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A b s t r a c t 

We present a system for constructing 3D models from simple hand-drawn 
sketches. The system exploits a priori knowledge about the type of object being 
sketched. In particular, we assume that the class of object being drawn is known, 
(e.g., a rocket ship) and that the object wi l l be drawn using a fixed number of known 
components. B y using these assumptions, we show that we can bui ld a sketch-based 
modeling system that, while object specific, is capable of quickly creating geometric 
models that are beyond the scope of current sketch-based modeling approaches. K e y 
to our approach is the use of a K-means classifier for labeling each drawn stroke as 
being a particular component in the generic model. We demonstrate our approach 
by applying this classifier to face and rocket sketches. 
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Chapter 1 

I n t r o d u c t i o n 

1.1 Mot ivat ion 

" A picture speaks a thousand words". People often rely on sketches when they try 

to convey ideas to others. We all have the experience of drawing something. Of all 

drawers, children are among the most fanatic. They like to convert what they see 

and think into pictures. Sometimes their pictures are simply drawn but they are at 

the same time capable of conveying much information. Creating and animating 3D 

models is currently not possible, however, without significant training and expertise. 

New technologies are thriving in our modern society. One common charac­

teristic of successful technologies is their ease of use, so that people can grasp those 

technologies in a short period of time and use them in an easy way. W i t h devices 

such as P D A s and Tablet P C s , there exists hardware that largely replicates the feel 

and function of a pencil or pen or paper. Wha t now remains is for new software 

applications to exploit these new capabilities. Our system can interpret a l imited 

class of 2D sketeches as 3D objects, and thus represents such a new application. 

1 



Figure 1.1: A n example of sketch recognition and modeling. 

Stroke 3D Model 
Classification Construct! on 

Chapter 3 Chapter 4 

•K 3D Model 

Figure 1.2: System Overview. 

Stroke Resulting component 

1 cone 
2 body 
3 tail 
4 left wing 
5 right wing 

Table 1.1: Correspondences between strokes and components of a rocket. 
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1.2 System Overview 

Figure 1.1 shows an example drawn and recognized by our system. Each pen stroke 

in the graph is recognized as a component of the object and then constructs a 

component of the 3D model. In the above graph, a rocket is drawn wi th 5 pen strokes 

and later, a 3D rocket model is displayed wi th 5 components. Each pen stroke 

represents one component and their correspondences are illustrated in Table 1.1. 

The overall system structure is given in Figure 1.2. 

1.3 Application of Sketch Recognition 

The application domains of Freehand Sketch Recognition System (FSRS) include: 

• 3D modeling based on sketching interface, such as computer aided design 

( C A D ) . 

• Query by sketch : image database retrieval. 

A long-standing dream in computer-aided design is the possibility of using 

freehand sketching as the language for interactive design. The ability to sketch a 3D 

object, predict its performance, and re-design it interactively based on physics-based 

feedback would bring the power of state-of-the-art C A D tools into the critical, early 

design phase. The enormous potential of sketch-based interfaces is widely recog­

nized, and has been broadly pursued. However, the practical use of such attempts 

has remained limited because these interfaces have been primari ly 2D, losing much 

of the benefit of mainstream 3D C A D . In order to become truly 3D, a sketch inter­

face must automatically be able to reconstruct the spatial geometry from a single 

2D sketch in near real-time, much like a human observer does implicit ly. 
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1.4 Thesis Outline 

The rest of this thesis is organized as follows. In Chapter 2, we discuss work related 

to this project. Chapter 3 explores how to label individual strokes using classi­

fication and compares different classifiers. Chapter 4 describes our implemented 

system. Chapter 5 presents results. We make conclusions and discuss future work 

in Chapter 6. 
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Chapter 2 

Related Work 

2.1 Attributes of a Sketch Recognition System 

Freehand sketching can play an important role in the realm of user-interfaces for 

graphics systems. Sketching appears to be a natural communication language, en­

abling fast conveyance of qualitative information while not burdening the creativity 

of the user or disrupting the flow of ideas. As illustrated in Figure 2.1, sketching 

is a key element in modeling, developing and defining a design result. Dur ing the 

whole design process, sketching often provides the input for conceptual design. [17] 

suggests that a sketch recognition technology must meet three main requirements: it 

must deal reliably wi th the pervasive variability of hand sketches, provide interactive 

performance, and be easily extensible to new configurations. 

