
Topological Manipulation of Isosurfaces
by

H a m i s h C a r r

B .Sc . (Hons .) 1987 U n i v e r s i t y of M a n i t o b a ,

L L . B . 1990 Un ive r s i t y of M a n i t o b a ,

B . C . S c . (H o n s .) 1998 Un ive r s i t y o f M a n i t o b a ,

M . S c . 2000 U n i v e r s i t y of B r i t i s h C o l u m b i a

A T H E S I S S U B M I T T E D I N P A R T I A L F U L F I L L M E N T O F

T H E R E Q U I R E M E N T S F O R T H E D E G R E E O F

Doctor of Philosophy

i n

T H E F A C U L T Y O F G R A D U A T E S T U D I E S

(Depar tment of C o m p u t e r Science)

we accept this thesis as conforming
to the required s tandard

The University of British Columbia
A p r i l 2004

© H a m i s h C a r r , 2004

Abstract

In this thesis, I show how to use the topologica l informat ion encoded i n an abs t rac t ion cal led the contour
tree to enable interact ive man ipu la t ion of i n d i v i d u a l contour surfaces i n an isosurface scene, using an inter­
face cal led the flexible isosurface. Unde rp inn ing this interface are several improvements and extensions to
exis t ing work on the contour tree. T h e first, and most c r i t i ca l , extension, is the path seed: a new method
of generat ing seeds from the contour tree for isosurface ext rac t ion . T h e second extension is to compute
geometric in format ion cal led local spatial measures for contours and store this in format ion i n the contour
tree. T h e t h i r d extension is to use loca l spat ia l measures to s impl i fy bo th the contour tree and isosurface
displays. T h i s s impl i f ica t ion can also be used for noise removal . Las t ly , this thesis extends work w i t h contour
trees from s impl i c i a l meshes to a rb i t r a ry meshes, interpolants , and tessellation cases.

i i

Contents

Abstract ii

Contents iii

List of Figures xii

List of Tables xvi

Acknowledgements xvii

Dedication xviii

I Introduction 1

1 Overview 2

2 Introduction 4

2.1 V i s u a l i z a t i o n 4

2.2 Con tou r L ines and Isosurfaces 6

2.3 T h e Con tou r Tree 8

2.4 A p p l i c a t i o n of this Thesis 8

3 Roadmap 10

i i i

3.1 Con tou r Trees and V i s u a l i z a t i o n 10

3.2 Chap te r Interrelationships 12

II Background 15

4 Mathematical Preliminaries 17

4.1 V i s u a l i z a t i o n and D a t a R e d u c t i o n 17

4.2 Sampl ing and Recons t ruc t ion 18

4.3 Mani fo lds and Intensity M a p s 19

4.4 L e v e l Sets a n d Con tours 19

4.5 Topo log ica l Abs t rac t ions 20

4.5.1 Watersheds 21

4.5.2 Morse Complexes 21

4.5.3 Reeb Graphs 22

4.5.4 Con tou r Trees 23

5 Isosurface Extraction 25

5.1 E a r l y Approaches : B o u n d a r y Detec t ion and Impl ic i t Surfaces 25

5.2 M a r c h i n g Cubes 27

5.2.1 Speed 28

5.3 Con t inua t i on 30

5.3.1 Topolog ica l Index Structures 30

6 Contour Trees 32

6.1 Descr ip t ion of the Con tou r Tree 32

6.2 Prev ious W o r k 34

iv

6.3 T h e Con tou r Tree 34

6.4 T h e Augmen ted Con tou r Tree 39

III New Applications for Contour Trees 41

7 Algorithms for Computing Contour Trees 43

7.1 Parameters for Ana lys i s 43

7.2 Con tou r Nes t ing 44

7.3 Skele tonizat ion 44

7.4 M o n o t o n e P a t h Search 44

7.5 Con tour Sweep 45

7.6 Sweep and Merge 46

7.6.1 J o i n and Spl i t Sweeps 47

7.6.2 M e r g i n g the J o i n and Spl i t Trees 47

7.6.3 C o m p u t i n g the Unaugmented Con tour Tree D i r e c t l y 48

7.6.4 Var ia t ions on Sweep and Merge 51

7.7 Sample Con tou r Tree C o m p u t a t i o n 52

7.7.1 J o i n A n d Spl i t Sweeps 52

7.7.2 A u g m e n t i n g the J o i n and Spl i t Trees 54

7.7.3 M e r g i n g the J o i n and Spl i t Trees 54

8 Isosurface Seed Generation 60

8.1 M i n i m a l Seed Sets 60

8.1.1 Proper t ies of M i n i m a l Seed Sets 61

8.1.2 E x a m p l e of a M i n i m a l Seed Set 63

8.2 P a t h Seeds 64

v

8.2.1 Descr ip t ion of P a t h Seeds 64

8.2.2 Def in i t ion of P a t h Seeds 65

8.2.3 Proper t ies of P a t h Seeds 65

8.2.4 P a t h Seed A l g o r i t h m s 67

8.2.5 E x a m p l e of P a t h Seeds 72

8.3 S u m m a r y and C o m p a r i s o n 74

9 Flex ib le Isosurfaces 75

9.1 Prev ious W o r k 75

9.2 Assumpt ions 78

9.3 A User ' s V i e w of F lex ib l e Isosurfaces 79

9.3.1 M a n i p u l a t i n g Contours V i s u a l l y 80

9.3.2 M a n i p u l a t i n g Contours T h a t A r e N o t V i s i b l e 81

9.3.3 Con tou r M a n i p u l a t i o n Opera t ions 82

9.4 T h e F lex ib l e Isosurface 83

9.5 T h e F l ex ib l e Isosurface Interface 83

9.6 E v o l v i n g A Con tou r 86

9.6.1 Con tour E v o l u t i o n Pol ic ies 88

9.6.2 Cont inuous and Reversible Con tour E v o l u t i o n 88

9.6.3 G i v i n g Precedence to E v o l v i n g Contours 90

9.6.4 M u l t i p l e Selection 90

9.7 D a t a Structures for F l ex ib l e Isosurface M a n i p u l a t i o n 91

9.8 A l g o r i t h m s for F lex ib le Isosurfaces 91

9.8.1 Def ining A Leve l Set 92

9.8.2 A l g o r i t h m for E v o l v i n g A Con tou r 93

v i

9.8.3 Choos ing Sets of Contours 94

9.9 L a y o u t Prob lems i n the Con tou r Tree D i sp l ay 95

9.10 S u m m a r y of Con t r ibu t ions 97

10 Local Spatial Measures 98

10.1 P rev ious W o r k 98

10.2 Geomet r i c Proper t ies of Regions B o u n d e d B y A Con tou r 99

10.3 Ups t a r t and Downs ta r t Regions 101

10.4 Geomet r i c Proper t ies of Ups t a r t and Downs ta r t Regions 104

10.5 A l g o r i t h m For C o m p u t i n g L o c a l Spa t ia l Measures 110

10.6 E x a m p l e of L o c a l Spa t ia l Measure C o m p u t a t i o n 112

10.7 Sample L o c a l Spa t ia l Measures 113

10.8 A p p r o x i m a t e L o c a l Spa t i a l Measures 114

10.9 S u m m a r y 115

11 Contour Tree Simplification 116

11.1 Noise i n the Con tour Tree 116

11.2 S impl i f i ca t ion and V i s u a l i z a t i o n 118

11.3 A p p l y i n g G r a p h Simplif icat ions to the Con tour Tree 121

11.3.1 Ver tex Collapses and L e a f P r u n i n g 122

11.3.2 Col lapse Rules 124

11.4 S impl i f ica t ion A l g o r i t h m s 126

11.4.1 Hie ra rch ica l P a t h Seeds 129

11.5 E x a m p l e s of S impl i f ica t ion 132

11.5.1 E x a m p l e s of S impl i f ica t ion w i t h Different Rules 133

11.5.2 E x a m p l e s of S impl i f ica t ion w i t h Different L o c a l Spa t i a l Measures 133

v i i

11.6 Simpl i f ied F lex ib l e Isosurfaces 135

11.6.1 Effects of Col lapse on F lex ib l e Isosurface 139

11.6.2 Effects of Uncol lapse on F lex ib l e Isosurface 141

11.6.3 U s i n g Col lapse to Define L a y o u t and C o l o u r 142

11.7 U s i n g Topo log ica l S impl i f i ca t ion to Remove Noise 142

11.8 S u m m a r y of Con t r ibu t ions 142

IV Imperfect Data 144

12 Contour Trees for Non-Simplicial Meshes 146

12.1 In t roduc t ion 146

12.2 Prev ious W o r k 147

12.3 J o i n and Spl i t G raphs for A r b i t r a r y Meshes 147

12.4 J o i n and Sp l i t G r a p h L o o k u p Tables 151

12.5 A n E x a m p l e : the B i l inea r Interpolant 159

12.6 Con tou r Trees for Tessel lat ion Cases 159

12.7 Genera t ing Isosurface Seeds 162

12.8 Piecewise C o n t i n u a t i o n 163

12.9 S u m m a r y 165

13 Contour Trees for Multilinear Interpolants 166

13.1 J o i n and Spl i t G r a p h s for the B i l i nea r Interpolant 166

13.1.1 B i l i nea r Spa t ia l Measures 169

13.2 Tr i l inear Topo logy Graphs 170

13.2.1 Tr i l inear L o c a l Spa t ia l Measures 173

13.2.2 S u m m a r y 173

v i i i

13.3 Higher Dimensions 173

13.4 S u m m a r y 174

14 Contour Trees for Marching Cubes 175

14.1 J o i n and Spl i t G raphs for M a r c h i n g Cubes 176

14.2 L o c a l Spa t i a l Measures for M a r c h i n g Cubes 177

14.3 S u m m a r y 179

15 Perturbation 180

15.1 R e m o v i n g Pe r tu rba t i on 181

15.2 Pe r tu rba t ion and P a t h Seeds 185

15.3 Pe r tu rba t i on and N o n - S i m p l i c i a l Con tour Trees 185

15.4 S u m m a r y 185

V Results and Conclusions 187

16 Results 189

16.1 Sources of D a t a 189

16.2 Con tou r Tree C o m p u t a t i o n 190

16.3 Resul ts for M a r c h i n g Cubes 192

16.4 Isosurface E x t r a c t i o n U s i n g P a t h Seeds 193

16.5 Images P roduced U s i n g Simpl i f ied Con tour Trees 194

17 Conclusions 199

18 Future Work 201

18.1 Improvements to Con tour Tree A l g o r i t h m s 201

18.2 Topo logy of Non-Isovalued Surfaces 202

ix

18.3 Var ia t ions i n the F lex ib l e Isosurface Interface 202

18.4 L o c a l Spa t i a l Measures 203

18.5 App l i ca t i ons of Topolog ica l S impl i f ica t ion and F i l t e r i n g 204

18.6 N o n - S i m p l i c i a l Meshes and C o m p u t a t i o n a l Geomet ry 204

18.7 T i m e - V a r y i n g Three Dimens iona l D a t a 205

Bibliography 206

Appendix A Code for Generating Piecewise Continuation Tables 213

A . l T h e Code 214

Appendix B Code for Piecewise Continuation 221

B . l T h e C o d e 221

x

L i s t o f A l g o r i t h m s

5.1 T h e Con t inua t i on M e t h o d of Isosurface E x t r a c t i o n 30

7.1 C o m p u t i n g the Con tour Tree For A S i m p l i c i a l M e s h 46

7.2 C o m p u t i n g the Jo in Tree For a S i m p l i c i a l M e s h 47

7.3 C o m p u t i n g Con tour Tree B y M e r g i n g J o i n and Spl i t Trees 48
7.4 Reduc ing a F u l l y - A u g m e n t e d Con tour Tree 49

7.5 C o m p u t i n g the Unaugmented Con tour Tree D i r e c t l y 49
7.6 C o m p u t i n g J o i n Tree for Unaugmented Con tour Tree 50
7.7 A u g m e n t i n g the J o i n Tree w i t h Spl i t Supernodes 51
8.1 C o m p u t i n g Reduced J o i n Tree W i t h P a t h Seeds 68

8.2 C o m p u t i n g Con tour Tree B y M e r g i n g J o i n and Spl i t Trees 69

8.3 C o m p u t i n g the unaugmented contour tree W i t h P a t h Seeds 69
8.4 A l g o r i t h m to E x t r a c t Seed Edge F r o m P a t h Seed 70
9.1 Na ive A l g o r i t h m to Define a Leve l Set 92
9.2 A l g o r i t h m U s i n g an Interval Tree to Define a Leve l Set 92
9.3 E v o l v i n g the C o n t o u r from the Select ion R o o t and Isovalue 93

9.4 Objec t -Or ien ted V i s u a l i z a t i o n from the Con tour Tree 95
10.1 C o m p u t i n g Sweep Funct ions at a Ver tex /i 110

10.2 C o m p u t i n g L o c a l Spa t i a l Measures from Leaves Inwards I l l
11.1 Co l l aps ing a Ver tex i n A Con tour Tree 127

11.2 S impl i fy ing a Con tou r Tree U s i n g L o c a l Spa t i a l Measures 128

11.3 A l g o r i t h m for Hie ra rch ica l E x t r a c t i o n of P a t h Seeds 131
11.4 Single Interactive Col lapse of Con tou r Tree 140

11.5 Single Interactive U n C o l l a p s e of Con tou r Tree 141

12.1 U s i n g a L o o k u p Table to F i n d J o i n G r a p h Neighbours 156
12.2 C o m p u t i n g the J o i n G r a p h L o o k u p Table 157

12.3 T h e Piecewise Con t inua t i on M e t h o d of Isosurface E x t r a c t i o n 164

15.1 C o m p a r i n g Vertices w i t h M e m o r y - A d d r e s s Pe r tu rba t ion 181

15.2 Na ive Remova l of Pe r tu rba t ion from Con tour Tree 183

15.3 Improved R e m o v a l of Pe r tu rba t ion from Con tour Tree 183

xi

List of Figures

2.1 C u t a w a y V i e w of M u l t i p l e Con tou r Surfaces 6

2.2 U s i n g F lex ib l e Isosurfaces to E x p l o r e Contours 7

2.3 E x a m p l e of a volcanic crater lake 8

3.1 V i s u a l i z i n g Scalar D a t a Sets 11

3.2 V i s u a l i z i n g Scalar D a t a Sets, W i t h Con tour Trees 12

3.3 Interrelat ionships of Concepts 13

3.4 Interrelat ionships of Chapters 14

4.1 A Sample M e s h i n T w o Dimensions 20

4.2 Watersheds i n the Sample M e s h 21

4.3 T h e M o r s e C o m p l e x of the Sample M e s h 22

4.4 Reeb G r a p h of a Torus 23

4.5 Con tou r Tree of the Sample M e s h 24

5.1 M a r c h i n g C u b e Cases, after M o n t a n i , Scateni & Scopigno [MSS94a] 28

6.1 Sample D a t a Set i n 3 Dimensions , w i t h Con tour Tree 33

6.2 Unaugmented Con tour Tree and F u l l y Augmen ted Con tou r Tree For F igu re 4.1 40

7.1 A Sample M e s h i n T w o Dimensions (Again) 52

x i i

7.2 Sweep T h r o u g h Sample M e s h to C o m p u t e J o i n Tree 53

7.3 Sweep T h r o u g h Sample M e s h to C o m p u t e Sp l i t Tree 55

7.4 A u g m e n t i n g the J o i n Tree and Spl i t Tree 56

7.5 C o m p a r i s o n of Con tour Tree, J o i n Tree and Spl i t Tree 56

7.6 M e r g i n g the J o i n and Spl i t Trees to Ge t the Con tou r Tree 57

7.7 M e r g i n g T o Get F u l l y Augmen ted Con tour Tree 58

8.1 A Tr i angu la t ion Requ i r i ng a M i n i m a l Seed Set of Size 0 (n) 61

8.2 A Tr i angu la t ion Where Some Contours Intersect Q(n) Seed Cel l s 62

8.3 Sample M e s h , Showing M i n i m a l Seed Set and a Con tour 62

8.4 A n n o t a t i n g T h e Con tour Tree w i t h Mono tone Pa ths to F i n d Seed Cel l s 63

8.5 Detec t ing P a t h Seeds D u r i n g the J o i n Sweep 72

8.6 Seed Pa th s i n our Sample M e s h 73

8.7 S tor ing P a t h Seeds F r o m F igure 8.6 i n the Con tour Tree 74

9.1 T h e Con tour Spec t rum - i l lus t ra t ion courtesy C . Ba ja j 77

9.2 E x a m p l e of F l ex ib l e Isosurface E d i t i n g to Isolate the B r a i n 79

9.3 Heightening V i s u a l Cont ras t w i t h C o l o u r & Isolat ion 81

9.4 Componen t s of the F lex ib l e Isosurface Interface 84

9.5 S imple E x a m p l e of an E v o l v i n g Con tou r 87

9.6 Cont inuous Con tou r E v o l u t i o n : Upwards , then Downwards 88

9.7 Suppressing contours du r ing contour evolut ion 89

9.8 Objec t -Or ien ted V i s u a l i z a t i o n and Largest Con tour Segmentat ion 94

9.9 A C o n t o u r Tree w i t h Intersecting Superarcs 96

9.10 A n Unusable Con tou r Tree 97

x i i i

10.1 E x a m p l e of a volcanic crater lake 99

10.2 U p s t a r t and Downs ta r t Regions i n Vo lcano E x a m p l e 102

10.3 Sweep F u n c t i o n For A r e a i n a Single Tr iangle 104

10.4 Decompos ing A D o w n w a r d Sweep Func t i on 105

10.5 C o m p u t i n g the Func t i on For Sweeping D o w n Superarc 81 — 50 113

11.1 F lowchar t for Scalar F i e l d V i s u a l i z a t i o n 118

11.2 F i l t e r i n g a Topo log ica l ly S m a l l D e t a i l 119

11.3 G r a p h Opera t ions on the Con tour Tree 121

11.4 F l a t Spot and M o d i f i e d Slopes Induced by Lea f P r u n i n g Con tour Tree 124

11.5 W h y N o t A l l Leaves A r e P runab le 125

11.6 P a t h Seeds i n a Simpl i f ied Con tou r Tree 130

11.7 Pa ths Induced by Tree P r u n i n g , A n d the Col lapse Hierarchy. 131

11.8 A Tr i angu la t ion i n T w o Dimensions , w i t h Con tour Tree 132

11.9 S impl i fy ing by Height w i t h a l l Leaves P runab l e and no Ver tex Collapses P e r m i t t e d 134

l l . l O S i m p l i f y i n g by Height w i t h L e a f Prunes and Ver tex Collapses, a l lowing Y - P r u n e s 135

