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Abstract 

Collaborative filtering is the process of making recommendations regarding 
the potential preference of a user, for example shopping on the Internet, based 
on the preference ratings of the user and a number of other users for various 
items. This thesis considers the problem of symmetric collaborative filtering 
based on explicit ratings. To evaluate the algorithms, we consider only pure 
collaborative filtering, using given ratings and excluding other information 
about the people or items. 

Our approach is to predict an active user's preferences regarding a par­
ticular item by using other people's ratings of that item and other items rated 
by the active user as noisy sensors. The noisy sensor model uses Bayes' the­
orem to compute the probability distribution for the active user's rating of a 
new item. We give two variants for learning the noisy sensor model: one, for 
explicit binary rating data; and the second, for explicit multi-valued rating 
data. The model for binary rating data is based on Bayesian learning. Its 
performance motivate us to further explore the use of noisy sensor model for 
multi-valued rating data. 

We give two variant models for multi-valued rating data: in one, we 
learn a linear model of how users rate items; in another, we assume different 
users rate items identically, but that the accuracy of the sensors must be 
learned. We compare the two models of multi-valued rating data with state-
of-the-art techniques and show how they are significantly better whether a 
user has rated only two items or many. We report empirical results using the 
EachMovie database of movie ratings. We also show that by considering the 
items similarity along with the users similarity the accuracy of the prediction 
increases. 
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Chapter 1 

Introduction 

1.1 Information Filtering 

In today's world, filtering vast amount of information has become an impor­

tant part of daily life for an increasing number of people. The amount of 

information available through books, movies, news, advertisements, and in 

particular, on-line sources such as email, Usenet News, and Web sites, has 

become enormous and is considerably more than any one person can absorb. 

The World Wide Web has emerged as a relevant electronic marketplace. 

It is no longer feasible for a person to filter through this sea of information 

unaided, and to quickly and conveniently find the most interesting and relevant 

information to them. The situation is worsening. In response to the challenge 

of information overload, information filtering techniques are sought to help 

people quickly identify what will likely be of most interest to them. 

There are two major approaches to information filtering: content- based 

filtering and collaborative filtering. 
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1.1.1 Content-based Filtering 

Content-based filtering techniques filter the information based on their content. 

For example, in text documents it compares the contents of text documents 

with a user's profile (preferences) and selects documents whose contents match 

the user's profile. Examples of these systems include kill files (used to filter 

out advertising), e-mail filtering software (which sorts e-mail into categories 

based on sender information or based on keyword matches in the mail fields). 

The techniques used in content-based filtering can vary greatly in complexity. 

Keyword-based search is one of the simplest techniques that involves matching 

different combinations of keywords (sometimes in boolean form). Content-

based filtering does not depend on having other users in the system. However, 

there are some limitations to content-based filtering [SM95] . 

Its primary limitation is its lack of inherent methods for finding related 

documents not specified by the user. Since in general all information about 

a user's prefernces is obtained from material that the user has seen, the user 

cannot specifically call for items that he is not aware of already. In practice, 

additional hacks must often be added to content-based filtering. 

Another problem is that the items must be in some machine parsable 

form, or attributes must have been assigned to the items by hand. With 

current technology, media such as sound, photographs, art, video or physical 

items cannot be analyzed automatically for relevant attribute information. 

Often it is not practical or possible to assign attributes by hand due to the 

limitation of resources. 

Finally, current content-based filtering makes recommendations based 

on analytical criteria, such as the frequency of a keyword used in the docu­

ments, but it knows nothing about the quality of the documents. For example, 
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it cannot distinguish between a well written and a badly written document if 

both documents happen to use the same keywords. 

1.1.2 Collaborative Filtering 

Collaborative filtering techniques filter items for a user based on human judge­

ments, not on analytical criteria, as in content-based filtering. The user for 

whom we are predicting a rating is called the active user. It uses the knowl­

edge of many users to make predictions about individual user preferences. It 

automates the process of word-of-mouth by which people recommend products 

or services to one another [SM95]. Before the existence of automated infor­

mation filtering systems, we may have sought the recommendations of friends 

for filtering the information. Collaborative filtering assists and augments this 

process by relying on potentially thousands of other people, and considering 

potentially thousands of different items. 

Collaborative filtering systems build a database of user ratings of avail­

able items. Users of collaborative filtering systems usually rate items they 

have experience with in order to establish a profile of their interests. The col­

laborative filtering system then matches an active user to people with similar 

interests to make a recommendation for the active user. People's ratings can 

be explicit or implicit. Explicit ratings require that the users rate the items 

with a score, rank, or other classification of the item. Implicit ratings are 

collected by electronic agents, which monitor the user's behavior. This can 

be accomplished for example, by timing visits to sites using cookie files and 

history files, or by watching the user's browsing activities, such as save and 

print operations. Collaborative filtering enables the user to find new items 

that she may be interested in by drawing from the preferences of like-minded 
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people. 

In collaborative filtering, the main premise is that the active user wi l l 

prefer items which like-minded people prefer, or even that dissimilar people 

don't prefer. It relies on the fact that people's preferences are not randomly 

distributed; there are patterns within the preferences of a person and among 

similar groups of people, creating correlation. 

This is best illustrated by example. Imagine three users: Mike , David 

and Br ian have been asked to give their three favorite musicians. 

Mike likes: 

• Elvis 

• Buddy Hol ly 

• Li t t le Richard 

David likes: 

• J i m m y Hendrix 

• James Brown 

• Aretha Frankl in 

Br ian likes: 

• Li t t le Richard 

• E lv i s 

• Jerry Lee Lewis 
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Collaborative filtering compares their preferences and finds that Mike 

and Br ian are similar, it then swaps each man's prefernces: Mike, you may 

like Jerry Lee Lewis; Brian, you may like Buddy Holly. If people's preferences 

are not correlated, then such predictions can not be made. 

Collaborative filtering can be formalized as: given a set of ratings for 

various user-item pairs, predict a rating for a new user-item pair. It is inter­

esting that the abstract problem is symmetric between users and items. 

Collaborative filtering has been a very lively research area in recent 

years. Several collaborative filtering algorithms have been suggested, ranging 

from binary to non-binary rating, implici t and explicit rating. Most com­

parisons to date are empirical in nature [BP98, H K B R 9 9 , RIS+94, B H K 9 8 , 

SM95, SKR99] . Init ial collaborative filtering algorithms were based on sta­

tistical methods using correlation between user preferences. Collaborative fil­

tering problem is not a standard machine learning problem because the data 

available is very sparse and also there is no other information about the users 

and items available except their ratings. Recently some researchers have used 

machine learning methods [BP98, UF98] for collaborative filtering algorithms. 

These methods essentially discover the hidden attributes for users and items, 

which explain the similarity between users and items. 

Collaborative filtering is a key technology used to bui ld Recommender 

Systems on the Internet. It has been used by recommender systems such 

as Amazon.com — a book store on the web, CDNow.com — a C D store 

on the web, and MovieFinder .com — a movie site on the internet [SKR99]. 

Amazon.com suggests books to customers based on other books the customers 

have told Amazon they like. CDNow.com helps customers choose CDs to 

purchase as gifts, based on other CDs the recipient has liked in the past. 
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1.2 Contributions 

Most of the approaches suggested for collaborative filtering are asymmetric 

in nature, meaning they either attempt to find similar users based on their 

preferences of items (e.g., the GroupLens system [RIS+94]), or they attempt to 

find similar items based on user preferences (e.g. the Bayesian network model 

described in [BHK98]). However, the abstract problem is symmetric between 

users and items. There is no convincing reason to use only user similarity or 

item similarity. In this thesis we show that a symmetric collaborative filtering 

technique using both user and item similarity offers significant advantages over 

asymmetric techniques. 

