
Part i t ioned Rendering Infrastructure for Stable

Accord ion Navigat ion

by

James Gerald Alphonso Slack

B.Sc, University of British Columbia, 2002

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE STUDIES

'• Computer Science

We accept this thesis as conforming
to the required standard

The Universi ty of B r i t i s h Columbia

April 2005

© James Gerald Alphonso Slack, 2005

Abstract

My thesis presents a new rendering infrastructure for information visualization ap

plications that use the accordion drawing navigation metaphor. Accordion drawing

techniques use rubber-sheet navigation methods, with the borders tacked down, and

provide guaranteed visibility for marked areas of interest.

Our accordion drawing algorithms are based on screen-space partitioning,

which eliminates overculling and tightly bounds overdrawing. By eliminating the

overculling effects of rendering dense regions of data, we guarantee a correct visual

representation of any dataset. Also, our pixel-based drawing infrastructure improves

the rendering performance of dense dataset regions with strict drawing constraints,

which are based on application-specific drawing requirements. The generic infras

tructure provides an interface to numerically stable navigation of datasets, with full

support for multiple concurrent regions of navigation motion.

To evaluate our generic infrastructure, I benchmark our tree comparison

application with the performance of TreeJuxtaposer, a previous accordion drawing

application with identical features. I describe our tree traversal algorithms, which we

use for efficient rendering, culling, and layout of tree datasets. I also discuss tree node

marking techniques, which offer several improvements over previous range storage

and retrieval techniques, reducing memory requirements and increasing rendering

speed. Finally, I evaluate tree-specific navigation techniques from our winning entry

in the Info Vis 2003 contest, with TreeJuxtaposer supported by an incremental search

feature and an improved user interface.

ii

Contents

Abstract ii

List of Figures vi

Notation x

Acknowledgements xi

1 Introduction 1

1.1 Motivation 1

1.2 Information visualization techniques 5

1.2.1 Guaranteed visibility 5

1.2.2 Focus+Context 8

1.2.3 Progressive rendering 9

1.3 Thesis contributions 10

1.3.1 Accordion drawing contributions 10

•1.3.2 TJ2 contributions 10

1.3.3 TreeJuxtaposer Evaluation from InfoVis 2003 Contest entry . 11

1.4 Thesis Organization 11

2 Related Work 12

2.1 Visualization, interaction, and perception 12

2.2 Phylogenetic tools and tree visualization 21

in

3 TJ2 24

3.1 Node layout 25

3.1.1 Mapping nodes to grid 27

3.1.2 Placing horizontal node edges 29

3.2 Rendering trees 33

3.2.1 Node seeding 34

3.2.2 Drawing trees 35

3.3 Marked ranges 46

3.3.1 Marked ranges in T J 1 47

3.3.2 Marked ranges in T J 2 50

3.4 Topological picking 54

4 Accordion Drawing 59

4.1 Split line infrastructure 62

4.1.1 Abstracting split lines 65

4.1.2 Separate horizontal and vertical split lines 66

4.1.3 Tree hierarchy for split lines 68

4.2 Generic A D rendering infrastructure 70

4.2.1 Part i t ioning stage 71

4.2.2 Seeding stage •• • • 72

4.2.3 Drawing stage 72

4.3 A D navigation 73

4.3.1 Moving one split line 74

4.3.2 Moving several split lines 79

5 Evaluation and Discussion 83

5.1 Preprocessing 85

5.2 Scene rendering 88

5.3 Memory usage 93

iv

5.4 Mark ing efficiency 95

5.5 Evaluation summary 96

6 Future Work and Conclusions 98

6.1 Future work 98

6.2 Conclusions 99

Glossary 101

Bibliography 107

Appendix A TreeJuxtaposer Task Evaluation 112

A . l Contest dataset 113

A.2 User interface 114

A . 3 Incremental search 117

A.4 Contest results 122

A.4.1 Tasks suited for TJl-contest 122

A.4.2 Tasks not suited for TJl-contest 163

A . 5 Contest conclusions 170

v

List of Figures

1.1 A rectilinear, right-aligned tree 2

1.2 Comparison of two trees 3

1.3 Accordion navigation . . . 4

1.4 Highlighted data has priority, context is important 6

2.1 The SeeSoft software analysis tool 13

2.2 The document lens visualization tool . 15

2.3 The H3Viewer visualization application 16

2.4 The Pad++ system 17

2.5 The SequenceJuxtaposer application 19

2.6 The PowerSetViewer application . 20

2.7 The TreeWiz application 22

3.1 Naming conventions for edges and directions 26

3.2 doGridding function 27

3.3 Gridding: example subtree 28

3.4 Tree placed in grid 28

3.5 Horizontal edge placement can be anywhere 30

3.6 Relative placement of horizontal node edges in cells 31

3.7 Leaf range width less than block width 38

3.8 Leaf range width less than half-block width 39

3.9 Ascent rendering horizontal gaps 40

3.10 Finding highest subtree in a leaf range 41

vi

3.11 ascentRender function 42

3.12 Half-block gaps in leaf ancestors 44

3.13 Rendering problems with ascent width less than segment width . . . 45

3.14 Example node key assignment in a small tree 46

3.15 TJ1 mark storage with indirect marks 49

3.16 Incorrect indirect marking using simple methods 52

3.17 Direct marking of indirectly marked nodes 53

3.18 Picking function 56

4.1 Initial uniform split line layout 61

4.2 Vertical stretch of interaction box 62

4.3 Interaction box stretch in both directions 63

4.4 A Quad-cell, from Accordion Drawing in TJ1 . 64

4.5 Separate horizontal and vertical sets of split lines form grid 67

4.6 Split lines stored in a balanced binary tree hierarchy 68

4.7 Split lines boundaries expressed as lines and regions 69

4.8 AbsblutePosition function 70

4.9 moveSingleSplitLine function 75

4.10 Absolute distances move with split line 76

4.11 Labeled regions for single split line movements 78

4.12 moveSplitLineSet function 81

4.13 The three cases of function moveSplitLineSet 82

5.1 Parsing time 86

5.2 Preprocessing time 87

5.3 Rendering time performance for TJ2 89

5.4 Number of nodes rendered for TJ1 and TJ2 90

5.5 Average time to render a node in TJ1 and TJ2 92

5.6 Memory performance of TJ1 and TJ2 94

vii

5.7 Table of marking performance of TJ1 versus TJ2 95

A . l TJ1 User Interface . .' 1 1 5

A.2 TJl-contest User Interface 116

A.3 TJl-contest Groups panel 117

A.4 TJl-contest Settings panel 118

A.5 TJ1 drop-down selection box 119

A.6 TJl-contest Found panel 121

A.7 Differences marked in mammalia trees, with Latin names 124

A.8 Differences marked in hcil trees 125

A.9 Differences marked in phylo trees 125

A. 10 Differences of genus pteropus and family pitheciidae 126

A. 11 Differences of directories counterpoint and ivOScontest 127

A. 12 Movements of cebidae and pitheciidae 128

A. 13 Similar topological properties in both phylo trees 129

A.14 Path between animalia and homo sapiens in animaliaA • • 130

A.15 The users subtree marked in logSA, showing subtree fan-out 132

A.16 mammals and bony fishes marked in animaliaR 134

A.17 Result of giraffe search in animaliaR . . 136

A.18 Result of browsing for cute animals in animaliaB 139

A. 19 Top three topological similarities marked in phylo trees 141

A.20 The rodentia subtree marked in both mammalia trees 143

A.21 The animaliaA t r e e with common node names 144

A.22 Result of dolphin search in animaliaA 145

A.23 Result of horse search in animaliaA • 146

A.24 marmots subtree expansion in mammalia trees, common names . . . 148

A.25 marmota subtree expansion in mammalia trees, Latin names 148

A.26 Differences marked in mammalia trees, with common names 149

A.27 Result of Townsend search in animaliaA, with Latin names 150

viii

I

A.28 Result of Townsend search in animal iaA, with common names 151

A.29 spirulida subtree expansion in animaliaA, Latin names 153

A.30 logSA file system tree . 155

A.31 building subtrees and shankar subtrees marked for comparison . . . 156

A.32 class subtree expanded in logSA 158

A.33 project subtree expanded in logSA • 159

A.34 users subtree expanded in comparison of logSA and logSB 160

A.35 Differences in cmsc434-0101 between logSA and logsg 161

A.36 Differences in cmsc838p between logSA and logsg 161

A.37 Differences show new courses added between logSA and logsg 162

A.38 Differences in jazz-chat directory between logSA and logSB 163

A.39 Differences in counterpoint among all hcil trees 164

A.40 Differences in ivOScontest among all hcil trees 164

A.41 Differences in spacetree and timesearcher among all hcil trees 165

ix

Notation

In this document I use the first person when referring to work done either entirely

or primarily by myself, and the third person when referring to collaborative work

with colleagues.

Also, this thesis uses several different typeface conventions that are used

to convey meaning, when applicable. No type-faces are combined since each type

convention may only apply to at most one special word. Each type is listed here for

convenience:

• An occurrence of a glossary entry is in Roman, upright, bold type. The

glossary will only contain a page reference to either the first use of an entry

or to a meaningful place where the entry is defined in a meaningful context,

and that occurrence will be in this type.

• The names of dataset names are in sans serif, upright, medium type. Dataset

names used for the Info Vis 2003 contest are defined in Section A . l . Similar

datasets, such as animaliaA and animaliaB, are differentiated by lowered type

from animalia, which refers to the datasets in a comparison environment.

• The specific names of dataset nodes are in Roman, italic, medium type. Nodes

may be: scientific, Latin species names, such as marmota; common, English

species names, such as marmots; or file system names, such as iv03contest.

• The descriptive names of components of TreeJuxtaposer applications are in

typewriter, upright, medium type. The components are the menu options

and panels of TreeJuxtaposer; panels, such as Settings can be used by ac

cessing them through the menu options, such as Tools. Other named options

within panels are also in this type.

x

Acknowledgements

I'd like to keep this short, since my thesis seems so very long and I could very well

go on for pages and pages about stuff... so, for everyone who I've missed, it's not

out of spite, it's an indication that we need to hang out more.

First, here's a randomized list of grads and other students, many of whom

are in a boat similar to mine, that I've run into in Imager while starting my thesis:

Qiang Kong; Vlad Kraevoy; Fred Kimberley; Ciaran Llachlan Leavitt; Ken Al

ton; Ben Forsyth; Chen Yang; Matt Trentacoste; Kristian Hildebrand; Lewis John

son; Andrew Chan; Dan Archambault; Jason Harrison; Dave Westrom; Abhijeet

Ghosh; Dave Burke; Dmitry Nekrasovski; Simon Clavet; Hamish Carr; Adam Bod-

nar; Yongying Zhu; Melanie Tory; Heidi Lam; Mark Hancock; and Matt Williams.

Not all that happens in Imager is fun and games, but my lab-mates of Imager have

been a never-ending source of entertainment, research ideas, coffee breaks, runs to

the village for Curry Point, and the occasional multiplayer slaughter-fest.

Second, the all important list of colleagues I've worked with on papers and

other conference submissions, whom I have worked with night and day, yet still don't

understand my sleeping schedule: Tamara Munzner; Kristian Hildebrand; Ciaran

Llachlan Leavitt; Katherine St. John; Qiang Kong; and Francois Guimbretiere. For

the most part, this thesis either refers to work done mostly by me, in the first person,

or with others who were forced to work with me. A large amount of our work in

analysis of accordion drawing methods, future work considerations, and other tree

rendering tricks, I attribute to collaborative work with Kristian Hildebrand, who

xi

always provides the necessary encouragement for me to GBTW on a regular basis.

Of course, my patient supervisor, Tamara Munzner, has been super supportive of

many of my crazy ideas, shows interest in a majority of my not-so-well-thought-

out algorithms, and continues to help me improve in all those pesky areas I need

improvement on, which is saying a lot.

Finally, but of course most importantly, I must give the biggest shout-out

to my family, who are always on my mind when they least expect it. First, my /

very understanding parents, Cliff and Kathy Slack, who deserve much more than

a simple thanks, I've dedicated this thesis to you (it's on the next page) for many

good reasons. Hopefully you'll enjoy reading it as much as I enjoyed writing it,

perhaps even more. Next, my far away, but never forgotten, sister Erica and my

brother-in-law Stu Morgan, who make a 20 hour flight worthwhile, even when it

doesn't quite make it to its destination. I'll be sure to see you in Rarotonga in the

near future, to, um, check on your palm tree, which must be hundreds of feet tall

by now. My traveling buddy, and otherwise outstanding grandma Ella MacNeil: I

think I'm way overdue for a visit, and not just for the pies I've been missing out on.

How about some bingo? Finally, the sudden passing of my grandma Edith McGinnis

last year was a sad time for me, and the closeness of our family has remained strong

throughout all we've been through since then. Although we only get together a few

times every year, I always look forward to seeing anyone I call family again.

J A M E S G E R A L D A L P H O N S O S L A C K

The University of British Columbia

April 2005

xii

This is for my parents

x i i i

Chapter 1

Introduction

My thesis presents two key contributions to the field of information visualization: a

generic infrastructure for accordion drawing as a malleable two-dimensional surface;

and new rendering techniques for tree visualization on accordion drawing surfaces.

Our generic accordion drawing infrastructure accommodates any dataset that can

be laid out and meaningfully partitioned into smaller objects on a grid structure,

such as the rectilinear, right-aligned tree shown in Figure 1.1. Applications pro

vide the bidirectional mapping from a grid surface to objects in the dataset, and

our infrastructure supports the key operations of rendering, mouse-over picking, and

navigation, while guaranteeing the visibility of marked data. My tree rendering algo

rithms for accordion drawing surfaces involve operations which perform according to

the number of pixels used to display a scene, not on the input dataset. With support

from the generic rendering infrastructure, I provide efficient tree-based algorithms

for: tree-to-grid mapping, tree-rendering traversal, node marking with guaranteed

visibility, and accurate picking on the tree.

1.1 Motivation

Visualization of datasets with more data than available on-screen pixels is a challeng

ing problem. Without information visualization techniques, the number of on-screen

pixels limits the amount of displayable data. For example, recent advances in phy-

1

Nicotiana
•Campanula

•Btokesia
imorphotheca

^ •Barnadesia
•Dasyphyllum

Figure 1.1: A rectilinear, right-aligned tree layout descends a tree dataset topology
horizontally and aligns all terminal nodes, or leaves, to the right boundary. Our
generic accordion drawing infrastructure supports this orthogonal grid-based tree
layout.

logenetics, the study of evolutionary relationships between organisms, produce very

large tree dataset topologies with a set of organisms at the terminal nodes. Since

any two methods of constructing phylogenetic trees may produce two structurally

different topologies for the same set of organisms, evolutionary biologists use many

techniques to investigate structural similarities between pairs of tree datasets. The

primary focus of my thesis investigates our interactive visualization infrastructure

for stable accordion drawing navigation, with an example application capable of

comparing large tree datasets, such as phylogenetic trees, of up to two million tree

nodes.

TreeJuxtaposer (TJ1)[24] is an information visualization application used

to navigate and compare several rectilinear trees, such as the pair of trees in Fig

ure 1.2, by using two important properties: rubber-sheet navigation and guaranteed

visibility. Rubber-sheet navigation is the metaphor we use to describe how users

2

••Nicotiana
••Campanula
••Scaevola
•Btokesia
•3imorphotheca

'Nicotiana

*-"Dasyphyllum

Figure 1.2: TreeJuxtaposer is capable of comparing two trees, side-by-side as shown
in this figure. Regions of structural difference are marked in red and other marks,
such as the blue subtree, are user-defined.

interact with the data. Users stretch and shrink regions of accordion drawing

(AD) surfaces, the subclass of rubber-sheet navigation upon which TJ1 is built,

much like the trees are drawn on a malleable rubber-sheet, as shown in Figure 1.3.

The A D rubber-sheet has its borders tacked down so the entire dataset remains

visible at potentially many different levels of magnification.

Guaranteed visibility is another necessary property of A D surfaces that en

sures important data will remain visible at all times on its malleable surface. Marked

objects on A D surfaces move with other objects when the surface undergoes move

ments and may be squished and stretched like any other dataset object. Guaranteed

visibility implies that marked objects never shrink out of sight.

T J l introduces A D surfaces, but its implementation of A D is only for datasets

that are tree-specific, has navigation stability problems for complex movements, and

does not allow other application domains to use its A D infrastructure. The primary

3

Figure 1.3: Accordion navigation works by distorting a two-dimensional surface, by
stretching and shrinking regions, to allocate more screen space for regions of interest.
In the left image, a small tree appears undistorted, with no regions stretched. The
right image shows the same tree topology with a stretched region, which squishes
other regions such as the green subtree.

goal of this thesis is to introduce a new type of AD infrastructure that allows any

new application domain to render a scene using a more efficient, stable approach to

rubber-sheet navigation. Furthermore, this thesis describes several new tree-specific

functions to support TJ1 functionality on a generic AD surface, including: correct

tree rendering, efficient marking with guaranteed visibility properties, efficient node

layout on a partitioned grid structure, and accurate picking of tree nodes on the

grid. This thesis presents several techniques for improving the rendering quality,

rendering speed, and memory usage of TJ1 with TJ2, our new AD application that

is functionally, visibly equivalent to TJ1.

Although current graphical processors are capable of rendering billions of pix

els per second, a standard-sized monitor with a commodity video card is not capable

of refreshing the display during animated transitions with a brute-force method of

drawing every node.Our new infrastructure provides a rendering framework with

an efficiency that does not depend on the size or structure of the dataset, but on

the number of pixels on-screen. Application-specific algorithms interface with our

4

AD infrastructure, which abstracts away the details of partitioning, grid structure,

and navigation, to allow development of new AD applications that access the infras

tructure with generic grid algorithms. With support for dataset sizes beyond the

number of pixels available on-screen, AD techniques allow for rapid-prototyping of

new applications that render datasets of well over one million items with smooth

animated transitions.

1.2 I n fo rma t ion v i s u a l i z a t i o n techniques

In my thesis, I employ several information visualization techniques, including: guar

anteed visibility, Focus+Context, and progressive rendering. These techniques al

low users of TreeJuxtaposer, or accordion drawing (AD) applications in general, to

better understand large and complex datasets, locate important information, and

smoothly navigate large amounts of information without getting lost. In this section,

I discuss the properties of guaranteed visibility in Section 1.2.1, Focus+Context in

Section 1.2.2, and progressive rendering in Section 1.2.3.

1.2.1 Guaranteed visibility

Guaranteed visibility is a property, first introduced by TreeJuxtaposer [24], used

by information visualizations to ensure important data is always visible. Applica

tions developed with our AD infrastructure have two classes of data: normal and

marked. We mark data that we consider important with object marking, either

through direct interactive selections or results from computed functions. Other nor

mal data objects provide context and overall dataset structure. Guaranteed visibility

of marked data means that marked objects always take precedence over normal ob

jects when rendering views of datasets, meaning that marks are always guaranteed

to be visible, at the expense of unmarked regions of data, if need be.

AD applications provide two variations of guaranteed visibility: static and

progressive. The former is used to display rendered scenes with guaranteed display

5

File Find Tools Help
.gigantofliynchus lutzT

m ' m u s c a aut u m n a! I s
j ^ B ^ t a n p s y c h e olis , . . ,

iplatybelone argalus lovii
trachichthodes affinis
adioryx andamenensis
flammeo operculars 1

holocentrus caudimaciilatus;
holocentrus diadema
holocentrus Jttodai-
holocentrus meeki

• holocentrus rufus:
• holocentrus spinosissimiis
• holocentrus tortugae
'mynpristisadusta'.
niyripristis australis

^niyripristis jacobus,
niyripristis murdjan.
niyripristis randalli
niyripristis violacea
niyripristis vittatus*
neoniphon aurolineatus*
ostichthys pilwaxii
isargocentron diadema^'
sargocentron spiniferum
anomalops kaptoptron.
diretmus pauciradiatus 1

hoplostethus clongaius
paratrachichthys traiili
chahniformes.^ . .
microlepidotus inornatus
anniella pulchra:

Figure 1.4: The user-selected data in this TreeJuxtaposer figure, sargocentron di
adema and myripristis australis are marked in blue. However, the locations of these
tree nodes are not understood without the location of many other nodes, such as
sargocentron spiniferum, which provide context for the guaranteed visible, marked
data.

of all marks, and the latter guarantees marks appear first during transitional frames

of an animation. Static guaranteed visibility is a property of an application that is

capable of displaying marked data with a higher priority than normal data. Static

visibility properties are essential when visualizing a large dataset, where marked

data might be occluded by surrounding data in a rendered scene. However, the

surrounding data is still important enough to consider drawing; guaranteeing to show

marked data within the context of un-occluded, peripheral data provides important

visual landmarks. For example, in Figure 1.4, we mark species sargocentron diadema

6

and myripristis australis as important tree nodes. TreeJuxtaposer may still draw

species sargocentron spiniferum, which should be close to sargocentron diadema.

AD applications cull regions of datasets when a region is shrunk smaller than

the size of a drawable unit, typically a hardware monitor pixel. To draw in dense

regions of objects, the application determines what to draw using either object ag

gregation or object selection, from a set of culling objects. For large dataset visual

izations on high-resolution monitors, such as the IBM T221 with over 200 pixels per

inch, a pixel-sized feature is sometimes too small to be useful. Our AD infrastruc

ture provides novel methods of producing a lower resolution visualization, using our

culling techniques. If we cull regions at larger than pixel sizes, we effectively draw

less information on the display, but may reveal patterns with aggregation methods;

high-level dataset features may be clearer with a larger minimum feature size. We

call the minimum feature sized cells for an application b l o c k s , where feature sizes

are integer multiples of a pixel.

To solve static view visibility problems, AD rendering methods must exam

ine an application-specific culled region for marks that we guarantee to be visible.

Accordingly, marked data points must be stored such that regions of the dataset

topology can be examined -quickly during a rendering step. Section 3.3 provides

more details about the compact representation and storage methods of the dataset

topology as ranges of nodes for TJ2.

Guaranteed visibility is also important to consider during the rendering phase

of animated transitions. Progressive guaranteed visibility is a component of progres

sive rendering, discussed in Section 1.2.3, that renders the most important interest

ing nodes before rendering the rest of the dataset. This type of guaranteed visibility

uses a drawing order that favors marked data over all other data, providing land

marks when rendering navigation and animation frames for large visualizations.

As an example of progressive guaranteed visibility, consider marked nodes in

TJ2. For the first frame in its scene rendering phase, TJ2 draws the roots of marked

7

subtrees, the path from that subtree to the root of the tree, and a path from the

subtree root to one of its leaves. Rendering an overview of the dataset that is formed

by this first rendering step, which produces a skeleton of useful topological features,

is exponentially faster, in the common case, than methods in T J 1 that rendered

entire marked subtrees. This progressive guaranteed visibility is useful in T J 2 since

the location of marked subtrees is quickly represented and the marks are visible as

landmarks during animated transitions.

1.2.2 Focus+Context

Focus+Context is a technique information visualization systems use to display

areas of interest as focus regions, while still displaying the rest of the dataset in

less detail, which presents context for the focus regions. Many of these approaches

magnify the areas of interest and concurrently minify other regions, which leads

to visual distortion of the original dataset topology. The usage of Focus+Context

distortion techniques in visualization applications may cause some disorientation if

visual aids such as landmarks or topological features are not present. Additionally,

the user may be confused if the application does not provide smooth transitions

from one view to the next.

TreeJuxtaposer uses Focus+Context effectively since the tree layout is visu

alized as a hierarchical structure, where the location of the root and direction of

growth is known to the user, even after repeated navigations. The tree structure is

able to convey relative node density and the path from any node to the root is well

known by manually following the node ancestor path. Along with node labels and

smooth animated transitions, navigations in TreeJuxtaposer prevent the user from

losing orientation. However, AD itself does not provide topological reference for

navigation and requires developers of applications to include navigational semantics

based on their particular application-domain requirements.

As an aid to automated movements, smooth transitions help Focus+Context

8

applications both during navigation and in the resulting static views. When an area

is stretched, a smooth transition provides a correspondence between the original

state and the final transition state. Progressive guaranteed visibility also aids in

making transitions easy to follow, since the interaction box or set of marked nodes

are rendered first. Finally, the static view is easier to comprehend after following a

smooth transition rather than after direct jump cuts [30].

1.2.3 Progressive rendering

Progressive rendering is a graphics technique for displaying a meaningful, par

tial scene in systems, allowing real-time user interaction, even for scenes that render

slower than the time available to draw a transitional frame. When a user demands

a response from the system, the appropriate action must be performed and scenes

that render slowly must respond to the user actions with no noticeable delay. Sim

ple scenes with a few thousand nodes in TreeJuxtaposer, for example, may render

fast enough such that checking for user action during a rendering is not necessary.

However, to scale to millions of nodes, progressive rendering approaches. allow for

smooth navigation and keep rendering from being a bottleneck that prevents imme

diate system feedback to user demands.

Although rendering fewer nodes and guaranteeing that the number of nodes

rendered depends on the number of screen pixels allows scenes to be drawn faster,

progressive- rendering is still necessary for many large datasets due to increased

time for handling larger datasets. However, progressive rendering overhead can

potentially negatively impact the performance of applications that use progressive

rendering. Therefore, systems that provide progressive rendering should allow either

automated or manual control over the usage of progressive rendering of scenes that

do not require several frames.

9

1.3 Thesis contributions

This section details the contributions of my thesis, presented in order of importance

by chapter. Results for each performance claim are presented in Chapter 5. The

conclusions for my thesis contributions are given in the final chapter, along with

some recommendations for future work.

1.3.1 A c c o r d i o n d r a w i n g c o n t r i b u t i o n s

• We developed a generalized infrastructure for accordion drawing applications

that does not depend on extra spatial subdivision layers, but uses an inherent

dataset topology, when available.

• We refined our generic generic rendering infrastructure by formalizing a three-

step rendering process, which includes: partitioning in 0(b) time; seeding in

0(b + m) time; and rendering in 0(b + m) time, where b is the number of

on-screen blocks and m is the number of marked groups.

• We created a numerically stable A D navigation algorithm that is capable of

resizing many A D split lines concurrently. This means that we do not move

a split line in our resizing algorithm more than once per scene, unlike A D for

TJ1.

1.3.2 T J 2 c o n t r i b u t i o n s

• We developed new algorithms for topological tree rendering in our new A D

infrastructure, in comparison to TJ1 quadtree-based A D methods. TJ2 ren

dering is pixel based and renders a scene five times faster than TJ1.

• We optimized storage and retrieval of ranges of marked data, which we use

to perform marking operations on tree datasets in TJ2. Marking is eight

times faster when marking a full 190,265 node tree being compared to another

10

198,623 node tree, and rendering the fully marked tree is still faster in TJ2,

without the caching techniques used in TJ1.

• We created a new TJ2 tree layout technique for our AD infrastructure. Com

pared to TJ1, TJ2 preprocessing is ten times faster, and overall memory usage

is five times more efficient.

• We replaced spatial subdivision picking, used in TJ1, with topological picking

that is nearly as time efficient with most tree topologies and is able to pick

tree nodes in regions of datasets where TJ1 is known to fail.

1.3.3 T r e e J u x t a p o s e r E v a l u a t i o n f r o m I n f o V i s 2 0 0 3 C o n t e s t e n t r y

• We analysed a modified version of TJ1, TJl-contest, with a standardized set

of real tasks. This analysis helps understand the strengths and weaknesses of

our AD approach to investigating tree-based dataset queries.

• We added an incremental search function to T J l , which allows a user to quickly

identify similarly named nodes. When a small number of search results are

selected, our algorithm automatically marks their location in the tree topology

with guaranteed visibility.

1.4 Thesis Organization

This thesis is organized as follows: Chapter 1 presents motivation, contributions,

and organization; Chapter 2 includes relevant previous work; Chapter 3 discusses

our new tree navigation application, TJ2; Chapter 4 discusses our generic accordion

drawing infrastructure, AD; Chapter 5 presents analysis of TJ2 and compares the

performance of TJ2 with TreeJuxtaposer; and Chapter 6 concludes my thesis.

11

Chapter 2

Related Work

Navigating large datasets has long been recognized as an important problem in the

information visualization community. A D navigation is in a class of information

visualization techniques with an interesting, evolving history in human-computer

interaction, computer graphics, and other fields of study. Tree visualization also has

a past in information visualization, and there are several systems created specifically

for biologists that continue to influence our development of TreeJuxtaposer features.

Previous work related to my main thesis contributions is presented as follows:

Section 2 .1 includes information visualization and other human-computer interac

tion and perception work; and Section 2 .2 describes some common phylogenetic

evaluation software as well as other tree-specific work in information visualization

systems.

2.1 Visualization, interaction, and perception

Visualization of datasets with more data than available on-screen pixels is a prob

lem since the size of datasets increases faster than the resolution of monitors. Fur

thermore, human perception limits the feasible amount of information that can be

displayed even with infinitesimaliy small pixels. Obviously, there is very little ad

vantage to monitors with pixels at the microscopic scale. An excellent resource for

generic methods of graph visualization and navigation is a survey by Herman et

12

Figure 2.1: The SeeSoft [1] software analysis tool provides an overview of large
software structure with meaningful color-encodings. The entire structure is visible
and users may zoom into regions of interest to investigate details.

al [13].

Approaches such as the pixel-based software analysis tool SeeSoft [1], as

shown in Figure 2.1, display an overview of an entire dataset with millions of items,

and users may enlarge regions of interest to view details. The number of displayable

items is impressive and gives insight into the global structure, which is especially

useful when meaningful color codings are used. However, small details may be

overlooked and culled out of view by the rendering process when datasets become

larger than the number of pixels, or when the feature size is too small to perceive

differences between adjacent pixels.

Applications that attempt to render extremely large datasets of thousands of

items are usually either non-interactive, or require acceptable rendering techniques

for displaying important details first, such as progressive rendering introduced by

13

Bergman [6]. For 3D scenes, this approach displays vertices, edges, and other higher

level surface features in order. Since an overview of the dataset may be available

with visualization of only the vertex positions, interactive techniques, such as camera

positioning, can be used with a simple rendering, and details can be filled in when

interaction stops. Other progressive rendering approaches may render landmarks or

other important features first if such a scene decomposition is not available or does

not provide visual benefits during interaction.

Magnification techniques, such as the fish-eye lens [7, 11] and related non

linear magnification fields [18], can be used to view local detail for data too densely

packed to be clearly represented in full detail. A fish-eye lens uses the idea of a

simple magnifying lens, but, unlike a conventional physical lens, uses distortion

around the center of focus in place of an occluding boundary. This means the lens

is used to distort some context around the magnified focus region and not hide

useful contextual details. We use the term Focus+Context to refer the visualization

technique where the focus is shown within surrounding context.

A related magnification technique is the document lens [31], shown in Fig

ure 2.2, where a full text document is shown arranged in a grid, with each page

in a different cell. An overview of the entire document is available but the text is

too small to read all at once. Users can select a rectangular magnification region,

approximately the size of a page of text, and the remaining document is drawn as

it would appear on the sides of a truncated, skewed pyramid with the magnified

region as the frustum. This approach requires less computation than the fish-eye

lens, and is more suitable for viewing full pages of documents undistorted, practical

for reading text. Text down the sides of the pyramid is also legible close to the

magnified frustum region.

Hyperbolic geometry [19, 22, 23] visualizations remove the traditional Carte

sian two dimensional context and use fish-eye visualization techniques for the entire

scene. Users perform navigation through the hierarchy by changing the node in

14

Figure 2.2: The document lens visualization tool [31] shows a page of undistorted
text from a large document, and applies distortion to the remainder of the document.
Distorted text near the undistorted region is legible.

focus; users may step through each level of the hierarchy or jump to any other vis

ible node and the visualization responds with smooth animated transitions. This

class of distortion-based visualizations is limited to tree hierarchy visualizations or

other connected graphs, however, since users require structural, visual cues like the

edges of a tree structure for navigation. Generic visualization of text objects, like

the document lens, or side-by-side cells in a grid structure would not be visually

pleasing with these techniques. In Figure 2.3, I show the H3Viewer visualization

application rendering of a tree structured dataset.