11.11 S impl i fy ing by Height w i t h L e a f Prunes and Ver tex Collapses, wi thou t Y - P r u n e s 136

11 .12Pruning the Con tou r Tree B y A r e a 137

11 .13Pruning the Con tou r Tree B y Vo lume 138

11.14Interface to the S impl i f ied F l ex ib l e Isosurface 139

12.1 F i n i t e State M a c h i n e To C o m p u t e J o i n G r a p h for B i l i nea r Interpolant 158

12.2 Sample Cases for Tessel lat ion i n T w o Dimensions 160

12.3 Nes t ing of Some Tessel lat ion Cases 160

12.4 F i n i t e State Mach ine To C o m p u t e J o i n G r a p h for Simple 2-D Tessel lat ion Cases 161

12.5 Areas Swept T h r o u g h B y Contours 162

x i v

12.6 Labe l s For Piecewise Con t inua t ion , W i t h E x a m p l e 163

13.1 Poss ible C o n t o u r Trees for B i l i nea r Interpolant 167

13.2 S u b d i v i d i n g a B i l i nea r C e l l W i t h Ver t i ca l and Hor i zon t a l Asympto te s 168

13.3 C o m p u t i n g A r e a i n a B i l i nea r C e l l 169

13.4 F i n i t e State M a c h i n e for J o i n G r a p h of the Tr i l inear Interpolant 171

13.5 A Tr i l inea r C e l l w i t h T w o B o d y Saddles 172

13.6 A u g m e n t i n g a Tr i l inear C e l l w i t h T w o B o d y Saddles 172

14.1 M a r c h i n g Cubes Case 3 and its Converse Case 3 C 176

14.2 F i n i t e State Mach ine for M a r c h i n g Cubes cases of M o n t a n i , Scateni , & Scopigno [MSS94a]. . 178

14.3 C o m p u t i n g Geomet r ic Measures for Case 2 of M a r c h i n g Cubes 179

15.1 Effects of Pe r tu rba t ion on A S m a l l M e s h 182

15.2 R e m o v i n g Pe r tu rba t ion from a Con tour Tree 184

15.3 Effects o f P e r t u r b a t i o n o n P a t h Seeds 186

16.1 Topolog ica l S impl i f ica t ion of U N C Head D a t a Set 195

16.2 Conven t iona l Isosurface of U N C Head D a t a Set W i t h o u t Con tou r Tree S impl i f ica t ion 195

16.3 Structures V i s i b l e i n a N o i s y M R I Scan of a Pregnant R a t 196

16.4 Structures i n the C T H e a d da ta set 197

16.5 R e m o v i n g Noise Topologica l ly . 198

x v

List of Tables

11.1 Effects of Size and D a t a T y p e on the Con tour Tree 117

11.2 Effects of Smooth ing on the Con tour Tree of the 3dhead D a t a Set. Af ter two smooth ing
operations, the contour tree is reduced by approximate ly an order of magni tude, but is s t i l l
much too large for v i sua l display. 120

16.1 Character is t ics and Sources of Test D a t a 190

16.2 Cons t ruc t ion T i m e s for the Con tour Tree 190

16.3 Sizes of Con tour Trees after Pe r tu rba t ion Remova l , w i t h T i m e s Requ i red 191

16.4 T i m e Requ i red to S impl i fy Con tou r Trees After R e m o v i n g Pe r tu rba t ion 192

16.5 C o m p a r i s o n of Cons t ruc t ion T i m e s U s i n g S imp l i c i a l Subd iv i s ion and M a r c h i n g Cubes 192

16.6 Sample Isosurface Sizes for S i m p l i c i a l Subd iv i s ion and M a r c h i n g Cubes 193

16.7 Some Resul ts for P a t h Seed Isosurface E x t r a c t i o n 194

x v i

Acknowledgements

Acknowledgements are due to m y supervisors, D r . Jack Snoeyink (U N C - C H) , D r . D a v i d K i r k p a t r i c k (U B C) ,
and D r . M i c h i e l van de Panne (U B C) , to the other members of m y supervisory commit tee , D r . Tors ten M o l l e r
(S F U) , D r . J i m L i t t l e (U B C) , and D r . W i l l Evans (U B C) , to my univers i ty examiners, D r . A n n e C o n d o n
(U B C) and D r . A n n a Cel ler (U B C) , and to m y external examiner, D r . Chand ra j i t Ba j a j (U T - A u s t i n) .

Acknowledgements are also due to the N a t u r a l Science and Engineer ing Research C o u n c i l of C a n a d a
(N S E R C) , the Inst i tute for Robo t i c s and Intelligent Systems (IRIS) , D r . R a y m o n d N g (U B C) and U B C for
f inancial support .

T h a n k s are also due to the large number of researchers who have shared their t ime and thoughts
w i t h me on various aspects of this research. These researchers include D r . Janice Glasgow (Queen's),
A l a n A b l e s o n (Queen's) , D r . T a m a r a M u n z n e r (U B C) , D r . D . B . K a r r o n (C A S I) , D r . Deborah Silver
(Rutgers) , D r . K e n n e t h J o y (U C Dav i s) , D r . B e r n d H a m a n n (U C Dav i s) , Gun the r Weber (U C Davis) , D r .
A f r a Z o m o r o d i a n (Stanford), and D r . Valer io Pascucc i (L L N L) . There are undoubtedly others who deserve
thanks but have been omi t ted : apologies are also due for my poor memory.s

F i n a l l y , many thanks are due to m y parents, for suppor t ing me i n innumerable ways i n re turn ing to
university.

H A M I S H C A R R

The University of British Columbia
April 2004

x v i i

To the C a n a d i a n univers i ty system

For g iv ing me many more second chances t han I had any r ight to expect.

x v i i i

Part I

Introduction

Chapter 1

Overview

In this thesis, I show tha t the contour tree is a topologica l s tructure tha t can help to generate and manipula te

contour surfaces and can serve as an interface for explor ing scalar data .

T h i s thesis is d iv ided into parts. P a r t I motivates the research by showing some examples of new

visual iza t ions i n Chap te r 2, and provide a roadmap for the rest of the thesis i n Chap te r 3.

P a r t II reviews background mathemat ics and previous work. In par t icular , Chap te r 4 covers some
background mater ia l , whi le Chap te r 5 describes one of the p r inc ipa l techniques i n scientific v i sua l iza t ion :
isosurface ex t rac t ion . Chap te r 5 concludes that continuation, the most efficient me thod of isosurface ex­
t rac t ion , requires a systematic source of s tar t ing points , or seeds. Chap te r 6 then describes a topological
s t ructure cal led the contour tree, wh i ch can be used as a source of seeds.

Thereafter, P a r t III introduces the p r inc ipa l research contr ibut ions of this thesis: new algor i thms and

interfaces for using isosurfaces for explora tory v i sua l iza t ion of data . Chap te r 7 describes exis t ing a lgor i thms

for comput ing the contour tree, inc lud ing the p r inc ipa l con t r ibu t ion of m y M . S c . thesis, the sweep and
merge a lgor i thm. Chap te r 8 shows how to use the contour tree to generate path seeds, a new and efficient

me thod for f inding seeds for the cont inuat ion method of isosurface ex t rac t ion . Chap te r 9 then shows how

to use pa th seeds for the flexible isosurface interface that allows, for the first t ime, efficient independent

man ipu la t ion of i n d i v i d u a l isosurfaces. Chap te r 11 then addresses the p r inc ipa l weakness of contour trees,

topologica l noise, by showing how to use geometric informat ion to simplify the contour tree and the da ta

simultaneously. Chap te r 10 follows this up by showing how to compute local spatial measures: geometric

in format ion computed loca l ly for an isosurface-defined object.

P a r t III assumes that the da ta is i n the mathemat ica l ly easiest form possible: a s impl ic i a l mesh w i t h

d is t inc t isovalues. Because such meshes are rarely used, P a r t I V covers further contr ibut ions of this thesis:

how to extend P a r t III to a rb i t r a ry grids. Chap te r 12 describes how to modify the a lgor i thms i n P a r t II and

P a r t III for a rb i t ra ry grids using join and split graphs, then shows how to compute finite state machines to

generate j o i n and spli t graphs impl i c i t ly . Chap te r 13 then applies Chap te r 12 to the commonly-used case of

t r i l inear interpolants , general izing the work of Pascucc i k. C o l e - M c L a u g h l i n [P C M 0 2] . Chapte r 14 further

applies Chap te r 12 to the equal ly commonly-used case of M a r c h i n g Cubes . F i n a l l y , Chap te r 15 discusses the

use of symbol ic per tu rba t ion to avoid degeneracies caused by ident ica l isovalues i n the inpu t data .

2

In P a r t V , I then give some results i n Chapte r 16, present m y conclusions i n Chap te r 17, and discuss

direct ions for future research i n Chap te r 18.

F i n a l l y , the appendices give some details of loca l spat ia l measures for tr iangles, te trahedra, and

march ing cubes cases.

3

Chapter 2

Introduction

T h i s thesis introduces a new too l for scientific v i sua l iza t ion called the flexible isosurface, based on a topolog­
ica l s tructure cal led the contour tree. T h i s too l extends exis t ing isosurface techniques by t reat ing i n d i v i d u a l
contour surfaces as independent objects, pe rmi t t ing the user to select and manipula te i n d i v i d u a l contour
surfaces, and by p rov id ing online topologica l s impl i f icat ion of the data , thus reducing noise and s impl i fy ing
complex isosurface visual izat ions .

In this chapter, I a t tempt to show how such an approach improves upon the exis t ing state of the art.
Sect ion 2.1 discusses scientific v i sua l iza t ion . Sect ion 2.2 shows how flexible isosurfaces can help resolve one
of the p r inc ipa l problems w i t h isosurface v isua l iza t ion : choosing wha t to look at. Sect ion 2.3 then briefly
discusses the contour tree: the topologica l abstract ion of a scalar field tha t we have chosen to ease this task.
Sect ion 2.4 then discusses the condit ions under wh ich I expect this thesis to be useful to scientists, engineers
and doctors.

2.1 Visualization

M a n y fields i n science and engineering generate large da ta sets of two- or three-dimensional scalar data .

These fields include analy t ic functions [AAWOO, Wes95], cel l b io logy [d L v L V + 0 0 , M H S + 9 6] , combust ion

studies [K R S 0 1 , RGOO, R H C 9 4] , computa t iona l fluid dynamics [C M 9 7 , ECSOO, MCOO, S S Z C 9 4 , She98,

S C M 9 9 , SJ94, S W 9 6 , S W 9 8 , SH99, SHOO], ear th sciences [KRS01] , electromagnetic fields [DCK+98] , geo­

physics [KRS01] , medica l imaging [SJ94, SHOO, T 0 9 1] , meteorology [A D M 9 2 , L M C 0 1 , M C W 9 3 , SW98] ,

molecular dynamics [LKS+98 , SH99], oceanography [BSRFOO] or vu lcanology [RG94]. A l t h o u g h this l ist is

incomplete , i t gives some sense of the wide app l icab i l i ty of techniques for scientific v i sua l iza t ion .

T h i s da ta general ly represents the spat ia l d i s t r ibu t ion of a scalar or vector proper ty over some d-
dimens ional space. There is a prac t ica l difference between scalar and vector da ta i n that techniques for
v i sua l i z ing vector da ta do not usual ly app ly wel l to scalar data, or vice versa. T h i s thesis does not address
the quest ion of v i sua l i z ing vector da ta or of v i sua l iz ing mul t ip le scalar functions s imultaneously: i t is instead
restr icted to single scalar-valued functions.

Wha teve r our source of data , the p r inc ipa l task is to a id the researcher i n unders tanding the data .

4

T h e goal is to develop tools and techniques that help an experienced scientist identify the impor tan t features

of a da t a set. T h i s takes advantage of two of the greatest strengths of humans: a sophist icated v i sua l

system, and expert knowledge of a par t icular domain . A s a discipl ine, scientific v i sua l i za t ion was described

by M c C o r m i c k , D e F a n t i & B r o w n [M D B 8 7] as:

V i s u a l i z a t i o n is a me thod of comput ing . It transforms the symbol ic into the geometric,

enabl ing researchers to observe their s imulat ions and computat ions . V i s u a l i z a t i o n offers a me thod

for seeing the unseen. It enriches the process of scientific discovery and fosters profound and

unexpected insights. In m a n y fields i t is already revolu t ioniz ing the way scientists do science.

V i s u a l i z a t i o n embraces bo th image understanding and image synthesis. T h a t is, v i sua l i za t ion
is a t o o l b o t h for in terpret ing image da ta fed into a computer , and for generating images from
complex mul t i -d imens iona l da ta sets. It studies those mechanisms i n humans and computers
wh ich al low them i n concert to perceive, use and communicate v i sua l informat ion . V i s u a l i z a t i o n
unifies the largely independent but convergent fields of:

• C o m p u t e r graphics

• Image processing

• C o m p u t e r v i s ion

• Compute r -a ided design

• S ignal processing

• User interface studies

R i c h a r d H a m m i n g observed m a n y years ago that "The purpose of [scientific] computing is
insight, not numbers." T h e goal of v i sua l iza t ion is to leverage exis t ing scientific methods by
p rov id ing new scientific insight th rough v i sua l methods.

A n est imated 50 percent of the brain 's neurons are associated w i t h v i s ion . V i s u a l i z a t i o n i n
scientific compu t ing aims to put that neurological machinery to work.

M c C o r m i c k , D e F a n t i & B r o w n then state the three most impor tan t themes i n scientific v i sua l iza t ion :

the need to deal w i t h too much data , the need to communicate visual ly , and the need to steer calculat ions

(i.e. to interact w i t h the data) . W e w i l l see each of these themes recur throughout this thesis.

V i s u a l i z a t i o n tasks can also be classified into three categories based on whether the user knows what

question to ask and wha t the answer to the question is. If the user knows bo th question and answer already,

then v i sua l iza t ion is used to present the da ta to others to exp la in or i l lus t ra te a point . If the user knows

the question, but not the answer, then v i sua l iza t ion is used to test a p ropos i t ion - e.g. does this dataset

conta in evidence tha t the test subject has a tumour? T h i s generally involves app ly ing a domain-specific

descr ipt ion of the proper ty to be tested. F i n a l l y , i f the user knows neither the question nor the answer, at

least expl ic i t ly , then v i sua l i za t ion is used to explore the da ta i n an a t tempt to determine what is unique or

characteris t ic about the par t icu lar dataset. These categories are neither s ta t ic nor necessarily disjoint. Over

t ime, as v i sua l i za t ion techniques are better understood, they are l ike ly to be used in i t i a l l y for explora t ion ,

then for test ing, and finally for presentation.

Before determining wh ich category this thesis falls into, the next two sections w i l l give a br ief

overview of contour lines, isosurfaces and the contour tree.

5

2.2 Contour Lines and Isosurfaces

W e assume tha t we w i s h to v isual ize a continuous scalar funct ion / : Tl —> 1R where TZ C I R d . O n e of the

oldest tools for doing so i n two dimensions is the contour map, wh ich consists of a set of contour lines, each

of wh ich connects a set of points w i t h the same function value. A l t h o u g h no single l ine contains a l l the

informat ion about the funct ion, we can infer a lot of informat ion f rom a set of contour lines. Fo r example,

the spacing between the lines reveals secondary informat ion about the gradient of the funct ion. B y showing

mul t ip le contour lines, the contour map therefore gives us a good idea of the funct ion as a whole.

T h e most famil iar type of contour map is the topographic map , where contour lines are used to
represent the l and elevation. E l eva t ion is a spat ia l measurement s imi lar to the spa t ia l measurement of
the locat ions for wh ich the funct ion is defined. A s a result, experience dea l ing w i t h topographic maps
and landforms can ac tual ly lead us astray when interpret ing more general functions such as temperature ,
pressure, or magnetic va r ia t ion . Fo r example, comput ing the hor izon of a tempera ture map is m u c h less
meaningful than comput ing the hor izon of an elevation map, since the ho r i zon is a v i sua l p roper ty tha t
results from the fact that elevat ion is a spat ia l measurement.

A more significant p rob lem is that contour maps reveal less in fo rmat ion i n three dimensions t h a n i n

two. In two dimensions, no two contour lines of a continuous function intersect: thus, we can see more than

one value of the function simultaneously. In contrast, a contour i n three dimensions is ac tua l ly a surface,

and v iewing mul t ip le sets of surfaces is difficult at best since the surfaces occlude each other. F igu re 2.1

shows an example of occlus ion, w i t h the exterior surfaces cut away to enable us to look at the inner surfaces.

W i t h o u t cu t t i ng away the outermost surface, neither of the inner surfaces w o u l d be v is ib le .

F igure 2.1: Cu t away V i e w of M u l t i p l e Con tou r Surfaces. Outs ide Surface Occludes Inner Surfaces.

Because of this occ lus ion problem, a three-dimensional contour m a p effectively shows only a few con­
tours i n their entirety. Thus , we need to find a way to specify wh ich surfaces to show, a n d more impor tan t ly ,
a way of g iv ing the user in fo rmat ion about the surfaces which are not cur ren t ly being shown.

(i

E x i s t i n g methods of choosing contour surfaces are restr icted to sets o f contours that share a single
isovaiue. O n e of the p r inc ipa l con t r ibu t ion of this thesis is to generalize this to flexible isosurfaces: a rb i t r a ry
sets of contours that need not share a single isovaiue, and an interface for man ipu l a t i ng these flexible
isosurfaces.

A s a n example, consider F igu re 2.2a, wh i ch shows a t y p i c a l isosurface of an C T scan of a head.
Note tha t the exterior surface hides a l l the details of surfaces inside the head. In this case, the isosurface
contains mul t ip le disjoint surfaces. In order to explore this data , i t is desirable to be able to remove the
exterior surface (b), choose one par t icu lar surface and suppress a l l other surfaces previous ly shown (c), then
manipula te the remain ing surface to discover structures inside i t (d).

a) Initial Isosurface b) Exterior Suppressed

Figure 2.2: U s i n g F lex ib l e Isosurfaces to E x p l o r e Contours . T h e User Star ts W i t h a Conven t iona l
Isosurface (a), T h e n Removes an Unwanted Surface (b), Isolates the P r i n c i p a l Surface of
Interest (c), and A l t e r s its Isovaiue (d)

To work w i t h i n d i v i d u a l contours, we need a formalism that captures in fo rmat ion about i n d i v i d u a l
contours and their relat ionships. Fortunately , a topological s t ructure cal led the contour tree does exact ly
this. T h i s thesis w i l l re ly heavi ly o n the contour tree, and on geometric and topo log ica l in format ion about
connect ivi ty encapsulated i n this structure.

7

(a) Top V i e w (b) Surface Render ing

4000m

3000m

2000m

1000m

(c) C o n t o u r Tree

F igure 2.3: E x a m p l e of a volcanic crater lake.

T h e contour tree expresses the adjacency of the coloured regions i n the top view. R e g i o n E
is adjacent to a green region, wh ich is adjacent to contour Ci, w h i c h is adjacent to C . C is
adjacent to two disjoint regions: A and contour C2, a n d so on . T h e contour tree shows these
relat ionships: here, the isovalue of each regions is used as the ve r t i ca l d imens ion i n (c).

T h e next section gives a br ief overview of what the contour tree is, a n d how i t relates to contour
surfaces and the flexible isosurface.

2.3 The Contour Tree

Chapters 6 th rough 15 w i l l discuss the contour tree i n great de ta i l . F o r now, i t suffices to give a br ief

descr ipt ion. F igu re 2.3 shows a volcanic crater lake as a topographic map and as a surface. In this example,

the contour tree expresses w h i c h coloured regions are adjacent to w h i c h other coloured regions.

