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Abstract

A theory of the performance of robot manipulation is presented. The theory deals with

general robotic manipulation, which is viewed as the physical interaction between a

generalized manipulator and a generalized object. The generalized manipulator can be

arbitrarily complex, i.e. it can consist of any number of robotic devices. Similarly, the

generalized object represents the set of all the material bodies manipulated by the robot

in the environment. The study of the performance of such systems is somewhat analogous

to the study of the performance of algorithms and complexity theory in computer science.

A digital computer produces certain desired changes in information, it transforms input

into output, and complexity theory deals with the efficiency of this process. Similarly,

a robotic device transforms the state of the objects it manipulates. The manipulation

we are concerned with here is only different in that material objects are affected and

the measure for the resources needed to perform certain tasks is not runtime or memory

usage. How performance should then be measured instead is the subject of this thesis.

The theory regards the manipulation as a mapping from the space of all manipulator

configurations to the space of all object configurations. By endowing these manifolds with

Riemannian metrics we can quantify motion in the manifolds. Performance measures,

which quantify how well the robot is executing its manipulation task, arise naturally

as geometrical objects associated with the mapping and the metric structure of the

manifolds.

Generalizations of known measures (agreeing with those previously defined for the

simplest kinds of systems) arise naturally in this formalism and we construct several new

types of measures. The new types of measures presented here are the effective inertia on
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work space, the kinematic and dynamic anisotropy measures for redundant manipulators,

non-linearity measures, and redundancy measures.

An extension of the theory broadens its domain of application to situations in which

the relation between the robot and the object it is manipulating can not be given in

explicit form, but by a set of constraint equations (possibly non-holonomic) that define

it implicitly.

The main contribution of this work is the theory of manipulation, which provides a

theoretical foundation for robot manipulation. Computational aspects of the theory are

described briefly and the theory is applied to some simple planar manipulating devices, for

which several of the measures have been constructed and optimized. These applications

are given here for illustrative purpose.
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Chapter 1

Introduction

What is the best way to swat a fly? To hammer a nail? To carry a heavy object? One

of the goals of robotics is to understand and automate the manipulation of the physical

world by computer. The agents that interact physically with material objects are the

robot manipulators. For a given task (a desired change in the state of the objects) one

can ask questions such as: “What configuration of the manipulator is optimal?”, “What

is the best manipulator for this task?”, and “What class of tasks can be performed by a

particular robot?”. The answers to these questions are critical to the design, selection,

and programming of robots.

A theory of performance is presented, which assigns a numerical value (“performance

measure”) to an elementary interaction between the manipulator and the object, within

the context of a task. The questions mentioned above can then be translated into opti

mization and feasibility problems. This theory is a step towards a complexity theory of

robots and robot tasks.

Performance measures are already widely used for design and posture optimization

for robot arms. The theory presented here has the following novel features:

• A unification of measures proposed before in one theoretical framework, based on

differential geometry.

• A “toolkit” to make your own performance measure suited for the specific manip

ulator and task at hand.

1



Chapter 1. Introduction 2

• The construction of promising new performance measures for redundancy and non

linearity.

• The measures can be used for arbitrarily complex manipulators and objects, unlike

existing measures.

As a simple illustration of these ideas, consider a robot arm with seven revolute

joints and a gripper (end-effector) attached to the end of the arm. The position and

orientation of the end-effector has six degrees of freedom, whereas the arm has seven. Such

a manipulator is called a redundant manipulator. See for example [Nak9l]. Therefore,

if the task consists of grasping an object, there are infinitely many postures to do this.

If we have a local performance measure, i.e. a number t associated with every posture

(in the context of a specific task), we can resolve this redundancy by finding the posture

with optimal 1u.

From a design perspective we can find the optimal design for a set of tasks, by selecting

the design with the largest average value of some relevant local performance measure. If

this involves a continuous infinity of tasks that the manipulator is expected to perform,

we obtain such a design measure by the integration of a local measure over some finite

region in space.
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Not feasible

Figure 1.1: Feasible and not feasible tasks

Feasible
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Finally, for a given task it is often possible to determine if the manipulator can perform

it by examining a performance measure. For example, suppose the task is to pull a nail

from a wooden structure with a robot arm. Depending on the location of the nail with

respect to the base of the arm, the arm may or may not be strong enough to perform the

task. One of the performance measures we shall investigate later can be interpreted as

“the minimal sum of the squares of the joint torques needed to apply a (generalized) force

with the end-effector”, i for short. A necessary condition on the feasibility of such a task

is that it /-tmax, where /-1max is the sum of the squares of the maximum joint torques

that the motors can provide. So .t acts as a complexity measure of the manipulation in

this example. In figure 1.1 we depict two situations. In the leftmost picture there exists

a posture that grabs the nail and has ‘ but in the rightmost picture all postures

have p’> and the task is not feasible.

A complete task will consist of a sequence of elementary tasks. A task planner could

utilize local performance measures by examining the feasibility of these subtasks in ad

vance.

In this thesis we will deal with the construction of local performance measures for

various tasks, for generic robotic devices.

Several local measures have been proposed in the past. Yoshikawa [Yos85] proposed

the scalar /det jjT, where J is the Jacobian matrix of the manipulator. This measures

how much the end-effector moves for a given infinitesimal movement of joint angles,

averaged over all directions. It is the generalization to redundant manipulators of the

determinant of the Jacobian. The related matrix (JJT)1 when sandwiched between the

work space direction vector and its transpose, measures the analogous manipulability in

a particular direction. The inverse, jjT, then measures “pushability” in a given direction

[Chi88].
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From the singular value decomposition representation [KL8O, Nak9l] some closely re

lated measures can be derived. Salisbury and Craig [SC82] proposed to use the condition

number of J, which is the ratio of the largest and smallest singular values of J. Klein and

Blaho [KB87} use the minimum singular value as a measure. The distance of the joint

angles from their central positions was used by Liegois [Lie77]. Asada [Asa83] computed

the effective inertia matrix for a non-redundant manipulator and proposed to minimize

the inhomogeneity of the moment of inertia.

Angeles and Ma [MA9O, MA93] introduced the dynamical conditioning index, which

is a measure for the anisotropy of the moment of inertia of the arm, which was used to

design isotropic manipulators. The kinematic isotropy was investigated in [ALC92].

All the measures mentioned above arise naturally in the framework presented here and

several new measures are introduced. Care has to be taken to ensure that a constructed

measure corresponds to a physical property of the device and is not just a mathemat

ical construct. This is achieved here by imposing invariance under general coordinate

transformations in configuration space, i.e. we consider measures that do not depend

on the actual coordinates (such as the joint angles for revolute joint arms for example)

used to describe the configuration of the manipulator. This criterion is sufficient, but

not necessary in general, as the coordinates used usually have a direct physical meaning.

The approach taken here is to define various metrics on the configuration space, i.e.

to define a “distance” between configurations, by a metric tensor. From the forward

kinematics of the system we then construct an “induced” metric tensor on the work

space, which has its own metric structure. This permits the use of standard differential

geometry (see, for example, [DP9Oj) to construct geometrical tensor fields which are

interpreted and used as performance measures.

The physical interpretation of these measures will depend on the initial choice of the

metric on configuration space. For example, the Eudidean metric leads to kinematic
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measures, while using the inertia matrix as the metric tensor leads to dynamic measures.

