Implementations Of User Mobility Support for UPC in
| JAVA /CORBA Environment
. by ’
Thong Tri Huynh
B.A.Sc., University of British Columbia,1993

B.Sc., University of British Columbia, 1996

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
Master of Science
in
THE FACULTY OF GRADUATE STUDIES

(Department of Computer Science)

we accept this thesis as conforming
to the req?ired standard
n ”

The University of British Columbia

August 1999

© Thong Tri Huynh, 1999

In presenting this tﬁeszs/essay in partla[fulfillment of
the requirements for an advanced degree at the
University of British Columbia, I agree that the Library
shall make it freely available for reference and study.
I further agree that permission for extensive copying
for this thesis for scholarly purposes may be granted by
the Head of my department or by his or her
representatives. It is understood that copying or

. publication of this thesis for financial gain shall not be
allowed without my written permission.

—Aﬂ/A 30 ;/77

Date

. Computer Sczence .

- The University oantlsﬁ Co[umﬁla :
2366 Main mall -

Vancovuer, BC

Canada V6T 124

Abstract

This ;chesis addresses the s'peciﬁcati'on and implementation of the Universa,l Personal
Computing (UPC) envvironment7 developed at UBC for support of user mobility. In
the UPC computing envvironmeht, each user has a unique global identification with
which the user can access network services, computing resources, personal applicé—
tions, data files, and environmental configuration th:rough any terminal, stationary
or mobile, wired or wireless ngtworking, anywhere on the Internet.

In this thesis, we produced the specification of the UPC’s Registration and
Service Negotiation Protocol (RSNP) usiﬁg the Specification and Description Lan-
guage (SDL) and simulated the ARSNP using a SDL supported tool. As an initial
attempt to verify the concept, ‘we implefnented the UPC protocol and a graphical
user interface using C and Tcl/Tk as the programming language. CORBA and
Java offers an alternativé approach in modelling the UPC concept that is flexible

and portable to any. computing platform. A UPC prototype is implemented using

CORBA as the architecture framework and Java as the programming lénguage.

Conténts

Abstract ' ii
Contents : , i1l
List of Figures vi
Acknowledgements ' : - vil
1 Introduction | ' 1
1.0.1 MOtIVation . « v v v v e e . 1

1.0.2 Thesis Objectives and Contributions 4

'1.0.3 Thesis Outline . PP e 6

2 Background ' T
2.1 Mobile Host Protocol for IP (Mobile-IP) 7
2.2 Specification Description Language (SDL) 10
2.3 Universal Personal Computing (UPC) 11
2.3.1 User Identification 12

232 UserProfile 12

2.3.3 Terminal Identiﬁcation 13

24

2.5

2.3.4 Terminal Profile C e e e 13

12.3.5 UPC Network Architecture e 13

: 2.3.6‘ Registration and Authentication AU ‘~ 15
Introduction to CORBA L .- e IR 16
©2.4.1 Interface Deﬁnition Language (IDL) e 18
2.4.2 Objecf-Requesﬁ Broker (ORB) - 19
2.4.3 CORBA Object.Services (CORBAservices) S 20
2.4.4 The CORBA Common Facilities (.C'ORBAfacilitiies‘\) S .22
CORBA-based UPC, o R L2
2.5.1 Facility object R | 23
2.5.2 Personal Computing Environment (PCE) object . . .". 23
2.5.3 Terrﬁinal Profile objeét Ce .‘ | e 24
2.5.4 User Agent (UA) object RN Wl 24 |
2.5.5 Terminal Agent (TA) objec;c: e I. S 25
2.5.6 Initial Agent (TA): R .. 25

3 UPC’s Registration and Service Negotiation Protocol (RSNP) 27

3.1

3.2
3.3

3.4

Overview e . i e 27
UPC Protocol Architecture Modification .. e e .29
SDL Specification of RSNP 31
3.3.1 Pseudo Mobile-IP ‘Block o - 1
3.3.2 Mobile User Block 36
333 User‘ Foreign Agent Block . . S . 38
3..3.4, User Home Agent Block . AT e e 2
Prototype Implementation of UPC e C Ll 41 -

3.4.1 Assumptions and Requirements: 45

3.4.2 Registration and Service Negotiation Procedure 46
3.4.3 Re-registration after Expiration of Connection Lifetime . .. 47
3.4.4 Re-registration after Hand-off e . 48

3.4.5 Datagram Format used in Registration and Service Negotia-,

tion Protocol Lo 48

| .4 CORBA-based UPC Prototype Implementation » , 52
4.1 CORBA-based UPC Prototype Implementation 52
4.1.1 Personal Computing Environment (PCE) 54

4.1:2 User Home Agent (UHA) e e e e 54

'4.1.3° Terminal Profile e e e 55

4.1.4. Terminal Agent (TA) 58

4.1.5 Initial Agent I 60

4.1.6 Testing and Results e e R 63

5 Conclusion and Future Works g ' o 66
5.1 Conclusion [P .66
5.2 Future Works, , Ce e 68
Bibliography . . _ 70

Appendix’ A ‘ 75

List of Figures

21
2.2
2.3

2.4

3.1

3.2
3.3

3.4

3.5
3.6
3.7
3.8

4.1

4.2

4.3

CORBA Object Architecture [23] P
IDL Language Bindings Provide 'Interbperability [23] . . .
ORB structure [23] S

Collaboration of agents in the CORBA—based UPC framework [30] .

System Diagram of UPC’s Registratioﬁ and Service Negotiation Pro-

Block Diagram of a Pseudo Mobile-IP
Block Diagram of a Mobile User T
Mobile Usér Agent’s Extended Fini'te'Sta;ce Machine
Block Diagram of a User Foreign Agent . e
User Foreign Agent’s Extended Finite State Machine
Block Diagram of a User Home Agent

User Home Agent’s Extended Finite State Machine . I

Main screen of the Service Manager-utility PR
Login screen of the UPCo .o I ..

UPC Application Mandger screen . o

vi

ACkhoWlledge‘meni’l:s

I Woﬁld_ like tc; také this oppprtunity to thank Dr.” Son Vuong, my supervisor,.
who 'ha;s guided, supported and.eﬂcoura‘mg.edv me thr_oughouf the Master program and
: espécially ‘this thesis. I would also like to thank my second reader, Dr. Geor'ge

.-Ts.il.{nis, for thev tirﬁe and valuable suggestions tb this thesis. Many thanks to Maria
- Toeroe, Jinsong Zhu, and Ka)ngmipg Liu for all the lengthy meétings and discussions
on the UPC;S issue. It has been a pleasure to work with all of you. Finally, I thank

my parents and my sisters for their love and support on every stage of my education.

THONG TRI HUYNH

The University of British Columbia

August 1999

Chapter 1
Introduction

1.0.1 Motivation

In recent years, the term ”Internet” has become a household Word. The cost of
connecting to the Internet has become affordable for everyone, and most people
. work in an environment where their desktop computer is connected to the Internet.
Intefnet applications such as Email, World WideAWeb, Internet chat (é.g. IRC,
Microsoft Chat), Internet video conferencing (e.g. CuSeeMe, SDR, NetMeeting),
and Internet radio (e.g. RealP.la,yer). are widely used on computers at home and at
work. | |

Meanwhile, poftable computers have become more compact, yet more pow-
erful, with increased procéssing and sto%ége capabilities. They are available in in-
creased diversity, ranging from lqpfép, _td notebook and palmtop coﬁiputers. In
addvition, the communication capabilities of these portable computers are impres-
sive as high-speed mocllems7 PCMCIA modem, and gigabit satellite access, and so

on become more common [1].

At the same time, wireless technology has grown significantly, especially

wireless technologies for LANs. In the market place we can find inexpensive high-

“speed wireless LAN products, in addition to low-speed wide ‘area wireless network

and medium—speed metroi)olitan area wire'less network services. Fhis a?ailability‘ of
wireless network services enables mobile users with portable computers to remain
connected to the Internet anywhere at any time.

Nowadays, people are constantly on the move. Many people are moving be-
tween offices, homes, automobiles, conference rooms, and so forth. While they é,re
on the move, they may want to be able to perform computing and/or communica-
tion. As they move around, they may have access to enormous computing facilities
such as advanced workstations, desktop computers, compact PDAs (Personal Dig-
ital Assitant), and convenient locally available services, sucﬁ as faxes and printers.
However, they often find themselves de-coupled from their familiar "home base”

computing environment when using these foreign computing facilities. It would be

‘better if the user could have the same personal computing environment, regardless

of the computer’s platform, the computer’s location, or the user’s location.

The combination of increasing use of portable computers, the rapid advance-

ment of wireless.communication technologies, and the fact that most users are mo-
" bile, requires a special computing environment that supports mobile computing.

~ Mobile computing refers to an area of technology that aims at providing access to

computing resources, independent of motion, location, computing platform, com- -
vmun‘ication device, and communication bandwidth. The independence refers to the -
concept of a computing environment that automaticaﬂy adjusts to th’e prc;céssing,
communicafcions and access available at any moment. Ideally, a user can travel from

place to pldce and still use the computing facilities they desire in their new location

" or even while they are on the move.

Currently, a user can obtain mobile computing by installing a cellular tele-

‘phone interface into their ‘portable computer and running a protocol such as SLIP .
-or PPP over a dialup service. This approach is simple and cheap; however, there

:is a severe limitation in that the user can only access Internet resources within a

single administrative domain. This limitation is due to the Internet’s inability to

=support mobility, neither user nor terminal mobility. In regards to terminal mobil-
.ity, the current version of the Internet protocol is built. on an implicit assumption
::that‘-th.e point at which a computer is attached to the Internet is fixed, and its IP
w.address uniquely identifies this point of attachment. The IP address is used by the

- Internet’s routing protocol to deliver the IP packets to the intended receiver. When

a computer moves to a different network, its network services are lost because its

* IP address does not reflect its new point of attachment to the Internet, and the

- . routing protdcol is unable to correctly route the packets to it. In this situation,

the computer must be reconfigured with a new IP address associated with the new
network. Doing so causes the lost of already-established transport layer connections

(for example, ftp or telnet sessions). Similar limitations apply to mobile users, where

.each user is registered to one administrative domain and granted a user login ID
. that allows the user to access only the computing resources and network services in

- the registered administrative domain. As the user moves to another administrative

domain, they are not able to access any network services.

.- Several approaches have been proposed and implemented.‘to enhancing the

TInternet protocol to support mobility. A standard protocol- (Mobile Host Protocol

for Internet Protocol) that supports terminal (or host) mobility has recently been

defined by the Internet Engineering Task Force (IETF) as in RFC2002 [25]. This

protocol is often referred to as mobile-IP. Mobile-IP allows a terminal to roam

freely on the Internet while still maintaining one permanent IP address. However,
supporting only terminal mobility is not sufficient to provide a seamless mobile
computing environmeﬁt. Even with mobile-IP support, a mobile user still can not
login ‘té any available terminal, stationary or mobile, in a foreign administrative
domain. As a result, this introduces a need for an additional level of mobility on top
of terminal mobility: user (or personal) mobility. Personal mobility is different frofn
terminal mobility. Terminal mobility refers to the ability of a portable terminal to
access services from any locatiqn while in motion, and the capability of the network
to locate and identify the mobile terminal as it moves [10]. On the other hand,
personal mobility refers to the ability of the end user to send and receive calls, and
to access sﬁbscribed services on any terminal in any location, and the ability of the

network to identify the end user as they move [10].

