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A b s t r a c t 

Current techniques do not scale distributed systems to millions of nodes 
because they cannot handle global behavior description and global coordination to 
such massive sizes. K E L P addresses these problems with a loose, decentralized 
system of nodes that are connected together wi th a small-world network. Viewed as 
a network of randomly connected clusters, a small-world network supports massive 
scalability with its random connectivity while sti l l support ing locality wi th in its 
clusters. K E L P uses two key properties of randomness to scale. F i r s t , there is a 
short typical distance of separation between any two nodes in the system. This is 
used to quickly infer global behavior. Second, nodes have relatively little knowledge 
of the overall system, which helps provide looser semantics for global coordinat ion. 
F ina l ly , on top of the small-world infrastructure, K E L P provides massively scalable 
data structures to make building massive scale systems less ad-hoc. 
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C h a p t e r 1 

Introduct ion 

The Internet provides the infrastructure to support distributed systems comprised 

of hundreds of thousands or even millions of nodes. To date, the main focus on scal

ability has been building centralized servers that handle large numbers of clients; 

however, this model of computing does not scale to massive sizes because central

ization is a bottleneck. A l s o , this approach does not support more peer-to-peer 

applications such as peer-based file-sharing system with many users and decentral

ized distributed vir tual environments. Th is thesis describes a system designed to 

scale past current l imitations and to support a wider range of applications. 

Massively scalable distributed systems that support mill ions of users on a 

global scale are challenging to build because massive amounts of global informa

tion are difficult to manage in a t imely fashion. Scaling to such large sizes also 

requires looser consistency and lower coherence, which makes global coordination 

impract ica l . Furthermore, there are no general or reusable methods for wr i t ing large 

scale systems; up to now, the loose semantics that support massive scale have been 

followed in an ad-hoc manner. 

Some massive scale systems have been buil t , but only in system-specific ways. 
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For example, DNS [14] scales well using hierarchy because it takes advantage of 

infrequent name changes and caches names at various hierarchical levels to avoid 

the root from becoming a bottleneck. The W W W [6] also scales well because it is 

comprised of millions of different web servers that each scale independently. There 

is no global information shared between web servers, so the millions of web servers 

do not have the overhead of coordinating with one another. 

Our goal is to provide a mechanism for massively scaling a range of dis

tributed systems. In particular, we wish to massively scale non-hierarchical dis

tributed systems that share global knowledge among all their nodes and we wish to 

do so without using an ad-hoc approach. 

Our strategy to achieve our goal is to follow the looser, scalable semantics in 

a serverless and decentralized manner; every node knows about a few other nodes 

in the system and global knowledge is partitioned among all nodes. Nodes within 

the system interact in a peer-to-peer manner and clients can interact with any node 

in the system. 

Following this strategy, we have designed a massively scalable system called 

K E L P . To achieve massive scale in a system where every node only knows a few 

other nodes, node connectivity in K E L P is modeled after natural systems that grow 

to large sizes. Natural systems like the neural network of the worm Caenorhabditis 

elegans, the power grid of the western United States [17], and hyperlinks on the 

World Wide Web [3] are all connected via a small-world network. Small-world net

works allow these natural systems to grow to large sizes because they take advantage 

of locality while providing a short separation distance between any two nodes in the 

system. 

A small-world network is a collection of tightly coupled clusters that are 
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l o o s e l y a n d r a n d o m l y c o n n e c t e d t o a few o t h e r c l u s t e r s . T h e t i g h t l y c o u p l e d c l u s 

t e rs p r o v i d e l o c a l i t y w h i l e t h e loose c o n n e c t i v i t y o f t h e c l u s t e r s a l l o w i n f o r m a t i o n t o 

be p r o p a g a t e d f r o m one end of t h e s y s t e m t o the o t h e r i n j u s t a few h o p s . F o r e x a m 

ple , i n f e c t i o u s disease is p r e d i c t e d t o be s p r e a d e x t r e m e l y q u i c k l y a m o n g o r g a n i s m s 

c o n n e c t e d v i a a s m a l l - w o r l d n e t w o r k [17]. 

S i n c e c l u s t e r s are a w e l l - k n o w n t e c h n o l o g y [15], we f o c u s o u r research o n t h e 

r a n d o m c o n n e c t e d n e s s o f the s m a l l - w o r l d g r a p h . T o i n v e s t i g a t e t h i s , we d e v i s e d 

a n a l g o r i t h m f o r b u i l d i n g a d e c e n t r a l i z e d d i s t r i b u t e d s y s t e m c o m p r i s e d o f m i l l i o n s 

o f n o d e s c o n n e c t e d v i a a r a n d o m g r a p h . T h e r a n d o m g r a p h c o n n e c t s e v e r y n o d e 

t o a f e w o t h e r r a n d o m l y - c h o s e n n o d e s a n d p r o v i d e s key p r o p e r t i e s f o r s c a l i n g o u r 

s y s t e m : a s h o r t d i s t a n c e b e t w e e n a n y t w o n o d e s t h a t a l l o w s f o r q u i c k i n f o r m a t i o n 

p r o p a g a t i o n a n d m i n i m a l k n o w l e d g e a t each n o d e t h a t a l l o w s f o r loose g l o b a l c o 

o r d i n a t i o n . C o u p l i n g these p r o p e r t i e s w i t h g l o b a l k n o w l e d g e p a r t i t i o n e d a m o n g a l l 

n o d e s p r o v i d e s a m e t h o d f o r q u i c k d i s s e m i n a t i o n o f g l o b a l i n f o r m a t i o n t h r o u g h o u t 

t h e s y s t e m . 

In o r d e r t o e v a l u a t e o u r s y s t e m , we b u i l t t w o d i s t r i b u t e d d a t a s t r u c t u r e s 

o n t o p o f K E L P ' s r a n d o m g r a p h c o n n e c t i o n : a set a n d a q u e u e . In o r d e r t o scale 

these d a t a s t r u c t u r e s , t h e i r c o m m o n l y - a c c e p t e d s e m a n t i c s h a d t o be l o o s e n e d . F o r 

e x a m p l e , a d e q u e u e o p e r a t i o n o n t h e q u e u e r e t u r n s a n e l e m e n t t h a t is v e r y close t o 

t h e o l d e s t i n s t e a d o f s t r i c t l y t h e o l d e s t . A p p l i c a t i o n s u s i n g these d a t a s t r u c t u r e s t o 

a c h i e v e m a s s i v e s c a l a b i l i t y m u s t t o l e r a t e these l o o s e n e d s e m a n t i c s . 

T h i s thes is is o r g a n i z e d as f o l l o w s . C h a p t e r 2 d e s c r i b e s t h e g r a p h t h e o r y 

used t o a d d r e s s t h e p r o b l e m s of a c h i e v i n g m a s s i v e s c a l a b i l i t y a n d a l so d e s c r i b e s 

h o w K E L P uses a r a n d o m g r a p h as i t s i n f r a s t r u c t u r e . C h a p t e r 3 e x p l a i n s h o w t h e 

i n f r a s t r u c t u r e c a n be used t o d e s c r i b e g l o b a l b e h a v i o r . C h a p t e r 4 d e s c r i b e s t h e 
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d a t a s t r u c t u r e s b u i l t o n t o p o f the g r a p h i n f r a s t r u c t u r e . C h a p t e r 5 d e s c r i b e s the 

i m p l e m e n t a t i o n o f K E L P ' s s i m u l a t i o n . C h a p t e r 6 s h o w s the resul ts o f e v a l u a t i o n s 

t h a t s h o w the p r o p e r t i e s of the c o n s t r u c t e d g r a p h s a n d the b e h a v i o r of the d a t a 

s t r u c t u r e s . C h a p t e r 7 d e s c r i b e s re la ted w o r k . F i n a l l y , C h a p t e r 8 c o n c l u d e s the 

thesis a n d descr ibes f u t u r e w o r k . 
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Chapter 2 

In f ras t ruc ture 

K E L P ' s i n f r a s t r u c t u r e p r o v i d e s c o n n e c t i v i t y b e t w e e n n o d e s a n d is d e s i g n e d t o a d 

dress s c a l a b i l i t y by p r o v i d i n g serv ices t h a t s u p p o r t t h e in ference o f g l o b a l b e h a v i o r . 

T o s u p p o r t these o p e r a t i o n s , t h e n o d e s ' c o n n e c t i v i t y is m o d e l e d a f ter la rge-sca le 

n a t u r a l s y s t e m s t h a t c o n n e c t n o d e s v i a a s m a l l - w o r l d n e t w o r k . 