User interfaces based on sketching can generally be divided into three cat­

egories, according to the level of information they intend to gather from the input 

sketch [22]: 

1. Drawing Pads. Basic sketching is allowed for general purpose drawings. Input 

strokes are smoothed and many other graphic tools are provided. 

2. 2D sketch applications. These applications smooth sketch strokes and classify 

them into 2D primitives, such as lines, arcs, and splines. Some geometric 

5 



Figure 2.1: Design process [13]. 

constraints and relationships among the entities are utilized to further refine 

the sketch. 

3. 3D sketchers. Sketches are analyzed as representing rough projections of 3D 

scenes. Sketch strokes are identified as basic geometrical shapes, such as lines, 

arcs and corners. However, some of the sketch strokes do not necessarily 

represent what they appear to be since the analyzed sketch represents a rough 

projection of a three dimensional scene [11, 14]. 

2.2 Algorithms for Object Recognition 

The sketch recognition problem is strongly related to the object recognition problem 

in computer vision. A broad class of such object recognition problems have bene­

fited from statistical learning machinery. The use of Principle Component Analysis 

( P C A ) has produced good results [25] in the area of face recognition. O n more gen­

eral object recognition tasks, several other learning methods such as Bayes classifier 

[21] and decision tree learning [28] have been applied. The technique of boosting 

is proven to be a viable method of feature selection in [26]. Support vector ma­

chine methods have demonstrated success in template matching problems such as 
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recognizing pedestrians in [16]. 

[2] and [31] present a novel approach to measure similarity between 2D shapes 

and exploit it for object recognition. In order to solve the correspondences problem, 

they attach a descriptor, the shape context, to each point. The shape context 

at a reference point captures the distribution of the remaining points relative to 

it, thus offering a globally discriminative characterization. In this way, they treat 

recognition in a nearest-neighbor classification framework as the problem of finding 

the stored prototype shape that is maximally similar to that in the image. 

2.3 2D Sketch Recognition 

Research on sketch recognition and interpretation has a long history. A variety 

of systems have incorporated gesture recognition into their user interface. The 

development of a Freehand Sketch Recognition System involves three stages: 

1. Stroke-level recognition which interprets the pixels and produces low-level ge­

ometric primitives such as lines and curves. 

2. 3D modeling based on 2D sketches. 

3. Multi-stroke understanding. 

Each sketch of an object consists of multiple strokes. The first step in in-

tepreting a sketch is to classify individual pen strokes by processing them. Usually 

there are two assumptions in this area, one is that each pen stroke symbolizes a 

single shape, such as a single curve segment or triangle segment, whichever fits the 

stroke best. M u c h of the previous work has relied either on using stroke methods in 

which an entire symbol must be drawn as single stroke [20, 10, 4], or single primitive 

methods in which each stroke must be a single line, arc, or curve [18, 6, 27]. Another 

one used in [3] is that multiple primitives can be drawn in the same pen stroke. In 

this way, a square can be drawn as four individual pen strokes or a single pen stroke 
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with three 90° bends. The key challenge is determing which bumps and bends are 

drawn intentionally and which are unintentionally. Arvo and Novins described a 

kind of stroke-level recognition algorithm [1]. Different from traditional ways of 

recognizing sketches, their method continuously morphs raw input strokes into ideal 

geometric shapes. 

Another stroke-level recognition algorithm is a domain-independent system 

for sketch recognition [29]. Users are allowed to draw sketches as naturally as how 

they do on paper. The system then recognizes the drawing through imprecise stroke 

approximation which is implemented in a unified and incremental procedure. This 

method can handle smooth curves and hybrid shapes as gracefully as it does to 

polylines. W i t h a feature-area verification mechanism and the intelligent adjustment 

in a post-process, the system can produce the results intended by the user. 

Rubine presented a trainable gesture recognizer which used a "linear ma­

chine" classifier to discriminate gestures [20]. Each gesture class is associated wi th 

a linear evaluation function using 13 features. In order for training, appropriate 

weights are learned for each attribute in the linear function. The attributes consider 

aggregate properties of a pen stroke, and it is possible that two different gestures 

would have the same aggregate properties. 

