .content [0] .DATAinteraction.ndata.seq'^c 

(sub abp7 [ 0 ] . vars. Send_seq'^c 1) ) ) ; 

defpred data_preserved_interval4 (x) 
(and (eq abp7 [1] .vars.Recv_buffer_empty''c 1) 

(or (exists_y_arcv_y_Send_seq_minus_l) 
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(arcv_x_Send_seq x) 
(a rcvnothing)) 

(AU (and (eq abp7 [1] .vars.Recv_buffer_einpty^c 1) 
(or (exiSts_y_arcv_y_Send_seq_minus_l) 

(arcv_x_Send_seq x) 
(a rcvnoth ing) ) ) 

(da t a_p rese rved_ in t e rva l5 x ) ) ) ; 

- - I n t e r v a l when t h e da ta packet i s r e t r a n s m i t t e d whi le t h e 
- - ABP r e c e i v e r module 's Receive buf fe r s t i l l con t a in s t h e 
- - p rev ious d a t a packe t . This i n t e r v a l may have a l eng th of z e r o . 
defpred asend_x_Send_seq (x) 

(and (eq NAccessPoint[1] .queued^c 1) 
(eq NAccessPoint i l ] . con ten t [0] .DATAinteract ion.ndata. id '~c 0) 
(eq NAccessPo in t [1 ] . con ten t [0 ] .DATAin te rac t ion .nda ta .da ta ' ' c x) 
(eq NAccessPoint [1] . content [0] .DATAinteraction.ndata.seq^^c 

abp7 [0] .vars.Send_seq'^c)) ; 

defprop exists_y_asend_y_Send_seq_minus_l 
(and (eq NAccessPoint [1] .queued'^c 1) 

(eq NAccessPo in t [1 ] . con ten t [0 ] .DATAin te rac t ion .nda ta . id^c 0) 
(eq NAccessPoin t [1] .conten t [0] .DATAinterac t ion .nda ta . seq '^c 

(sub abp7 [ 0 ] . v a r s . Send_seq'*'c 1)) ) ; 

defpred d a t a _ p r e s e r v e d _ i n t e r v a l 3 (x) 
(and (eq abp7 [0] . s t a t e ' - c 0) 

(usendnothing) 
(eq abp7 [0] .vars.Send_buffer_datum'^c x) 
(AU (and (eq a b p 7 [ 0 ] . s t a t e ^ c 0) (eq abp7[1] .vars .Recv_buffer_empty^c 

0) 
(or (asendnothing) (asend_x_Send_seq x) 

(exists_y_asend_y_Send_seq_minus_l))) 
(data_preserved_interval4 x))); 

-- Interval when user send request enqueued and waiting for 
— ABP sender module to start processing it 
defpred data_preserved_interval2 (x) 

(and (eq abp7 [0] . state'̂ c 1) (usend x) 
(AU (and (eq abp7[0].state^c 1) (usend x)) 

(data_preserved_interval3 x))); 

-- Interval in which a previous user send request is 
-- being processed and current request is awaiting service. 
-- This interval may have a length of 0. 
defpred data_preserved_intervall (x) 

(AU (and (eq abp7 [0] .state-̂ c 0) (usend x)) 
(data_preserved_interval2 x)); 

defpred data_preserved (x) 
(AG (implies (usend x) 

(data_preserved_intervall x))); 

defprop data_preserved_0 (data_preserved 0); 
defprop data_preserved_l (data_preserved 1); 

defprop init_data_preserved_0 
(implies (global_init) (data_preserved_0)); 

defprop init_data_preserved_l 
(implies (global_init) (data_preserved_l)); 

defprop forall_x_data_preserved 
(and (data_j)reserved_0) 

(data_preserved_l)) ; 



APPENDIX 4 : EVER COMMAND FILE FOR VERIFICATION 149 

defprop i n i t _ f o r a l l _ x _ d a t a _ p r e s e r v e d 
( impl ies ( g l o b a l _ i n i t ) 

( f o r a l l _ x _ d a t a _ p r e s e r v e d ) ) ; 

- - P r i n t r e s u l t s 
p r i n t s t r i n g " in i t _da t a_p re se rved_0" ; 
p r i n t p r o p ( i n i t _ d a t a _ p r e s e r v e d _ 0 ) ; 
p r i n t s i z e ( i n i t _ d a t a _ p r e s e r v e d _ 0 ) ; 

p r i n t s t r i n g " i n i t _ d a t a _ p r e s e r v e d _ l " ; 
p r i n t p r o p { i n i t _ d a t a _ p r e s e r v e d _ l ) ; 
p r i n t s i z e ( i n i t _ d a t a _ p r e s e r v e d _ l ) ; 

p r i n t s t r i n g " i n i t _ f o r a l l _ x _ d a t a _ p r e s e r v e d " ; 
p r i n t p r o p { i n i t _ f o r a l l _ x _ d a t a _ p r e s e r v e d ) ; 
p r i n t s i z e ( i n i t _ f o r a l l _ x _ d a t a _ p r e s e r v e d ) ; 



Appendix 5: Output of v e r i f i c a t i o n 

Corranand> Taking input from run_29nov... 
init_implies_ag_state_eq_ESTAB_implies_ASendNothing 
evaluated (AG 1394ac 0) size=31 totalBDDsize=127650 57:18 mins 4157 Kb 
(UAccessPoint_in[0] .queued'̂ c 
[1] 
(UAccessPoint_in[0].content[0].kindle 
[1] 
(UAccessPoint_in[0].content[0].RECEIVErequest.dummy"c 
[1] 
(UAccessPoint_in[0].content[0].SENDrequest.udata^c 
[1] 
(UAccessPoint_in[l].gueued^c 
[1] 
{UAccessPoint_in[l].content[0].kindle 
[1] 
(UAccessPoint_in[l] .content [0] .RECEIVErequest .dummy'̂ c 
[1] 
(UAccessPoint_in[l] .content [0] .SENDrequest.udata'^c 
[1] 
(UAccessPoint_out[0].queued^c 
[1] 
(UAccessPoint_out [1] .queued'̂ c 
[1] 
(NAccessPoint [0] .gueued'̂ c 
[1] 
(NAccessPoint [1] .queued'̂ c 
[1] 
(abp6[0] .state'̂ c 
(abp6[0].vars.Send_seq^c 
[1] 
(abp6[0] .vars.Recv_seq'̂ c 
[1] 
(abp6 [0] .vars.Recv_buffer_empty'^c 
(abp6 [0] .vars .Send_buf fer_empty'̂ c 