T h i s c h a p t e r b e g i n s b y d e s c r i b i n g t h e g e n e r a l p r o b l e m s i n a t t e m p t i n g t o 

a c h i e v e m a s s i v e s c a l a b i l i t y . T h e n , t h e m o t i v a t i o n o f m o d e l i n g K E L P ' s i n f r a s t r u c t u r e 

o n s m a l l - w o r l d n e t w o r k s is e x p l a i n e d . N e x t , t h e c h a p t e r focuses o n t h e r a n d o m 

c o n n e c t e d n e s s o f the s m a l l - w o r l d n e t w o r k a n d e x p l a i n s h o w r a n d o m p r o p e r t i e s he lp 

p r o v i d e m a s s i v e s c a l a b i l i t y . F i n a l l y , t h i s c h a p t e r e n d s b y e x p l a i n i n g h o w K E L P ' s 

i n f r a s t r u c t u r e is b u i l t a n d h o w n o d e s f a i l u r e s are h a n d l e d . 

2.1 Problems with Achieving Massive Scalability 

C u r r e n t t e c h n i q u e s d o n o t sca le d i s t r i b u t e d s y s t e m s t o m a s s i v e sizes because g l o b a l 

i n f o r m a t i o n m a n a g e m e n t a n d g l o b a l c o o r d i n a t i o n are b o t t l e n e c k s . T h e r e is a lso n o 

g e n e r a l m e t h o d of c r e a t i n g a s c a l a b l e s y s t e m , w h i c h m a k e s b u i l d i n g these s y s t e m s 
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difficult. 

Global information management is a difficult problem to handle efficiently 

because there are large amounts of information dispersed throughout the many nodes 

in a large-scale system. G l o b a l coordination suffers from similar difficulties due to 

the need for a large number of coordination messages. F ina l ly , even though there 

are general scalability guidelines to follow (see [16]), there is no general solution 

for building massively scalable systems, so most systems are created in an ad-hoc 

manner. 

A system has to handle these problems in order to achieve massive scalability 

and K E L P ' s infrastructure does so by modeling its connectivity after a small-world 

network. 

2.2 Modeling After Small-World Networks 

A distributed system's connectivity is modeled as a graph to define key system 

properties. K E L P ' s connectivity is modeled after a small-world network because 

small-world networks have been shown to allow some natural ly occurring systems 

to grow to large sizes [17, 3]. 

A small-world network is a graph that combines the benefits of a regular 

graph and a random graph [17]. A regular graph is a graph whose nodes can be 

connected locally and whose nodes all have the same degree (where degree, d, is the 

number of neighbors that each node is connected to) . Regular graphs can provide 

the benefit of locality through clustering. A random graph is a graph whose nodes 

are randomly connected to each other. R a n d o m graphs provide the benefit of a 

short typical separation between nodes and a small d relative to n (the number of 

nodes in the system). A small -world network provides the benefits of both regular 
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and random graphs: a high degree of clustering and a short typical separation. 

K E L P ' s infrastructure is thus modeled after small-world networks to address 

the problems outlined in Section 2 .1. 

Global information is handled by partitioning the information throughout 

all nodes in the small-world network. Each node has its own part of the global 

information that can be quickly shared with any other node because of the short 

typical distance of separation. 

Global coordination is handled in two ways. Locally connected nodes coordi

nate tightly while randomly connected nodes coordinate loosely. The loose semantics 

are facilitated with every node's small d because each node doesn't have to maintain 

much information about other nodes in the system. 

Finally, K E L P addresses the challenge of building ad-hoc scalable systems by 

allowing massively scalable systems to be built on top of its small-world-based infras

tructure. K E L P also provides massively scalable data structures to make building 

massively scalable systems less ad-hoc. 

2.3 Properties of K E L P ' s G r a p h 

Nodes in K E L P are connected via a directed (/-regular random graph. Directed 

means that a node's incoming and outgoing edges are clearly defined and (/-regular 

means that all nodes have d neighbors. Also, the number of incoming and outgoing 

edges for each node is fixed. 

This random graph connectivity provides the benefits of small-world networks 

(except for locality) and also provides the benefit of rapid mixing [5]. Rapid mixing 

means that a message sent from one node will have an equal probability of reaching 

all other nodes in a very small number of steps (relative to n). The random graph 
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provides two operations that use the rapid mixing property: random walks and 

expanders. 

2.3.1 Random Walk 

The first operation to exhibit the rapid mixing property is the random walk opera

tion. A random walk is used to randomly find any node with equal probability. 

A random walk starts at any node in the system. At each node in the walk, 

a random neighbor is chosen as the next node to step to. If an adequate number of 

steps is taken, the random walk will end up at a random node. 

The number of steps (h) required to make the chosen node random is rela

tively small and depends on two factors. The first factor is the number of nodes in 

the system (n). To remain random, h must grow logarithmically with n [8]. The 

second factor is the system's degree, d. A higher d allows for a shorter h and vice 

versa. An analysis of the relationship between n, k, and h is provided in Section 6.1. 

2.3.2 Expander 

The second operation to use the rapid mixing property is the expander operation. 

The expander is used to to quickly propagate information from one node to a given 

percentage of other nodes in the system. 

An expander starts at one node and is forwarded to each of the starting node 

node's neighbors. Nodes receiving the expander may also forward it to all of their 

neighbors. The number of times an expander is forwarded is called the expander's 

depth and is denoted with e. 

The expander depth (e) required to cover the graph is relatively small com

pared to n because each level of the expander results in a large factor of new nodes 
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receiving the expander. A t each level, the number of new nodes receiving the ex

pander can be up to d times the number of nodes who have already received the 

expander. Hence, the expander can spread information at an exponential rate. How

ever, once half the nodes in the system receive the expander, the rate of expansion 

slows down because the expander wil l be propagated to nodes that it has already 

visited. In conclusion, expanders can propagate information to all nodes in the sys

tem, but are quickest when only propagating information to less than half the nodes 

in the system. 

2.4 Building K E L P ' s Random Graph 

B u i l d i n g K E L P ' s random graph is difficult because of two problems. F i r s t , random 

graphs are typically constructed by randomly choosing a node's neighbors from the 

set of all nodes already in the graph; however, this cannot be done in K E L P because 

there is no global knowledge of all nodes. Second, K E L P is a distr ibuted system 

that must support the dynamic addit ion and removal of nodes (e.g. node failure 

and recovery), but dynamic graph membership is not addressed by random graph 

theory. K E L P ' s random graph building technique addresses these problems and 

maintains randomness by being an incremental algorithm that chooses a new node's 

neighbors from the set of all nodes already in the graph. 

K E L P ' s random graph building algorithm starts by bootstrapping the system 

with d+1 nodes to form a complete graph of degree d. Af ter bootstrapping, new 

nodes jo in the graph v ia any node already in the graph. To select each of its d 

neighbors, the new node (o) performs a random walk to choose a random node 

(x). The chosen node, x, randomly picks one of its neighbors (v) to evict from its 

neighbor list. Then x replaces v in its neighbor list with o and o gets v as one of 
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its neighbors (see Figure 2.1). If the randomly chosen node x is the original node o, 

another random walk is performed to chose another neighbor. 

Figure 2.1: Node o joins K E L P 

A node gracefully leaving K E L P must be removed from the graph. A leaving 

node (/) notifies both its incoming and outgoing neighbors. Each of the incoming 

neighbors lose an outgoing edge to / and each of the outgoing neighbors lose an 

incoming edge from /. To maintain connectivity and to balance the number of 

incoming edges and the number of outgoing edges, each of /'s incoming neighbors is 

connected to one of fs outgoing neighbors. Nodes not gracefully leaving the system 

(i.e. due to node failures) are discussed in Section 2.5. 

Both node addition and removal maintain fairness by ensuring that every 

node has the same number of neighbors and outgoing and incoming edges. This 

balance helps ensure randomness because every node will have an equal probability 

of being chosen at every step in a random walk. However, this balance is difficult 
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to maintain in the event of node failures. 

2.5 Handling Node Failures 

Unreachable nodes due to node failures or downed network links cause random 

walk failures and non-randomness and can also indicate a network partition. A 

random walk failure occurs when the random walk does not return from a step 

to an unreachable node. Random walk failures will never finish and will never 

return to the originator, so there must be a mechanism to detect and handle the 

failure. Random walk failures are also an indication of non-randomness in the graph 

because they indicate a node failure. A node failure results in the node's neighbors 

having fewer references to them (a lower incoming degree), thus the failed node's 

neighbors will then have less chance of being in a random walk, resulting in non-

randomness. Another cause of non-randomness is when nodes reference unreachable 

nodes. These phantom references cause nodes to effectively have lower outgoing 

degrees, which biases random walks towards reachable nodes. Random walk failures 

can also indicate a network partition because only random walks that stay entirely 

within the partition are successful, thus biasing these random walks to return only 

nodes within the partition. 