Several systems use semantic zooming, which is based on generic level of de

tail (LOD) methods. Semantic zooming aggregates minor features into larger struc

tures to reduce clutter from global overviews, and replaces larger features with their

component minor features when focusing in on regions of interest. The Pad++ [4, 27]

system, as shown in Figure 2.4, renders objects with infinite precision in an abstract,

15

Figure 2.3: H3Viewer [23] is a hyperbolic geometry visualization application for
navigating connected graph datasets. Hyperbolic distortions allow any data point,
even far away from the focus, to be visible and have relative position with respect
to other data.

semantic zooming world. Items are assigned a minimum and maximum visible size

and smooth animation provides transitions between levels of detail. Semantic zoom

ing has also been investigated in space-scale visualizations [12], where panning and

zooming are used to give intuitive animated transitions. As the viewpoint zooms

out, semantic zooming while panning allows a user to track global landmarks, so

certain familiar features give much needed navigational context.

A closely related hierarchical zooming method is multiscale visualization [37].

This method presents aggregation, or selection, of underlying data instead of feature

filtering approaches used in traditional semantic zooming applications. Multiscale

visualization assigns implicit semantic representation to zoomed-out data, which

either may be useful if the underlying data is similar, or may be detrimental if the

16

Figure 2.4: The infinite-precision world-space for objects in Pad++ [4] allows de
velopment of zooming features at several scales of magnification. This figure, from
left to right, top to bottom, shows an example of repeated zooming on features.
Semantic zooming also allows Pad+4- to restrict visibility of rendered objects at
user-specified magnification scales.

aggregation techniques hide data regions with high variability.

Degree of Interest (DOI) systems like continuous zoom [2] offer another type

of semantic zooming. Groups of objects are assigned a percentage of the screen, so

that when one object is focused on with a fish-eye magnification lens, other objects

in the same group are shrunk at the same magnitude, to preserve the screen area

devoted to the group instead of the entire context shrinking uniformly. The semantic

zooming aspect arises from when objects reach an assigned threshold size, and with

some cases, multiple foci are possible as groups of objects "open," and display more

17

detail.

Rubber-sheet navigational metaphors [34] introduce orthogonal, and polyg-

onal convex hull, distortions where objects drawn on a two dimensional grid can be

stretched as if they were drawn on a rubber-sheet. Areas of interest on the rubber-

sheet can be stretched out, essentially magnifying them without the occlusions of

traditional magnifying lens effects. Navigation with a rubber sheet is typically user

directed with continuous zooming capabilities, as users pull defined region bound

aries to increase the space allocated to an object. The borders of the rubber-sheet

are tacked down, meaning that the context regions are squished to small regions but

always visible, although compressed similar to [2]. With no semantic zoom, regions

of the context need to be culled, or otherwise aggregated, as they are shrunk.

Landmarks, or regions of interest, in semantic zooming applications may

not be visible while at extremely zoomed-out views. It may be desirable that cer

tain characteristic objects never disappear from displays where the entire dataset

is always visible. Implementations of critical zones [17] extend infinite precision vi

sualization systems, such as Pad++, with methods of guaranteeing certain objects

will always be visible at any level of magnification.

TreeJuxtaposer [24] (TJ1), shown in Figure 1.4, introduces accordion draw

ing, which combines rubber-sheet navigation with concepts of guaranteed visibility

for select regions of data. TJ1 provides a scalable alternative to side-by-side anal

ysis of trees, previously done by hand on paper printouts. The layout of TJ1 is

quadtree based, and uses accordion drawing techniques derived from rubber sheet

navigation. When the objects in context are shrunk or culled, highlighted landmarks

are given rendering priority, by drawing above every other node in their context,

with minimal feature size as space permits with other landmarks. Context nodes

are given second-class treatment and not limited to how small they can be drawn;

ranges of context nodes are considered landmarks in themselves, however, and can

not be squished completely out of sight. TJ1 scales to over 500,000 nodes [24], and

18

I I L - ~ ===-==0=lT" 1 — — QJt
M«lp j .1

Op»n 1 Toolj j annexion
R

Sloth J T A T T A C T C ^ T
Armadillo TCTTAA T T V A T T T A C A C A T 1

Anteater ' T A T T C A T T A C T T T T T A C A C A T "
Hedgehog "TATTT T C T A T T T T T A C A C A T "
Mole |TATTAC C T ? T T T T A C A C A T "
Shrew (TATTA C T T ^ T T T T A C A C A T 1

Tenrecid TATTA C T T ? T T T T T A T A C A T "

Human "TATTAG C T ? T T T T T A C A C A T

Whale " TATTA C T T ^ T T T T A C A C A T
Dolphin "TATTA C T T "X3 T T T T A C A C A T
Hippo JTCTTAA T T ? T T T T T A C A C A T
Llama T A T T A C T T ? C T T T T T A C A C A T
Ruminant TCTTAA C T ? n T T T A C A C A T
Pig .TATTAA T T ? T T T T T A C A C A T

| Human. 1(T) f - | — —

Figure 2.5: SequenceJuxtaposer [35] is an aligned sequence visualization tool that
uses accordion drawing navigation. Each sequence is drawn horizontally and base
pairs of each aligned sequence create visible vertical columns when there are no
differences. Simple difference heuristics appear as red guaranteed visibility marks.

animated transitions are necessary to maintain context during continuous zooming.

TJ1 uses a best corresponding node (BCN) criteria [39] to correlate matching nodes

from pairs of trees under analysis, so selecting one node also selects relatively similar

corresponding nodes in other trees under comparison.

More scalable tree analysis with TJC [5], is capable of rendering up to 15

million node trees in under one second. TJC removes the quadtree hierarchy, uses a

simple grid-based structure, and optimizes data structures to dramatically increase

memory performance. TJC also renders dense regions of trees without gaps and

eliminates many of the rendering inefficiencies of TJ1.

Beyond TreeJuxtaposer, there have been several accordion drawing appli

cations: SequenceJuxtaposer [35], shown in Figure 2.5, and PowerSetViewer [25],

shown in Figure 2.6, which render rectangular regions of color to represent their

19

ilipilMlllliiPillNIIIIIll
10

12

Figure 2.6: The PowerSetViewer application [25] is a visualization system for pow-
ersets. Powersets are drawn as a single enumerated sequence of nodes. Power-
Set Viewer line-wraps the world-space at the end of each column and visually sepa
rates cardinalities by alternating the background color.

data. Because they layout datasets on simple grid structures rather than trees,

these applications impose a hierarchy on their datasets. SequenceJuxtaposer aligns

its input data vertically, since it assumes sequences that are drawn horizontally to

be somewhat aligned vertically, in a large stretchable grid.

PowerSet Viewer is a grid-structured accordion drawing application that dis

plays powersets, or the set of all possible sets of nodes, as a single enumeration [25].

An interesting aspect of PowerSet Viewer is its ability to add or delete data from

the grid over time, and modify the grid accordingly. Furthermore, PowerSet Viewer

does not require allocation of a grid large enough for all addressable space in the

powerset. Instead, it builds a sufficiently large grid to draw a sparsely distributed

set of sets, on the order of up to two million, into the powerset domain.

20

2.2 Phylogenet ic tools and tree visualization

Although not constrained to tree topology datasets of a biological nature, TreeJux

taposer is designed with many desirable features for phylogenetic research, which

are briefly described in Section 1.1. However, since several tree analysis systems

are used to investigate phylogenetics, the evolutionary history and relationships be

tween organisms, it is important to describe a few of the most influential systems

here.

Currently, in the field of evolutionary biology, efforts are underway to cat

egorize every organism with a single tree called the Tree of Life [9], which shows

hypothesized relationships between existing organisms and their, proposed, or oth

erwise extinct, ancestors. The research effort is broken into small pieces, such

as fungi [14], and further by research lab, such as the Hibbett lab that studies

homobasidiomycetes [15], the mushroom-forming fungi. Once data is collected from

each group,, small trees are combined into supertrees [33], which would culminate

with a hypothetical set of trees of all known organisms.

Since methods of determining the organism relationships are subject to error

for several biological reasons, evolutionary biologists use several statistical models to

reconstruct evolutionary trees, the most common being parsimony or Bayesian infer

ences in relationships. Parsimony-based tree reconstruction [38] relies on minimal

characteristic changes between species identifying close ancestors, while Bayesian

techniques [16] use Markov Chain Monte Carlo simulation techniques to estimate

tree topologies. Both of these methods are statistical inferences and are subject to

error, which therefore require humans to analyze and add their professional knowl

edge to the results.

Manual investigation of data is time-consuming and understandably com

plex, so several software packages are available to visually investigate the results

from evolutionary tree construction software. MacClade [20], and more recently

Mesquite [21], are two well-known and useful software packages built by evolution-

21

Figure 2.7: TreeWiz [32] is a scalable phylogenetic tree visualization system capable
of supporting 50,000 nodes. Each viewpoint change for navigation opens a new
display window.

ary biologists. They offer a set of useful editing and analysis functionality, but lack

in scalability. Some of the more interesting features of MacClade are the ability to

annotate and edit the properties of tree data. A simple panning canvas is used to

display a visual representation of a tree of several nodes at a time, which is sufficient

for many tasks.

A more scalable system called TreeWiz [32] supports up to 50, 000 leaf nodes

in a Java application. Subtrees, that do not fit onto the visualization are collapsed

into their parent nodes and assigned a color from a density map. However, nav

igation is limited since each change of viewpoint creates a new display window.

Aggregation of subtrees into parent nodes is also a feature of the SpaceTree [29]

browser, which supports automated subtree collapsing and several other pan and

zoom type modes for navigation in collapsed trees.
Cheops [3] is another scalable system capable of browsing tree structures of

22

up to one billion nodes, and while suitable for a concise index, it is not well-suited for

displaying details of the topological structure. For deep subtrees, Cheops occludes

information from sibling subtrees to show one region of focus, typically as a path

from the root to a target node.

Alternative marking techniques have also been introduced. Carrizo [8] in

troduces a color-filling approach to tree annotations. Instead of coloring tree edges,

Carrizo colors the regions under subtrees to provide much larger colored regions to

indicate the properties of a subtree.

23

Chapter 3

TJ2

We made several significant changes to TreeJuxtaposer to make TJ2 work with our

fast, general AD infrastructure. The most significant changes were in the TJ2 ren

dering process, where we developed new algorithms for laying out nodes, placing tree

edges, and performing gapless rendering with smaller rendering queues. Our render

ing algorithms are now pixel-based, with a rendering time complexity of 0(p) where

p is the number of vertical pixels, rather than 0(n login)) where n is the number

of nodes in the topology. This means our rendering is more scalable, since dataset

topology does not affect our rendering performance. We characterize three cases

of potential rendering gaps in ascent-based rendering, and our algorithm minimizes

the amount of drawing required to fix those gaps.

The marked ranges improvements for TJ2 allow for much faster color lookup

for marked nodes, as well as deciding when nodes are not marked, by using a tree-

based range lookup instead of linear searches through all marked ranges for every

node being drawn. Collapsing the ranges efficiently was also an improvement for

storing and retrieving large numbers of node differences when comparing trees. Al

though nodes are stored more than once, looking up node colors quickly is not

possible unless each marked node is stored; color lookup time is 0{m log(r)), where

m is the number of marked groups and r is the total number of nodes ranges stored

by any particular group. Our localized algorithm for finding all indirectly marked

24

nodes is sufficiently fast and we no longer require node color caching, which allows us

to load larger tree datasets. The efficiency of marking depends on the dataset, but

we achieve an average marking speed 0(k), where k is the total number of nodes in

the range marked by the user. Mark ing the entire Info Vis 2003 Contest [28] dataset

animal iaA tree of 190,265 nodes while comparing with an imal iaB takes less than two

seconds to process, as discussed in Section 5.4.

T J 2 also introduces topological picking to TreeJuxtaposer, which allows a

user to pick nodes in sparse topological regions of a tree. Al though the picking algo

r i thm is 0(h), where h is the topological height of the tree, we find it is sufficiently

fast for the deepest trees T J 2 can currently load; picking is interactive wi th trees

taller than 1000 nodes.

In this chapter, I present the major improvements of T J 2 over previous ver

sions. In Section 3.1, I describe our node layout algorithm. I discuss our tree

rendering algorithms in Section 3.2, which follow the tree topology. In Section 3.3,

I discuss our marked range improvements. Finally, in Section 3.4, I describe our

topological picking methods.

3.1 Node layout

T J 2 incorporates significant changes to the tree layout algorithms from TJ l -based

TreeJuxtaposer applications. Trees in T J 2 are st i l l drawn right-aligned, meaning

that leaf nodes are found on the right-hand-side of the tree wi th the root on the left-

hand-side. Due to this orientation, in this section, I wi l l introduce our conventions

to describe T J 2 layout algorithms and rendering techniques. In TreeJuxtaposer,

the width of the tree is the total number of leaves and the height of the tree is the

longest branch length. Horizontal node edges are the height component for each

non-root node and vertical edges are the width component for each internal node

wi th two or more child nodes. Refer to Figure 3.1 for a pictorial description of these

terms.

25

o o

horizontal
edge

T5

height

Figure 3.1: The naming conventions used in this thesis. The root node, in blue, is
drawn wi th no horizontal edge. The internal node is marked in green and red for
horizontal and vertical edges and the leaf nodes have no vertical edges. The width
of the tree is the number of leaf nodes and the height is the longest path from the
root to a leaf.

T J 1 algorithms for rendering and node layout create a hierarchical spatial

quadtree layout, described in Section 4.1, which is inefficient for trees since most

trees have many more leaves than height. The quadtree is built on a base g r i d of

uniformly sized base g r i d cells, as shown in Figure 4.1. A base grid cell contains

a reference to a node of the topological tree, and a quadtree cell points to up to four

children cells, which could be either base grid cells or interior quadtree cells.

T J 1 quadtree subdivisions are built on the base grid to facilitate traversal,

so partitions divide the number of grid cells in half in both directions for each layer

of the quadtree. This partitioning is inefficient for most cases since the base grid is

often not close to square since the width of the topological tree tends to be much

greater than the height. The interior quadtree cells are most efficient in the few

cases where the topological tree height is almost equal to the tree width, which

happens to be the case in pectinate trees, also known as "comb-shaped" trees, that

occur in some biological contexts.

However, as introduced in T J C [5], a more efficient technique to store tree

nodes in a grid is possible wi th separate horizontal and vertical binary trees. T J 2

uses the basic idea of separate structures in T J C , but is quite different in all tree

26

doGridding Function
input: set of nodes ./V from tree T, in post-order list

grid G large enough to layout T
output: nodes iV assigned to rectangle of coordinates in G

V+-0
. while N ^ 0

n <— N.pop

if isLeaf(n)
n.maxX <— G.maxX

n.minY <— y

y++

n.maxY <—: y

else
n.maxX <— getMinX(n.Children)

stretchMinX(n.maxX, n.Children)

n.minY <— getMinY '{n.Children)

n.maxY <— getMaxY(n.Children)

end if
n.minX <— n.maxX — 1

end while

Figure 3.2: doGridding function assigns a grid position in G to each node in T.
Leaves are positioned on the right side of G, internal nodes span their children and
are as wide as the sum of their child' widths, and all nodes initially are in cells one
base grid cell high. Cells are stretched for each child of parent that does not have
a minX value equal to parent.maxX.

layout, rendering, and culling algorithms. In the remainder of this section, I describe

how nodes are mapped to grid coordinates in Section 3.1.1. Then, in Section 3.1.2,1

discuss a necessary modification for placing horizontal node edges during rendering

in TJ2 that is not required by TJ1 node mapping.

3.1.1 Mapping nodes to grid

Node layout in TJ2 is quite different from layout in TJ1, but both TreeJuxtaposer

applications create very similar-looking tree visualizations with the same base grid

27

B

C

Figure 3.3: A small subtree for our gridding example. The nodes in are added in
post-order.

b b
: :

msm
c j

Figure 3.4: The nodes of Figure 3.3 added to the grid. Our tree layout partitions
screen-space into a fully covered grid cell layout, as shown.

size. Instead of using a spatial subdivision method, TJ2 partitions the base grid into

rectangular regions for each tree node; we call the partitioning process gridding.

Topological tree nodes are assigned to cells using an algorithm based on the

pseudocode for doGridding in Figure 3.2. The cells form the boundary around tree

edges for a tree node and distort with respect to the Accordion Drawing methods on

the base grid. Each internal node in the topological tree is drawn with two tree edges,

one horizontal connection to its parent and one vertical connecting its children. Leaf

nodes and the root node are special cases: leaves have only a horizontal edge and the

root has only a vertical edge. Cells for each node in both TJ1 and TJ2 are bounded

by four accordion split lines, which are movable grid lines described in Chapter 4,

each with minimum and maximum lines in the left-to-right X and top-to-bottom Y

directions. In TJ2, the leaf-to-root node placement and initialization algorithm is

linear in the number of nodes in the dataset.

We must have enough base grid cells in height to support the deepest nodes of

28

the topological tree, which is the equal to the height of the tree. Since all leaves are

of the same vertical weight, we must have enough base grid cells to place every leaf in

an individual cell, which is exactly the number of leaves. Therefore, the dimensions

of the grid are known after parsing the input dataset and TJ2 can initialize the

Accordion Drawer split line structures, creating the base grid.

As an example of the gridding process in Figure 3.2, consider the small tree

in Figure 3.3, where nodes are placed in this post-order traversal: A, B, a, C, b.

The leaves A and B are: placed in the grid one cell tall and wide; adjacent to each

other; and aligned with the rightmost split line in G, as shown in Figure 3.4. Leaf C

is placed next to B, but is two cells tall since it must match the height of internal a,

which was placed on the other two leaves. Both C and a are attached to internal b,

and the internal nodes a and b are as wide as the sum of their child node widths. The

time complexity of the insertion per node is on the order of the number of children,

since the stretchMinX function processes all children; leaves have no children but

require constant time to initialize. Therefore, the complexity of the entire insertion

process is 0(n), for a tree topology of n nodes.

3.1.2 Placing horizontal node edges

This section deals with positioning the horizontal node edges in TJ2, necessary

with the partitioning process from gridding in Section 3.1.1. All edge positions are

calculated relative to the width of their subtrees; leaf edges are placed in the center

of their cell and internal node positions depend on the positions of their children.

In an orthogonal tree layout, the density of horizontal tree edges show the width

of subtrees and the height of child nodes, and the positions of some of those edges

determine the length of parent node vertical edges.

The placement of horizontal node edges is slightly more complicated in TJ2

than in TJ1, since TJ2 partitions the entire base grid for node domains. TJ1 node

to cell mapping places nodes in the base grid, but the nodes are given offsets to

29

Figure 3.5: The balanced tree on the right places the horizontal edge of its root in
the center of its cell width, but the pectinate tree on the left places the same edge
much more toward the top of the root cell. The horizontal edge position for any
tree node may move anywhere within the cell and, unlike TJ1, cannot be a constant
offset since node cells span the entire width of its descendant node cells.

a single base grid cell at the minimum height of all child nodes and somewhere

close to the center child position. This mapping differs from TJ2, which maps a

tree node to a cell that is as wide as the sum of its children widths. When a

node is rendered in TJ1, the horizontal edge position is simply calculated with the

offset and grid cell position. We want the same performance and correctness for

horizontal edge position computations in TJ2 as in TJ1: computable in constant

time and guaranteed to attach to the vertical tree edge that stretches from the first

to last child horizontal edge positions.

The horizontal edge position for a subtree may be anywhere in its bounding

cell. To understand how a horizontal edge can change according to the underlying

subtree structure, consider Figure 3.5. With the class of subtrees called pectinate

trees, similar to the tree shown on the left of the figure, we can generate examples

of horizontal edges placed anywhere vertically within their cell.

We cannot compute the horizontal edge position in TJ2 with a set offset; if

we attempt to use TJ1 methods in TJ2, we quickly see why we need to calculate the

30

subA

subB

subC

subD

subE

subF

subG

subH

subA
subB
subC
subD
subE
subF
subG

subH

Figure 3.6: The relative position of the horizontal node edge for an internal tree node
depends on the position of its inner children cells. This figure shows why resizing
where the edge in the blue cell cannot use an offset similar to TJ1 horizontal edge
position computations. On the left is a small subtree with the parent horizontal
edge in the blue cell calculated from an offset; all other nodes subA through subH
are subtrees with the horizonal edge of subH positioned close to its boundary with
subG. If subH is vertically grown without moving the outer boundary for the blue
cell, as shown in the right figure, the relative positions for all subA through subH
remain the same and move since their cells change in size. However, the node in the
blue cell remains at its initial position since its size has not changed. The horizontal
edge for subH is drawn on the wrong position relative to its parent and our small
example shows a broken subtree.

horizontal edge positions differently. Take for example the small tree in Figure 3.6,

where subA to subH are subtrees of a common parent in the blue cell. If we set

the internal node in the blue cell where it is, as a vertical offset in the blue region,

the node does not move vertically when the top and bottom cell boundaries do not

move. However, if we resize the cell with subtree subH towards subA to be nearly

the same width as the blue cell, it is possible for the horizontal edge of subH to

be on the wrong side of the blue cell horizontal edge. This is possible since if the

horizontal edge for subH is close enough to the subG cell boundary, then as subH

31

gets wider, it will eventually pass its parent horizontal edge.

The horizontal edge positions in TJ2 are computed by determining the center

of the vertical edge that we know to be drawn. In Figure 3.6 on the left, we see that

the vertical edge for the internal node in the blue grid cell is drawn from subA to

subH. But, if we use both sub A and subH edge positions to calculate the horizontal

edge position of their parent, we see that this becomes recursive when we need the

horizontal edge positions of the children of subA and subH, with an exponential

cost of 0(2h) where h is the height of the edge we wish to compute.

Since the vertical edge is only definitely drawn across the cells from subB to

subG, the green cells in Figure 3.6, we notice that it is possible to place the horizontal

edge of the blue cell using only the width of the green cells. Therefore, ignoring the

positions of horizontal edges subA and subH, we are left with the remainder of the

cells to calculate the horizontal edge position. There are many possible ways to

compute a horizontal edge position, but we choose a simple mid-point of the central

children cell boundaries, the child cells that are neither first nor last, for example

the nodes highlighted in green in the figure.

The length of the vertical edge must use the positions of the horizontal edges

for the first and last child, to connect all children to the horizontal edge of the parent.

However, this is also a constant time calculation since no recursion is required, each

horizontal edge calculation is constant, and only two such calculations are required.

To reduce calculations of horizontal edges to only require what is visible, we also

cache the results of previous horizontal edge positions, by storing the frame number

for each calculation, while no movements have occurred.

In the degenerate case of a node with only one child, the horizontal edge

of the parent node is aligned with the child node horizontal edge; no vertical edge

is drawn but recursion is necessary to find either the first descendant with more

than one child node, or a leaf. Nodes with two children are not a degenerate case,

but are simply cases of Figure 3.6 that do not have green internal cells; the grid

32

line between the red outer cells would be the only location suitable for the blue

cell horizontal edge, in this case. The worst case of a horizontal edge placement

for a totally degenerate tree, with iV nodes and a height of N, where every node

has a single child and the tree is a single line, is O(N). However, in practice, the

degenerate case is rare; that is, few nodes have single children. The complexity for

this typical, non-degenerate case is 0(1) per edge, the same as TJ1.

3.2 Rendering trees

Rendering a minimal number of tree edges for any tree topology depends on the

minimum feature size of a tree node: the edge width. Since "pixels" are really

artifacts of the hardware restrictions of physical monitor pixels, we choose to use the

terminology "block" to refer to the smallest visible features of our drawing objects.

Blocks are always integer multiples of pixels, and are by definition pixel aligned;

blocks are simply a coarser screen representation than pixels. This terminology

becomes useful when using thicker tree edges than minimal one pixel-wide lines;

high-resolution monitors capable of 200 DPI, such as the IBM T221, make single

pixel-wide lines hard to see.

As described in Section 4.2, the generalized rendering infrastructure of AD

follows the generic three-step pattern of: partition an application-specific base grid

into pieces smaller than the minimal feature size, following the hierarchical AD

structure; seed the application-specific dataset nodes that correspond to the parti

tions; and draw the seeded nodes and other necessary "attached" nodes, again in

an application-specific manner. Of the steps listed for this pattern, partitioning is

described in detail in Section 4.2.1. Seeding and drawing are optimized according to

the dataset topology and are discussed in this chapter: I describe how TJ2 performs

leaf-range seeding in Section 3.2.1; and how TJ2 draws nodes, beginning with the

seeded leaf-ranges and ending at the root node, in Section 3.2.2.

33

3.2.1 Node seeding

Before rendering starts, we prioritize the order of node and subtree rendering in a

rendering queue, with a seeding algorithm. The order of rendering is important

for large datasets that cannot be completely drawn during animated transitions

and rely on progressive rendering techniques to prevent disorientation. Progressive

rendering draws pieces of the tree in several frames instead of the whole scene at

once, if rendering the scene takes longer than 1/20 of a second. While rendering a

small fraction of the tree does not give a user the entire picture, we try to render

the most important parts of the scene during the first frame. The important parts

of the tree visualization scenes are the marked nodes, mentioned in more detail in

Section 3.3, the interaction box being dragged by the user, and, to a lesser extent,

the upper sections of the tree.

The seeding process starts by adding the roots of marked subtrees, or other

wise individual marked nodes, to the rendering queue. We render subtrees of marked

nodes by drawing the subtree root first, then rendering both up to the topological

root and down to some leaf in the subtree. This bidirectional rendering of marked

nodes allows the rendering process to draw the most important marked node subtree

roots first, as visual landmarks, along with the context of root and leaf node paths.

We do not require the leaf node paths to be marked similarly, but it is typical for

an entire subtree to be marked in one color, especially if a user manually marks

subtrees. The cost of rendering this path from root to leaf is 0(h), where h is the

height of the tree, but we also cache whether nodes have been rendered for a scene,

which somewhat reduces the drawing effort. Marked regions are stored as ranges,

which may represent a forest of subtrees, so the seeding process breaks each marked

range into subtree components and adds the root of each subtree to the queue. I

describe marked regions in more detail in Section 3.3.

After seeding the marked node subtree roots, we add the remainder of the

topology with leaf ranges. The entire tree is subdivided with a binary process until

34

either one leaf remains in a range, or the leaves in a range are smaller than some

standard size called a segment. Section 3.2.2 discusses segments in more detail,

but for the purposes of our TJ2 seeding discussion, segments are typically smaller

than a visible, on-screen pixel.

Since we may have several leaves in a segment, the seeding subdivision process

is responsible for partitioning the entire set of leaves, knowing the dimensions of the

rendering canvas, so the drawing process does not need to do any partitioning. The

drawing process is given each piece of the tree and renders only one leaf-to-root path

per segment, which is discussed in Section 3.2.2. When adding leaf ranges to the

rendering queue, the seeding process places any ranges that are inside the current

interaction box at the front of the queue so the drawing process can prioritize these

regions.

Unlike previous versions of TreeJuxtaposer that seed rendering with the top

cell of a quadtree hierarchy, TJ2 begins to draw the scene with a drawing queue of

a certain size, and this size only decreases as the scene fills with rendered nodes.

In TJ1, the drawing queue starts with the largest, top quadtree cell and grows the

drawing queue by repeatedly adding necessary, monotonically deeper cells of the

quadtree hierarchy, which puts stress on the data structures used to store, remove,

and order that queue information. TJ2 uses a simple list as its queue, so removal

operations are constant, where TJ1 operations are all logarithmic since it uses a

binary tree dataset for its drawing queue. The TJ2 rendering results with our new

seeding, discussed with details in Chapter 5, show that we can reduce the number

of nodes rendered with software and our methods require only a small increase in

time to draw per node.

3.2.2 Drawing trees

Tree rendering in TJ2 is based on the tree topology and spatial position of nodes

from gridding. This section focuses on turning the input, a list of leaf ranges from

35

y

the seeding process, into a fully rendered tree visualization by drawing a minimal

set of tree edges. Each leaf range contains either a single leaf, or several leaves in

a small vertical range; we guarantee that only one leaf in each range, plus the path

from that leaf to the root, will be drawn by the rendering process. Furthermore,

the leaf ranges partition the set of all leaves, so there are no gaps in the set of all

initially seeded leaf ranges.

In our rendering process, we do not force alignment of leaf ranges to discrete

regions of the screen, such as pixel alignment, and we do not force leaf ranges to

follow topological features of an input dataset. Either restriction would complicate

our seeding subdivision process, which needs to be fast to avoid extra computational

overhead from our software solution; our leaf range subdivisions are done with the

fast, generic accordion drawing code, discussed in Section 4.2.1.

During the drawing of leaf-tc-root paths, we make sure the time spent draw

ing the frame does not violate our per-frame progressive rendering restrictions, if

progressive rendering is enabled. Every 1/20 of a second, the rendering algorithm

flushes the current drawing results to display the current, partial tree output and

the system checks for grid movements from user interactions. The drawing queue

clears and restarts the rendering process either if any user action is detected, or if

the current drawing is still undergoing an animated transition. It is worth men

tioning here that new user actions force the previous user action to jump cut to its

final position before processing new movements. TJ1 animation is not robust in this

way, which causes several grid positioning problems from propagation of numerical

errors, as I mention in Section 4.3.2.

In order to discuss the issues, the rendering is presented in several sections:

choosing a segmentation width in Section 3.2.2.1; ascent rendering in Section 3.2.2.2;

and choosing the termination for ascent in Section 3.2.2.3.

36

3.2.2.1 Choosing a segmentation width

The stopping criteria for the subdivision component of the seeding process is an

issue mentioned in Section 3.2.1. Since we want to eliminate drawing gaps in dense

regions but not draw too much, TJ2 seeds ranges of leaves that are smaller than a

vertical block, if leaf density is greater than one leaf per block, to ensure that at

most one leaf is drawn for each range. However, choosing a segment width, our

partitioning stopping criteria for leaf ranges, of less than one block, meaning that

ranges larger than one block are subdivided, is not sufficient.

Because we do not know the alignment of blocks to leaf ranges in our final

set of seeded ranges, and do not know which leaf in the range will be rendered, we

cannot be sure that rendering leaves for adjacent leaf ranges will cover all blocks.

Section 3.2.2.2 describes why choosing a leaf to render based on block alignment is

not sufficient for solving this problem. Referring to Figure 3.7, knowing that leaf

ranges contain many candidate leaves to render, a leaf range Lk may render its single

block-wide leaf in block row Rm-i while adjacent leaf range Lfc+i renders its single

block-wide leaf in block row Rm+i, leaving a gap in block row Rm.

The solution to this poor choice of segment width is to restrict the width

of a segment to less than one-half block. A tighter restriction with smaller leaf

ranges adds more leaf paths to render, but does not add computational complexity

with approximately twice the rendering. The benefits of sub-half-block segments

include a simple fix to the alignment problems seen with larger segments, and we

still do not require direct computations of block alignment and leaf range position.

We choose the half-block segment width from observing, in Figure 3.8, that of the

partitioned adjacent leaf ranges smaller than a half-block, there is at least one full

leaf range in every block. However, the half-block segment width only eliminates

drawing gaps at the leaf level, so we must refine the traversal process to eliminate

other drawing problems.

37

Figure 3.7: Restricting the leaf range width to less than the block width is not
sufficient to render in every block at the leaf level. Lk and Lk+x are adjacent leaf
ranges, both of which may contain several leaves to render, but we only want to
render a single leaf in each range. The local blocks rows are Rm-i, Rm, and R-m+i,
we assume a dense leaf layout, and are attempting to draw at least one leaf into each
block. Since Lk overlaps with Rm-i and Lk+i overlaps with Rm+i, it is possible
that a leaf will not render into Rm from either leaf range. We cannot shift the leaf
ranges up or down to align with the blocks since we use a partitioning process from
generic accordion drawing functionality. Therefore, the maximum width for leaf
ranges is too large for the leaf partitioning process.

