
Point-Based Level Sets and Progress Towards Unorganised

Particle Based Fluids

by

Richard D. Corbett

B.Eng., Memorial Univerity of Newfoundland 2003

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

T H E F A C U L T Y O F G R A D U A T E S T U D I E S

..Computer Science

The University of British Columbia

June 2005

© Richard D . Corbett , 2005

Abstract

We combine the advantages of level sets, particle level sets, and point-set surfaces
in a simple new framework, where we store signed distance values on a volume of
scattered points. This permits easy and effective surface operations of appropri­
ate quality for graphics and animation. We present techniques such as accurate
deformation by advection, constructive solid geometry, mean curvature flow and
more general surface flows as well as a strategy to convert triangulated meshes to
this point representation. Finally, it is shown that by harnessing the information
generated during implicit surface evolution, ray-traced renderings are close at hand.

A n investigation into employing the point-based level set techniques for fluid
animation is presented. Here, strategies for a particle based Poisson solves and
potential boundary conditions are discussed. Although some positive results are
achieved, more research is required to correctly handle the necessary boundary con­
ditions and discontinuities for fluid animation.

ii

Contents

Abstract ii

Contents iii

Acknowledgements vi

1 Introduction 1

1.1 Level sets and point-set surfaces 1

1.2 Comparison 2

1.2.1 Merging and pinching : . 3

1.2.2 Volume operations : 3

1.2.3 Adaptivity 3

1.2.4 Numerical diffusion 4

1.3 Other alternatives 4

1.3.1 Particle level set 4

1.3.2 Radial basis functions 5

1.4 Point-based level set • • • 5

2 Definition 6

2.1 M L S interpolation 6

i i i

2.2 Dolbow interpolation 8

2.3 Adaptivity 10

2.4 Acceleration 10

3 Signed Distance Computation 12

3.1 Reinitializing 12

3.2 Marching 13

4 Geometric Operations 17

4.1 Deformation by advection 17

4.2 Boolean operations 18

4.3 Motion by mean curvature and general flows 19

5 Mesh Conversion 22

5.1 Particle placement issues 23

6 Rendering 26

7 Towards Fluid Animation 29

7.1 Point based animation 29

7.2 Previous fluid animations 30

7.3 Motivation 3 2

7.4 Navier-Stokes solution 32

7.5 Particle advection 33

7.6 Particle fluids 34

7.7 Approximate pressure solve 35

7.7.1 Projection 35

7.7.2 Poisson system • 36

iv

7.7.3 Filtering 37

7.7.4 Discontinuity handling and boundary conditions 38

7.7.5 Approximate projection 41

8 Conclusions 45

8.1 Future work 4 6

Bibliography 4 7

v

1

Acknowledgements

First and foremost I'd like to thank Robert Bridson for offering so many hours of
his time to my educational cause. His patience and enthusiasm for teaching have
made pursuing this degree an incredibly enjoyable academic experience.

I would like to thank Ian Mitchell for his helpful comments in the preparation
of this thesis.

Finally, I want to thank all my friends and family who have held me together
for these past two years. Of course, Payal gets the largest share of this credit
(shukriya!).

RICHARD D. CORBETT

The University of British Columbia
June 2005

vi

Chapter 1

Introduction

The range of geometric operations required in graphics has driven the development

of a variety of different geometric representations. This thesis introduces one such

representation, the point-based level set, where signed distance values are sampled

on a volume of scattered points. Our aim is to combine the advantages of two

existing complementary approaches, point-set surfaces and grid-based level sets in

a new tool appropriate for graphics applications.

The challenges of maintaining mesh connectivity and good parameterization

in the face of deformation and more extreme geometric operations have encouraged

researchers to look at unparameterized representations. In this section we review a

number of such representations.

1.1 Level sets and point-set surfaces

A n implicit surface can be denned in 3D as the set of points (x,y,z) satisfying

f(x,y,z)=c (1.1)

1

where / is some function, and the constant c is often chosen to be zero. One common

choice for / is signed distance: the magnitude of f(x,y,z) is equal to the distance

from (x, y, z) to the surface and the sign of / indicates whether (x, y, z) is inside or

outside the surface. For example,

y/x2 + y2 + z2 - 5 = 0 (1.2)

defines a sphere centered at the origin, and of radius 5. For any point, the signed

distance is also computed through this equation. Plugging point p = [0,0,0] into

the left side of Equation 1.2 will give a right side of -5, showing that p is inside the

surface (negative) and 5 units from the surface.

Level sets, introduced by Osher and Sethian [26], are an Eulerian represen­

tation for dynamic implicit surface simulation. In general, the implicit surface is

defined by a grid of signed distance samples. The implicit surface function (i.e. ap­

proximate signed distance to the surface) can be readily evaluated by interpolation

of the values at the grid nodes. The regular sampling allows accurate and efficient

finite difference approximations when derivatives are needed.

Point-set surfaces [1] [17] [2], are representations of geometry through an

arbitrary point sampling of the surface. Often, this geometric representation is the

result of 3D range scanning. A surface can be easily reconstructed from the point

sampling using the moving-least-squares (MLS) construct.

1.2 Comparison

In this section, we iterate some of the advantages and disadvantages of the above

representations, motivating a solution that can combine the attractive features of

both.

2

1.2.1 Merging and pinching

One of the most attractive strengths of the level set approach is its capability for

numerical regularization. This property allows for merging and pinching of the

implicit surface as it evolves through the grid during simulations such as mean

curvature flow. Operations such as Constructive Solid Geometry (CSG) [24] are

also possible with this representation.

Point-set surfaces are not suitable for general surface evolution. Operations

such as mean curvature flow involving topological changes have not yet been ad­

dressed and C S G operations are also difficult.

1.2.2 Volume operations

Level sets are capable of fast volume operations such as approximating distance

and direction to the surface from anywhere in space. Maintenance of the signed

distance field throughout the volume is possible through signed distance marching

and reinitialization [27].

Point-set surfaces have very little, if any, off-surface representation, making

them a limited volumetric approach. For example, it can be difficult to determine

whether an arbitrary position in space is inside or outside a point-set surface.

1.2.3 Adapt iv i ty

It is often desirable to have spatially varying resolution in a geometric representation.

Point-set surfaces afford such capability by varying each interpolation radius and

the density of the point locations [1]. -

Although spatially varying resolution is possible in the level set representa­

tion, it comes at a significant cost in implementation complexity. Such an approach

3

is presented in [18], where an octree with higher resolution near the implicit surface

is used for high resolution fluid animation.