A mathematical formulation of these ideas are presented in chapter 2. Chapter 3 deals

with an extension of the theory to incorporate systems with constraints (such as closed

loop kinematic chains, for example). Chapter 4 presents applications of the theory to

the planar two and three link manipulators, for which we compute and optimize some of

the measures. In chapter 5 we illustrate the use of performance measures for constrained

systems for a planar closed loop linkage. Conclusions and directions for future work are

presented in chapter 6. In appendix A some computational issues regarding the measure

are discussed.



Chapter 2

The Theory of Manipulation

2.1 Model of Robot Manipulation

We model the interaction between a generalized manipulator (any collection of robotic

manipulating devices) and a generalized object (the collection of material bodies that are

manipulated) as follows. The set of all possible manipulator configurations is described

by the configuration space, which we denote by C, and its dimension is n. A point in

C represents a configuration of the manipulator, and all points in C represent different

configurations. Similarly, all object configurations are described by the work space, which

we denote by W. We denote its dimension by m. A task can now be seen as a motion

from one point in W (the present state of affairs) to another point. This motion is to

be achieved by the manipulator, and we describe the coupling between the two by a

mapping

C —* W

which associates a point in W with every point in C. For typical robot arms with

a manipulating device attached to the end of the arm, this mapping is the forward

kinematics of the system. See figure 2.2.

7
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C

w

x

q

Figure 2.2: Relation between robot configurations and manifolds
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In this section we shall assume that ic is given in explicit form. The generalization to

constrained systems, where i is defined implicitly, will be deferred to the next chapter,

mainly because this is technically a little more involved, although there is no conceptual

difference.

With C and ¾) we associate 1—to—i mappings C —* R and ¾) —* lRtm which define

charts or coordinate systems on the manifolds. The coordinate system on a manifold is

considered here as an arbitrary labeling of the points in the manifold. A point in C is

denoted by the coordinates

q’

q=

qfl

and a point in ¾) by

xl

x=

The preimage of a point x in ¾) is the self-motion manifold .A/ C C, which is the set

of all configurations that map to this point in ¾’. The tangent space to JV at q is the

null-space of the Jacobian of the mapping ic. Where it is clear which point x is being

referred to, we will drop the subscript x. The self-motion manifolds are important for

constructing redundancy measures, as discussed below.

To quantify displacements in the manifolds, we need to define a distance. As the

manifolds are non-Euclidean in general, we define a vector norm on the tangent bun

dles TC and T¾). This corresponds intuitively to defining the length of infinitely small

line segments everywhere in the manifolds. These infinitesimal line segments expand to



Chapter 2. The Theory of Manipulation 10

finite vectors in the tangent space associated with the manifold at the location of the in

finitesimal line segment. Distance on C represents the amount of “work” the manipulator

has to do for the corresponding motion. It can be defined in many way, which depends

on the application at hand. Distance on ¾) represents how much is achieved with the

corresponding movement.

For example, consider the configuration space of a planar two link arm, with two

revolute joints. The configuration space C is isomorph to the two-torus T2, or to a section

of it if there are limits on the joint angles. A natural coordinate system is provided by

the two joint angles, i.e. q = (q’,
q2)T.

An example of a work space is the space of all configurations of a rigid body, SE(3)

1R3 x SO(3). However, the object that is manipulated may itself be some mechanical

device, such as a mechanical arm.

The performance can now be described by an “induced” distance on ¾), that describes

how much the manipulator has to do in order to achieve a given infinitesimal displacement

in ¾). Taking the example of a robot arm with an end-effector attached to the tip, the

distance on C measures movements of the arm, the distance on ¾) measures movements

of the end-effector and the induced distance on ¾) measures the minimal movement of

the arm needed to achieve this motion in ¾).

The construction of the induced norm on ¾) proceeds as follows. Let the manipulator

be in posture q, with the end-effector at x. See figure 2.3. We define the induced distance

Ik’Iinduced from x to x + dx as the length of the shortest path in C (with respect to the

chosen metric h) that generates a motion in ¾) from x to x + dx.
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C

w
Figure 2.3: Construction of induced distance
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A vector norm l has the following properties:

• Mxli > 0 if x 0

• lkxIi = cixM

• Mx + M < lxii + lyW.

It is not difficult to prove that the induced norm on TVV, as defined above, satisfies

these conditions if the norm on TC does.

We now make the additional assumption that the norms on TC and TV1) are quadratic

norms, i.e. they can be given by lxii v/’xTAx, where A is a symmetric, nondegenerate,

positive definite matrix. The matrix A is the metric tensor of the manifold. A manifold

with such a quadratic norm is a Riemannian manifold. (Relaxing the condition of positive

definiteness on the metric tensor leads to a pseudo-Riemannian manifold.) A non-trivial

result is that if the norm on C is quadratic, then the induced norm is also quadratic.

This will be proved by explicit construction below.

Tensor indices in C are denoted by lowercase latin letters ranging from 1 to n, in ¾)

by greek letters ranging from 1 to m and in A by uppercase latin letters ranging from 1

to n — m. 1

The components of tensors in C are w.r.t. the coordinate basis e = and the

dual 1-form basis w = dq. We use the Einstein summation convention for tensor indices

throughout. That is, any repeated tensor index is implicitly summed over its appropriate

range. See [DP9O] (or any book on differential geometry) for a detailed description of

the tensor formalism.

The metric tensor on C is written as h with components h2. The (length)2 of an

‘Generically, i.e. if the mapping is non-singular. See also [PL92].
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infinitesimal vector dqe is given by the “line-element”

ds2 = hdqdq3.

In vector notation this reads

ds2 = dqTh dq.

is the covariant (lower indices) form of the metric tensor. The inverse of h has

components and satisfies

=

where 6 is given by

1, ifi=j,

1 O otherwise.

The are the components of the identity matrix. On ‘V we have a separate “task”

metric tensor ij with components , such that

ds2 = dx’dx”

is the square of the “task” length of the infinitesimal vector with components dxv. For a

typical robot arm, this will be some combination of the spatial distance between points

and their difference in orientation in the work space. Note that this metric is non-trivial

in general as ¾) is generally non-Euclidean. For example if ¾) is the set of positions and

orientations of the end-effector of a three dimensional manipulator W = 1R3 ® SO(3),

which is not Euclidean.

Besides the task metric we construct an “induced” metric tensor on ¾) (induced by the

metric h on C), written as g, with components grn,. We shall call this the “performance”

metric on ¾).
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2.2 Construction of Performance Metric and Performance Measures

2.2.1 Outline

The construction of the measures proceeds as follows.

• Define an appropriate configuration space C and a metric tensor h on C. This

describes the robots and quantifies their motions.

• Define a task space ¾) and a metric tensor ij on ¾). This describes the objects to

be manipulated, with an appropriate metric for their motions.

• Define a mapping ic : C —* ¾’. This describes the manipulation of the objects by

the manipulator.

• From ,c and h we construct an induced metric on ¾), the performance metric g.

This is a tensor valued performance field from which other work space performance

measures can be derived.

• From g and ij we construct performance measures. Note that, in general, a measure

is defined by the tuple {C, ¾’, ,c, h, j}. The measures we consider here are the

following.

— A relative directional performance field U. This field depends on a direction

specified by the vector u in ¾).

— A relative average performance field, which we call the generalized Yoshikawa

measure Y.

— A measure of the performance anisotropy of g, the anisotropy measure A.

— A measure R for the non-linearity of the motion of the manipulator. This is

the double contraction of the Riemann tensor of the manifold.



