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Abstract 

This thesis presents a general method for the integrated computer animation of the 

shape and shading of multiple reactive fluids in complex environments. This method 

advances the state of the art in fluid animation in three basic ways. First, it applies 

to a much larger class of fluid phenomena than previously addressed in computer 

graphics: both gases and liquids containing chemically reactive species. Second, it 

integrates a simple yet powerful procedural animation method for modelling both 

chemical and thermal reactions and their effects on the appearance and behaviour of 

simulated fluids. Third, and perhaps most significantly, it provides greater control: 

the desired flow can be specified at any location as well as the degree to which the 

simulation should be constrained to match it. We use the Navier-Stokes equations 

for incompressible flow as a general model of fluid motion and numerically solve these 

equations with finite differences on a fixed, uniform grid using techniques adapted 

from computational fluid dynamics for the specific requirements of computer ani

mation. We illustrate the effectiveness of our method by applying it to a number of 

scenarios that would be difficult to animate using existing techniques. 
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Chapter 1 

Introduction 

1.1 Motivation 

The realistic computer animation of fluids (liquids and gases) presents some of the 

most difficult challenges in computer graphics. The sheer complexity of fluid flow 

can make the use of standard animation methods painstaking. Imagine, for example, 

interactively positioning thousands of control points of a model of a breaking wave 

at every key frame. Such macroscopic complexity is an intrinsic characteristic of 

fluid: the molecules of a fluid have greater kinetic energy than those of a solid, 

allowing them to overcome attractive intermolecular forces and move freely past 

each other. Thus, fluids have an effectively infinite number of degrees of freedom. 

Fluid flow, however, is not random but has a characteristic appearance that is easy to 

recognize. Thus, to animate fluids by explicitly specifying how the geometry (shape) 

and appearance (shading) changes over time requires great skill and patience so that 

the resulting animations appears realistic. 

The difficulty of animating complex flows in a convincing manner using stan

dard methods has motivated dedicated methods for fluids which introduce specific 
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tools for animating the shape and shading of gases and liquids. Early work in fluid 

animation focused on non-dynamic, ad hoc models of water waves and flow fields 

as well as simple dynamic simulation methods based on systems of point masses. 

These techniques address a limited range of fluid motion. Recent research has 

clearly demonstrated the effectiveness of adapting techniques from computational 

fluid dynamics for the realistic animation of the general motion of liquids and gases 

[19, 22, 23, 26, 68, 89]. These techniques numerically solve the Navier-Stokes equa

tions over time on a fixed, regular three-dimensional grid given initial and boundary 

conditions. 

While this recent research has rapidly advanced the state of the art, fluid 

animation remains one of the most difficult tasks in computer graphics. This disser

tation focuses on three fundamental challenges of animating fluids that have received 

little attention: 

1. Integrated Animation of Fluids 

Previous research in computer graphics has done little to address the inte

grated animation of the shape and shading of liquids and gases. Recent re

search has focused exclusively on the animation of a single fluid, most often 

specifically addressing either a gas or a liquid but not both. It is not clear 

how these techniques, even the most recent work on animating smoke [19] and 

liquid [22], can be integrated or extended to animate multiple fluids with dif

ferent material properties. In addition, the shading of fluids has largely been 

considered an independent task, despite being dependent on many of the same 

physical properties that affect fluid shape. 

2. Animation of Reactive Flow 
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Chemical and thermal reactions in fluids are responsible for a spectacular 

diversity of effects on the appearance and behaviour of gases and liquids. 

Combustion is perhaps the most dramatic example of reactive flow. Some 

specific effects have been addressed by ad hoc methods, e.g., models of flame 

[40, 59, 60, 62] and the propagation of fire [9, 61, 70]. These methods are 

difficult to generalize. Yngve et al. [89] modelled explosions based on the 

simulation of compressible flow. Weathering models have simulated the chem

ical and mechanical actions of liquids on solid surfaces [14, 15]. No research in 

computer graphics (to the author's knowledge), however, has involved the sim

ulation of Navier-Stokes equations in conjunction with chemical reactions. An 

additional challenge is coupling the effects of changing chemical concentrations 

with the shading of fluids. 

3. Control of Flow Simulation 

The essence of animation is control. Scripted scenes often call for very specific 

flow behaviours such as a body of water flowing into the shape of a human face. 

This degree of control is effectively impossible to achieve by simply setting the 

initial and boundary conditions of a flow simulation. Foster and Metaxas [25] 

demonstrated a number of approaches to controlling their flow simulation in

cluding modelling body forces and adjusting pressure values. However, the 

effects of body forces and pressure modifications are often hard to predict. 

Foster and Fedkiw [22] showed how "fake" objects could be employed in their 

liquid simulation to direct the flow, but they noted that their approach "[does 

not give] perfect direct control over the liquid motion." The difficulty of con

trolling flow simulation is perhaps the most significant limitation of current 

techniques for animating fluids: animators are often reluctant to give up ex-
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plicit control and are unwilling to fight unruly simulation methods that give 

unpredictable results. 

1.2 Problem Statement 

This dissertation addresses the integrated animation of the shape and shading of 

reactive gases and liquids in complex environments. The goal here is not to model 

real fluids but to facilitate the realistic modelling of the appearance of fluids flowing 

in a desired manner. To satisfy this goal we seek a coherent animation methodology 

based on the numerical simulation of the Navier-Stokes equations in three dimensions 

as well as an effective means of controlling the simulation. We require appropriate 

approximations to the full Navier-Stokes equations and their numerical solution for 

the specific requirements of animating the shape and shading of fluids. 

1.3 Methodology 

Our methodology is based on a general fluid model specifically designed for computer 

animation. This model integrates physical fluid properties such as velocity, pressure, 

and temperature with shape and shading attributes as well as abstract parameters 

for simulation control. Al l parameters of our model are defined over a fixed, three-

dimensional spatial domain as scalar or vector fields. 

Physical fluid properties are governed by the Navier-Stokes equations. We 

numerically solve these equations using a classic projection scheme [10] where at ev

ery time step we first compute an intermediate velocity field without regard for mass 

conservation and then project out a mass-conserving velocity field. We discretely 

approximate the continuous partial differential equations using finite differences on 
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a fixed, uniform grid. We use volume primitives we call reactive elements to track 

the evolution of material properties in the flow. Each element is associated with a 

specific material. 

Reactive elements also serve other key roles in our methodology. They pro

vide a simple but effective solution to a crucial problem: the interactive visualiza

tion of unsteady flow. They are also integral to our shape and shading models. 

And finally, they can be programmed, i.e., element properties can be animated with 

associated procedures. These procedures are programs in a dedicated high level 

language that are executed at every time step in the simulation. They provide a 

general mechanism of directly modelling the effects of chemical reactions (or any 

other real or imagined phenomenon) on the appearance and behaviour of flowing 

fluids. 

Programming reactive elements is one of the two mechanisms that we in

troduce for controlling flow simulation. The other involves coupling user-modelled 

flow fields with our simulation in order to constrain it towards desired results. This 

approach corresponds to modelling implied external body forces, but rather than 

modelling forces whose effects may be hard to predict, we allow the direct specifi

cation of the desired influence on the fluid velocity using "flow primitives". 

Our animation method evolves our fluid model over time given initial and 

boundary conditions and a desired time step. The simulation iteratively advances 

through time, constrained by a standard stability condition that may require sub-

step iterations. At the end of every time step, we render images using a volume 

ray-tracing algorithm. 
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1.4 Relation to Previous Work 

This dissertation builds on ideas and techniques from previous work in fluid anima

tion and other areas of computer graphics. The basic framework of our methodology 

is inspired in part by the work of Fleischer et al. [21] on modelling surface elements 

such as thorns, scales, and feathers with "cellular particles" governed by "cell pro

grams" in an "extracellular environment" (this is discussed in Section 2.6). We 

have found the basic abstraction of programmable elements in a global environment 

to be quite useful. Our fluid flow simulation method is similar to recent work in 

fluid animation [19, 22, 68]: we use the same basic projection method and semi-

Lagrangian integration scheme adopted from computational fluid dynamics as we 

feel that these techniques are good choices for computer animation. However, our 

simulation method addresses a significantly larger class of fluid phenomena than 

these earlier approaches. 

1.5 Contributions 

This dissertation makes three main contributions that advance the state of the art 

in the animation of fluids: 

• We present a general method for the integrated animation of a much larger class 

of fluid phenomena than previously addressed in computer graphics: gaseous 

flow, free-surface liquid flow, and chemical and thermal reactions in both gases 

and liquids. Moreover, we address both the shape and shading of fluids. 

• We present an open-ended approach to the modelling of chemical and thermal 

reactions and their effects on the appearance and behaviour of our simulated 
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fluid flows through the programming of reactive elements. This procedural an

imation method does not require any knowledge of fluid mechanics or chemical 

kinematics. Very simple procedures can give quite interesting results, and a 

diverse range of effects are possible. 

• Perhaps the most significant contribution is an intuitive and powerful approach 

to controlling incompressible flow simulation. In this approach the desired 

fluid velocity can be specified at any location as well as the degree to which 

the simulation should be constrained to match it, allowing a continuum of 

simulation control from explicitly specifying the flow to specifying a subtle 

influence on it that generally directs its behaviour. 

1.6 Outline of Thesis 

After reviewing related research in Chapter 2, we present the conceptual framework 

of our animation methodology in Chapter 3. This framework defines an integrated 

fluid model consisting of physical properties, shape and shading attributes, and 

control parameters. The physically based component of our model is described in 

Chapter 4, which reviews the basic principles and equations of fluid dynamics and 

formulates our dynamic model as an initial-boundary value problem. The numeri

cal solution of this problem using techniques from computational fluid dynamics is 

discussed in Chapter 5. As nonlinear flow simulation can be difficult to control for 

animation purposes, we present a technique for "directing" the flow to "perform" 

as desired in Chapter 6. The shape and shading component of our fluid model is 

described in Chapter 7, which also discusses our implementation of a bidirectional 

ray-tracing method for rendering realistic images from our fluid model. We present 
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a method of modelling chemical reactions and their effects on the flow using sim

ple procedures in a dedicated programming language in Chapter 8. We discuss our 

results and suggest possible directions for future work in Chapter 9. 
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Chapter 2 

Previous Work 

In this chapter, we review previous work on animating fluids and other research in 

computer graphics related to this dissertation. 

2.1 Fluid Animation 

Recent research has demonstrated the effectiveness of animating gases and liquids 

using techniques adapted from computational fluid dynamics for numerically solv

ing the Navier-Stokes equations in three dimensions. Our review focuses on this 

research as we use similar techniques, but first we briefly survey other approaches 

to animating fluids. 

2.1.1 Wave Models 

Early work modelled waves using parametric surfaces animated by ad hoc functions 

[49, 29, 58, 77]. For example, Fournier and Reeves [29] modelled ocean waves ap

proaching a shore using functions that accounted for wave refraction with depth and 

the effects of wind on wave crests. These ad hoc models can be computationally 
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efficient but address a limited range of motion. 

2.1.2 Particle Systems 

Reeves [62] introduced the idea of using particle systems to model fire and other 

"fuzzy objects" where particles are point masses with associated properties and their 

motion is governed by dynamic simulation. Such particle systems are a simple and 

popular method of animating gases and liquids as well as myriad other phenomena 

such as fireworks and swarms of bees. A liquid surface is typically represented using 

an implicit surface where the implicit field function is generated by summing radially 

decaying field functions associated with each particle. The resulting surface usually 

has a characteristic "blobby" look. 

Later work introduced intermolecular forces (attractive at long ranges and 

repulsive at short ranges) between particles to simulate viscous flow [51, 75]. This 

work was extended to include thermal effects where increasing temperature decreases 

the attraction between particles [76] and to account for volume conservation in 

the implicit surface generated from the particles [13]. For any practical number of 

particles, it is not clear that molecular dynamics is an adequate model of macroscopic 

behaviour. An alternate approach is to use continuum dynamics and a Lagrangian 

simulation method, e.g., lava flows have been animated using smoothed particle 

hydrodynamics (SPH), a Lagrangian fluid flow simulation method typically used for 

astrophysical problems [73]. 

2.1.3 Flow Field Models 

A flow field describes fluid velocity as a function of space. A variety of non-dynamic 

methods of modelling flow fields have been developed for animating fluids and ob-
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jects in fluids. Non-physical flow fields have been modelled using ad hoc techniques 

[16, 17, 18, 39, 67]. Mass-conserving flows fields for incompressible flows have been 

modelled by the superposition of "flow primitives" such as sources, sinks, and vor

tices [33, 84] and subdivision schemes that start with initial "sketches" of the flow 

[83]. These methods can be effective, but they do not model the dynamics of the 

flow: the burden is on the animator. 

Turbulent flow fields have been modelled using stochastic methods [64, 66, 

69, 70]. A typical approach is Fourier synthesis where the spectral characteristics 

of the motion are modelled in Fourier space and then a Fourier transformation is 

performed to generate a flow field. 

2.1.4 Flow Simulation 

The most effective approach to the computer animation of general fluid flow has 

been to adapt techniques from computational fluid dynamics (CFD) for the needs 

of computer graphics where the goal is to realistically simulate the appearance of 

flowing fluids. Only in recent years with advances in computing power has the 

fully three-dimensional simulation of the Navier-Stokes equations become practical 

for computer animation. Still many CFD techniques, especially for the dramatic 

flows often of interest in computer graphics (e.g., turbulent, free-surface, reactive 

flows), remain impractical for animation purposes where simulation is used as a tool 

for generating desired motion—generally a trial-and-error process requiring many 

simulation runs. 

Earlier work in computer graphics addressed purely two-dimensional fluid 

flow simulation [32, 88] and liquid simulation where the liquid surface is constrained 

to be a height field function z = /(x,y) where z is the height of the liquid surface 
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with respect to a point (x, y) in the plane. Kass and Miller [44] animated such 

height field models by simplifying hydrodynamic equations to the two-dimensional 

wave equation, discretely approximating it using finite differences, and then using 

a stable implicit numerical integration scheme to time-evolve the system. O'Brien 

and Hodgins [56] presented a similar approach. An alternate approach to animating 

a height field model of liquid is to numerically solve the Navier-Stokes equations in 

two dimensions and use scaled pressure values as height field elevations [7, 8], but 

this approach does not accurately model three-dimensional liquid motion. Height 

field models can be effective and computationally efficient for applicable scenarios, 

but obviously they can only represent a limited range of liquid motion. 

Foster and Metaxas (1996) 

Foster and Metaxas [23, 24] were the first to show that numerical simulation of the 

Navier-Stokes equations in three dimensions was a practical method of animating 

free-surface liquid flow. They used a classic method from computational fluid dy

namics known as the marker-and-cell (MAC) method, originally developed in 1965 

by Harlow and Welch [37]. In this method the Navier-Stokes equations are discretely 

approximated using finite differences over a fixed grid. The simulation algorithm is 

explicit in time and is stable subject to a Courant condition. The computed fluid 

velocity is used to govern massless marker particles or a height field to track the free 

liquid surface. In subsequent work, they presented several methods of controlling 

the liquid flow simulation using boundary conditions, external forces, and pressure 

modifications [25]. 
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Foster and Metaxas (1997) 

Foster and Metaxas [26] presented a similar method for animating gases that ac

counts for drag (shearing forces) caused by a faster moving gas mixing with a slower 

moving gas, thermal buoyancy (hotter parts of a gas rising faster than colder parts), 

and turbulent effects caused by interaction with solid objects. The grid resolution 

is a limiting factor in modelling effects such as rotational motion. 

Stam (1999) 

Stam [68] animated gaseous flow with an unconditionally stable method of numeri

cally solving the incompressible Navier-Stokes equations. This method allows much 

larger time steps to be taken than would be possible with the method of Foster 

and Metaxas [26]. To achieve this stability, a semi-Lagrangian integration scheme is 

used to treat the convective terms in the equations and implicit methods are used 

to handle the other terms. The solution algorithm is based on a standard projec

tion method originally due to Chorin [10]. The semi-Lagrangian integration scheme 

introduces excessive numerical dissipation where the flow is dampened more rapidly 

than real flows, but Stam [68] argues this is an acceptable trade-off for stability. 

Internal boundaries and free-surfaces were not addressed in this work. 

Witting (1999) 

Witting [86] presented a production system for the computer animation of fluids in 

a traditional animation environment. This system is based on the two-dimensional 

simulation of compressible Navier-Stokes equations. Images are used to define ini

tial velocity and temperature fields, and the simulated flows are used to transform 

images. 
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Yngve et al. (2000) 

An explosion is a burst of energy released in the air that generates a blast wave 

front (a nearly discontinuous increase in pressure, temperature, and density) that 

propagates at supersonic speeds. Some work in computer graphics has addressed 

explosions without simulating gaseous flow [50, 54]. However, Yngve et al. [89] 

demonstrated that a more general approach is to simulate the propagation of blast 

waves in gases. They used a finite differences approximation of the Navier-Stokes 

equations for compressible flow over a fixed, three-dimensional grid and a standard 

explicit algorithm for numerically integrating the compressible equations. They note 

that special care must be taken to deal with the rapid pressure changes caused by 

the supersonic blast wave: Stam's method [68] is not appropriate because they need 

to track the sharp wave front profile; instead they use a donor-acceptor method for 

the convective terms. The initial conditions of their simulation are set by using a 

polygonal mesh to define the blast wave; the mesh is voxelized and used to define 

the region of high pressure or temperature. The effects of the blast wave on objects 

are addressed by computing the forces on object boundaries due to fluid pressure. 

Rigid body simulation as well as fracture simulation can then be used to generate 

the response of the object. The effects of solids on the fluid are handled by voxelizing 

triangular mesh models and displacing fluid as required. Yngve et al. also address 

various secondary effects such as the refraction of light caused by blast waves. 

Fedkiw, Stam, and Jensen (2001) 

Fedkiw, Stam, and Jensen [19] animated smoke by simulating inviscid, incompress

ible flow on a fixed, three-dimensional grid. They note that the effects of viscosity 

are negligible in gases, especially on coarse grids where numerical dissipation dom-
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inates physical viscosity and molecular diffusion. Their method adopts the semi-

Lagrangian method used by Stam [68] and is also based on a projection method [10]. 

Their main contribution is a vorticity confinement scheme that increases vorticity 

which otherwise gets damped out due to the excessive numerical dissipation. This 

scheme is based on a technique from the computational fluid dynamics literature for 

modelling turbulent flow around helicopters [72]. 

Foster and Fedkiw (2001) 

Foster and Fedkiw [22] presented a general method for animating incompressible, 

viscous liquid flow with free surfaces in environments with complex boundaries and 

moving objects. They numerically solve the Navier-Stokes equations using finite 

differences, a fixed grid, and a projection method [10]. The key innovation of their 

work is their integrated use of a level set method and particles with no inertia to 

track the free liquid surface. They also address moving objects in the flow. They 

show how this method for moving objects can be adapted to control the flow. 

2.2 Combustion 

Fire is the manifestation of combustion in heat, flame, and light. Combustion (burn

ing) is a rapid oxidation reaction. Earlier work in computer graphics developed ad 

hoc models of flame [40, 59, 60, 62]. More recent research has addressed the under

lying process of combustion. 

Chiba et al. (1994) 

Chiba et al. [9] animated fire in two-dimensions using a two-dimensional array of 

"fuel" cells. Each cell models the amount of fuel it contains, its temperature, and the 

15 



binary state of "burning" or "not burning". A fuel cell is "ignited" if it contains fuel 

and is above a threshold temperature. Once "burning", a fuel cell creates "flame" 

particles and reduces its fuel. Fuel cells absorb heat from particles and transfer heat 

to neighboring cells. Flames and smoke are modelled using particle systems [62]. 

The forces on a particle include the effects of a "vortex field", an "ascending cur

rent", other particles, and damping. The vortex field models turbulent flow using a 

random distribution of vortex primitives that grow and decay in strength over their 

life cycles. The ascending current force models thermal influences on its motion; 

the force is proportional to temperature of the particle (which is affected by the 

temperature of nearby particles). Forces due to other particles model diffusion of 

particles with relatively low temperatures and convergence of particles with rela

tively high temperatures. Flame particles that cool below a threshold temperature 

are converted into smoke particles. At each time step, the particles are rendered 

using filtered line segments based on their paths during the time step. 

Perry and Picard (1994) 

Perry and Picard [61] presented coupled flame and fire spread models. As with Chiba 

et al. [9], flames are modelled using an approach based on particle systems [62]. 

The spread of fire is modelled by tracking the boundary between burning and non-

burning regions. This boundary is represented by a ring of linked "control points" 

that are constrained both to stay on the surface of a polygonal model and to avoid 

any self-intersections in the boundary. The velocity of these control points depends 

on fuel density, temperature, the thermal conductivity of the gas, and other factors. 

Flame particles are generated from advancing control points. 
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Stam and Fiume (1995) 

Stam and Fiume [70] presented a simple model of flame and fire spread. In their 

approach, they simulate the advection and diffusion of density fields for fuel, flame, 

and smoke in flow fields modelled by techniques discussed in Section 2.1.3. At a 

sufficiently high temperature, fuel begins to burn, converting fuel to flame. Flame 

evolves and cools, transferring heat to fuel, and when sufficiently cold, generates 

smoke. The generation of flame and smoke is based on Arrhenius formula. A 

"shooting operation" is performed to calculate the source term for fuel temperature. 

While their results are impressive, Stam and Fiume [70] note: "the fire model has a 

large set of interdependent parameters which are not necessarily easy to manipulate 

. . . getting the fire look 'just right' can be problematic." 

2.3 Weathering 

A common complaint about computer generated imagery is that the depicted scenes 

often appear too pristine. Researchers in computer graphics have developed various 

methods of modelling the effects of weathering. Here we review techniques that 

address fluid flow and chemical or mechanical fluid-solid interactions. 

