
a/5Serv ice - An Asynchronous Parallel Tree Search
Service for ChessGrid.

by

Sukanta Pramanik

B.Sc.(Engg), Bangladesh University of Engineering and Technology, Dhaka

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE STUDIES

(Computer Science)

The University of British Columbia
July 2005

© Sukanta Pramanik, 2005

A b s t r a c t

The performance of game playing programs depends heavily on the strength of the
search algorithm used. As such, several research activities have been conducted to
speed up game tree search algorithms by using parallel machines. Most of these al
gorithms are targeted towards shared memory models or tightly coupled systems. In
recent years, the rapid progress of Grid computing has led to finding a Grid solution
to difficult computational problems. To ensure interoperability among diverse com
putational resources in the Grid, Service Oriented Architecture is used to achieve
loose coupling among interacting software agents, known as services. Finding an
efficient tree search algorithm in this new paradigm is a challenging problem.

This thesis proposes a new service oriented algorithm, called a/3Service,
which targets loosely coupled systems. It creates a tree of services to search the
game tree concurrently. The necessity of synchronization points is eliminated with
a notification mechanism, enabling the concurrently running services to continue
their asynchronous search without waiting for others to finish. The a/3Service is
implemented as a Grid service in Globus using Globus Toolkit 3. The service is de
ployed to create a ChessGrid testbed and experiments are conducted with a branch
ing factor controlled test suite which demonstrates an average speedup of 2.61 with
six machines.

C o n t e n t s

A b s t r a c t i i

Con ten t s i i i

L i s t of Tables v i

L i s t o f F igu res v i i

Acknowledgemen t s v i i i

1 I n t r o d u c t i o n 1

1.1 Motivation 2

1.2 Thesis Outline 4

2 G a m e Tree Searching 5

2.1 Introduction 5

2.2 Basic Elements of Game Theory 6

2.3 Sequential Game Tree Searching 7

2.3.1 Minimax and Negmax 7

2.3.2 a/3 Pruning 12

2.3.3 Enhancements to a.3 15

2.4 Parallel Game Tree Searching 18

2.4.1 Analysis of the Tree Structure 19

iii

2.4.2 Parallel Search Techniques 20

2.4.3 Tree Splitting Based Algorithms 21

2.4.4 Asynchronous Search Algorithms 24

2.5 Summary 25

3 Grid Technologies and ChessGrid 26

3.1 Grid Concept. 26

3.2 Evolution of Grid Technologies 27

3.3 Globus & Grid 28

3.3.1 Open Grid Servicew Architecture . 28

3.3.2 Grid Service Components 29

• 3.3.3 Globus Toolkit 3.0 31

3.4 ChessGrid 34

3.4.1 Architecture 35

3.4.2 Service Creation & Lifetime 36

3.4.3 Information Sharing 37

3.5 Summary 38

4 a/?Service Algorithm 39

4.1 Introduction 39

4.2 Internal .Mechanism of Parallel. Chess Algorithm 40

4.2.1 Distribution of the Game Tree 40

4.2.2 Tree Searching Algorithm 41

4.2.3 Service Description 43

4.2.4 Flow of Information 45

4.3 Implementation Details 46

4.3.1 Chess Board Representation 47

4.3.2 Move Generation 48

4.3.3 Move Representation 49

iv

4.3.4 Making a move 49

4.3.5 Evaluation Function 50

4.4 Summary 52

5 Pe r fo rmance E v a l u a t i o n 53

5.1 Introduction 53

5.2 Parallel Algorithm Terminology 53

5.2.1 Defining Speedup and Efficiency 53

5.2.2 Limiting Factors: Overheads 54

5.3 Evaluation Methodology 56

5.3.1 Testing Environment 56

5.3.2 Generating the Test Cases 57

5.4 Experimental Results 58

5.5 Discussion 59

6 C o n c l u s i o n 61

6.1 Summary 61

6.2 Future Study 62

B i b l i o g r a p h y 64

A p p e n d i x A ChessServ ice G W S D L 69

v

L i s t o f T a b l e s

5.1 Summary of Bratko Kopec Test Positions 58

5.2 Average test results for the test set 58

vi

List of Figures

2.1 A simple game tree for Tic-Tac-Toe near the end of the game 8

2.2 Computation of the evaluation function. [Nil80] 10

2.3 Two-ply minimax applied to X's move near the end of the game.[Nil80] 11

2.4 The influence of a and 8 14

2.5 Shallow and deep cutoff 14

2.6 A perfectly ordered game tree 20

3.1 Key areas of Grid computing 31

3.2 GT3 core architecture 32

3.3 CliessGrid architecture and service creation sequence 35

3.4 Service creation using the factory . • 36

3.5 Notification mechanism 38

4.1 A game tree distributed among three services 41

4.2 Master-slave hierarchy in a/?Service for different parallel Depth . . . 43

4.3 Work allocation comparison 44

4.4 Information sharing between the services 46

4.5 Constructing white pawn bit board from piece positions 48

5.1 Grid Test bed Environment 57

5.2 Performance curves - Speedup and Efficiency 59

5.3 Overhead curves 60

vii

Acknowledgements

I would like to express my gratitude to Son T. Vuong for proposing this research
topic. He has been my advisor, supervisor as well as a personal friend and his
cooperation, interest and constructive criticism have been invaluable throughout
the course of this thesis.

A big thanks to Charles "Buck" Krasic and Alan Wagner for allowing me to
use the Netbed cluster. Buck has been of tremendous help during the setup of the
ChessGrid in the cluster. Thank you also for being the second reader and providing
some valuable feedback on the initial version.

I would also like to thank the other members of the UBC NICLab and DSG
group for many helpful discussions. My special thanks to Brendan Cully for all the
helps in Linux tweakings, Christian Chita for some useful insights and Ying Su for
letting me run a server in her desktop.

S U K A N T A P R A M A N I K

The University of British Columbia
July 2005

viii

Chapter 1

Introduction

Chess has fascinated people throughout the world for centuries. Though it dates

back to antiquity, there is debate as to which culture its origins should be credited.

The most commonly held belief is that Chess originated in India, having spawned

from the game Chaturanga (from Sanskrit Chaturangam, meaning 'four arms' or

'four members')which appears to have been invented in the 6th century A.D. The

modern era of chess, however, may be said to date back to about the 15th century,

when the pieces gained their present form and standardization started. [TCE01,

WIK05]

Ever since the old days of punch-card computers, people have also been

fascinated with chess-playing programs. In the public eye advances in chess-playing

computer programs have become analogous to progress in AI. The first article on

programming computer for playing chess is due to Claude E. Shannon [Sha50]. In

1950 Shannon noted the theoretical existence of a perfect solution to chess and

described two general strategies.

Type A - expand all sequences of possible moves out to a fixed number

of levels and combine the evaluations of these sequences in a simple tree

computation thereby using the combined evaluation to choose the best

move.

1

Type B - only perform selective expansion of certain lines, using knowl

edge to prune uninteresting branches.

Shannon advocated that Type B is closer to the way humans play chess. Tur

ing's 1951 program [Tur53] was a Shannon Type B program that only expanded

moves involving captures. For the 1973 Computer Chess Championships Slate and

Atkin [SA77] used a Type A search routine, Chess 4.0, that won comfortably and

the switching to Type A started. Debate to which one is better still continues, al

though most modern leading programs use a hybrid of the two types. In 1996 Deep

Blue became the first computer system to win a chess game against a reigning world

champion (Garry Kasparov) under regular time controls. An upgraded Deep Blue

later became the first computer system to defeat a reigning world champion in a

5-game match in 1997.

1.1 Motivation

Playing strength of a Chess program is highly dependent on the depth upto which

the game tree is searched. Due to this continuous necessity of stronger program and

hence deeper lookahead, multiple processors were employed to speedup the search.

Interestingly, almost all of these attempts use a synchronous algorithm to parallely

search the tree.

The sequential algorithms use a pruning technique to minimize the number

of nodes searched. After it completes searching one subtree, a bound is placed

on the possible return value of subsequent subtrees which is then used to prune

redundant nodes. This concept was also incorporated in the parallel approaches

as the processors were forced to complete searching one part of the tree before

continuing to the next. This, in effect, keeps the number of nodes searched by the

parallel algorithm close to the sequential implementation and perhaps is the main

reason why asynchronous approaches did not gain popularity.

2

However, this also brings in the global synchronization points along the search

path to which all the concurrently running processors must reach before they con

tinue any further. The advantages of synchronous algorithms, i.e. searching nearly

the same number of nodes as its sequential counterpart, is seriously undemined by

the processors sitting idle at the synchronization points. The situation is further

aggravated when we have more processors than divisible works to do.

Synchronous algorithms also use a distributed shared table to ensure that

searching similar nodes is not repeated on multiple processors. Most of these algo

rithms are tested on a tightly coupled system and in a loosely coupled environment

or in the absence of this table they do not show the reported parallel efficiency.

Newborn first suggested an asynchronous solution to the problem as the

concurrently running processors searched the partition of the tree delegated to them

independently. When the time limit exceeded all the results were combined to get

the best move from the root. Newborn's U I D P A B S [New88] has limited scalability

as the tree partition occurs only at the root. This idea of partitioning is generalized

in Brockington's A P H I D [BSOO] that uses a master process to distribute the nodes

at a certain depth among child processors which then carry out the asynchronous

search. Aside from these two works, no other research has focused on asynchronously

searching a distributed game tree.

Almost all the synchronous algorithms are targeted towards very tightly cou

pled clusters of computers. In recent years Gr id computing has evolved into a major

discipline in itself by its increased focus on coordinated resource sharing and prob

lem solving in multi-institutional virtual organizations. [FKT01] A major shift in

Gr id is also happening towards service orientation, open standards integration, col

laboration, and virtualizaiton to achieve loose coupling among interacting software

agents in this heterogenous environment. Globus Toolkit 3 brought in the Open

Grid Services Architecture (OGSA) [FKNT02] and thereby aligning itself with the

new emerging Service Oriented Architecture. While the Gr id concept is trying to

3

achieve a computing paradigm similar to an electric power grid with a variety of

heterogenous resources to share, finding an efficient tree searching algorithm that

can exploit the functionality of this environment is a challenging problem. To the

author's knowledge no attempt has been made yet to develop a service oriented

parallel game tree searching algorithm. The goal of this thesis is to find a solution

to this problem and compare the observed speedup with already existing solutions

in other domains.

1.2 Thesis Outline

Chapter 2 and 3 are intended to be a brief overview of the related fields. Chapter

2 discusses existing game tree searching techniques in both sequential and parallel

domain, focusing mainly on minimax based approaches. In Chapter 3 the concept of

Grid is introduced and the functionalities of Globus Toolkit 3, the de-facto standard

for building grids, are detailed. The chapter then continues to build the groundwork

for our proposed algorithm by illustrating the ChessGrid's architecture and how the

functionalities of Grid are exploited in the algorithm.

The algorithm for a/3Service is then presented in detail in Chapter 4. Chapter

5 shows the experimental results that we received by deploying the service in the

ChessGrid testbed of six machines. A brief explanation of the terminology used to

summarize the performance of a parallel program is also presented here. Finally

Chapter 6 draws the conclusion and addresses a few possible future course of work.

4

Chapter 2

Game Tree Searching

2.1 Introduction

Games hold an inexplicable fascination for many people and the notion that com

puters might play and compete with men existed as long as computers. For artificial

intelligence researchers, the abstract nature of games make them an appealing sub

ject for studying, which is evident from the fact that it was one of the first tasks

undertaken in this field.

The mathematical theory of games was invented by John von Neumann and

Oskar Morgenstern [vNM44] as early as 1944. Game tree searching has also come

a long way since the introduction of the Minimax algorithm followed by the a(3

pruning. However, the basic idea established by the minimax, and subsequently a/3

pruning, has been the cornerstone for most sequential as well as parallel algorithms.

This chapter briefly introduces the preliminary ideas in this field. Section 2.2

touches on some basic concepts of game theory. Section 2.3 introduces the concepts

of Minimax, Negmax (a variant of Minimax) and a/3 pruning. Section 2.4 briefly

introduces the existing parallel tree searching techniques, the main emphasis being

on the minimax-based algorithms.

