
Implementations Of User Mobility Support for U P C in

J A V A / C O R B A Environment

by

Thong T r i Huynh

B . A . S c . , Universi ty of Br i t i sh Columbia,1993

B . S c , Universi ty of Br i t i sh Columbia , 1996

A T H E S I S S U B M I T T E D I N P A R T I A L F U L F I L L M E N T O F

T H E R E Q U I R E M E N T S F O R T H E D E G R E E O F

Master of Science

in

T H E F A C U L T Y O F G R A D U A T E S T U D I E S

(Department of Computer Science)

we accept this thesis as conforming
to the required standard

The University of British Columbia

August 1999

© Thong T r i Huynh , 1999

In presenting this thesis/essay in partiaCfuCfiCCment of
the requirements for an advanced degree at the
University of British CoCumBia, I agree that the Library
shaCC make it free Cy avaiCaBCe for reference and study.
I further agree that permission for extensive copying
for this thesis for schoCarCy purposes may Be granted By
the 3-Cead of my department or By his or her
representatives. It is understood that copying or
puBCication of this thesis for financiaCgain shad not Be
adowed without my written permission.

X a X SO 1 1
Date Q

Computer Science
The 'University of 'British CoCumBia
2366 Main maCC
yancovuer, 2?C
Canada \6T 1Z4 .

Abstract

This thesis addresses the specification and implementation of the Universal Personal

Comput ing (U P C) environment, developed at U B C for support of user mobility. In

the U P C computing environment, each user has a unique global identification with

which the user can access network services, computing resources, personal applica

tions, da ta files, and environmental configuration through any terminal , stationary

or mobile, wired or wireless networking, anywhere on the Internet.

In this thesis, we produced the specification of the U P C ' s Registration and

Service Negotiation Protocol (R S N P) using the Specification and Description L a n

guage (S D L) and simulated the R S N P using a S D L supported tool . A s an ini t ia l

attempt to verify the concept, we implemented the U P C protocol and a graphical

user interface using C and T c l / T k as the programming language. C O R B A and

Java offers an alternative approach in modelling the U P C concept that is flexible

and portable to any computing platform. A U P C prototype is implemented using

C O R B A as the architecture framework and Java as the programming language.

Contents

Abstract ii

Contents iii

List of Figures vi

Acknowledgements vii

1 Introduction 1

1.0.1 Mot iva t ion 1

1.0.2 Thesis Objectives and Contr ibut ions 4

1.0.3 Thesis Outl ine 6

2 Background 7

2.1 Mobi le Host Protocol for IP (Mobile-IP) 7

2.2 Specification Description Language (SDL) 10

2.3 Universal Personal Comput ing (U P C) 11

2.3.1 User Identification 12

2.3.2 User Profile 12

2.3.3 Terminal Identification 13

ii i

2.3.4 Terminal Profile 13

2.3.5 U P C Network Architecture 13

2.3.6 Registration and Authent icat ion 15

2.4 Introduction to C O R B A . 16

2.4.1 Interface Definition Language (IDL) 18

2.4.2 Object Request Broker (O R B) 19

2.4.3 C O R B A Object Services (CORBAserv ices) 20

2.4.4 The C O R B A C o m m o n Facilities (CORBAfac i l i t i e s) 22

2.5 C O R B A - b a s e d U P C . 22

2.5.1 Faci l i ty object . . . 23

2.5.2 Personal Compu t ing Environment (P C E) object 23

2.5.3 Terminal Profile object . , 24

2.5.4 User Agent (U A) object 24

2.5.5 Terminal Agent (T A) object: 25

2.5.6 Init ial Agent (IA) : 25

3 U P C ' s Registration and Service Negotiation Protocol (R S N P) 27

3.1 Overview 27

3.2 U P C Protocol Archi tecture Modif icat ion 29

3.3 S D L Specification of R S N P 31

3.3.1 Pseudo Mobi le - IP Block . ' . . . 35

3.3.2 Mobi le User Block 36

3.3.3 User Foreign Agent Block . 38

3.3.4 User Home Agent Block . 4 1

3.4 Prototype Implementation of U P C . 41

3.4.1 Assumptions and Requirements: 45

iv

3.4.2 Registration and Service Negotiation Procedure 46

3.4.3 Re-registration after Expi ra t ion of Connection Lifetime . . . 47

3.4.4 Re-registration after Hand-ofF . 48

3.4.5 Datagram Format used in Registration and Service Negotia

t ion Pro tocol • • • • 48

4 CORBA-based UPC Prototype Implementation 52

4.1 C O R B A - b a s e d U P C Prototype Implementation 52

4.1.1 Personal Comput ing Environment (P C E) 54

4.1.2 User Home Agent (U H A) 54

4.1.3 Terminal Profile . 55

4.1.4. Terminal Agent (TA) 58

4.1.5 Init ial Agent 60

4.1.6 Testing and Results 63

5 Conclusion and Future Works 66

5.1 Conclusion 66

5.2 Future Works 68

Bibliography 70

Appendix A 75

List of Figures

2.1 C O R B A Object Architecture [23] . 17

2.2 I D L Language Bindings Provide Interoperability [23] . 18

2.3 O R B structure [23] •. 20

2.4 Col laborat ion of agents in the C O R B A - b a s e d U P C framework [30] . 26

3.1 System Diagram of U P C ' s Registration and Service Negotiation Pro

tocol 32

3.2 Block Diagram of a Pseudo Mobi le - IP 36

3.3 Block Diagram of a Mobi le User . . . '. 37

3.4 Mobi le User Agent 's Extended Fin i te State Machine 39

3.5 Block Diagram of a User Foreign Agent 40

3.6 User Foreign Agent 's Extended Fin i te State Machine 42

3.7 Block Diagram of a User Home Agent 43

3.8 User Home Agent 's Extended Fin i te State Machine 44

4.1 M a i n screen of the Service Manager uti l i ty 57

4.2 Login screen of the U P C ; . , . 61

4.3 U P C Appl ica t ion Manager screen . 62

vi

Acknowledgements

I would like to take this opportunity to thank D r . Son Vuong, my supervisor,,

who has guided, supported and encouraged me throughout the Master program and

especially this thesis. I would also like to thank my second reader, D r . George

Tsiknis , for the time and valuable suggestions to this thesis. M a n y thanks to M a r i a

Toeroe, Jinsong Zhu, and Kangming L i u for all the lengthy meetings and discussions

on the U P C ' s issue. It has been a pleasure to work with all of you. Final ly , I thank

my parents and my sisters for their love and support on every stage of my education.

T H O N G TRI H U Y N H

The University of British Columbia

August 1999

vi i

Chapter 1

Introduction

1.0.1 Mo t i va t ion

In recent years, the term "Internet" has become a household word. The cost of

connecting to the Internet has become affordable for everyone, and most people

work in an environment where their desktop computer is connected to the Internet.

Internet applications such as E m a i l , Wor ld Wide Web, Internet chat (e.g. I R C ,

Microsoft Cha t) , Internet video conferencing (e.g. CuSeeMe, S D R , NetMeet ing) ,

and Internet radio (e.g. RealPlayer) are widely used on computers at home and at

work.

Meanwhile, portable computers have become more compact, yet more pow

erful, wi th increased processing and storage capabilities. They are available in in

creased diversity, ranging from laptop, to notebook and palmtop computers. In

addition, the communication capabilities of these portable computers are impres

sive as high-speed modems, P C M C I A modem, and gigabit satellite access, and so

on become more common [1].

A t ' the same time, wireless technology has grown significantly, especially

1

wireless technologies for L A N s . In the market place we can find inexpensive high

speed wireless L A N products, in addition to low-speed wide area wireless network

and medium-speed metropoli tan area wireless network services. Th is availability of

wireless network services enables mobile users with portable computers to remain

connected to the Internet anywhere at any time.

Nowadays, people are constantly on the move. M a n y people are moving be

tween offices, homes, automobiles, conference rooms, and so forth. Whi le they are

on the move, they may want to be able to perform computing and/or communica

t ion. A s they move around, they may have access to enormous computing facilities

such as advanced workstations, desktop computers, compact P D A s (Personal D i g

i ta l Assi tant) , and convenient locally available services, such as faxes and printers.

However, they often find themselves de-coupled from their familiar "home base"

computing environment when using these foreign computing facilities. I t .would be

better if the user could have the same personal computing environment, regardless

of the computer's platform, the computer's location, or the user's location.

The combination of increasing use of portable computers, the rapid advance

ment of wireless communication technologies, and the fact that most users are mo

bile, requires a special computing environment that supports mobile computing.

Mobi le computing refers to an area of technology that aims at providing access to

computing resources, independent of motion, location, computing platform, com

munication device, and communication bandwidth. The independence refers to the-

concept of a computing environment that automatically adjusts to the processing,

communications and access available at any moment. Ideally, a user can travel from

place to place and sti l l use the computing facilities they desire in their new location

or even while they are on the move.

2

Currently, a user can obtain mobile computing by install ing a cellular tele

phone interface into their portable computer and running a protocol such as S L I P

•or P P P over a dialup service. Th is approach is simple and cheap; however, there

is a severe l imitat ion in that the user can only access Internet resources within a

single administrative domain. Th is l imitat ion is due to the Internet's inabil i ty to

' suppor t mobility, neither user nor terminal mobility. In regards to terminal mobil

ity, the current version of the Internet protocol is built, on an implici t assumption

that the point at which a computer is attached to the Internet is fixed, and its IP

.address uniquely identifies this point of attachment. The IP address is used by the

Internet's routing protocol to deliver the IP packets to the intended receiver. When

a computer moves to a different network, its network services are lost because its

IP address does not reflect its new point of attachment to the Internet, and the

routing protocol is unable to correctly route the packets to i t . In this situation,

the computer must be reconfigured wi th a new IP address associated with the new

network. Doing so causes the lost of already-established transport layer connections

(for example, ftp or telnet sessions). Similar l imitat ions apply to mobile users, where

each user is registered to one administrative domain and granted a user login ID

that allows the user to access only the computing resources and network services in

the registered administrative domain. A s the user moves to another administrative

domain, they are not able to access any network services.

..-. Several approaches have been proposed and implemented to enhancing the

Internet protocol to support mobility. A standard protocol (Mobile Host Protocol

•for Internet Protocol) that supports terminal (or host) mobil i ty has recently been

defined by the Internet Engineering Task Force (I E T F) as in R F C 2 0 0 2 [25]. This

protocol is often referred to as mobile-IP. Mobi le - IP allows a terminal to roam

3

freely on the Internet while sti l l maintaining one permanent IP address. However,

supporting only terminal mobili ty is not sufficient to provide a seamless mobile

computing environment. Even with mobile-IP support, a mobile user st i l l can not

login to any available terminal , stationary or mobile, in a foreign administrative

domain. A s a result, this introduces a need for an addit ional level of mobili ty on top

of terminal mobil i ty: user (or personal) mobility. Personal mobil i ty is different from

terminal mobility. Terminal mobil i ty refers to the abili ty of a portable terminal to

access services from any location while in motion, and the capability of the network

to locate and identify the mobile terminal as it moves [10]. On the other hand,

personal mobil i ty refers to the abili ty of the end user to send and receive calls, and

to access subscribed services on any terminal in any location, and the abili ty of the

network to identify the end user as they move [10].