Washes and Stains Caused By Rain 

Dorsey, Pedersen, and Hanrahan [15] presented a method for modelling surface ma

terials that have been weathered by rain. They noted that the standard approach 

to modelling a weathered appearance, texture-mapping, suffers from several draw

backs: 

. . . it is very difficult to match textures across surface boundaries or 
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account properly for area distortions caused by the parameterization. 

More fundamentally, the texture mapping approach does not take into 

account the structure of properties of a given material or the processes 

in the surrounding environment that account for weathering. 

Thus, they model water flowing over a surface model, dissolving and absorbing 

material, carrying it, and then depositing it back on the surface. This process creates 

weathering effects such as patterns of washes and stains. Both "base material" 

and "loose deposits" are modelled over a surface as supplemental texture maps. 

Water is modelled as particles that flow over the surface, affected by the roughness 

and absorbtivity of the base material. Particle positions are governed by dynamic 

simulation where forces include gravity, friction, self-repulsion, and diffusion. Force 

vectors are constrained to lie on the surface (by projecting them onto the tangent 

plane of the surface) except when particles fall off a surface to a lower one. When 

the mass of a particle falls below some threshold, it is removed from the simulation. 

Differential equations define the rates of absorption and sedimentation. 

Weathering of Stone 

The weathered appearance of stone is the result of a variety of chemical and mechan

ical effects. Rainwater dissolves oxides of carbon, sulphur, and nitrogen, forming a 

solution that is absorbed by the porous stone. This solution transforms the minerals 

in the stone into gypsum and other substances that are readily soluble in water. The 

recrystallization of these substances, combined with pollution, forms a crust on the 

stone surface which erodes over time. 

Dorsey et al. [14] presented a method of modelling and rendering weathered 

stone that simulates these weathering processes. Their method is based on a mesh 
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of volume elements, "slabs", that are created by extruding a quadrilateral mesh. 

An input surface model is sampled at positions with slabs, giving density values 

that define position outside, on, and inside the surface. Material properties are then 

generated at these sample positions using procedural techniques. The simulation of 

weathering process—moisture travel, dissolution and recrystallization of minerals, 

and erosion—is done using finite differences over the voxels in the slabs. The travel 

of moisture (through porous stone) is done by tracking a front between wet and 

dry regions. The stone model is rendered taking into account subsurface scattering 

using a Monte Carlo based ray marcher. 

2.4 Erosion 

Terrain modelling has received considerable interest in computer graphics. Early 

work modelled terrain using stochastic techniques, e.g., the work of Fournier et 

al. [28]. However, more recent research has used the simulation of erosion as a 

mechanism of generating terrain models. We review these erosion-based methods of 

terrain modelling with a focus on the modelling of liquid-solid interactions. 

Musgrave, Kolb, and Mace [52] modelled terrain by generating an initial 

shape using fractal techniques and then using a simple erosion model to simulate 

the development of streams, valleys, and talus slopes. Their erosion model consists of 

two components: a hydraulic erosion model that simulates rain falling on the terrain 

and carrying sediment downhill, and a thermal weathering model that simulates 

other processes that cause material to dislodge and gather at the bottom of an 

incline. 

Roudier, Peroche, and Perrin [63] presented a similar method of modelling 

terrain by simulating erosion. The shape of the terrain is modelled by a two-
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dimensional hexagonal grid of elevation values (a height field model). The prop

erties of the terrain are modelled by three-dimensional fields. Each grid node uses 

its associated elevation value to map into this "solid texture" of terrain properties. 

To model these properties, they assume the terrain consists of layered rocks (strata) 

deformed by folds and faults (continuous and discontinuous cylindrical deformations 

respectively). They use an hoc algorithm for simulating erosion and depositation. 

Nagashima [53] presented a similar terrain modelling method that requires fewer 

geological parameters to be specified. 

2.5 Reaction-Diffusion Models 

Little work in computer graphics has addressed the modelling of chemical reactions. 

A notable exception is pattern formation methods based on a reaction-diffusion 

model originally proposed in 1952 by Turing [78] for the development of biological 

patterns. In this model concentrations of hypothetical chemicals ("morphogens") 

that control pigment production diffuse and react to form patterns such as spots 

and stripes. A basic formulation of this reaction-diffusion model for two morphogens 

with concentrations a and b is: 

where / and g are functions modelling the interaction of the two chemicals and da 

and <4 are the coefficients of diffusion. 

Researchers in computer graphics have adopted this reaction-diffusion model 

for texture synthesis. Turk [79] showed how reaction-diffusion simulations could 

be used in a cascade fashion where the system generates the initial conditions of 

da 
di 

/ ( o , b) + daV2a 

db 
di 

g(a,b) + dbV 

20 



other systems that refine the pattern. He also presented a method of matching 

the generated texture to the geometry of a polyhedral surface by running the sim

ulation directly on the surface. Witkin and Kass [85] introduced anisotropic and 

spatially non-uniform diffusion and a method for mapping the texture to a para

metric surface that accounts for non-uniform parameterization. Fowler, Meinhardt, 

and Prusinkiewicz [30] integrated a reaction-diffusion model into their modelling 

methods for sea shells. Reaction-diffusion models have been shown to be capable of 

generating many interesting patterns; however, generating a particular pattern can 

be difficult. 

An alternative approach to synthesizing biological patterns, especially mam

malian coat patterns, is the biologically motivated clonal mosaic model [80, 81]. In 

this approach, discrete cells are used to generate patterns. After setting the initial 

conditions of the cells, the basic mechanism of pattern formation is cell division and 

relaxation of cell positions. The results are particularly effective for big cats and 

giraffes. 

2.6 Cellular Texture Generation 

While we address a completely different a problem, our fluid animation method is 

inspired in part by the methodology of Fleischer et al. [21] for modelling thorns, 

scales, feathers, and similar surface elements whose position, orientation, and other 

characteristics are interdependent. Their method simulates the evolution of "cel

lular particles" in an "extracellular environment". A cellular particle has a set of 

properties including position, orientation, radius, flags for splitting and death, and 

concentrations of chemicals within the cell and on the cell membrane. The ex

tracellular environment is what a cell can "sense" and consists of concentrations of 
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chemicals in neighboring cell membranes, values of the implicit function defining the 

surface and its gradient, concentrations of diffusing chemicals and their gradients, 

and the difference from the average orientation of neighboring cells. 

The behaviour of cells is governed by "cell programs", which define deriva

tives of cell state variables. Al l the cell programs for a cell are superposed (summed) 

and the resulting system of differential equations is solved using a piecewise ordinary 

differential equation solver in order to handle the discontinuities. Constraints can be 

written as cell programs by formulating them as energy functions to be minimized. 

After running the cellular particle simulator, the particles and their environ

ment are converted to geometric and other information for rendering. Separation 

of the cellular particle simulation from the actual geometry (and other rendering 

information) has the advantage of allowing post-simulation modification of the ap

pearance or representation of the cells based on relative image size and other fac

tors. The disadvantage is that the actual geometry is not used in the simulation so 

"undesirable intersections" may be generated. Additional details can be found in 

Fleischer's dissertation [20]. 

2.7 Summary 

The state of the art in fluid animation has advanced rapidly in recent years as 

the effectiveness of using techniques adapted from computational fluid dynamics 

for numerically solving the Navier-Stokes equations in three dimensions has become 

clear. Recent research has presented general methods for animating incompressible, 

viscous, free-surface liquid flow with internal boundaries and objects moving in the 

flow [22] and animating incompressible, thermally buoyant gaseous flow also with 

internal boundaries and moving objects [19]. 
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Still many challenges remain. For example, despite their similarity, it is 

not clear how to integrate the methods just mentioned to model the interaction of 

a gas and liquid. Chemical reactions in fluids have been modelled in an ad hoc 

manner for the animation of combustion and the modelling of weathering effects, 

but no research (to the author's knowledge) has addressed the general modelling of 

chemical reactions in fluids. Another challenge—perhaps the most pressing one—is 

control: getting flow simulation to do what you want. 
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Chapter 3 

Framework 

In this chapter we present the conceptual framework of our methodology for the 

computer animation of reactive fluids. This framework consists of an integrated 

model of fluids containing reactive chemical species and a basic algorithm for ani

mating the various parameters of this model. Our fluid model is specifically designed 

for computer animation and provides a coherent basis for the integration of fluid 

flow simulation with both the procedural animation of chemical reactions and the 

representation of fluid shape and shading. 

3.1 A n Integrated Fluid Model 

In our framework we define a fixed spatial domain tt C 3ft3 to be entirely filled 

with matter consisting of different material types. Materials here are defined to be 

immiscible, i.e., materials cannot be mixed, and thus exactly one material exists 

at each point x € tt. A material is defined to be entirely in gas, liquid, or solid 

phase, and thus every point x £ tt is entirely in one of these phases. Solid materials 

here are used simply to define static boundaries for fluid (gas and liquid) materials, 

24 



Figure 3.1: Digraph showing relationship between independent (A), interdependent 
(B), and dependent (C) parameters of our material model. 

though our conceptual framework could easily be extended to address dynamic solids 

including various effects of fluids on solids. However, the scope of this dissertation 

is limited to fluids, and we will focus entirely on fluid materials. 

Our material model consists of a set of parameters each of which we abstractly 

characterize as either independent, interdependent, or dependent. If we use a directed 

graph to represent dependency relationships between parameters, then independent 

parameters are nodes A with an in-degree of zero, interdependent parameters are 

nodes B that are part of some cycle, and dependent parameters are nodes C with 

an in-degree of at least one that are not part of any cycle (see Figure 3.1). This 

abstract characterization of parameters of our material model helps define appro

priate techniques for their animation. Our general strategy is to use interactive and 

procedural animation techniques for independent parameters, dynamic simulation 

for interdependent parameters, and parametric models for dependent parameters. 

Al l parameters of our.material model (other than material constants) are 

defined over the spatial domain J l c S 3 and the temporal domain T c R a s either 

scalar fields (S : Q x T -» K) or vector fields (V : Q x T -> K 3 ) . Using fields 

as a unified representation facilitates the integration of different modelling, simula-

25 



Physical 
v(x,t) 
p(x, t) 
T(x,t) 
b(x,t) 
d(x,t) 
Qi(x,t) 
Lj(x,i) 
Aj(x, t) 
*(x,t) 

velocity (m/s) 
pressure (N/m 2) 
temperature (K) 
body forces (N) 
concentration of chemical species i 
production rate of chemical species i 
loss rate of chemical species i 
diffusion coefficient of species i 
material type (see Table 3.2) 

Control 
a c (x, t) 
vc(x, i) 
5j(x, t) 
Vi(x,t) 

degree of flow control (ac € [0,1]) 
control velocity 
implicit function for control surface i 
density field of control volume i 

Shape and Shading 
£(x, t) 
A4(x,i) 
Ta(x,r.) 
T6(x,t) 
T c(x,i) 

implicit function for liquid surface 
volume density of participating media 
volume texture coordinate 
volume texture coordinate 
volume texture coordinate 

Table 3.1: Spatially varying parameters of our material model (x € £2). 

tion, and animation techniques. Table 3.1 lists all the parameters of our material 

model. These parameters will be described in detail in subsequent chapters; here 

we summarize their motivation. 

Modelling physical properties of fluids such as density, pressure, tempera

ture, and velocity is of course essential for physically based dynamic simulation. We 

motivate these physical parameters and derive our dynamic model for them from 

the Navier-Stokes equations in Chapter 4. Note that our model defines all fluids to 

contain the same set of arbitrary (real or hypothetical) chemical species with nor

malized concentrations: each chemical species i has concentration C;(x, t) G [0,1]. 

Thus, every point x € fi can contain some amount of every chemical species. This 
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4> phase (gas, liquid, or solid) 
p density (kg/m3) 
M viscosity 

thermal diffusivity 
nt index of refraction 

Table 3.2: Material constants. 

facilitates the modelling of chemical reactions between different materials. Our dy

namic simulation method is described in Chapter 5. A key aspect of our framework is 

that we integrate parameters for simulation control into our material model. These 

parameters include a "control velocity" that is used to "direct" the flow simulation 

to "perform" as desired. This method and its integration with our numerical simula

tion algorithm is discussed in Chapter 6. Other "control" parameters define abstract 

surfaces and volumes for "shaping" the simulation. These parameters are discussed 

in Chapter 8. The final set of parameters describes the shape and shading of liq

uid surfaces and participating media. Liquid surfaces are represented using implicit 

surfaces. Participating media are represented using volume densities. We define 

shading models with volume parameters. This approach facilitates the coupling of 

shape and shading parameters with physical properties and control parameters. Our 

shape and shading models and their parameters are described in Chapter 7. 

3.2 Reactive Elements 

In addition to our model of fluid materials, our framework defines abstract modelling 

primitives we call reactive elements. These primitives are ellipsoidal volumes with a 

set of associated properties that serve three distinct roles in our animation method

ology. The first role is the tracking of material properties. Since we use fixed, fairly 
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Symbol Property 
Qi production rate of chemical species i 
U loss rate of chemical species i 
Ai diffusion coefficient of chemical species i 
q production rate of heat 

Table 3.3: Programmable reactive element properties. 

coarse grids in our numerical simulation algorithm, it is hard to track sharp inter

faces in the flow as numerical dissipation tends to smooth out such interfaces. Thus, 

interface tracking generally requires special techniques. We use ellipsoidal primitives 

to track the evolution of material properties such as density and viscosity. 

The second role of reactive elements is to facilitate the interactive visualiza

tion of unsteady flow fields. Simulation-based fluid animation is a trial-and-error 

process that (to be practical) requires previewing flows before committing to the 

final rendering. While there are a variety of techniques for the visualization of un

steady, three-dimensional flow fields, the task remains challenging and is an active 

area of research. Moreover, these techniques are designed to facilitate the under

standing of the character of the flow and not the appearance of fluids moving in 

it. We have found that an effective approach to "previewing" our simulated flows 

is to generate simple geometric models from elements that can be rendered quickly 

using graphics hardware. These geometric models can be appropriately shaded for 

additional visual cues about fluid properties. 

The third role reactive elements play in our methodology is one of simulation 

control: elements are programmable. The programmable element properties are 

listed in Table 3.3. While element motion is governed by the fluid flow simulation, 

these properties can be arbitrarily animated. We define reactive element programs 

as procedures that are executed at every time step in our simulation algorithm to 
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I. Execute reactive element programs. 

II. Transfer element information to simulation grid. 

III. Simulate the evolution of physical properties on grid. 

IV. Advect reactive elements. 

Figure 3.2: Main steps in one iteration of the simulation algorithm. 

update these properties. These procedures are programs in a dedicated high level 

language described in Chapter 8. This procedural animation method facilitates the 

modelling of chemical and thermal reactions and their effects on the appearance and 

behaviour of our simulated fluids. 

3.3 The Basic Algorithm 

Our animation methodology is based on a simulation algorithm that iteratively ad

vances through time. Before running the simulation, the animator must set the 

desired time step (or equivalently the desired frame rate) and model appropriate 

initial and boundary conditions (often simple default values are sufficient). Ad

ditionally, the user can model control surfaces and volumes, the control velocity, 

various material types, reactive element programs associated with each material 

type, and the initial state and distribution of reactive elements. 

Our simulation algorithm is limited by a stability condition that restricts the 

maximum time step that may be taken. Thus, multiple simulation iterations may be 

required to advance from one frame to the next. After determining the appropriate 

simulation time step 5t (which will be less than or equal to the inverse of the desired 

frame rate), one iteration of the simulation consists of the four main steps shown 
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in Figure 3.2. This basic algorithm will be fleshed out in Chapters 5 and 6. At the 

end of the one or more simulation iterations required to advance the system to the 

time of the next frame, the rendering algorithm discussed in Chapter 7 is used to 

synthesize the frame from the current state of the system. 

3.4 Summary 

We have presented a simple, general, and coherent framework for our animation 

methodology. We use an integrated model of the shape, shading, and physical prop

erties of fluid where all parameters of this model are represented using fields. These 

parameters are time-evolved from initial and boundary conditions using coupled 

dynamic simulation and procedural animation methods. 

Our framework facilitates the integrated animation of the appearance and 

behaviour of multiple reactive fluids. A number of challenges must be addressed to 

develop an effective animation method based on this framework. First among these 

is that we need a physically based dynamic model of fluid suitable for computer 

animation. Defining such a model is the subject of the next chapter. 
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Chapter 4 

Dynamic Model 

In this chapter we review the basic principles and equations of fluid dynamics. We 

derive our dynamic model for fluid flow from these equations by making a number 

of simplifying assumptions that we argue are appropriate for computer animation. 

We formulate this model as an initial-boundary value problem. . 

4.1 Introduction 

In 1755 the Swiss mathematician Leonhard Euler derived a nonlinear set of partial 

differential equations that describe the behavior of an idealized, non-viscous fluid. 

From Euler's equations, the equations for viscous flow were derived by the French 

engineer Claude Louis Marie Henri Navier in 1822. The Irish mathematician George 

Gabriel Stokes rederived the equations in 1845 using a more sound theoretical basis. 

These equations, now known as the Navier-Stokes equations, remain the mathemati

cal basis of all modern fluid dynamics, and the field of computational fluid dynamics 

is devoted to their numerical solution. 

For computer animation, there is no a priori justification for modelling the 
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underlying physics of fluid flow: the sole interest is the appearance of flowing fluids. 

Indeed, as discussed previously, many effective non-physical fluid animation methods 

have been developed, e.g., ad hoc models of ocean waves [29, 58, 77]. However, 

recent work has shown that the numerical solution of the Navier-Stokes equations 

in three dimensions can be an effective method of realistically animating a much 

more general range of fluid motions [19, 22, 23, 26, 68, 89]. 

This dissertation addresses a larger class of fluid motion than has been con

sidered before in computer graphics—the flow of multiple reactive fluids—and the 

goal of this chapter is to derive a suitable dynamic model for these flows specifically 

designed for the needs of computer animation. Ideally, this model should be general 

enough to describe all the visually important characteristics of our class of fluid 

motions, yet simple enough to be numerically solved using fast and robust methods. 

We argue that when this ideal cannot be achieved, the best approach is to simplify 

the dynamic model to ensure fast and robust simulation and use ad hoc techniques 

to achieve the desired visual effects. 

4.2 Basic Principles of Fluid Flow 

In this section we briefly review some basic concepts of fluid flow that are essential 

to understanding this dissertation. For details, the reader is referred to any good 

book on fluid dynamics such as the classic by Batchelor [3]. 

4.2.1 F lu id 

At a molecular level, the phases of matter can be understood in terms of molecular 

kinetic energy and intermolecular forces. In solids, molecules are held closely packed 

and in relatively fixed positions by intermolecular forces. In fluids, molecules have 

32 



Fluid Density (kg/m6) 
Hydrogen 0.0899 
Helium 0.1785 
Air 1.293 
Oxygen 1.429 
Carbon dioxide 1.977 
Ethyl alcohol 799 
Water 1,000 
Glycerine 1,260 
Mercury 13,550 

Table 4.1: Densities p of common fluids at 20°C and one atmosphere. 

greater kinetic energy and can overcome attractive intermolecular forces to move 

freely past each other. Both gases and liquids are fluids. In liquids, molecules move 

freely but are held closely packed. In gases, molecules have enough kinetic energy to 

escape the attraction of surrounding molecules. The phase of a substance of course 

depends on its temperature T, a measure of the average molecular kinetic energy. 

At a macroscopic scale—obviously the scale of interest for computer graphics— 

fluids are usually assumed to be continuous rather than collections of discrete 

molecules. At this scale, a fluid is defined in terms of stresses. A stress is a force per 

unit area acting on an infinitesimal surface element, and a shear stress is the stress 

component acting tangentially to this surface. A fluid is defined as a substance that 

cannot resist shear stress at rest. A fluid responds to even the smallest shear stress 

with a continuous deformation as layers of fluid slide past each other: it flows. 

4.2.2 Density 

Fluid density p, the mass of material per unit volume, depends on both temperature 

and pressure. Table 4.1 lists the densities of some common fluids (both gases and 

liquids) at fixed temperature and pressure values. Note that the liquids are roughly 
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Fluid Approximate Viscosity (centipoise) 
Hydrogen 0.0086 
Air 0.0182 
Water 1.002 
Ethyl alcohol 1.2 
Whole milk 2.12 
Olive oil 84.0 
Pancake syrup 2,500 
Honey 10,000 
Peanut butter 250,000 
Window putty 100,000,000 

Table 4.2: Approximate viscosities LL of common fluids at 20°C. 

1000 times as dense as the gases. 

4.2.3 Viscos i ty 

Viscosity LL is a measure of the resistance of a fluid to flow. This resistance is 

caused by internal friction: molecular cohesion and momentum transfer. Viscosity 

(also called the dynamic viscosity) is defined as the ratio of the shear stress to the 

shear rate. The shear rate is a measure of the fluid deformation in response to a 

shear stress and is described by the gradient of the fluid velocity. If the viscosity is 

constant (for a given temperature) regardless of the shear rate (i.e., the shear rate 

is proportional to the shear stress), then the fluid is called Newtonian. Otherwise, 

the viscosity depends on the shear rate, and the fluid is called non-Newtonian. The 

SI unit of viscosity is (N-s/m2) or (kg/m-s). However, the Poise is more commonly 

used, especially the centipoise as the viscosity of water at room temperature is 

roughly one centipoise. Table 4.2 lists the viscosities of some common fluids. The 

ratio of the (dynamic) viscosity to density is known as the kinematic viscosity, v, 

P 
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The SI unit of kinematic viscosity is (m2/s). 