3.2.2.2 Ascent rendering

A second rendering problem occurs with our bottom-up rendering technique, as

shown in Figure 3.9. When ascent rendering, rendering a path from the leaf

nodes to the root node, we notice that there may be horizontal gaps from naive

path choices. For example, a sub-block subtree attached to a node close to the root

of the hierarchy, where drawing is sparse, may not be drawn if its leaf is not chosen.

This was not a problem with descent, or root-to-leaf, based methods in TJ1 since all

such sub-block subtrees attached in a sparse region of the topology would be drawn.

However, TJ1 rendering performance indicates that its methods over-render nodes

deep in the hierarchy, exactly what TJ2 attempts to eliminate by ascent rendering.

For dense topological regions, paths from leaf nodes to internal nodes can be

38

1 Rm+1

Figure 3.8: Restricting the leaf range width to less than half the block width is
sufficient to render in every block at the leaf level. Lk and Lk+i are adjacent leaf
ranges, both of which may contain several leaves to render, but we only want to
render a single leaf in each range. The figure shows both leaf ranges clearly inside
block row Rm, but we notice that shifting the leaf ranges up or down so either Lk or
Lk+i are partially in Rm-i or Rm+i are exclusive events; one of Lk or Lk+i would
st i l l be in Rm. We cannot shift the leaf blocks in any way to exclude at least one full
leaf range inside any block row. The maximum width for leaf ranges to guarantee
rendering leaves in every block, therefore, is slightly less than half the width of a
block.

culled into single horizontal lines instead of drawing the complete subtrees under

all internal nodes, unti l paths connect to subtrees larger than the block size. Wheri

we assume the rendering paths of a leaf range are single horizontal lines from culled

subtrees, our horizontal line rendering gaps occur when we do not draw the spatially

highest culled subtree in a leaf range. Since every path of a leaf range under our

assumption renders into the same block row, we only need to render the path in a

subtree that is not covered by any other subtree. Therefore, our leaf selection in

ascent rendering depends on finding the highest subtree possible from any leaf in

the range, wi th a restriction that the subtree width is less than the width of a block.

F inding the highest subtree in a leaf range is not an expensive process. We

do not need to examine each leaf in the range; the number of leaves to examine per

range is constant, and depends on our ascent checking width. The ascent width

39

Figure 3.9: Our rendering choices for dense leaf ranges in ascent rendering affects
the rendering output for horizontal edges in sparse regions. Given the two subtrees
A and B from the figure, both of which are contained in the leaf range highlighted
in blue, we need to choose one horizontal line path from some leaf to the root to
represent both subtrees. Furthermore, the parents of A and B are large enough to
terminate ascent searching since they cannot be represented with the same horizontal
line path. If we choose either leaf in A, we render two nodes high, while rendering
any of the four leaves of B, we render three nodes high. However, rendering A
would prevent us from rendering B, so the line segment marked in red would not
be drawn if we make the poor choice of rendering A. Our ascent rendering process
must ascend all possible subtrees representable with horizontal line paths to render
the spatially tallest subtree, in this case B.

is further discussed in Section 3.2.2.3, which includes choosing an appropriate value

for segment and ascent widths.

Without loss of generality, assume that the leaves in range L are enumerated

from lowest to highest in some vertical direction, from Ls to Lk, as in Figure 3.10.

We begin' by following the path from Ls to node A, which is the first node that is

wider than the ascent width; B is the child of A along the path to Ls. We store B

as the highest subtree, H, for the leaf range, so far, and continue searching L for

higher subtrees.

Each internal node stores the widest leaves under its subtree, so we can find

Li, the maximum leaf under A, in constant time. Furthermore, we can find the

40

Figure 3.10: Finding the highest subtree in a leaf range, with leaves L s to Lk, which
are not as wide as the segment width shown as the green background. Starting from
L s , we ascend the topological tree until we get to the first subtree wider than the
ascent width. In the figure, A is the first subtree wider than the ascent width and
B is the child of A along the path to L s ; I do not draw the entire tree in the figure,
only the traversed paths. We find Li, the maximum leaf under A , with a constant
time operation, and continue the process with its neighboring leaf, L i + \ , which is
under C. Li+\ is still in the leaf range, so we ascend again, this time finding C as
the first node that is not as wide as the ascent width. C is spatially lower in the
tree than B, so B is still the node we render for the leaf range. The parent of C has
its maximal leaf outside of the leaf range, so the process is finished; we render from
L s to the root of the topological tree.

41

AscentRender Function
input: L = sub-segment leaf range [with leaves Ls, L s + i , . . . Lk]
output: path P rendered from L to tree root

ra <- Ls

while ra e L
p <— getParent(n)
while subtree Width (p) < ascentWidth

ra <— p

p <— getParent(n)
end while

if nodeHeight(n) > nodeHeight(if)

end if
ra <— getNextLeaf(p)

end while
renderToRoot(getLeafIn(iJ, L))

Figure 3.11: ascentRender ascends a range of leaves L to determine the highest
subtree node H that is not as wide as ascentWidth. Once H is found, a path from
L that is in the subtree under H is rendered towards the root, rendering H along
the path. Here is a description of all variables and functions used: ascentWidth is a
global variable, as discussed in Section 3.2.2.3; subtreeWidth(/V) returns the width
of the subtree under node N; nodeHeight(iV) returns the base grid line coordinate
of N closest to the root; getNextLeaf(iV) returns the leaf adjacent to the maximum
leaf in the subtree under iV; getLeafIn(Ar, L) returns some leaf Li € L that is under
the subtree of N; and renderToRoot(Lj) renders from leaf L» to the root.

adjacent leaf in the next subtree, Li+\, to start ascending from next, by using a

constant time operation from Li. If Li+\ is not in L, then we are done searching

since A covers L and the leaf range adjacent to L. Otherwise, we follow Lj+i much

like we followed Ls, updating H if necessary.

Once we find H, we render from any L under H to the root, stopping when

we arrive at a previously drawn node. Figure 3.11 gives pseudocode for our ascent

rendering function.

42

3.2.2.3 Ascent termination width

In the previous sections, we identify segment and ascent widths as important tree

ascent rendering values. The segment width determines how many leaf ranges must

be made for a given number of vertical blocks and the ascent width determines how

to search for subtrees of a certain threshold width to produce a correct rendering

for horizontal edges. Although we may choose any value less than one-half block for

a segment width, we have identified neither the limitations for an ascent width, nor

the effect of ascent width on our previous segment width restriction. This section

identifies one last rendering problem for dense regions and how appropriate segment

and ascent widths eliminate those drawing gaps.

In Section 3.2.2.1, we noted that segment widths must be smaller than one-

half block to ensure no visible gaps occur in leaves. In Section 3.2.2.2, we use a

rendering function that assumes rendering paths from leaf segments render into the

same row of blocks as the leaf segment. However, upward paths in a subtree are not

straight lines but, depending on the topology, may be very erratic. Similar to our

reasons for segment widths bounded by one-half block, we do not know the position

of subtrees ascended by our ascentRender function relative to on-screen blocks. If

an ascent occurs close to a block boundary, there is the possibility of visible gaps

in dense regions, as shown in Figure 3.12. We notice that this problem may occur

when the sum of segment and ascent widths is larger than one-half block, for exactly

the same reasons given for our original choice of segment width in Section 3.2.2.1.

When the sum of these widths is less than one-half block, we guarantee gap-less

rendering of paths in every block row.

One restriction to the ascent width is that the ascent width a must be at

least as large as the segment width s, as shown in Equation 3.1. If the ascent

width is smaller than the segment width, it is possible to miss the highest subtree

node rooted in the leaf range, as shown in Figure 3.13. We want to maximize

the segment width since larger leaf ranges result in fewer leaf ranges to process.

43

A '

r>

A

C

B

r>

A

C

B

r> 1

A

C

B

A

C

B

A

C

B

ED

Figure 3.12: Illustration of ascent-related gaps for segment widths of less than one-
half block. The blue region represents a block row, green squares represent the
position and vertical width of two hypothetical adjacent leaf ranges, black lines
represent drawn edges, and the red line represents an edge not chosen for drawing
in the corresponding leaf range. If we choose to render leaves A and B, as shown in
the figure, there will be no gaps at the leaf level for the blue block row. However,
higher in the subtree at internal nodes A' and B', there is a drawing gap, where it
would have been possible to draw internal node C. This gap is possible even when
A' and B' are not as wide as the segment width.

Adding the restrictions of Equation 3.1 and Equation 3.2, which states that the

sum of the two widths is less than one-half block, we solve for the segment width

s, in Equation 3.3, with respect to the block width 6. To solve for the ascent width

restriction a in Equation 3.4, we need to use the maximal value of s, 6/4, with both

Equations 3.1 and 3.2; a is exactly 6/4. We arrive at an optimal solution of both

segment and ascent width equal to one-quarter of the block width 6:

a>s -» a- s > 0 (3.1)

s + a < 6/2 -» 6/2 - s - a > 0 (3.2)

6/2 - 2s > 0 -» s < 6/4 (3.3)

maximize s —> s — 6/4 - » a = 6/4 (3.4)

Again, similar to restrictions from Section 3.2.2.1, we do not have an increase

44

B

Figure 3.13: If the ascent width is less than the segment width, we may not find
the correct horizontal edge in a leaf range. Using the figure, we ascend subtrees
under nodes A and B in the leaf range highlighted in blue. If we ascend subtree
A using the ascent width, given as the brown line on the left side of the figure, we
terminate on the red line at the root of A; we may assume the parent vertical line
of A is very long. Ascending B in the same manner, we find two more possible
paths, also marked in red; the ascend rendering algorithm would find one of these to
render since the root of subtree B is the first node in B that is wider than the ascent
width. Our algorithm would choose among all red nodes to render, all equally likely
depending on the traversal and layout methods used. However, we know that the
root of B is not covered by subtree A, so we would see a horizontal gap where we
would expect the root of B to be drawn. Therefore, the ascent width must be wider
than the segment width, which would definitely select the highest subtree B that is
contained in the leaf range.

in computational complexity by rendering twice as many leaves. Our pixel-based

resulting rendering performance with quarter-block segment and ascent widths ren

ders'seven times fewer nodes than TJ1 for the large, non-binary animalia trees from

the Info Vis 2003 Contest datasets [28], with only a small increase in the per node

rendering time, as shown in Section 5.2.

45

3

2 4
5

1 6

n 7
u 9

8
10

11
10

Figure 3.14: A sample node key assignment for a small tree. We can store the subtree
under key 1 as the range [1,7] in a RangelnTree, or an individual node such as 2
in [2,2]. Storing a range such as [1,8] is also valid and represents the subtree range
[1,7] combined with node range [8,8]. In T J 2 RangeList collection objects, which
store several RangelnTree objects, RangelnTree objects are neither allowed to
overlap nor be adjacent to other RangelnTree objects in the same collection; we
collapse pairs of such ranges into single ranges when possible.

3.3 Marked ranges

In TreeJuxtaposer, marked ranges are necessary to define regions of interest such

as computed differences, search results, user marked groups, and even mouse-over

highlighted nodes. This section describes the methods used to store marked ranges

for efficient performance of updates when marks change and efficient lookup tech

niques when marked nodes are drawn.

Nodes in TreeJuxtaposer are enumerated with node keys: pre-order, con

secutive, monotonically increasing integers. This means that for every subtree in

TreeJuxtaposer, the subtree root node key is smaller than every other node key in

the subtree, and the entire subtree can be represented by a single range of integers,

from the value of the root node key to the value of one of the leaf nodes in the

hierarchy. A n example subtree is shown in Figure 3.14. This numbering scheme

allows us to efficiently store large subtrees as a pair of integers, in an object that we

call a RangelnTree. A collection of RangelnTree objects is a RangeList and sev

eral RangeList objects are used in TreeJuxtaposer for operations such as marking,

46

resizing, and comparing.

For each RangelnTree object, nodes are stored either as a subtree or as

single nodes with consecutive node key values. This method of compressing the

amount of information, necessary to store common topological structures such as

large subtrees, is also efficient for range checking operations such as concurrently

deciding the color of several nodes. However, the node key assignment is permanent

and does not allow keys to change after the initialization step. If a single leaf node

is added or deleted, for example, too many nodes would have to be updated to

be efficient. Future TreeJuxtaposer versions, which may support tree editing, will

require new storage techniques that do not rely on the current node key values.

Each RangeList is initially assigned to a marking color, which can be changed

with color selection panel, shown as small color swatches in Figure A.3. RangeList

objects appear as marked with their assigned color in the tree topology; techniques

such as guaranteed visibility, progressive rendering and label placement are used

to ensure visibility of marked ranges as a priority over the normal nodes in the

topology. Highlighted node colors are also priority based, which means mouse-over

highlighted nodes are visible over user marked groups that are visible over search

results that are visible over automatically calculated differences. When rendering

trees, ranges of nodes to be drawn are searched for in each RangeList collection.

Since the lookup process for determining node colors is common with a potentially

large amount of data, storage and recovery of marked ranges for random sets of

nodes must be optimal. This section will examine how ranges were handled in TJ1

in Section 3.3.1, and the changes to handling marked ranges in TJ2 in Section 3.3.2.

3.3.1 Marked ranges in TJ1

There are several inefficient techniques used to store marked ranges in TJ1. Since

the TJ2 rendering process depends on efficient color lookup methods for all nodes

being rendered, these techniques are no longer used in TJ2; I identify them here

47

to clarify the contributions of TJ2. The most notable techniques from TJ1 that

we found to be inefficient were: RangeLists not combining adjacent or overlapping

RangelnTree objects for automatically-marked node differences; RangeLists stor

ing RangelnTree objects in lists; and RangeLists not storing nodes for implicitly

user-marked nodes.

Overlapping and adjacent RangelnTree objects

If the RangeList collections were sorted lists, it would be possible to perform color

lookup operations in time logarithmic to the number of items in the list with a

simple binary search. However, sorting ranges that may overlap in a list is not

trivial. One technique that would allow for easier sorting would be to combine all

pairs of overlapping ranges into one single range; adjacent ranges such as [1,3] and

[4, 5] would also be considered overlapping and can be combined into the range [1,5].

It is trivial to see the space efficiency of storing one range instead of several ranges

for long lists of adjacent nodes, or removing non-unique ranges, but we would also

become more time efficient in both searching a sorted list and searching for elements

in a combined range.

Unoptimized RangeList collections

In TJ1, RangeList objects were simple lists of RangelnTree objects. Since the lists

are not sorted, the color lookup operation, required for each node, has to search the

entire list for an overlapping region. Although it is particularly expensive to look

up a color for nodes known to be marked, unmarked nodes that are drawn also

require color lookups for correctness. The inefficient methods of storage, which lead

to inefficient color lookups, do cache color information for any node examined, while

the user does not change any marks. However, due to the costs of color updates,

this marking scheme does not scale beyond tens of thousands of nodes with many

marked regions.

48

fast

mammal

animal

insect
bee

Jias:
cheetah

mouse
beaver

human

wasp
killer bee

honey bee

rodent

Figure 3.15: T J 1 only stores directly marked nodes to reduce the storage required.
In the example, a user has marked the fast subtree on the left, and on the right
the indirectly marked nodes appear. T J 1 stores only the subtree fast and does not
store the additional two subtrees mouse and feline from the right tree, but requires
its color lookup code, which refreshes cached values after any marks have changed,
to determine the colors of al l nodes by searching for the corresponding nodes for
each tree in each list of colors. T J 2 stores all three subtrees so determining colors
in this way is not necessary. T J 2 color lookup methods are sufficiently fast during
the rendering that per-node color caching is no longer necessary.

RangeList collections store only explicit marks

T J 1 only stores marked ranges that are explicitly marked. This means that for a

two tree comparison, shown in Figure 3.15, if a user marks the fast subtree on

the left tree, only that subtree is stored in the RangeList. The feline subtree

and all other nodes marked in the right tree are not stored in a RangeList. T J 1

determines the marking color for each node when the node is rendered, using the

best corresponding node for that node in every tree. F inding the marking color for

nodes, after any marks have changed, is a slow operation that must perform a lookup

for each node being drawn, but T J 1 caches node colors to prevent subsequent slow

operations between marking. Although individual node marking for large numbers

of nodes is not a common operation, automated marking that frequently changes

the marked nodes, such as tree differences and search results, do not allow for rapid

updates of marked regions for large trees.

49

3.3.2 Marked ranges in TJ2

There were several changes made to improve on the performance of the implemen

tation of marked ranges in TJ1, most notably using a binary tree to sort and store

RangelnTree objects. TJ2 no longer caches results for each node, since color lookup

for ranges of nodes is sufficiently fast; we improve scalability by not caching colors

for each tree node. The efficiency issues mentioned in Section 3.3.1 are dealt with in

the following topics: RangeLists combining adjacent or overlapping RangelnTree

objects; storing RangelnTree objects in binary trees; and RangeList storing nodes

for implicitly user-marked nodes.

Combining adjacent RangelnTree objects

Automated marking from operations like computed differences and search results

often return several adjacent, non-unique, or overlapping RangelnTree objects, all

of which we refer to as overlapping ranges. TJ2 combines RangelnTree objects by

searching the RangeList binary tree for overlapping ranges, combining any overlap

ping ranges with the RangelnTree, repeating the process until no more overlapping

ranges are found, and finally adding the new non-overlapping RangelnTree to the

RangeList. This repeated searching is necessary with the data structures we use

for our binary tree implementation, namely the Java TreeSet, which cannot return

the entire set of overlapping ranges in a single function call.

RangeList collections as binary trees

We sort the RangelnTree objects in a binary tree by their minimum node key

values; the sorting criteria could actually use any node key in the range since there

are no overlapping ranges in RangeList binary trees. Since each RangelnTree

is accessible in time logarithmic to the number of marked items, the performance

improvement is a dramatic improvement for large numbers of marked items, often

resulting from hundreds of either differences or search results.

50

Another drawback to using the Java TreeSet class is there is no direct access

function to retrieve members of the tree, so we developed a workaround built into the

RangelnTree comparator function. We use one static RangelnTree object in the

RangeList class, called matchRange. The comparison function for RangelnTree,

compareTo(Object), stores the value of any overlapping range found in the binary

tree by setting the value of matchRange to the node passed to the compareTo

function, before returning true to the calling function. By accessing the matchRange

object, we can get the first overlapping range from the binary tree for removing and

further processing, as described in the previous section. This work-around allows

us to use the built-in Java TreeSet data structures so we do not have to create our

own binary tree implementation. Furthermore, we use this work-around in many

places where binary trees are used in TJ2 and generic accordion drawing, saving the

effort of having to repeatedly re-engineer binary trees.

RangeList collections store all marks

When a user marks a node or subtree, we call that a directly marked node or

subtree, and the tree that this occurs in is the directly marked tree. An indirectly

marked node is also possible when we compare with more than one tree, which oc

curs in'all trees not directly marked, the indirectly marked trees. TJ1 does not store

the indirectly marked nodes to attempt to save time performing bookkeeping, so it

must recompute the indirect marks for each node after any marking changes occur,

even if the marking does not affect the user marks. For TJ2, we perform the book

keeping and attempt to store all marks, direct and indirect, to avoid unnecessary

recalculations of node marks for RangeList collections.

After changing marks with multiple trees, TJ1 recomputes the cached colors

for all nodes drawn in every tree; indirectly marked nodes are no exception. The

colors for indirectly marked nodes are determined from their best corresponding

nodes (BCN) in the directly marked nodes, stored in RangeList collections; the

51

Figure 3.16: The best corresponding node (BCN) relationship between subtrees is
not always one-to-one. To compute the BCN for a node from the left tree in the right
tree, we need to find the node in the right tree that maximizes the value of number
of similar leaves divided by the number of the union of leaves [24]. As an example,
consider the figure with subtrees A , B, and C conserved between the two trees. The
BCN for each of these subtrees on the left is always the corresponding subtree on
the right; each BCN value is maximum at 1.0 since the set of similar leaves is the
same as the union of leaves. The same is true of the roots of these trees, a and x
since both trees contain the entire set {A, B, C}. However, the BCN for 8 may not
be 6 but could be C if the size of A , B, and C are certain values. For the BCN of
8 to be 6, 'Bs = \C\/(\{A,B,C}\) has to be greater than 8C = \C\/(\{B,C}\), the
BCN value of 8 for C. Setting |A| = 1, \B\ — 3, and |C| = 1, these calculations
become 8$ — 1/5 and (3c = 1/4, meaning that the BCN of 8 is C on the right-hand
tree. Therefore, directly marking C on the right-hand tree indirectly marks 8 as
well as C on the left hand tree.

single color that appears for a given node is found by prioritizing the RangeList

collections. This means that when TJ1 draws a node, it checks the BCN for each

tree for a mark; we assert that there is either a single BCN or no corresponding

node for each tree.

A simple, but incorrect, approach would be to find each BCN in the indirect

trees for each node marked in the directly marked tree, and proactively mark those

corresponding nodes prior to rendering. This method does not mark all nodes in the

indirectly marked trees, as shown in Figure 3.16. Directly marking node C on the

left tree should indirectly mark both the identical node C and its parent S on the

52

B C B C

Figure 3.17: When comparing two trees with the same set of leaves, a directly
marked single node may have a BCN in the second tree, but that second tree may
not have any node that has the directly marked node as a BCN. For example, if
we mark node a in the figure, its BCN in the right-hand tree is node 8 (as =
\{B,C}\/\{A,B,C}\). However, 6 has a BCN in the left-hand tree of p (Sp = 1.0
and 8a = as)- This means that for the.implementation of marks in TJ1, we would
have not marked any node in the right-hand tree if a was marked. In TJ2, we
perform a back-check from the BCN of a, which is 5, by determining if the BCN of
5, which is /?, is marked in the left-hand tree. Since /3 is not marked, TJ2 does not
mark 5; both TJ1 and TJ2 follow the same marking rules.

right tree. The BCN criteria is not one-to-one, so TJ2 requires a slightly different

approach to mark the correct set of nodes.

Since the BCN relationship is not a one-to-one relationship, each potentially

marked node must be examined in the indirectly marked trees for a correspondence

to the directly marked nodes. We can avoid checking every node of all indirectly

marked trees, by searching the neighborhood around the BCN for directly marked

nodes in every tree. If we examine the BCN for all directly marked nodes, we expect

to get a close correspondence to the set of indirectly marked nodes. However, there

are cases when a directly marked node is. not the BCN of any node from another

tree, even with identical leaf sets, as shown in Figure 3.17. This means that when

we examine the BCN of all directly marked nodes, we must back-check the potential

indirectly marked nodes to some directly marked node.

The TJ2 marking process successfully finds all indirectly marked nodes with

53

an algorithm that performs back-checks on the B C N of all directly marked nodes.

If an indirectly marked node is found in this way, the parents and children of that

node are also examined recursively for B C N correspondences; indirectly marked

nodes that are already marked are not processed further. The local checks are

necessary due to the nature of the B C N method used. We notice that indirectly

marked nodes are typically in the neighborhood of other indirectly marked nodes,

since the B C N does not change dramatically in localized regions of a tree structure.

An explanation of why the B C N is well conserved in localized regions is that the

leaf set in a parent node includes the leaf set in all of its child nodes. Therefore,

the B C N of a directly marked node is typically topologically close to a sufficiently

related neighborhood of nodes, which simply means the B C N value of a directly

marked node is never zero. When a node in the indirectly marked tree is found to

not correspond with any directly marked nodes, such as the example in Figure 3.17,

we do not process the parent or child nodes of the B C N .

Note that it is also possible to mark a single node on one tree, and have more

than one indirectly marked node appear on a second tree. Referring to Figure 3.16

with the subtrees A, B, and C the same size as in the original example, if we mark

node C on the left, C and 5 on the right are marked. This behavior is correct

given our definitions, although it may appear confusing when this is not expected,

especially to those who do not know the subtleties of our B C N algorithm. This

behavior never appeared in TJ1 due to faulty marking in the color caching process

that showed computed differences over all marked nodes, and no colors for indirectly

marked nodes when differences were turned off.

3.4 T o p o l o g i c a l p i c k i n g

Users perform navigation in TreeJuxtaposer using a mouse, so when the cursor

is close enough to a tree node, we want to indicate to users that the node has

been selected, or picked. We treat node picking as a simple case of node marking

54

by highlighting all BCNs of a selected node when we compare trees; unlike real

marking, we do not perform the back-checking operations, described in Section 3.3.

Since a tree node may be drawn as a single pixel, in either horizontal or vertical

directions, we allow picking to be within a margin of error, which we call the picking

fuzz. The picking fuzz deals with the speed versus accuracy tradeoffs associated

with the exact aiming a pointer at a target, which is known as Fitts' law [10], after

the famous study by Paul Fitts.

We allow the user to be within a distance of five pixels from a selectable

target with our picking fuzz, but also understand that it may not be possible to

disambiguate an intended target in regions where many possible selections are valid.

Therefore, we rely on a user to stretch the region of interest if a desired node is not

pickable with our technique. Our main concern is that users should always be able

to pick a node if there is a single, definitive choice for selection when a mouse pointer

is in a screen location close enough to pick it.

TJ1 is able to pick most nodes of trees, using quadtree structures, but could

get stuck trying to pick certain sub-pixel tree nodes [5]. These nodes, often in

vertically very small grid cells, are usually adjacent to a cell of the quadtree that was

descended but was not able to pick a node. Quadtree cells that are descended are the

most likely candidates since the current mouse location is in the correct quadtree cell

quadrant, but no tree edges are in that quadrant within the picking fuzz distance to

the mouse location. However, the non-descended nodes in an adjacent quadtree cell

could have been near enough to the mouse, but these nodes were already discounted

by the quadtree picking algorithm. The quadtree picking algorithm lacks back

tracking capabilities to search other quadtree cell candidates.

An important design concept is that picking algorithms should be structurally

similar to rendering algorithms. The similarity assists in providing intuitive picking

with visible objects: visible objects can be picked and all pickable objects are visible.

As shown in our picking algorithm in Figure 3.18, TJ2 uses the cell layout described

55

Picking Function
input: mouse screen position M — (X, Y)

root TreeNode T — (kids, cell) where
kids = {T0,Ti,...,T„_i}
Cell — (Xrriin, XrrLax,Yrnin,Yrnax)

output: picked TreeNode T(x,y)> a node close to (X,Y)

stack S <— 0
S.push T
while 5 ^ 0

AT <- S.pop
if (X, Y) over edge of N

then return iVend if
xMin <r- N.cell.Xmin
if N.isLeaf() or N.cell.bounds(Y) or xMin > X

continue end if
k <— Binary Search (N.kids, Y)
if jfc > 0

S.push Arfe_i end if
if A; < n - 1

•S.push Â fc+i end if
.S.push AT*,

end while
return 0

Figure 3.18: Picking function that descends tree T from the topological root node
of T unti l a tree edge close enough to mouse coordinates (X, Y) is found. A stack
S is used for backtracking if a descent is unable to find a tree edge; at each step

,of the descent, the siblings to the immediate left and right of the next node to
be checked are pushed onto S. We use binary search to select the next node for
descent, if appropriate, using N.kids, the children of the current cell, and the mouse
Y coordinate. For every function that we use for distance comparisons, including:
BinarySearch; Y wi th in the cell of ./V; and mouse over edge of N, we apply a picking
fuzz, to satisfy Fi t t s ' law.

5 6

in Section 3.1.1 to descend the cell structure until it finds the cell that contains the

mouse pointer. However, as the algorithm descends in the tree hierarchy, it adds

the immediate left and right siblings to a stack. If the algorithm is unable to find

a node in the hierarchy after descending, it pops a node off the stack and continues

descent searching with that node. Some subtleties of this algorithm are the stopping

criteria, how child nodes are selected for descent, and how the picking fuzz is used

to allow descent on siblings that are close enough to the mouse pointer.

The algorithm works by checking the bounds of the current grid cell with

the mouse pointer coordinates. If the vertical range of the current cell contains

the mouse pointer, then we know that a potential selected node is in one of three

places: an ancestor of the current cell, the current cell itself, or a descendant of the

current cell. Since we start descending from the root cell, we know that once we

process a parent cell and determine that the horizontal mouse coordinate is spatially

lower in the topological tree hierarchy, the selected cell is either the current cell or

some descendant. Finally, if the current cell does not contain the horizontal mouse

pointer, we know that a descent is necessary. Our stopping criteria for picking would

therefore be that there are no pickable nodes in the cell that "the mouse pointer is

found in after a sufficient horizontal descent; the algorithm would then use the stack

to continue searching.

T J 2 is able to deal with n-ary trees, so picking a child to descend is not

trivially "left or right" as it would be in a binary tree. We know that the current

node being examined has some descendant node that has a cell which contains the

mouse pointer. To find the appropriate child to descend, we perform a binary search

on the child nodes, using the mouse pointer location as our searching value. Once

we select the child node for descending, we push its immediate siblings onto the

back-tracking stack.

We use the picking fuzz to descend siblings that do not exactly bound the

mouse coordinate with their vertical cell range. We know, when descending the

57

topology, that if we do not find an appropriate node for picking when we reach the

end of our criteria, we need to search with the back-tracking stack. It is sufficient

to place only one sibling in each direction for a descent since the adjacent cells are

not empty and the adjacent edges are either within the picking fuzz or too far to

pick. Finally, a node will only be pushed onto the stack at most once; back-tracking

would follow a different path that could not possibly re-select nodes from previous

descent attempts.

Our picking algorithm requires time linear in the height of the tree. This

time complexity is not a problem for most tree types, and picking has been shown

to be sufficiently fast on the deepest trees TJ2 is currently able to support, which

are over 1000 nodes deep. One important note about picking in deep trees is that

recursive picking methods quickly run out of stack-frame memory, which is why our

methods use a Java-based stack that we can place on the heap. Other methods that

use recursion on the height of the dataset topology, such as the tree parsing library,

should also be written without recursion, and are currently the limitation to the

depth of trees we would otherwise be capable of loading.

58

Chapter 4

A c c o r d i o n D r a w i n g

This chapter describes the advantages of using an Accordion Drawing (AD) infras

tructure to develop new information visualization applications. AD applications

have features such as guaranteed visibility, global Focus+Context, and progressive

rendering, which all aid in the understanding and analysis of many different dataset

types. We can easily develop new AD applications with these key information

visualization features with a minimal amount of work in non-application specific

functionality.

In this chapter, I focus on our improved motion algorithm for AD grids,

which is numerically stable and correct over large amounts of grid movement. I

also describe the split line hierarchy in detail, as well as how we use the hierarchy

to efficiently perform generic operations used by applications such as TJ2. I then

present the details for a single split line motion in our grid hierarchy, which is shown

to be capable of several key features to ensure order, stability, and efficiency in our

split line hierarchy. Finally, I present our algorithm that allows for concurrent

motion of several split lines with minimal split line hierarchy updates. Our new

algorithm is just as efficient as TJ1 motion, and ensures that TJ2 motions do not

cause ordering inconsistencies in our split line hierarchy, which are present in T J l

methods from lack of numerical precision.

In the remainder of this section, I details the AD mechanics from T J l . Then

59

in Section 4.1, I describe our reshapable split line infrastructure. Section 4.2 de

scribes our generic rendering infrastructure for pixel-based rendering, and Section 4.3

describes numerically stable AD navigation.

General accordion drawing mechanics

I begin by discussing the general mechanics of AD that persist between TJ1 and TJ2

implementations. Although both applications consider tree topologies for rendering,

this section focuses on a more general approach of a reshapable grid.

We grow and shrink areas on rendered datasets using movable lines in a two

dimensional plane, which has a growing effect for one region while shrinking the

region on the other side of the moving line; the horizontal and vertical lines are

independently movable boundaries of interaction boxes. Growing or shrinking

is performed on the base grid of such lines, the set of all lines that form the grid,

called split lines. When we grow or shrink an interaction box region between a

pair of split lines, the AD infrastructure grows or shrinks the areas of cells between

each pair of split lines in the region with equal ratios. This equal ratio can be seen

in Figure 4.2, where a split line has vertically squished the region below a moving

split line while vertically stretching the region of interest inside the interaction box.