In this thesis we focus on symmetric collaborative filtering. We propose 

and evaluate a probabilistic approach based on a noisy sensor model. We 

describe how a collaborative filtering problem could be solved using the noisy 

sensor model. Our approach is based on the idea that to predict a user rating 

for a particular item, we can use all those people who rated that item and other 

items rated by that user as the noisy sensors. We view the noisy sensor model 

as a belief network. The conditional probability table associated with each 

sensor node reflects the noise in the sensor. After learning the noisy sensor 

model, or the conditional probability table, associated with each sensor node, 

we use Bayes' theorem to compute the probability distribution for the active 

user's rating of a new item. 

There are many ways of learning the conditional probability tables asso­

ciated with each sensor node. Here we give two variants of the general idea for 

learning the noisy sensor model: one, for explicit binary rating data; and the 

second, for explicit multi-valued rating data. Algorithm AlgoBayes, based on 

Bayesian statistics (Bayesian Learning), is for binary rating data. AlgoBayes 
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is based on the assumption that two users are similar if they rate an item 

the same. We use the maximum a posteriori hypothesis for computing the 

similarity between two users, given their preferences over co-rated items. We 

show that the performance of AlgoBays improves when we use both items and 

users as noisy sensors, which motivates us to further explore the noisy sensor 

model for multi-valued rating data. 

The algorithms (AlgoEqual, AlgoLinear) for multi-valued rating data 

are based on assuming a linear relationship with Gaussian error between users 

and items. In AlgoLinear we learn a classical linear regression model of how 

users rate items, and in AlgoEqual we assume that the different users rate 

items the same, but the accuracy of the sensor needs to be learn. 

We compare the two models of multi-valued rating data with state-

of-the-art techniques and show how they are significantly better in all cases 

ranging from cases where a user has only rated two items, to cases where the 

user has rated many items. We report empirical results on the EachMovie 

database of movie ratings. We show that symmetric collaborative filtering, 

which employs both users and item similarity, offers better accuracy than 

asymmetric collaborative filtering. 

1.3 Outline of the Document 

The rest of the thesis is organized as follows. Chapter Two presents related 

work. Previous research in this area is discussed. Chapter Three presents a 

noisy sensor model and its application to collaborative filtering. The algorithm 

AlgoBays for binary rating data and its results on the EachMovie database are 

discussed. Chapter Four presents the use of a noisy sensor model for multi­

valued rating data. Algorithms AlgoLinear and AlgoEqual are discussed. The 
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empirical analysis of results and comparison between algorithms are discussed. 

Chapter Five presents conclusions and possibilities for future work. 
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Chapter 2 

Related Work 

Collaborative filtering involves making predictions about a person's prefer­

ences for a particular item, using pre-existing information about this user in 

conjunction with other users' information. Collaborative filtering incorporates 

the assumption that by finding similar users and examining their behavior or 

preferences, we can make useful recommendations for an active user. 

The concept of collaborative filtering originates from the work of Gold­

berg et al. [GNOT92] in the area of information filtering. Tapestry is one of 

the first collaborative filtering systems used for recommending electronic doc­

uments, such as e-mail and Netnews. Tapestry was developed at Xerox Palo 

Alto Research Center [GNOT92]. In this system users could attach annota­

tions as they read documents. Annotations became accessible as virtual fields 

of the documents, and the filters that searched the annotations for interesting 

articles were constructed by the end user, using a special query language de­

signed for this task. The query could involve many different criteria, including 

keywords, subject, author and annotations given to the document by other 

people. The collaborative filtering provided by Tapestry was not automated 

but the recommendations of other people were taken into account. In this sys-
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tem the user had to specify other users with whom she would share interests 

inorder to obtain the recommendations [GNOT92]. 

GroupLens [RIS+94], a neighborhood-based algorithm, is one of the best 

known early automated collaborative filtering systems for recommending the 

articles of Usenet news. GroupLens used the Pearson correlation coefficient to 

weight user similarity, used all those users who rated the item j , and computed 

a weighted average of deviations from the user's mean: 

Sui represents the prediction for the user u for item z, n is the number 

of users, Su represents the average rating for user u and rau is the similar­

ity between the active user and user u as defined by the Pearson correlation 

coefficient. 

where the summations over m are over the co-rated items, items rated 

by both users a and u. 

The Ringo music recommender [SM95] expanded upon the GroupLens 

algorithm. Shardanand and Maes [SM95] compared four different recommen­

dation algorithms based on the mean errors in prediction using each algo­

rithm. They claimed better performance by computing correlations using a 

constrained Pearson correlation coefficient: 

where 4 was chosen because it was the midpoint of their seven-point rat­

ing scale. Ringo considers only those neighbors whose correlation was greater 

r, 
T.T=i (Sai-A)*(Sui-A) 

v t e i (Sai - 4)2 * £r=i (Sm - 4)2 
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than a fixed threshold. To generate predictions, Ringo computed a weighted 

average of ratings from all users in the neighborhood. 

Breese et al. [BHK98] proposed the use of vector similarity, based on 

vector cosine to weight user similarity. This method is often employed in 

the field of information retrieval for measuring the similarity between two 

documents. A weighted average of ratings from all users in the neighborhood 

is used to generate the prediction. The authors also performed an empirical 

analysis of neighborhood-based collaborative filtering algorithms. The authors 

found that vector similarity does not perform as well as Pearson correlation 

[BHK98]. 

Neighborhood or Correlation based algorithms predict the active user 

rating as a similarity-weighted sum of the other users ratings. These algorithms 

are simple, work reasonably well in practice, and new data can be added easily 

and incrementally. They are also referred to as memory based algorithms 

[BHK98]. These algorithms become computationally expensive as the size of 

the database grows. 

All the above mentioned neighborhood-based algorithms [RIS+94, SM95, 

BHK98] are asymmetric in nature. They implement only users' similarity in 

making predictions. 

These algorithms do not account for what amount of trust can be placed 

in a similarity measure with a neighbor. It is not uncommon in a collaborative 

filtering system for the active user to have highly similar neighbors assessed 

on a very small number of co-rated items (often three to five co-rated items). 

The more co-rated items available for comparing the opinions of two users, the 

more we can trust that the computed similarity is representative of the true 

similarity between them. While trying to fit linear relationship, one can often 

get a good linear fit with small amount of data, even though the sensor is not 
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a reliable sensor; one may have a better sensor with more data, but not such a 

good linear relationship. Our prosposed noisy sensor models for collaborative 

filtering address this problem. 

Breese et al. [BHK98] proposed several model based collaborative filter­

ing algorithms. In model based collaborative filtering, first the user database 

is used to learn a model of users, items, and/or ratings; predictions are then 

made using the model. The authors described and evaluated two probabilis­

tic models for collaborative filtering: cluster models and Bayesian networks. 

In the cluster model, users with similar preferences are clustered together. 

This model structure is a naive Bayesian network, wherein a user's preferences 

regarding various items are independent given his class membership. The 

model's parameters, the number of clusters, and the conditional probability 

of ratings given class are estimated from the training data. In the Bayesian 

network, nodes correspond to items in the database. The state of each node 

corresponds to the possible ratings for that item. The structure of the network 

and the conditional probabilities are learned from the training data. Breese et 

al. showed that a Bayesian network approach outperformed correlation-based 

and cluster-based methods on an implicit rating database. 

Ungar and Foster [UF98] suggest a clustering methods for collaborative 

filtering. Both users and items are classifieds into clusters. For each cluster of 

users, the probability that they like each cluster of items is estimated. They use 

K-means clustering and Gibbs sampling algorithms for clustering and model 

estimation. To compare the algorithms, they use both synthetic and real data. 

Poole et al. [PHBOO] proposed symmetric collaborative filtering for 

binary ratings data. They proposed two alternative algorithms for clustering 

the users and items based on their similarity: Clustering with Decision Trees 

and Clustering with Tables. 
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Memory requirements for model based algorithms are generally less than 

for storing a full database. Predictions can be calculated quickly once the 

model is generated, though the time needed to learn the model may be pro­

hibitive, and addition of new data may require a full recompilation. 