1.2.4 Numerical diffusion

Level sets are notorious for numerical diffusion where even simple motion such as

3D translation and rotation will cause smoothing of the surface, despite the use of

sophisticated high-resolution 5th-order HJ-WENO methods [6]. Because of the fixed

grid representation, surface features can never be exactly preserved during general

translations or rotations.

Point-set surfaces can easily be translated and rotated. Since this is a La-

grangian representation, diffusion is not a problem and surface features are guaran­

teed to be preserved: the surface is exactly invariant under rigid body motion.

1.3 Other alternatives

The following representations attempt to combine the positive features of the above-

mentioned representations.

1.3.1 Particle level set

Enright et al [6] finalized the particle level set method in an effort to combat the

diffusion in the original level set representation. Here, particles were used in conjuc-

tion with a grid. The particles are moved at each time step with the grid velocities

and are used to fix numerical diffusion errors in the grid-based level set after the

implicit surface is evolved. This strategy presents substantial improvements over

the basic level set, but still does not perfectly preserve shape for even basic flows.

4

1.3.2 Radia l basis functions

There has been recent work on the use of radial basis function (RBF) representations

for geometric operations [3]. This is almost exactly the level set representation, using

unmoving R B F s instead of a fixed grid. This work is focused on solving Hamilton

Jacobi P D E s in higher dimensions, and it remains to be tested for the lower order,

but fast, approximations required for graphics. Furthermore, there is no discussion

of what can be done by moving the points, or whether this would be beneficial. One

attractive feature of this representation is the ease of incorporating adaptivity.

1.4 Point-based level set

The following chapters describe the point-based level set, which is our attempt to

combine the attractive features of grid-based level sets and point-set surfaces into

one simple framework. B y leveraging the moving-least-squares (MLS) construct,

a volumetric level set representation is created through a set of arbitrarily placed

signed distance samples. This representation is capable of simple adaptivity, and

geometric operations. Techniques for triangulated mesh conversion and signed dis­

tance computation are presented. Finally, efforts towards two-phase fluid animation

using this representation are described.

5

Chapter 2

Definition

We represent our geometry with an arbitrarily organized set of signed distance sam­

ple points. A t each point, interpolation of gradient, curvature, and signed distance

can be achieved through construction of a moving-least-squares (MLS) solve. In sit­

uations where M L S solves are carried out at all sample points in the signed distance

field, further interpolation can be sped up at the cost of accuracy using Dolbow

interpolation.

A n example of our representation is shown in Figure 2.1. W i t h this set of

unordered points we are able to achieve what previously required a point-set repre­

sentation, coupled with either an embedded regular grid [13] [14], or an embedded

octree [25].

2.1 MLS interpolation

A t sample point j we fit a quadratic polynomial, S(x), to the data in its local

neighborhood:

6

Figure 2.1: These images are an example of a point cloud representing a geometric
shape. The colored points in the left image are samples of the signed distance field
about a circle. Arbitrary organization of the points is possible, as well as the use of
extra points in areas where more resolution is desired (See Figure 2.3).

N
min 2^ (S(xij) - Si)2w(xij) (2.1)

t=l

where we are minimizing over the space of quadratics, Si are the signed distance

values in the local neighborhood, and x^ = Xi — Xj. The function w(xij) is the

weighting, or kernel, function, centered at j,

w(xi:i) = (1 - Ixijl/R^^Xijl/R + 1) : \xij\ < R (2.2a)

w(xij) = 0: \xij\ > R (2.2b)

R is the kernel radius, which defines the size of the local neighborhood to consider,

which in turn, controls the amount of smoothing (large R, lots of smoothing). If

enough points are present, a small kernel radius can be used, thereby preserving

smaller features.

Equation 2.1 can be solved by the usual minimizing procedure of taking the

derivative and setting it to zero. In ID, after some rearranging, this results in the

7

linear system

which we use L A P A C K to efficiently solve.

Once the 10 quadratic coefficients of S for a 3D simulation are known at a

point, we can treat operations on the signed distance at that point as operations on

S. Explicity, each locally denned trivariate quadratic is:

S = A + Bx + Cy + Dz + Exy + Fyz + Gxz + Hx2 + Iy2 + Jz2 (2.4)

From which a local gradient can be computed as

VS={B,C,D) (2.5)

and the local mean curvature as

V S _ (B2I - BCE + C2H + B2 J - BDF + D2F + C2J - CDG + D2I
v ' l v s j _ 2 V (B2 + c2 + D2y-5

(2.6)

2.2 Dolbow interpolation

Dolbow and Belytchko [5] suggest leveraging the above solutions by calculating the

weighted average of the local S functions evaluated at an arbitrary point of inter­

est. This interpolation of quadratics can be done using zeroth order approximation

to achieve similar results to linear-fit M L S interpolation of the original points (see

below). W i t h this approach, we can approximate solutions at arbitrary points with­

out more M L S solves. Although the result is similar to a linear fit to the original

1 Xij xfj

9 3

J,ij
9 ^ 4

-'ij - ' 'U J

A

B

C

Y.wixij) (2.3)
i = i

Interpolant Comparison Inlarpolanl Comparison

Figure 2.2: The above graphs display results of both M L S interpolation and Dolbow
interpolation on discontinuous data. The M L S interpolation gives a truer approx­
imation at discontinuities, however, the Dolbow interpolation can be speedier in
situations where M L S solves have been done and further evaluations are required.
The Dolbow interpolation gives similar results to linear-fit M L S interpolation of the
original data. The benefits of the Dolbow technique are that interpolations at new
locations are easily done at a lower computational cost, and that interpolation of
higher order operations such as curvature is possible.

data, we can now evaluate higher order operators (such as curvature) that cannot be

achieved with linear-fit approximation. This operation is formally described below.

Given

S(x) = P(x)Ta(x) (2.7)

where

P(x)T = [1 x y z xy xz yz x2 y2 z2} (2-8)

is the 3D quadratic basis and a(x) is a vector of coefficients solved for in the M L S

solve, field interpolation is attainable at point Xj through a weighted average of the

local S(xi) functions evaluated at xy.

4i*>) = ^ < ^ H * « > (2.9)
2-»i=l w \ x i j)

9

where •I- ij 1S CC £ X j . It follows that:

m) = . (2 . 1 0)

E i = i wfay)

As shown in Figure 2.2, Dolbow interpolation, although allowing for faster

interpolation once MLS solves have been done, does introduce more smoothing into

the system. It also requires more memory to retain each of the solution vectors a(x)

for future processing.