1.0.2 Thesis Object ives and Contr ibut ions

Support ing both terminal and personal mobil i ty is the fundamental requirement of

mobile computing; however, very little work has been done to support personal mo

bility on the Internet. A new computing paradigm that supports both terminal mo

bility and personal mobil i ty over the Internet, called Universal Personal Computing

(U P C) , has been developed [20,35] jo int ly in the Department of Computer Science

and the Department of Electr ical and Computer Engineering of the Universi ty of

Br i t i sh Co lumbia . . Th is research constitutes a major activity of Internetworking

Wireless D a t a Networks for Mobi le Comput ing (TWIN), a project joint ly funded

by the N S E R C of Canada and Moto ro l a Canada . U P C is a computing environ

ment which enables a mobile user to access computing resources, network services,

personal applications, da ta files, and environmental configurations through any ter-

4

minal , stationary or mobile, anywhere on the Internet [21]. In this environment,

terminal mobil i ty and personal mobil i ty are managed separately. Terminal mobil i ty

is supported using mobile-IP with some enhancements in TCP-connec t ion manage

ment; whereas personal mobili ty is managed v i a an agent-based architecture.

The core of U P C ' s mobili ty management is the Registration and Service

Negotiation protocol (R S N P) . In this thesis, we use the Specification and Description

Language (SDL) to produce a clear and precise specification of R S N P . We also

simulate R S N P using a S D L supported tool to verify for R N S P completeness and

correctness. In addit ion, the R S N P simulation can be used to 'simulate alternative

solutions for any problems that come up. After having a concrete understanding of

R S N P , we implement a U P C prototype using C and T c l / T k as the programming

language.

In the proposed U P C architecture [21, 35] there are distributed components

that can execute transparently to the host location, host platform and component

implementation. The distributed nature of U P C ' s components makes the implemen

tation of U P C very complex and even impossible. Fortunately, several technologies

that support platform independent distributed object architecture, such as C O R B A

and D C O M , are available. Combining of concept of the U P C and C O R B A tech

nology leads to a C O R B A - b a s e d U P C architecture as proposed in [30, 35]. In this

new architecture, the U P C components are modeled as distributed objects with

C O R B A as the object bus that facilitates the interaction, integration, and distribu-,

tion of these objects. In this thesis, we implement a prototype of a C O R B A - b a s e d

U P C system using Java as the programming language, Visigenic's Vis iBroker for

Java as the C O R B A framework, and Sun Microsystem's Solaris 2.x as the. comput

ing platform.

5

1.0.3 Thesis Out l ine

The rest of the thesis is organized as follows:

• Chapter 2 provides the necessary background material including mobile-IP,

overview of the Specification and Description Language (S D L) , the concept of

U P C , introduction to C O R B A , and C O R B A - b a s e d U P C .

• Chapter 3 presents U P C ' s R S N P formal specification using S D L , and a pro

totype of U P C ' s R S N P using C and T c l ' / T k .

• Chapter 4 presents the prototype the of C O R B A - b a s e d U P C .

• Chapter 5 concludes the thesis and discusses possible future works.

6

Chapter 2

Background

2.1 M o b i l e Host P r o t o c o l for I P (Mobi l e - IP)

The current version of Internet Pro tocol (IP v 4) has been built on the implici t

assumption that the point of attachment of a computer to the Internet is fixed and

uniquely identified by its IP address. IP packets sent to a computer are delivered

based on the location information in the IP packet's headers, i.e^ the destination

IP address. When a mobile computer moves to a new network, the IP address

that is configured in the computer does not reflect the new point of attachment.

Thus, the IP packets that are destined to this particular computer are incorrectly

routed by the routing protocol. To overcome this routing problem, the mobile

computer must be reconfigured with a new IP address that reflects the new point of

attachment in the visit ing network. Unfortunately, although the suggested method

above may solve the routing problem, it presents two new problems. The first

problem is the loss of any established transport and higher-layer connection during

handoff when changing the IP address. The second problem rests on the burden

7

of informing potential correspondents of the new IP address. Therefore, we need a

new mechanism to support the mobil i ty of a computer (often referred as host) over

the Internet.

Mobi le Host Pro tocol for IP (Mobile-IP) is an enhancement to IP that allows

a mobile computer with a permanent IP address to communicate data transparently

to application software, and independent of its current point of attachment to the

Internet. The Mobi le - IP is standardized by the Internet Engineering Task Force

(I E T F) as defined in the R F C 2 0 0 2 [25]. The standard Mobi le - IP supports host

mobil i ty independent of the communication medium in use. It works as effectively

in a wireless environment as it does in a wired internetworking environment. The

Mobi le - IP architecture consists of a set of special entities called the Mobi le Host

[MH],- the Home Agent [HA] , and the Foreign Agent [FA]. .

M o b i l e H o s t (M H) : A M H is defined as a host that changes its point of attach

ment to the Internet from one network to another. Each M H belongs to a

unique home network and is assigned a permanent IP address. When a M H

is away from the home network, it is associated wi th a temporary IP address

that is often referred as a care-of IP address. The care-of IP address identifies

the M H ' s current point of attachment to the Internet. A care-of IP address

could be either the IP address of the F A that the M H is registered to, or a

local IP address that is assigned to the M H at the visi t ing network.

H o m e A g e n t (H A) : H A is the router on a M H ' s home network that maintains

the current location information (i.e. care-of IP address) for all mobile hosts

under its administrat ion. The H A is responsible for intercepting IP packets

destined for a M H and tunnelling these IP packets to the M H via their care-of

8

address when the M H is away from the home network.

F o r e i g n A g e n t (F A) : F A is a router on a M H ' s visited network. The F A is re

sponsible for de-tunneling and delivering IP packets sent from the M H ' s H A

to the registered M H . A F A also serves as a default router for IP packets sent

by a registered M H .

The H A and F A advertise their presence in the network using an Agent

Adver t is ing message. The Agent Adver t is ing message is a router advertisement

message with a special Extension attachment. W h e n a M H connects to a network,

the M H receives the Agent Advertisement message and identifies whether its current

point of attachment is on its home network or on a foreign network. If the M H is

on its home network, there is no need for mobil i ty services. However, i f the M H has

just returned to its home network from a foreign network, de-registration with the

H A is required. A s a M H detects it is on a foreign network, it obtains its care-of IP

address on the foreign network and uses a special registration protocol to keep its

H A informed about its current location (i.e. care-of IP address).

When a M H is away from the home network, IP packets destined to it are

always first sent to its home network, and then encapsulated by the H A and re

sent to the M H ' s current F A . Encapsulat ion refers to the process of enclosing the

original IP packet as data inside another IP packet with a new IP header. The

routing information in the original IP packet, source and destination address, remain

unchanged. The outer IP packet header specifies the M H ' s care-of IP address as

the destination address and the M H ' s H A IP address as the source address. The

encapsulated IP packet is then sent to the care-of IP address v ia a conventional

IP routing mechanism. Wi thou t IP encapsulation, IP packets meant for the M H

9

are always routed to the M H ' s H A by intermediate routers since all these packets

have M H ' s permanent IP address as the destination address in their headers. Upon

receiving an encapsulated IP packet, the F A extracts-the inner IP packet from the

encapsulated IP packet and delivers the extracted packet to the appropriate visi t ing

M H on its local network.

Conversely, when the M H sends IP packets, they are directly routed by the

F A to their destination using conventional IP routing mechanisms. Passing these

IP packets through the M H ' s H A is not necessary.

2 . 2 Specification Descr ip t ion Language (S D L)

The Specification Description Language (S D L) , developed and standardized by

Comite Consul ta t i f International Telegraphique et Telephonique (C C I T T) , is a for

mal specification language. The S D L can be applied to specify a variety of systems

from telecommunication systems, data communication systems, real t ime systems

and interactive systems, to distributed systems.

The S D L focuses on the reactive behaviour of a system. It is concerned with

how external s t imuli and responses are related at system interfaces, instead of the

internal and physical construction of a system. The S D L can be used in both textual

and graphical representations. The graphical S D L allows the user to specify a system

using a set of diagrams that cover different levels of detail from a broad overview

down to the detailed design level. The textual S D L looks similar to a programming

language. Fragments of textual S D L can be embedded in diagrams where text is

more suitable or the graphical symbol does not exist (e.g. signal declarations, data

declarations).

In S D L , the top level of description is a system. A S D L system represents

•••10

significant properties of a real life application system. A n y t h i n g that is not part

of the S D L system is part of the environment. A t the top level, a first overview of

the system is shown without getting into unnecessary details. In the S D L system

we may have a single S D L block or a set of S D L blocks which are the building

blocks of a system. These S D L blocks interact wi th each other and the environment

v ia channels. The S D L blocks build the system structure and allow decomposing a

system into a hierarchy of levels in which each level represents a different level of

abstraction.

A S D L block may contain other S D L blocks or S D L processes. A Process is

the lowest level description of a system; it can not be further decomposed. We can

describe S D L processes as extended. F in i te State Machines (F S M) . Each S D L process

works autonomously and concurrently wi th other S D L processes. S D L processes

communicate with each other using discrete messages called signals. Each signal

has a name, sender identity, and possible addit ional data. The F S M uses the name

of the signal to make a transition from one state to another state.

2.3 Unive r sa l Personal C o m p u t i n g (U P C)

Universal Personal Comput ing (U P C) is a computing paradigm that supports loca

tion independent network computing over the Internet. U P C is a similar concept to

Universal Personal Telecommunication (U P T) , w h i c h has been defined by the I T U - T ,

yet U P C caters to network computing over the Internet, rather than telecommunica

tions. In the U P C environment, each user has a unique global identification. Using

this identification, the U P C network enables users to access network services, com

puting resources, personal applications, da ta files, and environmental configuration

through any terminal, stationary or mobile, wired or wireless networking, anywhere

11

on the Internet.

2.3.1 User Identif ication

In U P C , each user is assigned a Logical User Identifier (LUI) that is globally unique

and independent of the user's current location. A s proposed in L i and Leung [21],-

a simple L U I could be a user's email address. It is composed of the login user

ID of a user at their home network concatenated with the user's home domain

address. Using the email address as L U I has several advantages. F i r s t of a l l , email

addresses are familiar to any Internet user; thus, it is easy to remember and reference.

Secondly, the existing D N S could be used to resolve the user home agent's IP address

from the user's home domain address port ion in the L U I . "This obviates the need for

global user-names server, and is compatible with the current Internet architecture"

[21].

2.3.2 User Prof i le

Another component of U P C is the User Profile. Each mobile user has a service

profile kept in a user database at their home network. The service profile contains

authentication information, such as the user login ID and the corresponding pass

word. The service profile also defines a set of computing resources, network services,

and personal applications that a mobile user is entitled to while at home or on the

road. For each personal application, computing resource, or network service, there

is a set of user preferences, such as environmental requirements, configuration, de

fault settings, and so on. Modi fy ing or updating one's service profile can only be

performed by an authorized network administrator, or by the user themselves. If

necessary, the mobile user is allowed to remotely update or modify their service

12

profile while away from the home network.

