
Point-Based Level Sets and Progress Towards Unorganised 

Particle Based Fluids 

by 

Richard D. Corbett 

B.Eng., Memorial Univerity of Newfoundland 2003 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF 

THE REQUIREMENTS FOR THE DEGREE OF 

Master of Science 

in 

T H E F A C U L T Y O F G R A D U A T E S T U D I E S 

..Computer Science 

The University of British Columbia 

June 2005 

© Richard D . Corbett , 2005 



Abstract 

We combine the advantages of level sets, particle level sets, and point-set surfaces 
in a simple new framework, where we store signed distance values on a volume of 
scattered points. This permits easy and effective surface operations of appropri­
ate quality for graphics and animation. We present techniques such as accurate 
deformation by advection, constructive solid geometry, mean curvature flow and 
more general surface flows as well as a strategy to convert triangulated meshes to 
this point representation. Finally, it is shown that by harnessing the information 
generated during implicit surface evolution, ray-traced renderings are close at hand. 

A n investigation into employing the point-based level set techniques for fluid 
animation is presented. Here, strategies for a particle based Poisson solves and 
potential boundary conditions are discussed. Although some positive results are 
achieved, more research is required to correctly handle the necessary boundary con­
ditions and discontinuities for fluid animation. 
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Chapter 1 

Introduction 

The range of geometric operations required in graphics has driven the development 

of a variety of different geometric representations. This thesis introduces one such 

representation, the point-based level set, where signed distance values are sampled 

on a volume of scattered points. Our aim is to combine the advantages of two 

existing complementary approaches, point-set surfaces and grid-based level sets in 

a new tool appropriate for graphics applications. 

The challenges of maintaining mesh connectivity and good parameterization 

in the face of deformation and more extreme geometric operations have encouraged 

researchers to look at unparameterized representations. In this section we review a 

number of such representations. 

1.1 Level sets and point-set surfaces 

A n implicit surface can be denned in 3D as the set of points (x,y,z) satisfying 

f(x,y,z)=c (1.1) 
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where / is some function, and the constant c is often chosen to be zero. One common 

choice for / is signed distance: the magnitude of f(x,y,z) is equal to the distance 

from (x, y, z) to the surface and the sign of / indicates whether (x, y, z) is inside or 

outside the surface. For example, 

y/x2 + y2 + z2 - 5 = 0 (1.2) 

defines a sphere centered at the origin, and of radius 5. For any point, the signed 

distance is also computed through this equation. Plugging point p = [0,0,0] into 

the left side of Equation 1.2 will give a right side of -5, showing that p is inside the 

surface (negative) and 5 units from the surface. 

Level sets, introduced by Osher and Sethian [26], are an Eulerian represen­

tation for dynamic implicit surface simulation. In general, the implicit surface is 

defined by a grid of signed distance samples. The implicit surface function (i.e. ap­

proximate signed distance to the surface) can be readily evaluated by interpolation 

of the values at the grid nodes. The regular sampling allows accurate and efficient 

finite difference approximations when derivatives are needed. 

Point-set surfaces [1] [17] [2], are representations of geometry through an 

arbitrary point sampling of the surface. Often, this geometric representation is the 

result of 3D range scanning. A surface can be easily reconstructed from the point 

sampling using the moving-least-squares (MLS) construct. 

1.2 Comparison 

In this section, we iterate some of the advantages and disadvantages of the above 

representations, motivating a solution that can combine the attractive features of 

both. 
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1.2.1 Merging and pinching 

One of the most attractive strengths of the level set approach is its capability for 

numerical regularization. This property allows for merging and pinching of the 

implicit surface as it evolves through the grid during simulations such as mean 

curvature flow. Operations such as Constructive Solid Geometry (CSG) [24] are 

also possible with this representation. 

Point-set surfaces are not suitable for general surface evolution. Operations 

such as mean curvature flow involving topological changes have not yet been ad­

dressed and C S G operations are also difficult. 

1.2.2 Volume operations 

Level sets are capable of fast volume operations such as approximating distance 

and direction to the surface from anywhere in space. Maintenance of the signed 

distance field throughout the volume is possible through signed distance marching 

and reinitialization [27]. 

Point-set surfaces have very little, if any, off-surface representation, making 

them a limited volumetric approach. For example, it can be difficult to determine 

whether an arbitrary position in space is inside or outside a point-set surface. 

1.2.3 Adapt iv i ty 

It is often desirable to have spatially varying resolution in a geometric representation. 

Point-set surfaces afford such capability by varying each interpolation radius and 

the density of the point locations [1]. -

Although spatially varying resolution is possible in the level set representa­

tion, it comes at a significant cost in implementation complexity. Such an approach 
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is presented in [18], where an octree with higher resolution near the implicit surface 

is used for high resolution fluid animation. 

1.2.4 Numerical diffusion 

Level sets are notorious for numerical diffusion where even simple motion such as 

3D translation and rotation will cause smoothing of the surface, despite the use of 

sophisticated high-resolution 5th-order HJ-WENO methods [6]. Because of the fixed 

grid representation, surface features can never be exactly preserved during general 

translations or rotations. 

Point-set surfaces can easily be translated and rotated. Since this is a La-

grangian representation, diffusion is not a problem and surface features are guaran­

teed to be preserved: the surface is exactly invariant under rigid body motion. 

1.3 Other alternatives 

The following representations attempt to combine the positive features of the above-

mentioned representations. 

1.3.1 Particle level set 

Enright et al [6] finalized the particle level set method in an effort to combat the 

diffusion in the original level set representation. Here, particles were used in conjuc-

tion with a grid. The particles are moved at each time step with the grid velocities 

and are used to fix numerical diffusion errors in the grid-based level set after the 

implicit surface is evolved. This strategy presents substantial improvements over 

the basic level set, but still does not perfectly preserve shape for even basic flows. 
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1.3.2 Radia l basis functions 

There has been recent work on the use of radial basis function (RBF) representations 

for geometric operations [3]. This is almost exactly the level set representation, using 

unmoving R B F s instead of a fixed grid. This work is focused on solving Hamilton 

Jacobi P D E s in higher dimensions, and it remains to be tested for the lower order, 

but fast, approximations required for graphics. Furthermore, there is no discussion 

of what can be done by moving the points, or whether this would be beneficial. One 

attractive feature of this representation is the ease of incorporating adaptivity. 

