
K E L P : A n Architecture for Understanding Global

System Behavior in Massively Scalable Distributed

Systems

by

Arthur Yung

B .Sc , University of British Columbia, 1998

A THESIS S U B M I T T E D IN P A R T I A L F U L F I L L M E N T O F

T H E R E Q U I R E M E N T S F O R T H E D E G R E E O F

M a s t e r o f S c i e n c e

in

T H E F A C U L T Y O F G R A D U A T E STUDIES

(Department of Computer Science)

We accept this thesis as conforming
to ±.he required standard

The University of British Columbia

April 2001

© Arthur Yung, 2001

In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t of the requirements
f o r an advanced degree at the U n i v e r s i t y of B r i t i s h Columbia, I
agree that the L i b r a r y s h a l l make i t f r e e l y a v a i l a b l e f o r reference
and study. I f u r t h e r agree that permission f o r extensive copying of
t h i s t h e s i s f o r s c h o l a r l y purposes may be granted by the head of my
department or by h i s or her r e p r e s e n t a t i v e s . I t . i s understood that
copying or p u b l i c a t i o n of t h i s t h e s i s f o r f i n a n c i a l g ain s h a l l not
be allowed without my w r i t t e n permission.

Department of dow\^xtejT SCJCHC*

The U n i v e r s i t y of B r i t i s h Columbia
Vancouver, Canada

Date

A b s t r a c t

Current techniques do not scale distributed systems to millions of nodes
because they cannot handle global behavior description and global coordination to
such massive sizes. K E L P addresses these problems with a loose, decentralized
system of nodes that are connected together wi th a small-world network. Viewed as
a network of randomly connected clusters, a small-world network supports massive
scalability with its random connectivity while sti l l support ing locality wi th in its
clusters. K E L P uses two key properties of randomness to scale. F i r s t , there is a
short typical distance of separation between any two nodes in the system. This is
used to quickly infer global behavior. Second, nodes have relatively little knowledge
of the overall system, which helps provide looser semantics for global coordinat ion.
F ina l ly , on top of the small-world infrastructure, K E L P provides massively scalable
data structures to make building massive scale systems less ad-hoc.

ii

Contents

A b s t r a c t i i

Contents i i i

Lis t of Tables v i

Lis t of F igures v i i

Acknowledgements v i i i

D e d i c a t i o n ix

1 I n t r o d u c t i o n 1

2 Infras tructure 5

2.1 Problems with Achieving Massive Scalability 5

2.2 Modeling After Small-World Networks 6

2.3 Properties of KELP's Graph 7

2.3.1 Random Walk 8

2.3.2 Expander 8

2.4 Building KELP's Random Graph 9

2.5 Handling Node Failures 11

iii

3 Determining Global Behavior from K E L P ' s Infrastructure 14

3.1 C o l o r 14

3.2 Heat 16

4 Example Data Structures 19

4.1 Set 19

4.2 Queue 20

5 Implementation 23

5.1 Implementing the Random G r a p h 23

5.1.1 Design Architecture 24

5.1.2 Boots trapping and Node A d d i t i o n 24

5.1.3 R a n d o m Walks 25

5.2 Implementing the Set using Color 27

5.3 Implementing the Queue using Heat 28

5.3.1 Overlays 28

5.3.2 Heat Propagat ion 29

5.3.3 Dequeue and Heat Search 32

6 Evaluation 36

6.1 R a n d o m G r a p h Evaluat ion 36

6.1.1 Exper imenta l Analys is 37

6.1.2 Mathemat ica l Analys is 38

6.1.3 R a n d o m G r a p h Conclusions 42

6.2 Set Evaluat ion 42

6.3 Queue Evaluat ion 46

iv

7 Re la ted W o r k 49

7.1 G n u t e l l a 49

7.2 Globe 50

7.3 Smal l -Wor ld Networks 51

8 Conclus ions and F u t u r e W o r k 52

B i b l i o g r a p h y 54

v

L i s t of Tables

6.1 E x p e r i m e n t a l a n a l y s i s o f r a n d o m g r a p h 38

6.2 E x p e c t e d set s e a r c h l e n g t h s 43

6.3 Q u e u e e v a l u a t i o n 47

vi

L i s t of F igures

2.1 Node o joins K E L P 10

6.1 Increasing h for randomness 39

6.2 Threshold A's for randomness 39

6.3 Mathematical Analysis of Random Graph 40

6.4 Example of Markov chain analysis 41

6.5 Expected set search lengths (3D) 45

6.6 Expected set search lengths (2D) 46

vii

A c k n o w l e d g e m e n t s

I'd like to thank the National Sciences and Engineering Research Council (NSERC)
for financially supporting this thesis with a postgraduate scholarship. I'd also like
to acknowledge the invaluable contribution of Stephan Gudmundson who acted like
a partner for most of this project. Thanks to Mike Feeley and Norm Hutchinson for
their guidance and thanks to Lisa Streit for proofreading this thesis.

ARTHUR Y U N G

The University of British Columbia
April 2001

V l l l

T o m o m . I a m n o t h i n g w i t h o u t y o u .

ix

C h a p t e r 1

Introduct ion

The Internet provides the infrastructure to support distributed systems comprised

of hundreds of thousands or even millions of nodes. To date, the main focus on scal

ability has been building centralized servers that handle large numbers of clients;

however, this model of computing does not scale to massive sizes because central

ization is a bottleneck. A l s o , this approach does not support more peer-to-peer

applications such as peer-based file-sharing system with many users and decentral

ized distributed vir tual environments. Th is thesis describes a system designed to

scale past current l imitations and to support a wider range of applications.

Massively scalable distributed systems that support mill ions of users on a

global scale are challenging to build because massive amounts of global informa

tion are difficult to manage in a t imely fashion. Scaling to such large sizes also

requires looser consistency and lower coherence, which makes global coordination

impract ica l . Furthermore, there are no general or reusable methods for wr i t ing large

scale systems; up to now, the loose semantics that support massive scale have been

followed in an ad-hoc manner.

Some massive scale systems have been buil t , but only in system-specific ways.

1

For example, DNS [14] scales well using hierarchy because it takes advantage of

infrequent name changes and caches names at various hierarchical levels to avoid

the root from becoming a bottleneck. The W W W [6] also scales well because it is

comprised of millions of different web servers that each scale independently. There

is no global information shared between web servers, so the millions of web servers

do not have the overhead of coordinating with one another.

Our goal is to provide a mechanism for massively scaling a range of dis

tributed systems. In particular, we wish to massively scale non-hierarchical dis

tributed systems that share global knowledge among all their nodes and we wish to

do so without using an ad-hoc approach.

Our strategy to achieve our goal is to follow the looser, scalable semantics in

a serverless and decentralized manner; every node knows about a few other nodes

in the system and global knowledge is partitioned among all nodes. Nodes within

the system interact in a peer-to-peer manner and clients can interact with any node

in the system.

Following this strategy, we have designed a massively scalable system called

K E L P . To achieve massive scale in a system where every node only knows a few

other nodes, node connectivity in K E L P is modeled after natural systems that grow

to large sizes. Natural systems like the neural network of the worm Caenorhabditis

elegans, the power grid of the western United States [17], and hyperlinks on the

World Wide Web [3] are all connected via a small-world network. Small-world net

works allow these natural systems to grow to large sizes because they take advantage

of locality while providing a short separation distance between any two nodes in the

system.

A small-world network is a collection of tightly coupled clusters that are

2

l o o s e l y a n d r a n d o m l y c o n n e c t e d t o a few o t h e r c l u s t e r s . T h e t i g h t l y c o u p l e d c l u s

t e rs p r o v i d e l o c a l i t y w h i l e t h e loose c o n n e c t i v i t y o f t h e c l u s t e r s a l l o w i n f o r m a t i o n t o

be p r o p a g a t e d f r o m one end of t h e s y s t e m t o the o t h e r i n j u s t a few h o p s . F o r e x a m

ple , i n f e c t i o u s disease is p r e d i c t e d t o be s p r e a d e x t r e m e l y q u i c k l y a m o n g o r g a n i s m s

c o n n e c t e d v i a a s m a l l - w o r l d n e t w o r k [17].

S i n c e c l u s t e r s are a w e l l - k n o w n t e c h n o l o g y [15], we f o c u s o u r research o n t h e

r a n d o m c o n n e c t e d n e s s o f the s m a l l - w o r l d g r a p h . T o i n v e s t i g a t e t h i s , we d e v i s e d

a n a l g o r i t h m f o r b u i l d i n g a d e c e n t r a l i z e d d i s t r i b u t e d s y s t e m c o m p r i s e d o f m i l l i o n s

o f n o d e s c o n n e c t e d v i a a r a n d o m g r a p h . T h e r a n d o m g r a p h c o n n e c t s e v e r y n o d e

t o a f e w o t h e r r a n d o m l y - c h o s e n n o d e s a n d p r o v i d e s key p r o p e r t i e s f o r s c a l i n g o u r

s y s t e m : a s h o r t d i s t a n c e b e t w e e n a n y t w o n o d e s t h a t a l l o w s f o r q u i c k i n f o r m a t i o n

p r o p a g a t i o n a n d m i n i m a l k n o w l e d g e a t each n o d e t h a t a l l o w s f o r loose g l o b a l c o

o r d i n a t i o n . C o u p l i n g these p r o p e r t i e s w i t h g l o b a l k n o w l e d g e p a r t i t i o n e d a m o n g a l l

n o d e s p r o v i d e s a m e t h o d f o r q u i c k d i s s e m i n a t i o n o f g l o b a l i n f o r m a t i o n t h r o u g h o u t

t h e s y s t e m .