2.3.3 Termina l Identif ication

In the U P C environment, each terminal is identified by a Logical Terminal Identifier

(LTI) . In the current I E T F standard of Mobi le-IP, each mobile terminal (M T) is

associated with two IP addresses, in particular the M T ' s permanent IP address and

the M T ' s care-of IP address. The M T ' s permanent IP address is used in identifying

the M T at the network level, and the M T ' s care-of IP address is used in discovering

the M T ' s current location. IP packets addressed to a M T are redirected to the

M T by tunneling to the M T ' s care-of IP address. Since we want to achieve back

ward, compatibi l i ty with the current Internet protocol suite, we selected the M T ' s

permanent IP address as the M T ' s L T I , and the M T ' s care-of IP address provides

the M T ' s current location. We can then use the same tunneling mechanism as in

mobile-IP to redirect packets to the M T ' s current location.

2.3.4 Termina l Prof i le

The terminal profile is used to re-create the computing environment specified by a

user. Each mobile terminal has a terminal profile kept in a terminal database at the

mobile terminal 's home network. The terminal profile defines the capabilities on the

terminal, .such as the resident operating system, the file format, the graphical user

interface, the display mode and monitor resolution.

2.3.5 U P C Network Arch i tec ture

U P C network is an agent-based architecture that consists of three functional entities:

a Terminal Home Agent (T H A) , a User Home.Agent (U H A) , and a Foreign Agent

13

(F A) .

User Home Agent (UHA): Each administrative domain has a User Home Agent .

The U H A maintains a database of all the users registered in this administrative

domain as well as their associated user profiles. A l o n g with the user profile,

the U H A also keeps a record of all users' current location information. Th is

location information is a binding information between the mobile user (i.e.

L U I) , the terminal (i.e. LTI) that the mobile user is currently using, and the

current location of the terminal (i.e. care-of IP address). Whenever the user

moves or changes their association with a terminal , the location information

is updated.

Terminal Home Agent (T H A) : In addition to the U H A , each administrative

domain has a Terminal Home Agent (T H A) . The T H A maintains a database

of all the mobile terminals that the network is configured to serve, as well

as their associated terminal information, such as the terminal identity, the

terminal profile, the terminal authentication key, and the current location of

the terminal (i.e. care-of IP address).

Foreign Agent (FA): If the administrative domain serves mobile users, it has a

Foreign Agent . The F A enables the user and mobile terminal to be temporarily

use the network so that registration and authentication can proceed. After

the user and terminal successfully register, the F A ' s main tasks are packet

redirection and possibly caching pertinent parts of the user's service profile.

A s part of network management, the F A maintains a list of all the mobile users

and all the mobile terminals that are currently visi t ing the network.

14

2.3.6 Regis t ra t ion and Authent ica t ion

In the U P C environment, user mobil i ty is handled independently from terminal

mobili ty; thus, registration is separated into two registration procedures, terminal

registration for the mobile terminal and user registration for the mobile user. Ter

minal registration must be performed before user registration so that the terminal

is recognized by the foreign network and ready for user registration. Bo th terminal

registration and user registration are mandatory for any mobile user to access a

mobile terminal in either their home network or a foreign network.

Terminal Registration

In our terminal registration procedure, we adopt the M T ' s registration procedure as

specified in Mobi le- IP . The sequence of events for terminal registration is as follows:

1. The M T registers wi th the F A in the visited network.

2. The F A contacts the M T ' s T H A to authenticate the M T and inform the T H A

of the M T ' s new care-of IP address.

3. Upon successful registration and authentication, the terminal profile of the

M T is transferred to the F A .

User Registration

User Registration is similar to terminal registration, and follows the steps below:

1. The M U sends a registration request to the F A in the visi t ing network.

2. The F A contacts the M U ' s U H A to authenticate the M U . It also provides to

the M U ' s U H A , the IP address of the M T ' s T H A that the M U is currently on.

15

3. - The M U ' s . U H A retrieves the M T ' s terminal profile from the M T ' s T H A and

then evaluates a set of suitable services for the M U .

4. Upon successful registration and authentication, a set of services available for

the M U at this particular M T is returned to F A , and then relayed to the M U .

2.4 In t roduct ion to C O R B A

The Common Object Request Broker Archi tecture (C O R B A) , proposed by the Ob

ject Management Group (O M G) , is a new software technology that combines object-

oriented technology and distributed client-server.computing to provide an industrial

standard distributed object architecture. C O R B A enables applications to interact

with one another without knowing where the corresponding application resides, how

the corresponding application is implemented, or what operating system the corre

sponding application is executed on. .

C O R B A presents a strong, universal, powerful distributed object-oriented

framework that makes software design easier. A n application that is developed using

the C O R B A architecture is highly portable and interoperable across a heterogeneous

distributed environment. C O R B A not only provides a framework for developing new

applications, but it also provides a framework for integrating existing client/server

applications.

Th is section provides a tour of major components of C O R B A such as the In

terface Definition Language (IDL) , the Object Request Broker (O R B) , the C O R B A

Object Services (CORBAserv i ce s) , and the C O R B A Common Facilities (C O R B f a -

cilities). Figure 2.1 presents C O R B A ' s Object Architecture .

16

Application Objects Common Facilities
(CORBAfacilities)

Object Request Broker (ORB)

^Trade^ bcfricurrenc) ^ i m e ^

R̂ lationshipfe f^Query^ (̂ oltection̂ ^Security) liâ isactiô is ^Events^ ficensing) Ej/ernalizatî n

Common Object Services (CORBAservices)

Figure 2.1: CORBA Object Architecture [23]

17

c + + , (smjj ^MaJ ^ 0 B 0 | 0

Client D C Server

Object Request Broker (ORB)

Figure 2.2: I D L Language Bindings Provide Interoperability [23]

2.4.1 Interface Def in i t ion Language (IDL)

In the C O R B A architecture, all objects are specified using the Interface Definition

Language (I D L) . I D L is the key for interoperability in C O R B A . The I D L is a lan

guage that is used to describe the external behaviour of an object without providing

any underlying implementation details about an object. The I D L makes a strong

separation between the specification of an object and the implementation of that

object. Objects that use the interfaces published from another object have no idea

how the object is implemented. Thus, I D L enables an object wri t ten in one language

to communicate with another object writ ten in an unknown language. Figure 2.2

presents the I D L interoperability concept.

The I D L grammar uses the same lexical rules as 0 + + , introduced with

several new keywords to support distributed-computing concepts. A n object's at

tributes, base classes that it inherits from, exceptions it raises, methods it supports,

can all be specified using I D L . Objects specified using I D L can be mapped into a

particular programming language or an object system. The I D L specifications are

compiled into header files, stub, and skeleton programs which are used by a "bro-

18

ker".program (i.e. Object Request Broker) which allows the objects to communicate

with one another.

2.4.2 Object Request Broker (O R B)

The O R B is the central component of C O R B A . In the OSI network model, the

O R B sits between the data and application layers. The O R B is an object bus that

provides the mechanisms by which objects can make requests to other objects and

receive responses from other objects. The caller object is often referred to as a client

and the corresponding object is called a server. A t runtime, when a client object

invokes a method in a server object, O R B is responsible for locating the server object

implementation that-can implement the method, and then invoking the method and

returning the results to the client object. The client object does not have to be

aware of the server object's location, implementation, nor its operating system.

The* O R B supports both static and dynamic method invocations. The static

method invocation interfaces are defined at compile time and presented to the client

as stub code. The dynamic method invocation interfaces are dynamical ly discovered

at run time using the C O R B A Interface Repository. A n Interface Repository is an

on-line database that contains real-time information describing all the interfaces

that an object supports along with its parameters. The structure of the O R B is

shown in figure 2.3.

A n O R B can run in standalone mode or can be interconnected to other O R B s

in the universe. A l l the O R B s are interoperable v ia the Internet In te r -ORB Proto

col (H O P) . "The H O P is basically a T C P / I P with some C O R B A - d e f i n e d message

exchanges that serve as a common backbone protocol" [23].

19

Object
Implementation

A

Static
Skeletons

Dynamic
Skeleton
nvnnatinn

Object
Adapter

lm ilementati 31

Repository

Object Request Broker Co re (MOP)

Figure 2.3: O R B structure [23]

2.4.3 C O R B A Object Services (C O R B A s e r v i c e s)

The term C O R B A Object Services refers to fundamental (system-level) object in

terfaces that extend the functionality of O R B . They are the most commonly used

services in building any application. The services provided by the C O R B A s e r v i c e s

are highly diverse from creating an object, deleting an object from the O R B , and

locating an object by its name or properties, to providing operations for monitoring

the use of an object. Currently, there are sixteen object services in C O R B A s e r v i c e s ,

as listed below.

The Life Cycle Service: defines the methods for creating, copying, moving, and

terminating an object.

The Persistence Service: provides common interfaces to persistently store the

state of an object.

The Naming Service: locates an object by object name.

20

T h e Event Service: supports the asynchronous communication between objects

using events.

T h e Concurrency Control : provides distributed locks on a given object.

T h e Transaction Service: provides two-phase commit coordination among ob

jects.

The Relationship Service: provides mechanisms to create, delete, navigate, and

manage the dynamic association between objects.

T h e Externalization Service: provides mechanisms to convert the state of an

object into a stream of data and vice versa.

T h e Query Service: provides query operations for objects.

T h e Licensing Service: provides operations for monitoring the use of an object.

T h e Properties Service: provides mechanisms to associate properties to an ob

ject.

T h e T i m e Service: supports time synchronization in a distributed object envi

ronment.

The Security Service: offers a framework for distributed object security.

The Trader Service: matches or locates an object by its properties.

The Collection Service: provides interfaces to create and manage the most com

mon collections.

T h e Startup Service: starts up an object when an O R B is invoked.

21

2.4.4 The C O R B A C o m m o n Faci l i t ies (C O R B A f a c i l i t i e s)

The C O R B A C o m m o n Facilities are similar to the C O R B A Object Service, but they

are at a higher-level and oriented towards end-user applications. They are related

to and extended from the existing C O R B A s e r v i c e s . The C O R B A f a c i l i t i e s is st i l l

under construction.

2.5 C O R B A - b a s e d U P C

In the-latter phase of the I W I N project at U B C , C O R B A was incoporated into U P C

to exploit the advantages of flexibility and versaltality that C O R B A ' s distributed

object architecture offered [30, 35]. In C O R B A - b a s e d U P C , all the entities in the

U P C architecture (i.e. U H A , T H A , and F A) are presented as distributed objects.

These objects move relative to the current location of the user. The Common

Object Request Broker Architecture, C O R B A , is selected as a middleware layer

that provides a homogeneous distributed computing environment independent from

the underlying hardware and software technology.