If we construct a g raph w i t h one node for each contour, we can show these relat ionships d iagram-
matical ly , by connected nodes representing adjacent contours: the result is shown i n F igu re 2.3(c). T h i s
definit ion of the contour tree, as the d u a l g raph to a set of regions separated by contours, breaks d o w n at the
boundaries of the da ta set. W e w i l l re turn to this question i n Chap te r 10: the formal defini t ion we provide
i n Chapte r 6 does not, however, fail at the boundaries of the da ta set.

T h e p r inc ipa l cont r ibut ions i n this thesis are to compute the contour tree efficiently for s imp l i c i a l
(Chapter 7) a n d non-s impl ic i a l meshes (Chapter 12 to Chap te r 15), a n d to exploi t the re la t ionship between
contour tree and contours for isosurface ex t rac t ion (Chapter 5), for v i sua l in te rac t ion w i t h isosurfaces (Chap­
ter 9). for topologica l s impl i f ica t ion (Chapter 11), and for computa t ion of geometric propert ies of isosurfaces
(Chapter 10).

2.4 Application of this Thesis

Since this thesis is p r i m a r i l y concerned w i t h extending exist ing techniques to provide new methods for
interact ing w i t h da ta , i t falls in to the t h i rd category of v isua l iza t ion: exploration. A s such, it is wise to
describe the condi t ions under w h i c h i t is most l ike ly to be useful.

8

Data: I assume that the input da ta is such that contours (i.e. isosurfaces) are meaningful repre­

sentations of impor tan t features i n the data . In the b iomedica l context, for example, contours wou ld ideal ly

represent ana tomica l organs or boundaries i n the data . A s such, these techniques are l ike ly more applicable

to ana tomica l da ta rather t han funct ional data . In the former, the sampled values of the function depend

p r inc ipa l ly on the nature of the tissue, but i n the latter, the sampled values depend on the function or

purpose of tissues. A n example of this is where a radioact ive marker is used to indicate tissues w i t h a h igh

uptake of some chemical . For funct ional da ta such as this, and especially for funct ional da ta wh ich varies

over t ime, isosurfaces may not give a meaningful v iew of the data .

Exploration: I also assume that the user is interested i n exp lor ing the data , but does not necessarily
have an application-specific test available that characterizes whatever is impor tan t i n the data . In future,
this may change, using geometric in format ion stored i n the contour tree to support application-specific tests,
as ind ica ted i n Chap te r 18. T h i s , however, fits the general descr ipt ion given above of techniques migra t ing
from explora t ion to test ing as they are better understood.

Different parts of this thesis are l ike ly to be useful to different users. Some users may on ly wish to
use the flexible isosurface visual ly , as described i n Sect ion 2.2, wi thou t even knowing of the contour tree's
existence. M o r e sophist icated users may take advantage of s implif ied contour trees for direct man ipu la t ion ,
or m a y choose to use loca l spat ia l measures to define new tests of feature impor tance . A l l this , however, lies
i n the future. T h i s thesis w i l l concentrate on techniques that are now possible, and may become useful i n
the future.

9

Chapter 3

Roadmap

T h i s thesis includes a variety of concepts, many of wh ich are t igh t ly inter locked, either w i t h each other or
w i t h other concepts i n scientific v i sua l iza t ion . In this chapter, I a t tempt to lay out some of the relationships
between concepts, and between parts and chapters of this thesis.

3.1 Contour Trees and Visualization

T h i s thesis deals p r inc ipa l ly w i t h the appl ica t ion to v i sua l iza t ion of the topologica l abs t ract ion known as the
contour tree. T h i s s tructure is p r inc ipa l ly applicable to v i sua l iz ing scalar data , so i t is germane to ask how
scalar da ta is t yp i ca l l y v isual ized. F igu re 3.1 shows that scalar da ta is often v isua l ized w i t h isosurfaces or
volume rendering. Moreover , this d iagram also highlights the fact that geometric techniques such as mesh
cons t ruc t ion are largely independent of s ignal processing techniques such as reconstruct ion, a l though some
of the geometric techniques can be expressed i n terms of signal processing ideas.

Since the contour tree represents contours, wh ich are inherent ly geometric i n nature, i t is unsurpr is ing

that the contour tree and most other topologica l techniques are better described as geometric techniques

t han as s ignal processing. A d d i n g this, we get F igu re 3.2, wh ich clear ly reflects the close ties between contour

trees and isosurfaces, and the looser ties between the contour tree and volume rendering.

Once we appreciate where the contour tree fits in to the broader picture of scientific v i sua l iza t ion ,

we s t i l l need to unders tand the rela t ionship between various aspects of this thesis and related topics. In

F igu re 3.3, I have a t tempted to lay out some of the relationships: the coloured patches indicate work that

belongs to m y M . S c . thesis, this thesis, other work that I have done, and work that I hope to do i n the

future. In some cases, the coloured patches do not complete ly include an idea: this indicates that other

researchers have performed the same or paral le l work. For example, a l though this thesis generalizes contour

tree a lgor i thms to a rb i t r a ry meshes and interpolants , Pascucc i & C o l e - M c L a u g h l i n [P C M 0 2] have already

extended contour tree const ruct ion a lgor i thms to cubic meshes using the t r i l inear interpolant .

A s F igu re 3.3 indicates, m y M . S c . thesis concentrated on an efficient a lgor i thm to compute the
contour tree, dealing w i t h per tu rba t ion and pa th seeds i n passing, and discussing s impl ic i a l subdivis ions as
a necessary adjunct to work ing w i t h s impl ic i a l meshes.

10

Signal
Processing
(Frequency
Domain)

Scalar Function

J

Acquisition

Scalar Samples

1 7 »

Reconstructed
function

Gradient,
Information

Interpolation &
Reconstruction

jjĵ , . j Histogram
l r ' ""\ Information

Mesh Con

Geometric
Processing
'. (Spatial
Domain)

„ L

Transfer
Function Design

Function

IF

Interpolated
Mesh

J Restriction | - J K

Surface Rendering

(Projection I Reflection) t

flllillllMiiii^llllllSlS

|_ Volume Rendering

(Projection I Transmission)
Visual Display

Stage of Processing

- « t o t r _ « information

i or Algorithm

— -VJ »w- TOPS o=; •.1

Figure 3.1: V i s u a l i z i n g Scalar D a t a Sets. Scalar da ta can be v isua l ized by using s ignal processing
techniques wh ich operate i n the frequency domain , or by using geometric techniques which
operate i n the spat ia l domain .

T h e core of this thesis is the use of the contour tree to manipula te isosurfaces using the flexible
isosurface interface, based on the ab i l i ty to isolate i n d i v i d u a l contours by means of pa th seeds. To make
this work prac t ica l , i t was also necessary to deal w i t h contour tree s impl i f ica t ion , loca l spat ia l measures,
generalized contour tree algori thms, and marching-cube based algori thms.

Las t ly , areas where I believe there is potent ia l for future research are also marked: these areas are,
of course, not exhaustive.

11

Signal
Processing
(Frequency

Domain)
Acquisition

Interpolation &
Reconstruction

Reconstructed
Function

Geometric
Processing

1 (Spatial •
Domain)

Mesh Construction

7^ ,
I (jhi.l.cnt. C"C |
| / H ' I ' M ' . U / M ' I j

Transfer
Function Design

Transfer

Function

Topological
rocessing
(Spatial r

Histogram ,
\jnformahon} PrOCCSSing

. 1 Abstraction I . J Restriction I

I Topological
I Information

^nitJn Ri Wi/i tiny

(Protection I Reflection)

|_ Volume Rendering

(Projection I Transmission)
Visual Display

: • • -•"

KEY:
Stage of Processing

- i » <"(-j

* !» * '* f •* *

Figure 3.2: V i s u a l i z i n g Scalar D a t a Sets, W i t h Con tou r Trees. Topo log ica l techniques such as those
invo lv ing the contour tree depend heavi ly on geometric processing i n the spat ia l domain ,
but can be used to in form decisions i n transfer function design as wel l .

3.2 Chapter Interrelationships

H a v i n g i l lus t ra ted the rela t ionship of the contour tree to scalar v i sua l i za t ion i n Sect ion 3.1, I now t u r n to

the s t ructure of this thesis. In F igu re 3.4, I show wh ich ideas belong to w h i c h P a r t and wh ich chapter of

this thesis.

A l t h o u g h these ideas could be discussed i n almost any order, i t is convenient to work w i t h mathe-

12

file:///jnformahon}

Other Work

Morse
Complexes

Topological
Persistence

• —

I L Spatial
Measures

•
Largest
Contour

Segmentation

Gradient /
Other

Segmentation

Key:

Optimal
Regular

Isosurfaces

In M.Sc. thesis
In Ph.D. thesis
Future Work

Other Work
Related to Contour Tree
Other Relationships

Figure 3.3: Interrelat ionships of Concepts . T h i s d iagram at tempts to give some sense of the re la t ionship
between various ideas i n this thesis, and between these ideas and other researchers' work.

mat ica l ly ideal da ta first, then extend to real da ta later. Thus , P a r t III (New Uses for C o n t o u r Trees) makes

several assumptions about the input da ta which are rarely realized i n pract ice. P a r t I V (Imperfect Da ta)

then considers how to deal w i t h da ta that does not live up to these assumptions.

In general, each chapter w i l l depend on most of the previous chapters, and w i l l modify the mate r i a l
i n those chapters as needed.

13

Part III:
New Uses For
Contour Trees

Ch. 10
Local ^

Spatial
Measur

Ch.9
Largest
Contour

Segmentation

Part IV:
Imperfect Data

Ch. 7 Ch. 15 Ch. 12 -13

Perturbation

J

Generic Mesh
Contour Tree

Algor i thm

Path Seed
Isosurface

k Extraction

Ch. 11 Ch.9
/

mm Contour Tree
^ Simplifica

Ch. 12

Piecewise
Continuation

Ch. 14

Flexible
Isosurfaces

«f Marching Cubes \ |
a Contour Trees

\

Ch.6

Contour Tree

F igure 3.4: Interrelat ionships of Chapters . T h i s figure shows where some of the topics i n F igu re 3.3 are
to be found i n this thesis.

14

Part II

Background

15

T h i s P a r t of the thesis covers the necessary background for discussing the contour tree and isosurface

v i sua l i za t ion i n more detai l .

Chap te r 4 w i l l review some mathemat ics wh ich w i l l be c ruc ia l to this thesis, ranging from sampl ing

theory, th rough piecewise in te rpola t ion of functions, to topological abstract ions of scalar fields.

Because of the fundamental nature of isosurfaces to this work, Chap te r 5 w i l l then review i n more

deta i l how isosurfaces are constructed. Chap te r 6 gives formal and in formal definitions of the contour tree, i n

prepara t ion for P a r t III , wh ich discusses how to compute the contour tree, and how to use i t for explora tory

isosurface v i sua l i za t ion and topologica l s impl i f ica t ion.

16

Chapter 4

Mathematical Preliminaries

A s w i t h most research, work on the contour tree is heavi ly dependent on previous research. T h i s chapter
aims to cover background ideas that are required to unders tand the subsequent mater ia l , wi thou t going into
details of specific research papers. T h e topics covered are:

4.1 V i s u a l i z a t i o n and D a t a Reduc t ion : a framework for t h ink ing about v i sua l iza t ion .

4.2 Sampled D a t a : generating continuous functions from l imi t ed informat ion .

4.3 Man i fo lds and Intensity M a p s : two different ways of t h i n k i n g about scalar functions.

4.4 Leve l Sets and Contours : a brief defini t ion

4.5 Topo log ica l Abs t rac t ions and V i s u a l i z a t i o n

4.1 Visualization and Data Reduction

One of the dominant themes i n scientific v i sua l iza t ion is coping w i t h huge amounts of data, b o t h a lgor i th-

m i c a l l y and perceptually. A lgo r i t hmica l l y , we need efficient a lgor i thms so that a computer can process the

da ta at a reasonable rate. Perceptual ly , we must realize that humans cannot process as much informat ion at

a t ime as we might l ike: we s imp ly cannot comprehend one m i l l i o n measurements. T o visual ize these huge

amounts of data , we must reduce an unwie ldy mass of da ta to something that a human can deal w i t h .

There are four p r inc ipa l methods used to reduce scalar data : project ion, res t r ic t ion, abstract ion,

and s impl i f ica t ion .

Projection reduces da ta by summar iz ing or reducing along straight lines. P ro jec t ion techniques

include perspective project ion of surfaces, and volume rendering [D C H 8 8 , Gar90 , K a j 8 6 , Lev88 , M a x 9 5 ,

Sab88, U K 8 8] , wh ich computes l ight passing th rough a volume i n straight lines, often p roduc ing images

s imi la r to the famil iar X - r a y .

Restriction reduces da ta by re ta in ing only the da ta i n a lower-dimensional subset of the domain ,

17

discard ing a l l other da ta . Res t r i c t ion techniques include cross-sections, t ime-slices, and contours: we w i l l go
into more deta i l on contours i n par t icu lar i n Section 4.4 and Chap te r 8 i n par t icular .

Abstraction usual ly reduces da ta by comput ing a topological descr ipt ion of the function. A b s t r a c t i o n
techniques include watersheds, M o r s e complexes, Reeb graphs and contour trees. These are discussed i n more
deta i l i n Sect ion 4.5, below.

Simplification reduces da ta by removing un impor tan t features from the function, sometimes re­

p lac ing several un impor tan t features w i t h one impor tan t feature. S impl i f i ca t ion techniques include fi l tering,

mesh s impl i f ica t ion , surface s impl i f ica t ion, topology s impl i f ica t ion, and object suppression. These techniques

w i l l be dealt w i t h i n Chap te r 11.

4.2 Sampling and Reconstruction

Scientific v i sua l i za t ion generally assumes the existence of a continuous function defined everywhere over some

region of interest. M u c h of the t ime, scientific v i sua l iza t ion also assumes that this function is cont inuously

differentiable.

In reality, the da ta is generally known only th rough point samples: i n d i v i d u a l points , usual ly i n
a regular pat tern , at wh ich the function is known. T h e pat tern i n wh ich the point samples are l a id out
is sometimes referred to as a grid. E x c e p t at the point samples, the value of the function is unknown. It
is assumed, however, that the proper ty being measured, such as heat, temperature, or pressure, is i tself a
continuous function. Thus , the first step i n v i sua l iza t ion involves reconstructing the under ly ing function.

In reconstruct ing the under ly ing function, the value of the function at each sample is d is t r ibuted
over the immedia te ne ighbourhood by another function called a kernel. T h e field of sampling theory [GW02]
studies the types of kernels to be used for reconstruct ion, using kernels such as sinc(x) = s'mx/x. These
kernels are generally ana ly t i ca l ly intractable - i.e. there is i n general no closed form solut ion for the roots of
the reconstructed function / . For v i sua l iza t ion techniques that do not require a closed form solut ion, kernels
w i t h good sampl ing properties are generally used.

Geomet r i c and topologica l techniques, however, generally require closed form solutions i n order

to find c r i t i ca l points and to determine the rela t ionship between them. A s a result, scientific v i sua l iza t ion

techniques that exploi t geometry and topology commonly reconstruct the function / using geometric meshes.

A mesh is a subdiv is ion of the region of interest in to geometric pr imi t ives cal led cells. In general,

the vertices tha t define the cells are given by the g r id - i.e. the mesh is constructed using the point samples

as vertices. C o m m o n cells include: t r iangular and rectangular cells i n two dimensions, te t rahedral and box

cells i n three dimensions, and s impl i c i a l and hyperbox cells i n a rb i t r a ry dimensions.

T h e function / is then reconstructed on the mesh by using an ana ly t i ca l ly t ractable interpolant.
Tr iangula r , te t rahedral , and other s impl ic i a l cells commonly use the barycentric interpolant , wh ich has the

useful proper ty that the function is guaranteed to be l inear along any line th rough the cel l . Rectangular ,

box and hyperbox cells commonly use mul t i l inear interpolants , wh ich are l inear along axis-paral le l lines, but

not necessarily other lines th rough the cel l . Spl ine interpolants are occasional ly used, but are ana ly t ica l ly

in t ractable i n higher dimensions. For example, i n three dimensions, finding c r i t i ca l points using a t r i l inear

in terpolant requires solv ing a cubic equat ion. A t r icub ic interpolant , however, requires so lv ing a ninth-order

18

p o l y n o m i a l , for wh ich no closed-form solut ion is known .

T h i s d i s t inc t ion , between v i sua l iza t ion techniques that use sampl ing theory and h igh-qual i ty kernels,

and techniques that use geometric or topologica l methods and geometric meshes, was reflected i n F igu re 3.1.

Since this thesis rests on geometric and topologica l properties, I w i l l assume that a geometric mesh is

used for reconstruct ion. B y this, I mean tha t the region of interest is subd iv ided into po lygona l or po lyhedra l

cells, over each of wh ich an ana ly t i ca l ly t ractable interpolant is defined. M o r e specifically, for P a r t III, I

shal l assume tha t the function is reconstructed using barycentr ic in te rpola t ion over a s impl ic i a l mesh.

4.3 Manifolds and Intensity Maps

Once a scalar function / : TZ —> IR (where TZ C I R d) has been reconstructed, i t is often useful to th ink of /

as a manifold: a mathemat ica l general izat ion of a surface. Formal ly , a topological n-manifold, or n-manifold

for short , is a topologica l space that is everywhere loca l ly homeomorphic to IR™.

For two dimensional scalar data , / can be wr i t t en as the set of points of the form {(x, y, f(x, y)) :
(x, y) e dom(f)}. T h i s set of points forms a special surface i n three-dimensional space: one for wh ich no two
points share the same x, y coordinates. T h i s surface is also a two-manifold embedded i n a three-dimensional
space. S imi la r ly , a funct ion / that varies over three spat ia l dimensions forms a three-manifold embedded i n
a four-dimensional space.

W h e r e / measures a proper ty such as l ight intensi ty or radia ted heat, i t may be more appropriate
to treat the function as an intensity map, emphasiz ing the difference between the spat ia l dimensions and the
function value.

B o t h approaches can be used simultaneously, as for example i n topographic maps, where al t i tude is
frequently encoded w i t h colours as wel l as contour lines. Here, a spat ia l d imension is t reated as a function
value, and converted to intensity.

4.4 Level Sets and Contours

Chap te r 2 already in t roduced the no t ion of the contour, or more precisely, of the isocontour line: a l ine

of points w i t h a c o m m o n value of / , cal led the isovalue. F o r m a l l y speaking, a contour derives from the

res t r ic t ion of the function / to an isovalue h. T h i s res t r ic t ion is cal led a level set: f~1{h) = {x : f(x) = h}.
T h i s level set need not be connected: each connected component of the level set is cal led an isocontour or

contour. Moreover , the contours need not be closed curves or surfaces. For some types of data , we can often

make the assumpt ion tha t a l l contours are i n fact closed, but no th ing i n this thesis requires this assumption.