Recent studies show us some interesting gesture-based interfaces in which 

the user specifies commands by simple drawings. G R A N D M A , a tool for building 

gesture-based applications introduced in [19], supports the integration of gestures 

and direct manipulation. It allows views that respond to gestures and views that 

respond to clicks and drags to coexist in the same interface. Our work is closely 

related to this in that we also a set of stroke features and then apply a classifier to 

discriminate different gestures. 

Landay and Myers advanced an interactive sketching tool called S I L K in 

which designers can quickly sketch out a user interface and transform it into a fully 

operational system [12]. As the designer sketches, the recognizer of S I L K matches 
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the pen strokes to symbols representing various user interface components, and 

returns the most likely interpretation. Their recognizer is l imited to single-stroke 

shapes drawn in certain preferred orientations. [23, 24] have developed a program 

called SketchIT that can transform a sketch of a mechanical device into working 

designs. 

Electronic Cocktai l Napkin [5] employs a trainable recognizer that works 

for multi-stroke shapes. The recognition process consists of glyph (low-level) and 

configuration (high-level) recognition. A glyph is described by a state transition 

model of the pen path, the aspect ratio and size of the bounding box, and the number 

of corner points. Configuration recognition takes the spatial relationships between 

the glyphs into consideration. This method is sensitive to changes in orientation, 

and the 3x3 grid may be inadequate for symbols containing small features. 

2.4 3D Sketch-based Modeling 

Zeleznik et al. have extended the use of gesture recognition for 3D modeling[30]. The 

S K E T C H system they proposed attempts to combine 2D image wi th 3D computer 

modeling systems to create an environment for rapidly conceptualizing and editing 

approximate 3D scenes. A l l interaction wi th S K E T C H is v ia a three-button mouse, 

occasional use of one modifier key on the keyboard, and a single orthographic window 

onto the 3D scene. 

The Teddy system [8] in Figure 2.2 is aimed especially at the modeling of 

simple free form objects. The system is able to innate 2D closed curves into 3D 

objects, which can then be edited using simple gestures. The interface shown in 

Figure 2.3 is Chateau [7], a prototype systemin which the user gives the hints to 

the system by highlighting related lines and the system suggests possible operations 

based on the hints, shown in the thumbnails at bottom. 
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Figure 2.2: Example of user interface: Teddy. 



2.5 Summary 

In this chapter, we presented a review of sketch recognition systems, 2D sketch 

recognition methods, along wi th some 3D sketch-based modeling examples. In the 

next chapter, we wi l l present some machine learning methods used for gesture recog­

nition. 
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Chapter 3 

Single-stroke Classification 

One of the goals of our work is to obtain an efRcent classifer as well as a rich and 

meaningful feature vectors. In this chapter, we compare several machine learning 

methods that classify strokes into one of several categories based upon the stroke fea­

ture vectors [20]. The selection of useful features and a good classifier wi l l determine 

the effectiveness of our gesture recognizer. 

3.1 Problem 

Each gesture is denned as an array g of coordinate values and time. 

9P = {xp,yP,tp) 0<p<P 

The gesture recognition problem is stated as follows. There is a gesture set wi th C 

classes. Given a gesture, we need to determine to which class i t belongs. This is done 

by first extracting a limited set of features. Features are extracted from the gesture 

g and are used as the input for classification. The feature vector / = [ / i . . . fp] is 

taken as the training data for classification. 

12 



3.2 The Features 

As an example, a stroke can be characterized by a set of 11 geometric and 2 dynamic 

features [20]. This is the set of features we shall use for testing several classification 

algorithms. Note that many other feasible feature sets could also have been used, 

wi th possible varying results. Figure 3.1 shows how to extract these specific features 

from a stroke. The discription of features are: 

• Feature 1 (A) : the cosine of the ini t ia l angle of the gesture. 

• Feature 2 ( A ) : the sine value of the ini t ia l angle of the gesture. 

• Feature 3 (A) : the length of the bounding box diagonal. 

• Feature 4 ( A ) : the angle of the bounding box diagonal. 

• Feature 5 ( A ) : the distance between the first and the last point. 

• Feature 6 ( A ) : the cosine of the angle between the first and last point. 

• Feature 7 ( A ) : the sine of the angle between the first and last point. 

• Feature 8 ( A ) : the total gesture length. 