In o r d e r t o e v a l u a t e o u r s y s t e m , we b u i l t t w o d i s t r i b u t e d d a t a s t r u c t u r e s

o n t o p o f K E L P ' s r a n d o m g r a p h c o n n e c t i o n : a set a n d a q u e u e . In o r d e r t o scale

these d a t a s t r u c t u r e s , t h e i r c o m m o n l y - a c c e p t e d s e m a n t i c s h a d t o be l o o s e n e d . F o r

e x a m p l e , a d e q u e u e o p e r a t i o n o n t h e q u e u e r e t u r n s a n e l e m e n t t h a t is v e r y close t o

t h e o l d e s t i n s t e a d o f s t r i c t l y t h e o l d e s t . A p p l i c a t i o n s u s i n g these d a t a s t r u c t u r e s t o

a c h i e v e m a s s i v e s c a l a b i l i t y m u s t t o l e r a t e these l o o s e n e d s e m a n t i c s .

T h i s thes is is o r g a n i z e d as f o l l o w s . C h a p t e r 2 d e s c r i b e s t h e g r a p h t h e o r y

used t o a d d r e s s t h e p r o b l e m s of a c h i e v i n g m a s s i v e s c a l a b i l i t y a n d a l so d e s c r i b e s

h o w K E L P uses a r a n d o m g r a p h as i t s i n f r a s t r u c t u r e . C h a p t e r 3 e x p l a i n s h o w t h e

i n f r a s t r u c t u r e c a n be used t o d e s c r i b e g l o b a l b e h a v i o r . C h a p t e r 4 d e s c r i b e s t h e

3

d a t a s t r u c t u r e s b u i l t o n t o p o f the g r a p h i n f r a s t r u c t u r e . C h a p t e r 5 d e s c r i b e s the

i m p l e m e n t a t i o n o f K E L P ' s s i m u l a t i o n . C h a p t e r 6 s h o w s the resul ts o f e v a l u a t i o n s

t h a t s h o w the p r o p e r t i e s of the c o n s t r u c t e d g r a p h s a n d the b e h a v i o r of the d a t a

s t r u c t u r e s . C h a p t e r 7 d e s c r i b e s re la ted w o r k . F i n a l l y , C h a p t e r 8 c o n c l u d e s the

thesis a n d descr ibes f u t u r e w o r k .

4

Chapter 2

In f ras t ruc ture

K E L P ' s i n f r a s t r u c t u r e p r o v i d e s c o n n e c t i v i t y b e t w e e n n o d e s a n d is d e s i g n e d t o a d

dress s c a l a b i l i t y by p r o v i d i n g serv ices t h a t s u p p o r t t h e in ference o f g l o b a l b e h a v i o r .

T o s u p p o r t these o p e r a t i o n s , t h e n o d e s ' c o n n e c t i v i t y is m o d e l e d a f ter la rge-sca le

n a t u r a l s y s t e m s t h a t c o n n e c t n o d e s v i a a s m a l l - w o r l d n e t w o r k .

T h i s c h a p t e r b e g i n s b y d e s c r i b i n g t h e g e n e r a l p r o b l e m s i n a t t e m p t i n g t o

a c h i e v e m a s s i v e s c a l a b i l i t y . T h e n , t h e m o t i v a t i o n o f m o d e l i n g K E L P ' s i n f r a s t r u c t u r e

o n s m a l l - w o r l d n e t w o r k s is e x p l a i n e d . N e x t , t h e c h a p t e r focuses o n t h e r a n d o m

c o n n e c t e d n e s s o f the s m a l l - w o r l d n e t w o r k a n d e x p l a i n s h o w r a n d o m p r o p e r t i e s he lp

p r o v i d e m a s s i v e s c a l a b i l i t y . F i n a l l y , t h i s c h a p t e r e n d s b y e x p l a i n i n g h o w K E L P ' s

i n f r a s t r u c t u r e is b u i l t a n d h o w n o d e s f a i l u r e s are h a n d l e d .

2.1 Problems with Achieving Massive Scalability

C u r r e n t t e c h n i q u e s d o n o t sca le d i s t r i b u t e d s y s t e m s t o m a s s i v e sizes because g l o b a l

i n f o r m a t i o n m a n a g e m e n t a n d g l o b a l c o o r d i n a t i o n are b o t t l e n e c k s . T h e r e is a lso n o

g e n e r a l m e t h o d of c r e a t i n g a s c a l a b l e s y s t e m , w h i c h m a k e s b u i l d i n g these s y s t e m s

5

difficult.

Global information management is a difficult problem to handle efficiently

because there are large amounts of information dispersed throughout the many nodes

in a large-scale system. G l o b a l coordination suffers from similar difficulties due to

the need for a large number of coordination messages. F ina l ly , even though there

are general scalability guidelines to follow (see [16]), there is no general solution

for building massively scalable systems, so most systems are created in an ad-hoc

manner.

A system has to handle these problems in order to achieve massive scalability

and K E L P ' s infrastructure does so by modeling its connectivity after a small-world

network.

2.2 Modeling After Small-World Networks

A distributed system's connectivity is modeled as a graph to define key system

properties. K E L P ' s connectivity is modeled after a small-world network because

small-world networks have been shown to allow some natural ly occurring systems

to grow to large sizes [17, 3].

A small-world network is a graph that combines the benefits of a regular

graph and a random graph [17]. A regular graph is a graph whose nodes can be

connected locally and whose nodes all have the same degree (where degree, d, is the

number of neighbors that each node is connected to) . Regular graphs can provide

the benefit of locality through clustering. A random graph is a graph whose nodes

are randomly connected to each other. R a n d o m graphs provide the benefit of a

short typical separation between nodes and a small d relative to n (the number of

nodes in the system). A small -world network provides the benefits of both regular

6

and random graphs: a high degree of clustering and a short typical separation.

K E L P ' s infrastructure is thus modeled after small-world networks to address

the problems outlined in Section 2 .1.

Global information is handled by partitioning the information throughout

all nodes in the small-world network. Each node has its own part of the global

information that can be quickly shared with any other node because of the short

typical distance of separation.

Global coordination is handled in two ways. Locally connected nodes coordi

nate tightly while randomly connected nodes coordinate loosely. The loose semantics

are facilitated with every node's small d because each node doesn't have to maintain

much information about other nodes in the system.

Finally, K E L P addresses the challenge of building ad-hoc scalable systems by

allowing massively scalable systems to be built on top of its small-world-based infras

tructure. K E L P also provides massively scalable data structures to make building

massively scalable systems less ad-hoc.

2.3 Properties of K E L P ' s G r a p h

Nodes in K E L P are connected via a directed (/-regular random graph. Directed

means that a node's incoming and outgoing edges are clearly defined and (/-regular

means that all nodes have d neighbors. Also, the number of incoming and outgoing

edges for each node is fixed.

This random graph connectivity provides the benefits of small-world networks

(except for locality) and also provides the benefit of rapid mixing [5]. Rapid mixing

means that a message sent from one node will have an equal probability of reaching

all other nodes in a very small number of steps (relative to n). The random graph

7

provides two operations that use the rapid mixing property: random walks and

expanders.

2.3.1 Random Walk

The first operation to exhibit the rapid mixing property is the random walk opera

tion. A random walk is used to randomly find any node with equal probability.

A random walk starts at any node in the system. At each node in the walk,

a random neighbor is chosen as the next node to step to. If an adequate number of

steps is taken, the random walk will end up at a random node.

The number of steps (h) required to make the chosen node random is rela

tively small and depends on two factors. The first factor is the number of nodes in

the system (n). To remain random, h must grow logarithmically with n [8]. The

second factor is the system's degree, d. A higher d allows for a shorter h and vice

versa. An analysis of the relationship between n, k, and h is provided in Section 6.1.

2.3.2 Expander

The second operation to use the rapid mixing property is the expander operation.

The expander is used to to quickly propagate information from one node to a given

percentage of other nodes in the system.

An expander starts at one node and is forwarded to each of the starting node

node's neighbors. Nodes receiving the expander may also forward it to all of their

neighbors. The number of times an expander is forwarded is called the expander's

depth and is denoted with e.

The expander depth (e) required to cover the graph is relatively small com

pared to n because each level of the expander results in a large factor of new nodes

8

receiving the expander. A t each level, the number of new nodes receiving the ex

pander can be up to d times the number of nodes who have already received the

expander. Hence, the expander can spread information at an exponential rate. How

ever, once half the nodes in the system receive the expander, the rate of expansion

slows down because the expander wil l be propagated to nodes that it has already

visited. In conclusion, expanders can propagate information to all nodes in the sys

tem, but are quickest when only propagating information to less than half the nodes

in the system.