For two-dimensional data , each isocontour is a l inear feature, cal led an isoline. T h e most famil iar
use of isolines is on topographic maps, where the function / represents l and elevation.

For three-dimensional data, each level set is a set of surfaces i n three dimensions: each isocontour is

cal led an isosurface. T h e concept of isosurfaces as an extension of isolines arose i n geology (isograds) [Til24]

and oceanography (isohalines) as early as the 1920's. Isosurfaces constructed using stacked glass plates

19

(a) T h e Sample M e s h (b) Shown as a Surface

F igu re 4.1: A Sample M e s h i n T w o Dimens ions

showing contours were in t roduced for X - r a y crysta l lography i n the 1950's. A l g o r i t h m s for cons t ruc t ing

isosurfaces are discussed i n C h a p t e r 8.

4.5 Topological Abstractions

Section 4.1 observed that topologica l abstractions have been used for v i sua l i za t ion . There are several p r in ­
c ipal abstract ions that have been used to date:

1. Watersheds (which can also be viewed as geometric abstractions)

2. M o r s e complexes

3. Reeb graphs

4. C o n t o u r trees

To i l lustrate , let us show each abstract ion for the sample mesh i n two dimensions shown i n F igu re 4.1.

We w i l l use this as a runn ing example for the balance of this thesis. F igu re 4.1(a) shows the t r iangular mesh

itself, whi le F igu re 4.1(b) shows this mesh as a shaded surface i n three dimensions. Several things can be

seen i n this mesh. F i r s t l y , i t has three peaks (100, 90, and 80) of va ry ing heights and base areas. Secondly,

i t has three pits (71, 20, and 0), one of wh ich is a decl iv i ty i n the peak centred at 90, one of wh ich (20) is

a catch-basin near the base of the ma in peaks, and the t h i rd of wh ich is the g lobal m i n i m u m . Las t ly , i t has

three saddle points . We w i l l define saddle points formal ly i n Chap te r 6: here, we s i m p l y characterize t hem as

points where there are mul t ip le dis t inct directions of ascent or descent. In this case, there is a t r ip le saddle

at 50 (also cal led a monkey saddle) where the three peaks meet, and s imple saddles at 81 and 30 w h i c h help

define the basins w i t h 71 and 20 as loca l m i n i m a .

20

© o o o o o o o o
•© © ©

© © o^^—•s^sp ©
© ©

© © © O ©kj'̂ fflp ©
© © © © © © ^ © ^ G ©

o o o o o o o o

(a) Watershed (b) Watershed of Nega ted Func t i on

F igu re 4.2: Watersheds i n the Sample M e s h

4.5.1 Watersheds

The simplest topologica l abs t rac t ion appl ied to scalar data is the watershed: a region that drains to a

single point . A s the name impl ies , the idea comes from hydrography: m a p p i n g the flow of water over

a landscape. F igu re 4.2(a) shows the watersheds i n our sample mesh, using a geometric approach for

comput ing watersheds. No te how each pi t (or loca l min imum) has i ts own drainage region.

Watersheds are also used for image processing, albeit i n a s l ight ly different form. C o m m o n l y , the

intensi ty peaks of an image are considered to be impor tant , and the task is to segment the image into regions

based on the peaks. T h i s is usual ly performed by negating the function, then c o m p u t i n g the watershed. T h e

effect of this is to define regions w h i c h d ra in from a common point . F igu re 4.2(b) shows the watershed of

the negated function for our sample mesh. Unsurpr is ingly , the image is d iv ided in to regions d ra in ing from

each of the peaks.

4.5.2 Morse Complexes

T h e M o r s e complex comes from the fields of Morse Theory [Mil63] and differential geometry. A s s u m i n g

that the function / is everywhere differentiable, the gradient at each point is ca lcula ted . F r o m each point , a

line extends upwards and downwards following the gradient un t i l a l oca l m a x i m u m and loca l m i n i m u m are

reached. Thus , each point is assigned to a gradient line, or pa th of steepest descent. A l l gradient lines shar ing

a common loca l m a x i m u m and loca l m i n i m u m are grouped to form Morse regions. T h e Morse complex is

s imp ly the set o f these regions, usua l ly shown by d rawing the boundaries .

No te that , since each M o r s e region shares a common peak (or source), i t must be a subregion of an
antiwatershed. S imi la r ly , since each Morse region shares a c o m m o n pi t (or s ink) , i t must be a subregion of
a watershed. It is not difficult to see, therefore, that the Morse complex is s imp ly the set of regions defined
by intersecting the watersheds and antiwatersheds.

21

Figu re 4.3: T h e Morse C o m p l e x of the Sample M e s h

For piecewise-linear functions such as the one i n F igure 4.1(a), the funct ion / is i n fact not everywhere

differentiable: i t is not differentiable along the boundaries between cells of the mesh. T h i s has been dealt

w i t h at length by Edelsbrunner , Hare r & Zomorod ian [EHZ01] and by Bremer et a l . [B E H P 0 3] , and is not

dealt w i t h here. For the purposes of this thesis, i t suffices to show an app rox ima t ion of the M o r s e complex

i n F igu re 4.3, computed by intersecting the watersheds and antiwatersheds from F igu re 4.2. T h e regions

thus obta ined were then modif ied by adding the edges marked to preserve an impor t an t proper ty of Morse

complexes: that the bounda ry of each Morse region passes i n sequence th rough a peak, a saddle, a pi t ,

and a saddle w h i c h may be the same as the first saddle. Thus , for example, the b o u n d a r y of region E is

90 - 89 - 83 - 82 - 81 - 71 - 81 - 88 - 90, and the boundary of region C is 80 - 79 - 50 - 48 - 46 - 20 -

21 - 30 - 31 - 33 - 35 - 78 - 79 - 80.

4.5 .3 Reeb G r a p h s

In compar ison to Morse complexes, bo th Reeb graphs and contour trees represent, not the line of steepest

descent, but the l ine of least descent (in fact, no descent), i.e. contours or isolines. If y o u follow an isoline,

the value of / never increases or decreases. B o t h Reeb graphs and contour trees t rack the changes to a

contour as a single parameter is var ied. However, the Reeb graph is more general t han the contour tree,

and is computed for manifolds more complex than a simple surface defined by a funct ion over JRd. We thus

i l lustrate i t w i t h a more general manifo ld - a torus.

T h e Reeb graph [Ree46] expresses the evolut ion of contours i n cross-sections of a manifold . For

example, F igu re 4.4 shows a set of contours representing hor izonta l cross-sections th rough a torus rest ing

on i ts edge. These contours evolve gradual ly from a single point to an ellipse, then to a figure-eight,

to two ellipses, back to a figure-eight, to a single ellipse, to a single point once more, then disappear.

D iagrammat ica l ly , the Reeb g raph on the r ight shows how many contours there are, and wh ich ones evolve

into wh ich other ones: these contours may break apart , then merge once more, as shown by this example.

22

torus contours Reeb graph
Figure 4.4: Reeb G r a p h of a Torus

4.5.4 Contour Trees

T h e Reeb graph is more general t han necessary for scalar fields, as i t is designed to represent the evolut ion
of any surface w i t h respect to any parameter. In contrast, when work ing w i t h scalar fields, we are generally
on ly interested i n the function's range as the parameter. Fur thermore , since we are work ing w i t h a function
/ : I R d —> IR, we are interested i n a special case of the Reeb graph: the contour tree.

In F igu re 4.5, we show the contour isolines for the function represented by the sample mesh, bo th
as lines on the surface, and i n an overhead view. A s we saw i n Chap te r 2, the contour tree can be viewed
as the dua l graph of the regions bounded by the contours and by the boundary of Tl, the domain of the
function / . W e show the contour tree for this sample mesh i n F igu re 4.5. Since this structure is at the core
of this thesis, Chap te r 6 w i l l give a more formal defini t ion.

23

(a) Con tou r s on Surface (b) Con tour s

(c) Contour Tree

F igu re 4.5: Con tour Tree of the Sample M e s h

24

Chapter 5

Isosurface Extraction

Techniques for ex t rac t ing and man ipu la t ing contours are essentially the same i n any number of d imen­
sions. Since the p r inc ipa l focus of this thesis is on isosurfaces, this chapter considers isosurface techniques
only, a l though the techniques reviewed here have their equivalents for two-dimensional da ta and for higher-
d imensional data . W e therefore assume for the purposes of this chapter that / is defined over a compact
region 1Z i n 1R 3 .

Isosurface ex t rac t ion grew out of two apparent ly disparate problems: boundary detection i n ac­
qui red da ta and imp l i c i t surfaces i n mathematical ly-def ined functions. Sect ion 5.1 looks briefly at these two
problems, and some early approaches to isosurface ext rac t ion . Sect ion 5.2 and Sect ion 5.3 then introduce
the two p r inc ipa l modern isosurface ex t rac t ion algori thms: marching cubes and continuation.

5.1 Early Approaches: Boundary Detection and Implicit Surfaces

W o r k on computer ized isosurface ex t rac t ion started i n the 1970's, and or ig inated i n two research problems -
boundary detect ion, and imp l i c i t surfaces. In either case, given the function / , the goal is to define a surface
that represents some object or feature of impor tance i n / .

B o u n d a r y detect ion problems arose when da ta was exper imenta l ly acquired, as for example i n a

medica l da ta set. T h e n , given the function / , the desired surface was the boundary of some impor tan t

feature: t yp i ca l l y an ana tomica l organ. T h i s boundary was denned by choosing an isovaiue and ext rac t ing

a geometric surface w h i c h par t i t ioned the sample points into two sets: those above the isovaiue, and those

below the isovaiue.

In contrast , the imp l i c i t surface prob lem was dr iven by the desire to s tudy ana ly t i ca l ly denned
functions, by drawing a geometric approx imat ion of the set {a; : f(x) = h} for some value h (usually 0).

U l t ima te ly , i t was realized that these two problems were the same, and that general techniques for
ex t rac t ing isosurfaces could be appl ied to either.

25

Boundary Detection E a r l y approaches to boundary detet ion took two forms - s tacking i n d i v i d u a l cubes

inside the boundary, or connect ing stacks of two-dimensional contours.

H e r m a n & L u n [HL79] took the first approach, and rendered a smal l cube cal led a cuberille, centred
on each sample w i t h a value greater than the isovalue. T h i s is s imi lar to bu i ld ing a mode l us ing transparent
cubes for the samples below the isovalue, and opaque cubes for the samples above the isovalue. Once
isosurfaces (see below) were in t roduced, i t was clear that the surface was equivalent to the isosurface generated
using the nearest neighbour interpolant function. A r t z y [Art79] improved the cuberi l le approach by rendering
on ly the front half of each cuberi l le , thus reducing the work by 50%. Cuber i l les that were not vis ible because
they were surrounded by others were, however, s t i l l rendered, resul t ing i n unnecessary work being performed.
T h i s was addressed by A r t z y , Fr ieder & H e r m a n [A F H 8 1] , who described an a lgor i thm to follow the surface
of the cuberil les, ignor ing in ternal faces.

T h e other approach to boundary detection connected stacks of two-dimensional contours, as i n the
ear ly work w i t h stacked glass sheets i n X - r a y crystal lography. T h i s approach was taken by Fuchs, K e d e m &
Use l ton [F K U 7 7] , who detected boundaries as contours i n 2-D i n each slice of the da ta , then connected the
resul t ing contours. T h i s approach was later extended by Shinagawa & K u n i i [SK91] to use Reeb graphs to
describe the rela t ionship between contours i n adjacent slices. A g a i n , i t soon became apparent that this was
equivalent to generating isosurfaces.

Implicit Surfaces In contrast to boundary detection, imp l i c i t surfaces work d i rec t ly w i t h the function
/ . Impl ic i t surfaces are surfaces denned by f(x) = 0 for some function / , and are rendered using surface
mode l l ing techniques: for example, B l i n n [BH82] used a ray- t rac ing a lgor i thm to render imp l i c i t surfaces.

W y v i l l , McPhee te r s , & W y v i l l [W M W 8 6 a , W M W 8 6 b] in t roduced the t e rm isosurface i n their work
on soft object an imat ion . A soft object is an object whose surface is defined to be the zero-set of the sum
of several Gauss ian dis t r ibut ions . B y mov ing the centres of the d is t r ibut ions , the overal l shape of a soft
object can be manipu la ted to produce a smooth an imat ion [W M W 8 6 a] . These authors sampled the sum of
the d is t r ibut ions on a regular cubic mesh, then constructed a po lygona l surface i n each cube [W M W 8 6 b] .
B l o o m e n t h a l [BI088] extended the po lygoniza t ion method by using an octree to refine the surface adaptively,
and in t roduced the t e rm implicit surfaces. N i n g & B l o o m e n t h a l [NB93] summar ized various techniques for
imp l i c i t surfaces, as d i d W y v i l l [Wyv94], but these techniques are now best v iewed as a special case of
isosurfaces - i.e. isosurfaces w i t h an isovalue of 0.

W o r k on boundary detect ion and imp l i c i t surfaces converged w i t h W y v i l l , McPhee te r s & W y v i l l ' s

work on soft objects [W M W 8 6 b] , and Lorenson & Cl ine ' s marching cubes a lgor i thm [LC87] . A l t h o u g h

W y v i l l , McPhee te r s & W y v i l l were interested i n ana ly t ica l functions that were well-defined everywhere, and

Lorenson & C l i n e were interested i n exper imenta l ly sampled functions, they developed s imi lar approaches.

U n d e r either of these approaches, the region of interest is subdiv ided into cub ica l cells, and the intersection

of the isosurface w i t h each cell is approximated w i t h polygons.

26

5.2 Marching Cubes

Lorenson & Cl ine ' s a lgor i thm for isosurface ex t rac t ion is cal led marching cubes [LC87] . T h i s extracts isosur­
faces by ex t rac t ing surfaces separately i n every cell i n a cubic mesh. T h e a lgor i thm iterates th rough a l l cells
i n the volume, hence the t e rm marching cubes. In each cell , each vertex is classified as "above" or "below"
the surface. For each edge of the cube w i t h one vertex above the isosurface and one below, a point was
generated by l inear in te rpola t ion along the edge. These edge points were then used to construct one or more
po lygona l surface separat ing the vertices above and below the surface.

Since a cubic cell has 8 vertices, there are 2 8 = 256 possible cases. Lorenson & C l i n e use symmetries
between different cases to reduce them to 15 basic cases, and use a look-up table to find the po lygona l
approx ima t ion of the surface i n a given cel l .

However, the basic cases chosen by Lorenson & C l i n e were flawed. G i v e n a face of a cube w i t h
two d iagonal ly opposite corners above the surface, and the other two below the surface, some of the basic
cases assumed tha t the higher corners fell inside the same connected component of the surface, whi le others
assumed tha t they d i d not. Since each face of a cube was shared w i t h an adjacent cube, i t was possible
to generate surfaces w i t h holes by accident. T h i s was noted by Dur s t [Diir88], and solutions proposed by
W i l h e l m s & van Gelder [WvG90] , by Nie l son & H a m a n n [NH91], by M a t v e y e v [Mat94], and by M o n t a n i ,
Scateni & Scopigno [MSS94a]. M o n t a n i , Scateni & Scopigno's solut ion is the simplest: they choose different
surfaces i n the offending cases, resul t ing i n a set of cases wh ich never generates holes: these cases are shown
i n F igu re 5.1. T h e balance of this thesis w i l l use "marching cubes" to refer to this par t icular set of cases,
unless otherwise specified.

Nie l son & Hamann ' s solut ion, the asymptotic decider [NH91], was based on assuming that / is a
bi l inear in te rpola t ion on each face of the cube. T h e known topology of contours of bi l inear functions was
invoked to ensure tha t the assumpt ion was consistent i n b o t h cells. T h e value of / at the saddle point of the
bi l inear function was computed and used to d is t inguish between the two possible solutions. Since this test
gave the same result i n bo th cubes, consistent t reatment was assured, and the holes disappeared.

M o s t of these solutions, however, failed to address the under ly ing problem: that the surfaces ex­
t rac ted d i d not correspond to contours of any k n o w n interpolant . W i l h e l m s & van Gelder [WvG90] assumed
that each cube was subd iv ided into tetrahedra, and that the barycentr ic in te rpola t ion function was used i n
each te t rahedron. T h i s technique, usual ly referred to as marching tetrahedra, was also described by B l o o -
mentha l [BI088], and extended by N i n g & B loomen tha l [NB93]. A l t h o u g h at t ract ive for its s impl ic i ty , this
results i n the in t roduc t ion of topologica l artifacts to the interpolant function and increases the number of
tr iangles processed [CMS01] .

N a t a r a j a n [Nat94] defined the interpolant to be the t r i l inear function used i n other contexts, and
extended the asympto t i c decider by test ing b o d y saddle points inside the cube. C i g n o n i et a l . [CGMSOO]
then implemented this approach, subd iv id ing cubes w i t h high-curvature surfaces to get a more accurate
result. However , this solut ion assumed that on ly one b o d y saddle could exist i n a given cube, a l though
two roots to the equations existed. T h i s p rob lem w i t h body saddle points was identified and corrected by
Chernyaev [Che95] and by Lopes & B r o d l i e [LB03].

27

):

I

0

wKk Hpl #* 491
flP~*nH|iHB - H ^ ^ jllWi i I

.Id/ 1^,/
1^^———• • * -y*^ — 2: 3:

4:
w — M — * •

black vertices are
above the surface
(i.e. they have
higher isovalues
than the surface)

white vertices are
below the surface
(i.e. they have
lower isovalues
than the surface)

Figure 5.1: M a r c h i n g C u b e Cases, after M o n t a n i , Scateni & Scopigno [MSS94a]

5.2.1 Speed

The p r inc ipa l p rob lem w i t h march ing cubes, however, is efficiency. Because march ing cubes iterates th rough

every cel l i n the data , i t takes O(N) t ime to generate an isosurface, where N is the number of cells i n the

mesh. For t y p i c a l scientific or medica l data, however, i t is usual ly assumed tha t any isosurface of interest

28

passes th rough signif icantly fewer t han N cells. T h e number of cells intersected by the desired isosurface is

often referred to as k - an output sensitive parameter. I toh & K o y a m a d a [IK95] estimate that k ss N3, since

a surface is of d imension 2, and the da ta is of d imension 3.

T w o approaches have been used to accelerate isosurface rendering. T h e first approach is to opt imize

the work performed for each cel l , to min imize overal l cost, whi le the second approach aims to improve the

asympto t ic performance by avoiding irrelevant cells.

D u r k i n & Hughes [DH94] note that t r iangle rendering techniques are inefficient when triangles are
smaller t han a single p ixe l . T h e y render a single point for each cell that intersects the isosurface. M o n t a n i ,
Scateni & Scopigno [MSS94b] accelerate the rendering process i n a different way. Instead of in terpola t ing
points along edges of the cube, they place the edge point at the centre of the edge, then use the march ing
cubes cases: thus, their po lygona l approx imat ion is faster, but not as precise. Hansen & Hinker [HH92]
implement a para l le l version of march ing cubes. A l l three of these techniques, however, merely reduce the
constant of propor t ional i ty , wi thou t a l ter ing the asymptot ic behaviour .

