Partitioned Rendering Infrastructure for Stable
Accordion Navigation
by
James Gerald Alphonso Slack
B.Sc., University of British Columbia, 2002

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
Master of Science
in
THE FACULTY OF GRADUATE STUDIES

‘Computer Science

We accept this thesis as conforming .
to the required standard

The University of British Columbia

April 2005

(© James Gerald Alphonso Slack, 2005

Abstract

My thesis presents a new rendering infrastructure for information visualization ap-
plications that use the accordion drawing navigation metaphor. Accordion drawing
teéhniques use rubber-sheet navigation methods, with the borders tacked down, and
provide guaranteed visibility for marked areas of interest.

Our accordion drawing algorithms are based on screen—spéce partitioning,
which eliminates overculling and tightly bounds overdrawing. By eliminating the

overculling effects of rendering dense regions of data, we guarantee a correct visual

“representation of any dataset. Also, our pixel-based drawing infrastructure improves

the rendering performance of dense dataset regions with strict drawing constraints,
which ‘are based on application-specific drawing requirements. The generic infras-
tructure provides an interface to numerically stable navigation of datasets, with full
support for multiple concurrent regions of navigation motion.

To evaluate our generic infrastructure, I benchmark our tree comparison
application with the performance of TreeJuxtaposer, a previous accordion drawing
application with identical features. I describe our tree traversal algorithms, which we
use for efficient rendering, culling, and layout of tree datasets. I also discuss tree node

marking techniques, which offer several improvements over previous range storage

. and retrieval techniques, reducing memory requirements and increasing rendering

speed. Finally, I evaluate tree-specific navigation techniques from our winning entry
in the InfoVis 2003 contest, with TreeJuxtaposer supported by an incremental search

feature and an improved user interface.

ii

Contents

Abstract ii
List of Figures vi
Notation . X
Acknowledgements _ _ xi
) 1 Introduction 1
1.1 Motivation T 1
1.2 Information visualization techniques 5
1.2.1 Guaranteed visibility o oo 5

1.2.2 Focus+Context L 8

1.2.3 Progressive rendering L. 9

1.3 Thesis contributions e e e e ... 10
1.3.1 Accordion drawing contributions P 10

1.3.2 TJ2 contributions, 10

1.3.3 TreeJuxtaposer Evaluation from InfoVis 2003 Contest entry . 11

1.4 Thesis Organization o
Related Work . 12
2.1 Visualization, interaction, and perception e e 12
2.2 Phylégenetic tools and tree visualization 21

iii

3 TJ2 |) 24

31 Nodelayout 25
3.1.1 Mappingnodestogrid 27
3.1.2 | Placing horizontal nodeedges 29

3.2 Rendering trees33
3.2.1 Nodeseeding e e 34
322 Drawingtrees e 35

33 Marked ranges 46
3.3.1 Marked rangesin TJ1, 47
3.3.2 Marked ranges in TJ2 . . . J 50

3.4 Topological picking 54

4 Accordion Drawing 59

4.1' Split line infrastructure B .. 62
4.1.1 Abstracting split lines SEEPE 65
4.1.2 Separate horizontal and vertical split lines 66

413 Trée hierarchy for split lines .' 68

4.2 Generic AD rendering infrastructure o 70.
4.2.1 Partitioning stageo 71
422 Seedingstageo w72
4.2.3 Drawing stage 72

43 ADnavigation 73
431 Movingonesplitline. 74
4.3.2 Moving several split lines 79

5 Evaluation and Discussion 83

51 Preprocessing e 85

5.2 Scene rendering e 88

53 Memory Usage . . . - . o i i i e e e e e S ¢ &

5.4
5.5

Marking efficiency o

Evaluation summary

6 Future Work and Conclusions

6.1
6.2

Future work e

Conclusions e

Glossary

Bibliography

Appendix A TreeJuxtaposer Task Evaluation

Al
A2
A3
A4

A5

Contest dataset L W e
User interface J
Incremental search L.
Contest results L
A.4.1 Tasks suited for TJ1-contest o
A.4.2 Tasks not suitéd for TJ1-contest

Contest conclusions e e

98
98
99

101

107

List of Figures

1.1 A rectilinear, right-aligned tree 2
1.2 Comparison of two trees e e e e 3
1.3 Accordion navigation 4
1.4 Highlighted data has priority, context is important 6
2.1 The SeeSoft software analysis tool e 13
2.2 The document lens visualization tool 15
2.3 The H3Viewer visualization application” 16
2.4 The Pad++ system e e 17
2.5 The SequenceJuxtaposer application 19
2.6 The PowerSetViewer application 20
2.7 The TreeWiz application 22
3.1 Naming conventions for edges and directions. 26
3.2 doGridding function P o 27
3.3 Gridding: example subtree. e I. e 28
34 Treeplacedingrid 28
3.5 Horizontal edge placement can be anywhere e, 30
3.6 Relative placement of horizontal node edges incells 31
3.7 Leaf range width less than block width 38
3.8 Leaf range width less than half-block width 39
3.9 Ascent rendering horizontal gaps40
3.10 Finding highest subtree in a leaf range . . . o 41

vi

311
3.12
3.13
3.14
315
3.16
3.17
3.18

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

5.1
5.2
5.3
5.4
5.5
5.6

ascentRender function 0oL 0oL 42
Half-block gaps in leaf ancestors V'
Rendering problems with ascent width less than segment width . . . 45
Example node key assignment in a small tree 46
TJ 1 mark storage with indirect marks49
Incorrect indirect marking using simple methods 52
Direct marking of indirectly marked nodes 53
Picking function, . 56
Initial uniform split line layout 61
Vertical stretch of interaction box 62
Interaction box stretch in both directions 63
A Quad-cell, from Accordion Drawing in TJ1 64
Separate horizontal and vertical sets of split lines form grid 67
Split lines stored in a balanced binary tree hierarchy 68
Split lines boundaries expressed as lihes and regions 69
AbsolutePosition function oL 70
moveSingleSplitLine function 75
Absolute distances move with split line e U 76
Labeled regions for single split line movementé 78
moveSplitLineSet function oL 81
The three cases of function moveSplitLineSet 82
Parsing time e e 86 .
Preprocessing time L L 87
Rendering time performance for TJ2 89
Number of nodes rendered for TJ1 and TJ2 90
Average time to render a node in TJ1 and TJ2 e e 92
Merrio.ry pérformance of TJ1and TJ2 94

vil

5.7 'Table of marking performance of TJ1 versus TJ2 95

A1l TJ1 User Interface 115
A2 TJl-contest User Interface 116
A.3 TIJl-contest Groups panel 117
A4 TJl-contest Settingspanel 118
A.5 TJ1 drop-down selection box ‘ 119
A.6 TJl-contest Found panel o [121
A.7 Differences marked in mammalia trees, with Latin names 124
A.8 Differences marked in hcil trees e e 125
A9 Differences marked in phylotrees 125
A.10 Differences of genus pteropus and family pitheciidae 126 -
A.11 Differences of directories counterpoint and ivOS’contést 127
A .12 Movements of cebidae and pitheciidae. | 128
A.13 Similar topological properties in both phylo trees U 129
A.14 Path between animalia and homo sapiens in animaliag 130
A.15 The users subtree marked in logsa, showing sﬁbtree fan-out 132
A.16 mammals and bony fishes marked in animaliag 134
A.17 Result of giraffe search in animaliag 136
A.18 Result of browsing for cute animals in animaliag 139
A.19 Top three topological similarities marked in phylo trees 14
A.20 The rodentia subtree marked iﬁ both mammalia trees 143
A .21 The animaliap tree with common node names A. . 144
A .22 Result of dolphin search in animaliag 145
A.23 Result of horse search in an-imalia_A e e e e e e 146
A.24 marmots subtree expansion in mammélia trees, common names ... 148
A.25 marmota subtree expansion in mammalia trees, Lati.n names | 148
A.26 Differences marked in mammalia trees, with common names 149
A.27 Result of Townsend search in animaliaa, with Latin names 150

viil

A.28 Result of Townsend search in animaliaa, with common names
A.29 spirulida subtree expansion in animaliaa, Latin names
A.30logsa filesystem tree L
A.31 building subtrees aﬁd shankar subtrees marked for comparison

A.32 class subtree expdnded inlogsa . - .« ... o ‘. ..
A .33 project subtree expanded inlogsa -
A.34 users subtree expanded in comparison of logsa and logsg
A.35 Differences in emsc{34-0101 between logsp and logsg
A.36 Differences in cmsc838p between logsa and logsg L
A .37 Differences show new courses added between logsa and logsg
A.38 Differences in jazz-chat directory between logsa and logsg
A.39 Differences in counterpoint among all hcil trees

A .40 Differences in iw03contest among all hcil trees

A.41 Differences in spacetree and timesearcher among all hcil trees

151
153
155
156
158
159
160
161
161
162
163
164
164
165

Notation

In this document I use the first person when referring to work done either entirely
or primarily by myself, and the third person when referring to collaborative work
with colleagues.

Also, this thesis uses several different typeface conventions that are used
to convey meaning, when applicable. No type-faces are combined since each type
convention may only apply te at most one special word. Each type is listed here for

convenience:

e An occurrence of a gldssary entry is in Roman, upright, bold type. The
glossary will only contain a page reference to either the first use of an entry
or to a meaningful place where the entry is defined in a meaningful context,

and that occurrence will be in this type.

¢ The names of dataset names are in sans serif, upright, medium type. Dataset
names used for the InfoVis 2003 contest are defined in Section A.1. Similar
datasets, such as animaliap and animaliag, are differentiated by lowered type

from animalia, which refers to the datasets in a comparison environment.

o The specific names of dataset nodes are in Roman, italic, medium type. Nodes
may be: scientific, Latin species names, such as marmota; common, English

species names, such as marmots; or file system names, such as iw03contest.

¢ The descriptive names of components of TreeJuxtaposer applications are in
typewriter, upright, medium type. The components are the menu options
and panels of TreeJuxtaposer; panels, such as Settings can be used by ac-

cessing them through the menu options, such as Tools. Other named options

within panels are also in this type.

Acknowledgements |

I'd like to keep this short, since my thesis seems so very long and I could very well
go on for pages and pages about stuff...so, for everyone who I've missed, it’s not
out of sp‘ite, it’s an indication that we need to hang out more. '

First, here’s a randomized list of grads and other students, many of whom
are in a boat similar to mine, that I've run into in Imager while starting my thesis:
Qiang Kong; Vlad Kraevoy; Fred Kimberley; Ciardn Llachlan Leavitt; Ken Al-
ton; Ben Forsyth; Chen Yang; Matt Trentacoste; Kristian Hildebrand; Lewis John-
son; Andrew Chan; Dan Archambault; Jason Harrison; Dave Westrom; Abhijeet
Ghosh; Dave Burke; Dmitry Nekrasovski; Simon Clavet; Hamish Carr; Adam Bod-
nar; Yongying Zhu; Melanie Tory; Heidi Lam; Mark Hancock; and Matt Williams.
Not all that happens in Imager is fun and games, but my lab-mates of Imager have
been a never-ending source of entertainment, research ideas, coffee breaks, runs to
the village for Curry Point, and the occasional multiplayer slaughter-fest.

Second, the all important list of colleagues I've worked with on papers and
other conference submissions, whom I have worked with night and day, yet still don’t
understend my sleeping schedule: Tamara Munzner; Kristian Hildebrand; Ciaran
Llachlan Leavitt; Katherine St. John; Qiang Kong; and Frangois Guimbretiere. For
‘the most part, this thesis cither refers to work done mostly by me, in the first person,
or with others who were forced to work with me. A .large amount of our work in
analysis of accordion drawing methods, future work considerations, and other tree

rendering tricks, I attribute to collaborative work with Kristian Hildebrand, who

xi

always provides the necessary encouragement for me to GBTW on a regular basis.
Of course, my patient supervisor, Tamara Munzner, has been super supportive of
many of my crazy ideas, shows interest in a majority of my not-so-well-thought-
out algorithms, and continues to help me improve in all those pesky areas I need
improvement on, which is saying a lot.

Finally, but of course most importantly, I must give the biggest shout-out
to my family, who are always on my mind when they least expect it. First, my .
very understanding 'parents, Cliff and Kathy Slack, who deserve much more than
a simple thanks, I've dedicated this thesis to you (it’s on the next page) for many
good reasons. Hopefully you’ll enjoy reading it ‘as much as I enjoyed writing it,
perhaps even more. Next, my far away, but never forgotten, sister Erica and my
brother‘-in—law Stu- Morgan, who make a 20 hour flight worthwhile, even when it
doesn’t quite make it to its destination. I’ll be sure to see you in Rarotonga in the
near future, to, um, check oﬁ your palm tree, which must be hundreds of feet tall
by now. My traveling buddy, and otherwise outstariding grandma Ella MacNeil: 1
think I'm way overdue for a visit, and not just for the pies I'’ve been missing out on.
How about some bingo? Finally, the sudden passing of my grandrha Edith McGinnis
last year was a sad time for me, and the closeness of our family has remained strong
throughout all we’ve been through since then. Although we only get together a few

' times every year, I always look forward to seeing anyone I call family again.

JAMES GERALD ALPHONSO SLACK
.]

The University of British Columbia
April 2005

This is for my parents

xiii

Chapter 1

Introduction

My thesis presents two key contributions to the field of information visualization: a
generic infrastructure for accordion drawing as a malleable two-dimensional surface;
and new rendering techniques for tree visualization on accordion drawing surfaces.
Our generic accordion drawing infrastructure accommodates any dataset that can
be laid out and meaningfully partitioned into smaller objects on a grid structure,
such as the rectilinear, right-aligned tree shown in Figure 1.1. Applications pro-
vide the bidirectional mapping from a grid surface to objects in the dataset, and
our infrastructure supports the key operations of rendering, mouse-over picking, and
navigation, while guaranteeing the visibility of marked data. My tree rendering algo-
rithms for accordion drawing surfaces involve operations which perform according to
the number of pixels used to display a scene, not on the input dataset. With support
from the generic rendering infrastructure, I provide efficient tree-based algorithms
for: tree-to-grid mapping, tree-rendering traversal, node marking with guaranteed

visibility, and accurate picking on the tree.

1.1 Motivation

Visualization of datasets with more data than available on-screen pixels is a challeng-

ing problem. Without information visualization techniques, the number of on-screen

pixels limits the amount of displayable data. For example, recent advances in phy-

- Nicotiana
=Campanula
I'—1 .

tokesia
imorphotheca
enecio
erbera
azania
hinops

Felicia

Tagetes
hromolasna

——aBlennosperma
NelCoroopsis

"‘HI n[{or Iiﬂ
acosmia
ichorium
chillea

:arthamnus
Flaveria

iptocarpa
elianthus
(——E*:‘ragopogon
hrysanthemum
Eupatorium

e ——— T 11T [0]
g~——=Barnadesia
Sw——aDasyphyllum

Figure 1.1: A rectilinear, right-aligned tree layout descends a tree dataset topology
horizontally and aligns all terminal nodes, or leaves, to the right boundary. Our
generic accordion drawing infrastructure supports this orthogonal grid-based tree
layout.

logenetics, the study of evolutionary relationships between organisms, produce very
large tree dataset topologies with a set of organisms at the terminal nodes. Since
any two methods of constructing phylogenetic trees may produce two structurally
different topologies for th(Ie same set of organisms, evolutionary biologists use many
techniques to investigate'structural similarities between pairs of itree datasets. The
primary focus of my thesis investigates our interactive ‘Visualization infrastructure
for stable accordion drawing navigation, with an example application capable of
comparing large tree datasets, such as phylogenetic trees, of up to two million tree
nodes.

TreeJuxtaposer (TJ1){24] is an inforrﬁation Visualizatioﬁ application used
to navigate énd compare several rectilinear trees, such as the pair of trees in Fig-
ure 1.2, by using two important properties: rubber-sheet navigation and guaranteed

visibility. Rubber-sheet navigation is the metaphor we use to describe how users

Nicotiana Nicotiana
ampanula Campanula
A 3 |
ola
tokesia tokesia
imorphotheca imorphotheca
enecio enecio
erbera azania
azania erbera
Echinops Echinops
Felicia -afglicia
Tagetes Tagetes
hromolaena hromolaena
Blennosperma Blennosperma
oreopsis oreopsis
Vernonia Vernonia
acosmia acosmia
i -E-Cichon'um ichorium
Achillea chillea
arthamnus Piptocarpa
Flaveria Helianthus
Piptocarpa ragopogon
Helianthus IChrysanthemum
Tragopogon Eupatorium
hrysanthemum Lactuca
Eupatorium arthamnus
L] - etl| aiCtuca Ly Flaveria

CEarnadesia p~wBarnadesia
Dasyphyllum ‘—aDasyphyllum

Figure 1.2: TreeJuxtaposer is capable of comparing two trees, side-by-side as shown
in this figure. Regions of structural difference are marked in red and other marks,
such as the blue subtree, are user-defined.

interact with the data. Users stretch and shrink regions of accordion drawing
(AD) surfaces, the subclaés of rubber-sheet navigation upon which TJ1 is built,
Amuch like the trees are drawn on a malleable rubber-sheet, as shown in Figure 1.3.
The AD rubber-sheet has its borders tacked down so the entire dataset remains
visible at potentially many different levels of magniﬁcation.

Guaranteed visibility is another necessary property of AD surfaces that en-
sures important data will remain visible at all times on its malleable surface. Marked
objects on AD surfaces move with other objects when the surface undergoes move-
ments and may be squished and stretched like any other dataset object. Gﬁaranteed
visiBility implies that marked objects never shrink out of sight.

TJ1 introduces AD surfaces, but its implementation of AD is only for détasets

that are tree-specific, has navigation stability problems for complex movements, and

does not allow other application domains to use its AD infrastructure. The primary

srbail ak sthi
N i *———-——xis

\ ge———————r €

of}

. —r o

" -root] rbot

Figure 1.3: Accordion navigation works by distorting a two-dimensional surface, by
stretching and shrinking regions, to allocate more screen space for regions of interest.
In the left image, a small tree appears undistorted, with no regions stretched. The
right image shows the same tree topology with a stretched region, which squishes
other regions such as the green subtree.

goal of this thesis is to introduce a new type of AD infrastructure that allows any
new application domain to render a scene using a more efﬁcienf, stable approach to
rubber-sheet navigation. Furthermore, this thesis describes several new tree-specific
functions to support TJ1 functionality on a generic AD surface, including: correct
tree rendering, efﬁcien‘p marking with guaranteed visibility properties, efficient node
layout on a partitioned grid structure, and accurate picking of tree nodes on the
grid. This thesis presents several techniques for improving the rendering quality,
rendering speed, and memory usage of TJ1 with TJ2, our new AD application that
is functionally, visibly equivalent to TJ1. '

Although current graphical processors are capable of rendering billions of pix-
els per second, a standard-sized monitor with a commodity video card is not capable
of refreshing the display during animated transitions with a brute-force method of
dr_awing every node.Our new infrastructure provides a rendering framework with

an efficiency that does not depend on the size or structure of the dataset, but on

the number of pixels on-screen. Application-specific algorithms interface with our

AD infrastructure, which abstracts away the details of partitioning, grid structure,
and navigation, to allow development of new AD applications that access the infras-
tructure with generic grid algorithms. With support for dataset sizes beyond the
number of pixels available on-screen, AD techniques allow;v for rapid-prototyping of

new applications that render datasets of well over one million items with smooth |

animated transitions.

1.2 Information visualization techniques

In my thesis, I employ several information visualization téchniques, including: guar-
anteed visibility, Focus+Context, and progressive rendering. These techniques al-
- low users of T‘reejuxtaposer, or accordion drawing (AD) applications in general, to
better undérst.and large and complex datasets, locate important information, and
smoothly navigate large amounts of information without getting lost. In this section,
I discuss the properties of guaranteed visibility in Section 1.2.1, Focus+Contexf in

Section 1.2.2, and progressive rendering in Section 1.2.3.

1.2.1 Guaranteed visibility

Guaranteed visibility is a property, first introduced by TreeJuxtaposer [24], used
by information visualizations to ensure important déta is always visible. Applica-
tions developed with our AD infrastructure have two classes of data: normal and
marked. We mark data that we consider importaht with object marking, either
through direct interactive selections or results from computed functions. Other nor-
mal data objects provide context and overall dataset structure. Guaranteed visibility
of marked data means that marked objects always take precedence over normal ob-
jects when rendering views of datasets, meaning that marks are always guaranteed
to be visible, at the expense of unmarked regions of data, if need be.

AD applications provide two variations of guaranteed visibility: static and

progressive. The former is used to display rendered scenes with guaranteed display

iholocentridae]

acdntho

‘teleostei

hoplos
paratrachic]

Figure 1.4: The user-selected data in this TreeJuxtaposer figure, sargocentron di-
adema and myripristis australis are marked in blue. However, the locations of these
tree nodes are not understood without the location of many other nodes, such as
sargocentron spiniferum, which provide context for the guaranteed visible, marked
data. '

of all marks, and the latter guarantees marks appear first during transitional frames
of an animation. Static guaranteed visibility is a property of an application that is
capable of displaying marked data with a higher priority than normal data. Static
visibility properties are essential when visualizing a large dataset, where marked
data might be occluded by surrounding data in a rendered scene. However, the
surrounding data is still important enough to cqnsider drawing; guaraﬁteeing to show

marked data within the context of un-occluded, peripheral data provides important

visual landmarks. For example, in Figure 1.4, we mark species sargocentron diadema

and myripristis australis as important tree nodes. TreeJuxtéuposer may still draw
species sargocentron spiniferum, which should be close to sargocentron diadema. -

AD applications cull regions of datasets whén a region is shrunk smaller than
the size of a drawable unit, typically a hardware monitor pixel. To draw in dense
regions of objects, the application determines what to draw using either object ag-
gregation or object selection, from a set of cullihg objects. For large dataset visual-
izﬁtibns on high-resolution monitors, suéh as the IBM T221 with over 200 pixels per
inch, a pixel-sized feature is sometimes too small to be useful. Our AD infrastruc-
ture provides novel methods of producing a lower resolution visualization, using our
culling techniques. If we cull regions at larger than pixel éizes, we effectively draw
less information on the display, but may reveal patterns with aggregation methods;
high-level dataset features may be clearer with a larger minimum feature size. We
call the minimum feature sized cells for an application blocks, where feature sizes
are integer multiples of a pixel.

To solve static view visibility problems; AD rendering methods must exam-
ine an application-specific culled region for marks that we guarantee to be visible.
Accordingly, marked data points must be stored such that regions of the dataset
topolog'y can be examined -quickly during a rendering step. Section 3.3 provides
more details about the compact representation and storage methods of the dataset
topology as ranges of nodes for TJ2. ,

Guaranteed visibility is also important to consider during the rendering phase
of animated transitions. Progressive guaranteed visibility is a component of progres-
sive rendering, discussed in Section 1.2.3, that renders the most important interest-
ing nodes before rendering the rest of the dataset. This type of guaranteed visibility
uses a drawing order that favors marked data over all other data, providing land-
marks when rendering navigation and animation frames for lérge visualizations.

As an example of progressive guaranteed visibility, consider marked nodes in

TJ2. For the first frame in its scene rendering phase, TJ2 draws the roots of marked

subtrees, the path‘from that subtree to the root of the tree, and a path from the
subtree root to one of its leaves. Rendering an overview of the dataset that is formed
by this first rendering step, which produces a skeleton of useful topological features,
is exponentially faster, in the common case, than methods in TJ1 that rendered
entire marked subtrees. This progressive guaranteed visibility is useful in T'J2 since
the location of marked subtrees is quickly represented and the marks are visible as

landmarks during animated transitions.

1.2.2 Focus+Context

Focus+Context is a technique information visualization systems use to display
areas of interest as focus regions, while still displaying the rest of the dataset in
less detail, which presents context for the focus regions. Miany of these approaches
magnify the areas of interest and concurrently minify other regions, which leads
to visual distortion of the original dataset topology. The usage of Focus+Context
distortion techniques in visualization applications may cause some disorientation if
visual aids such as landmarks or topological features are not present. Additionally,
the user may be confused if the application ‘does not provide smooth transitions
from one view to the next.

TreeJuxtaposer useé Focus+Context effectively since the treé layout is visu-
alized as a hierarchical structure, where the location of the root and direction of
growth is known to the user, even after repeated navigations. The tree structure is
~ able to convey relative node density and the path from any node to the root is well
known by manually following the node ancestor path. Along with node labels and
smooth animated transitions, navigations in TreeJuxtaposer prevent the user from
losing orientation. However, AD_itself does not provide topological reference for
navigation and requires developers of applications to include navigational semantics
based on their particular application-domain requirements.

As an aid to automated movements, smooth transitions help Focus+Context

applications both during navigation and in the resulting static views. When an area
is stretched, a smooth transition provides a-correspondence between the original
state and'the final transition state. Progressive guaranteed visibility also aids in
making transitions easy to follow, since the interaction box or set of marked nodes
are rendered first. Finally, the static view is easier to comprehend after following a

smooth transition rather than after direct jump cuts [30].

1.2.3 Progressive rendering

Progressive rendering is a graphics technique for displaying a meaningful, par-
tial scene in systems, allowing real-time user interaction, even for scenes that render
slower than the time available to draw a transitional frame. When a user demands
- a response from the system, the appropriate action must be performed and scenes
that render slowly must respond to the user actions with no noticeable delay. Sim-
ple scenes with a few thousand nodes in TreeJuxtaposer, for example, may render
fast enough such that checking for user action during a rendering is not necessary.
However, to scale to millions of nodes, progressive réﬁdering approaches. allow for
smooth navigation and keep rendering from being a bottleneck that prevents imme-
diate system feedback to use.r demands.

Although rendering fewer nodes and guaranteeing that the number of nodes
rendered depends on the number of screen pixels allows scenes to be drawn faster,
- progressive. rendering is still necessary for many large datasets due to increased
time for handling larger datasets. However, progressive rendering overhead can
potentially negatively impact the performance of applications that use progressive
rendering. Therefore, systems that provide progressive rendering should allow either

automated or manual control over the usage of progressive rendering of scenes that

do not require several frames.

1.3 Thesis contributions

This section details the contributions of my thesis, presented in order of importance
by chapter. Results for each performance claim are presented in Chapter 5. The
conclusions for my thesis contributions are given in the ﬁn-al'chapter, along with

some recommendations for future work.

1.3.1 Accordion drawing contributions

o We developed a generalized infrastructure for accordion drawing applications
that does not depend on extra spatial subdivision layers, but uses an inherent

dataset topology, when available.

e We refined our generic generic rendering infrastructure by formalizing a three-
step rendering process, which includes: partitioning in O(b) time; seeding in
O(b + m) time; and rendering in O(b 4+ m) time, where b is the number of

on-screen blocks and m is the number of marked groups.

o We created a numerically stable AD navigation algorithm that is capable of
resizing many AD split lines concurrently. This means that we do not move
a split line in our resizing algorithm more than once per scene, unlike AD for

TJ1.

1.3.2 TJ2 contributions

o We developed new algorithms for topological tree rendering in our new AD
infrastructure, in comparison to TJ1 quadtree-based AD methods. TJ2 ren-

dering is pixel based and renders a scene five times faster than TJ1.

o We optimized storage and retrieval of ranges of marked data, which we use

to perform marking operations on tree datasets in TJ2.- Marking is eight

times faster when marking a full 190, 265 node tree being compared to another

without the caching techniques used in TJ1.

e We created a new TJ2 tree layout technique for our AD infrastructure. Com-
-pared to TJ1, TJ2 preprocessing is ten times faster, and overall memory usage

is five times more efficient.

198,623 node tree, and rendering the fully marked tree is still faster in TJ2,
i e We replaced spatial subdivision picking, used in TJ1, with topological picking
that is nearly as time efficient with most tree topologies and is able to pick

tree nodes'in regions of datasets where TJ1 is known to fail.

1.3.3 TreeJuxtaposer Evaluation from InfoVis 2003 Contest entry

e We analysed a modified version of TJ1, TJ1-contest, with a standardized set
of real tasks. This analysis helps understand the strengths and weaknesses of

our AD approach to investigating tree-based dataset queries.

e We added an incremental search function to TJ1, which allows a user to quickly
identify similarly named nodes. When a small number of search results are
selected, our algorithm automatically marks their location in the tree topology

with guaranteed visibility.

1.4 Thesis Organization

This thesis is orgahized as follows: Chapter 1 presents motivation, contributions,
and organization; Chapter 2 includes relevant previous work; Chapter 3 discu;sses‘
our new tree navigétion application, TJ2; Chapter 4 discusses our generic accordion
drawing infrastructure, AD; Chapter 5 presents analysis of TJ2 and compares the .

performance of TJ2 with TreeJuxtaposer; and Chapter 6 concludes my thesis.

11

Chapter 2

Related Work

Navigating large datasets has lpng been recognized as an important problem in the
information visualization community. AD navigation is in a tlass of information
visualization techniques with an interésting, evoiving history in human-computer
interaction, computer graphics, and other fields of study. Tree visualization also has
a past in information visualization, and there are several systems created specifically
for biologisté that continue to influence our development of TreeJuxtaposer features.

Previous work related to my main thesis contributions is presented as follows:
Section 2.1 includes information visualization and other human-computer interac-
tion and perception work; and Section 2.2 describes some common phylogenetic
evaluation software as well as other tree-specific work in information visualization

'

systems.

2.1 Visualization, interaction, and perception

Visualization of datasets with more data than available on-screen pixels is a prob-
lem since the size of datasets increases faster than the resolution of monitors. Fur-
thermore, human perception limits the feasible amount of information that can be
displayed even with infinitesimally small pixels. Obviously, 4there is very little ad-
.vantage to monitors with pixels at the microscopic scale. An excellent resource for

generic methods of graph visualization and navigation is a survey by Herman et

12

Figure 2.1: The SeeSoft [1] software analysis tool provides an overview of large
software structure with meaningful color-encodings. The entire structure is visible
and users may zoom into regions of interest to investigate details.

al [13].

Approaches such as the pixel-based software analysis tool SeeSoft [1], as
shown in Figure 2.1, display an overview of an entire dataset with millions of items,
and users may enlarge regions of interest to view details. The number of displayable
items is impressive and gives insight into the global structure, which is especially
useful when meaningful color codings are used. However, small details may be
overlooked and culled out of view by the rendering process when datasets become
larger than the number of pixels, or when the feature size is too small to perceive
differences between adjacent pixels.

Applications that attempt to render extremely large datasets of thousands of
items are usually either non-interactive, or require acceptable rendering techniques

for displaying important details first, such as progressive rendering introduced by

13

Bergman [6]. For 3D scenes, this approach displays vertices, edges, and other higher
level surface features in order. Since an overview of the dataset may be available
with visualization of only the vertex positions, interactive tech.niques, such as camera
positioning, can be used with a simple rendering, and details can be filled in when
interaction stops. Other progressive rendering approaches may render landmarks or
other important features first if such a scene decomposition is not available or does
not provide visual benefits during interaction.