2.4 Building K E L P ' s Random Graph

B u i l d i n g K E L P ' s random graph is difficult because of two problems. F i r s t , random

graphs are typically constructed by randomly choosing a node's neighbors from the

set of all nodes already in the graph; however, this cannot be done in K E L P because

there is no global knowledge of all nodes. Second, K E L P is a distr ibuted system

that must support the dynamic addit ion and removal of nodes (e.g. node failure

and recovery), but dynamic graph membership is not addressed by random graph

theory. K E L P ' s random graph building technique addresses these problems and

maintains randomness by being an incremental algorithm that chooses a new node's

neighbors from the set of all nodes already in the graph.

K E L P ' s random graph building algorithm starts by bootstrapping the system

with d+1 nodes to form a complete graph of degree d. Af ter bootstrapping, new

nodes jo in the graph v ia any node already in the graph. To select each of its d

neighbors, the new node (o) performs a random walk to choose a random node

(x). The chosen node, x, randomly picks one of its neighbors (v) to evict from its

neighbor list. Then x replaces v in its neighbor list with o and o gets v as one of

9

its neighbors (see Figure 2.1). If the randomly chosen node x is the original node o,

another random walk is performed to chose another neighbor.

Figure 2.1: Node o joins K E L P

A node gracefully leaving K E L P must be removed from the graph. A leaving

node (/) notifies both its incoming and outgoing neighbors. Each of the incoming

neighbors lose an outgoing edge to / and each of the outgoing neighbors lose an

incoming edge from /. To maintain connectivity and to balance the number of

incoming edges and the number of outgoing edges, each of /'s incoming neighbors is

connected to one of fs outgoing neighbors. Nodes not gracefully leaving the system

(i.e. due to node failures) are discussed in Section 2.5.

Both node addition and removal maintain fairness by ensuring that every

node has the same number of neighbors and outgoing and incoming edges. This

balance helps ensure randomness because every node will have an equal probability

of being chosen at every step in a random walk. However, this balance is difficult

10

to maintain in the event of node failures.

2.5 Handling Node Failures

Unreachable nodes due to node failures or downed network links cause random

walk failures and non-randomness and can also indicate a network partition. A

random walk failure occurs when the random walk does not return from a step

to an unreachable node. Random walk failures will never finish and will never

return to the originator, so there must be a mechanism to detect and handle the

failure. Random walk failures are also an indication of non-randomness in the graph

because they indicate a node failure. A node failure results in the node's neighbors

having fewer references to them (a lower incoming degree), thus the failed node's

neighbors will then have less chance of being in a random walk, resulting in non-

randomness. Another cause of non-randomness is when nodes reference unreachable

nodes. These phantom references cause nodes to effectively have lower outgoing

degrees, which biases random walks towards reachable nodes. Random walk failures

can also indicate a network partition because only random walks that stay entirely

within the partition are successful, thus biasing these random walks to return only

nodes within the partition.

K E L P must be able to detect unreachable nodes and repair the graph in a way

that maintains the graph's randomness. Failed random walks and unreachable nodes

are detected via a combination of timers, heartbeats, and pings while randomness

is ensured by repicking seemingly non-random nodes.

To fix the problem of random walk failures, random walks are time limited

and restarted by the originator if they do not return within the time limit. In

case the random walk gets delayed (i.e. because of congestion), heartbeat messages

11

are sent back to the random walk originator to reset the random walk time limit.

Specifically, the timestamp of the random walk start time is sent along with the

random walk. Nodes receiving the random walk use a global clock to check whether

or not a heartbeat message needs to be sent back to the originator.

Restarted random walks may be an indication of bias because some nodes

have fewer references to them than others. To counteract this bias, nodes chosen

via restarted random walks are flagged to be repicked later when the graph is no

longer biased. Each node periodically tries to repick its flagged neighbors and only

replaces them and clears the flag when a random walk successfully completes without

restarting.

To reduce random walk failures in the first place, references to failed or

unreachable nodes need to be detected and repaired. These phantom references

are detected by having every node periodically ping all of its outgoing neighbors.

Detected phantom references are then replaced with a new node chosen via a random

walk.

Random walk failures can also indicate a network partition, but K E L P can

not determine whether a partition exists or not because the number of nodes in the

system is unknown. However, K E L P can use failed random walks to probabilisti

cally indicate a partition. Random walks only return nodes within its own partition

and fail when trying to reach nodes in other partitions, so many failed random walks

may indicate a partition. (Small partitions will probabilistically have more random

walk failures than large partitions because they have more references to unreachable

nodes outside the partition.) Once a partition is detected, the network can merge

back into one system if one partition knows about any node in the other partition.

Nodes in the detected partition repick their flagged neighbors by starting a ran-

12

dom walk at the node in the other partition. Doing so creates connections between

the two partitions. Eventually, all flagged neighbors in the other partition will be

repicked as well and the repicked neighbors will be from the set of all nodes in the

system.

13

Chapter 3

Determining G l o b a l Behavior

f rom K E L P ' s Infrastructure

This chapter describes how K E L P ' s infrastructure facilitates the identification of

global behavior and the sharing and discovery of information. First, a generic

method of searching is described followed by a description of how specializing this

method results in faster searches.

3.1 Color

K E L P ' s most generic method for searching is called color. Nodes have properties

called color and the system provides an operation to find any node with a specified

color. For example, if a user wanted to find a game server to play on, the user would

search for the game's name and the color search would return a node in the system

that is serving that game.

To propagate color information throughout K E L P , each node periodically

uses an expander to advertise its color to a given percentage of other nodes in the

14

system. Nodes receiving this expander keep track of the advertising node and its

color as hints, so each node has a list of other nodes and their corresponding colors.

These hints expire to account for node failures and the periodic expanders ensure

that the hints are fairly up-to-date.

A node uses a color search to find a node of a particular color. The color

search contains a search predicate that is evaluated against every hint in a node's

list. If a hint satisfies the search predicate, then the corresponding node is checked to

see if the hint is still valid. If the hint is still valid, then the color search is successful;

otherwise, the color search continues with a random probe to any number of the

node's neighbors.

Two parameters affect the speed and effectiveness of the color search: the

depth of the expander used to propagate hints and the number of neighbors that

the color search is propagated to at.each node.

The percentage of nodes that have a particular hint is determined by the

depth of the expander used to advertise the hint. Deeper expanders spread hint

knowledge to a greater percentage of nodes, which results in shorter searches. On

the other hand, deeper expanders increase search overhead in two ways. First, hints

take longer to propagate because of higher resource usage (e.g. network and C P U) .

Second, more hints are stored by each node, which increases the local search time

and storage required at each node.

There is also a tradeoff between the number of messages and search time

when deciding on the width of the color search (width is the number of neighbors

that a color search continues onto at each node). Propagating the search to more

neighbors can result in quicker search times, but increases the number of messages

because unfinished probes will continue searching even though a matching node has

15

already been found (probes are independent of one another). Typically, the width

of a color search is related to the percent of nodes that have a certain hint; greater

percentages allow for narrower searches and vice versa.

Another factor of search width that affects the speed of a color search is

whether the search width is fixed or variable. A fixed search width means that a

hint is propagated to exponentially more neighbors with every additional expander

depth. For example, a search width of 7 expands to 7, 49, 343, and 2401 neighbors for

expander depths 1, 2, 3, and 4. To reach different numbers of neighbors in between

the exponential leaps, search widths can be variable based on expander depth. As

the expander depth increases, the search width can decrease. For example, if the

search width in the previous example was decreased to 2 for the third depth, then

the number of neighbors reached would be 7, 49, 98, and 196.

Picking a good search width and expander depth is key for fast, effective

color searches; however, there is still a probability that a color search will fail to

find its target. A color search fails if the color being searched for doesn't exist

or if the search's random probe doesn't happen to find a relevant hint. In either

case, the search cannot be allowed to continue indefinitely, so a color search's length

is limited. Failed searches are retried several times with longer and longer length

limits. After several failed retries, the system can state with high probability that

the color being searched for doesn't exist.

3.2 Heat

To support directed searches, K E L P provides an operation similar to color called

heat. Heat advertises a numeric value as its property, which allows searches to be

directed instead of random. Like color, heat propagates information via expanders,

16

but unlike color, a heat search uses a hill-climbing algorithm to get closer to its

target on every step.

Every node has two numeric values: a node heat that indicates how hot it is

and a path heat that indicates how hot its paths are. A node's path heat is based

on a% of its node heat and (100-a)% of the maximum of its neighbors' path heats

(where a > 50 so a node's own node heat has the greatest effect on its path heat). In

addition, each node maintains and periodically updates a list of its neighbors' path

heats. This list is used as a hint to direct heat searches towards hotter neighbors.

When a node's path heat changes by more than some threshold, it propa

gates its new path heat to its outgoing neighbors. Nodes receiving the new path

heats recalculate their own path heats and continue propagating the heat change

information if necessary. A t each step away from the original node, the effect of

the original path heat decreases because only (100-a)% of a neighbor's path heat is

used in a node's path heat calculation. This decrease in path heat effect is called

heat decay and determines how far heat hints are propagated.