Pennock et al. [PHLGOO] propose a collaborative filtering algorithm 

called Personality Diagnosis (PD). This algorithm is based on a probabilistic 

model of how people rate items. In this approach it is assumed that each user 

reports ratings with Gaussian error. Given the active user's known ratings for 

the items, the probability that the user has the same personality type as every 

other user is computed. After computing the personality type for an active 

user, the probability distribution of the active user's rating for a new item is 

computed, and the most probable rating returned as the predicted value. Au­

thors present the empirical evaluation of PD with other neighborhood-based 

and model based algorithms on the Eachmovie and CiteSeer databases. They 

show that PD makes better predictions than four other algorithms (Correla­

tion, Vector Similarity, Bayesian Network, and Bayesian Clustering). 

Personality Diagnosis makes a strict assumption that the variance a2 of 

the normal distribution of a user's rating for an item is the same for all users: 

this parameter was tuned to maximize accuracy. 

13 



Chapter 3 

Symmetric Collaborative 

Filtering Using The Noisy 

Sensor Model 

3.1 Filtering Problem and Mathematical 

Notation 

Let ./V be the number of users and M be the total number of items in the 

database. S is a N x M matrix of all user's ratings for all items, Sui is the 

rating given by the user u to item i. In collaborative filtering, 5, the user-

item matrix, is generally very sparse since each user will only have rated a 

small percentage of the total number of items. With this formulation, the 

collaborative filtering problem becomes predicting those Su{ which are not 

defined in S, the user-item matrix. The active user is denoted by a such that 

a e { l , 2 , . . . , i V } . 

Let the ratings be on a cardinal scale with ra values that we denote 
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ui, V2, • • •, vm. Then each rating Sui has a domain of possible values (vi, v2,..., v. 

In our equations, it is always assumed that we perform operations on those 

values of Sui that are exist. 

3.2 Noisy Sensor Model 

We propose a simple probabilistic approach for symmetric collaborative fil­

tering using the noisy sensor model [RN95] for calculating the rating by the 

active user a of an unseen item j, based on the ratings of those users who 

rated the item j, and the observed ratings of the active user on other items. 

We designate all those users who rated the item j and all other items rated 

by active user a to be the noisy sensors. 

The noisy sensor model is depicted as a naive Bayesian network in 

Figure 3.1. The direction of the arrow shows that the prediction of active 

user a for item j "causes" the sensor u to take on a particular prediction 

for item j and similarly, the prediction of active user a for item j "causes" 

sensor a to take on a particular prediction for item k. The sensor model is the 

conditional probability table associated with each sensor node. The noise in 

the sensor is reflected by the probability of incorrect prediction; that is, by the 

conditional probability table associated with it. To make the model simple we 

use the independence assumption that the prediction of any sensor for item j 

is independent of others given the prediction of active user a for item j. 

We need the following probabilities for Figure 3.1: 

Pr (Suj\Saj) : the probability of user u's prediction for item j , given 

the prediction of active user a for item j. 

Pf (Sak\Saj) '• the probability of active user a's prediction for item k, 

given the prediction of active user a for item j. 
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Figure 3.1: Naive Bayesian Network Semantics for The Noisy Sensor Model 

Pr (Saj) • the prior probability of active user a's prediction for item j. 

We compute the prior probability distribution Pr (Saj = Uj) of the ac­

tive user's rating for item j by the fraction of rating in the training data 

set, where Vi G (t>i, v2, • • •, vm). 

Given the conditional probabilities table for all noisy sensors, we can 

compute the probability distribution for the active user's rating of an unseen 

item j using the noisy sensor model, described in Figure 3.1. By applying 

Bayes' rule we can have the following: 

Pr (Saj\ (5*1 j , • • • , SNJ) A (Sal, • • • , SUM)) 

oc Pr (Saj) • itU Pr (SUJ\Saj). TltLi Pr (Sak\Saj) 

We have showed how a collaborative filtering problem could be solved 

using the noisy sensor model, now we need the probability table for probabil­

ities Pr (Suj\Saj) and Pr (Sak\Saj) to make the resultant recommendation. 

Consider first the problem of estimating Pr (Suj\Saj), which is the prob­

lem of estimating user it's rating for item j given active user a's rating of it. 

Generally, in collaborative filtering the data available is very sparse. There-
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fore, to compute the probability table from sparse data we need to make some 

prior assumptions about the relationship. In this thesis we propose three dif­

ferent algorithms for learning the noisy sensor model. The first algorithm, 

AlgoBayes, the simplest algorithm for explicit binary rating data, is based on 

Bayesian learning. The second algorithm, AlgoLinear, for multi-valued rating 

data, is based on a linear relationship with Gaussian error between the pref­

erences of users and similarly between the preferences received by items. The 

third algorithm AlgoEqual, a variant of AlgoLinear, is based on the idea that 

different users rate items the same, but the accuracy of the sensors need to be 

learned. 

3.3 Algorithm AlgoBayes 

The algorithm AlgoBayes is based on Bayesian learning. Suppose that active 

user a and user u co-rated n items, and that their ratings over n co-rated items 

are denoted by n pairs of observations (xi, yi), (x2, y2), • • •, (xn, yn). Then xi 

denotes the rating given by user a and y\ denotes the rating given by user u 

for the Ith observation. We assume the binary ratings as 1 and 0. To compute 

the probability table Pr (Suj\Saj) we need to learn two parameters. 

Generally, in collaborative filtering the data available is very sparse. 

Therefore, to reduce the number of parameters we assume the following: 

Pr (Suk = l\Sak = 1) = Pr (Suk = 0\Sak = 0) = 8au, for random k 

where M is the total number of items in the database. 

Now, we have the following: 

Pr (Suk = Sak) = 0au, for random k 

Pr (Suk 7̂  Sak) = 1 - 9au, for random k 

We want to find the maximum a posteriori value of the parameter 6au 
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given the ratings of user a and u over all co-rated items. Pr ((Sak — Suk) \D) 

is the posterior probability of users a and u for rating the items identical. It 

reflects our confidence that users a and u will rate the items same after we 

have seen the data D (ratings given by users a and u over n co-rated items). 

Using Bayes' rule we can write the posterior probability of similarity thus: 

P nq q \\m Pr(D\(Sak = Suk))*Pr((Suj = Saj)) 
Pr{{Sak = Suk)\D) = p~r~{D) 

Pr (D) is a normalizing constant and Pr (Suj — Saj) is the prior prob­

ability of users a and u for rating the items same. We need a method to find 

the prior distribution of probability Pr (Sak — Suk). We assume the beta dis­

tribution for the prior probability as it is convenient and most commonly used 

distribution [Hec95]. 

Pr(Sak = Suk) = 6?u*(l-9an)K 

where K > 0 is the parameter of beta distribution. 

Now, 

Pr (D\ (Sak = Suk)) = n?=i Pr (D,\(Sak = Suk)) 

The datacase D\ = (x^yi) denotes the rating given by users a and u to 

the Ith co-rated item. 

Pr (Di\ (Sak = Suk)) = Pr (xi,yi, \ (Sak = Suk)) 

The ratings of users a and u are not independent given that they rate 

the items same. Hence, the above equation can be written thus: 

Pr (Di\ (Sak = Suk)) = Pr (xi\yi A (Sak = Suk)) * Pr (yi\ {Sak = Suk)) 

The probability Pr (yt\ (Sak = Suk)): probability of user u's rating for 

item / given that users a and u rate the items same, is a constant because user 

a's rating is not known. It can be computed as the frequency of the rating yi 

in the training set. The probability Pr (x/|t// A (Sak = Suk)) is 0au or 1 — 6au 
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depending upon whether the ratings x\ and y\ are the same or not. 