5

2.2 Basic Elements of Game Theory

A game consists of a set of rules governing a competitive situation in which from

two to n individuals or groups of individuals choose strategies designed to maximize

their own winnings or to minimize their opponent's winnings; the rules specify the

possible actions for each player, the amount of information received by each as the

play progresses, and the amounts won or lost in various situations. [vNM44]

The game that we are particularly interested in, i.e. chess, is known as two-

player zero-sum game with perfect information. A zero-sum game indicates that if

we add up the wins and losses in a game, treating losses as negatives and wins as

positives, we find that the sum is zero for each set of strategies chosen. In less formal

terms, a zero-sum game is a game in which one player can only be made better off by

making the other player worse off in an equivalent amount. Tic-tac-toe is a simple

example of such a game: any move that brings one player closer to winning brings

the other player closer to losing, and vice-versa.

Another crucial aspect involves the information that the players have when

they are playing. A game with perfect information requires that at every point

where each player's strategy tells her to take an action, she knows everything that

has happened in the game up to that point. This is the case for games like chess,

othello, checkers, et cetera. On the other hand bridge and poker are examples of

games of imperfect information, since some cards are hidden from the player and

she must formulate her strategy in ignorance of this information.

The activity of game playing, in order to be a game, necessarily requires

an opponent. In game theory, a two-player game can be formally defined by the

following components [RN03]:

• The initial state, which includes the starting board position and the player to

move first.

• The position set, which is the set of valid board states.

6

• A successor function, which defines the rules for moving from one state to

another and given a board state returns a list of (move, state) pairs, each

indicating a legal move to a resulting state.

• A terminal test, which identifies the end-game scenario, i.e. a state (terminal

state) from where successor function returns a null set.

• A utility function, which gives a numerical value to the terminal state signifying

the outcome of the game.

The initial state and the legal moves for each player define the game tree

for the game. The root of the tree represents the current state(the initial state at

the beginning) of the game. The nodes of the game tree will correspond to different

positions and the edges will correspond to the moves from one position to a successor

position. Each node can have any number of children, determined by the successor

function, and this continues until we reach a leaf, which represents a terminal state.

We assign a utility value to each terminal state based on the utility function(also

known as objective function or payoff function).

In Figure 2.1 an example of a game tree for a simple game of tic-tac-toe

is given near the end of the game. The two players are X and O and they take

alternating turns at different levels of the tree. To each leaf in the game tree the

utility function assigns a payoff value. We assigned a very simple payoff value- + 1 ,
0 and -1 for a win, draw or loss with respect to the player X. The circled numbers

near the internal nodes will be explained in the next section.

2.3 Sequential Game Tree Searching

2.3.1 Minimax and Negmax

The two players are named Max and Min based on their playing characteristics.

Historically Max moves from the initial position and from there the two players

7

Figure 2.1: A simple game tree for Tic-Tac-Toe near the end of the game.

take alternating turns at different levels of the game. So nodes at even depth in

the tree are called Max-nodes and nodes at odd depth are called Min-nodes. The

common term for this is ply. The root node is said to be at ply 0, the immediate

successors of the root node are said to be at ply 1, and so on.

At each Max-node, Max would like to play the move that maximizes the

payoff, thereby choosing the maximum score among her children. On the other

hand at each Min-node, Min will try to minimize the payoff, since that will maximize

Min's payoff, and so she will choose the minimum of her children. In this way all the

tree nodes can be assigned a payoff value or minimax value(the circled numbers near

the internal nodes in Figure 2.1) starting from the leaves and moving bottom-up

towards the root.

If p is a position from which there are n legal moves pi,P2, • • • ,Pn and F(p) is

the minimax value attached to the node p, the search problem can be characterized

as to choose the greatest possible value of F(p). Based on our previous discussion

8

we can write this as,

f(p) if n = 0,

F(p)=< max(F(pi),F(p2),...,F(Pn)) if p is a Max-node, (2.1)

min(F(pi), F(p2),..., F[pn)) if p is a Min-node

where f(p) is the utility function.

It is clear from the above description that the minimax algorithm generates

the entire game search space. However, when a computer is playing a complex

game, it is impractical to search all the way down to the terminal states as the

moves must be made in a reasonable amount of time. Shannon [Sha50] proposed

that the search algorithm should be modified so that sufficiently deep positions are

treated as terminal nodes. So the programs should cutoff the search at an earlier

depth, often determined by available resources of time and memory. This strategy

is called n-ply look ahead, where n is the number of levels explored, and the leaves of

the generated sub-tree are called cutoff nodes. As the cutoff nodes are not terminal

states, the utility function cannot possibly assign them a payoff value. Instead a

heuristic evaluation function is applied to each leaf node, which gives an estimation

of the position's utility. Thus the terminal test is replaced by a cutoff test and the

utility function is replaced by the evaluation function.

An evaluation function estimates the expected utility of the game from a

given position. Since we are not necessarily searching upto the terminal states, the

performance of a game-playing program is dependent on the quality of the evalu

ation function. The value returned by the evaluation function should be strongly

correlated with the actual chances of winning. The evaluation function should also

be able to order the terminal states in the same way as a true utility function; other

wise, the program may select suboptimal move even if it computes the total search

space.

Most evaluation functions work by calculating various features of the state,

such as piece advantage, piece location, piece mobility, control of the center board,

9

X 1 \'

- r < X has 6 possiblie winning lines

0 has 5 possible winning lines

E(p)=6-5=1

X has 4 possible winning lines
~ O has 6 possible winning lines

E(p)=4-6=-2

Evaluation function, E(p)=X(p)-0(p)
where, X(p) is the total number of X's possible winning lines

O(p) is the total number of O's possible winning lines
E(p) is the evaluated value for state p

Figure 2.2: Computation of the evaluation function. [Nil80]

etc. They compute separate numerical contributions of each feature and then eval

uate board states with a weighted linear function.
n

Eval(p) = WiMp) + W2f2(p) + ••• + Wnfn{p) = £ Wifi(P) (2-2)
i=l

where each fi(p) is a feature of the position p and Wi is specially tuned weights

that tries to model the importance of that particular feature on the overall board

evaluation. In a very simple evaluation function for chess, fi can be the number

of each kind of piece on the board and the Wi can be the values of the pieces(l for

pawn, 3 for bishop, etc.).

We conclude this discussion of evaluation function with another example of a

game tree for tic-tac-toe, adapted from [Nil80], considering X as Max and O as Min.

Here an evaluation function is used, which takes a state that is to be measured,

counts all lines Max can make to win, and then subtracts from it the total number

of winning lines for Min. This is illustrated in Figure 2.2. If a state is a forced win

for Max, it is evaluated as +oo; a forced win for Min on the other hand, as —oo.

The generated game tree is shown in Figure 2.3. To save space, cutoff is made at

merely two-ply depth.

A little intuition shows that our minimax algorithm would require two different

10

;ure 2.3: Two-ply minimax applied to X's move near the end of the game.[Nil80]

11

functions, max() and min(), based on which player is making her move. However,

with a little modification, we can suffice with only one. If p is a cutoff node with

Max to move, evaluation function f(p) represents its value. But if Min makes her

move from p, its value is assumed to be -/(p). With this formulation we can write

our negmax equation as,

2.3.2 a/3 Pruning

Both minimax and negmax pursue all the branches in space, including those that

could be ignored or pruned by a more intelligent algorithm. It is possible to improve

this brute-force approach by ignoring the moves which are incapable.of being better

than the moves that are already known. For example in negmax, if F(pi) = —a,

then F(p) > a. Now if P2 has a legal move P21 such that F(p2i) < a, then obviously

F(p2) > —a.. In that case we can prune the other moves from P2 as we no longer

need to know the exact value of F(p2)- In any case, —F(p2) < o is always true and

so it cannot improve the value of F(p) further.

This line of reasoning brought in a method for game tree pruning which

first appeared in late 1950s[NSS58] and paved the way for the a/3 pruning, the first

account of which is due to Brudno[Bru63]. However, there are numerous claims

about the first development of this algorithm; an excellent summary of which can

be found in [KM75].

The basic idea of a/3 pruning is quite simple: there are some positions that

the players will never reach as one of them will turn off from the path by choosing

a move better for herself. To keep track of this, the aj3 search proceeds in a depth-

first manner, with two bounds used at each node of the game tree, namely a and

(3. These two values, often referred to as search window and usually written as

(a,/3), are essentially the floor and ceiling, respectively, of the range of values the

f(p)

max(-F(pi),-F(p2)

p is a cutoff node

..., —F(pn)) p is an internal node
(2.3)

12

search node might have. The a value, associated with Max nodes, represents the

best choice (highest value) Max can guarantee herself by making some move at the

current node or at some node earlier on the path to this node, given that Min will

also do her best. Thus the value of a is monotonously increasing since it can be

increased if we find a better path as we descend down the search tree. The f3 value,

on the other hand, is associated with Min nodes and it represents the best choice

(lowest value) Min can guarantee herself by making some move at the current node

or at some node earlier on the path to this node. So, the ft value is monotonously

decreasing as we evaluate more branches under the Min node.

Algorithm 1 af3 pruning pseudocode
function a/?(Node v, int a, int pTj: returns int

if isCutoffDepth(v) then
return evalFunction(v);

end if
Generate all the successors vi,i>2, • • • ,vn of v;
if n = 0 then

return evalFunction(v);
end if
7 *- a;
for i <— 1, n do

score < a(3(vi,-j3, -7) ;
7 <— Max(7, score) ;
if 7 > 0 then

return 7;
end if

end for
return 7;

end function

This situation is shown in Figure 2.4. The picture shows how the utility

value of a node is related to its reachability from the root. Since each player is

trying to minimize her opponent's chances, the best value nodes of one player are

never reached as the other player turns off the path to get to a lower valued node for

the opponent. Max is constantly trying to increase the a value by finding a better

move, while Min is trying to decrease the /? value. If a node's value is between a

13

> maximum depth is reached
t> evaluate and return

> evaluate the leaf node

> cutoff due to pruning

and 0, then it is reachable from the root.

AS
Too High

Utility Value

Min would turn off from the path

Reachable nodes

Too Low-

Max would turn off from the path

Figure 2.4: The influence of a and (3

Since at the beginning we don't have any prescience about the node values,

(—oo, oo) is used as the initial search window. As we move down the tree each node

starts with a search window passed down from its parent. At each node the a and

0 values are updated as we iterate over its children. In a Max node, a is increased

if a child value is greater than the current a value and similarly at a Min node, 0

may be decreased. If we reach a point where a > 0, then we know that one of the

players will never let the game reach this node and so we can prune the remaining

children.

Figure 2.5: Shallow and deep cutoff

14

An example is given in Figure 2.5. The window with which the search routine

first visits a node is given first beside each node and if updated in the later visit, the

new search window is shown in the next line. As the depth-first search proceeds,

the 0 value of B will be set to 6 after D is traversed. Being a Min node, B then

has a value of at most 6. The next child of B, E, will then be called with a search

window (—oo, 6). Now the first leaf below E has a value of 9. Hence, E, which is a

Max node, has a value of at least 9. From our knowledge of B we know that Min

will never choose node E as she already has a better move in D. Therefore, there is

no point in looking at the other successors of E and we can prune them right away.

Same thing happens at node C except that we are pruning Min's unreachable moves

there.

The cutoff made at E and C are called shallow cutoff to distinguish them

from another type of cutoff that can be obtained at even deeper levels and so is

named deep cutoff. If we look at Figure 2.5 again, node C is called with a window

(6, oo) and as we go deeper, at node L we come up with its first leaf having a value

of 4. As L is a Min node, it then cannot have a value more than 4. Thus we can

prune all the other successors of L as the a value set at A tells us Max has a better

move somewhere else.

2.3.3 Enhancements to ad

Numerous enhancements have been made to the basic a0 algorithm since it was

first evolved. [SP96] Among them those that are used or mentioned in the course of

this thesis are briefly reviewed in the following section.