1.4 Point-based level set 

The following chapters describe the point-based level set, which is our attempt to 

combine the attractive features of grid-based level sets and point-set surfaces into 

one simple framework. B y leveraging the moving-least-squares (MLS) construct, 

a volumetric level set representation is created through a set of arbitrarily placed 

signed distance samples. This representation is capable of simple adaptivity, and 

geometric operations. Techniques for triangulated mesh conversion and signed dis­

tance computation are presented. Finally, efforts towards two-phase fluid animation 

using this representation are described. 

5 



Chapter 2 

Definition 

We represent our geometry with an arbitrarily organized set of signed distance sam­

ple points. A t each point, interpolation of gradient, curvature, and signed distance 

can be achieved through construction of a moving-least-squares (MLS) solve. In sit­

uations where M L S solves are carried out at all sample points in the signed distance 

field, further interpolation can be sped up at the cost of accuracy using Dolbow 

interpolation. 

A n example of our representation is shown in Figure 2.1. W i t h this set of 

unordered points we are able to achieve what previously required a point-set repre­

sentation, coupled with either an embedded regular grid [13] [14], or an embedded 

octree [25]. 

2.1 MLS interpolation 

A t sample point j we fit a quadratic polynomial, S(x), to the data in its local 

neighborhood: 
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Figure 2.1: These images are an example of a point cloud representing a geometric 
shape. The colored points in the left image are samples of the signed distance field 
about a circle. Arbitrary organization of the points is possible, as well as the use of 
extra points in areas where more resolution is desired (See Figure 2.3). 

N 
min 2^ (S(xij) - Si)2w(xij) (2.1) 

t=l 

where we are minimizing over the space of quadratics, Si are the signed distance 

values in the local neighborhood, and x^ = Xi — Xj. The function w(xij) is the 

weighting, or kernel, function, centered at j, 

w(xi:i) = (1 - Ixijl/R^^Xijl/R + 1) : \xij\ < R (2.2a) 

w(xij) = 0: \xij\ > R (2.2b) 

R is the kernel radius, which defines the size of the local neighborhood to consider, 

which in turn, controls the amount of smoothing (large R, lots of smoothing). If 

enough points are present, a small kernel radius can be used, thereby preserving 

smaller features. 

Equation 2.1 can be solved by the usual minimizing procedure of taking the 

derivative and setting it to zero. In ID, after some rearranging, this results in the 
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linear system 

which we use L A P A C K to efficiently solve. 

Once the 10 quadratic coefficients of S for a 3D simulation are known at a 

point, we can treat operations on the signed distance at that point as operations on 

S. Explicity, each locally denned trivariate quadratic is: 

S = A + Bx + Cy + Dz + Exy + Fyz + Gxz + Hx2 + Iy2 + Jz2 (2.4) 

From which a local gradient can be computed as 

VS={B,C,D) (2.5) 

and the local mean curvature as 

V S _ (B2I - BCE + C2H + B2 J - BDF + D2F + C2J - CDG + D2I 
v ' l v s j _ 2 V (B2 + c2 + D2y-5 

(2.6) 

2.2 Dolbow interpolation 

Dolbow and Belytchko [5] suggest leveraging the above solutions by calculating the 

weighted average of the local S functions evaluated at an arbitrary point of inter­

est. This interpolation of quadratics can be done using zeroth order approximation 

to achieve similar results to linear-fit M L S interpolation of the original points (see 

below). W i t h this approach, we can approximate solutions at arbitrary points with­

out more M L S solves. Although the result is similar to a linear fit to the original 

1 Xij xfj 

9 3 

J,ij 
9 ^ 4 

-'ij - ' 'U J 

A 

B 

C 

Y.wixij) (2.3) 
i = i 



Interpolant Comparison Inlarpolanl Comparison 

Figure 2.2: The above graphs display results of both M L S interpolation and Dolbow 
interpolation on discontinuous data. The M L S interpolation gives a truer approx­
imation at discontinuities, however, the Dolbow interpolation can be speedier in 
situations where M L S solves have been done and further evaluations are required. 
The Dolbow interpolation gives similar results to linear-fit M L S interpolation of the 
original data. The benefits of the Dolbow technique are that interpolations at new 
locations are easily done at a lower computational cost, and that interpolation of 
higher order operations such as curvature is possible. 

data, we can now evaluate higher order operators (such as curvature) that cannot be 

achieved with linear-fit approximation. This operation is formally described below. 

Given 

S(x) = P(x)Ta(x) (2.7) 

where 

P(x)T = [1 x y z xy xz yz x2 y2 z2} (2-8) 

is the 3D quadratic basis and a(x) is a vector of coefficients solved for in the M L S 

solve, field interpolation is attainable at point Xj through a weighted average of the 

local S(xi) functions evaluated at xy. 

4i*>) = ^ < ^ H * « > (2.9) 
2-»i=l w \ x i j ) 
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where •I- ij 1S CC £ X j . It follows that: 

m ) = . ( 2 . 1 0 ) 

E i = i wfay) 

As shown in Figure 2.2, Dolbow interpolation, although allowing for faster 

interpolation once MLS solves have been done, does introduce more smoothing into 

the system. It also requires more memory to retain each of the solution vectors a(x) 

for future processing. 

2.3 Adapt ivity 

By placing extra points where higher resolution is desired, it is possible to compute 

MLS estimations of the geometry with a smaller kernel radius, reducing the spatial 

smoothing. This can be done adaptively during each MLS solve by noting the 

number of points accumulated within the kernel radius and recursing with a larger 

radius, if necessary. This allows for a small default radius to be chosen, and for solves 

in sparsely populated areas, the radius can be increased without user interaction. 

An example of a sharp corner being interpolated with MLS is shown in Figure 2.3. 

2.4 Acceleration 

To accelerate the search for adjacent points in a simulation we partition the simula­

tion space into an acceleration grid. Since all operations are local, we usually only 

need to check grid cells adjacent to the point of interest during an MLS solution. If 

the minimum number of required points cannot be found in the set of adjacent grid 

cells, it is easy to query the grid cells as far away as needed. However, we note that 
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Figure 2.3: The figure on the left shows M L S sharp feature interpolation with­
out adaptivity. The figure on the right shows the interpolation resulting from the 
adaptive approach. 

for very large variations in kernel radius, a uniform acceleration grid is inefficient. 

We recommend a grid cell size equal to the default M L S kernel radius. 

11 



Chapter 3 

Signed Distance Computation 

Given the movement of particles, or signed distance evolution over time, a proper 

signed distance field will eventually require upkeep of the signed distance values. 