#au*constant if xi = yi 
Pr(Dl\(Sak = Suk)) = \ . 

(1 — 9au) *constant if xi ^ yi 

If users a and u give the same ratings on / items and different ratings 

for m items, the posterior probability denoted by M 

Pr((Sak = Suk)\D) = M 

= Pr(D/(Sak = Sk))*Pr(SUJ=Sa3) = c m s t a n t + C K ^ _ K 

Pr (D) 

To find the maximum a posteriori value of the parameter 9au we differ­

entiate M w.r.t 0au and set equal to zero. The maximum a posteriori value of 

6au is given as: 

6 l + K 

U a u ~ l + m + 2K 

The value of 0au shows how similar the users a and u are. The Bayesian 

learning approach for computing 0au, the maximum a posteriori hypothesis, 

takes into account the prior probability which helps us in two ways. First, if 

users a and u give the same ratings over all co-rated items then the probability 

table of the sensor u will be deterministic for K = 0 ( but K > 0 avoids this 

problem). We do not want a deterministic sensor in our model as it discounts 

the effect of other sensors and the deterministic prediction of the active user 

a for unseen item j will be based on only one sensor. Second, maximum a 

posteriori hypothesis approach does not enable the best sensor based on fewer 

co-rated items. For example, if users a and u rated 4 items together and 

I = 3,m = 1. If users a and v rated 12 items together and / = 9,m = 3 

then 6av = .71 and 6au = .66 for K = 1 and 9au = 9av for K = 0. For 

K = 1, 8av > 6au, which means user a is more similar to user v than to user 
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u. Therefore, clearly the best or most reliable sensors will be based on more 

co-rated items. On the other hand, if we use a maximum likelihood technique 

for computing the value of 9au then the above mentioned problem will arise, 

as it does not consider the prior probability. 

We compute 9au between the active user and all other users who have 

rated the item j and also between the item j and all other items rated by 

the active user a. To find the reliability of the noisy sensor we use the value 

of 9au; the greater the value of 9au the more reliable the noisy sensor. Note, 

for reliability we consider only similarity, not dissimilarity. We use the best 

U user noisy sensors and best / item noisy sensors for computing the active 

user a's prediction for unseen item j. The parameters setting for U and / is 

explained in the next section. 

To predict a rating (for example, to compare it with other algorithms 

that predict ratings), we predict the expected value of the rating. The expected 

value of the rating is defined as follows: 

E (Saj) = Pr (Saj = 1| (Sij, . . • , SNj) A (S^ , . . . , SaM)) * 1 + 

Pr (SaJ = 0| (Sij, • • • , SNj) A (Sal, • • • , SaM)) * 0 

3.4 Results for AlgoBayes 

There are no other explicit binary rating collaborative filtering algorithms to 

compare with, nor any explicit binary rating data to measure the performance 

of AlgoBayes. To test AlgoBayes we use the EachMovie database, available 

from the Digital Equipment Research Center. The EachMovie database con­

tains ratings from 72,916 users for 1,628 movies, elicited on a integer scale 

from zero to five. We binarised the original rating data using a split point 

of 2.5. The ratings > 2.5 are mapped to 1 and ratings < 2.5 are mapped to 
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0. We extract the subset of data for a restricted number nu of users and nm 

of movies. The resulting data sets are partitioned into the training and test 

sets by randomly selecting a fraction of ratings and moving them into the test 

set, keeping all remaning ratings as the training set. We created five subsets 

from the data by selecting one thousand users and one thousand movies. We 

select one thousand movies and five sets of thousand users. We keep the same 

one thousand movies' in each subset but we select a different one thousand 

users. We also dreated two small subsets, one containing one hundred users 

and one hundred movies, and the other containing two hundred users and two 

hundred movies. We compare the performance of AlgoBayes with Correla­

tion [RIS+94] and Decision Tree [PHB00] using the average absolute deviation 

metrics explained in Section 4.3 of the next chapter. 

To see the effect of K on the performance of AlgoBayes we did exper­

iments with different values of K. Figure 3.2 shows the variation of average 

absolute deviation with user noisy sensors for different values of K. This ex­

periment was performed using best ten item noisy sensors: with K = 0, the 

performance of the algorithm is very poor. When we do not take the prior 

probability into consideration, AlgoBayes does not find good sensors. From 

Figure 3.2 we can not see clearly the performance of the algorithm for K > 0. 

Therefore, we show the performance of AlgoBayes for K = 1 to 3 in Figure 3.3. 

The average absolute deviation error with zero user noisy sensor, as shown in 

Figures 3.2 and 3.3, is based on the best ten item noisy sensors. The Figure 

3.3 shows that for the small number of user noisy sensors (for example 15) 

the performance of the algorithm is better with K = 3 and 4, but the aver­

age absolute deviation error fluctuates a lot with small number of users and 

when it stabilizes then the performance of the algorithm is best, with K = 1. 

However, the improvement in accuracy is on the third place of decimal. We 
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set the value of K as 1 for all further experiments reported in this section. 

0.81 

K=0 
0 K=1 
o K=2 

* K=3 
• K=4 

60 80 100 
user noisy sensors 

120 140 

Figure 3.2: Effect of K on algorithm AlgoBayes. This experiment was per­
formed using 7=10. 

Figure 3.4 shows the variation of average absolute deviation with best 

user noisy sensors for different numbers of best item noisy sensors for AlgoB­

ayes. It shows that the accuracy of AlgoBayes increases as we include items as 

noisy sensors along with the user sensors. It also shows that the average ab­

solute deviation error first decreases with the increase in number of user noisy 

sensors and then increases as more user noisy sensors are user for prediction. 

This is because the large number of user sensors results in too much noise for 

those user sensors that have good reliability. It shows that AlgoBayes gives 

22 



0.16 

0.148 
60 80 100 

user noisy sensors 

Figure 3.3: Effect of K on algorithm AlgoBayes. This experiment was per­
formed using I = 10. 

best accuracy with 10 items noisy sensors. With did experiment with all sub­

sets and found that AlgoBayes gives better accuracy with ten-to-twenty items 

and forty-to-seventy users as noisy sensors. We set the parameter U as sixty 

(sixty users noisy sensors) and I as ten (ten items noisy sensors) for AlgoBayes 

for the experiments following in this section. The parameters U and I depend 

on the database in case of EachMovie database the number of users are more 

than the movies and each user has rated only few movies because of this the 

number of best user noisy sensors are more than the number of best item noisy 

sensors. 
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Figure 3.4: The average absolute deviation as a function of the number of best 
user noisy sensors for different numbers of best item noisy sensors. 

Table 3.1 shows the results for AlgoBayes, Correlation and Decision 

Tree on EachMovie database. Table 3.1 shows that AlgoBayes works better 

than Correlation over all instances and better than Decision Tree over all 

1000 x 1000 instances. The results of AlgoBayes for symmetric collaborative 

filtering using a noisy sensor model are very good and motivate us to further 

explore the use of a noisy sensor model for multi-valued rating data. The 

application of a noisy sensor model for multi-valued rating data is presented 

in the next chapter. 
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Instances 
AlgoBayes 

Algorithm 
Decision Tree Correlation 

emlOO x 100 .242 .216 .321 
em200 x 200 .169 .152 .308 
emlOOO x 1000 — a .133 .145 .232 
emlOOO x 1000 - b .154 .161 .262 
emlOOO x 1000 — c .198 .228 .324 
emlOOO x 1000 -d .236 .245 .337 
emlOOO x 1000 — e .225 .240 .336 

Table 3.1: Average absolute deviation scores on the EachMovie data for Algo­
Bayes, Decision Tree and Correlation (lower scores are better). 
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Chapter 4 

Noisy Sensor Model for 

Multi-Valued Rating Data 

We have described the Noisy Sensor model and its application in a collabora­

tive filtering algorithm for explicit binary rating data in the previous chapter. 