[i]') 
[1]))) 

[1]))))))))))))) 
Unevaluated Size: 28 
init_implies_ag_send_buffer_empty_equiv_estab_state 
evaluated (AG 3e486c 0) size=35 totalBDDsize=61614 57:24 mins 4157 Kb 
[1] 
Unevaluated Size: 0 
init_ag_not_Send_buffer_empty_implies_Send_buffer_seq_eq_Send_seq 
evaluated (AG 3e552c 0) size=29 totalBDDsize=78162 57:29 mins 4157 Kb 
[1] 
Unevaluated Size: 0 
init_ag_state_estab_or_ackwait 
evaluated (AG 3e606c 0) size=0 totalBDDsize=78162 57:30 mins 4157 Kb 
[1] 
Unevaluated Size: 0 
ini t_ag_a f_s tat e_ESTAB_and_af_state_ACKWAIT 
evaluated (AF 3e666c 0) size=0 totalBDDsize=124310 83:08 mins 4157 Kb 
evaluated (AF 3e69ec 0) size=0 totalBDDsize=108789 118:31 mins 4157 Kb 
evaluated (AG 3e6aac 0) size=0 totalBDDsize=108789 118:31 mins 4157 Kb 
[1] 
Unevaluated Size: 0 
init_forall_x_one_send_request_at_a_time 
evaluated (AU 40962c 409c2c 0) size=32 totalBDDsize=66046 165:45 mins 4189 
Kb 
evaluated (AG 408dac 0) size=0 totalBDDsize=66046 165:45 mins 4189 Kb 
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eva lua ted (AU 40ae6c 40b46c 0) size=32 totalBDDsize=70902 213:10 mins 4189 
Kb 
evaluated (AG 40a5ec 0) size=0 totalBDDsize=70902 213:10 mins 4189 Kb 
[1] 
Unevaluated Size: 0 
init_forall_x_repeat_transmit_packet 
evaluated (AU 1442ec 1453ec 0) size=79 totalBDDsize=94992 92:53 mins 4189 Kb 
evaluated (AU 143f6c 1442ac 0) size=79 totalBDDsize=127221 119:50 mins 4189 
Kb 
evaluated (AG 1436ec 0) size=0 totalBDDsize=127221 119:50 mins 4189 Kb 
evaluated (AU 1462ec 1473ec 0) size=79 totalBDDsize=74929 157:39 mins 4189 
Kb 
evaluated (AU 145f6c 1462ac 0) size=79 totalBDDsi2e=77048 184:38 mins 4189 
Kb 
evaluated (AG 1456ec 0) size=0 totalBDDsize=77048 184:38 mins 4189 Kb 
[1] 
Unevaluated Size: 0 
(( output from test of 06 dec 1993 )) 
(( program previous restarted with CPU 103:07 mins. accumulated before this 
test )) 
Command> Taking input from run_06dec... 
init_new_forall_x_s_ack_rcvd_leads_to_incr_seq_num_and_estab 
evaluated (AF 40b66c 0) size=0 totalBDDsize=84255 151:15 mins 0 Kb 
evaluated (AG 40a72c 0) size=0 totalBDDsize=84255 151:15 mins 0 Kb 
evaluated (AF 40cc6c 0) size=0 totalBDDsize=106744 200:20 mins 32 Kb 
evaluated (AG 40bd2c 0) size=0 totalBDDsize=106744 200:20 mins 32 Kb 
evaluated (AF 40e26c 0) size=0 totalBDDsize=123197 248:54 mins 32 Kb 
evaluated (AG 40d32c 0) size=0 totalBDDsize=123197 248:55 mins 32 Kb 
evaluated (AF 3e78ac 0) size=0 totalBDDsize=120039 298:18 mins 32 Kb 
evaluated (AG 40e96c 0) size=0 totalBDDsize=120039 298:18 mins 32 Kb 
[1] 
Unevaluated Size: 0 
init_new_forall_x_s_send_cycle 
evaluated (AU 3f2eac 3f5eec 0) size=66 totalBDDsize=69565 348:06 mins 128 Kb 
evaluated (AU 3fl72c 3f2e6c 0) size=102 totalBDDsize=124396 383:02 mins 128 
Kb 
evaluated (AG 3f0cec 0) size=79 totalBDDsize=104255 387:37 mins 128 Kb 
evaluated (AU 41076c 4137ac 0) size=66 totalBDDsize=109530 438:36 mins 160 
Kb 
evaluated (AU 3f6fec 41072c 0) size=102 totalBDDsize=105066 474:20 mins 160 
Kb 
evaluated (AG 3f65ac 0) size=79 totalBDDsize=115778 479:04 mins 160 Kb 
evaluated (AU 41602c 3f906c 0) size=66 totalBDDsize=113697 529:35 mins 160 
Kb 
evaluated (AU 4148ac 415fec 0) size=102 totalBDDsize=119707 565:08 mins 160 
Kb 
evaluated (AG 413e6c 0) size=79 totalBDDsize=105884 569:51 mins 160 Kb 
evaluated (AU 3fb92c 3fe96c 0) size=66 totalBDDsize=122377 621:27 mins 160 
Kb 
evaluated (AU 3falac 3fb8ec 0) size=102 totalBDDsize=92572 657:53 mins 160 
Kb 
evaluated (AG 3f976c 0) size=79 totalBDDsize=129949 662:43 mins 160 Kb 
[1] 
Unevaluated Size: 0 
(( test run on 09 dec 1993 )) 
(( program restarted here )) 
Command> Taking input from run_09decB... 
init_usend_matches_send_buffer_fill 
evaluated (AU 40b06c 40blec 0) size=59 totalBDDsize=92726 142:42 mins 4253 
Kb 
evaluated (AU 40b3ac 40b5ac 0) size=40 totalBDDsize=80530 203:52 mins 4253 
Kb 
evaluated (AU 3fa7ec 40b5ec 0) size=10 totalBDDsize=74233 232:57 mins 4253 
Kb 
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AU 3faa6c 3fac6c 0) size=60 totalBDDsize=96120 292:01 mins 4253 