2.3 Adapt ivity

By placing extra points where higher resolution is desired, it is possible to compute

MLS estimations of the geometry with a smaller kernel radius, reducing the spatial

smoothing. This can be done adaptively during each MLS solve by noting the

number of points accumulated within the kernel radius and recursing with a larger

radius, if necessary. This allows for a small default radius to be chosen, and for solves

in sparsely populated areas, the radius can be increased without user interaction.

An example of a sharp corner being interpolated with MLS is shown in Figure 2.3.

2.4 Acceleration

To accelerate the search for adjacent points in a simulation we partition the simula­

tion space into an acceleration grid. Since all operations are local, we usually only

need to check grid cells adjacent to the point of interest during an MLS solution. If

the minimum number of required points cannot be found in the set of adjacent grid

cells, it is easy to query the grid cells as far away as needed. However, we note that

10

s
\

/ ' /
/

/

/ \
/ ' /

/
/

/

-0.3 -0,2 -0.1 0 0.2 03 0.4 -0.4 ' -0.3 -0.2 -0.1 0.1 02 0.3 0.4

Figure 2.3: The figure on the left shows M L S sharp feature interpolation with­
out adaptivity. The figure on the right shows the interpolation resulting from the
adaptive approach.

for very large variations in kernel radius, a uniform acceleration grid is inefficient.

We recommend a grid cell size equal to the default M L S kernel radius.

11

Chapter 3

Signed Distance Computation

Given the movement of particles, or signed distance evolution over time, a proper

signed distance field will eventually require upkeep of the signed distance values.

Two major strategies can be used for maintaining a signed distance field:

• Reinitializing

• Marching

This chapter visits both of these strategies, describing how they can be implemented

with the point-based level set representation.

3.1 Reinitializing

Reinitialization can be achieved by solving the following PDE to steady state in

pseudo-time t (i.e. not simulation time):

^ + si f ln(^o)(|V0| - 1) = 0. (3.1)

We can adopt a semi-Lagrangian approach in the solution of this equation, which

involves computing the gradient of <f> at all the sample points, looking towards the

12

Figure 3.1: Here, two frames of a I D reinitialization scheme are shown. The blue
lines show the extremely noisy signed distance data to be reinitialized. The red
lines show the current signed distance values after one iteration (left image) and 18
iterations (right image). Note that the signed distance domain may never become
monotonic if the original data contains erroneously signed gradients.

interface along the gradient, and interpolating to find the new value (a more accurate

Eulerian E N O alternative to this can be found in [3]).

Although these operations are possible within the point-based level set frame­

work, it is not a solid strategy because there are situations where it fails to correct

errors in the signed distance field. Most notably, in areas where the gradient erro­

neously switches sign, signed distance values wil l flow towards the interface, instead

of out from it. Even if care is taken to avoid switching signs at sample points during

this process, some unwanted kinks in signed distance apparently wil l never be fixed.

A ID example of this scenario is shown in Figure 3.1.

3.2 Marching

In the absence of a robust reinitialization technique, marching values away from

the implicitly defined interface was investigated. This technique can be done in less

time than reinitialization and is less sensitive to existing errors in the data.

13

We can reconstruct a signed distance field from approximate initial signed

distance values on the points. We only require approximate signed distance val­

ues for the points near the interface, and the others can be initialized during the

marching process, which is an adaptation of the grid-based strategy found in [34].

Our strategy involves the following sets of particles:

• P is the set of projected surface particles that sample the zero level set. Once

this set is constructed it does not change during marching.

• / is the set of initialized particles. Each of these particles knows which particle

in P it is closest to, and its distance to it.

• U is the set of uninitialized particles that are farther than one kernel radius

away from any member of / .

• H is a heap containing the uninitialized particles that are within one kernel

radius of particles in I. Each of these elements keeps track of which element in

P it believes it is closest to, and its distance to that point (candidate distance).

The element with the smallest candidate distance is at the top of the heap.

We first create set P by selecting the points that are within a kernel radius of

points on the opposite side of the interface (i.e. have opposite sign), copying them,

and projecting them onto the interface as suggested in [2] to create a temporary

point-set surface representation of the zero level set. This is done by calculating the

gradient of the signed distance in the local neighborhood of the new point's starting

position and then moving the point closer to the interface along this direction. At

the new location, we again calculate the gradient, and again move the point closer

to the interface. This process is repeated until the point has been projected to a

14

location with an interpolated signed distance magnitude lower than some threshold.

Once this is done for each near-interface particle, we save them in P.

I is first populated by adding to it the points that were projected to the

interface. These points can easily calculate their signed distance as the distance

between their starting location and the final projected location. The closest element

in R for each of these points is where it was projected onto the interface.

H is first created by adding all the points outside of / that are within one

kernel radius of one of Ps elements. This set is maintained as a heap, whose top

element will always be the point that has the smallest known distance to any of the

elements in P.

U simply contains the points that are both uninitialized and farther than 1

kernel radius away from any member of / .

Marching is the process of taking the point off the top of the heap, adding

it to I and updating the nearby points in the heap. The point from the top of

the heap will likely be within one kernel radius of some points in U. These points

should be moved to H, and have their candidate distances set to their distances to

the point in P that the top element was closest to. Also, any current elements of H

that are within one kernel radius of the top element's position should check to see

if the surface particle from P that the top element was closest to is closer than the

element's current closest point.

Continuing the above migration of particles from U to I until there are

no more particles in U will march the signed distance throughout the domain in

0(n log n) time.

Of course, the marching algorithm described above requires that all points

in the domain be connected in the network of points. This means that no points are

15

allowed to be separated by more than a kernel radius from all other points. In the

case of such an isolated point, it is possible to attempt to look for adjacent points

within a larger radius, but this may affect both the speed and the accuracy of the

signed distance marching.

16

Chapter 4

Geometric Operations

In graphical applications ranging from modeling/sculpting to simulation there are a

number of geometric operations that a surface representation should easily support.

We present here a variety of such operations where point-based level sets work well.

4.1 Deformation by advection

Deformation by advection in a continuous velocity field is handled simply by moving

the points. Grid-based level sets cannot do this without introducing unwanted

smoothing, overcome by the somewhat complex particle level set method [6]. While

point-set surfaces are sometimes just as effective (and can, in fact, be viewed as

a particular subcase of our method), applications such as fluid animation require

a degree of regularization—to handle merging and breaking—that is not found in

point-set surfaces. We do not need to include particles exactly on the surface, and

thus can attain the same attractive regularization as grid-based level sets without

the attendant numerical diffusion.