A s noted above, march ing cubes tests a l l cells of the mesh, rather t han just the cells th rough which
the isosurface runs. T h e cost of isosurface generation can be reduced asympto t i ca l ly i n cases where k < O(N)
by using an index structure to keep t rack of wh ich cells intersect wh ich isosurface. Three types of index
structures have been t r ied to date: spat ia l structures, span space structures, and topologica l structures.
O f these, topologica l index structures are used i n combina t ion w i t h the cont inua t ion method: discussion of
them is deferred to Sect ion 5.3.1.

Spatial Index Structures: Spa t i a l index structures assume that large regions of the volume have s imi lar
values. B y t ak ing advantage of this, regions i n which few cells intersect the isosurface are discarded at
an ear ly stage. W i l h e l m s & van Gelder [WvG92] use octrees to accelerate march ing cubes. Baja j and
Pascucc i [BP99] extend this idea to generate progressive isosurfaces, i n wh ich coarse approximat ions of an
isosurface are generated at higher levels of the octree, and finer approximat ions at lower levels where the
cells are smaller .

Octree methods divide the region into 8 octants, then repeat this d iv i s ion recursively un t i l each
octant is a single cell i n size. In the octree, each octant is label led w i t h the m i n i m u m and m a x i m u m values
of a l l vertices contained i n the octant . L e v e l sets are then generated from the octree by commencing w i t h the
entire volume, and propagat ing downwards th rough a l l chi ldren spanning the desired isovalue. Cons t ruc t ion
of the octree takes 0(N log N) t ime: worst-case t ime to construct a level set is 0(k + \ogN/k) [LSJ96]. Shen
& Johnson [SJ95] note however that octree-based methods are vulnerable to noise i n the data .

Span Space Index Structures: Span space methods index each cell using the m i n i m u m and m a x i m u m

isovalues of the cel l , i n structures op t imized for s tor ing intervals. L i v n a t , Shen & Johnson [LSJ96] treat the

m i n i m a as one dimension, the m a x i m a as a second, and ca l l the resul t ing two dimensional space the span
space. Gal lagher [Gal91] uses buckets and l inked lists to store the intervals. L i v n a t , Shen & Johnson [LSJ96]

and Shen et a l . [SHLJ96] use Bent ley ' s k-d-trees [Ben75] 1 . Cons t ruc t ion of the k - d tree takes 0(N log N)
t ime and O(N) space. Cons t ruc t i on of a level set based on the k - d tree then takes 0(VN + k) t ime to

retrieve a l l cells spanning the desired isovalue.

l T J s i n g k s imultaneously as a parameter and as part of the name of the tree structure is awkward , but
this usage is s tandard. T o dis t inguish between the two uses i n this thesis, the parameter is always pr in ted k,
but the name of the tree is always k -d . Since k - d trees are only referred to i n this paragraph, this confusion,
whi le regrettable, is not of major concern.

29

V a n K r e v e l d [vK94] substitutes Edelsbrunner ' s interval tree [Ede80] for the k - d tree, reducing the

t ime to construct a level set to 0{k +\ogN) for two-dimensional data . C i g n o n i et a l . [C M M + 9 7] app ly

the same technique to isosurfaces i n three dimensions. Cons t ruc t ion of the interval tree i n either case takes

0(N log N) t ime and space.

These methods have advantages i n add i t ion to speed. U n l i k e the octree, they apply to recti l inear

and s imp l i c i a l meshes, and to bo th regular and irregular grids. However, the order of cel l retr ieval from these

structures has l i t t le or no corre la t ion w i t h the spat ia l loca t ion of the cells. A s a result, tr iangles representing

mul t ip le contours are interleaved, m a k i n g i t difficult to extract single contours, or to d is t inguish between

contours. In this respect, span space is worse t han M a r c h i n g Cubes , since there is no guarantee that adjacent

cells are ever processed sequentially.

5.3 Continuation

In compar i son to march ing cubes, W y v i l l , McPhee te r s & W y v i l l ' s continuation method [W M W 8 6 a] does not
i terate th rough a l l cells of the mesh. Instead, the cont inuat ion method generates surfaces by fol lowing the
surface from cell to cel l . W y v i l l , McPhee te r s & W y v i l l implement this using an expl ic i t queue to store cells
yet to be processed, as i n A l g o r i t h m 5.1. Howie & B lake [HB94] extended cont inua t ion to i rregular meshes,
under the name of mesh propagation: another name for cont inuat ion is contour-following [CSA03] .

Input : A seed cell s
Output : Con tour surfaces s tar t ing from the seed cell s

1 Queue the seed cel l
2 while the queue is non-empty do
3 Remove a cell from the queue
4 C o m p u t e the M a r c h i n g Cubes case
5 E x t r a c t the surface(s), and mark the cell
e Queue a l l unmarked adjacent cells

end

Algorithm 5.1: T h e Con t inua t ion M e t h o d of Isosurface E x t r a c t i o n

C o n t i n u a t i o n takes O(fc) t ime for isosurface ext rac t ion . Moreover , cont inua t ion can take advantage
of triangle strips, w h i c h reduce the cost of geometric t ransformations i n rendering by shar ing vertices between
adjacent tr iangles [Dee96]. However, cont inuat ion has a major drawback: i t requires a s tar t ing point , or
seed, f rom wh ich to start. Since cont inuat ion is o p t i m a l l y efficient at the ac tua l ext rac t ion, most subsequent
research has focussed on generating seeds.

5.3.1 Topological Index Structures

A s we saw i n Sect ion 5.2, we can reduce the cost for isosurface generation by const ruct ing a spat ia l or span

space index to a l l the cells i n the mesh, indexing them i n such a way that we can r ap id ly identify a l l cells

intersected by any given level set. Thus , these indices are Q(N) i n size. If we on ly want to store seeds,

instead of a l l cells i n the mesh, we can reduce this cost to fl(t), where t is a measure of the topological

complex i ty of the data . These seeds are then used to in i t ia l ize W y v i l l , McPhee te r s & W y v i l l ' s cont inuat ion

me thod [W M W 8 6 a] for isosurface ext rac t ion .

30

I toh & K o y a m a d a [IK94, IK95] use a heurist ic structure cal led the extrema graph, i n wh ich a l l
spa t ia l ly close loca l ex t rema are connected w i t h arcs. E a c h edge of the ex t rema graph has an associated list
of seed cells for different isovalues. N o exact analysis is given, but the authors admi t that i t is not always
efficient, and is not guaranteed to succeed. L i v n a t , Shen & Johnson [LSJ96] show that the worst case t ime
to generate a level set using the ex t rema graph is fl(iV) since a l l edges i n the ex t rema graph are tested for
intersect ion w i t h the desired isovalue.

B a j a j , Pascucc i & Schikore [BPS99] use a s imi lar a lgor i thm, i n wh ich they choose the entire set of
cells as a seed set, then remove redundant cells heurist ically, un t i l no more can be removed. T h e remain ing
thinned set is stored i n a segment tree. T h e same paper also describes a greedy "c l imbing" a lgor i thm wh ich
generates a s imi la r seed set, and a sweep a lgor i thm for const ruct ing seed sets offline. These seeds are then
stored i n a spat ia l da ta s tructure such as the k - d tree or in terval tree. T h e topology of the da ta set is not
exp l i c i t l y calcula ted or stored: the topology of the da ta set is, however, used to generate contours.

I toh, Y a m a g u c h i & K o y a m a d a [IYK01] combine the sweep from B a j a j , Pascucc i & Schikore's algo­
r i t h m w i t h the ex t rema graph of I toh & K o y a m a d a to produce an extrema skeleton, w i t h properties s imi lar
to the ex t rema graph. A g a i n , the topology of the da ta set is used to accelerate isosurface ext rac t ion, but
not computed expl ic i t ly .

However , there is a topologica l index structure that is guaranteed to produce correct seeds for
every contour: the contour tree. T h i s structure w i l l be in t roduced i n the next chapter, and the question of
generating isosurface seeds using i t deferred to Chap te r 8.

31

Chapter 6

Contour Trees

In this chapter, we give formal and informal descriptions of the contour tree. R e c a l l tha t i n Chap te r 2, we
described the contour tree as the structure that described the nesting relat ionship of a set of two-dimensional
contours. Sect ion 6.1 reintroduces this no t ion for a three-dimensional da ta set. Sect ion 6.2 then covers some
previous work on the contour tree, and Section 6.3 gives a formal defini t ion based on M o r s e theory. F ina l l y ,
Sect ion 6.4 describes the augmented contour tree.

6.1 Description of the Contour Tree

In F igu re 6.1, we show a set of isosurfaces from a smal l dataset, w i t h large values at 4 corners of a cube,
m e d i u m values at the other 4 corners and on the faces of the cube, and sma l l values inside and outside the
cube. A s the height (i.e. the value of the function) decreases, we see contours appear, spl i t , change genus,
j o i n , and disappear. In par t icular , the level set evolves from four sticks (a), to two rings (c), to two cushions
(between (c) and (d)), to one surface (d), wh ich gradua l ly turns into two nested surfaces as the "inside" and
"outside" separate (between (e) and (f)). F i n a l l y (al though we cannot see this) , the inner surface collapses
to a point and disappears, leaving us w i t h a single surface once more.

T h e contour tree is a graph that t racks contours of the level set as they appear, j o in , spli t , and
disappear. F igu re 6.1(g) shows the contour tree for the da ta set used i n F igu re 6.1. S ta r t ing at the global
m a x i m u m , four s m a l l contours appear i n sequence (a , /?, 7, 6): these correspond to the four leaves at the top
of the contour tree. T h e surfaces j o i n (e, Q i n pairs, forming larger contours, wh ich qu ick ly become rings.
These rings then flatten out into cushions, wh ich j o i n (77) to form a single contour. T h i s contour gradua l ly
wraps a round a hol low core, and pinches off, sp l i t t ing into two contours: one (<-) faces inwards, the other
(6) outwards. T h e inward contour contracts un t i l i t disappears at a loca l m i n i m u m : the ou tward contour
expands un t i l i t reaches the g lobal m i n i m u m .

32

Sampled Scalar Field Values:
z = 0: z = l: z = 2 z = 3 z = 4

0
0 0 0 0 0 0 99 90 85 0 0 75 50 65 0 0 97 87 82 0 0 0 0 0 0
0 0 0 0 0 0 95 80 95 0 0 55 15 45 0 0 92 77 92 0 0 0 0 0 0
0 0 0 0 0 0 85 90 99 0 0 60 40 70 0 0 82 87 97 0 0 0 0 0 0
0

Level Sets (ordered from high isovalue to low isovalue): Contour Tree:

(d) (e) (f) (g)

Figure 6.1: Sample D a t a Set i n 3 Dimensions , w i t h Contour Tree.

Leve l Sets shown are at 6 dis t inct points dur ing sweep f rom high to low isovalue.

T h e Con tou r Tree is shown embedded i n the plane w i t h the vertices placed ver t ica l ly ac­

cording to their isovalue.

Hor i zon t a l lines shown w i t h the contour tree correspond to level sets (a) - (f).

E a c h such l ine intersects exac t ly one edge for each contour i n the corresponding level set.

(a) Contours a , (3, 7 and S appear first, one at each loca l m a x i m u m .

(b) Contours a, (3 join together to form contour e.

(c) Contours 7, 5 j o i n together to form contour C

(d) Contours e, £ j o i n together to form contour 77.

(e) Con tour rj has an in ternal cav i ty w i t h a double w a l l and a single opening.

(f) Con tou r r\ has now separated into inner (t) and outer (9) contours.

In Sect ion 6.3, we define the contour tree using equivalence classes of contours [CSA03] , but i t can also
be character ized as a continuous contrac t ion of each possible contour to a single point [PasOl , Ree46]. T h i s
character izat ion captures the most useful proper ty of the contour tree: tha t there is a 1 to 1 correspondence
between contours i n the da t a set and points i n the tree. These points m a y be vertices, or supernodes of the
tree or may be single points a long the edges of the tree, t reat ing each edge as a set of points rather t han a
purely combina to r i a l object. A n o t h e r useful proper ty of the contour tree wh ich is a lmost as useful is that
each loca l ex t r emum of the function is a leaf of the contour tree.

33

T h i s is not the on ly defini t ion of the contour tree. In Chap te r 2, we character ized the contour tree

i n terms of the nesting relat ionship of the contours. T h i s defini t ion of the contour tree was in t roduced by

B o y e l l & R u s t o n [BR63] and is equivalent to the defini t ion i n Section 6.3 for p rac t ica l purposes, but imposes

fewer formal constraints on the inpu t data .

6.2 Previous Work

T h e contour tree was in t roduced by B o y e l l and R u s t o n [BR63], as a s u m m a r y of the evolu t ion of contours on
a map (i.e. i n 2 -D) , and was used by Freeman and M o r s e [FM67] to find t e r ra in profiles i n a contour map.
It has been used for image processing and geographic informat ion systems [G C 8 6 , K K 9 4 , S C 8 6 , T I S + 9 5] , as
wel l as for isosurfaces [BPS99 , CarOO, C S 0 3 , CSAOO, C S A 0 3 , P a s O l , P C M 0 2 , v K v O B + 9 7 , Zyd88].

T h e contour tree is a special case of the Reeb graph [Ree46], wh ich describes the evolut ion of
a rb i t r a ry contours as a parameter changes. A s a result, the Reeb graph can be used to trace the evolut ion of
an a rb i t r a ry surface i n space, such as the surface of a torus. In this case, the parameter used to describe the
surface is commonly the z coordinate of the space, but can also be t ime i n a t ime-vary ing da ta set. Thus ,
Reeb graphs have been used to reconstruct surfaces from medica l images [SKK91] and to t rack i n d i v i d u a l
isosurfaces over t ime[SW96, SW98] . T h e Reeb graph belongs to a branch of mathemat ics k n o w n as Morse
theory [Ban67, M i l 6 3] , wh ich seeks to s tudy topological properties by parameter iz ing topologica l manifolds.

A n y function can be viewed as a manifold parameter ized by the isovalue, and the contour tree can
also be defined as the Reeb g raph of the manifo ld w i t h respect to the isovalue parameter. B u t the contour
tree has some add i t iona l useful properties compared to the Reeb graph. Because a function can have only one
value at a given point , no two isocontours intersect. Moreover , any given contour c divides its complement
into disjoint subregions, so that every pa th from a point (or contour) i n one subregion to a point (or contour)
i n another subregion must pass th rough the contour c. It follows from this tha t the contour tree has no
cycles: hence the name "contour tree".

It is not necessary that a function be denned i n order for the contour tree to exist. Fo l lowing B o y e l l
& R u s t o n [BR63] , the contour tree can instead be defined for any set of isovalued manifolds that nest inside
each other. A l t h o u g h nesting properties require that a l l contours be closed manifolds, i t is possible to work
a round this by t ak ing advantage of the fact that a contour comes from a scalar field, and has a "high"
side and a "low" side. W e w i l l re turn to this concept i n Chap te r 10. For now, we do not re ly on this
character iza t ion of the contour tree, instead using a Morse- theoret ic defini t ion.

6.3 The Contour Tree

M o r s e theory [Ban67, M i l 6 3 , Ree46, S K K 9 1] studies the changes i n topology of level sets as some parameter is
var ied. Po in ts at wh ich the topology of the level sets change are called critical points. Morse theory requires
that the c r i t i ca l points are isolated - i.e. that they occur at dis t inct points and values. A continuous function
that satisfies this condi t ion is cal led a Morse function. A l l points other t han c r i t i ca l points are called regular
points and do not affect the number or genus of the contours.

34

A s we w i l l see when considering isosurface ex t rac t ion i n Chap te r 8, we are not always interested i n

a l l M o r s e c r i t i ca l points . In par t icular , changes of topologica l genus (e.g. from a disk to a torus) do not

affect the number of contours, and therefore do not affect isosurface ext rac t ion . However, as Pascucc i &

C o l e - M c L a u g h l i n [P C M 0 2] have shown, these M o r s e c r i t i ca l points can readi ly be added tothe contour tree.

To s impl i fy discussion, however, we defer this to Sect ion 6.4.

In Sect ion 6.1, we described the evolut ion of level sets as the function value var ied. We make this

"evolut ion" more precise by denning an equivalence re la t ion between two contours. Since the c r i t i ca l points

are, as the name implies , c r i t i ca l to this process, we deal w i t h t hem first.

We assume that we are s tudy ing a Morse function / : TZ —> IR denned over some compact region
TZ G I R d . W e do not assume that / is denned outside TZ. W e can also assume that / is continuous because
i t is a M o r s e function. We now define level sets and contours as follows:

Definition 6.1 The level set of f at h is the set Lh{f) = {x £ TZ : f(x) = h}.

Definition 6.2 A contour of f at h is a single connected component of Lh(f).

W e do not assume that contours are closed manifolds: they may intersect the boundary of TZ. E x c e p t
for holes at the boundary, however, contours w i l l be closed manifolds because / is continuous.

Once we have these definitions, we can look at the topologica l changes i n the ne ighbourhood of a
point x. L e t Bc(x) refer to the ba l l of radius e centred at x, and let f\Bt(x) be the res t r ic t ion of / to Be(x).
T h e n :

Definition 6.3 The Morse up-degree of f at a point x is the number of contours of f\Be(x) at isovalue
f(x) + 5, as 5,e->0+.

Definition 6.4 The Morse down-degree of f at a point x is the number of contours of f\Be(x) at isovalue
f(x) — S, as 5, e —> 0 + .

Definition 6.5 A Morse c r i t i ca l point of f is a point x for which the Morse up- and down- degrees are not

both 1.

However, two or more contours of f\Be(x) can belong to the same contour of / . T h i s leads to some

more definitions:

Definition 6.6 The up-degree of f at a point x, S+(x), is the number of contours of f that intersect Be(x)
at isovalue f(x) + S, as 5, e —» 0 + .

Definition 6.7 The down-degree of f at a point x, 5~(x), is the number of contours of f that intersect
Bc(x) at isovalue f(x) —5, as 5, e —> 0 + .

3 5

Definition 6.8 A c r i t i ca l point of f is a point x for which the up- and down- degrees are not both 1.

It is not ha rd to see that every c r i t i ca l point is a Morse c r i t i ca l point , but not vice versa. A n y Morse

c r i t i ca l point tha t is not a c r i t i ca l point is a point at wh ich some topologica l proper ty other than connect iv i ty

changes. In three dimensions, these are points where the topologica l genus of the surface (the number of

handles) changes.

Once we have these definitions, i t is convenient to classify the c r i t i ca l points.

Definition 6.9 A j o i n is a critical point with up-degree of at least 2.

Definition 6.10 A spl i t is a critical point with down-degree of at least 2.

Some papers reverse the meaning of j o i n and spl i t . Since they are dua l , this does not affect anyth ing
mate r ia l , a l though it can be confusing.

Definition 6.11 A saddle is a join or a split.

Definition 6.12 A loca l m a x i m u m is a critical point with up-degree oft).

Definition 6.13 A loca l m i n i m u m is a critical point with down-degree ofO.

Definition 6.14 A loca l ex t r emum is a local minimum or local maximum.