1.0.2 Thesis Objectives and Contributions

Supporting both terminal and personal mobility is the fundamental requirement of . |
mobile computing; however, very little work has been done to support personal mo-
bility on the Internet. A new computing paradigm that supports both terminal mo-
bility and personal mability over the Internet, called Universal Personal Computing
(UPC), has been developed [20,35] jointly in the Department of Corﬁputer Science
and the Department of Electrical and Computer Engineering of the University of
British Columbia. _This research constitutes é.major activity of Internetworking
Wireless Data Networks for Mobile Computing (IWIN), alp_roject jointly funded
"by the NSERC of Ca,nada and Motorola Canada. UPC is a computing environ-

ment which enables a mobile user to access computing resources, network services,

personal applications, data files, and environmental configurations through any ter-

minal, stationary or mobile, anywhere on the Internef [21]. vIn this environment,
terminal mobility and personal mobility are managed separately. Terminal mobility
is supported using mobile-IP with some enhancements in TCP-connection manage-
ment; whereas personal mobility is managed via an agent-based al'ch-itectﬁre. ‘.

‘T[.‘he core of UPC’s mobility management is the Registration and Service
Negotiation protocol (RSNP). In this thesis, we use the Specification and Descrip:tion
Language (SDL) to produce a clear and precise specification of RSNP. We al;so :

simulate RSNP using a SDL supported todl to verify for RNSP completeness and

. correctness. In addition, the RSNP simulation can be used to simulate alternative

solutions for é,ny problems that come up. After having a concrete understanding of

' ,‘RSNP, we implement a UPC prototype using C and Tcl/Tk as the programming

language.
In the proposed UPC architecture ,[21’ 35| there are distributed components
that can execute transparently to the host location, host plétfor_m and component

implementation. The distributed nature of UPC’s components makes the implemen-

tation of UPC very complex and even impossible.” Fortunately, several technologies

_ that support platform independent distributed object architecture, such as CORBA
“and DCOM, are available. Combining of concept of the UPC and CORBA téch-

) noldgy leads to a CORBA-based UPC architecture as propbsed in [30, 35]. In this

new architecture, the UPC components are modeled as distributedvobjects with

CORBA as the object bus that facilitates the interaction, integration, and distribu-.

tion of these objects. In this thesis, we implement a protdtype of a CORBA-based

UPC system using Java as'the programming language, Visigenic’s VisiBroker for

Java as the CORBA framework, and Sun Microsystem’s Solaris 2.x as the comput-

ing platform.

'1.0.3 Thesis Outline

: The rest of the thesis is organized as follows:

e Chapter 2 provides the necessary background material including mobile-IP,
overview of the Specification and Description Language (SDL), the concept of

UPC, introduction to CORBA, and CQR__BA—based UPC.

e Chapter 3 presents UPC’s RSNP formal specification using SDL, >and a pro-
totype of UPC’s RSNP using C and Tel/Tk. |

e Chapter 4 presents the prototype the of CORBA-based UPC.

e Chapter 5 concludes the thesis and discusses possible future works.

Chapter 2
Background

2.1 Mobile Host Protocol for IP (Mobile-IP)

The current version of Internet Protocol (IP v4) hés been built on the implicit
assumption that the point of attachment of a computer to the Internet is fixed and
uniquely identified by its. IP address. IP_packets sent to a computer are delivered
baSed on the location information in the IP packet’s héaders, i.e. the destination
1P vaddress. When a:-mobile computer moves to a new network, the IP address
that is configured in the computer does not reflect the new point of attachment.
Thus, the IP packets that are destined to this parﬁcular compufer are incorrectly
. routed by the'routing protocol. To overcome this routing prdblem, the mobile
computer must be reconfigured With a new IP address that reflects the new point of
attachment in the visiting network. Unfortunately, although the suggested method
above may solve the routing problem, it presents two new problems. The first
problem is the loss of any established transport and higher-layer connection during

‘handoff when changing the IP address. The second problem rests on the burden

of informing potenfial correspondents of the new IP address. Therefore, we need a
new mechanisﬁ to support the mobility of a computer‘ (often referred as host) over -
the Internet.

Mobile Host Protocol for IP (Mobile-IP) is.an enhanicer_nent to IP that allows
a mobile computer with a permanent IP address to communicate data transparently
to application software, and independent of its cuvrre'n‘p‘ point of attachment to the
Infe’rnef. The Mobile-1P 1s standardized by thAe Internet Engineering Task Force
(IETF) as defined in the RFC2002 [25]. - The standard Mobile-IP supports host
mobility independent of the communication medium in use. It works as effectively
in a wireless environment as it does in a wired internetworking environment. Thé
Moblle IP architecture consists of a set of spec1al entities called the Mobile Host

[MH]; the Home Agent [HA], and the Foreign Agent [FA]

Mobile Host (MH): A MH is defined as a host that changés its point of attach-
ment to the Internet from one network to another. Each MH belongs to é
unique home network and is assigned a permanent IP address. When a MH
is away from the home network, it is associated with a temporary IP add_ress
tlh:at is often referred .a;s a care-of IP addreés The care-of IP address identifies
the MH’s current pomt of attachment to the Internet A care-of IP address -
could be either the IP address of the FA that the MH is reglstered to, or a

local IP address that is assigned to the MH at the visiting network.

Home Agent (HA): HA is the router on a MH’s home network that maintains
the current location information (1 e. care-of [P address) for all mobile hosts

under its administration. The HA is responsible for intercepting IP packéts

destined for a MH and tunriélling these IP packetsv,vto the MH via their.care-of

address when the MH is away from the home network.

Foreign Agent (FA): FA is a router on a MH’s visited network. The FA is re-
sponsible for de-tunneling and delivering IP packets sent from the MH’s HA
to the registered MH. A FA also serves as a default router for IP packets sent

by a registered MH.

The HA and FA advertise their presence in the network using an Agent
Advertising message. The Agent Advertising message is a router advertisement
message with a special Extension attachment. When a ‘MH connects to a pétwork,
the MH receives the Agent Advertisement message and identifies whether its current
. point of attachment is on itsvhome network or on a foreigh network. If fhe MH is
on its home network, there is no need for mobility services. However, if the MH has
just returned to its home network from a foreign network, de-registration with the
HA is required. As a MH detects it is on a foréign network, it obtains its care-of IP
“address on the foreign network and uses a special registfation protocql to keep its

HA informed about its current location (i.e. Care;of IP address). |
When a MH is away from the home network, [P packets ciesfined to it are
.‘always first sent to its home network, and the.n encapsulated by the HA and re-
.‘sent to the MH’s current FA. Encapsulation refers to the process of enclosing the
original TP packet as data inside anothér IP p;cket with a new IP header. The
routing information in the original IP packet, source and destinatidn address, remain’
- unchanged. The outer IP packet header specifies the MH’s care-of IP address as
the destination address and the MH’s HA IP address as the source address. The

-encapsulated IP packet is then sent to-the care-of IP address via a conventional

IP routing mechanism. Without IP encapsulation, IP packets méanf for the MH

are always routed to the MH’s HA by intermediate routers since all these packets
. have MH’s permanent TP address as the destmatron address in their headers. Upon
receiving-an encapsulated IP packet, the FA extracts-the inner IP packet from the
encapsulated IP packet and delivers the extracted packet to the appropriate visiting
MH on its local network. |

Conversely, when the MH sends IP packets, they are directly rorrted by the
FA to their destination using conventvional IP routing mechanisms. Passing these

IP packets through the MH’s HA is not necessary.

2.2 Specification Description Language (SDL)

‘ The Specification Desc‘ription Language (SD'L), develeped a'ndj standardized by
Comite Consultatif International Telegraphique et Telephonique (CCITT), is a for-
4mel specification language. The SDL can be applied to specify a variety of systems
from telecommunication systems, data com.rnunication‘systems, real time systems
and interzrctive systems, to distributed systems.
The SDL focuses on the reactive behaviour of a system. It is concerned with
.how external s‘rimuli ‘and responses are related at system interfaces, instead of the -
internal and physical construction of a system. The SDL can be used in both textual
and graphical representatrons The graphical SDL allows the user to specify a system
using a set of diagrams that cover different levels of detall from a broad overview
down to the detailed design level. The textual SDL looks similar to a programming
-language. Fragments of textual SDL can be embedded in diagrams where text is
| more suitable or the graphlcal symbol does not exist (e.g. s1gnal declaratrons data
» declaratrons) |

In SDL, the top level of description is a‘system. A SDL system represents

- 10

significant provperties of a real life application system. Anything that is not part
_ of the SDL syétem is part of the environment. At the top level, a first overview of
the system is shown without getting into unnecessary detdils. In the SDL system
we .may have a single SDL block or a set of SDL. blocks which are-the building
blocks of a system. These SDL blocks interact with each o"che'r and the environment
via channels. The SDL blocks build tAhe system structﬁré and allow decomposing a
‘system into a hierarchy of levels in which each level represents a diﬂ"érent level of
abstraction.

A SDL block may contain other SDL blocks or SDL processes. A Process is
the lowest level description of a system; it.can not. be further decomposed. We can
. describe SDL processes as extended Finite State Machines (FSM). Each SDL process
works autonom‘o"usly and concurréntly with other SDL processes. SDL procésses
communicate with each other using discrete messages called signals. Each signal
has a name, sender identity, and \possible additional data. The FSM uses the name
of the signal to make a transition frorﬁ one stafe to another state.

2.3 Universal Personal Computing (UPC)

~ Universal Personal Comp‘uting (UPC) is a computing paradigm that supports loca-

; ;cion independent rietwork computing over the Internet. UPC is a similar concept to
Universal Personal Telecommunication (UPVT),Which has been defined by the ITU-T,
-yet UPC caters to network computing over the Internet, rather than télecommunica—
tions. In the UPC environment, each user has a unique global identification. Using

- this identification, the UPC network enables users to access network services, com-

puting resources, persoﬁél applications, data files, and environmental configuration

through any terminal, stationary or mobile, wired or wireless networking, anywhere

11

“on the Internet.

2.3.1 User Identification

In UPC, each user is assigned a Logical User Identifier (LUI) that is globally vunique

- and independent of the user’s current location. As proposed in Li and Leung [21],

a simple LUI could be a user’s email address. It is composed of the login user
ID of a user at their home netwdrk concatenated with the user’s home domain
address. Using the email address as LUI has several advantagés. First of all, email
addresses are familiar to any Internet user; thus, it is easy to remember é,nd reference.
Secondly, the existing DNS could be used to resolve the user home agent’s IP address
from the user’s home domain address portion in the LUI. “This obviates the need for

global user-names server, and is compatible with the current Internet architecture”

[21].

. 2.3.2 User Profile

Another corvn'vponent of UPC is the User Profile. Each mobile user has a service
profile kept in a user database at their home network. The service profile contains
authentication information, such as the user login ID and the corresponding pass-
word. The service profile also defines a set of computing resources, netwofk services,
apd péi‘sonal a,ppliéations that a‘mol_l)ile user is entitled to while at home or on the

road. For each personal application, computing resource, or network service, there

is a set of user preferences, such as environmental requirements, configuration, de-

. fault settings, and so on. Modifying or updating one’s service profile can only be

performed by an authorized network administrator, or by the user themselves. If

necessary, the mobile user is allowed to remotely update or modify- their service

12

profile while away from the home network.

2.3.3 Te'rminal Identification -

In the UPC environment; each terminaﬂ is identified by a Logical Terminal Identifier
(LTT). In the curre‘nt‘IETF standard of Mobile-IP, each mobile ;Qerrninal (MT) is
associated with tlwo IP addresses, in particular the MT’s permanent IP address and
the MT’s care-of IP address. The MT’s permanent IP address is used in identifying
the MT at the network level, and the MT’s care-of IP address is used in discovering»
the MT’s current location. IP packets addressed to a MT are redirected to the

MT by tunneling to the MT’s care-of IP address. Since we want to achieve back-

ward. compatibility with the current Internet protocol suite, we selected the MT’s

permanent I[P address as the MT’s LTI, and the MT’s care-of IP address provides
the MT’s current location. We can then use the same tunneling mechanism as in

mobile-IP to redirect packets to the MT’s current location.

2.3.4 Terminal Profile

The tefminal profile is used to re—credte the computing environment specified by a .
user. Each mobile terminal has a terminal profile kept in a tev‘rminal database at the
mobilé terminal’s home network. The terminal profile defines the capabilities on the
terminal, such as the resident operating system, the file format, thé graphical user

interface, the display mode and monitor resolution.