To increase accuracy during an advection step, we copy and project the near-

17

Figure 4.1: By placing points densely around the interface, we are able to maintain
a smoothed closed surface during deformation by advection.

interface particles onto the surface, and move them with the flow. Then, at the end

of the time step we can use these temporary points as our zero level set to march

out from as described in Chapter 3. This solution still maintains the attractive

regularization properties of level sets.

In some applications, permanently carrying around points on the zero level

set can be useful (as seen in Figure 4.1). Other times, when surfaces are merging,

keeping points on the interface wil l eliminate the desired regularized solution. Thus,

for applications such as fluid animation, we advocate not keeping points on the

interface, and rebuilding the interface after each time step.

4.2 Boolean operations

Operations from C S G are almost as simple in this representation as they are in level

sets: we simply union the point sets of the two objects, and perform the appropriate

min/max operation at each point (using either the value sampled there or an M L S

estimate from local points as appropriate). Figure 4.2 shows simple examples of

C S G operations on two spheres. The evident smoothing at the interface of the two

18

shapes would also be an artifact of grid-based level sets. The smoothing can be

controlled to a degree by the level of sampling and the size of the interpolation

radius, but even sharper features would be possible using the strategy described in

[10].

4.3 Motion by mean curvature and general flows

Unlike the particle level set and point-set approaches, point-based level sets can

handle motion by mean curvature,

and more general motions in the normal direction such as,

& + c|V0|=O (4.2)

where parts of the surface may be destroyed or created (e.g. [24]). We do this by

keeping our points fixed, and evolving their signed distance values with derivative

quantities estimated from the coefficients of the M L S solves. A more computation­

ally intensive but more accurate alternative for this one case is described in [3].

W i t h the point-based level set representation, it is possible to combine all

of the above operations as required. The particles can be easily moved to deal

with advective motion, while the sample values can be updated to deal with mean-

curvature flow.

19

Figure 4.2: Examples of Constructive Solid Geometry (CSG) operation is shown
here. The union and intersection of the two spheres is simply done by considering
the minimum and maximum of the signed distances at the sample points. The degree
of smoothing at the interface can be controlled by the number of points used, as
well as the size of the interpolation kerneL

Figure 4.3: These 3 images from a simulation of motion in the normal direction
show that the interface expands smoothly. This is achieved by keeping the points
in place and changing their signed distance values.

Figure 4.4: Motion is simulated by 3D mean curvature flow in these 3 images. The
images were rendered using the strategy described in Chapter 6

21

Chapter 5

Mesh Conversion

For our point representation to be useful, it is necessary to be able to convert

existing geometry stored in standard triangle mesh format. This is straightforward

once consistent face normals are available or have been computed.

To create a field of signed distance sample points from a polygonized mesh

we follow these steps:

• Load the mesh information retaining only face vertices and face normals.

• A d d all the triangle vertices and assign them signed distances of zero.

• Partition any non-triangle convex faces into triangles. This is easily done for

any polygon by selecting a starting vertex and walking around the outside

of the polygon. By traversing the vertices in either clockwise or counter­

clockwise order, triangles can be created by selecting pairs of adjacent vertices

and completing the triangle with the starting vertex.

• For each triangle that is longer than the desired kernel radius, we must subdi­

vide it, adding new points spaced less than the kernel radius apart. There are

22

many ways to do this; our current algorithm introduces a grid of points based

on the longest edge. We walk along each of the shorter edges in steps that

are a fraction of the kernel radius, and at each step march a vector of points

normal to the longest edge. This step is visualized in Figure 5.1.

• A t each point that is visited while marching across the face of a triangle add a

new point on the surface, as well as one slightly offset to each side of the face.

Assign these new points signed distances equal to their offsets, taking care to

ensure the signs are correct.

• Once these interface points have been added, and their signed distances as­

signed, it is possible to scatter points throughout the volume (wherever they

are be desired). These new points can be assigned signed distance values using

the marching strategy described in Chapter 3.

Of course, the resolution at which points are sampled both on the triangu­

lated surface, as well as anywhere else in the domain, wil l determine how well sharp

/ features can be resolved.

5.1 Particle placement issues

At a sharp edge between two faces, care must be taken to avoid placing particles in

areas that could cause errors. For instance, placing offset particles at sharp edges

could result in placing particles of a particular sign on the wrong side of the interface.

A n example of such a situation is shown in Figure 5.2. This type of problem can

be avoided by limiting the distance to offset particles from the interface, as well as

taking care not to blindly place particles very close to edges. This has been done

23

Figure 5.1: Particles have been placed throughout this triangle using the strategy
in this section. A t each step along edge A B a vector of particles is marched normal
to A C until A C is encountered. The green arrows indicate the direction that the
marching across the face follows. Similarly, edge B C is traversed, adding vectors of
particles towards A C .

for each individual example by tuning the parameters that determine how close to

edges points may be placed, as well as the distance to offset points from faces.

24

Figure 5.2: This figure shows the importance of taking care when inserting offset
points at a sharp edge. The red circle shows where two green particles, which are
intended to be on the inside of the shape, have been erroneously placed on the
outside. This will cause complications when marching signed distance values away
from the interface.

25

Chapter 6

Rendering

Since many of the simulation techniques that can be performed on points require

solution of MLS interpolants, Dolbow interpolation is recommended for use in a ray

tracer for fast isosurface rendering. We are able to ray trace a set of signed distance

sample points quickly by using the signed distance to help predict how much farther

a ray can be traversed before reaching the isosurface.

A ray is marched through the geometry by completing a Dolbow approxi­

mation of the surrounding signed distance data at each desired ray position. This

estimated distance to the interface is then used to determine how large the next step

along the ray should be. In practice, the step size is set to 75% of the estimated

distance, plus a minimum step size to ensure marching continues non-asymptotically

near the interface. The crossing of the interface is easily identified by a change in

sign of the signed distance estimate at consecutive locations along the ray.

Once two consecutive estimates with opposite signs are found along a ray,

the two corresponding locations are used as the initial points for a secant solve.

When the surface has been located within a maximum threshold (the secant solve

has converged), the normal can be identified through another Dolbow estimate, this

26

time blending together gradients.

Figure 6.1 shows examples of images created by ray tracing the point-based

level set representation.

27

Figure 6.1: Theses ray-traced images have been created through Dolbow interpola
tion. The two frames show an evolution through motion by mean curvature.