Two major strategies can be used for maintaining a signed distance field: 

• Reinitializing 

• Marching 

This chapter visits both of these strategies, describing how they can be implemented 

with the point-based level set representation. 

3.1 Reinitializing 

Reinitialization can be achieved by solving the following PDE to steady state in 

pseudo-time t (i.e. not simulation time): 

^ + si f ln(^o)(|V0| - 1) = 0. (3.1) 

We can adopt a semi-Lagrangian approach in the solution of this equation, which 

involves computing the gradient of <f> at all the sample points, looking towards the 
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Figure 3.1: Here, two frames of a I D reinitialization scheme are shown. The blue 
lines show the extremely noisy signed distance data to be reinitialized. The red 
lines show the current signed distance values after one iteration (left image) and 18 
iterations (right image). Note that the signed distance domain may never become 
monotonic if the original data contains erroneously signed gradients. 

interface along the gradient, and interpolating to find the new value (a more accurate 

Eulerian E N O alternative to this can be found in [3]). 

Although these operations are possible within the point-based level set frame­

work, it is not a solid strategy because there are situations where it fails to correct 

errors in the signed distance field. Most notably, in areas where the gradient erro­

neously switches sign, signed distance values wil l flow towards the interface, instead 

of out from it. Even if care is taken to avoid switching signs at sample points during 

this process, some unwanted kinks in signed distance apparently wil l never be fixed. 

A ID example of this scenario is shown in Figure 3.1. 

3.2 Marching 

In the absence of a robust reinitialization technique, marching values away from 

the implicitly defined interface was investigated. This technique can be done in less 

time than reinitialization and is less sensitive to existing errors in the data. 

13 



We can reconstruct a signed distance field from approximate initial signed 

distance values on the points. We only require approximate signed distance val­

ues for the points near the interface, and the others can be initialized during the 

marching process, which is an adaptation of the grid-based strategy found in [34]. 

Our strategy involves the following sets of particles: 

• P is the set of projected surface particles that sample the zero level set. Once 

this set is constructed it does not change during marching. 

• / is the set of initialized particles. Each of these particles knows which particle 

in P it is closest to, and its distance to it. 

• U is the set of uninitialized particles that are farther than one kernel radius 

away from any member of / . 

• H is a heap containing the uninitialized particles that are within one kernel 

radius of particles in I. Each of these elements keeps track of which element in 

P it believes it is closest to, and its distance to that point (candidate distance). 

The element with the smallest candidate distance is at the top of the heap. 

We first create set P by selecting the points that are within a kernel radius of 

points on the opposite side of the interface (i.e. have opposite sign), copying them, 

and projecting them onto the interface as suggested in [2] to create a temporary 

point-set surface representation of the zero level set. This is done by calculating the 

gradient of the signed distance in the local neighborhood of the new point's starting 

position and then moving the point closer to the interface along this direction. At 

the new location, we again calculate the gradient, and again move the point closer 

to the interface. This process is repeated until the point has been projected to a 
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location with an interpolated signed distance magnitude lower than some threshold. 

Once this is done for each near-interface particle, we save them in P. 

I is first populated by adding to it the points that were projected to the 

interface. These points can easily calculate their signed distance as the distance 

between their starting location and the final projected location. The closest element 

in R for each of these points is where it was projected onto the interface. 

H is first created by adding all the points outside of / that are within one 

kernel radius of one of Ps elements. This set is maintained as a heap, whose top 

element will always be the point that has the smallest known distance to any of the 

elements in P. 

U simply contains the points that are both uninitialized and farther than 1 

kernel radius away from any member of / . 

Marching is the process of taking the point off the top of the heap, adding 

it to I and updating the nearby points in the heap. The point from the top of 

the heap will likely be within one kernel radius of some points in U. These points 

should be moved to H, and have their candidate distances set to their distances to 

the point in P that the top element was closest to. Also, any current elements of H 

that are within one kernel radius of the top element's position should check to see 

if the surface particle from P that the top element was closest to is closer than the 

element's current closest point. 

Continuing the above migration of particles from U to I until there are 

no more particles in U will march the signed distance throughout the domain in 

0(n log n) time. 

Of course, the marching algorithm described above requires that all points 

in the domain be connected in the network of points. This means that no points are 
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allowed to be separated by more than a kernel radius from all other points. In the 

case of such an isolated point, it is possible to attempt to look for adjacent points 

within a larger radius, but this may affect both the speed and the accuracy of the 

signed distance marching. 
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Chapter 4 

Geometric Operations 

In graphical applications ranging from modeling/sculpting to simulation there are a 

number of geometric operations that a surface representation should easily support. 

We present here a variety of such operations where point-based level sets work well. 

4.1 Deformation by advection 

Deformation by advection in a continuous velocity field is handled simply by moving 

the points. Grid-based level sets cannot do this without introducing unwanted 

smoothing, overcome by the somewhat complex particle level set method [6]. While 

point-set surfaces are sometimes just as effective (and can, in fact, be viewed as 

a particular subcase of our method), applications such as fluid animation require 

a degree of regularization—to handle merging and breaking—that is not found in 

point-set surfaces. We do not need to include particles exactly on the surface, and 

thus can attain the same attractive regularization as grid-based level sets without 

the attendant numerical diffusion. 

To increase accuracy during an advection step, we copy and project the near-
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Figure 4.1: By placing points densely around the interface, we are able to maintain 
a smoothed closed surface during deformation by advection. 

interface particles onto the surface, and move them with the flow. Then, at the end 

of the time step we can use these temporary points as our zero level set to march 

out from as described in Chapter 3. This solution still maintains the attractive 

regularization properties of level sets. 

In some applications, permanently carrying around points on the zero level 

set can be useful (as seen in Figure 4.1). Other times, when surfaces are merging, 

keeping points on the interface wil l eliminate the desired regularized solution. Thus, 

for applications such as fluid animation, we advocate not keeping points on the 

interface, and rebuilding the interface after each time step. 

4.2 Boolean operations 

Operations from C S G are almost as simple in this representation as they are in level 

sets: we simply union the point sets of the two objects, and perform the appropriate 

min/max operation at each point (using either the value sampled there or an M L S 

estimate from local points as appropriate). Figure 4.2 shows simple examples of 

C S G operations on two spheres. The evident smoothing at the interface of the two 
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shapes would also be an artifact of grid-based level sets. The smoothing can be 

controlled to a degree by the level of sampling and the size of the interpolation 

radius, but even sharper features would be possible using the strategy described in 

[10]. 