2.3.5 UPC Network Architecture

UPC network is an agent-based architecture that consists of three functional en'rti’_cies:

a Terminal Home Agent (THA), a User Home Agent (UHA), and a Foreign Agent

13

(FA).

User Home Agent (UHA): Each administrative domain has a User Home Agent.
The UHA maintains a database of all the users registered in this administrative
domain as well as their associated user proﬁles. Along with the user profile, -
the UHA also keeps a record of all users’ curre.nt location information. This
location information is a binding information betwéen the mobile user (i.e.
LUI), the terminal (i.e. LTI) that the mobile user is currently using, and the
current location of the terminal (i.e. care-of IP address). Whenever the user
moves or changes their association with a _terminal, the location i‘nformation

is updated.

Terminal Home Agent (THA): In addition to the UHA, each administrative
domain has la TerminaJ Home Agent (THA). The THA maintains a database
of all the mobile terminals that the network is configured to serve, as well
as their associated termineﬂ information, such as the terminal idéntity, the
terminal profile, the terminal authentication key, and the current loclation of

the terminal (i.e. care-of IP address).

i " Foreign Agent (FA): If the administrative domain serves mobile users, it has a
| . Foreign Agént. The FA enables the user and mobile terminal to be temporarily
| : use the network so that registration and authentication can proceed. After
the user and terminal successfully register, the FA’s main tasks are paékét
redirection and possibly cachiﬁg pert‘inent parts of the user’s service profile.

As part of network management, the FA maintains a list of all the mobile users

and all the mobile terminals that are currently visiting the network.

2.3.6 Registration and Authentication

In fhe UPC environment, user mobility is handled independently from termiﬁal

A mobility; thus, registration is separated into two registratiop procedures, terminal
registration for the mobile terminal and user registration for the mobile user. Ter-
minal registration must be performed before user registration so that the terminal
is recognized by the foreign. network and ready for user registration. B‘oth terminal
registration and uéer registration are mandatory for any mobile user to access a |

mobile terminal in either their home network or a foreign network.

Terminal Registration -

In our terminal registration procedure, we adopt the MT’s registration procedure as

specified in Mobile-IP. The sequence of events for terminal registration is as follows:
1. The MT registers with the FA in the visited network.

2. The FA contacts the MT’s THA to authenticate the MT and inform the THA

of the MT’s new care-of IP address.

3. Upon successful registration and authentication, the terminal profile of the

MT is transferred to the FA.

User Registration

‘User Registration is similar to terminal registration, and follows the steps below:

1. The MU sends a registration request to the FA in the visiting network.

2. The FA contacts the MU’s UHA to authenticate the MU. It also provides to

the MU’s UHA, the IP address of the MT’s THA that the MU is currently on.

15

3. The MU’s UHA retriev.es the MT’s terminal profile from the MT’s THA and

- then evalua,tés a set of suitable services for the MU.

4. Upon sﬁccessful registration and authentication, a set of services available for

the MU at this particular MT is returned to FA, and then relayed to the MU. .

2.4 Introduction to CORBA

T.he Common Object Requesf Broker Architecture (CORBA), propose& by the Ob-
ject Managerﬁent Group (OMG), is a new sqftwafe technology that cémbines’ object-
' oriented‘ technology and distributed client-server computing to provide an industrial
_standard distributed object architecture. CORBA enables appiications to interact
"wit.h' éne another without knoQing where the corresponding appl_icatibn resides, how
the corresponding application is implemented, or what operating .systern the corre-
spénding application is executed on.

CORBA presents a strong, universal, powerful distributed objgct—oriented
framework that makes software design easier. An application that is devgloped using
the CORBA aiéh_itecture is highly portablé and interoperable across a heterogeneous
distributed environment. CORBA not only provides a framework for .déveloping new
applications, but it also provides a framework for integrating existing'élient/ser\.fér
applications; | |

This section provides a tour of major components of CORBA such aé the In-
terface Definition Language (IDL), the Object Request Broker (ORB), the CORBA
Object Services (CORBAservices), and the CORBA Common Facilities (CORBfa-

cilities). Figure 2.1 presents CORBA’S Object Architecture .

16

App"cation Obiects ’v Common Facilities :
| - (CORBAfacilities)
Object RequeSt Broker (ORB)
€36 9| (D |)| ()

Common Object Services (CORBAservices)

Figure 2.1: CORBA Object Architecture [23]

17

Object Request Broker (ORB)

| Figure 2.2: IDL Language Bindings Provide Interoperability [23]

2.4.1 Interface Definition Langﬁage (IDL) .

In the CORBA architepture, all objects are speciﬁed using the Interface Definition
Language (IDL). IDL is the key for interoperability in CORBA. The IDL is a lan-
guage that is used to describe the external behaviour of an object Withbut préviding
any u'nderlying implementation details about an object. The IDL makes a strong:
separation between the specification of an object and the implementation of that
object. Objects that use the interfaces published from another object have no idea

how the object is implemented. Thus, IDL enables an object written in one language

. to communicate with another objlect‘written_ in an unknown language. Figure 2.2

presents the IDL interoperability concept.
The IDL grammar uses the same lexical rules as C++, introduced with
several new keywords to support distributed-computing concepts. An object’s at-

tributes, base classes that it inherits from, exceptions it raises, methods it supports,

“can all be specified using IDL. Objects specified using IDL can be mapped into a

particular programming language or an object system. The IDL specifications are

compiled into header files, stub, and skeleton programs which are used by a ”bro-

ker” program (i.e. Object Request Broker) which allows the objects to communicate

with one another.

2.4.2 Object Request Broker (ORB)

The ORB is the central component of CORBA. In the OSI network model, the
ORB sits between the data and application layers. The ORB is an object bus that
pfovides the mechanisms by which objects can make requests_to other objécts and
receive responses from other objects. The caller object is then referred to as a ciient
and the corresponding object 1s called a server. At runtime, when a client object
.invokes a mefchod in a server o’bjec'c7 ORB is responsible for locating the server objéct
: 'implement.ation that can imﬁlement the mefhod, a.nd‘ then invoking the method and
returning the results to the client object. The client object does not have to be‘
aware of the server object’s location, implementation, nor its operating system.

" The' ORB supports both statiq and ciynamic mefhod invocatioﬁs. The static
method invocation interfaces are defined at compile time and presented to the client
as stubcode. The dynamic method invocation interfaces are dynamically discovered
at run time using the CORBA Interface Repository. An Interface RepoSitdry is an
.;n-line database that contains real-time information describing all the interfaces

“that an object supports along with its parameters. The structure of the ORB is
shown in figure 2.3.

An ORB can run in stan'dalone mode-or can be interconnected to other ORBs
in the universe. All the ORBs‘ are interoperable via the Internet Inter-ORB Proto-

col (IIOP). ”The IIOP is basically a TCP/IP with some CORBA-defined meséage

exchanges that serve as a common backbone protocol” [23].

Object

Client .
Implementation
l l :
)
. \\\ 4 . 5 . Im
- - namic
Interface Dynamic Client ORB Static sxeleton Object
Reposito nvocation DL | |interface| [keletons ionl | Adapter
Stubs | 1

/
Object Request Broker Core (IIOP) >

Figure 2.3: ORB structure [23]

'2.4.3 CORBA Object Services (CORBAservices)

The term CORBA Object Services refers to fundamental (system-level) object in-
terfaces that extend the functionality of,v ORB. 'They ar.e‘ t‘he.rﬁost com'moﬁly' used:
services in building any application. The services provided by the CORBAéervices
are highly diverse ffom créating an object, deleting an ébjept from the ORB, and
locafing an object by its name or pr'(.)perties, to.providing 6berations for moﬁitoring '
the use of an object. Currently, there are sixteen object services in CORBAServicQS,

as listed below.

The Life Cycle Service: defines the methods for creating, copying, moving, and

terminating an object.

The Persistence Service: provides common interfaces to persistently store the

state of an object.

The Naming Service: locates an object by object name.

The Event Service: supports the asynchronous communication between objects

using events.
The Concurrency Control: provides distributed locks on a given object.

The Transaction Service: provides two-phase commit coordination among ob-

jects.

The Relationship Service: providés mechanisms to create, delete, navigate, and

manage the dynamic association between objects.

The Externalization Service: provides mechanisms to convert the state of an

object into a stream of data and vice versa.
The Query Service: provides query operations for objects.
The Licensing Service: provides operations for monitoring the use of an object.

The Properties Service: provides mechanisms to associate properties to an ob-

ject.

The Time Service: supports time synchroniiation in a distributed object envi-

ronment.
_The Security Service: offers a framework for distributed object security.
The Trader Service: matches or locates an object by its properties.

The Collection Service: provides interfaces to create and manage the most-com-

mon collections.

The Startup Service: starts up an object when an ORB is invoked.

2.44 The CORBA Common Facilities (CORBAfacilities)

The CORBA Common Facil‘ities are similar to the CORBA Object Service, but they

are at a higher-level and oriented towards end-user applications. They are related

to and extended from the existing CORBAservices. The CORBAfacilities is still

under construction.

2.5 CORBA-based UPC

In the-latter phase of the IWIN project at UBC, CORBA was incoporated into UPC

- to exploit the advantages of flexibility and versaltahty that CORBA’s dlstrlbuted

" object archltecture offered [30 35] In CORBA based UPC, all the entities in the

UPC architecture (1.e. UHA, THA, and FA) are presented as distributed objects.
These objects move relative to the current location of the user. The Common

Object Request Broker Architecture, CORBA, is selected as a middleware layer

* that provides a homogeneous distributed computing environment independent from

the underlying hardware and software ;cechnology.

In addition to providing a homogeneous distributed computing environment,
CORBA also defines a set of Common Object Services (CORBAservices) and Com-
mon Facilities (CORBAfaciliﬁies) that provide building blocks for developing any
CORBA based apphcatlon The CORBAserv1ces support generic and common func-

tlonahty, such as creatmg an object, naming an object; and resolving the reference

of an object. The CORBAfacilities are the frameworks that provide services directly

used by the application objects. Taking advantage of the a,vailability of CORBAser- -
vices and CORBAfacilities, the CORBA-based UPC system can utilize some.of the

core services provided by the C‘ORBAservices; such as the Life Cycle Service, the

22

Naming Service, the Trader Service, the Security Service, the Persistence Service,
and the Relationship Service.». | '
| In the CORBA;based UPC approach, terminal mobility is he;ndlled by the
Mobile-IP. Terminal migration in Mobile-IP is transparent to the TCP and the
higher network layers in the OSI model. Since'CORB.’A sits above the TCP/IP
layer, terminal migration is also transparent t6 CORBA. Therefore, the CORBA-
based UPC only focuses on the issue of user mobility.
The CORBA-based UPC system Consists\.of the following majo'r objecfs: the |
Facility bbject, the Personal Corﬁputing Envirdnrﬁent object (PCE), the Terminal

Profile object, the User Agént object (UA), the Terminal' Agent objet:f (TA), and

" the Initial Agent object (IA).

-+ 2.5.1 Facility object

A facility object is a representation of a computing resource, a network service, or a
software application in the system. A facility object‘ is 'self—descfiptive so it can be
queried by other objects for supported services and for how to iﬁvoke these services.
A facility Cdn be either a personal facility, or a shared facility between a group of
users. A personal facility is user specific and only available to a speciﬁc' user at their
home .network. On the other hand, a shared facilitylis specialized for a group of -

N

users and available on a certain network. To a great extent, a shared facility can be

" general-purpose and available for everyone, everywhere.

2.5.2 . Personal Comput.ing Environment (PCE) object

" Each user has a Personal Computing Environment (PCE). A PCE is a set of facility

‘objects that a user wishes to use when they are away from their home network.