AU 3faeec 3fb0ec 0) size=38 totalBDDsize=104638 353:30 mins 4253 

AG 3fb2ac 0) size=10 totalBDDsize=105520 353:34 mins 4253 Kb 

evaluated 
Kb 
evaluated 
Kb 
evaluated 
[1] 
Unevaluated Size: 0 
init_send_buffer_fill_raatches_seq_number 

(AU 3fc36c 3fc7ec 0) si2e=35 totalBDDsize=146881 439:27 mins 7101 evaluated 
Kb 
evaluated 
Kb 
evaluated 
Kb 
evaluated 
Kb 
evaluated 
Kb 
evaluated 
Kb 
evaluated 
[1] 
Unevaluated Size 
init_receive_buf_filled_matches_seq_no 
evaluated 
Kb 
evaluated 
Kb 
evaluated 
12765 Kb 
evaluated 
12765 Kb 
evaluated 
12765 Kb 
evaluated 
12765 Kb 
evaluated 
[1] 
Unevaluated Size: 0 
init_urcv_matches_recv_buff_fill 
evaluated (AU 4c2ac 6a502c 0) size=53 totalBDDsize=417658 1545:31 mins 12765 
Kb 
evaluated 
12829 Kb 
evaluated 
Kb 
evaluated 
12829 Kb 
evaluated 
12829 Kb 
evaluated 
[1] 
Unevaluated Size: 0 
Command> 

AU 3fbaac 3fbeac 0) size=35 totalBDDsize=128849 521:22 mins 7101 

AU 4094ec 40966c 0) size=36 totalBDDsize=155532 605:27 mins 7101 

AU 3fdd6c 3felec 0) size=35 totalBDDsize=148037 689:14 mins 7101 

AU 3fd4ac 3fd8ac 0) size=35 totalBDDsize=161202 774:11 mins 7133 

AU 3fceec 3fd06c 0) size=36 totalBDDsize=212023 859:36 mins 7133 

AG 3fe7ac 0) size=0 totalBDDsize=212023 859:36 mins 7133 Kb 

AU 6d36ac 6cla6c 0) size=32 totalBDDsize=196910 963:59 mins 7133 

AU 6d306c 6d346c 0) size=31 totalBDDsize=224682 1054:22 mins 7133 

AU 6d2aac 6d2c2c 0) size=32 totalBDDsize=351280 1155:27 mins 

AU 6c2dac 6c316c 0) size=32 totalBDDsize=451911 1252:41 mins 

AU 6c276c 6c2b6c 0) size=31 totalBDDsize=430945 1334:37 mins 

AU 6c21ac 6c232c 0) size=32 totalBDDsize=502851 1435:52 mins 

AG 6c58ac 0) size=0 totalBDDsize=502851 1435:52 mins 12765 Kb 

AU 6a51ec 6a53ec 0) size=31 totalBDDsize=316709 1654:01 mins 

AU 6a562c 6a542c 0) size=0 totalBDDsize=359758 1682:14 mins 12829 

AU 6c60ac 6c62ac 0) size=53 totalBDDsize=505725 1793:24 mins 

AU 6c64ac 6c66ac 0) si2e=30 totalBDDsize=330621 1902:12 mins 

AG c3e82c 0) size=0 totalBDDsize=330621 1902:12 mins 12829 Kb 

(( test run on 12 dec 1993 )) 
Command> Taking input from run_12dec... 
init_data_preserved_0 
evaluated (AU c81eec c824ec 0) size=31 totalBDDsize=474048 1962:36 mins 
13021 Kb 
evaluated (AU c8112c c8166c 0) size=78 totalBDDsize=450272 2179:49 mins 
13117 Kb 
evaluated (AU c803ec c80bac 0) size=32 totalBDDsize=486156 2391:16 mins 
13181 Kb 
evaluated (AU c7e8ac c7ffec 0) size=248 totalBDDsize=332950 2542:02 mins 
13181 Kb 
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eva lua t ed (AU c7b86c c7dl2c 0) size=245 totalBDDsize=919959 2788:32 mins 
24349 Kb 
evaluated (AU c7ab2c c7b32c 0) size=170 totalBDDsize=714383 2963:48 mins 
24349 Kb 
evaluated (AU c79aec c7a2ec 0) size=113 totalBDDsize=957107 3111:03 mins 
24349 Kb 
evaluated (AG c7946c 0) size=119 totalBDDsize=653332 3116:35 mins 24349 Kb 
[1] 
Unevaluated Size: 0 
init_data_preserved_l 
evaluated (AU c8b42c c8ba2c 0) size=31 totalBDDsize=998219 3175:29 mins 
24349 Kb 
evaluated (AU c8a66c cSabac 0) size=78 totalBDDsize=815171 3386:21 mins 
24349 Kb 
evaluated (AU c8992c cSaOec 0) size=32 totalBDDsize=865586 3588:13 mins 
24477 Kb 
evaluated (AU c87dec c8952c 0) size=248 totalBDDsize=672335 3731:32 mins 
24477 Kb 
evaluated (AU c84dac c8666c 0) size=245 totalBDDsize=772383 3974:43 mins 
24477 Kb 
evaluated (AU c8406c c8486c 0) size=170 totalBDDsize=716458 4154:13 mins 
24477 Kb 
evaluated (AU c8302c c8382c 0) size=113 totalBDDsize=736906 4308:55 mins 
24477 Kb 
evaluated (AG c829ac 0) size=119 totalBDDsize=994813 4314:34 mins 24477 Kb 
[1] 
Unevaluated Size: 0 
init_forall_x_data_preserved 
[1] 
Unevaluated Size: 0 
Command> 



Appendix 6: Example counterexample t race 

Coinmand> printtrace (global_init) 
(global_next state) 

(and (eq 
ahp6[0] .state'^c 1) (not 
(asendnothing))); 
Start of printtrace. 
Clock 319678/100 seconds. 
Memory 0 bytes. 
Garbage Collecting... 
BDD 42152 nodes. 