4.3 Motion by mean curvature and general flows 

Unlike the particle level set and point-set approaches, point-based level sets can 

handle motion by mean curvature, 

and more general motions in the normal direction such as, 

& + c|V0|=O (4.2) 

where parts of the surface may be destroyed or created (e.g. [24]). We do this by 

keeping our points fixed, and evolving their signed distance values with derivative 

quantities estimated from the coefficients of the M L S solves. A more computation­

ally intensive but more accurate alternative for this one case is described in [3]. 

W i t h the point-based level set representation, it is possible to combine all 

of the above operations as required. The particles can be easily moved to deal 

with advective motion, while the sample values can be updated to deal with mean-

curvature flow. 

19 



Figure 4.2: Examples of Constructive Solid Geometry (CSG) operation is shown 
here. The union and intersection of the two spheres is simply done by considering 
the minimum and maximum of the signed distances at the sample points. The degree 
of smoothing at the interface can be controlled by the number of points used, as 
well as the size of the interpolation kerneL 



Figure 4.3: These 3 images from a simulation of motion in the normal direction 
show that the interface expands smoothly. This is achieved by keeping the points 
in place and changing their signed distance values. 

Figure 4.4: Motion is simulated by 3D mean curvature flow in these 3 images. The 
images were rendered using the strategy described in Chapter 6 
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Chapter 5 

Mesh Conversion 

For our point representation to be useful, it is necessary to be able to convert 

existing geometry stored in standard triangle mesh format. This is straightforward 

once consistent face normals are available or have been computed. 

To create a field of signed distance sample points from a polygonized mesh 

we follow these steps: 

• Load the mesh information retaining only face vertices and face normals. 

• A d d all the triangle vertices and assign them signed distances of zero. 

• Partition any non-triangle convex faces into triangles. This is easily done for 

any polygon by selecting a starting vertex and walking around the outside 

of the polygon. By traversing the vertices in either clockwise or counter­

clockwise order, triangles can be created by selecting pairs of adjacent vertices 

and completing the triangle with the starting vertex. 

• For each triangle that is longer than the desired kernel radius, we must subdi­

vide it, adding new points spaced less than the kernel radius apart. There are 
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many ways to do this; our current algorithm introduces a grid of points based 

on the longest edge. We walk along each of the shorter edges in steps that 

are a fraction of the kernel radius, and at each step march a vector of points 

normal to the longest edge. This step is visualized in Figure 5.1. 

• A t each point that is visited while marching across the face of a triangle add a 

new point on the surface, as well as one slightly offset to each side of the face. 

Assign these new points signed distances equal to their offsets, taking care to 

ensure the signs are correct. 

• Once these interface points have been added, and their signed distances as­

signed, it is possible to scatter points throughout the volume (wherever they 

are be desired). These new points can be assigned signed distance values using 

the marching strategy described in Chapter 3. 

Of course, the resolution at which points are sampled both on the triangu­

lated surface, as well as anywhere else in the domain, wil l determine how well sharp 

/ features can be resolved. 

5.1 Particle placement issues 

At a sharp edge between two faces, care must be taken to avoid placing particles in 

areas that could cause errors. For instance, placing offset particles at sharp edges 

could result in placing particles of a particular sign on the wrong side of the interface. 

A n example of such a situation is shown in Figure 5.2. This type of problem can 

be avoided by limiting the distance to offset particles from the interface, as well as 

taking care not to blindly place particles very close to edges. This has been done 
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Figure 5.1: Particles have been placed throughout this triangle using the strategy 
in this section. A t each step along edge A B a vector of particles is marched normal 
to A C until A C is encountered. The green arrows indicate the direction that the 
marching across the face follows. Similarly, edge B C is traversed, adding vectors of 
particles towards A C . 

for each individual example by tuning the parameters that determine how close to 

edges points may be placed, as well as the distance to offset points from faces. 
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Figure 5.2: This figure shows the importance of taking care when inserting offset 
points at a sharp edge. The red circle shows where two green particles, which are 
intended to be on the inside of the shape, have been erroneously placed on the 
outside. This will cause complications when marching signed distance values away 
from the interface. 
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Chapter 6 

Rendering 

Since many of the simulation techniques that can be performed on points require 

solution of MLS interpolants, Dolbow interpolation is recommended for use in a ray 

tracer for fast isosurface rendering. We are able to ray trace a set of signed distance 

sample points quickly by using the signed distance to help predict how much farther 

a ray can be traversed before reaching the isosurface. 

A ray is marched through the geometry by completing a Dolbow approxi­

mation of the surrounding signed distance data at each desired ray position. This 

estimated distance to the interface is then used to determine how large the next step 

along the ray should be. In practice, the step size is set to 75% of the estimated 

distance, plus a minimum step size to ensure marching continues non-asymptotically 

near the interface. The crossing of the interface is easily identified by a change in 

sign of the signed distance estimate at consecutive locations along the ray. 

Once two consecutive estimates with opposite signs are found along a ray, 

the two corresponding locations are used as the initial points for a secant solve. 

When the surface has been located within a maximum threshold (the secant solve 

has converged), the normal can be identified through another Dolbow estimate, this 
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time blending together gradients. 

Figure 6.1 shows examples of images created by ray tracing the point-based 

level set representation. 
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Figure 6.1: Theses ray-traced images have been created through Dolbow interpola 
tion. The two frames show an evolution through motion by mean curvature. 
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Chapter 7 

Towards Fluid Animation 

In this chapter we investigate the use of the point-based level set for two-phase 

fluid animation. A review of recent publications is presented, then a short discus­

sion of the Navier-Stokes equations and their solution is introduced. Next, a new 

method for solving Poisson problems is described, followed by a discussion of dif­

ferent boundary condition implementations. Finally, a short section describes the 

results that were achieved while attempting to apply the new particle based Poisson 

solve in the solution of the Navier-Stokes equations. 

7.1 Point based animation 

Simple advection, execution speed, and easy implementation have qualified point 

representations for a variety of animations. Reeves [31] introduced particle tech­

niques for animating what he referred to as "fuzzy objects". Results for fire, explo­

sions, grass, and fireworks were presented. 

Recently, more advanced and physically based techniques have been used to 

model deformable objects. A real-time system for animating elastic, plastic, and 
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melting objects through the use of S P H and M L S approximations was created by 

Mii l lerei al [21] and has since been expanded to accommodate fracture [28]. Another 

strategy for animating deformable objects, this time through shape matching, was 

presented in [23]. 