• Feature 9 ( A ) : the total angle traversed. 

• Feature 10 (fio) : the sum of the absolute value of the angle at each mouse 

point. 

• Feature 11 ( / n ) : the sum of the squared value of those angles. 

• Feature 12 ( / 1 2 ) : the maximum speed (squared) of the gesture. 

• Feature 13 ( / 1 3 ) : the duration of the gesture. 

fi = cos a = x2 - x0/ J(X2 - x0)2 + (2/2 - Vo)2 
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Figure 3.1: Features extracted from a gesture for identification. 

/ 2 = sin a = y2 - yo/y [x2 - x0)2 + (y2 - yo)2 

fz = \J(%max %min)2 "I" (^moi Zmin)2 

Vmax y-min fi — arctan -
Lmax •''mm 

h = \ / ( z p - i - xo)2 + {yp-i - yo)2 

fe = cos/3 = (xp-i - x0)/f5 

f7 = sin/3 = ( y P _ i - 2/0V/5 

Let Axp = x p + i - x p , A y p = j / p + i - yp 

f8 = PJ2jAxl + Ay* 

Let 0 P = arctan ^ - ' " ^ ^ 

P - 2 

/9 = P̂ 
p = l 
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P-2 
fw 

P = i 

P-2 
hi 

P = i 

Let Atp — £ p + i — 

P—2 (• /12 = max -
p=0 

•max •max 

/ l 3 = tp+1 - to 

3.3 Methods for Stroke Classification 

We now introduce several possible classification methods wi th the purpose of de­

termining which one works best. Three machine learning classification schemes are 

presented in this section: least squares, k-means, expectation-maximisation. The 

least squares method is a supervised learning technique while the latter two use 

unsupervised learning. 

3.3.1 Least Squares Method 

[20] uses a linear machine algorithm for strokes classification, which is a k ind of least 

square approach. 

Given C as the number of total classes and F is the number of features, each 

gesture class c has parameters tuc; for 0 < i < F . The evaluations, vc, are calculated 

as follows: 

The class of a gesture g is the c which maximizes vc. 

During the training process, we need to determine the weights uici from the 

example gestures. Let fcei be the feature of the example of gesture class c, 0 < e < 

F 
0<c<C 
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Ec, where Ec is the number of training examples of class c. The sample estimate of 

the mean feature vector per class fc is defined as: 

1 E c ~ x 

fci = T T A e i 
^ c e=0 

The sample estimate of the covariance matrix of class c, JZcij, is computed 

as: 
Ec-l _ 

Etij = ^ (fcei ~ fci)(fcei ~ fci) 
e=0 

The _ cr/ are averaged to yield _ i 7 , a r L estimate of the common covariance 

matrix. 

E . . _ _ _ _ _ _ _ 

We can invert the common covariance matrix and use it to get the weights 

u>ci as follows [20]: 

F _ 
uCJ = J2^~%fa 1<3<F 

i = i 

F 

2 = i 

3.3.2 K-means Method 

We use K-means clustering introduced in [15] for classification. In K-means cluster­

ing, K , needs to be determined at the onset. The goal is to divide the objects into K 

clusters such that some metric relative to the centroids of the clusters is minimized. 

Various metrics related to the centroids can be minimized, including: 

• The maximum distance to its centroid for any object. 

• The sum of the average distance to the centroids over all clusters. 

• The sum of the variance over all clusters. 

• The total distance between all objects and their centroids. 
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The metric to minimize and the choice of a distance measure w i l l determine 

the shape of the optimium clusters. 

Two different algorithms are available to search for the optimum set of clus­

ters. In the first procedure, the objects are randomly assigned to one of the K 

clusters. Once this is done, the position of the K centroids are determined, as is the 

value of the metric to minimize. A global optimization method is then used to re­

assign some of the objects to different clusters. New centroids are determined, as is 

the metric to minimize. This procedure is continued unti l the optimum assignment 

of objects to clusters is found. 

In the second procedure for K-means clustering, placement of the K centroids 

can be done by the following procedure. Place K points into the space represented by 

the objects that are being clustered. These points represent ini t ial group centroids. 

1. Assign each object to the group that has the closest centroid. 

2. W h e n all objects have been assigned, recalculate the positions of the K cen­

troids. 