Evaluating start condition... 
Done evaluating start condition. 
Start condition size = 28 or 28 
Clock 319718/100 seconds. 
Memory 0 bytes. 
Garbage Collecting... 
BDD 42152 nodes. 

Evaluating goal/invariant... 
Done evaluating goal/invariant. 
Goal/invariant size = 2 or 2 
Clock 319733/100 seconds. 
Memory 0 bytes. 
Garbage Collecting... 
BDD 42152 nodes. 

Starting reachability...bO=gcf, as 
hYPOthesized. 
Sizes: 

whole =28 
diff = 28 

{32)b0=gcf, as hypothesized. 
Sizes: 

whole =32 
diff = 32 

{71)b0=gcf, as hypothesized. 
Sizes: 

whole =71 
diff = 70 

(172)b0=gcf, as hypothesized. 
Sizes: 

whole = 172 
diff = 156 

(319)b0=gcf, as hypothesized. 
Sizes: 

whole = 319 
diff = 293 

(518)b0=gcf, as hypothesized. 
Sizes: 

whole = 518 
diff = 475 

(683)b0=gcf, as hypothesized. 
Sizes: 

whole = 683 
diff = 635 

(825)b0=gcf, as hypothesized. 
Sizes: 

whole = 825 
diff = 729 
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(1041)A POSSIBLE END STATE 
(invariant violated/goal reached): 
clock_tick^c = 0 
UAccessPoint_in 

[0] 

[1] 

.base^c = 0 

.queued'^c = 0 

.content 
[0] 

.kind'̂ c = 0 

.RECEIVErequest 
.dummy'^c = 0 

.SENDrequest 
.udata'^c = 0 

.base'̂ c = 0 

. queued'^c = 0 

.content 
[0] 

.kind'̂ c = 0 

.RECEIVErequest 
.dummy'^c = 0 

.SENDrequest 
.udata'^c = 0 

UAccessPoint out 
[0] 

[1] 

.base^c = 0 

.queued'^c = 1 

.content 
[0] 

.kind'̂ c = 1 

.SENDconfirm 
.duiranŷ c = 0 

.RECEIVEresponse 
.udata'^c = 0 

.base'̂ c = 0 

.queued'^c = 0 

.content 
[0] 

.kindle = 0 

.SENDconfirm 
.duitimy'̂ c = 0 

.RECEIVEresponse 
.udata'^c = 0 

NAccessPoint 
[0] 

[1] 

.base'^c = 0 

.queued'^c = 0 

.content 
[0] 

.DATAinteraction 
.ndata 

.id-̂ c = 1 

.conn-̂ c = 0 

.data-̂ c = 0 

.seq'̂ c = 0 

.base'̂ c = 0 

.queued^c = 1 

.content 
[0] 

.DATAinteraction 
.ndata 

.id'-c = 0 

.conn'̂ c = 0 

.data^c = 0 

abp6 
[0] 

[1] 

.seq'̂ c = 

.state'^c = estab 

.vars 
.Send_seq''c = 1 
.Recv_seq''c = 0 
. Recv_buf f er_empty'^c 
. Recv_buf f er_datum''c 
.Recv_buf fer_seq'~c = 
. Send_buf f er_empty'^c 
.Send_buffer_datum^c 
.Send_buf fer_seq'^c = 

.timers 
. rexmit_t imer 

.running'^c = 0 

.counter'-c = 0 

.state^c = estab 

.vars 
.Send_seq^c = 0 
.Recv_seq^c = 1 
.Recv_buffer_empty^c 
. Recv_buf f er_datum'^c 
.Recv_buf fer_seq'^c = 
. Send_buf f er_empty'"c 
. Send_buf f er_datum''c 
.Send_buffer_seq''c = 

.timers 
. rexrai t_t imer 

. running'^ c = 0 

.counter^c = 0 
user_txdatuin'^c = 0 
user_rxdatum^c = 0 

0 

= 
= 
0 
= 
= 
0 

= 
= 
0 
= 
= 
0 

1 
0 

1 
0 

0 
0 

1 
0 



APPENDIX 6: EXAMPLE COUNTEREXAMPLE TRACE 156 

A POSS 
clock. 
UAcces 

[0 

IBLE PREDECESSOR STATE; 
tick-^C = 0 
sPoint_in 

abp6 

.base'̂ c 

.queued 

.content 
[0] 

= 0 
c = 0 

[1] 

.kind-̂ c = 0 

.RECEIVErequest 
.duirany''c = 0 

.SENDrequest 
.udata-^c = 0 

.base'̂ c • 

. queued'^! 