However, very often one wants to make recommendations based on multi­

valued ratings data. To compute Pr (Suj\Saj), ra x ra probability table, where 

m is the possible number of ratings in multi-valued rating data, we need to 

learn ra2 parameters. However, the data available is very sparse and we need 

to make some prior assumptions about the relationship. To make the model 

simple or to reduce the number of learning parameters. Here, we assume that 

there is a linear relationship with Gaussian error between the preferences of 

users and similarly between the ratings received by the items. Because this is 

the simplest model as supported by Occam's razor [Mit97]. In this model 

we need to learn only three parameters, it reduces our problem of learning ra2 

parameters to three parmeters. 

Here we give two variants of the general idea for learning the noisy 

sensor model for explicit multi-valued rating data: one, where we learn a 
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linear relationship with Gaussian error between the preferences of users and 

between the ratings received by items (AlgoLinear); and another, where we 

assume that the different users rate items the same (the preferences of active 

user a and another user u are the same) and learn the variance of uesr u's 

prediction (AlgoEqual). 

4.1 AlgoLinear 

In AlgoLinear we learn the linear relationship with Gaussian error between the 

preferences of users and between the ratings received by items. Suppose the 

rating of the active user a (the independent variable) is denoted by x and the 

rating of the user u (the dependent variable) is denoted by y. Suppose that 

the active user a and user u co-rated n items and their ratings over n co-rated 

items are denoted by n pairs of observations (x\,yi) , (x2, y2), • • •, (xn, yn). We 

want to find a straight line which best fits these points. 

We use classical normal linear regression model to find the relationship 

between the preferences of the active user and other user. We assume that 

the mean of y can be expressed as a linear function of independent variable x. 

Since a model based on the independent variable cannot predict exactly the 

observed values of y, it is necessary to introduce an error term et-. For the ith 

observation, we have the following: 

yi = a + (3xi + a 

We assume that unobserved errors (ej) are independent and normally 

distributed with a mean of zero and the variance a2. Since y,- is a linear 

function of e8-, which is normally distributed, yi itself will also be normally 

distributed. We assume that the variance a2 is the same for all observations. 

The mean and variance of yx are given thus: 
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E (yi) = n = a + fixi 

var (yi) = a2 

For the ith observation, the probability distribution function may be 

written thus: 

P(y = Vi\x - xi) 
1 

exp 
-1 
2^2 V2Tra2 

where — a + fixi 

The joint probability distribution function or the likelihood of all the 

observations is the product of the individual P (yi/xi) over the entire observa­

tions. We denote the likelihood function by LF (a,{3, a2). 

LF(a,(3,a2) = UP^x;) 
i=l 

27T<72) 
wexp 

We apply the maximum likelihood method [Guj95] to estimate the un­

known parameters (a, f3,cr2). Maximizing the likelihood of LF is equivalent 

to maximizing the log likelihood of LF. The log likelihood of LF can be 

expressed thus: 

log LF = logf[P(yi\xi) 
i-l 

n 

t=i 

= - J log (2TT) - n- log (a2) - - L £ ( y , . - ( a + 0 xt)\ 
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Differentiating the above equation partially with respect to a, (5 and a2 

and setting equal to zero, we get the following values of the parameters: 

^ _ n E Vi ~ E ViXj 

n 

= -I>? 2 
n 

2 After calculating the parameters a, (3 and <7 we can write the proba­

bility distribution of the user u's preference for item j given the active user 

a's preference of item j as follows: 

Pv (Suj ûj'I'S'aj Xaj) — P (y — ̂ ujl^ — ̂ aj) 
1 

-exp 
-1 2 

— (xuj - (a + pxaj)) 
V2TTO-2 

After computing this probability distribution for all users who rated the 

item j, and for all the items rated by the active user a, we can compute the 

probability distribution of the active user's rating for item j using the noisy 

sensor model as described in the previous chapter. 

When the linear relationship exceeds the maximum value of the rating 

scale, we use the maximum value and when it is lower than the minimum value 

of the rating scale, we use the minimum value. 

To predict a rating (for example, to compare it with other algorithms 

that predict ratings), we predict the expected value of the rating. The expected 

value of the rating is defined as follows: 

m 

E(Saj) = J2Pr
 (^W = ' y ' l ( ^ l i ' • • • >£wj ) A (Sai, • • -,SaM)) * Vi 
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4.1.1 K dummy observations 

While trying to fit lines with sparse data, we often find a perfect linear rela­

tionship, even though the sensor isn't perfect. If there is a perfect fit between 

users a and u then the variance a2 will be zero according to the above cal­

culations. Therefore, the sensor u's prediction for item j will be perfect or 

deterministic; that is, the conditional probability table associated with sensor 

u will be purely deterministic. We do not want this for our noisy sensor model 

because the deterministic sensor will discount the effect of other sensors. 

We hypothesize that the above mentioned problem can be overcome 

if we add K dummy observations along with n observations (co-rated item). 

We assume that active user a and user u give ratings over K dummy items 

(K > 0) in such a way that their ratings for K dummy items are distributed 

over all possible rating pairs. For m scale rating data there are m 2 possible 

combination of the rating pairs. We compute the prior distribution of each 

rating pair by the frequency of that rating pair in the training data. That is, 

in the training data for all user pairs we count the occurrence of their rating 

pairs over their co-rated items and then we normalize this to compute the 

prior distribution each rating pair. We use the prior distribution of rating 

pairs for distributing the effect of K dummy points over all rating pairs like a 

hierarchical prior, which reduces our ability to guarantee that the ratings for 

K items are distributed overall possible rating pairs. 

For example, if users a and u co-rated 2 movies in EachMovie database. 

Suppose for the first movie the rating of user a is 1 and the rating of user u is 

2, and for the second movie the rating of user a is 3 and the rating of user u is 

5. So, the observed rating pairs are: (1,2) and (3,5). In EachMovie database 

the ratings are on a scale of 0 to 5. The possible number of rating pairs are 36 
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( (0,0) , (0,1), . . . , (5, 5) ). If the prior of each rating pair is same (i.e. prior = 

1/36) then effect of K = 1 (1 dummy point) on each pair is 1/36. Now, there 

is already one observed point at (1,2) and (3,5), therefore, the effect of (1,2) 

and (3,5) rating pair is (1 + 1/36) and the effect of the rest of the rating pairs 

is 1/36. 

For calculating the coefficients a, f3 and cr2 we need the values of Yuu 

Y x i , YxiVii Y xi a n d Y^f- Suppose h{ denotes the prior distribution of the 

ith rating pair and X{,Y{ denotes the x and y values of the ith rating pair. 

The expressions for Y Hi-, Y xn Y xiVi, Yx] a n d Ye] c a n then be written as 

follows: 

Y yt = YU y« + Yti (K * hi) * Yi 

= + (A' *hi)*Xi 

Y xiyi = £ ? = i xiVi + E;?i (K * hi) * XiYi 

Y x2 = YU x> + YT=i (K * hi) * Xi2 

Yef = Yti (Vi - « - M 2 + YT=i K *hi*(Yi-a- BXt)2 

We did experiments with different values of K and its effect on the 

performance, explained in the next section. 

4.1.2 Selecting Noisy Sensors 

To determine the prediction for an active user we could use all items and 

users, but we do not need to. Instead, we investigate using only the most 

reliable item and user sensors. For determining the reliability of the noisy 

sensors, we consider the goodness of fit of the fitted regression line to a 

set of observations, we use the coefficient of determination r 2 [Guj95], is a 

measure that tells how well the regression line is fitted to the observations. It 

measures the proportion or percentage of the total variation in the dependent 
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variable explained by the regression model, r 2 is calculated as follows [Guj95]: 

2 i —̂ 
r = 1 —2". 