K E L P must be able to detect unreachable nodes and repair the graph in a way 

that maintains the graph's randomness. Failed random walks and unreachable nodes 

are detected via a combination of timers, heartbeats, and pings while randomness 

is ensured by repicking seemingly non-random nodes. 

To fix the problem of random walk failures, random walks are time limited 

and restarted by the originator if they do not return within the time limit. In 

case the random walk gets delayed (i.e. because of congestion), heartbeat messages 
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are sent back to the random walk originator to reset the random walk time limit. 

Specifically, the timestamp of the random walk start time is sent along with the 

random walk. Nodes receiving the random walk use a global clock to check whether 

or not a heartbeat message needs to be sent back to the originator. 

Restarted random walks may be an indication of bias because some nodes 

have fewer references to them than others. To counteract this bias, nodes chosen 

via restarted random walks are flagged to be repicked later when the graph is no 

longer biased. Each node periodically tries to repick its flagged neighbors and only 

replaces them and clears the flag when a random walk successfully completes without 

restarting. 

To reduce random walk failures in the first place, references to failed or 

unreachable nodes need to be detected and repaired. These phantom references 

are detected by having every node periodically ping all of its outgoing neighbors. 

Detected phantom references are then replaced with a new node chosen via a random 

walk. 

Random walk failures can also indicate a network partition, but K E L P can

not determine whether a partition exists or not because the number of nodes in the 

system is unknown. However, K E L P can use failed random walks to probabilisti

cally indicate a partition. Random walks only return nodes within its own partition 

and fail when trying to reach nodes in other partitions, so many failed random walks 

may indicate a partition. (Small partitions will probabilistically have more random 

walk failures than large partitions because they have more references to unreachable 

nodes outside the partition.) Once a partition is detected, the network can merge 

back into one system if one partition knows about any node in the other partition. 

Nodes in the detected partition repick their flagged neighbors by starting a ran-
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dom walk at the node in the other partition. Doing so creates connections between 

the two partitions. Eventually, all flagged neighbors in the other partition will be 

repicked as well and the repicked neighbors will be from the set of all nodes in the 

system. 
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Chapter 3 

Determining G l o b a l Behavior 

f rom K E L P ' s Infrastructure 

This chapter describes how K E L P ' s infrastructure facilitates the identification of 

global behavior and the sharing and discovery of information. First, a generic 

method of searching is described followed by a description of how specializing this 

method results in faster searches. 

3.1 Color 

K E L P ' s most generic method for searching is called color. Nodes have properties 

called color and the system provides an operation to find any node with a specified 

color. For example, if a user wanted to find a game server to play on, the user would 

search for the game's name and the color search would return a node in the system 

that is serving that game. 

To propagate color information throughout K E L P , each node periodically 

uses an expander to advertise its color to a given percentage of other nodes in the 
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system. Nodes receiving this expander keep track of the advertising node and its 

color as hints, so each node has a list of other nodes and their corresponding colors. 

These hints expire to account for node failures and the periodic expanders ensure 

that the hints are fairly up-to-date. 

A node uses a color search to find a node of a particular color. The color 

search contains a search predicate that is evaluated against every hint in a node's 

list. If a hint satisfies the search predicate, then the corresponding node is checked to 

see if the hint is still valid. If the hint is still valid, then the color search is successful; 

otherwise, the color search continues with a random probe to any number of the 

node's neighbors. 

Two parameters affect the speed and effectiveness of the color search: the 

depth of the expander used to propagate hints and the number of neighbors that 

the color search is propagated to at.each node. 

The percentage of nodes that have a particular hint is determined by the 

depth of the expander used to advertise the hint. Deeper expanders spread hint 

knowledge to a greater percentage of nodes, which results in shorter searches. On 

the other hand, deeper expanders increase search overhead in two ways. First, hints 

take longer to propagate because of higher resource usage (e.g. network and C P U ) . 

Second, more hints are stored by each node, which increases the local search time 

and storage required at each node. 

There is also a tradeoff between the number of messages and search time 

when deciding on the width of the color search (width is the number of neighbors 

that a color search continues onto at each node). Propagating the search to more 

neighbors can result in quicker search times, but increases the number of messages 

because unfinished probes will continue searching even though a matching node has 
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already been found (probes are independent of one another). Typically, the width 

of a color search is related to the percent of nodes that have a certain hint; greater 

percentages allow for narrower searches and vice versa. 

Another factor of search width that affects the speed of a color search is 

whether the search width is fixed or variable. A fixed search width means that a 

hint is propagated to exponentially more neighbors with every additional expander 

depth. For example, a search width of 7 expands to 7, 49, 343, and 2401 neighbors for 

expander depths 1, 2, 3, and 4. To reach different numbers of neighbors in between 

the exponential leaps, search widths can be variable based on expander depth. As 

the expander depth increases, the search width can decrease. For example, if the 

search width in the previous example was decreased to 2 for the third depth, then 

the number of neighbors reached would be 7, 49, 98, and 196. 

Picking a good search width and expander depth is key for fast, effective 

color searches; however, there is still a probability that a color search will fail to 

find its target. A color search fails if the color being searched for doesn't exist 

or if the search's random probe doesn't happen to find a relevant hint. In either 

case, the search cannot be allowed to continue indefinitely, so a color search's length 

is limited. Failed searches are retried several times with longer and longer length 

limits. After several failed retries, the system can state with high probability that 

the color being searched for doesn't exist. 

3.2 Heat 

To support directed searches, K E L P provides an operation similar to color called 

heat. Heat advertises a numeric value as its property, which allows searches to be 

directed instead of random. Like color, heat propagates information via expanders, 
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but unlike color, a heat search uses a hill-climbing algorithm to get closer to its 

target on every step. 

Every node has two numeric values: a node heat that indicates how hot it is 

and a path heat that indicates how hot its paths are. A node's path heat is based 

on a% of its node heat and (100-a)% of the maximum of its neighbors' path heats 

(where a > 50 so a node's own node heat has the greatest effect on its path heat). In 

addition, each node maintains and periodically updates a list of its neighbors' path 

heats. This list is used as a hint to direct heat searches towards hotter neighbors. 

When a node's path heat changes by more than some threshold, it propa

gates its new path heat to its outgoing neighbors. Nodes receiving the new path 

heats recalculate their own path heats and continue propagating the heat change 

information if necessary. A t each step away from the original node, the effect of 

the original path heat decreases because only (100-a)% of a neighbor's path heat is 

used in a node's path heat calculation. This decrease in path heat effect is called 

heat decay and determines how far heat hints are propagated. 

A heat search is a directed search that always goes towards hotter nodes until 

a node satisfying some predicate is found. On every step of the search, the heat 

search checks if the current node satisfies the predicate. If it does, the search ends 

and a callback is made to the heat-search originator; otherwise, the search continues 

to one of the node's hotter neighbors via a weighted-random choice. The random 

choice is weighted by each of the neighbor's path heats so that similarly heated neigh

bors both have a chance of being chosen and that hotter neighbors have a higher 

probability of being chosen. This weighted-random choice also prevents simultane

ous searches from all finding the same node, which is useful for load balancing and 

in cases where a search results in the destination node's heat to change. 
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The main parameter that1 affects a heat search's speed and effectiveness is 

the decay value (100-ct). The decay value affects the number of nodes that heat 

dissipates to. For example, a smaller decay value means that more nodes have 

knowledge about the heat, but at the cost of longer times to propagate and update 

path heats. 

Given that the decay value affects the range of heat dissipation, it is possible 

for a heat to not reach certain areas of the graph. If these cold areas do not have 

any heat knowledge at all, then heat searches starting from those areas would not 

find anything. To prevent these searches from failing, heat searches from cold areas 

first use a random walk to find a heated area. Once in a heated area, the heat search 

continues as usual. 
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C h a p t e r 4 

Example D a t a Structures 

Using K E L P ' s random graph connectivity as the base layer and color and heat for 

searching, we have designed some massively scalable data structures that provide 

loose semantics: a set and a queue. 