23

A PCE is a persistent object that can be facilita‘ped by the CORBA’s Persistence
Service. When a user visits a foreign network; their PCE is retrieved and mapped -
intothé facilities that are available at the login terminal (i.e. the Términal Profile
object). The result is a subset of_ the requested facilities in the user’s PCE, referred

to as a user’s terminal specific PCE.

2.5.3 Terminal Profile objecf

‘Fach terminal has a terminal profile object kept locally at the terminal that defines -

the capabilities of the terminal. Both the terminal’s physical and software capabili-
ties are specified in thg termin\al profile quect. By Physical capabilities, we refer to.
the physical properties of a terminal, such as the size of the RAM, the size of the
memory in the video card, the monitor mode, and the monitor resolution. Software

capabilities refers to the facilities available locally at the terminal.

2.5.4 User Agent (UA) object.

Ea‘ch user -has a UA object that acts on behalf of the user in the system. ‘The
UA object’s main task is to .manage a user’s PCE object. In addition, the UA

object provides interfaces to authenticate a user and to retrieve a user’s PCE object

. once the user.is authenticated. The UA object is a persistent object facilitated by.

CORBA'’s Persistence Service, and is bound to the user’ LUI in CORBA’s Naming
Services. Thus, an UA object can be located from a user’s LUT with the assistance

of the CORBA’s Naming Service.

24

2.5.5 Terminal Agent (TA) object:

‘Each terminal has a TA object that represents the user at the fofeign network. The
TA object has a reference to the user’s terminal specific PCE object (i.e. the subset
‘ of_a u.ser’sTI’CE that is supported by the current login terminal) which the TA object
is responsibvle to maintain. Moreover, the TA object is also responsible to discover

‘all the facilities tﬂat'are available at the visiting network, uéing both CORBA’s

‘ Na‘me Service and .CORBA’S Trader Service.

- 2.5.6 Initial Agent (IA):

“An initial égent is an active process that runs at a terminal and vprovi‘des the start
ﬁp procedﬁre for users.’ First the TA authe“nticates a login user based on CORBA’s .
Security Service. With th.e assistance of CORBA’s Name Service, the IA then finds
the user’s UA object. After locating the user’s UA object, the TA initiates the

' c_reatioh of a TA object and a user’s terminal specific PCE object at a terminal.

Fighre 2.4,> ad(;pted from [30], shows the collaboration of agents in the

CORBA-based UPC system.

25

Initial

User [+ 1. Request for authentication

Interface Agent
-7 Agent creation-
-~
1 . User User '
. — .
Menu Terminal
Agent -

|
- . Initial
3. Search for local services .

Naming Service
rader Service

4. Available service It

.. Figure 2.4: Collrabor‘a,tic_)n of agents in the CORBA—based UPC framewor.kv[30]

26

| Chapter 3

UPC’s Registration and Service

Negotiation Protocol ,(RSNP)_ |

3.1 Overview

"In this chapﬁer we present the specification and prototype impleméntation of UPC’s
Régistration and Service Negotiation Protocol (RSNP). RSNP was specified using
the Specification and Description Language (SDL). With the use of SDL, we were
able to produce an unambiguous, precise, and concise specification of RSNP. There
are several formal specification techniques available to specify and model the behav-
iovr‘of a system, such as Language of Temporal Ordering Speciﬁcationé (LOTOS)
and Estelle Formal Deécription Technique. However, we chose SDL as the formal

specification language for RSNP due to the following reasons:

e SDL is a recognized international standard and accepted by ISO (International
Standards Organization). This fact ensures that SDL will be maintained and

supported in the future.

27

e SDL is popular and widely used in the telecommunication industry.

e The graphical SDL is intuitive and easy to work with. It clearly displays the

relationships between blocks, processes and how they interact.

e The nature of SDL is suitable for specification of a communication protocol
since the SDL process is described as Extended FSM. Theb FSM is an excellent

model for any communication protocol design.

In regarcis to the SDL tool, we used the tool developed at the KFKI Research
Institute for Measﬁremenf and Computing Techniques in Hungary. This SDL tool
is a part of a tool set called PROCONSUL (i.e. PROtocol CONSULtant). and
consists of a SDL simulator and language sensitive editor that supports the grammar
of the SDI. 1992 version. The editor. has a'ﬁsyntax cheéker, which helps to create
syntactically correct SDL specification. The SDL simulator represents a SDL system
ds a block diagram, and displays the output of the simﬁlation in the form of a time
‘ d'i‘agram or a fneséagé sequence chart (MSC). We can step through the simulatioﬁ
eXeéﬁtion and simulate diffefént scenarios by changing a variable value, changing
the delay time for a channel, and even adding to or deleting signals from the signal
queue. For example, we can simulate a loss of message by remoVing it from the signal
queue, or we can simulate the pfotocol behaviour during a network congestion period
by simply increasing the delay time in a channel. With the use of the SDL simulator
we checked for RSNP spéciﬁcdtion’s completeness and correctness. In addition to

this, we were able to simulate alternative solutions for any problems that come up.

28

3.2 UPC Protocol Architecture Modiﬁcatibh

RSNP is specified with several modifications to the architecture as well as additions
of new enfities, as compared tothe UPC protocol -architecture mentioned in section

~2.3. The modifications and their justification are as follows:

o Terminal related information such as the terminal identity and the terminal
profile are kept locally at the terminal. The terminal lidentity is the perma-
nent IP address of a terminal. The terminal profile is basically the ter_minal
configuration informétion, such as résident operating system, file format, and
_mbnitor display mode, and so on. This‘information is currently available at
aﬁy terminal bso there is no need to replicate the inforfﬁatibn at the THA. This

~ alleviates the need for database management in the THA.

o We extended the terminal profile to store information abdﬁt software appli-
cations locally available at this particular .termina,l, such as the name of theb
application; the type of the application, the path of the executable file of the

application, and the mapping information for a mobile user’s preference and
conﬁé‘uration files. The mapping information maps a mobile user’s preference
and configuration file for an application on the home network, to thevpreference

and configuration file for an application available on the foreign terminal.

e Since the terminal profile is kept locally at the terminal, there is no need for

a Terminal Home Agent.

e We introduce a new agent, called Mobile User Agent. This agent runs locally
at a terminal and provides a login interface to users. The Mobile User Agent

is responsible for registering, re-registering when a connection lifetime expires,

29-

+

or re-registering when the user and terminal move to a different network. It is
also responsible for producing a Session Service Profile that restrains the user

from unregistered services.

Each foreign network has a Service Profile that specifies the computing re-
sources and network services that are available at this particular network, and

the personal applications that are allowed to execute while the mobile user is

visiting the network. The UFA provides access to this Service Profile during

the service negotiation phase.

We introduce a temporary service profile located at a terminal, called User-
Terminal Service Profile. This profile has the same format as any other service
profile and is created after a successful registration. The User-Terminal Service
Profile is the intersection between the User Service Profile and the Terminal

Service Profile, and is created once for each login session. This service profile

exists because the binding between a mobile user and mobile terminal during a

login session is fixed. As a result, the User Service Profile does not have to be
downloaded every time the mobile user and their mobile terminal experiences

a hand-off with an ongoing session.

We introduce a temporary service profile located at a terminal, called Session

Service Profile. This profile is specific to a particular valid login session within

‘a particular visiting network. It is the intersection between the User-Terminal

Service Profile and the UFA Service Profile. The login user’s access is limited
to the services that only exist in the Session Service Profile. This profile is -

recreated every time a mobile user and their mobile terminal move to a new

foreign network.

3.3 SDL Specification of RSNP

.At the top level, we can describe fhe RSNP in UPC as a system that accepts the

"login and logout request from a user in the environment and then outputs the status
- meséage to the user. This system Consists: of one block called MobilelP, one block"
 called Mobile User (MU),'aJ set of two similar blocks of type User Foreign Agent
(UFA), and another set of two similar blocks of type User Home Agent (UHA).
Figure 3.1 presents the System Diagram of the UPC’s Registration and Service
Negotiation Protocol. (Please note this diagram is for illustration purpose only, it
is not the system diagram that is directly printed out from the SDL’s graphical

representation.)

e The MU block is connected to the environment through a channel called User,
. to the Mobile-IP block through a channel called MIP, and to the UFA block
through a channel called MU_UFA. |

e The UFA block is connected to the UHA block via a channel called UFA_UHA,

and to the environment via a channel called UFA_Debug.

e The UHA block is connected to the environment through a channel called

' UHA Debug.

On each channel in figure 3.1, there is a list of SDL signals that are carried by the

channel in the specified direction.

The User channel: this channel carries the SDL’s signals between the environ-

ment (i.e. a user) and a MU block. The SDL signzﬂs carried in this channel

are as follows:

S

X

w:no&lwmmm&z
8nqagoubagSuorp
uvodayiouyg

puuey)

Snqd@vVHN

v

Hooig 1uaby

puuEy) VHN VAN

m:.nuadmmmmvz
3ngo@ ™ @posuuo)pIfeAuf

8nqag oubagSuoim
vodoy toug . .
| di ajiqon
- putey) . Puwey)y
© 8nga@ivan _ . dIN

-

QWK Jasn ,

bay"dsn doy~dq
bay uayiny doy uap

-
SN
ny

S A | | 4 T%ma :.o___au.mx_,H_‘A |

pPUuEY) VAN NN “uuey) s9sn)

o
‘ | .Eomoq | nqaqoessopy
Ew.oq © 1oday uotw

EE.QE 1

bay"s[301g901A 135135y doyuonoauuo)
_ bayy uonasuuon LT

. - . oy

_ boyuonensidarng doya[y0IgaNAIS VN
bay apyoigaosTvan | doyajy0igaoiaagIasy

"(j020301J UonEnoToN 901AIS pue uoneNsIZIY) DdN Evaw %m :

' Figuvne 3.1: System Divag‘ram of UPC’s Reg‘is‘tratidﬂn and Service 'N‘égo"tiation Pfo’gocol_

Login signal: this signal des¢ril§és a login request from a user with the in-
o put ‘pa,rameters; such as the"vuser’s LUI, .“che user’s éassword, and theiPl
address of the user’s UHA. |
Logoﬁt signal: this signal describes a logout request from .a user who has zi '
valid login session. | | |
Prompt signal: this signal deécribes a ;;ror:_nrpt for us:eli inputs.
Error Report siénal: this signal deécribes a system response when an error
occurs.' | B | |
- The MIP channe‘l:‘this channel carries..the‘ SDL signzﬂs -between a MIP
block and a MU block. -
deat‘ion Update signal: this Sigﬁal _describeé the l(')c’.a‘ti_on(uphdate rﬁessage -
that Mobile-IP sends to the MU, infofming it that the termi;lafl'"'is moving
“into a new fore‘i‘gn network. It has tﬁe new UFA [P address as the ini)tut .1

parameter.

The MU_UFA‘ channel: this channel carries the SDL signals between éLMU block .

and an UFA block. The SDL signals carried in this channel 5re*as«~f_ollovs/s: '

Connection Request signai: this signal describes a fec[uést from a MU tb
an UFA for a conﬂection. It‘ has the user’s vL“UI, the uéer"s AIV')‘a'SSVWOrd,‘- '
the user’s.,'UHA IP address, aﬁ‘ request conn‘ectjon lifetifne, and a sequence ‘
nﬁmb,er '.as' the ‘inpu_t parameters.

Connection _Reply signal: this signal describes a.reply from an UFA to a

MU for‘a connection reques,t‘;' It has a returned code, a string meésagé, al

granted connection lifetime, a connection 1D, and a sequence number as

the output parameters.

User Service Profile Request signal: this signal describ_és a requeét from
a MU to an UFA for a user’s service profile. It has the user’s LUI, a

connection ID, and a sequence number as the input parameters.

- User Service Profile Reply signal: this signal describes a reply from an
UFA to a MU for a user service profile request. It has a returned code,
a string message, a service profile, and a sequence number as the output

parameters.

UFA Service Profile Request signal: this signal describes a request from
a MU to an UFA for the UFA’s service profile. It has the user’s LUI, a

connection ID, and a'sequence number as the input parameters.