A heat search is a directed search that always goes towards hotter nodes until

a node satisfying some predicate is found. On every step of the search, the heat

search checks if the current node satisfies the predicate. If it does, the search ends

and a callback is made to the heat-search originator; otherwise, the search continues

to one of the node's hotter neighbors via a weighted-random choice. The random

choice is weighted by each of the neighbor's path heats so that similarly heated neigh

bors both have a chance of being chosen and that hotter neighbors have a higher

probability of being chosen. This weighted-random choice also prevents simultane

ous searches from all finding the same node, which is useful for load balancing and

in cases where a search results in the destination node's heat to change.

17

The main parameter that1 affects a heat search's speed and effectiveness is

the decay value (100-ct). The decay value affects the number of nodes that heat

dissipates to. For example, a smaller decay value means that more nodes have

knowledge about the heat, but at the cost of longer times to propagate and update

path heats.

Given that the decay value affects the range of heat dissipation, it is possible

for a heat to not reach certain areas of the graph. If these cold areas do not have

any heat knowledge at all, then heat searches starting from those areas would not

find anything. To prevent these searches from failing, heat searches from cold areas

first use a random walk to find a heated area. Once in a heated area, the heat search

continues as usual.

18

C h a p t e r 4

Example D a t a Structures

Using K E L P ' s random graph connectivity as the base layer and color and heat for

searching, we have designed some massively scalable data structures that provide

loose semantics: a set and a queue.

4.1 Set

The set is a data structure for finding nodes that belong to a certain group. Nodes

within groups are connected such that all nodes in a group are reachable once any

node in the group is found. This set can be used, for example, by applications that

require a large-scale, decentralized discovery service. The set could also be used

as the basis for a peer-based file-sharing system like Gnutella [1]. The set could

also be used to connect and find nodes in the same areas of a distributed virtual

environment. 1 Here, groups would contain all nodes that are virtually co-located

together. Similarly, the set could be used to group together and find nodes in an

IRC-like chat facility [10] or a match-making service (e.g. to find people to play

lA d i s t r ibuted v i r t u a l environment allows m u l t i p l e users to interact on the same objects
in the same v i r t u a l environment over many, interconnected computers .

19

networked games against). A lso , the set could be used as part of a naming service

where nodes can belong to many groups and where groups represent attributes of

the node such as organization, geography, etc.

The set uses color and adds the concept of groups. The color being advertised

is the group identity and color searches continue onto one random neighbor until

they find a node in the group being searched for. The set leaves the responsibility of

connecting nodes within groups to specific group implementations because different

applications require different types of connectivity.

A set's search speed and effectiveness not only depend on the parameters that

affect color searches, but also on group sizes. The size of groups affect the percentage

of nodes that have hints for that group. Each node in the group propagates hint

information v ia expanders, so bigger groups wil l propagate more hint information,

which makes it quicker to search for the group.

4.2 Q u e u e

K E L P ' s queue loosens queue semantics in order to scale to larger sizes. Instead

of str ict ly returning the oldest element in the queue, K E L P ' s dequeue returns an

element that is close to the oldest. A l s o , since there is no global knowledge, the

aggregate number of elements in the queue cannot be found. T h i s loose, decentral

ized queue is ideal for massive scale distributed worker queues that serve job tasks

to many clients. For example, this worker queue could be used to distribute the

processing tasks of the SETI@home project [7].

The queue partitions its data amongst all nodes in K E L P ' s infrastructure and

uses heat to share queue elements among nodes. Each node stores queue elements

in its own local queue part. Enqueue and dequeue requests can be directed to any

20

node in the system. Enqueues are always handled locally wi th enqueued elements

inserted into the back of the local node's queue part. Dequeues are handled locally

if the node receiving the dequeue request has local elements that can be dequeued.

In this case, the dequeue returns the oldest local element. If there are no local

elements, a heat search is used to find a node with excess elements (a node with

more elements than it needs). The number of excess elements is the number of

elements that a node has in excess of what it needs to satisfy its current request

rates. Some of these excess elements are then transferred to the local node and

the dequeue returns the oldest of these elements. If the heat search doesn't find

anything, the dequeue request returns empty.

The queue uses heat to transfer elements from nodes that have excess ele

ments (hot nodes) to nodes that need elements (cold nodes). Hot nodes are nodes

that have more elements than they need and are indicated by a growing local queue

size. For example, nodes with enqueue rates greater than dequeue rates would be

hot nodes. C o l d nodes request the number of elements needed to satisfy its needs

for the time between heat information updates (t) and hot nodes give as many ele

ments that it can spare up to a m a x i m u m of the number of elements requested. A

dequeue from a cold node that cannot find elements using heat returns nothing to

the requester and requires the requester to handle the s i tuat ion.

T h e hotness and coldness of nodes caused by an uneven distr ibut ion of queue

elements among nodes raises issues of staleness and fairness. A l s o , node failures raise

the issue of handling unrecoverable data loss.

Elements in the queue may become stale if a node containing elements does

not receive any dequeue requests. In this case, the stale elements would become

the oldest in the aggregate queue, but never get dequeued. To ensure liveliness and

21

J

progress, stale elements get exponentially hotter with every heat update so heat

searches wi l l eventually find stale elements before excess elements.

Since many nodes can be hot simultaneously, there needs to be a mechanism

for ensuring fairness when a data request needs to decide between similarly heated

nodes. T h i s fairness is provided by heat's weighted-random choice that is used when

deciding the next node to continue the search to.

F ina l ly , a node failure results in the loss of all elements in that node's queue

part . The queue does not provide a method for recovering this data ; instead the

responsibility of detecting and handling the data loss is left up to the application

using the end-to-end argument [9]. For example, the application would have to

detect a lost element and then reinsert it into the queue.

22

Chapter 5

Implementation

To evaluate K E L P ' s ideas for massive scalability, a simulation of K E L P was imple

mented using Java [11]. The simulation builds a network of nodes connected v ia a

random graph and also builds the set and queue data structures on top. Every node

in the random graph is represented by a Java object that is made into a distr ibuted

object using ObjectSpace Voyager 1 .

This chapter describes three aspects of the implementation: the random

graph, the set and color, and the queue and heat.

5 . 1 Implementing the Random G r a p h

The random graph building algorithm is described in detail in Sections 2.4 and 2.5.

This section describes three specific implementation details: architecture, bootstrap

ping, and random walk parameters.

1 http://www.objectspace.com/voyager/prodVoyager.asp (24 Aug 00)

23

http://www.objectspace.com/voyager/prodVoyager.asp

5.1.1 Design Archi tec ture

T h e simulation provides a base random graph infrastructure that can be extended

to provide d a t a structures and services. A RandomGraph object is used to build the

random graph and to keep track of all nodes in the graph. Nodes are represented

with Node objects that keep track of their neighbors. Each Node can also be coupled

with any number of Overlay objects to extend its functionality. For example, a Node

can be coupled with a SetOverlay to provide set functionality.

The two random graph operations, random walk and expander, are imple

mented by mobile agents. These two operations are represented by RandomWalk

and Expander objects that contain all the data and logic needed to perform their

work. Like a mobile agent, these objects are shipped in their entirety from node

to node to perform their work. These objects can also be specialized (subclassed)

to provide specific functionali ty; for example, there are specialized RandomWalk

objects for building the random graph and for searching the set.

5.1.2 Boots t rapping and N o d e A d d i t i o n

For the simulat ion, a well-known location called the Registry is used for bootstrap

ping the system. Jo ining nodes use the Registry to find an ini t ia l node to contact.

The Registry contains references to the first d+1 jo ining nodes for bootstrapping

purposes. Af ter bootstrapping, jo ining nodes can contact any node in the system;

however, the simulation uses the Registry both during and after bootstrapping be

cause it provides a single, convenient method for all nodes to join the system.

A node o jo ining the random graph starts off by registering with the Reg

istry. If the system is bootstrapping, the Registry wi l l store a reference to the node;

otherwise, nothing is done. Next , o wi l l ask the Registry for a node at which to start

24

a random walk. If the system is bootstrapping, no node is returned; otherwise, the

Registry randomly chooses one of its d+1 node references to return.

If no node is returned, o knows that it is part of the bootstrapping process,

so it wil l ask the Registry for a list of all nodes in the system so far. For every node

x in the list, o makes x a neighbor and also contacts x to make o a neighbor. This

part of the algorithm creates a complete graph for the first d+1 nodes joining the

graph.

If a node reference is returned from the Registry request for a random walk

start point , the node knows that it can join the graph normally, so it wil l asyn

chronously start a random walk using the random graph building a lgor i thm. The

jo ining node also asynchronously starts d-1 other random walks in the same way to

find all d of its neighbors.

T h i s implementation for node addit ion is simple but has a serious drawback

in that the Registry is a centralized object in an otherwise decentralized system.

However, the Registry can be removed since it is only used for bootstrapping. Nodes

themselves can keep track of whether the system has been bootstrapped or not.