Magnification techniques, such as the fish-eye lens [7, 11] and related non-
linear fnagniﬁcation fields [18], can be used to view local detail for data too densely
packed to be clearly represented in full detail. A fish-eye lens uses the idea of a
simple magnifying lens, but, unlike a conventional physical lens, uses distortion
around the center of focus. in place of an occluding boundary. This means the lens:
is used to distort some context around the magnified focus region and not hide
useful contextual details. We use the term Focus-+Context to refer the visualization
technique where the focus is shown within sﬁrrounding context.

A related magniﬁcation technique is the document lens {31], shown in Fig-
ure 2.2, where a full text document is shown arranged in a grid, with each page
in a different cell. An overview of the entire document is available but the text is
too small to read all at once. Users can select a rectangular magnification region,
approximately the size of a page of text, and the remaining document is- drawn as
it would appear on the sides of a truncated, skewed pyramid with the magnified
region as the frustum. This approach requires less computation than the fish-eye
lens, and is more suitable for viewing full pages of documents undistorted, practical
for reading text. Text down the sides of the pyramid is also legible close to the
magnified frustum region.
| Hyperbolic geometry [19, 22, 23] visualizations remove the traditional Carte-
sian two dimensional context and use fish-eye visualization techniques for the entire

scene. Users perform navigation through the hierarchy by changing the node in

14

The Alerserin w grewes
S
BT
o
B Ty

Figure 2.2: The document lens visualization tool [31] shows a page of undistorted
text from a large document, and applies distortion to the remainder of the document.
Distorted text near the undistorted region is legible.

focus; users may step through each level of the hierarchy or jump to any other vis-

ible node and the visualization responds with smooth animated transitions. This

_ class of distortion-based visualizations is limited to tree hierarchy visualizations or

other connected graphs, however, since users require structural, visual cues like the

edges of a tree structure for navigation. Generic visualization of text objects, like
the document lens, or side-by-side cells in a grid structure would not be visually
pleasing with these techniques. In Figure 2.3, I show the H3Viewer visualization
application rendering of a tree structured dataset.

Several systems use semantic zooming, which is based on generic level of de-
tail (LOD) methods. Semantic zooming aggregates minor features into larger struc-
tures to reduce clutter from global overviews, and replaces larger features with their
component minor features when focusing in on regions of interest. The Pad++ [4, 27]

system, as shown in Figure 2.4, renders objects with infinite precision in an abstract,

15

Figure 2.3: H3Viewer [23] is a hyperbolic geometry visualization application for
navigating connected graph datasets. Hyperbolic distortions allow any data point,
even far away from the focus, to be visible and have relative position with respect
to other data. ' ' ’

semantic zooming world. Items are assigned a minimum and maximum visible size
and smooth animation provides transitions between levels of detail. Semantic zoom-
ing has also been investigated in space-scale visualizations [12], where panning and
zooming are used to give intuitive animated transitions. As the viewpoint zooms
out, semantic‘ zooming while panning allows a user to track global landmarks, so
certain familiar features give much needed navigational context.

A closely related hierarchical zooming method is multiscale visualization [37].
This method presents aggregation, or selection, of underlying data instead of feature
filtering approaches used in traditional sémantic zooming applications. Multiscale
Visualization. assigns implicit semantic representation to zoomed-out data, which

either may be useful if the underlying data is similar, or may be detrimental if the

16

Figure 2.4: The infinite-precision world-space for objects in Pad++ [4] allows de-
velopment of zooming features at several scales of magnification. This figure, from
left to right, top to bottom, shows an'example of repeated zooming on features.
Semantic zooming also allows Pad++ to restrict visibility of rendered objects at
user-specified magnification scales. ' '

aggregation‘ techniques hide data regions with high variability.

Degree of Interest (DOI) systems like continuous zoom [2] offer another type
of semantic zooming. Groups of objects are assigned a percentage of the écreen, SO
that when one object is focused on with a fish-eye magnification lens, other objects
in the same group are shrunk at the same magnitude, to preserve the screen area
devoted to the group instead of the entire context shrinking uniformly. 'The semantic
zooming aspect arises from when objects reach an assigned threshold size, and with

some cases, multiple foci are possible as groups of objects “open,” and display more

17

| detail.

Rubber-sheet navigational metaphors [34] introduce orthogonal, and polyg-
)
onal convex hull, distortions where objects drawn on a two dimensional grid can be

stretched as if they were drawn on a rubber-sheet. Areas of interest on the rubber-

. sheet can be stretched out, essentially magnifying them without the occlusions of

. traditional magnifying lens effects. Navigation with a rubber sheet is typically user

directed with continuous zooming capabilities, as users pull defined region bound-
aries to increase the space allocated to an object. The borders of the rubber-sheet
are taci(ed down, meaning that the context regions are squished to small regions but
always visible, although compressed similar to [2]. With no semantic zoom, regions
of the context need to be culled, or otherwise aggregated, as they are shrunk.

Landmarks, or regions of interest, in semantic zooming applications may
not be visible while at extremely zoomed-out views. It may be desirable that cer-
tain characteristic objects never disappear from displays where the entire dataset
is always visible. Implementations of critical zones [17] extend infinite precision vi-
sualization systems, such as Pad++, with methods of guaranteeing certain objects
will always be visible at any level éf magnification.

TreeJuxtaposer [24] (TJ1), shown in Figure 1.4, introduces accordion draw-
ing, which combines rubber-sheet navigation with concepts of guaranteed visibility

for select regions of data. TJ1 provides a scalable alternative to side-by-side anal-

. ysis of trees, previously done by hand on paper printouts. The layout of TJ1 is

quadtree based, and uses accordion drawing techniques derived from rubber sheet
navigation. When the objects in context are shrunk or culled, highlighted landmarks
are given rendering priority, by drawing above every other node in their context,
with minimal feature size as space permits with other landmarks. Context nodes
are given second-class treatment and not limited to how small they can be drawn;
ranges of context nodes are considered landmarks in themselves, however, and can-

not be squished completely out of sight. TJ1 scales to over 500,000 nodes [24], and

18

2

Sloth
Armadillo

Anteater
Hedgehog
Mole
Shrew

Tenrecid

Human

Whale
Dolphin
Hippo
Llama
Ruminant
Pig

Figure 2.5: SequenceJuxtaposer [35] is an aligned sequence visualization tool that
uses accordion drawing navigation. Each sequence is drawn horizontally and base
pairs of each aligned sequence create visible vertical columns when there are no
differences. Simple difference heuristics appear as red guaranteed visibility marks.

animated transitions are necessary to maintain context during continuous zooming.
TJ1 uses a best corresponding node (BCN) criteria [39] to correlate matching nodes
from pairs of trees under analysis, so selecting one node also selects relatively similar
corresponding nodes in other trees under comparison.

More scalable tree analysis with TJC [5], is capable of rendering up to 15
million node trees in under one second. TJC removes the quadtree hierarchy, uses a
simple grid-based structure, and optimizes data structures to dramatically increase
memory performance. TJC also renders dense regions of trees without gaps and
eliminates many of the rendering inefficiencies of TJ1.

Beyond TreeJuxtaposer, there have been several accordion drawing appli-
cations: SequenceJuxtaposer [35], shown in Figure 2.5, and PowerSetViewer [25],

shown in Figure 2.6, which render rectangular regions of color to represent their

19

Figure 2.6: The PowerSetViewer application [25] is a visualization system for pow-
ersets. Powersets are drawn as a single enumerated sequence of nodes. Power-
SetViewer line-wraps the world-space at the end of each column and visually sepa-
rates cardinalities by alternating the background color.

data. Because they layout datasets on simple grid structures rather than trees,
these applications impose a hierarchy on their datasets. SequenceJuxtaposer aligns
its input data vertically, since it assumes sequences that are drawn horizontally to
be somewhat aligned vertically, in a large stretchable grid.

PowerSetViewer is a grid-structured accordion drawing application that dis-
plays powersets, or the set of all possible sets of nodes, as a single enumeration [25].
An interesting aspect of PowerSetViewer is its ability to add or delete data from
the grid over time, and modify the grid accordingly. Furthermore, PowerSetViewer
does not require allocation of a grid large enough for all addressable space in the
powerset. Instead, it builds a sufficiently large grid to draw a sparsely distributed

set of sets, on the order of up to two million, into the powerset domain.

20

2.2 Phylogenetic tools and tree visualization

Although not constrained to tree topology datasets of a biological nature, TreeJux-
taposerl-is designed with many desirable features for phylogenetic research, which
are briefly described in Section 1.1. However, since several tree analysis systems
are used to investigate phylogenetics, the evolutionary history and relationships be-
tween organisms, it is important to describe a few of the most influential systems
here.

Currently, in the field of evolutionary biology, efforts are underway to cat-
egorize every organism with a single tree called the Tree of Life [9], which shows
hypothesized relationships between existing organisms and their. proposed, or oth-
erwise extinct, ancestors. The research effort is broken into small pieces, such
as fungi [14], and further by research lab, such as the Hibbett lab that studies
homobasidiomycetes [15], the mushroom-forming fungi. Once data is collected from
each group, small trees are combined into supertrees [33], which would culminate
with a hypothetical set of trees of all known organisms.

Since methods of determining the organism relationships are subject to error
for several biological reasons, evolutionary biologists use several statistical models to
reconstruct evolutionary trees, the most common being parsimony or Bayesian infer-
ences in relationships. Parsimony-based tree reconstruction [38] relies on minimal
characteristic changes between species identifying close ancestors, while Bayesian
techniques [16] use'Markov Chain Monte Carlo simulation techniques to estimate
tree topologies. Both of these methods are statistical inferences and are subject to
error, which therefore require humans to analyze and add their professional knowl-
edge to the results. _

Manual investigation of data is time-consuming and understandably com-
plex, so several software packages are available to visually investigate the results
from evolutionary tree construction software. MacClade [20], and more recently

Mesquite [21], are two well-known and useful software packages built‘by evolution-

21

|\|\Il|t|u|uuum —

il [

o

Figure 2.7: TreeWiz [32] is a scalable phylogenetic tree visualization system capable
of supporting 50,000 nodes. Each viewpoint change for navigation opens a new
display window.

ary biologists. They offer a set of useful editing and analysis functionality, but lack
in scalability. Some of the more interesting features of MacClade are the ability to
annotate and edit the properties of tree data. A simple panning canvas is used to
display a visual representation of a tree of several nodes at a time, which is sufficient
for many tasks.

A more scalable system called TreeWiz [32] supports up to 50,000 leaf nodes
in a Java application. Subtrees that do not fit onto the visualization are collapsed
into their parent nodes and assigned a color from a density map. However, nav-
igation is limited since each change of viewpoint creates a new display window.
Aggregation of subtrees into parent nodes is also a feature of the SpaceTree [29]
browser, which supports automated subtree collapsing and several other pan and
zoom type modes for navigation in collapsed trees.

Cheops [3] is another scalable system capable of browsing tree structures of

22

up to one billion nodes, and while suitable for a concise index, it is not well-suited for
displaying details of the topological structure. For deep subtrees, Cheops occludes
information from sibling subtrees to show one region of focus, typically as a path
from the root to a target node.

Alternative marking techniques have also been introduced. Carrizo [8] in-
troduces a color-filling approach to tree annotations. Instead of coloring tree edges,

Carrizo colors the regions under subtrees to provide much larger colored regions to

indicate the properties of a subtree.

Chapter 3

TJ2

We made several significant changés to TreeJuxtaposer to make TJ2 work with our
fast, general AD infrastructure. The most significant changes were in the TJ2 ren-
dering process, where we developed new algorithms for laying out nodes, placing tree

edges, and performing gapless rendering with smaller rendering queues. Our render-

- ing algorithms are now pixel-based, with a rendering time complexity of O(p) where

p is the number of vertical pixels, rather than O(n log(n)) where n is the number
of nodes in the topology. This means our rendering is more scalable, since dataset
topology does not affect our rendering performance. We characterize three cases
of potential rendering gaps in ascent-based rendering, and our algorithm minimizes
the amount of drawing required to fix those gaps. |

The marked ranges improvements for TJ2 allow for much faster color lookup
for marked nodes, as well as deciding when nodes are nof marked, by using a tree-
based range lookup instead of linear searches through all marked ranges for every
node being drawn. Collépsing the ranges éfﬁciently was also an improvement for
storing and retrieving large numbers of node differences when comparing trees. Al-
though nodes are stored more than once, looking up node colors quickly is not
possible unless each marked node is stored; color lookup time is O(m log(r)), where
m is the number of marked groups and r is the total ﬁumber of nodes ranges stored

by any particular group. Our localized algorithm for finding all indirectly marked

24

nodes is sufficiently fast and we no longer require node color caching, which allows us
to load larger tree datasets. The efficiency of marking depends on the datas.et, but
we achieve an average marking speed O(k), where & is the total number of nodes in
the range marked by the user. Marking the entire InfoVis 2003 Contest [28] dataset
animaliap tree of 190,265 nodes while comparing with animaliag takes less than two
seconds to process, as discussed in Section 5.4.”

TJ2 also introduces topological picking to TreeJuxtaposer, which allows a
user to pick nodes in sparse topologiéal regions of a tree.. Although the picking algo-
rithm is O(h), where h is the topological height of the tree, we find it is sufficiently
fast for the deepest trees TJ2 can currently load; picking is interactive with trees
taller than 1000 nodes.

In this chapter, I present the major improvements of TJ2 over previous ver-
sions. In Section 3.1, I describe our node layout algorithm. I discuss our tree
rendering algorithms in Section 3.2, which follow the tree topology. In Section 3.3,
I discuss our marked range improvements. Finally, in Section 3.4, I describe our

topological picking methods.

3.1 Node layout

TJ2 incorporates sighiﬁcant chaﬁges to the tree layout algorithms from TJ1-based
TreeJuxtaposer applications. Trees in TJ2 are still drawn right-aligned, meaning
that leaf nodes are found on the right-hand-side of the tree with the root on the left-
hand-side. Due to this orientation, in this section, I will introduce our conventions
to describe TJ2.lay0ut algorithms and rendering techniques. In TreeJuxtaposer,
the width of the tree is the total number of leaves and the height of the‘ 4tree is the
longest branch length. Horizontal node edges are the height component for each
ﬁon—roo‘c node and vertical edges are the width component for each internal node
with two or more child nodes. Refer to Figure 3.1 for a pictorial description of these

terms.

25

horizontal
edge

verticaliedge

root
width

eight

Figure 3.1: The naming conventions used in this thesis. The root node, in blue, is
drawn with no horizontal edge. The internal node is marked in green and red for
horizontal and vertical edges and the leaf nodes have no vertical edges. The width
of the tree is the number of leaf nodes and the height is the longest path from the
root to a leaf.

TJ1 algorithms for rendering and node layout create a hierarchical spatial
"quadtree layout, described in Secﬁion 4.1, which is inefficient for trees since most
trees have many more leaves than height. The quadtree is built on a base grid of
uniformly sizéd base grid cells, as shown in Figufe 4.1. A base grid cell contains
a reference to a node of the topological tree, and a quadtree cell points to up to four
children cells, which could be either base grid cells or interior quadtree cells.

TJ1 quadiree subdivisions are built on the base grid to facilitate traversal,
so partitions divide the number of grid cells in half in both directions for each layer
- of the quadtree. This partitioning is inefficient for most cases since the base grid is
often not close to square since the width of the topological tree tends» to be much
greater than the height. The interior quadtree cells are most efficient in the few
cases where the topological tree height is almost equal to the tree width, which
happens to be the case in péctinate trees, also known as “comb-shaped” trees, that
occur in some biological contexts.

However, as introduced in TJC [5], a more efficient technique to store tree
nodes in a grid is possible with separate horizontal and vertical binary trees. TJ2

uses the basic idea of separate structures in TJC, but is quite different in all tree

26

doGridding Function
input: set of nodes N from tree T, in post-order list
grid G large enough to layout T
output: nodes IV assigned to rectangle of coordinates in G

y 0
_while N # 0
n +— N.pop
if isLeaf(n)
n.mazrX «— G.mazX
n.minY «—y
y++
n.mazY —y
else
n.mazX — getMinX(n.Children)
stretchMinX(n.maz X, n.Children)
n.minY — getMinY(n.Children)
n.mazY « getMaxY(n.Children)
end if
n.minX «— n.mazX — 1
end while

Figure 3.2: doGridding function assigns a grid position in G to each node in T.
Leaves are positioned on the right side of G, internal nodes span their children and
are as wide as the sum of their child widths, and all nodes initially are in cells one
base grid cell high. Cells are stretched for each child of parent that does not have
a minX value equal to parent.mazX.

layout, rendering, and culling algorithms. In the remainder of this section, I describe
how nodes are mapped to grid coordinates in Section 3.1.1. Then, in Section 3.1.2, I
discuss a necessary modification for placing horizontal node edges during rendering

in TJ2 that is not required by TJ1 node mapping.

- 3.1.1 Mapping nodes to grid

Node layout in TJ2 is quite different from layout in TJ1, but both TreeJuxtaposer

applications create very similar-looking tree visualizations with the same base grid

Figure 3.3: A small subtree for our gridding example. The nodes in are added in
post-order.

Figure 3.4: The nodes of Figure 3.3 added to the grid. Our tree layout partitions
screen-space into a fully covered grid cell layout, as shown.

size. Instead of using a spatial subdivision method, T'J2 partitions the base grid into
rectangular regions for each tree node; we call the partitioning process gridding.

Topological tree nodes are assigned to cells using an algorithm based on the
pseudocode for doGridding in Figure 3.2. The cells form the boundary around tree
edges for a tree node and distort with respect to the Accordion Drawing methods on
the base grid. Each internal node in the topological tree is drawn with two tree edges,
one horizontal connection to its parent and one vertical connecting its children. Leaf
nodes and the root node are special cases: leaves have only a horizontal edge and the
root has only a vertical edge. Cells for each node in both TJ1 and TJ2 are bounded
by four accordion split lines, which are movable grid lines described in Chapter 4,
each with minimum and maximum lines in the left-to-right X and top-to-bottom Y
directions. In TJ2, the leaf-to-root node placement and initialization algorithm is
linear in the number of nodes in the dataset.

We must have enough base grid cells in height to support the deepest nodes of

28

the topological tree, which is the equai to the height of the tree. Since all leaves are
~of thé same vertical weight, we must have enough base grid cells to place every leaf in
an individual cell, which is ex'actly the number of leaves. Therefore, the dimensions
of the grid are known after parsing the input dataset and TJ2 can initialize the
Accordion Drawer split line structures, creating the base grid.

As an example of the gridding process in Figure 3.2, consider the small tree
in Figure 3.3, where nodes are placed in this post-order traversal: A4, B, a, C, b.
The leaves A and B are: placed in the grid one cell tall and wide; adjacent to each
other; and aligned with the rightmost split iine in G, as shown in Figure 3.4. Leaf C
is placed next to B, but is two cells tall since it must match the height of internal a,
which was placed on the other two leaves. Both C and a are attached to internal b,
and the internal nodes a and b are as wide as the sum of their child node widths. The
time complexity of the insertion per node is on the order of the number of children,
since the stretchMinX function processes all children; ieaves have no children but
require constant time to initialize. Therefore, the complexity of the entire insertion

process is O(n), for a tree topology of n nodes.

- 3.1.2 Placing horizontal node edges

This sectior; deals with positioning the horizontal node edges in TJ2, necessary
- with the partitioniné process from gridding in Section 3.1.1. All edge positions are
calculated relative to the width of their subtrees; leaf edges are placed in the center
of their cell and internal node positions depend on the positions of their children.
In an orthogonal tree layout, the density of horizontal tree edges show the width
_ of subtrees and the height of child nodes, and the positions of some of those edges
determine the length of parent node vertical edges. \

The placement, of horizontal node edges is slightly more complicated in TJ2
than in TJ1, since TJ2 partitions the entire base grid for node domains. TJ1 node

to cell mapping places nodes in the base grid, but the nodes are given offsets to

29

FRAPTIN

.............

,,"W
B
i
s
3
2
wagwnnfown
3
s
H
.
s
3
¥
3
2
3
H
s
?

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~

Figure 3.5: The balanced tree on the right places the horizontal edge of its root in
the center of its cell width, but the pectinate tree on the left places the same edge
much more toward the top of the root cell. The horizontal edge position for any
tree node may move anywhere within the cell and, unlike TJ1, cannot be a constant
offset since node cells span the entire width of its descendant node cells.

a single base grid cell at the minimum height of all child nodes and somewhere
close to the center child position. This mapping differs from TJ2, which maps a
tree node to a cell that is as wide as the sum of its children widths. When a
node is rendered in TJ 1, the horizontal edge position is simply calculated with the ‘
~offset and grid cell position. We want the same performance and correctness for
horizontal edge position computations in TJ2 as in TJ1: computable in constant
time and guaranteed to attach to the vertical tree edge that stretches from the first
to last child horizontal edge positions.

The horizontal edge position for a subtree may be anywhere in its bounding -
cell. To understand how a horizontal edge can change according to the underlying
subtree structure, consider Figure 3.5. With the class of subtrees called pectinate
trees, similar to the tree shown on the left of the figure, we can generate examples
of horizontal edges placed anywhere vertically within their cell. A

We cannot compute the horizontal edge position in TJ2 with a set offset; if

we attempt to use TJ1 methods in TJ 2; we quickly see why we need to calculate the

30

subA
» subB
subC
subD
subE
subF
subG

subH

SsubA

subB

subC

subD

subE

subF

subG
subH

Figure 3.6: The relative position of the horizontal node edge for an internal tree node
depends on the position of its inner children cells. This figure shows why resizing
where the edge in the blue cell cannot use an offset similar to TJ1 horizontal edge
position computations. On the left is a small subtree with the parent horizontal
edge in the blue cell calculated from an offset; all other nodes subA through subH
are subtrees with the horizonal edge of subH positioned close to its boundary with
subG. If subH is vertically grown without moving the outer boundary for the blue
cell, as shown in the right figure, the relative positions for all subA through subH
remain the same and move since their cells change in size. However, the node in the
blue cell remains at its initial position since its size has not changed. The horizontal
edge for subH is drawn on the wrong position relative to its parent and our small
example shows a broken subtree.

horizontal edge positions differently. Take for example the small tree in Figure 3.6,
where subA to subH are subtrees of a common parent in the blue cell. If we set
the internal node in the blue cell where it is, as a vertical offset in the blue region,
the node does not move vertically when the top and bottom cell boundaries do not
move. However, if we resize the cell with subtree subH towards subA to be nearly
the same width as the blue cell, it is possible for the horizontal edge of subH to
be on the wrong side of the blue cell horizontal edge. This is possible since if the

horizontal edge for subH is close enough to the subG cell boundary, then as subH

31

gets wider, it will eventually pass its parent horizontal edge.

The horizontal edge positions in TJ2 are computed by determiping the center
~of the vertical edge that we know to be drawn. In Figure 3.6 on the left, we see that
the vertical edge for the internal node in the blue grid cell is drawn from subA to
subH. But, if we use both subA and subH edge positions to calculate the horizontal
edge position of their parent, we see that this becomes recursive when we need the
horizontal edge positions of the children of subA and subH, with an exponential
cost of O(2") where h is the height of the edge we wish to compute.

~ Since the vertical edge is only definitely drawn across the cells from subB to
subG, the green cells in Figure 3.6, we notice that it is possible to place the horizontal
edge of the blue cell using only the width of the green cells. Therefore, ignoring the
positions of horizontal edges subA and subH, we are left with thé remainder of the
cells to calculate the horizontal edge position. There are many possible ways to
compute a horizontal edge position, but we choose a simple mid-point of the central
children cell boundaries, the child cells that are neither first nor last, for example
the nodes highlighted in green in the figure.

The length of the vertical edge must use the positions of the horizontal edges
for the first and last child, to connect all children to the horizontal edge of the parent.
However, this is also a constant time calculation since no recursion is required, each
horizontal edge calculation is constant, and only two such calculations are required.
To reduce calculatiéns of horizontal edges to only require what is visible, we also
cache the results of prévious horizontal edge positions, by storing the frame number
for each calculation, while no movements have occurred. |

In the degenerate case. of a node with only one child, the ho.riz.ontal edge
of the parent node is aligned with the child node hérizontal edge; no vertical edge
is drawn but recursion is necessary to find either the first descendant with more
than one child node, or a leaf. Nodes with two children are not a degenerate case,

but are simply cases of Figure 3.6 that do not have green internal cells; the grid

32

line between the red outer cells would be the only location suitable for the blue
cell horizontal edge, in this case. The worst case of a horizontal edge placement
for a totally degenerate tree, with N nodes and a height of N, where every node
has a single child and the tree is a single line, is O(N). However, in practice, the
degenerate case is rare; that is, few nodes have single children. The complexity for

this typical, non-degenerate case is O(1) per edge, the same as TJ1.

3.2 Rendering trees

Rendering a minimal number of tree edges for any tree topology depends on the
minimum feature size of a tree node: the edge width. Since “pixeis” are really
artifacts of the hardware restrictions of physical monitor pixels, we choose to use the
terminology “block” to refer to the smallest visible feafures of our drawing objects.
Blocks are always integer multiples of pixels, and aré by definition pixel aligned;
blocks are simply a coarser screen representation than pixels. This terminology
becomes useful when using thicker tree edges .than minimal one pixel-wide lines;
high-resolution monitors capable of 200 DPI, such as the IBM T221, make single
pixel-wide lines hard to see.

As described in Section 4.2, the generalized rendering infrastructure of AD
follows the generic three-step pattern of: partition an applicatidn-speciﬁc base grid
into pieces smaller than the minimal feature sizé, following the hierarchical AD
structure; seed the application-specific dataset nodes that correspond to the parti-
tions; and draw the seeded nodes and other necessary “attached” nodes, again in
an application-specific manner. Of the steps listed for this pattern, partitioning is
described in detail in Sectién 4.2.1. Seeding and drawing are optimized according to
the dataset topology and are discussed in this chapter: I describe how TJ2 performs
leaf-range seeding in Section 3.2.1; and how TJ2 draws nodes, beginning with the

seeded leaf-ranges and ending at the root node, in Section 3.2.2.

33

3.2.1 Node seeding

Before rendering starts, we prioritize the order of node and subtree rendering in a
renderiﬁg queue, with a seeding algorithm. The order of rendering is important
for large datasets that cannot be completely drawn during animated transitions
and rely on progressive rendering techniques to prevent disorientation. Progressive
rendering draws pieces of the tree in several frames instead of thé whole scene at
once, if rendering the scene takes longer thaﬁ 1/20 of a second. While rendering a
small fraction of the tree does not give a user the entire picture, we try to render
the most important parts of the scene during the first frame. The important parts
of the tree visualization scenes are the marked nodes, mentioned in more detail in
Section 3.3, the interaction box being dragged by the user, and, to a lesser extent,
the upper sections of the tree.

The seeding process starts by adding the rooté of marked subtrees, or other-
wise individual marked nodes, to the rendering queue. We render subtrees of marked
nodes by drawing the subtree root first, then rendering both up to the topological
root and down to some leaf in the subtree. This bidirectional rendering of marked
nodes allows the rendering process to draw the most important marked node subtree
roots first, as visual landmarks, along with the context of root and leaf node paths.
We do not require the leaf node paths to be marked similarly, but it is typical for
an entire subtree to be marked in one color, ‘especially if a user manually marks
subtrees. The cost of rendering this path from root to leaf is O(h), where h is the
height of the tree, but we also cache whether nodes have been rendered for a scene,
which somewhat reduces the drawing effort. Marked regions are storéd as ranges,
which may represent a forest of subtrees, so the seeding process breaks each marked
rangé into subtree components and adds the root of each subtree to the queue. I
describe marked regions in more detail in Section 3.3. |

After seeding the marked node subtree roots, we add the remainder of the

topology with leaf ranges. The entire tree is subdivided with a bindry process until

34

either one leaf remains in a range, or the leaves in a range are smaller than some
standard size called a segment. Section 3.2.2 discusses segments in more detail, .
but for the purposes of our TJ2 seeding discussion, segments are typically smaller
than a visible, on-screen pixel. -

Since we may have several leaves in a segment, the seeding subdivision process

is responsible for partitioning the entire set of leaves, knowing the dimensions of the

- rendering canvas, so the drawing process does not need to do any partitioning. The

drawing prdcess is given each piece of the tree and renders only one leaf-to-root path
per segment, which is discussed in Section 3.2.2. When adding leaf ranges to the
rendering queue, the seeding process places any ranges that are inside the current
interaction box at the front of the queue so the drawing process can prioritize these
regions. .

Unlike previous versions of TreeJuxtaposer that seed rendering with the top
cell of a quadtree hierarchy, TJ2 begins to draw the scene with a drawing queue of
a certain size, and this size only decreases as the scene fills with rendered nodes.
In TJ1, the drawing queue starts with the largest, top quadtree cell and grows the
drawing queue by repeatedly adding necessary, monotonically deeper cells of the
quadtree hierarchy, which puts stress on the data structures used to store, remove,
and order that queue information. TJ2 uses a simple list as its queue, so removal
operations are constant, where TJ1 operations are all logarithmic since it uses a
binary tree dataset for its drawing quéue. The TJ2 rendefing results with our new
seeding, discussed with details in Chapter 5, show that we can reduce the number
of nodes rendered with software and our methods require only a small increase in

time to draw per node.

3.2.2 Drawing trees

Tree rendering in TJ2 is based on the tree topology and spatial position of nodes

from gridding. This section focuses on turning the input, a list of leaf ranges from

35

the seeding process, into a fully rendered tree visualization by drawing a minimal
~ set of tree edges. Each leaf range contains either a single leaf, or several leaves in
a small vertical range; We guarantee that only one leaf in each range, plus the path
from that leaf to the root, will be drawn by the rendering process. Furthermore,
the leaf ranges partition the set of all leaves, so there are no gaps in the set of all
initially seeded leaf ranges.

In our rendering process, we do not force alignment of leaf ranges to discrete
regions of the screen, such as pixel alignment, and we do not force leaf ranges to
follow topological features of an input dataset. Either restriction would complicate
our seeding subdivision process, which needs to be fast to avoid extra computational
overhead from our software solution; our leaf range subdivisions are done with the
fast, generic accordion drawing code, discussed in Section 4.2.1.

During the drawing of leaf-to-root paths, we make sure the time spent draw- .
ing the frame does not violate our per-frame progressive rendering restrictions, if
progressive rendering is enabled. Ef/éry 1/20 of a second, the rendering algorithm
flushes the current drawing results to display the current, partial tree output and
the éystem checks for grid movements from user interactions. The drawing queue
clears and restarts the rendering process either if any user action is detected, or if
the current d;awing is still undergoing an animated transition. It is worth men-
tioning here that new user actions force the previous user action to jump cut to its
final position before processing new moverﬁents. TJ1 animation is not robust in this
way, which causes several grid positioning problems from propagation of numerical
errors, as I mention in Section 4.3.2.