The viscosity of a fluid depends on its temperature. For a gas, viscosity 

increases with increasing temperature since the resistance to shear stress in a gas is 

largely due to the transfer of molecular momentum, i.e., the drag between slower and 

faster layers of gas. For a liquid, viscosity decreases with increasing temperature as 

the resistance is dominated by cohesive forces which weaken as the kinetic energy of 

liquid molecules increases. The effects of pressure on viscosity are negligible except 

for extremely high pressures. 

4.2.4 Eulerian and Lagrangian Descriptions of F lu id Mot ion 

In a Lagrangian description of fluid flow, the motion of individual fluid particles is 

tracked and fluid properties are described with respect to these moving particles. In 

an Eulerian description, fluid properties are described with respect to fixed locations 

in space. Our fluid model is based on an Eulerian description of fluid flow where 

fluid properties are represented by scalar and vector fields. For example the fluid 

velocity v is a vector field: 

v(x, y, z, t) = u(x, y, z, t)i + v(x, y, z, t)j + w(x, y, z, t)k 

where i , j , and k are the unit vectors in the x-, y-, and z-directions respectively. 

Changes in fluid properties in an Eulerian frame are given by the Stokes derivative 

(also called the total derivative and material derivative): 

where, for example, the fluid acceleration is given by: 

Dx dx . „ _ = _ + ( v . V ) v . 
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Ma < 0.3 incompressible flow 
0.3 <Ma< 0.8 
0.8 <Ma< 1.2 
1.2 <Ma< 3.0 
3 < Ma 

subsonic flow, no shock waves 
transonic flow, shock waves 
supersonic flow, no subsonic regions 
hypersonic flow 

Table 4.3: Incompressible and compressible gaseous flow regimes. 

4.2.5 Compressible and Incompressible F l o w 

All fluids are compressible: fluid density changes with applied pressure. Liquids, 

however, are very hard to compress, e.g., the density of water changes less than 

0.5% under 100 atmospheres of applied pressure at constant temperature. In com

putational fluid dynamics, liquids are almost always assumed to be incompressible. 

If fluid density is assumed to be everywhere constant (p = c), then naturally the 

flow is incompressible. Constant density, however, is not a necessary condition for 

incompressible flow. A sufficient condition for incompressibility is: 

g + ( v V ) , = 0. 

Thus, an incompressible flow can have variable density as long as the density is 

constant along streamlines. 

Gases are readily compressible. However, gaseous flow is virtually incom

pressible unless the gas is confined to a closed container or moving at a high speed. 

The relative speed of a flow can be expressed in terms of the Mach number (Ma): 

the ratio of the fluid speed to the speed of sound in the fluid. As a reference point, 

the speed of sound in air is approximately 344 m/s (w 771 m.p.h.) at 21°C. Com

pressibility effects are generally assumed to be negligible for gaseous flows at speeds 

of less then 0.3 Ma « 100 m/s (231 m.p.h.) for air at 21°C. Indeed, gaseous flows 

are typically categorized by Mach number into incompressible and compressible flow 
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p(x, t) density (kg/m3) 
p(x, t) pressure (N/m 2) 
T(x,t) temperature (K) 
v(x,t) velocity (m/s) 
•/x(x, t) viscosity (centipoise) 
b(x,t) body forces (N) 
Ci(x,t) concentration of chemical species i 
Qi(x,t) production rate of chemical species i 
Li(x,t) loss rate of chemical species i 
Ai(x, t) diffusion coefficient of species i 

Table 4.4: Physical parameters of our fluid model. 

regimes as shown in Table 4.3. 

4.3 Dynamic Model 

In our conceptual framework, the entire spatial domain fi C 0?3 is filled with fluids 

and solids. Each fluid consists of some material type. Al l material properties are 

defined over Q; the physical properties are summarized in Table 4.4. Our dynamic 

model is a mathematical description of how these physical properties change over 

time. This model is based on the Navier-Stokes equations. Before deriving our 

model from these equations, we first make a number of simplifying assumptions. 

For details on the equations of fluid mechanics, we refer the interested reader any 

good book on the subject such as the one by Aris [2]. 

4.3.1 Assumptions 

We make several simplifying assumptions about our flows that we argue are appro

priate for our animation method. 
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Newtonian Fluids 

We assume our fluids are all Newtonian (the viscosity is independent of the shear 

rate) as this simplifies the numerical simulation and applies to many common fluids. 

This assumption, however, means that we do not fully address the behaviour of in

teresting non-Newtonian fluids such as shear-thinning fluids such as paint, shampoo, 

and ketchup as well as shear-thickening fluids such as wet sand. 

Incompressible Flow 

We assume that all our flows (gaseous and liquid) are incompressible. As we shall 

see in the next section, this assumption simplifies the equations of fluid mechanics. 

It also facilitates a coherent numerical solution method for these equations and is 

a necessary assumption for our simulation control method discussed in Chapter 6. 

The assumption of incompressible flow for liquids is an excellent one. For gases, 

it bounds the maximum flow speed that our animation method can address in a 

realistic fashion to 0.3 Mach, but this encompasses most common flows. Also, the 

compression of gases that occurs under applied pressure in closed containers is not 

addressed by our model. 

Inert Flow 

While we model the transport and reactions of chemicals in our flows, we do not 

explicitly model the effects of chemical reactions on the flow. For the purposes 

of our dynamic model, we assume chemical reactions have no effect on the fluid 

density, temperature, or any aspect of the flow. Instead, we present in Chapter 8 

a procedural animation method for the ad hoc modelling of reactive effects on the 

flow. We adopt this approach for several reasons: 
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• The numerical simulation of reactive flow is computationally expensive. Rapid 

reaction rates result in a system of very stiff differential equations that must 

be coupled with the equations of fluid flow. The numerical solution of the 

resulting system is quite difficult and typically requires very small time steps. 

• The tightly coupled and highly nonlinear system is inherently difficult to con

trol for animation purposes. Even the smallest changes in the flow can trigger 

unwanted chemical reactions that completely alter the flow. The extremely 

unpredictable nature of the coupled system makes it intrinsically difficult to 

determine what conditions are required to generate flows with specific appear

ances and behaviours. 

• The diversity of chemical reactions, especially the diversity of their macro

scopic effects, motivates an open-ended approach focused on how they affect 

the appearance and behaviour of fluid flow rather than accurate chemical ki

netics. 

The drawback of this approach, of course, is that the burden is entirely on the 

animator to model the effects of chemical reactions on the flow. In Chapter 8 we 

introduce a programming language designed to make this task as easy as possible. 

Given our assumptions, we now derive the equations of our dynamic model 

from the general form of the Navier-Stokes equations. 
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4.3.2 Conservation of Mass 

Mass is neither created nor destroyed in the flows considered here, so the time rate 

of change in mass m is zero: 

d m = Q 

dt 

The mass of a finite volume V of fluid is the integral of the fluid density over that 

volume: 

m = f p(x,t)dV. 
Jv 

Reynolds' transport theorem states that for a function /(x, t) and a closed volume 

V(t) moving with the fluid: 

Applying the transport theorem to fluid mass gives: 

Since this is true for an arbitrary volume, the integrand vanishes giving the conti

nuity equation expressing the conservation of mass: 

% + V • ( H = o, (4-1) 

which can be rewritten by expanding the divergence term as: 

^ + v . ( V / O ) + p(V-v) = 0. 

Using our assumption that the flow is incompressible, i.e., that 

! + ( W ) p = 0, 
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equation (4.1) reduces to the continuity equation for incompressible flow: 

V - v = 0| (4.2) 

which simply says that the velocity field is solenoidal, i.e., it has zero divergence. 

4.3.3 Conservation of Momentum 

The conservation equation for momentum is Newton's second law of motion which 

states that changes in momentum are equal to the applied forces: 

(4-3) 

The forces acting on a fluid include surface forces (e.g., pressure and internal friction) 

and body forces (e.g., gravity and electromagnetic forces). For fluids, equation (4.3) 

takes the form: 

D_ 
Dt 

[ pv = [ TndS+ [ phdO, (4.4) 
Jci Js Jn 

where T is the stress tensor , and b(x, t) is the body force density per unit volume. 

The first term on the right hand side of equation (4.4) corresponds to surface forces 

and the second term to body forces. For our Newtonian fluids, the stress tensor is: 

T = - (p + AV • v) I + 2^D, 

where I is the unit tensor, p is the static pressure, and D is the rate of strain 

(deformation) tensor : 

D = \ (Vv + ( V v ) T ) . 

Applying the transport theorem and the divergence theorem to equation (4.4) gives 

the following form of the momentum equation: 

^ l + V-(pvv) = V - T + pb (4.5) 
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which after plugging in the stress tensor T gives: 

d(pv) 
at + V • (pw) = -(pv)V • v - Vp + (fi + A)V(V • v) + V • 2LID + pb (4.6) 

With the assumption of incompressible flow, we know that the velocity has zero 

divergence, i.e., that 

V • v = 0, 

and thus equation (4.6) reduces to: 

d{pv) 
dt 

+ V • (pw) = V • 2pD - Vp + pb (4.7) 

which is the momentum equation for the viscous, variable-density, variable-viscosity, 

incompressible flow of a Newtonian fluid. Using the product rule to expand the terms 

on the left hand side of equation (4.7) gives: 

P-^ + + v V • (pv) + pv • V v = V • 2/iD - Vp + pb. (4.8) 

Applying equation (4.1) to equation (4.8) gives: 

<9v 1 
— + v • V v = - (V • 2pD - Vp) + b (4.9) 

which gives the momentum equation (4.7) in explicit terms of the fluid acceleration. 

4.3.4 Conservation of Energy 

The first law of thermodynamics expresses the conservation of energy leads to the 

energy equation. We use a simple form of the energy equation that describes the 

convection and diffusion of temperature: 

dT 

~di 
+ v • V T = A T V 2 T + q (4.10) 
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where XT is the thermal diffusivity and q is a heat source. In terms of effects of 

temperature on the flow, we only consider thermal buoyancy forces and incorporate 

them into the body force b as follows: 

b = f + ( i - / ? ( r - r 0 0 ) ) g (4.ii) 

where is the ambient temperature, (3 is a scaling factor, g is gravity, and f is all 

other body forces. Note that if the fluid temperature is uniform and equal to the 

ambient temperature, then the thermal buoyancy is zero. 

4.3.5 Chemical Transport and Reactions 

Our fluid model defines a set of chemically reactive species with concentrations 

{Ci, C2,... , Cn} that are transported by flow and undergo chemical reactions. The 

change in the concentration of species i is given by: 

I 
(4.12) 

BC-
- 1 + v • VQ = XiV2Ci + Qi- Lid 
dt 

where A; is the diffusion coefficient of species i, Qi is the chemical production rate 

of species i, and Lj is the chemical loss rate of species i. The production and loss 

rates of a chemical species can depend on the concentrations of all other chemical 

species as well as all other parameters of our fluid model. 

4.4 Initial-Boundary Value Problem 

We can now summarize our dynamic model of fluid flow and formulate a well-

defined initial-boundary problem. We model viscous incompressible fluid flow. We 

also model a set of chemically reactive species dissolved in the fluid but assume inert 

flow. We consider fluid in a domain £2 C 3f?3 throughout time t € [to, h] described 

by the variables given in Table 4.4. 
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4.4.1 Equations 

Our dynamic model consists of the following system of partial differential equations: 

du dv dw 
dx dy dz 

du du du du 
dt dx dy dz 

dv dv dv dv 
dt dx dy dz 

dw dw dw dw 
dt dx dy dz 

dT dT dT dT 
dt dx dy dz 

dCi dCi dCi dQ 
dt dx dy dz 

dp dp dp dp 
dt dx dy dz 

dp: dfj, d\i d_u 
dt dx dy dz 

= 0 

1 

P 

d2u d2u d2u\ dp 
^[cW + lW+~^)~dx~\ 

+ bx 

d2v d2v d2v 
^[lh? + dy^+d^ 

dp 
dy. 

+ by 

i r 
9 L 

d2w d2w d2w 
dx2 dy2 dz2 

dp 
dl 

+ bz 

, (d2T d2T d2T\ 
Xt\dx^ + W + d ^ ) + q 

A. fd^Ci + d2Ci + d^CC\ 
1 \ dx2 dy2 dz2 J 

+ Qi — h{C{ 

= 0 

= 0 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

These equations are the component forms of the equations previously presented in 

dimensionless form. Equation (4.13) corresponds to the continuity equation (4.2), 

equations (4.14-4.16) correspond to the momentum equation (4.9) under the as

sumption of constant viscosity, equation (4.17) corresponds to the energy equation 

(4.10), and equation (4.18) corresponds to equation (4.12) describing chemical trans-
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port and reactions. Equations (4.19) and (4.20) respectively describe the transport 

of density and viscosity. 

4.4.2 Initial Conditions 

Initial conditions at time t — to are required for all fluid properties given in Table 4.4. 

Since our methodology encompasses various control techniques, it is generally easier 

to use simple default values for these conditions and use the control techniques 

to drive the simulation towards the desired starting state of the scene at some 

intermediate time U € [io?*l]-

4.4.3 Boundary Conditions 

In addition to initial conditions, conditions on the boundary T of the domain U 

are required for all times t € [to>*i]- Velocity values are subject to the kinematic 

mass-conservation constraint (4.13), and thus velocity on the boundary must satisfy: 

which says that the flow coming into Q must always equal the flow going out. 

The next chapter discusses the numerical solution of this initial-boundary 

value problem. 

r 
v • ndT = 0 
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Chapter 5 

Numerical Simulation 

In this chapter, we describe the numerical solution of the initial-boundary value 

problem defined in the previous chapter. The continuous partial differential equa

tions are discretely approximated using finite differences, converting them to a sys

tem of linear algebraic equations. We then present our solution algorithm based on 

a Chorin projection scheme. 

5.1 Introduction 

Our initial-boundary value problem describes the unsteady, viscous, incompressible 

flow of gases and liquids in a three dimensional domain with internal boundaries. 

Numerical solution of this problem presents difficult challenges and is an ongoing 

area of research in computational fluid dynamics. Fortunately, we are solely in

terested in the appearance of fluid flow and can tolerate relatively crude numerical 

approximations as long as the resulting animations appear realistic. The numerical 

solution itself is not of interest per se; only its effects on our shape and shading mod

els are significant. In practice this means we can (and do) use fairly coarse uniform 
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grids to approximate fluid properties, and we can (and do) accept some numerical 

diffusion and other approximation errors in exchange for speed and stability. 

The numerical solution of the incompressible Navier-Stokes equations has 

been investigated for decades in computational fluid dynamics, and a wide variety 

of solution methods have been developed. The goal of this chapter is to adopt 

appropriate methods for our animation methodology. In particular, we want rapid 

and robust methods that can be effectively coupled with control techniques, shape 

and shading models, and reactive elements. 

Our simulation algorithm is based on a projection scheme [10], a standard 

approach to numerically solving the incompressible Navier-Stokes equations in com

putational fluid dynamics that has recently become the favored approach for the 

computer animation of fluids [19, 22, 68]. A readable description of a basic imple

mentation of a numerical simulation algorithm for the incompressible Navier-Stokes 

equations in two dimensions based on a projection scheme can be found in the book 

by Griebel et al. [35]. Before discussing our simulation algorithm, we first discuss the 

discretization of the spatial domain and differential equations using finite differences. 

5.2 Finite Differences 

We use finite differences to discretize the continuous partial differential equations 

(4.13-4.20) constituting our initial-boundary value problem into a system of alge

braic equations. There are a number of other well-known discretization schemes 

such as finite volumes and finite elements, but finite differences are straightforward 

and effective for the regular grid we use to discretize the spatial domain. 

Finite difference approximations can be derived from Taylor series. Any 

continuous differentiable function f(x) can be expressed as a Taylor series expansion 
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about XQ: 

f(x) = f(x0) + (x- XQ) 
(dj_ 
\dx 2! dx2 

1 0 \ / XQ 

( i - i 0 ) " (erf 
3! ydx3)^ ' ' n\ \dx», r 

where h stands for the higher order terms. Using the Taylor series expansion for 

f(x) about Xj at x = xi+\ gives: 

df_\ _ fi+i ~ fi Xi+i ~Xj f d2f\ 
dxji Xi+i-Xi 2 \dx2Ji 

( x x + 1 - X i ) 2 /d3r 
dx3 + h 

Truncating this series after the first term on the right hand side gives the forward 

difference approximation to the first derivative of f(x) at x = x :̂ 

dx 

1(f) fi+l - ft ( df , = — | -ex 
Xi+i — Xi \ax, 

where ex is the truncation error, i.e., the terms deleted from the Taylor series ex

pansion. The truncation error is usually dominated by the first truncated term. 

A higher order approximation to the first derivative can be derived from 

taking the Taylor series expansion of f(x) about x; at both x ; _ i and X j + i : 

df_ 
dx 

fi+i - fi-i ( x i + i - X i ) 2 - (x'i - X J _ I ) 2 (d2f\ 
dx2), Xi+i - X j _ i 2 (x i + i - Xj_ i ) 

( x i + i - Xi)3 - (xi - X i _ i ) 3 / d 3 f + h 
6(x i + i -Xj_i) V.^3, 

Truncating this series after the first term on the right hand side gives the centered 

difference approximation to the first derivative of /(x) at x = xf. 

dx 

(c) . fi+l — fi-l 
Xj_)_l Xi—1 
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For uniform spacing, i.e., for 

— —1 — 

the first term in the truncation error for the centered difference approximation van

ishes. Using a similar derivation gives the following approximation of the second 

derivative of f(x) at xf. 

'il 
dx2 

_ fi+i — 2fi + fi-i 
6x2 

which is second-order accurate. 

5.3 Approximation of Convective Transport 

A well-known challenge of Eulerian fluid flow simulation is the approximation of 

convective transport which is generally described by: 

da _ 
« = - v - V o 

for a scalar quantity a(x, t) moving with the fluid velocity v(x, t). Naive use of 

finite differences can result in numerical diffusion and instability. Two common 

approaches for handling convective transport are upwind differencing and the donor-

cell scheme. Stam [68] has shown that the use of a semi-Lagrangian integration 

scheme [71] can be the key to a unconditionally stable approach to solving the 

incompressible Navier-Stokes equations. In this scheme, convective transport is 

computed by simply backtracing through time along streamlines to sample values 

of fluid properties at the previous time step. For example, the velocity of a fluid 

particle at a grid point X j j ^ at time tn+\ is the velocity that particle had at time 

tn. A l l that has to be computed is the position of that particle at time tn which is 
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found by following the path of that particle backwards through time. This approach 

ensures that convected values at time tn+i are never greater than they were are time 

tn. However, it introduces numerical diffusion and is generally too inaccurate for 

most applications in computational fluid dynamics. However, it has been shown to 

work well for computer animation [19, 22, 68] where this dissipation is accepted for 

robustness and the ability to take large time steps. We use the semi-Lagrangian 

integration scheme with second-order Runge Kutta integration for all convective 

terms unless otherwise indicated. 

5.4 Discretization of the Domain 

Fluid density (p), pressure (p), temperature (T), and velocity (v = (u,v,w)) are 

defined over the three dimensional spatial domain Q. These properties are discretely 

represented using a fixed, axis-aligned, uniform grid that subdivides Cl into a Nx x 

Ny x Nz array of cubical cells with linear dimension ST, i.e., the grid spacing in 

each coordinate direction is ST. We define without loss of generality the origin of 

this grid to be at the origin of the coordinate system and thus Cl is defined as the 

following cuboid: 

Cl = [0,NXST] x [0,NV5T] x [0,NZ5T] C & 3 , 

We use zero-based indexing for cells, i.e., the grid consists of cells (i,j,k) where 

i e {0,. . . , Nx -1}, j € {0,. . . ,Ny - 1}, and k E {0,... ,NZ — 1}. Thus, cell k) 

occupies the volume 

[i6r, (* + 1)ST] x \jSr, {j + l)Sr] x [k6r, (k + 1)ST] 

The grid is "padded" with a layer of boundary cells that facilitate the application 

of boundary conditions as shown in Figure 5.1. Simulation occurs only in non-
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(1.1) 

(0,0) 

Figure 5.1: Boundary cells (darker) and computational cells (lighter). A two-
dimensional grid is shown for clarity; our methodology uses a three-dimensional 
grid. 

boundary or computational cells, i.e., cells (i,j,k) where j € { l , . . . , J V I - 2 } ) j 6 
{1, . . . ,Ny — 2}, and k 6 {1, . . . , Nz — 2} . Computational cells are defined to be 

either gas cells, liquid cells, or solid cells depending on the phase of the material 

in that cell. In our implementation, no computation is done in solid cells, but this 

would be a natural extension of our work. By default, all cells are gas cells. If a 

cell contains any solid material it is classified as a solid cell. Any cell containing no 

solid m a t e r i a l and any liquid m a t e r i a l is a liquid cell. Cells are considered neighbors 

or adjacent if and only if they share a face: each computational cell has exactly six 

neighbors. 

We use the staggered grid approach originally due to Harlow and Welch [37]. 

In this approach, all fluid properties except velocity are taken at cell centers, e.g., 

the pressure for cell (i, j, k) is: 

Pi,j,k = p(6T/2-ri6T,6T/2+j6T,6T/2 + kST) 
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Figure 5.2: Velocity components are staggered on the centers of cell faces. Al l other 
properties are taken at cell centers. 

Velocity components are taken on cell faces orthogonal to the direction of the velocity 

component (see Figures 5.2 and 5.3): 

ui,j,k = U(ST + iSr, ST/2 + jSr, ST/2 + ICST) 

vi,j,k = V(ST/2 + IST, ST + J S T , ST/2 + kSr) 

wi,j,k = W(ST/2 + IST, ST/2 + J S T , ST + UST) 

This staggered arrangement helps prevent artificial pressure oscillations [37]. 
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Figure 5.3: Indexing for staggered values on a two-dimensional cell (i, j). A two-
dimensional cell is shown for clarity; our methodology uses three-dimensional cells. 