7.2 Previous fluid animations 

Fluid animations to date generally fall into one of three categories. Grid based 

simulation, the first category, allows for solution of the Navier-Stokes equations 

into an approximate divergence-free domain at the cost of smoothing and damping. 

The alternative, point based approaches have, to date, most often been based on 

Smoothed Particle Hydrodynamics (SPH), the accuracy of which is known to be 

dependant upon the particle distribution (there has also been some work on advect-

ing radial basis functions [29]). The third category, a combination of grid based 

and particle based animations, has been used to couple the undamped freedom of 

particles, with the simple divergence-free projection of grids. 

Foster and Metaxas [12] introduced the three dimensional solution of the 

Navier Stokes equations for animation using a Marker and Cell ( M A C ) grid. They 

described the treatment of boundary conditions for stationary obstacles, inflow 

and outflow, and free surfaces. Stam [32] introduced unconditionally stable semi-

Lagrangian advection to the graphics community. However, the stable smoke sim­

ulation introduced a large degree of velocity dissipation. Fedkiw and Stam [9] at­

tempted to limit the dissipation of Stam's earlier work with the introduction of 

vorticity confinement and clamped splines. Foster and Fedkiw [11] introduced to 

graphics the use of a level set to track the fluid interface on the grid. However, 

this level set representation was still plagued by numerical dissipation. Enright et 
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al [7] improved Fedkiw and Foster's approach of combining properties of particles 

with those of a grid by placing particles on each side of the interface to provide a 

less dissipative solution. W i t h similar motivation, Losasso et al [18] introduced the 

use of an octree to allow for sharper interface resolution. Most recently, Zhu and 

Bridson[35] showed that using both theParticle-in-Cell (PIC) method and Fluid-

Implicit-Particle (FLIP) method, particles can be animated through a grid to sim­

ulate a variety materials. 

Another branch of grid based fluid animation involves the Volume of Fluid 

(VOF) technique, created by Hirt and Nichols [15]. This technique again uses a 

three dimensional grid, but considers the water/air fraction in each cell. Recently, 

Sussman [33] showed how to couple level set techniques with the V O F approach. 

Two phase animations were provided through V O F by Hong and K i m [16], which 

provided for real time bubble simulation. Mihalef et al [19] stitched together a 

number of 2D V O F wave simulations to create realistic 3D waves. 

S P H was introduced to the animation world by Desbrun and Gascuel [4]. 

The main advantages of this method include ease of implementation and speed 

of execution. These reasons have qualified its employment in a number of recent 

publications, including [22] and [30]. However, S P H is limited by requiring regular 

organization of the particles for accurate estimates [20], thus limiting its flexibility. 

Furthermore, reconstructing a smooth surface from this simple set of particles is 

very difficult; for example Premoze et al [30] resort to an expensive grid-based level 

set evaluation coupled to the particles in the face of this challenge. 
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7.3 Motivation 

The point-based and grid-based level set techniques are capable of many of the 

operations required in fluid simulations. Both techniques hold the properties of 

regularization that are desired for fluid flow simulation. However, adaptivity is 

much more easily achieved with the randomly placed set of points, than with the 

use of an octree on a grid. Certainly, this warrants an investigation into replacing 

the usual grid with the point-based level set for fluid simulation. 

The dependence of S P H on a regular particle spacing can limit its utility in 

more interesting flows. W i t h the M L S approach in the point-based level set, there is 

little dependency on particle organization, making this new technique an attractive 

alternative. Furthermore, the difficulty of constructing a smooth interface around 

S P H particles can be bypassed with the point-based level set approach. 

7.4 Navier-Stokes solution 

The Navier-Stokes equations, which govern the flow of an incompressible inviscid 

fluid are as follows: 

u t + u - V u - l - ( l / p ) V p = / (7.1) 

V - w = 0 (7.2) 

Where ut is the time derivative of the flow and / is any external force, which in 

most cases is a gravitational force, g. The variable u denotes the three-dimensional 

velocity and p is the fluid density. Equation 7.1 ensures that momentum is conserved, 

while Equation 7.2 ensures the flow is incompressible. Solution of these equations 
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is generally carried out as described, for example, by Stam [32]. This involves 

rearranging Equation 7.1 as 

ut = -u • Vw - (l / /o)Vp + / (7.3) 

and easing computation by splitting into: 

ut = f (7.4) 

ut + u • V u = 0 (7.5) 

ut + (l/p)Vp = 0. (7.6) 

W i t h equations setup as above, time can be evolved by solving Equations 

7.4-7.6 for each time step. 

Solution of Equation 7.5 on a grid can introduce unwanted numerical diffusion 

[35], while the approximations that are presented through S P H are only valid for 

regular particle distributions [20]. To this end, it seems reasonable to explore the 

available tools presented in Chapters 2 and 3 as a framework for fluid animation. 

The remainder of this chapter presents efforts in this direction. 

7.5 Particle advection 

The solution of the advection Equation 7.5 with a Lagrangian representation, such 

as the point-based level set, can be greatly simplified. Since the particles move with 

the fluid, and encapsulate the total derivative of the flow, u • V u can be ignored. 

W i t h this assumption, particle represented inviscid fluids can be simulated in two 

steps: adding any outside forces to the particles (Equation 7.4), and enforcing in-

compressibility(Equation 7.6). This simplification is made implicitly in each of the 

following sections. 
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7.6 Particle fluids 

Using the tools in Chapter 2, a strategy was devised to represent fluid flow with a 

set of randomly spaced sample points. Here, the flow was modeled as weakly com­

pressible, allowing for slight deviations in density to control the pressure gradient. 

The following equations governed the flow: i 

xt=u (7.7) 

ut = -(l/p)Vp + g (7.8) 

pt = -pV • u (7.9) 

p = c2(p-Po) (7.10) 

where c is the artificial incompressibility factor, p is the present density at a point, 

and p0 is the known scientific density of the fluid. As before, a subscripted t denotes 

the time derivative. 

When using this strategy, the divergence and gradient can be computed with 

an M L S solution at each point. Thus, tracking changes in density becomes a matter 

of computing a number of M L S solves. 

Enforcing boundary conditions of a closed container was attempted both 

by reflecting particles to the outside of the domain and by simple particle collision 

analysis. Neither of these strategies managed to create a convincing fluid simulation. 