In order to discuss the issues, the rendering is presented in several sections:
choosing a segmentation width in Section 3.2.2.1; ascent rendering in Section 3.2.2.2;

and choosing the termination for ascent in Section 3.2.2.3.

36

3.2.2.1 Choosing a segmentation width

The st‘opping criteria for the subdivision component of the seeding process is an
issue mentioned in Section 3.2.1. Since we want to eliminate drawing gaps in dense
regions but not draw too much, TJ2 éeeds ranges of leaves that are smaller than a
vertical block, if leaf density is greater than one leaf per block, to ensure that at
most one leaf is drawn for each range. However, choosing a segment width, our
partitioning stopping criteria for leaf ranges, of less than one block, meéning that
ranges larger than one block are subdivided, is not sufficient.

Because we do not know the alignment of blocks to leaf ranges in our final
set of seeded ranges, and do not know which leaf in the range will be rendered, we
cannot be sure that rendering leaves for adjacent leaf ranges will cover all blocks.
Section 3.2.2.2 describes why choosing a leaf to render based on block alignment is
not sufficient for solving this problem. Referring to Figure 3.7, knowing that leaf
ranges contain many candidate leaves to render, a leaf range L may render its single
block-wide leaf in block row Rm_'l while adjacent leaf range Ly, renders its single
block-wide leaf in block row R,,1, leaving a gap in block row R,,.

The solution to this poor choice of segment width is to restrict the width
of a segment to less than one-half block. A tighter restriction with smaller leaf
ranges adds more leaf paths to render, but does not add computétional complexity
with approximately twice the rendering. The benefits of sub-half-block segments
include a simple fix to the alignment problems seen with larger segments, and we
still do not require direct computations of block alignment and leaf range position.
We choose the half-block segment width from observing, in Figure 3.8, that of the
partitioned adjacent leaf ranges smaller than a half-block, there is at least one full
leaf range in every block. However, the half-block segment width only eliminates

drawing gaps at the leaf level, so we must. refine the traversal process to eliminate

other drawing problems.

\

Figure 3.7: Restricting the leaf range width to less than the block width is not
sufficient to render in every block at the leaf level. Ly and Ly, are adjacent leaf
ranges, both of which may contain several leaves to render, but we only want to
render a single leaf in each range. The local blocks rows are R,,—1, R, and Rpy1,
we assume a dense leaf layout, and are attempting to draw at least one leaf into each
block. Since Lj overlaps with R,;_1 and Lgyq overlaps' with Rpy1, it is possible
that a leaf will not render into R,, from either leaf range. We cannot shift the leaf
ranges up or down to align with the blocks since we use a partitioning process from
generic accordion drawing functionality. Therefore, the maximum width for leaf
ranges is too large for the leaf partitioning process.

3.2.2.2 Ascent rendering

A secoqd rendering problem occurs with our bottom-up rendering technique, as
shown in Figure 3.9. When ascent rendering, rendering a path from the leaf
nodes to the root node, we notice that there may be horizontai gaps from naive
path choices. For example, a sub-block subtree attached to a node close to the root
of the hierarchy, where drawing is sparse, may not be drawn if its leaf is not chosen.
This was not a problem with descent, or root-to-leaf, based methods in T'J1 since all
such sub-block subtrees attached in a sparsé region of the topology would be drawn.
However, TJ1 rendering performance indicates that its methods over-render nodes
deep in the hierarchy, exactly what TJ2 attempts to eliminate by ascent rendering.

For dense topological regions, paths from leaf nodes to internal nodes can be

38

Figure 3.8: Restricting the leaf range width to less than half the block width is
sufficient to render in every block at the leaf level. L and Li,; are adjacent leaf
ranges, both of which may contain several leaves to render, but we only want to
render a single leaf in each range. The figure shows both leaf ranges clearly inside
block row R, but we notice that shifting the leaf ranges up or down so either L or
Ly are partially in R,,—1 or Ry,41 are exclusive events; one of L or Liyq would
still be in R,,. We cannot shift the leaf blocks in any way to exclude at least one full
leaf range inside any block row. The maximum width for leaf ranges to guarantee
rendering leaves in every block, therefore, is slightly less than half the width of a
block.

culled into single horizontal lines instead of drawing the complete subtrees under
all internal nodes, until paths connect to subtrees larger than the block size. When
we assume the renderiﬁg paths of a leaf range are single horizontal lines from culled
subtrees, our horizontal line rendering gaps occur when we do not draw the spatiall\y
highest culled subtree in a leaf range. Since every path of a leaf range under our
assumption renders into the same block row, we only need to render the path in a
subtree that is not covered by any other subtree. Therefore, our leaf selection in
ascent rendering depends on finding the highest subtree possible from any leaf in
the range, with a restriction that the subtree width is less than the width of a block.

Finding the highest subtree in a leaf range is not an expensive process. We
do not need to examine each leaf in the range; the number of leaves to examine per

range is constant, and depends on our ascent checking width. The ascent width

39

Figure 3.9: Our rendering choices for dense leaf ranges in ascent rendering affects
the rendering output for horizontal edges in sparse regions. Given the two subtrees
A and B from the figure, both of which are contained in the leaf range highlighted
in blue, we need to choose one horizontal line path from some leaf to the root to
represent both subtrees. Furthérmore, the parents of A and B are large enough to
terminate ascent searching since they cannot be represented with the same horizontal
line path. If we choose either leaf in A, we render two nodes high, while rendering
any of the four leaves of B, we render three nodes high. However, rendering A
would prevent us from rendering B, so the line segment marked in red would not
be drawn if we make the poor choice of rendering A. Our ascent rendering process
must ascend all possible subtrees representable with horizontal line paths to render
the spatially tallest subtree, in this case B.

is further discussed in Section 3.2.2.3, which includes choosing an appropriate value
for segment and ascent widths. -

Without loss of generality, assume that the leaves in range L are enumerated
from lowest to highest in some verFical direction, ‘from Lg to Ly, as in Figure 3.10.
We begin’ by following the path from L, to node A, which is the first node that is
wider than the ascent width; B is the child of A along the path to L;. We store B
" as the highest subtree, H, for the leaf range, so far, and continue searching L for
higher subtrees.

Each internal node stores the widest leaves under its subtree, so we can find

L;, the maximum leaf under A, in constant time. Furthermore, we can find the

40

Figure 3.10: Finding the highest subtree in a leaf range, with leaves Ly to Ly, which
are not as wide as the segment width shown as the green background. Starting from
L, we ascend the topological tree until we get to the first subtree wider than the
ascent width. In the figure, A is the first subtree wider than the ascent width and
B is the child of A along the path to L,; I do not draw the entire tree in the figure,
only the traversed paths. We find L;, the maximum leaf under A, with a constant
time operation, and continue the process with its neighboring leaf, L;;1, which is
under C. L;y1 is still in the leaf range, so we ascend .again, this time finding C as
the first node that is not as wide as the ascent width. C is spatially lower in the
tree than B, so B is still the node we render for the leaf range. The parent of C has
its maximal leaf outside of the leaf range, so the process is finished; we render from
L to the root of the topological tree.

41

AscentRender Function
input: L = sub-segment leaf range [with leaves Ly, Ls11, ... Lg]
output: path P rendered from L to tree root

H~ L,
n« Lg
while n € L
p — getParent(n)
while subtreeWidth(p) < ascentWidth
nep
p — getParent(n)
end while
if nodeHeight(n) > nodeHeight(H)
Hen
end if
n — getNextLeaf(p)
end while
renderToRoot(getLeafln(H, L))

Figure 3.11: ascentRender ascends a range of leaves L to determine the highest
subtree node H that is not as wide as ascentWidth. Once H is found, a path from
L that is in the subtree under H is rendered towards the root, rendering H along
the path. Here is a description of all variables and functions used: ascentWidth is a
global variable, as discussed in Section 3.2.2.3; subtreeWidth(/N) returns the width
of the subtree under node N; nodeHeight(N) returns the base grid line coordinate
of N closest to the root; getNextLeaf(/N) returns the leaf adjacent to the maximum
leaf in the subtree under N; getLeafln(N, L) returns some leaf L; € L that is under
the subtree of N; and renderToRoot(L;) renders from leaf L; to the root.

adjacent leaf in the next subtree, L;t1, to start ascending from next, by using a
constant time operation from L;. If L;;; is not in L, then we are done searching
since A covers L and the leaf range adjacent to L. Otherwise, we follow L;,1 much
like we followed,Ls, updating H if necessary.

Once we find H, we render from any L under H to the root, stopping when
we arrive at a previously drawn node. Figure 3.11 gives pseudocode for our ascent

rendering function.
!

42

3.2.2.3 Ascent termination width

In the previous sections, we identify segment and ascent widths as important tree
ascent rendering values. The segment width determines how many leaf ranges must
be made for a given number of vertical blocks and the ascent width determines how
to search for subtrees of a certain threshold width to produce a correct rendering
for horizontal edges. Although we may choose any value less than one-half block for
a segment width, we have identified neither the limitations for an ascent width, nor
the effect of ascent width on our previous segment width restriction. This section
identifies one last rendering problem for dense regions and how appropriate segment
and ascent widths eliminate those drawing gaps.

In Section 3.2.2.1, we noted that segment widths must be smaller than one-
half block to ensure no visible gaps occur in leaves. In Section 3.2.2.2, we use a
rendering function that assumes rendering paths from leaf segments render into the
same row of blocks as the leaf segment. However, upward paths in a subtree are not
straight lines but, depending on the topology, may be very erratic. Similar to our
reasons for segment widths bounded by one-half block, we do not know the position
of subtrees ascended by our ascentRender function relative to on-screen blocks. If
an ascent occurs close to a block boundary, there is the possibility of visible gaps
in dense regions, as shown in Figure 3.12. We notice that this problem may occur
when the sum of segment and ascent widths is larger than one-half block, for exactly
the same reasons given for our original choice of segment width in Section 3.2.2.1.
When the sum of these widths is less than one-half block, we guarantee gap-less
rendering of paths in every block row. |

One restriction to the ascent width is that the ascent width a@ must be at
least as large as the segment width s, as shown in Equation 3.1. If the ascent
width is smaller than the segment width, it is possible to miss the highest subtree
node rooted in the leaf rénge, as shown in Figure 3.13. We want to maximize

the segment width since larger leaf ranges result in fewer leaf ranges to process.

43

B!

Figure 3.12: Illustration of ascent-related gaps for segment widths of less than one-
half block. The blue region represents a block row, green squares represent the
position and vertical width of two hypothetical adjacent leaf ranges, black lines
represent drawn edges, and the red line represents an edge not chosen for drawing
in the corresponding leaf range. If we choose to render leaves A and B, as shown in
the figure, there will be no gaps at the leaf level for the blue block row. However,
higher in the subtree at internal nodes A’ and B’ there is a drawing gap, where it
would have been possible to draw internal node C’. This gap is possible even when
A’ and B’ are not as wide as the segment width.

Adding the restrictions of Equation 3.1 and Equation 3.2, which states that the
sum of the two widths is less than one-half block, we solve for the segment width
s, in Equation 3.3, with respect to the block width b. To solve for the ascent width
restriction a in Equation 3.4, we need to use the maximal value of s, b/4, with both
Equations 3.1 and 3.2; a is exactly b/4. We arrive at an optimal solution of both

segment and ascent width equal to one-quarter of the block width b:

az8 = a—-820 (3.1)
s+a<b/2 — b/2-s5-a>0 (3:2)
b/2-2s>0 — s<b/4 (3.3)
mazimize s — s=b/4—a=>b/4 (34)

Again, similar to restrictions from Section 3.2.2.1, we do not have an increase

44

Figure 3.13: If the ascent width is less than the segment width, we may not find
the correct horizontal edge in a leaf range. Using the figure, we ascend subtrees
under nodes A and B in the leaf range highlighted in blue. If we ascend subtree
A using the ascent width, given as the brown line on the left side of the figure, we
" terminate on the red line at the root of A; we may assume the parent vertical line
of A is very long. Ascending B in the same manner, we find two more possible
paths, also marked in red; the ascend rendering algorithm would find one of these to
render since the root of subtree B is the first node in B that is wider than the ascent
width. Our algorithm would choose among all red nodes to render, all equally likely
depending on the traversal and layout methods used. However, we know that the
root of B is not covered by subtree A, so we would see a horizontal gap where we
would expect the root of B to be drawn. Therefore, the ascent width must be wider
than the segment width, which would definitely select the highest subtree B that is
contained in the leaf range.

in computational complexity by rendering twice as many leaves. Our pixel-based
resulting rendering performance with quarter-block segment and ascent widths ren-
_ ders seven times fewer nodes than TJ1 for the large, non-binary animalia trees from
the InfoVis 2003 Contest datasets [28], with only a small increase in the per node

rendering time, as shown in Section 5.2.

45

-
—~JOoIN][OJO]~ W

1

10
—1

Figure 3.14: A sample node key assignment for a small tree. We can store the subtree
under key 1 as the range [1,7] in a RangeInTree, or an individual node such as 2
in [2,2]. Storing a range such as [1,8] is also valid and represents the subtree range
[1,7] combined with node range [8,8]. In TJ2 RangeList collection objects, which
store several RangeInTree objects, RangeInTree objects are neither allowed to
overlap nor be adjacent to other RangelInTree objects in the same collection; we
‘collapse pairs of such ranges into single ranges when possible.

3.3 Marked ranges

In TreeJuxtaposer, marked ranges are necessary to define regions of interest such
as computed differences, search results, user ‘mark'ed groups, and even mouse-over
highlighted nodes. This section describes the methods used to store marked ranges
for efficient performance of updates when marks change and efficient lookup tech-
niques when marked nodes are drawn.

Nodes in TreeJuxtaposer are enumerated with node keys: pre-order, con-
secutive, monotonically_ increasing integers. This means that for every subtree in
TreeJuxtaposer, the subtree roof node key is smaller than évery other node key in
the subtree, and the entire subtree can be represented by a single range of integers,
from the value of the root node key to the value of one of the leaf nodes in the
hierarchy. An exarhple subtree is shown in Figure 3.14. This numbering scheme
allows us to efficiently store large subtrees as a pair of integers, in an object that we
call a RangeInTree. A collection of RangelnTree objects is a RangeList and sev-

eral RangeList objects are used in TreeJuxtaposer for operations such as marking,

46 -

S

resizing, and comparing.

For each RangeInTree object, nodes are stored either as a subtree or as
single nodes with consecutive node key values. This method of compressing the
amount of information, necessary to store common topological structures such as
large subtrees, is also efficient for range checking operations such as concurrently
deciding the color of several nodes. However, the node key assignment is permanent
and does not allow keys to change after the initialization step. If a single leaf node
is added or delgted, for example, too many nodes would have to be updated to
be efficient. Future TreeJuxtaposer versions, which may support tree editing, will
require new storage techniques that do not rely on the current node key values.

" Each RangelList is initially assigned to a marking color, which can be ‘changed
with color selection panel, shown as small color swatches in Figure A.3. RangeList
objects appear as marked with theif assigned color in the tree topology; techniques
such as guaranteed visibility, progressive rendering and label placement are used
to ensure visibility of marked ranges as a pri.ority over the normal nodes in the
topology. Highlighted node colors are also priority based, which means mouse-over
highlighted nodes are visible over user marked groups that are visible over search
results that are visible over automatically calculated differences. When rendering
trees, ranges of nodes to be drawn are searched for in each RangeList collection.
Since the lookup process for determining node colors is common with a potentially
large amount of data, storage and recovery of marked ranges for random sets of
nodes must be optimal. This section will examine how ranges were handled in TJ1

in Section 3.3.1, and the changes to handling marked ranges in TJ2 in Section 3.3.2.

3.3.1 Marked ranges in TJ1

There are several inefficient techniques used to store marked ranges in TJ1. Since

the TJ2 rendering process depends on efficient color lookup methods for all nodes

being rendered, these techniques are no longer used in TJ2; I identify them here

to clarify the contributions of TJ2. The most notable techniques from TJ1 that
we found to be inefficient were: RangeLists not combining adjacent or overlapping-
RangelInTree objects for automatically-marked node differences; RangeLists stor-
ing RangeInT'ree objects in lists; and RangeLists not storing nodes for implicitly

user-marked nodes.

Overlapping and adjacent RangeInTree objects

If the RangeList collections were sorted lists, it would be possible to perform color
lookup operations in time logarithmic to the number of items in the list with a
simple binary search. However, sorting ranges that may overlap in a list is not
trivial. One technique that would allow for easier sorting would be to combine all
pairs of overlapping ranges il\’ltO one single range; adjacent ranges such as [1, 3] and
[4, 5] would also be considered overlapping and can Be combined into the range [1, 5].
It is trivial to see the space efficiency of storing one range instead of several ranges
for long lists of adjacent nodes, or removing non-unique ranges, but we would also
become more time efficient in both searching a sorted list and searching for elements

in a combined range.

Unoptimized RangelList collections

In TJ1, RangeList objects were simple lists of RangeInTree objects. Since the lists
are not sorted, the color lookup operation, required for each node, has to éearch the
entire list for an overlapping region. Although it is particularly expensive to look
up a color for nodes known to be marked, unmarked nodes that are drawn also
require color lookups for correctness. The inefficient methods of storage, which lead
to inefficient color lookups, do cache color information for any node examined,' while
the user does not change any marks. However, due to the costs of color updates,
this marking scheme does not scale beyond tens of thousands of nodes with many

marked regions.

48

tiger ' . mouse

rodent
fast cheetah _@

mouse . cheetah
Lomsinsssssssomasienemmmsmn; mammal feline [
mammal beaver 1_tiger
. human i human
animal animal ‘
wasp : wasp

insect killer bee insect honey bee
bee bee -
honey bee killer bee

Figure 3.15: TJ1 only stores directly marked nodes to reduce the storage required.
In the example, a user has marked the fast subtree on the left, and on the right
the indirectly marked nodes appear. TJ1 stores only the subtree fast and does not
store the additional two subtrees mouse and feline from the right tree, but requires
" its color lookup code, which refreshes cached values after any marks have changed,
to determine the colors of all nodes by searching for the corresponding nodes for
each tree in each list of colors. TJ2 stores all three subtrees so determining colors
in this way is not necessary. TJ2 color lookup methods are sufficiently fast during
the rendering that per-node color caching is no longer necessary. '

RangeList collections store only explicit marks

TJ1 only stores marked ranges that are explicitly m.arked. This means that for a
two tree comparison, shown in Figure 3.15, if a user marks the fast subtree on
the left tree, only that subtree is stored in the RangeList. The feline subtree
and all other nodes marked in the right tree are ﬁot stored in a RangeList. TJ1
determines the marking color for each node when the node is rendered, using the
best corresponding node for that node in every tree. Finding the markiﬁg color for
nodes, after any marks have changed, is a slow operation that must perform a lookup
for each node being drawn, but TJ1 caches node colors to preveht subsequent slow
operations between marking. Although individual node marking for large numbers
of nodes is not a common operation, automated marking that frequently changes

the marked nodes, such as tree differences and search results, do not allow for rapid

updates of marked regions for large trees.

| 3.3.2 Marked ranges in TJ2

There were several changes made to improve on the performance of the implemen-
tation of marked ranges in TJ1, most notably using a binary tree to sort and store
RangelnT reé objects. TJ2 no longer caches results for each node, since color lookup
for ranges of nodes is sufficiently fast; we improve scalability by not caching colors
for each tree node. The efficiency issues mentioned in Section 3.3.1 are dealt with in
the followihg topics: RangeLists combining adjacent or overlapping RangeInTree
objects; storing RangelnT'ree objects in binary trees; and RangeList storing nodes

for implicitly user-marked nodes.

Combining adj.acent RangelInTree objects

Automated marking from operations like compﬁted differences and search results
often return several adjacent, non-unique, or overlapping RangeInTree objects, all
of which we refer to as overlapping ranges. TJ2 combines RangeInTree objects by
searching the RangeList binary tree for overlapping ranges, combining any overlap-
ping ranges with the RangeInTree, repeating the process until no more overlapping
ranges are found, and finally adding the new non-overlapping RangeInT'ree to the
RangeList. This repeated searching is necessary with the data structures we use
for our binary tree implementation, namely the Java T'reeSet, which cannot return

the entire set of overlapping ranges in a single function call.

RangeList collections as binary trees

We sort the RangeInTree objects in a binary tree by their minimum node key
values; the sorting criteria could actually use any node key in the range since there
are no overlapping ranges in RangeLisi binary trees. Since each RangeInTree
is accessible in time logarithmic to the number of marked items, the performance
improvement is a dramatic improvement for large numbers of marked items, often

resulting from hundreds of either differences or search results.

50

Another drawback to using the Java TreeSet class is there is no direct access
function to retrieve members of the tree, so we developed a workaround built into the
RangeInTree comparator function. We use one static RangeInTree object in the
RangeList class, called matchRange. The comparison function for RangelnTree,
compareT o(Object), stores the value of any overlapping range found in the binary
tree by setting the value of matchRange to the node passed to the compareT'o
function, before returning true to the calling function. By accessing the matchRange
object, we can get the first overlapping range from the binary tree for removing and

further processing, as described in the previous section. This work-around allows

‘us to use the built-in Java TreeSet data structures so we do not have to create our

own binary tree implementation. Furthermore, we use this work-around in many
places where binary trees are used in TJ2 and generic accordion drawing, saving the

effort of having to repeatedly re-engineer binary trees.

RangelList collections store all marks

When a user marks a node or subtree, we call that a directly marked node or
subtree, ar'l_d the tree that this occurs in is the directly marked tree. An indirectly
marked node is also possible when we compare with more than one tree, which oc-
curs in all trees not directly marked, the indirectly marked trees. TJ1 does not store
the indiréctly marked nodes to attempt to save time performing bookkeeping, so it
must recompute the indirect marks for each node after ahy marking changes occur,
even if the rharking does not affect the user marks. For TJ2, we perform the book-
keeping and attempt to store all marks, direct and indirect, to avoid unnecessary
recalculations of node marks for RangeList collections. _
After changing marks with multiple trees, TJ1 recomputes the cached colors

for all nodes drawn in every tree; indirectly marked nodes are no exception. The
colors for indirectly marked nodes are determined from their best corresponding

nodes (BCN) in the directly marked nodes, stored in RangelList collections; the

51

Figure 3.16: The best corresponding node (BCN) relationship between subtrees is
not always one-to-one. To compute the BCN for a node from the left tree in the right
tree, we need to find the node in the right tree that maximizes the value of number
of similar leaves divided by the number of the union of leaves [24]. As an example,
consider the figure with subtrees A, B, and C conserved between the two trees. The
BCN for each of these subtrees on the left is always the corresponding subtree on
the right; each BCN value is maximum at 1.0 since the set of similar leaves is the
same as the union of leaves. The same is true of the roots of these trees, o and x
since both trees contain the entire set {A, B, C'}. However, the BCN for 8 may not
be & but could be C if the size of A, B, and .C are certain values. For the BCN of
B to be 8, Bs = |C|/(|{A, B,C}|) has to be greater than Sc = |C|/(|{B,C}|), the
BCN value of 3 for C. Setting |A| = 1, |B| = 3, and |C| = 1, these calculations
become 35 = 1/5 and B¢ = 1/4, meaning that the BCN of 8 is C on the right-hand
tree. Therefore, directly marking C on the right-hand tree indirectly marks 3 as
well as C on the left hand tree. » : ‘

single color that appears for a given node is found by prioritizing the RangeList
coliections. This means that when TJ1 draws a node, it checks the BCN for each
tree for a mark; we assert that there is either a single BCN or no correspoﬁding
node for each tree. . |

A simple, but incorrect, approach would be to find each BCN in the indirect
trees for each node marked in the directly marked tree, and proactively mark those
corresponding nodes prior to rendering. This method does not mark all nodes in the
indirectly marked trees, as shown in Figure 3.16. Directly marking node C on the

left tree should .indirectly mark both the identical node C and its parent on the

52

Figure 3.17: When comparing two trees with the same set of leaves, a directly
marked single node may have a BCN in the second tree, but that second tree may
not have any node that has the directly marked node as a BCN. For example, if
we mark node « in the figure, its BCN in the right-hand tree is node § (a5 =
|{B;,C}|/I{4, B,C}|). However, ¢ has a BCN in the left-hand tree of 8 (63 = 1.0
and 8, = as). This means that for the implementation of marks in TJ1, we would
have not marked any node in the right-hand tree if o was marked. In TJ2, we
perform a back-check from the BCN of o, which is 4, by determining if the BCN of
8, which is 8, is marked in the left-hand tree. Since 8 is not marked, TJ2 does not
mark ; both TJ1 and TJ2 follow the same marking rules.

right tree. The BCN criteria is not one-to-one, so TJ2 requires a slightly different
approach to mark the correct set of nodes.
Since the BCN relationship is not a one-to-one relationship, each potentially

marked node must be examined in the indirectly marked trees for a correspondence

‘to the directly marked nodes. We can avoid checking every node of all indirectly

marked trees, by searching the neighborhood around the BCN for directly marked

nodes in every tree. If we examine the BCN for all directly marked nodes, we expect

to get a close correspondence to ther set of indirectly marked nodes. However, there
are cases when a directly marked node is.not the BCN of any node from another

tree, even with identical leaf sets, as shown in Figure 3.17. This means that when

we examine the BCN of all directly marked nodes, we must back-check the potential

indirectly marked nodes to some directly marked node.

The TJ2 marking process successfully finds all indirectly marked nodes with

53

an algorithm that performs back-checks on the BCN of all directly marked nodes.
If an indirectly marked node is found in this way, the parents and children of that
node are also examined recursively for BCN correspbndences; indirectly marked
nodes that are already marked are not processed further. The local checks are
necessary due to the nature of the BCN method used. We notice that indirectly
marked nodes are typically in the neighborhood of other indirectly marked nodes,
since the BCN does not change dramatically in localized regions of a tree structure.
An exﬁlanation of why the BCN is well conserved in localized regions is that the
Ieaf set in a parent node includes the leaf set in all of its child nodes. Therefore,
the BCN of a directly marked node is typically topologically close to a sufficiently
related neighborhood of node\s, which simply means the BCN value of a directly
marked node is never zero. When a node in the indirectly marked tree is found to
not correspond with any directly marked nodes, such as the example in Figure 3.17,
we do not- process the parent or child nodes of the BCN.

Note that it is also possible to mark a single node on one tree, and have more
than one indirectly marked node appear on a second tree. Referring to Figure 3.16
with the subtrees A, B, and C the same size as in the original example, if we mark
node C on the left, C and § on the right are marked. This behavior is correct
given our definitions, although it may appear confusing when this is not expected,
especially to those who do not know the subtleties of our BCN algorithm. This
behavior never appeared in TJ1 due to faulty marking in the color caching process
that showed com.puted differences over all marked nodes; and no colors for indirectly

marked nodes when differences were turned off.

3.4 Topological picking

Users perform navigation in TreeJuxtaposer using a mouse, so when the cursor
is close enough to a tree node, we want to indicate to users that the node has

been selected, or picked. We treat node picking as a simple case of node marking

54

by highlighting all BCNs of a selected node when we compare trees; unlike real
marking, we do not perform the back-checking operations, described in Section 3.3.
Since a tree node may-be drawn as a singlé pixel, in either horizontal or vertical
directions, we allow picking to be within a margin of error, which we call the picking
fuzz. The picking fuzz deals with the spéed versus accuracy tradeoffs associated
with the exact aiming a pointer at a target, which is known as Fitts’ law [10], after
the famous study by Paul Fitts.

We allow the user to be within a distance of five pixels from a selectable
target with our picking fuzz, but also understand that it may not be possible to
disambiguate an intended tarlget in regions where many possible selections are valid.
Therefore, we rely on a user to stretch the region of interest if a desired node is not
pickable with our technique. Our main concern is that users should always be able
to‘ pick a node if there is a single,. definitive choice for selection when a mouse pointer
is in a screen location close enough to pick it.

TJ1 is able to pick most nodes of trees, using quadtree structures, but could
get stuck trying to pick certain sub-pixel tree nodes [5]. These nodes, often in
- vertically very small grid cells, are usually adjacent to a cell of the quadtree that was
descended but was not able to pick a node. Quadtree cells that are descended are the
most likely candidates since the current mouse location is in the correct quadtree cell
quadrant, but no tree edges are in that quadrant within the picking fuzz distance to
the mouse location. However, the non-descended nodes in an adjacent quadtree cell
could have been near enough to the mouse, but these nodes were already discounted
by the quadtree picking algorithm. The quadtree picking algorithm lacks back-
tracking capabilities to search other quadtree cell candidates. .

An important design concept is that picking algorithms should be structurally
similar to rendering algorithms. The similarify assists in providing intuitive picking
with visible objects: visible objects can be picked and all pickable objects are visible.

As shown in our picking algorithm in Figure 3.18; TJ2 uses the cell layout described

55

Picking Function .
input: mouse screen position M = (X,Y)
root TreeNode T = (kids, cell) where
kids = {To, Tl, e ,Tn——l}
cell = (sz'ny Xmaz, Ymin, Ymaz)
output: picked TreeNode T|x y), a node close to (X,Y")

stack S« 0
S.push T
while S #
N « S.pop
if (X,Y) over edge of N
then return Nend if
“aMin «— N.cell. Xpmin
if N.isLeaf() or N.cell.bounds(Y) or zMin > X
continue end if
k — BinarySearch(N.kids, Y)
ifk>0
S.push N_; end if
ifk<n—1
S.push Niy; end if
S.push N
~end while
return §

Figure 3.18: Picking function that descends tree T° from the topological root node
of T until a tree edge close enough to mouse coordinates (X,Y) is found. A stack
S is used for backtracking if a descent is unable to find a tree edge; at each step
,of the descent, the siblings to the immediate left and right of the next node to
be checked are pushed onto S. We use binary search to select the next node for
descent, if appropriate, using N.kids, the children of the current cell, and the mouse
Y coordinate. For every function that we use for distance comparisons, including:
BinarySearch; Y within the cell of N; and mouse over edge of N, we apply a picking
fuzz, to satisfy Fitts’ law.

56

in Section 3.1.1 to descend the cell structure until it finds the cell that contains the
mouse pointer. Howevef, as the algorithm descends in the tree hierarchy, it adds
* the immediate left and right siblings to a stack. If the algorithm is unable to find
a node in the hierarchy after descending, it pops a node off the stack and continues
- descent searching with that node. Some subtleties of this algorithm are the stopping
criteria, how child nodes are selected for descent, and how the picking fuzz is used
to allow descent on siblings that are close enough to the mouse pointer.

The algorithm works by checking the bounds of the current grid cell with
the mouse pointer coordinates. If the vertical range of the current cell contains
the mouse pointer, then we know that a potential selected node is in one of three
places: an ancestor of the current cell, the current cell itself, or a descendant of the
. current cell. Since we start descending from the root cell, we know that once we
process a parent cell and determine that the horizontal mouse coordinate is spatially
lower .in the topological tree hierarchy, the selected cell is either the current cell or
some descendant. Finally, if the current cell does not contain the horizontal mouse
pointer, we know that a descent is n.ecessary. Our stopping criteria for picking would
therefore be that there are no pickable nodes in the cell that the mouse pointer is
found in after a sufficient horizontal descent; the algorithm would then use the stack
to continue searching.)