Interaction boxes themselves are a rectangular arrangement of a set of base grid

cells, which are the smallest individual regions of space on the base grid bounded

by four split lines.

Figure 4.1 shows a uniform split line grid of base grid cells, the typical initial

state of an AD application, with an interaction box that I have selected. There

are no restrictions on the initial properties or distribution of split lines for appli

cations; developers of applications are responsible for defining their own split line

arrangements if a uniform grid is not desired. After the base grid is created with

application-specific dimensions, applications typically lay out and draw a canonical,

uniformly scaled view of their datasets on the grid. Typically, the split lines them-

60

Rile Find Tools Help "1

Figure 4.1: An initial uniform split line layout for AD applications, which appears
as a grid of base grid cells separated by split lines. I have selected an interaction
box, shown in grey in the upper left corner of the grid with a dot marking the center
of the box, which is shown stretched in Figures 4.2 and 4.3.

selves are not drawn as shown in the figure, and application-specific nodes appear

within regions of base grid cells.

Figures 4.2 and 4.3 show the interaction box from in Figure 4.1 stretched

in the vertical direction and stretched in both directions, respectively. When we

shrink an area of base grid cells, data in that area may be compressed to a size that

is smaller a block, the smallest feature size for drawable elements. AD applications

handle over-compression of drawable data with culling, or choosing a representation

of the data for that compressed region. The AD framework conveys information to

the application-specific drawing procedures about the position and size of base grid

61

(

Figure 4.2: The interaction box in the grid of Figure 4.1 stretched vertically towards
the bottom of the display. This stretching: does not affect above the interaction box;
stretches between the top and bottom edges of the interaction box; and compresses
below the interaction box. All stretching is uniform over each of the distorted
regions.

cells, and the application determines how to draw in the current state of the base

grid.

4.1 Split line infrastructure

In T J l , a version of TreeJuxtaposer that featured the original implementation of AD,

spatial subdivisions of the navigation space are created from a quadtree structure.

Each T J l quadtree cell, a quad-cell, stores a pair of split values used to allocate

62

File' Find Tools Help

Figure 4.3: The interaction box from Figures 4.1 and 4.2 stretched both vertically
and horizontally towards the bottom-right of the display. Notice the stretching does
not affect the grid in the section above and to the left of the interaction box, but
has been stretched and shrunk in other regions of the display adjacent to, and inside
of, the interaction box.

space to child quad-cell nodes; one value is for a horizontal split line, the other

for a vertical counterpart, as shown in Figure 4.4. The split values, between 0

and 1, are a relative offset with respect to the quad-cell boundaries. Split lines

are global grid divisions as shown in Figure 4.1, and quad-cells reference the split

lines for their boundaries and their movable split line. Several quad-cells reference

the same split line since many parts of the quad-cell hierarchy descend into similar

regions. For example, the quad-cells that divide the leaf nodes all reference the split

line that defines the right edge common to all leaves. However, T J l only caches

63

f

Figure 4.4: A quad-cell structure from implementation of AD in T J l . Left: the
split lines x and y, along with the boundaries of this cell, define the boundaries for
the four child quad-cells of this cell. The split lines are movable and each quad-cell
maintains the location of its two component split lines with a relative split value;
the split value is a normalized ratio between zero and one. The split value for the
horizontal subdivision in a quad-cell, for example, is the value of (x — XQ)/(X\ — XQ),

which is the relative distance between the split line and the minimum boundary
with respect to the size of the cell. The relative split values are used to compute the
absolute location of split lines during rendering. Middle: the recursive structure of
quad-cells means that the quadrants of any quad-cell can hold one quad-cell each.
The bottom right cell has been subdivided, producing four new quad-cells out of
one larger quad-cell. The new quad-cells use x, x\, y, and y\ as their boundaries.
Right: all four quadrants subdivided. Notice how the bottom right and top right
subdivisions share the position of a vertical subdivision. Quadtrees are less efficient
for AD than a simple grid because of these redundancies.

split line positions for grid quadtree cells and does not cache the positions for split

lines themselves; any split line that is referenced by more than one quadtree cell is

updated with the same value for each reference.

Another quadtree inefficiency, described by Beermann et al. [5] for trees but

applicable to any AD application, is that each quad-cell wastes substantial memory

because they are all identical structures, with four pointers to child quad-cells. They

point out that quad-cells are used unnecessarily at the leaf tree node level; leaves are

the lowest quad-cells, do not have children, and are the majority of all tree nodes

in a typical dataset. Creating a new type of quad-cell for those tree nodes saves

memory in their implementation of quadtree-based TJC.

However, Beermann et al. also present a second approach that uses a simple

grid layout for spatial subdivisions. Their grid method extracts the split lines from

64

the quad-cells and removes quadtrees entirely with grid-cell objects, tree nodes in

TreeJuxtaposer, defined by their bounding split lines in the grid. The use of a

regular grid layout for spatial subdivision, which is shown to load trees that are

three times larger in an equal amount of memory, provides a convincing argument

for not using quadtrees for AD in general.

We generalized the AD infrastructure from T J l , and TJ2 is built using this

generic API, as discussed in Chapter 3. Our infrastructure improvements are de

tailed in this section: abstracting the split lines from application specific topological

layouts in Section 4.1.1; generalizing horizontal and vertical split line components

providing a flexible API for new AD applications in Section 4.1.2; and storing the

split lines in a tree hierarchy for efficient updates in Section 4.1.3.

4.1.1 Abstracting split lines

In order to use a grid-based generic navigation infrastructure, we need to ensure ap

plications are capable of performing critical tasks such as layout, rendering, culling,

and picking. All of these four tasks have application-specific components, but since

each task depends on location of data in our grid structure, we must provide support

each task with our AD infrastructure.

Dataset nodes, entities of datasets that provide the lowest-level dataset de

tails, are assigned to a grid cell, which is a rectangle described by four split lines for

the top, bottom, left, and right sides. Each node of a dataset is typically assigned

to a grid cell when the dataset is initially loaded; this is not a requirement and the

dynamic assignment of dataset nodes to grid cells is an interesting area of future

work. In my thesis, we will restrict node layout in AD by only permitting layouts on

grids with known dimensions; the parsing process for TreeJuxtaposer can determine

how many horizontal and vertical split lines are necessary. When laying out data

in AD, we place nodes in the grid where necessary, as described in Section 3.1.1,

by partitioning the grid in a much more flexible manner than the methods in T J l .

65

Other AD data mapping techniques used by PowerSet Viewer, presented in [25], are

capable of dynamic layouts of data, but this topic is beyond the scope of my thesis.

Rendering a dataset and culling data elements are related tasks since culling

is a function of the rendering process; all rendering requires knowledge of the location

of a specific item in a particular region of screen space. Our rendering approaches

in TJ2 are topology-based, but the dataset-specific rendering functions collect in

formation about screen position and node size using the cell layout. As mentioned

in the TJ2 rendering section, Section 3.2, a node is rendered only if the cell in

which it renders in is larger than a culling limit. The AD infrastructure assists

the application-specific topology-based rendering and finds the culling limitations

for ranges of nodes stored in ranges of split lines. For example, the infrastructure

provides TJ2 with the desired segmentation-width partition of grid cells used to cull

leaf ranges into single leaf renderings.

Picking is topology-based for TJ2, as shown in Section 3.4, but for application

datasets that may lack an inherent topology, we want to use the infrastructure of

split lines to pick dataset objects. Section 4.1.3 describes a hierarchy that we may

use for generic picking when datasets are unstructured.

4.1.2 Separate horizontal and vertical split lines

Quadtree-based AD applications, such as T J l , combine horizontal and vertical com

ponents in one data structure. Quadtree AD makes development of applications that

either only require one-dimensional AD, or commonly have datasets with very mis

matched quantities of horizontal and vertical split lines, difficult or inefficient to

implement. Figure 4.5 shows how two one-dimensional arrays of split lines con

tribute to the two-dimensional grid structure of AD applications such as TJ2.

The quad-cellstructures used by T J l may be modified to use one-dimensional

accordions, but were optimized for two-dimensional, planar AD. Beermann et al. [5]

show that there are several advantages to using one-dimensional data structures for

66

x min X 0 X 1 X 2 X 3 x

Vmin

y 0

yi | _ | i

yma> !

Figure 4.5: The combination of the horizontal x split line set with four movable
split lines and the vertical y split line set with two movable split lines forms a
grid of fifteen split line cells. The grid formed is the spatial subdivision used in
TJ2; compare this grid with the subdivision method of quadtree cells in T J l , in
Figure 4.4.

split line storage with two TreeJuxtaposer reimplemented applications called TJC

and TJC-Q. Their most substantial results in memory reduction were in TJC, which

distinguished the horizontal and vertical split lines as separate entities. TJC is three

times more memory efficient than TJC-Q, their version of TreeJuxtaposer that uses

quadtree structures.

67

max

Figure 4.6: The split lines XQ through XQ are stored in a balanced binary tree
hierarchy; the boundary split lines xmin and x m a x are not stored in the hierarchy.
This storage is analogous to the quadtree hierarchy in T J l where each cell of the
quadtree stored a pair of relative split positions. The one-dimensional storage of
split lines in TJ2 is more flexible than quadtree storage, allowing applications to be
created that only require one-dimensional accordions.

4.1.3 Tree hierarchy for split lines

Split lines are stored in a balanced tree hierarchy. Upon determining the number of

split lines necessary for a particular accordion direction, horizontal or vertical, we

create a binary tree, as shown in Figure 4.6. The binary tree is organized with the

center split line, the split line with half the number of total split lines on either side,

as the root. Recursively, the tree represents progressively smaller regions to either

side of a central split line.

The split line tree operates hierarchically much like the quadtree structure

in T J l . With this structure, split lines can be interpreted as either lines or regions,

as shown in Figure 4.7. D is free to move inside the largest red box, since it is

bounded to movements within the boundaries of the entire visualization. The two

child split lines, B and E, split the regions left and right of D, and other split lines

further split those regions. Movements of a B are bounded by its parent; it is free

to move only in its brown box, which is always bounded on the right by D, and on

68

D

1 ,
-A C -

r

Figure 4.7: The split line boundaries for a simple seven split line example show how
split lines can be represented by lines in a hierarchy or recursive-bounding regions.
Each split line is color coded, bounded by a region of the same color, can move left
and right in its box, and cannot leave its region. Moving a split line in the lowest
levels of the hierarchy, A, C, or F, does not affect the absolute positions of any other
split lines. Moving B, however, affects the absolute position of A and C, which share
B as a boundary; when B moves, the relative position of A and C in their respective
regions does not change, but the size of the regions change with B. Furthermore,
moving D affects all split line absolute positions, even A and F, which do not have
D as a boundary. The raw movements of split lines, as described, are transparent to
applications, which only request legal split line movements in absolute [0,1] screen
coordinates.

the left by the boundary split line. C, the right child of B, is bounded by both D

and B, and so on. Neither B nor C may cross over each other, and neither may

cross over D; split lines always remain ordered and never leave their boundaries.

As lines, split lines are ordered in the hierarchy between their adjacent neigh

bors and can be indexed as such; the ordering of split lines never changes after

initialization. As regions, split line domains, halving for each layer in the hierarchy

with the root representing the entire domain, represent their region of movement

for both the split line contained within and, recursively, the domains of their de

scendants. The split line hierarchy is a critical structure for the contained lines and

regions since the hierarchy is used to both calculate the absolute position of lines

for cell positions and control the navigation.

Each split line stores a relative position between its boundaries, in its domain.

To compute an absolute screen position, the relative positions of all ancestors of a

split line are required; the absolute value is cached and only computed on demand

69

AbsolutePosition Function
input: split line S
output: screen position in [0,1]

pos <— S.getRelPosQ
while S ^ root

P <— S.getParentQ
if P.isChildLeft(S)

pos <— pos x P.getRelPosQ
else

pos *- (pos x (1 - P.getRelPosQ)) + P.getRelPosQ
end if
S<-'P

end while
return pos

Figure 4.8: AbsolutePosition function that ascends the split line hierarchy from
split line S to determine the position of S relative to the visualization bound
aries. The function getRelPosQ returns the relative position of a split line and
P.isChildLeft(S) returns true if S is the left child of P in the split line hierarchy.
In practice, this function is recursive and the absolute positions of all split lines are
cached as they are computed.

when split lines have moved. The recursive calculation of the absolute location of a

split line is shown in Figure 4.8.

4.2 G e n e r i c A D rende r ing in f ras t ruc ture

Rendering in AD applications is a discretization process that maps the infinite-

precision drawing of an object to block-level precision. The core rendering algorithm

is linear in the number of blocks, unlike AD in T J l , which was more dependent on

the size and structure of the dataset. More specifically, generic AD methods perform

TJ2 tree rendering with a time complexity of 0(bv x d), where bv is the number of

vertical blocks and d is the maximum depth of the tree topology.

AD rendering mechanics operate with a three-stage structure: partitioning,

discussed in Section 4.2.1, where an application-specific set of split lines is divided

70

into renderable ranges; seeding , discussed in Section 4.2.2, where the partitioned

split line ranges and marked ranges are arranged in an order appropriate for drawing;

and d r a w i n g , discussed in Section 4.2.3, where a set of nodes is drawn for both the

marked ranges and each partitioned, seeded split line range. Al though seeding and

drawing are more application-specific than partitioning, the general structure of all

three stages follow a set of basic functional constraints for each A D application.

4.2.1 Partitioning stage

Each A D application that uses two independent sets of split lines to form a grid,

like the horizontal and vertical split line sets used in T J 2 , must decide which set

to partition. For tree drawing applications, it is only possible to partit ion in the

direction of the leaves since leaves may be followed to their set of ancestors, or an

cestors to their descendants. The orthogonal direction in T J 2 , in the direction of

the topological height, has no linked structure analogous to topological associations.

Other A D applications, that do not render a tree structure, such as SequenceJux-

taposer [35], would of course follow any imposed hierarchy or use knowledge of the

application domain to determine which split line set to partition; determining the

most appropriate set to partition is beyond the scope of my thesis.

Also associated with the application domain is the maximum partit ion size,

also known as the segment size, often associated wi th the block size, which is the

minimum feature size for application drawing. In the specific case of T J 2 tree

rendering, for example, a segment size of one-quarter the block size is required for

gapless rendering, as discussed in Section 3.2.2.

Once an application requests the partition of a split line wi th a segment size,

A D begins a process that recursively descends the split line hierarchy unti l the split

line domain width is smaller than the segment size; the first partitions smaller than

the segment size are stored in a partition list. If a descent in the split line hierarchy

reaches the leaves of the split line hierarchy without finding a split line domain

71

smaller than the segment size, the single split line leaf is enqueued in the partition

list.

4.2.2 Seeding stage

Seeding the partitioned list of split line ranges into the rendering queue is the second

stage of AD rendering. The seeding process is the key component of AD that

provides progressive rendering support. Drawing important objects first, which is

customizable for differing application domains, shows landmarks in the visualization

and allows user-directed interaction on partial scene renderings. Applications that

do not use progressive rendering techniques for interaction, or render the entire scene

in a single frame, do not require an explicit drawing order but are seeded similarly.

The seeding process is an 0 { b v + m) process where bv is the number of blocks in the

partition and m is the number of marked groups.

Prior to rendering a scene, the rendering queue is initially populated with

the set of marked nodes. Next, the application adds each of the partitioned ranges

in order. If a user interaction box is present, the application prioritizes the parti

tioned ranges corresponding to that region by placing them before all other ranges

in the rendering queue. Although our naive seeding method iterates through each

of the partitioned ranges to add them to the rendering queue for this process, this

does not add a large time overhead; non-progressive rendering should not perform

the iteration and could gain performance increases, but non-progressive rendering

optimizations are an area of future work and not analyzed here. This seeding order

is expected by the next stage in AD rendering: the drawing process.

4.2.3 Drawing stage

Drawing is the final stage in our generic AD rendering infrastructure. Using the

seeded queue from the previous stage, each marked range, described for T J 2 in

Section 3.3, is rendered immediately. Since fast rendering techniques, such as marked

72

range skeletons for TJ2, or simple aggregations for contiguous marked ranges are

used, AD attempts to draw each marked range in a single frame.

For a large number of marked ranges, the brute-force marked range render

ing techniques may take too long to render, but adding progressive rendering time

checks may impede this rendering too much. As shown in Section 5.4, marking a

whole 190,265 node tree while compared to a 198,623 node tree in TJ2 with many

differences adds about 200 milliseconds to the rendering time for both trees. With

out adding progressive rendering to marked region drawing, we could seed fewer

marked ranges, like T J l , but this is another area of future work.

After marks are drawn according to the seeding queue, AD drawing draws

the dataset nodes, one set of nodes per range of split lines, in the seeded order.

Drawing from a one-dimensional split line range into a two-dimensional grid is an

other application-specific process. The node drawing for TJ2 is described in detail

in Section 3.2, which describes how tree rendering starts from ranges of leaves and

renders towards the root node.

Applications that do not render trees may use one split line range as an

outer-loop and the second split line range as an inner-loop for an iterative rendering

process over the base grid surface. By partitioning along both sets of split lines,

such applications may aggregate their datasets into a coarse grid of blocks that can

be rendered in 0 (b v x bh) time, for a horizontal number of blocks bh and vertical

number of blocks b v . Identifying other interesting topological structures for drawing

in new AD applications, such as applications like SequenceJuxtaposer [35], is left to

future work.

4.3 A D navigation

This section describes the user-driven distortion-based navigation of AD. The generic

base grid structure undergoes distortions similar to the methods used in T J l AD,

but our methods are more numerically stable. In this section, I first describe how

73

a single split line can move in the split line hierarchy. The techniques for moving

the line are discussed, with emphasis on how the movement transaction achieves

numerical stability and its correct movement position. I then describe an extension

that allows multiple simultaneous split line motion in AD, again with correctness

and stability analysis.

4.3.1 Moving one split line

We accomplish navigation and zooming in AD applications by repositioning split

lines in such a way that the cells on one side of the split line appear to stretch,

while cells on the other side are squished. We perform the stretching and squishing

actions according to our hierarchical split line tree, which provides an algorithm

for motion that performs with time complexity of 0(log(n)), where n is the total

number of split lines. The case of moving one split line, the target, from an initial

position to a final position within the range of the split line boundaries, is the basis

for all navigation in AD applications.

Unlike T J l , our algorithm descends the split line hierarchy tree towards the

target split line instead of ascending towards the root, moving each split line encoun

tered to its final position. The final relative local position of each of the 0(log(n))

split lines in the path is calculated in 0(1) time with linear interpolation between

the target and an ancestor split line, where n is the total number of split lines in the

hierarchy. Once our algorithm reaches the target split line in the hierarchy, we move

it to its final position and the recursion stops. The algorithm, moveSingleSplitLine,

is shown in Figure 4.9.

In order to show generic movement in AD works, we show that the following

four properties hold for the motion of a split line, when we move a single target split

line to some final position:

1. a target split line can be moved anywhere in the bounds of the window;

2. all split lines remain ordered during a transition;

74

moveSingleSplitLine Function
input: split line 5,'at its initial position S.i
output: S moved to S.f, the final position of S

S.f) + S.f

L.f) + L.f

Figure 4.9: moveSingleSplitLine function that descends the split line hierarchy
from the domain between the minBoundary and maxBoundary split lines, where
the root split line is bounded, to the target split line S. At each step, the center C is
found in its domain [L, R]. If C is the target S, we move S to its final position with
moveFromTo. Otherwise, the final position for C, Cf, is calculated depending on
the location of S relative to C. C is then moved from C.i to Cf, a new boundary
[L, R] is created with C, and the process continues until S is found. All positions i
and / are global, relative to minBoundary = 0, and maxBoundary = 1.

3. each motion step positions half of the remaining split lines;

4. cells may become stretched when they should be squished during a transition,

but they are in the correct final position when the algorithm is finished.

Property 1: Target split line can move anywhere in visualization

A user must be able to move any split line from any starting location to any ending

location within the domain of the entire visualization. We must ensure that the

split lines are movable enough, without breaking our ordering restriction. Suppose

L <— minBoundary
R <— maxBoundary
C *— getCenterSplit(L, R)
while S^C

if CisChildLeft(S)
Cf - (m f) x (R.f -
R^C

else

L^-C
end if
CmoveFromTo(C.i, Cf)
C <— getC enter Split(L, R)

end while
S.moveFromTotS.i, S.f)

75

stretch region squish region

Figure 4.10: The absolute distances between split lines in a region being stretched
grow with respect to the distance that split line moves away, but the relative dis
tances between all split lines in [XL, XC] do not change when split line xc moves
towards XR. AS xc moves, xs moves away from XL since xs is in a stretch region,
but *S^-xL

 r e m a i n s constant. Since the resizing of cells, caused by movement of xs,
is uniform on both sides, moveSingleSplitLine from Figure 4.9 can complete half
of the split line movements for [XL, XR] in each step of its outer loop.

a split line, xs, moved from near XL to near XR, in Figure 4.10. We see that this is

possible by moving the ancestors of xs all towards XR, which drags xs towards XR.

This extreme action also conserves the relative distances among all nodes on either

side of xs, so if we drag xs back to where it was initially, there are no distortions

in the nodes between either 2:5 and XR, or XL and xs-

Property 2: Split lines remain ordered

Observing Figure 4.7, we note that the red central split line D is capable of mov

ing in its own domain, and every other split line under D in the hierarchy is ei

ther squished or stretched in its respective half of the domain of D. Since the

moveSingleSplitLine algorithm in Figure 4.9 only moves either S or C in its do

main, it is not possible for those movements to exit their boundaries or cause other

split lines to become disordered. The recursive division step of using C to form the

new boundary is further protection from moving split lines out of order.

Care must still be taken in practice, however, since numerical roundoff errors

have been observed with deep recursion into innnitesimally small cells. We do not

have stopping criterion for preventing numerical errors, but have eliminated errors

76

with our densest datasets by imposing a limit on squishing the cells. Currently, we

prevent a user from squishing any region of the visualization beyond one percent of

the width or height of the drawing canvas, so regions cannot be squished out of view,

which provides a minimum rendering size and guaranteed visibility of all regions.

One positive side effect of the minimum rendering size prevents numerical errors

that might occur when regions are squished to infinitesimally small sizes. However,

we realize that constraint does not stop numerical errors with sufficient squishing

effort. Using a stopping criteria on recursion in moveSingleSplitLine to limit the

smallest cell width to some precision may work in theory, but it has yet to be tested.

Property 3: Each motion step positions half of the remaining split lines

This property is more of a statement of efficiency than of correctness: we move a

minimal number of split lines with simple calculations in each step of our motion

algorithm. We achieve logarithmic performance because the absolute, rendered dis

tances between all split lines on either side of a cental split line change with respect

to the movement of that split line. Since moving the target split line conceptually

resizes cells uniformly on either side, either by squishing or shrinking, the central

split line is able to move to its final position, and in doing so, half of the cells are

resized with each step in moveSingleSplitLine in Figure 4.9. Referring to Fig

ure 4.10, we see that the region [xc, XR], the half of [XL, XR] without target xs,

can all be resized and ignored once xc has been moved. Our calculation of Cf in

moveSingleSplitLine determines the final position of xc with a simple rescaling

with respect to initial and final positions of xs in [xi, XR\.

Property 4: Cells may stretch before they shrink

Before the algorithm starts an iteration, we can look at the current state of the

motion to see how some regions can be moved several times and still approach their

intended final distortion from the original. Consider the state of the split lines in

77

R,

stretch region
-oHa-

squish region

Figure 4.11: A user has moved split line xs to the right, and the current state
of running moveSingleSplitLine from Figure 4.9 has calculated that xc should
move to the right. Regions Ro, Ri, and R2 are labeled sections of interest for this
movement. Ro is the region [xc, XR] that is deformed, in this case squished, but
not recursed through. R\ is stretched when xc moves toward X R , but should be
stretched more before the algorithm finishes. R2 is also stretched when xc moves
toward XR, but should be squished before algorithm finishes.

Figure 4.11, where xs is the target split line we wish to move towards X R , which is

the right boundary for xc, the current center split line.

The motion algorithm, moveSingleSplitLine, determines that xc should

move toward XR. We know that of the regions Ro, Ri, and R2, the movement of

xs should cause R\ to grow and the other two regions to shrink uniformly. Our

algorithm then shrinks all split lines in Ro since xs is left of xc, and at this point,

all split lines in [xc, XR] are resized and in their correct final absolute positions.

However, that rightward move of xc stretches R2 and does not stretch Ri enough

because xs is not moved to its final correct place in [xr,, xc]- C a n we be certain

that subsequent iterations are sufficient to correct this "mistake" and resize Ri and

i?2 properly?

We can look at i ? i and R2 concurrently and see that although cells in both

regions have been resized insufficiently, we are indeed approaching the intended

outcome. The location of split lines in Ri and R2 are st i l l in the region that has

yet to be finalized, so we need to examine the effects of several iterations through

moveSingleSplitLine, down the hierarchy. If running the algorithm is only able to

resize regions uniformly between xs and the immediately following iteration bound-

78

aries, then our algorithm performs properly with subsequent uniform movements

using the center split lines.

We know Ro, the half of the hierarchy that does not get descended, is always

correctly rescaled to its final size, through a uniform rescaling. Similarly, the side

that our algorithm descends is uniformly scaled when xc moves. Because previous

resizings of i?i and R2 have been resized identically since they are in the same

domain descended by our algorithm, the final split line movement of target xs w i l l

ultimately correct the insufficient movements noticed in the intermediate stages of

the recursion. This means that although the intermediate movements of i?i and

i ? 2 do not seem correct, the combined region is scaled uniformly and subsequently

descended, which guarantees the next iterations wi l l properly scale the areas on both

sides of its center split line.

4 . 3 . 2 M o v i n g s e v e r a l s p l i t l i n e s

Unlike T J l , T J 2 uses an algorithm capable of moving several split lines simultane

ously. Mot ion in T J l consists of an algorithm that moves each split line in turn by

performing operations similar to the T J 2 moveSingleSplitLine algorithm. The T J l

algorithm starts at a split line, moves it a small fraction in its movement domain,

then ascends to its parent to move it, and so on. This algorithm does not scale well:

it moves split lines high in the quadtree hierarchy several times, once for every split

line descendant being moved. These repeated adjustments high in the hierarchy

lead to numerical instability.

For k moving split lines in n total split lines, although T J l only moves

0(k log(n)) split lines, it moves the root of the hierarchy k times. In T J 2 , we have

developed an algorithm capable of moving wi th the same time complexity, but only

moving the root and any other split line at most once, producing a numerically

stable motion solution capable of moving more split lines accurately. Instead of

ascending the hierarchy, T J 2 descends, moving each split line as it progresses, much

79

like the single split line movement moveSingleSplitLine from Figure 4.9.

Both T J l and TJ2 must compute the initial and final positions of the split

lines being moved; these split lines are not the only split lines being moved but are

the split lines specified by the resizing action. Assuming that we have a subset N

of split lines, with initial positions N.i, that move in the set A of all split lines, an

application-specific resizing function determines which regions between split lines in

N either grow or shrink. AD functions provide assistance to the growing process

by determining the new sizes for a set of regions, given a specified region growth

rate; the shrinking function also uses growing functions, after inverting the set of

regions. After computing the new sizes for each region in N, we determine the final

locations of all split lines, N.f, by placing the regions in order starting from the

minBoundary until the last region is placed at the maxBoundary.

The reconstruction process for calculating N.f also ensures minimum region

sizes, for guaranteed visibility, are adhered to by not shrinking regions smaller than

the minimum context size. For operations that wish to shrink regions smaller than

the minimum context size, either the growing process does not proceed, or a lim

ited amount of growing that does not violate the minimum size is allowed. The

moveSplitLineSet algorithm in Figure 4.12 starts after calculating N.f.

Three interesting cases in moveSplitLineSet are shown in Figure 4.13. The

termination case for recursion is shown as the left figure; there are no movable split

lines from N in region [A[stort], A[end]], so recursion stops: the region in question

has already been resized. The center figure shows the case where there are split

lines in L4[s£ar£], A[end]] and the center line C is in the set of movable split lines

N. Similar to moving a single split line, we know that C is some split line in N

and therefore, the final position Cf has already been computed during the region

preprocessing and is stored as n.f for some n £ N. However, unlike the single split

line case, which would terminate after this case, recursion continues on both sides

of C. Finally, in the right image when C £ N, we find L £ N and R G N, the two

80

moveSplitLineSet function
input: N C A — list of split lines to move

where A is the set of all split lines
A.i initial positions, N.f final positions are known

start = index into A, initially 0
end = index into A, initially A.size

output: A moved to final positions A.f

C <- A[\(start + end)/2~\]
if N.nodesIn(start + 1, end — 1) = 0

return
' else if C $ N

(L, R) <— N.neighbors(C)
C.f^(&ft)x{R.f-L.f) + L.f

end if
C.moveFromTo(C.i, Cf)
mov e Split Line Set(N, start, C.index)
mov e Split Line Set(N, C.index, end)

Figure 4.12: moveSplitLineSet function that descends the split line hierarchy and
recursively moves the set of all split lines A to their final absolute positions, start
and end are two indices into A that allow descent into the binary hierarchy tree
coded into A; the two split lines at these indices are initially the minBoundary (0)
and maxBoundary (A.size) split lines, and are immovable for the current iteration
of this function. If there are no split lines in N, the set of target split lines, that
are between start and end, the recursion terminates. Otherwise, if the center split
line C is not in N, the final position Cf for C must be calculated, similar to the
calculation in moveSingleSplitLine. L. and R are neighbors of C in N, the closest
nodes to C on both sides, in the range [A [start], A [end]]. If either L or R is not
in that range, we use L — A[start] or R = A[end] as appropriate. Finally, after C
has been moved, we recurse both directions in the split line hierarchy. Note that
moveSingleSplitLine is a special case of this algorithm where = {S}, where S
is the single target split line.

81

A[start] C A[end] A[start] C e N A[end] A[start] L C R A[end]

Figure 4.13: The three cases of function moveSplitLineSet are shown. Left: if N
has no split lines to move between [A[start], .A[end]], the algorithm terminates since
nodes in [A [start], A [end]] have been resized. Middle: if C G N, the algorithm
moves C from Ci to Cf and recurses on the left and right sides of C. Right: if
C £ N, the algorithm finds the nodes L,R £ N that are closest to C to compute
Cf. After computing, the algorithm moves Ci to Cf and recurses.

closest split lines on the left and right sides of C, to calculate Cf, then continue

the recursion on both sides of C. These movements resize regions to the left and

right of the center split line uniformly, and arguments made for repeated recursions

in our single split line movements also apply to moving a set of split lines.

82

Chapter 5

Evalua t ion and Discussion

In this chapter, I compare the relative performance of TJ2, with respect to the per

formance of similar T J l actions, discuss future work directions for AD applications,

and conclude my thesis.

All performance tests were done on a machine with a 3.0 GHz Pentium IV

processor, Java 1.4.2.04-605 HotSpot runtime environment with a maximum of 1.8

gigabytes allocated for of heap, and nVidia Quadro FX 3000 video chipset, running

twm in XFree86 version 4.3.99.902 with no additional processes running. The canvas

resolution for T J l and TJ2 was set to 640 pixels wide by 480 pixels high and timing

and node counts were output by TreeJuxtaposer, averaged from several manually

prompted redrawings of each tested dataset. Since datasets that could be loaded

by either version of TreeJuxtaposer are required for comparison, I chose to compare

with two classes of trees and the largest contest trees from the Info Vis 2003 Contest

dataset [28], described in Appendix A. I also compare larger datasets with TJ2 to

get a better idea of non-synthetic dataset performance by using the directory tree

structure from the Open Directory project [26], a large online browsable catalog

of several billion websites. The directory categorization tree structures I use are

from March and June 2004, with shortened names of 03/04 and 06/04, and are

approximately 500 million nodes each with many structural differences.