.content 
[0] 

UAccessPoint out 
[0] 

.base^c : 

.queued'^i 

.content 
[0] 

= 0 
0 = 0 

.kindle = 0 

.RECEIVErequest 
. dummy'^c = 

.SENDrequest 
.udata'^c = 

= 0 
c = 1 

0 

0 

[ 1 ] 
.base^c 
.queued 
.content 

[0] 

.kind-^c = 1 

.SENDconfirm 
.diimmy^'c = 0 

.RECEIVEresponse 
.udata'^c = 0 

= 0 
•c = 0 

.kind'^c = 0 

.SENDconfirm 
.dummy'^c = 0 

,RECEIVEresponse 
.udata'-c = 0 

NAccessPoint 
[0] 

[1] 

.base'^c = 0 

.queued'^c = 1 

.content 
[0] 

.DATAinteraction 
.ndata 

.id-^c = 1 

.conn'^c = 0 

.data'^c = 0 

.seq'^c = 0 

.base'^c = 0 

.queued'^c = 1 

.content 
[0] 

.DATAinteraction 
.ndata 

.id^c = 0 

.conn-^c = 0 

.data-^c = 0 

.seq-^c = 0 

[0] 

[1] 

. state'^c = ack_wait 
,vars 

.Send_seq'^c = 0 

.Recv_seq'^c = 0 

.Recv_buf fer_empty"c 

. Recv_buf f er_datum''c 

.Recv_buffer_seq''c = 

. Send_buf f er_empty'^c 

. Send_buf f er_datum'^c 

.Send_buf fer_seq''c = 
.timers 

.rexmi t_t imer 
.running^c = 1 
.counter-^c = 0 

.state'^c = estab 

. vars 
.Send_seq'^c = 0 
.Recv_seq'^c = 1 
. Re c v_bu f f e r_emp ty "̂  c 
. Recv_buf f er_dat\am'^c 
.Recv_buf fer_seq'^c = 
.Send_buffer_empty^c 
. Send_buf f er_datum''c 
.Send_buf fer_seq''c = 

.timers 
.rexmit_t imer 

. running'^c = 0 

.counter'^'c = 0 
user_txdatum'^c = 0 
user rxdatum^c = 0 



APPENDIX 6: EXAMPLE COUNTEREXAMPLE TRACE 157 

IBLE PREDECESSOR STATE: 
tick'̂ C = 0 

A POSS 
clock. 
UAccessPoint_in 

[0 

abp6 

)] 
0 

tl] 

.base'̂ c = 

. queued'^ c = 0 

.content 
[0] 

.kindle = 0 

.RECEIVErequest 
. dummy'"'c = 0 

.SENDrequest 
.udata'^c = 0 

.base'̂ c = 0 

.cjueued̂ 'c = 0 

.content 
[0] 

.kindle = 0 

.RECEIVErequest 
.dummy'^c = 0 

.SENDrequest 
.udata'^c = 0 

UAccessPoint_out 
[0] 

.base^c = 0 

. queued'^ c = 1 

.content 
[0] 

.kind-̂ c = 1 

.SENDconfirm 
.dummy^c = 0 

. RECEIVEresponse 
.udata^'c = 0 

[1] 

NAcces 
[0 

[1] 

base^c = 0 
. queued'^c = 0 
.content 

[0] 
.kind'̂ c = 0 
.SENDconfirm 

.dummy^c = 0 
.RECEIVEresponse 

.udata-^c = 0 
sPoint 
] 

.base'̂ c = 0 

.queued'^c = 1 

.content 
[0] 

.DATAinteraction 
.ndata 

.id'-c = 1 

.conn'*~c = 

.data'̂ c = 
• seq-̂ c = ( 

.base'̂ c = 0 

.queued^c = 0 

.content 
[0] 

.DATAinteraction 
.ndata 

.id'̂ c = 0 

.conn'̂ c = 0 

.data-̂ c = 0 

.seq-̂ c = 0 

[0] 

[1] 

. state'^c = ack_wait 

.vars 
.Send_seq'^c = 0 
.Recv_seq^c = 0 
. Recv_buf f er_empty •̂c 
. Recv_buf f er_datum'~c 
.Recv_buf fer_seq'^c = 
. Send_buf f er_empty'^c 
. Send_buf f er_datum''c 
.Send_buf fer_seq'^c = 

.timers 
.rexmi t_t imer 

.running'^c = 1 

.counter'^c = 3 

• state^'c = estab 
.vars 

.Send_seq'^c = 0 

.Recv_seq'^c = 1 

.Recv_buffer_empty^c 

. Recv_buf f er_datum'^c 

.Recv_buffer_seq^c = 

. Send_buf f er_empty'^c 

. Send_buf f er_dat\jm''c 

. Send_buf f er_seq'^c = 
.timers 

. rexmi t_t imer 
. running^c = 0 
. counter^c = 0 

user_txdat\am'^c = 0 
use r rxdatuTO'^c = 0 



APPENDIX 6: EXAMPLE COUNTEREXAMPLE TRACE 158 

A POSSIBLE PREDECESSOR STATE: 
clock_tick^c = 0 
UAccessPoint in 

[0] 

[1] 

•base^c = 0 
. queued''c = 0 
.content 

[0] 
.kind'-c = 0 
.RECEIVErequest 

.dummy'^c = 0 
.SENDrequest 

.udata-^c = 0 

.base-̂ c = 0 
• queued'^c = 0 
.content 

[0] 
.kind-̂ c = 0 
.RECEIVErequest 

.dummy'^c = 0 
.SENDrequest 

.udata^c = 0 
UAccessPoint out 

[0] 

[1] 

.base^c = 0 

.queued'~c = 1 

.content 
[0] 

.kind-̂ c = 1 

.SENDconfirm 
.dummy'^c = 0 

.RECEIVEresponse 
.udata'*'c = 0 

.base'̂ c = 0 

. queued'^c = 0 

.content 
[0] 

.kind'̂ c = 0 

abp6 
[0] 

[1] 

. state'^c = ack_wait 

.vars 
.Send_seq'^c = 0 
.Recv_seq''c = 0 
. Rec v_bu f f er_empty"" c 
. Recv_buf f er_datum''c 
.Recv_buf fer_seq''c = 
.Send_buffer_empty^c 
. Send_buf f er_datuiii'̂ c 
.Send_buffer_seq^c = 

.timers 
. rexmi t_t imer 

. running'^c = 1 

.counter^c = 3 

.state'^c = estab 

.vars 
.Send_seq''c = 0 
.Recv_seq'^c = 0 
. Recv_buf f er_empty •̂c 
. Recv_buf f er_datum'^c 
.Recv_buf fer_seq'^c = 
. Send_buf f er_empty'^c 
. Send_buf f er_datiain'̂ c 
.Send_buf fer_seq'^c = 