3. Repeat Steps 2 and 3 unti l the centroids no longer move. This produces a 

separation of the objects into groups from which the metric to be minimized 

can be calculated. 

A global optimization method is then used to move the position of one or 

more of the centroids. The above procedure is repeated and new metric value 

is determined. The object is to move the centroids into a position such that an 

optimum separation of objects into groups occurrs. 

For K-Means clustering, it is necessary to calculate a "distance" between 
r 

either two objects (one of which may be a cluster seed point) or an object and a 

group centroid. In this discussion, it is assumed that each object is described by an 

array of real-valued metrics. 
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Since we need to minimize the largest or average distance, or the variance, 

during clustering, it is important that each metric contribute equally to the total 

distance. In other words, if one metric spans the range [0.0,0.5] and another spans 

[0.0,100.0], the maximum deviation in the first would have little effect on the total 

distance, while even a modest separation in the second would have a much larger 

effect. To remove this dependency on the range spanned by each metric, it is impor­

tant to first standardize the values. This means that each metric, when compared 

over the full set of objects should have a mean of 0.0 and a variance (or standard 

deviation) of 1.0. For each metric, the following steps should be taken to standardize 

each metric describing the objects. 

1. Sum the values of the metric over all objects and divide the sum by the number 

of objects. 

2. Subtract this average value from the metric in al l objects. 

3. Sum the square of these new values over all objects, divide the sum by the total 

number of objects, and take its square-root. This is the standard deviation of 

the new values. 

4. Divide the metric by the standard deviation in each object. 

3.3.3 Expectat ion-Maximisat ion M e t h o d 

This method supposes that the stroke features have normal Gaussian distributions. 

The E M method can be applied to build a gesture classifier. The detailed steps are 

given by Jordan [9]: 

1. Initialise. 

2. E Step: A t iteration t, compute the expectation of the indicators for each i 

and c: 

= p(c)N(xi\fxc,T,c) 
U E * p ( c ' ) A ^ | / v , £ c ' ) 
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and normalize it. 

3. M Step: Update the parameters P(c), fj,c, S c . 

E 
c E i = l Cic 

1 
p(c) = - _ > 

The E M method is used to find the parameters for the normal distribution of 

each class and then apply this distribution to classify new, unseen feature vectors. 

The distribution wi th the highest probability is defined to be the class to which the 

gesture belongs. 

3.4 Classifier Comparison 

The gestures used for evaluation of the three classification algorithms are shown in 

Figure 3.2. In this figure, four different gesture styles of each class are given. 

Performance is evaluated on 3 gesture classes. Figure 3.3 shows the results 

using the algorithm presented by [20]. The plot demonstrates the recognition rate 

as a function of the number of training examples per class for evaluation gestures. 

One line is for 2 classes and the other one is for 3 classes. Figure 3.4 illustrates the 

results wi th k-means. The results when applying E M are shown in Figure 3.5. 

From the above three figures, we can see that the K-means method gives the 

best performance. For the K-means method, in the cases where 3 gesture classes 

are recognized by a classifier trained wi th 10 or more examples per class, at least 

96% of the test gestures are classified correctly. When there are only 2 gesture 

classes, the classifier trained wi th 10 or more examples per class yields 100% correct 

classification. 
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Figure 3.2: Examples from the gesture set used for evaluation. 
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Figure 3.3: Recognition rate vs. training size for least square method. 
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Classification with K-means 
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Figure 3.4: Recognition rate vs. training size for K-means method. 
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Figure 3.5: Recognition rate vs. training size for E M method. 
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The linear machine classifier used by Rubine that is trained wi th 10 or more 

examples can recognize 3 gesture classes with correctness > 60% , and for 2 gesture 

classes, the adequacy is > 85%. This method gives better performance when there 

are 40 training examples per class, but the correctness falls after increasing the 

number of examples. 

The recognition adequacy of E M method is low when the number of training 

examples is less than 30 per class, however, it increases when more training exam­

ples added. The more training examples per class, the higher the correctness at 

recognizing gestures. The classifier trained wi th 30 or more examples can recognize 

3 gesture classes at above 85% correctness, and for 2 gesture classes above 80% 

correctness. It is surprising to note that it w i l l give better performance for 3 gesture 

classes than 2 gesture classes for large number of training examples. 

3.5 Summary 

The generation of a meaningful, extensible and effective feature set is essential. 