UFA Service Profile Reply signal: this signal describes a reply from an
UFA to a MU for an UFA’s service profile request. It has a returned
code, a string message, a service profile, and a sequence number as the

output parameters.

De-registration Request signal: this signal describes a request for de- reg-
istration of a valid established connection. It has a connection ID as the

input parameter.

~ The UFA_UHA channel: this channel carries the SDL signals between an UFA

block and an UHA block. The SDL signals carried in this channel are as

7 follows:

Authentication Request signal: this signal describes a request from an

UFA to an UHA for authenticating a user. It has the user’s LUI, the

user’s password, and a'sequence number as the input parameters.

Authentication Reply signal: this signal describes a reply from an UHA
to UFA for an authentication reqt;est. It has a returned code, a string

message, and a sequence number as the output parameters.

User Service Profile Request signal: this signal describes a request from
an UFA to an UHA for a user’s service profile. It has the user’s LUI and

" a sequencé number as the input parameters.-

User Service Profile Reply signal: this signal describes a reply from an’
UHA to an UFA for a user’s service profile request. It has a returned
~ code, a string message, a service profile, and a sequence number as the

output parameters.

" The UFA Debug and the UHA Debug channel: these two channels carry SDL
signals between the UFA block, UHA block and the environment respectively.

These signals are mainly used to display the debug and status information at

both the UFA and UHA.

The MIP channel: this channel carries the SDL signals between a MU block and
" a Mobile-IP block. There is only one signal, called‘Location':Update, on this

channel. This signal has the néw UFA’s IP address as thé input parameter. '

3.3.1 Pseudo Mobile-IP Block

The Mobile-IP block describes a pseudb mobile-IP. Figure 3.2 is the block diagram
of the Mobile-IP block. The Mobile-IP block contains one single process called
MIP _Pseudo that simulates the movement of a m‘obil‘elterminal. After detecting the

terminal has moved to a foreign network, it informs the MU block about the change

using a location update signal.

Block MIP (Pseudo Mobile-IP)

E‘O‘:aﬁon—Updag MIP Pseudo
From MIP Signal . Process ‘
Route

Figure 3.2: Block Diagram of a Pseudo-vMobile—IP
3.3.2 Mobile User Block

The MU block describes a Mobile User Agent as mentioned in section 3.A3. This. block
provides the interfaceé for user inputs, such as login and logout requests. Figure 3.3
illustrates the block diagram of the MU block.

.l - This blbck contains one process called MU_Process §vhosé behaviour is de-
scribed in the attached extended FSM, in figure 3.4. The MU Process consists
6f four states: the Idle state, the Registering state, the Régistered state, and the

Negotiation state.

. Idle state: in this state, the MU_Process is ready to accept a login request from a . .

... user.

Registering state: the MU_Process enters this state after receiving a login request
" from a user or a location update message from the Mobile-IP. During this

state, the MU _Process contacts the UFA to request a connection and waits for

36

Block MU (Mobile User)

Prorhpt
Error Report Login
Message_Debug Logout
User Signal Route K_
A
E,ocaﬁon Update]

MIP Sig

~ MUP

Connection_Rep
UserServiceProfile_Rep
UFA _ServiceProfile_Rep

Connecti‘on_Req

’ UserSewiceProfilé_Red.

UFA_ServiceProfile_Req’
Deregistration_Req

rocess |«

nal Route

!

/

UFA Signal Route

Figure 3.3: Block Diagram bf a Mobile User

a reply.

Registered state: the MU_Process enters this state after receiving a connection
acceptance from the UFA. It waits for user requests that include execute an

application or perform network services.

_ Negotiation state: the MU _Process enters this state after sending requests for the

user’s service profile and the UFA’s service profile and awaits the replies.

3.3.3 User Foreign Agent Block

The UFA block describes a UFA. Figur.e 3.5 illustrates the block aiagram of the
UFA block. |

There is one process in the UFA block calléd UFA _Process, whose behaviour
is described in the attached extended FSM, ir’1 figure 3.6. The UFA Process consists
of foulr states: the Idle state, the Process Connection Request state, the Session

Established state, and the User Service Profile Request Processing state.

Idle state: in this state, the UFA _Process is ready to accept a connection request

from the MU.

Process Connection Request state: in this state, the UFA_Process processes
the connection request from the MU. It contacts the specified UHA to authen-

ticate the login user and awaits an authentication reply.

Session Established state: the UFA_Process enters this state after it grants a
connection to the MU. In this state, it waits for further requests from the MU,

such as a request for using network services.

38

(4S1V = Sejgiesny 198) +. Jouy uodoy

JoWI [9JITUONIUUOY) [30UE]) + IOl LS () j9oue) + bayuonensi§aap /mofo]

Jowi Ly 199ue)) + bayuonensigalep 7 moSo]

R YD) 198 + bay"uonos
/(201 131p) 1PN ™01

/(001 "swes) 21ep

JOUWH D 198 +
bay~uonsa

ISWI [2J1TUOTIOBUUOY) [32UT]) +
JWLLYS™ VAN [9ouT) +
bayuonensisarap 7 mofo|

BN 198

onoauuoy) / u1foy

DWILYD [90UE:

/7 pandxs 1au

urSoT Joj 1w 7 feruag_u6nISUU0)D) ﬂ
A

ONINALSIONY _Joug Hoday / sawt ¢ pondxd oW1

7 (001 aures)arepdn {0

/{aS1vd F Seldias(y)
(mau) 1do3pyuonosuuo))

U LYdS” VAN 1S + baya[101ddiaasy AN
+ IOWI] 9JITTUONOAUUOY) 10§ + DWILYD [29ULD)

7 (ANYUL = Se1d1980) + (mau) 1da0oy Uuondsuu0))

ouit Ly 19S + bay uonosuuo)
7(30T JpJ=. B

/ (90 awes)
arepd o1

(3NAL = Sel419s() 198)
+ PULLYdS V4N 19S

+ bayoyoigasiaragy.an
Jouny¥ds n eoue)

/ MOlaumoEoiooS.smEm

WYY [90ue)

/ seum ¢ paidxg IounLAdSS +b3

(dS7TvAd = Se[31987} 1°S) +
Jowrg uoday + oW YJS (1 [90UED)

/ MOYYE ™ daYaOIJI0IAIISIaST)

JOWL] dS () WS
tdxy Jow 1 ydS N

101 Hodoy + PUILLS™ VAN 199ue)

013014125135}
PDWLLAS VAR 1S
+ bays[yoIgaoiaag AN
/ Uo.:n_xm IowMdS™ VAN

1 HOYYA day1YoIddIARS VAN

(NIN) 198() 3[1IGON

w1 uds” V4N 190u8) / MO doYdIY0oIdNAS VAN

Figure 3.4: Mobile User Agent’s Extended Finite State Machine

O TOUdTy 7 ST § PrdXy oW LYdS VAl T

39

+

Block UFA (User Foreign Agent)

- Connection_Rep UserServiceProfile_Re

Connection_Req ' 5
Use}rServigeProﬁle_Rep UFA_ServiceProfil e_R?: q Authen_Rep Authen_Req
UFA_ServiceProfile_Rep . Der egistration_Regq USP_Rep USP_Req
| iy N "

- A Process

MU Signal Route UHA Signal Route

UFA|Debug
Signal Route

Error_Report
WrongSeqno_Debug
InvalidConnectID_Debug
Message_Debug

Figure 3.5: Block Diagram of a User Foreign Agent

User Service Profile Request Processing state: in this state, the UFA _Process
processes the request for a user service profile from the MU. It contacts the

user’s UHA to request the user’s service profile and awaits the reply.

3.3.4 User Home Agent‘Bl'ock

The UHA block déscribes a UHA. Figure 3.7 diagrams the UHA block.

There is one process in the UHA block called UHA;Process, whose behav.iour
is described in the attached exteﬁded FSM, in figure 3.8. The UHA Process consists -
;)f three states: the Idle state, the Checking ID and Password state, and the Service

Profile Request Processing state.

Idle state: in this state, the UHA _Process is ready to accept any requests from the

UFA.

Checking ID and Password state: the UHA _Process enters this state after re-

ceiving a request for user authentication.

Service Profile Request Processing state: the UHA _Process enters this state

after receiving a request for a user’s service profile.

3.4 Prototype Impleméntation of UPC

After having a concise specification, we implemented a prototype of RSNP on Sun
Microsystem Solaris 2.x using C as the programming language. The user graphical
interface was written in Tcl/Tk. The implementation code space is roughly about

8000 lines. The prototype of RSNP is subjected to the following assumptions and »

Tequirements:

FOUYA " daye1yoIgao1aegy AN
/ (1reae LON o1goid) + boyo[joifasial n

D (OI N Gl R RN EINE
/ (1ieae apyoid) + bayayo.

12U QI TUONORUUOY) 198
+ (p10) Wdedoy " uondouu0)

/ (paiasiSar Apuaumd) + bay uonpouu

(VaN) ey usdelo 198

WL 13

+ boyudymy
/. pandxd I YN

-+ (mou) 1daooy uohoauuo))

JOWI LYY [2oUe)) / voM:odab&mB%

[UONI3UUOY) / AW ¢ $aIdxa Jow [YV

WYV [9UBD) + [BIUQ UONDSUUC) / YONYT doyusyiny (uio

[erua(] uonIauuo)) / (‘JieAe LON ?
+ bayuonoaut

[_E LV 19S + bayuayiny

/ (1reA® 201n0sa1) + bay uonoauuo)

1s3anoay
NOLLDINNOD
DNISSID0Ud

ISWIL] SJUTUO LU0 19§ \ v
+ RWLLYV, \[PouE)
QU 9" JUOLIUUO)) [[AJUE
IQuIL L 4SA [20ue) .m %w_r_(w\.,mwm uco.c Euu oEuw *
/ boyuonensi§arap |
IowLdsn ¥ baudsn

/ PAIAGX3 IpWl] JS)

(ISE} 9ATIOE WOLJ P] A0WD)
/ sandxs 1auIl 9J1-TUONIUUO))

/ MO~ doypeyiny

3PWILISN 199U8)
+ JOU YA doy21J0IJIAIIGIIS)

AOYYAdaydsn

ONISSAD0Ud
OAYAA0Ud
ADIAYASAAS

dqHSI1gv.isd
NOISS3S

AOUYH doyd[yoIgadiategiasy
7 sauy ¢ sandxa 10wy S

ll

ST] SAHOR WOLJ P] SAOWAL
/ sandxa 1wl] 331 TUONOSUUO))

F IIIATOSIIS))

QUIL SN [9IUED) + (O~ doYRYOIJIIAISIAS) / O daddSn
. I9UIY 3J1TTUOLIDAUUOY) 19§

(p10) hdaooy " uonodasuuo)

/7 (paaisiSar1 Xjjuaymno) + bay uonosuuo)

I3W1] 2] TUOTIOSUTOY) [S0UE)) + [EIUS(] UONIUU0)) / (0Juf pifeAu]) + bayuonosuuo)

Figure 3.6: User Foreign Agent’s Extended Finite State Machine

42

'y

Block UHA (User Home Agent)

Authen_Rep
USP_Rep

Authen_Req
-USP_Req

: » UHA Process
- UFA Signal Route : _ L

[}

UHA |Debug
Signal Route

- Error_Report
WrongSeqno_Debug
Messag_Debug

Y

Figufe 3.7: Block Diagram of a User Home Age

nt

JOYYa doyuayiny . Joyya doudsn

MO~ deydsn
/ (Jreae aqyouid

s07 a1epdn + SO~ doyguayiny

HONISSHD0Ud
DAY ATI0dd
dDIDAYES

MSSVd + dI
DNIMDHIHD

(ar1j01d 198).
03gdsSn

Figure 3.8: User Home Agent’s Extended Finite State Machine
44

(VHN) Juedy oEoE_H.om n

3.4.1 Assumptions and Requirements:

The applications supported here are limited to internet applications such as

web browsers (e.g. Netscape; Mosaic), news clients , mail clients, and so on.