TJ2 is able to deal with n-ary trees, so picking a child to descend is not
trivially “left or right” as it would be in a binary tree. We know that the current
node being examined has some descendant node that has a cell which contains the
mouse pointer. To find the appropriate child to descend, we perform a binary search |
on the child nodes, using the mouse pointer location as our searching value. Once
we select the child node for descending, we push its immediate siblings onto the
back-tracking stack. ‘

We use the picking fuzz to descend siblings that do not exactly bound the

mouse coordinate with their vertical cell range. We know, when descending the

57

topology, that if we do not find an appropriate node for picking when we reach the
| end of our criteria, we need to search with the back-tracking stack. It is sufficient
to place only one sibling in each direction for a descent since the adjacent cells are
not empty and the adjacent edges are either within the pickiﬁg fuzz or too far to
pick. Finally, a node will only be pushed onto the stack at most once; back-tracking
would follow a different path that could not possibly re-select nodes from previous
descent attempts.

Our picking algorithm requires time linear in the height of the tree. This
time complexity is not a problem for most tree types, and picking has been shown
to be sufficiently fast on the deepest trees TJ2 is currently able to support, which
are over 1000 nodes deep. One important note about picking in deep trees is that
recursive picking methods quickly run out of stack-frame memory, which is why our
methods use a Java-based stack that we can place on the heap. Other methods that
use recursion on the height of the dataset topology, such as the tree parsing library,
should also be written without recursion, and are currently the limitation to the

depth of trees we would otherwise be capable of loading.

58

Chapter 4
Accordion Drawing

This chapter describes the advantages of using an Accordion Drawing (AD) infras-
tructure to develop new information visualization applications. AD applications
have features such as guaranteed visibility, global Focus+Context, and progressive
rendering, which all aid in the understanding and analysis of many different dataset
types. We can easily develop new AD applications with these key information
visualization features with a minimal amount of work in non-application specific
functionality. '

In this chapter, I focus on our improved motion algorithm for AD grids,
which is numerically stable and correct over large amounts of grid movement. I
also describe the split line hierarchy in detail, as well as how we use the hierarchy
to efficiently perform generic operations used by applications such as TJ2. I then
present the details for a single split line motion in our grid hierarchy, which is shown
to be capable of several key features to ensure order, stability, and efficiency in our
split line hierarchy. Finally, I present our algorithm that allows for concurrent
motion of several éplit lines with minimal split line hierarchy updates. Our new
élgorithm is just as efficient as TJ1 motion, and ensures that TJ2 motions do not
cause ordering inconsistencies in our split line hierarchy, which are present in TJ1
methods from lack of numerical precision.

In the remainder of this section, I details the AD mechanics from TJ1. Then

59

in Section 4.1, I describe our reshapable split line infrastructure. Section 4.2 de-
scribes our generic rendering infrastructure for pixel-based rendering, and Section 4.3

describes numerically stable AD navigation.

General accordion drawing mechanics

I begin by discussing the general mechanics of AD that persist between T'J1 and TJ2
implementations. Although both applications consider tree topologies for rendering,
this section focuses on a more general approach of a reshapable grid.

We grow and shrink areas on rendered datasets using movable lines in a two
dimensional plane, which has a growing effect for one region while shrinking the
region on the other side of the moving liﬁe; the horizontal and vertical lines are
independently movable boundaries of interaction boxes. Growing or shrinking
is performed on the base grid of such lines, the set of all lines that form the grid,
called split lines. When we grovs} or shrink an inferaction box region between a
pair of split lines, the AD infrastructure grows or shrinks the areas of cells between
each pair of split lines in the region with equal ratios. This equal ratio can be seen
in Figure 4.2, where a split line has vertically squished the region below a moving
split line while vertically stretching the region of interest inside the interaction box. -
Interaction boxes themselves are a rectangular arrangement of a set. of base grid
cells, which are the smallest individual regions of space on the base grid bounded
by four split lines.

Figure 4.1 shows a uniform split line grid of base grid cells, the typical initial
state of an AD application, with an intéraction box that I have selected. There
are no restrictions on the initial properties or distribution of split lines for appli-
cations; developers of applications are responsible for defining their own split line
arrangements if a uniform grid is not desired. After the base grid is created with
application-specific dimensions, applications typically lay out and draw a canonical,

uniformly scaled view of their datasets on the grid. Typically, the split lines them-

60

Figure 4.1: An initial uniform split line layout for AD applications, which appears
as a grid of base grid cells separated by split lines. I have selected an interaction
box, shown in grey in the upper left corner of the grid with a dot marking the center
of the box, which is shown stretched in Figures 4.2 and 4.3.

selves are not drawn as shown in the figure, and application-specific nodes appear
within regions of base grid cells. ‘

Figures 4.2 and 4.3 show the interaction box from in Figure 4.1 stretched
in the vertical direction and stretched in both directions, respectively. When we
shrink ‘ar_l area of base grid cells, data in that area may be compressed to a size that
is smaller a block, the smallest feature size for drawable elements. AD applications
handle over-compression of drawable data with culling, or choosing a representation
of the data for that compressed region. The AD framework conveys information to

the application-specific drawing procedures about the position and size of base grid

61

Figure 4.2: The interaction box in the grid of Figure 4.1 stretched vertically towards

the bottom of the display. This stretching: does not affect above the interaction box;

stretches between the top and bottom edges of the interaction box; and compresses

below the interaction box. All stretching is uniform over each of the distorted
' regions. ' ‘

cells, and the application determines how to draw in the current state of the base
grid.
4.1 Split line infrastructure

In TJ1, a version of TreeJuxtaposer that featured the original implementation of AD,
spatial subdivisions of the navigation space are created from a quadtree structure.

Each TJ1 quadtree cell, a quad-cell, stores a pair of split values used to allocate

62

W
RN

ools. Help:

Figure 4.3: The interaction box from Figures 4.1 and 4.2 stretched both vertically
and horizontally towards the bottom-right of the display. Notice the stretching does
not affect the grid in the section above and to the left of the interaction box, but
has been stretched and shrunk in other regions of the display adjacent to, and inside
of, the interaction box.

space to child quad-cell nodes; one value is for a horizontal split line, the other
for a vertical counterpart, as shown in Figure 4.4. The split values, between 0
and 1, are a relative offset with respect to the quad-cell boundaries. Split lines
are global grid divisions as shown in Figure 4.1, and quad-cells reference the split
lines for their boundaries and their movable split line. Several quad-cells reference ,
the same split line since many parts of the quad-cell hierarchy descend into similar
regions. For example, the (iuad—cells that divide the leaf nodes all reference the split

line that defines the right edge common to all leaves. However, TJ1 only caches

63

Yo
jg__ y
P e i g Yy

Figure 4.4: A quad-éell structure from implementation of AD in TJ1. Left: the
split lines z and ¥, along with the boundaries of this cell, define the boundaries for
the four child q'uad—cells of this cell. The split lines are movable and each quad-cell
maintains the location of its two component split lines with a relative split value;
the split value is a normalized ratio between zero and one. The split value for the
horizontal subdivision in a quad-cell, for example, is the value of (z — x¢)/(z1 — 20o),
which is the relative distance between the split line and the minimum boundary
with respect to the size of the cell. The relative split values are used to compute the
absolute location of split lines during rendering. Middle: the recursive structure of
quad-cells means that the quadrants of any quad-cell can hold one quad-cell each.
The bottom right cell has been subdivided, producing four new quad-cells out of
one larger quad-cell. The new quadécells use z, r1, ¥, and y; as their boundaries.
Right: all four quadrants subdivided. Notice how the bottom right and top right
subdivisions share the position of a vertical subdivision. Quadtrees are less efficient
for AD than a simple grid because of these redundancies.

split line positions for grid quadtree cells and does not cache the positions for split
lines themselves; any split line that is referenced by more than one quadtree cell is
updated with the same value for each reference.

Another quadtree inefficiency, described by Beermann et al. [5] for trees but
applicable to any AD applicatibn, is that each quad-cell wastes substantial memory
because they are all identical structures, with four pointers to child quad-cells. They
point out that quad-cells are used unnecessarily at the leaf tree node level; leaves are
the lowest quad-cells, do not have childfen, and are the majority of all tree nodes
in a typical dataset. Creating a new type of quad-cell for those tree nodes saves -
memory in their implementation of quadtree-based TJC.

However, Beermann et al. also present a second approach that uses a simple

grid layout for spatial subdivisions. Their grid method extracts the split lines from

64

the quad-cells and removes quadtrees entirely with grid-cell objects, tree nodes in
TreeJuxtaposer, defined by their bounding split lines in the grid. The use of a
regular grid layout for spatial subdivision, which is shown to load trees that are
three times larger in an equal amount of memory, provides a convincing argument -
for not using quadtrees for AD in general.

We generalized the AD. infrastructure from TJ1, and TJ2 is built using this
generic API, as discussed in Chapter 3. Our infrastrﬁcture improvements are de-
tailed in this section: abstracting the split lines from application specific topological
~ layouts in Section 4.1.1; generalizing horizontal and vertical split line components
providing a flexible API for new AD applications in Section 4.1.2; and storing the

split lines in a tree hierarchy for efficient updates in Section 4.1.3.

4.1.1 Abstracting split lines

In order to use a grid-based generic navigation infrastructure, we need to ensure ap-
plications are capable of performing critical taéks such as layout, rendering, culling,
and picking. All of these four tasks have application-specific components, but since
each task depends on location of data in our grid structure, we must p>rovide support
each task with our AD infrastructure. _

Dataset nodes, entities of datasets that provide the lowest-level dataset de-
tails, are assigned to a grid cell, which is a rectangle described by four split lines for
the top, bottom, left, and right sides. Each node of a dataset is typically assigned
to a grid cell when the dataset is initially loaded; this is not a requirement and the
dynamic assignment of dataset nodes to grid cells is an interesting area of future
work. In fny thesis, we will restrict node layout in AD by only permitting layouts on
grids with known dimensions; the parsing process for TreeJuxtaposer can determine
how many horizontal and vertical split .lines are necessary. When layi.ng out data
in AD, we place nodes in the grid where necessary, as described in Section 3.1.1,

by partitioning the grid in a much more flexible manner than the methods in TJ1.

65

Other AD data mapping techniques used by PowerSetViewer, presented in [25], are
capable of dyhamic layouts of data, but this topic is beyond the scobé of my thesis.

Rendering a dataset and culling data elements are related tasks since culling
is a function of the rendering process; all rendering requires knowledge of the location
of a specific item in a particular region of screen space. O‘ur rendering approaches
in TJ2 are topology-baséd, but the dataset-specific rendering functions coliect in-
formation about screen position and node size using the cell layout. As mentioned
in the TJ2 rendering section, Section 3.2, a node is rendered only if the cell in
which it renders in is larger than a culling limit. The AD infrastructure assists
the application-specific topology-based rendering and finds the culling limitations
for ranges of nodes stored in ranges of split lines. For example, the infraétructure
provides T'J2 with the desired segmentation-width partition of grid cells used to cull
leaf ranges into single leaf renderings. _

Picking is topology-based for TJ2, as shown in Section 3.‘4, but for application
datasets that may lack an inherent topology, we want to use the infrastructure of
split lines to pick dataset obje‘cts. Section 4.1.3 describes a hierarchy that we may

use for generic picking when datasets are unstructured.

4.1.2 Separate horizontal and vertical split lineé

Quadtree-based AD applications, such as TJ1, combine horizontal and vertical com-
ponents in one data structure. Quadtree AD makes development of applications that
either only require one-dimensional AD, or commonly have datasets with very mis-
matched quantities of horizontal and vertical split lines, difficult or inefficient to
implement. Figure 4.5 shows how two one-dimensional arrays of split lines con-
tribute to the two-dimensional grid structure of AD appli.c.ations such as TJ2. |
The quad-cell structures used by TJ1 may be modified to use one-dimensional
accordions, but were optimized for two-dimensional, planar AD. Beermann et al. [5]

show that there are several advantages to using one-dimensional data structures for

66

max

Ymin

Yo

Y1

ymnv

Figure 4.5: The combination of the horizontal z split line set with four movable
split lines and the vertical y split line set with two movable split lines forms a
grid of fifteen split line cells. The grid formed is the spatial subdivision used in
TJ2; compare this grid with the subdivision method of quadtree cells in TJ1, in
Figure 4.4.

split line storage with two TreeJuxtaposer reimplemented applications called TJC
| and TJC-Q. Their most substantial results in memory reduction were in TJC, which
distinguished the horizontal and vertical split lines as separate entities. TJC is three
times more memory efficient than TJC-Q, their version of TreeJuxtaposer that uses

quadtree structures.

67

Xmin Xo X4 Xy X3 X4 Xsg Xg X

Figure 4.6: The split lines z¢ through z¢ are stored in a balanced binary tree
hierarchy; the boundary split lines x,,i, and ... are not stored in the hierarchy.
This storage is analogous to the quadtree hierarchy in TJ1 where each cell of the
quadtree stored a pair of relative split positions. The one-dimensional storage of
split lines in TJ2 is more flexible than quadtree storage, allowing applications to be
created that only require one-dimensional accordions.

4.1.3 Tree hierarchy for split lines

Split lines are stored in a balanced tree hiefarchy. Upon determining the number of
split lines necessary for a particular accordion direction, horizontal or vertical, we
create a binary tree, as shown in Figure 4.6. The binary tree is organized with the
center split line; the split line with half the number of total split lines on either side,
as the root. Recursively, the tree represents progressively smaller regions to either
side of a central split line.

The split line tree operates hierarchically much like the quadtree structufe
in TJ1. With this structure, split lines can be interpreted as either lines or regions,
as shown in Figure 4.7. D is free to move inside the largest red box, since it is
bounded to movements within the boundaries of the entire visualization. The two
child split lines, B and F, split the regions left and right of D, and other split lines
further split.those regions. Movements of a B are bounded by its parent; it is free

to move only in its brown box, which is always bounded on the right by D; and on

68

Figure 4.7: The split line boundaries for a simple seven split line example show how
split lines can be represented by lines in a hierarchy or recursive-bounding regions.
Each split line is color coded, bounded by a region of the same color, can move left
and right in its box, and cannot leave its region. Moving a split line in the lowest
levels of the hierarchy, A, C, or F, does not affect the absolute positions of any other
split lines. Moving B, however, affects the absolute position of 4 and C, which share
B as a boundary; when B moves, the relative position of A and C in their respective
regions does not change, but the size of the regions change with B. Furthermore,
moving D affects all split line absolute positions, even A and F, which do not have
D as a boundary. The raw movements of split lines, as described, are transparent to
applications, which only request legal split line movements in absolute [0,1] screen
coordinates.

the left by the boundary split line. C, the right child of B, is bounded by both D
and B, and so on. Neither B nor C may cross over each other, and neither may
cross over D; split lines always remain ordered and never leave their boundaries.

As lines, split lines are ordered in the hierarchy between their adjacent neigh-
bors and can be indexed as such; the ordering of split lines never changes after
initialization. As regions, split line domains, halving for each layer in the hierarchy
with the root representing the entire domain, represent their region of movement
for both the split line contained within and, recursively, the domains of their de-
scendants. The split line hierarchy is a critical structure for the contained lines and
regions since the hierarchy is used to both calculate the absolute position of lines
for cell positions and control the navigation.

Each split line stores a relative position between its boundaries, in its domain.
To compute an absolute screen position, the relative positions of all ancestors of a

split line are required; the absolute value is cached and only computed on demand

69

AbsolutePosition Function
input: split line S
output: screen position in [0,1]

pos «— S.getRel Pos()
while S # root
P «— S.getParent()
if P.isChildLeft(S) '
pos — pos x P.getRelPos()
else
pos « (pos x (1 — P.getRelPos())) + P.getRel Pos()
end if
S« P
end while
return pos

Figure 4.8: AbsolutePosition function that ascends the split line hierarchy from
- split line S to determine the position of S relative to the visualization bound-
aries. The function getRelPos() returns the relative position of a split line and
P.isChildLeft(S) returns true if S is the left child of P in the split line hierarchy.
In practice, this function is recursive and the absolute positions of all split lines are
cached as they are computed. ' . '

when split lines have moved. The recursive calculation of the absolute location of a

split line is shown in Figure 4.8.

4.2 Generic AD rendering infrastructure

Rendering in AD applications is a discretizatibn process that maps the infinite-
precision drawing of an object to block-level precision. The core rendering algorithm
is linear in the number of blocks, unlike AD in TJ1, which was more dependent on
the size and structure of the dataset. More specifically, generic AD methods perform
TJ2 tree rendéring with a time complexity of O(b, x d), where b, is the number of
vertical blocks and d is the maximum depth of the tree topology.

AD rendering mechanics operate with a three-stage structure: partitioning;

discussed in Section 4.2.1, where an application-specific set of split lines is divided

70

into renderable ranges; seeding, discussed in Section 4.2.2, where the partitioned
split line ranges and marked ranges are arranged in an order appropriate for drawing;
and drawing, discussed in Section 4.2.3, where a set of nodes is drawn for both the
marked ranges and each partitioned, seeded split line range. Although seeding and
drawing are more application-specific than partitioning, the general structure of all

three stages follow a set of basic functional constraints for each AD application.

4.2.1 Partitioning stage

Each AD application that uses two independent sets of split lines to form a grid,
like the horizontal and vertical split line sets used in TJ2, must decide which set
to partition. For tree drawing applications, it is only possible to partition in the
direction of the leaves since leaves‘may be followed to their set of ancestors, or an-
cestors to their descendants. The orthogonal direction in T\J2, in the direction of
- the topological height, has no linked structure analogous to topological associations.
Other AD applications, that do not render a tree struéture, such as.SequenceJ ux-
taposer [35], would of course follow any imposed hierarchy or use knowledge of the
application domain to determine which split line set to partition; determining the
most appropriate set to partition is beyond the scope of my thesis.

Also associated with the application domain is the maximum ‘partition size,
also known as the segment size, often associated with the block size, which is the
minimum feature size for application drawing. In the specific case of TJ2 tree
rendering, for example, a segment size of one-quarter the block size is required for
gapless rendering, as discussed in Section 3.2.2.

Once an application requests the partition of a split line with a segment size,
AD begins a process that recursively descends the split line hierarchy until the split
line domain width is smaller than the segment size; the first partitions smaller than
the segment size are stored in a partition list. If a descent in the split line hierarchy

reaches the leaves of the split line hierarchy without finding a split line domain

71

smaller than the segment size, the single split line leaf is enqueued in the partition

list.

4.2.2 Seeding stage

Seeding thé partitioned list of split line ranges into the rendering queue is the second
stage of AD rendering. The seeding process is the key component of AD that
provides progressive rendering suﬁport. Drawing important objects first, which is
customizable for differing application domains, shows landmarks in the visualization

- and allows user-directed interaction on partial scene renderings. Applications that
do not use progressive rendering techniques for interaction, or render the entire scene
in a single frame, do not require an explicit drawing order but are seeded similarly.
The seeding process is an O(b, +m) process where b, is the number of blocks in the
partition and m is the number of marked groups.

Prior to rendering a scene, the rendering queue is initially populated with
the set of marked nodes. Next, the application adds each of the partitioned rahges
in order. If a user interaction box is present, the applicatiqn prioritizes the parti-
tioned ranges corresponding to that region by placing them befbre all other ranges
in the rendering queue. Although our naive seeding method iterates through each
of the partitioned ranges to add them to the rendering queue for this process, this
does not add a large time overhead; non-progressive rendering should not perform
the iteration and could gain performance incréases, but non-progressive rendering
optimizations are an area of future work and not analyzed here. This seeding order

is expected by the next stage in AD rendering: the drawing process.

4.2.3 Drawing stage

Drawing is the final stage in our generic AD rendering infrastructure. Using the
seeded queue from the previous stage, each marked range, described for TJ2 in.

Section 3.3, is rendered immediately. Since fast rendering techniques, such as marked

72

_range skeletons for TJ2, or simple aggregations for contiguous marked ranges are
used, AD attempts to draw each marked range in a single frame.

For a large number of marked ranges, the brute-force marked range render-
ing techniques may take too long to render, but adding progressive rendering time
checks may impeae this rendering too much. As shown in Section 5.4, marking a
whole 190, 265 node tree while compared to a 198,623 node tree in TJ2 with many
differences adds about 200 milliseconds to the rendering time for both trees. With-
out adding progressive rendering to marked region drawing, we could seed fewer
marked ranges, like TJ1, but this is another area of future work.

After marks are drawn éccording to the seeding queue, AD drawing draws
the dataset nodes, one set of nodes per range of split lines, in the seeded order.
Drawing from a one—diménsional splif line range into a two-dimensional grid is an-
other application-specific process. The node drawing for TJ2 is described in detail
in Section 3.2, which describes how tree rendering starts from ranges of leaves and
renders towards the root node.

Applications that do not render trees may use one split line range as an
outer-loop and the second split line range as an inner-loop for an iterative rendering
process over the base grid surface. By partitioning along both sets of split lines,
such applications may aggregate their datasets into a coarse grid of blocks that can
be rendered in O(b, x bp) time, for a horizontal number of blocks by and vertical
number of blocks b,. Identifying other interesting topological structures for drawing
in new AD applications, such as applications like SequenceJuxtaposer [35], is left to

~ future work.

4.3 AD navigation

This section describes the user-driven distortion-based navigation of AD. The generic
base grid structure undergoes distértions similar to the methods used in TJ1 AD,

but our methods are more numerically stable. In this section, I first describe how

73

a single split line can move in the split line hierarchy. The techniques for moving
the line are discussed, with emphasis on how the movement transaction achieves
numerical stability and its correct movement position. I then describe an extension
that allows multiple simultaneous split line motion in AD, again with correctness

and stability analysis.

4.3.1 Moving one split line

We accomplish navigation and zoorping in AD applications by Irepositioning split
lines in such a way that the cells on one side of the split line appear to stretch,
while cells on the other side are squished. We perform the stretching ahci squishing
actions according to our hierarchical split line tree, which provides an algorithm
for motion that performs with time cofnpléxity of O(log(n)), where n is the total
number of split lines. The case of moving one split line, the target, from an initial
position to a final position within the range of the split line boundaries, is the basis
for all navigation in AD applications. _

Unlike TJ1, our algorithm descends the split line hierarchy tree towards the
target split line instead of ascending towards the root, moving each split line encoun- |
tered to its final position. The final relative local position of each of the O(log(n))
split lines in the path is calculated in O(1) time with linear interpolation between
the target and an ancestor split line, where 7 is the total number of split lines in the
hierarchy. Once our algorithm reaches the target split line in the hierarchy, we move
it to its final position and the recursion stops. The algorithm, moveSz’ngleSplitLine,
is shown in Figure 4.9. |

In order to show generic movement in AD works, we show that the following
four properties hold for the motion of a split line, when we move a single target split

line to some final position:

1. a target split line can be moved anywhere in the bounds of the window;
2. all split lines remain ordered during a transition;

74

moveSingleSplitLine Function
input: split line S, at its initial position S.¢
output: S moved to S.f, the final position of S

L «— minBoundary
R — maxBoundary
C « getCenterSplit(L, R)
while S # C
if C.isChildLeft(S)
C.f — (g;g:gg) x (Rf—S8.f)+S.f
RC
else
C.f — ($55) x (Sf—L.f)+ L.f
L~C
end if
C.moveFromTo(C.i,C.f)
C « getCenterSplit(L, R)
end while
S.moveFromTo(S.3,S.f)

Figure 4.9: moveSingleSplitLine function that descends the split line hierarchy
from the domain between the minBoundary and mazBoundary split lines, where
the root split line is bounded, to the target split line S. At each step, the center C is
found in its domain [L, R]. If C is the target S, we move S to its final position with
moveFromTo. Otherwise, the final position for C, C.f, is calculated depending on
the location of S relative to C. C is then moved from C.i to C.f, a new boundary
[L, R] is-created with C, and the process continues until S is found. All positions 4
and f are global, relative to minBoundary = 0, and maxBoundary = 1.

3. each motion step positions half of the remaining split lines;
4. cells may become stretched when they should be squished during a transition,
but they are in the correct final position when the algorithm is finished.
Property 1: Target split line can move anywhere in visualization

A user must be able to move any split line from any starting location to any ending
location within the domain of the entire visualization. We must ensure that the

split lines are movable enough, without breaking our ordering restriction. Suppose

75

|

K stretch region i squish region >l

Figure 4.10: The absolute distances between split lines in a region being stretched
grow with respect to the distance that split line moves away, but the relative dis-
tances between all split lines in [z, z¢] do not change when split line ¢ moves
towards zr. As z¢ moves, Tg moves away from zy, since zg is in a stretch region,
but %g:—iﬁ remains constant. Since the resizing of cells, caused by movement of z g,
is uniform on both sides, moveSingleSplitLine from Figure 4.9 can complete half
of the split line movements for [z, zg| in each step of its outer loop. '

a split line, zg, moved from near z, to near zg, in Figure 4.10. We see that this is
possible by moving the ancestors of zg all towards z g, which drags s towards zpg.
This extreme action also conserves the relative distances among éll nodes on either
-side of zg, so if we drag xs back to where it was initially, the.re are no distortions

in the nodes between either x5 and zpg, or zr and zg.

Property 2: Split lines remain ordered

Observing Figure 4.7, we note that the red central split line D is capable of mov-
ing in its own domain, and evefy other split line under D in the hierarchy is ei-
ther squished or stretched in its respective half of the domain of D. Since the
moveSingleSplitLine algorithm in Figure 4.9 only moves either S or C in its do-
main, it is not possible for those movements to exit their boundaries or cause other
split lines to become disordered. The recursive division step of using C' to form the
new boundary is further protection from moving split lines out of order..

Care must still be taken in practice, however, since numerical roundoff errors
have been observed with deep recursion into infinitesimally small cells. We do not

have stopping criterion for preventing numerical errors, but have eliminated errors

76

with our densest datasets by imposing a limit on squishing the cells. Currenfcl&, we
prevent a user from squishing any region of the visualization beyond one percent of
the width or height of the drawing canvas, so regions cannot be squished out of view,
which provides a minimum rendering size and guaranteed visibility of all regions.
~ One positive side effect of the minimum rendering size prevents numerical errors
that might occur when regions are squished to infinitesimally small sizes. However,
we realize that constraint does not stop numerical errors with sufficient squishing
effort. Using a stopping criteria on recursion in moveSingleSplitLine to limit the

smallest cell width to some precision may work in theory, but it has yet to be tested.

Property 3: Each motion step positions half of the remaining split lines

This property is more of a statement of efficiency than of correctness: we move a
minimal number of split lines with simple calculations in each step of our motion
algorithm. We achieve logarithmic performance because the absolute, rendered dis-
tances between all split lines on either side of a cental split line change with respect
to the movement of that split line. Since moving the térget split line comceptually
resizes cells uniformly on either side, either by squishing or shrinking, the central
split line is able to move to its final position, and in doing so, half of the cells are
resized with each step in moveSingleSplitLine in Figure 4.9. Referring to Fig-
ure 4.10, we see that the region [z¢, zp], the half of [z, zg] without target zg,
can all be resized and ignored orice ¢ has been moved. Our calculation of C.f in
moveSingleSplit Line determines the final position of z¢ with a simple rescaling

with respect to initial and final positions of zs in [z, zg).

Property 4: Cells may stretch before they shrink

Before the algorithm starts an iteration, we can look at the current state of the
motion to see how some regions can be moved several times and still approach their

intended final distortion from the original. Consider the state of the split lines in

77

Xy Xs Xc XRp

R, —» R,

S i< >

stretch region squish region

Figure 4.11: A user has moved split line g to the right, and the current state
of running moveSingleSplitLine from Figure 4.9 has calculated that z¢ should
move to the right. Regions Ry, R;, and Ry are labeled sections of interest for this
movement. Rp is the region [z¢, zg] that is deformed, in this case squished, but
not recursed through. R; is stretched when z¢ moves toward z g, but should be
stretched more before the algorithm finishes. R is also stretched when z¢ moves
toward z R, but should be squished before algorithm finishes.

Figure 4.11, where z g is the target split line we wish to move towards z g, which is
the right boundary for z¢, the current center split liné.

The motion algorithm, moveSingleSplitLine, determines that z¢ should
move toward zr. We know that of the regions Ry, R;, and R», the movement of
zs should cause R; to grow and the other two regions to shrink uniformly. Our
algorithm then shrinks all split lines in Ry since zg is left of z¢, and at this point,
all split lines in [z¢, zg] are resized and in their correct final absolute positions.
However, that rightward move of z¢ stretches Ry and does not stretch R; enough
because zg is not moved to its final correct place in [z, z¢]. Can we be certain
that subsequent iterations are sufficient to correct this “mistake” and resize R; and
R; properly?

We can look at R; and Ry concurrently and see that although cells in both .
regions have been resized insufficiently, we are indeed approaching the intended
outcome. The location of split lines in R; and Ry are still in the region that has
yet to be finalized, so we need to examine the effects of several iterations through
moveSingleSplitLiﬁe, down the hierarchy. If running the algorithm is only able to

resize regions uniformly between zg and the immediately following iteration bound-

78

aries, then our algorithm performs properly with subsequent uniform moverﬁents
using _the center split lines. |

We know Ry, the half of the hierarchy that does not get descended, is always
correctly rescaled to its final size, through a uniform rescaling. Similarly, the side
that; our algorithm descends is uniformly scaled when z¢ moves. Because previous
resizings of Ry and Ry have been resized identiéally since they are in the same
domain descended by our algorithm, ‘the final split line movement of target zg will
ultimately correct the insufficient movements noticed in the intermediate stages of
the recursion. This means that although the intermediate movements of R; and
R; do not seem correct, the combined region is scaled uniformly and subsequently
descended, which guarantees the next iterations will properly scale the areas on both

sides of its center split line.

4.3.2 Moving several split lines

Unlike TJ1, TJ2 uses an algorithm capable of moving several split lines simultane-
ously. Motion in TJ1 consists of an algorithm that moves each split line in turn by
performing operations similar to the TJ2 moveSingleSplit Line algorithm. The TJ1
algorithm starts at a split line, moves it a small fraction in its movement domain,
then ascends to its parent to move it, and so on. This algorithm does not scale well:
it moves split lines high in the quadtree hierarchy several times, once for every split
line descendant being moved. These repeated adjustments high in the hierarchy
lead to numerical instability.

For k moving split lines in n total split lines, although TJ1 only moves
O(k log(n)) split lines, it moveé the root of the hierarchy & times. In TJ2, we have
developed an algorithm capable of moving with the same time complexity, but only
moving the root and any other split line at most once, producing a numerically
stable motion solution capable of moving more split lines accurately. Instead of

ascending the hierarchy, TJ2 descends, moving each split line as it progresses, much

79

like the siﬁgle split line movement moveSingleSplitLine from Figure 4.9.