.timers 
.rexmi t_t imer 

. running'^c = 0 

.counter'^c = 0 
user_txdatuin'^c = 0 
user_rxdatum^c = 0 

= 
= 
0 
= 
= 
0 

= 
= 
0 
= 
= 
0 

1 
0 

0 
0 

1 
0 

1 
0 

.SENDconfirm 
.dummy'^c = 0 

.RECEIVEresponse 
.udata'^c = 0 

NAccessPoint 
[0] 

.base'̂ c = 0 

.queued^c = 0 

.content 
[0] 

.DATAinteraction 
.ndata 

0 

[1] 

.id^c 

.conn'̂ c = 0 

.data'̂ c = 0 

. seq'̂ c = 0 

.base'̂ c = 

.queued'^c 

. content 
[0] 

0 
= 1 

.DATAinteraction 
.ndata 

.id^c = 0 

.conn'̂ c = 0 

.data'-c = 0 

.seq'̂ c = 0 
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A POSSIBLE PREDECESSOR STATE: 
clock._tick'^c = 1 
UAccessPoint in 

[0] 

[1] 

.base'̂ c = 0 

.queued^c = 0 

.content 
[0] 

• kind'^c = 0 
.RECEIVErequest 

• duminy^c = 0 
.SENDrequest 

.udata'^c = 0 

.base'̂ c = 0 

. queued'^ c = 0 

.content 
[0] 

.kind'̂ c = 0 
•RECEIVErequest 

.duiranŷ c = 0 
.SENDrequest 

.udata'^c = 0 
UAccessPoint out 

[0] 
.base'̂ c = 0 
.queued'^c = 1 
.content 

[0] 
.kind'̂ c = 1 
.SENDconfirm 

.duininy'̂ c = 0 
.RECEIVEresponse 

abp6 
[0] 

[1] 

• state-^c = ack_wait 
.vars 

.Send_seq'^c = 0 

.Recv_seq'^c = 0 

. Recv_buf f er_empty'^c 

. Recv_buf f er_datuin^c 

.Recv_buf fer_seq'^c = 

. Send_buf f er_empty "̂c 

. Send_buf f er_datum'^c 

.Send_buf fer_seq''c = 
.timers 

.rexmi t_t imer 
.running'^c = 1 
.counter^c = 2 

.state^c = estab 

.vars 
.Send_seq''c = 0 
.Recv_seq''c = 0 
. Recv_buf f er_einpty'̂ c 
. Recv_buf f er_dat\im''c 
.Recv_buffer_seq''c = 
. Send_buf f er_einpty^c 
. Send_buf f er_datum'^c 
.Send_buf fer_seq'^c = 

.timers 
.rexmit_timer 

.running'^c = 0 

.counter'^c = 0 
user_txdatum'^c = 0 
user_rxdatum'^c = 0 

= 
= 
0 
= 
= 
0 

= 
= 
0 
= 
= 
0 

1 
0 

0 
0 

1 
0 

1 
0 

[ 1 ] 
.udata-^c = 0 

.base'̂ c 

. queued' 

.content 
[0 

= 0 
c = 0 

.kind'̂ c = 0 

.SENDconfirm 
.dummy^c = 0 

.RECEIVEresponse 
.udata'^c = 0 

NAcces 
[0 
sPoint 
] 

.base^c 

.queued 

.content 
[0] 

= 0 
c = 0 

[1] 

.DATAinteraction 
.ndata 

.id^c = 0 

.conn'̂ c = 0 

.data'̂ c = 0 

.seq'̂ c = 0 

•base^c = 0 
. queued'^c = 1 
. content 

[0] 
.DATAinteraction 

.ndata 
.id'̂ c = 0 
.conn'̂ c = 0 
.data'̂ c = 0 
.seq'̂ c = 0 
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A POSSIBLE PREDECESSOR STATE: 
clock_tick''c = 1 
UAccessPoint in 

[0] 

[1] 

.base'^c = 0 

.queued'^c = 0 

.content 
[0] 

.kind'-c = 0 

.RECEIVErequest 
• dunimy'^c = 0 

.SENDrequest 
.udata'^c = 0 

.base'^c = 0 

. queued''c = 0 

.content 
[0] 

.kindle = 0 

.RECEIVErequest 
.duinmy''c = 0 

•SENDrequest 
.udata'^c = 0 

UAccessPoint out 
[0] 

[1] 

.base^c = 0 

.queued'^c = 1 

.content 
[0] 

.kind'^c = 1 

.SENDconfirm 
.d'uirany'̂ c = 0 

.RECEIVEresponse 
.udata'^c = 0 

.base'^c = 0 

.queued^c = 0 

.content 
[0] 

.kind-^c = 0 
•SENDconfirm 

• dtjiratiŷ c = 0 
•RECEIVEresponse 

•udata^c = 0 
NAccessPoint 

[0] 

[1] 

.base'^c = 0 

.queued'^c = 0 

.content 
[0] 

.DATAinteraction 
•ndata 

•id^c = 0 
• conn'^c = 0 
• data-^c = 0 
• seq'-c = 0 

• base'^c = 0 
• queued'^c = 1 
.content 

[0] 
•DATAinteraction 

.ndata 
•id^c = 0 
• conn'^c = 0 
• data'^c = 0 
• seq'^c = 0 

abp6 
[0] 

• state^'c = ack_wait 
• vars 

• Send_seq'^c = 0 
.Recv_seq'^c = 0 
• Recv_buf f er_empty'^c 
• Recv_buf f er_datuin'^c 
.Recv_buffer_seq^c = 
. Send_buf f er_empty''c 
• Send_buf f er_datum''c 
.Send_buf fer_seq'^c = 