Jo ining nodes init ial ly contact any node already in the system. If the init ial node is

already bootstrapped, then the jo ining node joins as normal . Otherwise, the joining

node participates in the bootstrapping process. A s long as jo ining nodes can find

any node already in the system, no centralized Registry is needed.

5.1.3 Random Walks

Each random walk used to build the graph is represented with a RGRandomWalk

object that is a specialization (subclass) of a Random Walk mobile agent. The Ran-

domWalk object keeps track of the s tart ing node while the RGRandomWalk object

25

keeps track of the number of remaining steps and a TimeStamp object that indicates

when the walk started.

The RandomGraph, object starts all random walks for all nodes and stores a

timer for each of the walks. Each of the timers is uniquely identified by a TimeStamp

object. If a timer expires, its corresponding TimeStamp object is invalidated and a

new RGRandomWalk is sent out. The time given to a random walk before it expires

is denoted with the constant TIMER-RANDWALK.

At each step of the random walk, RGRandomWalk checks whether or not it

has to send a heartbeat back to the RandomGraph to reset its timer. A heartbeat is

sent back if the time difference between the current time (given by a global clock) and

the TimeStamp is greater than a TIMER-HEARTBEAT constant. (In our imple

mentation, TIMER-HEARTBEATs value is three-quarters of TIMER-RANDWALKs

value - the heartbeat value must be less than the random walk timer value so that

heartbeat messages can reach the original node before the random walk timer ex

pires.) If the random walk has more steps to go, the number of steps remaining is

decremented and a random neighbor is chosen as the next node for RGRandomWalk

to step to.

Several checks must be made once a random walk finishes all its steps. If

RGRandomWalk ends up back at the starting node, the corresponding timer is

stopped and a new RGRandomWalk is sent out. (Note, this case is unlikely to occur

with alarge graph.) If RGRandomWalk ends up at a node that already has the walk's

source as a neighbor, the number of steps is reset to the original number of steps

and the walk is continued. This continued walk has the same length of as all other

random walks so that its results will be random. If RGRandomWalk's TimeStamp

is no longer valid, then the corresponding timer expired and a new RGRandomWalk

26

was sent out, so this RGRandomWalk ends without doing anything.

Once a random walk passes all these checks, the walk ends properly and

neighbors are swapped per the random graph building algorithm in Section 2.4.

5.2 Implementing the Set using Color

Color and set are implemented together. Set functionality is added to each node

by coupling a SetOverlay object with every Node object. The set implementation is

straight forward and follows the description given in Sections 3.1 and 4.1, The only

thing to note is how the implementation reuses and specializes the RandomWalk

and Expander mobile agents from the random graph layer of the implementation.

Each set search is a specialized RandomWalk object called SetSearchWalk.

The SetSearchWalk object stores several things: a search predicate, a listener, a

count of the number of steps taken, and a hop limit. The search predicate is used

to determine whether or not a node satisfies the search criteria. The listener is a

reference and callback to the requesting node that is used when a node satisfies the

search predicate. Finally, the count of the number of steps and the hop limit are

used to determine when a search has taken too long. On every step, the count is

incremented and a random neighbor is chosen as the next node to step to. If the

count exceeds the limit, the search returns unsuccessfully back to the requester.

Each hint-propagating expander is a specialized Expander object called Node-

Properties Expander. The Expander object keeps track of the current expander

depth, the maximum expander depth, and, if necessary, the parameters for vary

ing the expander width. The NodePropertiesExpander object stores the color being

propagated. On every level, the expander adds its color to the current SetOverlay's

collection of hints, increments its expander depth and then continues propagation

27

if the current depth is less than the maximum depth. The parameter for variable

expander width is an ordered list of widths. The order of the elements corresponds

to the expander depth and the elements' values correspond to each depth's width.

This width determines the number of randomly-chosen nodes to continue propagat

ing the expander to. For example, a width of 4 at position 3 in the list means that

the expander is propagated to only 4 neighbors on the third level of the expander.

5.3 Implementing the Queue using Heat

Heat and the queue are described in detail in Sections 3.2 and 4.2. This section

describes three specific implementation details: heat and queue overlays, heat prop

agation, and how dequeue uses heat searches to find and transfer queue elements.

5.3 .1 Overlays

Heat and the queue were implemented as separate layers on top of the random graph

infrastructure. The queue layer lies on top of the heat layer, which lies on top of

the random graph layer. Heat functionality is provided with a HeatOverlay, which

is specialized with a QueueOverlay to provide queue functionality.

The HeatOverlay keeps track of a node's current and previous node heat and

path heat as well as a list of its outgoing neighbors' path heats. A node's current

node heat is denoted with NODE-HEAT and its current path heat is denoted with

PATHJ1EAT. These values are used in heat propagation and heat searches. The

previous node heat and path heat values are stored because heat is only propagated

if the change in heat from the last update is greater than some threshold.

The QueueOverlay is a specialization of the HeatOverlay that has access to all

the values described above. In addition, QueueOverlay keeps track of the elements in

28

the local queue part, the number of elements (QUEUE-SIZE), the current enqueue

and dequeue rates, and the high and low thresholds for the number of elements

stored in the local queue part. The dequeue rate is denoted with DQR, the enqueue

rate is denoted with EQR, the high threshold is denoted with THRESHOLD'-HI,

and the low threshold is denoted with THRESHOLD-LOW. These values are used

to determine whether a node is hot or cold.

5.3.2 H e a t P r o p a g a t i o n

Heat value propagation is handled via a TimerHeat object that has a list of all nodes

in the system. TimerHeat periodically and synchronously updates heats by getting

every node to recalculate its node heat and path heat. The frequency of these heat

updates is set via a compile-time constant called TIMER-HEAT (this constant can

be changed for different runs of the simulation). If a node's new path heat changes

by more than a threshold from its previous path heat, the path heat is propagated

with heat decay to the node's outgoing neighbors. This subsection specifies how

NODE-HEAT and PATH-HEAT are calculated and also describes how path heats

are propagated with decay throughout the system.

Node Heat

Node heat starts out as zero and is recalculated during a heat update if one of two

conditions holds. Either the node has, excess elements or the node has old elements

which are becoming stale.

A node with excess elements is a hot node if it satisfies two conditions. First,

it has more elements than THRESHOLD-HI. Second, it has an EQR >= DQR.

The high threshold, THRESHOLD-HI, is recalculated every heat update

29

period and determines the number of elements needed to indicate an excess. The

threshold is calculated with:

THRESHOLDJII = {DQR x TIMERJiEAT) x

THRESHOLD-MULTIPLIER

This threshold ensures that the node has enough elements for local dequeuing in

one heat update period at the last recorded dequeue rate (this number of elements

is given by the product in parentheses: DQR X TIMER-HEAT). THRESH

OLD-MULTIPLIER is a constant multiplier that is used to pad the threshold in

case the DQR increases between heat updates. The constant used in this implemen

tation was 1.25.

A node with excess elements only becomes hot if the EQR >= DQR because

such rates mean that the number of elements will increase or stay the same. Nodes

whose EQR < DQR do not become hot because local dequeuing requires elements

in the local queue part for dequeuing.

If both of the above conditions are met, NODE-HEAT is calculated with:

NODE-HEAT = HEAT-EXCESS-BASE +

{{QUEUESIZE - THRESHOLD-HI) x

HE AT-EXCESS MU LTIPLIER)

The above equation shows that NODE-HEAT is a direct multiple of the number of

excess elements {QUEUESIZE - THRESHOLD JiI) that a node has. The base

heat value, HEAT-EXCESS-BASE, and the constant multiplier, HEAT-EXCESS-

MULTIPLIER, are both used to make the NODE-HEAT value larger, which allows

heat to be propagated further. In this implementation, we choose only to use the

30

multiplier, so HEAT-EXCESS-BASE has value 0 and HEAT-EXCESS-MULTIPLIER

has value 10.

A node with stale elements becomes hot if it satisfies two conditions: the

QUEUE-SIZE must be greater than zero and the DQR must be zero. These two

conditions mean that there are elements in the local queue part that will not be

locally dequeued. These elements will eventually become stale and will need to be

removed.

To remove these elements, the node becomes hotter and hotter with time.

If the age of the oldest element (denoted with AGE-OF-OLDEST) is greater than

a threshold (set to 45 time periods for this implementation), then NODE-HEAT'is

calculated with:

NODE-HEAT = HE AT ST ALE-BASE +

AGE-OF-OLDESTHEAT-STALE-EXPONENT

NODE-HEAT grows superlinearly as elements become staler because AGE-OF-

OLDEST grows linearly as elements get older and HEATSTALE-EXPONENT is

a constant (set to 1.4 for this implementation). HEATSTALEJBASE is meant to

provide larger heat values for stale nodes, but is set to zero in this implementation.

P a t h H e a t a n d P r o p a g a t i o n

Path heat is recalculated every heat update and then is propagated with heat decay

if the change in path heat is greater than THRESHOLD-PATH-HEAT

To calculate path heat, a node first gets all its outgoing neighbors' path heats

to find their maximum. Then path heat is calculated with the following formula:

PATH-HEAT = (a x NODE-HEAT) +

31

((1 - a) X max{ neighbor's PATH-HEAT's))

Here, a is the heat decay given as a decimal number. Its value is 0.7 so that a node's

own NODE-HE A T has the most effect on its PATHJiEAT and only a small percent

of a neighbor's PATH Ji EAT is used.