5.5 Discretization of the Derivatives 

5.5.1 Continuity Equation 

The continuity equation for incompressible flow (4.13) is discretized at the center of 

cell (i, j, k) using centered differences with half the cell spacing: 

du ui,j,k ui-l,j,k 
6T 

(5.1) 
dx -1 i,j,k 

Idvl Vj,j,k ~ ViJ-l,k 
6T 

(5.2) 
dy\ 

dw Wj,j,k ~ v>ij,k-l 
ST 

(5.3) 
dz 
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5.5.2 Momentum Equation 

The non-convective derivatives of the momentum equation (4.14) for u are dis

cretized as: 

dp 
dx 

Pi+l,j,k ~ 
ST 

'd2u Ui+l,j,k ~ 2Ui,j,fc + Ui-l,j,k 
dx2 (Sr)2 

~d2u~ Ui,j+l,k ~ 2ui,j,fc + u%,j-\,k 
w\ (ST)2 

~d2u Ui,j,k+1 - 2ui,j,fc + Ui,j,k-i 
dz2 (ST)2 

The approximations for the terms in the momentum equations (4.15-4.16) for v and 

w are analogous. 

5.5.3 Energy Equation 

The non-convective derivatives in the energy equation (4.17) are approximated as: 

'dT' 
.dt _ 

1 (rpn+1 

St \ 

Ti+i,j,k -
dx2 

i,j,k ST2 

'd2r 2i,j'+l,fc — 2Tijtk + Titj-ltk 
dy2 ST2 

'd2T Ti,j,k+i ~ 
dz2 ST2 
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5.5.4 Chemical Transport and Reactions 

The non-convective derivatives in the equation for chemical transport and reactions 

(4.18) are approximated as: 

dC_ 
dt -1 i 

1 / /-tn+1 /~in \ 

~ 6l\Ci>i>k~Ci'j'k) 

p 2 c q — 2Ci,j,k + Ci-l,j,k 
dx2 ST2 

\d2c Ci,j+l,k - 2Cj,j,fc + Q,j-l,k 
w\ i,j,k ST2 

'd2C - 2Ci,j,k 
dz2 

i,.j,k Sr2 

5.6 Algorithm 

Our simulation algorithm time-evolves the physical properties of our fluid model 

by numerically solving equations (4.13-4.20). This algorithm is based on a classic 

projection method [10] which computes intermediate velocity values without regard 

for mass conservation and then corrects the velocity to ensure incompressibility. 

Given initial and boundary conditions, the simulation iteratively advances through 

time starting at time to- One iteration of our simulation algorithm advancing the 

system from time tn to tn+\ consists of the steps summarized in Figure 5.4. Steps 

III(A) and III(B) are computed using simple Euler integration. 

The computation of the velocity is more involved, and the process can be 

summarized as: 

v n + i = v n + S t iy _ iv P

n + 1 ^ 

where F is all terms other than the pressure term in the momentum equation (4.9). 
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I. Execute reactive element programs. 

II. Interpolate element information to simulation grid. 

III. Simulate the evolution of physical properties on grid. 
A. Compute chemical reactions to give C " + 1 . 
B. Compute temperature Tn+1. 
C. Compute intermediate velocity v*. 
D. Solve Poisson equation for pressure pn+1. 
E. Correct velocity to give v n + 1 . 

IV. Advect reactive elements. 

Figure 5.4: Steps in one iteration of the simulation algorithm. 

Note that this is implicit in pressure. Computing v n + 1 involves two steps. First, an 

intermediate velocity v* that ignores the pressure term is computed: 

v* = v n + 5tF (5.4) 

and second, the projection phase where pressure values are used to correct the 

velocity: 

vn+i = v * _ St-Vpn+1 (5.5) 
P 

To compute the pressure at the new time step, pn+1, such that the new velocity 

field conserves mass, the continuity equation for incompressible flow (4.2) is applied 

to equation (5.5): 

V • v n + 1 = V • (v* - 5t-Vpn+l^J - 0 

which (assuming density is constant in the given domain) gives a Poisson equation 
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for the pressure: 

V V + 1 = £(v--v). (5.6) 

Solution of this equation for the pressure allows equation (5.5) to be used to correct 

the intermediate velocity. If both liquids and gases are present in the simulation, 

we first simulate liquids without regard for the gases, then simulate gases where the 

liquid-gas interface is taken as fixed. A more accurate approach would be to use a 

variable density simulation, though it is not clear if this is necessary for computer 

animation purposes. 

5.7 Boundary Conditions 

Our initial-boundary value problem requires that velocity values on the boundary 

T of the domain O satisfy the constraint: 

where vn(x,y,z) is the velocity component normal to the boundary (pointing out

wards). Since our grid is axis-aligned, vn will be equal to one of the velocity com

ponents: u, v, or w. We also define vt(x,y,z) as the velocity component tangential 

to the boundary. Boundary conditions must be set on the faces between fluid (gas 

or liquid) cells and boundary cells as well as between fluid and solid cells. We use 

four common boundary conditions. 
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5.7.1 No-Slip Boundary Conditions 

At a no-slip boundary, there is no fluid motion relative to the boundary. For a 

stationary boundary, the fluid velocity should vanish, i.e., 

vn = 0, vt — 0. 

5.7.2 Free-Slip Boundary Conditions 

At a free-slip condition, there is no flow through the boundary, but there can be 

fluid motion tangential to the boundary: 

vn = 0, dvt/dn = 0 

where -j^ denotes the derivative with respect to the normal vn direction. 

5.7.3 Outflow Boundary Conditions 

At an outflow boundary, the normal derivative of the velocity vanishes, i.e., there is 

no change in the velocity in the direction normal to the boundary. 

dvn/dn = 0, dvt/dn = 0. 

5.7.4 Periodic Boundary Conditions 

For periodic boundary conditions (which are applicable only on the domain bound

ary) the velocity values on opposite sides on the domain must coincide. Since our 

grid is padded with a layer of boundary cells, the period length is one cell length 

greater than the simulation domain. 
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5.8 Free Surface Conditions 

The free liquid surface (liquid-gas interface) is contained in liquid cells that neighbor 

gas cells. In these cells, the pressure must be set at cell centers to the desired gas 

pressure (here taken as zero) and the velocity must be set on all faces shared with gas 

cells so that there is zero divergence in the cell, i.e., the mass-conservation constraint 

(4.13) is satisfied. This constraint is generally insufficient to derive unique conditions 

for the "free" velocities of cells containing the liquid surface. Thus, reasonable 

assumptions must be made, and appropriate conditions derived for all 2 6 — 1 = 63 

configurations of gas neighbors around a liquid cell. These conditions have not been 

published to the author's knowledge (and they are painful to get right), so we give 

explicit code for them in Appendix A. Here we briefly discuss the motivation for 

these free-surface conditions. 

5.8.1 One Gas Neighbor (Six Configurations) 

If a liquid cell has one gas neighbor, we simply set the velocity on the face between 

the liquid and gas cell so that there is no divergence in the liquid cell. This is the 

only uniquely determined case. 

5.8.2 Two Gas Neighbors (15 Configurations) 

If a liquid cell has two gas neighbors, these neighbor cells are either opposite each 

other or share an edge. If the two neighboring gas cells are opposite, then there is no 

unique approximation to the liquid surface normal. We assume that the fluid moves 

only due to body forces. If the two gas neighbors share an edge, we propagate the 

velocity from opposite faces and add half of the difference between the two opposite 

liquid faces. 
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5.8.3 Three Gas Neighbors (20 Configurations) 

If a liquid cell has three gas neighbors, then the cell is either a "corner" (no gas 

neighbors are on opposite sides) or two of the gas neighbors are opposite. In the 

corner case the velocity values from opposite sides are propagated. In the other 

case, we set body forces on the two opposite gas neighbors, and set the remaining 

velocity value so that there is zero divergence in the cell. 

5.8.4 Four Gas Neighbors (15 Configurations) 

If a liquid cell has four gas neighbors, at least one pair of gas neighbors are opposite. 

The opposite pair (or pairs) are set to body forces. This results in either all velocity 

values being set or two gas neighbors of the liquid cell that share only an edge 

(in which case we apply the appropriate two gas neighbor conditions described 

previously). 

5.8.5 Five Gas Neighbors (Six Configurations) 

If a liquid cell has five gas neighbors, then two pairs of these neighbors must be 

opposite and are set according to body forces only. The remaining velocity is set to 

enforce zero divergence for the cell. 

5.8.6 Six Gas Neighbors (One Configuration) 

If all the neighbors of a liquid cell are gas, then it is assumed that the fluid motion 

is due entirely to body forces. The velocity on all faces is set to the old velocity plus 

the body force times the time step. 
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5.9 The Pressure Poisson Equation 

Solution of the pressure Poisson equation (5.6) is a key step in our simulation algo

rithm and can dominate the computational effort required by our entire simulation 

algorithm. After the pressure values are solved for, they are used to correct the in

termediate velocity v* so that the resulting velocity v n + 1 conserves mass (has zero 

divergence). Rewriting equation (5.6) in Cartesian coordinates gives: 

Q2pn+1 gj2pn+l g2pn+l ^ p / Qu* Qy* Qw*\ 

dx2 dy2 dz2 St \dx dy dz ) ' 

The terms on the left hand side of this equations can be approximated using centered 

differences taken at the center of a voxel as follows (dropping the time step notation): 

\d2

v Pi+l,j,k - 2Pi,j,k + Pi-i,j,k 
dx2 (Sr)2 

\d2

P] _ Pi,j+l,k - <Zpi,j,k+Pi,j-i,k 
dy2 

i,j,k (Sr)2 

\d2p] _ PiJ , fc+l - %Pi,j,k + Pi,j,k-1 
dz2 

i,3,k (Sr)2 

and the terms for the divergence of v* on the right hand side can be approximated 

as shown in Section 5.5.1. Using these approximations, equation (5.6) can be ap

proximated at the center of cell (i, j, k) by: 

Pi+l,j,k + Pi-l,j,k + Pi,j+l,k + Pi,j-l,k + Pi,j,k+\ + Pi,j,k-1 ~ 6Pi,j,k = 

ST 

Pi,j,k-fir («*j,fc " K-i,j,k + v*j,k ~ v*i,j-l,k + Kj,k ~ wUk-l) • (5-7) 

Note the Neumann boundary condition that dp/dn = 0 means that pressure terms 

across a boundary will.cancel out of equation (5.7), e.g., if fluid voxel (i, j, k) has a 

solid neighbor voxel (i + 1, j , fc), then Pi+ij^ = Pi,j,k a n d these terms cancel each 

other out of equation (5.7). 
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5.9.1 Linear System 

Equation (5.7) applies to every fluid voxel resulting in a system of linear algebraic 

equations: 

Ax = b (5.8) 

where Ais anxn matrix where n is the number of fluid voxels, x is a column vector 

of the unknown pressure values, and b is a column vector corresponding to the right 

hand side of equation (5.7). The diagonal coefficients an of A are the number of 

fluid neighbors of voxel i, and the off-diagonal coefficients aij are nonzero if and 

only if fluid voxels i and j are adjacent in which 

5.9.2 Iterative Solution Methods 

Since the matrix A is symmetric positive definite, a number of iterative solution 

methods are applicable. A simple yet still practical technique (used by Foster and 

Metaxas [24] for enforcing incompressibility) is Successive Over-Relaxation (SOR). 

Unfortunately, SOR only works well for a narrow range of values of its relaxation 

factor, and it is generally not feasible to determine this a priori. The Preconditioned 

Conjugate Gradient (PCG) method has much better convergence properties and is 

our method of choice. We use an incomplete Cholesky method for preconditioning. 

We have found PCG to be extremely robust for solving our linear system. 

5.9.3 Error Tolerance 

Regardless of the iterative solution algorithm used, we need to establish an appro

priate error metric and tolerance for terminating the algorithm. Two common error 
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metrics are the discrete L 2-norm, 

1 n 2 

r\\2 = n i=l 
and maximum norm 

||r oo = m a x ( | r i rnl) 

where r = Ax —6 is the residual vector of the current iteration. We use the L 2-norm 

and stop iterating when 

where e is the error tolerance. 

5.10 Interface Tracking 

We simulate multiple fluids and want to maintain sharp interfaces between them, 

i.e., we want to avoid numerical dissipation of material properties. Maintaining 

sharp interfaces with Eulerian simulation (especially with the relatively coarse grids 

we use) generally requires special techniques. We use ellipsoidal primitives (reac

tive elements) as massless markers to track fluid material properties, i.e., a form 

of the Marker-and-Cell (MAC) method [37]. Properties needed by the simulation 

such as density and viscosity are transferred from elements to the grid by weighted 

interpolation at the beginning of each time step. At the end of each time step, the 

computed velocity is used to advect these elements. As the flow can bunch elements 

into sparse strands, we randomly perturb (or "jitter") elements by a small amount 

to maintain a more uniform distribution. 
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5.11 Stability Condition 

Our numerical solution method is explicit in time and is conditionally stable subject 

to the well-known Courant-Friedrichs-Levy (CFL) conditions : 

|«max|<ft < Sx 

\vmax\St < Sy 

\wmax\5t < Sz 

which state that a fluid particle may not travel a distance greater than the smallest 

cell dimension in a single time step. Thus, the maximum time step Stmax that 

guarantees stability is: 

. / 5x 6y Sz 
Stmax = min , , 

VFmaxI l^maxl l^maxl 

Using a longer time step could lead to spurious oscillations that rapidly dominate 

the system. In our implementation, the user specifies the desired time step (or, 

equivalently, the desired rate of frames per simulation second). Naturally we never 

exceed Stmax, so multiple simulation iterations per frame may be required. 

5.12 Results 

In this section we present the results of applying our simulation algorithm to four 

different animation scenarios. The first two scenarios (A and B) we assess qualita

tively; the second two (C and D) we assess quantitatively. Al l scenarios are animated 

at 30 frames per second and start at frame 100 for time t = 0. 

Scenario A is a classic test problem for free-surface flows, the "breaking dam" 

scenario where a hypothetical vertical wall holding liquid to one side of the domain 
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is instantly removed at time t = 0. Free-slip conditions are imposed on the boundary 

of the narrow 40 x 3 x 40 simulation domain, i.e., there are 40 cells in the x-direction, 

3 cells in the y-direction, and 40 cells in the ^-direction. Figures 5.5-5.6 show frames 

from this sequence. In all examples the positive z-direction is taken to be upwards. 

In the views here, the positive x-axis points to the right, and the positive y-axis 

points into the page (a right-handed coordinate system is used). In this sequence, 

the liquid spills into the right side of the domain and flows up the right boundary. 

Note that volume is conserved because the flow is incompressible. 

Scenario B involves a liquid body suspended in empty space (no gas is sim

ulated) at time t = 0. Figures 5.7-5.8 show frames from this sequence. As the 

liquid crashes into the bottom of the domain, it spills up the sides where free-slip 

conditions are used. The elements here do not just visualize the flow but also serve 

to track the liquid: liquids cells are defined as those that contain elements in liquid 

phase. In Chapter 7, a rendered sequence corresponding to the preview images here 

is shown in Figures 7.1-7.2. 

To analyze the convergence and other properties of our simulation algorithm, 

we now consider two additional scenarios in more detail. Scenario C consists of an 

axis-aligned cubical spatial domain with size 10 x 10 x 10 reference units (nominally 

0.25 meter) in the x, y, z directions respectively. Free-slip boundary conditions 

are used. A liquid body with dimensions 5 x 5 x 9 reference units is suspended in 

the centre of this domain. This liquid has a viscosity of 10 centipoise (somewhat 

more viscous than water). Scenario C was run. at various resolutions for 50 frames 

(starting at frame 100): 

• grid resolution 10 x 10 x 10, i.e., 10 cells in the x, y, z directions respectively, 

with grid spacing ST = 1.0 and 16,362 liquid elements initially in 360 liquid 
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Figure 5.5: First set of frames from Scenario A (dam break). 
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t = 3.0 

Figure 5.6: Second set of frames from Scenario A (dam break). 
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t = 0 t = 0.33 
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t = 2.0 t = 2.33 



cells with 1,000 total cells, 

• grid resolution 20 x 20 x 20 with ST = 0.5 and 122,758 liquid elements initially 

in 2,299 liquid cells with 8,000 total cells, 

• grid resolution 30 x 30 x 30 with ST = 0.333 and 405,634 liquid elements 

initially in 7,168 liquid cells with 27,000 total cells, and 

• grid resolution 40 x 40 x 40 with 5T = 0.25 and 951,390 liquid elements initially 

in 16,317 liquid cells with 64,000 total cells. 

Figure 5.9 shows several frames from the 20 x 20 x 20 resolution run of Scenario C. 

Scenario D is similar but the spatial domain has size 50 x 50 x 50 reference 

units and the liquid body has size 25 x 25 x 45 reference units. Scenario D was run 

at the following resolutions for 100 frames (starting at frame 100): 

• grid resolution 10 x 10 x 10 with ST = 5.0 and 2,344 liquid elements initially 

in 360 liquid cells with 1,000 total cells, 

• grid resolution 20 x 20 x 20 with ST = 2.5 and 16,362 liquid elements initially 

in 2,299 liquid cells with 8,000 total cells, 

• grid resolution 30 x 30 x 30 with ST = 1.666 and 52,900 liquid elements initially 

in 7,168 liquid cells with 27,000 total cells, 

• grid resolution 40 x 40 x 40 with Sr — 1.25 and 122,758 liquid elements initially 

in 16,317 liquid cells with 64,000 total cells, and 

• grid resolution 50 x 50 x 50 with ST — 1 and 236,736 liquid elements initially 

in 31,096 liquid cells with 125,000 total cells. 
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Figure 5.10 shows several frames from the Scenario D simulation run with the 50 x 

50 x 50 grid resolution. 

Various data was collected from the different simulation runs of Scenarios C 

and D. The following sections present and discuss this data. 

5.12.1 Rate of Convergence 

For all simulation runs a conservative error tolerance e — 0.0001 was used. Fig

ure 5.11 shows how many conjugate gradient iterations were required for the first 

frame in each simulation run of Scenario C that required nontrivial solution of the 

pressure Poisson equation. Figure 5.12 shows the rate of convergence for certain 

frames at the 20 x 20 x 20 grid resolution. Figure 5.13 shows a detail of Figure 5.12. 

Figure 5.14 shows the number of iterations required to reach the error tol

erance for each frame in each simulation run of Scenario C. Figure 5.15 shows the 

resulting divergence in the liquid cells after the computed pressure is used to correct 

for the divergence. 

Figure 5.16 shows the number of iterations required to reach the error toler

ance for each frame in each simulation run of Scenario D. In these simulation runs, 

the solution of the pressure Poisson equation required on average about half of the 

total CPU time (the dominant stage of the simulation). Advecting the particles was 

the next most computationally intensive task. For reference, each frame of Scenario 

D required about five seconds of CPU time at the highest resolution (50 x 50 x 50) 

on a PC with, a Pentium III 450 MHz CPU. 
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5.12.2 Variation in Element Mot ion with G r i d Resolution 

An interesting property of our simulation algorithm is how the computed motion 

of elements differs as the grid resolution is decreased (and the grid spacing is pro

portionately increased so that the size of the spatial domain remains the same). To 

explore this property, both Scenarios C and D included 45 liquid "tracer" elements 

whose motion was tracked over each simulation run. Figure 5.17 shows the distri

bution of these "tracers" for Scenario C (with all other liquid elements not shown 

for clarity). Using the motion of these tracers in the highest grid resolutions used 

for Scenario C (i.e., 40 x 40 x 40) and Scenario D (i.e., 50 x 50 x 50) as references, 

we computed the mean difference from their reference positions for corresponding 

frames at lower resolutions. Figures 5.18 and 5.19 shows the results for Scenarios 

C and D respectively. As expected, the difference increases with the progression of 

the simulation and with coarser grid resolutions. 

5.12.3 Variation in the Number of Liquid Cells Over T i m e 

We model fluid as being incompressible and thus the volume of liquid in our sim

ulations should remain constant over time. In our discretization, a cell is entirely 

liquid, gas or solid. Thus, the volume of liquid in our simulation can be measured 

by the total number of liquid cells. Recall that a cell is classified as liquid if it is 

not solid and it contains any liquid element. This scheme inherently involves some 

variation in the total number of liquid cells. For example, imagine starting with one 

liquid cell containing two elements that after one simulation iteration advects one of 

the elements out of the cells: the result is two liquid cells and at least a temporary 

doubling of the liquid volume. 

Figures 5.20 and 5.21 show the ratio of the total number of liquid cells to the 
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total number of grid cells for each simulation run of Scenario C and D respectively. 

The variation for these scenarios at these resolutions is quite small and is assumed 

to be visually insignificant though this possibility was not rigorously explored. The 

variation is clearly greatest for the smallest grid resolutions. 

5.13 Discussion 

The numerical techniques used in our simulation algorithm were motivated by a 

number of factors. Our approach to controlling flow simulation, discussed in Chap

ter 6, is based on the use of a Chorin projection scheme. Our approach to modelling 

multiple reactive fluids is based on the use of discrete elements to represent and 

track material properties. Thus, the Marker-and-Cell method for interface tracking 

is a natural approach. The need for efficient and stable simulation (even at the ex

pense of accuracy) motivates the use of a fixed, uniform grid to discretely represent 

the spatial domain, the use of semi-Lagrangian integration for handling the convec

tive terms, oversimplified interface conditions, and the modelling of the dynamics of 

inert flow for the animation of reactive flow. Naturally, the use of these numerical 

techniques has a number of important implications for computer animation, and so 

we consider them here. 