•timers 
• rexmi t_t imer 

• running-^c = 1 
.counter'^c = 1 

[1] 
• state'-c = estab 
• vars 

.Send_seq^c = 0 

.Recv_seq'"c = 0 

. Recv_buf f er_empty'^c 

.Recv_buffer_datum^c 

.Recv_buf fer_seq'^c = 

. Send_buf f er_empty'~'c 

. Send_buf f er_datum''c 
• Send_buffer_seq'^c = 

•timers 
•rexmit_timer 

• running'^c = 0 
• counter'^c = 0 

user_txdatum''c = 0 
user_rxdatum'^c = 0 
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A POSSIBLE PREDECESSOR STATE: 
clock_tick'"c = 1 
UAccessPoint_in 

[0] 
.basê 'c = 0 
.queued'̂ c = 0 
.content 

[0] 
.kind'̂ c = 0 
.RECEIVErequest 

.duimtŷ c = 0 
.SENDrequest 

.udata-̂ c = 0 
[1] 

.base'̂ c = 0 

.queued'̂ c = 0 

.content 
[0] 

.kindle = 0 

.RECEIVErequest 
.dijitimy'^c = 0 

.SENDrequest 
.udata'^c = 0 

UAccessPoint_out 
[0] 

.basê 'c = 0 

. queued"^ c = 1 

.content 
[0] 

.kind-̂ c = 1 

.SENDconfirm 
.dummy'^c = 0 

.RECEIVEresponse 
.udata'^c = 0 

abp6 
[0] 

[1] 

NAcces 
[0 

base'̂ 'c = 0 
.queued'^c = 0 
.content 

[0] 
.kindle = 0 
.SENDconfirm 

.dummy'^c = 0 
.RECEIVEresponse 

.udata'^c = 0 
sPoint 
] 

.base'̂ c = 0 

.queued'^c = 0 

.content 
[0] 

.DATAinteraction 
.ndata 

.id-̂ c = 0 

[1] 

.conn̂ 'c = 0 

.data'̂ c = 0 

.seq'̂ c = 0 

.base'̂ c = 0 

.queued'^c = 1 

.content 
[0] 

.DATAinteraction 
.ndata 

.id'̂ c = 0 

.conn'̂ c = 0 

.data'̂ c = 0 

.seq'̂ c = 0 

state^c = ack_wait 
vars 

.Send_seq^c = 0 

.Recv_seq''c = 0 

. Recv_buf f er_empty'"c 

.Recv buffer datum^c 

.Recv buffer seq^c = 

.Send buffer_empty'~c 
• Send buffer datum'^c 
.Send_buf fer_seq''c = 

timers 
.rexmit timer 

. running'" c = 1 

.counter^c = 0 

= 
= 
0 
= 
= 
0 

1 
0 

0 
0 

[1 ] 
'c = estab . state 

.vars 
. Send_seq''c = 0 
.Recv_seq'"c = 0 
. Recv_buf f er_empty'"c 
. Recv_buf f er_datum''c 
.Recv_buf fer_seq'"c = 
. Send_buf f er_empty''c 
. Send_buf f er_datum''c 
.Send_buf fer_seq'^c = 

.timers 
. r exmi t_t imer 

.running'^c = 0 

.counter'"c = 0 
user_txdatum''c = 0 
user_rxdatum'^c = 0 



APPENDIX 6 : EXAMPLE COUNTEREXAMPLE TRACE 1 6 2 

A POSS 
c l o c k _ ' 
UAcces 

[0 

IBLE PREDECESSOR STATE: 
t i c k ' - C = 0 
s P o i n t _ i n 

abp6 

.base '^c 

. q u e u e d 

. c o n t e n t 
[0] 

= 0 
c = 1 

[1] 

.kindle = 0 

.RECEIVErequest 
.dummy'^c = 0 

.SENDrequest 
.udata'^c = 0 

• base'^c = 
. queued"^! 
.content 

[0] 

UAccessPoint out 
[0] 

.base'̂ c = 

. queued'̂ c 

.content 
[0] 

= 0 
:; = 0 

.kind'̂ c = 0 

.RECEIVErequest 
.duirany'̂ c = 

.SENDrequest 
.udata'-c = 

= 0 
:: = 0 

'o 
0 

[1] 
.base'̂ c 
.queued 
.content 

[0] 

.kind'-c = 0 

.SENDconfirm 
.dummy'^c = 0 

.RECEIVEresponse 
.udata^c = 0 

= 0 
•c = 0 

.kind'̂ c = 0 

.SENDconfirm 
.duinitiy'"c = 0 

.RECEIVEresponse 
.udata^c = 0 

NAccessPoint 
[0] 

[1] 

.base'̂ c = 0 

.queued'^c = 0 

.content 
[0] 

.DATAinteraction 
.ndata 

.id'̂ c = 0 

.conn'̂ c = 

.data^c = 

. seq'̂ c = 0 

.base^c = 0 

.queued^c = 0 

. content 
[0] 

.DATAinteraction 
.ndata 

.id'̂ c = 0 
• conn'̂ c = 0 
.data'̂ c = 0 
.seq'̂ c = 0 

[0] 

[1] 

.state'^c = estab 

.vars 
.Send_seq^c = 0 
.Recv_seq'^c = 0 
. Recv_buf f er_empty''c 
. Recv_buf f er_datum''c 
.Recv_buf fer_seq'^c = 
. Send_buf f er_empty''c 
. Send_buf f er_datum'^c 
.Send_buf fer_seq''c = 

.timers 
.rexmit_t imer 

.running^c = 0 

.counter^c = 0 

.state'^c = estab 
• vars 

.Send_seq''c = 0 

.Recv_seq'"c = 0 

. Recv_buf f er_empty'^c 

.Recv_buf fer_datum^c 

.Recv_buf fer_seq'^c = 

. Send_buf f er_empty'~'c 

. Send_buf f er_datum''c 

.Send_buf fer_seq'^c = 
.timers 

. r exmi t_t imer 
.running^c = 0 
. counter'^c = 0 

user_txdatum''c = 0 
user rxdatum'^c = 0 
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A POSSIBLE PREDECESSOR STATE: 
clock_tick''c = 0 
UAccessPoint_in 

[0] 
.base'̂ c = 0 
.queued'^c = 0 
.content 

abp6 
[0] 

[o: 