Iterative Deepening

Iterative deepening means repeatedly calling a fixed depth-first routine and search

all the nodes that are at distance less than or equal to the fixed depth. With each

repetition, the depth is increased until a time limit is exceeded or maximum search

15

depth has been reached. The idea with respect to the a/3 algorithm is that a /c-ply

search is completed before a (k + l)-ply search. Such a sequence of searches can be

expressed as Si, S2, . . . , Sk, • • • , Spj, where Sk is a depth-first a/3-search of all move

continuations upto the depth of fc-plies.

The iterative deepening first started being used in chess programs by mid-

1970's. [SA77] By using iterative deepening, search time for Sk+i can be estimated

from the search time of Sk, although it may be far off the accurate value. On an

average Sfc+i takes about six times as long as Sk and this multiplier is generally pro

portional to the square root of the average branching factor. Now, as the branching

factor can change abruptly based on some particular moves, so does the multiplier.

A big advantage of iterative deepening is that, in a time constrained scenario, if Sk

is not yet complete it can use the best move from Sk-i- A simple depth-search in

this case can result in a disastrous move.

Aspiration Search

An a/3-search is normally called at the top level with a search window (—00,00).

Narrowing of this window can result cutoffs at earlier point of the tree, thereby

evaluating fewer bottom positions compared to the a/3-search with infinite search-

window. To narrow the search window, the value at the root of the tree is estimated

by a lower-depth a/3-search. Thus if the value at the root is approximated to be vest

then an initial search window (vest — e, vest + e) is used.

However, the improvement only happens when the returned minimax value,

vreai, is contained in the narrow window that we use, i.e. vest — e < vreai < vest + e.

If the minimax value is not in the narrower window used, i.e. vreai < vest — e or

vreal > vest + £, the whole game tree has to be researched with the search window

(-oo,vreai) or (vreai,oo) respectively.

16

Move Ordering

In a/?-search, the search efficiency depends heavily on the order in which the moves

are searched. It is essential that the best moves in a position are searched first

so that the generated search window improves the number of cutoffs made by the

algorithm. However, the dilemma lies in the fact that to know which moves are best

we have to traverse them first. Usually some heuristic is used to order the moves

from a position. One useful heuristic is to perform a shallow search, which obviously

takes negligible time, and order the moves based on it.

Transposition Table

Often the same position can occur after several differing move sequences. If during

the search, a value is assigned to one such position, storing it will become useful when

at a later stage in the search the same position occurs again. The transposition table

is a hashed repository of past search results and so can be used to detect identical

positions in different branches of the tree. If a search arrives at a position that has

been searched before and if the value obtained can be used (e.g. stored value is

not from a smaller depth search), we can avoid re-searching. If the value cannot

be used, it is still possible to use the best move that was used previously at that

position to improve the move ordering. Transposition tables can speed up the search

dramatically, particularly near the endgame.

Killer Heuristic

The killer heuristic is based on the fact that a good move in one branch of the tree is

also good for another branch at the same level of the tree. These moves are known

as killer moves and they are used to improve the move ordering. For this purpose

at each ply a list of a few killer moves are maintained that are searched before the

other moves. A bonus scoring system is stored sometimes for keeping the killer list

sorted. Besides, a successful cutoff by a non-killer move can also overwrite one of the

17

killer moves for that ply. Slate and Atkin [SA77] noted that killer heuristic become

more useful when a transposition table is being used because trying the same move

early in the search at each depth will result in more repeated positions and thus

more successful retrievals from the transposition table.

Null Window

When move ordering technique is used, it is often likely that the move tried first

would contain the best move. This observation led to using a smaller search window

for the remaining moves so as to reduce the size of the tree searched. Once the first

move from a position in the tree returns a score 7, instead of searching the other

moves with the window (7, /3), a null window (also called minimal window) (7,7+1)

is used. If a move leads to an inferior variation, it can be quickly shown if a move

leads to an inferior variation. If, however, the value returned falls within the (7, j3)

window then the sub-tree must be searched with the window (7, (3) to determine the

correct value.

2.4 Parallel Game Tree Searching

It is well known that the efficient parallelization of a/3 is a difficult problem. [FF82]

The difficulty in parallelization of a(3 stems from the fact that the algorithm is

inherently sequential. After a subtree is completely searched, the payoff value ob

tained determines the search window for the subsequent subtrees which is then used

for pruning. A naive parallel algorithm running a tree-node in a processor may end

up searching the total sub-tree under it to later find out a better path in previous

nodes. A sequential implementation would have never visited all these children due

to a cut-off given by the previously computed bound on the score. This leads to the

issues of the types of nodes and their relationship with the possible parallelism.

18

2.4.1 Analysis of the Tree Structure

The parallelism in aft is attained from searching different parts of the game tree

at the same time. However, there is an inherent sequential nature of it as pruning

depends on the complete searching of one subtree so as to be able to establish some

bounds for the next subtrees. One has to flout this sequential model to obtain

satisfactory parallelism. However, if it is totally overlooked then the algorithm may

waste too much time on unpromising nodes thereby not searching upto a satisfactory

depth.

Pruning in aft is based on the fact that we need not explore all of an op

ponent's response to our bad moves. As a matter of fact, if we can find only one

refutation then we can prune the rests assuming that the opponent will also play

optimally. This idea leads to the perfectly ordered game tree searching. Perfect move

ordering means at any position the first move searched is the best move, or at least

the refutation.

The complete analysis of a perfectly ordered game tree is due to Knuth and

Moore [KM75]. In a perfectly ordered game tree the nodes can be subdivided into

three following types as shown in Figure 2.6:

• Type 1: these nodes include all the best moves at a given position. The root

is a type 1 node and so is the first successor of a type 1 node. Together they

form the principal variation- the hypothetical line along which both player

play their respective best moves.

• Type 2: all the child nodes of a type 1 node but the first are of type 2. Type

3 nodes, on the other hand, has all type 2 children.

• Type 3: all children of type 2 nodes are of type 3.

This classification is very important for parallel game tree search. At all type

1 nodes, the first child, which is also of type 1, has to be searched sequentially to

set the (a, ft) window. The rest of the children, which are all type 2 nodes, can be

19

O Type 1
• Type 2
A Type 3
[j Pruned

Figure 2.6: A perfectly ordered game tree.

searched in parallel. At the type 2 nodes, however, parallelism is unnecessary since

the refutation would render all the other children unpromising. However, type 3

nodes can be searched fully parallely. This clear distinction breaks down for non-

optimal trees, but it is still approximately correct and recent Chess programs have

made much improvement on move ordering.

2.4.2 Parallel Search Techniques

From Baudet [Bau78] to Brockington [Bro98] a substantial amount of literature can

be found that propose several different ways to parallelize chess playing programs, a

nice taxonomy of which can be found in [Bro96]. However, the underlying strategies

used in them to extract parallelism are often similar and can be categorized into

three broad areas:

1. Parallel aspiration search [Bau78]: the initial a0 window is partitioned into

a number of contiguous disjoint windows, which are then used by different

processors to search the total game tree.

2. Parallel node calculation: Hitech [Ebe86] used a 64-chip(one chip for each

square) move generator, while Deep Thought [hH90], and subsequently Deep

Blue [CJhH02] uses a 8x8 combinational array move generator with parallel

hardware for evaluation.

3. Tree splitting [FF82]: the game tree is decomposed as its nodes are assigned

20

to different search processors.

The last method tree splitting, first introduced by Finkel and Fishburn [FF82],

perhaps, is the most widely studied and used software approach to the parallelization

and is the focus of this thesis.

2.4.3 Tree Splitting Based Algorithms

Tree Splitting

Finkel and Fishburn's tree splitting [FF82] has a static tree of processors which

handles the top part of the game tree. The root in the processor tree evaluates the

root position of the game tree. Each processor, except those at the leaves, evaluates

its assigned position by generating the successors and queuing them for parallel

assignment to the slave processors underneath it. Each leaf processor on the other

hand evaluates its assigned position by executing the sequential a(3 algorithm. The

synchronization is done at each interior processor as when it receives responses from

its slaves, it updates its window and notifies the working slaves about the changed

window. Thus for a /c-level deep processor tree the nodes in the first k levels of the

tree can be searched in parallel.

Principal Variation Splitting

At any node on the principal variation, the first branch should be searched sequen

tially before the remaining branches are searched in parallel. This observation lead

to the PV-Split [MC82] algorithm which divides the nodes along the principal vari

ation in a depth-first order. So once the left subtree in a PV-node is fully searched,

the other subtrees rooted at that node are searched in parallel using tree splitting.

When search of all subtrees under this PV-node is complete, the evaluated score is

returned to the PV-node above it, and so on. Thus only one node's subtrees are

being searched in parallel at a single time and all the searching processors must

21

synchronize at the current splitting node before the algorithm can back up the score

to the node above it.

Dynamic P V Splitting

PV-Split algorithm is particularly susceptible to synchronization overheads as all

the processors have to synchronize at each splitting nodes. Schaeffer's Dynamic

PV-Split [Sch89] addresses this issue by allowing dynamic processor trees. The idle

processors at a synchronization point can by dynamically reassigned to other busy

processors, each of which run the PV-Split algorithm.

Enhanced P V Splitting

Enhanced PV-Split (EPVS) [HSN89] by Hyatt uses a different type of dynamic allo

cation to make use of the idle processors. It keeps track to when a processor finishes

its job and becomes idle. When this happens all the other processors are immedi

ately stopped. The tree is split again two plies deeper down the first remaining node

and all the processors start working with these smaller subtrees. The transposition

table ensures that the previously computed nodes are not repeated.

Dynamic Tree Splitting

Hyatt's Dynamic Tree Splitting (DTS) [Hya97] eyed to eliminate the situation in

which a processor becomes idle with no moves left to search, while the other pro

cessors are busy searching. When a processor becomes idle it broadcasts message to

the other processor that it has finished searching. In response, the busy processors

stores their tree-state data to a shared memory location for the idle processor to

examine. The idle processor then establishes a split point and the busy processor

copies the complete tree state to a shared memory area and both of them search

in parallel. The first choice for a split point is the lowest type 3 nodes or the

lowest type 1 node that has its first successor completely searched. Failing this,

22

a unsearched type 1 node is tried and finally a type 2 node for which more than

one move have been completely evaluated is searched.DTS is designed for a shared

memory multiprocessor architecture and so all the communication cost is assumed

as zero.

Young Brothers Wait Concept

Feldmann et. al introduced the idea of Young Brothers Wait Concept (YBWC)

[FMMV89], which states that the search of the younger brothers (all but the leftmost

successor) has to wait until the eldest brother (the leftmost successor) is completely

evaluated. This idea is similar to the idea of PV if we consider the type 1 nodes;

YBWC, however, extends this idea to any node within the game tree. Feldmann's

Ph.D thesis [Fel93] includes a few variants by ignoring YBWC rules at type 3 nodes

(YBWC-1-2), by searching only 'promising' successors at the type 2 nodes (YBWC*)

and combining both of them as YBWC-1-2*. It was implemented in a network of

256 node De-Bruijn connected transputers for the chess program Zugwang.

Dynamic Multiple P V Splitting

Instead of a set of single type 1 nodes at each ply constituting the PV, Dynamic

Multiple Principal Variation Splitting (DM-PVSplit) [MGRY95] brought in the idea

of PV set. The PV set is the set of most promising nodes at each ply, which comes

from the observation that the best observation almost always comes from a small

set. The root is by default a member of the PV set. At subsequent levels, nodes are

part of the PV set if the parent is a member of the PV set, and they are generated

by the first k candidate moves in the move list of the parent. By selecting one

candidate for each depth for the set DM-PVSplit generalizes into simple PV-Split.

23

2.4.4 Asynchronous Search Algorithms

All the algorithms discussed so far have one glaring issue in the form of numerous

global synchronization points along the search path. Still asynchronous approaches

have not received popularity among the game tree searchers due to the need of

quickly backing up the best score to the root to help pruning in the other branches.

Only two existing works can be found that focuses on asynchronously searching a

distributed game tree.