Chapter 2. The Theory of Manipulation 15

— A class of measures for the reconfigurability of the manipulator (i.e. its ability

to move without moving the objects), which we call the redundancy measures.

2.2.2 The Performance Metric

The map Ic : C — )/V is defined by

XIL = 1c4u(q) (2.1)

and the Jacobian J of the map is written as

jIL( —

_____

where J(q) are the components of the Jacobian J. The construction of an induced

metric on W proceeds as follows. Let the manipulator be in posture q, with the end

effector at x. We define the induced distance d(y) from x to y as the length of the

shortest path in C (with respect to the chosen metric h) that moves the end-effector from

x toy.

The metric tensor on )‘V can now be derived by considering the shortest path in C,

from q to q + dq, that moves the end-effector from x to x + dx. From eq. (2.1) we obtain

dx = Jdq. (2.2)

The minimum norm solution of eq. (2.2) is given by

dq=Jdx (2.3)

where the pseudo-inverse J+ is given by

J+ = h_1JT(Jh_1JT)’.

We assume here that the configuration is non-singular, i.e. the inverse of Jh_1JT exists.

Note that this pseudo-inverse depends on the metric h, as this defines the norm. So the
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induced norm of dx is given by

ds2 = hdqdq’ dxTJ+ThJ+dx

and we define

g = J+ThJ+

as the covariant metric tensor on )‘V. The field g is a tensor valued performance field.

g has a simpler contravariant form

= J,’h2J7

or, in matrix notation (as gW are the components of g’),

g’ = Jh_1JT.

The minimum norm solution to eq. (2.2) can now be written as

dq = Jdx’

where J are the components of J and are obtained from J by raising and lowering its

indices with the appropriate metric:

—

•

This provides an elegant tensor representation of the pseudo-inverse of the Jacobian.

Note that g4, does not carry any C space indices and is therefore invariant under gen

eral coordinate transformations in C. It transforms as a tensor under general coordinate

transformations in ¾). Scalar directional performance fields can be obtained from g, by

contraction with an appropriate vector u in ¾), i.e. 9IWU4UUV.

For robot arms, some natural choices for h are the Eudidean metric, which measures

(distance)2as the sum of the squares of the joint angle differences, and the inertia tensor,

i.e. we take

h=H,
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where H is the inertia matrix of the arm. We shall refer to the former as the kinematic

metric and to the latter as the inertial metric. With the inertial metric, the geodesics on

C are precisely the solutions to the equations of motion of the system in the absence of

torques, friction, and external effects such as gravity.

Another possible metric is the joint-compliance matrix, which measures the “stiffness”

of the arm (e.g., [PL91]). This can be considered as a generalization of the Euclidean

metric with different weights for joint distances. We note that the kinematic measures

are the same as the measures constructed from a compliance matrix with equal joint

compliances.

The choice of the metric 2’ on VV is a non-trivial matter in general. For the simplest

kind of object, a dimensionless point in space, the obvious choice for r is the identity

matrix (in a Cartesian coordinate frame). But for a rigid body there is no unique metric.

The reason is that we want to define the distance between configurations that differ in

position and orientation. Position is measured by coordinates, in meters, but orientation

is measured by angles, which are dimensionless. To define a combined distance we need

some dimensional weight factor that converts between the two. From a mathematical

point of view, there exists no hi-invariant metric on SE(3), the group of rigid body

motions [Lon85j. A natural metric for a rigid body is constructed as follows. Let dx be

the difference in position and let dO be the angle of rotation (around some axis). The

metric is defined by

ds2 = dxTdx + A2d02,

with A a length scale. This combines rotation and translation through the length scale

A.

Another natural choice would be to take the inertia matrix of the rigid body as the

metric tensor. In that case the inertia matrix would provide the necessary dimensional
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conversion between angles and positions. Indeed, for a sphere with mass M and moment

of inertia I, the inertial metric would coincide with the metric mentioned above, with

A=I/M.

Which is the metric to choose depends on the application at hand.

2.2.3 Work Space Measures

The scalar

U = (2.4)

with
,

the task metric on ¾), measures task space length per C space length for move

ments in direction u. It is a directional performance field.

From g and i we derive a scalar measure that we call the generalized Yoshikawa

measure. Consider an infinitesimal parallelepiped dx’... dxm located at the point x in

¾) and suppose the manipulator is in configuration q. The rn-volume of the smallest

region in C that will cover the parallelepiped in ¾) is given by

Jdet(g)dx1... dxtm.

It measures the volume of the minimal region in which the manipulator has to move to

cover the given infinitesimal parallelepiped in work space. The task volume of this region

is

/det(’rj)dx’... dxtm.

We define the generalized Yoshikawa measure as the ¾) space volume per C space volume

of the parallelepiped,

_______

det()
(2.5)

N det(g)

It is a measure of the performance of the manipulator, averaged over all directions.

Note that Y is invariant under general coordinate transformations in C as well as in ¾)
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space and therefore measures a true physical property of the system, independent of the

coordinate systems.2 If h is the Euclidean metric in “joint-angle” coordinates and the

task metric on ¾) is Euclidean, it reduces to the original Yoshikawa measure det(JJT)

as defined in [Yos85].

A second scalar derived from the metric tensor g is the anisotropy. It measures how

isotropic the manipulator behaves locally. There is a slight complication in defining this

measure, as for a general metric 77 there is already an inherent anisotropy present in the

work space, which depends on the coordinate system used. We first eliminate this by

finding a local coordinate transformation that brings j into Euclidean form, ie.

T77TT = 1,

where T is the matrix associated with the coordinate transformation. In these new

coordinates the induced metric becomes

= TgTT.

The equation

xTx = 1

defines an ellipsoid, with the lengths of the principal axes corresponding to the eigenvalues

of . The elongation of the ellipsoid (i.e. how much it differs from a sphere) in this special

coordinate system is a physical measure of the anisotropy of the manipulator. It is easy to

show that the eigenvalues of are the same as the eigenvalues of ‘g, in any coordinate

system. The same information is contained in the inverse of this matrix, i.e. g1. Since

g may have singularities (if the manipulator is in a singular configuration such that it

cannot move in some direction in ¾), the metric tensor g will become infinite in that

direction) it is better to work with this matrix instead.

2The field /det(g) itself is not invariant under general coordinate transformations in 34). It is called
a scalar density.



Chapter 2. The Theory of Manipulation 20

We define the invariant measure of the anisotropy A as

A=1——, (2.6)

where i+ and 1u_ are the largest and smallest eigenvalues of g’.

The measure given in eq. (2.6) measures the anisotropy. If isotropy is desired for a

task, this measure should be minimized. For positive definite metrics h we have 0 <A <

1 and isotropy is obtained if A = 0.

We note that the anisotropy measure as defined by eq. (2.6) may depend on the length

units used if we consider a work space which incorporates both positioning and orientation

information. In this case, the measure A will depend on an arbitrary length scale that

corresponds to the relative weight we assign to orientation (described by dimensionless

coordinates, e.g. Euler angles) relative to positioning (described by coordinates with

the dimension length). The role of such a length scale was investigated in [TAR92]. It

emerges here in the form of the factor i.e. the work space metric. For systems that

illcorporate both positioning and orientation information it is not always possible to find

a unique metric j. This arises because we somehow have to combine angles and lengths

and we need a dimensional parameter to convert between the two.