The version of T J l that I use is from before the TJl-contest, and I found

83

I was able to compare the two largest contest datasets, of animaliaa and animaliaD-

This pair of datasets do not load with TJl-contest, and while I was evaluating T J l

with this data, the memory consumption while doing this was near the maximum

heap size, but no garbage collection occurred to skew the timing results. Also,

several trees would load but not render in T J l due to a programming error. I found

that by removing a-single node, this error was eliminated.

The simple synthetic tree classes I chose to represent are the canonical bal

anced binary trees and star trees. Balanced binary trees were chosen since they

have been used almost exclusively in TJC published results on rendering large trees

in accordion drawing grids [5]; they are a good example of a well-known predictable

structure. Star trees, simply one root node attached to many leaf nodes, were chosen

based on my observations made of rendering traversal algorithms used in T J l and

TJC; both render binary trees well, but may have problems with higher degree inter

nal nodes that would be exacerbated by a node with an extreme number of children.

A more in-depth tree classification system with many real tree datasets would be

more complete, but I believe that the tree classes I test are simple to classify, show

interesting progressive trends, and reveal a measure of efficacy of TJ2 versus T J l .

Furthermore, I show how the synthetic datasets lead to interesting curves through

the space of all possible tree permutations, while real data validates my choice of

synthetic datasets.

Each of the following comparisons between T J l and TJ2 are investigated:

preprocessing, including layout time and the initial difference calculations, in Sec

tion 5.1; number of nodes rendered and how long to render a scene, in Section 5.2;

memory consumption, in Section 5.3; and marking efficiency, in Section 5.4. When

available, I also compare TJ2 with published results from TJC, investigating poten

tial advantages of either method when rendering large trees of unknown topology.

A summary of the results is given in Section 5.5.

84

5.1 Preprocessing

The time to load a single tree is the time needed to parse a dataset, construct

the necessary split line grid, perform the gridding described in Section 3.1.1, and

calculate the BCN values to perform associated difference marking. Loading several

trees for comparison always involves the computation of differences between each

pair of trees, which of course adds marking time for each of the differences on

rendering as well; marking is covered in Section 5.4. Also, since parsing the dataset

for a pair of trees is exactly the same as loading each tree sequentially, I will only

investigate the parsing process for single trees, keeping each investigation as simple

as possible; the more interesting preprocessing for multiple trees occurs after parsing.

Parsing

The dataset parsing time, shown in Figure 5.1, for T J l and TJ2 seems to be quite

different, although they both use identical parsing libraries. An explanation for the

differences in parsing time could be due to small changes in object constructors used

in parsing; the change is simply the initialization of the BCN score of each node to 0

in TJ2. However, these differences are only a small constant factor to the linear time

complexity for parsing and is not as much a factor as the dataset size increases. It

is likely that small changes, magnified over millions of instances, would add as much

to the parsing function in TJ2 as they would add to later preprocessing functions

in T J l .

T J l and TJ2 parsing functions are both linear with respect to the number of

nodes read from the dataset file; there is no appreciable difference between parsing

binary and star dataset classes in either T J l or TJ2. Published results from TJC [5],

which uses a parser built from standard parsing libraries, indicate that parsing a

two million node binary tree takes ten seconds, about one quarter the time of TJ2;

parsing is still linear in TJC, albeit with a smaller constant factor than either T J l

or TJ2.

85

Parsing Time

60

50

S 40
a>
E

» 3 0

c

§. 20

10

0

0 0.5 1 1.5 2 2.5

- tree size (millions of nodes)

Figure 5.1: The parsing times for T J l and TJ2 with binary and star synthetic
trees, and single contest and Open Directory real trees. All parsings are done with
the same library, but TJ2 is slightly slower with a small change in its tree node
constructor. The Open Directory tree takes much longer to load when compared to
synthetic trees of the same size due to its structural complexity and non-synthetic
node names.

Gridding

Preprocessing time, which is primarily gridding in TJ2 and the quadtree layout

methods of T J l , is substantially different between T J l and TJ2, even after account

ing for the aforementioned differences in parsing. As shown in Figure 5.2, both T J l

and TJ2 preprocessing are linear in time with respect to the number of nodes placed,

but TJ2 is at least ten times faster than T J l , due to construction of the quadtree

structures in T J l . The simplicity of TJ2, which has a low gridding constant and

simple partitioning scheme as mentioned in Section 3.1.1, allows balanced binary

trees with two million nodes to be loaded in under 15 seconds. Most of the extra

time spent by TJ2 with the star trees, compared to binary trees, is maintaining the

list of leaves, which is two times larger for star trees than for binary trees.

Finally, notice that the real-world contest and Open Directory datasets shown

86

Preprocess Time

/ /
/ *

£ .*
5 if
1 /

- 11

n 1 1

TJ2 binary -
TJ1 binary -

TJ2star •
TJ1 star •

TJ1 contest A
TJ2 contest A

TJ2 OpenDir 03/04

+
X
*

I /
" / /
" / /

-

/ /
- / /

/ / /.'
-

i; ^
jj *
1 Jf^—-

-

0 0.5 1 1.5 2 2.5

tree size (millions of nodes)

Figure 5.2: Preprocessing time for T J l and TJ2, which includes gridding and other
initialization tasks. TJ2 is ten times faster than T J l for the largest trees loadable
by T J l . The contest and Open Directory datasets process in time similar to a star
tree of the same size due to high branching factor, limited depth, and other node
processing factors.

in Figure 5.2 for both T J l and TJ2 appear close to the respective synthetic star tree

class dataset of similar size. A small amount of extra time is spent on sorting of

real node names, but these datasets are particularly dense mostly at the leaf level,

when considering preprocessing time. The ratio of leaves to internal nodes for the

contest dataset is 154922 : 190265, or 81% leaves; there are many internal nodes that

have many children, but it is difficult to determine a precise impact of the internal

19% of the tree. It is too difficult to determine how relatively efficient TJC would

preprocess star trees from the published results [5]. The closeness of the contest

dataset to the star tree of the same size does indicate that the family of star trees

used in my evaluation is not entirely irrelevant.

87

Computing Differences

Adding another tree affects the preprocessing by including the difference computa

tions after each subsequent tree is added. The time to process differences in T J l for

the contest dataset is approximately 50 seconds, while TJ2 takes approximately 12.5

seconds. This time difference is not related to the difference computation, since the

computation is unchanged between the applications, but the way marks are stored,

which is investigated further in Section 5.4. The linked list of marked differences in

T J l is implicitly sorted by the iteration process that adds each different node to the

group of marked differences, but it contains a list of every marked node, and does

not collect nodes with adjacent node key values into ranges. This means that for the

first marking action of differences, and each subsequent change in the node marking,

T J l must process the entire list of differences for each node range considered for

drawing.

5.2 Scene rendering

There are two telling benchmarks involved in the complexity of rendering a scene:

the time it takes to render a scene and the number of nodes rendered for a scene.

Also, the time complexity per node is important to consider since there is no benefit

to rendering fewer nodes if the time to process each node is substantially slower

than alternative, more brute force, methods.

Scene rendering time

Assuming that a sufficient number of nodes are rendered to give an accurate repre

sentation of a dataset, a useful metric is the wall-clock rendering time for a dataset.

Figure 5.3 shows the rendering time performance of TJ2 with the binary and star

tree datasets, again with the contest dataset shown. As expected, the datasets are

correlated to the number of nodes rendered, in Figure 5.4, but are not as smooth

88

5

Rendering Time

TJ2 binary
TJ1 binary

TJ2 star
TJ1 star

TJ1 contest +
TJ2 contest X

TJ2 OpenDirectory X

0 0.5 1 1.5 2 2.5

tree size (millions of nodes)

Figure 5.3: Rendering time for T J 2 is constant beyond datasets of a threshold for
both binary and star trees. T J l renders binary trees slightly slower than T J 2 , but
star trees are much slower. Although T J l aimed for performance similar to T J 2 ,
some classes of trees cause T J l to render slowly. The rendering time performances
of T J l and T J 2 are closely related to the number of nodes rendered, as shown in
Figure 5.4. Figure 5.5 shows another view of this relationship as the rendering time
per node.

due to the t iming accuracy. The correlations are similar for each of the datasets

tested, so rather than analyze the rendering times for each pairing, I wi l l compare

the rendering speed per node rendered between each dataset.

Number of nodes drawn per scene

In Figure 5.4, we see that for T J 2 , the number of nodes rendered for star trees is

a constant after a certain number of nodes. This number represents the saturation

of leaves under a subtree in T J 2 , where once the maximum number of leaves per

vertical height is reached, a subtree wi l l not render any more; this is the result of

our pixel-bounded rendering of leaves.

Similarly, but not as abrupt, is the series of binary trees. For each new layer

4.5

4

3.5

3

2.5

2

1.5

1

0.5 y. x..

89

Nodes Rendered

TJ2 binary •
TJ1 binary 1

TJ2 star •
TJ1 star •

TJ1 contest A
TJ2 contest A

TJ2 OpenDir 03/04

0.5 1 1.5 2
tree size (millions of nodes)

Nodes Rendered

TJ2 binary •
TJ1 binary •

TJ2star •
TJ1 star •

TJ1 contest A
TJ2 contest A

TJ2 OpenDir 03/04

1 1.5
tree size (millions of nodes)

Figure 5.4: T J l is unable to cull nodes for my star tree synthetic datasets and draws
every node, shown in the top graph; this performance is obviously not scalable. The
bottom graph shows a more detailed view of T J l binary tree performance compared
to T J 2 performance. In T J 2 , star trees render a constant number of nodes and
binary trees render an additional constant number of leaves for each doubling of
nodes. The contest and Open Directory real-world datasets render between the star
and binary tree examples since they have complicated internal node structures, but
are not deep trees. T J l binary tree performance appears relatively close to T J 2
performance, but overculls dense regions since it does not properly render some
datasets wi th its culling criteria.

90

of leaves added after a certain point, where a layer of leaves is the same size as the

previous half-sized tree, there is a limit to the amount of rendering in that level,

again dependant on the number of pixels. For trees larger than the first tree that

maximizes the number of leaves rendered, the tree twice the size takes the same

amount of time more to render. In the test case, where the screen is 480 pixels high,

we render at most 2048 leaves and each progressively larger binary tree renders

exactly 2048 more nodes than the previous. The limit in the binary tree case would

be visible in the graph only if horizontal culling is used, but we do not cull in that

direction.

For TJ2, the contest dataset renders fewer nodes than the binary tree of

similar size simply because it is not as tall as that binary tree and has many more

leaves. Of course the contest dataset cannot render as few nodes as the simple star

tree of any size since the star tree has no interesting internal structure. Conversely

for T J l , also shown in Figure 5.4 the contest dataset renders fewer nodes than the

star tree. The star tree in T J l is one of the worst case rendering examples since

every node is rendered, and this leads to poor rendering for many trees with high

branching factors. Binary trees are much more efficient than star trees for T J l .

Also shown in Figure 5.4, the binary trees that rendered properly with T J l show

performance characteristics similar to TJ2. Unfortunately, T J l rendering quality

for such large trees suffers from overculling effects and does not render some trees

properly.

If we attempt to render a star tree with TJC, using its rendering algorithm as

described in [5], it would have the same poor rendering count as T J l , also rendering

every node. This is reflected in the published TJC results for the contest dataset

of 190,265 nodes, where TJC renders 51,255 nodes, compared to an 8,388,607

node balanced binary tree, where TJC renders 50,356 nodes. TJC rendering uses

an algorithm that considers rendering a subtree as a single horizontal line if its

extremal leaves subtend the same pixel, and does not partition the children of nodes

91

Microseconds per Node Rendered

1 1 1

TJ2 binary
TJ1 binary

TJ2star
TJ1 star

TJ1 contest A +
TJ2 contest A X

TJ2 OpenDir 03/04 K

X *

+

•\„.„..-"*'

i 1 1 1

0 0.5 1 1.5 2 2.5

tree size (millions of nodes)

Figure 5.5: The relationship between the number of nodes rendered and the amount
of processing required per node is important in understanding the tradeoffs of ren
dering fewer nodes for complex structures. This figure shows TJ2 rendering per
formance for star trees is three times slower than all other performance ratios, but
the dataset renders scenes faster than T J l since TJ2 aggressively culls this dataset
and T J l draws every node. Similarly for binary trees and the real-world contest
datasets, T J l renders nodes faster on average, but TJ2 renders many times fewer
nodes per scene, as shown in Figure 5.4. Note that for real-world datasets with
very different sizes and structures, TJ2 renders nodes from the contest and Open
Directory datasets with similar efficiency.

with high branching factors. This means that any node with leaves that subtend

more than the pixel-based culling criteria of TJC will cause TJC to draw at least a

path from each child node to a leaf. Therefore, although TJC has been shown to scale

well with large balanced binary trees, algorithmic improvements that consider trees

with higher branching factors would probably be necessary to scale its rendering

performance with larger n-ary trees.

45

40

35

30

25 I
20

15

10

92

Average time to render a node

Figure 5.5 shows the per-node rendering performance of T J l and TJ2. As shown, the

average time required to draw a node in a star tree for TJ2 is three times greater than

for nodes in the same dataset for T J l . But, even though T J l renders nodes each at

a speed of about 10 microseconds per node and TJ2 needs 30 microseconds per node,

TJ2 renders a much smaller number of nodes for that dataset class. In fact, T J l

renders every node of the star tree datasets and TJ2 renders a constant number

of nodes after a large enough dataset size, as shown in Figure 5.4. Interestingly,

TJ2 draws binary tree nodes on average faster than T J l , the opposite result of the

star tree case, which means that although they render similar numbers of nodes,

TJ2 renders binary trees faster than T J l . Average node drawing performance for

the contest dataset is close, with the T J l rendering cost approximately 25% lower

than TJ2; the Open Directory dataset has similar per-node rendering performance.

However, since T J l renders seven times the number of nodes that TJ2 renders for

that dataset, the time is 0.3 seconds for TJ2 versus 1.4 seconds for T J l , as shown

in Figure 5.3.

5.3 M e m o r y usage

The two classes of results to consider for memory usage include single trees and tree

comparisons. I attempt to remove the minimal memory required to store names of

nodes from each dataset by first subtracting the size of each dataset file from the

raw memory results. This is simply to investigate the structural memory usage for

T J l and TJ2, and should not influence the overall results, but does influence the

raw memory usage ratios between each version of TreeJuxtaposer.

Using a simple grid structure to position dataset. topology in place of the

quadtree hierarchy has improved the memory performance, and therefore maximum

sizes of datasets. Shown in Figure 5.6, memory usage in TJ2 is five times more

93

Total Memory

2000

1500

2

£• 1000
E
E

500

0

0 0.5 1 1.5 2
tree size (millions of nodes)

Figure 5.6: Memory performance for binary and star tree with T J l and TJ2. Mem
ory usage in TJ2 is five times more efficient than T J l for identical datasets. Also
shown are the contest dataset comparisons, which suggests that structural difference
storage in T J l is poor compared to TJ2. The Open Directory dataset comparison
uses more memory to store many structural differences and fully qualified node
names, which are used to differentiate identical leaf names and provide a more ac
curate pair-wise node correspondence between the trees.

efficient than T J l since it either allows trees five times larger to be loaded, or uses

one fifth the memory of T J l . For smaller datasets, this ratio is slightly smaller, but

still considerable.

Since the marked node storage has been improved in TJ2, much larger tree

comparisons with full difference marking have been possible. Also shown in Fig

ure 5.6 are the largest tree datasets from the Info Vis 2003 Contest, compared using

T J l and TJ2. Clearly, the amount of memory to store the differences between the

datasets impacts the T J l contest by more than a factor of five, since the comparison

in TJ2 uses nearly the same amount of memory as the star tree dataset in TJ2, while

the comparison in T J l is comparable to a star tree dataset with 50% more nodes

using T J l .

TJ2 binary
TJ1 binary

TJ2 star

J L

94

Application T J l TJ2
First Scene Unmarked 115 0.3
Subsequent Scenes Unmarked 1.5 0.3
First Scene Marked 130 2.5
Subsequent Scenes Marked 1.5 0.5

Figure 5.7: This table shows the marking performance of T J l compared to TJ2, in
seconds. When comparing two datasets of over 190,000 nodes each, the first row.
shows the time to render the first scene, which includes the set of automatically
marked differences. The second row shows time to render subsequent scenes; note
that T J l caches results from the first scene, dramatically reducing its color lookup
for each node while TJ2 performs the same efficient color lookup in both cases. The
third and fourth rows show results of marking an entire dataset in both applications,
which marks BCNs of marked nodes on the indirectly marked tree. The performance
of T J l again is poor on the first scene, but aided by caching in subsequent scenes.
TJ2 is slightly slower than an unmarked scene, and requires some time to compute
the set of indirect marks immediately after the tree is marked.

5.4 Marking efficiency

Finally, I will show the tradeoffs in marking efficiency for T J l and TJ2. After mark

ing an entire single tree in T J l , each node caches the marking color for subsequent

scene renderings, so marking takes time linear in the number of nodes in the tree

once, then time similar to unmarked rendering for each additional scene. Similar

marking in TJ2 traverses node structures in the indirectly marked tree, as described

in Section 3.3, which incurs a worst-case marking penalty in TJ2 that is 0(n), where

n is the size of the topological tree. Since marking single trees in T J l and TJ2 are

very similar to their individual scene rendering performances, it is more interesting

to consider marking an entire tree while two topologically different trees, such as

the large contest trees, are loaded.

After marking one contest tree in T J l , it takes approximately 130 seconds

to render the first scene afterwards, which is approximately 15 seconds longer than

the first scene rendered. The first scene takes 115 seconds simply because of the

difference marks on both trees must be cached for every node. More time is required

95

after marking one tree because that single user-defined mark adds one more range

that must be considered during the color caching process. Normally, these two

trees render in under 1.5 seconds, and this time does not change considerably after

marking.

After similar marking in TJ2, a delay of less than two seconds is required to

traverse the directly marked subtree and compute the list of marked nodes in the

indirectly marked tree, as described in Section 3.3. For TJ2 performance in scenes

before marking, the average rendering time for both trees is 0.3 seconds, while after

marking takes 0.5 seconds, because TJ2 does not cache the marking results per node

and must lookup the color for every node rendered. The tradeoff of nearly doubling

the TJ2 rendering time is mostly related to overdrawing marks in regions. Although

marked region drawing is handled more efficiently in TJ2 than in T J l , it would be

an interesting area of future work to improve this drawing algorithm, perhaps by

culling in areas of many marked regions.

5.5 E v a l u a t i o n s u m m a r y

TJ2, built on our new generic AD infrastructure, yields far better performance than

T J l in every category that I measured: preprocessing time, rendering time, marking

time, node drawing count, and memory consumption. Preprocessing times for TJ2

and T J l are both linear in the number of nodes, but TJ2 is typically ten times faster

after the datasets have been loaded. TJ2 limits overdrawing and is able to render

a constant number of nodes for my synthetic star tree examples, while rendering a

fewer number of nodes than T J l for binary trees. For trees with complex structure

that require TJ2 to spend more processing time per node than T J l , TJ2 renders a

much smaller number of nodes, and renders the entire scene up to five times faster

than T J l . The partitioned grid used by TJ2 for layout is also five times more efficient

than T J l , allowing much larger datasets to be loaded with less memory resources.

Finally, my example of worst-case marking of the contest dataset comparison for

96

TJ2 is an order of magnitude faster than T J l for the first scene and three times

faster for subsequent scenes. Moreover, TJ2 achieves its marking time performance

without using up memory to cache marking results, allowing larger datasets to be

loaded.

97

Chapter 6

Future Work and Conclusions

6.1 Future work

Mentioned throughout my thesis are several areas of interest that are either simple

additions or more powerful features that would require modifications to the accor

dion drawing infrastructure.

Although we are interested in several different directions with our generic

infrastructure, we will probably focus on several high-demand areas of TJ2, which

include: editing a tree structure, saving changes to a tree, saving the state of a tree,

replaying a transaction log recorded while navigation a tree, undoing navigations,

and storing a meaningful representation of a transaction history in a human-readable

format. Most of these modifications will make use of a sophisticated logging struc

ture. The addition of these features would make TJ2 a much more powerful system,

and much more appealing to biologists who need more than just the visualization

system of the current TJ2.

Another area of future work involves adding more attribute capabilities to

TJ2 for operations such as: data filtering, marking common features, and creating

a true interface to TJ2 that another application can access. By creating an API

for TJ2, we may use a second application to drive the performance of navigation,

node selection, or editing. TJ2 may act as a navigation component to an application

98

that interfaces to a database of animal characteristics, for example when selecting

animals that have wings, the animals with wings will be automatically highlighted

when that application sends that set of interest to TJ2.

Progressive rendering offers two interesting areas of future work. First, we

would like to minimize, or ideally eliminate, the overhead that our infrastructure

incurs when progressive rendering is turned off, especially when progressive render

ing is not necessary and the dataset can be rendered in a single frame. Second, we

would like an automated way to decide whether progressive rendering should be on

or off, rather than require manual intervention from the user.

Finally, we envision the juxtaposition of a phylogenetic tree with the sequence

data used to build it by combining TJ2 with SequenceJuxtaposer (SJ) [35]. Since

both TJ2 and SJ use the same AD infrastructure, it would be possible to have

these applications share a set of split lines and for navigation to distort both grids

concurrently. We would also like to investigate adding editing capabilities and more

sophisticated navigation support where collapsing a subtree leads to the display of

an aggregate sequence for the entire subtree.

6.2 Conclusions

I have presented our accordion drawing infrastructure, which provides rubber-sheet

navigation and guaranteed visibility for information visualization applications that

are capable of laying their dataset objects on a grid. Our rubber-sheet navigation

is numerically stable and provides a scalable, malleable surface for exploration of

large, complex datasets. Accordion drawing also provides an interface to generic

partitioning, seeding, and rendering methods used to render datasets in time 0(p),

where p is the number of pixels on-screen.

Furthermore, my implementation of TreeJuxtaposer on our AD infrastruc

ture, TJ2, renders and navigates dense trees correctly with more time efficient ren

dering and layout techniques than its predecessor, T J l . With compact represen-

99

tations of marked nodes, progressive rendering a skeleton of marks instead of an

entire subtree, ascent rendering to guarantee a limit on the number of nodes ren

dered, five times more efficient memory performance, accurate picking, and limiting

the number of nodes rendered for complex trees, TJ2 improvements give users a

more responsive tree rendering with all of the advantages of T J l .

Finally, I describe the improvements made for the Info Vis 2003 Contest

on tree comparisons, where TJl-contest, the improved T J l with incremental node

searching and a helpful user interface, won first place overall. I present an in-depth

analysis of how TJl-contest supports many, but not all, of the common functions

users of tree visualizations require. Our results show that TreeJuxtaposer is a ca

pable, mature system that supports users in understanding the complex structures

that exist in real-world datasets.

100

Glossary

Accordion Drawing (AD): an information visualization navigation paradigm

that supports the stretching metaphor of manipulating data drawn on a mal

leable surface., p.2

Focus-|-Context: a technique in information visualization systems used to display

areas of interest at focal points. The rest of the dataset, the context, is still

displayed in less detail. The context provides additional structural semantics

for the focus regions. Global Focus+Context systems, such as AD, show the

entire dataset at all times., p.8

TJl-contest: an improved implementation of T J l with additional user interface

tools, incremental node search capabilities, and other user tools to change the

appearance of the tree visualization., p.112

TJ2: a redesigned implementation of the capabilities of T J l , with improvements

of TJl-contest, which also uses our new A D infrastructure. Several im

provements in rendering, marking, and correctness are described in detail in

Chapter 3., p.4

TreeJuxtaposer (TJl): an information visualization application used to navi

gate and compare several rectilinear trees, often phylogenetic trees, as shown

in Figure 1.2. T J l is the original implementation of TreeJuxtaposer, as op

posed to TJl-contest, my Info Vis 2003 Contest submission version, and TJ2,

my most recent TreeJuxtaposer implementation., p.2

101

ascent rendering: a rendering technique for trees that is topology-based and

draws nodes along paths from leaves to the root. We can control the quantity

of leaves and reduce the number of nodes drawn per scene for dense, complex

tree topologies., p.38

ascent width: the width criteria of subtrees that we use as a stopping criteria for

ascent rendering. Given as a value relative to block width, a larger ascent

width means fewer ascents per leaf range, but we are limited to ascent plus

segment width sums that are less than one-half block. With that restriction,

when we find a subtree that is wider than the ascent width, we know that it

cannot be drawn as a single horizontal line., p.40

base grid: the lowest quadtree level grid of T J l , or the grid of split lines of TJ2

that are used to position topological tree nodes with the gridding algorithm.,

p.26

best corresponding node (BCN): when comparing two or more trees, nodes

are paired up with the most appropriate matching node in every combination

of pairs of trees. This relationship is not always bi-directional and some nodes

do not have a B C N . A B C N value is calculated with the function for leaf

sets A and B under two nodes; the B C N for node AT, which is in tree T i , in

tree Ti is the leaf set of the node with a maximal B C N value, in T2, with the

leaf set of TV., p.52

block: the smallest size at which a geometric object is drawn, with the lower limit

of a pixel. This is also known as the minimum feature size, which is equal

to the line width of edges in TJ2. A block is always some integer multiple of

pixels and is pixel-aligned., p.33

cell, (base grid): a region of the base grid, consisting of four lines on the base

grid that form a rectangle, known as: top, bottom, left, and right. The grid cell

102

is used to position a topological tree node for rendering, culling, and picking

in TreeJuxtaposer. Cells for a tree in T J 2 partition the entire base grid and

do not overlap., p.26

directly marked: when comparing two or more trees, a node that a user has

explicitly marked is called directly marked, while a node that is marked in

another tree, as a consequence of node correspondences wi th directly marked

nodes, is called indirectly marked., p .51,

drawing (rendering stage): third stage of A D rendering associated wi th drawing

the seeded marked ranges and split line ranges. The split line ranges are

partitioned according to a previous stage., p.70

found nodes: nodes that match a searching criteria, such as substring match

ing in the Found panel, in the incremental search functionality of TreeJuxta

poser. These nodes are highlighted with the highlight color, which is modifiable

through the Group panel., p. 120

gridding (algorithm): the partitioning of a uniform grid used by T J 2 to assign a

set of grid coordinates, which form a rectangle on the base grid, to topological

tree nodes., p.28

guaranteed visibility: a property information visualization systems use to dis

play important data at the expense of less important data; important data is

always visible on the screen. TreeJuxtaposer and other A D applications use

both static and progressive guaranteed visibili ty paradigms to give users

navigational landmarks in their dataset visualizations., p.5

horizontal gaps: rendering gaps in ascent rendering that appear if we do not

choose a subtree in a leaf range that horizontally covers al l other subtrees.,

P-38

103

indirectly marked: a node that is not directly marked when comparing two

or more trees with user denned marks., p.51

interaction box: a region defined by user interaction on an Accordion Drawing

grid, which may be stretched or squished to reveal more details of datasets in

regions of interest., p.60

marked data: data that is marked by a user. This data could be user defined

with marking or computed using a user-specified function that performs the

marking. For example, when comparing two trees in TJ2, the topological

differences are marked data and the unmarked, similar nodes are normal

data., p.5

marked ranges: regions of interest such as computed differences, search results,

user marked groups, and even mouse-over highlighted nodes in TJ2. Ranges

are used to compactly store subtrees and forests of subtrees for quick color

referencing for nodes during rendering., p.46

node key: the enumeration value of a particular node in TJ2. We use keys to

identify relationships between nodes by assigning keys in a pre-order, so the

roots of subtrees are smaller than its descendants, and the entire subtree can

be represented by a single range of integers., p.46

normal data: data that is not marked but is drawn to provide overall dataset

structure and position of marked data., p.5

overlapping ranges: a pair of node ranges, often with both node ranges marked,

in TJ2 that are either adjacent, non-unique, or partially overlapping. Two

overlapping ranges can be combined into a single, unique range., p.50

partitioning: first stage of AD rendering associated with dividing a split line

range into a set of drawing ranges. Partitioning precedes seeding., p.70

104

picking fuzz: a margin of error, which we set to five pixels, that allows us to pick

nodes wi th the mouse without exact mouse positioning. If a desired node is

in a region where it is not pickable, such as a very dense region, we expect a

user to stretch its region with accordion drawing to disambiguate unwanted

picking., p.55

progressive guaranteed visibility: a property of an information visualization

system to use a drawing order that favors marked data over normal data

when rendering animation frames. This provides landmarks during naviga

tion for large visualizations that rely on progressive rendering approaches.

Compare wi th static guaranteed visibility., p.6

progressive rendering: is an technique used in several graphics systems that

allow for complex, or otherwise rendering intensive, scenes to be rendered in

several stages. After each stage, the system allows for user interaction or

continues to render the scene. Progressive rendering is necessary wi th A D in

TreeJuxtaposer since partial rendering is fast enough but full scene rendering

could take over a second. When an A D application renders, it displays marked

nodes first to provide progressive guaranteed visibility., p.9

seeding algorithm: the process of enqueuing key tree nodes, or ranges of tree

nodes, in a drawing priority-based, ordered list prior to rendering. Typically,

the list contains enough information to render an entire scene, but rendering

only part of the scene is also acceptable, especially in progressive rendering

where rendering does not dequeue all nodes from the list., p.34

seeding: second stage of A D rendering associated with ordering a partitioned

split line range and any marked ranges prior to drawing., p.70

segment width: the partitioning stopping criteria for leaf range seeding. Given as

a value relative to blocks, the larger the segment width, the fewer leaf ranges

105

we must process during rendering. However, if the segment width is too large,

we see gaps in dense regions since we only render one leaf per segment., p.37

segment: a component of a tree partitioning, at the leaf level, which is either the

smallest rendering partition with more than one leaf, or any other rendering

partition with exactly one leaf. We guarantee that only one leaf is drawn per

segment., p.35

split lines: movable lines in an AD visualization application. These lines are

stored in a balanced tree hierarchy, and affect regions in their domain by

stretching and squishing their hierarchical children, to reveal areas of interest

while squishing other regions together. The linear order of split lines cannot

be changed and no part of the visualization is ever pushed out of view since

split lines cannot be pushed beyond their domain boundaries. Split lines are

essential in giving AD applications global Focus-f-Context properties., p.60

static guaranteed visibility: a property of an information visualization system

to prioritize marked data over normal data in single images. This provides

a sense of location for the marked data using the marks as visual landmarks.

Compare with progressive guaranteed visibility., p.6

106

Bibliography

[1] Thomas Ball and Stephen Eick. Software visualization in the large. Computer,

29(4), April 1996.

[2] Lyn Bartram, Albert Ho, John Dill, and Frank Henigman. The continuous

zoom: a constrained fisheye technique for viewing and navigating large infor

mation spaces. In UIST '95: Proceedings of the 8th annual ACM symposium

on User interface and software technology, pages 207-215. ACM Press, 1995.

[3] Luc Beaudoin, Marc-Antoine Parent, and Louis C. Vroomen. Cheops: A com

pact explorer for complex hierarchies. In Proc. of IEEE Visualization '96, pages

87-92, 1996.

[4] Benjamin B. Bederson and James D. Hollan. Pad++: A zooming graphical

interface for exploring alternate interface physics. In Proceedings of UIST '94,

pages 17-26, 1994.

[5] Dale Beermann, Tamara Munzner, and Greg Humphreys. Scalable, robust

visualization of very large trees. Euro Vis 2005, to appear, 2005.

[6] Larry Bergman, Henry Fuchs, Eric Grant, and Susan Spach. Image rendering

by adaptive refinement. In SIGGRAPH '86: Proceedings of the 13th annual

conference on Computer graphics and interactive techniques, pages 29-37. ACM

Press, 1986.

107

[7] M. Sheelagh T. Carpendale, David J. Cowperthwaite, and F. David Fracchia.