UIDPABS

Newborn first attempted to asynchronously search a game tree instead of synchro

nizing at the root. In his Unsynchronized Iteratively Deepening Parallel Alpha-Beta

Search [New88], all processors start at the root node and carry out the first two iter

ations based on which moves are ordered and a narrow window is set. The generated

and ordered moves from the root position are then partitioned among the processors,

and each processor searches its selected subset of moves iterative deepeningly. The

search is unsynchronized among the processors and as such some of the processors

may evaluate upto larger depths than others. Initially each processor uses the same

window, but as the search progresses some of the processors may have changed their

windows based on the search results of their moves. The search terminates once

a predetermined time limit has been reached and each processor sends its princi

pal variation and score from the last finished iteration to the master, which then

determines the best move.

APHID

Brockington's Asynchronous Parallel Hierarchical Iterative Deepening [BSOO] in con

trast uses a hierarchical processor tree. For a d-ply search, the master is responsible

for the top ci'-ply of the tree while the remaining (d — d')-ply are searched in parallel

by the slaves. Thus the master essentially handles a truncated game-tree, all the

24

leaves of which are divided equally among the slave processors. Each slave proces

sor continually searches these nodes deeper and deeper never synchronizing with

any other sibling processors. The master processor, however, repeatedly search the

truncated game-tree to get the latest search result as they are generated by the slave

processors.

2.5 Summary

With numerous enhancements already made to the a0 pruning we almost harnessed

all the necessary leverage a single processor can provide. So it seemed natural when

parallelism was used to speed up the search technique. We have discussed the notable

synchronous and asynchronous parallel search techniques in this chapter. Both of

these approaches have their advantages and disadvantages. While the synchronous

techniques suffer from the numerous synchronization points, the asynchronous tech

niques search redundant nodes. However, the asynchronous techniques are more

suitable for a loosely coupled system, the types of which are becoming available at

larger scale with the advent of Grid technologies.

25

Chapter 3

Grid Technologies and

ChessGrid

3.1 Gr id Concept

Grid concept and technologies were initially developed to enable coordinated re

source sharing and problem solving within scientific collaborations. The nature of

resource sharing is not limited to only file exchange but rather direct access to com

puters, software, data, and other resources as is required by a range of collaborative

computing and problem solving environments. [FKT01] As Foster and Kesselman

point out- 'A computational grid is a hardware and software infrastructure that

provides dependable, consistent, pervasive, and inexpensive access to high-end com

putational capabilities'. [FK04] It will enable software applications to integrate in

struments, displays and computational and information resources that are managed

by diverse organizations in widespread locations.

One of the main ideas of the Grid is to make computational resources avail

able the same way as electricity is available from the power grid. When we plug

in an appliance to the electric power grid infrastructure all we are interested in is

getting the electric power. The generators that are actually the source of this power

26

axe remarkably invisible to us. The vision of Grid is to provide a similarly pervasive

computational resource grid in which a user can plug in and submit a job which can

use diverse computational resources from heterogenous sources. Foster provides a

checklist of the minimum properties of a Grid system [Fos02],

• A Grid integrates and coordinates resources that are owned by different com

panies or under the control of different administrative units and at the same

time addresses the issues of security, policy, payment, membership, and so

forth that arise in these settings.

• A Grid uses standard, open, general-purpose protocols and interfaces that

address such fundamental issues as authentication, authorization, resource

discovery and resource access.

• A Grid delivers nontrivial quality of service- relating, e.g., to response time,

throughput, availability, security, et cetera.

3.2 Evolution of Gr id Technologies

Grid technologies provide mechanisms for sharing and coordinating diverse geo

graphically and organizationally distributed resources so as to create virtual com

puting system that are sufficiently integrated to deliver desired quality of service.

They have come a long way since the term "Grid" was coined in the mid-1990s.

Since the advent of Globus Toolkit version 2 (GT2) it has been the de-facto stan

dard for building grids. It defined and implemented protocols and provided a set

of tools for application programming (APIs) and system development kits (SDKs).

It also included solutions to common issues like authentication, resource discovery

and resource access. [FKT01]

The year 2003 saw the emergence of the OGSA-based [FKNT02] (Open Grid

Services Architecture, Section 3.3.1) GT3.0. It extends GT2 concepts and technolo

gies to a service-oriented architecture in which an extensible set of Grid services

27

can be aggregated in various ways to meet the needs of virtual organizations. By

defining a core set of standard interfaces and behaviours it provides a framework

within which one can develop a wide range of interoperable, portable services.

In the year 2005 Globus Alliance has released GT4.0 which features a new

implementation of the Web Services Resource Framework (WSRF) and the Web

Service Notification (WSN) standards. It also provides an API for building stateful

Web services targeted to distributed heterogeneous computing environments. How

ever, the focus in this thesis will be on GT3.0 since our algorithm is designed on top

of GT3 core.

3 .3 G l o b u s & G r i d

3.3.1 Open Grid Servicew Architecture

OGSA [FKNT02] represents an evolution towards a service-oriented Grid system

architecture based on Web.services concepts and technologies. A service-oriented

architecture (SOA) is essentially a collection of loosely coupled services communicat

ing with each other. A service is a unit of work (operation) performed by a service

provider to achieve desired end results for a service consumer which communicates

with the service by a sequence of specific messages. In SOA all entities are services

and thus any operation visible to the architecture are actually result of message

exchange.

Unlike popular belief Web service is not a distributed object. [Vog03] It

can be defined as a software system designed to support interoperable machine-to-

machine interaction over a network. It has an interface described in a machine-

processable format (specifically WSDL). Other systems interact with the Web ser

vice in a manner prescribed by its description using SOAP (or REST) messages,

typically conveyed using HTTP with an XML serialization in conjunction with other

Web-related standards. [Gro04]

28

To support basic Grid behaviours, a set of WSDL interfaces and associated

semantics are provided in OGSA by the Open Grid Service Infrastructure [TCF+03]

(OGSI). In essence, OGSI refines and extends the idea of Web service to define mech

anisms for discovering, creating, naming, managing lifetime, monitoring, grouping,

and exchanging information among entities called Grid services. Thus a Grid ser

vice description consists of the OGSI-extended WSDL that defines its interfaces and

associated semantics. A Grid service instance is an addressable, potentially stateful,

and potentially transient instantiation of this description.

3.3.2 Grid Service Components

Naming

Each grid service instance is named, globally and for all time, by one or more Grid

Service Handles (GSH). However, a GSH is merely a name in the form of URI

and to allow a client to effectively communicate with the service instance, GSH

must be resolved to a Grid Service Reference (GSR). While a GSH is valid for the

entire lifetime of the grid service instance, GSR is not a permanent pointer to it

and may become invalid for various reasons. GT3 provides a mechanism called

HandleResolver to support client resolution of a GSH into a GSR.

Service Data

Service Data is one of the main improvements grid services introduce with respect to

plain web services. Service Data allows us to easily include a structured collection

of data to any service, which can then be accessed directly through its interface.

It is a mechanism to expose a service instance's state-specific data to the service

requestors. These requestors are able to query, update, and change these Service

Data Elements (SDE). SDE can also be associated with callback notification to get

notified whenever its value changes. Every Grid service instance also contain a few

standard service data by default as part of the OGSI specification.

29

Notification

Notification is a core feature to grid service which is closely related to service

data. It is a mechanism that allows a Notification Source to deliver a message

to a notification subscriber (also known as a Notification Sink). A Notification

Source is a grid service instance that sends notifications, whereas a Notification

Sink is a grid service instance or a client that receives it. Notifications use a ser

vice data concept behind the scenes. When a service instance wants to receive a

notification associated to a particular SDE, the service sends a subscription request

to the Notification Source. This subscription request causes the creation of a grid

service instance called a subscription, which enables the Notification Source to notify

the requestor of subsequent changes to the target instances service data.

Life Cycle

The OGSI specification defines the life cycle of any Grid service instance to be

"demarcated by the creation and destruction of that service instance". The actual

mechanism by which the service instance is created or destroyed depends on the

specific hosting environment, however, a collection of related interfaces (portTypes)

are defined in the specification so that this can be achieved in a similar way.

Grid services solve the stateless problem of web services by using a fac

tory/instance approach. A factory is a mechanism that can be used by a client to

create another Grid service instance. A client can invoke a create operation on a fac

tory thereby receiving a locator to the newly created service, whereas destroying the

service may be done by invoking a method on the service instance itself. A service

instance may also be destroyed via a soft-state approach, where the client registers

interest in a service for a specific period of time and when the period expires the

service is terminated if no reaffirmation of interest is made from any client.

30

Resource

Management

(GRAM, MMJFS)

Information

Services

(MDS, IS)

Data

Management

(GridFTP, RFT)

Security (GSI)

Figure 3.1: Key areas of Grid computing

3.3.3 Globus Toolkit 3.0

Globus Toolkit is an open source software product that has been developed by

Globus Alliance to provide middleware services and libraries for the construction of

Grid applications. GT3 provides a complete implementation of OGSI in the form

of OGSI-compliant services for service discovery, job submission and monitoring,

reliable file transfer, and so forth.

The composition of the Globus Toolkit can be pictured as three pillars (Fig

ure 3.1), each representing a primary component of the toolkit based on a common

foundation of security. At least one component from each pillar should be included

in most Grid implementations. The core architecture [SG03] of GT3 implemen

tation is given in Figure 3.2, where the core components are represented in gray

background. Together these components provide the essential building blocks for

Grid services.

Core Components

The core components of GT3, as shown in Figure 3.2, contains the basic infras

tructure needed for building grid services. It is comprised of the following major

31

Grid Service Container

Usei-Defiued Services

Base Services

Svstem-Level Services

OGSI'Spec Implementation Security Infrastructure

Web Seivice Engine

Hosting Environment

Figure 3.2: GT3 core architecture

subcomponents:

OGSI Spec Implementation: The OGSI Spec Implementation is a set of primi

tives that provides implementations for all OGSI specified interfaces, as well as

APIs and tools for creation, discovery and management of the OGSI compliant

services.

Grid Security Infrastructure: The Globus Toolkit uses the Grid Security Infras

tructure (GSI) for enabling secure authentication and communication over an

open network. It provides SOAP as well as transport level message protection,

end-to-end mutual authentication, and single sign-on service authorization.

System level services: GT3 Core also contains some infrastructure level run-time

services (Admin, Logging and Management services) that are generic enough

to be used by all other Grid services. These so called System-Level Services

are built on top of the OGSI Reference Implementation as well as the Grid

Security Infrastructure.

Grid Service Container: All these services and primitives interact with an ab-

32

stract OGSI run-time environment called the Grid Service Container. The

container shields the application from environment specific run-time settings

and controls the lifecycle of services, and the dispatching of remote requests

to service instances.

The first two building blocks OGSI Spec Implementation and GSI do not

provide any run time services but serve purely as a base for other services.

G T 3 Base Services

The base services implement the three pillars mentioned in Figure 3.1 built on top

of the GT3 core.

Job Management Services: Grid Resource Allocation and Management (GRAM)

defines a layered architecture in which high-level global resource management

services are layered on top of local resource allocation services. It simplifies

the use of remote systems by providing a set of interfaces for requesting, using

and monitoring remote system resources for the execution of a 'job'. With the

advent of GT3, GRAM is divided into two big containers: namely, the Master

Hosting environment (MHE) and the User Hosting environment (UHE). MHE

contains the Master Managed Job Factory Service (MMJFS), which is respon

sible for exposing the virtual GRAM service to the outside world. It follows the

interfaces defined in OGSI by using WSDL, which is based on XML. Job man

agement services provide a client-side command called managed-job-globusrun

that invokes the MMJFS to submit a job.

Index Services: The Globus Metacomputing Directory Service (MDS) provides

the necessary tools to build an information infrastructure for computational

grids. Index services are used in monitoring and discovering services and

resources in a distributed system or Grid. Each Grid service instance has a

particular set of service data associated with it. The essence of the Index

33

Service is to provide an interface for operations generating, aggregating and

querying any service data element from any grid service.

Data Management: Reliable File Transfer (RFT), along with Grid File Transfer

Protocol (GridFTP) and Replica Relocation Service (RLS), is part of the Data

Management implementation. It provides the interface for reliable file trans

fers on Grid servers. GridFTP is an FTP-based high-performance, secure, reli

able data transfer protocol optimized for high-bandwidth wide-area networks.