Perhaps most significantly, the CFL condition limits the maximum stable 

time step that can be taken for any given simulation iteration. This limitation di

rectly corresponds to the maximal velocity in the simulation, and thus any violent 

behaviour anywhere in the domain will slow down the entire simulation. In partic

ular, dramatic effects due to strong forces (or powerful control velocities from the 

streamtube flow primitives discussed in Chapter 6) are often desired in animated 

sequences, and thus this limitation can be particularly acute. Since we are simulat-
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Figure 5.10: Frames from Scenario D with a 50 x 50 x 50 grid resolution. 
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Figure 5.11: Rate of convergence for the solution of the pressure Poisson equation 
for the first frame in each simulation run of Scenario C requiring nontrivial solution 
(frame 100 for grid resolutions 10 x 10 x 10 and 20 x 20 x 20, frame 107 for grid 
resolution 30 x 30 x 30, and frame 108 for grid resolution 40 x 40 x 40. 
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Figure 5.12: Convergence rates for the solution of the pressure Poisson equation 
for various frames of the simulation run of Scenario C with the 20 x 20 x 20 grid 
resolution. 
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Figure 5.13: A detail of Figure 5.12. 
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Figure 5.14: Number of iterations required to solve the pressure Poisson equation 
for Scenario C at various grid resolutions (e = 0.0001). 
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Figure 5.15: The divergence in liquid cells at each frame for various grid resolutions 
of Scenario C. 
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Figure 5.16: Number of iterations required to solve the pressure Poisson equation 
for Scenario D at various grid resolutions (e = 0.0001). 
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Figure 5.17: Tracer elements used in Scenario C. 

ing inert flow, we sidestep the difficulties of simulating reactive flow. However, as 

discussed in Chapter 8, animators can program reactive elements to produce arbi

trary amounts of heat resulting in strong thermal buoyancy forces that again slow 

down the simulation. 

Because the solution of the pressure Poisson equation is often the critical step 

in the simulation algorithm, an important and related issue is the determination of 

an appropriate error tolerance for the iterative solution algorithm. We have used a 

conservative e = 0.0001. Determining the highest error tolerance that is acceptable 

for our visual simulation purposes is a difficult problem that we did not explore. 

In general this type of problem has not been adequately addressed in computer 

graphics. 

The use a fixed uniform grid as our spatial discretization scheme imposes two 
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Figure 5.18: Mean difference in the positions of "tracer" elements with respect to 
their positions at each frame in the reference grid resolution (40 x 40 x 40) for 
Scenario C. 
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Figure 5.19: Mean difference in the positions of "tracer" elements with respect to 
their positions at each frame in the reference grid resolution (50 x 50 x 50) for 
Scenario D. 
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Figure 5.20: Ratio of the number of liquid cells to the total number of grid cells for 
each frame in Scenario C at various grid resolutions. 
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Figure 5.21: Ratio of the number of liquid cells to the total number of grid cells for 
each frame in Scenario D at various grid resolutions. 
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significant limitations. First, the range of scales that can be effectively modelled at 

the same time is obviously limited. Second, curved obstacles and boundaries must 

be represented (for simulation purposes only) as cubical cells. This second limitation 

may not be as severe as it appears since small inaccuracies (on a sub-cell scale) may 

be impossible to detect in rendered animations. Of course, the limitation implicit 

in axis-aligned boundaries still applies. 

The use of marker elements requires elements to be distributed throughout 

the fluid domain to effectively represent and track multiple dynamic fluid materials. 

Enough elements need to be used to avoid spurious variations in liquid volume. It 

is not clear how to guarantee a sufficient number of elements, though in practice on 

the order of 50 elements per cell seems to work well. Also, over the evolution of a 

simulation run, marker elements tend to bunch into strands; we randomly perturb 

elements a small amount each iteration to avoid this, but there is no guarantee of 

avoiding pathological bunching behaviour. Finally, as discussed in Chapter 7, using 

discrete elements poses challenges for rendering a flat liquid surface. 

Semi-Lagrangian integration is known to be overly diffusive. However, re

cent work [19] has presented methods for compensating for this drawback when the 

application is the computer animation of fluid. 

Finally, our fluid model—while significantly more general than others used for 

computer animation—does not address many visually interesting fluid behaviours. 

In particular, we have oversimplified the gas-liquid interface conditions to facilitate 

efficient numerical simulation and have not addressed the dynamics of reactive flow. 

Thus, in our simulations, gas has no effect on the liquid (the pressure of the gas on 

the liquid is always taken to be zero). Gaseous bubbles, for example, simply collapse 

under liquid pressure. 
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Despite these limitations, our simulation algorithm is stable (subject to the 

CFL condition), and it is efficient for many animation scenarios. Its key advantage 

is that it addresses a much larger class of fluid phenomena than has been addressed 

before, and it is integrated with our control strategy, our shape and shading models, 

and our procedural animation method for chemical and thermal reactions. 
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Chapter 6 

Controlling Flow Simulation 

In this chapter we introduce a simple yet powerful technique of controlling incom

pressible flow simulation for computer animation purposes that works for any simu

lation method using a projection scheme for numerically solving the Navier-Stokes 

equations. In our technique, an abstract vector field representing the desired influ

ence over the simulated flow is modelled using simple primitives. This technique 

allows an arbitrarily degree of control over the simulated flow at every point while 

still conserving mass, momentum, and energy. 

6.1 Introduction 

How can our flow simulation be "directed" to "perform" the specific, scripted be

haviours often demanded in animation? For example, how could we simulate liquid 

flowing up out of one glass, performing a loop in midair, and flowing back down 

into another glass? Obviously appropriate initial and boundary conditions might be 

used, but this approach—if it works at all—can be unbelievably painstaking. Small 

changes in initial or boundary conditions can generate dramatically different results. 
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Boundary conditions can be adjusted over time, but their effects on the flow away 

from boundary may not be clear. Modelling external body forces can be a power

ful approach, but it is often not clear to an animator what forces are required to 

overcome gravity, viscous forces, and the current fluid momentum in order to give 

a desired fluid velocity. 

The challenge of controlling flow simulation for computer animation has re

ceived relatively little attention. Foster and Metaxas [25] presented several tech

niques for animator control over their liquid simulation method. In addition to 

setting initial and boundary conditions and modelling external body forces, these 

techniques include modifying pressure values to manipulate the simulated flow for. 

effects such as the shock wave from an explosion. Foster and Fedkiw [22] allowed 

velocity values to be directly set anywhere in the flow by adapting their approach 

to modelling objects moving in fluids. They note their approach "[does not give] 

perfect direct control over the liquid motion." 

This thesis presents two basic strategies for simulation control. In this chap

ter we describe the first approach based on the interactive modelling of a vector 

field that can arbitrarily govern the simulated flow: from subtly influencing it at 

one location to directly controlling it at another. In Chapter 8 we discuss the second 

approach where reactive elements can be programmed to affect the flow. 

6.2 The Influence Field 

in-flu-ence [from Latin influent-, influens, present participle of influere 

to flow in, from in- + fluere to flow - more at fluid] 

1(a): an ethereal fluid held to flow from the stars and to affect the actions 
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of humans... 

—Merriam-Webster's Dictionary 

A convenient physical metaphor for the will of the animator over simulated fluid 

flow is the specification of external body forces. The momentum equation (4.9) in 

our dynamic model includes a term for body forces, and thus we can model arbitrary 

changes in momentum. As mentioned previously, however, it is generally not clear 

what body forces are required to realized specific effects on the flow. Instead, our 

approach to controlling flow simulation is to directly model the effects of implied 

external body forces. 

In our simulation algorithm, all momentum changes except for those due to 

the pressure gradient are computed to give an intermediate velocity field v* not 

constrained to conserve mass (cf. Section 5.6). At this point in the algorithm, we 

can simply set v* to whatever values we want by assuming there are correspond

ing external forces that effect these changes in momentum. The next stage of the 

simulation algorithm corrects the intermediate velocity so that the resulting flow 

conserves mass (has zero divergence). 

Directly manipulating intermediate velocity values can be a powerful ap

proach to controlling our flow simulation that is far more intuitive than modelling 

external forces. However, simply setting an intermediate velocity value at some grid 

point to an arbitrary value ignores the current momentum of the fluid as well as the 

effects of gravity and viscosity. For some scenarios, such a jarring change may be 

exactly what is desired, but in general a more subtle approach is desired: instead of 

clobbering the momentum we want to accelerate or decelerate the flow towards the 

desired behaviour, i.e., we want the implied body forces to be smoothly varying in 

space and time. 
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Another issue with manipulating the intermediate velocity v* is that the 

effects of the subsequent mass conservation step of the simulation algorithm on the 

velocity may be hard to predict. This step globally modifies the velocity field so 

that it has zero divergence. The more divergence we create anywhere in v*, the 

greater the global velocity correction will be, and in general the harder it becomes 

to predict its effects. Thus, we should try to not add any divergence if possible. 

Our approach to controlling flow simulation is to define an influence field 

l(x,y,z,t): 

I(x,y,z,t) = ac(x,y,z,t)vc(x,y,z,t) 

where 

• vc(x, y, z, t) is the control velocity and 

• ac(x,y,z,t) e [0,1] is the degree of control over simulated fluid velocity. 

The control velocity vc(x,y,z,i) is constrained to have zero divergence, i.e., to 

satisfy the continuity equation (4.2) for incompressible flow: 

V • v c = 0 (6.1) 

We modify the computed intermediate velocity v* at time tn as follows: 

v*(x) = (l-ac(x,tn))v*(x) + Q C (x , t n )v c (x , t n ) (6.2) 

so that the effect on the intermediate velocity varies depending on ac, from uncon

strained simulation (ac = 0) to explicit control (ac = 1). Thus, at any point where 

ac > 0 and v* ^ vc there is an implied force driving the velocity towards WQ- The 

magnitude of this implied force is proportional to ac and |v* — vc|. This simple 

technique can be quite powerful—if there is an easy way to model the influence field. 
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Figure 6.1: A simple streamtube flow primitive and its control points. 

6.3 Streamtube Flow Primitives 

To make our approach to controlling flow simulation useful, we need an effective 

method of interactively modelling the influence field l(x, y, z, t). The key challenge 

here is satisfying the mass-conservation constraint (6.1) on the control velocity vc 

for all points where ac > 0. In previous work [33], we addressed the challenge of 

modelling divergence-free flow fields (with infinite domains) using the superposition 

of divergence-free flow primitives vp, i.e., 

V • v p = 0, 

and thus by the principle of superposition: 

V-Q[> p )=0 . (6.3) 
p 

In other words, flow primitives are building blocks for constructing divergence-free 

flow fields. 

We adapt this approach for modelling the influence field l(x, y, z, t) = ac^c 
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Figure 6.2: A more complex streamtube flow primitive. The control point data was 
generated using KnotPlot [65]. 



Figure 6.4: Flow in another streamtube primitive. 

by using primitives Ip(x, y, z, t) where 

2p(x, y, z, t) = ap(x, y, z, t)vp(x, y, z, t) 

and 

ac(x,y,z,t) = mm{Y^a>p(x,y,z,t),l} (6.4) 
p 

vc(x,y,z,t) = 5^vp(a:,y,z,t) (6.5) 
p 

and thus 

1 = m i n { ^ ap, 1} ^ v p 

p p 

Note that the mass-conservation constraint (6.1) on the control velocity is satisfied 

by equation (6.3). 

An influence field primitive Xp then is the product of a flow primitive \ p and 

a scalar field primitive ap. The influence field primitives are blended in a way such 

that resulting velocity control magnitude ac is always in the range [0,1] and the 

resulting control velocity vc has zero divergence. We use ap like a filter for flow 
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primitives v p where ap is greatest in the region where the strongest influence is 

desired goes to zero moving away from that region. This facilitates blending as well 

as spatially smoothing out the influence of the primitive on the simulation. 

The flow primitives v p in our previous work [33] had infinite domains; none 

of these primitives are suitable for our finite spatial domain O with its boundary 

constraint: 

Thus, we have developed a new class of flow primitives based on streamtubes. A 

streamtube is a surface made up of streamlines starting at points forming a closed 

curve. There is no flow through this surface. In closed streamtubes (topologically 

equivalent to tori), the flow circulates entirely within the streamtube. In open 

streamtubes, the flux of fluid mass at one end of the tube equals the flux at the 

other end. As long as these streamtube flow primitives are completely within the 

fluid domain, they satisfy all the conditions of our dynamic problem. 

Our streamtube flow primitives are naturally based on curves. Figure 6.1 

shows a simple primitive based on a Bezier curve; Figure 6.2 shows a more complex 

one based on a cubic B-spline. Streamtube primitives can have variable thickness, 

i.e., the radial dimension can be a function of the curve parameter. We approximate 

the incompressible flow in a streamtube by numerically integrating a circular disc 

source along a curve. We do not require an exact solution here as our simulation 

algorithm will correct for any divergence in this numerical approximation. Figures 

6.3 and 6.4 show the flow in two different streamtube primitives. 
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o'amm 
Figure 6.5: The streamtube primitive specifies the desired flow within the tube; the 
simulation must solve for the flow throughout the domain that matches the flow 
specified in the streamtube. 

6.4 Results 

In this section we present the results of applying our method of controlling flow 

simulation to a number of illustrative scenarios. 

6.4.1 Basic Examples 

First, we consider the simple case of a single streamtube flow primitive with its 

degree of control ac set to unity throughout its domain (ac = 1). This primitive 

is enclosed in a domain entirely filled with gas that is initially at rest. The do

main has free-slip boundary conditions. After letting the simulation run for a short 

time, a steady state is achieved where, as shown in Figure 6.5, the flow follows 

the streamtube. Note that there is no discontinuity between the simulated region 

and the controlled region as the simulation algorithm solves for incompressible flow 

throughout the domain. Figure 6.6 shows a similar example with elements follow

ing the flow defined by a streamtube primitive. Figure 6.7 also shows a similar 

example, but with the streamtube crossed over itself. Note that the flow remains 
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F i g u r e 6.6: E l e m e n t s f o l l o w i n g t h e d e s i r e d f low spec i f i ed b y t h e s t r e a m t u b e p r i m i 

t i ves . A c h i e v i n g t h i s degree o f c o n t r o l u s i n g forces w o u l d b e q u i t e d i f f i c u l t . 
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incompressible. 

6.4.2 Varying the Degree of Control (ac) 

Next we consider the effect of varying the degree of control, ac- In these examples, 

we use an orthographic view of a three-dimensional 40 x 1 x 40 grid for clarity 

of illustration. Again, the domain is entirely filled with gas initially at rest and 

free-slip boundary conditions are used. The degree of control is represented by the 

opacity of the tube where ac = 0 is completely transparent and ac = 1 is completely 

opaque. Arrows along the defining curves of streamtube primitives show their flow 

direction, and arrows at the centers of computational cells show the computed flow. 

Al l simulations are run at 30 frames per second. 

Figure 6.8 shows a closed streamtube flow primitive with ac = 0.81 at its 

center that radially decays to ac = 0.04 at its boundary at time t = 0. Figure 6.9 

shows the flow after one simulation iteration (time t — 0.03), and Figure 6.10 shows 

the flow after ten iterations (time t = 0.33) when a steady state has been achieved. 

Now consider the effect of adding a heat source at the center of the domain. 

First, we set the degree of control ac = 0.08. Figure 6.11 shows the flow at frame 

127 where the flow due to thermal buoyancy caused by the heat source is visible but 

has not yet affected the flow influenced by the streamtube primitive. Figure 6.12 

shows the flow at frame 157 where the interaction is apparent. Figure 6.13 shows 

the flow at frame 357 where the effect is pronounced, yet note even at ac = 0.08 

there is an obvious influence on the simulated flow. Figures 6.14 and 6.15 show the 

same scenario with ac — 0.43. The influence is clearly stronger. Finally, we set 

ac = 1.0 at the boundary of the streamtube and ac = 0.0 at its center (in part to 

help visualize the simulated flow with the streamtube). As shown in Figure 6.16, at 
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Figure 6.8: Orthographic view of a streamtube flow primitive with CCQ = 0.81 at its 
center decaying radially to ac = 0.04 at its boundary at time t = 0. The domain 
has free-slip boundary conditions and is filled with gas initially at rest. The opacity 
of the tube corresponds to the degree of control ac where ac = 0 is completely 
transparent and ac = 1 is completely opaque. 
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F i g u r e 6 .11: A s t r e a m t u b e f low p r i m i t i v e w i t h ac = 0.08 s u r r o u n d s a p o i n t hea t 

source at t h e cen te r o f t h e d o m a i n ( t i m e t = 0 .9) . 
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Figure 6.12: A streamtube flow primitive with ac = 0.08 surrounds a point heat 
source at the center of the domain (time t = 1.9). 
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F i g u r e 6.13: A s t r e a m t u b e f low p r i m i t i v e w i t h ac — 0.08 s u r r o u n d s a p o i n t 

sou rce a t t h e cen te r o f t h e d o m a i n ( t i m e t — 8 .57). 
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this degree of control, the streamtube acts like a virtual boundary. 

6.4.3 Compos i t ion of Streamtube F l o w Pr imi t ives 

So far we have considered a single streamtube primitive and the effects of varying 

its degree of control. Now we consider the composition of multiple streamtube 

primitives. Figure 6.17 shows two streamtube flow primitives with constant ac = 

0.28 that overlap in some regions after a steady state has been reached. In these 

regions, the ac value is defined to be the sum of the ac values of each streamtube 

(clamped to a maximum of ac = 1). An alternate approach for overlapping regions 

would be to use the maximal ac value of all streamtubes that influence a point in 

the domain. However, we argue that it is more intuitive to sum the values. 

Figure 6.18 shows the same two streamtube flow primitives but with ac — 0.5 

at the center of the streamtube radially decaying to zero. Figure 6.19 shows the flow 

after a steady state has been reached. Note the differences with Figure 6.17. 

While it may be more intuitive to compose streamtubes flow primitives in a 

complementary fashion where the flow directions are not opposed, it is of course pos

sible to overlap streamtube flow primitives that oppose each other in flow direction 

as shown in Figure 6.20. 

6.4.4 Goa l -Di rec ted F l u i d F l o w 

Finally, we apply our method of controlling flow simulation to a specific animation 

task. This task consists of modelling a clear fluid with text (the word "control") 

written in dye that flows in a manner such that the text follows a particular path. 

We represent the text using an image that is texture-mapped via texture coordinates 

that are advected with the simulated flow. Initially these texture coordinates are 
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Figure 6.14: A streamtube flow primitive with ac — 0.43 surrounds a point heat 
source at the center of the domain (time t = 2.13). 
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Figure 6.15: A streamtube flow primitive with ac = 0.43 surrounds a point heat 
source at the center of the domain (time t = 8.4). 
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F i g u r e 6.16: A s t r e a m t u b e f low p r i m i t i v e w i t h ac = 1 at i t s b o u n d a r y a n d ac = 0 a t 

i t s cen te r s u r r o u n d s a p o i n t hea t source at t h e cen te r o f t h e d o m a i n ( t i m e t = 8 .26). 
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Figure 6.17: Composition of two streamtubes with constant ac = 0.28. 
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F i g u r e 6.18: C o m p o s i t i o n o f t w o s t r e a m t u b e s w i t h r a d i a l l y d e c a y i n g a c , f r o m 

0.5 t o ac = 0.0, a t t i m e t = 0 .0. 
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F i g u r e 6.19: C o m p o s i t i o n o f t w o s t r e a m t u b e s w i t h r a d i a l l y d e c a y i n g ac, f r o m ac 

0.5 t o a c = 0.0, at t i m e t = 14.13. 
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Figure 6.20: Two streamtube flow primitives with the same flow magnitude that 
have opposing flow directions in the region where they overlap. Both primitives 
have ac = 0.3. 
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scalar fields ramped from zero to one in each coordinate direction. 

This goal is easily realized with a streamtube flow primitive (with ac = 0.23). 

Figure 6.21 shows six frames from the resulting animation sequence. Note that there 

is no dependency of the texture on the streamtube; the texture simply moves with 

the simulated flow which in turn is influenced by the streamtube. 

6.5 Discussion 

We have shown that streamtube flow primitives can be a powerful approach to con

trolling incompressible flow simulation based on a Chorin projection method. The 

potential of thiSiapproach, however, has not been fully explored. For example, we 

have not investigated the animation of streamtubes. Al l parameters of a streamtube 

flow primitive can be animated: the control points, the flow magnitude, the radius, 

and the degree of control. We conjecture that the translation of a streamtube flow 

primitive with flow circulating radially around the defining curve (as opposed to 

tangentially with it) could be an effective means of generating waves. 

Naturally our approach to controlling fluid flow simulation for computer an

imation purposes has a number of basic limitations. As presented, streamtube flow 

primitives must be entirely within fluid cells and cannot cross fluid-solid interfaces 

or domain boundaries. (If they do, the control velocity may not satisfy the continu

ity equation.) Also, while our approach greatly improves the predictability of how 

a flow simulation will progress, it remains a trial-and-error approach without any 

guarantees of how the simulated flow will behave. 
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Figure 6.21: An example of goal-directed flow simulation. 
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Chapter 7 

Shape and Shading 

In this chapter we describe how we synthesize realistic images from our fluid model. 

We use implicit surface functions for liquid surfaces and volume density functions 

for participating media such as steam, smoke, and dust. We show how these shape 

models can be shaded using material properties and other parameters of our inte

grated fluid model. We also discuss our implementation of a bidirectional Monte 

Carlo ray-tracer for rendering realistic images from these shape and shading models. 