Three-dimensional pliable surfaces: For effective presentation of visual infor

mation. In Proc. VIST, pages 217-226, 1995.

[8] Savrina F. Carrizo. A colour-filling approach for visualising trait evolution with

phylo genies. In Neville Churcher and Clare Churcher, editors, Australasian

Symposium on Information Visualisation (invis.au'OJ^), volume 35 of Con

ferences in Research and Practice in Information Technology, pages 117-126,

Christchurch, New Zealand, 2004. ACS.

[9] Coordinator & Editor David R. Maddison. Tree of life project,

http://tolweb.org/tree/phylogeny.html.

[10] P.M. Fitts. The information capacity of the human motor system in controlling

the amp litude of movement. Journal of Experimental Psychology, 47:381-391,

1954.

[11] G. W. Furnas. Generalized fisheye views. In CHI '86: Proceedings of the

SIGCHI conference on Human factors in computing systems, pages 16-23. ACM

Press, 1986.

[12] George W. Furnas and Benjamin B. Bederson. Space-scale diagrams: Under

standing multiscale interfaces. In Proc. SIGCHI '95, 1995.

[13] I. Herman, G. Melancon, and M. S. Marshall. Graph visualization and naviga

tion in information visualization: A survey. IEEE Transactions on Visualization

and Computer Graphics, 6(l):24-43, 2000.

[14] David Hibbett, Frangois Lutzoni, David McLaughlin, Joey Spatafora, and Ry-

tas Vilgalys. Assembling the fungal tree of life,

http://ocid.nacse.org/research/aftol.

[15] David Hibbett, RH Nilsson, M Snyder, M Fonseca, J Costanzo, and M Shonfeld.

Automated phylogenetic taxonomy: An example in the homobasidiomycetes

108

http://invis.au'
http://tolweb.org/tree/phylogeny.html
http://ocid.nacse.org/research/aftol

(mushroom-forming fungi).

http://mor.clarku.edu.

[16] John P. Huelsenbeck and Fredrik Ronquist. MrBayes: Bayesian inference of

phylogeny, 2001.

[17] Susanne Jul and George W. Furnas. Critical zones in desert fog: Aids to

multiscale navigation. In Proc. UIST '98, pages 97-106, 1998.

[18] T. Alan Keahey and Edward L. Robertson. Nonlinear magnification fields. In

Proc. IEEE Symposium on Information Visualization, pages 51-58, 1997.

[19] John Lamping, Ramana Rao, and Peter Pirolli. A Focus-(-Content technique

based on hyperbolic geometry for viewing large hierarchies. In Proc. SIGCHI,

pages 401-408, 1995.

[20] Wayne P. Maddison and David R. Maddison. MacClade: Analysis of Phylogeny

and Character Evolution. (User's manual). Sinauer Associates, Sunderland,

MA, 1992.

[21] W.P. Maddison and D.R. Maddison. Mesquite: A modular system for evolution

ary analysis, version 1.0, 2002. Available from http://mesquiteproject.org.

[22] Tamara Munzner. H3: Laying out large directed graphs in 3D hyperbolic space.

In Proc. InfoVis 97, pages 2-10, 1997.

[23] Tamara Munzner. Drawing large graphs with H3Viewer and Site Manager. In

Proc. Graph Drawing '98, Lecture Notes in Comp. Sci. 1547, pages 384-393.

Springer-Verlag, 1998.

[24] Tamara Munzner, Frangois Guimbretiere, Serdar Tasiran, Li Zhang, and Yun-

hong Zhou. TreeJuxtaposer: Scalable tree comparison" using Focus+Context

with guaranteed visibility. SIGGRAPH, pages 453-462, 2003.

109

http://mor.clarku.edu
http://mesquiteproject.org

[25] Tamara Munzner, Qiang Kong, Raymond T. Ng, Jordan Lee, Janek Klawe,

Dragana Radulovic, and Carson K. Leung. Visual mining of power sets with

large alphabets, submitted for publication, 2005.

[26] OpenDirectoryProject, 2005. http://dmoz.org.

[27] Ken Perlin and David Fox. Pad: an alternative approach to the computer

interface. In SIGGRAPH '93: Proceedings of the 20th annual conference on

Computer graphics and interactive techniques, pages 57-64. ACM Press, 1993.

[28] Catherine Plaisant and Jean-Daniel Fekete. Infovis 2003 contest, 2003.

http://www.cs.umd.edu/hcil/iv03contest/.

[29] Catherine Plaisant, Jesse Grosjean, and Ben Bederson. SpaceTree: Design

evolution of a node link tree browser. In Proc. InfoVis 2002, 2002.

[30] George G. Robertson, Stuart K. Card, and Jock D. Mackinlay. Information

visualization using 3d interactive animation. Communications of the ACM,

36(4):57-71, 1993.

[31] George G. Robertson and Jock D. Mackinlay. The document lens. In UIST

'93: Proceedings of the 6th annual ACM symposium on User interface software

and technology, pages 101-108. ACM Press, 1993.

[32] Ursula Rost and Erich Bornberg-Bauer. Treewiz: interactive exploration of

huge trees. Bioinformatics, 18(1):109-114, 2002.

[33] M.J. Sanderson, A. Purvis, and C. Henze. Phylogenetic supertrees: Assembling

the trees of life. Trends in Ecology and Evolution, 13:105-109, 1998.

[34] Manojit Sarkar, Scott S. Snibbe, Oren J. Tversky, and Steven P. Reiss. Stretch

ing the rubber sheet: a metaphor for viewing large layouts on small screens. In

UIST '93: Proceedings of the 6th annual ACM symposium on User interface

software and technology, pages 81-91. ACM Press, 1993.

http://dmoz.org
http://www.cs.umd.edu/hcil/iv03contest/

[35] James Slack, Kristian Hildebrand, Tamara Munzner, and Katherine St. John.

SequenceJuxtaposer: Fluid navigation for large-scale sequence comparison in

context. German Conference on Bioinformatics, 2004.

[36] James Slack, Tamara Munzner, and Frangois Guimbretiere. TreeJuxtaposer en

try, Info Vis 2003 contest, http://www.cs.ubc.ca/~tmm/papers/contest03.

[37] Chris Stolte, Diane Tang, and Pat Hanrahan. Multiscale visualization using

data cubes. In Proc. InfoVis 2002, 2002.

[38] David L. Swofford. PAUP*. Phylogenetic Analysis Using Parsimony (*and

Other Methods). Version 4- Sinauer Associates, Sunderland, Massachusetts,

2002.

[39] Li Zhang. On matching nodes between trees. Technical Report 2003-67, HP

Labs, 2003.

111

http://www.cs.ubc.ca/~tmm/papers/contest03

Appendix A

T r e e J u x t a p o s e r T a s k E v a l u a t i o n

The Info Vis 2003 Contest [28] was the inaugural IEEE Symposium on Information

Visualization contest, and was composed of several tasks that T J l was well suited to

solve, including its namesake: side-by-side comparison of trees. Example tasks from

this contest included: detecting structural differences between trees, characterizing

movements of tree structures, and searching for nodes with given attributes. The

entire list of tasks proposed by this contest are found in the results section of this

appendix, Section A.4.

Three of the major contributions made for T J l , presented in this appendix,

include: an analysis of the strengths and weaknesses of our TreeJuxtaposer and

Accordion Drawing paradigm for the contest set of tasks; my addition of an in

cremental search capability for tree node labels; and my addition of an improved

user interface, which greatly improves the usability of TreeJuxtaposer. We call the

version of T J l that has search and user interface improvements TJl-contest [36];

however, this version does not have the features discussed in Chapter 3. The results

of the contest were very promising for the future of TreeJuxtaposer: our contest

entry placed first overall and gave our work excellent exposure to the information

visualization community.

In this appendix, Section A . l describes the dataset provided for the contest,

then Sections A.2 and A.3 describe the interface and search additions made to T J l

112

for the contest, and finally the analysis for each task in the contest in Section A.4,

as-was presented in the contest entry. A summary follows in Section A.5.

A . l C o n t e s t d a t a s e t

The contest dataset consisted of three different types of trees. The first dataset was

a pair of small phylogenetic trees, the second dataset was a pair of large classification

trees, and the third dataset was four file system trees.

Phylogenetic trees are constructed from sequence data and show possibilities

in how each of the species represented in the leaves are related to each other; ideally

the trees are binary trees but often are n-ary due to uncertainty in the construction

methods or other biological phenomena. The phylogenetic trees supplied for the

contest were a selection of bacteria classified with two different, unspecified methods.

Classification trees are created with a familiar Linnaean, hierarchical struc

ture where subtrees represent groups of similarities in morphologies of species. The

classification trees in the contest are of the kingdom animalia and are possibly from

two different sources as they have several differences and inconsistencies. Each node

has several attributes, which included Latin names and common, English names;

I generated two classification trees from each classification dataset tree from Latin

and common node names. Because not all nodes are supplied with common names,

Latin names are used in the common trees for nodes that have a Latin name but no

common name. When I use common names, such as mammal instead of mammalia,

in the results, I am referring to common trees; in most cases Latin trees are used to

provide solutions for the tasks.

File system trees represent the hierarchical structure of a simple file system.

The four file system trees are snapshots from a university web-site over a three week

period. Each internal node from this dataset corresponded to a file system directory

and leaves corresponded to files in those directories.

The results from the contest in Section A.4 describe analyses of these three

113

datasets. When describing each dataset, phyloA and phylog are the phylogeny trees,

animaliaA and animaliaA are the classification trees, and logSA, logSB, logsc and logsp

are the file system trees. However, since the classification and file system trees are

too large to load simultaneously with interactive rates in TJl-contest, subtrees are

used in comparison tasks for those two datasets. The subtrees of classification trees

are mammaliaA and mammaliae, rooted at class mammalia in the animalia trees,

while the file system trees are hcilA through hcilo, the human-computer interaction

laboratory web pages rooted at the hcil directory of the respective logs trees.

A.2 User interface

Figure A . l shows the original user interface of T J l [24] with the slider, a node

selection box, and buttons to add more trees, toggle differences and reset the tree

navigation. All other functionality was accessed through a keyboard-based interface,

which required users to remember keystrokes for most commands. Although some

keyboard actions are essential in T J l , having users remember too many keyboard

commands is cumbersome. Some keystrokes involved advanced tasks that users not

familiar with the system would not have understood and are only used for debugging;

many mapped keys were not transformed into menu options.

Figure A.2 shows the contest user interface of TJl-contest with a menu panel.

The most interesting parts of the system included with this panel are Find and

Tools. Find replaces the drop down box with the Found panel dialog, as seen in

Figure A.6 and is described in Section A.3. Tools contains the two option panels

Groups and Settings. The additions of the two Tools panels provides the original

options, some new options, and state information that was previously hidden and

made T J l hard to use.

In Figure A.3, Groups gives the user information about the currently resiz

ing and marking groups in the top and bottom halves of the panel, respectively.

The radio buttons between the color canvases and the labels collectively show the

114

reejuxtaposer.:/contest/nh'common/pliy-io_A_ABC_03-Q2:-01".nh Q P®|

A d d npname highlighte d j
, Litic*<dLh

Diffs I P ,-r i
C l o s t r i d i u m a c e t

c h l a m y d o p h i l a p

f u s o . b a c t e r i u m n

" s t r e p t o c o c c u s m

j I a c t o co c cu s"\ a c t i

s t a p h y l o c o c c u s , ,
p a s t e u r e l l a m u l t

^ y e r s i n i a p e s t i 0

b a c il j u r s ubt j i i s

b a c i l l u s a n t h r a c i
s t a p h y l o c o c c u s .5
s a l m o n e l l a e n t e r
x y l e l l a f a s t i d i o s
n e i s s e r i a m e n i n j l i
b r u c e l l a m e l i t e n

a g r o b a c t e r i u mt

s t r e p t o m y c e s c o

Figure A . l : T J l , from [24], before modifications for the Info Vis 2003 Contest.

currently selected group for both actions; the canvases themselves can be clicked to

change the marking color for that group. The buttons Bigger and Smaller allow

the user to resize the resize group and Reset resets all tree views to their initial

state. The radio buttons beside the options Horizontal, Vertical, and Both allow

the user to choose how the resize group will act when growing bigger or smaller;

Both resizes the group vertically as well as horizontally.

In Figure A.4 Settings offers some more options. The sliders on the panel

Line Width and Label Density give control over the width of the edges in the

115

File Find Tools Help

Clostridium acet
chlamydophila p
f u s o b acte ri u m: n
streptocoecus m
lactococcus lacti

:* st aphylococc u s,i j
Z.".7Zip-a.steureHa mul.tj

yersinia pestis

bacillus subtilis

b aci 11 u s anth r acif
staphylococcus ;
salmonella entei
xylella fastidios;

neisseria meninjt
mesorhizob ium

ag rob acte ri umt
streptomyces co

Figure A.2: TJl-contest with title bar modifications for the Info Vis 2003 Contest.

tree, by default set to one pixel wide, and the density of the labels. At maxi

mum density towards the left of Label Density, labels are squeezed together and

adjusting the slider to the right increases the buffer space between labels, effec

tively decreasing the label density. Font sizes are also adjustable in this panel,

and TJl-contest uses the Minimum and Maximum values to draw labels as large

as LabelDensity and other screen space factors allow. Other check boxes in the

panel include: Linked Navigation for interactively resizing subtrees concurrently,

Show Differences and Show Labels for selecting features to see and Dimming for

marked and unmarked nodes.

116

O Group A

(I1 Mouse Over

O Croup B

O Differences

O Group C

O Found

O Group D

Bigger Smaller O Horizontal ® Vertical O Both Reset
Mark

(§) Group A Group B Group C O Group D

Clear group Clear all

Figure A.3: The TJl-contest Groups panel added for the InfoVis 2003 Contest.

The toggle buttons and check boxes in the Groups and Settings panels are

also important for showing state of each of the properties they represent. Versions

of TreeJuxtaposer prior to TJl-contest, without indications of state, were quite

difficult to use. State continues to be an issue in the development of new features

and more recent versions of TreeJuxtaposer, including TJ2, use the Debug panel for

displaying critical state information. Future improvements to the user interfaces are

quite likely with the addition of features such as choosing tree orientations.

A .3 Incremental search

We determined that when analyzing the contest tasks that an improved searching

tool was necessary for TJl-contest. The searching tools are used to find a node with

a particular label; a found node is marked with a highlight color and can be grown

with a typed keyboard command: b for bigger and s for smaller.

T J l had only a drop-down selection box, as in Figure A.5, which was sorted

alphabetically by node label. These early versions could only highlight a single node

at a time. To find a node of interest, the entire list had to be scrolled through, a

time consuming process; typing letters while the drop-down box was selected would

also jump to the next node in the list starting with that letter but was still not

117

Figure A.4: The TJl-contest Settings panel added for the InfoVis 2003 Contest.

efficient. Unfortunately, Java implementations of drop-down boxes do not scale well

with several thousand nodes. With more than two thousand nodes in T J l , the

drop-down box is very slow and uses too much memory; the drop-down box itself is

a major memory bottleneck in scalability.

The sorting and typing methods were also not at all useful for searching for

known strings that did not occur at the start of the node names. There were also

some problems with nodes that are not uniquely named. T J l makes the list of

nodes in the drop-down box unique and although it attempts a renaming scheme,

the scheme did not work properly: labels were also changed making navigation

difficult whereas TJl-contest distinguished between names, in searching, and labels,

in displaying nodes.

We identified the need for an interface where a user could type in their

query and have multiple nodes selected, preferably with performance that would

lead to real-time analysis as users entered search strings. The searching approach

in TJl-contest is based on the kind of incremental search commonly seen in Emacs

or Mozilla. When a user types in a search query in these dynamic searching sys-

118

Add

cru

arthro

eret
stacean

po

no name highlighted Dif fs

^p | ny_^eremocoris depressu
eremocoris dimidiatu

mo co Ms erraticu
eremocoris feru
eremocoris inquilinu
eremocoris melanotu
eremocoris obscuru
eremocoris onacu

winged

animal

nsect

limne

Jampl

T h'eleomyzid flie
axymyiorrjorph

t—.1 saiE™

true

b i t h e c
orn isu
t h o r o

wasp cataulacin
amblyoponin

mi:cri d e a (s mi cri d ea

^ H | ' - 0 - ' ^ 3 = = 5 | worrnaldi

chord ate perching bPHI

-hystr-i co g n ath-r.adjgn.

p-aarsoe ••••••

Linewkllh

Reset

leptorhynchoidida

pancarid

platyarthrus acrop<

arrhopalites caecu
gyropida
false longhorn bee

acerocnem
dasyhelea aegealiti

'telenomus pentato
crematogaster grai
diacamma assamer
smicridea uliner

jwormaldia algiric
chromodesmus grs

iridosornis jelski
veniliornis affini
yellow isthmus ra
scortum parvicep
amphisbaena miter

telescopus dharz

fredericella austral

antiplanes abarbar
orthonectid

Figure A.5: The T J l selection box was a drop-down box. The selection box was
difficult to use and did not scale well.

119

tems, partial search results appear highlighted; in Emacs all search results are high

lighted, while Mozilla highlights only the first such match. Since the drop-down box

approach was space limited, the Found panel, as shown in Figure A.6, was added

to TJl-contest to keep the layout around the canvas uncluttered. This detachment

meant that the searching dialog could be extended to show only the multiple match

ing results and include a query entry box. Matching results appear as a refined list,

sorted alphabetically by name, in the Found panel dialog and only nodes that con

tain the search string appear in the list. Items in the list are by default selected

as the list changes with the entry of a query. The list selection can be changed by

the user using the usual list selection techniques: a click selects a single item, a

shift-click will select a range of items and a control-click will select multiple items

in the list.

The matching selected results appear as highlighted found nodes if the total

number of selected items is less than 200; too many matches are not visually useful

in the tree layout. Searching incrementally would be slow if every letter for a query

entry requires a new search on the total number of nodes. To make the query entry

process more interactive, lists of partial search results are cached so searching can

use the partial results instead of the entire set of nodes.

The caching stores all previous searches that partially match the query string

starting with the first letter. New queries are found in the cache by finding previously

cached results that match the first part of the string. If the cache contains results

for the query string except for the letter at the end of the string, then the cached

list is refined by the new query and stored in the hash table with a key of the new

query string.

Initially, the cache starts empty. The first letter that a user enters caches all

entries that contain this letter. For example, suppose I want to search for dolphin.

If I enter d, nodes such as dolphin, duck, dog, bird and armadillo are selected. Next,

when I enter o, making my search string do, the search will start with the cached

120

m ww m W F H
ag ro b acte ri u m tu m ef aci e n s str. c5 8 <i
agrobacterium tumefaciens str. c58 (|;
b aci 11 lis anth raci s a2 012 0
bacillus anth raci s a2 012 1
bacillus anthracis a2012 2
b aci I lus hai o d u ran s
bacillus subtil is 16 8
brucella melitensis
cam pv I o b acte r j ej u n i n etc 1116 8
cau I o b acte r ere s ce ntu s
chlamydophila pneumoniae ar39
ch I amy dp p h i la p neumoni ae cwl 0 29
chlamydophila pneumoniae J138
cl o stri d i u m aceto b uty I i cu m
coryneb acte ri u m g lutarni cum atcc 13
deinococcus radiodurans
e s ch e ri ch i a co I i k-12
e sch e ri ch i a co I i o 157: h 7
if u s o b acte ri u m n u cl e atu m
h el i cob acte r pylori 26695
h e Ii co b acte r pylo ri j99
Iactococcus lactis
lacto co ecu s I acti s s u b s p. I acti s i 1140:
listeria innocua 0
listeriainnocua 1
I i ste ri a mb n o cyto g e n e s 0
listeria monocytogenes 1
mesorhizobium Ioti

I ' l i l l S P i P l f S l i l f p l W i l S S

No no'des'selGCted

Figure A.6: The TJl-contest Found panel added for the Info Vis 2003 Contest.

121

result for d and the nodes duck, bird, and armadillo will be excluded from the cache

for do. The cache for do will contain nodes such as dolphin and dog. Further

refinements will reduce the search result and use previous caches for a more efficient

search time as the search string gets longer.

This approach is reasonable for progressive searches since the typical use

of this tool is entering queries starting from the first letter with possible editing

changes if the search fails. Searches that need to be entirely rebuilt, for example if

dolphin is currently entered and the first letter is deleted to search for olphin, are

reasonably fast as well, but the system is not optimized for those cases.

However, the caching technique used for interactive searching does have the

drawback of excessive memory consumption over time for the cached results. The

reduction of memory is done with a least recently used (LRU) caching method and

only the last 200 search results remain in the cache. Queries that do not match any

nodes in the tree and hence would have an empty list of nodes in the Found panel

are not cached and do not affect the LRU cache.

A . 4 Contest results

The following gives an overview of the sets of tasks given for the contest and the

results I obtained by using TJl-contest to solve each of the tasks. The full details

of my investigations, including detailed, higher resolution images for each task and

videos for some of the tasks, are also available [36].

A.4.1 Tasks suited for TJl-contest

In this section of the results, I present the details of contest tasks that I solved with

TJl-contest. I explain why each task is relevant in the context of how TJl-contest

is used to make analytical contributions. I present each task section and detail each

task, stating the original task and some explanation as to the scope of the task for

TJl-contest related analyses. Some tasks include an ordered list of steps that are

122

used to produce interesting visualization output, where necessary.

• Comparison of multiple trees for topological changes

In this section, I determine the suitability of TJl-contest for comparison tasks

for differences between several trees. These differences are topological changes:

the topological similarities in internal ordering of subtrees, which nodes are

added, which nodes are deleted, and which nodes move. We consider the

small and large scale differences as equally important since detection of small

changes has implications in many applications of tree comparison.

— Where does the topology change?

This question poses little difficulty for TJl-contest since the application

is built for this type of analysis. I was able to determine where the

topology of each tree changed and I also investigated regions of change

to determine the scale of each change relative to each dataset.

* I expand the visible computed differences, which marks changes in

the tree topologies, to view them in greater detail.

* Mouse-over highlighting in TJl-contest helps me analyze large scale

topology changes as well as individual changes.

* Subtrees with identical topology are not marked different, so I can

focus more effort on the interesting parts of the trees.

* mam ma Nag differs from mammal ia A mainly by leaf additions. See

Figure A.7 for the TJl-contest representation of the datasets.

* hcilA through hcilo do not change much topologically. See Figure A.8

for the four-way comparison in TJl-contest.

* phyloA and phylog have identical leaves but are topologically different

in several locations. The topological similarities can also be seen in

Figure A.9 due to the relatively small size of this dataset.

— Which nodes are added, deleted?

123

Fife Find Tool* Http
thorhynchut an at in

jpatdus partialis alba:
Iphinus capcnsis
eioplodon hectori

ynoc«phalus volant
allithri v argantala

ibui aaihtop*
galago moholi

tympanoctomyi b
mys irroratm

dasymyi foxi
pohllm apicalii

rmiembriomys gouldii

pseudomys laborifex
yzomys arguruf
tenodactylui gundi

ithopsii longicaudau
bates pygmaeus iadomys pyrrhorrtino

:ho<«eput hoffinanm

Figure A.7: Contest trees mammaliaA and mammaliaB compared using TJl-contest.
We mark the topological differences between these two trees in red. The differences,
in red, are fewer than in Figure A.26, which uses common English instead of Latin
names.

TJl-contest also easily handles node additions and deletions. I am able

to determine exactly where nodes are added or removed by examining

the difference-marked regions.

* Additions to leaves are marked as differences in the second tree.

* Deletions to leaves are marked as differences in the first tree.

* Node differences propagate to the root if subtree leaves did not

match.

* We do not mark the root nodes as different if the leaves are conserved,

as in Figure A.9.

* mammaliaB shows more leaves not in mammaliaA than the converse.

* Figure A. 10 shows the additions and deletions in two classification

subtrees: genus pteropus and family pitheciidae.

* hcil tree leaves show mostly additions and some deletions

* The changes in hcil that are not shown are file modifications, which

are attribute based, but would be more interesting since this action

is probably more common than creating new files or deleting old files.

124

File Finn Tools Help

[electronic.cl
nd«x.html

0000.html
0112.html
0226.html
0336.html
0482 html
0594.hlml
0/06. Imnl
0819 him)

Figure A.8: Contest trees hci lA, hc i lg , hei le, and hci lp compared using TJl-contest.
We mark the topological differences between these four trees in red. There are few
differences among all these trees, which allowed me to manually identify each of
them using TJl-contest.

F i l e F i n d T o o l s H e l p

c h l a m y d o p h i l a p n
c h l a m y d o p h i l a p n

f u s o b a c t e r i u m n u
s t r e p t o c o c c u s p y c
s t r e p t o c o c c u s p n -
l a c t o c o c c u s l a c t i s
c o r y n e b a c t e n u m

s t a p h y l o c o c c u s at
s a l m o n e l l a e n t e r i
e s c h e r i c h i a c o l i o
y e r s i n i a p e s t i s
i s t e r i a m o n o c y t o

b a c i l l u s a n t h r a c i s
b a c i l l u s h a l o d u r a

s t a p h y l o c o c c u s a i

• s a l m o n e l l a writeri
- s a l m o n e l l a e n t « r i
- x a n t h o m o n a s c a n

• c a u l o b a c t e r c r e s c

r a l s t o n i a s o l a n a c *

1 fz
* | .—+ a g r o b a c t e r i u m t u

s t r e p t o m y c e s c o e

s t a p h y l o c o c c u s ai
s t a p h y l o c o c c u s ai

b a c i l l u s a n t h r a c i s

- h e l i c o b a c t e r p y l o

- l a c t o c o c c u s l a c t i s
s t r e p t o c o c c u s py>
s t r e p t o c o c c u s m u

b a c i l l u s a n t h r a c i s
- b a c i l l u s s u b t i l i s 1

s t a p h y l o c o c c u s ai

p a s t e u r e l l a m u l t o
c a u l o b a c t e r c r e s c

x y l e l l a f a s t i d i o s a

^ s a l m o n e l l a e n t e r i
• n e i s s e r i a m e n i n g i

s i n o r h i z o b i u m m i

e s c h e r i c h i a c o l i k
s a l m o n e l l a e n t e r i
y e r s i n i a p e s t i s

p s e u d o m o n a s a e i
- d e i n o c o c c u s r a d i i

. c h l a m y d o p h i l a p n

Figure A.9: Contest trees phyloA and phyloB compared using TJl-contest. We
mark the topological differences between these two trees in red, which made my
investigation of this relatively small dataset simple. Notice how none of the leaves
are different, which indicates no leaves are added or deleted from these trees; due
to our comparison process, we do not mark the roots of subtrees when only leaves
move topologically.

125

pteropus
-pteropus molossinus
pteropus pilosus

-pteropus tamoeniis
pteropus

-•callicebu bernhardi
•callicebu caligatus

-callicebu 'ioimbrai
•^•callicebu discolor

callicebu dubius
-callicebu lucifer
^callicebu medemi
'calhcebu rnidestus

nigrrfrons
callicebu olallae

-eallicebu p alias cent
-•eallieebu purinui
—callicebus itephenna

opseudomys laborifex

iteralopex acrodonta
put argehtatus
pus chrys op rectus

iteropus faunulus
teropus'gilliardi

pus hypomelenus
tcropu? tiiringstonii
teropus mahaganus*

ipus melanopogon
iteropus neohibernicus
teropus ocularis

'pteropus phaeocephalus
ro'pus poliocephalus

ropus:seychellensis
ropui tammincki
ropus tuberculatum
ropus voeltxkowi

leontopithecu'iVaissafa
callicebus.cupreus
callicebus modestus
callicebus olallae

bytis rublcunda

Figure A. 10: Detailed differences of pteropus and callicebinae show additions of
pteropus from mammaliaA to mammaliaB, while callicebinae shows deletions in that
direction.

* In Figure A.11, I show the additions and deletions in two file system

directories: counterpoint and ivOScontest.

* In Figure A.9, no additions or deletions are present in the leaves of

the phylo trees, but the topological structure has changed. I can also

claim that all leaves in these datasets are conserved since the roots

of either tree are not marked, which is a property of the comparison

functions used by TJl-contest.

— Did any nodes or subtrees move? Can movements be characterized?

This section asks the hard question of general structural tree analysis

and classification of those topological changes. Although I was not able

to find and categorize every series of movements for significantly different,

large datasets, I was able to characterize several movements in each set

of dataset trees, especially for the small but complex phylo datasets.

* I discovered topological movements by examining marked differences,

computed by TJl-contest when the datasets are initially loaded.

* When a complete, topologically unchanged, subtree moves to a new

parent, I am able to locate the difference at the level of the new and

126

l0498.html

Figure A.11: Detailed differences of directories counterpoint and ivOScontest show
additions through the progression of the file system over time. The trees are hcilA,

hci le, hci lc , and hci lp , from left to right. In MCMA and hci le , the ivOScontest directory
does not appear since it has yet to be created.

old parents in both trees as marked differences.

* There is no automatic characterization of movements in TJl-contest,

so I had to examine and characterize all movements found manually.

* I found a few subtrees that moved in the mammal ia datasets.

* Figure A. 12 shows one complex movement I found: pitheciidae splits

into two subtrees and is reparented under cebidae from mammal ia A

to mammal iaB-

* I determined that no nodes move in the four hcil trees, and node

additions and deletions are noticed at the leaf level, although some

structural, file system subdirectory additions are also made above

the leaf level.

* Most leaves move in phylo trees, only a few small subtrees remain

topologically similar.

* In Figure A. 13 I show the most topologically similar subtree, marked

in the phylo trees, which has seven leaf nodes in an identical topology

but since TJl-contest does not reorder nodes, they appear as they

127

Figure A.12: Movements of cebidae and pitheciidae from mammaliaA to mammaliaB-

In mammaliaA, the two nodes are roots for two unique subtrees, but in mammaliaB,

pitheciidae becomes two separate subtrees rooted under the cebidae subtree.

appear in the dataset file.

• General visualization of tree topology

In this section, we focus on more general visualization solutions to understand

ing the tree topology. I can solve most tasks with single tree visualizations

and require neither tree comparisons nor specific tree datasets.

— How large is the tree? How many levels deep?

We interpret the size of the tree as the set of numbers that characterize

the tree such as fan-out, tree depth, maximum branching factor, and total

number of nodes. We consider explorations of subtree properties as well

as the entire tree dataset.

* I determined the tree size, which is the total number of nodes in

the dataset, by examining the density of leaf nodes; trees with a

branching factor of at least two have more leaves than total nodes

and each leaf node in TJl-contest is initially assigned equal vertical

screen space.

* I estimated the density of leaves by scrolling through one leaf at a

128

I ill* ri ml 1 mils Help

chlamydophila pnl
chlamydophila pn[
helicobacter pylori
'streptococcus pycl

j------»»streptococcus pn*
j •lactococcus lactis

corynebactenum ;
staphylococcus af
salmonella enterif
eschenchiacoli of
yersinia pestis* | L

listeria monocytoji
bacillus anthracis;!
bacillus haloduraj

staphylococcus ail
salmonella enteri'l
salmonella enteriy
xanthomonas canj

S'
caulobacter crescl
ralstonia solanacVi
treponema pallidil
agrobactenum tu||

.t ;streptomyces coe^

staphylococcus ai
staphylococcus at
bacillus anthracis
helicobacter.pylo'

actococcus lactis
'streptococcus py<
istreptococcus rriu
bacillusianthracis
bacillus subtilis 1
staphylococcus/ai
pasteurella multo

-caulobacter cresc
-xylella fastidiosa
-salmonella'enteri

—-neisseria meningi
-sinorhizobium rm
-escherichia coli k
-salmonella enteri
yersinia pestis
-pseudomonas :aei
-deinococcus radn

"l^chlamydophila pn

Figure A. 13: I marked the largest subtree that remains structurally intact between
phylogenetic trees phylo^ and phyloe- Although the subtrees are not exactly in
order, I used TJl-contest to determine that they are still topologically identical.

time, with up and down arrow keys. For large trees, the time to scroll

through the leaves by holding an arrow key down is also effective.