4.1 Set 

The set is a data structure for finding nodes that belong to a certain group. Nodes 

within groups are connected such that all nodes in a group are reachable once any 

node in the group is found. This set can be used, for example, by applications that 

require a large-scale, decentralized discovery service. The set could also be used 

as the basis for a peer-based file-sharing system like Gnutella [1]. The set could 

also be used to connect and find nodes in the same areas of a distributed virtual 

environment. 1 Here, groups would contain all nodes that are virtually co-located 

together. Similarly, the set could be used to group together and find nodes in an 

IRC-like chat facility [10] or a match-making service (e.g. to find people to play 

lA d i s t r ibuted v i r t u a l environment allows m u l t i p l e users to interact on the same objects 
in the same v i r t u a l environment over many, interconnected computers . 
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networked games against). A lso , the set could be used as part of a naming service 

where nodes can belong to many groups and where groups represent attributes of 

the node such as organization, geography, etc. 

The set uses color and adds the concept of groups. The color being advertised 

is the group identity and color searches continue onto one random neighbor until 

they find a node in the group being searched for. The set leaves the responsibility of 

connecting nodes within groups to specific group implementations because different 

applications require different types of connectivity. 

A set's search speed and effectiveness not only depend on the parameters that 

affect color searches, but also on group sizes. The size of groups affect the percentage 

of nodes that have hints for that group. Each node in the group propagates hint 

information v ia expanders, so bigger groups wil l propagate more hint information, 

which makes it quicker to search for the group. 

4.2 Q u e u e 

K E L P ' s queue loosens queue semantics in order to scale to larger sizes. Instead 

of str ict ly returning the oldest element in the queue, K E L P ' s dequeue returns an 

element that is close to the oldest. A l s o , since there is no global knowledge, the 

aggregate number of elements in the queue cannot be found. T h i s loose, decentral

ized queue is ideal for massive scale distributed worker queues that serve job tasks 

to many clients. For example, this worker queue could be used to distribute the 

processing tasks of the SETI@home project [7]. 

The queue partitions its data amongst all nodes in K E L P ' s infrastructure and 

uses heat to share queue elements among nodes. Each node stores queue elements 

in its own local queue part. Enqueue and dequeue requests can be directed to any 
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node in the system. Enqueues are always handled locally wi th enqueued elements 

inserted into the back of the local node's queue part. Dequeues are handled locally 

if the node receiving the dequeue request has local elements that can be dequeued. 

In this case, the dequeue returns the oldest local element. If there are no local 

elements, a heat search is used to find a node with excess elements (a node with 

more elements than it needs). The number of excess elements is the number of 

elements that a node has in excess of what it needs to satisfy its current request 

rates. Some of these excess elements are then transferred to the local node and 

the dequeue returns the oldest of these elements. If the heat search doesn't find 

anything, the dequeue request returns empty. 

The queue uses heat to transfer elements from nodes that have excess ele

ments (hot nodes) to nodes that need elements (cold nodes). Hot nodes are nodes 

that have more elements than they need and are indicated by a growing local queue 

size. For example, nodes with enqueue rates greater than dequeue rates would be 

hot nodes. C o l d nodes request the number of elements needed to satisfy its needs 

for the time between heat information updates (t) and hot nodes give as many ele

ments that it can spare up to a m a x i m u m of the number of elements requested. A 

dequeue from a cold node that cannot find elements using heat returns nothing to 

the requester and requires the requester to handle the s i tuat ion. 

T h e hotness and coldness of nodes caused by an uneven distr ibut ion of queue 

elements among nodes raises issues of staleness and fairness. A l s o , node failures raise 

the issue of handling unrecoverable data loss. 

Elements in the queue may become stale if a node containing elements does 

not receive any dequeue requests. In this case, the stale elements would become 

the oldest in the aggregate queue, but never get dequeued. To ensure liveliness and 
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progress, stale elements get exponentially hotter with every heat update so heat 

searches wi l l eventually find stale elements before excess elements. 

Since many nodes can be hot simultaneously, there needs to be a mechanism 

for ensuring fairness when a data request needs to decide between similarly heated 

nodes. T h i s fairness is provided by heat's weighted-random choice that is used when 

deciding the next node to continue the search to. 

F ina l ly , a node failure results in the loss of all elements in that node's queue 

part . The queue does not provide a method for recovering this data ; instead the 

responsibility of detecting and handling the data loss is left up to the application 

using the end-to-end argument [9]. For example, the application would have to 

detect a lost element and then reinsert it into the queue. 
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Chapter 5 

Implementation 

To evaluate K E L P ' s ideas for massive scalability, a simulation of K E L P was imple

mented using Java [11]. The simulation builds a network of nodes connected v ia a 

random graph and also builds the set and queue data structures on top. Every node 

in the random graph is represented by a Java object that is made into a distr ibuted 

object using ObjectSpace Voyager 1 . 

This chapter describes three aspects of the implementation: the random 

graph, the set and color, and the queue and heat. 

5 . 1 Implementing the Random G r a p h 

The random graph building algorithm is described in detail in Sections 2.4 and 2.5. 

This section describes three specific implementation details: architecture, bootstrap

ping, and random walk parameters. 

1 http://www.objectspace.com/voyager/prodVoyager.asp (24 Aug 00) 
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5.1.1 Design Archi tec ture 

T h e simulation provides a base random graph infrastructure that can be extended 

to provide d a t a structures and services. A RandomGraph object is used to build the 

random graph and to keep track of all nodes in the graph. Nodes are represented 

with Node objects that keep track of their neighbors. Each Node can also be coupled 

with any number of Overlay objects to extend its functionality. For example, a Node 

can be coupled with a SetOverlay to provide set functionality. 

The two random graph operations, random walk and expander, are imple

mented by mobile agents. These two operations are represented by RandomWalk 

and Expander objects that contain all the data and logic needed to perform their 

work. Like a mobile agent, these objects are shipped in their entirety from node 

to node to perform their work. These objects can also be specialized (subclassed) 

to provide specific functionali ty; for example, there are specialized RandomWalk 

objects for building the random graph and for searching the set. 

5.1.2 Boots t rapping and N o d e A d d i t i o n 

For the simulat ion, a well-known location called the Registry is used for bootstrap

ping the system. Jo ining nodes use the Registry to find an ini t ia l node to contact. 

The Registry contains references to the first d+1 jo ining nodes for bootstrapping 

purposes. Af ter bootstrapping, jo ining nodes can contact any node in the system; 

however, the simulation uses the Registry both during and after bootstrapping be

cause it provides a single, convenient method for all nodes to join the system. 

A node o jo ining the random graph starts off by registering with the Reg

istry. If the system is bootstrapping, the Registry wi l l store a reference to the node; 

otherwise, nothing is done. Next , o wi l l ask the Registry for a node at which to start 
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a random walk. If the system is bootstrapping, no node is returned; otherwise, the 

Registry randomly chooses one of its d+1 node references to return. 

If no node is returned, o knows that it is part of the bootstrapping process, 

so it wil l ask the Registry for a list of all nodes in the system so far. For every node 

x in the list, o makes x a neighbor and also contacts x to make o a neighbor. This 

part of the algorithm creates a complete graph for the first d+1 nodes joining the 

graph. 

If a node reference is returned from the Registry request for a random walk 

start point , the node knows that it can join the graph normally, so it wil l asyn

chronously start a random walk using the random graph building a lgor i thm. The 

jo ining node also asynchronously starts d-1 other random walks in the same way to 

find all d of its neighbors. 

T h i s implementation for node addit ion is simple but has a serious drawback 

in that the Registry is a centralized object in an otherwise decentralized system. 

However, the Registry can be removed since it is only used for bootstrapping. Nodes 

themselves can keep track of whether the system has been bootstrapped or not. 

Jo ining nodes init ial ly contact any node already in the system. If the init ial node is 

already bootstrapped, then the jo ining node joins as normal . Otherwise, the joining 

node participates in the bootstrapping process. A s long as jo ining nodes can find 

any node already in the system, no centralized Registry is needed. 

5.1.3 Random Walks 

Each random walk used to build the graph is represented with a RGRandomWalk 

object that is a specialization (subclass) of a Random Walk mobile agent. The Ran-

domWalk object keeps track of the s tart ing node while the RGRandomWalk object 
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keeps track of the number of remaining steps and a TimeStamp object that indicates 

when the walk started. 

The RandomGraph, object starts all random walks for all nodes and stores a 

timer for each of the walks. Each of the timers is uniquely identified by a TimeStamp 

object. If a timer expires, its corresponding TimeStamp object is invalidated and a 

new RGRandomWalk is sent out. The time given to a random walk before it expires 

is denoted with the constant TIMER-RANDWALK. 