RFT, also known as multiRFT, on the other hand is an OGSI-compliant ser

vice acting as a proxy for the user to drive third party file transfers. While

the RLS maintains and provides access to mapping information from logical

names for data items to target names.

Other components

As Figure 3.2 suggests, GT3 core itself is dependent on a couple of components. The

container encapsulates the interfaces defined by a standard Web Service Engine,

which is responsible for implementing XML Messaging. GT3.2 currently uses the

Apache Axis project for this component. The Web Service Engine and Grid Service

Container are hosted in a Hosting Environment, which implements traditional Web

Server functionality such as the transport protocol (e.g. HTTP). GT3.2 ships with

lightweight embedded and standalone hosting environments, but it also works with

a standard Java Servlet Engine, e.g. Tomcat, and EJB application servers, e.g.

JBOSS or Websphere.

3.4 C h e s s G r i d

In ChessGrid the grid container has a user-level service, a/?Service, deployed in

it which can be used by a client to play chess. The algorithm and its internal

mechanism will be discussed in Chapter 4, while the service's position with respect

34

Chess program

GSI
V Na]

1_H
aming / Service Data /

Life Cycle Management

Grid Service Container

GSI I Naming / Service Data /
Life Cycle Management

Grid Service Container

Figure 3.3: ChessGrid architecture and service creation sequence

to the overall grid architecture and the functionalities it uses are described in this

section.

3.4.1 Architecture

As the name implies, a/?Service utilizes a service oriented architecture sitting on

top of the Globus grid container. It is a transient stateful service and is created

by a factory, which is also a user-level service, a/3FactoryService. Both of them are

built upon the GT3 base services as shown in Figure 3.3. Communication with the

services is made through standard Simple Object Access Protocol (SOAP) and is

based on well-defined interfaces that are described using the Web Service Description

Language.

a/3FactoryService: It is a factory service that can create new a/3Services, to

which a client can send a chess board position for searching the tree un

derneath it. Itself a persistent service, it implements the OGSI portTypes

NotificationFactory and GridService.

35

I initParam

a/3 Factory Service
CreateServicef.

©
initParam

a/3Service

Figure 3.4: Service creation using the factory

a/3Service: It is a transient stateful service and is created by the a/3FactoryService.

It provides its functionalities via implementation of an a/3PortType which is

derived from the OGSI portTypes NotificationSource, NotificationSink and

GridService. It is in this service where the game tree searching algorithm is

implemented.

3.4.2 Service Creation & Lifetime

A client can request an a/3FactoryService to create an a/3Service via a call to Fac

tory: :CreateService operation. The factory creates a new a/3Service instance and

returns the Grid Service Handle (GSH) of the newly created service to the client.

Now the client can interact with the service using this handle. The process is illus

trated in Figure 3.4.

We have used the term 'client' to generalize in this case. It can be the main

chess program as well as another service. At the beginning the main chess program

requests the a/?Factoryservice to create the root a/3service which handles the initial

board state. The created service in turn requests the local factory or a factory at a

36

different site to create child services under it. This request, in the same way, creates

new services at the requested location to build a tree of services necessary for the

algorithm. The sequence of operation is shown in Figure 3.3.

As an a/3Service is a transient service, it will no longer be available when the

time to live expires. It can also be explicitly terminated from a client by a call to

GridS ervicer.destroy().

3.4.3 Information Sharing

The created services form a parent-child hierarchy. Each set of these parent-child ser

vices shares information among them which can be achieved by using three different

ways.

Service Data

Each service, as is shown in Figure 3.4, has a number of service data element asso

ciated with it. The clients can access the information about their state by a call to

GridService::FindServiceData operation.

Notification

Notifications are closely related with service data. A client can subscribe to a

particular service data element (SDE) in a service, so that it can be notified about

any change in the state of that particular SDE. Figure 3.4 shows the sequence of

operation that a client follows to subscribe to the LocalData SDE as explained

below:

1. addListenerQ: This call subscribes the calling client to a particular SDE

(which is specified in the call)

2. notify Change (): Whenever a change happens to that SDE, the service will ask

the SDE to notify its subscribers.

37

G r i d C o n t a i n e r ®

a / 3 S e r v i c e

L o c a l D a t a
C l i e n t

S u b s c r i b e r s

Figure 3.5: Notification mechanism

3. deliverNotification(): The SDE notifies the subscribers that a change had

happened.

Remote Operation Call

After creating a service, the client receives the GSH of the created service. This

can be used to get the portType of the service which then can be used to call the

remote operations that the service provides.

3 . 5 Summary

This chapter was intended to be a brief introduction to Globus Grid. While at it,

we have also illustrated how our algorithm exploits grid functionality to build the

necessary service hierarchy used by our tree searching algorithm. The various mech

anism for data sharing and the implemented portTypes are critical to our algorithm

as most of the underlying distributed behaviour is achieved through them.

38

Chapter 4

a/?Service Algorithm

4 .1 I n t r o d u c t i o n

All synchronous parallel search algorithms have one big issue in common. They all

suffer from the numerous synchronization points along the search path. Most of the

enhancements made to them are in effect targeted towards minimizing this particular

problem. In these enhancements a complex master-slave relationship is often evolved

to incorporate the load balancing which is only suitable for tightly coupled systems.

Often they use a shared transposition table for improved performance which is also

not applicable efficiently in a loosely coupled environment.

Synchronization points are irrelevant for asynchronous algorithm and as such

they are free from this problem. UIDPABS, which is also the first asynchronous at

tempt to search the tree in parallel, achieves reasonable performance when the move

ordering is poor. But when the move ordering is good it searches a large number

of redundant nodes. In both UIDPABS and APHID, the processors carry out their

allocated search not only asynchronously but also independently without communi

cating with other processors during the search. However, the main argument against

the synchronous algorithms was not the communication but the processors sitting

idle for the others to finish at the synchronization points. Another important issue

is scalability. UIDPABS cannot distribute the tree among more than b (branching

39

factor) processors. APHID can achieve that by increasing d! (master's searching

depth), but in that case master takes more time to complete its search and also

all the slaves will be sending their messages to the master creating a communica

tion bottleneck. APHID also allows the implementation of a hierarchical structure

within the processes but it is static and determined by the user before the program

is started.

In this chapter we introduce a service oriented algorithm for game tree search

ing, namely a/3Service. Its asynchronous nature prevents it from idle waits at the

synchronization points along the search process. It uses a service oriented architec

ture which allows it to be used in loosely coupled as well as tightly coupled systems.

It does not use a shared transposition table and it uses a simple master-slave rela

tionship between a parent and its child nodes, each handled by a separate service.

Also in a/?Service the children, after finishing each iteration, look up to the parent

service for any update to the search window. The asynchronism stems from the fact

that the child services are not waiting at any point of their search for this update. If

no update is available from the parent they start the next iteration right away with

the current window. It is also scalable as in case of larger resources it can simply

parallelize upto greater depth thereby increasing the total search depth.

4.2 Internal Mechanism of Parallel Chess Algor i thm

4.2.1 Distribution of the Game Tree

The algorithm employs a tree of services among which the complete game tree is

distributed and each service searches the part of the tree allotted to it. The tree

distribution technique is explained in Figure 4.1 for a simple tree with branching

factor two. Let T be our sample game tree. At the beginning the service So will

be called with the root node and the tree T(SQ) will be formed. SQ will split the

tree at the root and delegate node 1 to another service Si while itself processing

40

T(S0) (0

Figure 4.1: A game tree distributed among three services

node 2. The new service Si will build the tree T(Si) and it would again create

another service 52 to process node 3. Each of the created services will carry out

an iterative deepening search for the tree it contains. The spawning services (So

and S\) will treat the nodes at which new children are spawned (spawning nodes

1 and 3) as pseudo-leaf, characteristics of which we will discuss in Section 4.2.2.

The nodes 0 and 1 are called splitting nodes as the tree under these nodes are split

among different services.

4.2.2 Tree Searching Algorithm

Each parallel search is carried out by a separate a/3Service performing an asyn

chronous game tree search by iterative deepening. An a/3Service starts with a board

state and a search window, which is (—oo,co) at the very beginning. Each service

first performs a smaller depth search to determine the ordering of the moves at the

41

root. The returned score is also used to improve the passed window, if possible, by

placing a narrow window on it. The depth upto which this search is performed is

configurable. However, it is imperative that this initial search takes a very small

amount of time and so a two-ply search is made by default.

If the root node for the service is not a splitting node then the service carries

out a simple iterative deepening search from the root and after each iteration backs

up the returned value to the pseudo-leaf in its parent from where it was spawned.

However, if the service starts on a splitting node then it distributes each possible

moves from the root to a separate service. It keeps the last (worst) move for itself

while the rest of the moves from the root are delegated to a newly spawned child

service. After creating the children, the spawning nodes are treated as pseudo-leaves

in the parent service. In subsequent iterations these nodes are not expanded, instead

evaluation function is called which simply returns the value backed up there by the

child service searching that node.

In a/?Service splitting is done at the type 1 (Section 2.4.1) nodes only. Thus

a tree of services is formed, the depth of which is controlled by the parallel search

depth (parDepth). So all the type 1 nodes upto parDepth level distributes their

moves to the child services (Figure 4.2).

The spawned services maintain a child-parent relationship with the spawning

service and are connected by notification subscription. Each child service is also

responsible for searching the game tree rooted at the node allocated to it. After

finishing each iteration it sends a notification to the parent service about the updated

score. Thus a good score found after one iteration in any child is backed up to its

parent. At the same time the child service also looks up the parent's (ot,0) window

to see if any changes has occurred to it due to finding a better path somewhere else

in the tree. It compares its current window with the parent's window and starts the

next iteration.

The services are unsynchronized in the sense that when a parent service

42

D e p t h 2

Figure 4.2: Master-slave hierarchy in a/3Service for different parallel Depth

finishes an iteration, it does not wait for its child services to finish before beginning

the next. Instead it always treats whatever value that is backed up at the spawning

node as its current payoff value. Similarly the child services do not wait for their

siblings or try to share their jobs. They just back up the payoff value returned

by their deepest completed iteration to corresponding spawning node and start the

next iteration. So at the same time the children and parent may or may not be at

the same level of iterative deepening.

In Figure 4.3 we illustrate the difference in work allocation between a/?Service

and other asynchronous search techniques. The tree splitting locations are marked

as x in the figure. For simplicity a perfect ordering is assumed in the figure for

a/3Service which parallelizes upto level 3, which is configurable using the parameter

par Depth.

4.2.3 Service Description

The complete GWSDL for a/3Service can be found in Appendix A. It provides the

following service data, defined as part of the a/3portType:

43

d! 3 2 1

A P H I D P a r C h e s s

Figure 4.3: Work allocation comparison

ControlData: It includes the parameters needed to customize the search performed

by the service. Notable among these are:

• parDepth - Depth upto which parallelism is employed.

• wndDepth - Depth upto which search is done at the first step to determine

the initial window.

• a/3 window- Current window at the root of the tree.

LocalData: It holds the search results from the last finished iteration which can

be categorized into:

• Identification - Child's ID from the parent and node's ID from the root

in Dewey decimal format.

• Search status - Current iterative deepening depth, generated tree depth,

etc.

• Search result - Current principal variation, payoff value, etc.

PerfData: It includes the data required for analyzing the performance: e.g. Node

counts, search time, tree depth, etc.

The service constructor takes a parameter (initParam) which initializes Con

trolData and the current board state. It also defines the following remote operations

which can be accessed by the portType.

• setNodeType(type) - Sets the type of the root node.

• getAlpha(depth) & getB eta (depth) - Returns the window at the specified depth

from the root.

• addListener(servicedata, handle) - Add the service with the passed handle as

a subscriber to the specified service data.

• killChilds() - Kill all the children under the service.

• deliverNotification(extensibility) - Called when any change occurs to the ser

vice data it is subscribing to.