Both TJ1 and TJ2 must compute the initial and final positions of the split
lines being moved; these split lin:as are not the onlyvsplit lines being moved but are
the split lines specified by the resizing action. Assuming that we have a subset N
of split lines, with initial positions N.i, that move in the set A of all splitllines, an
application-specific resizing function determines which regions between split lines in
N either grow or shrink. AD functions provide assistance to the growing process
by determining the new sizes for a set of regions, given a specified region growth
rate; the shrinking function also uses growing functions, after inverting' the set of
regions. After computing the new sizes for each region in N, we determine the final
locations of all split lines, N.f, by placing the regions in order starting from the
minBoundary until the last region is placed at the mazBoundary.

The reconstruction process for calculating N.f also ensures minimum region
sizes, for guaranteed visibility, are adhered to by not shrinking regions smaller than
the minimum context size. For operations that wish to shrink regions smaller than
the minimum context size, either the growing process does not proceed, or a lim-
ited amount of growing that does not violate the minimum size is allowed. The
moveSplitLineSet algorithm in Figure 4.12 starts after calculating N.f.

Three interesting cases in moveSplit LineSet are shown in Figure 4.13. The
termination case for recursion is shown as the left figure; there are no movable split
lines from N in region [A[start], Alend]], so recursion stops: the region in question
has already been resized. The center figure shows the case where there are split
lines in [A[start], Alend]] and the center line C is in the set of movable split lines
N. Similar to moving a single split line, we know that C is éome split line in N
and therefore, the final position C.f has already been computed during the region

preprocessing and is stored as n.f for some n € N. However, unlike the single split

. line case, which would terminate after this case, recursion continues on both sides

of C. Finally, in the right image when C ¢ N, we find L € N and R € N, the two

80

moveSplitLineSet function
input: N C A = list of split lines to move
where A is the set of all split lines
A.i initial positions, N.f final positions are known
start = index into A, initially 0
end = index into A, initially A.size
output: A moved to final positions A.f

C « Al[[(start + end)/2]]
if N.nodesIn(start+ 1,end — 1) =0
return
“elseif C¢ N

(L, R) «— N.neighbors(C)

C.f e (§=f2) x (Rf - Lf)+ L.f
end if '
C.moveFromTo(C.,C.f)
moveSplitLineSet(N, start, C.index)
moveSplitLineSet(N, C.index, end)

Figure 4.12: moveSplitLineSet function that descends the split line hierarchy and
recursively moves the set of all split lines A to their final absolute positions. start
and end are two indices into A that allow descent into the binary hierarchy tree
coded into A; the two split lines at these indices are initially the minBoundary (0)
and mazBoundary (A.size) split lines, and are immovable for the current iteration
of this function. If there are no split lines in N, the set of target split lines, that
are between start and end, the recursion terminates. Otherwise, if the center split
line C is not in N, the final position C.f for C must be calculated, similar to the
calculation in moveSingleSplitLine. L and R are neighbors of C in N, the closest
nodes to C on both sides, in the range [A[start], Alend]]. If either L or R is not
~ in that range, we use L = A[start] or R = Alend] as appropriate. Finally, after C
~ has been moved, we recurse both directions in the split line hierarchy. Note that
moveSingleSplitLine is a special case of this algorithm where' N = {S}, where S
is the single target split line.

81

Alstart] Alend] Alstari] CeN Alend] Alstart] L R A[end]

e Ke)
F—=--0

Figure 4.13: The three cases of function moveSplitLineSet are shown. Left: if N
has no split lines to move between [A[start], Alend]], the algorithm terminates since
nodes in [A[start], Alend]] have been resized. Middle: if C € N, the algorithm
moves C from C.i to C.f and recurses on the left and right sides of C. Right: if
C ¢ N, the algorithm finds the nodes L, R € N that are closest to C' to compute
C.f. After computing, the algorithm moves C.i to C.f and recurses.

closest split lines on the left and right sides of C, to calculate C.f, then continue

the recursion on both sides of C. These movements resize regions to the left and

right of the center split line uniformly, and arguments made for repeated recursions

in our single split line movements also apply to moving a set of split lines.

82

Chapter 5

Evaluation and Discussion

In this chapter, I compare the relative performance of TJ2, with respéct to the per-
formance of similar TJ1 actions, discuss future work directions for AD applications,
and conclude my thesis.

All performance tests were done on a machine with a 3.0 GHz Pentium IV
proceséor, Java 1.4.2_04-b05 HotSpot runtime environment with a maximum of 1.8
gigabytes allocated for of heap, and nVidia Quadro FX 3000 video chipset, running
twm in XFree86 version 4.3.99.902 with no additional processes running. The canvas
resolution for TJ1 and TJ2 was set to 640 pixels wide by 480 pixels high and timing
and node counts were output by TreeJuxtaposer, averaged from several manually
prompted redrawings of each tested dataset. Since datasets that could be loaded
by either version of TreeJuxtaposer are required for compafison, I chose to compare
with two clésses of trees and the largest contest trees from the InfoVis 2003 Contest
dataset [28], described in Af)pendix A. I also compare larger datasets with TJ2 to
get a better idea of non-synthetic dataset performance by using the directory tree

structure from the Open Directory project [26], a large online browsable catalog

of several billion websites. The directory categorization tree structures I use are

from March and June 2004, with shortened names of 03/04 and 06/04, and are
approximately 500 million nodes each with many structural differences.

The version of TJ1 that I use is from before the TJ1-contest, and I found

83

I was able to compare the two largest contest datasets, of animalia, and animaliay,.
This pair of datasets do not load with TJ1-contest, and while I was evaluating TJ1
with this data, the memory consumption while doing this was near the maximum
heap size, but no garbage collection occurred to skew the timing results. Also,
several trees would load but not render in TJ1 due to a programming error. I found
that by removing a-single node, this error was eliminated.

The simple synthetic tree classes I chose to represent are the canonical bal-
anced binary trées and star trees. Balanced binary trees were chosen since they
have been used almost exclusively in TJC published results on rendering large trees
in accordion drawing grids [5]; they are a good example of a well-known predictable
structure. Star trees, simply one root node attached to many leaf nodes, were chosen
based on my observations made of rendering traversal algorithms used in TJ1 and
TJC; both render binary trees well, but may have problems with higher degree inter-
nal nodes that would be exacerbated by a node with an extreme number of children.
A more in-depth tree classification system with many real tree datasets would be
more corﬂplete, but I believe that the tree classes I test are simple to classify, show
interesting progressive trends, and reveal a measure of efficacy of TJ2 versus TJ1.
Furthermore, I show how.the synthetic datasets lead to interesting curves through
the space of all possible tree permutations, while real data validates my choice of
. synthetic datasets.

Each of the following comparisons between TJ1 and TJ2 are investigated:
preprocessing, including layout time and the initial difference calculations, ‘in Sec-
tion 5.1; number of nodes rendered and how long to render a scene, in Section 5.2;
memory consumption, in Section 5.3; and marking efﬁcieﬁcy, in Section 5.4. When
available, I also compare TJ2 with published results from TJC, investigating poten-
tial advantages of either method when rendering large trees of unknown topology.

A summary of the results is given in Section 5.5.

84

5.1 Preprocessing

The time to load a single tree is the time needed to parse a dataset, construct
the necessary split‘ line grid, perform the gridding described in Section 3.1.1, and
calculate the BCN values to perform associated difference marking. Loading several
trees for comparison always involves the computation of differences betwee_n each
pair of trees, which of course adds marking time for each of the differences on
rendering as well; marking is covered in Section 5.4. Also, since parsing the dataset
for a pair of trees is exactly the same as loading each tree sequentially, I will only
investigate the parsing process for single trees, keeping each investigation as simple

as possible; the more interesting preprocessing for multiple trees occurs after parsing.

Parsing

The dataset parsing time, shown in Figure 5.1, for TJ1 and TJ2 seems to be quite
| different, although they both use identical parsing libraries. An explanation for the
differences in parsing time could be due to small changes in object constructors used
in parsing; the change is simply the initialization of the BCN score of each node to 0
in TJ2. However, these differences are only a small constant factor to the linear time
complexity for parsing and is not as much a factor as the dataset size increases. It
s likely that small changes, magnified over millions of instances, would add as much
to the parsing function in TJ2 as they would add to later preprocessing functions
in TJ1. R
TJ1 and TJ2 parsing functions are both linear with respect to the number of
nodes read from the dataset file; there is no appreciable difference between parsing
binary and star dataset classes in either TJ1 or TJ2. Published results from TJC [5],
which uses a parser built from standard parsing libraries, indicate that parsing a
two million node binary tree takes ten seconds, about one quarter the time of TJ2;
parsing is still linear in TJC, albeit with a smaller constant factor than either T'J1

or TJ2.

85

Parsing Time

60 T T T !
50 F ' §
% 4o |
o
E *
> 30 - T
s 0
I
E - TJ2 binary B
e TJ1 binary
..... T2 star s
TJ1 star wmm
10 |+ TJ1contestA +]
TJ2 contestA X
. P> . . TJ2 OpenDir 03/04 %
0 0.5 1 1.5 2 25

~ tree size (millions of nodes) .

Figure 5.1: The parsing times for TJ1 and TJ2 with binary and star synthetic
trees, and single contest and Open Directory real trees. All parsings are done with
the same library, but TJ2 is slightly slower with a small change in its tree node
constructor. The Open Directory tree takes much longer to load when compared to
synthetic trees of the same size due to its structural complexity and non-synthetic
node names.

Gridding

Preprocessing time, which is primarily gridding in TJ2 and the quadtree layout
methods of TJ1, is substantially different between TJ1 and TJ2, even after account-
.ing for the aforementioned differences in parsing. As shown in Figure 5.2, both TJ1
and TJ2 preprocessing are linear in time with respect to the number of nodes placed,
but TJ2 is at least ten times faster than TJ1, due to construction of the quadtree
structures in TJI. Thé simplicity of TJ2, which has a low gridding constant and
simple partitioning scheme as mentioned in Section 3.1.1, allows balanced binary
trees with two million nodes to be loaded in under 15 seconds. Most of the extra
time spent by TJ2 with the star trees, compared to binary trees, is maintaining the
list of leaves, which is two times larger for star trees than for binary trees.

Finally, notice that the real-world contest and Open Directory datasets shown

86

Preprocess Time
50 T 7 T

N ' TJ2 binéry
45 | i TJ1 binary -
TJ2 star
40 r i F TJ1 star «
i : TJ1 contest A
@ 35 i - OTJ2<[:)ontes/tA
i § 2 OpenDir 03/04
g oot] r]
» fE e
@ 25 N R
8 sl i/ e |
%] f;.'
e _
Pl e _
S -
0 1 1 i1 1
0 0.5 1 1.5 2 2.5

tree size (millions of nodes)

Figure 5.2: Preprocessing time for TJ1 and TJ2, which includes gridding and other
initialization tasks. TJ2 is ten times faster than TJ1 for the largest trees loadable
by TJ1. The contest and Open Directory datasets process in time similar to a star
tree of the same size due to high brdnching factor, limited depth, and other node
processing factors.

" in Figure 5.2 for both TJ1 and TJ2 appear close to the respective synthetic star tree
class dataset of similar size. ‘A small amount of extra time is spent on sorting of
real node names, but these datasets are particularly dense mostly at the leaf level, .
when considering preprocessing time. The ratio of leaves to internal nodes for the
contest dataset is 154922 : 190265, or 81% leaves; there are rﬁany internal nodes that
have many children, but it is difficult to determine a precise impact of the internal
19% of the tree. It is too difficult to determine how relatively efficient TJC would
preprocess star trees from the published results [5]. The closeness of the contest

dataset to the star tree of the same size does indicate that the family of star trees

used in my evaluation is not entirely irrelevant.

Computing Differences

Adding another tree affects the preprocessing by including the difference computa-
tions after each subsequent tree is added. Thé time to prbcess differeﬁces in TJ1 for
the contest dataset is approximately 50 seconds, while T'J2 takes approximately 12.5
seconds. This time difference is not related to the difference computation, since the
computation is'unchanged between the applications, but the way marks are stored,
which is investigated further in Section 5.4. The linked list of marked differences in

TJ1 is implicitly sorted by the iteration process that adds each different node to the

.group of marked differences, but it contains a list of every marked node, and does

not collect nodes with adjacent node key values into ranges. This means that for the
first marking action of differences, and each subsequent change in the node marking,
TJ1 must process the entire list of differences for each node range considered for

drawing.

5.2 Scene rendering

There are two telling benchmarks involved in the complexity of rendering a scene:
the time it takes to render a scene and the number of nodes rendered for a scene.
Also, the time complexity per node is important' to consider since there is no benefit
to rendering fewer nodes if the time to process each node is substantially slower

than alternative, more brute force, methods.

Scene rendering time-

Assuming that a sufficient number of nodes are rendered to give an accurate repre-

- sentation of a dataset, a useful metric is the wall-clock rendering time for a dataset.

Figure 5.3 shows the rendering time performance of TJ2 with the binary and star
tree datasets, again with the contest dataset shown. As expected, the datasets are

correlated to the number of nodes rendered, in Figure 5.4, but are not as smooth

88

Rendering Time

5 : , , .
45t /]
ar / |
/
> 35 F X;" b
g 3r / TJ2 binary]
= .f ,\ TJ1 binary
2 25r TJ2 star o ©
5 / TUT Star e
B er TJ1contest + .
3 { TJ2contest X
LT B A - TJ2 OpenDirectory %]
1.5 2 25

tree size (millions of nodes)

Figure 5.3: Rendering time for TJ2 is constant beyond datasets of a threshold for
both binary and star trees. TJ1 renders binary trees slightly slower than TJ2, but
star trees are much slower. Although TJ1 aimed for performance similar to TJ2,
some classes of trees cause TJ1 to render slowly. The rendering time performances
of TJ1 and TJ2 are closely related to the number of nodes rendered, as shown in
Figure 5.4. Figure 5.5 shows another view of this relationship as the rendering time
per node. v :

due to the timing accuracy. The correlations are similar for each of the datasets

tested, so rather than analyze the rendering times for each pairing, I will compare

the rendering speed per node rendered between each dataset.

Number of nodes drawn per scene

In Figure 5.4, we see that for TJ2, the number of nodes rendered for star trees is
a constant after a certain number of nodes. This number represents.the saturation
of leaves under a subtree in TJ2, where once the maximum number of leaves per
vertical height is reached, a subtree will not render any more; this is the result of
our pixel-bounded rendering of leaves.

Similarly, but not as abrupt, is the series of binary trees. For each new layer

89

Nodes Rendered
600 T T

TJ2 binary
TJ}Jbinary
L 2 star -«
500 / Td1 star
/ TJ1contestA 4

TJ2contestA X
400 /" TJ2OpenDir 03/04 %]

300

200 + i

nodes rendered (in 1000s)

0 0.5 1 15 2 25
tree size (millions of nodes)

Nodes Rendered

15 TJ2 binary
TJ1 binary -~
TJ2 star -
o TJ1 star
10 TJ1contestA + 1
TJ2contestA X

TJ2 OpenDir 03/04 %

nodes rendered (in 1000s)

0 0.5 1 1.5 2 25
tree size (millions of nodes)

Figure 5.4: TJ1 is unable to cull nodes for my star tree synthetic datasets and draws
every node, shown in the top graph; this performance is obviously not scalable. The
bottom graph shows a more detailed view of TJ1 binary tree performance compared
to TJ2 performance. In TJ2, star trees render a constant number of nodes and
binary trees render an additional constant number of leaves for each doubling of
nodes. The contest and Open Directory real-world datasets render between the star
and binary tree examples since they have complicated internal node structures, but
are not deep trees. TJ1 binary tree performance appears relatively close to TJ2
performance, but overculls dense regions since it does not properly render some
datasets with its culling criteria. '

90

of leaves added after a certain point, where a layer of leaves is the same size as the
previous half—'sized.tree, there is a limit to the amount of rendering in that level,
again dependant on the number of pixels. For trees larger than the first tree that
maximizes the number of leaves rendered, the tree twice the size takes the same
amount of time more to render. In the test case, where the screen is 480 pixels high,
we render at most 2048 leaves and each progressively largef binary tree renders
exactly 2048 more nodes than the previous. The limit in the binary tree case would
be visible in the graph only if horizontal culling is used, but we do not cull in that
direction.

For TJ2, the contest datéset renders fewer nodes than the binary tree of
similar size simply because it is not as tall as that binary tree and has many more
leaves. Of course the contest dataset cannot render as few nodes as the simple star
tree of any size since the star tree has no interesting internal structure. Conversely
for TJ1, also shown in Figure 5.4 the contest dataset re_nders fewer nodes than the -
~ star tree. The star tree in TJ1 is one of the worst case rendering examples since
every node is rendered, and this leads to poor rendering for many trees with high
branching factors. Binary trees are much more efficient than star trees for TJ1.
Also shown in Figure 5.4, the binary trees that rendered properly with TJ1 show
performance characteristics similar to TJ2. Unfortunately, TJ1 rendering quality
for such large trees suffers from overculling effects and does not render some trees '
properly.

If we attempt to render a star tree with TJC, ﬁsing its rendering algorithm as
described in [5], it would have the same poor rendering count as TJ1, also rendering
every node. This is reflected in the published TJC results for the contest dataset
of 190,265 nodes, where TJC renders 51,255 nodes, compared to an 8,388,607
node balanced binary tree, where TJC renders 50,356 nodes. TJC rendering ﬁses
an algorithm that considers rendering a subtree as a single horizontal line if its

extremal leaves subtend the same pixel, and does not partition the children of nodes

91

Microseconds per Node Rendered
50 — .

N TJ2 binary
45 F : TJ1 binary - J
TJ2 star
40 | TJ1 star -]
TJ1 contest A
35 | :] TJ2 contest A |
T TJ2 OpenDir 03/04

30 fo

25; X * T
+

microseconds per node rendered

N S i
10 Ao | _
5 * 1 1 1

0 05 1 1.5 > 25

tree size (millions of nodes)

Figure 5.5: The relationship between the number of nodes rendered and the amount
of processing required per node is important in understanding the tradeoffts of ren-
dering fewer nodes for complex structures. This figure shows TJ2 rendering per-
formance for star trees is three times slower than all other performance ratios, but
the dataset renders scenes faster than TJ1 since TJ2 aggressively culls this dataset
and TJ1 draws every node. Similarly for binary trees and the real-world contest
datasets, TJ1 renders nodes faster on average, but TJ2 renders many times fewer
nodes per scene, as shown in Figure 5.4. Note that for real-world datasets with
very different sizes and structures, TJ2 renders nodes from the contest and Open
Directory datasets with similar efficiency.

with high branching factors. This means that any node with leaves that subtend
more than the pixel-based culling criteria of TJC will cause TJC to draw at least a
path from each child node to a leaf. Therefore, although TJC has been shown to scale
well with large balanced binary trees, algorithmic improvements that consider trees
with higher branching factors would probably be necessary to scale its rendering

performance with larger n-ary trees.

- 92

Average time to render a node

Figure 5.5 shows the per-node rendering performance of TJ1 and TJ2. As shown, the
average time required to draw a node in a star tree for TJ2 is three times greaﬁer than
for nodes in the same dataset for TJ1. But, even though TJ1 renders nodes each at
a speed of about 10 microseconds per node and T'J2 needs 30 microseconds per node,
TJ2 renders a much smaller number of nodes for that dataset class. In fact, TJ1
renders every node of the star tree datasets and TJ2 renders a constant number
of nodes after a large enough dataset size, as shown in Figure 5.4. Interestingly,
TJ2 draws binary tree nodes on average faster than TJ1, the opposite result of the
star tree case, which means that althdugh they render similar numbers of nodes,
TJ2 renders binary trees faster than TJ1. Average node drawing performance for
the contest dataset is close, with the T'J1 rendering cost approximately 25% lower
than TJ2; the Open Directory dataset has similar per-node rendering performance.
However, since TJ1 renders seven times the number of nodes that TJ2 renders for
that dataset, the time is 0.3 seconds for TJ2‘Versus 1.4 secondé for TJ1, as shown

~in Figure 5.3. '

5.3 Memory usage :

The two classes of results to consider for memory usage include single trees and tree
corr-lparisons. 1 attempt to remove the minimal memory required to store names of
»n.odes from each dataset by first subtracting the size of each dataset file from the
raw memory results. This is simply to investigate the structural fnemory usage for
TJ1 and TJ2, and should not influence the overall results, but does inﬁuenceb the
raw memory usage ratios between each version of TreeJuxtaposer. |

Using a simple grid structure to position dataset.topology in place of the
quadtree hierarchy has improved the rhemory performance, and therefore maximum

sizes of datasets. Shown in Figure 5.6, memory usage in TJ2 is five times more

93

Total Memory

2000 T y - T T
. TJ2 binary
TJ1 binary
TJ2 star -
+ /- - TJ1 star
1500 - i ~~ TJ1 contest
; TJ2 contest
& f -
=
2 1000
£
[4]
E
500
0 1 1 1 1

tree size (millions of nodes)

Figure 5.6: Memory performance for binary and star tree with TJ1 and TJ2. Mem-
ory usage in TJ2 is five times more efficient than TJ1 for identical datasets. Also
shown are the contest dataset comparisons, which suggests that structural difference

storage in TJ1 is poor compared to TJ2. The Open Directory dataset comparison

uses more memory to store many structural differences and fully qualified node
names, which are used to differentiate identical leaf names and provide a more ac-
curate pair-wise node correspondence between the trees.

efficient than TJ1 since it either allows trees five times larger to be loaded, or uses
one fifth the memory of TJ1. For smaller datasets, this ratio is slightly smaller, but
still considerable.

Since the marked node storage has been improved in TJ2, much larger tree
comparisons with full difference marking have been possible. Also shown in Fig-
ure 5.6 are the largest tree datasets from the InfoVis 2003 Contest, compared using
TJ1 and TJ2. Clearly, the amount of memory to store the differences between fhe
datasets impacts the TJ1 contest by more than a factor of five, since the comparison
in TJ2 uses nearly the same amount of memory as the star tree dataset in TJ2, while
the comparison in TJ1 is comparable to a star tree dataset with 50% more nodes

using TJ1.

94

Application ‘ TJ1 | TJ2

First Scene Unmarked 115 | 0.3
Subsequent Scenes Unmarked | 1.5 | 0.3
First Scene Marked 130 | 2.5°

Subsequent Scenes Marked 15 | 0.5

Figure 5.7: This table shows the marking performance of TJ1 compared to TJ2, in

seconds. When comparing two datasets of over 190,000 nodes each, the first row.

shows the time to render the first scene, which includes the set of automatically

marked differences. The second row shows time to render subsequent scenes; note

. that TJ1 caches results from the first scene, dramatically reducing its color lookup

for each node while TJ2 performs the same efficient color lookup in both cases. The
third and fourth rows show results of marking an entire dataset in both applications,
which marks BCNs of marked nodes on the indirectly marked tree. The performance
of TJ1 again is poor on the first scene, but aided by caching in subsequent scenes.
TJ2 is slightly slower than an unmarked scene, and requires some time to compute
the set of indirect marks immediately after the tree is marked. '

5.4 Marking efficiency

Finally, I will show the tradeoffs in marking efficiency for TJ1 and TJ2. After mal;k-
ing an entire single tree in TJ1, each node caches the marking. color for subsequent
scene renderings, so marking takes time linear in the number of nodes in the tree
once, then time similar to unmarked rendering for each additional scene. Similar
marking in TJ2 traverses node structures in the indirectly marked trée, as described
in Section 3.3, which incurs a worst-case marking penalty in TJ2 that is O(n), where
n is the size of the topological tree. Since marking single trees in TJ1 and TJ2 are

very similar to their individual scene rendering performances, it is more interesting

to consider marking an entire tree while two topologically different trees, such as

the large contest trees, are loaded.

After marking .one contest.tree>in TJ1, it takes approximately 130 seconds
to render the first scene afterwards, which is approximately 15 seconds longer than
the first scene rendered. The first écene takes 115 seconds simply because of the

difference marks on both trees must be cached for every node. More time is required

95

after marking one. tree because that single user-defined mark adds one more range
that must be considered during the color caching process. Normally, these two
trees render in under 1.5 seconds, and this time does not change considerably after
marking.

After similar marking in TJ2, a delay of less than two seconds is required to
traverse the directly marked subtree and compute the list of marked nodes in the
indirectiy marked tree, as described in Section 3.3. For TJ2 performance in scenes
before marking, the average rendering time for both trees is 0.3 seconds, while after
marking takes 0.5 seconds, bécaﬁse TJ2 does not cache the marking results per node
and must lookup the color for every node rendered. The tradeoff of nearly doubling
the TJ2 rendering time is mostly related to overdrawing marks in regions. Although
marked region drawing is handled more efficiently in TJ2 than in TJ1, it would be
an interesting area of future work to improve this drawing algorithm, perhaps by

culling in areas of many marked regions.

5.5 Evéluation summary

TJ2, built on our new generic AD infrastructure, yields far better performance than
TJ1 in every category that I measured: preprocessing time, rendering time, marking .
time, node drawing count, and memory consumption. Preprocessing times for TJ2
and TJ1 are both linear in the number of nodes; but TJ2 is typically ten times faster
after the datasets have been loaded. TJ2 limits overdrawing and is able to render
a constant number of nodes for my synthetic star tree examples, while rendering a
fewer number of nodes than TJ1 for binary trees. For trees with complex structure
that require TJ2 to spend more processing time per node than TJ1, TJ2 renders a
much smaller number of nodes, and renders the entire scene up to five times faster
than TJ1. The partitioned grid used by TJ2 for layout is also five times more efficient
than TJ1, allowing much larger datasets to be loaded with less memory resources.

Finally, my example of worst-case marking of the contest dataset comparison for

96

TJ2 is an order of magnitude faster than TJ1 for the first scene and three times
faster for subsequent scenes. Moreover, TJ2 achieves its marking time performance
without using up memory to cache marking results, allowing larger datasets to be

loaded.

97

Chapter 6

Future Work and Conclusions"

6.1 Future work

Mentioned throughout my thesis are several areas of interest that are éithér simple
additions or more powerful features that would require modifications to the accor-
dion drawing infrastructure.

Although we are interested in several different directions with our generic
infrastructure, we will probably focus on several high—demand‘ areas of TJ2, which
include: editing a tree structure, saving changes to a tree, saving the state of a tree,
replaying a transaction log recorded while navigation a tree, undoing navigations,
" and storing a meaningful representation of a transaction history in a human-readable
format. Most of these modifications will make use of a sophisticated logging struc-
- ture. The addition of these features would make TJ2 a much more powerful system,
and much more appealing to biologists who need more than just the visualization
system of the current TJ2.

Another area of future work involves adding more attribute capabilities to -
TJ2 for operations such as: data filtering, marking common features, and creating
a trueA interface to TJ2 that another application can access. By creating an API
for TJ2, we may use a second application to drive the performance of navigation,

node selection, or editing. TJ2 may act as a navigation component to an application

98

that interfaces to a database of animal characteristics, for example when selecting
animals that Have wings, the animals with wings will be automatically highlighted
wheﬁ that application sends that set of interest to TJ2.

Progressive rendering offers two interesting areas of future work. First, we
would like to minimize, or ideally eliminéte, the overhead that our infrastructure
incurs when progressive rendering is turned off, especially when progressive render-
ing is not necessary and the dataset can be rendered in a single frame. Second, we
would like an automated way to decide whether progressive rendering should be on
or off, rather than require manual intervention from the user.

-Finally, we envision the juxtaposition of a phylogenetic tree with the sequence
data used to build it by combining TJ2 with SequenceJuxtaposer (SJ) [35]. Since
both TJ2 and SJ use the same AD infrastructure, it would be possible to have
these applications share a set of split lines and for navigation to distort both grids
concurrently. We would also like to investigate adding editing capabilities and more
sophisticated navigation support where collapsing a subtree leads to the display of

an aggregate sequence for the entire subtree.

6.2 Conclusions

I have presented our accordion drawing infrastructure, which provides rubber-sheet
navigation and guaranteed visibility for information visualization applications that
are capable of laying their dataset objects on a grid. Our rubber-sheet navigation
. is numerically stable and provides a scalable, malleable surface for exploration of
large, complex datasets. Accordion drawing also provides an interface to generic
partitioning, seeding, and rendering methods used to render datasets in time O(p),
where p is the number of pixels on-screen.

Furthermore, my implementation of TreeJuxtaposer on our AD infrastruc-
ture, TJ2, renders and navigates dense trees correctly with more time efficient ren-

dering and layout techniques than its predecessor, TJ1. With compact represen-

99

tations of marked nodes, progressive rendering a skeleton of marks instead of an
entire subtree, ascent rendering to guarantee a limit on the number of nodes ren-
dered, five times more efficient memory performance, accurate picking, and limiting
the number of nodes rendered for complex trees, TJ2 improvements give users a
more responsive tree rendering with all of the advantages of TJ1.

Finally, I describe the improvements made for the InfoVis 2003 Contest
on tree comparisons, where TJ1-contest, the improved TJ1 with incremental node
searching and a helpful user interface, won first place overall. I present an in-depth
analysis of how TJl-contest. supports many, but not éll, of the common functions
users of tree visualizations require. Our results show that TreeJuxtaposer is a ca-
pable, mature system that supports users in understanding the complex structures

that exist in real-world datasets.