28

Chapter 7

Towards Fluid Animation

In this chapter we investigate the use of the point-based level set for two-phase

fluid animation. A review of recent publications is presented, then a short discus­

sion of the Navier-Stokes equations and their solution is introduced. Next, a new

method for solving Poisson problems is described, followed by a discussion of dif­

ferent boundary condition implementations. Finally, a short section describes the

results that were achieved while attempting to apply the new particle based Poisson

solve in the solution of the Navier-Stokes equations.

7.1 Point based animation

Simple advection, execution speed, and easy implementation have qualified point

representations for a variety of animations. Reeves [31] introduced particle tech­

niques for animating what he referred to as "fuzzy objects". Results for fire, explo­

sions, grass, and fireworks were presented.

Recently, more advanced and physically based techniques have been used to

model deformable objects. A real-time system for animating elastic, plastic, and

29

melting objects through the use of S P H and M L S approximations was created by

Mii l lerei al [21] and has since been expanded to accommodate fracture [28]. Another

strategy for animating deformable objects, this time through shape matching, was

presented in [23].

7.2 Previous fluid animations

Fluid animations to date generally fall into one of three categories. Grid based

simulation, the first category, allows for solution of the Navier-Stokes equations

into an approximate divergence-free domain at the cost of smoothing and damping.

The alternative, point based approaches have, to date, most often been based on

Smoothed Particle Hydrodynamics (SPH), the accuracy of which is known to be

dependant upon the particle distribution (there has also been some work on advect-

ing radial basis functions [29]). The third category, a combination of grid based

and particle based animations, has been used to couple the undamped freedom of

particles, with the simple divergence-free projection of grids.

Foster and Metaxas [12] introduced the three dimensional solution of the

Navier Stokes equations for animation using a Marker and Cell (M A C) grid. They

described the treatment of boundary conditions for stationary obstacles, inflow

and outflow, and free surfaces. Stam [32] introduced unconditionally stable semi-

Lagrangian advection to the graphics community. However, the stable smoke sim­

ulation introduced a large degree of velocity dissipation. Fedkiw and Stam [9] at­

tempted to limit the dissipation of Stam's earlier work with the introduction of

vorticity confinement and clamped splines. Foster and Fedkiw [11] introduced to

graphics the use of a level set to track the fluid interface on the grid. However,

this level set representation was still plagued by numerical dissipation. Enright et

30

al [7] improved Fedkiw and Foster's approach of combining properties of particles

with those of a grid by placing particles on each side of the interface to provide a

less dissipative solution. W i t h similar motivation, Losasso et al [18] introduced the

use of an octree to allow for sharper interface resolution. Most recently, Zhu and

Bridson[35] showed that using both theParticle-in-Cell (PIC) method and Fluid-

Implicit-Particle (FLIP) method, particles can be animated through a grid to sim­

ulate a variety materials.

Another branch of grid based fluid animation involves the Volume of Fluid

(VOF) technique, created by Hirt and Nichols [15]. This technique again uses a

three dimensional grid, but considers the water/air fraction in each cell. Recently,

Sussman [33] showed how to couple level set techniques with the V O F approach.

Two phase animations were provided through V O F by Hong and K i m [16], which

provided for real time bubble simulation. Mihalef et al [19] stitched together a

number of 2D V O F wave simulations to create realistic 3D waves.

S P H was introduced to the animation world by Desbrun and Gascuel [4].

The main advantages of this method include ease of implementation and speed

of execution. These reasons have qualified its employment in a number of recent

publications, including [22] and [30]. However, S P H is limited by requiring regular

organization of the particles for accurate estimates [20], thus limiting its flexibility.

Furthermore, reconstructing a smooth surface from this simple set of particles is

very difficult; for example Premoze et al [30] resort to an expensive grid-based level

set evaluation coupled to the particles in the face of this challenge.

31

7.3 Motivation

The point-based and grid-based level set techniques are capable of many of the

operations required in fluid simulations. Both techniques hold the properties of

regularization that are desired for fluid flow simulation. However, adaptivity is

much more easily achieved with the randomly placed set of points, than with the

use of an octree on a grid. Certainly, this warrants an investigation into replacing

the usual grid with the point-based level set for fluid simulation.

The dependence of S P H on a regular particle spacing can limit its utility in

more interesting flows. W i t h the M L S approach in the point-based level set, there is

little dependency on particle organization, making this new technique an attractive

alternative. Furthermore, the difficulty of constructing a smooth interface around

S P H particles can be bypassed with the point-based level set approach.

7.4 Navier-Stokes solution

The Navier-Stokes equations, which govern the flow of an incompressible inviscid

fluid are as follows:

u t + u - V u - l - (l / p) V p = / (7.1)

V - w = 0 (7.2)

Where ut is the time derivative of the flow and / is any external force, which in

most cases is a gravitational force, g. The variable u denotes the three-dimensional

velocity and p is the fluid density. Equation 7.1 ensures that momentum is conserved,

while Equation 7.2 ensures the flow is incompressible. Solution of these equations

32

is generally carried out as described, for example, by Stam [32]. This involves

rearranging Equation 7.1 as

ut = -u • Vw - (l / /o)Vp + / (7.3)

and easing computation by splitting into:

ut = f (7.4)

ut + u • V u = 0 (7.5)

ut + (l/p)Vp = 0. (7.6)

W i t h equations setup as above, time can be evolved by solving Equations

7.4-7.6 for each time step.

Solution of Equation 7.5 on a grid can introduce unwanted numerical diffusion

[35], while the approximations that are presented through S P H are only valid for

regular particle distributions [20]. To this end, it seems reasonable to explore the

available tools presented in Chapters 2 and 3 as a framework for fluid animation.

The remainder of this chapter presents efforts in this direction.

7.5 Particle advection

The solution of the advection Equation 7.5 with a Lagrangian representation, such

as the point-based level set, can be greatly simplified. Since the particles move with

the fluid, and encapsulate the total derivative of the flow, u • V u can be ignored.

W i t h this assumption, particle represented inviscid fluids can be simulated in two

steps: adding any outside forces to the particles (Equation 7.4), and enforcing in-

compressibility(Equation 7.6). This simplification is made implicitly in each of the

following sections.

33

7.6 Particle fluids

Using the tools in Chapter 2, a strategy was devised to represent fluid flow with a

set of randomly spaced sample points. Here, the flow was modeled as weakly com­

pressible, allowing for slight deviations in density to control the pressure gradient.