4.2.4 Flow of Information

Our algorithm distributes the total game tree over a number of unsynchronized iter

ative deepening services. However, as the services are running on top of a powerful

Grid container, some Grid functionalities are exploited to back-up the score, yet not

waiting for the synchronization among these services. The parent-child set at each

depth shares some information among them.

Payoff value: When a child service finishes one iteration, the payoff value calcu

lated is sent to the parent to back it up.

Search window: After each iteration the child service looks up its parent's search

window and changes its own window accordingly.

Node type: As search gets deeper, a type 1 node can later turn out to be a sub-

optimal move. In that case a parent changes the node type of its children to

update the current tree structure.

The information sharing for a parent-child scenarios is shown in Figure 4.4.

Payoff value is part of LocalData and a parent subscribes to this service data of each

45

T o / f r o m g r a n d p a r e n t

l o c a l D a t a

T o / f r o m g r a n d p a r e n t

a / ? S e r v i c e (p a r e n t)

g e t A l p h a (

g e t B e t a (

- * s e t N o d e T y p e (. . .) + '

d e l i v e r N o t i f i c a t i o n (. . .) +

a ^ S e r v i c e (c h i l d)

c o n t r o l D a t a

g e t A l p h a (.

g e t B e t a (.

s e t N o d e T y p e (.

d e l i v e r N o t i f i c a t i o n (.

•) +
•) +

i V
T o / f r o m g r a n d c h i l d T o / f r o m g r a n d c h i l d

Figure 4.4: Information sharing between the services.

child. So whenever a change happens to it, the parent is notified and it changes

the value in the corresponding pseudo-leaf, (a, 0) windows of a service's root node

is stored in ControlData but child services can spawn from different depths in its

game tree. So after each iteration the child service queries its parents search window

specifying the depth from which it was spawned. Again, a node type may change

over the course of the search. In case of such a change, the parent updates its

children's node types.

4 . 3 I m p l e m e n t a t i o n D e t a i l s

In order to perform a game tree search, aside from the searching algorithm, we also

had to design a chess program. However, very few of the ideas are entirely origi

nal; many represent elementary chess knowledge and have been used in other chess

programs. Sources that have been of particular influence are Slate & Atkin [SA77]

46

and Hyatt [Hyaa, Hyab]. Some of the key concepts are discussed in the following

subsections.

4.3.1 Chess Board Representation

The first important decision in a chess program design is choosing the data structure

to represent the chessboard. Back in the early days when computer memory was

at a premium, the board was represented in the most compact way. As memories

became comparatively cheaper an extended board representation became much more

common so as to make the operations like move generation, position evaluation, and

so forth more efficient.

Two distinctly different board representation styles can be seen in current

chess programs. The most common data structure is generally referred to as the

offset board representation. It uses an 8 x 8 array of elements with each square of

the chess board mapping to one element of the array. It is, however, common to

have extra rows and columns in the array, containing values denoting the edge of

the board to speed up move generation.

A newer approach uses a set of bitmaps or bitboards to represent the chess

board. A bitboard is essentially a 64-bit number, of which each bit represents a

square on the board. Thus Al is mapped to 0-th bit (LSB), HI to 7-th, A8 to 56-th

and H8 to 63-rd bit(MSB). The construction of a bitboard for white pawns is shown

in Figure 4.5. 12 (6 for white, 6 for black) such bitboards are used to represent each

type of piece on the board. We also kept a few more special purpose bitboards to

minimize OR operations at later stages.

The main advantage of using bitboard lies in the fact that much of the move

generation and board evaluation related steps can be performed by trivial bitwise

operations. And besides, 64-bit microprocessors are already here and they would

offer an immediate performance improvements to bitmap approach as they do the

very operations on 64-bit register.

47

Hi III
A llllllj

~™ J r ~ i ' 1

_ r & A iiii
A S " _ A.A

J r i

MSB

oboooooo
00000000
00000000
00001000 = 000000010024C30016

00000000
00100100
11000011
00000000

T
LSB

A B C D E F G H

Figure 4.5: Constructing white pawn bitboard from piece positions

4.3.2 Move Generation

Slate & Atkin developed the idea of bitboards and described how to construct and

incrementally update an additional set of bitmaps that contained two types of in

formation.

• attacksFrom[64] is an array of bitmaps that contain 1 bits set for each square

attacked by the piece that is on a particular square.

• attacksTo [64] is an array of bitmaps that contain 1 bits set for any square

that is occupied by a piece which is attacking the particular square.

Once these two bitmaps are ready, possible moves for a piece can be generated by

finding all the squares that have a 1 in the attacksFrom bitmap for the square

that the piece is placed on. Capture moves can be distinguished by a simple AND

operation with all pieces bitmap for the opponent.

Constructing the attack bitmaps (attacksFrom) for non-sliding pieces (pawn,

knight and king) is trivial since they are independent of the pieces placed in the other

squares. So all the squares a given type of non-sliding piece attacks from any square

48

can be precomputed and be readily used. However, such precomputed bitmaps does

not work for the sliding pieces (bishop, rook and queen) as they only attack in the

direction of the slide but not beyond the first piece they encounter in that direction.

To solve this issue a set of directional masks are used that contain 1 bits on any

square that a sliding piece on a square attacks in the specified direction. Each

direction mask itself represents the squares that a sliding-piece on a square would

attack if there are no blocking pieces in that direction. However, AND-ed with all

pieces bitmap it can also identify the location of the first blocking square. Same

direction mask for the blocking square is then used to truncate the attacks beyond

the blocking piece. This process is repeated for four directions to get the attack

bitmap for rook and bishop, and all eight for the queen.

To compute the attacking bitmaps (attacksTo), attack bitmaps for each type

of piece is computed first which is then AND-ed with that specific type of pieces

present on the board. All these results for a square OR-ed together enumerate every

square that is attacking the particular square.

4.3.3 Move Representation .

Each move is represented by a 32-bit word. It includes the information for source

square, destination square, moving piece type and captured piece type, if any. For

promotions it includes the type of the promoted piece. There is also separate chunk

for special moves like en-passant captures and castling moves.

4.3.4 Making a move

Move generation is used to generate the possible moves from a specific node in the

tree. But to traverse the game tree from a parent to a child node, we need to

generate the successor position resulting from the selected move. Similarly to go

back up the game tree during the traversal we need to restore the previous position

by unmaking the move. Each of the two operations require updating two types of

49

information: i) positional bitboards so as to represent the new board state and ii)

helper bitboards and other informations (e.g. attack and attacking bitmaps) so that

they conform to the already changed board state.

4.3.5 Evaluation Function

The static evaluation function returns a score for the side to move from the given

position. A score is calculated for both sides and the function returns the score for

the side on the move minus the score for the side not on the move. The main dilemma

with the static evaluation function is that, if they are to be precise they must

be sufficiently complex and costly which in effect limits the extend of the search.

Another approach can be using an ordinary and cheap termination heuristics and

compensate its imprecision with extensive search. Our evaluation function follows

the later approach as the factors considered have been chosen because they are

relatively quick to calculate.

Pawn Scoring

Each pawn scores 100 points. A side is penalised for having more than one pawn

on the same file (doubled pawns), pawns which have no neighbor pawns capable of

protecting it from attacks (isolated pawns), blocked pawns and pawn rams. Passed

pawns are awarded a bonus that relates to the pawn's rank number. Further bonus

is given if there are no enemy pieces in front it. Connected passed pawns are also

awarded based on their ranks.

Rook Scoring

Each rook scores 500 points. Rooks are awarded a bonus for king tropism that is

based on the minimum of the rank and file distances from the enemy king. If a rook

is on an open file or in a semi complete file or is behind a passed pawn it receives

a bonus. Bonus is also awarded for two friendly rooks or a rook and queen sharing

50

the same file.

Bishop &: Knight Scoring

Each of them scores 300 points and are awarded bonuses for closeness to the centre of

the board and also for closeness to the enemy king. They are also penalized/awarded

for blocking self/opponent's center pawns. Bonus points are given for outposts,

which is a knight that can't be driven off by an enemy pawn and which is supported

by a friendly pawn. A bonus is given for the presence of two bishops and bishop

mobility, which is the number of possible moves by the bishop. Also penalize pawns

on the same color as the bishop, if one side has only one bishop(bad bishop).

Queen Scoring

Each queen scores 900 points. Queens are awarded points for closeness to the enemy

king. A special bonus is awarded for queen in 7th rank with the opponent king stuck

at 8th rank. Further bonus is awarded if the 7th rank is also supported by a rook.

Piece Development

At early stages bonus is given for castling or penalized for loosing rights to do so.

Unmoved center pawns and bishop and knights staying at rank 1 are penalized for

piece development. An early queen movement is penalized if the other pieces are

not already developed.

King Safety

If the number of enemy pieces and pawns in the friendly king's board quadrant is

greater than the number of friendly pieces and pawns in the same quadrant, the side

is penalized. When considering enemy presence in the quadrant a queen is counted

as three pieces.

51

The evaluation function does not detect checkmate. Evaluation of won,

drawn of lost positions is left to a function that is called when a position is found in

the search from which there are no available moves. A sufficiently big value(99,999)

is set as payoff for a won position with the depth at which such a position is dis

covered being subtracted from this score. This encourages the program to take the

shortest sequence of moves to win a game. Similarly, the depth at which lost posi

tions are discovered is added to the value -99,999 to encourage to program to delay

the loss for as long as possible.

Checks are also left for the subsequent move by the opponent to take hold

of the king. Piece value of king is set to 32,000 so that this move is always deemed

unpromising.

4 . 4 S u m m a r y

In this chapter we have described our searching algorithm a/?Service. Although

it is asynchronous, information from one service can still reach other services via

notification and other mechanisms. It does not employ a shared transposition table

and the performance evaluation presented in the next chapter is done without using

any transposition table.

52

Chapter 5

Performance Evaluation

5.1 I n t r o d u c t i o n

The performance of a sequential algorithm is usually evaluated in terms of its exe

cution time. When evaluating the performance of a parallel algorithm we are often

interested in measuring the benefit achieved by the parallelization of the problem,

also in terms of the execution time. Some common metrics that are used to measure

the performance of a parallel system are introduced in Section 5.2. The method

ology used for evaluating the performance of a/?Service is outlined in Section 5.3.

Finally in Section 5.4 test results are listed and analyzed.

5.2 P a r a l l e l A l g o r i t h m T e r m i n o l o g y

5.2.1 Defining Speedup and Efficiency

The basic idea of parallel computing is to use several processors to perform a single

task. The key issue of measuring the quality of such algorithms is the speedup

achieved, especially its dependence on the number of processors used. Speedup is

defined in terms of the time taken by the best sequential algorithm. Let P be a

computational problem with an input size n. Let the best sequential implementation

of the problem solves it in time T(Pn). Now if a parallel algorithm solves the problem

53

in time Tp(Pn) by running it parallely on p processors, then the speedup achieved

is given by the equation:

S P e 6 d U P = W (5 J)

Sometimes, the best sequential algorithm for a targeted problem is unknown and

a comparison is made with the parallel algorithm run on single processor. This is

defined as relative speedup and the former as absolute speedup to distinguish the

approaches.

relative speedup = ^ ^ " ^ (5.2)

However, a parallel algorithm performs many additional tasks compared to its se

quential counterpart. So a third measure of speedup is also seen where a sequential

algorithm with the same methodology as the parallel one is used as the baseline to

measure speedup. This is defined as the observed speedup.

In designing a parallel algorithm, it is more important to make it efficient

than to make it asymptotically fast as efficiency measures how well the system is

utilized.

efficiency = (5.3)

So an algorithm that obtains a speedup of 0(y/n\ogn) using y/n processors is better

than the algorithm that obtains a speedup of O(logn) using n 2 processors.

Efficiency can also be defined with respect to the measure adopted for the

speedup and likewise be called relative efficiency or observed efficiency. Most of

the speedups and efficiencies that will be discussed in this document are observed

unless otherwise specified.

5.2.2 Limiting Factors: Overheads

Only an ideal parallel system can deliver a speedup of p when using p number of

processors. In practice, however, the ideal behaviour is not obtained as the parallel

54

algorithm has to spend a considerable amount of time to perform additional tasks

to achieve the parallelism. All causes of nonoptimal efficiency in a parallel system

are collectively referred to as overhead due to parallel processing.