7.1 Basic Principles of Image Synthesis 

Before describing our shape and shading models and how we render images from 

them, we first review the basic principles of image synthesis or rendering, i.e., the 

process of computing how light is emitted, propagated, scattered, and absorbed 

throughout a scene to arrive at a given viewpoint. Our scenes consist of surfaces 

and participating media, and thus we review surface scattering and light transport 

in participating media. We also review the radiance equation which incorporates 

these processes and summarizes the rendering problem. 
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7.1.1 Surface Scattering 

The scattering of light at a surface is given by the bidirectional scattering distribution 

function (BSDF) fs(Co',Co) which gives the radiance leaving in direction Co per unit 

of irradiance arriving from Co'. The radiance L(x, Co) leaving a surface point x in 

direction Co is given by the surface scattering equation: 

which integrates the product of the BSDF and the incident illumination Li over the 

sphere 0 of all directions. Equation (7.1) can be used to compute the appearance 

of points on a surface from a given viewpoint. 

A shading model for a surface is generally an approximation of the BSDF. 

Typically, the BSDF is decomposed into the bidirectional reflection distribution 

function (BRDF) fr and the bidirectional transmission distribution function (BTDF) 

ft which describe the scattering for their respective hemispheres. 

7.1.2 Light Transport in Participating Media 

A participating medium can emit, absorb, and scatter light. To describe these 

processes it is necessary to define some terms: 

• the emission L e (x , Co) is the radiance emitted at the point x in direction Co, 

• the absorption coefficient cra(x) is the fraction of radiance lost per unit distance 

to other energy forms such as heat, 

• the scattering coefficient crs(x) is the fraction of the incoming radiation scat

tered from its original direction, 

(7.1) 
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• the extinction coefficient at is the sum of the absorption and scattering co

efficients, at = aa + <7S, where the mean free path that a photon can travel 

without being scattered or absorbed is l/cr*, 

• the scattering albedo is the ratio of the scattering coefficient to the extinction 

coefficient, os/ot, where low albedo values (near zero) correspond to dark 

media and high albedo values (near one) correspond to bright media, and 

• the phase function, P(X,CJ',CJ) is a scattering function giving the fraction of 

radiance from direction CJ' being scattered in direction CJ. 

For light interacting with a participating medium, the change in radiance at a point 

x in direction CJ is given by the integro-differential transport equation: 

— ^ = aaLe - otL(x,u) + as J p(x,CJ',Cj)Li(x,Cj)dZj (7.2) 

Integration of equation (7.2) along a straight path from xo to x in direction CJ gives: 

L(x,u) = / T(X',x)aa(x')Le(x',u)dx' 

+ T(X0,X)L(X0,CJ) 

+ P T(X',X)Os(X') f p(x',Cj',Cj)L(x',Cj')dLj'dx' (7.3) 

where r(x',x) is the transmittance along the line segment from x' to x: 

T(x ' ,x) = e-J5<*(eR 

The fact that the radiance at a point in the scene directly depends on the radiance 

of all other points in the visible space around it makes the solution for scenes with 

participating media much more challenging and computationally expensive. 
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7.1.3 Radiance Equation 

Now we consider our general problem: surfaces and participating media together. 

Under the common simplifying assumptions of geometric optics, unpolarized light, 

time-invariance, and decoupled wavelengths, the essential equation of image synthe

sis that completely captures the distribution of light in a scene is the time-invariant, 

gray radiance equation [34]: 

L(x,u5) = T ( X , S ) Le(s,u5)+ / fs{s)L(s,uJ)dw 
Je 

+ Jr-r(x,a) Le(a,u) + J p(a, C J ' , u)L(a, Q)dZj da (7.4) 

where a = x — au, s is the nearest surface point, and L(x, CJ) gives the radiance 

at point x coming from direction CJ. This equation addresses both surfaces and 

participating media and summarizes our rendering problem. It essentially says that 

to find the radiance at x coming from direction CJ, we find the nearest surface 

point s, compute its outgoing radiance into CJ (its incoming radiance comes from all 

directions) and accumulate the radiance due to volume emission and inscattering 

along the way from s to x. 

7.2 Liquid Surface Model 

We represent a liquid surface (more precisely, a liquid-gas interface) with the fol

lowing implicit surface: 

C(x,y,z) = TC (7.5) 
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where T £ is a constant and C > T £ is inside the liquid. The surface normal nc is 

taken in the direction pointing out of the liquid: 

. . V£(x, y, z) .„ „. 

The implicit function C is represented discretely on a finer resolution subgrid of our 

main simulation grid with samples at grid nodes. 

We generate C of the liquid surface from the summation of spherical field 

primitives £j associated with each reactive elements, i.e., the standard "blobby" 

approach to rendering surfaces using particles. However, to smooth out the surface, 

we use an ad hoc relaxation procedure where we diffuse C to reduce the curvature 

Kc = V- (V£o/ |V£ 0 | ) (7.7) 

in regions where the liquid velocity is near zero and the liquid surface is assumed to 

be flat. 

7.2.1 Shading Mode l 

Image synthesis requires a shading model for our surfaces, i.e., some approximation 

of the bidirectional scattering distribution function (BSDF). A wide variety of shad

ing models have been developed by researchers in computer graphics that trade-off 

accuracy, expressiveness, and speed; Glassner [34] gives an excellent review of these 

models. Instead of a fixed model, shading functions can be modelled with custom 

procedures called shaders, programs that compute how a surface reflects light. For 

example, Hanrahan and Lawson [36] described a shading language for programming 

shaders based on the shade trees of Cook [12] and the pixel stream editor of Perlin 

[59]. 
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While any shading model can be used for our surfaces, shading reactive liq

uids presents two basic challenges. First, the shading can rapidly and dramatically 

vary through time as it can depend on temperature and chemical concentrations. 

Thus, we need to animate parameters of our shading model. Unfortunately, most 

shading models are quite difficult to animate. Modifying one shading parameter 

may require modifying all other parameters to ensure the model is still "physically 

plausible". Modifying a given parameter by the same amount may have very differ

ent effects on the shading depending on the value of the given parameter as well as 

the values of all other parameters. Ideally, we want a set of independent, normal

ized shading parameters that define a parameter space where the distance between 

points in this space correspond to the magnitude of change in the overall shad

ing. Strauss [74] presented a shading model with such independent and normalized 

parameters, and we use this model. 

The second challenge of shading reactive liquid surfaces is relating the shad

ing to material properties such as temperature and chemical concentrations. Nat

urally, animators should be allowed to arbitrarily map fluid properties to shading 

parameters, and thus we need to define some way to do this. A procedural method is 

the most flexible approach, but implementing such a method is beyond the scope of 

this dissertation. Instead we use hard-coded mappings of fluid properties to shading 

parameters. 

7.3 Participating Media 

Most gases are invisible, and what we perceive of gaseous flow is typically through the 

motion of participating media such as dust, smoke, flame, and clouds. Liquids can 

contain participating media as well. Thus, we model the volume density M (x, y, z, t) 
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of participating media. 

7.3.1 Volume Density Mode l 

Reactive elements track participating media. The challenge here is to model the 

wispy appearance of smoke and other media from ellipsoidal primitives. Stam [70] 

used "warped blobs" to achieve this effect by back-tracing through the velocity 

field. This approach is computationally expensive, however, requiring integration 

back through time to the initial distribution of primitives. 

We experimented with another approach where elements as treated as partic

ipating medium sources where the medium is convected and diffused and eventually 

eliminated: 

^1 + v • VM = aM Mi + dMV2M - (3MM 
i 

where OLM is production rate, Mi is a field function of the iih element, (3M LS 

the loss rate, and dj^ is the diffusion coefficient. While this approach produced 

wispy streams, we found it diffused the medium too much, smearing visual detail. 

Instead, we simply used the summation of stochastic field functions associated with 

each element. This approach makes it easy to add more visual detail where desired: 

simply use more elements. 

7.3.2 Phase Functions 

Shading participating media effectively amounts to choosing an appropriate phase 

function. Thus, we review various phase functions and argue for the one we have 

selected. We want a physically plausible phase function that is as general as possible 

without being too computationally expensive to compute. 
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As with any scattering function, a physically plausible phase function must 

satisfy two important properties. First, it must satisfy the symmetry relation 

(Helmholtz reciprocity): 

p(u,u') = p(u/,w) 

Second, it must conserve energy. Thus, the following normalization condition must 

hold: 

f p{u,J)<kj' = l (7.8) 
J s 

Assuming the phase function is isotropic, i.e., it depends only on angle a 6 [0, n] 

between incident and outgoing directions (where a = 0 means no change in direction 

and a = TT means a total reversal of direction), equation (7.8) can be written as: 

1 r 

2 Jo P ^ S l 
sin ada = 1 (7-9) 

A common convention when specifying phase functions that we adopt here is to use 

a = cos(a) rather than a. Thus, equation (7.9) becomes: 

l 
p(a)da = 2 

' - 1 

The simplest phase function satisfying reciprocity and normalization conditions is: 

PC (a) = 1 

Blinn [5] presented some other simple phase functions, including an anisotropic 

function: 

PA{W, a) = 1 + wa 

and a Lambert function: 

g 
PL{a) = TT- [sin a + (n - a)a] 

OTT 
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Most phase functions assume the participating medium consists of a homogeneous 

distribution of particles where the index of refraction is dominated by size of the 

particles. The scattering that occurs in such a medium is characterized by the ratio 

of particle size r to the wavelength A of light involved (using 555nm as a characteristic 

wavelength). When particles are much smaller than the wavelength of light, r < A, 

there is no appreciable scattering and the light is absorbed. When particles are 

much bigger, r > A, then geometrical optics becomes a factor. Rayleigh scattering 

occurs when r /A < 0.05 and is characteristic of cigarette smoke and dust. A phase 

function for Rayleigh scattering is [34]: 

Pfl(a) = | ( l + a2) 

Mie scattering is characteristic when particles are comparable to the wavelength of 

light such as for water droplets or fog. Nishita et al. [55] presented phase functions 

for Mie scattering with both sparse (hazy) and dense (murky) particle densities, i.e., 

hazy: 

and murky: 

(1-1- \ 3 2 

Another approximation to the Mie functions is given by the Henyey-Greenstein 

phase function: 

P H G M = (1 - Igafg^ ^ 9 6 ^ 1] 

where g > 0 is mostly backscattering, g = 0 is uniform scattering, and g < 0 is 

mostly forward scattering. This phase function was used by Fedkiw, Stam, and 

Jensen [19] in their recent work on animating smoke. 
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We use the two-term Henvey-Greenstein (TTHG) model which can approxi

mate both Rayleigh and Mie scattering functions by linearly combining two ellipses 

of different magnitudes and eccentricities: 

PTTHG{r,gi,g2,a) =r- + (1 - r)- 2 3 / 2 

(1 -2gia + gfy/2 (1 - 2g2a + g$)Al1 

This model is quite general, yet still reasonable to compute. (The fractional expo

nentiation can be avoid by using an approximation to the TTHG model [4].) In our 

implementation, the parameters r, g±, and g2 are constants for each material type. 

7.4 R e n d e r i n g 

We render our surface and volume density models using a bidirectional Monte Carlo 

ray-tracing algorithm based on a photon tracing method [41, 42, 43]. We describe 

our implementation of this method for completeness but do not make any significant 

modifications to it. This algorithm involves two passes. In the first pass, photons are 

traced from light sources to compute estimates of indirect illumination and caustics. 

In the second pass, rays are traced from the viewpoint into the scene, accounting 

for the effects of participating media and utilizing the information computed in the 

first pass. 

7.4.1 Photon Tracing Pass 

In the first pass of the rendering algorithm, we simulate the emission of photons 

from light sources and their propagation through the scene as they interact with 

participating media and surfaces. A photon is represented as a particle with position, 

(incident) direction, and power. 
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Photon Emission 

In our implementation, we use a set of directional (infinite) light sources. Surfaces 

and participating media could act as light sources as well, but we have not imple

mented this. Photons are shot from the light sources with power: 

^photon = -Plight/-^ 

where Ne is the number of photons emitted. Note that more photons should be 

emitted from brighter lights than dim lights to ensure the power of all emitted 

photons is approximately even. 

Photon Maps 

Photon interactions with surfaces and volumes are stored in photon maps. A pho

ton map records information about photon position, incoming power, and incident 

direction. We use three photon maps: 

• the caustic photon map records photons having at least one specular reflection 

before hitting a diffuse surface, 

• the global photon map records photons having at least one interaction before 

hitting a diffuse surface and is an approximate representation of the global 

illumination solution for all diffuse surfaces, and 

• the volume photon map records photons interacting with participating media. 

The notation of Heckbert [38] facilitates the expression of what interactions get 

stored. In this notation, L means emission from a light source, S is specular re

flection or transmission, D is diffuse reflection or transmission, and V is volume 

scattering. Regular expressions are then built using these symbols, e.g., ()* means 
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Photon Map Photon Path 
caustic 
global 
volume 

LS+D 
L(S\D\V)*D 
L(S\D\V)+V 

Table 7.1: Photon maps. 

zero or more, ( ) + means one or more, and A\B means either A or B. Table 7.1 

shows the regular expressions corresponding to the various photon maps. 

Photon Interaction with Surfaces 

When a photon hits a surface, a probabilistic method is used to determine whether 

it undergoes specular reflection, diffuse reflection, or is absorbed. The probability 

Pr of reflection is determined from the reflection coefficients in our shading models. 

The probability of absorption is thus 1 — Pr. The power of a photon is appropriately 

diminished after reflecting off of a surface. 

Photon Interaction with Participating Media 

A photon can pass through a participating medium unaffected or it can interact 

with it (be scattered or absorbed). If a photon interacts with the medium and does 

not come directly from a light source, it gets recorded in the volume photon map. 

A cumulative probability density function, .F(x), is used to express the probability 

of a photon interacting with the medium: 

F(x) = 1 - r ( x m , x ) 

where x m is the point where the photon entered the medium. If a photon interacts 

with the medium, the probability of it being scattered is given by the scattering 
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albedo. The new direction of the photon is chosen based on the phase function of 

the medium at x. 

7.4.2 Ray Tracing Pass 

In the second pass of our rendering algorithm, we use a recursive ray-marching 

procedure. Rather than the original backward marching approach of Jensen and 

Christensen [43], we adopt the forward marching modification suggested by Fedkiw, 

Stam, and Jensen [19], i.e., we start at the viewpoint and march through any par

ticipating media until we hit a surface. We use an efficient voxel traversal algorithm 

to accelerate the ray marching [11]. 

Ray Marching Through Participating Media 

Starting at xrj, the first point in fi hit by a ray from the viewpoint through the 

image plane, we march along this ray in variable increments of length Axn for the 

nth step. Sampling at regularly spaced intervals here can result in strong aliasing 

artifacts, so it is essential to randomly perturb (jitter) this step size. Also, the step 

size can be adaptive, increasing the sampling frequency where variance is higher. 

The radiance at the nth step is given by: 

Ln(xn,uJ) = L n _i(x n _i,dT) + T (x 0 , x n )Ax n L s (x^ ,u5) 

where x^ is a random position in the nth ray segment and Ls is the fraction of the 

in-scattered radiance that is scattered in the direction CJ: 

Ls = cr a(x)L e(x, UJ) + ers(x) / Li(x, w)p(x, CJ', Cj)dCJ' 
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The in-scattered radiance L; can be split into a single scattering term Ld and a 

multiple scattering term Lm: 

The direct term Ld is computed using standard ray tracing. The multiple scattering 

term is approximated using the volume photon map [43]: 

where $ P ( O J ' ) is the power of the pth photon and r is the radius of the smallest 

sphere containing the n closest photons. On the order of n = 100 seems to work 

well. 

Ray-Surface Intersection 

Once we hit a surface, the reflected radiance L is computed from the incoming 

illumination Li as: 

where fr is the BRDF. Following Jensen [42], the reflected radiance is decomposed 

into four components: 

Li — Ld + L, 'm 

L(x,dJ) = / fr(x,tJ',uJ)Li(x,CJ) cosQidJ{ 

+ 

+ / r > s(x,c^w)(L c(x,u5) + Ld(x,oj)) cos eidw'i 

/ r,d(x, u', oJ)Lc(x, CJ) COS 0;GL4 

130 



where Li is direct illumination from the light sources, Lc is the indirect illumina

tion from light sources via specular reflection or transmission (computed using the 

caustics photon map), and Ld is indirect illumination from light sources which has 

been reflected diffusely at least once (computed using the global photon map). 

7.5 Results 

In this section we present sequences of frames rendered using the techniques dis

cussed in this chapter for several different animation scenarios. Figures 7.1-7.2 show 

a rendered sequence corresponding to the preview sequence shown in Figures 5.7-

5.8. In this sequence the liquid surface is not rendered, only the liquid interior which 

is modelled to have a uniform participating medium with a pure blue hue. Some 

rendering artifacts are apparent. Figure 7.3 shows a sequence of a viscous liquid 

body flowing from an initial state where a hypothetical container around the liquid 

instantly vanishes (similar to the breaking dam sequence discussed previously). The 

liquid surface in this sequence is opaque. 

Figures 7.4-7.5 show a sequence involving gaseous flow. The gas entirely fills 

the simulation domain. A layer of a participating medium (water vapor) lies at the 

bottom of the simulation domain. A point heat source at the bottom center of this 

domain creates a convection current which causes a gaseous jet to shoot upwards. 

This jet reaches the top of the domain creating a ring. Free-slip boundary conditions 

are used. Figure 7.6 shows another sequence with a participating medium in a gas. 

At the left side of the grid just above the top of the layer of participating medium 

at time t — 0 there is a solid obstacle (a block of solid cells) that is not rendered but 

its effects on the flow are apparent as the participating medium flows around this 

obstacle. This flow is caused by a force created in the bottom left corner, shooting 
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the gas into the solid obstacle. The gas flows around this obstacle, creating vortices 

as made apparent by the flow of the participating medium in the gas. 

Figure 7.7 shows a sequence where a liquid blob, suspended above a cloud 

layer at time t = 0, falls through the cloud layer, punching a hole in it and carrying 

gas with it. The final frame of this sequence at time t = 1.33 shows the liquid 

blob hitting the bottom of the simulation grid (not rendered). Due to our crude 

approximation of the conditions at the liquid-gas interface, the gas does not properly 

slide off of the liquid as the liquid passes through. We believe this can be remedied by 

ad hoc modifications to the interface conditions. Despite this artifact, this sequence 

illustrates the integrated simulation of high density liquid moving through a low 

(assumed to be vanishingly small) density gas. 

Al l of the images presented here as well as additional images and animations 

can be downloaded from the following web site: 

http:/ /www.cs.ubc.ca/~gates/phd.html 

The interested reader is encouraged to visit this site to view the original images and 

to play the animations. 
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* = 0 t = 0.33 

t = 0.67 t = 1.0 

t = 1.33 t = 1.67 

Figure 7.1: First set of frames from liquid drop sequence. 
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t = 0 t = 0.47 

t = 1.63 t = 2.3 

Figure 7.4: First set of frames from gas sequence. 
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t = 7.8 

Figure 7.5: Second set of frames from gas sequence. 
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i = 0 t = 3.07 

t = 9.07 t = 16.07 

Figure 7.6: Another gas sequence. 
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t = 0 t = 0.33 

t = 1.33 

Figure 7.7: Liquid and gas simulation. 
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Chapter 8 

Reactive Element Programs 

In our methodology chemical reactions and other phenomena that affect the appear

ance and behaviour of fluid flow can be modelled using reactive element programs. 

These programs are procedures executed at every time step in the simulation to 

animate element properties. Since these properties are tightly coupled with our 

dynamic and shading models, simple programs can describe complex effects on the 

motion and appearance of fluid. In this chapter, we present a high level language 

for programming reactive elements, describe the implementation of a compiler for 

this language, and present a number of applications of reactive element programs. 

8.1 Introduction 

By default, reactive elements are passive and simply track the transport of material 

properties in the flow. However, as their name implies, reactive elements can play 

an active role in the simulation: each element can have an associated program that 

computes changes in its properties. A program can be associated with each material 

type. At each time step in the simulation, each element belonging to a "reactive" 
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material executes the program associated with that material. 

A key aspect of this approach is that elements track dynamically simulated 

fluid properties, and thus changes in element properties feedback into the simulation. 

Naturally this approach requires a programming language for reactive elements. 

Ideally, this language should make it as easy as possible to program the desired 

effects. We present our language in Section 8.3, but first we discuss control surfaces 

and volumes. 

8.2 Control Surfaces and Volumes 

In our fluid model (cf. Section 3.1) we defined a set of abstract control surfaces 

defined with the implicit functions <S; and control volumes with density Vj. The 

role of these control surfaces and volumes to provide additional "stimuli" for reac

tive elements, i.e., each element can "sense" the value of the implicit functions <Sj 

and volume densities Vi. Thus, reactive element programs can compute responses 

to these surfaces and volumes, providing a general mechanism of influencing the 

procedural animation of element properties in a similar manner to our approach to 

influencing flow simulation with the control velocity field. 

Control surfaces can be modelled using any of the myriad modelling methods 

for implicit surfaces. See the book by Bloomenthal [6] for a review of these meth

ods. Likewise, control volumes can be modelled using any of the diverse methods 

for modelling density fields, e.g., interactive techniques [31, 82], procedural tech

niques [17, 27, 48, 57, 59, 60, 87], scan-converting geometric models onto a grid [45], 

and even using the output of computerized tomography (CT), magnetic resonance 

imaging (MRI), or positron emission tomography (PET) scans. 

141 



8.3 A Programming Language for Reactive Elements 

We have developed a high level language specifically for programming reactive ele

ments. This language is inspired by the success of the shading language described 

by Hanrahan and Lawson [36] for procedural models of shading functions based on 

the shade trees of Cook [12] and the pixel stream editor of Perlin [59]. As with their 

shading language, our language is based on a subset of the C programming language 

[46] and uses most of its syntax (i.e., it is one of the many "mini-C" languages). The 

distinguishing feature of our language is its set of predefined variables corresponding 

to element properties and parameters of our fluid model. Reactive element programs 

do not return a value, but rather cause side effects by modifying variables. 

8.3.1 Data Types 

To keep our programming language simple, we define just two data types: 

• f loa t : a typical floating point type, and 

• vector: a 3-tuple of the f l oa t type. 