100

| Glossary

Accordion Drawing (AD): an information visualization navigation paradigm
that supports the stretching metaphor of manipulating data drawn on a mal-

- leable surface., p.2

Focus+Context: a technique in information visualization éystems used to display
areas of interest at focal points. The rest of the dataset, the context, is still
displayedin less detail. The context provides additional structural semantics
for the focus regions. Global Focus+Context systems, such as AD, show the

entire dataset at all times., p.8

TJ1-contest: an improvéd implementation of TJ1 with additional user interface
tools, incremental node search capabilities, and other user tools to change the

appearance of the tree visualization., p.112

TJ2: a redesigned implementation of the capabilities of TJ1, with improvements.
of TJ1-contest, which also uses our new AD infrastructure. Several im-
provements in rendering, marking, and correctness are described in detail in

Chapter 3., p4

TreeJuxtaposer (TJ1): an information visuaiization application used to navi-
gate and compare several rectilinear trees, often phylogenetic trees, as shown
in Figure 1.2. TJ1 is the original implementation of TreeJuxtaposer, as op-
posed to TJ1-contest, my InfoVis 2003 Contest submission version, and TJ2,

~my most recent TreeJuxtaposer implementation., p.2

101

ascent rendering: a rendering technique for trees that is topology-based and
draws nodes along paths from leaves to the root. We can control the quantity
of leaves and reduce the number of nodes drawn per scene for dense, complex

tree topologies., p.38

ascent width: the width criteria of subtrees that we use as a stopping criteria for
ascent rendering. Given as a value relative to block width, a larger ascent
width means fewer ascents per leaf range, but we are limited to ascent plus
segment width sums that are less than one-half block. With that restrictionl,

. when we find a subtree that is wider than the ascent width, we know that it

cannot be drawn as a single horizontal line., p.40

base grid: the lowest quadtree level grid of TJ1, or the grid of split lines of TJ2
that are used to position topological tree nodes with the gridd.ing algorithm.,

p-26

best corresponding node (BCN): when comparing two or more trees, nodes
are paired up with the most appropriate matching node in every combination
of pairs of trees. This relationship is not always bi-directional and some nodes
do not have a BCN. A BCN value is calculated with the function —ﬁ‘a—g for leaf
sets A and B under two nodes; the BCN for node N, which is in tree T4, in
tree Ty is the leaf set of the node with a maximal BCN value, in T, with the

leaf set of N., p.52

block: the smallest size at which a geometrié object is drawn, with the lower limit
of a pixel. This is also known as the minimum feature size, which is equal
- to the line width of edges in TJ2. A block is always some integer multiple of

.pixels and is pixel-aligned., p.33

cell, (base grid): a region of the base grid, consisting of four lines on the base

grid that form a rectangle, known as: top, bottom, left, and right. The grid cell

102

is used to position a topological tree node for rendering, culling, and picking
in TreeJuxtaposer. Cells for a tree in TJ2 partition the entire base grid and

do not overlap., p.26'

directly marked: when comparing two or more trees, a node that a user has
explicitly marked is called directly marked, while a node that is marked in
another tree, as a consequence of node correspondences with directly marked

nodes, is called indirectly marked., p.51,

drawing (rendering stage): third stage of AD rendering associated with drawing
the seeded marked ranges and split line ranges. The split line ranges are

partitioned according to a previous stage., p.70

found nodes: nodes that match a searching criteria, such as substring match-
ing in the Found panel, in the incremental search functionality of TreeJuxta-
poser. These nodes are highlighted with the highlight color, which is modifiable

through the Group panel., p.120

gridding (algorithm): the partitioning of a uniform grid used by TJ2 to assign a
set of grid coordinates, which form a rectangle on the base grid, to topological

tree nodes., p.28

guaranteed visibility: a property information visualization systems use to dis-
play important data at the expense of less ixﬁportant data; important data is
always visible on the screen. TreeJuxtaposer and other AD applications use
both static and progressive guaranteed visibility paradigms to ‘give users

navigational landmarks in their dataset visualizations., p.5

horizontal gaps: rendering gaps in ascent rendering that appear if we do not
choose a subtree in a leaf range that horizontally covers all other subtrees.,

p-38

103

indirectly marked: a node that is not directly marked when comparing two

or more trees with user defined marks., p.51

interaction box: a region defined by user interaction on an Accordion Drawing
grid, which may be stretched or squished to reveal more details of datasets in

regions of interest., p.60

marked data: data that is marked by a user. This data could be user defined
with marking or cbmputed using a user-specified function that performs the
marking. For example, when comparing two trees in TJ2, the topological
differences are marked data and' the unmarked, similar nodes are normal

data., p.5

marked ranges: regions of interest such as computed differences, search results,
user marked groups, and even mouse-over highlighted nodes in TJ2. Ranges
are used to compactly store subtrees and forests of subtrees for quick color

referencing for nodes during rendering., p.46

node key: the enumeration value of a particular node in TJ2. We use keys to
identify relationships between nodes by assigning keys in a pre-order, so the
" roots of subtrees are smaller than its descendants, and the entire subtree can

be represented by a single range of integers., p.46

normal data: data that is not marked but is drawn to provide overall dataset

structure and position of marked data., p.5

overlapping ranges: a pair of node rangés, often with both node ranges marked,

in TJ2 that are either adjacent, non-unique, or partially overlapping. Two

overlapping ranges can be combined into a single, unique range., p.50

partitioning: first stage of AD rendering associated with dividing a split line

range into a set of drawing ranges. Partitioning precedes seeding., p.70

104

picking fuzz: a margin of error, which we set to five pixels, that allows us to pick
- nodes with the mouse without exact mouse positioning. If a desired node is
in a region where it is not pickable, such as a very dense region, we expect a
user to stretch its region with accordion drawing to disambiguate unwanted

picking., p.55

progressive guaranteed visibility: a property of an information visualization
system to use a drawing order that favors marked data over normal data
when rendering animation frames. This provides landmarks during naviga-
tion for large visualizations that rely on progressive rendering approaches.

Compare with static guaranteed visibility., p.6

progressive reridering_: is an technique used in several graphics systems that
allow for complex, or otherwise rendering intensive, scenes to be rendered in
several stages. -After each stage, the system allows for user interaction or
continues to render the scene. Progressive rendering is necessary with AD in
TreeJuxtaposer since partial rendering is fast enough but full scene rendering
could take over a second. When an AD application renders, it displays marked

nodes first to provide progressive guaranteed visibility., p.9

seeding algorithm: the process of enqueuing key tree nodes, or ranges of tree
nodes, in a drawing priority-based, ordered list prior to rendering. Typically,
the list contains enough information to render an entire scene, but rendering
only part of the scene is also acceptable, especially in progressive rendering

where rendering does not dequeue all nodes from the list., p.34

seeding: second stage of AD rendering associated with ordering a partitioned

split line range and any marked ranges prior to drawing., p.70

segment width: the partitioning stopping criteria for leaf range seeding. Given as

a value relative to blocks, the larger the segment width, the fewer leaf rangés

105

we must process during rendering. However, if the segment width is too large,

we see gaps in dense regions since we only render one leaf per segment., p.37

segment: a component of a tree partitioning, at the leaf level, which is either the
smallest rendering partition with more than one leaf, or any other rendering
partition with exactly one leaf. We guarantee that only one leaf is drawn per

segment., p.35

split lines: movable lines in an AD visualization application. These l_ines are
stored in a balanced tree hierarchy, and affect regions in their domain by
stretching and squishing their hierarchical children, to reveal areas of interest
while squishing other regions together. The linear order of split lines cannot
be changed and no part of the visualization is ever pushed out of view since
split lines cannot be pushed beyond their domain boundaries. Split lines are

essential in giving AD appliéations global Focus—FContext properties., p.60

static guaranteed visibility: a property of an information visualization system
to prioritize marked data over normal data in single images. This provides
a sense of location for the marked data using the marks as visual landmarks.

Compare with progressive guaranteed visibility., p.6

106

Biblio'graphy.‘

1

2l

3]

Thomas Ball and Stephen‘ Eick. Software visualization in the large. Computer,

29(4), April 1996.

Lyn Bartram, Albert Ho, John Dill, and Frank Henigman. The continuous

zoom: a constrained fisheye technique for viewing and navigating large infor-

mation spaces. In UIST ’95: Proceedings of the 8th annual ACM symposium

on User interface and software technology, pages 207-215. ACM Press, 1995.

Luc Beaudoin; Marc-Antoine Parent, and Louis C. Vroomen. Cheops: A com-

pact explorer for complex hierarchies. In Proc. of IEEE Visualization 96, pages

87-92, 1996.

Benjamin B. Bederson and James D. Hollan. Pad++: A zooming graphical
interface for exploring alternate interface physics. In Proceedings of UIST 94,

pages 17-26, 1994.

Dale Beermann, Tamara Munzner, and Greg Humphreys. Scalable, robust

visualization of very large trees. EuroVis 2005, to appear, 2005.

Larry Bergman, Henry Fuchs, Eric Grant, and Susan Spach. Image rendering
by adaptive refinement. In SIGGRAPH ’86: Proceedings of the 13th annual
conference on Computer graphics and interactive techniques, pages 29-37. ACM

Press, 1986.

107

[7]

8]

[9]

[10]

1]

[12]

[13)

(14]

[15]

M. Sheelagh T. Carpendale, David J. Cowperthwaite, and F. David Fracchia.
Three-dimensional pliable surfaces: For effective presentation of visual infor- -

mation. In Proc. UIST, pages 217-226, 1995.

Savrina F. Carrizo. A colour-filling approach for visualising trait evolution with
phylo genies. In Neville Churcher and Clare Churcher, editors, Australasian
Symposium on Information Visualisation (invis.au’04), volume 35 of Con-
ferences in Research and Practice in Information Technology, pages 117-126,

Christchurch, New Zealand, 2004. ACS.

Coordinator & Editor David R. Maddison. Tree of life project.
http://tolweb.org/tree/phylogeny.html.

P.M. Fitts. The information capacity of the human motor system in controlling
the amp litude of movement. Journal of Frperimental Psychology, 47:381-391,
1954.

G. W. Furnas. Generalized fisheye views. In CHI | '86: Proceedings of the
SIGCHI conference on Human factors in computing systems, pages 16-23. ACM
Press, 1986.

George W. Furnas and Benjamin B. Bederson. Space-scale diagrams: Under-

standing multiscale interfaces. In Proc. SIGCHI ’95, 1995.

I. Herman, G. Melancon, and M. S. Marshall. Graph visualization and naviga-
tion in information visualization: A survey. IEEE Transactions on Visualization

and Computer Graphics, 6(1):24-43, 2000.

David Hibbett, Francois Lutzoni, David McLaughlin, Joey Spatafora, and Ry-
tas Vilgalys. Assembling the fungal tree of life.

http://ocid.nacse.org/research/aftol.

David Hibbett, RH Nilsson, M Snyder, M Fonseca, J Costanzo, and M Shonfeld.

Automated phylogenetic taxonomy: An example in the homobasidiomycetes

108

http://invis.au'
http://tolweb.org/tree/phylogeny.html
http://ocid.nacse.org/research/aftol

[16]

[17]

[18]

[19]

20]

[21]

[22]

23]

[24]

(mushroom-forming fungi).

http://mor.clarku.edu.

John P. Huelsenbeck and Fredrik Ronquist. MrBayes: Bayesian inference of
phylogeny, 2001. ‘ |

Susanne Jul and George W. Furnas. Critical zones in desert fog: Aids to

multiscale navigation. In Proc. UIST ’98, pages 97-106, 1998.

T. Alan Keahey and Edward L. Robertson. Nonlinear magnification fields. In
Proc. IEEE Symposium on Information Visualization, pages 51-58, 1997.

John Lamping, Ramana Rao, and Peter Pirolli. A Focus+Content -technique
based on hyperbolic geometry for viewing large hierarchies. In Proc. SIGCHI,
pages 401-408, 1995. - '

Wayne P. Maddison and David R. Maddison. MacClade: Analysis of Phylogeny
and Character Evolution. (User’s manual). Sinauer Associates, Sunderland,

MA, 1992.

W.P. Maddison and D.R. Maddison. Mesquite: A modular system for evolution-

ary analysis. version 1.0, 2002. Available from ht{:p:/ /mesquiteproject.org.

Tamara Munzner. H3: Laying out large directed graphs in 3D hyperbolic space.
In Proc. InfoVis 97, pages 210, 1997.

Tamara Munzner. Drawing large graphs with H3Viewer and Site Manager. In
Proc. Graph Drawing 98, Lecture Notes in Comp. Sci. 1547, pages 384-393.
Springer-Verlag, 1998.)

Tamara Munzner, Francois Guimbretiere, Serdar Tasiran, Li Zhang, and Yun-
hong Zhou. TreeJuxtaposer: Scalable tree comparison using Focus+Context

with guaranteed visibility. SIGGRAPH, pages 453-462, 2003.

109

http://mor.clarku.edu
http://mesquiteproject.org

[25] Tamara Munzner, Qiang Kong, Raymond T. Ng, Jordan Lee, Janek Klawe,
Dragana Radulovic, and Carson K. Leung. Visual mining of power sets with

large alphabets. submitted for publication, 2005.
[26] OpenDirectoryProject, 2005. http://dmoz.org.

[27] Ken Perlin and David Fox. Pad: an alternative approach to the computer
interface. In SIGGRAPH ’93: Proceedings of the 20th annual conference on
. Computer graphics and interactive techniques, pages 57—64. ACM Press, 1993.

[28] Catherine Plaisant and Jean-Daniel Fekete. Infovis 2003 contest, 2003.

http://www.cs.umd. edu/hcil/ivOScontést/.

[29] Catherine Plaisant, Jesse Grosjean, and Ben Bederson. SpaceTree: Design

evolution of a node link tree browser. In Proc. InfoVis 2002, 2002.

[30] George G. Robertson, Stuart K. Card, and Jock D. Mackinlay. Information
visualization usihg 3d interactive animation. Communications of the ACM,

36(4):57-71, 1993.

[31] George G. Robertson and Jock D. Mackinlay. The document lens. In UIST
’98: Proceedings of the 6th annual ACM symposium on User interface software

and technology, pages 101-108. ACM Press, 1993.

[32] Ursula Rost and Erich Bornberg-Bauer. Treewiz: interactive exploration of

huge trees. Bioinformatics, 18(1):109-114, 2002.

[33] M.J. Sanderson, A. Purvis, and C. Henze. Phylogenetic supertrees: Assembling
the trees of life. Trends in Ecology and Evolution, 13:105-109, 1998.

[34] Manojit Sarkar, Scott S. Snibbe, Oren J. Tversky, and Steven P. Reiss. Stretch-
ing the rubber sheet: a metaphor for viewing large layouts on small screens. In
UIST ’93: Proceedings of the 6th annual ACM symposium on User interface
software and technology; pages 81-91. ACM Press, 1993.

110

http://dmoz.org
http://www.cs.umd.edu/hcil/iv03contest/

[35] James Slack, Kristian Hildebrand, Tamara Munzner, and Katherine St. John.
SequenceJuxtaposer: Fluid navigation for large-scale sequence comparison in

context. German Conference on Bioinformatics, 2004.

[36] James Slack, Tamara Munzner, and Frangois Guimbretiere. TreeJuxtaposer en-

try, InfoVis 2003 contest. http://www.cs.ubc. ca/~tmm/papers/contest03.

[37] Chris Stolte, Diane Tang, and Pat Hanrahan. Multiscale visualization using

data cubes. In Proc. InfoVis 2002, 2002.

[38] David L. Swofford. PAUP¥*. Phylogenetic Analysis Using Parsimony (*and
Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts,

2002.

[39] Li Zhang. On matching nodes between trees. Technical Report 2003-67, HP
Labs, 2003. '

111

http://www.cs.ubc.ca/~tmm/papers/contest03

Appendix A |
TreeJuxtaposer Task Evaluation

The InfoVis 2003 Contest [28] was the inaugural IEEE Symposium on Information
Visualization contest, and was composed of several tasks that TJ1 was well suited to
solve, including its namesake: side-by-side comparison of trees. Example tasks from
this contest included: detecting structural differences between trees, characterizing
movements of tree structures, and searching for nodes with given attributes. The
entire list of tasks proposed by this contest are found in the results section of this
appendix, Section A.4.

Three of the major contributions made for TJ1, presented ih this appendix,
‘include: an analysis of the strengths and weaknesses of our TreeJuxtaposer and
Accordion Drawing paradigm for the contest set _of tasks; my addition of an in-
cremental search capability for tree node labels; and my addition of an improved
user interface; which greatly improves the usability of TreeJuxtaposer. We call the
version of TJ1 that has search and user interface improvements TJ1-contest [36];
however, this version does not have the features disciissed in Chapter 3. The results
of the contest were very promising for the future of TreeJuxtaposer: our contest
entry placed first overall and gave our work excellent exposure to the information
visualization community. | A

In this appendix, Section A.1 describes the dataset provided for the contest,
then Sections A.2 and A.3 describe the interface and search additions made to TJ1

112

for the contest, and finally the analysis for each task in the contest in Section A.4,

as-was presented in the contest entry. A summary follows in Section A.5.

A.1 Contest dataset

The contest dataset consisted of three different types of trees. The first dataset was
a pair of small phylogenetic trees, the second dataset was a pair of large classification
trees, and the third dataset was four file system trees.
Phylogenetic trees are constructed from sequence data and show possibilities
" in how each of the species represented in the leaves are related to each other; ideally
‘the trees are binary trees but often are n-ary due to uncertainty in the construction
methods or other biological phenomena. The phylogenetic trees supplied for the
contest were a selection of bacteria classified with two different, unspecified methods.
Classification trees are created with a familiar Linﬁaean, hierarchical struc-
ture where subtrees represent groups of similarities in morphologies of species. The
classification trees in the contest are of the kingdom animalia and are possibly from
two different sources as they have several differences and inconsistencies. Each node
has several attributes, which included Latin names and common, English names;
I generated two classification trees from each classification dataset tree from Latin
and common node names. Because not all nodes are supplied with common names,
. Latin names are used in the common trees for nodes that have a Latin name but no
common name. When I use common names, such as mammal instead of mammalia,
in the results, I am referring to common trees; in most cases Latin trees are used to
provide solutions for the tasks.
File system trees represent the hierarchical structure of a simple file system.
The four file system trees are snapshots from a university web-site over a three week
period. Each interﬁal node from this dataset corresponded to a file system directory
and leaves corresponded to ﬁleé in those directories.

The results from the contest in Section A.4 describe analyses of these three

113

datasets. When describing each dataset, phyloa and phylog are the phylogeny trees,
animaliap and animaliap éue the classification trees, and logsa, logsg, logsc and logsp
are the file system trees. However, since the classification and file system trees are
too large to load simultaneously with interactive rates in TJ1-contest, subtrees are
used in comparison tasks for those two datasets. The subtrees of ciassiﬁcation trees
are mammaliapa and mammaliag, rooted.at class mammalia in the animalia treés,
while the file system trees are hcila through hcilp, the human-computer interaction

laboratory web pages rooted at the hcil directory of the respective logs trees. _

A.2 User interface

Figure A.1 shows the original user interface of TJ1 [24] with the slider, a node
selection box, and buttons to add more trees, toggle differences and reset the tree |
navigation. All other functionality was accessed through a keyboard-based interface,
which required users to remember keystrokes for most commands. Although some
keyboard actions are essential in TJ1, having users remember too many keyboard
commands is cumbersome. Some keystrokes involved advanced tasks that users not
familiar with the system would not have understood and are only used for debugging;
many mapped keys were not transformed into menu options.

Figure A.2 shows the contest user interface of TJ1-contest with a menu panel.
The most interesting parts of the system included with this panel are Find and
Tools. Find replaces the drop down box with the Found panel dialog, as seen in
Figure A.6 and is described in Section A.3. Tools contains the two option panels
Groups and Settings. The additions of the two Tools panels provides the original
options, some new options, and state information that was previously hidden and
made TJ1 hard to use.

In Figure A.3, Groups gives the user information about the currently resiz-
ing and mafking groups in the top and bottom halves of the panel, respectively.

The radio buttons between the color canvases and the labels collectively show the

114

T A—-streptomyces co

Figure A.1: TJ1, from [24], before modifications for the InfoVis 2003 Contest.

currently seléct_ed group for both éctions; the canvases themselves can be clicked to
change the marking‘ color for that group. The buttons Bigger and Smaller allow
the user to resize the resize group and Reset resets all tree views to their initial
state. The radio buttons beside the options Horizontal, Vertical, and Both allow
the user to choose how the resize group will act when growing bigger of smaller;
Both resizes the group vertically as well as horizontally.

In Figure A.4 Settings offers some more options. The sliders on the panel

Line Width and Label Density give control over the width of the edg\es‘in the

115

Figure A.2: TJ1-contest with title bar modifications for thé InfoVis 2003 Contest.

tree, by default set to one pfxel wide, and the density of the labels. At maxi-
mum density towards the left of Label Density, labels are squeezed together and
adjusting the slider to the right increases the buffer space between labels, effec-
tively decreasing the label density. Font sizes are also adjustable in this panel,
and TJl-contest uses the Minimum and Maximum values to draw labels as large
as LabelDensity and other screen space factors allow. Other check boxes in the
panel include: Linked Navigation for interactively resizing subtrees concurrently,
Show Differences and Show Labels for selecting features to see and Dimming for

marked and unmarked nodes.

116

Figure A.3: The TJ1l-contest Groups panel added for the InfoVis 2003 Contest.

The toggle buttons and check boxes in the Groups and Settings panels are
also important for showing state of each of the properties they represent. Versions
of TreeJuxtaposer prior to TJl-contest, without indications of state, were quite
difficult to use. State continues to be an issue in the development of new features
and more recent versions of TreeJuxtaposer, including TJ2, use the Debug panel for
displaying critical state information. Future improvements to the user interfaces are

quite likely with the addition of features such as choosing tree orientations.

A.3 Incremental search

We determined that when analyzing the contest tasks that an improved searching
tool was necessary for T'J1-contest. The searching tools are used to find a node with
a particular label; a found node is marked with a highlight color and can be grown
with a typed keyboard command: b for bigger and s for smaller.

TJ1 had only a drop-down selection box, as in Figure A.5, which was sorted
alphabetically by node label. These early versions could only highlight a single node
at a time. To find a node of interest, the entire list had to be scrolled through, a
time consuming process; typing letters while the drop-down box was selected would

also jump to the next node in the list starting with that letter but was still not

117

Figure A.4: The le—contest Settings panel added for the InfoVis 2003 Contest.

efficient. Unfortunately, Java implementations of drop-down boxes do not scale well
with several thousand nodes. With more than two thousand nodes in TJ 1, the
drop-dowh box is very slow and uses too much memory; the drop-down box itself is
a major memory bottieﬁeck in scalability. .

The sorting and typing methods were also not at all useful for searching for
known strings that did not occur at the start of the node names. There were also
some problems with nodes. that are not uniquely named. TJ1 makes the list of
nodes in the drop-down box unique and although it attempts a renaming scheme, .
the scheme did not work properly: labels were also changed making navigation
difficult whereas TJ1-contest distinguished between names, in searching, and labels,
in dispiaying nodes.

We identified the need for an interface where a user could type in their
query and have multiple nodes selected, preferably with performance that would
lead to real-time analysis as users entered search strings. The searching approach
in TJ1-contest is based on the kind of incremental search commonly seen in Emacs

or Mozilla. When a user types in a search query in these dynamic searching sys-

118

crusta

arthro

1X Y

wingedi

wasp

animal = mi ag(simic ‘I?Qd?
limnephiloide —wormaldi.
LlamprshaliE=~=—r=suuttubaph
chordate perching biFdREREL
, glyphy
—hystricognath-roden e
T percond iy
teleoste P ol ONCE ucl
amphisbaenic qrae
ciliophor telescopu
echinoderm NEOPED; olell
mollusk [Eneotaenio.glo 1.0 bl
ciliated protozoan [
;pzpotgz:o—""_—."—:b:["gkg'.e NIMbBOZ0an

leptorhynchoidida

pancarid

platyarthrus acrop*

arrhopalites caecu

_gyropida

false longhorn bee

acerocnem
dasyhelea aegealiti
telenomus pentato

_crematogaster grail

diacamma assamer
smicridea ulmer

. wormaldia algiric

chromodesmus gra

iridosornis jelski
veniliornis affini
yellow isthmus ra
scortum parvicep
‘amphisbaena mitct

telescopus dharz

fredericella austral

antiplanes abarbar
orthonectid

Figure A.5: The TJ1 selection box was a drop-down box. The selection box was

difficult to use and did not scale well.

119

tems, partial search results appear highlighted; in Emacs all sea;ch results are high-
lighted, while Mozilla highlights only the first such match. Since the drop-down box
approach was space limited, the Found panel, as shown in Figure A.6, was added
to T'J1-contest to keep the layout around the canvas uncluttered. This detachment
meant that the seafching dialog could be extended to show only the multiple match-
ing results and include a query entry box. Matching results appear as a refined list,
sorted alphabeticallyvby name, in the Found panel dialog and only nodes that con-
tain the search string appear in the list. Items in the list are by default selected
as the list changes with the entry of a query. The list selection can be changed by
the user using the usual list selection techniques: a click selects a single item, a
shift-click will select a range of items and a control-click will select multiple items
in the list.

The matching selected resulté appear as highlighted found nodes if the total
number of selected items is less than 200; too many matches are not visually useful
in the tree layout. Searching incrementally would be slow if every letter for a query
entry requires a new search on the total number of nodes. To make the query entry
process more interactive, lists of partial search results are cached so searching can
. use the partial results instead of the entire set of nodes.

The caching stores all previous searches that partially match the query string
starting with the first letter. New queries are found in the cache by finding previousrly‘
~ cached results that match the first part of the string. If the cache contains results
for the query string except for the letter at the end of the string, then the cached
list is refined by the new query and stored in the hash table with a key of the new
query string. .

 Initially, the cache starts empty.. The first lettér that a user enters caches all
entries that contain this letter. For example, suppose I want to search for dolphin.
If I enter d, nodes such as dolphin, duck, dog, bird and armadillo are selected; Next,

when I enter o, making my search string do, the search will start with the cached

120

hé)l"jrco_l}fa‘cte r,,p';'f_,[b .
|helicobacter pylori j99°

Figure A.6: The TJ1-contest Found panel added for the InfoVis 2003 Contest.

121

result for d and the nodes duck, bird, and armadillo will be excluded from the cache
for do. The cache for do will contain nodes such.as dolphin and dog. Further
refinements will reduce the search result and use previous caches for a more efficient
search time as the search string gets longef. |

This approach is réasonable for progressive searches since the typical use
of this tool is entering queries starting from the first letter with possible editing
changes if the search fails. Searches that need to be entirely rebuilt, for example if
dolphin is currently entered and ﬂie first letter is deleted to search for olphin, are
reasonably fast as well, but the system is not optimized for those cases.

However, the caching technique used for interactive searching does have the
drawback of excessive memory consumption over time .for the cached results. The
. reduction of memory is done with a least recently used (LRU) caching method and
only the last 200 search results remain in the cache. Queries that do not match any
nodes in the tree and hence would have an empty list of nodes in the Found panel

are not cached and do not affect'the‘ LRU cache.

A4 Contesf results

The following gives an overview of the sets of tasks given for the contest and the
results I obtainea by using TJ1-contest to solve each of the tasks. The full details
of my invéstigations, including detailed, higher resolution images for each task and

videos for some of the tasks, are also available [36].

A.4.1 Tasks suited for TJ1-contest

In this section of the results, I present the details of contest tasks that .I solved with
TJ1-contest. I explain why each taskis relevant in the context of how TJ1-contest
is used fo make .analytical contributions. I present each task section and detail each
task, stating the original task and some explanation as to the scope of the task for

TJ1-contest related analyses. Some tasks include an ordered list of steps that are

122

used to produce interesting visualization output, where necessary.

o Comparison of multiple trees for topological changes

In this section, I determine the suitability of T'J1-contest for comparison tasks
for differences between several trees. These differences are topological changes:
the topological similarities in internal ordering of subtrees, which nodes are
added, which nodes are deleted, and which nodes move. We consider the
small and large scale differences as equally important since detection of small

changes has implications in many applications of tree comparison.

— Where does the topology change?
This question poses little difficulty for TJ1-contest since the application
is built for this type of analysis. I was able to determine where the
topology of each tree changed and I also investigated regions of change

to determine the scale of each change relative to each dataset.

* I expand the visible computed differences, which marks changes in
the tree topologies, to view them in greater detail.

* Mouse-over highlighting in TJ 1-contest helps me analyze large scale
topology changes as well as individual changes.

* Subtrees with identical topology are not marked different, so I can
focus more effort on the interesting parts of the trees.

* mammaliag differs from mammaliaa mainly by leaf additions. See
Figure A.7 for the TJ1-contest representation of the datasets.

* hcila through hcilp do not change much topologically. See Figure A.8
for the four-way comparison in TJ 1-contest.

* phyloa and phylog have identical leaves but are topologically different
in several locations. The topological similarities can also be seen in

Figure A.9 due to the relatively small size of this dataset.

— Which nodes are added, deleted?

123

eopardus pardalis albes:
elphinus capensis
esoplodon hectori

ynocephalus volans

callithrix argentata
_chlorocebus aethiops

carnivora

chiroptera.
rhinojophidae
vespery

aus javanensis
tenella attenuata
yeteris arge
cerodon celebensis
;phaerias blanfordi
ptesicus baverstocki

alago moholi i
i galag o dasyuromorphia - W, anigate gitesi
- cryptomys och i -.-hyracoidea g _petaurus abidi
clyomys bishopi vora rocidura ludia

B eomys schelkovnikovi

epus alleni
eontopithecus caissara
tarsius pumilus
clidomys osborni
eteromys goldmani
crotus transcaspicus
comys cahirinus

iomys us memmali

'dasymys foxi , R——
eporillus apicalis
mesembriomys gouldii . d

lophi

melomys aerosus
attus stoicus

yzomys argurus ridae
tenodactylus gundi
mias palmeri ~ abromys lepturus
eromyscus attwateri
iedomys pyrrhorhinos

nthopsis longicaudate
robates pygmaeus

B e
scandentia sirenia

holoepus hoffmanni

Figure A.7: Contest trees mammaliap and mammaliag compared using T'J1-contest.
We mark the topological differences between these two trees in red. The differences,
in red, are fewer than in Figure A.26, which uses common English instead of Latin
names.

TJ1-contest also easily handles node additions and deletions. I am able
to determine exactly where nodes are added or removed by examining
the difference-marked regions.

* Additions to leaves are marked as differences in the second tree.

* Deletions to leaves are marked as differences in the first tree.

*x Node differences propagate to the root if subtree leaves did not

match.

x We do not mark the root nodes as different if the leaves are conserved,

as in Figure A.9.
x mammaliag shows more leaves not in mammaliap than the converse.

* Figure A.10 shows the additions and deletions in two classification

subtrees: genus pteropus and family pitheciidae.
* hcil tree leaves show mostly additions and some deletions

x The changes in hcil that are not shown are file modifications, which
are attribute based, but would be more interesting since this action

is probably more common than creating new files or deleting old files.

124

-

ben-baby.gi' r o~ ben~baby.gi | 1 e y.gi
ibanner-btn- banner-btn- banner-btn- b b
hig7.gif i hi97.gif electronic.cl
lindex.html . i index.htmi ndex.htmi
overview—fra - jazk= faq.shtml e index.css
index.html index.htmi 0000.htm! " 0000.htmi
0100.htmi 0102, html : 0103.htm! ” . 0112 html
listfarchi
0240.htmi ; 0240.htmi el 0237.htmi . = 0226.htmi
0348.htmi 0350, htmi e | 0365.htmi Ll o 0336.html
0472.hemi 0472.mml jazz-cRatl 0477 htmi lazz-chat o482 nmi
0582.htmi 0578.hemi 0588.htmi 0594, html
0693.heml § 0689.heml , 0699.hemi 0706.htmi
0804 .hemi NSl 0800.hemi el 0811.hemi Nel 0819, htmi
oot il 3 lassroomfu Y lassroomfu Kiddesi, classroomfu
ban-clasp-s medprints.st t_erunhn?'s adruin-smal
index.htm! infovis el resume.htmi
banner.htm anner.htm
I-listwitha k 3-listwitha w3.shtmi 3-listwitha
hand-buttor help.htmi il-log,
privacy-polic »privacy-polic privacy-polic privacy-poli:
states-istass states-istasi states-istas. filelist.xmi
index.htm 514060.htm 514035, htm
education.st beesmic e op it htr tre dirs-3win.gi dirs-3win-si
chap4.3_fige g hap4.5_fig chap4.3_figt
uu-policy.sh uu-policy.sh uu-policy.sh

Figure A.8: Contest trees hcila, hcilg, hcilc, and hcilp compared using TJ1-contest.
We mark the topological differences between these four trees in red. There are few
differences among all these trees, which allowed me to manually identify each of

them using T'J1-contest.

hi donhil
n

taphylococcus at

ydop
~chlamydophila pn taphylococcus a

‘fusobacterium nu bacillus anthracis
Streprococcus py!
streptococcus pn
-lact lactis.