This prototype implementation does not support multi-platforms. The sup-

ported platform considered here is UNIX.

A local user whose login mobile terminal comes from a foreign network is
considered a visiting user since the mobile terminal may not support all the

services that a fixed terminal in this network supports.

The UFA and the Mobile-IP Foreign Agent (FA) are required to operate on.
the same machine, or in other words, they should have the same IP address.
This require'ment makes the agent (UFA) discovery procedure in the UPC

efficient and simple. As a mobile terminal (MT) and a mobile user enter a

foreign network, the Mobile TP detects the move and informs the MU of the

current UFA’s IP address (this should be the same as the FA IP address). The

Mobile-1P need to be modified to provide this location update service.

A mobile user is- reduired to know the UHA’S location, whether it is a UHA’s
IP address or the name of the host that UHA is currently running on. The
UHA location can be extracted from the LUI,‘ but this requires that the UHA
resides on the same host as the internet mail server. It is unsafe to run any user
program on the mail server’s host, and to the extent that this is a prototype
implementation, this requirement is reasonable. If the user is local and the

terminal is also local, then this requirement-is waived.

45

3.4.2 Registration and Service Negotiation Procedure

~ The behaviour of the RSNP depends on the type of terminal, ﬁgced or mobile. There
is no hand-off and UFA location update procedures for a fixed terminal. For a mobile
terminal, by default, the Mobile User (MU) is configured to know the location of

the UFA in its home network. . |
The following is the sequence of events during.the Registration and Service

Negotiation:

e Afterl 1'eceiving the user’s information, such as the LUI, the password, aﬁd the
UHA’s IP address, the MU at the login terminal verifies whether the user is
local or foreign by comparing the domain portion of the LUI and the current
UFA’s IP address. The terminal’s type, fixed or mobile, is identified from the
terminal configuration. If the user is lbcal in this administrative domain and
the terminal is fixed, the MU allbws this user to login locally. The user has full

i accesé fo émy services and applications available. If the user is from a fdreign
administrative domain, or the user is local in this administrative domain but
the terminal is é foreign terminal, the MU contacts UFA for a connection

request.

o After receiving a-connection request from a MU, the UFA checks its current
status, i.e. number of connections available. If the UFA is able to handle

another connection, it contacts the user’s UHA for user authentication.

e The user’s UHA validates the requested LUI and its corresponding password.
If both the LUI and password are valid, the UHA returns a valid authentication

reply to UFA.

46

e As the UFA receives a valid authentication reply from the user’s UHA, it
generates a connection ID and sends a connection acceptance message along

with this connection ID to the MU.

e After the registration succeeds, the MU initiates the service negotiation pro-
cedure by sending a request for the User Service Profile to the UFA. The UFA
forwards this requevst to the user’s UHA. The reply comes to the UFA and is

then forWarded to the MU.

e If the MU receives a valid reply, it creates a User-Terminal Service Profile by

intersecting the User Service Profile with the Terminal Service Profile.

e If the User-Terminal Service Profile is not erripty, thé MU contacts the UFA
to retrieve the UFA’s Service Profile and then produces a Session Service Pro-
file by intersecting the UFA’s Service Profile with the User-Terminal Service

Profile.

3.4.3 vRe—régistration after Expiration of Connection Lifetime

Each connection granted from the UFA hés: a unique ID and a limited lifetime. A
connection becomes invalid if the connection lifetime at the UFA expires. To main-

, ltain a connection, the MU has .to send a re—regisfration ’rQQuest whenever its coﬁnec—
tion lifetime expires. The re-registration procedure. after expiration of a connection
lifetime is very simple compared to the re-registration procedure after a hand-off.
When a connection lifetime ‘expires, the MU sends a re—regist_ratioﬁ‘ request with
the associated connection ID and requested desired lifetime. If thé connection ID
is valid, the;'UFA updates the connec‘éionlifetime for this connection ID and then |

sends a reply back to MU.

47

+ 3.4.4 Re-registration after Hand-off

Hand-off only occurs with a mobile terminal. The hand-off in the mobil‘e terminal .
is handled by t.he Mobile IP. Tile MU detects a move into a foreign network when it
receives a location update message from the Mobile IP and the UFA’s IP address in
. the location update message is different from its current connected UFA’s IP address.
. If the MU is serving an ongoing session, it performs the re-registration procedure.
The MU contacts the new UFA and provides it with all the user’s information such as
the LUI, the password, and the UHA’s IP dddress. To authenticate the user, similar
.slteps as used in the registration procedure are carried out. The ongoing session is
lterminated if either the new UFA is not available for any services or authentiéafion

* of the user failed. |

After successful registratioﬁ with the new UFA, the MU contacts the new
UFA to retrieve the new UFA’s Service Profile. A new Session Service Profile is cre-
ated from intersecting the User- Terminal Service Profile and UFA’s Service Profile.
Current running services or applications that do not exist in the Session Service

Profile are considered illegal and are immediately terminated by the MU.

- 3.4.5 Datagram Format used in Registration and Service Negotia- "
tion Protocol
Communication between MIP and MU
This is the datagram format for the location update packet from Mobile IP.

o UDP fields

- Source Port: variable

- Destination Port: 9999

e The UDP Header

'— Location: IP address of UFA

‘Communication between MU/UFA or UFA/UHA

‘Tliere is only one header type used for all the request and reply packets between
"MU and UFA, or UFA and UHA. User ID, password, and service profile are inserted

into the data portion after the header.

e UDP fields

|

|

o : - — Type: Location Update
— Source Port: variable

— Destination Port: copied from the source port of the corresponding Re-

quest or
* from MU to UFA use 8888
- + from UFA to UHA use 6666

* from UHA to UFA use 7777
o The UDP Header

— Type:
¥ Connection Request
* Connection Repl‘y
* Authentication Request

Authentication Reply

*

¥*

User Service Profile Request

49

- * User Service Profile Reply |
+ UFA Service Profile Request

* UFA Service Proﬁl'e‘Reply

— Code: A value indicating the result of the request. It is set to 0 in the

|
\
\
|
‘ request packet. Possible errors are:
*x For Connection Request
: Registration Accepted
- Registration Depied
- Unspecified Reason |
- Insufficient Resources
. Authentication Fa;ibled
- Requested Lifetime Too Long
- Poorly Formed Request
- Unknown UHA Address
- UHA host is Unreachable .
. UHA port is Unreachable -
* For Aﬁthentication Requ_est
- Authentication OK
- Authentication ERROR:
- Unspecified Reason

- Identification Mismatch

- Poorly Formed Request

. Un—R‘egistered User

+ For User Service Profile Request
- OK.
- ERROR, Unspecified
- UHA Unreachable

* For UFA Servicé Profile Request
LOK
- ERROR, Unspecified
- UFA Unreachable

— Lifetime: The number of seconds remaining before the registration is

considered expired. A value of Oxffff indicates infinity. It is set to 0 for

the reply packet with an error code.
— UHA: IP address of the User Home Agent
— Seqno: the sequence number of this »pack‘et.

— ID: the connection ID of this connection. It is set to 0 in packet type Con-,
nection Request, except in the ‘case of re-registration after a connection

lifetime expires. In this case it is set to the actual connection ID.

Data length: the length of the data following the header.

Chapter 4

CORBA-based UPC Prototype

Implementation

4.1 CORBA-based UPC Prototype Implementation

In this chapter, we present the implementation of the CORBA-based UPC proto- |
type. As mention in. section .2.5, CORBA-based UPC architeeture is an alternative
approach in modeling the UPC concept. In this architecture, the UPC‘components
are modeled as distributed objects with CORBA as the object bus that facilitates
the interaction, integration, and distribution of these objects. We implemented the
erototype using'Java as the programming Ianguage, Visigenic’s VisiBroker for Java
as the CORBA framework, and Sun Microsystem’s Solaris 2.x as the computing
~ platform. The prototype code space is approximately 5000 lines.

Because the implementation is a prototype and there are insufficient comput-

ing resources, the prototype is implemented based on the following simplifications

* and requirements:

i

e The UPC architeé;ure utilizes a wide range of services defined by the CORBA
Object Services, such as the Naming Service, the Trader Services, the Life
Cycle Services, and the Security Services. However, some implementations
of these serviceé (i.e. the Trader Serviceé) were not available at the time we
implemented the UPC proto‘pype. As a result, .the lack of CORBA services
has influenced our implementation of the prototype to a certain extent. The
service discovery and sérlvice negotiation procedure is simplified to a direct
mapping in the application namé and conﬁguratibn name. Thus, the termindl
profile is simpler than the terminal profile proposed in Zhu, Toeroe, L.eung,
and Vuong[35]. On our implementation the terminal profile defines only the
software capability of the terminal, with no information regarding th.e termi-

nal’s physical capability.

e The terminal must sup‘port Java and CORBA’s ORB. In addition, there must
be enough memory in the terminal to download the application client class file

~and the application cdnﬁguration file.-

As the first step in the implér'nentation-, we ‘de‘ﬁned all the UPC objects’
interfaces using the Interfaéé Definition Lan’guagé:(IDL). An overview of IDL was
presented in section 2.5. Then, we ran the IDL files through CORBA compliant |
pre-compiler to genefate the stubs and skeletons, which were used as a frame in
implementing an object. The following sections present the IDL interface déﬁnition
for all the major objects as well as their functionalities in the CORBA-‘béxsed UPC

architecture, such as Personal Computing Environment (PCE), User Home Agent

(UHA), Terminal Profile, Terminal Agent (TA), and Initial Agent.

4.1:1 - Personal Computing Environment (PCE)

o Eag-h user has a PCE which ié kept and‘ maintained at the User ‘Homé Agent. ‘The
-PCE i;designed to specify enoAugh information so that ‘th‘e Terminal Agent"'ca,n‘
l_lnfiliz‘e the CORBA Trader Services to discover and neg;)tiatevthe services aVé,ilable '
for a user While they visit a foreign network. The IDL code of the PCE is attached
in.Apbendix A..v ' o |

The PCE is a list of service structures, each of which is composed of:
- @ Service Name: t_he\n.am'e' of a service object, defined as a string.

e Service Type: the type of service object, i.e. an application client object,

~ application configuration, or network resources.

e Service Object: the reference to a service object. This object can be an applica—
* tion client object, an object that allows accesé to an application. configuration,

or an object that allows access to network resources.

e Trade Information: a structure that stores all the necessary information needed
for the CORBA Trader Services to discover or locate a service, ie. the service

- type, the service properties, the constraint of the search and the search policies.

o Hardware capability: a list of the reqﬁirements about physical hardware sup-
port for this'service. For example, to play a midi file, a terminal is at least

required to be equiped with a sound card and speakeré.

4.1.2 User Home Agent (UHA)

Fbr each administrative domain, there is .;«l UHA. The UHA manages the list of users

registered in its administrative domain, and the users’ corresponding PCEs. The

54

IDL code of the UHA is attached in Appendix A.

The UHA exports the following services:

e boolean tokenauthent(in string LUI, in string password, out Token token):
This method authenticates a user identified by the LUI and the password.
Upon successful authentication, a token (or a valida,tion'ID) is returned to the

caller.

e inform_ location(in string LUI, in string address):
This method informs the UHA of the current location of the user (i.e. IP

address of the terminal).

e PCE::Profile getprofile(in string username):

This method retrieves a user’s PCE.

. striﬁg download(in Token token, in string filename):

This. method downloads a file from the user’s home network.

_ @ boolean upload(in Token token, in string filename, in string data):

This method uploads a file from the TA to the user’s home network.

e boolean updateProfile(in string username, in PCE::Profile p):

This method allows a user to modify their PCE.
e void logout(in Token token):

This method informs the UHA that a user is logging out.