In addition to providing a homogeneous distributed computing environment,

C O R B A also defines a set of Common Object Services (CORBAserv ices) and C o m

mon Facilities (CORBAfac i l i t i e s) that provide building blocks for developing any

C O R B A based application. The C O R B A s e r v i c e s support generic and common func

tionality, such as creating an object, naming an object, and resolving the reference

of an object. The C O R B A f a c i l i t i e s are the frameworks that provide services directly

used by the application objects. Taking advantage of the availability of C O R B A s e r

vices and C O R B A f a c i l i t i e s , the C O R B A - b a s e d U P C system can utilize some of the

core services provided by the C O R B A s e r v i c e s , such as the Life Cycle Service, the

22

Naming Service, the Trader Service, the Security Service, the Persistence Service,

and the Relationship Service.

In the C O R B A - b a s e d U P C approach, terminal mobil i ty is handled by the

Mobi le- IP . Terminal migration in Mobi l e - IP is transparent to the T C P and the

higher network layers in the OSI model. Since C O R B A sits above the T C P / I P

layer, terminal migration is also transparent to C O R B A . Therefore, the C O R B A -

based U P C only focuses on the issue of user mobility.

The C O R B A - b a s e d U P C system consists of the following major objects: the

Faci l i ty object, the Personal Comput ing Environment object (P C E) , the Terminal

Profile object, the User Agent object (U A) , the Terminal Agent object (T A) , and

the Initial Agent object (IA) .

2 . 5 . 1 Faci l i ty object

A facility object is a representation of a computing resource, a network service, or a

software application in the system. A facility object is self-descriptive so it can be

queried by other objects for supported services and for how to invoke these services.

A facility can be either a personal facility, or a shared facility between a group of

users. A personal facility is user specific and only available to a specific user at their

home network. On the other hand, a shared facility is specialized for a group of

users and available on a certain network. To a great extent, a shared facility can be

general-purpose and available for everyone, everywhere.

2 . 5 . 2 Personal Comput ing Env i ronment (P C E) object

Each user has a Personal Comput ing Environment (P C E) . A P C E is a set of facility

objects that a user wishes to use when they are away from their home network.

23

A P C E is a persistent object that can be facilitated by the C O R B A ' s Persistence

Service. W h e n a user visits a foreign network, their P C E is retrieved and mapped

into the facilities that are available at the login terminal (i.e. the Terminal Profile

object). The result is a subset of the requested facilities in the user's P C E , referred

to as a user's terminal specific P C E .

2.5.3 Termina l Prof i le object

Each terminal has a terminal profile object kept locally at the terminal that defines

the capabilities of the terminal . B o t h the terminal 's physical and software capabili

ties are specified in the terminal profile object. B y Physical capabilities, we refer to

the physical properties of a terminal , such as the size of the R A M , the size of the

memory in the video card, the monitor mode, and the monitor resolution. Software

capabilities refers to the facilities available locally at the terminal .

2.5.4 User Agent (U A) object

Each user has a U A object that acts on behalf of the user in the system. The

U A object's main task is to manage a user's P C E object. In addit ion, the U A

object provides interfaces to authenticate a user and to retrieve a user's P C E object

once the user is authenticated. The U A object is a persistent object facilitated by

C O R B A ' s Persistence Service, and is bound to the user' L U I in C O R B A ' s Naming

Services. Thus, an U A object can be located from a user's L U I with the assistance

of the C O R B A ' s Naming Service.

24

2.5.5 Terminal Agent (TA) object:

•Each terminal has a T A object that represents the user at the foreign network. The

T A object has a reference to the user's terminal specific P C E object (i.e. the subset

of a user's P C E that is supported by the current login terminal) which the T A object

is responsible to maintain. Moreover, the T A object is also responsible to discover

all the facilities that are available at the visi t ing network, using both C O R B A ' s

Name Service and C O R B A ' s Trader Service.

2.5.6 Initial Agent (IA):

A n ini t ia l agent is an active process that runs at a terminal and provides the start

up procedure for users. F i r s t the I A authenticates a login user based on C O R B A ' s

Security Service. W i t h the assistance of C O R B A ' s Name Service, the I A then finds

the user's U A object. After locating the user's U A object, the I A initiates the

creation of a T A object and a user's terminal specific P C E object at a terminal .

Figure 2.4, adopted from [30], shows the collaboration of agents in the

C O R B A - b a s e d U P C system.

25

Initial
User

Interface

User
Menu

Figure 2.4: Collaboration of agents in the CORBA-based UPC framework [30]

26

Chapter 3

UPC's Registration and Service

Negotiation Protocol (RSNP)

3.1 Overview

In this chapter we present the specification and prototype implementation of U P C ' s

Registration and Service Negotiation Protocol (R S N P) . R S N P was specified using

the Specification and Description Language (S D L) . W i t h the use of S D L , we were

able to produce an unambiguous, precise, and concise specification of R S N P . There

are several formal specification techniques available to specify and model the behav

ior of a system, such as Language of Temporal Ordering Specifications (L O T O S)

and Estelle Formal Description Technique. However, we chose S D L as the formal

specification language for R S N P due to the following reasons:

• S D L is a recognized international standard and accepted by ISO (International

Standards Organizat ion). This fact ensures that S D L wil l be maintained and

supported in the future.

27

• S D L is popular and widely used in the telecommunication industry.

• The graphical S D L is intuitive and easy to work wi th . It clearly displays the

relationships between blocks, processes and how they interact.

• The nature of S D L is suitable for specification of a communication protocol

since the S D L process is described as Extended F S M . The F S M is an excellent

model for any communication protocol design.

In regards to the S D L tool, we used the tool developed at the K F K I Research

Institute for Measurement and Comput ing Techniques in Hungary. Th is S D L tool

is a part of a tool set called P R O C O N S U L (i.e. P R O t o c o l C O N S U L t a n t) . and

consists of a S D L simulator and language sensitive editor that supports the grammar

of the S D L 1992 version. The editor has a syntax checker, which helps to create

syntactically correct S D L specification. The S D L simulator represents a S D L system

as a block diagram, and displays the output of the simulation in the form of a time

diagram or a message sequence chart (M S C) . We can step through the simulation

execution and simulate different scenarios by changing a variable value, changing

the delay time for a channel, and even adding to or deleting signals from the signal

queue. For example, we can simulate a loss of message by removing it from the signal

queue, or we can simulate the protocol behaviour during a network congestion period

by simply increasing the delay time in a channel. W i t h the use of the S D L simulator

we checked for R S N P specification's completeness and correctness. In addition to

this, we were able to simulate alternative solutions for any problems that come up.

28

3.2 U P C P r o t o c o l Arch i t ec tu re Modi f i ca t ion

R S N P is specified with several modifications to the architecture as well as additions

of new entities, as compared to the U P C protocol architecture mentioned in section

2.3. The modifications and their justification are as follows:

• Terminal related information such as the terminal identity and the terminal

profile are kept locally at the terminal . The terminal identity is the perma

nent IP address of a terminal . The terminal profile is basically the terminal

configuration information, such as resident operating system, file format, and

monitor display mode, and so on. Th is information is currently available at

any terminal so there is no need to replicate the information at the T H A . This

alleviates the need for database management in the T H A .

• We extended the terminal profile to store information about software appli

cations locally available at this particular terminal , such as the name of the

application, the type of the application, the path of the executable file of the

• application, and the mapping information for a mobile user's preference and

configuration files. The mapping information maps a mobile user's preference

and configuration file for an application on the home network, to the preference

and configuration file for an application available on the foreign terminal .

• Since the terminal profile is kept locally at the terminal, there is no need for

a Terminal Home Agent .

• We introduce a new agent, called Mobi le User Agent . Th is agent runs locally

at a terminal and provides a login interface to users. The Mobi le User Agent

is responsible for registering, re-registering when a connection lifetime expires,

29

or re-registering when the user and terminal move to a different network. It is

also responsible for producing a Session Service Profile that restrains the user

from unregistered services.

Each foreign network has a Service Profile that specifies the computing re

sources and network services that are available at this particular network, and

the personal applications that are allowed to execute while the mobile user is

visi t ing the network. The U F A provides access to this Service Profile during

the service negotiation phase.

We introduce a temporary service profile located at a terminal , called User-

Terminal Service Profile. Th is profile has the same format as any other service

profile and is created after a successful registration. The User-Terminal.Service

Profile is the intersection between the User Service Profile and the Terminal

Service Profile, and is created once for each login session. Th i s service profile

exists because the binding between a mobile user and mobile terminal during a

login session is fixed. A s a result, the User Service Profile does not have to be

downloaded every time the mobile user and their mobile terminal experiences

a hand-off wi th an ongoing session.

We introduce a temporary service profile located at a terminal , called Session

Service Profile. Th is profile is specific to a particular valid login session within

a particular visit ing network. It is the intersection between the User-Terminal

Service Profile and the U F A Service Profile. The login user's access is limited

to the services that only exist in the Session Service Profile. Th is profile is

recreated every time a mobile user and their mobile terminal move to a new

foreign network.

30

3.3 S D L Specification of R S N P

A t the top level, we can describe the R S N P in U P C as a system that accepts the

login and logout request from a user in the environment and then outputs the status

message to the user. Th is system consists of one block called M o b i l e l P , one block

called Mobi le User (M U) , a set of two similar blocks of type User Foreign Agent

(U F A) , and another set of two similar blocks of type User Home Agent (U H A) .

Figure 3.1 presents the System Diagram of the U P C ' s Registration and Service

Negotiation Pro tocol . (Please note this diagram is for i l lustrat ion purpose only, it

is not the system diagram that is directly printed put from the S D L ' s graphical

representation.)

• The M U block is connected to the environment through a channel called User,

to the Mobi le - IP block through a channel called M I P , and to the U F A block

through a channel called M U - U F A .

• The U F A block is connected to the U H A block v ia a channel called U F A J J H A ,

and to the environment v ia a channel called U F A J D e b u g .

• The U H A block is connected to the environment through a channel called

U H A _ D e b u g .

On each channel in figure 3.1, there is a list of S D L signals that are carried by the

channel in the specified direction.

T h e User channel: this channel carries the S D L ' s signals between the environ

ment (i.e. a user) and a M U block. The S D L signals carried in this channel

are as follows:

31

JC
u

E o
o m X

c o V
(A

3 <

0X1
s
Q S

3

cr

s
i)

xs
w
3

<

cr
tu

*,
1/2
O

Cu

C

•s-
3

<

a .
tu ai

i
C/5

4V
c • C

s
I

t l .
p.

X>
CU
Q, 0 0 I 3
O XI

_ c tu
a a n
tu tu M i

fe 'S M

2 2 S
w £ 2

o

cr is
tu o
=' 8

c r
CD

ai, 1 cr
1)

2 OS.

- C 3C -

cn o

c

s
•a —

4—S-<

o o o
o

O H

C
_o
.2

•' o
W>
cu
Z
a>
'> •—
<L>

0 0

-o. c ni
C
_g
03

6 0

OS

u

H3

4>
•4-P

2 % I so

< a
UH U .