The following equations governed the flow: i

xt=u (7.7)

ut = -(l/p)Vp + g (7.8)

pt = -pV • u (7.9)

p = c2(p-Po) (7.10)

where c is the artificial incompressibility factor, p is the present density at a point,

and p0 is the known scientific density of the fluid. As before, a subscripted t denotes

the time derivative.

When using this strategy, the divergence and gradient can be computed with

an M L S solution at each point. Thus, tracking changes in density becomes a matter

of computing a number of M L S solves.

Enforcing boundary conditions of a closed container was attempted both

by reflecting particles to the outside of the domain and by simple particle collision

analysis. Neither of these strategies managed to create a convincing fluid simulation.

The main problem was the lack of a steady solution for incompressibility, which can

be exposed by considering a,standing column of water. In a column, after the first

time step, the particles at the bottom will experience a convergence. The effect

of this convergence wil l only affect the nearby particles, pushing them upwards,

while the particles above continue to gather downward momentum caused by the

34

unbalanced gravitational pull. After a number of timesteps, the entire column is in

disarray. Unfortunately, a proper heuristic for determining the parameter c and its

appropriate treatment for incompressibility, was never reached, and a steady column

of water was never achieved.

7.7 Approximate pressure solve

Given the results of the investigation in Section 7.6 we hypothesized that projection

methods would be more effective. B y determining a consistent solution for the

pressure at each particle, an incompressible flow could be approximated.

7.7.1 Projection

The projection of a velocity field onto a divergence-free space (i.e., the solution of

Equations 7.6 and 7.2) can be achieved in the following way.

After velocities have been updated and particles have been moved, the ve­

locity field is no longer divergence free. This velocity field wil l be referred to as u*.

The desired divergence-free velocity field is u n e w . Combining Equations 7.6 and 7.2

gives

V • (u* - (l/p)Vp) = 0 (7.11)

which can be rearranged as

V • (l//j)Vp = V • u* (7.12)

and once this has been solved for p, the final divergence free velocity field can be

reached through

u. mew (7.13)

35

7.7.2 Poisson system

The ability to approximate divergence, gradient, and Laplacians of scattered data

with local M L S solves motivated a search for a way to leverage the M L S construct

for the Poisson solve. This was especially attractive given that M L S systems would

already be set up during the divergence solves at every point. In this section, an

example of the solution in I D is presented. The expansion to multiple dimensions

follows naturally.

To explain how the Poisson problem was addressed, the system generated

by Equation 2.1, fitting quadratics to pressures pi on randomly spaced points Xi, is

expanded as

E1

i=i

where the solution,

1 Xij X2

Xij X2-

X2- x3- X4
xij

T

A 1

B = J2w(Xij) Xij Pi (7.14)
i=i

C X2-

A B C , are the coefficients of the locally fit least squares

quadratic Pressure(xij) = A + Bxij + Cx2-. w i s a finite radius weighting function.

Rewriting the right side gives

1 Xij Xij

9 %
X ' J x i j ^ij
<-y»2 ™3 ™4

|_ x i j x i j ij

A U>2 • Wn

B = W\X\j W2X2j • WnXnj

C _ ^ l Z l j w2x\- . • Wnxlj _

Pi

P2

(7.15)

where Wi = w(xij) is the evaluation of the local weighting function. Since the

weighting function is of small finite support in comparison to the domain, many of

the entries on the right hand side are zero.

36

Labeling the coefficients on the left hand side of A B C in Equation

7.15 as 5 and the coefficient matrix of the p vector on the right hand side of Equation

7.15 as T, we can determine the A B C vector with

A

B

C

(S~LT)P. (7.16)

Noting that the Laplacian of the ID quadratic A + Bxtj + Cx2j is 2C, we

can solve for pi by aggregating the third row of Equation 7.15 from the solve at

each point, multiplying it by two and setting it equal to the Laplacian at that

point. Furthermore, to find the gradient as is necessary in the projection step for

incompressible fluid flow, the second rows of Equation 7.15 can be retained and

applied to the solution to find the gradient with one simple matrix multiply.

7.7.3 Filtering

As seen in Chapter 2 the use of M L S introduces smoothing to higher frequency

features. Of course, this is to be expected when fitting a quadratic to sharp or

discontinuous data. The smoothing introduced in the M L S solves creates high fre­

quency artifacts in the Poisson system solve described above (i.e. the smoothing

in the M L S estimate becomes sharpening in the above Poisson solve, where we in­

vert the M L S operator). Fortunately, these artifacts are easily handled by a simple

filtering step.

To demonstrate these artifacts, and the effects of filtering, an example solve

was carried out. In the example, the Poisson solve was used to determine the data

37

that generates a discontinuous Laplacian. Specifically, the following data was used:

y(x) = x2 + x : x < 1 (7.17a)

y(x) = -x2 + 5x-2: x >= 1 (7.17b)

which gives the discontinuous Laplacian:

V2y(x) = 2 : x < 1 (7.18a)

V2y{x) = - 2 : x >= 1. (7.18b)

Using Dirichlet boundary conditions from the known solution, the system

presented in Section 7.7.2 was employed to solve for Equation 7.17. The function

was randomly sampled, and the kernel size was set so that each particle had at least

5 valid neighbors within its neighborhood. The results are plotted in Figure 7.1.

The filtering is easily achieved by local weighted averaging at each sample

point using the same weighting function w.

7.7 A Discontinuity handling and boundary conditions

The results of the above system for solving Poisson problems warranted further

investigation into this technique. This section presents discussion of a number of

boundary condition scenarios, including periodic, Dirichlet, and Neumann.

Periodic boundary conditions

It is possible to solve the Poisson problem as described above when considering peri­

odic boundary conditions. The periodic boundary conditions are easily implemented

in ID by connecting the top of a domain to its bottom, thus making the two ends

38

Figure 7.1: The results of the example Poisson solve are plotted to demonstrate
the need for post-filtering. The blue line represents the true solution to the data,
the green line is the original solution created through our method, and the red line
shows the smoothed version of the green line. The figure on the left shows the
general correctness of the solution while that on the right shows a close up of the
difference made by the post-filtering.

adjacent. Therefore, particles that were previously at opposite ends of the domain,

are now within one kernel radius of each other, and affect the divergence, etc. at

each others positions. In higher dimensions this is only slightly more complicated.

Dirichlet boundary conditions

Dirichlet boundary conditions are easily implemented by placing particles outside

the domain where the value is known. Dirichlet boundary conditions are used in

the example shown in Figure 7.1.

Neumann boundary conditions

In a fluid simulation, Neumann boundary conditions are essential for the implemen­

tation of solid boundaries. This was implemented by copying particles across the

interface and assigning them values to create the desired gradient at the interface.