Thus, in effect, parallel algorithms take more time to acquire the same result.

The additional amount of processing that a parallel algorithm needs to perform is

expressed with total overhead which is defined as,

total overhead = T p { P n) * P ~ T { P n) (5.4)

For game tree searching, a second factor influencing the speedup can be

measured using the number of nodes generated by the parallel algorithm. If the

parallel algorithm searches Np(Pn) compared to Ni(Pn) by the sequential one then

the search overhead can be expressed as,

search overhead — ^ P |p"j (5.5)

Search overhead is very vital for the asynchronous algorithms as the parallely

running processors do not synchronize among themselves to minimize the number of

redundant nodes searched. Synchronous algorithms, on the other hand, must wait

at the synchronization points until all the concurrently running processors agree on

the next status of the search. This leads to the synchronization overhead, which is

the amount of time lost due to the idle processors.

time spent for at synchronization points , .
synchronization overhead = . . (5-6)

J- ("n)
Needless to point out that the asynchronous algorithms do not suffer from this

overhead as the processors do not sit idle waiting for the others at any point in the

search (except at the end of the search).

The parallelization overhead is the amount of time spent by the algorithm to

achieve and later maintain the parallel behaviour. This overhead is problem specific

as it includes the measures adopted to ensure the parallelism. It includes the time

spent in updating the complex data structures used to keep track of the parallel

55

job. It also includes the communication overhead which is the amount of time the

parallel algorithm spends by sending and receiving messages.

5 .3 E v a l u a t i o n M e t h o d o l o g y

5.3.1 Testing Environment

A Grid testbed is created for testing the algorithm using four machines in the Netbed

cluster and two desktop PCs. Netbed cluster comprises of a set of 24 IBM xSeries

306 servers, each of which has the following configuration,

• Intel® Pentium® 4 CPU 3.20GHz with 1024KB cache size.

• 1GB main memory and simple-swap SATA 80GB internal storage.

• 1000 Mbps Full Duple Intel®PRO/1000 NIC.

• Fedora Core 3 operating system.

Each of the desktop pc has the following configuration,

• Intel®Pentium®4 CPU 2.80GHz with 512KB cache size.

• 512 MB main memory and 40GB internal storage.

• 1000 Mbps Full Duple Intel® PRO/1000 NIC

• RedHat 9 operating system (kernel-2.4.20-8).

The four cluster machines work as servers, while the two desktop machines

work as both client and servers, Figure 5.1. Each machine has GT3 installed in it

and has a Globus Container running with a/3Service deployed in it.

56

0- r—
Client and Server

Figure 5.1: Grid Testbed Environment

5.3.2 Generating the Test Cases

Chess game trees have an average branching factor of 35 to 40. Thus they need

six services (on average) per machine in our testing environment, which severely

affects the performance of the algorithm. In order to limit the number of services

per machine to less than or equal to three (with parDepth upto 2 for six processors),

new test cases are generated with a maximum branching factor of six. But instead

of artificially creating the trees, we have taken some well known test positions and

modified them according to our requirement.

The Bratko-Kopec Test [BK82] was designed by Ivan Bratko and Danny

Kopec in 1982 to evaluate human or machine chess ability. This test has been

a standard for nearly 20 years in computer chess to reliably rate an algorithm's

playing strength. The complete test includes 24 positions numbered as 1... 24 and

each considered either tactical (T) or lever/positional (L). The positions where the

lack of chess knowledge can be compensated by calculation are considered tactical,

while lever positions are those where it cannot be compensated. A level of difficulty

from 1 to 4 has been assigned to each position as well, 5.1.

57

Difficulty Level Tactical Lever
1 1, 12 -
2 10, 14, 15, 21 2, 6, 9, 11, 13, 17, 20, 24
3 5, 16, 19 3, 4,8
4 7, 18, 22 . 23

Table 5.1: Summary of Bratko Kopec Test Positions

5 .4 E x p e r i m e n t a l R e s u l t s

While analyzing our algorithm difficulty arose from the fact that due to asyn

chronous nature of the algorithm the problem size at different stage were not similar

to its sequential implementation. The concurrently running services were also not

searching at the same ply depth at the same time. So, to meaningfully evaluate

the fixed size model that we are using, synchronization is added at the end of the

search. The parent service waits for the children to finish after completing its allo

cated partition of the tree.

As part of the simulation, ten 12-ply depth search was conducted on each of

the 24 positions of the test set for 1, 2, 4 and 6 processors. They are then averaged

to calculate the speedup and overhead of each case which are then averaged again

for the overall speedup and overhead. This method was used to make sure that each

of the test case receives equal weight and an excellent performance in one of them

does not inflate the overall performance. These results are reported in Table 5.2.

p Speedup Efficiency Total Overhead Search Overhead
1 - - - -
2 1.24 0.62 0.63 1.48
4 1.74 0.44 1.45 1.53
6 2.61 0.44 1.49 1.54

Table 5.2: Average test results for the test set

58

Average Speedup Number of processors

(a) Average Speedup (b) Average Efficiency

Figure 5.2: Performance curves - Speedup and Efficiency

5.5 D i s c u s s i o n

Figure 5.2(a) shows the observed speedup obtained from the test results. We can

see that it is nearly linear with respect to the number of processors used. Although

the overall speedup for p processors is less than p/2, it can be due to the following

reasons:

• Our algorithm does not use any transposition table.

• All thetest positions are searched upto the same 12-ply depth. However, the

test positions used generated a widely varying sized game tree and for some

smaller sized trees no speedup was obtained using the parallel search.

Efficiency curve in Figure 5.2(b) shows a gradual descent as the number of

processor is increased. This can be compared to the two overhead curves, Figure

5.3(a) & 5.3(b), which validate the decrease in the efficiency. Both the 2-processor

59

2-

S 1.4H

1.5H

i i i i i
2 3 4 5

Number of orocessors

i i i i i i i i i i i i i i
4 5 6

Number of orocessors

(a) Search Overhead (b) Total Overhead

Figure 5.3: Overhead curves

and 4-processor trials use parDepth — 1, while 6-processor cases are tried for both

parDepth = 1 and parDepth = 2. However, Significant speedup was not obtained

for greater service level parallelism which is not unusual considering it is a compute-

intensive problem. An increase in slope of the speedup curve is also noticeable in

Figure 5.2(a) when six processors are used. This further corroborates the fact that

a single service per machine generates better performance compared to multiple

services per machine. However, it is interesting to note that when the same number

of services are distributed over a lesser number of processors the search overhead is

found to be less. It can possibly result due to the fact that some of the concurrently

running services in the same processor actually had to wait due to process switching.

60

Chapter 6

C o n c l u s i o n

6.1 Summary

We have developed a service oriented asynchronous algorithm that exploits Globus

Toolkit's existing OGSA platform services to search a game tree parallely. The

algorithm exhibits a clearly linear speedup upto six processors. But due to the

small number of processors available for the experimentation it cannot be stressed

that the algorithm will scale the same way for a large number of processors. Analysis

have shown that the search size is an important factor in determining the observed

speedup. With increased number of machines available, the algorithm will be able to

partition the tree into more parts. Another positive side is that the search overhead

curve shows that the number of redundant nodes searched also grows gradually.

Thus we can be optimistic that the algorithm will scale well with larger number of

nodes. As the number of processors becomes larger the bottleneck at the master

node in APHID can become a major issue. So a hierarchical approach like a/3Service

may be considered instead of the static master-slave configuration used by APHID.

The best known speedup for sequential parallel search algorithm is shown by

Feldmann's YBWC. It generates a speedup of 142.62 on 256 processors used. How

ever, their analysis was made by averaging all the test results together to generate

the combined time, which then was used to calculate the speedup. APHID builds

61

a game independent parallel search library that can be easily inserted into legacy

sequential search algorithms. Their search result for Keyano (average branching

factor 10) shows a speedup of 5.74 with eight processors for a 15-ply deep search

in a fixed-depth shared memory environment. For 64 processors in the same envi

ronment it shows a speedup of 37.44. Both of them use a transposition table for

better performance. c*/?Service demonstrates a speedup of 2.61 with six machines

without using any transposition table. Further research is needed to correctly pre

dict whether a/3Service can match the performance of the other two algorithms for

massively distributed systems.

6.2 Future Study

Perhaps the most obvious extension to the current work is to carry out the exper

imentation for a larger number of processors. One possible direction for that is to

make use of the schedulers to achieve the service level parallelism. The Index Service

can be used to register and later discover the services in such a system.

Although a/3Service is targeted for a loosely coupled system, the testing en

vironment with a gigabit network connection did not explore the performance of the

algorithm in such a system. One fascinating extension can be to couple geographi

cally distributed Grid resources together for the algorithm. Another approach can be

to simulate WAN charactersitics like latency, packet-loss and bandwidth constraints

in the system and evaluate the algorithm under these limitations.

The underlying basic a.0 pruning in the algorithm can also be targeted for

some improvements, the most notable among them is the use of a transposition

table which can be independent or shared among the services. As shared memory

cannot be used for the system, a shared transposition table should try to minimize

the number of communication.

The role of the services over their lifetime needs to be changed in order to

allow continuous game play. The functionality of the root service can be extended

62

so that when the opponent makes a move, it can find the service among its chil

dren/grandchildren that handles the new position and transfer control to it. This,

in effect, selects a new service as the root; thereby retaining previously computed

part in the new game tree.

As there can be diverse computational resources available in the Grid, some

machine specific information can be included as service data to the factory, which

can then be queried to determine the number of services created at that site.

Globus Toolkit also incorporates security measures for enabling secure au

thentication and communication over an open network which is completely over

looked in the course of this thesis.

63

Bibliography

[Bau78] Gerard M. Baudet. The Design and Analysis of Algorithms for Asyn

chronous Multiprocessors. PhD thesis, Carnegie-Mellon University,

Pittsburgh, PA, April 1978. 20

[BK82] Ivan Bratko and Danny Kope. The Bratko-Kopec experiment: a com

parison of human and computer performance in Chess., pages 57-72.

Pergsmon Press, Oxford, 1982. 57

[Bro96] Mark G. Brockington. A taxonomy of parallel game-tree search algo

rithms. ICCA Journal, 19(3):162-174, 1996. 20

[Bro98] Mark G. Brockington. Asynchronous Parallel Game-Tree Search. PhD

thesis, Department of Computing Science, University of Alberta, Ed

monton, Canada, 1998. 20

[Bru63] A. L. Brudno. Bounds and valuations for shortening and scanning of

variations. Problemy Kibernetiki (in Russian), 10:141-150, 1963. 12

[BS00] Mark G. Brockington and Jonathan Schaeffer. Aphid: Asynchronous

parallel game-tree search. Journal of Parallel and Distributed Comput

ing, 60(2):247-273, 2000. 3, 24

[CJhH02] Murray S. Campbell, A. Joseph Hoane Jr., and Feng hsiung Hsu. Deep

blue. Artificial Intelligence, 134(l):57-83, 2002. 20

64

[Ebe86] Caxl Ebeling. All the Right Moves: A VLSI Architecture for Chess.

PhD thesis, Carnegie-Mellon University, Pittsburgh, PA, April 1986. 20

[Fel93] Rainer Feldmann. Game Tree Search on Massively Parallel Systems.

PhD thesis, University of Paderborn, Paderborn, Germany, May 1993.

23

[FF82] Raphael A. Finkel and John P. Fishburn. Parallelism in alpha-beta

search. Artificial Intelligence, 19:89-106, 1982. 18, 20, 21

[FK04] Ian Foster and Carl Kesselman, editors. The Grid: Blueprint for a New

Computing Infrastructure. Morgan Kaufmann Publishers Inc., 2 edition,

2004. 26

[FKNT02] Ian Foster, Carl Kesselman, J. Nick, and Steven Tuecke. The physiology

of the grid: An open grid services architecture for distributed systems

integration. Open Grid Service Infrastructure WG, Global Grid Forum,

June 22, 2002. 3, 27, 28

[FKT01] Ian Foster, Carl Kesselman, and Steven Tuecke. The anatomy of

the grid: Enabling scalable virtual organizations. International Jour

nal of Supercomputer Applications and High Performance Computing,

15(3):200-222, 2001. 3, 26, 27

[FMMV89] Rainer Feldmann, B. Monien, P. Mysliwietz, and O Vornberger. Dis

tributed game-tree search. ICCA Journal, 12(2):65-73, 1989. 23

[Fos02] Ian Foster. What is the grid? a three point checklist. GRIDToday, July

20, 2002. 27

[Gro04] W3C Working Group. Web services architecture. February 11, 2004.