At each step of the random walk, RGRandomWalk checks whether or not it 

has to send a heartbeat back to the RandomGraph to reset its timer. A heartbeat is 

sent back if the time difference between the current time (given by a global clock) and 

the TimeStamp is greater than a TIMER-HEARTBEAT constant. (In our imple

mentation, TIMER-HEARTBEATs value is three-quarters of TIMER-RANDWALKs 

value - the heartbeat value must be less than the random walk timer value so that 

heartbeat messages can reach the original node before the random walk timer ex

pires.) If the random walk has more steps to go, the number of steps remaining is 

decremented and a random neighbor is chosen as the next node for RGRandomWalk 

to step to. 

Several checks must be made once a random walk finishes all its steps. If 

RGRandomWalk ends up back at the starting node, the corresponding timer is 

stopped and a new RGRandomWalk is sent out. (Note, this case is unlikely to occur 

with alarge graph.) If RGRandomWalk ends up at a node that already has the walk's 

source as a neighbor, the number of steps is reset to the original number of steps 

and the walk is continued. This continued walk has the same length of as all other 

random walks so that its results will be random. If RGRandomWalk's TimeStamp 

is no longer valid, then the corresponding timer expired and a new RGRandomWalk 
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was sent out, so this RGRandomWalk ends without doing anything. 

Once a random walk passes all these checks, the walk ends properly and 

neighbors are swapped per the random graph building algorithm in Section 2.4. 

5.2 Implementing the Set using Color 

Color and set are implemented together. Set functionality is added to each node 

by coupling a SetOverlay object with every Node object. The set implementation is 

straight forward and follows the description given in Sections 3.1 and 4.1, The only 

thing to note is how the implementation reuses and specializes the RandomWalk 

and Expander mobile agents from the random graph layer of the implementation. 

Each set search is a specialized RandomWalk object called SetSearchWalk. 

The SetSearchWalk object stores several things: a search predicate, a listener, a 

count of the number of steps taken, and a hop limit. The search predicate is used 

to determine whether or not a node satisfies the search criteria. The listener is a 

reference and callback to the requesting node that is used when a node satisfies the 

search predicate. Finally, the count of the number of steps and the hop limit are 

used to determine when a search has taken too long. On every step, the count is 

incremented and a random neighbor is chosen as the next node to step to. If the 

count exceeds the limit, the search returns unsuccessfully back to the requester. 

Each hint-propagating expander is a specialized Expander object called Node-

Properties Expander. The Expander object keeps track of the current expander 

depth, the maximum expander depth, and, if necessary, the parameters for vary

ing the expander width. The NodePropertiesExpander object stores the color being 

propagated. On every level, the expander adds its color to the current SetOverlay's 

collection of hints, increments its expander depth and then continues propagation 
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if the current depth is less than the maximum depth. The parameter for variable 

expander width is an ordered list of widths. The order of the elements corresponds 

to the expander depth and the elements' values correspond to each depth's width. 

This width determines the number of randomly-chosen nodes to continue propagat

ing the expander to. For example, a width of 4 at position 3 in the list means that 

the expander is propagated to only 4 neighbors on the third level of the expander. 

5.3 Implementing the Queue using Heat 

Heat and the queue are described in detail in Sections 3.2 and 4.2. This section 

describes three specific implementation details: heat and queue overlays, heat prop

agation, and how dequeue uses heat searches to find and transfer queue elements. 

5.3 .1 Overlays 

Heat and the queue were implemented as separate layers on top of the random graph 

infrastructure. The queue layer lies on top of the heat layer, which lies on top of 

the random graph layer. Heat functionality is provided with a HeatOverlay, which 

is specialized with a QueueOverlay to provide queue functionality. 

The HeatOverlay keeps track of a node's current and previous node heat and 

path heat as well as a list of its outgoing neighbors' path heats. A node's current 

node heat is denoted with NODE-HEAT and its current path heat is denoted with 

PATHJ1EAT. These values are used in heat propagation and heat searches. The 

previous node heat and path heat values are stored because heat is only propagated 

if the change in heat from the last update is greater than some threshold. 

The QueueOverlay is a specialization of the HeatOverlay that has access to all 

the values described above. In addition, QueueOverlay keeps track of the elements in 
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the local queue part, the number of elements (QUEUE-SIZE), the current enqueue 

and dequeue rates, and the high and low thresholds for the number of elements 

stored in the local queue part. The dequeue rate is denoted with DQR, the enqueue 

rate is denoted with EQR, the high threshold is denoted with THRESHOLD'-HI, 

and the low threshold is denoted with THRESHOLD-LOW. These values are used 

to determine whether a node is hot or cold. 

5.3.2 H e a t P r o p a g a t i o n 

Heat value propagation is handled via a TimerHeat object that has a list of all nodes 

in the system. TimerHeat periodically and synchronously updates heats by getting 

every node to recalculate its node heat and path heat. The frequency of these heat 

updates is set via a compile-time constant called TIMER-HEAT (this constant can 

be changed for different runs of the simulation). If a node's new path heat changes 

by more than a threshold from its previous path heat, the path heat is propagated 

with heat decay to the node's outgoing neighbors. This subsection specifies how 

NODE-HEAT and PATH-HEAT are calculated and also describes how path heats 

are propagated with decay throughout the system. 

Node Heat 

Node heat starts out as zero and is recalculated during a heat update if one of two 

conditions holds. Either the node has, excess elements or the node has old elements 

which are becoming stale. 

A node with excess elements is a hot node if it satisfies two conditions. First, 

it has more elements than THRESHOLD-HI. Second, it has an EQR >= DQR. 

The high threshold, THRESHOLD-HI, is recalculated every heat update 
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period and determines the number of elements needed to indicate an excess. The 

threshold is calculated with: 

THRESHOLDJII = {DQR x TIMERJiEAT) x 

THRESHOLD-MULTIPLIER 

This threshold ensures that the node has enough elements for local dequeuing in 

one heat update period at the last recorded dequeue rate (this number of elements 

is given by the product in parentheses: DQR X TIMER-HEAT). THRESH

OLD-MULTIPLIER is a constant multiplier that is used to pad the threshold in 

case the DQR increases between heat updates. The constant used in this implemen

tation was 1.25. 

A node with excess elements only becomes hot if the EQR >= DQR because 

such rates mean that the number of elements will increase or stay the same. Nodes 

whose EQR < DQR do not become hot because local dequeuing requires elements 

in the local queue part for dequeuing. 

If both of the above conditions are met, NODE-HEAT is calculated with: 

NODE-HEAT = HEAT-EXCESS-BASE + 

{{QUEUESIZE - THRESHOLD-HI) x 

HE AT-EXCESS MU LTIPLIER) 

The above equation shows that NODE-HEAT is a direct multiple of the number of 

excess elements {QUEUESIZE - THRESHOLD JiI) that a node has. The base 

heat value, HEAT-EXCESS-BASE, and the constant multiplier, HEAT-EXCESS-

MULTIPLIER, are both used to make the NODE-HEAT value larger, which allows 

heat to be propagated further. In this implementation, we choose only to use the 
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multiplier, so HEAT-EXCESS-BASE has value 0 and HEAT-EXCESS-MULTIPLIER 

has value 10. 

A node with stale elements becomes hot if it satisfies two conditions: the 

QUEUE-SIZE must be greater than zero and the DQR must be zero. These two 

conditions mean that there are elements in the local queue part that will not be 

locally dequeued. These elements will eventually become stale and will need to be 

removed. 

To remove these elements, the node becomes hotter and hotter with time. 

If the age of the oldest element (denoted with AGE-OF-OLDEST) is greater than 

a threshold (set to 45 time periods for this implementation), then NODE-HEAT'is 

calculated with: 

NODE-HEAT = HE AT ST ALE-BASE + 

AGE-OF-OLDESTHEAT-STALE-EXPONENT 

NODE-HEAT grows superlinearly as elements become staler because AGE-OF-

OLDEST grows linearly as elements get older and HEATSTALE-EXPONENT is 

a constant (set to 1.4 for this implementation). HEATSTALEJBASE is meant to 

provide larger heat values for stale nodes, but is set to zero in this implementation. 