In an effort to simulate the solid wall boundaries in a Poisson solve for a

39

fluid simulation, ghost points were added outside the domain with positions and

pressures assigned as:

xf = Xi + sip(xi)iii (7-19)

pf = P i + (m • 7ii)2iP{xi) (7.20)

In Equation 7.19, Xi is the location of a near-boundary particle, xf is the location of

the reflected particle, and ip is the distance function to the boundary. Equation 7.20

follows the same convention and Ui is the particle's velocity. This system attempts

to approximate the ideal solid wall boundary

dP _ P? ~ Pi = Ui • rii. (7.21)
dn | xf - xt ,

Unfortunately, this approach, although promising, does not fully create the solid

wall boundary required - a particular high-frequency velocity mode centered on the

boundary is amplified by the projection step, causing an instability. We have not

yet determined how to avoid this.

Discontinuities

Pressure discontinuities present in 2 phase flows motivated an investigation of Pois­

son solves with discontinuous coefficients. A pressure solve in a 2 phase simulation

of standing water with air above, should display a piecewise linear pressure gradient,

parallel to the force of gravity. However, fitting smooth quadratic M L S estimates

to this non-smooth piecewise linear data can be error prone. It would be even more

unrealistic to expect to arrive at a discontinuous solution during the Poisson solve,

given that the second derivative of a discontinuity has infinite energy. In an effort to

alleviate this problem the density factor, 1/p, was introduced. So, instead of setting

up the M L S fit to the non-smooth (pj —pi) it was fit to the differentiable j-.(Pj ~Pi)

40

with the blending function

Pji = Pij = -7 j-Pi ~ -7 -rPi K1-12-)

(pi - cpj (pi - (pj

where (f> is the signed distance. This is a smooth function that could be handled in

the Poisson solve and is similar to the grid-based ghost-fluid method [8]

Results generated through this discontinuity handling strategy are shown in

the next Section.

7 . 7 . 5 Approximate projection

The above-mentioned techniques were implemented in search of an approximate

projection (see Section 7.7.1) to create a divergence-free solution through the Poisson

solve for 2 phase fluid flow.

Normally, with a collocated centered finite-difference approach, the gradi­

ent of the pressure is subtracted from a smoothed version of the original velocity

to give the divergence-free domain. One interpretation of this necessity is that

the collocated centered finite-difference divergence operator cannot resolve high fre­

quency divergence, and the projection only filters out the divergence it sees, requiring

smoothing of the original velocity. Our strategy requires the same smoothing, which

is easily implemented using a weighted average.

The Neumann boundary conditions were unsuccessfully demonstrated in a

2 dimensional, single phase flow. Figure 7.2 shows results after one time step of

gravity being applied, and having the approximate projection successfully counter­

act the force to keep the particles stationary. However, after a number of iterations,

the noise that is present is unattenuated and causes instability. Evidence of this

can be visualized by looking at the eigenmodes of the projection matrix. The arti­

facts visible in Figure 7.3 can be mitigated by removing the treatment of Neumann

41

Figure 7.2: The 4 images in this figure show results after one time step of a 2 dimen­
sional, single phase, fluid flow. The image on the top left shows that there is little
or no divergence observed after gravity has been applied. The image on the bottom
left shows the velocities of the particles after one time step, before the approximate
projection is applied. The two images on the right show the pressure gradient. Note
that the pressure gradient lines up perfectly with the particle velocities, and when
it is subtracted from the velocity field, there will be no flow in the box.

42

Eigenmodes of projection matrix
2i 1 . . 1 1 1 r

1.8 •

1.6 -

1.4 -

1.2 -

0.8 [

0 5 10 16 20 25 30 35 40 45 60

Figure 7.3: A plot of the eigenmodes of the projection matrix. As can be seen, some
modes experience an amplification.

boundary conditions, and instead using periodic boundaries. The same investiga­

tion was carried out using periodic boundary conditions, with successful results. The

eigenmodes of the projection matrix are plotted in Figure 7.4. Given the results of

the eigenmode analysis, further investigation was focused on periodic boundaries

only.

Finally, a test was done on periodic boundary conditions for 2 phase flow.

The treatment of the discontinuity, as described above, was again unstable.

43

Eigenmodes of projection matrix - Periodic boundary

Figure 7.4: This plot of the eigenmodes of the projection matrix shows that with
the periodic boundary conditions the approximate projection is stable.

44

Chapter 8

Conclusions

We feel that the generality available with the point-based level set representations

can be useful for graphics and animation applications. Geometric deformations have

been demonstrated, and strategies for signed distance upkeep and mesh conversion

are described. Also, it was shown that additional resolution is always attainable

through incorporation of more points, and the use of smaller interpolation radii.

Finally, when tasks require repeated operations on unchanging geometry, Dolbow

interpolation can make the task quicker.

We also believe that before employing the point-based level set in higher-

precision simulations outside of graphics, further quantitative results may be re­

quired.

The investigation into the employment of point-based level sets for fluid

animation showed that more work is required to enforce the required boundary

conditions. The Poisson solve presented could be beneficial under the appropriate

circumstances.

45

8.1 Future work

It would be interesting, and perhaps very fruitful to incorporate the recent work

described in [10]. This might prove to be a better option for dealing with sharp

features than the one we present here. Any other techniques that would help with

the preservation of gradient discontinuities would be beneficial.

These techniques may be most useful in complex simulations such as those

of fluids. Integration into such systems wil l provide for interesting development

of these techniques as well as the development of interesting application specific

strategies.

A quantification of the approximation quality as compared to grid-based

level sets would be useful for formal comparison. Furthermore, detailed investiga­

tion of computational complexity might shed more light on the advantages of our

representation.

It might be useful to investigate ways to speed up the use of the point-based

level set techniques, perhaps with the introduction of a hash grid for accelerating

particle searches.

46

Bibliography

[1] Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman, David
Levin, and Claudio T. Silva. Point set surfaces. In VIS '01: Proceedings of
the conference on Visualization '01, pages 21-28, Washington, D C , U S A , 2001.
I E E E Computer Society.

[2] Nina Amenta and Yong Joo K i l . Denning point-set surfaces. ACM Trans.
Graph., 23(3):264-270, 2004.

[3] T. Cecil, J . Qian, and S. Osher. Numerical methods for high dimensional
Hamilton-Jacobi equations using Radial Basis Functions. J. Cornp. Phys.,
196:327-347, 2004.