Other performance measures can be derived as needed from the above by covari

ant differentiation and contraction. For example, the local variation of the generalized

Yoshikawa measure could be defined by

a2y
g
1’8q0qJ

2.3 Redundancy Measures

An important class of measures is related to the ability of the manipulator to move in

the self-motion manifold .1V associated with every point x in )‘V.
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Consider a redundant robot arm that performs some assembly task inside some en

closed region by reaching inside, through a small opening. It will be “easier” to reconfig

ure the arm (change its posture without moving the end-effector) if the segment of the

arm that enters through the opening does not move very much during the reconfigura

tion. A possible measure for the “goodness” of the posture for a task like this is the ratio

of the C space distance and the displacement of the segment that reaches through the

hole (as measured in the plane of the surface with the opening).

Redundancy measures quantify the mobility of the manipulator in the implicitly de

fined self motion manifold .,V,. For the case of a robot arm, this means that we are

effectively considering a linkage with a closed loop, constructed out of the original arm

by fixing the end-effector at x.

The redundancy measures are obtained by a similar construction as the work space

measures. We take the x-dependent tuple

= {C, )‘V, h, i,}

as the generator of the measures.

The tuple T is related to C, ¾) and t as follows. We take

Cx = VV =f

so that i is the identity map. (The domain and range of the map depend on x.)

However, we measure “distance” in C and ¾4 using different metrics. The metric h

on C, is just h restricted to We denote it by n, dropping the subscript x. The task

metric i’ on W is obtained by restricting a “secondary” metric h to .A4. With these

choices for T it is possible to construct the measures without explicitly constructing .Af

as follows.
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An infinitesimal displacement dq in iV, can be written as

dqz
_ P3d’,b2

for arbitrary d’b. The projection operator P is given by

The Jacobian J defines n — m independent vectors WA, (A = 1,. . . , ii — m) that

generate motions in T14/X (except at singular points). The WA satisfy

Jw = 0.

An arbitrary vector in TJ\f can be written as

v = wvA.

Its h-length is

hvv’ = hwwvAvB

and we obtain the components of the metric tensor n on as

AB =

Similarly, the task metric Thc is obtained by restricting h to i.e.

_..i j
T1XAB — JWAWB.

As the mapping is just the identity, the Jacobian is just the identity matrix and the

induced performance metric g on W, is just the metric n. With these definitions we

can construct all the measures derived previously for the work space W, such as the

directional performance U, the generalized Yoshikawa measure Y, and the anisotropy A.

By considering all points x and noting that the AI are all disjoint, we finally arrive at
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measures defined on the entire configuration space C. We call these the “redundancy”

measures.

The precise interpretation of a measure will depend on the secondary task metric h

chosen, which is very task-specific in general. In the examples given in chapter 4, we

make some choices for h and interpret the secondary generalized Yoshikawa measures.

Other redundancy measures, such as the anisotropy or non-linearity (discussed below)

can only be defined if the dimension of .IVX is at least 2.

A more general set of redundancy measures (which are just the work space measures

of the self-motion manifold) can be obtained by considering non-trivial mappings ‘,

to a work space W of possibly lower dimension than .A/. We shall not consider those

measures here, but they can be constructed easily by using the extension of the theory

to constrained systems, which is the subject of chapter 3.

2.4 Non-linearity Measures

The purpose of the measures introduced in this section is to quantify a posture in terms of

the “complexity” of the dynamics of the manipulator in a small region in configuration

space around this posture. Robot manipulators obey highly non-linear equations of

motion. One can expect that a control scheme that incorporates some form of numerical

integration of the equations of motion will require less resources if the non-linearity of the

system can be minimized in some sense. This issue is complicated due to the fact that

the equations of motion depend on the coordinate system that is used on configuration

space. As explained previously, the equations of motion of a manipulator (in the absence

of torques, friction and gravity) are identical to the equations for the geodesics on C with

the inertia matrix as the metric tensor h on C.
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The equations of motion can be written as

(2.7)

where q are the coordinates on C. The Christoffel symbols r are given by

— 1 (oh Ohk ãhk
Fijk —

— I — + —

2 \ Oqk ôq3 8q

and the are obtained by raising the first index, i.e.

“jk
=h1I’13k.

The non-linearity of eq. (2.7) can be seen as a result of the presence of the I’jk. However,

as this is not a tensor (see for example [DP9O]), the Christoffel symbols themselves cannot

be directly used to obtain a physical (i.e. coordinate system independent) measure of

the non-linearity.

We propose to measure the non-linearity of the manipulator with respect to the metric

h on C by the Riemann tensor, which is a rank 4 tensor field on C, with components Rkl.

The Riemann tensor has (2 — 1) independent components. In a coordinate basis it is

given by
9ri. api.

Rkl
= ôqk

—

+
— “m1’jk

It is well known that a global coordinate transformation can be found that linearizes

the equations of geodesic motion if and only if the Riemann tensor vanishes everywhere.

This point was stressed for mechanical systems in [Spo92, Bed92j.
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V

Figure 2.4: Relative acceleration of nearby geodesics
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The Riemann tensor has the following interpretation. Suppose we have two nearby

points in configuration space with (small) separation vector s and these points move in

the same direction (i.e. on parallel trajectories), described by a velocity vector v, on

geodesic trajectories (see figure 2.4). If the space is non-Euclidean, the trajectories will

not remain parallel. They will diverge or converge (at least for generic s and v) and the

relative acceleration between the points is given by

RujklvJsIvvl. (2.8)

Therefore, this tensor measures directional non-linearity of the arm. If the tensor van

ishes, an error in the position of the arm (in configuration space) remains constant over

time, as nearby geodesics remain parallel. The relative acceleration as given by eq. (2.8) is

independent of the particular coordinate system used and therefore measures an intrinsic

property of the manipulator. There is also an interesting relation between curvature and

stability. If the curvature is negative, the geodesics are exponentially unstable (because

the effective repelling force is proportional to the separation), as nearby geodesics repel

each other, whereas if the curvature is positive we obtain stable orbits. See [Arn89], ap

pendix 1, for details. The Riemann tensor is a generalization of the Gaussian curvature

of a surface. (If the configuration space is two-dimensional, R has only one independent

component, due to its symmetries, which is the Gaussian curvature of the manifold.)

The associated curvature scalar,

R = huiRcjkj (2.9)

gives an overall measure of the non-linearity. The curvature R is a scalar field, i.e.

it is invariant under general coordinate transformations in C and therefore measures

an intrinsic property of the system. Note that this measure does not depend on the

forward kinematics. This measure (or R2) could be used to minimize the error of linear

approximations used in controlling the manipulator.
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If R = 0 at some point, the configuration space is flat at this point. An interesting

observation is that if there are points in C with R> 0 and with R < 0, there are (n — 1)-

dimensional subspaces of C with vanishing curvature. If m <n these subspaces will map

onto rn-dimensional regions in }V, so these are regions in ¾) that can be reached with

an optimal posture with respect to the curvature measure. We shall call such postures

“flat”.

A curvature tensor and its contractions can also be defined on ¾), using the per

formance metric g. This measures the non-linearity of the motion of the manipulated

objects. Note that for a non-redundant manipulator, i.e. m = n, we can view the the for

ward kinematics at non-singular points as a change of coordinate system on C. Because

R is independent of the coordinate system used, the curvature scalar R will therefore

be the same whether constructed from h3 on C or from g, on W, for non-redundant

manipulators.
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Extending the Theory to Constrained systems

3.1 Description of Constrained Systems

Many systems are most easily described in terms of a more general system upon which

constraints are placed. For example, a walking machine could be most easily described

by the configuration of all its joints and the position and orientation of its main body.