* The methods I used to determine tree depth in different regions of

the trees were not exact. In TJl-contest, nodes are dimmed relative

to their depth; the root is black and nodes are more dim deeper in

the tree. Regions of dim nodes correspond to many adjacent internal

nodes.

* Deep trees show a color gradient for depth and because of this, deeper

subtrees pop out.

— What is the path of a given node?

This section is also quite straightforward in TJl-contest. Once I found a

node with the Found panel, the path to the root node was followed with

the left arrow key. I marked, or expanded, the path with the standard

marking, or expansion, methods for individual nodes as the path was

129

File Find Tools Help

critista'cie'aT a~camn'6^T>'lrala
I I 1 tSEt—Tr^rtrrr

arth
opoda

anirnalia'

chondat

ve|tebfata

glosTol

rnallophaga
p=-axymyiornorpria

so matoi.de a; kambaiti psych in ae
laisa—BE^Ier 11 of 111•• •. cypsiurus

passer i forml

rajiformes rhin.t

mammalia

th

chirop

eutheria

p n a

pterygi

era pteropus

callitrichidae

. sairniri

colobus
euoticus primates

homo

hominidae l

-*
po

lerYiundae

tarsiidae
"oirtad^oTntiP

muridae

athgxia

I i o mys
eropeplus
niviventer

scjurinae tamias
l ' 'dipneusti

[ricinulei

pterostichus acomanus
scatopsciara v iv ida
cernot ina abbreviata

icypseloides phelpsi

(zoothera andromedae
'raja ackleyi

g lobicephala macrorhynch
sorex alaskanus

alouatta be lzebul
cercopithecus ascanius

colobus guereza
jphaner furcifer

g o r i l l a g o r i l l a
•homo sapiens

pan paniscus
•pan troglodytes

avahi laniger

call icebus purinus
proechimys a lbispinus
dipodomys o r d i i
lemniscomys barbarus
praomys minor

tamias alpinus

Figure A. 14: The path from the root node anirnalia to the leaf node homo sapiens is
shown in tree animaliaA- Although the path is shown expanded here, the path may be
seen in the same tree with no expansion to understand the overall, unaltered location
of any node path in a complicated, dense tree. The path is manually expanded by
following the path towards the root with the left arrow key and vertically stretching
each internal node.

followed.

* I found the ascent path starting from any node to the root interac

tively with the left arrow key.

* In Figure A. 14, I marked and expanded the path from homo sapiens

to anirnalia manually.

- Local relatives: what are the children/siblings/cousins of a node?

This section deals with more complicated structure than the previous

130

http://matoi.de

section. I found the related nodes using the arrow keys to navigate up,

down, and through the breadth of even the densest regions of the tree

datasets.

* I found children by using the right arrow to get the first child and

then the down arrow to scroll through siblings.

* I found the siblings using the up and down arrows to scroll through

each child of the common parent.

* Cousins can be found using the up or down arrows as well. When I

scroll beyond the first or last child, spatial cousins are highlighted;

the actual meaning of cousins is not well defined for this task and spa

tially adjacent nodes seemed the most natural approach for cousins.

We define cousins as the topologically highest node that is spatially,

vertically adjacent to a specific node.

Which branch has the largest number of nodes? Largest fan-out?

The task of determining the largest number of nodes is also relatively

simple with TJl-contest. When the largest branch is much larger than

all other branches, I can easily determine which branch is largest since

TJl-contest initially assigns each leaf node to an equal vertical space and

allocates the vertical space for internal nodes from the outer-extreme leaf

nodes.

* The number of leaves determines how vertically large internal nodes

are since TJl-contest initially assigns leaf nodes equal vertical screen

space to leaf nodes. Navigation breaks the equality when one subtree

is stretched vertically.

* Marked leaves of subtrees can be visually compared; I can mark

subtrees to make estimates on subtree size relative to the entire tree.

* In Figure A. 15, I highlighted the users group to determine how large

the group is relative to the entire logs^ dataset.

131

c s 4 1 7 p = , , I.»*ci5g$ £.
jsershsru-^iusei.sh•>'t$Q '

aa 1

robots.txt
index.html
index.html
t h u m b - 06 . g i f

t h u m b -04 . g i f
index.html
index .html
card.gif

?̂ index.html

Tthumb-12 .gif
back.gif

J.> index.html
m
j j coverpage.html' m

' '•flta.htm

Figure A.15: The subtree users, marked blue in the tree logSA, shows the relative size
of the subtree compared to the overall tree size. Since TJl-contest initially allocates
identical vertical screen space for each leaf node, this method of comparing subtree
fan-out can only be demonstrated on a tree that has not been stretched or shrunk.

* For immediate feedback, I use the bounding box for a subtree, which

is shown while hovering over the subtree root, to rapidly determine

subtree size in a similar manner.

• General visualization of tree attributes that can be aggregated

This section of results focuses on techniques of understanding tree attributes

with general datasets. Since TJl-contest could not solve many attribute re

lated tasks, this section deals mostly with the aggregated analysis of tree

. structure, which means simple analysis of subtrees. Again, these tasks only

132

require single tree visualizations and neither tree comparisons nor specific tree

datasets.

— What is the number of nodes in a subtree?

TJl-contest does not fully support this task, but I found an approach

that is sufficient yet not immediately obvious.

* TJl-contest does not display the number of leaf nodes for each sub

tree so I can only determine relative quantities using the tree visual

ization.

* I can determine the total number of named nodes in a subtree using

the Found panel with a fully qualified naming structure, but this

solution is not elegant.

— Comparison of branches of the tree: subtrees with most nodes

This task focuses on determining properties of a subtree that I can use

TJl-contest to quickly analyze. I can examine several subtrees concur

rently to estimate the relative number of nodes is each subtree, but exact

numbers of nodes are beyond the capabilities of TJl-contest.

* I compare subtrees with the Found panel and fully qualified names.

I use the naming structure from the dataset and the results from the

Found panel to select structure in the dataset visualization.

* I select nodes starting with ///animal/mammal to show the number

of mammals.

* By entering mammal into the Found panel for animaliag, I found

mammal-nest beetles, which are not mammals.

* There are very few non-mammals with mammal in their name; I

deselected the non-mammals in the Found panel to find the root

of the mammal subtree. I could have arrived at the same result by

searching for and selecting the ///animal/mammal tree directly from

133

File Find Tools Help

animals-t

'ch'orj date's;'

vertebrates

ny raye

bony fis

Si'cl'ea"jjj^fnlafVd e~a "(s micTi'dea)'

doves and ptg^onsmg^uigfi
|||| r h y n p"Ofipgs,

eop: IIIMI-1
i • '• -•

-per-ehing-birds r - -S i iBJRJJg

" ag MO rani's-

sharks ^M^g^im^gni^e&i'-T?ffS?Bs8jBfe •

mammals

!d fishes

hep!

Ihes

pterygn

teleo?

'_d ragonets. (asaa
„ bovichthys

__p.e r-coid(i)T^J*f ~
.zoarcbidei amni'ataba

gte|| . menhadens cyl lopsis

• n-il.-rI• h h 1

(:: -T-XV* luriVfith'es
l e p i d o s a u r T a T ^ ' = ^ a \ f ' J - " ^ " •

squamata 'platysaurus
whiplails! '

-•hypogastrura alba
smicridea ulmeri
eleutherodactylus plicifer

ijlittle shearwater
rallus maculatus
lonchura bicolor
anthus rufulus

anairetes f lavirostris

snaggletooth shark
|s pinner d o l p h i n .

red-handed howler monke

' southern: long-nosed arms
-jjafrican snakehead

i p i k e h e a d s
i

threadfins
John dory •

fmp irate.perches
•Ssiceratodimorpha

jplatypholis walbVrgi i

platysaurus relictus

cnemidophorus rodecki

itelescopus beetzi

orthonectids

Figure A.16: mammals and bony fishes marked in anirnaliaQ, which we can use
to determine the relative sizes for these two subtrees. The mammals subtree is
approximately half the size of the bony fishes subtree. The dataset has not been
skewed by navigations so each leaf node is assigned equal vertical screen space.

the entire dataset, but that is slower than my method of pruning the

tree.

* I could then grow the ///animal jmammal subtree or mark it for

simultaneous visual comparisons with other interesting subtrees.

* By marking as described, I produce Figure A. 16 with mammals and

bony fishes marked in different colours.

G e n e r a l v i s u a l i z a t i o n o f k n o w n i t e m s

This section deals with visualization of known items in generic datasets. In

134

this context, nodes are considered to be known in the sense that searching for

a particular node with knowledge of the name or path to the node from an

ancestor node is general knowledge.

— Which nodes have a label containing the string giraffe?

This task is straightforward with TJl-contest using the capabilities of

the Found panel.

* I type giraffe into the Found panel and all giraffes are highlighted

with the colour of the Found group.

* I resize the Found panel results for the Found group using the Groups

panel.

* Figure A. 17 shows the result I achieved after searching for giraffe in

animaliae-

— Locate a node knowing its path.

This task requires the navigation control of TJl-contest. I browse the

tree, directed by the hierarchical naming structure, using interaction

boxes created with mouse controls.

* I can either use the Found panel to find a node of interest if I know

the label or browse through the tree structure from the topological

root if I am interested in a node along a known path.

* If the full path is known, browsing the tree with mouse-over high

lighting may be faster than searching every leaf node.

* I also reduce searching by starting closer to results using the Found

panel to locate well-known internal nodes.

* The Found panel method is especially helpful with bushy subtrees;

browsing is difficult when viewing the children of a node with a

branching factor larger than the number of vertical pixels on screen.

— Go back to a node you have visited before.

135

Rile Find. Tools Help

crustaceans

arthropods

'hi •xap

animals

oda

chord at es:

vertebrates

bony fis

peifa'cari'da'
ostracods

5~oriT' i i i f Ii 11 in II

— robber « M . . . ; r . - b ^ , r t V
b Re mjfag

b > o s calyptnes
bibionomorpha""

I 1 &r
tr U | e wasps j - a n t s " chimaejrjdns

sornatpjidea _ s r m e n d P a (smicnd.'d)
aft en ell a

sharks--^even^toed-ungulat^5J vtajfflflff.u's. 1

hes ,

sturgeons-^ se ajjor,s,e s,

tel.eoktei

'I eptorhynchoididae

platyarthrus acropyga
larch aeognatha
Jsphaerius politus
idrosophi la melanopedis
polyardi s ad e I a

•Skamponotus abditus

smicridea ulmeri
caudatella cascadia
buceros bicornis
indian muntjac

giraffa

okapia

•giraffes

l o k a p i

«g i ratte s e a hor se

seahorses] yozia
i r „ ^ a n gj erfi s,h.er 1 uri gfiffi e s ^ n y s n a s e ah o rs e

ceratioidei
causus defil ippii
octopus selene

orthonectids

Figure A.17: Result of giraffe search in animal iae, achieved by searching using the
Found panel and growing the results for the Found group in the Groups panel.

This task would have made navigation in TJl-contest much easier, but is

left for future work in a more general approach to all Accordion Drawing

applications.

* There is no explicit undo feature in TJl-contest.

* I could return to a subtree after exploring other parts of the tree by

marking interesting subtrees to either remember where I was or use

the Group panel to grow the marked tree.

• General visualization of labeled items

This section relies on the labeling provided by TJl-contest to give context of

tree topology as well as readily available information for visible nodes with

136

enough screen space to display a label.

— Review all the labels in a subtree

This task is not possible in the visualization of dense areas of a dataset,

but TJl-contest can extract labels with the Found panel if this is the

case.

* All labels in a subtree can be extracted through the Found panel.

This technique is not necessary if a subtree is not too dense since

labels that have enough space to draw are shown in the tree visual

ization.

* TJl-contest limits results in the Found panel to nodes matching the

keyed-in entry. If I wanted to see only nodes in a particular subtree,

such as more nodes than the Found panel displays with direct match

ing, I could find the subtree with the panel, grow the subtree root

node and then review the labels of the subtree.

* I could examine all labels on the subtree using mouse-over highlight

ing or by sufficiently decreasing the node density. We can also lower

the font size or individually stretch sections of the subtree to see

more labels.

• General navigational visualization and browsing

This section focuses on the navigation abilities of TJl-contest. Following a

known path in the dataset with TJl-contest is powerful when I want to browse

the topology with no predefined species of interest. We are not limited to

following a naming structure since it would also be useful to follow properties

of a tree, should they exist, that are not related to the displayed labels. An

example of this directed browsing would be manually exploring the computed

differences in a tree.

— Explore the tree by performing a series of up and downs in the tree: you

137

are looking for a cute animal. You look into mammals, then primates,

then gorillas, and chimpanzees, but you realize that they are not that

cute. You then go to felines, to tigers and cheetahs...

This task is straightforward in TJl-contest with the mouse browsing and

navigation tools. Mouse-over highlighting, mouse resizable trees and the

keyboard interface are all useful tools depending on the user and the

exploration task.

I performed the following to explore the animaliaB dataset:

1. I grew vertebrates, mammals bigger using mouse-over highlighting to

find the item, then typed b to make the tree larger, using the Group

panel to first ensure I was making the mouse-over group larger.

2. I found primates in mammals, then resized it with the interaction

box growing method, finding that great apes; gorilla and chimpanzee

appear in the great apes subtree when grown using the same method.

3. I used the mouse to highlight primates, then repeatedly pressed the

up arrow key until carnivores was highlighted since mammals was

too dense in the region outside of the grown primates; dense regions

are easy to step through with the keyboard arrows.

4. I then grew the carnivores selection, again with the keyboard, until

it was large enough to see the cats subtree.

5. Using the mouse, I grew the felinae subtree enough to see cheetah

and tiger...

— Following those steps, I produced Figure A. 18.

General management of analysis

This section deals with general techniques that TJl-contest uses for analysis.

Namely, this section only deals with marking nodes of interest since other

analysis methods addressed by this section such as editing, saving settings

138

carnivores

pri or ia i lurusp

: ne0 fe lTs3
roaring c a t s r

pardofelis L
ambtonyx

Siberian flycatcher
cheetah

•jungle cat

-wi ld cat

; l i u I e spotted cat;'

•eurasian lynx

•pampas cat

•andeanicat

•flat-h e ad ed cat '

;african golden cat

- l ion

humans, people, us
ijiumans,|great apes "

sturgeons
orangutan, maias, mawas

••tiger
wiring-tailed mongoose

jR* otter civet
i jaf l jS; red-handed howler monkey

talapoin

gor i l la
human
pygmy chimpanzee
chimpanzee
orangutan

Figure A.18: Result of browsing for cute animals in animaliae- We marked tiger and
cheetah since they were the cutest animals. This figure also shows multiple areas of
focus in TreeJuxtaposer, while still providing context with the squished regions.

and a history of analysis are tasks that we are unable to complete with T J l -

contest.

— Marking nodes of interest

TJl-contest uses marking for many different functions such as resizing

or a pseudo-history of navigation when I proactively mark regions that

are visited. We consider marking to also include computed differences,

search results and mouse-over highlighting groups.

* We can mark up to four UserGroups to highlight nodes of interest.

* Our granularity of marking is either node or subtree.

1 3 9

* We can mark multiple nodes or subtrees in each group.

* A node may belong to multiple groups simultaneously.

* The last group selected will be visible over other marks. The groups

may be cycled through, with the graphical interface or using key g,

to select the current marking group and change the priority of marks.

* We mark the best corresponding node on each tree if more than one

tree is loaded and if that node has a correspondence to a user marked

node.

Application specific tasks section with phylogenetic trees

This section deals with the tasks related to phyloA and phylos datasets, con

structed by evaluating genomic properties of two proteins.

— Map the similarities between the two tree topologies, which _would indi

cate co-evolution and possibly where two proteins were not co-evolving

This task is one of the strongest abilities of TJl-contest. Similarities

are instantly visible in these small datasets as the nodes that are not

marked as differences. The largest unmarked subtrees are indications of

co-evolution. The following was noticed:

* The leaves in phyloA were all in phyloB and vice versa. See Figure A.9.

* Some leaf nodes have identical names in the same tree.

* My analysis of TJl-contest assumed all leaves have one-to-one re

lationships using a renaming scheme for identically named nodes.

However, since the best corresponding node criteria is only onto, the

renaming process to disambiguate similarly named nodes, namely

appending a number to the node name but not the node label, might

have affected the computed differences. The best naming scheme

to produce the fewest differences or largest similar subtrees is not

determined.

140

File Find Tools Help

chlamydophila pn;
chlamydophilapn
helicobacter'pyjor
'Streptococcus pyt

'streptococcus pn«
^ «lactococcus lactis?

corynebactenum |j

'Staphylococcus ai;|
salmonella enteri: 1

escherichiacoli b |
yersinia pestis' |
listeria monocyto||
bacillus anthracis!

istena innocua; i

|staphylococcus:'a(:i
staphylococcus ai l

almonella enteri'
ixylella fastidiosa ill

aujobacter cresc :

alstonia solahacc

•*trejponema pallidy
-agrdbacte'rium tu

4——;streptomycesxoe||

staphylococcus ai
51aphyjo coecus ai

bacillus anthracis

helicobacter pylo

a c t o c o cc u s: I a ct i s
'streptococcus p_y<
'Streptococcus mu

bacillus anthracis
bacillus subtilis 1

•™rC31̂ .EI!i'.i"̂ s t ap hylocQccus>ai
^'•"'"'"'"listeria innocua.

seudomonasaei
xanthomonas can
xylella fastidiosa

^salmonella enteri
•neisseria mcningi

sinorhizobium m<
escherichia coli k

-salmonella enteri
-yersinia pestis

•pseudomonas: aer
•demo co ecu s radi<

'chlamydophila pn

Figure A.19: The three most topologically similar subtrees marked in phyloA and
phyloe- The leaf assignment and renaming is automated and the leaf relationships
cannot be edited for a better matching.

* TJl-contest is only able to automatically assign best corresponding

leaves; editing leaf relationships was not possible.

* Different leaf relationships produce different tree comparisons.

* A subtree of 7 leaf nodes matches topologically. See Figure A. 13 for

this subtree marked, in. the phylo trees.

* Another subtree of 5 leaf nodes nearly matches with only one internal

node topologically different.

* A third subtree of 8 nodes nearly matches with three internal nodes

topologically different.

* See Figure A. 19 which has the three most topologically similar sub

trees marked in phyloA and phylos-

A p p l i c a t i o n speci f ic tasks s e c t i o n o n c l a s s i f i ca t ion t rees

This section deals with the tasks related to comparisons of mammaliaA and

141

mammaliaB datasets as well as other visualization tasks with animaliaA and

animaliaB- Comparisons are not done with the animalia datasets since they are

too large to evaluate with TJl-contest.

- To what extent are the differences in the classifications due to differences

in how animals are thought to be related?

— Are there other kinds of differences and can you explain them?

These tasks intend to ask general questions on types of differences found

during explorations of the mammaliaA and mammaliaB dataset compar

isons. Although there were many differences found with TJl-contest, I

was able to classify each style of difference that I investigated as one of

the following: an addition where nodes, typically leaf nodes but possi

bly including their ancestors as well, exist in mammaliaB but are not in

mammaliaA; deletions, which are opposite from additions; and subtree

movements where whole subtrees are re-rooted.

* I determined that the differences are mostly due to: additions to

the tree, deletions from the tree, and slight modifications such as

splitting where a leaf node in animaliaA became a subtree with chil

dren in animaliae. See Figure A.10, which shows leaf additions in the

pteropus subtree and leaf deletions in the callicebus subtree.

* I quantify additions and deletions on the leaves by examination of the

rough quantity of marked differences in the leaf level since the leaves

are equally spaced at that level; the amount and location of marked

difference indicate the distribution of added nodes. See Figure A.7,

which shows the relative number of additions for mammaliaB, on the

right, as large regions of difference while mammaliaA, o n the left, has

had a few leaves deleted.

* I highlighted the rodentia subtree, a high-level classification group,

with blue in animaliaA, then the rodentia subtree in animaliaB in

142

Figure A.20: rodentia subtree marked in mammaliaA and mammaliaB- The subtree
is first marked in mammaliaA in blue and then marked in mammaliaB in green. The
green marking in mammaliaB overwrites the blue in mammaliaA since the green is
currently at a higher priority for all dataset views. No blue marks exist outside of
the green marked subtree, which indicates that no rodentia from mammaliaA are
misclassified as something other than rodentia in mammaliaB-

green. After these actions, there were no blue nodes visible in the

mammaliaB green subtree. This allowed me to visually conclude that

no species classified under rodentia in mammaliaA w a s classified under

anything but rodentia in mammaliaB-

The green marks did not cover the blue marks in mammaliaA com

pletely, which indicated that mammaliaA had more species classi

fied in the rodentia subtree than mammaliaB; marking rodentia in

animaliaB had the same results in animaliaA- Similar results with

other large subtrees implied that, although not a complete investi

gation, the mammalia trees showed mostly differences in lower level

nodes; see Figure A.20 for the result using TJl-contest.

* Some differences such as the movement of pitheciidae from primates

in animaliaA to cebidae in animaliaB were found through exploration;

the subtree marking capability sped up the exploration process, as

shown in Figure A. 12,

143

i File Find Tools Help
-sp i n^h^egajeil. wio:r-f ris itj^'Ta^o^mj^'ne^

crustaceans

a n i m a l s

arthropods

ischnome'sus
4i -i - _ " :

^platya'rthru's schoebh
hoplocar ida •'•\—rr

wihged in sects

chordates
ve rt

spring tail's' achorutes
. homopter.a- .mallo.pjjdga

e a rw.i g s adia
h^loomyzidae. euryomma

llliafiai axymyi o mftrp h

e ^ J > , > , , i P a _ calypt.tes
;e wasps WoYmrcmae^ a t t t f p - s l s

tetramornni
I s o m a t o i e a L ^ , . i | r i [, glossoj

caddisflies - l e p i d o s t o m a

J a m 1
u- / _ anax

pzshelIVte- an Kisaqilt->,idi<a
~ * - U f u V f O T r r H W £ - £ *

I—1 * l ~--™"'-^~?If;jfS|.?
q^l iVl jgggiJ skalds

ulua

—irinciittj} » Lid.a V IJI a tf1 *w»

mollusks nwdibr-arrcnv- - - r S o « X . ' . - <. ' ° '
"har imdaci » -

rnyx oyvT.11-—*^*p* 4

" ' w i S

] l*»ptorhynchoididae

jjjpancarida

Iplatyarthrus l indbergi

a g r e n i a
I j a l l o k e r m e s b r a n i g a n i

"logcodes adaptatus

fannia abrupta

Jscatopsciara vivida
i
camponotus abditus

;oligomyrmex aborensis

Icernotina abbreviata

•wormaldia algirica

laid an osagitta tropica

^jj jcardinalidae
H'io eel I ate skate
,1 u ciocephaloidei

e p i plo cyl id idae
3 pelmatoporidae

bursa bufo
cymatosyrinx atenensis
orthonectids

Figure A.21: animaliaA displayed in its entirety with common names. This tree has
190,265 total nodes, 154,922 of those nodes are leaves, and has a height of 16.

Can you say in how many different subtrees a particular common name,

such as dolphin or horse, is used? How closely are these animals related?

These questions are answered quite easily by TJl-contest with the Found

panel. Guaranteed visibility is able to show how closely the animals are

related and multiple focus points allowed me to view all resulting matches

concurrently.

* With animaliaA, as in Figure A.21, using fully qualified names: Found

panel returns 53 leaf and non-leaf dolphins, see Figure A.22.

• Of the 53 positive search results, only myzomela adolphinae was

probably not named with respect to phylogeny or morphology of

144

I Rile Find' Tools Help
hexappdlr |

chord ates";

vert ebrates

mu,s:ci,dai _ scaropsciara
lampTshjgJIs* -birds eurylaimidan

euselachii [tyranrii ne ofe I i s
* baleen whalesj '!

piebaid do Iphins«

pyg my ki 11 e rj-w.h al e s

•white-beaked dolphins
I ,!- ... , '
marine dolphins

striped dolphins

b ottl e nosed d o I p̂ h i

scatopsciara vivid a
eurylami

lion
balaenoptera musculus br«
black dolphin

short - f inned pilot whale
atlantic whi te-s ided dolphj
paci f icwhi te -s ided dolphu

"orca
sot alia fluviatilis guianensi
,stenella attenuata attenuat
Atlantic spotted dolphin

lb lack sea bottlenose dolph
„lip ot-es4
i - ==aayangtze river dolphin

porpoises — ...<>..-...
indus r iver-dolphin I

-spectacled porpoise
sperm whale

i longrnan.s beaked whale
alpine chipmunk

alabama red-be l l ied turtle
dolphintooth nutclam
;calyptraea burchi

lorthonectids

Figure A.22: Result of dolphin search in animaliaA with common node names. 53
leaf and non-leaf dolphins were found using the Found panel.

dolphins, since dolphin only occurs as a substring.

• Many of the search result dolphins were found in the marine

dolphins hierarchy.

* Search for horse: Found panel returns 47 leaf and non-leaf horses,

see Figure A.23.

• In addition to mammalian horses, horse appears in many dif

ferent subtrees across different parts of the classification tree:

arthropods, insects, seahorses, and snails.

• The animal species with horse in their names are not closely

related at all.

145

Fi le f i n d I ools I le lp

c r u s t a c e a n s
T-

a r t h r o p o d s

spiny-hea^:e:d!w;o;r- rn^J^^^p^^^ 1 '^^'^^-^^ T ' " j ' e p t o r h y n c h o i d i d a e

p a n c a r i d a

p Iatyar th rus I i ndbe rg i

a m p R T p ^ l s t
peiracarida" . . — £ u , . , t l - r

p l a t y a r l h r u s s c h o o b h
-f' ' hpplb;carMgr | j s s = E _ - . ' - sp r . ing ta i j s a c h o r u t o s

w i n g e d i r i sec ts

chorj d a t e s
v e r t e b r a t e s

^^^tei^^Tr^rm^^, " ~ : j a g r e n i a
S • • • • J H J M M ^ A W ~ «•»- . • a l l o k e r r n e s b r a n i g a n i

. . . e a r * l q s a d , a
he leomyz ida> '_ p u r y o m m a

@ei:ar<af a x y m y i o m o r p h a

y ^ a ^ ^ ^ c S l y - p i t i t e s
Pftfrmi'ciWa'e _„„ „ ,

b o n y f i s
m a m m a l s s k a t e s ^ '.aUO&tii&jdi&Jsa&i-X

o g c o d e s a d a p t a t u s

j f a n n i a a b r u p t a

js c a t o p s ci a r a v i v i d a

- t c a m p o n o t u s a b d i t u s

l o l i g o m y r m e x a b o r e n s i s
.1 : "
i ^ ce rno t i na a b b r e v i a t a

e o c o s m o e c u s f r o n t a l i s :
a r g i a a d a m s i
b r a c h y r a m p h u s b r e v i r o s t r i
s a x i c o l a b i f a s c i a t a
o c e l l a t e s k a t e

o s t a r i q p h y g — J r * d h f f i a g s ^

~ ^ u t
b l a c k t a i l r e d h o r s e -

s t y l a s t e r a l a s k a n u s

b a g h o r s e m u s s e l :

' l a e v i d e n t a l i u r n rec t i us 1
i h e m i s t e r a m o s a

Figure A.23: Result of horse search in animaliaA with common node names. 47 leaf
and non-leaf horses were found using the Found panel.

• Several Ziorse-named roots of subtrees exist, such as horsehair

worms and horseshoe crabs, which include only species that do

not have horse in their names. These species are all lacking

common names in mammaliaA and a r e therefore labeled with the

fallback: Latin names; perhaps their common names do/would

include horse.

Are common names a good guide to understanding relationships?

This task concludes the statements and findings from searches for dolphin

and horse.

* Common names are not a good guide to understanding relationships.

146

Several common names were investigated and results would indi

cate that common names are used frequently to describe morpho

logical features of yet unclassified and unnamed classes of species or

of species themselves.

Common names lack structure and do not have the same somewhat

hierarchical classification structure as their Latin equivalents. The

Linnaean system of categorizing species, into several layers commonly

referred to as a classification tree, is also used to provide a standard

for further classification.

Common names may have, for example, historical or geographical

influences and therefore are most of the time not helpful in under

standing relationships in all cases.

One classification may even look different from an identical classifi

cation tree if a naming convention is not adhered to: for example, I

found that marmota vancouverensis is Vancouver island marmot in

mammaliaA while mammaliaB labeled the same species as Vancouver

marmot. See Figures A.24 and A.25, which are identical, expanded

sections of common and Latin versions of the mammalia trees under

the class marmota, but show the many naming differences in the

common tree versus the Latin tree.

Some common names may be simple and included in other common

names: horse occurs in seahorse; the Found panel was able to focus

in on sections of species with user defined selections in the search

window.

For species such as dolphins that are not expected to occur frequently

across different species, it was interesting to see non-mammals occur:

a mollusk, two bony fishes, a perching bird; they may either have

dolphin-like morphological properties or dolphin in their name by

147

Figure A.24: The class marmots subtree expansion in mammal iaA and mammal iae

with common names. Note how in this tree Vancouver island marmot and Vancouver
marmot, the same species, is marked as different since these names are not unique.
Compare with Figure A. 25 in which this species is called marmota vancouverensis in
both cases and is therefore not marked as a difference. This is a case against using
common names as a classification structure if there is no concensus on a unique
species name.

Figure A.25: The class marmota subtree expansion in mammal iaA and mammal iae

with Latin names. Note how in these subtrees the species called marmota
vancouverensis is consistent and agreed upon by both datasets. Compare with
Figure A. 24 in which this species does not have an agreed upon common name and
therefore marked as a difference. This is a case for using Latin names as a classifi
cation structure since they are more likely to be unique and agreed upon, at least
in all examples I found in these datasets.

148

Figure A.26: Contest trees mammal iaA and mammal iaB compared using TJl-contest.
The topological differences between these two trees are marked in red. The differ
ences, in red, are more plentiful than in Figure A.7, which uses Latin instead of
common English names.

some other origin such as adolphinae, which I determined to possi

bly mean something mountain-related after referring to the common

name found in a web search, from myzomela adolphinae.

* Common names were useful for providing recognizable names but

they dramatically impede comparison. Figures A.26 and A.7 show

the large naming problems as differences between the respective com

mon and Latin versions of the same mammal ia trees.

— How many species are named after biologists named Townsend in both

the Latin and common name trees?

— Can you look at the pattern of names to deduce where in the world or

on what kinds of animals Townsend might have done research?

This is a more general question of basically determining the usefulness

of Latin trees, or common trees, to deduce certain reasons why a species

has a particular name. In this task, the commonalities used to determine

origin of species names are biologists named Townsend.

* Latin animaliaA, Figure A.27: 51 leaf and non-leaf Townsend nodes

149

I lie r i n d 7 o a l s Help

acanThrccep.tjalat^

j^EJlLRgj a ; cu rti a c e a a n a l h u i a S j p a n c a r i d a

platyarthru h H i

col 15S16"i I a acho'rutes
rniM^pjTjfga

p.o.lyp.hjaga h I d i n '
l=-_''i. a 111 p h o r in i

<>mbiopt»ra ^.
foYmi'cinae e u c h a n s " -

adlerzia —

I j l e p t o r h y n c h o i d i d a e

4
(:,'•$. . -

iplatyarthrus Iindbergi
.agrenia

i ial lokermes branigani
•rjhelodes thoracica

* E z s 5 3 b e l l a r d i a townsendi
I e r i s t a h r i a e h a r i h q i a n a i ,

~ f h e n n g i a a l b i p l e u r a

iKa!mB3iiti p s y c h I n a i ^

^coTcTul.i 1 i "I ' "
.netta

pass e n f o rme'STgrn'^a d'e's.t V'sJ

percoi J i - M | | | |
o p,h i d 11 d a ej.« -ipJIjJtoj

Jhemiptera
j>olyrhachis stigmatifera
ol igomyrmex aborensis

9

jcernotina abbreviata
leo'cos mo ecus frontalis
argia adamsi

2|brachyramphus brevirostri
zoothera an dromedae

[•otocephalus townsendi
BESEisaiapogon townsendi

snibrotula townsendi
o;c h.e 16,'sTo'm a

molluscai i - r " ¥ r g — . . . —• -s^ ifl
-stylo mmatOjp;hp?Fa?qyMJd'.i''': ĴJJTI fiTs if

S ^ . , , Z ^ / a ' R i '

' ^ l ^ ^ ^ ^ t l i e m i s t e , ramosa

saochetostoma zanzibarensc
jbursa bufo

saallogona townsendiana

Figure A.27: Result of Townsend search in animal iaA, with Latin names. 51 leaf
and non-leaf Townsend nodes were found. It is evident that the results are not of a
particular class of animals, but spread out in the anirnalia kingdom.

were found.