[4] Mathieu Desbrun and Marie-Paule Cani. Smoothed particles: A new paradigm
for animating highly deformable bodies. In R. Boulic and G . Hegron, editors,
Computer Animation and Simulation '96 (Proceedings of EG Workshop on An­
imation and Simulation), pages 61-76. Springer-Verlag, Aug 1996. Published
under the name Marie-Paule Gascuel.

[5] John Dolbow and Ted Belytchko. A n introduction to programming the mesh-
less element free Galerkin method. Archives of Computational Mechanics in

. Engineering, 5:207-214, 1998.

[6] Douglas Enright, Ronald Fedkiw, Joel Ferziger, and Ian Mitchell. A hybrid
particle level set method for improved interface capturing. J. Comput. Phys.,
183(1):83-116, 2002.

[7] Douglas Enright, Stephen Marschner, and Ronald Fedkiw. Animation and
rendering of complex water surfaces. ACM Trans. Graph. (SIGGRAPH Proc),
21(3):736-744, 2002.

[8] R. Fedkiw, X . D . L iu , and M . Kang. A Boundary Condition Capturing
Method for Poisson's Equation on Irregular Domains. Journal of Computa­
tional Physics, 160:151-178, 2000.

47

[9] Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen. Visual simulation of
smoke. In SIGGRAPH '01: Proceedings of the 28th annual conference on Com­
puter graphics and interactive techniques, pages 15-22, New York, N Y , U S A ,
2001. A C M Press.

Shachar Fleishman, Daniel Cohen-Or, and Claudio T. Silva. Robust moving
least-squares fitting with sharp features. A CM Trans. Graph., 2005.

Nick Foster and Ronald Fedkiw. Practical animation of liquids. In Proc. of
ACM SIGGRAPH 2001, pages 23-30, 2001.

Nick Foster and Dimitr i Metaxas. Realistic animation of liquids. Graph. Models
Image Process., 58(5):471-483, 1996.

Xiaohu Guo, Jing Hua, and Hong Qin. Point set surface editing techniques
based on level-sets. In Computer Graphics International, pages 52-59, 2004.

Xiaohu Guo and Hong Qin. Dynamic sculpting and deformation of point set
surfaces. In Pacific Graphics, pages 123-130, 2003.

C. W . Hirt and B . D . Nichols. Volume of fluid / V O F / method for the dynamics
of free boundaries. Journal of Computational Physics, 39:201-225, January
1981.

Jeong-Mo Hong and Chang-Hum K i m . Animation of bubbles in liquid. Com­
puter Graphics Forum, 22(3), 2003.

David Levin. Mesh-independent surface interpolation. Geometric Modeling for
Scientific Visualization, pages 37-49, 2003.

F . Losasso, F . Gibou, and R. Fedkiw. Simulating water and smoke with an
octree data structure. ACM Trans. Graph. (SIGGRAPH Proc), pages 457-
462, 2004.

Viorel Mihalef, Dimitris Metaxas, and Mark Sussman. Animation and con­
trol of breaking waves. In SCA '04: Proceedings of the 2004 ACM SIG-
GRAPH'/Eurographics symposium on Computer animation, pages 315-324.
A C M Press, 2004.

J . J . Monaghan. Smoothed particle hydrodynamics. Annual Reviews of As­
tronomy and Astrophysics, 30:543-574, 1992.

48

[21] M . Muller, R. Reiser, A . Nealen, M . Pauly, M . Gross, and M . Alexa. Point
based animation of elastic, plastic, and melting objects. In Eurographics/ACM
Symposium on Computer Animation, pages 141-151, 2004.

[22] Matthias Muller, David Charypar, and Markus Gross. Particle-based fluid sim­
ulation for interactive applications. In SCA '03: Proceedings of the 2003 ACM
SIGGRAPH/Eurographics Symposium on Computer animation, pages 154-159,
Aire-la-Ville, Switzerland, Switzerland, 2003. Eurographics Association.

[23] Matthias Muller, Bruno Heidelberger, Matthias Tescher, and Markus Gross.
Meshless deformations based on shape matching. In Proceedings of A CM SIG­
GRAPH 2005. A C M Press, August 2005.

[24] Ken Museth, David E . Breen, Ross T. Whitaker, and Alan H . Barr. Level set
surface editing operators. ACM Trans. Graph., 21(3):330-338, 2002.

[25] Yutaka Ohtake, Alexander Belyaev, Marc Alexa, Greg Turk, and Hans-Peter
Seidel. Multi-level partition of unity implicits. ACM Trans. Graph., 22(3):463-
470, 2003.

[26] S. Osher and J . Sethian. Fronts propagating with curvature dependent
speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys.,
79(l):12-49, 1988.

[27] Stanley Osher and Ronald Fedkiw. Level Set Methods and Dynamic Implicit
Surfaces. Springer-Verlag, 2003.

[28] Mark Pauly, Richard Keiser, Bart Adams, Philip Dutre, Markus Gross, and
Leonidas J . Guibas. Meshless animation of fracturing solids. In Proceedings of
ACM SIGGRAPH 2005. A C M Press, August 2005.

[29] Frederic Pighin, Jonathan M . Cohen, and Maurya Shah. Modeling and edit­
ing flows using advected radial basis functions. In SCA '04: Proceedings of
the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation,
pages 223-232, New York, N Y , U S A , 2004. A C M Press.

[30] S. Premoze, T . Tasdizen, J . Bigler, A . Lefohn, and R. Whitaker. Particle-
based simulation of fluids. In Eurographics 2003 Proceedings, pages 401-410.
Blackwell Publishers, 2003.

[31] W. T. Reeves. Particle systems-a technique for modeling a class of fuzzy ob­
jects. ACM Trans. Graph., 2(2):91-108, 1983.

49

[32] Jos Stam. Stable fluids. In Proceedings of the 26th annual conference on Com­
puter graphics and interactive techniques, pages 121-128. A C M Press/Addison-
Wesley Publishing Co., 1999.

[33] M . Sussman and E . G . Puckett. A coupled level set and volume of fluid method
for computing 3d and axisymmetric incompressible two-phase flows. Journal of
Computational Physics, 162(2):301-337, 2000.

[34] Yen-Hsi Richard Tsai. Rapid and accurate computation of the distance function
using grids. J. Comput. Phys., 178(1):175-195, 2002.

[35] Yongning Zhu and Robert Bridson. Animating sand as a fluid. In Proceedings
of ACM SIGGRAPH 2005. A C M Press, August 2005.

50