P a t h H e a t a n d P r o p a g a t i o n 

Path heat is recalculated every heat update and then is propagated with heat decay 

if the change in path heat is greater than THRESHOLD-PATH-HEAT 

To calculate path heat, a node first gets all its outgoing neighbors' path heats 

to find their maximum. Then path heat is calculated with the following formula: 

PATH-HEAT = (a x NODE-HEAT) + 
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((1 - a) X max{ neighbor's PATH-HEAT's)) 

Here, a is the heat decay given as a decimal number. Its value is 0.7 so that a node's 

own NODE-HE A T has the most effect on its PATHJiEAT and only a small percent 

of a neighbor's PATH Ji EAT is used. 

Path heat is propagated to all incoming neighbors if the difference between 

the new and previous PATHJiEATs is greater than THRESHOLD J*ATH-HEAT. 

The threshold determines how far heat is propagated to and is set to 1 in order for 

heat changes to be propagated as far as possible. 

5 . 3 . 3 Dequeue and Heat Search 

Dequeuers start heat searches when they need more data to satisfy incoming dequeue 

requests. In other words, the dequeuer is cold and it needs to find a hot node to get 

queue elements from. This subsection specifies when heat searches are started, how 

the search is conducted, and the amount of data transferred from a hot node to a 

cold node. 

Starting a Heat Search 

Heat searches are started in one of two ways: when the local queue part becomes 

empty or when the number of elements falls below THRESHOLD-LOW. 

When there are no local elements to return, the dequeuer starts a synchronous 

heat search to find elements from a hot node. If a hot node exists, some elements 

are transferred from the hot node to the cold node and then the oldest of these 

elements is returned. If no hot nodes are found, the dequeue request returns empty. 

A synchronous heat search delays the time for a dequeue request to return a 

value. Therefore, an asynchronous heat search is used to find and transfer elements 
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to the cold node before it runs out of elements. The asynchronous nature of the 

heat search allows dequeues to-continue unhindered while more elements are being 

found. An asynchronous heat search is started when the number of queue elements 

falls below THRESHOLD-LOW and the DQR > EQR. 

The low threshold, THRESHOLD-LOW, is recalculated every heat update 

period (but only when DQR > EQR to avoid negative threshold values). This 

threshold is calculated with: 

THRESHOLD-LOW = (DQR - EQR) x TIMER-HEAT 

This value predicts the net decrease in the number of elements for the next heat 

update interval, which is useful in determining when a local queue part will run out 

of elements. 

A node also needs a DQR > EQR before starting an asynchronous heat 

search because the node would not need more elements otherwise. A DQR < = 

EQR means that a local queue size stays the same or increases whereas a DQR > 

EQR means that the local queue size is decreasing. A decreasing local queue size 

means that the local queue part will eventually run out of elements. 

An asynchronous heat search is started when both the above conditions are 

met. The DQR > EQR coupled with a local queue size smaller than THRESH

OLD-LOW indicate that a node will run out of elements soon. 

Heat Search 

A heat search is a hill-climbing algorithm that starts from a cold node and steps to 

hotter nodes until it finds a node hot enough to get queue elements from. 

A heat search starts off by checking its list of outgoing neighbors' path heats. 

If all of the outgoing neighbors have zero path heat, then a random walk is used 
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to try to find a heated area (an area with non-zero heat values). If the random 

walk doesn't find a heated area within h steps, the heat search returns empty. The 

number of steps, h, is the length of the random walk used to build the graph because 

it is the number of steps required to make a walk random. If the random walk finds 

a heated area, the heat search continues normally. 

Each node visited by a heat search is first tested to see if it is hot enough to 

transfer elements from. If the node isn't hot enough, the heat search continues to a 

hotter node. 

A node must satisfy two conditions in order be to hot enough for an element 

transfer. Both conditions are related the NODE-HEAT calculation. The first condi

tion has two parts: the local queue size must be larger than THRESHOLD-HI and 

the EQR must be greater than or equal to the DQR. The second condition also has 

two parts: the local queue size must be greater than zero and the oldest element must 

be older than THRESHOLDSTALE-DATA (where THRESHOLDSTALE-DATA 

is set to 1.5 times TIMER-HEAT). 

If either of these conditions is true, elements are transferred from the hot 

node to the requesting cold node. The number of elements transferred is described 

in the next section. 

If neither condition is true, the heat search must continue to another node. 

The next node chosen comes from the set of outgoing neighbors that have a higher 

PATHJIEATthan the current node. Among these nodes, the next node is chosen via 

a weighted-random choice. Each node is weighted with its path heat as a percentage 

of the sum of all nodes' path heats. 
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Transfer r ing Elements f r o m H o t to C o l d 

Once a heat search finds a node that is hot enough, it must decide on the number of 

elements to transfer back to the cold node. Each hot node has a maximum number of 

elements that it can give away and each heat search includes the maximum number 

of elements that the cold node wants. The number of elements transferred is the 

minimum of these two amounts. 

The maximum number of elements that a hot node is willing to give away 

depends on whether the hot node has excess elements or stale elements. In the 

excess element case, the maximum number is the number of excess elements, which 

is given by the formula: 

QUEUEJSIZE - THRESHOLDJil 

In the stale element case, the maximum number is all the stale elements plus half 

the remaining elements since those elements probably won't be dequeued anytime 

soon. The number of elements to transfer in this stale case is given by the formula: 

(QVEUESIZE - NUMJjTALE) 
2 

where NUMSTALE are the number of stale elements (the number of elements older 

than THRESHOLD STALES) A TA). 

The maximum number of elements requested by a cold node is the predicted 

number of elements that the cold node needs to satisfy dequeue requests for the 

next heat update period. This number is THRESHOLDJLOW. 

Once the minimum of these two maximums is calculated, the hot node takes 

out this number of its oldest queue elements and gives them to the cold node. 
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C h a p t e r 6 

Evaluation 

K E L P ' s evaluation did not strictly measure performance because the evaluation 

focused on validating K E L P ' s global behavior and because workload patterns for 

the data structures are unknown. 

This chapter describes the three areas that K E L P ' s evaluation focused on: 

the randomness of graphs built, the expected search length for the set, and the 

expected order of dequeued elements from the queue. 

6.1 Random Graph Evaluation 

The main purpose of the random graph evaluation is to ensure that K E L P ' s incre

mental graph building algorithm is indeed random. In particular, the constructed 

graph must allow random walks starting at any node to end up at a random node. 

To evaluate the graph, the simulation outputs a list of all nodes and their 

neighbors in the form of an adjacency matrix. The adjacency matrix is a sparse nxn 

matrix where each row represents a node. Each row has only d non-zero values. A 1 

represents a neighbor with the column number as the neighbor's node number and 
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a 0 represents a non-neighbor. 

These adjacency matrices are evaluated in two ways to show the randomness 

of the constructed graphs: an experimental approach where the results of many 

random walks were counted and a mathematical approach that shows the probability 

of random walks ending at each node. 

6.1.1 E x p e r i m e n t a l A n a l y s i s 

The experimental analysis uses the produced adjacency matrices to run and record 

the results of many random walks starting from node 1. The number of random 

walks started was such that the expected number of times that random walks ended 

at each node is 2000. This test was done on systems with different n, d, and h. Here, 

h denotes both the length of random walks used to build the graph and the length 

of random walks used to test the graph. 

The results are shown in Table 6.1. The table shows the resultant standard 

deviation to mean percentage (stdev/mean) for every n, d, and h tested. Smaller 

stdev/mean values are more random because the results of the random walks are 

closer to a perfectly random, uniform distribution. The table shows that a relatively 

small d and h are sufficient for a high degree of randomness; for example, a dot 9 and 

a h of 8 are sufficient to have a stdev/mean of 5.41that, for each n and d combination, 

random walks get more random as h increases (because the stdev/mean decreases). 

Longer random walks (larger /i's) provide more random results; however, 

there is a point where more steps does not make the results much more random. 

We have chosen this point to be the number of steps it takes for the stdev/mean 

percentage to drop to approximately 5%. This threshold was chosen because the 

percentage is sufficiently small for a high probability of randomness and because 
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n d stdev/mean (% n d 
h=4 h=5 h=6 h=7 h=8 h=9 h=10 h = l l 

100 7 6.13 3.36 3.25 2.16 
9 10.62 4.15 2.57 1.91 

1000 7 11.16 5.13 4.34 2.22 
9 12.89 4.90 2.64 2.25 

10000 T 1 11.33 4.67 2.72 2.39 
9 14.08 5.10 2.68 2.28 

100000 7 13.44 5.44 2.93 2.34 
9 14.63 5.41 2.75 2.31 

Table 6.1: Experimental analysis of random graph 

the percentage does not decrease much more with more steps. Using a system with 

10,000 nodes (n=10,000) and degree 7 [d=l) as an example, Figure 6.1 shows that 

stdev/mean decreases as h increases and then levels off once the threshold is reached 

(the threshold is shown as a shaded triangle). 