~-«corynebacterium

—helicobacter pylo

actococcus lactis
treptococcus py«

~=staphylococcus at i treptococcus mu

salmonella enteri
escherichia colio
‘yersinia pestis

listeria monocyto
acillus anthracis
acillus halodura

acillus anthracis
acillus subtilis 1

taphylococcus ai

asteurella multo
aulobacter cresc

ylella fastidiosa

ot
taphy a
almonella enteri

almonella enteri : b g
~~neisseria meningi

almonella enteri
anthomonas can

-sinorhizobium m«

““escherichia coli k
salmonella enteri
‘yersinia pestis

lobacter cresc
¢ s
ralstonia solanac«

-*pseudomonas aer
dei ccus radic

& trep pallids
grobacteriumtu.

ydophila pn

treptomyces coe

Figure A.9: Contest trees phylop and phylog compared using TJ1-contest. We
mark the topological differences between these two trees in red, which made my
investigation of this relatively small dataset simple. Notice how none of the leaves
are different, which indicates no leaves are added or deleted from these trees; due
to our comparison process, we do not mark the roots of subtrees when only leaves
move topologically.

125

eralopex acrodonta
efopus argentatus
eropus chrysoproctus
eropus faunutus
eropus gilliardi
eropus hypomelsnus
eropus livingstonii

iphius cavirostris
teropus insularis

teropus malossinus

eropus pilosus” 1
éropus simotnsis : i
LPUErOPUS tonganus .
e alli baptista

[F——wcallicebus bernhardi
cébus caligatus
cebiis coimbrai

allicebus discolor R !
callicebus dubius ’

fr—acallicebus lucifer
allic medemi

[———

eropus temmincki
eropus tuberculatus.
eropus voeltzkowi_
ontopithecus caissira
llicebus cupreus

atlicebus modestus

allicebis nigrifrons
cebus olaliae

RIS L “calfcebinae .
foerascallicebus purinus i "

s _eutherial {1oxodontal T ———%8llicebus stephennashi [piodoscidial éivihrcabusf’ llicebus olaline
eria,

f—) oprocta exilis ' esbytis rubicunda
seudomys laborifex X ecomyscus attwateri

Figure A.10: Detailed differences of pteropus and callicebinae show additions of
pteropus from mammaliap to mammaliag, while callicebinae shows deletions in that
direction. '

* In Figure A.11, I show the additions and deletions in two file system
directories: counterpoint and iv03contest.

* In Figure A.9, no additions or deletions are present in the leaves of
the phylo trees, but the topological structure has changed. I can also
claim that ali leaves in these datasets are conserved since the roots
of either tree are not marked, which is a.property of the comparison
functions used by TJ1-contest.

— Did any nodes or subtrees move? Can movements be characterized?
This section asks the hard question of general structural tree analysis
and classification of t.hose‘topological changes. Although I was not able
to find and categorize every series of movements for significantly different,
large datasets, I was able to characterize several movements in each set
of dataset trees, especially for the small but complex phylo datasets.

* I discovered topological movements by examining marked differences,
computed by TJ1-contest when the datasets are initially loaded.

* When a complete, topologically unchanged, subtree moves to a new

parent, I am able to locate the difference at the level of the new and

126

unterpointl
Zounterpoin unterpoints
L ; - y Ny ounterpoint]
P poin] . + i scotintarpoint index_fi gg potnt]
., ki c . s . ounterpointz
*poi poing ! ————acounterpoint datelens: P
i ~counterpointat: , - f.html
P P S
. i erpot
4 poing . " S -
. sol D counterpoint| RS 1 bommmsivO3 coNTESE_ G
- (i - P T 5 gunterpointii: O,
counterpoint) counterpoint . N * g 0gs b_0302
» anterp | counterpoint ¢ I B
i poiny.« —sindexhml. L ivO3coniest] —+phvio_a_abe_(
index.html index.hemi i ““':J'_-'(:P‘w';, s " ptreemi-sampl.
= : R : . A4 vtorisi.htmi fi | — i
wio: -IE‘W" : wWromal p.gir . % index.htmt’ ' o raeneraltsksd
utorial.hur, [:nuogig_l.hgm : icensing.shuni e index.htm!
N B g il online doc: i’ et sisionad
s e x. htmd ~index.html - index htm: prindex.shml
R [e i e 0865 8
. ivO3contest. N " e
datel LE e . he : oy sihtmt
. es-tr-3964 P : hyio.htmi
hil 480 htmi; jazz I .
- L
dex.hemi drac-statiiomy S
u-policy.s B policyahtl] LTl

Figure A.11: Detailed differences of directories counterpoint and iv03contest show

. additions through the progression of the file system over time. The trees are hcila,
hcilg, hcilc, and hcilp, from left to right. In hcily and hcilg, the iw03contest directory
does not appear since it has yet to be created.

old parents in both trees as marked differences.

% There is no automatic characterization of movements in TJ1-contest,
so I had to examine and characterize all movements found manually.

*x | found a few subtrees that rnoved. in the mammalia datasets.

* Figure A.12 shows one corﬁplex movement I found: pitheciidae splits
into two subtrees and is reparented under cebidae from mammaliap
to mammaliag.

x I determined that no nodes move in the four hcil trees, and node
additions and deletions are noticed at the leaf level, although some
structural, file system subdirectory additions are also made above
the leaf level.

* Most leaves move in phylo trees, only a few small subtrees remain
topologically similar.

* In Figure A.13 I show the most topologically similar subtree, marked
in the phylo trees, which has seven leaf nodes in-an identical topology

but since TJ1-contest does not reorder nodes, they appear as they

127

[Fite% Find; [Tonls - Help S
breviceps
eontopithecus caissara

alouatta betzedul
watta fisca’

slousttinae

w palliata:

3 azarai’

aotinae aotus lemurinus,

cabidae

nigricep

e
- ateles

agothrix lagotrichs
ebus capucinis

miri oerstedii 1 L arach

: cébidae y ricabus bramneus
trachypithecus phayrei -) < brunneus
licabls bernhardi " ;. o
1 Iliceb i
callicebus cinerascens IR, <A st clll,cebus dubius
allicebus discolor: : callicebus ioloch

primates| iFdchypitheEgiz

callicebus personatus,

atlicebus medemi

R hlicebus moloch cebus apelia

s aimiri sciureus

iao calvus

‘pithécia albicans

primares

Presbytis comata
eromyscus attwateri-

eutheria

Figure A.12: Movements of cebidae and pitheciidae from mammaliaa to mammaliag.
In mammaliaa, the two nodes are roots for two unique subtrees, but in mammaliag,
pitheciidae becomes two separate subtrees rooted under the cebidae subtree.

appear in the dataset file.

¢ General visualization of tree topology
In this section, we focus on more general visualization solutions to understand-

ing the tree topology. I can solve most tasks with single tree visualizations

and require neither tree comparisons nor specific tree datasets.

- Héw large is the tree? How many levels deep?
We interpret the size of the tree as the set of numbers that characterize
the tree such as fan-out, tree depth, maximum branching factor, and total
number of nodes. We consider explorations of subtree properties as well
“as the entire tree dataset.
x | determined the tree size, which is the total number of nodes in
the dataset, by examining the density of leaf nodes; trees with a
branching factor of at least two have more leaves than total nodes
and each leaf nodé in TJ1-contest is initially assigned equal vertical
screen space. .

* I estimated the density of leaves by scrolling through one leaf at a

128

staphylococcus-at
staphylococcus.ar

bacillus anthracis

actococcus;lactis
treptocoécus.py«
reptococcus friu

mebacterium i

aphylococcus al
imonella-enteri

lus.anthracis
s su 3

Ilis halodurai;

aphylccoceus al

saimonéllaenteri

Imonella.enteri " ; P
; neisseria-meningi

salmonella enteri
anthomonas can;

ulobacter cresc¢

-ralstonia solanac(

“treponerma pallid
-agrobacterium tu;

streptomyces:coe] ’ . “¢hlamydophila pn

)

Figure A.13: I marked the largest subtree that remains structurally intact between
phylogenetic trees phylop and phylog. Although the subtrees are not exactly in
order, I used TJ1-contest to determine that they are still topologically identical.

time, with up and down arrow keys. For large trees, the time to scroll
through the leaves by holding an arrow key down is also effective.

*x The methods I used to determine tree depth in different regions of
the trees were not exact. In TJ1-contest, nodes are dimmed relative
to their depth; the root is black and nodes are more dim deeper in
the tree. Regioné of dim nodes correspond to many adjacent internal
nodes.

* Deep trees show a color gradient for depth and because of this, deeper

subtrees pop out.

— What is the path of a given node?

This section is also quite straightforward in TJ1-contest. Once I found a
node with the Found panel, the path to the root'. node was followed with
the left arrow key. I marked, or expanded, the path with the standard

marking, or expansion, methods for individual nodes as the path was

129

acanthocep! : x ~ ricinulei

chorldatz

;:ﬂxymyw norph k cciara Avptelfostic'hus acomanus
somatgsideai kambaitipsychin -

Wasierifoe cypseloides phelpsi

vagteb

ata

rajiformas rhinol zoothera andromedae

actino|

mammalia

raja ackleyi

globicephala macrorhynch
sorex alaskanus

‘ﬁalouatta belzebul
cercopithecus ascanius
_colobus guereza

haner furcifer

NG e ~gorilla go.rilla

kaninkine e} O MO Sapiens

chiroptera

primates |-

i pan paniscus
—+pan troglodytes

=avahi laniger

pterygii me

eutheria

°
°
2
°
3
(2]
=
3
<
w
-
o
w
]
3
c
w

thbri ~——murid

srial [R At emniscomys barbarus

praomys minor

amias alpinus

Figure A.14: The path from the root node animalia to the leaf node homo sapiens is

shown in tree animalias. Although the path is shown expanded here, the path may be

seen in the same tree with no expansion to understand the overall, unaltered location

of any node path in a complicated, dense tree. The path is manually expanded by

following the path towards the root with the left arrow key and vertically stretching

each internal node.

followed.

* I found the ascent path starting from any node to the root interac-

tively with the left arrow key.

* In Figure A.14, I marked and expanded the path from homo sapiens

to animalia manually.

— Local relatives: what are the children/siblings/cousins of a node?

This section deals with more complicated structure than the previous

130

http://matoi.de

section. I found the related nodes using the arrow keys to navigate up,
down, and through the breadth of even the densest regions of the tree

datasets.

* I found children by using the right arrow to get the first child and
then the down arrow to scroll through siblings.

* I found the siblings using the up and down arrows to scroll through
each child of the common parent.

* Cousins can be found using the up or down arrows as well. When I
scroll beyond the first or last child, spatial cousins are highlighted;
the actual meaning of cousins is not well defined for this task and spa-
tially adjacent nodes seemed the most natural approach for cousins.

We define cousins as the topologically highest node that is spatially,

vertically adjacent to a specific node.

— Which branch.has fhe largest number of nodes? Largest fan-out?

The task of determining the largest number of nodes is also relatively
simple with TJ1-contest. When the largest branch is much larger than
all other branches, I can easily determine which branéh is largest since
TJ1-contest initially assigns each leaf node to an equal vertical space and
allocates the vertical space for internal nodes from the outer-extreme leaf

nodes.

* The number of leaves determines how vertically large internal nodes
aré since T'J1-contest initially assigns leaf nodes equal vertical screen
space to leaf nodes. Navigation breaks the equality when one subtree
is stretched vertically.

* Marked leaves of subtrees can be visually compared; I can mark
subtrees to make estimates on subtree size relative to the entire tree.

* In Figure A.15, T highlighted the users group to determine how large

the group is relative to the entire logsa dataset.

131

re ach——d epartme nti—1mag

aq,l;l.:1=9~99— cmsciliQ?.
- :msici02: 0305
falI200 T
... |<fall2002 8
clags o -SnnC gEReIgR e Al
e spring 2000 e anadess
—=spring200Z plo NG R
: f_ng—c FRIAE0E ARt 02
j——iﬁ-—l**—“*m s D DL ALLON
projects| -
irf
, K gaburlel CE 0
— <54 erefeee —_loe
o . users —
T s 81 8ZETO0) I'elctOE
i ouin {axe f
; chiull g dlith: :
i Bam i i lndex html
l usarsegelub Vst hlan'qessiig card: glf
—L ns0208 lelculls index:html
susershollings{ TS
ruseérshshe=us e :
VSRS UGEL indéx: html
MSEESAIED UsersipShahman ot
usersshayan USersSuUnn; €0 verpage.htmi

ta.htin:

Figure A.15: The subtree users, marked blue in the tree logsa, shows the relative size
of the subtree compafed to the overall tree size. Since TJ1-contest initially allocates
identical vertical screen space for each leaf node, this method of comparing subtree
fan-out can only be demonstrated on a tree that has not been stretched or shrunk.

* For immediate feedback, I use the bounding box for a subtree, which
is shown while hovering over the subtree root, to rapidly determine

subtree size in a similar manner.

¢ General visualization of tree attributes that can be aggregated

This section of results focuses on techniques of understanding tree attributes
with general datasets. Since TJl-contest could not solve many attribute re-
lated tasks, this section deals mostly with the aggregated analysis of tree

. structure, which means simple analysis of subtrees. Again, these tasks only

132

require single tree visualizations and neither tree comparisons nor specific tree

datasets.

~ What is the number of nodes in a subtree?

TJ1-contest does not ‘fully support this task, but I found.an approach

that is sufficient yet not immediately obvious.

* TJl-contest does not display the number of leaf nédes for each sub-
tree so I can only determine relative quantities using the tree visual-
ization.

x | can determine the total number of named nodes in a subtree using
the Found panel With a fully qualified naming structure, but this

solution is not elegant.

— Comparison of branches of the tree: subtrees with most nodes
This task focuses on determining properties of a subtree that I can use
TJ1-contest to quickly analyze. I can examine several subtrees concur-
rently to estimate the relaﬁve number of nodes is each subtree, but exact

‘numbers of nodes are beyond the capabilities of TJ1-contest.

x I compare subtrees with the Found panel and ful_ly qualified names.
I use the naming structure from the dataset and the results frorﬁ the
Found panel to select structure in the dataset visualization.

* I select nodes starting with ///animal/mammal to shoW the number

of mammals.

* By entering mammal into the Found panel for animaliag, I found
mammal-nest beetles, which are not mammals.

* There are very few non-mammals with mammal in their name; 1
deselected the non-mammals in the Found panel to find the root
of the mammal subtree. I could have arrived at the same result by

searching for and selecting the ///animal/mammal tree directly from

133

chor

sharks

“vertébrates

.mammals jeeh owilieamon ey

'«:spi:ny_grﬂayed'fi';hes ‘
- |neopterygii)

bonyfishes

- teleoglstei

uriaj
squamata

Figure A.16: mammals and bony fishes marked in animaliag, which we can use
to determine the relative sizes for these two subtrees. The mammals subtree is
approximately half the size of the bony fishes subtree. The dataset has not been
skewed by navigations so each leaf node is assigned equal vertical screen space.

the entire dataset, but that is slower than my method of pruning the

tree.

* I could then grow the ///animal/mammal subtree or mark it for

simultaneous visual conmiparisons with other interesting subtrees.

* By marking as described, I produce Figure A.16 with mammals and

bony fishes marked in different colours.

e General visualization of known items

This section deals with visualization of known items in generic datasets. In

134

this context, nodes are considered to be known in the sense that searching for
a particular node with knowledge of the name or path to the node from an

ancestor node is general knowledge.

— Which nodes have a label containing the string giraffe?
This task is straightforward with TJ1-contest using the capabilities of
the Found panel. .

* I type giraffe into the Found panel and all giraffes are highlightedv
with the colour of the Found group.

* I resize the Found panel resulfs for the Found group using the Groups
panel. - '

* Figure A.17 shows the result I achieved after searching for giraffe in
animaliag.

— Locate a node knowing its path.
This task requires the navigation control of TJ1-contest. I browse the
tree, directed by the hierarchical naming structure, using interaction
boxes created with mouse controls.

* I can either use the Found panel to find a node of interest if I know
the label or browse through the tree structure from the topological
root if | am interested in a node along a known path.

* If the full path is known, browsing the tree with mouse-over high-
lighting ‘may be faster than searching évery leaf node.

* I also reduce searching by starting closer to results using the Found
panel to locate wéll—known internal nodes.

* The Found panel method is especiall}‘l. helpful with bushy subtrees;
browsing is difficult when viewing the children of a node with a

branching factor larger than the number of vertical pixels on screen.

— Go back to a node you have visited before.

135

s| peracat
—o5tracods

wahlpt.@ i

T LruEwWa
5o maroid

chordatess

‘vertebrates|.

_sturgeons: ‘seah

bonyfishes . telao]

ausus-defilippii
octopus selene,

Figure A.17: Result of giraffe search in animaliag, achieved by searching using the
Found panel and growing the results for the Found group in the Groups panel.

This task would have made navigation in TJ1-contest much easier, but is
left for future work in a more genefal approach to all Accordion Drawing

applications.
* There is no explicit undo feature in TJ1-contest.

* I could return to a subtree after exploring other parts of the tree by
marking interesting subtrees to either remember where I was or use

the Group panel to grow the marked tree.

. _General visualization of labeled items

This section relies on the labeling provided by TJ1-contest to give context of

tree topology as well as readily available information for visible nodes with

-~

136

enough screen space to display a label.

— Review all the labels in a subtree
This task is not possible in the visualization of dense areas of a dataset,
but TJ1-contest can extract labels with the Found panel if this is the

case.

+ All labels in a subtree can be eﬁctracte_d through the Found panel.
This technique is not necessary if a subtree is not too dense since
labels that have enough space to draw are shown in the tree visual-
ization.

*x TJ1-contest limits results in the Found panel to nodes matching the
keyed-in entry. If I wanted to see only nodes in a particular subtree,
such as rﬁore nodes than the Found panel displays with direct match-
ing, I could find the subtree with the panel, grow the subtree root
node and then review the labels of the subtree.

% I could examine all labels on the subtree using mouse-over highlight-
ing or by sufficiently decreasing the node density. We can also lower
the font size or ‘individually stretch sections of the subtree to see

more labels.

¢ General navigational visualization and browsing

This section focuses on the navigation abilities of TJ1-contest. Following a
known path in the dataset with TJ 1-contest is powerful when I want to browse
the topology with no predefined species of interest. We are not liﬁlited to
following a namihg structure since it would also be useful to follow properties
of a tree, should they exist, that are not related to the displayed labels. An
example of this directed browsing would be manually exploring the computed

differences in a tree.

— Explore the tree by performing a series of up and downs in the tree: you

137

are looking for a cute animal. You look into mammals, then primates,
then gorillas, and chimpanzees, but you realize that they are not that
cute. You thenA go to felines, to tigers and cheetahs. ..

This task is straightforward in TJ1-contest with the mouse browsing and
navigation tools. Mouse-over highlighting, rrioﬁse resizable trees and the
keyboard interface are all useful tools depending on the user and the
exploration task.

I performed the following to explore the animaliag dataset:

1. I grew vertebrates, mammals bigger using mouse-over highlighting to
find the item, then typed b to make the tree larger, using the Group
panel to first ensure I was making the mouse-over group larger.

2. I found primdtes in mammals, then resized it with the interaction
box growing method, finding that great apes; gorilla and chimpanzee
appear in the great abes subtree .when grown using the same method.

3. T used the mbuse to highlight primates, then repeatedly pressed the
up arrow key until carnivores was highlighted since mammals was
ltoo dense in the region outside of the grown primates; dense regions
are easy to step through with the keyboard arrows.

4. 1 then grew the carnivores selection, again with the keyboard, until
it was large enough to see the cats subtree. |

5. Using the mouse, I grew the felinae subtree enough to see cheetah

and tiger. ..

— Following those steps, I prod_ucéd Figure A.18.

¢ General management of analysis

This section deals with general techniques that TJ1-contest uses for analysis.

Namely, this section only deals with marking nodes of interest since other

analysis methods addressed by this section such as editing, saving settings

138

rajorders=

[T * —
catopuma - :
small

]c guary ndis

cats lynxes.

USRI

ongcifelis;

e Sfalis————affican.golden:cat
r?ar\imn gm?_______liion
pardofelis e——miger

- —ring -tailed mongoBse

capnivores

14 mammals ==:Iﬁro,

primates

e———Y S
, 9
i ‘humans;'peop
humans;|greatiapes

: (v
sturgeons

rangutan, maias;:m

Figure A.18: Result of browsing for cute animals in animaliag. We marked tiger and
cheetah since they were the cutest animals. This figure also shows multiple areas of
focus in TreeJuxtaposer, while still providing context with the squished regions.

and a history of analysis are tasks that we are unable to complete with TJ1-

contest.

— Marking nodes of interest
TJ1-contest uses marking for many different functions such as resizing
or a pseudo-history of navigation when I proactively mark regions that
are visited. We consider marking to also include computed differencés,

search results and mouse-over highlighting groups.

* We can mark up to four UserGroups to highlight nodes of interest.

*x Our granularity of marking is either node or subtree.

139

* We can mark multiple nodes or subtrees in each group.
* A node may belong to multiple groups simultaneously.

* The last group selected will be visible over other marks. The groups
may be cycled through, with the graphical interface or using key g,
to select the current marking group and change the priority of marks.

* We mark the best corresponding node on each tree if more than one
tree is loaded and if that node has a correspondence to a user marked

node.

e Application specific tasks section with phylogenetic trees

This section deals with the tasks related to phyloa and phylog datasets, con-

structed by evaluating genomic properties of two proteins.

— Map the similarities between the two tree topologies, which would indi-
cate co-evolution and possibly where two proteins were not co-evolving
This task is one of the strongest abilities of TJ1-contest. Similarities
are instantly visible in these small datasets as the nodes that are not
marked as differences. The largest unmarked subtrees are indications of

co-evolution. The following was noticed:

* The leaves in phyloa were all in phylog and vice versa. See Figure A.9.
* Some leaf nodes have identical names in the same tree.

* My analysis of TJ1-contest assumed all leaves have one-to-one re-
lationships using a renaming scheme for identically named nodes.
However, since the best corresponding node criteria is only onto, the
renaming process to disambiguate similarly named nodes, namely
appending a number to the node name but not the node label, might
have affected the computed differences. The best naming scheme
to produce the fewest differences or largest similar subtrees is not

determined.

140

Findy Tools; Help

staphylococcus-at
aphylococcus.a1

lus’anthracis

helicobacter pyio

lactococcus Iactls
Streptococeus pyl
streptococcus mu

Ly) '__< — baclllus anthracis
- . Mbaclllus subulus 1

stap hiylocaccus;a

n __...«.._...c:-;hster’

rynébacterium

staphylococcus a
salmonella:enteri

xan(' an
xylella fastidiosa

salmonella: enten}
nelssena meningi

. :L.__Eﬁstaphy!ococcus alg
i s staphylococcus a

=xylellafastidiosa
. ,ulobacter cresc:

pseudomonas aer
deindcoccus radis

eponema palhd i
robactefrium tuy

streptomyces:coe chlamydophila pn

Figure A.19: The three most topologically similar subtrees marked in phyloa and
phylog. The leaf assignment and renaming is automated and the leaf relatlonshlps
cannot be edited for a better matching.

*x TJ1-contest is only able to automatically assign best corresponding

leaves; editing leaf relationships was not possible.
* Different leaf relationships produce different tree comparisons.

* A subtree of 7 leaf nodes matches topologically. See Figure A.13 for

this subtree marked, in.the phylo trees.

* Another subtree of 5 leaf nodes nearly matches with only one internal

node topologically different.

* A third subtree of 8 nodes nearly matches with three internal nodes

topologically different.

% See Figure A.19 which has the three most topologically similar sub-

trees marked in phylos and phylog.

e Application specific tasks section on classification trees

This section deals with the tasks related to comparisons of mammaliaa and

141

mammaliag datasets as well as other visualization tasks with animalias and .

animaliag. Comparisons are not done with the animalia datasets since they are

too large to evaluate with TJ1-contest.

— To what extent are the differences in the classifications due to differences

in how animals are thought to be related?

— Are there other kinds of differences and can you explain them?

These tasks intend to ask general questions on types of differences found

during explorations of the mammaliap and mammaliag dataset compar-

isons. Although there were many differences found with TJ1-contest, I

was able to classify each style of difference that I investigated as one of

the following: an addition where nodes, typically leaf nodes but pdssi—

bly including their ancestors as well, exist in mammaliag but are not in

mammaliaa; deletions, which are opposite from additions; and subtree

movements where whole subtrees are re-rooted.

* I determined that the differences are mostly due to:- additions to

the tree, deletions from the tree, and slight modifications such as
splitting where a leaf node in animaliap became a subtree with chil-
dren in animaliag. See Figure A.10, which shows leaf additions in the
pteropus subtree and leaf deletions in the callicebus subtree.

I quantify additions and deletions on the leaves by examination of the
roﬁgh quantity of marked differences in the leaf level since the leaves
are equally spaced at that level; the amount and location of marked
difference indicate the distribution of added nodes. See Figure A.7,
which shows the relative number of additions for mammaliag, on the
right, as large regions of difference while mammaliaa, on the left, has
had a few leaves deleted.

I highlighted the rodentia subtree, a high;level classification group,

with blue in animalias, then the rodentia subtree in animaliag in

1142

FFile Find. Toals Help =4
I {mvdais javanensy
mammalia ontopithecls caissara
| actylomys dactylinus
hy; vimys pictus eteropsomys antillénsis
) rotomys voratus alpingotus thomasi,
eutheria ° iomys sdspersus
............ . A) L % ersus.
dipodidae panoctomys barrerae e T tagurus luteds
" vi 0zapus setchuanus odentia ' ericetomyl olus ranscaspicus
“Farvred mys iroratus ELEaa rillus acticolu
- = Nicrotus breweri . P,
N ethormys hamaquedsis : i : ormys eahirinus
R . Ik A : : Bt “gonzalesi
Todentia : omys coelestis ; ! lakedownensis
Al rrys crumpi A ;i !
mniséomys barbards . g iy g@ enter andersoni
. astomys coucha B FM e L
iomys goutdii . ' VendSISHTIE;
herie bowskii i . brawaVas TS
,,,,,,,,,,,, u . i
. L " ecomys paricola
pelacomys florensis eromyscus nttwateri.
do zyzomys argurus. R dgomys rifeséens
I eromyscus.pectoralis daef godontormys brunneus
e tenodactylus gundi . feiuridae =T Heallosciurus adamsi
LTI S T S permophilus tereticaudt T spermap . :
ye dentia sivima TR Ispermophilopsis feptoda
Jiiiarsipes reswatus scandentia _sirenia tholoepus hoffmanni

Figure A.20: rodentia subtree marked in mammaliaa and'mammaliaB. The subtree
is first marked in mammaliap in blue and then marked in mammaliag in green. The
green marking in mammaliag overwrites the blue in mammaliaa since the green is
currently at a higher priority for all dataset views. No blue marks exist outside of
the green marked subtree, which indicates that no rodentia from mammaliap are
misclassified as something other than rodentia in mammaliag.

green. After these actions, there were no blue nodes visible in the
mammaliag green subtree. This allowed me to visually conclude that
no species classiﬁe‘d ﬁnder rodentia in mammaliaa was classified under
anything but rodentia in mammaliag.
The green marks did not cover the blue marks in mammalias com-
pletely, which indicated that mammalian had more species classi-
fied in the rodentia subtree than mammaliag; marking rodentia in
animaliag had the same results in animalias. Similar results with
other large subtrees implied that, although not a complete investi-
‘gation, the mammalia trees showed mostly differences in lower level
nodes; see Figure A.20 for the result using TJ1-contest.

x Some differences such as the movement of pitheciidae from primates
in animaliaa to cebidae in animaliag were found through exploration;

the subtree marking capability sped up the exploration process, as

shown in Figure A.12.

‘animals

UG

glossolsomatoidea.
‘caddiétlie

wormaldiaal

X il

:lampzshells

=laidanosagittatropica:

“gruiforme: : L
axrcol p cardinalidae

‘marnmals; skates.

ishes —teleolsteir

- ciliophora:
“—mgoss-animal TICHD PO 1 g acid el ek
mollusks i clidiidiaer s
— - hanplida’

fla

tozoa =———wpaapulan;

Figure A.21: animaliaa displayed in its entirety with common names. This tree has

190, 265

total nodes, 154, 922 of those nodes are leaves, and has a height of 16.

— Can you say in how many different subtrees a barticular common name,
such as dolphin or horse, is used? How-closeiy are these animals related?
These questions are answered quite easily by TJ1-contest With thé Found
panel. Guaranteed Viéibility is able to show how closely the animals are
related and mulfiple focus points allowed me to view all resulting matches

concurrently.

* With animaliap, as in Figure A.21, using fully qualified names: Found

panel returns 53 leaf and non-leaf dolphins, see Figure A.22.

- Of the 53 positive search results, only myzomela adolphinae was

probably not named with respect to phylogeny or morphology of

144

(2@ papainins

Seurylami

nesfélis

euselachii’ |tyranni®
T baléen whales

Pygmyki

“wWhi fe—beai(led,ud olphins

‘marine.d

siphins

strip

bottle

‘porg g SR LA :
PS ectacled porpoise
erm whale

man_s'beaked whale

‘spinyrayedfishes. -treutheria|

b,Oanl S hie's'_] reptl las”

mollusks

yrthonectids

Figure A.22: Result of dolphin search in animaliag with common node names. 53
leaf and non-leaf dolphins were found using the Found panel.

dolphins, since dolphin only occurs as a substring.

- Many of the search result dolphins‘were found in the marine
dolphins hierarchy.

* Search for horse: Found panel returns 47 leaf and non-leaf horses,‘
see Figure A.23.

- In addition to mammalian horses, horse appears in many dif-
ferent subtrees acroés different parts of the classification tree:
arthropods, insects, seahorses, and snails.

- The animal species with horse in their names are not closely

related at all.

145

arthrop

anim

taceans

wihgedinsects|

“vert

tFue-wasps{ carponétusabditus;
: D e P oligomyrmex-aborensis
als glossosomatoidea. 9 Y!
caddisflies:
lamp-shallse—
: ampsnes anseRfoRmess
datas: perching. biFd's
ebrates| -mimrnals: skates. quitaffish

nterates-

— el
mollusks == s himain
’ —monoplacophoTa™ornn
‘E-pTot 708 - g SyapRTapU :

Figure A.23: Result of horse search in animaliaa with common node names.. 47 leaf

and

non-leaf horses were found using the Found panel.