O Q

eu
S s
cs -C
U

s-

0 0
3

X)
CU

Q
t o1

8..§-
' C O

0 0
c
o

5
§

00
3
XI
tu

°,

C J «
-5H O0

3 a
S3 c«
> tU

0)
in
a>
B o

o o
m

e

U

a.

o

.5 §
. oo so

o. o

00 . 3
X

c-Q
a . 1 . a. «

CM p j"

SO
C3

. B
S
es

J =
U

- tn

Figure 3.1: System Diagram of UPC's Registration and Service Negotiation Protocol

Login signal: this signal describes a login request from a user with the in

put parameters, such as the user's L U I , the user's password, and the IP

address of the user's t j H A . \

Logout signal: this signal describes a logout request from a user who has a

valid login session.

Prompt signal: this signal describes a prompt for user inputs.

Error Report signal: this signal describes a system response when an error

occurs.

The M I P channel: this channel carries the S D L signals between a M I P

block and a M U block.

Location Update signal: this signal describes the location update message

that Mobi le - IP sends to the M U , informing it that the te rminal is moving

into a new foreign network. It has the new U F A IP address as the input

parameter.

The M U _ U F A channel: this channel carries the S D L signals between a M U block

and an U F A block. The S D L signals carried in this channel are as follows:

Connection Request signal: this signal describes a request from a M U to

an U F A for a connection. It has the user's L U I , the user's password,

the user's U H A IP address, a request connection lifetime, and a sequence

number as the input parameters. '• '

Connection Reply signal: this signal describes a reply from an U F A to a

M U for a connection request. It has a returned code, a string message, a

granted connection lifetime,,a connection ID, and a sequence number as

the output parameters'. , .

33

User Service Profile Request signal: this signal describes a request from

a M U to an U F A for a user's service profile. It has the user's L U I , a

connection ID , and a sequence number as the input parameters.

User Service Profile Reply signal: this signal describes a reply from an

U F A to a M U for a user service profile request. It has a returned code,

a string message, a service profile, and a sequence number as the output

parameters. ,

U F A Service Profile Request signal: this signal describes a request from

a M U to an U F A for the U F A ' s service profile. It has the user's L U I , a

connection ID , and a sequence number as the input parameters.

U F A Service Profile Reply signal: this signal describes a reply from an

U F A to a M U for an U F A ' s service profile request. It has a returned

code, a string message, a service profile, and a sequence number as the

output parameters.

De-registration Request signal: this signal describes a request for de- reg

istration of a valid established connection. It has a connection ID as the

input parameter.

The U F A _ U H A channel: this channel carries the S D L signals between an U F A

block and an U H A block. The S D L signals carried in this channel are as

follows: •

Authentication Request signal: this signal describes a request from an

U F A to an U H A for authenticating a user. It has the user's L U I , the

user's password, and a sequence number as the input parameters.

34

Authentication Reply signal: this signal describes a reply from an U H A

to U F A for an authentication request. It has a returned code, a string

message, and a sequence number as the output parameters.

User Service Profile Request signal: this signal describes a request from

an U F A to an U H A for a user's service profile. It has the user's L U I and

a sequence number as the input parameters.

User Service Profile Reply signal: this signal describes a reply from an

U H A to an U F A for a user's service profile request. It has a returned

code, a string message, a service profile, and a sequence number as the

output parameters.

The UFAJDebug and the UHA_Debug channel: these two channels carry S D L

signals between the U F A block, U H A block and the environment respectively.

These signals are mainly used to display the debug and status information at

both the U F A and U H A .

The M I P channel: this channel carries the S D L signals between a M U block and

a Mobi le - IP block. There is only one signal, called Locat ion Update , on this

channel. Th is signal has the new U F A ' s IP address as the input parameter.

3.3.1 Pseudo Mob i l e - IP B lock

The Mobi le - IP block describes a pseudo mobile-IP. Figure 3.2 is the block diagram

of the Mobi le - IP block. The Mobi le - IP block contains one single process called

MIP_Pseudo that simulates the movement of a mobile, terminal . After detecting the

terminal has moved to a foreign network, it informs the M U block about the change

using a location update signal.

35

Block MIP (Pseudo Mobile-IP)

[~Location_Update
/ \

MIP Pseudo

From MIP Signal
Route

Process

\ /

Figure 3.2: Block Diagram of a Pseudo Mobi le - IP

3.3.2 Mob i l e User B lock

The M U block describes a Mobi le User Agent as mentioned in section 3.3. This block

provides the interfaces for user inputs, such as login and logout requests. Figure 3.3

illustrates the block diagram of the M U block.

This block contains one process called MU-Proces s whose behaviour is de

scribed in the attached extended F S M , in figure 3.4. The MU_Process consists

of four states: the Idle state, the Registering state, the Registered state, and the

Negotiation state.

Idle state: in this state, the MU_Process is ready to accept a login request from a

.; user.

Registering state: the MU_Process enters this state after receiving a login request

from a user or a location update message from the Mobi le - IP . Dur ing this

state, the MU_Process contacts the U F A to request a connection and waits for

36

Block M U (Mobile User)

Prompt
Error Report
Message_Debug

Login
Logout

User Signal Route
MU Process

Connection_Rep
UserServiceProfile_Rep
UFA_ServiceProfile_Rep

Connection_Req
UserServiceProfile_Req.
UFA_ServiceProfile_Req
Deregistration_Req

UFA Signal Route

IjLocation Update]

MIP Signal Route

Figure 3.3: Block Diagram of a Mobi le User

37

a reply.

Registered state: the MU_Process enters this state after receiving a connection

acceptance from the U F A . It waits for user requests that include execute an

application or perform network services.

Negotiation state: the MU-Proces s enters this state after sending requests for the

user's service profile and the U F A ' s service profile and awaits the replies.

3.3.3 User Foreign Agent B lock

The U F A block describes a U F A . Figure 3.5 illustrates the block diagram of the

U F A block.

There is one process in the U F A block called UFA_Process , whose behaviour

is described in the attached extended F S M , in figure 3.6. The UFA_Process consists

of four states: the Idle state, the Process Connection Request state, the Session

Established state, and the User Service Profile Request Processing state.

Idle state: in this state, the UFAJProcess is ready to accept a connection request

from the M U .

Process Connection Request state: in this state, the UFA_Process processes

the connection request from the M U . It contacts the specified U H A to authen

ticate the login user and awaits an authentication reply.

Session Established state: the U F A . P r o c e s s enters this state after it grants a

connection to the M U . In this state, it waits for further requests from the M U ,

such as a request for using network services.

38

Figure 3.4: Mobi le User Agent 's Extended Fin i te State Machine
39

Block U F A (User Foreign Agent)

Connection_Rep
UserServiceProfile_Rep
UFA_ServiceProfile_Rep

Connection_Req
UserServiceProfile_Req
UFA_ServiceProfile_Req
Deregistration_Req

M U Signal Route
UFA Process

Authen_Rep Authen_Req
USP_Rep USP_Req

UHA Signal Route

UFA

Signal

Debug

Route

Error_Report
WrongSeqno_Debug
InvalidConnectID_Debug
Message_Debug

Figure 3.5: Block Diagram of a User Foreign Agent

40

User Service Profile Request Processing state: in this state, the U F A - P r o c e s s

processes the request for a user service profile from the M U . It contacts the

user's U H A to request the user's service profile and awaits the reply.

3.3.4 User Home Agent Block

The U H A block describes a U H A . Figure 3.7 diagrams the U H A block.

There is one process in the U H A block called UHA_Process , whose behaviour

is described in the attached extended F S M , in figure 3.8. The UHA_Process consists

of three states: the Idle state, the Checking ID and Password state, and the Service

Profile Request Processing state.

Idle state: in this state, the UHA_Process is ready to accept any requests from the

U F A .

Checking ID and Password state: the UHA_Process enters this state after re

ceiving a request for user authentication.

Service Profile Request Processing state: the UHA_Process enters this state

after receiving a request for a user's service profile.

3.4 P ro to type Implementat ion of U P C

After having a concise specification, we implemented a prototype of R S N P on Sun

Microsystem Solaris 2.x using C as the programming language. The user graphical

interface was written in T c l / T k . The implementation code space is roughly about

8000 lines. The prototype of R S N P is subjected to the following assumptions and

requirements:

Figure 3.6: User Foreign Agent 's Extended Fin i te State Machine

42

Block U H A (User Home Agent)

Authen_Rep
USP_Rep

U F A Signal Route

Authen_Req
USP_Req

U H A Process

U H A

Signal

ErrorJReport
WrongSeqno_Debug
Messag_Debug

Debug

Route

Figure 3.7: Block Diagram of a User Home Agent

43

4 4

3.4.1 Assumpt ions and Requi rements:

• The applications supported here are l imited to internet applications such as

web browsers (e.g. Netscape, Mosaic) , news clients , mail clients, and so on.

• Th is prototype implementation does not support multi-platforms. The sup

ported platform considered here is U N I X .

• A local user whose login mobile terminal comes from a foreign network is

considered a visi t ing user since the mobile terminal may not support all the

services that a fixed terminal in this network supports.

• The U F A and the Mobi le - IP Foreign Agent (FA) are required to operate on.

the same machine, or in other words, they should have the same IP address.

This requirement makes the agent (U F A) discovery procedure in the U P C

efficient and simple. A s a mobile terminal (M T) and a mobile user enter a

foreign network, the Mobi le IP detects the move and informs the M U of the

current U F A ' s IP address (this should be the same as the F A IP address). The

Mobi le - IP need to be modified to provide this location update service.

• A mobile user is required to know the U H A ' s location, whether it is a U H A ' s

IP address or the name of the host that U H A is currently running on. The

U H A location can be extracted from the L U I , but this requires that the U H A

resides on the same host as the internet mail server. It is unsafe to run any user

program on the mail server's host, and to the extent that this is a prototype

implementation, this requirement is reasonable. If the user is local and the

terminal is also local, then this requirement is waived.

45

3.4.2 Regis t ra t ion and Service Negot ia t ion Procedure

The behaviour of the R S N P depends on the type of terminal , fixed or mobile. There

is no hand-off and U F A location update procedures for a fixed terminal . For a mobile

terminal , by default, the Mobi le User (M U) is configured to know the location of

the U F A in its home network.

The following is the sequence of events during the Registration and Service

Negotiat ion:

• After receiving the user's information, such as the L U I , the password, and the

U H A ' s IP address, the M U at the login terminal verifies whether the user is

local or foreign by comparing the domain portion of the L U I and the current

U F A ' s IP address. The terminal 's type, fixed or mobile, is identified from the

terminal configuration. If the user is local in this administrative domain and

the terminal is fixed, the M U allows this user to login locally. The user has full

access to any services and applications available. If the user is from a foreign

administrative domain, or the user is local in this administrative domain but

the terminal is a foreign terminal , the M U contacts U F A for a connection

request.

• After receiving a connection request from a M U , the U F A checks its current

status, i.e. number of connections available. If the U F A is able to handle

another connection, it contacts the user's U H A for user authentication.

• The user's U H A validates the requested L U I and its corresponding password.

If both the L U I and password are valid, the U H A returns a valid authentication

reply to U F A .

46

• A s the U F A receives a valid authentication reply from the user's U H A , it

generates a connection ID and sends a connection acceptance message along

with this connection ID to the M U .

• After the registration succeeds, the M U initiates the service negotiation pro

cedure by sending a request for the User Service Profile to the U F A . The U F A

forwards this request to the user's U H A . The reply comes to the U F A arid is

then forwarded to the M U .