The main problem was the lack of a steady solution for incompressibility, which can 

be exposed by considering a,standing column of water. In a column, after the first 

time step, the particles at the bottom will experience a convergence. The effect 

of this convergence wil l only affect the nearby particles, pushing them upwards, 

while the particles above continue to gather downward momentum caused by the 
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unbalanced gravitational pull. After a number of timesteps, the entire column is in 

disarray. Unfortunately, a proper heuristic for determining the parameter c and its 

appropriate treatment for incompressibility, was never reached, and a steady column 

of water was never achieved. 

7.7 Approximate pressure solve 

Given the results of the investigation in Section 7.6 we hypothesized that projection 

methods would be more effective. B y determining a consistent solution for the 

pressure at each particle, an incompressible flow could be approximated. 

7.7.1 Projection 

The projection of a velocity field onto a divergence-free space (i.e., the solution of 

Equations 7.6 and 7.2) can be achieved in the following way. 

After velocities have been updated and particles have been moved, the ve­

locity field is no longer divergence free. This velocity field wil l be referred to as u*. 

The desired divergence-free velocity field is u n e w . Combining Equations 7.6 and 7.2 

gives 

V • (u* - (l/p)Vp) = 0 (7.11) 

which can be rearranged as 

V • (l//j)Vp = V • u* (7.12) 

and once this has been solved for p, the final divergence free velocity field can be 

reached through 

u. mew (7.13) 
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7.7.2 Poisson system 

The ability to approximate divergence, gradient, and Laplacians of scattered data 

with local M L S solves motivated a search for a way to leverage the M L S construct 

for the Poisson solve. This was especially attractive given that M L S systems would 

already be set up during the divergence solves at every point. In this section, an 

example of the solution in I D is presented. The expansion to multiple dimensions 

follows naturally. 

To explain how the Poisson problem was addressed, the system generated 

by Equation 2.1, fitting quadratics to pressures pi on randomly spaced points Xi, is 

expanded as 

E1 

i=i 

where the solution, 

1 Xij X2 

Xij X2-

X2- x3- X4 
xij 

T 

A 1 

B = J2w(Xij) Xij Pi (7.14) 
i=i 

C X2-

A B C , are the coefficients of the locally fit least squares 

quadratic Pressure(xij) = A + Bxij + Cx2-. w i s a finite radius weighting function. 

Rewriting the right side gives 

1 Xij Xij 

9 % 
X ' J x i j ^ij 
<-y»2 ™3 ™4 

|_ x i j x i j ij 

A U>2 • Wn 

B = W\X\j W2X2j • WnXnj 

C _ ^ l Z l j w2x\- . • Wnxlj _ 

Pi 

P2 

(7.15) 

where Wi = w(xij) is the evaluation of the local weighting function. Since the 

weighting function is of small finite support in comparison to the domain, many of 

the entries on the right hand side are zero. 
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Labeling the coefficients on the left hand side of A B C in Equation 

7.15 as 5 and the coefficient matrix of the p vector on the right hand side of Equation 

7.15 as T, we can determine the A B C vector with 

A 

B 

C 

(S~LT)P. (7.16) 

Noting that the Laplacian of the ID quadratic A + Bxtj + Cx2j is 2C, we 

can solve for pi by aggregating the third row of Equation 7.15 from the solve at 

each point, multiplying it by two and setting it equal to the Laplacian at that 

point. Furthermore, to find the gradient as is necessary in the projection step for 

incompressible fluid flow, the second rows of Equation 7.15 can be retained and 

applied to the solution to find the gradient with one simple matrix multiply. 

7.7.3 Filtering 

As seen in Chapter 2 the use of M L S introduces smoothing to higher frequency 

features. Of course, this is to be expected when fitting a quadratic to sharp or 

discontinuous data. The smoothing introduced in the M L S solves creates high fre­

quency artifacts in the Poisson system solve described above (i.e. the smoothing 

in the M L S estimate becomes sharpening in the above Poisson solve, where we in­

vert the M L S operator). Fortunately, these artifacts are easily handled by a simple 

filtering step. 

To demonstrate these artifacts, and the effects of filtering, an example solve 

was carried out. In the example, the Poisson solve was used to determine the data 
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that generates a discontinuous Laplacian. Specifically, the following data was used: 

y(x) = x2 + x : x < 1 (7.17a) 

y(x) = -x2 + 5x-2: x >= 1 (7.17b) 

which gives the discontinuous Laplacian: 

V2y(x) = 2 : x < 1 (7.18a) 

V2y{x) = - 2 : x >= 1. (7.18b) 

Using Dirichlet boundary conditions from the known solution, the system 

presented in Section 7.7.2 was employed to solve for Equation 7.17. The function 

was randomly sampled, and the kernel size was set so that each particle had at least 

5 valid neighbors within its neighborhood. The results are plotted in Figure 7.1. 

The filtering is easily achieved by local weighted averaging at each sample 

point using the same weighting function w. 

7.7 A Discontinuity handling and boundary conditions 

The results of the above system for solving Poisson problems warranted further 

investigation into this technique. This section presents discussion of a number of 

boundary condition scenarios, including periodic, Dirichlet, and Neumann. 

Periodic boundary conditions 

It is possible to solve the Poisson problem as described above when considering peri­

odic boundary conditions. The periodic boundary conditions are easily implemented 

in ID by connecting the top of a domain to its bottom, thus making the two ends 
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Figure 7.1: The results of the example Poisson solve are plotted to demonstrate 
the need for post-filtering. The blue line represents the true solution to the data, 
the green line is the original solution created through our method, and the red line 
shows the smoothed version of the green line. The figure on the left shows the 
general correctness of the solution while that on the right shows a close up of the 
difference made by the post-filtering. 

adjacent. Therefore, particles that were previously at opposite ends of the domain, 

are now within one kernel radius of each other, and affect the divergence, etc. at 

each others positions. In higher dimensions this is only slightly more complicated. 

Dirichlet boundary conditions 

Dirichlet boundary conditions are easily implemented by placing particles outside 

the domain where the value is known. Dirichlet boundary conditions are used in 

the example shown in Figure 7.1. 

Neumann boundary conditions 

In a fluid simulation, Neumann boundary conditions are essential for the implemen­

tation of solid boundaries. This was implemented by copying particles across the 

interface and assigning them values to create the desired gradient at the interface. 