Path heat is propagated to all incoming neighbors if the difference between

the new and previous PATHJiEATs is greater than THRESHOLD J*ATH-HEAT.

The threshold determines how far heat is propagated to and is set to 1 in order for

heat changes to be propagated as far as possible.

5 . 3 . 3 Dequeue and Heat Search

Dequeuers start heat searches when they need more data to satisfy incoming dequeue

requests. In other words, the dequeuer is cold and it needs to find a hot node to get

queue elements from. This subsection specifies when heat searches are started, how

the search is conducted, and the amount of data transferred from a hot node to a

cold node.

Starting a Heat Search

Heat searches are started in one of two ways: when the local queue part becomes

empty or when the number of elements falls below THRESHOLD-LOW.

When there are no local elements to return, the dequeuer starts a synchronous

heat search to find elements from a hot node. If a hot node exists, some elements

are transferred from the hot node to the cold node and then the oldest of these

elements is returned. If no hot nodes are found, the dequeue request returns empty.

A synchronous heat search delays the time for a dequeue request to return a

value. Therefore, an asynchronous heat search is used to find and transfer elements

32

to the cold node before it runs out of elements. The asynchronous nature of the

heat search allows dequeues to-continue unhindered while more elements are being

found. An asynchronous heat search is started when the number of queue elements

falls below THRESHOLD-LOW and the DQR > EQR.

The low threshold, THRESHOLD-LOW, is recalculated every heat update

period (but only when DQR > EQR to avoid negative threshold values). This

threshold is calculated with:

THRESHOLD-LOW = (DQR - EQR) x TIMER-HEAT

This value predicts the net decrease in the number of elements for the next heat

update interval, which is useful in determining when a local queue part will run out

of elements.

A node also needs a DQR > EQR before starting an asynchronous heat

search because the node would not need more elements otherwise. A DQR < =

EQR means that a local queue size stays the same or increases whereas a DQR >

EQR means that the local queue size is decreasing. A decreasing local queue size

means that the local queue part will eventually run out of elements.

An asynchronous heat search is started when both the above conditions are

met. The DQR > EQR coupled with a local queue size smaller than THRESH

OLD-LOW indicate that a node will run out of elements soon.

Heat Search

A heat search is a hill-climbing algorithm that starts from a cold node and steps to

hotter nodes until it finds a node hot enough to get queue elements from.

A heat search starts off by checking its list of outgoing neighbors' path heats.

If all of the outgoing neighbors have zero path heat, then a random walk is used

33

to try to find a heated area (an area with non-zero heat values). If the random

walk doesn't find a heated area within h steps, the heat search returns empty. The

number of steps, h, is the length of the random walk used to build the graph because

it is the number of steps required to make a walk random. If the random walk finds

a heated area, the heat search continues normally.

Each node visited by a heat search is first tested to see if it is hot enough to

transfer elements from. If the node isn't hot enough, the heat search continues to a

hotter node.

A node must satisfy two conditions in order be to hot enough for an element

transfer. Both conditions are related the NODE-HEAT calculation. The first condi

tion has two parts: the local queue size must be larger than THRESHOLD-HI and

the EQR must be greater than or equal to the DQR. The second condition also has

two parts: the local queue size must be greater than zero and the oldest element must

be older than THRESHOLDSTALE-DATA (where THRESHOLDSTALE-DATA

is set to 1.5 times TIMER-HEAT).

If either of these conditions is true, elements are transferred from the hot

node to the requesting cold node. The number of elements transferred is described

in the next section.

If neither condition is true, the heat search must continue to another node.

The next node chosen comes from the set of outgoing neighbors that have a higher

PATHJIEATthan the current node. Among these nodes, the next node is chosen via

a weighted-random choice. Each node is weighted with its path heat as a percentage

of the sum of all nodes' path heats.

34

Transfer r ing Elements f r o m H o t to C o l d

Once a heat search finds a node that is hot enough, it must decide on the number of

elements to transfer back to the cold node. Each hot node has a maximum number of

elements that it can give away and each heat search includes the maximum number

of elements that the cold node wants. The number of elements transferred is the

minimum of these two amounts.

The maximum number of elements that a hot node is willing to give away

depends on whether the hot node has excess elements or stale elements. In the

excess element case, the maximum number is the number of excess elements, which

is given by the formula:

QUEUEJSIZE - THRESHOLDJil

In the stale element case, the maximum number is all the stale elements plus half

the remaining elements since those elements probably won't be dequeued anytime

soon. The number of elements to transfer in this stale case is given by the formula:

(QVEUESIZE - NUMJjTALE)
2

where NUMSTALE are the number of stale elements (the number of elements older

than THRESHOLD STALES) A TA).

The maximum number of elements requested by a cold node is the predicted

number of elements that the cold node needs to satisfy dequeue requests for the

next heat update period. This number is THRESHOLDJLOW.

Once the minimum of these two maximums is calculated, the hot node takes

out this number of its oldest queue elements and gives them to the cold node.

35

C h a p t e r 6

Evaluation

K E L P ' s evaluation did not strictly measure performance because the evaluation

focused on validating K E L P ' s global behavior and because workload patterns for

the data structures are unknown.

This chapter describes the three areas that K E L P ' s evaluation focused on:

the randomness of graphs built, the expected search length for the set, and the

expected order of dequeued elements from the queue.

6.1 Random Graph Evaluation

The main purpose of the random graph evaluation is to ensure that K E L P ' s incre

mental graph building algorithm is indeed random. In particular, the constructed

graph must allow random walks starting at any node to end up at a random node.

To evaluate the graph, the simulation outputs a list of all nodes and their

neighbors in the form of an adjacency matrix. The adjacency matrix is a sparse nxn

matrix where each row represents a node. Each row has only d non-zero values. A 1

represents a neighbor with the column number as the neighbor's node number and

36

a 0 represents a non-neighbor.

These adjacency matrices are evaluated in two ways to show the randomness

of the constructed graphs: an experimental approach where the results of many

random walks were counted and a mathematical approach that shows the probability

of random walks ending at each node.

6.1.1 E x p e r i m e n t a l A n a l y s i s

The experimental analysis uses the produced adjacency matrices to run and record

the results of many random walks starting from node 1. The number of random

walks started was such that the expected number of times that random walks ended

at each node is 2000. This test was done on systems with different n, d, and h. Here,

h denotes both the length of random walks used to build the graph and the length

of random walks used to test the graph.

The results are shown in Table 6.1. The table shows the resultant standard

deviation to mean percentage (stdev/mean) for every n, d, and h tested. Smaller

stdev/mean values are more random because the results of the random walks are

closer to a perfectly random, uniform distribution. The table shows that a relatively

small d and h are sufficient for a high degree of randomness; for example, a dot 9 and

a h of 8 are sufficient to have a stdev/mean of 5.41that, for each n and d combination,

random walks get more random as h increases (because the stdev/mean decreases).

Longer random walks (larger /i's) provide more random results; however,

there is a point where more steps does not make the results much more random.

We have chosen this point to be the number of steps it takes for the stdev/mean

percentage to drop to approximately 5%. This threshold was chosen because the

percentage is sufficiently small for a high probability of randomness and because

3 7

n d stdev/mean (% n d
h=4 h=5 h=6 h=7 h=8 h=9 h=10 h = l l

100 7 6.13 3.36 3.25 2.16
9 10.62 4.15 2.57 1.91

1000 7 11.16 5.13 4.34 2.22
9 12.89 4.90 2.64 2.25

10000 T 1 11.33 4.67 2.72 2.39
9 14.08 5.10 2.68 2.28

100000 7 13.44 5.44 2.93 2.34
9 14.63 5.41 2.75 2.31

Table 6.1: Experimental analysis of random graph

the percentage does not decrease much more with more steps. Using a system with

10,000 nodes (n=10,000) and degree 7 [d=l) as an example, Figure 6.1 shows that

stdev/mean decreases as h increases and then levels off once the threshold is reached

(the threshold is shown as a shaded triangle).

In Table 6.1, the threshold stdev/mean percentage for each n and d pair is

highlighted in bold. These thresholds are graphed out in Figure 6.2. The solid

parts of the lines come from the experimental results while the dotted parts of the

lines are extrapolations of the data for larger n's. The figure shows that threshold

h increases logarithmically as n increases (n is shown logarithmically on the y-axis).

The figure also shows that h decreases as d increases (the higher degree line (d=9)

is left of the lower degree line (d=7)). These results show that K E L P successfully

creates random graphs with the desired random walk properties.

6.1.2 M a t h e m a t i c a l A n a l y s i s

The mathematical analysis uses adjacency matrices to count the number of times a

random walk can end up at each node and presents those numbers as probabilities.