• If the M U receives a valid reply, it creates a User-Terminal Service Profile by

intersecting the User Service Profile wi th the Terminal Service Profile.

• If the User-Terminal Service Profile is not empty, the M U contacts the U F A

to retrieve the U F A ' s Service Profile and then produces a Session Service Pro

file by intersecting the U F A ' s Service Profile wi th the User-Terminal Service

Profile.

3.4.3 Re-regist rat ion after Exp i ra t i on of Connect ion L i fe t ime

Each connection granted from the U F A has a unique ID and a l imited lifetime. A

connection becomes invalid if the connection lifetime at the U F A expires. To main

tain a connection, the M U has to send a re-registration request whenever its connec

tion lifetime expires. The re-registration procedure after expiration of a connection

lifetime is very simple compared to the re-registration procedure after a hand-off.

W h e n a connection lifetime expires, the M U sends a re-registration request with

the associated connection ID and requested desired lifetime. If the connection ID

is valid, the U F A updates the connection.lifetime for this connection ID and then

sends a reply back to M U .

47

3.4.4 Re-regist rat ion after Hand-of f

Hand-off only occurs with a mobile terminal . The hand-off in the mobile terminal

is handled by the Mobi le IP. The M U detects a move into a foreign network when it

receives a location update message from the Mobi le IP and the U F A ' s IP address in

the location update message is different from its current connected U F A ' s IP address.

If the M U is serving an ongoing session, it performs the re-registration procedure.

The M U contacts the new U F A and provides it wi th all the user's information such as

the L U I , the password, and the U H A ' s IP address. To authenticate the user, similar

steps as used in the registration procedure are carried out. The ongoing session is

terminated if either the new U F A is not available for any services or authentication

of the user failed.

After successful registration wi th the new U F A , the M U contacts the new

U F A to retrieve the new U F A ' s Service Profile. A new Session Service Profile is cre

ated from intersecting the User- Terminal Service Profile and U F A ' s Service Profile.

Current running services or applications that do not exist in the Session Service

Profile are considered illegal and are immediately terminated by the M U .

3.4.5 Datagram Format used in Regis t rat ion and Service Negot ia

t ion Pro toco l

Communication between MIP and M U

This is the datagram format for the location update packet from Mobi le IP.

• U D P fields

- Source Por t : variable

- Destination Por t : 9999

48

• The U D P Header

- Type : Locat ion Update

- Locat ion: IP address of U F A

Communicat ion between M U / U F A or U F A / U H A

There is only one header type used for all the request and reply packets between

M U and U F A , or U F A and U H A . User ID, password, and service profile are inserted

into the data portion after the header..

• U D P fields

— Source Por t : variable

— Destination Por t : copied from the source port of the corresponding Re

quest or

* from M U to U F A use 8888
* from U F A to U H A use 6666

* from U H A to U F A use 7777

• The U D P Header

— Type :

* Connection Request

* Connection Reply

* Authent icat ion Request

* Authenticat ion Reply

* User Service Profile Request

49

* User Service Profile Reply

* U F A Service Profile Request

* U F A Service Profile Reply

Code: A value indicating the result of the request. It is set to 0 in the

request packet. Possible errors are:

* For Connection Request

• Registration Accepted

• Registration Denied

• Unspecified Reason

• Insufficient Resources

• Authent icat ion Failed

• Requested Lifetime Too Long

• Poor ly Formed Request

• Unknown U H A Address

• U H A host is Unreachable .

• U H A port is Unreachable '

* For Authent icat ion Request

• Authent icat ion O K

• Authent icat ion E R R O R :

• Unspecified Reason

• Identification Mismatch

• Poor ly Formed Request

• Un-Registered User

50

* For User Service Profile Request

• O K

• E R R O R , Unspecified

• U H A Unreachable

* For U F A Service Profile Request

• O K

• E R R O R , Unspecified

• U F A Unreachable

Lifetime: The number of seconds remaining before the registration is

considered expired. A value of Oxffff indicates infinity. It is set to 0 for

the reply packet wi th an error code.

U H A : IP address of the User Home Agent

Seqno: the sequence number of this packet.

ID: the connection ID of this connection. It is set to 0 in packet type C o n

nection Request, except in the case of re-registration after a connection

lifetime expires. In this case it is set to the actual connection ID .

D a t a length: the length of the data following the header.

51

Chapter 4

CORBA-based U P C Prototype

4.1 C O R B A - b a s e d U P C Pro to type Implementat ion

In this chapter, we present the implementation of the C O R B A - b a s e d U P C proto

type. A s mention in section 2.5, C O R B A - b a s e d U P C architecture is an alternative

approach in modeling the U P C concept. In this architecture, the U P C components

are modeled as distributed objects wi th C O R B A as the object bus that facilitates

the interaction, integration, and distr ibution of these objects. We implemented the

prototype using Java as the programming language, Visigenic's Vis iBroker for Java

as the C O R B A framework, and Sun Microsystem's Solaris 2.x as the computing

platform. The prototype code space is approximately 5000 lines.

Because the implementation is a prototype and there are insufficient comput

ing resources, the prototype is implemented based on the following simplifications

and requirements:

52

• The U P C architecture utilizes a wide range of services defined by the C O R B A

Object Services, such as the Naming Service, the Trader Services, the Life

Cycle Services, and the Security Services. However, some implementations

of these services (i.e. the Trader Services) were not available at the time we

implemented the U P C prototype. A s a result, the lack of C O R B A services

has influenced our implementation of the prototype to a certain extent. The

service discovery and service negotiation procedure is simplified to a direct

mapping in the application name and configuration name. Thus, the terminal

profile is simpler than the terminal profile proposed in Zhu, Toeroe, Leung,

and Vuong[35]. O n our implementation the terminal profile defines only the

software capability of the terminal , wi th no information regarding the termi

nal's physical capability.

• The terminal must support Java and C O R B A ' s O R B . In addit ion, there must

be enough memory in the terminal to download the application client class file

and the application configuration file.

A s the first step in the implementation, we defined all the U P C objects'

interfaces using the Interface Definition Language (I D L) . A n overview of I D L was

presented in section 2.5. Then, we ran the I D L files through C O R B A compliant

pre-compiler to generate the stubs and skeletons, which were used as a frame in

implementing an object. The following sections present the I D L interface definition

for all the major objects as well as their functionalities in the C O R B A - b a s e d U P C

architecture, such as Personal Comput ing Environment (P C E) , User Home Agent

(U H A) , Terminal Profile, Terminal Agent (T A) , and Initial Agent .

53

4.1.1 Personal Compu t i ng Env i ronment (P C E)

Each user has a P C E which is kept and maintained at the User Home Agent. The

P C E is designed to specify enough information so that the Terminal Agent can

untilize the C O R B A Trader Services to discover and negotiate the services available

for a user while they visit a foreign network. The I D L code of the P C E is attached

in. Append ix A .

The P C E is a list of service structures, each of. which is composed of:

• Service Name: the.name of a service object, defined as a str ing.

• Service Type : the type of service object, i.e. an application client object,

. application configuration, or network resources.

• Service Object: the reference to a service object. This object can be an applica-

' t ion client object, an object that allows access to an application configuration,

or an object that allows access to network resources.

• Trade Information: a structure that stores all the necessary information needed

for the C O R B A Trader Services to discover or locate a service, i.e. the service

type, the service properties, the constraint of the search and the search policies.

• Hardware capabili ty: a list of the requirements about physical hardware sup

port for this "service. For example, to play a midi file, a terminal is at least

required to be equiped with a sound card and speakers.

4.1.2 User Home Agent (U H A) '

For each administrative domain, there is a U H A . The U H A manages the list of users

registered in its administrative domain, and the users' corresponding P C E s . The

54

I D L code of the U H A is attached in Appendix A .

The U H A exports the following services:

• boolean tokenauthent(in string L U I , in string password, out Token token):

This method authenticates a, user identified by the L U I and the password.

Upon successful authentication, a token (or a validation ID) is returned to the

caller.

• informJocat ion(in string L U I , in string address):

This method informs the U H A of the current location of the user (i.e. IP

address of the terminal) .

• P C E : : P r o f i l e getprofile(in string username):

This method retrieves a user's P C E .

• string download (in Token token, in string filename):

This method downloads a file from the user's home network.

• boolean upload (in Token token, in string filename, in string data):

This method uploads a file from the T A to the user's home network.

• boolean updateProfile(in string username, in P C E : : P r o f i l e p):

This method allows a user to modify their P C E .

• void logout (in Token token):

This method informs the U H A that a user is logging out.

4.1.3 Termina l Profile

Each terminal has a terminal profile which is stored in a file at the terminal . In our

prototype, the terminal profile is implemented as a J A V A class that maintains a list

55

of the software application names that are available at the terminal (e.g. Netscape,

Mosaic , and Internet M a i l) . These software application names determine which

software applications are available at a terminal to a user when they login to this

terminal .

In addition to the application name, for each software application, the fol

lowing corresponding information is kept in the terminal profile:

• The full path executable file name of the software application (e.g. for Netscape,

the file name is /usr/applicat ion/netscape.exe). Th i s full path executable file

name specifies where to fire up the software application.

• A list of configuration names and preference names (e.g. bookmarks) and the

corresponding full path configuration file names and preference file names (e.g.

/usr /appl ica t ion/netscape/bookmarks .h tml) . The list of configuration names

specifies and l imits the abili ty of a visi t ing user to replace these configurations

wi th their own configuration from their home network. W h e n a configuration

file is downloaded from a user's home network, the configuration name and

configuration file name are used to map the downloading configuration file to

the local configuration file at the terminal .

In order to aid in the generating and updating of a service profile, we imple

mented a uti l i ty application with G U I , called Service Manager . The Service Manager

uti l i ty is available to the system administrator or the owner of the portable terminal .

The Service Manager uti l i ty supports the following functions:

• A d d a new application name and its executable file name into the terminal

profile.

56

Add Delete Quit Help

Application Name Exec Path I /cs/pubIic/bin/netscape

netscape j calendar
calculator
j printer

Con fig Name File Name

, bookmarks
j preferences
(cookies
! plugin—list
j history

/grads2/thuynh7.UPC
/grads2/thuynh/.UPC
/grads2/thuynh/.UPC
/grads2/thuynh/.UPC
/grads2/thuynh/.UPC

Figure 4.1: M a i n screen of the Service Manager ut i l i ty

• A d d a new configuration name and its configuration file name to an existing

application in the terminal profile.

• Delete an existing configuration name and its configuration file name from an

existing application in the terminal profile.

• Delete an existing application name and its corresponding executable file

name, the configuration name list and configuration file name list from the

terminal profile.

A screen shot of the Service Manager is i l lustrated in Figure 4.1.

57

4 .1 .4 Termina l Agent (TA)

The T A is implemented as an application server for the Initial Agent . Residing

locally at a terminal, the T A communicates with the login user's U H A to perform

the following tasks:

• Process a login request for a user.

• Retrieve the user' P C E from their home network.