In Table 6.1, the threshold stdev/mean percentage for each n and d pair is 

highlighted in bold. These thresholds are graphed out in Figure 6.2. The solid 

parts of the lines come from the experimental results while the dotted parts of the 

lines are extrapolations of the data for larger n's. The figure shows that threshold 

h increases logarithmically as n increases (n is shown logarithmically on the y-axis). 

The figure also shows that h decreases as d increases (the higher degree line (d=9) 

is left of the lower degree line (d=7)). These results show that K E L P successfully 

creates random graphs with the desired random walk properties. 

6.1.2 M a t h e m a t i c a l A n a l y s i s 

The mathematical analysis uses adjacency matrices to count the number of times a 

random walk can end up at each node and presents those numbers as probabilities. 

This analysis is an iterative process that begins with node 1 as the current location 
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Figure 6.1: Increasing h for randomness 

4 5 6 7 8 9 10 11 12 13 

Number of Hops (h) 

Figure 6.2: Threshold /i's for randomness 
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1 f o r i = l:num_hops 
2 c u r r _ l o c = M * c u r r _ l o c ; 
3 walk_count = walk_count*degree; 
4 W = [W c u r r _ l o c / w a l k _ c o u n t ] ; 
5 end 

Figure 6.3: Mathematical Analysis of Random Graph 

of all possible random walks. Each iteration of the process represents a step in the 

random walk where all nodes reachable from the current locations become the new 

current locations. The number of times a node is reachable is accounted for and the 

probabilities that each node will be reached is calculated by dividing each node's 

count by the total number of possible endpoints. 

This mathematical analysis is done with a matlab program whose main iter

ative loop is shown in Figure 6.3. The variable numJiops is the number of random 

walk steps to test. Vector currJoc begins as [1 0 ... 0] to represent starting at node 

1. Matrix M is the transpose of the adjacency matrix. Line 2 is how currJoc gets 

updated with the locations of all possible random walks at a particular step. Vari

able walk-count stores the total number of possible random walks up to the current 

step, which is why it grows by degree power on each iteration. Finally, matrix W 

is augmented with a vector containing the probabilities that each node is a random 

walk endpoint. 

Formally, this analysis is known as a Markov chain. In [4], Aldous states that 

the analysis will clearly show that Weventually converges to an uniform distribution. 

Mathematically, this means that the average variance of W[i] — u will decrease 

as i increases. Once uniform distribution is reached, the average variance stays 

approximately the same even though i increases. Here, i is the column number, 

which represents the number of steps taken so far, and u is the uniform location 
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vector [ l . . . l ] /n , which indicates that every node has the same probability of being 

a random walk endpoint. 

Figure 6.4 shows an example of the Markov chain analysis converging to the 

uniform distribution for system with n=10000, d=9, and h=7. The x-axis represents 

the number of steps and the y-axis is logarithmically scaled to represent the average 

variance. The decreasing average variance with the increasing number of steps 

indicates that random walks get more random with more steps. The flattening out 

of the average variance indicates that more steps after this point do not make the 

random walk any more random. 

i i i i i 
0 1 0 2 0 3 0 4 0 

Number of Steps 

Figure 6.4: Example of Markov chain analysis 

This mathematical analysis shows that graphs built by K E L P exhibit desired 

random graph properties. The example in Figure 6.4 shows that more than 30 steps 

are needed to converge to an uniform distribution, but the experimental analysis 
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shows that only 8 steps are needed for fairly good randomness with this system 

configuration. Additional steps after the experimental numbers do not make the 

results much more random because the average variance is already very small (1.50 X 

10~ 8 for 8 steps). Hence, the threshold number of steps given by the experimental 

analysis is sufficient for K E L P ' s randomness requirements. 

6 .1.3 R a n d o m G r a p h C o n c l u s i o n s 

Our simulation shows that K E L P ' s random graph building algorithm allows random 

walks to find random nodes quickly for system sizes up to 100,000 nodes. These 

results predict that the random graph will scale to much larger sizes because the only 

component of the random graph that depends on n is the length of the random walk. 

The length of the random walk, h, grows logarithmically with n, but the relative 

cost of actually decreases as n increases (mathematically speaking, log n/n —>• 0). 

Furthermore, h can be made smaller if the system has a larger d. 

6.2 Set Evaluation 

The purpose of the set evaluation is to compare the length of simulated set searches 

to their expected lengths. To evaluate this, the simulation runs tests for different 

samples of 1000 nodes that vary the hint-propagation expander depth and the num

ber of evenly-sized groups in each set. Each test sends out 10,000 searches with 

each group being searched for the same number of times. Each node is also the 

starting point for the same number of searches. The lengths of all the set searches 

were recorded and the average was compared to the expected set search lengths. 

The expected search set search length is given by the following equation and 

probabilities: 
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E(Set Search Length) -
Pr(x) 

Pr(x) = 1 - Pr(x) 

_ ^ _ _ gifp'jE(Number of Hints in List) 

where 

x = node contains hint 

E(Number of Hints in List) = % Coverage x n 

Table 6.2 shows the expected set search lengths for the different search pa

rameters: group size percentage (gsp) and % coverage along with its corresponding 

e and p. The symbol e denotes the expander depth used and the symbol p denotes 

the partial expansion, which is the number of neighbors to propagate to after the 

expander has reached e levels deep. 

gsp 

% Coverage (e,p) 

gsp 0.1% 
(0,0) 

0.8% 
(1,0) 

5.7% 
(2,0) 

10.6% 
(2,1) 

20.4% 
(2,3) 

30.2% 
(2,5) 

40.0% 
(3,0) 

20.0% 5 1.20 1.00 1.00 1.00 1.00 1.00 
10.0% 10 1.76 1.00 1.00 1.00 1.00 1.00 

2.0% 50 6.70 1.46 1.13 1.02 1.00 1.00 
1.0% 100 12.94 2.29 1.53 1.15 1.05 1.02 
0.2% 500 62.94 9.27 5.23 2.98 2.20 1.81 
0.1% 1000 125.44 18.04 9.94 5.42 3.83 3.03 

Table 6.2: Expected set search lengths 

Group size percentage is the percent of nodes in the system that each evenly-

sized group takes up. A gsp of 20% means that a group contains 20% of all nodes 
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in the system, so for a system with 1000 nodes, a gsp of 20% means that a group 

consists of 200 nodes that each have the same color. 

Percent coverage (% coverage) is the percent of nodes in the system that have 

a hint about a particular color. Percent coverage depends on the hint-propagating 

expander depth (e) and the partial expansion (p). The formula for the calculation 

is: 

d') + (de x p) 

% Coverage = -̂ =2 

n 

Percent coverage denotes the theoretical maximums for hint propagation because 

some nodes will receive the same hints more than once. 

As expected, Table 6.2 shows that higher % coverage and higher group size 

percentage cause shorter search lengths. For example, if groups consisted of only 

one node (gsp 0.1%) and no hints were propagated (% coverage 0.1%), then the 

search is expected to query every node in the system as shown with the spike in 

Figure 6.5 (expected length 1000). This example seems bad, but is a worst-case 

scenario. With just a few levels of hint propagation and slightly larger groups, the 

expected search length quickly becomes relatively short. This is shown in Figure 

6.6 where the expected set search length decreases quickly with a logarithmic scale 

on the y-axis. 

Results from our experiments of running 10,000 searches for every % coverage 

and gsp pair had at most a 14.84% relative error when compared to the calculated 

expected values; however, the average relative error was 4.57%. These results have 

a high relative error because the percentages that we deal with are so small, which 

results in a high variance. Variance is calculated with: 

Variance = -
Pr(x)2 
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% Coverage 4 U u /° 

Figure 6.5: Expected set search lengths (3D) 
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0 2 4 6 8 10 12 14 16 18 20 

Group Size Percentage (gsp) 

Figure 6.6: Expected set search lengths (2D) 

For example, a gsp of 0.02% and a % coverage of 0.8% results in a variance of 

approximately 300 (which is 30% for n=1000). 

These results show that the set works as desired and that the search length 

will be relatively small if % coverage and gsp are high enough. If these two percent

ages remain constant as n increase, then the set will scale perfectly. Moreover, the 

global behavior of the set would be well known. 