How many features are enough to describe a gesture without redundancy and what 

kind of features should be extracted is an important problem to be tackled. In 

this chapter, testing strokes comprise congruent lines and arcs, and we can see that 

thirteen features are quite efficient for classification. Given different gesture sets, 

some features may be useless and a small number of feature set may be applied to 

generate good results as well. In the next chapter, we want to classify strokes of 

different shapes from the ones we used in this chapter. We choose K-means method 

to use for our sketch recognition system. They are generally simpler and thus we 

wi l l use a feature set wi th a smaller number of attributes. 

r 
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C h a p t e r 4 

S k e t c h R e c o g n i t i o n a n d 3 D 

M o d e l C o n s t r u c t i o n 

This chapter w i l l discuss the main contributions of our work: a system for sketch 

recognition and 3D model construction. Sketch recognition consists of assigning 

feature labels to individual pen strokes, i.e., identifying the object features they 

corresponded to. It includes two phases: training and learning. We have chosen 

K-means method for stroke classification and we w i l l show how we select features 

and apply this classifier to sketch recognition. Lastly, we wi l l go through the details 

of 3D model construction with a generic example. 

4.1 Sketch Recognition: Training 

4.1.1 Shapes 

In our system, each pen stroke symbolizes a single shape, such as a single curve or 

triangle. The advantage is that it facilitates shape recognition. The disadvantage 

is that the system requires the user to sketch features in a fairly specific fashion. 

We define a shape set for typical symbols, including curve, ellipse, triangle, square, 

open rectangle, as shown in Figure 4.1. We regard a line as being a kind of curve. 
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Figure 4.1: Shapes of basic symbols: arc, ellipse, triangle, square, open rectangle. 

We use x and y values of the stroke points to determine its shape style, which 

includes two steps. For curve and open rectangle, the distance between the begin 

point and the end point is quite faraway; whereas for ellipse, triangle and square, the 

begin point is close to the end point. In this way, we can categorize the five shape 

types into two classes: the one with open stroke and the one wi th closed stroke. The 

next step is to employ geometrical properties of different shape type to distinguish 

them. Every triangle, right-angled or not, w i l l have at least two acute angles. A 

square contains four right angles and an open rectangle takes two angles, whether 

acute or obtuse. O n a stroke, the lines between a point and its two neighbouring 

points form an angle. This three points consist of a triangle, length of each edge 

can be calculated and then the cosine value of this angle. Since sketch is drawn 

freehand, it may incur a lot of minor noises, for instance, a line may contain some 

sharp angles. A good way to avoid those noises is to include more neighbouring 

points for calculation. W i t h this method, angle values on a stroke can be computed 

one point by one point. These values change smoothly for curve and ellipse because 

they don't have such obvious angle traits as triangle, square and open rectangle. 

4.1.2 Choice of Features 

Four features as the intrinsic properties of a stroke are denned to interpret one single 

stroke, including: 

• Feature 1 ( / i ) : Normalized location in x direction. 
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• Feature 2 (f2) : Normalized location in y direction. 

• Feature 3 (fs) : Drawing time. 

• Feature 4 (f±) : Drawing shape. 

Once an object sketch is drawn, an axis-aligned bounding box for the whole 

sketch is computed. As shown in Figure 4.2, the sketch bounding box is illustrated 

in dotted lines. The normalized x value (feature / i ) is computed as a f\ = x'/xb0, 

where x' is.the distance from the center of stroke bounding box to the left side of 

the sketch bounding box, and x0b is the bounding box width. In the same manner, 

h = V'/Vbb-

The drawing time (feature fs) is measured as the total time between first and 

last sample point. The last feature used for stroke classification is drawing shape 

(feature fi) which is categorized according to our shape set denned in Figure 4.1 

and calculated from the method we discribed in 4.1.1. We assign a unique integer 

value to each shape type: 0 to curve, 1 to ellipse, 2 to triangle, 3 to square and 4 to 

open rectangle. In this way, al l the features can be parameterized. 