In an effort to simulate the solid wall boundaries in a Poisson solve for a 
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fluid simulation, ghost points were added outside the domain with positions and 

pressures assigned as: 

xf = Xi + sip(xi)iii (7-19) 

pf = P i + (m • 7ii)2iP{xi) (7.20) 

In Equation 7.19, Xi is the location of a near-boundary particle, xf is the location of 

the reflected particle, and ip is the distance function to the boundary. Equation 7.20 

follows the same convention and Ui is the particle's velocity. This system attempts 

to approximate the ideal solid wall boundary 

dP _ P? ~ Pi = Ui • rii. (7.21) 
dn | xf - xt , 

Unfortunately, this approach, although promising, does not fully create the solid 

wall boundary required - a particular high-frequency velocity mode centered on the 

boundary is amplified by the projection step, causing an instability. We have not 

yet determined how to avoid this. 

Discontinuities 

Pressure discontinuities present in 2 phase flows motivated an investigation of Pois­

son solves with discontinuous coefficients. A pressure solve in a 2 phase simulation 

of standing water with air above, should display a piecewise linear pressure gradient, 

parallel to the force of gravity. However, fitting smooth quadratic M L S estimates 

to this non-smooth piecewise linear data can be error prone. It would be even more 

unrealistic to expect to arrive at a discontinuous solution during the Poisson solve, 

given that the second derivative of a discontinuity has infinite energy. In an effort to 

alleviate this problem the density factor, 1/p, was introduced. So, instead of setting 

up the M L S fit to the non-smooth (pj —pi) it was fit to the differentiable j-.(Pj ~Pi) 
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with the blending function 

Pji = Pij = -7 j-Pi ~ -7 -rPi K1-12-) 

(pi - cpj (pi - (pj 

where (f> is the signed distance. This is a smooth function that could be handled in 

the Poisson solve and is similar to the grid-based ghost-fluid method [8] 

Results generated through this discontinuity handling strategy are shown in 

the next Section. 

7 . 7 . 5 Approximate projection 

The above-mentioned techniques were implemented in search of an approximate 

projection (see Section 7.7.1) to create a divergence-free solution through the Poisson 

solve for 2 phase fluid flow. 

Normally, with a collocated centered finite-difference approach, the gradi­

ent of the pressure is subtracted from a smoothed version of the original velocity 

to give the divergence-free domain. One interpretation of this necessity is that 

the collocated centered finite-difference divergence operator cannot resolve high fre­

quency divergence, and the projection only filters out the divergence it sees, requiring 

smoothing of the original velocity. Our strategy requires the same smoothing, which 

is easily implemented using a weighted average. 

The Neumann boundary conditions were unsuccessfully demonstrated in a 

2 dimensional, single phase flow. Figure 7.2 shows results after one time step of 

gravity being applied, and having the approximate projection successfully counter­

act the force to keep the particles stationary. However, after a number of iterations, 

the noise that is present is unattenuated and causes instability. Evidence of this 

can be visualized by looking at the eigenmodes of the projection matrix. The arti­

facts visible in Figure 7.3 can be mitigated by removing the treatment of Neumann 
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Figure 7.2: The 4 images in this figure show results after one time step of a 2 dimen­
sional, single phase, fluid flow. The image on the top left shows that there is little 
or no divergence observed after gravity has been applied. The image on the bottom 
left shows the velocities of the particles after one time step, before the approximate 
projection is applied. The two images on the right show the pressure gradient. Note 
that the pressure gradient lines up perfectly with the particle velocities, and when 
it is subtracted from the velocity field, there will be no flow in the box. 
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Figure 7.3: A plot of the eigenmodes of the projection matrix. As can be seen, some 
modes experience an amplification. 

boundary conditions, and instead using periodic boundaries. The same investiga­

tion was carried out using periodic boundary conditions, with successful results. The 

eigenmodes of the projection matrix are plotted in Figure 7.4. Given the results of 

the eigenmode analysis, further investigation was focused on periodic boundaries 

only. 

Finally, a test was done on periodic boundary conditions for 2 phase flow. 

The treatment of the discontinuity, as described above, was again unstable. 
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Eigenmodes of projection matrix - Periodic boundary 

Figure 7.4: This plot of the eigenmodes of the projection matrix shows that with 
the periodic boundary conditions the approximate projection is stable. 
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Chapter 8 

Conclusions 

We feel that the generality available with the point-based level set representations 

can be useful for graphics and animation applications. Geometric deformations have 

been demonstrated, and strategies for signed distance upkeep and mesh conversion 

are described. Also, it was shown that additional resolution is always attainable 

through incorporation of more points, and the use of smaller interpolation radii. 

Finally, when tasks require repeated operations on unchanging geometry, Dolbow 

interpolation can make the task quicker. 

We also believe that before employing the point-based level set in higher-

precision simulations outside of graphics, further quantitative results may be re­

quired. 

The investigation into the employment of point-based level sets for fluid 

animation showed that more work is required to enforce the required boundary 

conditions. The Poisson solve presented could be beneficial under the appropriate 

circumstances. 
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8.1 Future work 

It would be interesting, and perhaps very fruitful to incorporate the recent work 

described in [10]. This might prove to be a better option for dealing with sharp 

features than the one we present here. Any other techniques that would help with 

the preservation of gradient discontinuities would be beneficial. 

These techniques may be most useful in complex simulations such as those 

of fluids. Integration into such systems wil l provide for interesting development 

of these techniques as well as the development of interesting application specific 

strategies. 

A quantification of the approximation quality as compared to grid-based 

level sets would be useful for formal comparison. Furthermore, detailed investiga­

tion of computational complexity might shed more light on the advantages of our 

representation. 

It might be useful to investigate ways to speed up the use of the point-based 

level set techniques, perhaps with the introduction of a hash grid for accelerating 

particle searches. 

46 



Bibliography 

[1] Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman, David 
Levin, and Claudio T. Silva. Point set surfaces. In VIS '01: Proceedings of 
the conference on Visualization '01, pages 21-28, Washington, D C , U S A , 2001. 
I E E E Computer Society. 

[2] Nina Amenta and Yong Joo K i l . Denning point-set surfaces. ACM Trans. 
Graph., 23(3):264-270, 2004. 

[3] T. Cecil, J . Qian, and S. Osher. Numerical methods for high dimensional 
Hamilton-Jacobi equations using Radial Basis Functions. J. Cornp. Phys., 
196:327-347, 2004. 

[4] Mathieu Desbrun and Marie-Paule Cani. Smoothed particles: A new paradigm 
for animating highly deformable bodies. In R. Boulic and G . Hegron, editors, 
Computer Animation and Simulation '96 (Proceedings of EG Workshop on An­
imation and Simulation), pages 61-76. Springer-Verlag, Aug 1996. Published 
under the name Marie-Paule Gascuel. 