6.3 Queue Evaluation 

The main purpose of the queue evaluation is to show that dequeues return elements 

that are close to the oldest in the overall queue. The queue was tested by having 

many different enqueuers and dequeuers transfer data at constant rates from random 

nodes. Dequeue output was then analyzed to evaluate the relative order of dequeued 

46 



elements. 

The main property measured by the queue evaluation is called rank. Rank is 

a percentage that determines the order-wise oldest element in the queue (order-wise 

based on the F IFO order in which elements are enqueued). A rank of 100% means 

that a dequeue returned the oldest element in the queue while 0% means that a 

dequeue returned the newest element. Rank does not measure time, just the order 

in which elements are taken out of the queue. 

Table 6.3 shows the results of the main queue test, which has 10 randomly-

chosen enqueuers and 10 randomly-chosen dequeuers (enqueuers and dequeuers can 

be the same node). The test varies the number of nodes and the time between 

heat updates, t, which is measured in terms of the number of periods in between 

updates. In each period, each enqueuer and each dequeuer performs one operation 

each. Each row of the table shows the results of one test run for 12000 periods. The 

third column of the table contains the average rank of all dequeued elements with 

the standard deviation (s) shown in parentheses. The rank percentile columns of 

80+ and 90+ show the percentage of dequeued elements that are within the 20% or 

10% oldest ranked respectively. 

rank rank percentile 
n t avg(s) (80+) (90+) 

100 300 80%(19) 62.67% 51.90% 
600 82%(17) 68.89% 56.98% 

1200 83%(17) 52.46% 37.84% 
1000 300 84%(16) 71.45% 58.54% 

600 72% (23) 70.36% 57.36% 
1200 79%(19) 61.27% 52.81% 

•s - standard deviation 

Table 6.3: Queue evaluation 
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The queue evaluation shows several properties for the given workload pattern. 

On average, dequeues return the 20% oldest ranked elements in the queue more than 

60% of the time. Also, more than 50% of dequeues return the top 10% oldest ranked 

elements. Increasing n in this test did not affect rank because the absolute number 

of enqueuers and dequeuers did not change. Changing t also did not affect rank 

because the amount of data transferred between nodes is dependent on t: a higher 

t means more data is transferred. 

The results shown in Table 6.3 are workload dependent for 10 hot nodes and 

10 cold nodes all transferring data at a constant rate. A l l other nodes in the system 

are assumed to be locally balanced, which means that they are neither hot nor cold. 

Locally balanced nodes do not interact with other nodes, so adding more locally 

balanced nodes shouldn't affect the queue's performance. 

This evaluation shows that the queue performs fairly close to F I F O for any 

system size given this constant workload pattern. The evaluation also shows that 

the queue's transfer of excess data via heat works well to balance hot and cold nodes. 

The tested workload pattern may be unrealistic, but the queue cannot be tested for 

performance until realistic workload patterns are known. Once realistic workload 

patterns are known, the queue and heat parameters can be tuned to maximize the 

queue's performance. 
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C h a p t e r 7 

Related Work 

This section describes and compares three other projects and ideas that are related 

to K E L P . First, a system that is very similar to K E L P ' s set called Gnutella is 

discussed. Second, a project with the same goal of massive scalability called Globe 

is discussed. Finally, other uses of small-world networks related to the Internet are 

discussed. 

7.1 Gnutella 

Gnutella [1] is a decentralized, peer-to-peer file-sharing system. Nodes join Gnutella 

by first connecting to any node in the system. Then the joining nodes try to discover 

other neighbors by periodically sending out pings. Each Gnutella node can then 

share some of its own files and also search for other nodes' files by sending out 

expanders to query other nodes. Each expander is limited with a T T L (time-to-

live). 

Gnutella is very similar to K E L P ' s set except that Gnutella does not scale 

well. Both are decentralized, both are peer-to-peer, and both use expanders to 
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propagate and discover information. Both systems also rely on probability when 

searching for information. However, K E L P imposes a structure on the system's 

connectivity graph that provides characteristics of the graph, whereas Gnutella's 

graph structure is completely arbitrary so no characteristics can be found from it. 

The main difference between Gnutella and K E L P is that Gnutella does not 

scale massively. Scalability in Gnutella is limited to about 10,000 nodes because 

Gnutella tries to maintain a global property about the system - Gnutella periodically 

tries to discover the number of nodes in the system via pings. These pings take 

up approximately 50% of network traffic in the system, which limits Gnutella's 

scalability. 

7.2 Globe 

The Globe project (GLobal Object Based Environment) [13, 12] from Vrije Uni

versity is a wide-area distributed system that uses an object-based framework and 

distributed shared objects for developing massively scalable distributed applications. 

Globe's distributed shared object framework is meant to provide programmers with 

a standard mechanism for scaling and replication by providing a standard frame

work that all implementations conform to instead of having many different ad-hoc 

solutions such as different server and proxy caches. A scalable W W W service called 

GlobeDocs was prototyped 1. 

Globe shares two main goals with K E L P : achieving massive scalability and 

removing ad-hoc approaches to scalable solutions. First, both projects are meant 

to massively scale worldwide via the Internet. Second, both projects are meant to 

remove the ad-hocness in building scalable systems. Globe provides a general pro-

1See http://www.cs.vu.nl/steen/globe/ (1 Sep 00) 
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grammatic framework that separates policy from mechanism while K E L P provides 

an extensible, scalable infrastructure. 

Other than these goals, Globe and K E L P differ significantly. Globe is meant 

for many different services within the system (such as web servers) whereas K E L P 

is meant to support a global service that is aggregately provided by all nodes in the 

system. Also, Globe is not meant to support a decentralized, peer-to-peer service 

and Globe does not deal with global information. 

7 . 3 S m a l l - W o r l d N e t w o r k s 

Small-world networks have been related to the Internet in a couple ways. First, 

W W W hyperlinks connecting related sites have been shown to be a small-world 

network [3]. Second, it has been suggested that the Internet can be connected at 

the router level via a small-world network [2]. 

Currently, the Internet has small-world networks connecting computers at 

the web site level, but not at the router level. In [2], Summerfield suggests that the 

Internet could be connected via a small-world network by clustering local Internet 

service providers together and then randomly linking each of these clusters with a 

few others. K E L P also needs to be expanded to use small-world networks in this 

manner. This future work is discussed in the next chapter. 
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Chapter 8 

Conclusions and Future Work 

K E L P ' s key to massive scalability is to describe global behavior in a loosely coupled, 

decentralized system. Our simulations have shown that K E L P ' s random graph 

provides a scalable method of connecting nodes in the system such that any node 

can reach any other node in a relatively few hops. Coupling this randomness with 

the locality provided by clusters gives us a small-world network that massive scale 

systems can be built on top of. K E L P also provides set and queue data structures on 

top of the small-world network to make the process of building scalable applications 

less ad-hoc. These data structures facilitate large scale systems by providing loose 

semantics that require less coordination. 

Overall, K E L P has been shown to massively scale systems with its small-

world network connectivity. As the Internet becomes more ubiquitous, one can fore

see the need for large scale distributed systems that can take advantage of K E L P ' s 

massive-scale, decentralized system. 

Thus far, the K E L P project and simulation have verified that a small-world 

network facilitates scalability by providing the system with a means of determining 

some global behavior of the system. The next step in this project is to expand on 
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the infrastructure and data structures of K E L P and then implement a practical, 

highly-scalable system that uses K E L P . 

Our analysis has shown that random graphs provide the properties that 

systems can use to massively scale. Now, locality needs to be integrated into the 

system to provide the benefits of small-world networks. 

More data structures need to be designed. For example, a spanning tree for 

broadcasts could be useful in reducing the overhead of expanders. 

Also, the data structures need to be tested against a real workload. Given 

a particular application, the data structures and their parameters can be modified 

to achieve optimal performance. For example, it may be better to transfer every 

second element from a hot node to a cold node instead of just the oldest few. 

Finally, K E L P ' s capabilities need to be demonstrated with a practical ap

plication. One possible application is to design a massively scalable peer-based 

file-sharing system for the Internet. This system would be like Gnutella, which al

lows peer-to-peer computers to share files, except K E L P ' s peer-based file-sharing 

system would be able to scale to millions of computers while Gnutella only scales 

to 10,000 nodes. 

Another application that would demonstrate K E L P ' s capabilities is a name 

service that facilitates millions of mobile devices with dynamic network addresses. 

Such a system would be useful because mobile, network-capable devices are becom

ing more popular and DNS cannot handle such frequent name changes. 
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