Figures 4.3 and 4.4 show the sketched components of face and rocket that 

wi l l be recognized by our system. A face consists of 9 strokes drawn in any order: 

face, left eye, right eye, left eyebrow, right eyebrow, nose, mouth, left ear and right 

ear. A rocket is described by 5 strokes that can be drawn in any order: head, body, 

tail , left wing and right wing. Numbers in the figures correspond to the drawing 

order for each stroke for the example database, which provides a labelled set of 

training data. Detailed information is listed in Table 4.1 for face and Table 4.2 for 

rocket. In these tables, we also show possible drawing shapes for each component 

and the required shapes for some component during recognition. We set required 

shapes to facilitate recognition. After we aquire all the features for each stroke, we 

use a K-mean classifer to distinguish them. 
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Figure 4.2: .Features of head used for classification. 

Order Components Possible Shapes Required Shapes 

1 face ellipse ellipse 
2 left eye ellipse ellipse 
3 right eye ellipse ellipse 
4 left eyebrow curve curve 
5 right eyebrow curve curve 
6 nose curve, triangle, ellipse 
7 mouth curve, ellipse 
8 left ear curve, ellipse 
9 right ear curve, ellipse 

Table 4.1: Description of components for face. 

Order Components Required Shapes 

1 head triangle 
2 body open rectangle 
3 tai l open rectangle 
4 left wing open rectangle 
5 right wing open rectangle 

Table 4.2: Description of components for rocket. 
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4.1.3 Sketch Recognition: Matching 

The gesture recognition can be regarded as classification problem for which we 

can apply K-means scheme as described in Chapter 3 . There are C classes for 

classification, C = 9 for face and C = 5 for rocket. Each gestures in one class should 

have some similarity and can be clustered together. 

4.2 3D Model Construction 

In the modeling phase, the recognized strokes are used to construct 3 D models. Once 

classified, a stroke plays a key role in determining model's geometrical construction. 

For our current system, curves and ellipses are rendered into ellipsoids, trianglea 

become cones and rectangles into cylinders. 

Figure 4 . 5 illustrates parameters used for modeling cylinder and ellipse sketches 

into 3 D models. There are 4 parameters for modeling a tapered cylinder: rl, r2, 

h and nslices. h represents cylinder's height, rl and rl are the radius of two ends 

of tampered cylinder, nslices is the the number of polygons used to represent the 

cylinder, which can be considered to be open on either end. If the shape of a sketch 

is triangle, r l is zero. The parameters for representing ellipsoid are: r, h and nslices. 

The cross section of an ellipsoid along z axis is an ellipse wi th its minor axis value 

to be r and major axis value to be h. A l l the radius and height values are taken 

from axis-aligned bounding box around a stroke. 

After sketch recognition in the previous stages, we have determined each 

component and its shape for an object. Because we have a priori knowledge about 

what k ind of object is being modeled, once we identity each stroke, we can locate 

their position related to other components, for instance, nose and eyes are on the 

face while ears are at the two sides of a face. 

The following is an example description of how we model a face from raw 

sketches. Figure 4 . 3 shows 9 strokes of a face. Stroke 1 is the head outline and 
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Figure 4.5: Model ing parameters for tapered cylinder and ellipsoid. 

the resulting 3D head is modeled using an ellipsoid. Stroke 2 is the left eye and is 

modeled using an ellipsoid. Stroke 4 is left eyebrow modeled using a 3D curve. We 

assume eyes, eyebrows, nose and mouth are all located on the surface of the head 

and that the ears are located on the two sides of the head. Even i f the ear strokes 

are not drawn in this way, we st i l l model them as a normal face. Since they are 

related to head model, the z value of these models should be calculated from the 

model of the head outline. For the head, the cross section along the z and x axis of 

an ellipsoid is an ellipse and the cross section along y axis is a circle. The position 

values (x, y, z) of any point on an ellipsoid can be computed from ellipse and circle 

mathematical equations. 

In the next chapter, we wi l l show some concrete examples of human faces 

and rockets that go from raw sketches to 3D models. 
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Chapter 5 

Results 

We test our methods wi th sketch-based modeling of simple faces and rockets. Results 

from our system are demonstrated in this chapter. We show examples of both 

successful and unsuccessful sketch-based modeling. We assume that a face always 

takes 9 strokes and a rocket wi th 5 strokes, otherwise, the system w i l l not work 

properly. 

5.1 Face Sketching 

Figure 5.1 shows three examples of faces drawn and recognized by our system. We 

show examples of both successful and unsuccessful sketch-based modeling. From 

left to right are the sketches, front view of the 3D models and a rotated view of the 

3D models. 