[1] 

.kind'̂ c = 0 

.RECEIVErequest 
.diimmy'̂ c = 0 

•SENDrequest 
.udata'^c = 0 

.base'̂ c = 0 

.queued'^c = 0 

.content 
[0] 

.kind'̂ c = 0 

.RECEIVErequest 
.dummy'^c = 0 

.SENDrequest 
.udata^c = 0 

UAccessPoint_out 
[0] 

.base^c = 0 

.queued^c = 0 

.content 
[0] 

.kind'̂ c = 0 

.SENDconfirm 
.diimmy^c = 0 

.RECEIVEresponse 
.udata-^c = 0 

[1] 
.basê 'c = 0 
.queued'^c = 0 
.content 

[0] 
.kind'̂ c = 0 
.SENDconfirm 

.dimmiy'̂ c = 0 
.RECEIVEresponse 

.udata'^c = 0 
NAccessPoint 

[0] 
.base^c = 0 
.queued'^c = 0 
.content 

[0] 
.DATAinteraction 

.ndata 
.id'̂ c = 0 
.conn'̂ c = 0 
.data'̂ 'c = 0 
.seq'̂ c = 0 

[1] 
.basê 'c = 0 
.queued''c = 0 
.content 

[0] 
.DATAinteraction 

.ndata 
.id^c = 0 
.conn'-c = 0 
.data'̂ c = 0 
.seq'̂ c = 0 

[1] 

.state'^c = estab 

. vars 
.Send_seq'^c = 0 
.Recv_seq''c = 0 
.Recv_buf fer_empty'^c = 1 
.Recv_buffer_datum'^c = 0 
.Recv_buffer_seq'^c = 0 
.Send_buf fer_empty'^c = 1 
.Send_buf fer_datiim''c = 0 
.Send_buf fer_seq'"c = 0 

.timers 
.rexmi t_t imer 

.running'^c = 0 
• counter^'c = 0 

• state'^c = estab 
.vars 

.Send_seq'^c = 0 

.Recv_seq^c = 0 

.Recv_buf fer_empty'^c = 1 

.Recv_buffer_datum^c = 0 

.Recv_buffer_seq^c = 0 

.Send_buf fer_empty'^c = 1 

.Send_buf fer_datum''c = 0 

.Send_buf fer_seq'^c = 0 
•timers 

.rexmi t_t imer 
.running^c = 0 
.counter^c = 0 

user_txdatum''c = 0 
user_rxdatum'^c = 0 

End of printtrace. 
Clock 322971/100 seconds. 
Memory 0 bytes. 
BDD 110710 nodes. 
Garbage Collecting... 
BDD 42152 nodes. 
Next state relation uses 7144 bdd 
nodes. 

Command> 



Appendix 7: Ever command f i l e for 
correc ted formula 

-- Ever command file for evaluating new version of formula 
-- that states that no send data requests are submitted to 
-- the underlying link by the ABP sender module while it 
— is in the ESTAB state. (Sat 04 Dec 1993) 

-- Note, only suitable for model of underlying link with 
-- only data packet delivery and data loss. 

-- Proposition for exists y,s. ASend(y,s). 
defprop exists_y_s_asend (eq NAccessPoint[1].queued^c 1); 

-- Define consequent of formula in case need to produce counterexamples, 
defprop consequent 

(AU (or (exists_y_s_asend) 
(AU (and (eq abp6 [0] . state-̂ c 1) 

(asendnothing)) 
(eq abp6[0].state^c 0))) 

(eq abp6[0] .state'̂ c 0)); 

defprop estab_implies_no_asends_initiated 
(AG (implies (eq abp6[0].state^c 1) 

(consequent))); 

defprop init_estab_implies_no_asends_initiated 
(implies (global_init) (estab_implies_no_asends_initiated)); 

printstring "init_estab_implies_no_asends_initiated"; 
printprop (init_estab_implies_no_asends_initiated); 
printsize (init_estab_implies_no_asends_initiated); 

-- Do following in case previous output not a tautology, 
printstring "global_init and estab_implies_no_asends_initiated"; 
printprop (and (global_init) (estab_implies_no_asends_initiated)); 
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Appendix 8: Ever output for correc ted 
formula 

init_estab_implies_no_asends_initiated 
evaluated (AU 3e6bac 3e6e6c 0) size=17 totalBDDsize=124058 77:53 mins 0 Kb 
evaluated (AU 3e6f2c 3e71ec 0) size=16 totalBDDsize=124469 102:09 mins 0 Kb 
evaluated (AG 3e762c 0) size=41 totalBDDsize=85852 103:07 mins 0 Kb 
[1] 
Unevaluated Size: 0 
global_init and estab_implies_no_asends_initiated 
! (UAccessPoint_in[0] .queued'^c 

[1] 
(UAccessPoint_in[0] .content [0] .kind'̂ c 

[1] 
(UAccessPoint_in[0] .content [0] .RECEIVErequest .dummy^'c 

[1] 
(UAccessPoint_in[0] .content [0] .SENDrequest .udata'^c 
[1] 
(UAccessPoint_in[l] .queued'^c 

[1] 
(UAccessPoint_in[l] .content[0] .kind'̂ c 

[1] 
(UAccessPoint_in[l] .content [0] .RECEIVErequest .dummy'^c 

[1] 
(UAccessPoint_in[l] .content[0] .SENDrequest.udata'^c 

[1] 
(UAccessPoint_out [0] .queued'^c 

[1] 
(UAccessPoint_out[1].queued^c 

[1] 
(NAccessPoint[0].queued^c 

[1] 
(NAccessPoint [1] .queued'^c 

[1] 
(abp6[0] .state'^c 

(abp6 [ 0 ] . vars. Send_seq'^c 
[1] 
(abp6[0] .vars.Recv_seq'"c 
[1] 
(abp6[0].vars.Recv_buffer_empty^c 
(abp6 [0] .vars.Send_buf fer_empty'^c 

[ii) 
[1]))) 

[1]))))))))))))) 
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