If the machine is walking, we have the constraint that its feet should be on the ground.

For such systems, the geometric ideas presented in the previous chapter can be used to

quantify performance, but the details are a little different.

The configurations of the constrained systems we are interested in have a natural

description in the form of a set of n coordinates

q1

q=

qfl

upon which some constraint equations are imposed. The coordinates q can be thought

of as representing configurations that may violate the constraints, which usually has

a physical interpretation as the opening up of some closed kinematic loop. Following

[Lue77], we call the unconstrained coordinates together with the work space coordinates

descriptors. The unconstrained coordinates q by themselves are called the manipulator

descriptors. The space of all configurations including the ones that violate the constraints

is called the manipulator descriptor space, denoted by C+, of dimension n. The points in

28
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C C C are labeled by those coordinates q that satisfy the s constraints. The dimension

of C is taken to be 1, and the work space ¾) has dimension m. The descriptor space is

x ¾), of dimension n + m. Furthermore, we have

n + m — S = 1.

For an illustrative example, consider the two link planar manipulator depicted in

figure 3.5. The base and elbow joints, with angles 0’ and 02, are actuated and the tip of

the arm is constrained to slide along a vertical line, at a distance 1.0 to the right of the

base of the arm. The two links are of unit length.

In this case the manipulator descriptor space C+ is the 2-torus

= {(91,92) : <01,02 <ir}

depicted as the shaded area in figure 3.6, and the configuration space C C C+ is the one

dimensional region

C = {(01,02) : —ir/2 <0’ <ir/2,cosO1+cos(O’ +02) = 1.0},

which is drawn in figure 3.6. The work space ¾) is a line segment of length

Tensor indices in TC+ (the tangent space to Cj are denoted by lowercase Latin

letters, tensor indices in TC by uppercase Latin letters and tensor indices in T¾) by

lowercase Greek letters.
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Figure 3.5: Constrained two link planar arm. The end-effector is constrained to remain
on the vertical line.

0
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___

0’

Figure 3.6: Manipulator descriptor space C+ and configuration space C of constrained
two-link planar arm.

02
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The forward kinematics as well as the constraints on the coordinates q are implicitly

given by s constraint equations

fA(xq)=0 (3.10)

where A = 1,. . . s, which can not be solved explicitly in general. If eq. (3.10) is linear

in the work space coordinates x, the forward kinematics of the system can be found

explicitly.

Note that in the following we don’t use eq. (3.10) directly, but only its differential as

given in eq. (3.11) below. By allowing arbitrary factors f and ffk the entire construction

carries over to non-holonomic systems as well.

On ¾) we have a “task” metric tensor as before. Besides the task metric we

construct an “induced” metric on ¾) (induced by the metric h on C), written as g, with

components gpv. We shall call this the “performance” metric on W. This construction

is similar to the one presented in the previous chapter.

3.2 Construction of the Performance Metric

On C we define the distance between q and q + dq by a metric tensor h, i.e. with the

line element

ds2 =h2dqdq2.

The metric on C C C+ then follows from the above for infinitesimal vectors dq tangent

to C.

Suppose the manipulator is in a configuration labeled by q (satisfying the constraints),

with the end-effector at a point labeled by x in ¾) and that we have defined an appropriate

metric on C. The induced distance to a point x + dx in ¾) is defined as the distance

of the shortest path in C, starting at q, that takes the end-effector to x + dx, where

distance is measured by the metric tensor h on C+.
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From the metric on C+ we thus derive an “induced” metric on ¾), as before. We

construct it explicitly as follows.

Consider an infinitesimal motion dq in C with the induced displacement dx in W

From the constraint equations we obtain

= fdx” + ffdq = 0, (3.11)

where
çA

J1L
—

and
çA

çA JJ

—

For general dq lying in TC (the tangent space to C at the point under consideration),

there is no vector dx that satisfies eq. (3.11). However, we can find the dx that minimizes

the quadratic norm

(3.12)

(where there is an implicit sum over A) using the pseudo-inverse of f viewed as an s x m

matrix. We thus obtain

dx = J’dq2 (3.13)

where the “Jacobian” is given by

Jgt f+IUJA (3.14)

and are the components of the pseudo-inverse of f, which is given by

f+IL_ wçA
J A—P Jv’

where p is the inverse of i.e.

pff = 6’, (3.15)
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provided that the inverse exists. Eq. (3.15) can be written in matrix form as follows.

Let us write F for the s x m matrix with components f, and F+ for its pseudo-inverse.

With this notation, eq. (3.15) reads

= FT(FFT)*

We can now obtain an explicit condition on dq by demanding that eq. (3.13) is a

solution to eq. (3.11). By substituting eq. (3.13) into eq. (3.11) we obtain the following

explicit constraint on dq

PAdqi = 0, (3.16)

where

pAfAJ1LfA

Eq. (3.16) defines s — m independent constraints on dq, leaving 1 = m + n — s actual

degrees of freedom.

Let us choose a basis for the tangent space TC to C by chosing 1 vectors in TC, WA,

A= 1,.. . , 1, such that

PAwi =0.

In this basis, the C-space metric tensor is

hAB

The Jacobian on C is the restriction of the Jacobian given in eq. (3.14) to TC. It is given

by

Il’— i1 i
—

WA.

The induced performance work space metric can now be obtained. Note that this

metric is a field on C x Vu with its components living in TV9. For a given posture, it

quantifies the metric in the work space locally. We define the induced distance d(y)
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from x to y as the length of the shortest path in C (with respect to the metric h) that

moves the end-effector from x to y. For kinematically redundant manipulators, this

distance depends on the posture with which the point x is reached. By considering in

finitesimal motions we derive the induced performance metric as follows. An infinitesimal

displacement dq in TC can be written as

dq = WAdr,

where the drA are the components of dq in the basis for TC. From eq. (3.14) and

eq. (3.17) we obtain

dx = JdrA. (3.18)

The induced length of the vector dx is now defined as the length of the shortest (under

the metric h) vector dr that satisfies eq. (3.18). Eq. (3.18) reads in matrix form

dx=Jdr (3.19)

and the weighted pseudo-inverse J+,

J+ = h_1JT(Jh_1JT)’

gives the minimum norm solution to eq. (3.19) in the form

dr = Jdx.

The norm of dr now gives us the line element

ds2 = hABdTAdTB = dxTJ+ThJ+dx

from which we read off the performance metric tensor in covariant form as

g = J+ThJ+.
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The inverse of g, corresponding to the contravariant form of g (i.e. g) has the simpler

form

g1 = Jh_1JT.

In component notation this reads

— pLAB z,g
— ‘A”’ ‘B

It defines distance in ¾) as derived from minimal motion in C.

All the performance measures can now be constructed as for the unconstrained sys

tems.
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Applications to Planar Arms

In this section we shall construct and interpret some of the measures for the two and

three link planar manipulators. We shall consider two metrics on C, the Euclidean metric

which measures (distance)2 as the sum of the squares of the joint angle differences, and

the inertia tensor, i.e. we take

h=H (4.20)

where H is the inertia matrix of the arm. We shall refer to the Euclidean metric as the

kinematic metric and to the metric defined by eq. (4.20) as the inertial metric.

The two link arm consists of two links of length 1 and 12. We take all mass to be

concentrated in the middle joint and in the tip of the second link, with masses m1 and

m2 respectively. The configuration of the arm is described by the two joint angles q1 and

q2, with —r <q 7t.