• Perform service discovery and negotiation. Th is process produces a set of

network services and applications requested by the user and which are also

available at the login terminal .

• Download the configuration or preference files that a user specifies for a par

ticular application when this application is locally executed.

• Download the class files of the client of the application that is remotely exe

cuted.

• A t shutdown, synchronize the downloaded configuration or preference files

wi th copies at the home network.

The following describes the interfaces supported by T A . These interfaces are

defined using O M G ' s I D L . Refer to Appendix A for the entire I D L code.

• boolean login (in string L U I , in string password) raises (Fail):

This method uses the domain name portion given in the L U I and the C O R B A

Name Services to resolve the object reference of the login user's U H A . After ob

taining the U H A object reference, this method then invokes the a u t h e n t i c a t e O

58

method exported by U H A to authenticate the user. If the authenticate oper

ation is successful, this method invokes the g e t p r o f i l e Q method from the

U H A to get a reference to the user's P C E . This method compares the user's

P C E wi th the Terminal Profile to produce a list of network services and ap

plications specified by the user in the user's P C E which are also available at

the login terminal . Th is method also extracts from the P C E all the network

services and applications that are remotely available. "Remotely available"

network services or applications are network services that can be executed at

the home network or applications that are implemented using the C O R B A

Cl ient /Server framework.

void logout() raise (Fail):

'This method first closes all the running network's services and applications.

Secondly, for local applications, if any of the configuration files downloaded

from the user's U H A had been modified, these files are synchronized wi th

copies at the user's U H A by invoking the up load () method exported by the

U H A . A n d finally, th i s method deletes both the configuration and class files

downloaded during this login session.

string runLoca lApp(in string appName) raise (Fail):

Th is method executes a local application. If there is a configuration file

specified wi th this application in the user's P C E , this method invokes the

d o w n l o a d O method exported by the U H A to download this configuration file.

string runRemoteApp(in string. appName) raises (Fail):.

This method executes a remote application. It first downloads the "client" of

the application from the U H A , as specified in the user's P C E , then instantiates

59

the object and runs i t .

• str ing getLocalServiceList() raises (Fail):

Th is method returns a list of network services and applications specified by

the user in the P C E which are also available at the foreign terminal .

• string getRemoteServiceListQ raises (Fail):

Th is method returns a list of network services that can be executed at the home

network and applications that are implemented using the C O R B A Cl ient /Server

framework.

4.1.5 In i t ia l Agent

The Initial Agent is an active process executed at a terminal . It is responsible to

accept inputs from users and output the responses from the U P C system. The I A

is implemented as a T A ' s C O R B A client application. The I A invokes the service

provided by the T A corresponding to the user input.

The I A is implemented as a Java class that consists of two inner classes called

Login Window class and Appl ica t ion Manager class.

• The Login W i n d o w class provides a screen where a user can make a login

request by entering their L U I and password. The screen shot of the Login

screen is shown in the Figure 4.2.

• The Appl ica t ion Manager class provides a window where a user can select

to execute a software application or request a network service. There are

two selectable lists of software applications and network services that a user

is granted to access. The first list displays all the network services that are

available at the visi t ing network and software applications that are locally

60

Help

Uelcone t o UPC

User ID t8st@ece.ubc.c3

Password

OK I Clear [J x i t

Figure 4.2: Login screen of the U P C

available at the login terminal , and the second list displays all the network

services and software applications that are available at the home network which

can be remotely executed. The screen shot of the Appl ica t ion Manager screen

is shown in Figure 4.3.

After a user enters their L U I and password, the I A instantiates a T A object

and invokes the l o g i n O method exported by the T A object. If the login request

is successful, the IA closes the login window and displays the application manager

window. The IA obtains the list of locally available network services and applications

and the list of remotely available network services and applications by invoking the

g e t L o c a l S e r v i c e L i s t O and getRemoteServiceLis tQ method respectively from

the T A . These two lists are displayed in the window manager so that a user can

easily select to execute the desired network service or applicat ion. Depending on

(ii

mailto:t8st@ece.ubc.c3

Local Services Remote Services
j netscape
{calendar
i calculator
I printer

Exec Cancel\ Logout

Figure 4.3: U P C Appl ica t ion Manager screen

62

the user selection, one of the following actions wil l be carried out.

• If the user chooses to run a remote application, the IA invokes the runRemoteAppO

method from the T A with the appropriate parameters.

• If the user chooses to run a loca l application, the IA invokes the r u n L o c a l A p p O

from the T A with the appropriate parameters.

4.1.6 T e s t i n g a n d Resu l t s

Testing Preparation

The prototype supports mobile users wi th transparent access to their personalized

computing environments wherever they roam on the Internet, using wireless or wired

connections. To demonstrate this capabili ty of the prototype, we have prepared the

followings items:

• Software Appl ica t ion

There are two main categories of network resources and software applications,

i.e. local and remote. The " loca l " category includes all the network services

that are available at the visi t ing network and all the software applications that

are installed in the visited terminal . On the other hand, the networks services

that are available outside the visi t ing network (i.e. at the home network)

and software applications that can be remotely executed (i.e. applications de

veloped based on C O R B A ' s framework) fall into the "remote" category. For

local application, we used the web browser (i.e. Netscape) as an example. The

user would be able to run Netscape with the preference and configuration files

(i.e. bookmarks, preference, cookie files) from their home network. In regards

63

to the remote application, we implemented a C O R B A - b a s e d software appli

cation, a distributed T icTacToe game. It consists of a very thin application

client (i.e. G U I) and an application server. A user can play a game half way

and save it , then resume the previously paused game any time later.

• User

We created a user called "test" under the administrative domain "ece.ubc.ca".

In the user P C E , we specified the user would like to use netscape as their web

browser, and the "bookmarks .h tml" and the "preferences" files are defined as

the preference files for the application "netscape". In addition to this, the user

wants to be able to play a TicTacToe game away from home.

• Terminal

We configured a foreign terminal in a second administrative domain, "cs.ubc.ca",

to support U P C , and created a terminal profile for this terminal using the

Service Manager ut i l i ty application. The terminal profile specifies that a web

browser called "netscape" is installed at the terminal . The mapping informa

tion for all the reference and configuration files for netscape are also added to

the terminal profile. For example "netscape" is installed at " /usr /b in /netscape"

and the bookmarks file is mapped into the " /us r /b in /ne t scape /bookmarks .h tml"

• file.

Results „

When the user "test" moves away from home and visits the "cs.ubc.ca" network,

they are able to login and have the same computing environment as they have at

home (i.e. ece.ubc.ca). The user can run netscape with the same bookmarks and

64

preferences as they have at home, and any change to the bookmarks or preferences

files is synchronized with the corresponding files at the home network: The user can

also remotely play a T icTacToe game and resumes a previously paused game.

To get a reading on the performance of the C O R B A - b a s e d U P C prototype

implementation, we have recorded the t ime that it takes to perform a task in different

situations. The following shows some figures calculated based on an average of 80

runs:

• T ime to resolve the User Agent : 702 msecs

• T ime to process a login request : 174 msecs

• Download file rate : 27 bytes/msecs

6 5

Chapter 5

Conclusion and Future Works

5 .1 Conc lus ion

This thesis addresses implementation issues regarding the support of mobile com

puting over the Internet using a new computing paradigm called Universal Personal

Comput ing (UPC)[30,35] . U P C is a computing environment which enables a mo

bile user to access computing resources, network services, personal applications,

data files, and environmental configurations through any terminal , stationary or

mobile, anywhere on the Internet [21]. The core of U P C ' s mobil i ty management is

the Registration and Service Negotiation protocol (R S N P) . We first specified the

U P C ' s R S N P using Specification and Description Language (S D L) . We then simu

lated R S N P using different scenarios to demonstrate the protocol's behaviour, and

to verify the protocol's completeness and correctness. W i t h the concrete and precise

understanding gained from U P C ' s R S N P S D L specification, a prototype of U P C ' s

R S N P was subsequently implemented in C and on Sun Solaris with the user interface

written in T c l / T k .

66

The specification and simulation of R S N P using S D L has made the imple

mentation of the U P C ' s R S N P prototype easier and simpler. In S D L specification,

an agent's behaviour is described-using an extended finite state machine (F S M) and

coding from a F S M is a straightforward task. M o r e important , the simulation has

verified the response of a F S M against different combinations of inputs and states.

The F S M is proved to correctly work before any coding attempt. Th is results in a

huge reduction in debugging time in the implementation phase.

Unfortunately, using C language to implement all the distributive compo

nents in U P C is very complex and even impossible. The U P C prototype imple

mented using C language supports only one feature proposed in the U P C frame

work, i.e. executing a local application using the downloaded configuration and

preference file from the user's home network. However, there is no support for other

features such as remotely executing an application or a service in the home network

from the foreign network, or downloading an application from the home network

and executing at the foreign network. To successfully implementing all the features

in the U P C framework, a combination of a platform independent distr ibuted ob

ject architecture support (i.e. C O R B A) and a platform independent programming

language (i.e. J A V A) is necessary. The distributed object architecture wi l l make

the implementation of a distributed application easier than using only C language.

Looking for an object, marshalling data from one language to another, or invoking

a method on a remote object are performed transparently by the distributed object

framework. In addit ion, the platform independence of Java wil l make all the client

side of all the distributed components portable across platform.

A s a result, this thesis has presented an alternative approach to modeling the

U P C concept using distributed objects, called C O R B A based U P C [30, 35]. In this

67

architecture, the U P C components are modeled as distributed objects wi th C O R B A

. as the object bus that facilitates the interaction, integration, and distr ibution of

these objects. To demonstrate the concept, a prototype of C O R B A - b a s e d U P C

was implemented using Java 1.1.x and Visigenic 's C O R B A for Java 3.0 on a Solaris

platform.

W i t h the advantage of using Java and C O R B A , we were able to implement

most of the features proposed in the U P C framework. The implementation is very

simpler as compared to the C / T c l / T k implementation: The prototype implemen

tation supports a mobile user to transparently access their configuration and pref

erence file, and execute their personal software application whenever and wherever

< they roam on the Internet. The application could be a local application running

with the user's configuration and preference file, or an application that is remotely

executed at the user home network.

5.2 Future Works

Since the implementation of the C O R B A - b a s e d U P C is only a prototype and some

of the C O R B A service implementations are not available at the t ime the prototype

was implemented, many features remain to be implemented in the future.

., • In the P C E , the set of values that describe the required hardware capabilities

for a service remains to be standardized and implemented.

• In the terminal profile, the set-of values that describes the terminal 's hardware

capabilities remains to be standardized and implemented.

• A s the C O R B A ' s Trader Service becomes available, the Terminal Agen t could

; be enhanced to support service discovery at the visit ing network.

68

A s the C O R B A ' s Concurrency Cont ro l is available, the User Agent could use

this service to control access to the P C E , and the Terminal Agent could use

this service to synchronize file downloading and uploading.

Por t ing this project into a Web-based framework would be a possible exten

sion.

Last but not least, a detailed study of the U P C ' s protocol performance and

security issues needs to be conducted.