[5] John Dolbow and Ted Belytchko. A n introduction to programming the mesh-
less element free Galerkin method. Archives of Computational Mechanics in 

. Engineering, 5:207-214, 1998. 

[6] Douglas Enright, Ronald Fedkiw, Joel Ferziger, and Ian Mitchell. A hybrid 
particle level set method for improved interface capturing. J. Comput. Phys., 
183(1):83-116, 2002. 

[7] Douglas Enright, Stephen Marschner, and Ronald Fedkiw. Animation and 
rendering of complex water surfaces. ACM Trans. Graph. (SIGGRAPH Proc), 
21(3):736-744, 2002. 

[8] R. Fedkiw, X . D . L iu , and M . Kang. A Boundary Condition Capturing 
Method for Poisson's Equation on Irregular Domains. Journal of Computa­
tional Physics, 160:151-178, 2000. 

47 



[9] Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen. Visual simulation of 
smoke. In SIGGRAPH '01: Proceedings of the 28th annual conference on Com­
puter graphics and interactive techniques, pages 15-22, New York, N Y , U S A , 
2001. A C M Press. 

Shachar Fleishman, Daniel Cohen-Or, and Claudio T. Silva. Robust moving 
least-squares fitting with sharp features. A CM Trans. Graph., 2005. 

Nick Foster and Ronald Fedkiw. Practical animation of liquids. In Proc. of 
ACM SIGGRAPH 2001, pages 23-30, 2001. 

Nick Foster and Dimitr i Metaxas. Realistic animation of liquids. Graph. Models 
Image Process., 58(5):471-483, 1996. 

Xiaohu Guo, Jing Hua, and Hong Qin. Point set surface editing techniques 
based on level-sets. In Computer Graphics International, pages 52-59, 2004. 

Xiaohu Guo and Hong Qin. Dynamic sculpting and deformation of point set 
surfaces. In Pacific Graphics, pages 123-130, 2003. 

C. W . Hirt and B . D . Nichols. Volume of fluid / V O F / method for the dynamics 
of free boundaries. Journal of Computational Physics, 39:201-225, January 
1981. 

Jeong-Mo Hong and Chang-Hum K i m . Animation of bubbles in liquid. Com­
puter Graphics Forum, 22(3), 2003. 

David Levin. Mesh-independent surface interpolation. Geometric Modeling for 
Scientific Visualization, pages 37-49, 2003. 

F . Losasso, F . Gibou, and R. Fedkiw. Simulating water and smoke with an 
octree data structure. ACM Trans. Graph. (SIGGRAPH Proc), pages 457-
462, 2004. 

Viorel Mihalef, Dimitris Metaxas, and Mark Sussman. Animation and con­
trol of breaking waves. In SCA '04: Proceedings of the 2004 ACM SIG-
GRAPH'/Eurographics symposium on Computer animation, pages 315-324. 
A C M Press, 2004. 

J . J . Monaghan. Smoothed particle hydrodynamics. Annual Reviews of As­
tronomy and Astrophysics, 30:543-574, 1992. 

48 



[21] M . Muller, R. Reiser, A . Nealen, M . Pauly, M . Gross, and M . Alexa. Point 
based animation of elastic, plastic, and melting objects. In Eurographics/ACM 
Symposium on Computer Animation, pages 141-151, 2004. 

[22] Matthias Muller, David Charypar, and Markus Gross. Particle-based fluid sim­
ulation for interactive applications. In SCA '03: Proceedings of the 2003 ACM 
SIGGRAPH/Eurographics Symposium on Computer animation, pages 154-159, 
Aire-la-Ville, Switzerland, Switzerland, 2003. Eurographics Association. 

[23] Matthias Muller, Bruno Heidelberger, Matthias Tescher, and Markus Gross. 
Meshless deformations based on shape matching. In Proceedings of A CM SIG­
GRAPH 2005. A C M Press, August 2005. 

[24] Ken Museth, David E . Breen, Ross T. Whitaker, and Alan H . Barr. Level set 
surface editing operators. ACM Trans. Graph., 21(3):330-338, 2002. 

[25] Yutaka Ohtake, Alexander Belyaev, Marc Alexa, Greg Turk, and Hans-Peter 
Seidel. Multi-level partition of unity implicits. ACM Trans. Graph., 22(3):463-
470, 2003. 

[26] S. Osher and J . Sethian. Fronts propagating with curvature dependent 
speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys., 
79(l):12-49, 1988. 

[27] Stanley Osher and Ronald Fedkiw. Level Set Methods and Dynamic Implicit 
Surfaces. Springer-Verlag, 2003. 

[28] Mark Pauly, Richard Keiser, Bart Adams, Philip Dutre, Markus Gross, and 
Leonidas J . Guibas. Meshless animation of fracturing solids. In Proceedings of 
ACM SIGGRAPH 2005. A C M Press, August 2005. 

[29] Frederic Pighin, Jonathan M . Cohen, and Maurya Shah. Modeling and edit­
ing flows using advected radial basis functions. In SCA '04: Proceedings of 
the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation, 
pages 223-232, New York, N Y , U S A , 2004. A C M Press. 

[30] S. Premoze, T . Tasdizen, J . Bigler, A . Lefohn, and R. Whitaker. Particle-
based simulation of fluids. In Eurographics 2003 Proceedings, pages 401-410. 
Blackwell Publishers, 2003. 

[31] W. T. Reeves. Particle systems-a technique for modeling a class of fuzzy ob­
jects. ACM Trans. Graph., 2(2):91-108, 1983. 

49 



[32] Jos Stam. Stable fluids. In Proceedings of the 26th annual conference on Com­
puter graphics and interactive techniques, pages 121-128. A C M Press/Addison-
Wesley Publishing Co., 1999. 

[33] M . Sussman and E . G . Puckett. A coupled level set and volume of fluid method 
for computing 3d and axisymmetric incompressible two-phase flows. Journal of 
Computational Physics, 162(2):301-337, 2000. 

[34] Yen-Hsi Richard Tsai. Rapid and accurate computation of the distance function 
using grids. J. Comput. Phys., 178(1):175-195, 2002. 

[35] Yongning Zhu and Robert Bridson. Animating sand as a fluid. In Proceedings 
of ACM SIGGRAPH 2005. A C M Press, August 2005. 

50 