E (yi - y) 

where y is the mean of the ratings of user u. 

The value of r 2 lies between 0 and 1 (0 < r 2 < 1). If r2 = 1, there exists 

a perfect linear relationship between the preferences of active user a and user 

u; that is, e; = 0 for each observation (co-rated item). On the other hand, if 

r 2 = 0, it means there is no linear relationship between users a and u and the 

best fit line is a horizontal line going through the mean y. We order the user 

and item noisy sensors according to r 2 . We use the best U user noisy sensors 

and best I item noisy sensors for making the prediction. The parameters 

setting for U and I is explained in the next section. 

4.1.3 Variant AlgoEqual of AlgoLinear 

The problem with AlgoLinear is that we are often fitting linear relationship 

with very little data (co-rated items). It may be better to assume a priori 

the linear model and then just learn the noise. The algorithm AlgoEqual is 

based on the idea that different users rate the items same. We assume that 

the preferences of active user a and another user u are the same; that is, the 

expected value of user it's preference of any item is equal to active user a's 

preference for that item. 

E (yi\x = Xi) = n = Xi 

We learn the variance of user it's prediction. The algorithm AlgoEqual 

can be derived from algorithm AlgoLinear by making the regression coefficients 
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a = 0 and 8 = 1. We also add the K dummy observations because the same 

problem can arise in AlgoLinear. 

We are not fitting the relationship between active user a and user u, but 

we assume an equal relationship. In this case it doesn't make sense to use the 

coefficient of determination r2 for finding the reliability of the noisy sensors. 

To find the reliability of the noisy sensor, therefore, we use the variance; the 

less variance the more reliable the noisy sensor. We use the best U user 

noisy sensors and best I item noisy sensors for making the prediction. The 

parameters setting for U and I is explained in the next section. The addition 

of K dummy point also helps in finding the good reliable sensors based on more 

co-rated items. For example, if two users have few co-rated items, the effect 

of K dummy points becomes significant and the variance will be more. For 

large n or more co-rated items, the effect of K dummy points is insignificant. 

We evaluate empirically both AlgoLinear and AlgoEqual with state-

of-the-art techniques on EachMovie database. The evaluation criteria, the 

various protocols, the dataset used in the analysis, and the experiments are 

all presented in the next section. 

4.2 Evaluation Framework 

The most common approach taken to evaluating the accuracy of collaborative 

filtering algorithms is the training and test set approach. In this approach, 

the dataset of users (and their ratings) are separated into two: a training set, 

which is used as the collaborative filtering dataset; and a separate test set, 

which is used to evaluate the accuracy of the collaborative filtering algorithm. 

We treat each user from the test set as the active user. To carry out testing, 

we divide the ratings for each test user into a set of ratings that we treat as 

33 



observed, Ia, and a set that we will attempt to predict, Pa. We attempt to 

predict the ratings in Pa using a CF algorithm, observed ratings, and training 

data. 

4.2.1 Metrics 

To evaluate the accuracy of collaborative filtering algorithm we use the follow­

ing metrics: 

Coverage metrics evaluate the number of items for which the col­

laborative filtering algorithm could provide the prediction. The coverage is 

computed as the percentage of items for all users of which a prediction is re­

quested and for which the system is able to produce a prediction. Maximal 

coverage may be less than 100% coverage because there may be no ratings in 

the data for certain items, or because very few people rated an item, or because 

all user sensors had zero co-rated items with the active user. All experimental 

results shown in this thesis have maximal coverage by design. 

Statistical accuracy metrics evaluate the accuracy of the collabo­

rative filtering algorithm by comparing the predicted rating against the user 

observed rating for the items that have both predicted and observed ratings. 

Breese et al. [BHK98] and Pennock et al. [PHLG00] both have used average 

absolute deviation to measure the performance of the collaborative filtering 

algorithm. Other metrics that have been used are root mean squared error 

[RIS+94]. Both the above metrics generally provide the same conclusions. In 

this thesis we only report average absolute deviation as it is the more com­

monly used metric. 

We calculate the average absolute deviation of the predicted rating 

against the actual rating of items by users in the test set. That is, if the 
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number of predicted ratings in the test set for the active user is n a , then the 

average absolute deviation for a user is given as follows: 

Sa= ^ J2jePa \Pa,J ~ r<M'l> 

where Pa is the test set for active user a, paj is active user a's observed 

rating for item j and raj is active user a's predicted rating for item j. 

These absolute deviations are then averaged over all users in the test set 

of users. This metric measures how accurate the collaborative filtering algo­

rithm is and gives an estimate of the average error a user of the collaborative 

filtering algorithm can expect. The lower the average absolute deviation, the 

more accurate the collaborative filtering algorithm is. 

Statistical significance is assessed for the difference in average abso­

lute deviation between two algorithms using the randomization paired sample 

test of differences of mean [Coh95]. The sampling distribution of the mean 

difference between two algorithms is achieved by repeatedly shuffling and re­

calculating the mean difference in 10,000 different permutations. The shuffling 

involves reversing the sign of the difference score for each sample with proba­

bility of .5. The probability of achieving a difference less than or equal to the 

mean difference is reported as a result. That is, the probability of incorrectly 

rejecting the null hypothesis that the deviation scores of both algorithms arises 

from the same distribution [Coh95]. 

4.2.2 Data and Protocols 

We compared the explicit multi-valued versions of our noisy sensor model to 

PD (Personality Diagnosis) which its authors recently compared to a number 

of other memory and model based algorithms [PHLG00]. To compare the 

performance we used the same subset of the EachMovie database as Breese 

35 



et al. [BHK98] and Pennock et al. [PHLGOO] had used, consisting of 1,623 

movies, 381,862 ratings, 5,000 users in the training set, and 4,119 users in the 

test set. On average, each user rated about 46.3 movies. We also tested the 

algorithms on other subsets to verify that our findings are not overly biased 

by the peculiarities of the subset. 

To understand the effect of the amount of data on the prediction accu­

racy of the collaborative filtering algorithm, we ran experiments to examine 

how well the algorithm predicts given the different amounts of information 

about a user's preferences. As in [BHK98] for the AllButl protocol, we with­

held a single randomly selected rating for each user in the test set, and tried 

to predict its value given all other ratings by the user. As in [BHK98], for each 

user in the test set, for each GivenX protocol, we selected X items at random 

from these the user has rated. Using these selected ratings as the observed 

ratings, we then attempted to predict ratings for the remaining items. We did 

the experiments for X — 2, 5 and 10. With fewer items rated we expect a 

decrease in accuracy. As in [BHK98], users who have not rated enough items 

to satisfy a protocol are eliminated from that protocol, so the exact number 

of predictions in each GivenX protocol varies. For reporting the results we 

use the same observed ratings and test ratings for each test user of the test 

set as Pennock et al. [PHLGOO]. We also tested the algorithms by randomly 

selecting the observed and test ratings for each test user of the test set. 

4.2.3 Selecting K for AlgoLinear 

The performance of AlgoLinear depends on the value of K. To select its value 

we did experiments with different values of K for all protocols. The value 

of K can not be zero because it can make a sensor deterministic (for details 
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see section 4.1.1). Figure 4.1 shows the effect of K for AllButl and GivenlO 

protocols. Figure 4.2 shows the effect of K for Given5 and Given2 protocols. 
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Figure 4.1: Effect of A'for AllButl and GivenlO protocols on AlgoLinear 

The average absolute deviation error is more when K > 1 for all pro­

tocols. This is because the effect of the error introduced by K dummy points 

for large K is significant and hence, AlgoLinear is not finding good user sen­

sors for the active user a. AlgoLinear works better for AllButl protocol with 

K = .5 but for GivenlO and Given5 protocols the performance is better with 

K = .25 but the difference is not significant. This is the expected behaviour 

because the effect of K dummy points for large K is more than the effect of 

the amount of information available in GivenX protocol, which decreases the 
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Figure 4.2: Effect of A'for GivenS and Given2 protocols on AlgoLinear 

accuracy of the algorithm. 