The three link arm consists of three links of length I ( i = 1, 2, 3) which we take to

be thin rods of uniform mass density m. The configuration of the arm is described by

the three joint angles q, with —r < qt < ir.

Note that the non-directional measures do not depend on the first joint angle q’

because of rotation invariance, hence it is not shown in plots of the values of the measures.

Unless given explicitly in a formula, we take all lengths to be equal to one and all

masses to be equal to 0.5 in our calculations.

37
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4.1 Kinematic Measures

In this case the induced metric on ¾), g, leads to Yoshikawa’s [Yos85] manipulating force

ellipses, defined as the set of all forces f/A satisfying

gff 1

and the associated manipulability ellipses, defined as the set of all end-effector velocities

v that satisfy

1.

For a desired end-effector force f1L, the measure

pvc çg J1uJv

equals the Euclidean norm of the generalized joint torque needed to apply a prescribed

force f with the end-effector. Denoting the joint torque by Ti, the condition of static

equilibrium is

T
—
fJ

and it follows that

= = ffJJ’h3=
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Figure 4.7: Good posture for applying vertical force
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Figure 4.8: Bad posture for applying vertical force
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Figure 4.9: Good posture for applying horizontal force
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Figure 4.10: Bad posture for applying horizontal force
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In figures 4.7, 4.8, 4.9, and 4.10 we show the best and worst postures of the three link

arm for applying a vertical and horizontal force with the end-effector at a distance of 2.0

from the base of the arm.

The generalized Yoshikawa measure, as defined in eq. (2.5), reduces to the Yoshikawa

measure [Yos85] if the factor det() is constant and equal to one as is the case for

the planar positioning manipulators we are considering. For easy reference we reproduce

here some of the results from [Yos85] for the planar manipulators. For the two link arm

we have

Y = l1l2 sin(q2)

and for the three link arm we have

= 1112
+ l2 13 + 12 132 + 11 12 13 cos(q2)

— l2 12 cos(2 q)
+

l2 12 13 cos(q3)— 12 132 cos(2 q3) — l2 132 cos(2 (q + q3)) —

l2 12 13 cos(2 q2 + q3) — 11 12 132 cos(q2 + 2 q3).

In figure 4.11 we have plotted Y as a function of the joint angles q2 and q3. Figure 4.12

shows the optimal postures for reaching a point at a distance of d = {0.5, 1.0,1.5,2.0, 2.5}

from the base of the arm and figure 4.13 shows the values of Y at these optimal postures

as a function of the reach d.
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Figure 4.12: Optimal postures for Yoshikawa measure for given end-effector position
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Figure 4.13: Optimal values for Yoshikawa measure
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Figure 4.14: Kinematic anisotropy measure for two link arm
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Figure 4.15: Kinematic anisotropy measure A for 3-joint redundant arm
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Figure 4.16: Optimal postures for A
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The anisotropy measure A, as defined in eq. (2.6), measures the deviation from kine

matic isotropy. It is zero if the manipulability and force ellipses become circles. In

figure 4.14 we plot A as a function of the second joint angle q2 for the two link arm.

Figures 4.15, 4.16, and 4.17 show the graph of A for the three link arm, its optimal

postures and the values of A for these postures. There is a completely isotropic posture

(A = 0) at a reach of d = 1.

Note that if the arm moves inward from a stretched position, there is a discontinuity

in the optimal arm posture between d = 1.0 and d 0.5. A more detailed investigation

(a more dense set of postures) shows that the critical distance d is located at d 0.5.

The discontinuity arises as follows. For a given position x of the end-effector, the possible

postures form the self-motion manifold JV. The optimal posture is found as the global

minimum (or maximum) of the measure on .A1. If for a certain x there are two global

minima , an infinitesimal displacement dx of x can resolve the degeneracy. It will depend

on the direction of dx in general which of the two minima will become the new global

minimum. It follows that a continuous motion that optimizes the measure through x

is not possible is general. An interesting observation is that since .N is not necessarily

connected, a motion may be required from one connected component to the other, which

is not possible. In that case there is no self-motion possible at all that optimizes the

measure. For the three link arm, the connected components of .Af,, which appear for

d < 1, are related by the symmetry qZ _q As the measures we consider all observe

this symmetry, there will always be two symmetry-related global minima. By picking the

appropriate one, the arm is thus never forced to move from one connected component to

the other, so that self-motion optimizing the measure is guaranteed to be possible. This

is true for the ¾) space measures, but not for the redundancy measures in general, for

‘We refer here to “accidentally” degenerate minima that are not related to each other by a symmetry
of the system.
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the task space and therefore the task metric h need not have the same symmetries as the

manipulator (though it does in all our examples).

The Riemann tensor and therefore the curvature measure R, as defined in eq. (2.9),

vanishes for the kinematic metric on C, as the are constant.

4.2 Inertial Measures

The generalized inertia matrix H of the system is given by

H
— ôEk(q, i)
—

where Ek is the kinetic energy of the arm. We take the C space metric as

= H23.

The line-element

ds2 =h23dq2dq3

measures the displaced mass over the distance dq in C. If the arm moves by dq in a time

dt with constant velocity, the kinetic energy of this motion is given by

ds2
Ek=.

The geodesics in C are now precisely the motions of the arm in the absence of torques,

friction and gravity.

The induced metric g can be interpreted as an effective inertia matrix on W. That

is, if the end-effector moves with velocity x in such a way as to minimize the total kinetic

energy of the arm, this kinetic energy is given by

Ek =
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The tensor g can be measured, in principle, by applying forces to the end-effector, with

the arm at rest, and recording the resulting accelerations of the end-effector. For if a

force f, is applied to the end-effector, with the arm at rest, the ‘V space acceleration â

satisfies

= J? + -? =
Ji (4.21)

The equations of motion give

= = (4.22)

Combining eq. (4.21) and eq. (4.22) gives

=h3JJ7f

or

c
Jii — 91wX

Contracting gpv with a velocity vector VIL gives the required kinetic energy of the arm

to move the end-effector with this velocity.
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Figure 4.18: Good posture for vertical swatting
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Figure 4.19: Bad posture for vertical swatting
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Figure 4.20: Good posture for horizontal swatting
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Figure 4.21: Bad posture for horizontal swatting
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In figures 4.18, 4.19, 4.20, and 4.21 we show the best and worst postures for achieving

a high vertical and horizontal velocity of the end-effector (“fly-swatting”) at a distance

d = 2.0 from the base of the arm.

The generalized Yoshikawa measure as given in eq. (2.5) is now the inverse of the

square root of the determinant of the effective inertia matrix; it measures the “lightness”

of the arm. For the two link arm it is given by

sin(q2)

+m2sin2(q2))
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Figure 4.23: Optimal postures for Y
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Figure 4.24: Optimal values for Y
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In figure 4.22 we plot this measure for the three link arm. Due to the relatively flat

ridges at q3 = bir/2, there is a large range of postures with good values of this measure

as can be seen in figures 4.23 and 4.24. There is a critical distance d 1.5 where there

is a discontinuity in posture as a function of the reach.
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Figure 4.25: Inertial anisotropy measure for 2-joint arm
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Figure 4.27: Optimal postures for A
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Figure 4.28: Optimal values for A
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In figure 4.25 we show the inertial anisotropy, as defined in eq. (2.6) for the two link

arm.

Figures 4.26, 4.27, and 4.28 show this measure for the three link arm. It also has two

valleys at q3 = +ir/2, indicating the existence of a range of “good” postures for inertial

isotropy. As the shape of the valleys is different than that of the the ridges for Y, the

optimal postures are quite different though. Note that there is no isotropic point in ¾).