Figure 5.3 shows two faces drawn in our system wi th incorrect recognition. 

Table 5.1 list the drawing components and recognized ones for these two examples. 

In example one, "mouth" is mistaken as a "left ear" because these two strokes are 

drawn in the same shape and other features data are similar and therefore confuse 

the classifier. In example two, "left eye" is wrongly recognized as "left eyebrow" 

because they are drawn too close to each other. One possible solution is to make 

each component unique during recognition. Each component can be marked and if 
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E x a m p l e 1 E x a m p l e 2 
Drawing Drawing Recognized Drawing Recognized 

Order Components Components Components Components 

1 face face left eyebrow left eyebrow 
2 left ear left ear right eyebrow right eyebrow 
3 right ear right ear left eye left eye 
4 left eyebrow left eyebrow right eye right eyebrow 
5 left eye left eye nose nose 
6 right eyebrow right eyebrow mouth mouth 
7 right eye right eye face face 
8 nose nose left ear left ear 
9 mouth left ear right ear right ear 

Table 5.1: Comparisons of drawing and recognized face components wi th incorrect 
recognition. 

there is another component also marked as "left eyebrow", we can choose the label 

wi th the least error according to that classifier. 

5.2 Rocket Sketching 

Three examples of rockets are shown in Figure 5.2. From left to right are the raw 

sketches, front image of rendered rockets and rocket images after rotation. 

5.3 Discussion 

We set up a training library for sketches including face and rocket, the size of 

database wi l l affect recognition correctness. From Chapter 3, we know that the 

more examples the database contains, the more accurately the sketches w i l l be 

recognized. Our training data consists of 40 face skteches and 30 rocket sketches. 

Classifiers are obtained after applying K-means clustering to this data. 
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Figure 5.3: Face modeling with incorrect recognition. 
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Chapter 6 

C o n c l u s i o n s a n d F u t u r e W o r k 

The system has been tested on simple drawings such as human faces and rockets. 

In order to make the system work for a new class of objects, we have to specify 

how many components this object has and from some training examples, collect the 

shapes that can best symbolize this component. W i t h this information, the system 

can create 3D models from simple sketches. 

Our current algorithms and implementation are efficient enough for exper­

imental use. However, they can fail or generate unintuitive results when the user 

draws unexpected strokes. We must devise more robust and flexible algorithms to 

handle a variety of user inputs. In particular, we plan to enhance the algorithm 

to allow multi-stroke input. Currently, we assume that each stroke represent one 

shape. If we would allow pen strokes to represent any number of shape primitives 

connected together, the system could potentially cope deal wi th more complicated 

sketches. 

Another important research direction is to develop additional features to 

support a wider variety of shapes wi th arbitrary topology, and to allow more precise 

control of the shape. Second, in training phase, we would like to test wi th more 

classifiers to construct a more accurate classifier for matching strokes. 
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Appendix A 

U s e r I n t e r f a c e 

The physical user interface of this sketch system is implemented wi th F L T K , a 

platform independent graphics toolkit. The interface consists of a main display 

window on the left side and a control panel on the right. Most control actions are 

focused on drawing gestures and displaying object, we use a two-button mouse for 

drawing and control. The top panel called "Object Display" contain a number of 

buttons, the function of which is given below. 

• sketch: ready for new sketching the object or add more sketches to an rendered 

object. 

• solid shading: show object wi th solid shading. 

• render: render the whole sketches after finished drawing an object. 

• show normal: display normal on each point of object meshes. 

• reset: clean the display window and ready to draw other objects. 

• redisplay: show original sketches. 

In the middle, there is a animation panel designed for showing some simple 

animations. Different training and drawing choice buttons are listed at the buttom 
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1 Sketching and Rendering Syste: 

Object Display 

| sketch | solid_shading 
• j render |show_normal 

j reset | redisplay 

Animation 

r — element: face 

O redisplay 
O 3D Animation 

Draw What Training 

face face face 
racket 

rocket finish 
snip detect 

Open tile '' •~ j Save as /-" 

Exit 

Figure A . l : The interface of modeling system. 

of the control panel. In addition to gestures, we also use a few button widgets for 

auxiliary operations, such as save and load. 
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