The effect of K on Given2 protocol is different than on other protocols 

because each user has rated only two items and co-rated items between users 

are less than or equal to 2. With so much less information AlgoLinear does 

not fit the good relationships between users and hence it is not finding good 

user sensors. We can also see from Figure 4.2 that for Given2 protocol the 

AlgoLinear performs better when we consider only items as a noisy sensor, 

while the average absolute deviation error increases with the increase in num­

ber of user sensors. This is because the items are rated by many users and 

AlgoLinear fits them better. 
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Figure 4.2 shows that the algorithm gives better accuracy with K = .5 

and K = 1 for Given2 protocol when using user sensors 30 - 70. Based on 

all these experiments we found that overall AlgoLinear gives best performance 

with K = .5 for all protocols. For subsequent experiments we, therefore, chose 

K = .5 for AlgoLinear. 

4.2.4 Selecting K for AlgoEqual 

The performance of AlgoEqual also depends on K. The effect of K on the 

performance of AlgoEqual is different from the effect on AlgoLinear because in 

AlgoEqual we are not fitting the relationship between users. Instead, we are 

using K for learning the variance. To select the value of K we did experiments 

with different values for all protocols. Figure 4.3 shows the effect of K for 

AllButl and GivenlO protocols. Figure 4.4 shows the effect of K for Given5 

and Given2 protocols. 

AlgoEqual performs best for the AllButl, GivenlO and Given5 protocols 

with K = 1 and K = 2. The error is more when K < 1 or K > 2. Figures 4.3 

and 4.4 show that with a decrease in the amount of available information (for 

GivenX protocol) the performance of AlgoEqual improves for lower values of 

K. Figures 4.3 and 4.4 also show that there is no significant difference in the 

accuracy with K = 1 and K = 2 for AllButl, GivenlO and Givend protocols. 

Figure 4.4 shows that AlgoEqual performs best for Given2 protocol (for user 

sensor range thirty-to-seventy) with K = .25 to K = 1. Based on all these 

experiments we found that overall AlgoEqual gives best accuracy with K = 1 

for all protocols. For subsequent experiments we, therefore, chose K = 1 for 

AlgoEqual. 
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Figure 4.3: Effect of K on AlgoEqual for AllButl and GivenlO protocols 

4.2.5 Selecting Noisy Sensors 

After learning the noisy sensor model we determine which noisy sensors should 

be used in making the prediction for the active user. 

Figure 4.5 shows the variation of average absolute deviation with user 

noisy sensors for different numbers of items noisy sensors for AlgoLinear. Fig­

ure 4.6 shows the same for AlgoEqual. This experiment was performed on 

AllButl protocol with K = 0.5. We used the same training and test set as 

described above but the test rating and the observed ratings for each test user 

of the test set were selected randomly. 
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Figure 4.4: Effect of K on AlgoEqual for Given5 and Given2 protocols 

Figures 4.5 and 4.6 show that the average absolute deviation of the 

prediction decreases with the increase in number of item sensors. There is no 

significant improvement in accuracy when the number of item sensors is more 

than twenty. It also shows that the average absolute deviation first decreases 

with the increase in number of user sensor and then increases as more user 

sensors are used for prediction. This is because the large number of user sensors 

results in too much noise for those user sensors that have good reliability. 

From the experiments, we found that both algorithms give better per­

formances with ten-to-twenty five item noisy sensors. We also found that 

algorithm AlgoLinear gives less average absolute deviation error with forty-
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Figure 4.5: The average absolute deviation as a function of the number of 
best user noisy sensors for different numbers of best item noisy sensors. This 
experiment was performed using AlgoLinear and K = 0.5 for AllButl protocol. 

to-seventy user noisy sensors and AlgoEqual gives better performance with 

twenty-to-fifty user noisy sensors. For the experiments reported in the fol­

lowing section, we use the best fifty user noisy sensors and best twenty item 

noisy sensors (i.e. U = 50 and / = 20) for AlgoLinear. We use thirty user 

noisy sensorsand the best twenty item noisy sensors (i.e. U = 30 and I = 20) 

for AlgoEqual. The parameters U and I depend on the database in case of 

EachMovie database the number of users are more than the movies and each 

user has rated only few movies because of this more best user noisy sensors 

are selected than the best item noisy sensors. 
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Figure 4.6: The average absolute deviation as a function of the number of 
best user noisy sensors for different numbers of best item noisy sensors. This 
experiment was performed using AlgoEqual and K =1 for AllButl protocol. 

From Figure 4.5 we also see that the minimum average absolute devi­

ation is .936 when we use both user and item noisy sensors (with sixty user 

and twenty item noisy sensors). It is .964 when we use only the user noisy 

sensors, shown by the zero item noisy sensors case, and 1.027 when we use 

only the item noisy sensors, shown on the y-axis for ten item noisy sensors. 

This shows that by including the item noisy sensors along with the user noisy 

sensors the quality of the prediction improves considerably. It also shows that 

if we use only the item noisy sensors for prediction then the average absolute 

deviation becomes greater than when we use only user noisy sensors. There-
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fore, symmetric collaborative filtering offers better accuracy than asymmetric 

collaborative filtering. 

4.2.6 Comparison with Other Methods 

We compared the models AlgoLinear, AlgoEqual, Correlation and PD using 

the same training and test set as Pennock et al. [PHLGOO]. For each test user 

we tested the same item as Pennock et al. 

The results of comparing AlgoLinear, AlgoEqual, Correlation and PD 

are shown in Table 4.1. We re-implemented PD and Correlation. Our results 

for PD match exactly with those reported in Pennock et al. [PHLGOO], though 

not the case for Correlation. The coverages of AlgoLinear, AlgoEqual and 

PD are the same, but the coverage of Correlation is less. We believe that 

Pennock et al. [PHLGOO] might have made some changes in Correlation to 

provide the same coverage as PD. Since we can not compare two collaborative 

filtering algorithms if their coverages are not same. We report the results for 

Correlation from Pennock et al. [PHLGOO]. 

AlgoLinear performed better than PD and Correlation for AllButl and 

GivenlO protocols. For GivenS and Given2 protocols AlgoLinear performance 

is better than Correlation but not better than PD. We believe that AlgoLin-

ear's poor performance can be explained by the fact the lines that are fitted 

to very small data sets are often a poor fit to the actual relationship. The 

algorithm AlgoEqual, based on an equal relationship between users, doesn't 

suffer from the same problem, outperformed better than each of the other 

three algorithms under all protocols. 

Shardanand and Maes [SM95] and Pennock et al. [PHLGOO] proposed 

that the accuracy of a collaborative filtering algorithm is most crucial when 
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Algorithm Protocol 
AllButl GivenlO Given5 Given2 

AlgoEqual .893 .943 .974 1.012 
AlgoLinear .943 .983 1.021 1.196 
PD .964 .986 1.016 1.039 
Correlation .999 1.069 1.145 1.296 

Table 4.1: Average absolute deviation scores on the subset of EachMovie 
database as Pennock et al. [PHLGOO] for AlgoLinear, AlgoEqual, PD and 
Correlation, lower scores are better. 

predicting extreme ratings (very high or very low ratings) for items. The idea 

is that most of the time people are interested in suggestions about items they 

might like or dislike, but not about items they are unsure of. Pennock et al. 

[PHLGOO] define extreme ratings, as ratings which are 0.5 above the average 

rating or 0.5 below the average rating of the subset. 