Once we have classified c r i t i ca l points, we use regular point to refer to any other point:

Definition 6.15 A regular point is a point whose up- and down- degrees are both 1.

Occasional ly , we w i l l need to classify points under the M o r s e definitions of up- and down- degree.

W h e n we do so, we s impl i fy prefix the class of points w i t h "Morse" , as follows:

Definition 6.16 Morse joins, Morse splits, Morse saddles, and Morse regular points are defined in the same
way as joins, splits, saddles, and regular points, using the Morse up- and down- degrees.

We now define the equivalence re la t ion as follows:

Definition 6.17 Let V = {vi,..., vt} be the set of critical points of f. Then contours c and c' are equivalent
(c = c') if there exists some f-monotone path P inH that connects some point in c with another in c', such
that no point x S P belongs to the same contour as any Vi € V .

36

We refer to the equivalence classes of this relation as contour classes. Contours that do not contain
critical points belong to contour classes that map 1 to 1 with open intervals (f(xi), f(xj)), where Xi and Xj
are critical points and f(xi) < f(xj). We describe a contour class as being created at Vj or at f(vj), and
being destroyed at at Vi or at f(vi), thus preserving the intuitive description of a sweep from high to low
values.

Contours that include critical points must be the sole members of their (finite) contour classes.
Moreover, since / is a Morse function, only one critical point can belong to a single contour. It follows from
this that we can refer interchangeably to a critical point of / and a critical point of the contour tree of / .

This correspondence between critical points and finite contour classes, and between open intervals
and infinite contour classes, leads to a graph-theoretic definition of the contour tree for a simplicial mesh.

Definition 6.18 The contour tree for a function f : TZ —»IR (where TZ C TRd) is a graph (V,£) such that:

1. V is the set of critical points of f, and

2. For each infinite contour class created at vt and destroyed at Vj, the edge (v*, Vj) S E. For convenience,
we will assume that (vi,Vj) is directed from the higher to the lower end, i.e. that f(vi) > f{vj).

For convenience in later proofs, we also define the following:

Definition 6.19 Let c be a contour of f that belongs to an infinite contour class created at Vi and deleted
at Vj. Then c belongs to the edge e = (vi,Vj) in the contour tree.

Definition 6.20 For any edge e of the contour tree of f, define the contour set of e to be Cont(e) = {c :
c is a contour of / and c belongs to e}.

Definition 6.21 If e is an edge of the contour tree for the function f, define the sweep region belonging to
e to be TZ(e) = \J{c : c £ Cont(e)}.

Any contour c of / is uniquely defined by its isovaiue h and the contour class to which it belongs,
which may be finite or infinite. Moreover, c can be represented as a point in the contour tree that is either
at a vertex or somewhere on an edge. If c belongs to an edge, we can place it precisely by interpolating with
respect to isovaiue.

Definition 6.22 Let c be a contour at isovaiue h of f that belongs to an edge e = (vi,Vj) of the contour tree
of f. Then c is located in the contour tree at the point found by linear interpolation along e with respect to
the isovalues f(vi),h,f(vj).

From this, we see that contours that are spatially close in TZ will also be spatially close in the contour
tree: contours belonging to the same edge of the contour tree wil l be interpolated along that edge according
to their respective isovalues, and a natural correspondence between monotone paths in the contour tree and
/-monotone paths in TZ arises.

37

W e start by showing we can convert from monotone paths i n the contour tree to / -mono tone paths

i n TZ and vice versa. T h e first is an immedia te corol lary of our defini t ion of the contour tree:

Corollary 6.1 Every f-monotone path P inTZ maps to the monotone path Q = {cp : p £ P} in the contour

tree, where cp is the contour through a given point p.

To show the converse, we start w i t h paths i n the contour tree tha t traverse no more than a single

edge of the tree:

Lemma 6.2 Letpo, p\ be points on contours CQ and c\ respectively that both belong to the same edge of the

contour tree. Then there exists a f-monotone path P from po to p\.

Proof: W i t h o u t loss of generality, assume that f(po) < f(pi)- B y Def in i t ion 6.17, there exists a

monotone ascending pa th Q f rom point qo on contour co to point qi on contour c\. Since CQ and c\ belong

to the same edge of the contour tree, every ascending pa th from Co passes th rough the same set of contours,

because no point on any of these contours may have an up-degree or down-degree > 1.

Note that go need not be the same as po, nor need q\ be the same as p\. B u t , since po and qo

belong to the same contour, we know that they are connected by a pa th Po on CQ. S imi la r ly , pi and q\ are

connected by a pa th P\ on c\. If we construct the pa th PQQP\ by concatenat ing these three paths, we obta in

a non-decreasing pa th from po to qo, but this pa th is not / -monotone .

W e remedy this by s l id ing qo a long Co and q\ a long c\ un t i l they reach po and p\ respectively. Because

/ is continuous, i f we slide point qo a long contour Co to point po, we can keep i t connected w i t h pa th Q by

deforming the b o t t o m end of Q that falls into the isovalue range \f{po), f{Po) +e] for some a rb i t ra r i ly smal l e.

S imi la r ly , we slide the top end of Q a long contour c\ to point p\, and we have the desired / -mono tone path .

•

Corollary 6.3 Letpo be a critical point on contour CQ, and letpi be a regular point on some contour c\ that

belongs to an edge e incident to CQ in the contour tree. Then there exists an f -monotone path in TZ from po

to pi.

Proof: W i t h o u t loss of generality, assume that f(po) < f(pi)- W e know from Def in i t ion 6.8 that ,

as 6, e —> 0 + , the ba l l Be(po) intersects one contour at isovalue f(po) + S for each upwards arc of the contour

tree incident to Co, i nc lud ing e. L e t c$ refer to the contour at isovalue f(po) + $ that belongs to edge e, and,

for each 6, e, choose a point P(s,e) m the intersection of Bc(po) and cs- B y L e m m a 6.2, there exists some

/ -mono tone pa th P(s,e) between P(s,e) and p\. A s 5, e —» 0 + , the point P(s,e) w u l approach p0, and, i n the

l i m i t , we ob ta in a / -mono tone pa th P f rom po to p\. •

Corollary 6.4 Let e = (co ,c i) be any edge in the contour tree of f, and let po and pi be the critical points

on contours Co and C\, respectively. Then there exists a f -monotone path in TZ from po to p\.

Proof: P i c k any point p on any contour c belonging to edge e. B y C o r o l l a r y 6.3, there exist / -

monotone paths i n TZ f rom p0 to p and from p to p\. Concatenate these paths to ob ta in a / -mono tone pa th

from po to p\. •

38

Lemma 6.5 For every monotone path Q in the contour tree, there exists at least one f-monotone path P
in TZ such that P maps to Q in the contour tree.

Proof: W i t h o u t loss of generality, Q is a descending pa th co,c\,... , c m , c m + \ , where cn and c m + i
are contours tha t belong to edges en and e m + i of the contour tree, and c\,... ,cm are the contours i n the
finite contour classes corresponding to some of the vertices of the contour tree. To avoid confusion, we use
Pi, • • • ,Pm to refer to the c r i t i ca l points of / corresponding to c i , . . . , cm. L e t po and pm+i be any points on
contours cn and Cm+i respectively.

B y C o r o l l a r y 6.3, we know that there are / -mono tone paths i n TZ f rom po to p i and from pm to pm+i-
B y C o r o l l a r y 6.4, we also know that there are / -mono tone paths i n TZ from pi to Pi+i for i = 1 . . . m — 1.
Since the isovalues of po to pm+\ are i n descending order, we concatenate a l l these paths to ob ta in the desired
pa th P. •

Theorem 6.6 For every path P in TZ, there exists a path Q in the contour tree to which P maps, and for
every path Q in the contour tree, there exists at least one path P in f that maps to Q.

Proof: (=>) W e decompose the pa th P into / -mono tone subpaths and subpaths tha t lie on contours.
B y C o r o l l a r y 6.1, each of the former maps to a pa th i n the contour tree. A n d each subpath that lies on a
contour maps to that contour i n the contour tree. T h e n Q is s imp ly the concatenat ion of these subpaths.

We decompose the pa th Q into monotone subpaths Qi, • • • ,Qm

 m the contour tree. U n l i k e
paths i n TZ, there are no subpaths that lie on contours, since each contour has collapsed to a single point .
B y L e m m a 6.5, each subpath Qi maps to some subpath Pi i n / . Moreover , i f pi is the first endpoint of Pi
and r j _ i is the second endpoint of bo th p» and r j _ i must lie on the same contour, else Q%-\,Qi w i l l

not connect i n the contour tree. B u t , i f pi and r j _ i lie on the same contour, there is some pa th Ri a long the
contour from pi to r j _ i . W e now let P = P\ + R\ + P2 + • • • + Rm-i + Pm- ^

6.4 The Augmented Contour Tree

T h e contour tree defined i n the previous section contains only vertices at wh ich connect iv i ty changes. If

other vertices are significant, we s imp ly add them to the contour tree, or augment i t . Since each such vertex

belongs to a contour, wh ich i n t u r n belongs to an equivalence class, this is easy.

Definition 6.23 The contour tree augmented by W for any set W of points in TZ is the tree obtained by

substituting V U W for V in Definition 6.17 and Definition 6.18.

Definition 6.24 The unaugmented contour tree is the contour tree augmented by the empty set.

Definition 6.25 The Morse-augmented contour tree is the contour tree augmented by the set of Morse
critical points which are not critical points.

Definition 6.26 The fully augmented contour tree or is the contour tree augmented by all vertices in the
mesh.

39

Unaugmented contour tree:

© Supernode
« • » Superarc

Fully augmented contour tree:
• Node

— Arc

Figure 6.2: Unaugmented C o n t o u r Tree and F u l l y Augmented C o n t o u r Tree Fo r F igu re 4.1
Fo l lowing van K r e v e l d et a l . [v K v O B + 9 7] , we show bo th the unaugmented contour tree and
the fully augmented contour tree i n the same d iagram. N o t e how the superarcs each consist
of a s t r ing of arcs, and each node except supernodes belongs to some superarc.

V a n K r e v e l d et a l . [v K v O B + 9 7] ca l l the vertices and edges of the unaugmented contour tree supern­
odes and superarcs, and ca l l the vertices and edges of the fully augmented contour tree nodes and arcs. T h e y
also draw bo th the unaugmented contour tree and the fully augmented contour tree i n the same d iagram,
as shown i n F igu re 6.2. W h e r e c la r i ty is required, we refer to the unaugmented contour tree or the fully
augmented contour tree, i n order to make the difference clear. Elsewhere , we use "contour tree" to refer to
any contour tree, augmented or not.

40

Part III

New Applications for Contour Trees

41

T h i s P a r t w i l l deal w i t h a several new uses for the contour tree, from ext rac t ion of contours using

pa th seeds i n Chap te r 8 to a descr ipt ion of how to use the contour tree to compute geometric properties i n

Chap te r 10.

For the sake of s impl ic i ty , we w i l l make three assumptions i n this part . In P a r t I V , we shal l show

how to re lax these assumptions.

Assumption 1 The input data consists of a simplicial mesh with isovalues specified at the vertices of the
mesh.

Assumption 2 The isovaiue at any point in TZ other than a vertex of the mesh is computed using barycentric
interpolation.

Assumption 3 No two vertex isovalues are the same.

Overa l l , the con t r ibu t ion of this P a r t of the thesis is to use the contour tree as a abstract ion that
unifies i n d i v i d u a l advances i n the fol lowing areas:

1. topology, i n the form of efficient a lgor i thms to compute the contour tree (Chapter 7)

2. isosurface extraction, i n the form of efficient a lgori thms for ex t rac t ing single contours using pa th seeds
(Chapter 8)

3. exploratory visualization, using the flexible isosurface to explore and manipula te i n d i v i d u a l contour
surfaces (Chapter 9),

4. geometry, i n the form of loca l spat ia l measures (Chapter 10) that measure geometric properties for
regions bounded by contours, and

5. topological simplification, i n wh ich loca l spat ia l measures (Chapter 11) are used to guide s impl i f icat ion

of the topology i n the form of the contour tree, bo th to identify major features i n the data, and to

identify and remove noise.

In Chap te r 7,1 review algor i thms used to compute the contour tree. In Chap te r 8,1 then explore the

ex t rac t ion of single contours using seeds generated from the contour tree. T h i s sets the stage for Chap te r 9, i n

wh ich I discuss the man ipu la t ion of i n d i v i d u a l contour surfaces, and an interface for doing so. In Chap te r 10,

I show how to compute geometric properties w i t h respect to regions bounded by contours. F ina l l y , i n

Chap te r 11, I use these geometric properties to s impl i fy the contour tree for clearer v i sua l in teract ion and

for noise suppression.

42

Chapter 7

A l g o r i t h m s f o r C o m p u t i n g C o n t o u r
Trees

A number of different a lgor i thms have been used to compute the contour tree, i n two, three, and a rb i t ra ry
dimensions. These include contour nesting (Section 7.2), skeletonizat ion (Section 7.3), monotone pa th search
(Section 7.4), contour sweep (Section 7.5), and sweep and merge (Section 7.6).

T h e analysis of these a lgor i thms can be complex, so we start by denning parameters for analysis
i n Sect ion 7.1. Sections 7.2 th rough 7.6 then discuss each a lgor i thm i n t u rn . Since the sweep and merge
a lgor i thm is fundamental to later contr ibut ions i n this thesis, an example of its opera t ion is then shown i n
Sect ion 7.7.

7.1 Parameters for Analysis

In analys ing the runt ime of contour tree algori thms, a number of parameters have been used. For convenience,

these parameters are collected here:

n - the number of vertices i n the mesh, wh ich may be regular or i rregular .

TV - the number of cells i n the mesh: for i rregular meshes i n three or more dimensions, this may be fi(n2).

For regular meshes or two-dimensional meshes, i t is 0 (n) .

sort - cost of sor t ing the vertices: no t iona l ly 0(n log n) , but can be reduced to 0(n) for quant ized data .

t - the number of vertices i n the contour tree (propor t iona l to the number of loca l extrema).

k - an output-sensit ive parameter for the size of extracted isosurfaces. Since isosurfaces are generally
rendered as triangles, we w i l l assume that k is the number of tr iangles generated.

a(t) - the extremely-s lowly growing inverse A c k e r m a n n function, wh ich is < 4 for p rac t ica l value of t.

p - an output-sensit ive parameter for the cost of using pa th seeds to generate contours. We discuss this
parameter i n more deta i l i n Section 8.2.4, but include i t here for completeness.

43

r - the number of contours present i n a level set or flexible isosurface. W e discuss of this parameter i n

Sect ion 9.4, but include i t here for completeness.

7.2 Contour Nesting

T h e earliest contour tree const ruct ion a lgor i thm, contour nesting, was in t roduced by B o y e l l & R u s t o n i n
1963 [BR63] . In this a lgor i thm, the contour tree represents the nesting relat ionship of a set of po lygona l
contours manua l ly converted from a topographic map. A n "outside" region is designated that encloses
everything, and nodes representing contours are added to the tree one at a t ime. Because there is a wel l -
defined outside region, each contour has a dis t inct inside and outside, and the node for each contour is
connected to the node for the contour immedia te ly outside i t . N o details were provided on the mechanics of
the const ruct ion, wh ich m a y have been manual .

7.3 Skeletonization

T h e second contour tree const ruct ion a lgor i thm, skeletonizat ion, is heuris t ic i n nature, and was used by
I toh, & K o y a m a d a [IK94, IK95] , and by I toh, Y a m a g u c h i & K o y a m a d a [IYK01] . S ta r t ing w i t h every cell
i n the mesh, cells are removed un t i l no more can be removed wi thou t disconnect ing c r i t i ca l points of the
function: i.e. that for any two c r i t i ca l points , there is a continuous chain of cells connect ing the two c r i t i ca l
points . T h i s a lgo r i thm leaves a tree structure composed of cells to use as seeds for isosurface ext rac t ion .
Since a l l c r i t i ca l points are inc luded, and a l l are connected to each other, this s t ructure intersects a l l possible
contours. A n d since cycles can be broken by removing a single cel l , this s tructure w i l l be a tree. N o proof
has been constructed to show that this s tructure is i n fact the contour tree, but i t seems to be equivalent.

7.4 Monotone Path Search

A n o t h e r a lgor i thm was described by Takahashi et a l . [T IS + 95] for two-dimensional data , referring to the

contour tree as a topological change tree. T h i s a lgor i thm has two stages: a graph const ruct ion stage, and

a tree computa t ion stage. In the graph construct ion stage, edges are added from saddles to loca l extrema,

representing d is t inc t direct ions of ascent or descent from the saddle. In the second stage, a loca l ex t remum is

picked, and connected i n the tree to the adjacent saddle w i t h isovalue closest to that of the loca l ex t remum.

T h e loca l ex t r emum is then removed from the graph, and any remain ing paths redirected to connect to the

saddle. T h i s a lgor i thm was later extended to three dimensions by Takahashi , Fuj ishi ro & Takesh ima [TFT01] .

N o formal analysis of the runt ime was given, but a bound of 0(n2) is easily proven by observing that at

most n vertices are c r i t i ca l points and that no pa th from a saddle to a loca l ex t r emum may be longer than n
vertices. A t ighter bound m a y be possible. F ina l l y , this method constructs on ly the unaugmented contour

tree: extending i t to augmented contour trees is, however, feasible.

44

7.5 Contour Sweep

T h e next a lgor i thm was in t roduced by van K r e v e l d et a l . [v K v O B + 9 7] . T h i s a lgor i thm is based on sweeping

th rough the da ta set from h igh to low, as described i n Section 6.1, then sweeping i n the reverse di rect ion

(i.e. from low to h igh isovalues). In add i t ion to assuming barycentr ic in te rpola t ion over a s imp l i c i a l mesh

w i t h dis t inct isovalues, van K r e v e l d et a l . assume that a l l supernodes are s imple (i.e. that no more t han

two contours meet at the supernodes), and guarantee this by pre-processing the mesh to break up mul t ip le

saddles.

In each sweep, the level set corresponding to the isovaiue is exp l i c i t l y main ta ined as a set of contours.
Fo r two dimensional data , each contour can be represented as an ordered list of s implices th rough which the
contour passes. However , each l is t of simplices may correspond to more t han one contour i n the first sweep,
as this sweep does not detect when contours separate.

In the first sweep, as each loca l m a x i m u m is passed, a new contour is constructed i n the level set.
Contours are represented by t r ack ing the set of simplices current ly intersected by the contour. A t vertices
other t han loca l m a x i m a , the contours are updated loca l ly by adjusting the contours for each s implex incident
to the vertex. If the vertex is the lowest vertex i n a given s implex, the s implex is removed from the contour.
If the vertex is the highest vertex i n the s implex, the s implex is added to the contour. A n d , regardless of
the vertex ' isovaiue, the connect iv i ty between simplices is updated i f necessary. Because the contours are
separately label led, i t is easy to detect when two contours meet at a vertex: i n this case, the smaller of the
two contours is assimilated to the larger one, and the vertex is identified as a j o in .