28

65

[hH90] Feng hsiung Hsu. Large Scale Parallelization of Alpha-Beta Search:

An Algorighmic and Architectural Study. PhD thesis, Carnegie-Mellon

University, Pittsburgh, PA, February 1990. 20

[HSN89] Robert M. Hyatt, Bruce W. Suter, and Harry L. Nelson. A parallel

alpha/beta tree searching algorithm. Parallel Computing, 10:299-308,

1989. 22

[Hyaa] Robert M. Hyatt. Chess board representations. Online Technical Pa

pers. 47

[Hyab] Robert M. Hyatt. Rotated bitmaps. Online Technical Papers. 47

[Hya97] Robert M. Hyatt. The dynamic tree splitting parallel search algorithm.

ICCA Journal, 20(1):3-19, 1997. 22

[KM75] Donald E. Knuth and Ronald W. Moore. An analysis of alpha-beta

pruning. Artificial Intelligence, 6:293-326, 1975. 12, 19

[MC82] T. A. Marshland and M. Campbell. Parallel search of strongly ordered

game trees. ACM Computing Surveys, 14(4):533-551, December 1982.

21

[MGRY95] T. A. Marsland, Yaoqing Gao, A. Reinefeld, and A. Yonezawa. Multiple

principal variation splitting search. In High Performance Computing

Symposium, HPCS '95, pages 292-303, July 1995. 23

[New88] Monroe Newborn. Unsynchronized iterative deepening parallel alpha-

beta search. IEEE Transaction on Pattern Analysis and Machine In

telligence, 10(5):687-694, Sept 1988. 3, 24

[Nil80] Nils J. Nilsson. Principles of Artificial Intelligence. Morgan Kaufmann

Publishers Inc., 1980. vii, 10, 11

66

[NSS58] Alan Newell, J. C. Shaw, and H. A. Simon. Chess playing programs and

the problem of complexity. IBM Journal of Research and Development,

2(4):320-355, 1958. 12

[RN03] Stuart J. Russell and Peter Norvig. Artificial Intelligence - A Modern

Approach. Pearson Education Inc., 2nd edition, 2003. 6

[SA77] David J. Slate and Lawrence R. Atkin. CHESS 4.5- The Northwestern

University chess Program, pages 82-118. New York: Springer-Verlag,

1977. 2, 16, 18, 46

[Sch89] Jonathan Schaeffer. Distributed game-tree searching. Journal of Paral

lel and Distributed Computing, 6(1):90-114, February 1989. 22

[SG03] Thomas Sandholm and Jarek Gawor. Globus toolkit 3 core a grid .

service container framework, July 2, 2003. 31

[Sha50] Claude E. Shannon. Programming a computer for playing chess. Phy-

losophical Magazine, 41:256-275, 1950. 1, 9

[SP96] Jonathan Schaeffer and Aske Plaat. New advances in alpha-beta search

ing. In ACM Conference on Computer Science, pages 124-130, 1996.

15

[TCE01] The Columbia Encyclopedia. Columbia University Press, 6th edition,

2001. 1

[TCF+03] Steven Tuecke, K. Czajkowski, Ian Foster, et al. Open grid services

infrastructure (ogsi) version 1.0. Global Grid Forum Draft Recommen

dation, June 27, 2003. 29

[Tur53] Alan M. Turing. Digital Computers Applied to Games, pages 286-310.

Pitman, 1953. 2

67

[vNM44] John von Neumann and Oskar Morgenstern. Theory of Games and

Economic Behavior. Princeton University Press, 1944. 5, 6

[Vog03] Werner Vogels. Web services are not distributed objects. Internet Com

puting, 7(6):59-66, 2003. 28

[WIK05] Wikipedia, the free encyclopedia, 2005. accessed on January, 2005. 1

68

Appendix A

ChessService G W S D L

<?xml version="1.0" encoding="UTF-8"?>

<definitions name="ChessService"

targetNamespace="http://onindyo.sukanta.com/ChessService"

xmlns:tns="http://onindyo.sukanta.com/ChessService"

xmlns:ogsi="http://www.gridforum.org/namespaces/2003/03/0GSI"

xmlns:gwsdl="http://www.gridforum.org/namespaces/

2003/03/gridWSDLExtensions"

xmlns:sd="http://www.gridforum.org/namespaces/2003/03/serviceDat

xmlns:data="http://onindyo.sukanta.com/ChessService/ControlData

http://onindyo.sukanta.com/ChessService/LocalData

http://onindyo.sukanta.com/ChessService/InitData"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns="http://schemas.xmlsoap.org/wsdl/">

<import location="../../ogsi/ogsi.gwsdl"

namespace="http://www.gridforum.org/namespaces/2003/03/0GSI"/>

<import location="InitDataType.xsd"

namespace="http://onindyo.sukanta.com/ChessService/InitData"/>

69

http://onindyo.sukanta.com/ChessService
http://onindyo.sukanta.com/ChessService
http://www.gridforum.org/namespaces/2003/03/0GSI
http://www.gridforum.org/namespaces/
http://www.gridforum.org/namespaces/2003/03/serviceDat
http://onindyo.sukanta.com/ChessService/ControlData
http://onindyo.sukanta.com/ChessService/LocalData
http://onindyo.sukanta.com/ChessService/InitData
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/wsdl/
http://www.gridforum.org/namespaces/2003/03/0GSI%22/
http://onindyo.sukanta.com/ChessService/InitData%22/

<import location="ControlDataType.xsd"
namespace="http://onindyo.sukanta.com/ChessService/ControlData"/>

<import location="LocalDataType.xsd"
namespace="http://onindyo.sukanta.com/ChessService/LocalData"/>

<import location="PerfDataType.xsd"
namespace="http://onindyo.sukanta.com/ChessService/PerfData"/>

<types>
<xsd:schema targetNamespace="http://onindyo.sukanta.com/ChessService"

attributeFormDefault="qualified"
elementFormDefault="qualified"
xmlns="http://www.w3.org/2001/XMLSchema">

' <!—BEGIN ELEMENT DEFINITIONS - DO NOT MODIFY THIS BLOCK!!! —>
<xsd:element name="deliverNotification">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="argl" type="ogsi:ExtensibilityType"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

<xsd:element name="deliverNotificationResponse">
<xsd:complexType/>

</xsd:element>

<xsd:element name="killChilds">
<xsd:complexType/>

</xsd:element>
<xsd:element name="killChildsResponse">

70

http://onindyo.sukanta.com/ChessService/ControlData%22/
http://onindyo.sukanta.com/ChessService/LocalData%22/
http://onindyo.sukanta.com/ChessService/PerfData%22/
http://onindyo.sukanta.com/ChessService
http://www.w3.org/2001/XMLSchema

<xsd:complexType>

<xsd:sequence>

<xsd:element name="value" type="xsd:boolean"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="addListener">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="argl" type="xsd:string"/>

<xsd:element name="arg2" type="ogsi:HandleType"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="addListenerResponse">

<xsd:complexType/>

</xsd:element>

<xsd:element name="setNodeType">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="argl" type="xsd:byte"/>

<xsd:element name="arg2" type="xsd:boolean"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="setNodeTypeResponse">

<xsd:complexType/>

</xsd:element>

71

<xsd:element name="getAlpha">

<xsd: complexType>

<xsd:sequence>

<xsd:element name="argl" type="xsd:byte"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="getAlphaResponse">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="argl" type="xsd: in t" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="getBeta">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="argl" type="xsd:byte"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="getBetaResponse">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="argl" type="xsd: in t" />

</xsd:sequence>

</xsd: complexType> ..

</xsd:element>

72

<!—END ELEMENT DEFINITIONS —>

</xsd:schema></types>

<!—BEGIN MESSAGE DEFINITIONS - DO NOT MODIFY THIS BLOCK!!! —>

<message name="deliverNotificationInputMessage">

<part name="parameters" element="tns:deliverNotification"/>

</message>

<message name="deliverNotificationOutputMessage">

<part name="parameters" element="tns:deliverNotificationResponse"/>

</message>

<message name="killChildsInputMessage">

<part name="parameters" element="tns:killChilds"/>

</message>

<message name="killChildsOutputMessage">

<part name="parameters" element="tns:killChildsResponse"/>

</message>

<message name="addListenerInputMessage">

<part name="parameters" element="tns:addListener"/>

</message>

<message name="addListenerOutputMessage">

<part name="parameters" element="tns:addListenerResponse"/>

</message>

<message name="setNodeTypeInputMessage">

<part name="parameters" element="tns:setNodeType"/>

</message>

<message name="setNodeTypeOutputMessage">

<part name="parameters" element="tns:setNodeTypeResponse"/>

</message>

73

<message name="getAlphaInputMessage">

<part name="parameters" element="tns:getAlpha"/>

</message>

<message name="getAlphaOutputMessage">

<part name="parameters" element="tns:getAlphaResponse"/>

</message>

<message name="getBetaInputMessage">

<part name="parameters" element="tns:getBeta"/> .

</message>

<message name="getBetaDutputMessage">

<part name="parameters" element="tns:getBetaResponse"/>

</message>

<!—END MESSAGE DEFINITIONS —>

<gwsdl:portType name="ChessPortType"

extends="ogsi:GridService ogsi:NotificationSource

ogsi:NotificationSink">

<!—BEGIN OPERATION DEFINITIONS - DO NOT MODIFY THIS BLOCK!

<operation name="deliverNotification">

<input message="tns:deliverNotificationInputMessage"/>

<output message="tns:deliverNotificationOutputMessage"/

<fault name="Fault" message="ogsi:FaultMessage"/>

</operation>

<operation name="killChilds">

<input message="tns:killChildsInputMessage"/>

<output message="tns:killChildsOutputMessage"/>

<fault name="Fault" message="ogsi:FaultMessage"/>

74

</operation>

<operation name="addListener">

<input message="tns:addListenerInputMessage"/>

<output message="tns:addListenerOutputMessage"/>

<fault name="Fault" message="ogsi:FaultMessage"/>

</operation>

<operation name="setNodeType">

<input message="tns:setNodeTypeInputMessage"/>

<output message="tns:setNodeTypeOutputMessage"/>

<fault name="Fault" message="ogsi:FaultMessage"/>

</operation>

<operation name="getAlpha">

<input message="tns:getAlphaInputMessage"/>

<output message="tns:getAlphaOutputMessage"/>

<fault name="Fault" message="ogsi:FaultMessage"/>

</operation>

<operation name="getBeta">

<input message="tns:getBetaInputMessage"/>

<output message="tns:getBetaOutputMessage"/>

<fault name="Fault" message="ogsi:FaultMessage"/>

</operation>

<!—END OPERATION DEFINITIONS —>

<!--BEGIN SERVICEDATA DEFINITIONS - DO NOT MODIFY THIS BLOCK!

<sd:serviceData name="ControlData"

type="data:ControlDataType"

minOccurs="1"

maxOccurs="1"

75

mutability="mutable"

modifiable="true"

nillable="false">

</sd:serviceData>

<sd:serviceData name="LocalData"

type="data:LocalDataType"

minOccurs="l"

maxOccurs="l"

mutability="mutable"

modifiable="false"

nillable="false">

</sd:serviceData>

<sd:serviceData name="PerfData"

type="data:PerfDataType"

minOccurs="l"

maxOccurs="l"

mutability="mutable"

modifiable="false"

nillable="false">

</sd:serviceData>

<!—END SERVICEDATA DEFINITIONS —>

</gwsdl:portType>

</definitions>

76