The critical distance is at d 1.7.

The curvature scalar R as given in eq. (2.9) is now a measure of the geodesic deviation

of orbits in C space and is a measure of the non-linearity of the motion of the arm. For

the two link arm it is given by

R=
2m1cos(q2)

2
1112(mi +m2sin2(q))
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Figure 4.29: Curvature scalar R for 3-joint redundant arm
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Figure 4.30: R2 for 3-joint redundant arm
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Figure 4.31: Optimal postures for R
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Figure 4.32: Optimal values for R
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The curvature scalar is plotted for the three link arm in figure 4.29. In figure 4.30 we

show R2 which is the actual measure to minimize for maximal linearity of motion. As R

is positive near the origin of the (q2,q3) plane and negative at the edges, R2 is zero on a

two-dimensional surface in C, where R changes sign. So there is a two-dimensional region

in VV that can be reached with “linear” postures. R has local extrema at the singular

points (0,0) (R = 38.1), (0,ir) (R = —21.5) and (7r,7r) (R = —16.3), but not at (ir,0).

It is interesting to note that this gives a classification of the singular points according

to their “non-linearity”, as the values of the extrema are distinct. The optimal postures

and values of R are shown in figures 4.31 and 4.32. The critical distance is d 1.5.

4.3 Redundancy Measures

Let us choose the inertial metric as the metric h on C, and the kinematic metric as the

“secondary” task metric h. The redundant generalized Yoshikawa measure measures the

Euclidean distance per mass moved in C for self-motions. That is, if Y is small, a “large

amount of matter” has to be moved to change the posture of the arm. Y should thus be

maximized for optimal mobility in this sense. As the inverse D = 1/Y behaves better

than Y itself we have shown data for D instead of Y itself.

The data for this measure for the three link arm is given in figures 4.33, 4.34, and

4.35. The optimal values of D as a function of d (i.e. the distance of the end-effector

from the base of the arm) is relatively constant for d> 1.0 but increases fast below that

value. In figure 4.36 we have plotted d as a function of (q, q3), from which we see that

at small d the arm will come near the large peaks in D, which explains this behavior.

The critical distance is at d 1.1.
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Figure 4.33: Redundancy measure D for 3-joint redundant arm
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Figure 4.34: Optimal postures for D
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Figure 4.35: Optimal values for D
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Figure 4.37: Area redundancy measure D for 3-joint redundant arm
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Figure 4.38: Optimal postures for D
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Figure 4.39: Optimal values for D
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We would like to interpret this measure as a measure of how much the arm “swings”

when reconfiguring. A better measure for this would be the area that the arm sweeps

out per Euclidean distance in C. Unfortunately, the “swept-area” (or volume for three-

dimensional manipulators) metric cannot be described by a quadratic form, so this type

of measure falls outside our framework. For comparison we have computed this “swept

area” version of the redundancy measure D. It is given in figures 4.37, 4.38, and 4.39. We

observe that this measure behaves qualitatively similar, which supports the interpretation

of D given above.

A different class of redundant generalized Yoshikawa measures can be obtained by

choosing the “secondary” task metric on C as

1, ifi=j=e,

( 0, otherwise.

This metric just measures the movement of one particular joint, e and the corresponding

redundancy measure D = 1/Y will measure the amount of mass moved per movement of

joint e. This could be useful if we want to find an arm position that allows reconfiguration

with minimal movement of a particular joint. We call these measures (there are n of them

for an ii link arm) the joint redundancy measures

= y(e)

E(e) measures how much joint e has to move to move a specified amount of mass. It should

be minimized if we want to reconfigure the arm with as little movement as possible of

this particular joint.
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Figure 4.40: Joint redundancy measure E’ for 3-joint redundant arm
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Figure 4.41: Optimal postures for E’
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Figure 4.42: Optimal values for E1
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Figure 4.44: Optimal postures for E2
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Figure 4.45: Optimal values for E2
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Figure 4.46: Joint redundancy measure E3 for 3-joint redundant arm
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Figure 4.47: Optimal postures for E3
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Figure 4.48: Optimal values for E3
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Plots, optimal postures and optimal values of the joint redundancy measures are given

in figures 4.40 - 4.48. The critical distances are d 1.1 , d 0.9 and d 1.0 for

E2 and E3 respectively.

The last example of a secondary generalized Yoshikawa measures can be obtained by

choosing the “secondary” metric on C according to

ds2 = Euclidean displacement of a test point on a link.
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Figure 4.49: Link redundancy measure L for 3-joint redundant arm
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Figure 4.50: Optimal postures for L
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For concreteness, we take the test point to be the mid-point of link two. This metric

measures the movement of the center of the middle link and the corresponding redun

dancy measure D = 1/Y will measure the amount of mass moved per movement of this

link. This could be useful if we want to find an arm position that allows reconfiguration

with minimal movement of this link. We call this measure the link redundancy measure

L=Y.

L measures how much the middle link has to move in order to move a specified amount of

mass. It should be minimized if we want to reconfigure the arm with as little movement

as possible of this particular link.

Plots, optimal postures and optimal values of the link redundancy measure are given

in figures 4.49, 4.50, and 4.5L The critical distance is d 1.5.



Chapter 5

Applications To A Closed Loop Linkage

The closed loop planar kinematic chain we shall investigate here is depicted in figure 5.52.

It consists of five links, four actuated joints (6k, 8, 6, O) and two passive joints (O, Os).

The end-effector is attached to the center of the middle link. We denote its position and

orientation by the work space coordinates (x, y, a). The distance between joints L’ and

R1 is d and the length of the middle link is b. The other four links are taken to have unit

length.

The descriptor space of the device is labeled by the four joint angles (8k, O, 8, O)

which must satisfy one constraint on C+ (or equivalently four constraints on x ¾)).

We shall take the Cf-space metric to be given by the

line element

d.s2 — (d6)2 + (d8j2 + (dO)2 + (d8)2,

i.e. the kinematic metric. This metric defines the distance between configurations in

terms of the actuated joint movements.

The chain can be interpreted as an object with configuration (x, y, a) manipulated

by two planar fingers with joint angles (,) and (6k, 8) with contacts at P1. and PR.

We note that the device has a dual interpretation as a standing posture of a walking

machine. The joints 8 and 6 will be passive in this case, representing the feet of the

machine and the other four joints will be actuated. In this case an appropriate choice of

metric will involve those actuated joints.
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Figure 5.52: Closed loop manipulator.
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The coordinates of the passive joints PL and PR are given by

p =—d/2—c—c,2,

y — 1 12
PL —SLmSL,

px =d/2+ck+c,

y — 1 12
PR —SRmSR,

where we have written

1 —

CL —cosvL,

1 —

CR —COSVR,

2 =cos(8.+8,),

c =cos(O+O),

and similarly for the sine functions. The constraints and forward kinematics of the system

are given by the four equations

fA
=

where A = 1,.. . , 4 , and

ci — ( x x\2 “ y y’2 j2
.i —PRPLI mkPRPL) ,

f2 =(p—p)tana—(p—pj,

f3

f4 =y—(s+s+s+s’,2)/2.