In the second sweep, i n the reverse direct ion, spli ts and loca l m i n i m a are detected, and informat ion

from the first sweep is used to determine how components break apart at spl i ts , a l lowing the contour tree

to be assembled.

B y always jo in ing the smaller of two contours onto the larger, van K r e v e l d et a l . showed that the

overal l t ime could be reduced to 0(N log N) = 0(n log n) i n two dimensions. In dimensions higher t han

two, however, they stated a t ime bound of 0{N2).

However, this a lgor i thm is moderate ly complex. In addi t ion to preprocessing to break down complex

saddles, this a lgor i thm requires special processing at the boundary of the da t a set. However, this a lgor i thm

computes the fully augmented contour tree directly, wh ich can be used to generate m i n i m a l sets of contour

seeds: see Sect ion 8.1 for details.

Tarasov & V y a l y i [TV98] extended this a lgor i thm to 0{N log N) i n three dimensions, by showing

tha t the re label l ing process could also be done efficiently i n three dimensions, and by extending the pre­

processing of complex saddles to at least three dimensions. T h e i r method , however, required subd iv id ing

each te t rahedron into 24 new tetrahedra, and potent ia l ly 360, w i t h obvious impl ica t ions for runn ing t ime.

Pascucc i [PasOl] then further extended this a lgor i thm to compute topologica l indices cal led B e t t i

numbers for the contours, effectively adding topologica l genus to the contour tree.

45

7.6 Sweep and Merge

C a r r , Snoeyink & A x e n [CSAOO, C S A 0 3] improved the a lgor i thm of van K r e v e l d et a l . by dispensing w i t h the
expl ic i t maintenance of the contours, the preprocessing for complex saddles, and the special ized boundary
processing, whi le extending i t to a l l dimensions. T w o sweeps are performed to ob ta in pa r t i a l in format ion
about the contour tree by comput ing the join tree and split tree, representing the connect iv i ty of {x :
fix) > h} and {x : f(x) < h}, respectively. A t h i r d stage, s imi lar i n nature to the second stage of
Takahashi et a l . [T I S + 9 5] , then assembles the contour tree by p ick ing loca l ex t rema from the j o i n and spl i t
trees and transferring them to the contour tree.

T h i s merge stage can be shown to be equivalent to a sequence of pa r t i a l sweeps th rough the data ,
sweeping one contour at a t ime th rough the isovalues represented by a single arc (or superarc) of the contour
tree. T h i s sweep passes th rough a l l of the contours represented by the arc (or superarc), defining a subregion
of the or ig ina l region. Thus , each vertex can be viewed as belonging to a topological ly-defined subregion of
the da ta set. T h i s has powerful consequences, as i t allows us to segment the d o m a i n of the function into
regions w i t h different properties. In par t icular , one of the p r inc ipa l contr ibut ions of this thesis is to use
the idea of sweeping up and down through the contour tree to compute geometric properties of isosurfaces,
then to use this in format ion to perform topological ly-based s impl i f ica t ion b o t h of the contour tree and of
the under ly ing data . W e w i l l see this i n more deta i l i n Chapte r 10.

T h i s a lgor i thm generates a t-supernode contour tree from an n-vertex, A^-cell mesh i n 0(sort + N +
n + ta{t)). Moreover , i t operates for s impl ic i a l meshes i n any number of dimensions, and computes either

the unaugmented contour tree or the fully augmented contour tree.

Input : S i m p l i c i a l M e s h M w i t h value f(v) at each ver tex v

Output : T, the contour tree for M

1 U s i n g A l g o r i t h m 7.2, compute the j o i n tree J(M)
2 U s i n g A l g o r i t h m 7.2, compute the spli t tree S(M)
3 U s i n g A l g o r i t h m 7.3, merge the j o i n tree J(M) and the spli t tree S(M) to ob ta in the fully

augmented contour tree T
4 [Optional]: Use A l g o r i t h m 7.4 to compute the unaugmented contour tree R from the fully

augmented contour tree T

Algorithm 7.1: C o m p u t i n g the Con tour Tree For A S i m p l i c i a l M e s h

A s shown i n A l g o r i t h m 7.1, we invoke A l g o r i t h m 7.2 twice to compute the j o i n and spli t trees for

the mesh M, then A l g o r i t h m 7.3 to merge these two trees together. F o r m a l proof of these algori thms is

omi t t ed , as i t can be found i n m y M . S c . thesis [CarOO] or the corresponding j o u r n a l art icle [CSA03] .

We w i l l see an example of this a lgor i thm i n operat ion i n Sect ion 7.7. In the rest of this section,

however, we w i l l give further details of how this a lgor i thm works. W e describe the j o i n / spl i t sweeps i n

Sect ion 7.6.1, and the merge phase i n Sect ion 7.6.2. Since this a lgor i thm computes the fully augmented

contour tree, we then show how to ob ta in the unaugmented contour tree i n Sect ion 7.6.3, either by reduct ion

from the fully augmented contour tree, or by modi fy ing A l g o r i t h m 7.1 to ob ta in the unaugmented contour

tree direct ly. F i n a l l y , i n Sect ion 7.6.4, we look at some variat ions on the sweep and merge a lgor i thm.

46

7.6.1 Join and Split Sweeps

T h e sweep to compute the j o i n tree is conceptual ly quite simple: a j o i n occurs when a vertex v has two

higher-isovalued neighbours tha t belong to different connected components of {x : f(x) > f(v)}. Efficient

implementa t ion of this a lgor i thm depends on the observation that this can be computed using Tarjan 's union-

find s t ructure [Tar75]. Instead of recomput ing this separately at each vertex v, the vertices are processed i n

order of height, so that the union-f ind structure progressively computes the desired components. E a c h j o i n

corresponds to a un ion opera t ion that connects two previously disconnected components. T h i s a lgor i thm is

also used by C o x , K a r r o n & Ferdous [C K F 0 3] to compute the Digital Morse Theory criticality tree, wh i ch is

essentially ident ica l to the j o i n tree. These authors also do not assume that unique isovalues exist, adding

an add i t iona l union-find step to adjudicate at each isovaiue.

Input : S i m p l i c i a l M e s h M w i t h value f(v) at each vertex v

Output : J (M) , the j o i n tree for M

1 J (M) = 0
2 for each vertex v i n M, i n any order do
3 | Set Comp(v) = v to in i t ia l ize union-find structure.

end
4 for each vertex w i n M , i n descending order do
5 for each neighbour n of v, i n any order do
6 if /(n) > f(v) then
7 F i n d components Comp{n) and Comp(v) of n and v.
8 L e t u be the lowest vertex i n the component Comp(n).
9 A d d (u, v) to the j o i n tree J(M).
10 A d d edge (n , v) to union-f ind.

end
end

n Set v as lowest ver tex i n component Comp(v).

end
Algorithm 7.2: C o m p u t i n g the J o i n Tree For a S i m p l i c i a l M e s h

7.6.2 Merging the Join and Split Trees

T h e t h i r d phase merges the j o i n tree J(M) and spl i t tree S(M) to ob ta in the contour tree T. T o do so, we

define the j o i n tree and spl i t tree to exist for any graph w i t h isovalues at tached to vertices. T h e success of

the overal l a lgor i thm relies on showing that the j o i n tree J (T) and spl i t tree 5 (T) for the contour tree T are

ident ica l to the j o i n tree J{M) and spli t tree S(M) for the s impl ic i a l mesh M: we w i l l re turn to this idea i n

Chap te r 12. Convenient ly , the up-degree 5+(v) of a vertex v i n the j o i n tree is the same as the up-degree of

the same vertex i n the contour tree. S imi la r ly , the down-degrees of v i n the spli t tree and the contour tree

are the same. T h i s allows us to read the degree of a vertex from the j o i n and spli t trees, even i f we have not

yet added v to the contour tree.

T h i s defini t ion facilitates a recursive a lgor i thm for comput ing the contour tree T f rom the j o i n and

spl i t trees J (T) = J(M) and S(T) = S(M). T h i s a lgor i thm, shown i n A l g o r i t h m 7.3, identifies a single edge

e incident to some leaf vertex v i n T. Since v is a leaf, removing i t from T leaves us w i t h a smaller tree T".

Moreover , removing v f rom J(T) and S(T) respectively gives us J (T ') and S(T') respectively, the j o i n and

spl i t trees corresponding to the smaller tree.

47

Input : J o i n Tree J (T) and Spl i t Tree 5 (T) for Con tour Tree T

Output : T , the Con tou r Tree

1 Choose leaf v of T such that 5+(v) = 0 i n J(T) and 5~(v) = 1 i n S(T) or <5+(v) = 1 i n J(T)
and = 0 i n S(T)

2 W i t h o u t loss of generality, assume that v is an upper leaf of T (i.e. S+(v) = 0 i n J(T) and
= 1 i n S(T))

3 L e t e be the edge of J(T) incident to v
4 L e t J ' = J (T) — e be the j o i n tree w i t h edge e and vertex v removed
5 if v is the g lobal m a x i m u m i n S(T) then
6 | L e t S' = S(T) — v be the spli t tree w i t h vertex v removed

end
7 else
8 L e t u, w be the vertices adjacent to v i n S(T)

9 L e t S' = S(T) —v + (u,w) be obtained by spl ic ing (u,v) and (v,w)

end
i o L e t T" be the tree computed by recursive invoca t ion on J' and S'
n L e t T = T' + e be computed by adding e to T"

Algorithm 7.3: C o m p u t i n g Con tour Tree B y M e r g i n g J o i n and Spl i t Trees

B y invok ing this procedure recursively, we can assume that we know the smaller tree T", wh ich
allows us to construct T .

T h i s a lgor i thm depends on the ab i l i ty to identify a leaf vertex i n T. To do so, we note that the
updegree of a given vertex v is always the same i n the j o i n tree J(T) and the contour tree T itself. S imi la r ly ,
the downdegree of v is always the same i n the spli t tree S(T) and the contour tree T. Thus , s imp ly by
examin ing ver tex degrees i n J(T) and S(T), we can ascertain the up- and down-degrees of T , even i f we do
not yet know what T is.

Moreover , i f a vertex v is an upper leaf of T , i t is also an upper leaf of J (T) , and the incident edge to

v i n J(T) is guaranteed to be ident ica l to the incident edge to v i n T. Thus , even i f we have yet to determine

T , we can always determine an edge of T that is incident to some leaf v i n T.

A l t h o u g h this a lgor i thm is defined recursively, i t is easy to convert to an i terat ive a lgor i thm based

on ma in ta in ing a queue of leaf vertices: details can be found i n m y M . S c . thesis [CarOO] or the corresponding

j o u r n a l paper [CSA03] .

7.6.3 Computing the Unaugmented Contour Tree Directly

A s described i n the foregoing subsections, A l g o r i t h m 7.1 computes the fully augmented contour tree, i n

wh ich most of the vertices are regular points w i t h one edge leading upwards and one downwards. For

m a n y purposes, the unaugmented contour tree, w i t h a l l regular points removed, is more useful, and can be

computed i n one of two ways: reduct ion from the fully augmented contour tree, or direct computa t ion .

T h e first, and conceptual ly the easiest, is to examine the vertices of the contour tree one at a t ime.

If a vertex v has exact ly one upwards arc (u,v) and one downwards arc (v,w), then the vertex v is deleted,

and (u,v) and (v,w) are spl iced together to get (u,w). T h i s is shown as pseudo-code i n A l g o r i t h m 7.4

48

Input : F u l l y Augmen ted Con tou r Tree T

O u t p u t : Unaugmented Con tou r Tree T'

1 L e t T'=T
2 for each vertex v i n T" do
3 if v has one up-arc (« , v) and one down-arc (i>, w) then
4 Delete v f rom R

5 A d d (u, w) to i ?

end
end

A l g o r i t h m 7.4: Reduc ing a F u l l y - A u g m e n t e d Con tou r Tree

Input : S i m p l i c i a l M e s h M w i t h isovaiue f(v) at each vertex v

O u t p u t : R, the Unaugmented Con tour Tree for M

1 U s i n g A l g o r i t h m 7.6, compute the j o i n tree J (M)
2 U s i n g A l g o r i t h m 7.6, compute the spli t tree S(M)
3 U s i n g A l g o r i t h m 7.7, augment J{M) w i t h a l l supernodes of S(M)
4 U s i n g A l g o r i t h m 7.7, augment S(M) w i t h a l l supernodes of J(M)
5 U s i n g A l g o r i t h m 7.3, merge the j o i n tree J{M) and the spli t tree S{M) to ob ta in the unaug­

mented contour tree R

A l g o r i t h m 7.5: C o m p u t i n g the Unaugmented Con tour Tree D i r e c t l y

Al te rna te ly , the unaugmented contour tree can be computed directly. D o i n g so requires modif icat ions
to A l g o r i t h m 7.1 and A l g o r i t h m 7.2. T h e p r inc ipa l modif ica t ion is to A l g o r i t h m 7.2 so that i t ignores regular
points. In doing so, however, i t also ignores splits and loca l m i n i m a du r ing the j o i n sweep, or jo ins and loca l
m a x i m a dur ing the spl i t sweep. In order for A l g o r i t h m 7.3 to operate properly, b o t h the j o i n tree and spli t
tree must conta in a l l loca l ex t rema and forks. We achieve this by augment ing b o t h j o i n and spli t trees w i t h
the miss ing supernodes. Once we have done this, however, we do not need to modify the exis t ing merge
sweep a lgor i thm.

In A l g o r i t h m 7.6, we show the modificat ions necessary to A l g o r i t h m 7.2. Instead of adding arcs
to the j o i n tree, we add superarcs, consist ing of paths between supernodes i n the j o i n tree. D u r i n g the
sweep, we ma in t a in the proper ty that each component i n the union-find structure corresponds to a unique
component of {x : f(x) > h} for the isovaiue h representing the sweep. T h i s correspondence is main ta ined by
s tor ing pointer to edges i n the j o i n tree i n a s tructure joinEdge indexed by the components i n the union-f ind
structure.

Instead of i n i t i a l i z ing each vertex i n the union-find structure as a dis t inct component, we start by

in i t i a l i z ing a l l vertices to belong to a special NULL component i n Step 2. T h i s has two advantages: i t avoids

compar ing isovalues at vertices, and i t reduces the number of un ion operations to be performed. D u r i n g the

sweep, we w i l l see later that new components are created at loca l m a x i m a . For now, we assume that a l l

higher-valued vertices already belong to a n o n - N U L L component.

A t each vertex, instead of checking the isovaiue of each neighbour, we check the components. Neigh­

bours w i t h N U L L components have not been processed yet, and therefore have lower isovalues and are

sk ipped . Neighbours w i t h n o n - N U L L components have higher isovalues, and belong to already exis t ing

components .

4 9

Input : S i m p l i c i a l M e s h M w i t h function value f(v) at each vertex v

Output : J(R), the j o i n tree for the unaugmented contour tree R; JoinSuperarc, the j o i n
superarcs for each v

1 for each vertex v i n M, i n any order do
2 Ini t ia l ize Comp(v) = NULL to the nu l l component

end
3 for each ver tex v i n M, i n sorted order do
4 n NeighbouringComponents = 0
5 for each neighbour n of v, i n any order do
6 if Comp(n) = NULL then
7 D o nothing: n has not yet been processed, and is lower t han v

8 else if nNeighbouringComponents — 0 then
9 A d d v to Comp(n)

10 Increment nNeighbouringComponents

11 else if Comp(n) / Comp(v) then
12 Set lower end of joinEdge(Comp(n)) to v
13 Retr ieve ev = joinEdge(Comp(v))
14 Merge Comp(v) and Comp(n)
15 if nNeighbouringComponents = 1 then
16 Set lower end of edge ev to v
17 Create joinEdge(Comp(v)) = (v, NULL)

end
18 Increment nNeighbouringComponents

19 else
20 D o nothing: v and n are already i n the same component

end
end

21 if nNeighbouringComponents = 0 then
22 L e t Comp{v) = v be a new component
23 Create new edge joinEdge(Comp(v)) = (v, NULL)

end
24 L e t JoinSuperarc(v) — joinEdge(Comp(v))

end
25 Termina te the remain ing j o i n edge at the global m i n i m u m

Algorithm 7.6: C o m p u t i n g J o i n Tree for Unaugmented Con tou r Tree

Vert ices are added to the first neighbouring component detected i n Step 8. For a regular point , a l l

other ne ighbour ing vertices belong to the same component. B u t i f a neighbour ing vertex belongs to a new

n o n - N U L L component , we know that we have found a j o i n at Step 11. W h e n we detect a j o i n at a vertex v,
we retrieve the edge of the j o i n tree for the neighbour 's component , and terminate i t at v (Step 12). If this

is the first t ime we have detected a vertex at v, we must also terminate the edge stored for v's component,

start a new edge at v and store the new edge on the component for v, as shown at Step 15.

If we iterate th rough a l l adjacent vertices wi thou t f inding a n o n - N U L L neighbour, we know that we
have found a loca l m a x i m u m , and create a new component and corresponding edge at Step 23.

F i n a l l y , to a id i n the later augmentat ion phase, we save the superarc to wh ich each vertex belongs
to i n Step 24.

50

Input : J o i n and Spl i t Trees J(R), S(R) for Unaugmented Con tou r Tree R

JoinSuperarc, a r ray of j o i n superarcs to wh ich each v belongs

Output : J'(R) = J{R) augmented by a l l supernodes from S(R)

1 L e t J'(R) = J{R)
2 for each supernode v i n S(R), i n sorted order do
3 if v is not i n J'(R) then
4 L e t (u, w) = JoinSuperarc(v) be the j o i n superarc for v
5 W i t h o u t loss of generality, f(u) > f(v) > f(w).
6 A d d j o i n superarc (u, v) to J '
7 Reset the upper end of (u, w) from u to v

end
end

Algorithm 7.7: A u g m e n t i n g the J o i n Tree w i t h Spl i t Supernodes

In the augmentat ion phase, shown as A l g o r i t h m 7.7, we check whether each spli t supernode (i.e.
supernode i n the spli t tree) is i n the j o i n tree. If not, we insert the spli t supernode i n the j o i n tree.
To determine wh ich j o i n superarc the spl i t supernode is inserted into, we refer to the JoinSuperarc array.
T h i s identifies wh ich j o i n superarc the spli t supernode belonged to dur ing the j o i n sweep. W e insert spl i t
supernodes i n sorted order, as shown, and make sure that the o ld j o i n superarc is retained as the lower of the
two new j o i n superarcs. T h i s ensures 0 (1) access t ime to the correct JoinSuperarc for future spli t supernodes.
If we d i d not re ta in the o ld superarc as the lower of the two, the next spl i t supernode to be processed wou ld
retrieve the o ld j o i n superarc from the JoinSuperarc, and we wou ld need a further da t a s tructure to find the
correct new j o i n superarc into wh ich to insert i t . B y inser t ing spli t supernodes i n sorted order, and always
leaving the o ld j o i n superarc as the lower of the two, we guarantee tha t the o ld j o i n superarc w i l l always be
the correct j o i n superarc for future insertions.