69

Bibliography

[1] R . Bagrodia , W . W . C h u , L . Kleinrock, and G . Popek, " V i s i o n , Issues, and

Architecture for Nomadic Comput ing" , IEEE Personal Communications

Magazine, pages 14-27, December 1995.

[2] F . Bel ina, D . Hogrefe, and A . Sarma, " S D L wi th Appl ica t ion from Protocol

Specification", Prentice Hall International (UK) Ltd., 1991.

[3] J . C . Benard-Dende, R . Nevoux, and J . C . Dang , "Networks, Users and

Terminals in U M T S / F P L M T S " , Vehicular Technology Conference ^th.,

pages 681-685, 1994.

[4] R . Braek, " S D L Basics" , Handouts.

[5] D . Chess, B . Grosof, C . Harrison, D . Levine, C . Parr is , and G . Tsudik , "

Itinerant Agents for Mobi le Comput ing" , IEEE Personal Communications,

pages 34-49, October 1995.

[6] C O R B A Home Page, URL: http://www.omg.org, 1998.

[7] T . V . Do , and J . Audestad, "Terminal M o b i l i t y Support in T I N A " , Pro

ceedings of TINA's 97, pages 38-50, 1998.

70

http://www.omg.org

[8] T . Eckardt , and T . Magedanz, "The Role of Personal Communicat ions

in Distr ibuted Office Environments" , Autonomous Decentralized Systems

Proceedings, pages 316-322, 1995.

[9] T . Eckardt , and T . Magedanz, "Personal Communicat ions Support based

on T M N and T I N A Concepts" proceedings of IN's 96, pages 196-200, 1996.

[10] M . P. Gervais, " A Framework for Mob i l i t y in Wireless Personal Communi

cations", Proceedings of ICC/SUPERCOMM's 96, pages 1148-1152, vol . 2,

1996.

[11] V . Gup ta , and A . D i x i t , "The Design and Deployment of a Mob i l i t y Support

Network",Proceedings Second International Symposium on Parallel Archi

tectures, Algorithms, and Networks, pages 228-234, 1996.

[12] J . G . Hemmady, J . R . M a y m i r , and D . J . Meyers, "Network Evolut ion to

Support Personal Communicat ions Services", Global Telecommunications

Conference, pages 710-714, vol . 21994.

[13] T . D . Hodes, and R . H . K a t z , "Composable A d hoc Location-based Services

for Heterogeneous Mobi le Cl ients" , , 1997.

[14] C . ' S . Hong, Y . Koga , and Y . Matsushi ta , " A Networking Architecture for

M o b i l i t y Services Using Mobi le Agent Approach" , Proceedings of TINA's

97, pages 297-307, 1998.

[15] I. Iida, T . Nishigaya, and K . Murakami , " D U E T : A n Agent-Based Personal

Communicat ions Network", IEEE Communications Magazine, pages 44-49,

November 1995.

71

[16] T . Imielinski, and H . F . K o r t h , " M o b i l e Compu t ing" , Kluwer Academic .

Publishers , 1996 . •

[17] J . Ioannidis, and G . Q . Maguire Jr . , " T h e Design and Implementation of a

Mobi le Internetworking Archi tecture", Winter USENIX, 1993. -

[18] E . Jung, Y . J . Park, and C . Park , " M o b i l e Agent Network for Support

ing Personal M o b i l i t y " , Proceedings Twelfth International on Information

Networking, pages 131-136, 1998.

[19] M . Liljeberg, K . Raatikainen, M . Evans, S. Furnel l , N . M a u m o n , E . Veld-

kamp, B . W i n d , and S. Tr igi la , " U s i n g C O R B A to Support Terminal M o

bi l i ty" , Proceedings of TINA's 97, pages 59-67, 1998.

[20] Y . L i , and V . C M . Leung, "Suppor t ing Personal Mob i l i t y for Nomadic C o m

puting over the Internet", ACM Mobile Computing and Communications

Review , V o l . 1, No . 1, pages 22-31, A p r i l 1997.

[21] Y . L i , and V . C . M . Leung, "P ro toco l Architecture for Universal Personal

Compu t ing" , IEEE Journal on Selected Areas in Communications , V o l .

15, No.8, pages 1467-1476, October 1997.

[22] A . Lombardo, P. Nicosia, S. Palazzo, and M . Samarotto, "Service A r c h i

tecture Support of Personal Mob i l i t y in a M u l t i - D o m a i n Environment" ,

Proceedings of TINA's 97, pages 51-58, 1998.

[23] R . Orfal i , and D . Harkey, "Cl ien t /Server Programming with J A V A and

C O R B A " ; John Wiley and Sons, Inc., 1997.

72

[24] J . Pavon, and J . Tomas, " C O R B A for Network and Service Management

in the T I N A Framework", IEEE Communications Magazine, pages 72-79,

M a r c h 1998.

[25] C . Perkins, E d . , R F C 2 0 0 2 , IP M o b i l i t y Support , M a r c h 1997.

[26] R . Ramjee, T . F . L a P o r t a , and M . Veeraragahvan, " T h e Use of Network-

Based Mig ra t i ng User Agents for Personal Communicat ion Services", IEEE

Personal Communications, pages 62-68, December 1995.

[27] D . Samfat, and R . M o l v a , " A M e t h o d Provid ing Identity Pr ivacy to Mobi le

Users during Authent ica t ion" , pages 196-199, Workshop on Mobile Com

puting Systems and Applications, pages 196-199, 1995.

[28] A . Sarma, "Introduction to S D L - 9 2 " , Handouts.

[29] H . M . Sneed, " Encapsulat ing Legacy Software for Use in Cl ient /Server

Systems", Proceedings of WCRE'96, pages 104-119, 1996.

[30] M . Toeroe, J . Zhu, Y . L i , and V . C . M Leung, " A C O R B A based

Framework for Univeral Personal Comput ing on the Internet",Proceedings

SCI/ISAS'''98, Orlando, FL, Ju ly 1998.

[31] Vinosk i S., " C O R B A : Integrating Diverse Applicat ions wi th in Dis t r ibuted

Heterogeneous Environments, IEEE Communications Magazine, pages 46-

55, vol . 35, 1997.

[32] S. V inosk i , "Dis t r ibuted Object Comput ing W i t h C O R B A " , C++ Report

Magazine, J u l y / A u g u s t 1993.

[33] Visigenic Programmer 's Guide, Version 3.0, Vis iBroker for Java.

73

[34] M . Zaid , "Personal M o b i l i t y . in P C S " , IEEE Personal Communications

Magazine , pages 12-16, Four th Quarter 1994.

[35] J . Zhu, M . Toeroe, V . C . M . - L e u n g , and S. Vuong, "Suppor t ing Universal

Personal Comput ing on Internet with Java and C O R B A " , Concurrency:

Practice and Experience, 1998.

74

Appendix A

The IDL files for all the agents in the C O R B A - b a s e d U P C

architecture.

/ /Author : Thong Huynh

module TA {

in te r face TerminalAgentf

enum Fai lReason { UNABLE_TO_LOCATE_SERVER,

NO_IMPLEMENT_SERVER,

C L A S S _ N 0 T _ F 0 U N D ,

INSTANTIATION_ERROR,

ACCESS.ERROR,

CLASSFILE_DOWNLOAD_ERROR,

ERROR_EXEC_APPLICATION,

UNKNOWN.HOST};

exception F a i l {

Fai lReason reason;

};

vo id updateLocat ion(in s t r i n g newLocation) r a i se s (F a i l) ;

boolean l o g i n (i n s t r i n g LUI , i n s t r i n g password) r a i se s (F a i l) ;

vo id logou tQ r a i s e s (F a i l) ;

s t r i n g runLocalApp(in s t r i n g appName) r a i s e s (F a i l) ;

s t r i n g runRemoteApp(in s t r i n g appName) r a i s e s (F a i l) ;

s t r i n g g e t L o c a l S e r v i c e L i s t Q ra i ses (F a i l) ;

75

s t r i n g g e t R e m o t e S e r v i c e L i s t O r a i s e s (F a i l) ;

} ;

>;

/ / A u t h o r : Kangming L i u

module PCE {

typede f s t r i n g ServiceName;

typedef s t r i n g S e r v i c e O b j ;

typedef s t r i n g ServiceTypeName;

typede f s t r i n g C o n s t r a i n t ;

t ypede f s t r i n g P r e f e r e n c e ;

t ypede f s t r i n g Po l i cyName;

typede f s t r i n g PropertyName;

typedef s t r i n g P o l i c y V a l u e ;

typedef s t r i n g P r o p e r t y V a l u e ;

typedef s t r i n g H p r o p e r t y V a l u e ;

enum PropertyMode {

PR0P_N0RMAL,

PR0P_READ0NLY,

PROP.MANDOTORY,

PR0P_MAND0T0RY_READ0NLY

. } ;

76

enum. ObjectRefType {

APPLI.OBJECT, • : '..

APPLI_CONFIG, •

APPLI_RESOURCE_FILE

>; .

s t r u c t HardwareCap{

s t r i n g Hname;

HpropertyValue value;

>;

typedef sequence<HardwareCap>HardwareCapSeq

s t r u c t Property { .

PropertyName name;

PropertyValue value;

PropertyMode mode;

>;

typedef sequence <Property> PropertySeq;

s t r u c t P o l i c y {

PolicyName name;

. PolicyValue value;

} ;

•typedef sequence<Policy>PolicySeq;

s t r u c t Trade{

ServiceTypeName type;

Constraint constr;

Preference pref;

77

Pol i cySeq p o l i c i e s ;

PropertySeq P rope r t i e s ;

>;

s t ruc t Serv ice{

ObjectRefType type;

ServiceName serviceName;

ServiceObj serv iceObj ;

Trade t rade;

HardwareCapSeq hardwareCapSeq;

>;

typedef sequence<Service>ServiceSeq;

in te r face P r o f i l e {

a t t r i b u t e ServiceSeq serv iceSeq;

v o i d s e t (i n PCE::ServiceSeq serv iceSeq) ;

PCE::ServiceSeq g e t (i n s t r i n g username);

} ;

in te r face P r o f i l e F a c t o r y {

P r o f i l e c r e a t e P r o f i l e (i n s t r i n g User_name,

i n ServiceSeq serv iceSeq) ;

v o i d d e l e t e P r o f i l e (i n P r o f i l e p) ;

>;

>;

module UA {

s t ruc t Token{

78

\

s t r i n g low;

s t r i n g h igh ;

} ;

i n t e r face UserAgent {

boolean au then t i ca te (in s t r i n g LUI ,

i n s t r i n g password);

boolean tokenauthent(in s t r i n g LUI ,

i n s t r i n g password,

out Token token);

v o i d i n fo rm_loca t ion (in s t r i n g LUI ,

i n s t r i n g address);

P C E : : P r o f i l e g e t p r o f i l e (i n s t r i n g username)

s t r i n g download(in s t r i n g f i lename) ;

boolean upload(in Token token,

i n s t r i n g f i lename,

i n s t r i n g data) ;

boolean u p d a t e P r o f i l e (i n s t r i n g username,

i n P C E : : P r o f i l e p) ;

v o i d l o g o u t (i n s t r i n g username);

} ;

79