* Common animaliaA, Figure A.28: 45 leaf and non-leaf Townsend

nodes

* Some Latin names appear in common trees since nodes with no com

mon name used the Latin name as a label. The only purely com

mon names returned by the search that I recognized as common are:

townsend eualid, townsend snapping shrimp, townsend's chipmunk,

townsend's dwarf gecko, townsend's ground squirrel, townsend's mole,

townsend's pocket gopher and townsend's vole. More of these are

larger species, most in the rodents subtree, which might be indica-

150

File Find Tools Help

crustaceans

arthropods

hi xap bda

chordates

ve rtebrates

peracarida I. • • • • r • t—L_S—4 Pjlatyar«thrus-s.choebli
hoplocarida t=. " ' '

|) leptorhynchoididae

i|pancarida

jplatyarthrus l indbergi

-beetle

spring tai l.sjaHgchf<ghu t e s_S'
" i . • ; 5gr»archaeognatha

.carabus * - • , sscarabus townsendi

muscomorpha
dipterar S ^ B ! " 1 • cenana

•• I I .WIT I
neoptera

hymenoptera
glosso

callip"h;oTiini A l l I M I

culicidae , —' • web spinners-;
formicinae euchans '

p.oinennae
>~?gadlerzia-

" SSSI^Mb^it igSy^h i nao

.pannota /ordpterans

netra^-

g b e l l a r d i a townsendi

Seeriana townsendi
MM
ghemiptera

polyrhachis stigmatifera

lol igomyrmex aborensis
' 1 • ' '

sticernotina abbrevi ata

ineocos mo ecus frontalis;

nnargia adamsi

brachyramphus.brevirostr i

atus
perching b i ^ ^ ^ m v i r a w

skates-' ' . ^ i ^ ^ ^ ^ S S ^ ^ ^ m ^ ^ B ^
neoppryg.if^ f^f^^^f^mifflocellate s k a t e

' paracanthopjer.ygiij=,cusk~eels hakes amber darter
— gbrotula townsendi

c atos t y I us t own s endi

bursa bufo
cymatosyrinx arenensis

« TJorthonectids

Figure A.28: Result of Townsend search in animal iaA, with common names. 45 leaf
and non-leaf Townsend nodes were found. It is evident that the results are not of a
particular class of animals, but spread out in the animalia kingdom.

tive that most large species are given common names for this dataset,

but that is unconfirmed. ^

* Names returned in the search did not show a clear pattern that could

be used to deduce where in the world biologists named Townsend,

or geographical locations with Townsend in their name, might have

done research. Furthermore, there is no indication that there was

only a single biologist named Townsend.

* Common names give a range of possible geographic locations for

types of chipmunks, shrimp, and bats. It is not possible that all

Townsend animals were cohabitants of the same geographic location.

151

* The search returned quite a range in the classification tree and, there

fore, the search highlights were distributed throughout the tree.

Spirulida and spirurida are two nodes in two different subtrees. If a user

types in the wrong one, what kind of feedback is used to alert the user

quickly?

Although the TJl-contest application does not provide feedback for user

errors, such as the search results not returning an expected node for

typographic errors, I was able to quickly fix Found panel typing errors

since the incremental search reacted with each character as I entered

the string. The visual feedback of the tree was also interesting since an

experienced user who knows where results should appear in a dataset may

be surprised to find data in other regions, prompting further investigation.

TJl-contest has an easy to use interface which does not restrict input

and promotes investigations with large datasets since it is scalable with

no noticeable decrease in performance.

For example, I performed the following steps:

1. I loaded the Latin tree animaliaA-

2. I intended to search for spirurida and I knew that spirurida is a type

of nemata from my investigations as a novice roundworm researcher.

I was interested in seeing the hierarchy around spirurida.

3. Incorrectly, I entered spirulida in the Found box.

4. I grew the results from the Found panel and noticed that the wrong

section grew and no species of nemata appeared, as in Figure A.29.

5. I read what was typed into the search box, realized the mistake, and

corrected it

* The unexpected results for found nodes did not grow the expected

subtree. This might be the first indication that something was wrong

152

File Find Tools Help

Crustacea

arthropoda

anirnalia

xap oda

petacnnda -pjatylirihiij h. • hli

eoptera

g losso

helt'omyzidae •'uryomrna
axymyjomorpha sciara

_L • apoidoa c a | V p t | t e s

cataulacus
anochelus

formicidae i
s° f" tS£&i dJ a. kambampsychinao

limnep hi lo idea 5 chimar r a
_b.r,acn iopjo.d a*^^c^'pJ5^^J£Qgfetg.

Ifefevtjdla??

anax
\ 1

platysympus japonicus
platyarthrus l indbergi

entomobrya albocincta
allokermes branigani

delia abruptiseta:
Jfannia abrupta

scatop sciara vivid a

camponotus abditus

oligomyrmex: aborensis

see rno tin a abbreviata

jneocordulia androgynis
J5b rant a canadensis; parvi pe
g|rnyzomela adolphinae
*?]raja ackleyi

percina antesella

styl as te r alas kanu s
rossia brachyura

•spir.ula spirula

lohgo africana
orthonectida

Figure A.29: After making a typographic error, the spirulida subtree expansion in
animaliaA, with Latin names. Since the result was not a nemata classified species,
this was sufficient feedback for me, a novice roundworm researcher, to conclude that
I either made an input error or spirurida was not in the dataset.

if the search results were not looked at carefully; for such a minor

difference, this might happen frequently.

* TJl-contest did not store the rank as an attribute so determining if

both names had the same rank was not possible and probably would

not have helped with this task. Rank in the general case would be

hard to address.

* The found node was not in the expected topology of the entire clas

sification tree, which was an indication of user error or at least a

warning to examine either the search results or the dataset contents.

153

• Application specific tasks section on file system trees

This section deals with the tasks related to comparisons of two full logSA and

logse datasets as well as other comparison tasks with all four hcilA, ncile,

hcilc and hcilo datasets in the hcil subtree of the logs datasets. Four-way

comparisons are not done with the logs datasets since they were too large to

evaluate with TJl-contest.

— Where are the big directories?

— Can you see different patterns in those files?

These tasks are general visualization questions that TJl-contest is well

able to display. I had immediate feedback for locating the largest direc

tories and was shown a general pattern of personal, project and course-

based web pages.

First, I loaded the dataset for tree logSA- The root of the file system is

called / / / since all of the examples required fully qualified names: / is

the name of the root directory and / is arbitrarily used as a separator.

* Big directories were immediately visible from the layout since the ver

tical space consumed by directories indicated how many total leaves

are in the subdirectory structure.

* I found in logSA, shown in Figure A.30, that users and class were the

biggest directories linked to the root of the tree.

* Finding the biggest directory in any subtree was done in this way,

as long as no ancestor nodes of the subtree were previously grown

or shrunk in navigations. If necessary, all marked nodes can be ex

panded at the same time to preserve marked ratios.

* The leaves/files are right-aligned that means the leaves for interior

nodes, which are the high-level directories containing subdirectories,

are interspersed between the non-leaf children of the node. This made

154

File Find Tool's Help

c s & l B z ^ O o i - - leo tOS

faq.html

minutes -may-13 -2002 .h t

h l . p s
ex l .ans.htm
ts ld020.htm
index.html
424.html
csd-style.css
j inrnook-kim.ppt

robots.txt
qrrj_001.jpg
cracker_playing.jpg

Iect03.txt
thumb-04.gi f ;
favonts.html

networks.html
daw commutes 0205 01. htm
MM

lQindex.html.
thumb-12.g i f '
back.gif

index.html
index.html:

-SjHchapter l a - a u s . p p t

Figure A.30: The logSA file system tree: users and class were the biggest directories
linked to the root of the tree. The users directory is not labeled in this figure, but
it is the node that is surrounded above and below by whitespace, indicating that
it is large. The directory usershollings is the third largest. This method of finding
large subtrees works only if there are a few large subtrees and no navigations were
made.

accurate estimations of the number of immediate files in higher level

directories impossible.

* I found personal pages in two locations: in the users subdirectory

such as / / / u s e r s / h o l l i n g s and each user also had a personal subdi

rectory directly attached to the root such as ///usershollings. These

directories might be symbolically linked to each other.

* The contents of the two personal directories were different. For ex-

155

File: Find Tools Help

™c!i!a™

chapte r la -aus .pp t
chap te r lb -aus .pp t

sld018.htm

chapter3a.ppt
chapter3b.ppt
chapter4araus.ppt

chapter4b-aus.ppt
chapter5a-aus.ppt .
chapter.5b-aus.ppt'
sld003.htm
Id036.htm

pro jec t2 - l .h tm
choos ing - research -ad vis<

Figure A.31: The large differences in the number of files in each directory are shown,
with ///users/ building and ///usersbuilding marked in green, ///users/shankar

and / / / u s e r s s h a n k a r marked in blue. Each directory is grown at a rate proportional
to the leaves so the marked regions are still comparable to each other.

ample: / / / u s e r s s h a n k a r had more leaves than / / / u s e r s / s h a n k a r but

///users/building had more leaves than / / / u s e r s b u i l d i n g ; not much

can be said about why the directory structure was set up this way

without referring to attributes. Figure A.31 shows the large differ

ences in the number of files in each directory, building marked in

green, shankar marked in blue. Each directory is grown at a rate

proportional to the leaves so the marked regions are still comparable

to each other.

* The personal pages comprised of more than half of the total number

156

http://chapter.5b-aus.ppt'

of leaf nodes in the system.

* Of the 76547 nodes, personal pages made up 42877 nodes: 20480

of which were in the ///users/(username) type personal pages and

22397 in the ///users(username) type personal pages.

* The size totals for the user directories are displayed by the Found

panel but there were too many to display on the visualization to be

useful.

* Class pages were found in the class subtree which broke the years

1997-2003 into fall, spring and summer terms, such as Jall2002, each

of which contained cmsc course pages. Figure A.32 shows the class

directory expanded to show the contents.

* There were many fewer research pages, under / / / p r o j e c t s , than there

were personal or class pages. Figure A.33 shows project expanded to

show the contents.

* The largest directory in ///projects was hcil. This subtree will be

examined later in the four-way comparisons.

Are the newer directories bigger than the older projects?

When was the page giving directions to the department last updated?

Although I did not use the attributes provided, the datasets were known

to be weekly snapshots of a web-site, so I determined age characteristics

using TJl-contest comparisons to locate changes made to the file system.

The datasets were too large to do four-way comparisons with the entire

set, so these tasks were attempted with logs A and logse-

I loaded trees logSA and logsg to investigate differences in the projects

directory as well as the other main directories with differences:

* TJl-contest was not able to determine the age of a directory unless

the directory had been added between the times which data was

157

File Find Tools Help

-outreach

"raiTr'9'9'8

department-*

cmsc-4-2i0i

class

Bjfaq.html
imi nutes -may-13 -2002 .h t
J98f01.ps

— jpapers.html
"Tits I d027.htm
—^changes.htm

jhl.ps
jh7.ps

ffquiz6ans.ps
i l ispwa2.ps.gz
jhwihtm
Msaload.html

tsld020.htm
syllabus.html

mg.39b37160 .g i f
final-grade's
hwb.pdf
aaaaabcl23. txt
p3.html

badgoalie. java
index.html

copy-star .cpp
index.html ,
thumb-04 .g i f

Figure A.32: class subtree expanded in logSA to show details. This subtree contains
a directory for each school term and the term directories contain course directories
for each class.

collected. This is a restriction from the lack of attribute handling in

TJl-contest.

* The size, in total number of files, of the projects subtree was quite

a bit smaller than the users directory; user hollings had about as

many files as the entire projects directory. Using the Found panel,

///users/hollings had 7194 nodes, both leaves and internal, and

///projects had 8447 nodes.

* Finding the page giving directions to the department could not be

done with TJl-contest since this would have required an attribute

describing the file contents. If the name of the file was provided,

158

File Find' Tools Help

ih^enme s-s^p'e'o p'fe1

Tre^T/l^^K?!'. 'hpsl.html
.ogf

|engl39xihtml
index.html

persistenceiof_memory.gi
ajdeno.wav

ndex.html
index.html
0058.html

047 3.html
0754.html

yahoo.gi f

privacy-policy.shtrni

j inmook-k im.ppt

l c I i e n t - s e rve r - q ueryrproc<

tsld006.htm

s e mant ic -data-cach i n g - a
hpssl.html

index.html
pch a s m _ navy.gi f

index.html:
9g£2£" -|js'.Mrsl|iK">«.' '-fig4.eps

Figure A.33: project subtree expanded in logSA to show the details. This subtree
contains a directory for each project.

TJl-contest would have been quite able to find the file.

* Personal pages showed the most diverse and sporadic differences.

There appeared to be many people who added, deleted, or moved files

in their personal directories, as shown in Figure A.34, an expanded

view of the users directory.

* Class pages showed small amounts of difference, which was expected

since these file system snapshots were made in summer months when

most classes are not in session. Also, since classes are sorted into

school terms in this file system, there are many dormant classes that

are not modified several years after they have been completed. There-

159

File Find Tools Help

c s d - s t y l e . c s s IJ

... i
i n d e x . h t m l "

d e n h a a g - n o r t h s e a *

h r _ d u y a . j p g

i i n d e x . h t m l

b r o a n d m e . j p g

d e b u g g e r . h t m l

b a c k . g i f

i h u m b - u 6 . * g i f

i n d e x . h t m l '

i n d e x . h t m l

i n d e x . h t m l

t h u m b - 0 4 . g i f

i n d e x . h t m l

c l ient^tar .

i n d e x . h t m l

n d e x . h t m l

n d e x . h t m l

n d e x . h t m l

j f a v i c o ' n . i c o

— - * ' « . i i n d e x . h t m l

i n d e x . h t m l .

i i n d e x . h t m l

; i n d e x : h t m l

i n d e x . h t m l

a i p s 9 8 - w k s p " . p s - g <

n d e x . h t m l - '

c m s c - 8 1 8 - s p r 0 2 . r i

6 | p g

. t e x a s r i v e r w a l k 3 . j p

Figure A.34: users subtree expanded in comparison of logSA and logSB- There appear
to be many people who added, deleted, or moved files in their personal directories
in this one week time period. Differences are also seen in the context, indicating
that other file system changes were also made in this time.

fore, the only differences in the class pages were between leaves in

fall2002 and spring2003 subdirectories

* Closer examination of the fall2002 differences showed that some files

were deleted in the projects directory of cmsc434-0101, as shown by

Figure A. 35.

* Examination of the changes in spring2003 showed that cmsc838p had

changed. Those changes were: one delete, design/openimpl.pdf, and

several additions in multiple subdirectories, shown in Figure A.36.

* spring2003 had several additional subdirectories, possibly reflecting

these courses beginning. Shown in Figure A.37, these courses in

cluded: cmscl02, cmscl06, cmsc412-201, cmsc417, cmsc433 and

cmsclSS. The cmsc434 directory had been further populated as

well.

160

http://rwalk3.jp

Tile find luuls Help

. 'ho m e w o|

l i n k s _:f I

c m s c 4 3 4 - 0 1 0 1

- ^ s y l l a b u s . h t m

• • - s t u d y l i s t (f i n a l) . p d '

" h o m e w o r k s - h t m

J h w 2 . h t m l

~ ^ h n k s . h t r n s

jjjjp'2 i 7 r e a i g . p d f i

—«p r o j l - o p t 2 . h t m l I

- * p r o j l - o p t 5 . h t m l . |

™ p ' r d j 2 ; h t m l |

• s c h e d i i l e . h t m ii

^ d e s i g n , p d f

^ d e s i g n p s y c h o p a t h '

[7-77^; g r o w i n g u p . p d f

^ h u m a h i n f o p r o c e s s v

^ i n t r o d u c t i o r i ' ; p d f

T ^ s c a n n e r d e s i g n ' . p d f ^

— ; u b i c o m p ' . p d f

]ogj?*»w?*|e x a m p l e l a . g i f

I e c 3 . 4 p . p d f

- s t u d y l i s t (f i n a l) . p d

— h o m e w o r k s . h t m ;

-hw l . h t m l

fow3.html

l e s ^ - l i n k s . h t m

- - — g r a d p r o j e c t . h t m l *

' p r o | 2 : h t m l

• s c h e d u l e . h t m

c o n s e n t f o r m . p d f

d e s i g n h e u r i s t i c s . i .

d e s i g n e e x e r c i s V . p i

g r o w i n g u p . p d f :

h i s t o r y . p d f ;

h u m a n i n f o p r o c e s s

i n f o v i z . p d f -

q u a l i t a t i v e e y a f u a t i

s c a n n e r d e s i g n . p d f

- s u r y e y . p d f -

u s.er _ c e n te r e d ^ d e s

- g r a p h i c _ d e s i g n . p d

i n d e x . h t m

[i n d e x . h t m l

Figure A.35: Differences in cmsc434-0101 between logs A and logse show that some
files were deleted in the projects directory. Judging by the names of these files, it
seems like these are several project options that a professor might give his students
but without context, I can not say for certain that this is the case.

s p r i n g 2 0 0 3

e v o l u t i o n

c m s c 8 3

- d y n a m i c . p d f

- h o a r e . p d f

- l a c k w j t i p d f - '

- p r o b f s ; p < i f

- c r i t e r i a . p d f ;

" r f a m i l y . p d f

- - p a t t e r n s . p d f

- d e c a y . p d f

- y 2 k . p d f

• - h o w t q r e a d . h t m l

- e x t r e m e . p d f -

— h e n i n g e r . p d f

i d v | _
— c r i t e r i a . p d f .

— h y p e r c o d e . p d f ;

— ; i n d e x . h t m l

• t h u m b - 0 4 . g i f

ill
e x a m p l e l a . g i f

,d o r i t ? ; p's

d a i k o n . p d f

g o t o ' h t m l

l a c k w i t . p d f

p d g . p d f

— — • s l i c i n g . p d f -

| g n | l Z Z ^ ^ ' ^ r i a : p d f

— r f a m j |y;- p^jf

e v o l u t i o n f - d e c a y . p d f

— ~ n o s i l v e r b u l l e t . h t m
1 h o w t o r e a d . h i m I

m a t u r i t y . p d f "

j t h e r a c . p d f
p r o c f c l U » m i c r o s 6 f t p r ' o c e s s : [

u i r e m e f r i t s f j — ^ — • h e n i n g e r . p d f

s p e c i f i e r . p d f

' b o o I e a n p r o g r a m ; p

' d e l t a f s e . p d f

h y p e r c o d e . p d f

- i n d e x . h t m l

d e x . h t m l

Figure A.36: Differences in cmsc838p between logSA and logSB- The only deletion
was design/openimpl.pdf, not labeled but shown as the red marked expanded leaf
on logSA, and there were several additions; differences are shown as red, as usual.

161

[.File Find Tools " Help
f a q . h t m l

n d e x . h t m l
• i n d e x . h t m l
• i n d e x . h t m l
J 4 2 4 - 1 0 1 . h t m l
- b g . g i f

' 4 2 4 - 3 0 1 . h t m l
b g . g i f

• i n d e x . h t m l
- d y n a m i c . p d f

h o a r e . p d f
l a c k w i t i p d f •
p r o o f s . p ' d f .
c r i t e r i a . p d T

f a m i l y . p d f
p a t t e r n s . p d f .

• d e c a y . p d f
J y 2 k . p d f
- h o w t o r e a d . h t m l
- e x t r e m e . p d f

h e n i n g e r . p d f

- c r i t e r i a . p d f
- h y p e r c o d e . p d f
" i n d e x . h t m l
- i n d e x . h t m l
i n d e x . h t m l
[t h u m b - 0 4 . g i f

examplela.gif
siegel2.exe
Isy1labus.html
Jbuild.gif
index.html

_homeworks.html
'index.html
4 2 4 - 3 b i : h t m l
ndex.html

[grades.shtml
[p21-rettig.pdf
:style434 .css
ndex!html

tlackwit.pdf

ifamily.pdf
4nosilverbullet.htm
[pitl.pdf
'heninger.pdf
I
ldeltafse.pdf
;I index.html
Iindex.html

Figure A.37: Differences show new courses added between logSA and logsg.

spring2003 had several additional subdirectories, possibly reflecting these courses
beginning: cmscl02, cmscl06, cmsc412-201, cmscJ^llcmsc433 and cmsc733.

Also, the cmsc434 directory had been further populated.

* There were very few changes in the projects pages in this time pe

riod. The only leaf modifications were in the jazz-chat directory,

where some files had been added that look like log files, shown in

Figure A.38. These changes rippled up the tree to the root; the rip

ples did not reflect the entire structure changing but were useful in

locating the path from the root to the differences.

- Additionally, examination of the hcil subtree was done with all four logs

loaded: a four-way tree comparison. In this comparison, each node is

assigned a best corresponding node with a node on every tree.

This task was not a part of the contest tasks, but was interesting enough

to mention since it shows that TJl-contest is not limited to pairwise

comparison tasks.

I loaded trees HCMA, hc i lg , hci lc and hc\\o:

162

Till* Find Tiwl* lli'l'j

"51̂ " lfaq.html

rcsd-style.ess

ipersistence.ofime-
deno.wav

index.html
index.html
0058:html
0473;html
0754.html

yahoo.gif

pnvacy-pohcy.sht

j inmook-kim.ppt |;
ff

^ ^ . ^ . . . 1 hpsl.html
client-server-quer

ttsld006.htm [1

:?semantic-data-cac
ihpssl.html

[index.html
ipchasm_navy.gif
index.htm
ithumb-04.gif

pc7a's''s^oya't'p.e'^c-n'^^^j 'examplela.gif

'csd-style.css

persistence_of_me

index.html

index:html
0042.html
03 3 8. html
0634:html

fjj^^classroomfuture.JF

blue_swirlbl90.gif
privacy-policy.shti
gqp4 ; jpg
1-intro duct ion.htr

pattersonbldg.jpg i
sld009.htm

lfirst.gif
Itsld019.htm

hpssl.html

index.html
ndex.html
taly_spec:html
ndex.html

Figure A.38: Differences in jazz-chat directory between logs^ and logse- These
changes rippled up the tree to the root; the ripples did not reflect the entire structure
changing but were useful in locating the path from the root to the differences.

* In Figure A. 39, growing the counterpoint directory, it was clear that

the directory changes only between hcilc and hcilo•

* The ivOScontest directory shown expanded in Figure A.40 was added

between hcilg and hci lc; between hcilc and hc i lo , the directory was

further populated with contest information and all of the contest

datasets, except hci lo , of course.

* In Figure A.41, spacetree and timesearcher also showed some addi

tions between hcilg and hcilc-

A.4.2 Tasks not suited for TJl-contest

In this section of the results, I present the details of contest tasks that I did not solve

with TJl-contest. Most of these tasks were not possible since TJl-contest did not

handle attributes. Notice how this section is quite a bit smaller than the previous

section; no tasks are hidden, TJl-contest was able to solve most problems in the

163

Figure A.39: Differences in counterpoint among trees hcil A, hcilg, hcilc and hcilp- It
was clear that the directory changes only between hcilc and hcilo-

Figure A.40: Differences in ivOScontest among trees hcil A, hcils, hcilc a n d hcilp- The
directory was added between hcilB and hcilc- Between hcilc and hcilp, the directory
was further populated with contest information and all of the contest datasets,
except hcilp-

164

—flip -aft «r.gif j
-iJip.gif\ .1
-8r»phov«rvfi|
'"l«adcrwlndo|
•multi query.gj

—rang«i l id«n|
I toolbarclot t|

—envelope, gifj
—full* cr**niccj

j « * rn-.?v.. T ? j

•t«»d«rwindo|
-multiquery.s|

—tootbmrclo!
--•e five lop e.oiff
"fullscr
•index.html !

-*Jeadertoolbi:
-HnulUpUiabi.:
—multiquery.fl.
—rangcshderij:

—•vraoolbar.gr

touchsdre.
yitih Inhuman:

-popup.gif

-wiiflrapht.au

much sdre«rii

Figure A.41: Differences in spacetree and timesearcher among all hcil trees, spacetree

and timesearcher show some additions between hcilB and hcilc-

contest using our information visualization approaches.

• Comparison of trees for attribute value changes

This section deals with visualization of attributes of datasets. TJl-contest was

. not able to use the attributes except for the name of each node, so this section

was mentioned but dismissed as a weakness for our application.

— Global impression: did attributes change a lot or not?

— What nodes or subtrees changed the most?

— Did the value of attribute XVZ for this node increase or decrease? In

absolute terms, or relatively to other siblings or other nodes

* TJl-contest was not able to handle attributes for the contest. Ad

ditional work on parsing and handling extra attributes is interesting

and may be part of future work for TreeJuxtaposer beyond TJ2.

• General visualization of tree topology

This section relies on the visualization of datasets to determine certain prop

erties of trees. There are several features that TJ2 does not support, since

they are outside our domain of interest in visualization, but the features are

165

http://%e2%80%a2vraoolbar.gr
http://-wiiflrapht.au

also possible additions to tools outside the scope of TJ2 that would use a

TreeJuxtaposer API to communicate with the visualization components.

— What is the deepest branch? Does depth between subtrees vary?

The deepest branch task is quite simple: it is a single number that T J l -

contest calculates but does not display. Since we are only interested in

visualization and navigation of tree datasets, I focus on that aspect of

analysis.

* Since the tree was right aligned, the deepest path and depth be

tween subtrees was not possible to determine visually. Determining

the depth difference between subtrees is possible using the dimming

values of trees—the deeper the branch the dimmer the node—but

this is not an accurate metric since there may be many gradients of

dimmed nodes. Determining the difference between two dimmed val-

ues is impossible, but large scale estimations are handy, so dimming

does tell me where regions of deep nodes are in the dataset.

— Filtering by level: show only top n levels or remove bottom n levels

This task is also unsupported by TJl-contest and although filtering is a

part of many visualization packages, we did not implement filtering. This

task would be simple to implement with sliders to control the depth of

filtering, but that complication is better left to future work.

* No such filtering is available in TJl-contest, but it may become part

of TreeJuxtaposer in the future.

General visualization of tree attributes that can be aggregated

This section of results is focused on techniques of understanding tree attributes

with general datasets. Since TJl-contest could not answer many attribute

related questions, this section was also mostly dismissed as possible future

work. These questions could be solved with single tree visualizations and

166

require neither tree comparisons nor specific tree datasets, but were simply

not of high enough importance in our visualization research at the time.

— Find high values of a numerical attribute

— Find a given value of a numerical attribute

— Find nodes with a certain categorical attribute value

— Find values of a categorical attribute that occurs more often

— Find nodes with certain values of two or more attributes

These tasks are mostly quantitative and could be done with more sliders,

similar to the filtering approaches in the previous task. Again, this would

add complications and is better left to future work to keep TJl-contest

simple.

* TJl-contest was unable to assess attributes of nodes, in this way.

Additional search features could be added to assist in performing

these tasks but they are not a priority to implement for our current

interests.

• G e n e r a l m a n a g e m e n t o f ana lys i s

This section deals with general techniques that TJl-contest uses for analy

sis. This section focuses on editing the dataset, saving views and supporting

history functions. All of-these techniques are considered to be future work

beyond TJ2.

— Removing special anomalies

— Saving visualization settings for future reference

— Keeping the history of analyses: reviewing, replaying with different pa

rameters

167

These tasks are quite powerful yet they are not implemented in T J l -

contest due to the code complexity and time constraints. These tasks are

mentioned in the future work section, Section 6.1.

* TJl-contest could not modify the tree, and did not support saving

or history. T J l introduced mostly an information visualization tech

nique, accordion drawing, that relied on static structures and editing

the structure would be difficult with the layout mechanisms in that

system. I consider TJ2 to be slightly more adaptable for these tasks

but more work is required.

Application specific tasks section with phylogenetic trees

This section deals with the tasks related to phyloA and phyloe datasets, con-.

structed by evaluating genomic properties of two proteins.

— Low level tasks: interacting with the tree matching process to solve incon

sistencies that can arise, displaying the trees, showing the relationships

and differences from a computed or interactively constructed mapping,

and providing ways to permute links and nodes to verify hypotheses in

teractively

This task is highly related to the lack of editing functionality in T J l -

contest. Modifying the dataset is not possible in TJl-contest and these

interactive editing tasks are also considered future work.

* The difference marking was provided by the automatic best corre

sponding node algorithm and relies on the input dataset. The best

corresponding node relationships are only calculated when a tree is

loaded for the first time, which is another benefit to using only static

datasets.

* Navigating through with mouse-over highlighting and marking sub

trees with user marking groups allows me to recognize further simi-

168

larities in the tree, but no modifications of the input technology are

possible to correct the automated matching process.

Application specific tasks section on classification trees

This section deals with the tasks related to comparisons of mammaliaA and

mammaliaB datasets as well as other visualization tasks with animaliaA and

animaliaB- Comparisons are not done with the animalia datasets since they

were too large to evaluate with TJl-contest.

— For the top five subtrees with the most nodes are they likely to have a

parent of a particular rank? Or does this happen in many ranks? Can

you comment on how useful rank is?

This question is rank specific but TJl-contest only quantifies rank

with dimming. This task is not easy to answer without filtering

as well, since a subset of the data is required. Besides, the task is

not well thought out: if a subtree has a large number of nodes, the

parent node will contain more nodes, so the top five subtrees, where

one large subtree does not contain any other large subtree, when

considering node quantity are all rooted at the root of the dataset.

Hence, the answer is that all five of the largest subtrees are rooted

at animalia.

* I am unable to comment on rank since rank is an attribute that the

TJl-contest system does not handle.

Application specific tasks section on file system trees

This section deals with investigating the attributes of individual file system

trees. Attributes that are considered in this section relate to the usage of the

file system, as web page hit counts, which would be interesting to visualize

in a tree structure over a period of several weeks, but TJl-contest does not

handle attributes.

169

— Which are the popular web pages?

— Are there some labs more popular than others?

— Which areas are getting more popular? less popular?

— Are new pages more popular that old pages?

— Which old page are popular?

— What proportion of the pages are never used? seldom used?

The file system specific tasks that I could not answer with TJl-contest

are attribute based. Again, since TJl-contest does not handle node at

tributes, other than a name, these tasks are not possible with our appli

cation.

* I can not comment on file usage since attributes, which include file

usage, are not handled in TJl-contest.

A.5 Contest conclusions

Although TJl-contest was not able to perform all tasks suggested by the contest

organizers, I was able to show that the application performed well on tasks that it

was designed to solve. TJl-contest was judged to be the best entry overall at Info Vis

2003 and the entry itself was an excellent motivation to produce many forms of

publicity such as: a descriptive video, a web-page, an introductory paper, a poster

and a presentation. This contest motivated many interesting additions to T J l , such

as incremental search and a more advanced user interface, which made TJl-contest

a much more powerful tool. Some of the tasks that we did not solve directly were

solvable with workarounds such as marking groups to return to later instead of undo

functionality. The large contest datasets were too large to load completely and still

be interactive for comparisons, but modifications since then have produced much

more scalable versions of TreeJuxtaposer, such as TJ2, presented in Chapter 3.

170