The language does not support any fixed point type: the f l o a t type covers integers. 

8.3.2 Predefined Variables 

Table 8.1 lists all the predefined variables in our programming language for reactive 

elements. Note that some variables are "read-only", i.e., their value can be accessed 

but not modified. Al l these variables are set with current values before the execution 

of a procedure. 
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Variable Type Access Description 
Ci float RW concentration of chemical species i 
Dz float RW diffusion coefficient of chemical species i 
H float RW heat source rate 
Li float RW loss rate of chemical species i 
Qi float RW production rate of chemical species i 
CSi float R implicit function of control surface i 
CVi float R i density of control volume i 
P vector R position 
T float R temperature 
V vector R velocity 
dt float R current simulation time step 
gravity vector R gravity (uniform in arbitrary direction) 
time float R current time of simulation 

Table 8.1: Predefined variables (R = read only, RW = read and write). 

Operator Description 
+ , -

* , / 

& & , | | 

i 

<, <=, >, >= 

addition, subtraction 
multiplication, division 
exponentiation 
logical and, logical or 
logical not 
relational operators 
equals to 
assignment 

Table 8.2: Operators in order of increasing precedence. 
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Function Description 
float abs(float) absolute value 
float acos(float) arc cosine 
float asin(float) arc sine 
float atan(float) arc tangent 
float cos(float) cosine 
float length(vector) magnitude of vector 
float log(float) logarithm 
float max(float.float) maximum of arguments 
float min(float.float) minimum of arguments 
vector normalize(vector) normalizes vector 
float pow(float.float) power 
float randomO random number in range [0,1] 
float sin(float) sine 
float sqrt(float) square root 
float tan(float) tangent 

Table 8.3: Built-in functions. 

8.3.3 Operators 

As shown in Table 8.2, the language supports most of the standard operators on 

floats in the C programming language (with the same precedence and associativity 

rules). Arithmetic operators (addition, subtraction, multiplication, and division) 

are also defined for vectors. 

8.3.4 Bui l t - in Functions 

Our programming language also includes a number of built-in functions which are 

listed in Table 8.3.4. Most of these functions are standard routines in the C math 

library. 

144 



8.4 Compilation 

Execution of reactive element programs can easily be the limiting step in the entire 

simulation algorithm: every element can execute a procedure of arbitrary computa

tional complexity at every time step. Thus, rapid execution of procedures is critical. 

Interpretation would be extremely inefficient as every execution of a procedure would 

require lexical scanning, parsing, and type checking. Instead, we first compile pro

cedures to a lower level intermediate form before executing them. This intermediate 

form consists of an array of "byte codes", i.e., simple instructions that are executed 

on a stack-based "virtual machine" which processes byte codes by pushing and pop

ping their operands and results on and off a stack. Figure 8.1 shows the source 

code for a procedure, and Figure 8.2 shows the corresponding intermediate code. In 

their compiled form, procedures can be executed very efficiently: all syntax and type 

checking has been performed, all symbols have been resolved (no symbol lookup is 

necessary), the overhead of function calls is essentially eliminated, and the array 

facilitates caching by the CPU. 

Our compiler implementation uses standard techniques [1] and tools (flex and 

bison) [47]. A lexical scanner generated using flex converts procedure source code 

to tokens. A parser generated with bison generates a parse tree from these tokens. 

After type checking and symbol resolution, the parse tree is walked to generate 

the byte codes. The implementation of the "virtual machine" is straightforward, 

essentially involving a single "switch" statement with "case" statements for each 

byte code. 
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react ion A 
f l o a t s 

1 1.000000 
2 100.000000 
3 0.000000 

code: 
react ion A () { 0 push_prop temp 

i f (T > 1) 2 push_f 1 

{ 4 gt" 
Ql = 100; 5 i f z 13 

} 7 push_f 2 
else 9 pop_prop prodl 
•c 11 jump 17 

Ql = 0; 13 push_f 3 

} 15 pop_prop prodl 
} 17 return 

Figure 8.1: Reaction A source. Figure 8.2: Reaction A compiled. 
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react ion B 
f loats 

1 0.000000 
2 1.000000 
3 0.000000 
4 0.000000 
5 10.000000 
6 0.000000 

code: 
0 push_f 2 
2 pop_f 1 
4 push_prop cheml 
6 push_f 3 
8 gt 
9 push_prop chem2 

11 push_f 4 
taction B () { 13 gt 
f loat k = 1; 14 and 

15 i f z 35 
i f ( (Cl > 0) && (C2 > 0)) 17 push_f 1 

{ 19 pop_prop l o s s l 
L l = k; 21 push_f 1 
L2 = k; 23 pop_prop loss2 
QO = k; 25 push_f 1 
H = 10; 27 pop_prop prodO 

> 29 push_f 5 
else 31 pop_prop heat 

{ 33 jump 39 
QO = 0; 35 push_f 6 

> 37 pop_prop prodO 
39 return 

Figure 8.3: Reaction B source. Figure 8.4: Reaction B compiled. 
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8.5 R e s u l t s 

Simple reactive element programs can produce interesting results. In the following 

examples, a 50x 1 x 50 grid (i.e., a "vertical slice") is used. The entire domain is filled 

with liquid, and free-slip boundary conditions are used. Chemical concentrations 

are mapped to colour channels where the red channel r = 1 — Co, the green channel 

g — 1 — C i , and the blue channel b = I — C2 where the colour channels are normalized 

on the range [0,1]. Recall that the chemical concentrations are also normalized 

on the range [0,1]. The simulation clamps the concentrations at minimum and 

maximum values, so they are guaranteed to stay in this range. 

Figure 8.1 shows the source code listing for Reaction A, and Figure 8.2 shows 

the corresponding code after compilation. The compiled code is executed at every 

time step in the simulation. This reaction program simply generates Chemical 1 if 

the temperature exceeds a threshold value. Figures 8.5-8.6 show the frames from a 

sequence using Reaction A. At time t = 0 in this sequence, Chemical 0 is distributed 

in a grid pattern at maximum concentration Co = 1 to help visualize the flow (it 

is inert), and a point heat source is instantaneously generated at the bottom center 

of the grid triggering the production of Chemical 1. This heat source creates a 

convection current which rises upwards, triggering the production of Chemical 1 as 

the temperature is raised above the threshold temperature defined in Reaction A. 

Note that the inert Chemical 0 diffuses over time despite its diffusion coefficient 

being zero (the default value). Thus, this diffusion is entirely numerical and is a 

byproduct of using the semi-Lagrangian integration scheme for convection (as well 

as using fairly coarse grids). 

Figure 8.3 shows the source code listing for a slightly more complicated pro

gram Reaction B. Figure 8.4 shows the corresponding code after compilation. In 
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this program, a reaction is defined when Chemical 1 and Chemical 2 come into 

contact. When they do, they are converted via an implied combination reaction to 

Chemical 0 by triggering the loss of Chemical 1 and Chemical 2 and the production 

of Chemical 0. This program defines the reaction to generate heat. Figures 8.7-8.8 

show frames from an animation sequence using Reaction B. At time t — 0, a layer 

of Chemical 1 sits just above a layer of Chemical 2. A nonzero velocity value is set 

at a grid point in the center of the region between the two layers, i.e., the liquid is 

slightly stirred. This stirring mixes the two layers which start to react. The reaction 

generates heat, creating a convection current which further mixes the chemicals and 

propagates the reaction. 

These examples illustrate effects that would be difficult to achieve using ex

isting animation techniques. Our approach generalizes reaction-diffusion techniques 

used in computer graphics [79, 85] as our system simulates advection-reaction-

diffusion. More fundamentally, reactive element programs couple the simulation 

of chemical and thermal reactions with our fluid flow simulation, allowing the mod

elling of complex visual effects with simple programs. 
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t = 1.73 t = 2.166 

Figure 8.5: First set of frames from Reaction A sequence. 
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t = 2.59 t = 3.03 

* = 3.46 t = 3.90 

t = 4.33 t = 4.76 

mre 8.6: Second set of frames from Reaction A sequence. 
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t = 0 t = 0.5 

i = 0.63 r. = 0.73 

t = 0.80 t = 0.87 

Figure 8.7: First set of frames from Reaction B sequence. 
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t= 1.0 t = 1.13 

t = 1.20 t = 1.27 

Figure 8.8: Second set of frames from Reaction B sequence. 
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Chapter 9 

Conclusions 

9.1 Summary 

We have presented a general methodology for the computer animation of fluids based 

on the numerical simulation of the Navier-Stokes equations in three dimensions. This 

methodology addresses three basic challenges of animating fluids: 

1. Integrated Animation of Fluids 

We have presented a coherent framework for the integrated animation of flu

ids that couples a numerical fluid flow simulation method with both a novel 

procedural animation method for chemical and thermal reactions and a novel 

interactive technique for controlling the simulated flow. The key to this frame

work is the use of a set of scalar and vector fields as a unified representation 

of physical properties, shape models (implicit surfaces for liquids and volume 

density functions for participating media), shading attributes, and control pa

rameters. Using this framework as a conceptual basis, our methodology allows 

the integrated animation of both the motion and appearance of both liquids 

and gases containing participating media and reactive chemical species. 
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2. Animation of Reactive Flow 

Our methodology incorporates a procedural animation method for modelling 

chemical and thermal reactions that affect the appearance and behaviour of 

fluids. This method is a based on a language specifically designed for program

ming these reactive effects—an open-ended approach that allows the modelling 

of arbitrary reactions. We have shown that simple programs can produce in

teresting results. 

3. Control of Flow Simulation 

Our methodology incorporates a novel method of controlling incompressible 

flow simulation where the animator can specify the desired flow using stream-

tube primitives. This method allows the modelling of a control velocity at 

every point in the flow as well as the degree to which the simulated flow 

should be constrained to match it. As the flow associated with the primi

tives is incompressible, our simulation method can compute incompressible 

flow continuously throughout the domain where the fluid velocity within the 

streamtube primitives corresponds to what the animator specified. This ap

proach gives a much greater degree of control than explicitly modelling body 

forces. 

9.2 Analysis 

Our methodology has a number of strengths and weaknesses. It advances the state 

of the art in the computer animation of fluid flow by providing a coherent set of tech

niques for the integrated animation of a significantly larger class of fluid phenomena 

than previously addressed. It includes novel techniques for controlling fluid flow 
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simulation and for animating chemical and thermal reactions in fluids. It facilitates 

the animation of scenarios involving goal-directed fluid motion and reactive flow— 

scenarios that would be painstaking to animate using existing techniques. Perhaps 

the most significant contribution of this dissertation is our method of controlling flow 

simulation: we believe this method provides an intuitive and powerful approach to 

"directing" simulated flow to "perform" as desired. 

Our methodology has several limitations which should be noted. It does 

not address turbulent flow or surface tension. As discussed in Section 5.13, our 

simulation algorithm is stable subject to a CFL condition which limits the maximum 

time step that can be taken. The use of semi-Lagrangian integration results in 

significant numerical diffusion: a trade-off we accept in exchange for stability. We 

have oversimplified the liquid-gas interface conditions which can result in visible 

artifacts. Our liquid surface representation is not sufficiently smooth unless a large 

number of reactive elements is used, and an adequate number is difficult to determine 

without experimentation. The use of a fixed, uniform grid limits the range of scales 

that can be modelled effectively at a given time. 

We also note that a potential drawback of our methodology is the complexity 

of its implementation which involves a three-dimensional fluid flow solver that can 

handle free surfaces, a two-pass volume raytracer, and a compiler (to byte codes) for 

a C-like programming language. Such an implementation involves many subtleties; 

we hope we have provided sufficient detail for those interested in the implementation 

issues. 
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9.3 Future Work 

The limitations of our methodology discussed in the previous section can be ad

dressed by future work. A more accurate model of the liquid-gas interface conditions 

could be used but might require a different and possibly more computationally ex

pensive flow simulation algorithm. A multi-resolution fluid representation and flow 

solver would overcome the limitations of using a regular grid. Recent work by Foster 

and Fedkiw [22] has shown that the use of level sets in conjunction with particles can 

be an effective means of tracking a free surface that is very smooth. This approach 

appears quite promising and could be adapted to work with our methodology. 

Future work can also extend our methodology in a number of interesting 

directions. Other types of flow primitives besides streamtubes could be developed. 

Animated flow primitives may have useful applications. Complex interactions be

tween fluids and solids such as those involved in erosion and weathering could be 

modelled in terms of mechanical, chemical, and thermal reactions. While specific 

weather and erosion phenomena have been effectively addressed using ad hoc tech

niques (as discussed in Chapter 2), a general approach has not yet been explored. 

The computer animation of fluids remains one of the most difficult tasks in 

computer graphics. Many challenges must be tackled to alleviate this difficulty. The 

alluring beauty of flowing fluid ensures they will be. 
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Notation 

All vectors and vector-valued functions are in boldface. Greek symbols are listed 

first, followed by Roman symbols. 

ac degree of velocity control 

thermal buoyancy scaling factor 

r boundary of domain Cl 

ST cell dimension (grid spacing) 

St time step 

e error tolerance 

KC curvature of liquid surface 

A i diffusion coefficient of chemical species i 

A j 1 thermal diffusivity 

V- dynamic viscosity 

V kinematic viscosity 

P density 

O-a absorption coefficient 

Vs scattering coefficient 

°t extinction coefficient 

T transmittance 
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<f> phase (gas, liquid, or solid) 

material type 

LO vorticity 

n spatial domain 

b body forces 

Ci concentration of chemical species i 

f body forces other than gravity 

g gravity 

1 influence field 

L radiance 

C implicit function for free liquid surface 

U loss rate of chemical species i 

M density of participating media 

nc normal to liquid surface 

Nx number of cells in x-direction 

Ny number of cells in y-direction 

Nz number of cells in z-direction 

V pressure 

q heat source 

Qi production rate of chemical species i 

Si implicit function for control surface i 

t time 

T stress tensor 

T temperature 

Too ambient temperature 
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u velocity component in x-direction 

v velocity component in y-direction 

v velocity 

v* intermediate velocity 

vc control velocity 

Vi density field of control volume i 

w velocity component in z-direction 
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Glossary 

advection transport by flow 

BRDF bidirectional reflectance distribution function 

BSDF bidirectional surface scattering distribution function 

B T D F bidirectional transmittance distribution function 

cell an axis-aligned volume element of the simulation grid 

combustion rapid oxidation reaction 

compressible flow flow where fluid density changes in response to applied pressure 

dynamic viscosity a measure of the resistance of a fluid to flow 

Euler equations equations for inviscid, incompressible flow 

Euler's method an explicit numerical integration scheme 

Eulerian fluid flow is described with respect to a fixed frame of reference (cf. La

grangian) 

fluid substance that cannot resist a sheer force at rest; gas or liquid 

free surface liquid-gas interface 
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incompressible flow idealized flow where changes in applied pressure do not affect 

fluid density 

inviscid flow idealized flow with zero viscosity 

irrotational flow idealized flow with zero vorticity 

kinematic viscosity ratio of dynamic viscosity to density 

laminar flow relatively low speed flow where fluid particles follow smooth trajec

tories (cf. turbulent flow) 

Lagrangian description of fluid motion where individual fluid particles are followed 

(cf. Eulerian) 

Navier-Stokes equations the basic equations of viscous fluid flow first derived by 

Claude Navier in 1822 and later rederived on a more sound theoretical basis 

by George Stokes in 1845 

pathline curve traced by a particular fluid particle during a specified time interval, 

e.g., the curve resulting from a long exposure photograph of a luminescent 

particle (cf. streakline and streamline) 

reactive element a volume primitive defined in this dissertation for modelling 

chemical reactions in fluid flow and visualizing unsteady flow fields 

solenoidal vector field a vector field with zero divergence 

streakline curve consisting of all fluid particles that have passed through a given 

point during a specific interval of time, e.g., the curve traced by the continuous 

injection of dye at a given point (cf. pathline and streamline) 
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s t r e a m l i n e a curve everywhere tangent to the instantaneous velocity vector; for 

steady flow, a streamline is the same as a pathline and streakline 

t h e r m a l b u o y a n c y the tendency for warmer fluid to rise and colder fluid to sink 

t r a n s m i t t a n c e in radiation transfer, the fraction of incoming radiation that is 

transmitted into or through a medium 

t u r b u l e n t flow relatively high speed flow characterized by a high degree of irreg

ularity and vorticity (cf. laminar flow) 

u n s t e a d y flow time-varying flow 

v i s c o s i t y see dynamic viscosity 

v o r t i c i t y the curl of a velocity field; a measure of local rotation in a fluid flow 
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Appendix A 

Free Surface Conditions 

When simulating liquids, appropriate velocity values on the faces between liquid 

and gas cells must be set so that the liquid cells neighboring gas cells have zero 

divergence. Except for the case of exactly one gas neighbor, there is no unique 

way to do this. Thus, reasonable assumptions about the flow in these cells must 

be made. Here we show how we set these velocity values for all 63 configurations 

of gas neighbors around a liquid cell. The notation used in the source code listing 

here is consistent with the notation used in the rest of this dissertation with one 

exception: we use H here for the grid spacing instead of ST. While the grid is uniform 

in each direction, the conditions are formulated here to facilitate the conversion to 

different grid spacings (Sx, Sy, Sz) in each coordinate direction. The neighbor flag 

NF indicates which neighbors of the liquid cell (i, j, k) are gas cells. The neighbor 

flag uses a six digit binary number to represent the —x, +x, —y, +y, —z, and +z gas 

neighbors respectively, e.g., 100000 indicates the liquid cell has exactly one neighbor 

in the — x direction. 

The conditions we use are as follows: 
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II 
II one gas neighbor 
// 

case NF_100000: 
U(i-l.j.k) = U(i,j,k) + H*( 

(V(i,j,k)-V(i,j-l,k))/H + (W(i,j ,k)-W(i,j,k-l))/H); 
break; 

case NF_010000: 
U(i,j,k) = U(i-l,j,k) - H*( 

(V(i,j,k)-V(i,j-l.k))/H + (W(i,j,k)-W(i,j,k-1))/H); 
break; 

case NF_001000: 
V(i.j-l.k) = V(i,j,k) + H*( 

(U(i,j,k)-U(i-l,j,k))/H + (W(i,j,k)-W(i,j,k-1))/H); 
break; 

case NF_000100: 
V(i.j.k) = VCi.j-l.k) - H*( 

(U(i,j,k)-U(i-l,j,k))/H + (W(i,j,k)-W(i,j,k-1))/H); 
break; 

case NF_000010: 
W(i,j,k-1) = W(i,j,k) + H*( 

(U(i,j,k)-U(i-l,j.k))/H + (V(i,j,k)-V(i,j-l,k))/H); 
break; 

case NF_000001: 
W(i,j.k) = W(i,j,k-1) - H*( 

(U(i,j,k)-U(i-l,j,k))/H + (V(i,j,k)-V(i,j-l,k))/H); 
break; 

// 
// two gas neighbors (opposite) 
// 

case NF_110000: 
U(i-l.j.k) += Gx*DT; 
U(i,j,k) += Gx*DT; 
div = (U(i,j,k)-U(i-l,j,k))/H + 

(V(i,j,k)-V(i,j-l.k))/H + 
(W(i,j,k)-W(i,j,k-1))/H; 

U(i-l,j,k) += 0.5*H*div; 
UCi.j.k) -= 0.5*H*div; 
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break; 
case NF_001100: 

V(i,j-l,k) += Gy*DT.; 
V(i,j,k) += Gy*DT; 
div = (U(i,j,k)-U(i-l,j,k))/H + 

(V(i,j,k)-V(i,j-l.k))/H + 
(W(i,j>k)-W(i,j,k-l))/H; 

V(i,j-l,k) += 0.5*H*div; 
V(i,j,k) -= 0.5*H*div; 
break; 

case NF.OOOOll: 
WCi.j,k-l) += Gz*DT; 
W(i,j,k) += Gz*DT; 
div = (U(i,j,k)-U(i-l,j,k))/H + 

(V(i,j,k)-V(i,j-l,k))/H + 
(W(i,j.k)-W(i,j,k-1))/H; 

W(i,j,k-1) += 0.5*H*div; 
W(i,j,k) -= 0.5*H*div; 
break; 

// 
// two gas neighbors (adjacent) 
// 

case NF_101000: 
U(i-l,j.k)=U(i 
V(i,j-l,k)=V(i 
break; 

case NF_100100: 
U(i-l,j,k)=U(i 
V(i,j,k)=V(i,j 
break; 

case NF_011000: 
U(i,j,k)=U(i-l 
V(i,j-l,k)=V(i 
break; 

case NF_010100: 
U(i,j,k)=U(i-l 
V(i,j,k)=V(i,j 
break; 

,j,k)+0 
,j,k)+0 

,j.k)+0 
-l,k)-0 

,j .W-o 
,j,k)+0 

,j.k)-0 
-l,k)-0 

,5*H*((W(i, 
,5*H*((W(i, 

,5*H*((W(i, 
,5*H*((W(i, 

,5*H*((W(i, 
,5*H*((W(i, 

,5*H*((W(i, 
,5*H*((W(i, 

,k)-W(i, 
,k)-W(i, 

,k)-W(i, 
,k)-W(i, 

,k)-W(i, 
,k)-W(i, 

,k)-W(i, 
,k)-W(i, 

,k-l))/H); 
,k-l))/H); 

,k-l))/H); 
,k-l))/H); 

,k-l))/H); 
,k-l))/H); 

,k-l))/H); 
,k-l))/H); 
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case NF_001010: 

V ( i , j - l , k ) = V ( i , j,k ) + 0 . 5*H*((U(i, 
W(i,j )k-l)=W(i,j,k )+0 .5*H*((U(i, 
break; 

case NF_001001: 