This analysis is an iterative process that begins with node 1 as the current location

38

100

10 h

1 I I I I I I I I I
4 5 6 7 8 9 10 11 12

Number of Hops (h)

Figure 6.1: Increasing h for randomness

4 5 6 7 8 9 10 11 12 13

Number of Hops (h)

Figure 6.2: Threshold /i's for randomness

39

1 f o r i = l:num_hops
2 c u r r _ l o c = M * c u r r _ l o c ;
3 walk_count = walk_count*degree;
4 W = [W c u r r _ l o c / w a l k _ c o u n t] ;
5 end

Figure 6.3: Mathematical Analysis of Random Graph

of all possible random walks. Each iteration of the process represents a step in the

random walk where all nodes reachable from the current locations become the new

current locations. The number of times a node is reachable is accounted for and the

probabilities that each node will be reached is calculated by dividing each node's

count by the total number of possible endpoints.

This mathematical analysis is done with a matlab program whose main iter

ative loop is shown in Figure 6.3. The variable numJiops is the number of random

walk steps to test. Vector currJoc begins as [1 0 ... 0] to represent starting at node

1. Matrix M is the transpose of the adjacency matrix. Line 2 is how currJoc gets

updated with the locations of all possible random walks at a particular step. Vari

able walk-count stores the total number of possible random walks up to the current

step, which is why it grows by degree power on each iteration. Finally, matrix W

is augmented with a vector containing the probabilities that each node is a random

walk endpoint.

Formally, this analysis is known as a Markov chain. In [4], Aldous states that

the analysis will clearly show that Weventually converges to an uniform distribution.

Mathematically, this means that the average variance of W[i] — u will decrease

as i increases. Once uniform distribution is reached, the average variance stays

approximately the same even though i increases. Here, i is the column number,

which represents the number of steps taken so far, and u is the uniform location

40

vector [l . . . l] /n , which indicates that every node has the same probability of being

a random walk endpoint.

Figure 6.4 shows an example of the Markov chain analysis converging to the

uniform distribution for system with n=10000, d=9, and h=7. The x-axis represents

the number of steps and the y-axis is logarithmically scaled to represent the average

variance. The decreasing average variance with the increasing number of steps

indicates that random walks get more random with more steps. The flattening out

of the average variance indicates that more steps after this point do not make the

random walk any more random.

i i i i i
0 1 0 2 0 3 0 4 0

Number of Steps

Figure 6.4: Example of Markov chain analysis

This mathematical analysis shows that graphs built by K E L P exhibit desired

random graph properties. The example in Figure 6.4 shows that more than 30 steps

are needed to converge to an uniform distribution, but the experimental analysis

41

shows that only 8 steps are needed for fairly good randomness with this system

configuration. Additional steps after the experimental numbers do not make the

results much more random because the average variance is already very small (1.50 X

10~ 8 for 8 steps). Hence, the threshold number of steps given by the experimental

analysis is sufficient for K E L P ' s randomness requirements.

6 .1.3 R a n d o m G r a p h C o n c l u s i o n s

Our simulation shows that K E L P ' s random graph building algorithm allows random

walks to find random nodes quickly for system sizes up to 100,000 nodes. These

results predict that the random graph will scale to much larger sizes because the only

component of the random graph that depends on n is the length of the random walk.

The length of the random walk, h, grows logarithmically with n, but the relative

cost of actually decreases as n increases (mathematically speaking, log n/n —>• 0).

Furthermore, h can be made smaller if the system has a larger d.

6.2 Set Evaluation

The purpose of the set evaluation is to compare the length of simulated set searches

to their expected lengths. To evaluate this, the simulation runs tests for different

samples of 1000 nodes that vary the hint-propagation expander depth and the num

ber of evenly-sized groups in each set. Each test sends out 10,000 searches with

each group being searched for the same number of times. Each node is also the

starting point for the same number of searches. The lengths of all the set searches

were recorded and the average was compared to the expected set search lengths.

The expected search set search length is given by the following equation and

probabilities:

42

E(Set Search Length) -
Pr(x)

Pr(x) = 1 - Pr(x)

_ ^ _ _ gifp'jE(Number of Hints in List)

where

x = node contains hint

E(Number of Hints in List) = % Coverage x n

Table 6.2 shows the expected set search lengths for the different search pa

rameters: group size percentage (gsp) and % coverage along with its corresponding

e and p. The symbol e denotes the expander depth used and the symbol p denotes

the partial expansion, which is the number of neighbors to propagate to after the

expander has reached e levels deep.

gsp

% Coverage (e,p)

gsp 0.1%
(0,0)

0.8%
(1,0)

5.7%
(2,0)

10.6%
(2,1)

20.4%
(2,3)

30.2%
(2,5)

40.0%
(3,0)

20.0% 5 1.20 1.00 1.00 1.00 1.00 1.00
10.0% 10 1.76 1.00 1.00 1.00 1.00 1.00

2.0% 50 6.70 1.46 1.13 1.02 1.00 1.00
1.0% 100 12.94 2.29 1.53 1.15 1.05 1.02
0.2% 500 62.94 9.27 5.23 2.98 2.20 1.81
0.1% 1000 125.44 18.04 9.94 5.42 3.83 3.03

Table 6.2: Expected set search lengths

Group size percentage is the percent of nodes in the system that each evenly-

sized group takes up. A gsp of 20% means that a group contains 20% of all nodes

43

in the system, so for a system with 1000 nodes, a gsp of 20% means that a group

consists of 200 nodes that each have the same color.

Percent coverage (% coverage) is the percent of nodes in the system that have

a hint about a particular color. Percent coverage depends on the hint-propagating

expander depth (e) and the partial expansion (p). The formula for the calculation

is:

d') + (de x p)

% Coverage = -̂ =2

n

Percent coverage denotes the theoretical maximums for hint propagation because

some nodes will receive the same hints more than once.

As expected, Table 6.2 shows that higher % coverage and higher group size

percentage cause shorter search lengths. For example, if groups consisted of only

one node (gsp 0.1%) and no hints were propagated (% coverage 0.1%), then the

search is expected to query every node in the system as shown with the spike in

Figure 6.5 (expected length 1000). This example seems bad, but is a worst-case

scenario. With just a few levels of hint propagation and slightly larger groups, the

expected search length quickly becomes relatively short. This is shown in Figure

6.6 where the expected set search length decreases quickly with a logarithmic scale

on the y-axis.

Results from our experiments of running 10,000 searches for every % coverage

and gsp pair had at most a 14.84% relative error when compared to the calculated

expected values; however, the average relative error was 4.57%. These results have

a high relative error because the percentages that we deal with are so small, which

results in a high variance. Variance is calculated with:

Variance = -
Pr(x)2

44

% Coverage 4 U u /°

Figure 6.5: Expected set search lengths (3D)

45

1000

0 2 4 6 8 10 12 14 16 18 20

Group Size Percentage (gsp)

Figure 6.6: Expected set search lengths (2D)

For example, a gsp of 0.02% and a % coverage of 0.8% results in a variance of

approximately 300 (which is 30% for n=1000).

These results show that the set works as desired and that the search length

will be relatively small if % coverage and gsp are high enough. If these two percent

ages remain constant as n increase, then the set will scale perfectly. Moreover, the

global behavior of the set would be well known.

6.3 Queue Evaluation

The main purpose of the queue evaluation is to show that dequeues return elements

that are close to the oldest in the overall queue. The queue was tested by having

many different enqueuers and dequeuers transfer data at constant rates from random

nodes. Dequeue output was then analyzed to evaluate the relative order of dequeued

46

elements.

The main property measured by the queue evaluation is called rank. Rank is

a percentage that determines the order-wise oldest element in the queue (order-wise

based on the F IFO order in which elements are enqueued). A rank of 100% means

that a dequeue returned the oldest element in the queue while 0% means that a

dequeue returned the newest element. Rank does not measure time, just the order

in which elements are taken out of the queue.

Table 6.3 shows the results of the main queue test, which has 10 randomly-

chosen enqueuers and 10 randomly-chosen dequeuers (enqueuers and dequeuers can

be the same node). The test varies the number of nodes and the time between

heat updates, t, which is measured in terms of the number of periods in between

updates. In each period, each enqueuer and each dequeuer performs one operation

each. Each row of the table shows the results of one test run for 12000 periods. The

third column of the table contains the average rank of all dequeued elements with

the standard deviation (s) shown in parentheses. The rank percentile columns of

80+ and 90+ show the percentage of dequeued elements that are within the 20% or

10% oldest ranked respectively.

rank rank percentile
n t avg(s) (80+) (90+)

100 300 80%(19) 62.67% 51.90%
600 82%(17) 68.89% 56.98%

1200 83%(17) 52.46% 37.84%
1000 300 84%(16) 71.45% 58.54%

600 72% (23) 70.36% 57.36%
1200 79%(19) 61.27% 52.81%

•s - standard deviation

Table 6.3: Queue evaluation

47

The queue evaluation shows several properties for the given workload pattern.

On average, dequeues return the 20% oldest ranked elements in the queue more than

60% of the time. Also, more than 50% of dequeues return the top 10% oldest ranked

elements. Increasing n in this test did not affect rank because the absolute number

of enqueuers and dequeuers did not change. Changing t also did not affect rank

because the amount of data transferred between nodes is dependent on t: a higher

t means more data is transferred.