4.1.3 Terminal Profile

Each terminal has a terminal profile which is stored in a file at the terminal. In our

prototype, the terminal profile is implemented as a JAVA class that maintains a list

55

of the software application names that are available at the terminal (e.g. Netscape,
Mosaic, and Tnternet Mail). - These software application names determine which
software applications are _a,vajlablé at a te'rnllinal to a user when they login to this

~ terminal. |
In addition to the applica,tidn rja,me, for each sqftwa1'e application, the fol-

lowing corresponding information is kept in the terminal profile:

. Thg, full path executable file name of the software application (e.g. for Netscape,
the file name is /usr/application /netscape.exe). This full path executable file

name specifies where to fire up the software application.

o A list of configuration names and preference names (e.g. bookmarks) and the
corresponding full path configuration file names and preference file names (e.g.
/usr/application/netscape/bookmarks.html). The list of configuration names
specifies and limits the ability ofa visiting user to replace these configurations

“with their own conﬁé;urationy from their homé network. When a configuration
file is downloaded from a user’s home network, the configuration name and
configuration file name are used to map the downloading configuration file to

the local configuration file at the terminal.

- In order to aid in the generating and updating of a service profile, we imple-
mented a utility application with GUI, called Service Manager. The Service Manager
utility is available to the system administrator or the owner of the portable terminal.

The Service Manager utility supports the following functions:

e Add a new application name and its executable file name into the terminal

profile.

Figure 4.1: Main screen of the Service Manager utility

e Add a new configuration name and its configuration file name to an existing

application in the terminal profile. :

e Delete an existing configuration name and its configuration file name from an

existing application in the terminal profile.

e Delete an existing application name and its corresponding executable file
name, the configuration name list and configuration file name list from the

terminal profile.

A screen shot of the Service Manager is illustrated in Figure 4.1.

57

4.51,4 Terminal Agent (TA)

The TA is implemented as an application server for the Initial Agent. Residing
‘ locally at a terminal, the TA communicates with the login user’s UHA to perform

~ the following tasks:

;. @ Process a login request for a user.
o Retrieve the user’ PCE from their home network.

" o Perform service discovery and negotiation. This process produces a set of
network services and applications requested by the user and which are also

available at the login terminal.

o Download the configuration or preference files that a user specifies for a par-

ticular application when this application is locally executed.

e Download the class files of the client of the application that is remotely exe-

cuted.

o At shutdown, synchroﬁize the downloaded configuration or preference files -

with copies at the home network.

The following describes the interfaces supported by TA. These interfaces are -

defined using OMG’s IDL. Refer to Appendix A for the entire IDL code.

e boolean login(in string LUI, in string password) raises (Fail):
This method uses the domain name portion given in the LUl and the CORBA
Name Services to resolve the object reference of the login user’s UHA. After ob-

taining the UHA object reference, this method then invokes the authenticate()

58

‘method exported by ;UHA to authenticate the user. If the authenticate oper-,
ation 1s snccessful this ndethod lnvokes the getprofile() method from the -
UHA to get a reference to the user’ s PCE ‘This method compares the user’s -
PCE with the Termlnal Proﬁle to produce a list of network services and ap-
phcatlons specified by the user in _the- user’s PCE which are also avallable at
‘the login termlnal. This method also extracts from the PCE all:the network
services and applications that are remotely available. ”Remotely 'aJvaJilable”
network.services or -applications are network“ ser\lices that can be executed at
the home network or a,pphcamons that are 1mplemented using the CORBA

Chent/Server framework.

. 'void logout() r‘aise_. (Fail):
*This method first closes all tlle running network’s services and applications.
Secondly, for local apphcatlons if any of the conﬁguramon files downloaded
from the user’s UHA had been modlﬁed these files are synchromzed W1th
copies at the user’s UHA by 1nvok1ng the upload() method exported by the
UHA. And’ finally, this rnethod deletes both the configuration and class files

downloaded durlng this logm sessmn

o string “rnnLocalAp‘p(‘in string appName) raise (Fail):
vThis'.method executes a local application. If there is a conﬁguration;ﬁle'
speciﬁed with this application ‘in ‘the user’s PCE, this method invokes the

" download() method exported by the UHA. to download +this configuration file.
o string runRemoteApp(in string appName) Traises (Fail): -
" This method executes a remote epplication. It first downloads the ?client” ‘of

the application from the UHA, as speciﬁed in the user’s PCE, then instantiates

59

 the object and runs it.

e string getLocalServiceList() raises (Fail):
This method retiurns a list of network services and applications specified by

the user in the PCE which are alsé available at the foreign terminal.

o string getRemoteServiceList() raises (Fail):
_This method returns a list of network services that can be executed at the home
network and applications that are implemented using the CORBA Client/Server

framework.

4.1.5 Initial Agent

The Initial Agent is an active process executed. at a terminal. If is responsible to
accept inputs from users and output the responses from the UPC system. The 1A
is imblemented as a TA’s CORBA client application. The IA invokes the service
providedvby the TA corresponding to the user input.

The IA ‘is im'plemented as ELL Java class that consists of two inner classes called

" Login Window class and Application Manager class.

.o The Login Window class provides a screen where a user can make a login
request by entering their LUI and password. The screen shot of the Login

screen is shown in the Figure 4.2.

e The Application Manager class provides a window where a usér can select
to execute a software api)lication or request a network service. There are
two selectable lists of software a'ppliéations aﬁd network services that a user
is granted to access. The first list displays all the network servicés that are

available at the visiting network and software applications that are locally

60

test@ece.ubc.cd

Figure 4.2: Login screen of the UPC

available at the login terminal, and the second list displays all the network
services and software applications that are available at the home network which
can be remotely executed. The screen shot of the Application Manager screen

is shown in Figure 4.3.

After a user enters their LUI and password, the IA instantiates a TA object
and invokes the login() method exported by the TA object. If the login request
is successful, the IA closes the login window and displays the application manager
window. The IA obtains the list of locally available network services and applications
and the list of remotely available network services and applications by invoking the
getLocalServiceList() and getRemoteServiceList() method respectively from
the TA. These two lists are displayed in the window manager so that a user can

easily select to execute the desired network service or application. Depending on

61

mailto:t8st@ece.ubc.c3

Manager screen

ion

1cat

UPC Appl

3

4

Figure

62

the user selection, one of the following actions will be carried out.

o If the user chooses to run a remote application, the IA invokes the runRemoteApp ()

method from the TA with the appropriate parameters.

e If the user chooses torun a local.application, the IA invokes the runLocalApp ()

from the TA with the appropriate parameters.

4.1.6 Testing and Results
Testing Preparation

The prototype supports mobile users with transparent access to their personalizéd
computing environments wherever they roam on the Internet, using wireless or wired -
connections. To demonstrate this capability of the prototype, we have prepared the

N

followings items:

. Softwafe Application
THere are two main categories of network resources and softWafe applications,
i.el.; local and remote. The ”local” categéry includes. all thé network services
that are available at the visiting network and all the'softw;rg applications that
are iqstalled in the visited terminal. On the other hand, the networks services
that are available outside the viéiting network (i.e. at thé home netw;)rk) .
and software applications that can be remotely executed (i.e. applications de-
veloped based on CORBA’s framework) fall into the "remote” categéry. For
local épplication, we used the web browser (i.e. Netscape) as an example. The
user would be able to run Netscape with the preference and configuration files

(i.e. bookmarks, preference, cookie files) from their home network. In regards

~ to the remote application, we implemented a CORBA-based software appli-
cation, a distributed TicTacToe game. It consists of a Véry thin application
client (i.e. GUI) and an application server. A user can play a game half way

and save it, then resume the pre_viously paused game any time later.

e User
We creatéd a user called "test” under. the administrative domaiﬁ "ece.ubc.ca”.
In the user PCE, we specified the user would like to use netscape as their _wéb
browser, and the ”bookmarks.html” and the‘ ?preferences” files are defined as
the preference filés for the application “netscape”. In addition to this, 'phe ﬁser

wants to be able to play a TicTacToe game awdy from home.

" e Terminal
We conﬁgured a foreigtn terminal in a secona administfqtive dbmain, 7cs.ubc.ca”,
to support UPC7 and created a terminal préﬁle for this terminal using the
Service Manager utility application. The terminal profile specifies that a web
browser called "netscape” is installed at the terminal. The mapping informa-
tion for all the reference and configuration files for netscape are also added to
the terminal profile. For example ” nétsp‘ape” is installed at ”/ﬁér/bin/netscape”
and the bookmarks file is mapped into the ”/usr/bin/netscape/bookmﬁrks.html”

file.

_ Results ' BN

When the user "test” moves away from home and visits the ”cs.ubc.ca” network,
they are able to login and have the same .computing environment as they have at

home' (i.e. ece.ubc.ca). The user can run netscape with the same bookmarks. and

64

' ;;references as they have at home, and any change to the bookmarks or preferences

files is synchronized with the corresponding files at the home network. The user can

~ also remotely play a TicTacToe game and resumes a previously paused game. -

To get a reading on the pefformance of the CORBA-based UPC prototype
implementation, we have recorded the time that it takes to perform a task in different
situations. The following shows some ﬁguf_es calculated based on an average of 80

runs:
e Time to resolve the User Agent : 702 msecs

e Time to process a login request : 174 msecs

e Download file rate : 27 bytes/msecs

~ Chapter o
Conclusion and Future Works

51 Concluéion

This thesis addresses implementation issues regarding the support of mobile com-

puting over the Internet using a new computing paradigfn called Universal Personal
Computing (UPC)[30,35]. UPC is a computing environment which enables a mo-
bile user to access éomputing resources, network services, personal applications,
data files, and environmental configurations through any terminal, stationary or
mobile, anywhere on the Internet [21]. The core of UPC’s mobility management is
the Registration and Service Negotiation protocol (RSNP). We first specified the
UPC’s RSNP using Specification and Description Language (SDL). We then simu-
lated RSNP using different scenarios to demonstrate the protocol’s behaviour, and
to verify the protocol’s completeness and correctness. With the concrete and precise
understanding gained from UPC’s RSNP SDL speciﬁcati.on, a prototype of UPC’s

RSNP was subsequently implemented in C and on Sun Solaris with the user interface

written in Tcl/Tk.

The specification and simulation of RSNP using SDL has made the imple-
mentation of the UPC’s RSNP prototype easier and simpler. In SDL specification,
an agent’s behaviour is described- using an extended finite state ma,chine.(FSM) and
coding from a FSM is a stfaightforward task. More important, the simulation has
verified thé response of a FSM against different combinations of 'inputs and states.
The FSM is proved to ‘correctly. wprk beforé any coding attempt. This results in a
huge reduction iﬁ debuggiﬁg time in the implementation phase.»

Unfortunately, using C language to implement all the distributive compo-
nents'in UPC is very complex and even impossible. The UPC prototyﬁe imple-
mented using C language supports only one feature proposed in the UPC frame-
work, i.e. e).(ecut.ing a local application using the downloaded configuration and
preference file from the user’s home network. However, there is no support for other
features such as remotely executing an appliéation or a service in the home network
from the foreign network, or downloading an application from the home network
and executing at the foreign network. To successfully implementing all the features
“in the UPC framework, a combination of a platform independent distributed ob-
ject architecture support (i.e. CORBA) and a platforrri indep'endent p'ro.gr.amming
iaﬁguage (i.g. JAVA) is necessary. The distributed object architecture will make
the implementaﬁon of a distributed application easier than using only C langﬁage.
Ldéking for an object, marshalling data frofn one language to another, or invoking
a rﬁethod on a remote object are performed transparently by the distributed object
framework. In addition, the platform independence of Java will make all the client
side of all the distributed components portable across platform.'

i As a result, this thesis has presented an alternative approach to modeling‘ the

UPC concept using distributed objects, called CORBA based UPC {30, 35]. In-this

67

architecture, the UPC Components are ‘m(‘)del"ed és disfribute'd Objecﬁs with CORBA
" as the object bus that facilitates the mtera,ctlon mtegratlon and distribution of
'these objects. To demonstrate the Concept a prototype of CORBA based UPC)
- was implemented using Java 1.1.x and VlSlgeI\‘lC s CORBA for Java 3.0 0n a Solarls
" platform. | |

With th.e 'advar‘lt,age of qsiné; Java and C‘O'RBA7 we were able to impfément '
most of-the features proposed in the UPC frarﬁex}vor.k. The,implementatién is very
s‘imipler as compared to the C/Tcl/Tk .irmvplémen'tatiori; The protbtype implemén;
tation supports a mobile user to.trans‘parently access their convﬁgufation anci pref-
erence file, and execute their pﬁrsonal software épp‘licatioﬁ Whenévenr‘ and Awherever
‘th..éyb roam on the Internet. The applicétion_ cdﬁfd be a local 'ap;élicatioﬁ running
with t_he user’s configuration and preferenc;s ﬁtle, or an application that isv:_reﬁ'l’otely

executed at the user home network.