V ( i , j - l , k ) = V ( i , j . k ) + 0 . 5 * H * ( ( U ( i , 
W ( i , j . k ) = W ( i , j , k - l ) - 0 . 5 * H * ( ( U ( i , 
break; 

case NF_000110: 

V C i . j , k ) = V ( i , j - l , k ) - 0 . 5 * H * ( ( U ( i , 
W ( i , j , k - l ) = W ( ' i , j . k ) + 0 . 5 * H * ( ( U ( i , 
break; 

case NF_000101: 

V ( i , j , k ) = V ( i , j - i , k ) - 0 . 5 * H * ( ( U ( i , 
W ( i , j . k ) = W ( i , j . k - l ) - 0 . 5 * H * ( ( U ( i , 
break; 

case NF.100010: 

U ( i - l , j , k ) = U ( i , j . k ) + 0 . 5 * H * ( ( V ( i , 
W ( i , j , k - l ) = W ( i , j,k ) + 0 . 5*H*((V(i, 
break; 

case N F . l O O O O l : 

U ( i - l , j , k ) = U ( i , j , k ) + 0 . 5 * H * ( ( V ( i , 
W(i,j,k)=W(i,j,k-l ) - 0 . 5*H*((V(i, 
break; 

case NF_010010: 

U ( i , j . k ) = U ( i - l , j , k ) - 0 . 5 * H * ( ( V ( i , 
W ( i , j . k - l ) = W ( i , j , k ) + 0 . 5 * H * ( ( V ( i , 
break; 

case NF_010001: 

U ( i , j . k ) = U ( i - l , j . k ) - 0 . 5 * H * ( ( V ( i , 
W ( i , j , k ) = W ( i , j . k - l ) - 0 . 5 * H * ( ( V ( i , 
break; 

j , k ) - U ( i - l 1 » J 
j,k)-U(i-] • * J 

j , k ) - U ( i - 1 ' » J 
j,k)-U(i-] ' » J 

j , k ) - U ( i - l " > J 
j , k ) - U ( i - 3 " > J 

j,k)-U(i-] " J J 
j , k ) - U ( i - 3 " * J 

j , k ) - V ( i , ; 
j , k ) - V ( i , ; i 1 

j , k ) - V ( i , ; 1 — 1 

j , k ) - V ( i , ; _ 2_ 

j , k ) - V ( i , ; I — 1 

j , k ) - V ( i , ; ~~ X 

j , k ) - V ( i , . — 1 

j , k ) - V ( i , . -1 

// 
// three gas neighbors (adjacent/liquid corner) 
// 

case NF_010101: 

U ( i , j , k ) = U ( i - l , j , k ) ; 
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V(i.j.k) = 
W(i.j.k) = 
breeik; 

case NF_100101 
U(i-l ,j ,k) 
V(i.j.k) = 
W(i,j,k) = 
break; 

case NF_011001 
U(i,j,k) = 
V(i ,j- l ,k) 
W(i,j,k) = 
break; 

case NF_101001 
U(i-l ,j ,k) 
V(i .j- l .k) 
W(i,j,k) = 
break; 

case NF_010110 
U(i,j,k) = 
V(i ,j .W = 
W(i,j,k-1) 
break; 

case NF_100110 
U(i-l ,j ,k) 
V(i,j,k) = 
W(i,j,k-1) 
break; 

case NF_011010 
U(i,j.k) = 
V(i ,j- l ,k) 
W(i,j,k-1) 
break; 

case NF_101010 
U(i- l , j ,W 
V(i ,j- l ,k) 
W(i,j,k-1) 
break; 

V(i . j - l .k); 
W(i.j.k-l); 

= U(i, 
V(i , j" 
W(i,j.: 

U(i-1, 
= V(i, 
WCi.j, 

= U(i, 
= V(i. 
W(i,j, 

U(i-1, 
V( i , j -
= W(i, 

= U(i, 
VCi.j" 
= W(i, 

U(i-1, 
= V(i, 
= W(i, 

j,k) 
,k) 
-l) 

,k) 
,k) 
-1) 

,k) 
.k) 
-1) 

,k) 
,k) 
,k) 

,k) 
,k) 
,k) 

,k) 
,k) 
,k) 

U(i,; ,k) 
V(i,; ,k) 
W(i,; ),k) 

// 
/ / three gas neighbors (two opposite) 
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case N F _ 1 1 1 0 0 0 : 

U ( i - l , j , k ) += G x * D T ; 

U ( i , j , k ) += G x * D T ; 

V ( i , j - l , k ) = V ( i , j , k ) + H*( 
( U ( i , j , k ) - U ( i - l , j , k ) ) / H + ( W ( i , j , k ) - W ( i , j , k - 1 ) ) / H ) ; 

break; 
case NF_110100: 

U ( i - l , j , k ) += G x * D T ; 

U ( i , j , k ) += G x * D T ; 

V ( i , j , W = V ( i , j - l , k ) - H*( 

( U ( i , j , k ) - U ( i - l , j , k ) ) / H + ( W ( i , j , k ) - W ( i , j , k - 1 ) ) / H ) ; 

break; 
case N F _ 1 1 0 0 1 0 : 

U ( i - l . j . k ) += G x * D T ; 

U ( i , j , k ) += G x * D T ; 

W ( i , j , k - 1 ) = W C i . j . k ) + H*( 

( U ( i , j , k ) - U ( i - l , j , k ) ) / H + < V ( i , j , k ) - V ( i , j - i , k ) ) / H ) ; 

break; 
case N F _ 1 1 0 0 0 1 : 

U ( i - l . j . k ) += G x * D T ; 

U ( i , j , k ) += G x * D T ; 

W ( i , j . k ) = W ( i , j , k - 1 ) - H*( 

( U ( i , j , k ) - U ( i - l , j , k ) ) / H + ( V ( i , j , k ) - V ( i , j - l , k ) ) / H ) ; 

break; 

case N F _ 1 0 1 1 0 0 : 

V ( i . j - l . k ) += G y * D T ; 

V ( i , j , k ) += G y * D T ; 

U ( i - l . j . k ) = U ( i , j , k ) + H*( 

( V ( i , j , k ) - V ( i , j - l , k ) ) / H + ( W ( i , j , k ) - W ( i , j , k - 1 ) ) / H ) ; 

break; 
case N F . O l l l O O : 

V ( i , j - l , k ) += G y * D T ; 

V ( i , j . k ) += G y * D T ; 

U ( i , j . k ) = U ( i - l , j , k ) - H*( 

( V ( i , j , k ) - V ( i , j - l , k ) ) / H + ( W ( i , j , k ) - W ( i , j , k - 1 ) ) / H ) ; 

breeik; 

case N F _ 0 0 1 1 1 0 : 

V ( i , j - l , k ) += G y * D T ; 

V C i . j . k ) += G y * D T ; 
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W(i,j,k-1) = W(i,j,k) + H*( 
(U(i,j,k)-U(i-l,j,k))/H + (V(i,j,k)-V(i,j-l,k))/H); 

break; 
case NF.001101: 

V(i,j-l,k) += Gy*DT; 
V(i.j.k) += Gy*DT; 
W(i,j,k) = W(i,j,k-1) - H*( 

(U(i,j.k)-U(i-l,j,k))/H + (V(i,j.k)-V(i,j-l,k))/H); 
break; 

case NF_100011: 
W(i,j,k-1) += Gz*DT; 
W(i,j,k) += Gz*DT; 
U(i-l,j',k) = U(i.j.k) + H*( 

(V(i,j,k)-V(i,j-l,k))/H + (W(i,j.k)-W(i,j,k-1))/H); 
break; 

case NF_010011: 
W(i,j,k-1) += Gz*DT; 
W(i,j,k) += Gz*DT; 
UCi.j.k) = U(i-l.j.k) - H*( 

(V(i,j,k)-V(i,j-l,k))/H + (W(i,j.k)-W(i,j,k-1))/H); 
break; 

case NF_001011: 
W(i,j,k-1) += Gz*DT; 
W(i,j,k) += Gz*DT; 
V(i,j-l,k) = V(i,j,k) + H*( 

(U(i,j.k)-U(i-l,j,k))/H + (W(i,j,k)-W(i,j,k-1))/H); 
break; 

case NF.OOOlll: 
W(i,j,k-1) += Gz*DT; 
W(i,j,k) += Gz*DT; 
V(i,j,k) = V(i,j-l,k) - H*( 

(U(i,j,k)-U(i-l,j,k))/H + (W(i,j,k)-W(i,j,k-1))/H); 
break; 

// 
// four gas neighbors (two opposite pairs) 
// 
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case NF_ 111100: 
U ( i - 1 , j ,k ) += Gx*DT; 
U ( i , j , k ) += Gx*DT; 
V ( i , j - l , k ) += Gy*DT; 
V ( i , j ,k) += Gy*DT; 
d i v = ( U ( i , j , k ) - U ( i - l , j , k ) ) / H 

( V ( i , j , k ) - V ( i , j - l . W ) / H + 
( W ( i , j , k ) - W ( i , j , k - 1 ) ) / H ; 

U ( i - 1 , j ,k ) += 0.25*H*div; 
U ( i , j , k ) -= 0.25*H*div; 
V ( i , j - l , k ) += 0.25*H*div; 
V ( i , j , k ) -= 0.25*H*div; 
break; 

case NF_ 110011: 
U ( i - 1 , j ,k ) += Gx*DT; 
U ( i , j , k ) += Gx*DT; 
W ( i , j , k - l ) += Gz*DT; 
W ( i , j , k ) += Gz*DT; 
d i v = ( U ( i , j , k ) - U ( i - l , j , k ) ) / H 

( V ( i , j , k ) - V ( i , j - l , k ) ) / H + 
( W ( i , j , k ) - W ( i , j , k - 1 ) ) / H ; 

U ( i - 1 , j ,k ) += 0.25*H*div; 
U ( i , j , k ) -= 0.25*H*div; 
W ( i , j , k - l ) += 0.25*H*div; 
W ( i , j , k ) -= 0.25*H*div; 
break; 

case NF_ 001111: 
V ( i , j - l , k ) += Gy*DT; 
V ( i , j , k ) += Gy*DT; 
W ( i , j , k - l ) += Gz*DT; 
W ( i , j , k ) += Gz*DT; 
d i v = ( U ( i , j , k ) - U ( i - l , j , k ) ) / H 

( V ( i , j , k ) - V ( i , j - l , k ) ) / H + 
( W ( i , j , k ) - W ( i , j , k - 1 ) ) / H ; 

V ( i , j - l , k ) += 0.25*H*div; 
V ( i , j , k ) -= 0.25*H*div; 
W ( i , j , k - l ) += 0.25*H*div; 
W ( i , j ,k) -= 0.25*H*div; 
break; 

/ / 

179 



/ / four gas neighbors (one opposite p a i r ) 
/ / 

case NF_110101: 
U ( i - l . j . k ) += Gx*DT; 
U ( i , j , k ) += Gx*DT; 
V ( i . j , k ) = V ( i , j - l , k ) - 0 . 5 * H * ( ( U ( i , j , k ) - U ( i - l , j , k ) ) / H ) ; 
W ( i , j . k ) = W ( i , j , k - l ) - 0 . 5 * H * ( ( U ( i , j , k ) - U ( i - l , j , k ) ) / H ) ; 
break; 

case N F . l l O l l O : 
U ( i - l , j , k ) += Gx*DT; 
U ( i , j » k ) += Gx*DT; 
V ( i , j . k ) = V ( i , j - l . k ) - 0 . 5 * H * ( ( U ( i , j , k ) - U ( i - l , j . k ) ) / H ) ; 
W ( i , j , k - l ) = W ( i , j , k ) + 0 . 5 * H * ( ( U ( i , j , k ) - U ( i - l , j , k ) ) / H ) ; 
break; 

case NF_111001: 
U ( i - l , j , k ) += Gx*DT; 
U ( i , j , k ) += Gx*DT; 
V ( i , j - l . k ) = V ( i , j , k ) + 0 . 5 * H * ( ( U ( i , j , k ) - U ( i - l , j , k ) ) / H ) ; 
W ( i , j . k ) = W ( i , j . k - l ) - 0 . 5 * H * ( ( U ( i , j , k ) - U ( i - l , j . k ) ) / H ) ; 
break; 

case NF_111010: 
U ( i - l , j , k ) += Gx*DT; 
U ( i , j , k ) += Gx*DT; 
V ( i , j - l , k ) = V ( i , j , k ) + 0 . 5 * H * ( ( U ( i , j , k ) - U ( i - l , j , k ) ) / H ) ; 
W ( i , j , k - l ) = W ( i , j , k ) + 0 . 5 * H * ( ( U ( i , j , k ) - U ( i - l , j , k ) ) / H ) ; 
break; 

case NF_011101: 
V ( i , j - l , k ) += Gy*DT; 
V C i . j . k ) += Gy*DT; 
U ( i , j , k ) = U ( i - l , j , k ) - 0 . 5 * H * ( ( V ( i , j , k ) - V ( i , j - l , k ) ) / H ) ; 
W ( i , j , k ) = W ( i , j . k - l ) - 0 . 5 * H * ( ( V ( i , j , k ) - V ( i , j - l , k ) ) / H ) ; 
break; 

case NF_011110: 
V ( i , j - i , k ) += Gy*DT; 
V ( i , j , k ) += Gy*DT; 
U ( i , j , k ) = O ( i - l , j , k ) - 0 . 5 * H * ( ( V ( i . j . k ) - V ( i , j - l , k ) ) / H ) ; 
W ( i , j , k - l ) = W ( i , j . k ) + 0 . 5 * H * ( ( V ( i , j , k ) - V ( i , j - i , k ) ) / H ) ; 
break; 

case NF_101101: 
V ( i , j - l , k ) += Gy*DT; 
V ( i . j . k ) += Gy*DT; 
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U ( i - l , j , k ) = U ( i , j , k ) + 0 . 5 * H * ( ( V ( i , j , k ) - V ( i , j - l . W ) / H ) ; 
W ( i , j , k ) = W ( i , j , k - l ) - 0 . 5 * H * ( ( V ( i , j . k ) - V ( i , j - l , k ) ) / H ) ; 
b r e a k ; 

case N F . l O l l l O : 

V ( i , j - l , k ) += Gy*DT; 

V ( i , j , k ) += Gy*DT; 
U ( i - l , j , k ) = U ( i , j . k ) + 0 . 5 * H * ( ( V ( i , j , k ) - V ( i , j - l . k ) ) / H ) ; 
W ( i , j , k - l ) = W ( i , j , k ) + 0 . 5 * H * ( ( V ( i , j , k ) - V ( i , j - l , k ) ) / H ) ; 
b r e a k ; 

case NF.010111: 
W ( i , j , k - 1 ) += Gz*DT; 
W ( i , j , k ) += Gz*DT; 
U ( i , j , k ) = U ( i - i , j , k ) - 0 . 5 * H * ( ( W ( i , j , k ) - W ( i , j . k - l ) ) / H ) ; 
V ( i , j , k ) = V ( i , j - l . k ) - 0 . 5 * H * ( ( W ( i , j , k ) - W ( i , j , k - l ) ) / H ) ; 
b r e a k ; 

case NF_011011: 
W ( i , j , k - 1 ) += Gz*DT; 
W ( i , j » k ) += Gz*DT; 
U ( i , j , k ) = U ( i - l , j , k ) - 0 . 5 * H * ( ( W ( i , j , k ) - W ( i , j , k - l ) ) / H ) ; 
V ( i , j - i , k ) = V ( i , j , k ) + 0 . 5 * H * ( ( W ( i , j . k ) - W ( i , j , k - l ) ) / H ) ; 
b r e a k ; 

case NF_100111: 
W ( i , j , k - 1 ) += Gz*DT; 
W ( i , j , k ) += Gz*DT; 
U ( i - 1 , j , k ) = U ( i , j , k ) + 0 . 5 * H * ( ( W ( i , j , k ) - W ( i , j , k - l ) ) / H ) ; 
V ( i , j , k ) = V ( i , j - l , k ) - 0 . 5 * H * ( ( W ( i , j . k ) - W ( i , j , k - l ) ) / H ) ; 
b r e a k ; 

case NF.101011: 
W ( i , j , k - 1 ) += Gz*DT; 
W ( i , j » k ) += Gz*DT; 
U ( i - l , j , k ) = U ( i , j , k ) + 0 . 5 * H * ( ( W ( i , j , k ) - W ( i , j , k - l ) ) / H ) ; 
V ( i , j - l » k ) = V ( i , j , k ) + 0 . 5 * H * ( ( W ( i , j , k ) - W ( i , j , k - l ) ) / H ) ; 
b r e a k ; 

// 
/ / f i v e gas n e i g h b o r s 

/ / 

case N F . O l l l l l : 
V ( i , j - l , k ) += Gy*DT; 
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V ( i , 
W ( i , 
W ( i , 
U ( i , 

j ,k) += Gy*DT; 
, k - l ) += Gz*DT; 
,k) += Gz*DT; 
,k) = U ( i - l , j , k ) - H*( 
V ( i , j , k ) - V ( i , j - l , k ) ) / H + ( W ( i , j , k ) - W ( i , j , k - 1 ) ) / H ) ; 

break 
case NF_ 

V ( i , 
V ( i , 
W ( i , 
W ( i , 
U ( i -

break 
case NF_ 

U ( i -
U ( i , 
W ( i , 
W ( i , 
V ( i , 

break 
case NF_ 

U ( i -
U ( i , 
W ( i , 
W ( i , 
V ( i , 

break 
case NF_ 

U ( i -
U ( i , 
V ( i , 
v ( i , 
W ( i , 

break 
case NF_ 

U ( i -
U ( i , 
v ( i , 

01111: 
- l , k ) += Gy*DT; 
,k) += Gy*DT; 
, k - l ) += Gz*DT; 
,k) += Gz*DT; 
, j . k ) = U ( i , j , k ) + H*( 

V ( i , j , k ) - V ( i , j - l , k ) ) / H + ( W ( i , j , k ) - W ( i , j , k - 1 ) ) / H ) ; 

10111: 
, j , k ) += Gx*DT; 
,k) += Gx*DT; 
, k - l ) += Gz*DT; 
,k) += Gz*DT; 
,k) = V ( i , j - l , k ) - H*( 
U ( i , j , k ) - U ( i - l , j , k ) ) / H + ( W ( i , j , k ) - t f ( i , j , k - l ) ) / H ) ; 
i 

11011: 
, j , k ) += Gx*DT; 
,k) += Gx*DT; 
, k - l ) += Gz*DT; 
,k) += Gz*DT; 
- l . k ) = V ( i , j , k ) + H*( 
U ( i , j , k ) - U ( i - l , j , k ) ) / H + ( W ( i , j , k ) - W ( i , j , k - 1 ) ) / H ) ; 
> 

11101: 
, j , k ) += Gx*DT; 
,k) += Gx*DT; 
- l , k ) += Gy*DT; 
,k) += Gy*DT; 
,k) = W ( i , j , k -1 ) - H*( 

U ( i , j , k ) - U ( i - l , j , k ) ) / H + ( V ( i , j , k ) - V ( i , j - l , k ) ) / H ) ; 

11110: 
, j , k ) += Gx*DT; 
,k) += Gx*DT; 
- l , k ) += Gy*DT; 
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V ( i , j , k ) += Gy*DT; 
W(i , j ,k -1) = W C i . j . k ) + H*( 

( U ( i , j , k ) - U ( i - l , j , k ) ) / H + ( V ( i , j , k ) - V ( i , j - l , k ) ) / H ) ; 
break; 

// 
/ / s i x gas neighbors 
/ / 

case N F . l l l l l l : 
U ( i - l , j , k ) += Gx*DT; 
U C i . j . k ) += Gx*DT; 
V ( i , j - l , k ) += Gy*DT; 
V ( i , j , k ) += Gy*DT; 
W(i , j ,k -1) += Gz*DT; 
W ( i , j , k ) += Gz*DT; 
break; 
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absorption coefficient, 118 

albedo, 119 

boundary cells, 50 

BRDF, 118 

BSDF, 118 

BTDF, 118 

clonal mosaic model, 21 

combustion, 15 

compressible flow, 36 

computational cells, 51 

conjugate gradient method, 62 

continuity equation, 40-41, 53 

Courant-Friedrichs-Levy condition, 64 

deformation tensor, 41 

dynamic viscosity, 34 

energy equation, 42-43, 54 

erosion, 19 

Euler, Leonhard, 31 

Eulerian, 35 
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explosion, 14 

finite differences, 47-49 

fire, 15 

flow field, 10 

fluid 

definition, 32-33 

Fourier synthesis, 11 

free-slip boundary, 58 

gas cells, 51 

height field, 11 

Henvey-Greenstein model, 126 

implicit surface, 10 

incompressible flow, 36 

kinematic viscosity, 34 

Lagrangian, 35 

liquid cells, 51 

Mach number, 36 

marker-and-cell method, 12 
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material derivative, 35 Stokes, George, 31 

Mie scattering, 125 Strauss shading model, 122 

momentum equation, 41-42, 54 stress tensor, 41 

successive over-relaxation method, 62 
Navier, Claude, 31 

neighboring cells, 51 terrain modelling, 19 

Newtonian fluid, 38 texture-mapping, 17 

no-slip boundary, 58 transmittance, 119 

transport theorem, 40 
outflow boundary, 58 

wave models, 9 
particle systems, 10 

weathering, 17-19 
periodic boundary, 58 

phase function, 119, 123-126 

photon tracing, 126-129 

radiance equation, 120 

ray tracing, 129-131 

Rayleigh scattering, 125 

reaction-diffusion, 20 

reactive elements, 27-29 

scattering coefficient, 118 

semi-Lagrangian integration, 13, 49 

smoothed particle hydrodynamics, 10 

solid cells, 51 

staggered grid, 51 

Stokes derivative, 35 

185 