For this simple system, the constraint on the four joint angles is given by f’ = 0, whereas

the forward kinematics is defined by the other three equations.
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The three vectors WA, A = 1,.. . , 3 , are chosen as

Of’ Of’
W1 = (1,0,0,—-/--),

1’L UUR

Of’ Of’
W2 = (0,1,0,—-/-),

L R

and
Of’ Of’

W3 = (1,0,0,
R R

The performance metric, as given in the previous section can now be computed with

straightforward algebra. To compute the generalized Yoshikawa measure as given in

eq. (2.5), we need to define a task metric on VV. Note that since we are considering both

the position and the orientation of the end-effector, the definition of a nondegenerate

metric on )‘V requires the introduction of a parameter A which is a characteristic length

scale. This length scale needs to be introduced as the Euclidean group does not have

a natural positive definite metric, see for example [Lon851. A similar length scale was

arrived at via a different route in [TAR92]. We take the task metric to be defined by the

line element

ds2 = dx2+dy2+A2do2.

The value of A determines the relative weight we attach to orientation versus position in

defining a distance between end-effector positions.

From eq. (2.5) we see that the factor

det(j) = A

just multiplies the inverse of the square root of the determinant of the performance metric

g. The generalized Yoshikawa measure is thus only defined up to a constant multiplicative

factor.
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We have computed Y explicitly as a function of the four actuated joint angles using

Mathematica [Wo191j. Since the resulting expression is too complicated to be given here,

we have reduced it for illustration to configurations with x = 0 and c = 0, corresponding

to symmetric postures, with the center of the middle link above the midpoint between

the two base joints. There is one remaining degree of freedom, say 6 , and if we also take

b = d, we have

nl _1 —

‘-‘L —VR—V,

6 =O=ir—26,

and for Y we obtain

—

) sin2(26)
d 5(1 — cos(20))

The measure has a maximum value for 6 = 35.3°, which represents the optimal posture

under the given constraints.

In figure 5.53 we show optimal postures for configurations where the center of the

middle link is above the midpoint between the base joints (i.e. at x = 0) and the angle

ci is restricted to have the fixed values ci = 0., 0.5, 1.0, 1.5.
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a

Figure 5.53: Optimal postures for various orientations of the middle link.



Chapter 6

Conclusions

The principal merit of the unified formalism for the construction of performance measures

for robot manipulators presented here, is that it allows the systematic construction of

invariant measures appropriate for a given application.

Well known measures such as the Yoshikawa measure arise naturally in this frame

work. In addition, new performance measures have been constructed using this for

malism, to measure non-linearity and redundancy (or self-motion). The formalism was

presented for systems in which the relation between the manipulator and the object can

be given explicitly. The extension to constrained systems was presented in a separate

chapter.

Examples of the measures were computed for some manipulators, the planar two and

three link arms, and a planar five link closed linkage chain and we computed some optimal

postures for these devices.

An interesting property of all measures of the three link arm except the Yoshikawa

measure is that there is no smooth motion possible from a stretched position (with the

end-effector far from the base) to a position with the end-effector close to the base, that

optimizes the measure at each point on the trajectory. And for redundancy measures

that break the symmetry relating the connected components of the self-motion manifold,

it is possible to have end-effector trajectories for which no such motion is possible at all.

The curvature scalar measure R that we introduced seems particularly interesting for

redundant manipulators, as it identifies an rn-dimensional region in work space where
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the measure vanishes and the arm behaves locally “linear”. This measure also identifies

singular points and classifies them according to their curvature. We note that a singular

configuration with a large positive curvature is stable in the sense that geodesics in C

attract each other (as the manifold has positive curvature). Unstable configurations arise

for negative R, where nearby orbits repel each other and diverge.

The measures that were constructed here are by no means the only ones. For example,

one could also choose the joint-compliance matrix [PL91] as the metric on C, with a set of

associated measures. And the secondary metric on C for the redundancy measure could

be any task specific function.

While this work was being completed, an article appeared [PB94] in which a similar

geometric approach to performance manipulation was taken. The measures examined

there were different however, as the authors concentrated on global performance criteria

rather than on local ones.

Future work will focus on the implementation of the theoretical framework into an

automated computation of performance measures from a specification of the system at

hand. An important problem that needs to be solved is an examination of the compu

tational complexities of the performance measures. In particular the curvature scalar is

difficult to compute, as it seems to require 0(n4) operations (with n the dimension of

the space), at least in a naive implementation where all the 0(n4) components of the

Riemaun tensor are computed.
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Appendix A

Computational Aspects

In chapters 4 and 5, applications of the formalism to some simple planar manipulators

were presented. For such low dimensional systems, one need not worry too much about

numerical stability and efficiency of the computations. Most of the results presented there

were calculated by symbolic calculations in Mathematica ([Wo19 1]), with the exception

of the non-linearity measure, which was computed by numerical differentiation from the

configuration space metric.

In the following, we will briefly describe a different method by which the measures for

the unconstrained system could be computed, based on the singular value decomposition.

The method described here is preferable when some of the matrices involved in the

computation become ill-conditioned.

The inverse of the performance metric g1 = JhJT could be computed by explicitly

inverting h, but problems arise with numerical stability if h is ill-conditioned. This will

happen for a manipulator arm if one of the links is much lighter than the others, for

example. An alternative method, more suited to this case, is to find a coordinate system

on C that brings the metric into Euclidean form (a local Cartesian basis) and evaluate

the metric in this frame. In the following it will be shown how this relates to the singular

value decomposition.

Let a general coordinate transformation in )4) be described by the m x m matrix

F e GL(m), and one in C by the n x n matrix G E GL(n). GL(n) is the group of
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non-singular n x n matrices. The configuration space metric transforms as

h —* GThG.

Similarly, the work space metric transforms as

Ti -4 FiF,

and the Jacobian transforms as

J — F’JG.

It follows that

g1 —* F_1g_1FT’

which does not depend on G. We can therefore find a G, such that h transforms into

the identity matrix. Computing the singular value decomposition [KL8Oj of h, i.e.

h=UUT

with U orthogonal and E diagonal, gives the desired transformation matrix G as

G = UE”2

and g’ is given by

= JUE_1UTJT.

A similar method can be used for the generalized Yoshikawa measure (eq. 2.5) and

the anisotropy measure (eq. 2.6). Define a matrix A by

A = g’.

The eigenvalues of A determine the anisotropy measure and the generalized Yoshikawa

measure. A is invariant under C pace coordinate transformations. It transforms as

A —* F’AF
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from which it follows that the eigenvalues do not depend on F. From the singular value

decomposition of the work space metric t,

q=VVT

we obtain a transformation F that brings in Euclidean form, namely

F = VE”2.

we can now express A as

A=BBT,

with

B =

The eigenvalues of A can now be computed as the squares of the singular values of B.

If one of the matrices (i.e. the Jacobian, the work space and the configuration space

metric) is ill-conditioned this will give more accurate results than computing the eigen

values of A directly. In this case some of the elements of B will be very small or very

large, and computing A will therefore effectively square these entries with a resultant

loss of accuracy. However, this method is slower than a straightforward computation of

the eigenvalues of A.

The above construction could be adapted to a computation of the measures over a

path by using a smooth singular value decomposition, [MK89, BGMBN9O]. This will be

faster than a recalculation of the singular value decomposition at each point on the path.

If all quantities are smooth, the singular value decomposition at nearby points can be

computed by small adjustments, in very few iterations, as described in [MK89].

The scalar non-linearity measure as given in eq. 2.9 seems to require the explicit

computation of h’ as well as the computation of all the — 1) components of the
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Riemann curvature tensor, which makes it quite demanding to compute. If there is a

more efficient way of computing this quantity seems to be an open problem.