The results shown in Table 6.3 are workload dependent for 10 hot nodes and

10 cold nodes all transferring data at a constant rate. A l l other nodes in the system

are assumed to be locally balanced, which means that they are neither hot nor cold.

Locally balanced nodes do not interact with other nodes, so adding more locally

balanced nodes shouldn't affect the queue's performance.

This evaluation shows that the queue performs fairly close to F I F O for any

system size given this constant workload pattern. The evaluation also shows that

the queue's transfer of excess data via heat works well to balance hot and cold nodes.

The tested workload pattern may be unrealistic, but the queue cannot be tested for

performance until realistic workload patterns are known. Once realistic workload

patterns are known, the queue and heat parameters can be tuned to maximize the

queue's performance.

48

C h a p t e r 7

Related Work

This section describes and compares three other projects and ideas that are related

to K E L P . First, a system that is very similar to K E L P ' s set called Gnutella is

discussed. Second, a project with the same goal of massive scalability called Globe

is discussed. Finally, other uses of small-world networks related to the Internet are

discussed.

7.1 Gnutella

Gnutella [1] is a decentralized, peer-to-peer file-sharing system. Nodes join Gnutella

by first connecting to any node in the system. Then the joining nodes try to discover

other neighbors by periodically sending out pings. Each Gnutella node can then

share some of its own files and also search for other nodes' files by sending out

expanders to query other nodes. Each expander is limited with a T T L (time-to-

live).

Gnutella is very similar to K E L P ' s set except that Gnutella does not scale

well. Both are decentralized, both are peer-to-peer, and both use expanders to

49

propagate and discover information. Both systems also rely on probability when

searching for information. However, K E L P imposes a structure on the system's

connectivity graph that provides characteristics of the graph, whereas Gnutella's

graph structure is completely arbitrary so no characteristics can be found from it.

The main difference between Gnutella and K E L P is that Gnutella does not

scale massively. Scalability in Gnutella is limited to about 10,000 nodes because

Gnutella tries to maintain a global property about the system - Gnutella periodically

tries to discover the number of nodes in the system via pings. These pings take

up approximately 50% of network traffic in the system, which limits Gnutella's

scalability.

7.2 Globe

The Globe project (GLobal Object Based Environment) [13, 12] from Vrije Uni

versity is a wide-area distributed system that uses an object-based framework and

distributed shared objects for developing massively scalable distributed applications.

Globe's distributed shared object framework is meant to provide programmers with

a standard mechanism for scaling and replication by providing a standard frame

work that all implementations conform to instead of having many different ad-hoc

solutions such as different server and proxy caches. A scalable W W W service called

GlobeDocs was prototyped 1.

Globe shares two main goals with K E L P : achieving massive scalability and

removing ad-hoc approaches to scalable solutions. First, both projects are meant

to massively scale worldwide via the Internet. Second, both projects are meant to

remove the ad-hocness in building scalable systems. Globe provides a general pro-

1See http://www.cs.vu.nl/steen/globe/ (1 Sep 00)

50

http://www.cs.vu.nl/steen/globe/

grammatic framework that separates policy from mechanism while K E L P provides

an extensible, scalable infrastructure.

Other than these goals, Globe and K E L P differ significantly. Globe is meant

for many different services within the system (such as web servers) whereas K E L P

is meant to support a global service that is aggregately provided by all nodes in the

system. Also, Globe is not meant to support a decentralized, peer-to-peer service

and Globe does not deal with global information.

7 . 3 S m a l l - W o r l d N e t w o r k s

Small-world networks have been related to the Internet in a couple ways. First,

W W W hyperlinks connecting related sites have been shown to be a small-world

network [3]. Second, it has been suggested that the Internet can be connected at

the router level via a small-world network [2].

Currently, the Internet has small-world networks connecting computers at

the web site level, but not at the router level. In [2], Summerfield suggests that the

Internet could be connected via a small-world network by clustering local Internet

service providers together and then randomly linking each of these clusters with a

few others. K E L P also needs to be expanded to use small-world networks in this

manner. This future work is discussed in the next chapter.

5 1

Chapter 8

Conclusions and Future Work

K E L P ' s key to massive scalability is to describe global behavior in a loosely coupled,

decentralized system. Our simulations have shown that K E L P ' s random graph

provides a scalable method of connecting nodes in the system such that any node

can reach any other node in a relatively few hops. Coupling this randomness with

the locality provided by clusters gives us a small-world network that massive scale

systems can be built on top of. K E L P also provides set and queue data structures on

top of the small-world network to make the process of building scalable applications

less ad-hoc. These data structures facilitate large scale systems by providing loose

semantics that require less coordination.

Overall, K E L P has been shown to massively scale systems with its small-

world network connectivity. As the Internet becomes more ubiquitous, one can fore

see the need for large scale distributed systems that can take advantage of K E L P ' s

massive-scale, decentralized system.

Thus far, the K E L P project and simulation have verified that a small-world

network facilitates scalability by providing the system with a means of determining

some global behavior of the system. The next step in this project is to expand on

52

the infrastructure and data structures of K E L P and then implement a practical,

highly-scalable system that uses K E L P .

Our analysis has shown that random graphs provide the properties that

systems can use to massively scale. Now, locality needs to be integrated into the

system to provide the benefits of small-world networks.

More data structures need to be designed. For example, a spanning tree for

broadcasts could be useful in reducing the overhead of expanders.

Also, the data structures need to be tested against a real workload. Given

a particular application, the data structures and their parameters can be modified

to achieve optimal performance. For example, it may be better to transfer every

second element from a hot node to a cold node instead of just the oldest few.

Finally, K E L P ' s capabilities need to be demonstrated with a practical ap

plication. One possible application is to design a massively scalable peer-based

file-sharing system for the Internet. This system would be like Gnutella, which al

lows peer-to-peer computers to share files, except K E L P ' s peer-based file-sharing

system would be able to scale to millions of computers while Gnutella only scales

to 10,000 nodes.

Another application that would demonstrate K E L P ' s capabilities is a name

service that facilitates millions of mobile devices with dynamic network addresses.

Such a system would be useful because mobile, network-capable devices are becom

ing more popular and DNS cannot handle such frequent name changes.

53

B i b l i o g r a p h y

[1] Gnutella, http://gnutella.wego.com (25 Jul 00).

[2] How telecommunications is making it a smaller world after all. Presenta
tion found at http://www.ee.mu.oz.au/staff/summer/smallworld/tsld001.htm
(25 Jul 00).

[3] Lada Adamic. The small world web. ECDL'99 (European Conference
on Research and Advanced Technology for Digital Libraries), 1999.
http://www.pare.xerox.com/istl/groups/iea/www/smallworldpaper.html
(25 Jul 00).

[4] David Aldous. Random walks on finite groups and rapidly mixing markov
chains. In Seminaire de Probability's XVII. Springer-Verlag.

[5] Andrei Broder and Eli Shamir. On the second eigenvalue of random regular
graphs (preliminary version). In 28th Annual Symposium on Foundations of
Computer Science, pages 286-294, Los Angeles, California, 12-14 October 1987.
I E E E .

[6] Tim Berners-Lee et al. The world-wide web. CACM, 37(8):76-82, 1994.

[7] W . T. Sullivan III et al. A new major seti project based on project serendip
data and 100,000 personal computers. In Astronomical and Biochemical Origins
and the Search for Life in the Universe: proceedings of the 5th International
conference on bioastronomy, IAU colloquium no. 161, Capri, July 1-5, 1996,
1997.

[8] Martin Hildebrand. Random walks on random simple graphs. Random Struc
tures and Algorithms, 8(4):301-318, July 1996.

[9] D.P. Reed J . H . Saltzer and D . D . Clark. End-to-end arguments in system design.
A CM Transaction on Computer Systems, 2(4):277-288, November 1984.

[10] C . Kalt . Rfc 2810: Internet relay chat: Architecture, Apri l 2000.

54

http://gnutella.wego.com
http://www.ee.mu.oz.au/staff/summer/smallworld/tsld001.htm
http://www.pare.xerox.com/istl/groups/iea/www/smallworldpaper.html

[11] James Gosling Ken Arnold and David Holmes. The Java Programming Lan
guage. Addison Wesley, 3rd edition, 2000.

[12] I. Kuz M . van Steen, A.S . Tanenbaum and H.J . Sips. A scalable middleware
solution for advanced wide-area web services. Distributed Systems Engineering,
6(l):34-42, March 1999.

[13] Philip Homburg Maarten van Steen and Andrew S. Tanenbaum. Globe: A
wide-area distributed system. IEEE Concurrency, pages 70-78, January-March
1999.

[14] P .V. Mockapetris. Rfc 1034: Domain names - implementation and specification,
Nov 1987.

[15] H . Levy N . Kronenberg and W . Strecker. Vaxclusters: A closely coupled dis
tributed system. ACM Transactions on Computer Systems, 4(2):130-146,1986.

[16] B. Clifford Neuman. Scale in Distributed Systems. I E E E Computer Society
Press, 1994.

[17] Duncan J . Watts and Steve H . Strogatz. Collective dynamics of 'small-world'
networks. Nature, 393(6684):440-442, June 1998.

55