Several horse-named roots of subtrees exist, such as horsehair
worms and hgrseshoe crabs, which include only species that do
not have horse in their names. These species are all lacking
common names in mammaliaa and are therefore labeled with the
fallback: Latin names; perhaps their common names do/would

include horse.
— Are common names a good guide to understanding relationships?

This task concludes the statements and findings from searches for dolphin

and horse.

+* Common names are not a good guide to understanding relationships.

146

Several common names were investigated and results would indi-
cate that common names are used frequently to describe morth-
logical features of yet unclassified and unnamed classes of species or
of species themselves.

Common names lack structure and do not have the same somewhat
hierarchical classification structure as their Latin equivalents. The
Linnsean system of categorizing species, into several layers commonly
referred to as a classification tree, is also used to provide a standard
for further classification. |

Common names may have, for example, historical or geographical
influences and therefore are most of the time ﬁot helpful in under-
standing relationships in all cases.

One classification may even look. different from an identical classifi-
cation tree if a naming convention is not adhered to: for example, I
found that marmota vancouverensis is vancouver island marmot iﬁ
mammaliag while mammaliag labeled the same species as vancouver
marmot. See Figures A.24 and A.25, which are identical, expanded
sections of common and Latin versions of the mammalia trees under
the class marmota, but show the many naming differences in the

common tree versus the Latin tree.

Some common names may be simple and included in other common
names: horse occurs in seahorse; the Found panel was able to focus
in on sections of species with usef defined selections in the search
window.

For species such as dolphins that are not expected to occur frequently
across different species, it was interesting to see non-mammals occur:
a mollusk, two bony fishes, a perching bird; they may either have

dolphin-like morphological properties or dolphin-in their name by

147

Fila! i Taols | Halp e RS

heri 3

ryptomys.ochi
tack-tailed prairie’dog

—————egray marmot

ataska marmot 3 .
————<bobak marmot

aska marmot

-~hoary marmot -hoary marmot:

bl ack-capp ed marmot
—yeliow—bellied marmot f—————iong-taifed marmot

marmots . HE armots | yellow-bellied marmot

. i K | —nimalayan marmot

e woodchuck .
B [premmsalpine marmot

! [f———menzbier_s marmot

olympic marmot waodehuck

olympic marmot:

fatarbagan marmot

islandr

Lot/ 01 COUVET RATENOL

-tai d d irrels, Lfehi M .
ound-tailed ground squiitree and dround squireels mW(g david_s rock squirrel

Figure A.24: The class marmots subtree expansion in mammaliap and mammaliag
with common names. Note how in this tree vancouver island marmot and vancouver
marmot, the same species, is marked as different since these names are not unique.
Compare with Figure A.25 in which this species is called marmota vancouverensis in
both cases and is therefore not marked as a-difference. This is a case against using
common names as a classification structure if there is no concensus on a unique
species name.

File i find 5 Tools s Help PR

prony
omys tudovicianus

‘marmots broweri
[————=marmota bobak

-marmota broweri’

................. marmota caligata

'marmota catigata
peeemarmota camtschatica

- U e
ER— marmota flaviventris srmota caudeta

marinotal g E armota.

{frmeammestniarmota himatayana
~~Marmota monax . : s .

R RN | K i | fro——rniaf Mota Marmota:
) fremeemar mota menzbieri
-farmota’olympus ' -marmota monax

<marmota olympus

- MArMOta vancouverensis . [remememmemarmota sibirica

armota vancouverensis
ciurotamias davidianus

metat perjpgnfgiit_x_s tereticaude

scandehtia

Figure A.25: The class marmota subtree expansion in mammalias and mammaliag
with Latin names. Note how in these subtrees the species called marmota
vancouverensis is consistent and agreed upon by both datasets. Compare with
Figure A.24 in which this species does not have an agreed upon common name and
therefore marked as a difference. This is a case for using Latin names as a classifi-
cation structure since they are more likely to be unique and agreed upon, at least
in all examples I found in these datasets. '

148

{ Tool

even-to | latypus

p=tesdungy cimitar-horned oryx
e eopardus pardalis albes i b] unda stink badger
£ ong-beaked saddleb £ antropical spotted dolp!
- SUEMTCE R ERRGE W e - ate_s slit-faced bat
ynocephalus volans b‘ns 2 ulawesi fruit bet
S ilvery marmoset rhinolophidae fanford _s fruit bat
eidses gl vervetmonkey arpargiy nland forest bat
e . south african galago a5 § ials, i
mammals \nomaluromerpha A dasyuroid marsupials, marsupial carnivores suckiantplanigale
hyderi h i o orthern glider
i imys pictus insectivores i
eutheria lidomys osborni bl adbid natae I'_‘:':r":_’:;‘.""" T
b rvicolia 0iNt reyes jumping mous mammals| latypus
o eather vole EEIIIN T . talapoin
radents hap: erylmys berdmorei uatan island agouti
margar. ybomys basilii
ms argaretamys elegans S oldman_s spiny pocket1
i rodents i
adil] o iviventer eha loph e
il seudomys laborifex airo spiny mouse
ned wartd mies. e AR g wilee usky mosaic-tailed rat
ndaman rat
:;':;::::"’:;:r | : o lender-tailed deer mous
american mars " exas mouse
‘_l" spasium AL ed-nosed mouse
gile wallaby h
pera i tree shrews sirens offmann_s two-toed slo

Figure A.26: Contest trees mammaliap and mammaliag compared using TJ1-contest.
The topological differences between these two trees are marked in red. The differ-
ences, in red, are more plentiful than in Figure A.7, which uses Latin instead of
common English names.

some other origin such as adolphinae, which I determined to possi-
bly mean something mountain-related after referring to the common
name found in a web search, from myzomela adolphinae.

* Common names were useful for providing recognizable names but
they dramatically impede comparison. Figures A.26 and A.7 show
the large naming problems as differences between the respective com-

mon and Latin versions of the same mammalia trees.

— How many species are named after biologists named Townsend in both
the Latin and common name trees?

— Can you look at the pattern of names to deduce where in the world or
on what kinds of animals Townsend might have done research?
This is a more general question of basically determining the usefulness
of Latin trees, or common trees, to deduce certain reasons why a species
has a particular name. In this task, the commonalities used to determine

origin of species names are biologists named Townsend.

* Latin animaliaa, Figure A.27: 51 leaf and non-leaf Townsend nodes

149

arthropoda

hexapoda

neoptera

S hyménop
a'n__nl__brg_’al_la. glossolsom

vondata;

Arichopter

. L_brachiopgod

af,

frebrata] o

passeriformes:

ria [falid

T

arctocéphalus townsendi
n townsendi’

;osteichthyes P telaglstel

ulatownsendi-

sjochetostoma:zanzibarense
bursa:bufo

nsendiana’

Figure A.27: Result of Townsend search in animalias, with Latin names. 51 leaf
and non-leaf Townsend nodes were found. It is evident that the results are not of a

particular class of animals, but spread out in the animalia kingdom.

were found.

+ Common animalias, Figure A.28: 45 leaf and non-leaf Townsend

nodes

* Some Latin names appear in-common trees since nodes with no com-

mon name used the Latin name as a label. The only purely com-

mon names returned by the search that I recognized as common are:

townsend eualid, townsend snapping shrimp, townsend’s chipmunk,

townsend’s dwarf gecko, townsend’s ground squirrel, townsend’s mole,

townsend’s pocket gopher and townsend’s vole. More of these are

larger species, most in the rodents subtree, which might be indica-

150

hyrmenop lyrhachisstigmatifera,
glosso o gpmynmex*aborensu
 caddisflies:

‘animals;

o

. L__lampzshelse—====
L ___——amp i &mﬁ).éi';

perchin gLB’- z

mollusks

flatWwOrms

FE=protozoa

Figure A.28: Result of Townsend search in animaliaa, with common names. 45 leaf
and non-leaf Townsend nodes were found. It is evident that the results are not of a
particular class of animals, but spread out in the animalia kingdom.

tive that most large species are given common names for this dataset,
but that is unconfirmed. s

* Names returned in the search did not show a clear pattern that couid
be used to deduce where in the world biologists named Townsend,
or geographical locations with Townsend in their name, might have
done research. Furthermore, there is no indication that there was
only a single biologist named Townsend.

* Common names give a range of possible geographic locations for
types of chipmunks, shrimp, and bats. It is not possible thét all

Townsend animals were cohabitants of the same geographic location.

151

* The search returned quite a range in the classification tree and, there-

fore, the search highlights were distributed throughout the tree.

— Spirulida and spirurida are two nodes in two different subtrees. If a user
types in the wrong one, what kind of feedback is used to alert the user
quickly?

Although the TJ1-contest application does not provide feedback for user
errors, such as the search results not returning an expected node for
typographic errors, I was able to quickly fix Found panel typing errors
since the incremental search reacted with each character as I entered
the string. The visual feedback of the tree was also interesting since an
experienced user who knows where results should appear in a dataset may
be surprised to find data in other regions, prompting further investigation.
TJ1-contest has an easy to use interfaée which does not restrict input
and promotes investigations with large datasets since it is scalable with

no noticeable decrease in performance.

For example, I performed the following steps:

1. I loaded the Latin tree animaliaa.

2. Iintended to search for spirurida and I knew that spirurida is a type
of nemata from my investigations as a novice roundworm researcher.

I was interested in seeing the hierarchy around spirurida.
3. Incorrectly, I entered spirulida in the Found box.

‘4. I grew the results from the Found panel and noticed that the wrong

section grew and no species of nemata appeared, as in Figure A.29.

5. I read what was typed into the search box, realized the mistake, and

corrected it

* The unexpected results for found nodes did not grow the expected

subtree. This might be the first indication that something was wrong

152

o ‘aves EES
Tajiformes: rhinobatoid)’

‘chordata ORI

~vertebrata

neoptery. perc
-ciliophéra

UiSLROIRO,

==y T eabrachia

sspirulida.

sephalogeda teuthida' Isligoialloteuthis)
N nematagsssnychopholfatsliineus

Emphoto,Z08;

Figure A.29: After making a typographic error, the spirulida subtree expansion in
animaliap, with Latin names. Since the result was not a nemata classified species,
this was sufficient feedback for me, a novice roundworm researcher, to conclude that
I either made an input error or spiruride was not in the dataset.

if the search results were not looked at carefully; for such a minor -
difference, this might happen frequently.

* TJ1-contest did not store the rank bas an attribute so determining if
both names had the same rank was not possible and probably would
not have helped with this task. Rank in the general case would be
hard to address. - |

* The found ﬁode was not in the expected topology of the entire clas-

sification tree, which was an indication of user error or at least a

warning to examine either the search results or the dataset contents.

153

e Application specific tasks section on file system trees

This section deals with the tasks related to comparisons of two full logsa and

logsg datasets as well as other comparison tasks with all four hcila, hcilg,

heilc and hcilp datasets in the hcil subtree of the logs datasets. Four-way

comparisons are not done with the logs datasets since they were too large to

evaluate with TJ1-contest.

— Where are the big directories?

— Can you see different patterns in those files?

These tasks are general visualization questions that TJ1l-contest is well

able to display. I had immediate feedback for locating the largest direc-

tories and was shown a general pattern of personal, project and course-

based web pages.

First, I loaded the dataset for tree logsa. The root of the file system is

called /// since all of the examples required fully qualified names: / is

the name of the root directory and / is arbitrarily used as a separator.

*

Big directories were immediately visiblé from the layout since the ver-
tical space consumed by directories indicated how many total leaves
are in the subdirectory structure.

I found in logsa, shown in Figure A.30, that users and class were the
biggest directories linked to the root of the tree.

Finding the biggest directory in any subtree was done in this way,
as long as no ancestor nodes of the subtree were previously groWn
or shrunk in navigations. If necessary, all marked nodes can be ex-

panded at the same time to presérVe marked ratios.

The leaves/files are right-aligned that means the leaves for interior

nodes, which are the high-level directories containing subdirectoriés,

are interspersed between the non-leaf children of the node. This made

154

Figure A.30: The logsy file system tree: users and class were the biggest directories
linked to the root of the tree. The users directory is not labeled in this figure, but

it is the node that is surrounded above and below by whitespace, indicating that
it is large. The directory usershollings is the third largest. This method of finding
large subtrees works only if there are a few large subtrees and no navigations were
made.

accurate estimations of the number of immediate files in higher level
directories impossible.

x I found personal pages in two locations: in the users subdirectory
such as ///users/hollings and each user also had a personal subdi-
rectory directly attached to the root such as ///usershollings. Thesé

directories might be symbolically linked to each other.

*x The contents of the two personal directories were different. For ex-

155

‘building]

.gaurav _exe

e 11,51 RS 01

s1dO18:htm:

fchapter3a.ppt

‘Usersshankar

chapterdb-au
chapter5a-a

T te =any

apters graus
_ L 417-F571
z-iteratipne=atchie}

TR =S e e MSATS2)

Figure A.31: The large differences in the number of files in each directory are shown,
with ///users/building and ///usersbuilding marked in green, ///users/shankar
and ///usersshankar marked in blue. Each directory is grown at a rate proportional
to the leaves so the marked regions are still comparable to each other.

ample: ///usersshankar had more leaves than ///users/shankar but
///users/building had more leaves than ///usersbuilding; not much
can be said about why the directory structure was set up this way
without referring to attributes. Figure A.31 shows the large differ-
ences in the number of files in each directory, building marked in
green, shankar marked in blue. Each directory is grown at a rate
proportional to the leaves so the marked regions are still comparable

to each other.

+ The personal pages comprised of more than half of the total number

156

http://chapter.5b-aus.ppt'

of leaf nodes in the system.

* Of the 76547 nodes, personal pages made up 42877 nodes: 20480
of which were in the ///users/ (userﬁame) type personal pages and
22397 in the ///users(username) type personal pages.

* The size totals for the user directories are displayed by the Found
panel but there were too many to display on the visualization to be
useful.

* Class pages were found in the class subtree which broke the years
1997-2003 into fall, spring and summer terms, such as fall2002, each
of which contained cmsc course pages. Figure A.32 shows the class
directory expanded to show the contents. . |

* There were many fewer research pages, under ///projects, than there
were personal or class pages. Figure A.33 shows project expanded to
show the contents.

* The largest directory in ///projects was hcil. This subtree will be

examined later in the four-way comparisons.
— Are the newer directories bigger than the older projects?

— When was the page giving directions to the department last updated?
Although I did not use the attributes provided, the datasets were known
to be weekly snapshots of a web-site, so I determined age characteristics
using TJ1-contest comparisons to locate changes made to the file system.
The datasets were too large to do foﬁr—way comparisons with the entire
set, so these tasks were attempted with logsa and logsg.

I loaded trees logsa and logsg to investigate differences in the projects

directory as well as the other main directories with differences:

* TJ1-contest was not able to determine the age of a directory unless

the directory had been added between the times which data was

157

£a112002

“spring2001

spr|n92002

LIS &S .

Figure A.32: class subtree expanded in logsa to show details. This subtree contains
a directory for each school term and the term directories contain course directories
for each class. ' '

collected. This is a restriction from the lack of attribute handling in

TJ1-contest.

* The size, in total number of files, of the projects subtree was quite
a bit smaller than the users directory; user hollings had about as
many files as the entire projects directory. Using the Found panel,
///users/hollings had 7194 nodes, both leaves and internal, and
///projects had 8447 nodes.

*x Finding the page giving directions to the department could not be
done with TJ1-contest since this would have required an attribute

describing the file contents. If the name of the file was provided,

158

Figure A.33: project subtree expanded in logsa to show the details. This subtree
contains a directory for each project. ‘

TJ1-contest would have been quite able to find the file.

x Personal pages showed the most diverse and sporadic differences.
There appeared to be many people who added, deleted, or moved files
in their personal directories, as shown in Figure A .34, an expanded

view of the users directory.

* Class pages showed small amounts of difference, which was expected
since these file system snapshots were made in summer months when
most classes are not in session. Also, since classes are sorted into
school terms in this file system, there are many dormant classes that

are not modified several years after they have been completed. There-

159

|ndg)_(.ﬁgrpl X o Xasriverwalk3,jp

Figure A.34: users subtree expanded in comparison of logsa and logsg. There appear
to be many people who added, deleted, or moved files in their personal directories

 in this one week time period. Differences are also seen in the context, indicating
that other file system changes were also made in this time.

fore, the only differences in the class pages were between leaves in
fall2002 and spring2003 subdirectories

* Closer examination of the fall2002 differences showed that some files
were deleted in the projects directofy of ¢cmsef84-0101, as shown by
Figure A.35. "

* Eﬁamination of thé changes in spring2003 showed that cmsc838p had
changed. Those changes were: one delete, design/ openimpl.pdf, and
several additions in multiple subdirectories, shown in Figure A.36.

* spring2003 had several additional subdirectories, possibly reflecting
these courses beginning. Shown in Figure A.37, these courses in—_‘
cluded: cmsc102, cmsc106, cmscf12-201, cmscd17, cmsc433 and
cmsc733. The cmsc{34 directory had been further populated as

well.

160

http://rwalk3.jp

studylist (final).p
homeworks:htm

(ﬁnal).pd‘

~—homMewsrks.htm;
hw1.html

horhew orks

Jinks_f

T

projl-opts.Kml.

——=pr0j2:html

. BIP Lo consemform.pdf
cmsc434-0101}.- ‘schedulé.htm cmsc434-0101]

designheuristics_i,

design.pdf
designpsychopath
drowingup.pdf

humaninfoprocess:

introductic df.

‘sga‘(\ne:rd_esivgnipdf‘

[-——subicomp.pdf

syfiabus.htm

o hu b~ 04 . g i

Figure A.35: Differences in ¢msc434-0101 between logsa and logsg show that some
files were deleted in the projects directory. Judging by the names of these files, it
seems like these are several project options that a professor might give his students
but without context, I can not say for certain that this is the case.

-——<dynami¢.p df

-whoare.pdf" . | . ¢

spring2003| .

i
evolut

ey

: emgcB38p

~howtorgad.Htmi
. fpamnaturity.pdf’

s ¢ b’ y-pe

f——e——stherac.pdf

o Processt.......microsoftprocess:j
inger.pdf

requirements i—
‘iam{:.—q pecifier.pdf:

b [—booleanprogram:p

‘vahdy -——-criteria.pdf.
-4 hvpercode:pdf

emscB3

A

requir:

wmmw__‘ﬁ index.htmi
Figure A.36: Differences in cmsc838p between logsa and logsg. The only deletion
was design/openimpl.pdf , not labeled but shown as the red marked expanded leaf
on logsa, and there were several additions; differences are shown as red, as usual.

161

‘ciriscd 24
cmisc424
.6

N—, ynamic.pdf
~———<h§ar‘e'.gqf
slackwit.pdf®

code

;spriﬁgéo'o'a‘) spr’ingz'(.)b'a‘ —

K |)l‘lt
cemscB838p|”

process

requireme

Figure A.37: Differences show new courses added between logsa and logsg.
spring2008 had several additional subdirectories, possibly reflecting these courses
beginning: cmsc102, cmscl06, cmscq12-201, cmsc4'17, cmscd33 and cmsc733.
Also, the cmsc434 directory had been further populated.

*x There were very few changes in the projects pages in this time pe-
riod. The only leaf modifications were in the jazz-chat directory,
where some files had been added that look like log files, shown in
Figure A.38. These changes rippled up the tree to the root; the rip-
ples did not reflect the entire structure changing but were useful in

locating the path from the root to the differences.

— Additionally, examination of the hcil subtree was done with all four logs
loaded: a four-way tree comparison. In this comparison, each node is
assigned a best corresponding node with a node on every tree.

This task was not a part of the contest tasks, but was interesting enough
to mention since it shows that TJl-contest is not limited to pairwise

comparison tasks.

I loaded trees hcila, hcilg, hcilc and hcilp:

162

oM.
wwexamplela.gif
=Sacs d-style. css

heml,
sd-style:ess

ersistence_of.me! persistence_of mé

index.htmil

iddesign - .
TR S assroomfuture.jf
blue_swirlb190.gif
~|privacy-policy.shtt
gaapaijpg)
1-introduction:htr

projlects”

|pautérsonbldg.jpg:
{$1d009.htm

-élas’ses
! hpsl

! first.gif’
ts1d019.htm

hipssi.html
index:htmi
ind i
i(tllly_sp'gc’;h(rhl
i g " dex-htmt

|

humb-04.gif

Figure A.38: Differences in jazz-chat directory between logsa and logsg. These
changes rippled up the tree to the root; the ripples did not reflect the entire structure
changing but were useful in locating the path from the root to the differences.

x In Figure A.39, growing the counterpoint directory, it was clear that
the directory changes only between hcilc and hcilp.

*x The iv03contest directory shown expanded in Figure A.40 was added
between hcilg and hcilc; between hcilc and hcilp, the directory ‘was
further populated with contest information and all of the contest
datasets, except hcilp, of course.

x In Figure A.41, spacetree and timesearcher also showed some addi-

tions between hcilg and hcilc.

A.4.2 Tasks not suited for TJ1-contest

" In this section of the res’ults, I present the details of contest tasks that I did not solve
with TJ1-contest. Most of these tasks were not possible since TJ1-contest did not
handle attributes. Notice how this section is quite a bit smaller than the previous

section; no tasks are hidden, TJ1-contest was able to solve most problems in the

163

[PoRrrsr e & . ; s e vy
L ind2:Tools; Help i : g " i it

ourses sher
~ s s . (———<ounterpoin
+ ———mcounterpoin - n interpoir -
- < Poi . tounterpoi . ~counterpain
. poini * poil
B N B -counterpoin
by i - punere N B seeunterpolr .
: H 3 . __counterpoi
poir) L fF unrers: meounterpolng : index.huml
14 counterpoint|. _ . “counterpoint}* P counterpoint! . .
! poin P - poiny; '
Poir i, ceounierpoi . erpoir (——scounterpoin
fad} index.htm! . Swnldadi —eindex.html index.html ;
' : . . B i BEA . - fmecounterpoin
ttonal P-gif. : - tos -I[:"'9" i g (eep:aif 3) index.fi
i ¥ ‘ . H + . . " A -
utsrisl.htrm 1 X atorialhtmi —-L—,«uxon.l.mm L eecouritérpoin
d) ’ : ndExhtmi % :
R . L ecountéipoin
jazz: 0472.miemt Eheil i 2 hei if.hml*
% rivacy:polii} rivacy-poli

Figure A.39: Differences in counterpoint among trees hcila, hcilg, hcilc and hcilp. It
was clear that the directory changes only between hcilc and hcilp.

prosmemaclassif himi
fremsndatasets.ivm

L]

archives

-jazz

datastis pmalogs_b-03-0
f—atogs_c_03-0

i jazz=c|

hei ivO3contest] LB ivo3contest|

fclassroomfu . :
medprints.s| i

me

—mreeml. gt
g eneraltasks
|ssmnaetiistory.html
fosmmsindex.bhem)
frsindex.shtmi
|—otago.ipg
|——iogs.numi

phyl y -
Loephylo. htmi

Figure A.40: Differences in iv0Scontest among trees hcila, hcilg, hcilc and hcilp. The
directory was added between hcilg and hcilc. Between hcilc and hcilp, the directory
was further populated with contest information and all of the contest datasets,
except hcilp.

164

license.shemy .
orgchartd.g
planaria.avi

‘spacetree}

multiquery.g '

uu-policy.sh

Figure A.41: Differences in spacetree and timesearcher among all hcil trees. spacetree
and timesearcher show some additions between hcilg and hcilc. '

contest using our information visualization approaches.

¢ Comparison of trees for attribute value changes

This section deals with visualization of attributes of datasets. TJ1-contest was
not able to use the-attributes except for the name of each node, so this section

was mentioned but dismissed as a weakness for our application.

— Global impression: did attributes change a lot or not?
— What nodes or subtrees changed the most?

— Did the value of attribute XY7Z for this node increase or decrease? In
absolute terms, or relatively to other siblings or other nodes

+ TJ1-contest was not able to handle attributes for the contest. Ad-

ditional work on parsing and handling extra attributes is interesting

and may be part of future work for TreeJuxtaposer beyond TJ2.

e General visualization of tree topology

This section relies on the visualization of datasets to determine certain prop-
erties of trees. There are several features that TJ2 does not support, since

they are outside our domain of interest in visualization, but the features are

165

http://%e2%80%a2vraoolbar.gr
http://-wiiflrapht.au

also possible additions to tools outside the scope of TJ2 that would use a

TreeJuxtaposer API to communicate with the visualization components.

— What is the deepest branch? Does depth between subtrees vary?
The deepest branch task is quite simple: it is a single number that TJ1-
contest calculates but does not display. Since we are only interested in
visualization and navigation of tree.datasets, I focus on that aspect of

analysis.

* Since the tree was right aligned, the deepest path and depth be-
tween subtrees was not possible to determine visually. Determining
the depth difference between subtrees is possible using the dimming
values of trees—the deeper the branch the dimmer the node—but
this is not an accurate metric since there may be many gradients of
dimmed nodes. Determining the diffefence between two dimmed val-
ues is impossiblé, but large scale estimatior\ls are handy, so dimming

does tell me where regions of deep nodes are in the dataset.

— Filtering by level: show only top n levels or remove bottom n levels
This task is also unsupported by TJ1-contest and although filtering is a
_part of many visuélization packages, we did not implement filtering. This
task would be simple to implem.ent with sliders to control the depth of

. filtering, but that complication is better left to future work.

~* No such filtering is available in TJ1-contest, but it may become part

of TreeJuxtaposer in the future.

e General visualization of tree attributes that can be aggregated

This section of results is focused on techniques of understanding tree attributes
with general datasets. Since TJl-contest could not answer many attribute
related questions, this section was also mostly dismissed as possible future

work. These questions could be solved with single tree visualizations and

166

require neither tree comparisons nor specific tree datasets, but were simply

not of high enough importance in our visualization research at the time.

— Find high values of a numerical attribute

— Find a given value of a numerical attribute

— Find nodes with a certain categorical attribute value

— Find values of a categorical attribute that occurs more often

— Find nodes with certain values of two or more attributes

These tasks are mostly quantitative and could be done with more sliders,

similar to the filtering approaches in the previous task. Again, this would

add complications and is better left to future work to keep TJ1-contest
simple.

* TJ1l-contest was unable to assess attributes of nodés, in this way.

Additional search features could be added to assist in performing

these tasks but they are not a priority to implement for our current

interests.

¢ General management of analysis

This section deals with general techniques that TJ1-contest uses for analy-
sis. This section focuses on editing the dataset, saving views and supporting
history functions.” All of these techniques are considered to be future work

beyond TJ2.

— Removing special anomalies
— Saving visualization settings for future reference

— Keeping the history of analyses: reviewing, replaying with different pa-

rameters

These tasks are quite powerful yet they are not implemented in TJ1-
contest due to the code complexity and time constraints. These tasks are

mentioned in the future work section, Section 6.1.

*x TJl-contest could not modify the tree, and did not support saving
or history. TJ1 introduced mostly an information visualization tech-
nique, accordion drawing, that relied on static sfructures and editing

.. the structure would be difficult with the layout mechanisms in that
system. I consider TJ2 to bé slightly more adaptable for these tasks

but more work is required.

¢ Application specific tasks section with phylogenetic trees

This section deals with the tasks related to phyloa and phylog datasets, con-.

structed by evaluating genomic properties of two proteins.

— Low level tasks: interaéting with the tree matching process to solve incon-
sistencies that can arise, displaying the trees, showing the relationships
and differences from a computed or interactively constructed mapping,

~and providing ways to permute links and nodes to verify hypotheses in-

teractively
This task is highly related to the lack of editing functionality in TJ1-
contest. Modifying the dataset is not possible in TJ1-contest and these

- Interactive editing tasks are also considered future work.

x The difference marking was provided by the automatic best corre-
sponding node algorithm and relies on the input dataset. The best
corresponding node relationships are only calculated when a tree is
loaded for the first time, which is another benefit to using only static

datasets.

* Navigating through with mouse-over highlighting and marking sub-

trees with user marking groups allows me to recognize further simi-

168

larities in the tree, but no modifications of the input technology are

possible to correct the automated matching process.

¢ Application specific tasks section on classification trees

This section deals with the tasks related to comparisons of mammalias and
mammaliag datasets as well as other visualization tasks with animaliaa and
animaliag. Comparisons are not done with the animalia datasets since they

were too large to evaluate with TJ1-contest.

— For the top five subtrees with the most nodes are they likely to have a-
parent of a particular rank? Or does this happen in many ranks? Can
you comment on how useful rank is?

This -question is rank specific but TJ 1-contest only quantifies rank
with dimming. This task is not easy to answer without filtering
as well, since a subset of the data is required. Besides, .the task is
not well thought out: if a subtree has a large number of nodes, the
parent node will contain more nodes, so the top five subtrees, where
one large subtree .does not contain any other large subtree, when
considering node quantity are all rooted at the root of the dataset.
Hence, the answer is that all five of the largest subtrees are rooted

at animalia.

* I am unable to comment on rank since rank is an attribute that the

TJ1-contest system does not handle.

e Application specific tasks section on file system trees

This section deals with investigating the attributes of individual file system

trees. Attributes that are considered in this section relate.to the usage of the
. file system, as web page hit counts, which would be intéresting to visualize

in a tree structure over a period of several weeks, but TJ1-contest does not

handle attributes.

- 169

— Which aré the popular web pages?
— Are there some labs more popular than others?
- — Which areas are getting more popular? le‘ss popular'f

— Are ﬁew pages ﬁlore popular that old pages?

— Which old page are popular?

— What proportion of the pages are never used? seldom used?
The file system specific tasks that T could not answer with TJ1-contest
are attribute based. Again, since TJ1-contest dées not handle node at-

tributes, other than a name, these tasks are not possible with our appli-

cation.

* I can not comment on file usage since attributes, which include file

usage, are not handled in TJ1-contest.

A.5 "Contest conclusions -

Although TJ 1-contest was not able to perfofm all tasks suggested by. the contest
organizers, | was able to show that the application performed well on tasks that it
was designed to solve. TJ1-contest was judged to be the best entry overall at InfoVis
2003 and the entry itself was an excellent moti{fation to produce many forms of
publicity such as: a descriptive video, a web-page, an introductory paper, a poster
and a presentation. This contest motivated many interesting additions to TJ1, such
as incremental search and a more advanced user interface, which made TJ1-contest
a much more powerful tool. Some of the tasks that we did not solve directly were
solvable with workarounds such as marking groups to return to later instead of undo
functionality. The large contest datasets were too large to load completely and still
be interactive for comparisons, but modifications since then have produced much

more scalable versions of TreeJuxtaposer, such as TJ2, presented in Chapter 3.

170