™

5.2 Future Works

Since the implementation: of the CORBA-based UPC is only a prqtotypé and some
of the CORBA service implementa:tions‘-are not available at the time the ﬁroto‘type
was im.pler'riented, many features remain to _b}e‘imp’lem'ented i‘n the future.

"o In the PCE, the set of values that descrlbe the requlred hardware capablhtles ‘

for a service remains to be standardlzed and 1mplemented

e In the terminal'proﬁle, the set of values that descfibes the terminal’s h'ardwa»fe

capabilities remains to be standardized and implemented.

e As the CORBA’s Trader Service becomes availiable, the Term'ir}al Agent could

-+ be enhanced to support service discovery at the visiting'netWork.

68

e As the CORBA’s Concurrency Control is available, the User Agent could use
this service to control access to the PCE, and the Terminal Agent could use

this service to synchronize file downloading and uploading.

e Porting this project into a Web-based framework would be a possible exten-

sion.

e Last but not least, a detailed study of the UPC’s protocol performance and

security issues needs to be conducted.

69

BibliOgraphy |

[1] R. Bagrodia, W.W. Chu, L. Kleinrock, and G. Popek, ”Vision, Issues, and
Architecture for Nomadic Computing”, IEFE Personal Communications

Magazine, pages 14-27, December 1995.

[2] F. Belina, D. Hogrefe, and A. Sarma, ”SDL with Application from Protocol

Specification”, Prentice Hall International (UK) Ltd., 1991.

(3] J. C. Benard-Dende, R. Nevoux, and J. C. Dang, ”Networks, Users and
Terminals in UMTS/FPLMTS”, Vehicular Technology Conference 44th.,

pages 681-685, 1994.
[4] R. Braek, "SDL Basics”, Handouts.

[5] D. Chess, B. Grosof, C. Harrison, D. Levine, C. Parris, and G. Tsudik,."”
Itinerant Agents for Mobile Computing”, IEEE Personal Communications,

pages 34-49, October 1995.
[6] CORBA Home Page, URL: http://wuww.omg.org, 1998.

[7] T.V. Do, and J. Audestad, ”Terminal Mobility Support in TINA”, Pro-’

ceedings of TINA’s 97, pages 38-50, 1998.

70

http://www.omg.org

(8]

[10]

T. Eckardt, and T. Magedanz, "The Role of Personal Communications
in Distributed Office Environments”, Autonomous Decentralized Systems

Proceedings, pages 316-322, 1995.

T. Eckardt, and T. Magedanz, ”Personal'Communications Support based

on TMN and TINA Concepts”, Proceedings of IN’s 96, pages 196-200, 1996.

M. P. Gervais, " A Framework for Mobility in Wireless Personal Communi-
catfons”, Proceedings of ICC/SUPERCOMM’s 96, pages 1148-1152, vol. 2,

1996.

V. Gupta, and A. Dixit, " The Design and Deployment of a Mobility Support

Network”, Proceedings Second International Symposium on Parallel Archi-

tectures, Algorithms, and Networks, pages 228-234, 1996.

[12]

[15)

J. G. Hemma;d‘y, J. R. Maymir7 and D. J. Meyers, ”Network Evolution to..
Support Personal Communications Services”, Global Telecommunications

Conference, pages 710-714, vol. 21994.

T. D. Hodes, and R. H. Katz, ?Composable Ad hoc Location-based Services

for Héterogeneous Mobile Clients”, , 1997.

C.S. Hong, Y. Koga, and Y. Matsushita, A Networking Architecture for
Mobﬂity Services Using Mobile Agent Approach”, Proceedings of TINA’s

97, pages 297-307, 1998.

I. Tida, T. Nishigaya, and K. Murakarrii, ” DUET: An Agent-Based Personal

Communications Network”, [EEE Communications Muagazine, pages 44-49,

November 1995.

[16]

(17]

T. Imielinski, ‘and H. F. Korth, "’Mobﬂe Cdmpﬁtingf’ , Kluwer Academic .

Publishers ,- 1996. -

J. loannidis, and G. Q. Maguife Jr., ”The Design and Implement@ﬁoﬁ of a

' Mobile Internetworking Archi‘tecture’v’, Winter USENIX, 1993.

[lé]

[19]

E. Jung, Y. J. Paik, and C. Park, ”Mobile Agent Network for Support--
i_ﬂgrPersonal Mobility”, Proceedings. Twelfth International on Informatién-

Networking, pages 131-136, 1998.

M. Liljeberg, K Raatikainen, M. Evans, S. Furnell, N. Maumon, E. Veld-

kamp, B. Wind, and S. Trigila,:”Usin.g CORBA to Support Terminal Mo-

[23]

bility”, Proceedings of TINA’s 97, pages 59-67, 1998.

Y. Li, and V.C.M.,Leung’, ”Supporting Personal Mobility for Nomadic Com-
puting over the Internét”, ACM Mobile Computing and Communications

Review , Vol. 1, No. 1, pages 22-31, April 1997.

Y. Li, and V.C.M. Leung,'A”Protocyol Aréhitecturé for Universal Personal -
Computing”, IEEE Journal on Selected Areas in Communications , Vol.

15, No.8, pages 1467-1476, October 1997.

A. Lombardo, P. Nicosia, S. Palazzo, and M. Samarotto, ”Service AI‘C}'Ii—‘.'

tecture Support of Personal Mobility in a Multi-Domain Environment”,
. ™

Pm‘ceedings of TINA’s ;97, pageé 51-58, 1998.

R. Orfali, and D..Harkey7 ”Client/Server Programming with JAVA and

CORBA’”7 John Wiley and Sons, Inc., 1997. -

72

~[24] J. Pavon, and J. Tomas, "CORBA for Network and Service Management,

in the TINA Framework”, IEEE Commaunications Magazine, pages 72-79,

March 1998.
[25] C. Perkins, Ed., RFC2002, IP Mobility Support, March 1997.

[26] R. Ramjee, T.F. LaPorta, and M. Veeraragahvan, ”The Use of Network-
Based Migrating User Agents for Personal Communication Services”, IEEE

Personal Corﬁmum'cati‘ohs, pages 62-68, December 1995.

[27] D. Samfat, and R. Molva, ” A Method Providing Identity Privacy to Mobile
Users during Authentication”, pages 196-199, Workshop on Mobile Com-

puting Systems and Applications, pages 196-199, 1995.

[28] A. Sarma, ”Introduction to SDL-92”, Handouts.

[29] H. M. Sneed, ” Encapsuléting Legacy Software for Use in Client/Server

Systems”, Proceedings of WCRE’96, pages 104-119, 1996.

[30] M. Toeroe, J. Zhu, Y. Li, and V.C.M Leung, "A CORBA based
Framework for Univeral Personal Computing on the Internet”, Proceedings

SCI/ISAS’98, Orlando, FL, July 1998.

[31] Vinoski S., »CORBA: Integrating Diverse Applications within Distributed
Heterogeneous Environments, IEEE Communications Magazine, pages 46-

55, vol. 35, 1997.

[32] S. Vinoski, ”Distributed Object Computinlg With CORBA”, C++ Report .
Magazine, July/August 1993. |

[33] Visigenic Programmer’s Guide, Version 3.0, VisiBroker for Java.

73

[34] M. Zaid;, ”Personal Mobility in PCS”, IEEFE Personal Communications

Mdgazz'ne , pages 12>—1>6, Fourth Qu‘arter'1994.

[35] J. Zhu, M. Toeroe, V.C.M.-Leung, and S. Vuong, ”Supporting Uni'Vefsal/

Pérsonal Compﬁting on Internet with Java and CORBA”, Concu'rnen’cy:

' Practice and E:éperience, 1998.

Appendix A

The IDL files for all the agents in the CORBA-based UPC

archltectule

//Author : Thong.Hﬁynh |
module TA {
interface TermlnalAgent{
enum FailReason { UNABLE_TO_LOCATE_SERVER,
NO_IMPLEMENT_SERVER,
CLASS_NOT_FOUND,
INSTANTIATION_ERROR,
ACCESS_ERROR,
CLASSFILE_DOWNLOAD_ERROR,
ERROR_EXEC_APPLICAIION,
UNKNOWN_HOST};
exception Fail{
| FailReason reason;
+;
void updatelocation(in string newLocation) raises (Fail);
boolean login(in string LUI, in string password) raises (Fail);
void logout() raises (Fail); |
string runlocalApp(in string appName) raises (Fail);
string runRemoteApp(in string appName) raises (Fail);

string getlocalServiceList() raises (Fail);

75

string getRemoteServiceList() raises (Fail);

s

//Author :‘Kénéming Liu
modﬁlé'PCE {"
typedef string ServiceName;

" typedef string'SerQiceDbj;
typedef;;tring ServiceTyéeNamg;
fypedefvstring Constraint;
typedef string Preference;
typedef sfring PolicyName;
tjpedef string PropertyName; ’
typedef étring PolicyValue;

typedef string Prbpernyaluéf
fypedef'string HpropertyValue;

. enum PropertyMode { |

PROP_NORMAL,
PROP_READONLY,
PROP_MANDOTORY,

PROP_MANDOTORY _READONLY

6

'eﬁum.ObjeétReijpe {
PR . APPLI_OBJECT, .
; APPLI;CQNfIG,
APPLI_RESOURCE_FILE
¥
struct HardwareCapf{
string Hname;
HpropertyValue value;
+; |
typedef_sequence<HardﬁaréCap>HardwaredapSeq;
struct Property { “
- PropertyName name;-
'PropertYValue Valﬁe;
'-'ProperfyMode ﬁode;
T -
,tyﬁedef seqﬁénce <Pfoperty$ prperfySeq;
- struct Policy{ |
| PolicyName name;
- ~ .PolicyValue valﬁe;'
}; _
\typedef séquence<PoIicy>PolicySeq;
Strucf Trade{
’ _SerViceTypeName type;
Constr;iﬁt constr;

. Preference pref;

77

PolicySeq pélicies;
PropertySeq Properties;
s
struct.Service{
ObjeétRenype type; | P
ServiceName serviceName;
ServiceObj serviceObj;
Trade trade;
HardwafeCapSeq hardwareCapSeq;
s
typedef sequence<Service>ServiceSeq;
interface Profile{
attribute ServiceSeq serviéeséq;
void set(in PCE::ServiceSeq serviceSeq);
PCE:fServiceSeq get(in string username);
+;
interface ProfileFactory{
 Profile createProfile(in string User_name,
in ServiceSeq serviceSeq);

void deleteProfile(in Profile p);

module UA {

struct Token{

78

étring low;
string high;
I
interface UserAgent {
‘booiean authenticate(in string
in string
boolean tokenauthent(in string
in string
out Token
void infofm_location(in string

in string

LUI,
passyord);
LUI,
password,
token);
LUI,

address);

PCE: :Profile getprofile(in string username);

string download(in string fiiename);

boolean upload(in Token token,

in string filename,

in string data);

boolean updateProfile(in string username,

in PCE::Profile p);

void logout(in string username);