Algorithm Protocol 
AllButl GivenlO Given5 Given2 

AlgoEqual 1.001 1.057 1.087 1.124 
AlgoLinear .997 1.063 1.125 1.249 
PD 1.0296 1.0874 1.128 1.163 
Correlation 1.108 1.127 1.167 1.189 

Table 4.2: Average absolute deviation scores on the EachMovie database for 
AlgoLinear, AlgoEqual, PD and Correlation, for extreme ratings 0.5 above or 
0.5 below the overall average rating. 

To compare the performance of algorithms with extreme ratings we 

computed the predicted ratings for those test cases (from the test sets of all 

protocols) whose observed rating is less than R — 0.5 or greater than R + 0.5 

where R is the overall average rating in the subset. The results for the extreme 

ratings are shown in Table 4.2. 

The results for extreme ratings show that AlgoLinear performs better 

than AlgoEqual for AllButl protocol. It also performs better than PD and 
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Correlation over GivenlO and Given5 protocols. AlgoEqual performs better 

than the other three algorithms over GivenlO, Given5 and GivenS protocols. 

AllButl Protocol 
1.4 

* AlgoEqual 
O PD 

30 
Samples (1:60) 

60 

Figure 4.7: Average absolute deviation error of AlgoEqual and PD in 60 sam­
ples for AllButl protocol with K = .5, U = 30, and I = 20. 

To determine the statistical significance of these results, we computed 

the significance levels for the differences in average absolute deviation between 

AlgoLinear and PD, PD and AlgoLinear, AlgoEqual and PD, and PD and 

AlgoEqual, for all protocols. For doing this, we divided the test set for all 

protocols into 60 samples of equal size and use randomization paired sample 

test of differences of mean [Coh95] (for details please see Section 4.3.1). Figure 

4.7 shows the average absolute deviation error of AlgoEqual and PD in 60 
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Figure 4.8: Average absolute deviation error of AlgoLinear and PD in 60 
samples for AllButl protocol with K — 1, U — 50, and I = 20. 

samples for AllButl protocol. Figure 4.8 shows the average absolute deviation 

error of AlgoEqual and PD in 60 samples for AllButl protocol. We found 

similar results for the other protocols. 

The statistical significance of the EachMovie data results is given in 

Table 4.3; it shows the probability of achieving a difference less than or equal 

to the mean difference. That is, it shows the probability of incorrectly rejecting 

the null hypothesis that both algorithms' deviation scores arise from the same 

distribution. 

Recently, Pennock et al. [PHLGOO] showed that PD is the most accurate 
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Protocol AlgoLinear PD vs. AlgoEqual PDvs. 
vs. PD AlgoLinear vs. PD AlgoEqual 

AllButl .0006 .9994 .0001 .9999 
AUButl(extveme) .0003 .9997 .0127 .9873 
GivenlO .1377 .8623 .0001 .9999 
Givenl 0( extreme) .0211 .9789 .0009 .9991 
Given5 .9064 .0936 .0043 .9957 
Given5(extreme) .2897 .7103 .0001 .9999 
Given2 .9999 .0001 .0019 .9981 
Given2(extreme) .9999 .0001 .0001 .9999 

Table 4.3: Significance levels of the differences in average absolute deviation 
between AlgoLinear and PD, and between AlgoEqual and PD, on EachMovie 
data computed using the randomization test. Low significance levels indicate 
that the difference in results are unlikely to be coincidental. 

explicit multi-valued rating collaborative filtering algorithm. The statistical 

significance results from Table 4.3 show that the performance of AlgoEqual is 

better than PD over all protocols and the performance of AlgoLinear is better 

than PD for the AllButl and GivenlO protocols. 
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Chapter 5 

Conclusions and Future Work 

5.1 Conclusions 

In this work, we have concerned ourselves with symmetric collaborative fil­

tering based on explicit ratings, a technique that can be used for making 

recommendations for a user based on ratings of various items by a number of 

people. 

We proposed a probabilistic approach using a noisy sensor model for 

symmetric collaborative filtering, which, to make predictions allows to consider 

both the user-and the item similarity. We presented an explicit binary rating 

version of the noisy sensor model AlgoBayes, based on Bayesian Learning. We 

showed the performance results of AlgoBayes applied to several subsets of the 

EachMovie database, whch indicate that the AlgoBayes performs better than 

the Correlation and Decision Tree algorithms. 

To predict recommendations for a user based on multi-valued rating 

data, we devised a mechanism for learning the noisy sensor model, assuming a 

linear relationship between the users' preferences. We presented two variants 

of the multi-valued rating versions of the noisy sensor model, AlgoLinear and 
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AlgoEqual. We compared the two algorithms with other collaborative filtering 

state-of-the-art techniques. We reported empirical results for the EachMovie 

database of movie ratings. According to the absolute deviation metrics, Algo­

Linear makes better predictions than PD over Allbutl and GivenlO protocols, 

and better than Correlation over all protocols. AlgoEqual makes better predic­

tion than PD and Correlation over all protocols. We analysed and confirmed 

the statistical significance of these results. Our results from symmetric collab­

orative filtering using noisy sensor model show that by including the items' 

similarity along with users' similarity the accuracy of prediction typically in­

creases. 

5.2 Future Work 

This thesis has created many new opportunities for future work. This section 

suggests some specific avenues for future research may take. 

The noisy sensor model has been shown to produce an average error of 

about 1, but the performance of this model degrades with the number of users 

and items. The noisy sensor model requires computation time that expands 

with both the number of users and the number of items. For large data sets 

it may become impractical to find all the reliable noisy sensors for an active 

user, except in an infrequent off-line manner. New technologies are needed to 

quickly produce high quality recommendations, especially for large data sets. 

Techniques of dimensionality reduction are currently being investigated in an 

attempt to reduce the amount of online computation. Example techniques are 

sampling of users, and singular value decomposition [BP98]. One could explore 

the use of dimensionality reduction techniques to improve the performance of 

noisy sensor model over a large database. 
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Collaborative filtering provides inaccurate predictions regarding users 

that are not similar to many other users. Also, using collaborative filtering 

system alone, the first users to rate an item cannot get a recommendation 

regarding it. Recently some ini t ia l work has been done to integrate content-

based techniques with collaborative filtering and thereby alleviate the above 

problem [BS97]. One could explore the hybrid system of noisy sensor model 

with other existing content-based techniques. 

The proposed noisy sensor model for collaborative filtering works very 

well with explicit rating data. We did not explore the use of noisy sensor 

model for implicit rating. A n example of implicit rating would be a web 

page recommendation system in which we can log what pages a user sees but 

cannot collect explicit ratings [BHK98]. In this case, a simple way to get 

explicit rating would be to use a binary scale with the ratings viewed or did 

not view. While we believe that the noisy sensor model could accommodate 

this situation through an appropriate transformation of ratings, this is another 

interesting area for future research. 

One limitation of the present model is the use of a linear relationship 

between the preferences of users, for learning the noisy sensor model. If a pair 

of users have highly similar preferences but their relation is nonlinear, this may 

not be recognized as a reliable or good sensor and may hence be rejected by the 

noisy sensor model when it is considering only the best noisy sensors for making 

the recommendations. One could explore the use of polynomial regression for 

finding the relationship between users' preferences. The polynomial regression 

may not be feasible if the data available is very sparse. However, polynomial 

regression may not be feasible if the data available is very sparse. 

One could also extend the noisy sensor model by incorporating user and 

item properties beyond ratings — for example, user age group or movie genres 



can be explored with the use of multiple linear regression for learning the noisy 

sensor model. 

Finally, the proposed algorithms should be applied to a diverse set of 

prediction domains, to determine what results hold true generally across pre­

diction domains. Unfortunately, sufficiently large test sets containing multi­

valued ratings are not as yet, readily available. One could also test the pro­

posed algorithms on the synthetic data. The synthetic data can be generated 

from the EachMovie database using the certain properties of the data, such as 

the same name of users, same number of items, and same average rating. 
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