7.6.4 Variations on Sweep and Merge

T h e sweep and merge a lgor i thm was extended by Pascucc i & C o l e - M c L a u g h l i n [P C M 0 2] to t r i l inear ly i n ­

terpola ted cubic meshes. These authors also add the B e t t i number computa t ion from Pascucc i [PasOl], and

paral lel ize the computa t ion of the j o i n and spli t trees w i t h a d ivide and conquer a lgor i thm. T h e t r i l inear

interpolant is model led by p rov id ing an oracle wh ich gives the j o i n and spli t trees for i n d i v i d u a l cells. These

i n d i v i d u a l contour trees were used as the input to a block-wise version of A l g o r i t h m 7.6. For each block, the

reduced j o i n and spli t trees are computed . To combine these trees into the reduced j o i n and spli t trees for

larger blocks, the un ion of the block-wise trees and the boundary meshes of the blocks is used as input , once

again to A l g o r i t h m 7.6. B y t rea t ing these blocks as i n d i v i d u a l cells i n a larger mesh, we can show that this

divide-and-conquer a lgor i thm is itself a special case of the general a lgor i thm for comput ing contour trees

over general meshes.

S imi la r ly , we w i l l see tha t the B e t t i number computa t ion is a special case of the a lgor i thm i n
Chap te r 10 for compu t ing geometric properties using the contour tree. T h e B e t t i numbers are computed by
augment ing a l l reduced trees w i t h a l l Morse c r i t i ca l points, then m a k i n g loca l revisions to the B e t t i numbers
of each component dur ing the merge phase.

T h i s a lgo r i thm discards regular points early i n the computa t ion . A t higher levels of the d iv ide-and-
conquer hierarchy, the number of vertices that need sort ing is therefore Q(t + n 2^ 3): t c r i t i ca l points and

n

2 / 3 vertices i n the planes at the boundaries of the blocks. T h e c la imed asympto t ic runn ing t ime is therefore

51

(a) T h e Sample M e s h (b) Shown as a Surface

F igu re 7.1: A Sample M e s h i n T w o Dimensions (Again)

reduced to 0(N + n 2 / 3 log n + ta(t)). For computat ions such as the loca l spat ia l measures of Chap te r 10, or

the m i n i m a l seed sets discussed i n Sect ion 8.1, however, we w i l l s t i l l need to compute the fully augmented

contour tree, and this divide-and-conquer approach w i l l not improve the asympto t i c runn ing t ime.

In a further var iant , C h i a n g et a l . [C L L R 0 2] show that the j o i n and spl i t trees can be computed by

using the path-ascent me thod of Takahashi et a l . [TFT01] to compute a g raph w h i c h is then used as the

input graph to the sweep a lgo r i thm (A l g o r i t h m 7.2). C h i a n g & L u [CL03] use the contour tree for s impl i fy ing

large meshes. In their a lgo r i thm, they do not exp l i c i t ly use the contour tree, r e ly ing instead on the j o i n and

split trees to determine whether two vertices belong to the same superarc. T h e y test this by de termining

whether the two vertices belong to the same j o i n superarc and the same spl i t superarc. Since they do not

require the contour tree to be extracted expl ic i t ly , this allows them to omi t the merge phase.

7.7 Sample Contour Tree Computation

Since much of th is thesis depends on a detai led understanding of the contour tree a n d how it is computed ,

we show a complete example i n this section. We w i l l compute the unaugmented contour tree for our two-

dimensional sample da ta set us ing A l g o r i t h m 7.5. F igure 7.1 repeats the i l l u s t r a t ion of this mesh for ease of

reference.

7.7.1 Join And Split Sweeps

In F igures 7.2 and 7.3, we show the j o i n and split sweeps, respectively. L e t us s tar t b y considering the j o i n

sweep i n F igu re 7.2. E a c h i n d i v i d u a l frame corresponds to one add i t iona l ver tex be ing processed, w i t h the

52

® I:.!
1

I i

m
a » i ® v

! ! ! ! ! ! . ' I".! ' . ' . . ! ! ! ! ! ! . ! ! ! ! . . . ™: ~ ™ ™ iii ™ ™
iiiiih i i l l
* • •

• • •

llimil iiiiiHi: iiiiil!!: iiiiii-Ui IHHiiii ilii

Figure 7.2: Sweep T h r o u g h Sample M e s h to C o m p u t e J o i n Tree. A t each step, one add i t iona l ver tex
is added to the union-f ind structure.
A : L o c a l m a x i m u m detected at 100. J o i n superarc A created.
B : L o c a l m a x i m u m detected at 90. J o i n superarc B created.
C : L o c a l m a x i m u m detected at 80. J o i n superarc C created.
D : A, B, C meet at 50 and are terminated. J o i n superarc D created.
E : A t g loba l m i n i m u m 0, j o i n superarc D terminated.

53

level set passing th rough the vertex being shown. Moreover , the shaded area shows the region above this

contour, conta in ing a l l of the vertices and edges processed so far. A t each loca l m a x i m u m or j o in , and at

the g lobal m i n i m u m , the reduced j o i n tree is updated, as shown at letters ' A ' th rough ' E ' . ' A ' , ' B ' and ' C

m a r k peaks at isovalue of 100, 90 and 80 respectively, at wh ich new connected components are in i t i a l i zed .

A s add i t iona l vertices are added, the contours expand outwards un t i l they meet, i n this case, at ' D ' , wh ich

marks the saddle at 50 at wh ich a l l three peaks meet. F ina l l y , at ' E ' , the g lobal m i n i m u m of the mesh, the

j o i n tree is completed w i t h a single downward edge.

No te that , i f we were comput ing the fully augmented j o i n tree using A l g o r i t h m 7.2, the add i t iona l

vertices w o u l d s i m p l y be s t rung out along the edges of the j o i n tree.

S imi la r ly , F igu re 7.3 shows the computa t ion for the spli t tree: i n this case, there are three pits at 0

(' A ') , 20 (' B ') , and 71 (' D ') , two splits at 30 ('C ') and 81 ('E ') , and the global m a x i m u m at 100 ('F ') . Other

t han proceeding i n reverse order, this sweep is ident ica l to the previous one.

7.7.2 Augmenting the Join and Split Trees

W h e n the j o i n and spli t sweeps are complete, we have computed the j o i n tree and spli t tree shown i n
F igu re 7.4. A l g o r i t h m 7.7 is then used to compute the augmented j o i n and spli t trees, also shown i n
F igu re 7.4. A t this point , we can verify that these tree do i n fact have the correct up- and down-degrees
respectively, by compar ing them w i t h the contour tree, as shown i n F igu re 7.5.

7.7.3 Merging the Join and Split Trees

F i n a l l y , we show A l g o r i t h m 7.3 i n F igu re 7.6. We transfer leaves from the j o i n and spli t trees to the contour
tree i n a rb i t ra ry order. In this case, we have placed a l l upper leaves on the queue first, followed by a l l lower
leaves. A t each stage, the dark edges i n the j o i n and spli t trees indicate wh ich edge is being transferred:
from the j o i n tree i f the vertex is an upper leaf, from the spli t tree i f i t is a lower leaf, and wh ich vertex is
being reduced i n the other tree. T h e dark edges i n the contour tree indicate the k n o w n edges, whi le the grey
edges indicate the unknown edges.

If we refer back to our recursive a lgor i thm (A l g o r i t h m 7.3), the grey trees are J', S', and T" respec­

t ive ly : the inputs (and output) of the recursive ca l l to compute the next smaller tree.

In F igu re 7.6(a), the contour tree is as yet unknown. T h e edge 100 — 50 has been selected from the

j o i n tree and transferred to the contour tree. S imi la r ly , i n F igu re 7.6(b), edge 90 — 81 has now been identified

for transfer to the contour tree. N e x t , i n F igu re 7.6(c), 80 — 50 is identified i n the j o i n tree for transfer to

the contour tree. Since 80 is not a leaf i n the spli t tree, i t is reduced and replaced w i t h the edge shown as

a dot ted l ine. In F igu re 7.6(d), we start processing lower leaves of the tree: 0 is identified i n the spli t tree,

and transferred to the contour tree, followed by 20 — 30, 71 — 81, and 30 — 50. F ina l l y , i n F igu re 7.6(h), we

identify and transfer the sole remain ing edge: 81 — 50.

If, instead of the unaugmented contour tree, we are comput ing the fully augmented contour tree, the

merge phase w i l l process every vertex, inc lud ing regular points. T h e effect of this is to perform an isovalue

sweep along one superarc at a t ime, sometimes upwards, sometimes downwards. T h i s process is shown i n

deta i l i n F igu re 7.7. Ini t ia l ly , 100 — 50 is transferred, wh ich is equivalent to s tar t ing a contour at 100 and

54

Figure 7.3: Sweep T h r o u g h Sample M e s h to Compu te Spl i t Tree. A s w i t h the j o i n tree, each step adds
one vertex.
A : L o c a l m i n i m u m detected at 0. Spl i t superarc A created.
B : L o c a l m i n i m u m detected at 20. Spl i t superarc B created.
C : A, B meet at 30 and are terminated. Spl i t superarc C created.
D : L o c a l m i n i m u m detected at 71. Spl i t superarc D created.
E : C, D meet at 50 a n d are terminated. Spl i t superarc E created.
F : A t global m a x i m u m 100, spli t superarc E t e rminated .

55

Figu re 7.4: A u g m e n t i n g the J o i n Tree and Spl i t Tree A u g m e n t a t i o n assures tha t a l l supernodes are i n
bo th the j o i n tree and the spli t tree. T h i s is achieved by inser t ing every node from the j o i n
tree into the spli t tree, and vice versa. In each case, the superarc along wh ich the node is
inserted can be found i n the joinSuperarc or splitSuperarc arrays, respectively.

F igu re 7.5: C o m p a r i s o n of Con tou r Tree, J o i n Tree and Spl i t Tree. No te tha t the up-degree i n the j o i n
tree of each vertex is ident ica l to the up-degree i n the contour tree. S imi la r ly , the down-
degree i n the spli t tree matches the down-degree i n the contour tree. W e make use of this
to determine wh ich vertices are leaves of the contour tree. A l s o note that upper leaves i n
the j o i n tree have the same incident arc as they do i n the contour tree, and lower leaves
i n the spli t tree have the same incident arc as i n the contour tree. We make use of this to
determine wh ich arc to transfer to the contour tree.

sweeping i t downwards to 50, processing a l l vertices that the contour sweeps th rough (in this case none):
this is shown i n the first two images i n the figure.

N e x t , 90 — 81 is transferred, sweeping down from 90 to 81 th rough a to ta l of 10 vertices, then 80 — 50,
w h i c h sweeps down through another 7 vertices. A t this stage, we have one contour at 81 and two at 50.
In general, the contours sweep un t i l they reach a saddle, where they wai t for other contours to arr ive at

56

(a) Transferr ing 100 - 50 (b) Transferr ing 90 - 81

(c) Transferr ing 80 — 50 (d) Transferr ing 0 — 30

(e) Transferr ing 20 - 30 (f) Transferr ing 71 - 81

(g) Transferr ing 30 - 50 (h) Transferr ing 81 - 50

F igu re 7.6: M e r g i n g the J o i n and Spl i t Trees to Ge t the Con tour Tree.
A black upper leaf i n the j o i n tree or a black lower leaf i n the spli t tree indicates a vertex
that is about to be transferred to the contour tree. In the other of these two trees, the black
edge(s) indicate(s) the vertex to be removed, and the edges to be edited as a result. T h e
grey edges show what remains of the j o i n or spl i t trees after the transfer is complete.
In the contour tree, the black edges indicate edges that have been transferred, and the grey
edges indicate edges that are yet unknown. T h e grey edges i n the j o i n and spli t trees always
correspond to the grey edges i n the contour tree.

57

Figure 7.7: M e r g i n g T o Ge t F u l l y Augmen ted Contour Tree. A t each step, one add i t iona l vertex is
processed, and the contour swept along the corresponding arc of the ful ly-augmented contour
tree. Thus , processing each vertex is equivalent to a series of sweeps a long superarcs of the
contour tree. T h e sweeps a long ind iv idua l superarcs are separated by heavy black bars.
W h e n complete, each coloured region is the sweep region for a pa r t i cu la r superarc, 71(e).

58

the saddle. W h e n only one superarc at a vertex has not been swept th rough, we can continue the sweep

by combin ing a l l of the contours that have reached the saddle, and using the result to sweep down the

remain ing edge. T h i s can most clear ly be seen beginning at the point marked 71 — 81, where the edge 71—81

is transferred by sweeping upwards to 81, at wh ich vertex one contour is already wai t ing: - the contour from

edge 90 — 81. Since we have dealt w i t h a l l but one of the contours tha t meet at 81, we can now process the

outgoing edge, a l though i n this example, i t happens later, at the stage marked 81 — 50.

59

Chapter 8

Isosurface Seed Generation

T h e previous chapter discussed a lgor i thms for const ruct ing the contour tree, and noted that i t can be used
to generate seeds for use w i t h the cont inuat ion method for isosurface ex t rac t ion . In this chapter, we add the
next cont r ibu t ion : path seeds, a simple and efficient me thod of generat ing isosurface seeds using the contour
tree.

Since van K r e v e l d et a l . [v K v O B + 9 7] also showed how to generate seeds from the contour tree,
we start by reviewing their me thod i n Sect ion 8.1, then introduce pa th seeds i n Sect ion 8.2. F ina l l y , i n
Sect ion 8.3, we summarize the chapter, and compare pa th seeds and m i n i m a l seed sets.

8.1 Minimal Seed Sets

In add i t ion to defining an a lgor i thm for const ruct ing the contour tree, van K r e v e l d et a l . [v K v O B + 9 7] showed

how to use i t to generate a minimal seed set: a set of seed cells that was guaranteed to intersect each possible

contour at least once. T o determine the m i n i m a l set of seed cells, they observed that each cell is a va l id seed

for every contour that intersects i t . Since each contour is represented by a point i n the contour tree, each

cell i n the mesh corresponds to a set of points i n the contour tree. M o r e precisely, i n a s impl ic i a l mesh, each

cell intersects exact ly one contour for each isovalue between the highest and lowest vertices of the cel l . B y

C o r o l l a r y 6.1, this edge is equivalent to the corresponding monotone pa th i n the tree. Thus , the contour

tree can be annotated w i t h a set of edges, each representing a single cell i n the mesh. F i n d i n g a m i n i m a l

seed set now reduces to a graph match ing problem: f inding the smallest set of these monotone paths that

covers a l l arcs i n the contour tree. W e w i l l show a complete example of this a lgor i thm i n Sect ion 8.1.2.

T h i s a lgor i thm has several undesirable properties. F i r s t , a l though the m i n i m a l seed set can be
computed i n p o l y n o m i a l t ime, van K r e v e l d et a l . [v K v O B + 9 7] do not specify the po lynomia l . Instead, they
present an approx ima t ion a lgor i thm wh ich requires l inear storage and 0(n l o g 2 n) t ime i n two dimensions,
l inear storage and 0 (n 2) t ime i n higher dimensions. T h i s approximate a lgor i thm guarantees that no more
t han twice the m i n i m u m number of seed cells are chosen.

Second, the size of this seed set can be significant: at least Q(t), and potent ia l ly as much as 0 (n)

for a i -supernode contour tree i n a n-vertex mesh. P r o o f is deferred to Sect ion 8.1.1.

60

(a) T h e M e s h (b) T h e Con tou r Tree

F igu re 8.1: A Tr i angu la t ion Requ i r i ng a M i n i m a l Seed Set of Size 0 (n) . A and H must be i n the seed
set to represent the ranges 90 — 100 and 10 — 20. E i t h e r C or D must then be present to
represent the range 70 — 80, and so on.

A n d th i rd , a l though the contour tree is used to construct the seed set, the correspondence noted
between the superarcs of the contour tree and the i n d i v i d u a l contours i n the image is lost. For each given
contour, we may i n fact have more t han one seed cel l , wh i ch makes i t more difficult to relate contours i n
the image to the superarcs to wh ich they correspond. Moreover , since redundant seed cells for a given
contour need not be near each other, we must mark wh ich cells have been v is i ted , i n order to guarantee
that the same contour is not extracted mul t ip le t imes. In two-dimensional da ta sets, where m a r k i n g cells is
not necessary for contour ext rac t ion , this adds 0(n) add i t iona l memory overhead to contour ext ract ion. In
higher dimensions, the cont inuat ion method needs to m a r k cells wh ich i t has v is i ted anyway, so there is no
add i t iona l memory required.

8.1.1 Properties of Minimal Seed Sets

W e just c la imed that m i n i m a l seed sets have undesirable properties. W e now prove these as a lemma:

Lemma 8.1 The minimal seed set for a n-vertex mesh with a t-supernode contour tree includes at least t/A
seed cells, and in the worst case may contain fi(n). In addition, the requirement that every contour intersect
at least one seed cell may cause some contours to intersect Q.{n) seed cells.

Proof: In a s imp l i c i a l mesh, each cell can conta in at most one loca l m i n i m u m and one loca l max­

i m u m , or at most two loca l ext rema. Since the loca l ex t rema are the leaves of a tree of size t, there are at

least t/2 and at most t loca l ext rema. Therefore, the m i n i m a l seed set must include at least t/A seed cells.

Consider the mesh shown i n F igu re 8.1(a): an inc l ined s t r ip of tr iangles label led A - H . F igu re 8.1(b)

shows the corresponding contour tree w i t h paths representing seed cells. None of these paths representing

seed cells covers more t han two arcs i n the contour tree. Since the contour tree i n this case has 1 superarc

consis t ing of n — 1 arcs, there must be at least (n — l) / 2 seed cells i n any m i n i m a l seed set for this mesh.

61

contour at 25

(a) T h e M e s h (b) T h e C o n t o u r Tree

F igure 8.2: A Tr i angu la t ion W h e r e Some Contours Intersect Q(n) Seed Ce l l s . In this mesh, some
contours such as the one shown intersect every cel l . Since there are n / 2 dis t inct peaks, we
need n / 2 seed cells, each of wh ich intersects the contour shown.

Contour at isovaiue 49

0

®

Peak

H Regular
Point

811 Saddle

Pi t

Seed Cell

F igure 8.3: Sample M e s h , Showing M i n i m a l Seed Set and a Con tour . Here, 6 seed cells are sufficient to
intersect every contour , but some contours intersect as m a n y as 4 of the seed cells.

To see that some contours may intersect fl(n) seed cells, consider F igu re 8.2, w h i c h shows a smal l
mesh and the corresponding contour tree. A n y m i n i m a l seed set must conta in A, one of B or C, one of D or
E, and F. Moreover , we can b u i l d s imi lar meshes of a rb i t rary size, where any m i n i m a l seed set must conta in
1 + n / 2 seed cells. Observe tha t the contour at 25 intersects every single seed cel l , so, i n a s imi lar mesh of
n vertices, we can have fi(n) seed cells intersect a single contour. •

62

© Supernode (critical point)
• Node (regular point)

™~ Arc (superarcs omitted)

© | Seed Cell

Non-Seed Cell

Figure 8.4: A n n o t a t i n g T h e C o n t o u r Tree w i t h Monotone Pa ths to F i n d Seed Ce l l s . In this figure, the
ful ly-augmented contour tree for F igure 8.3 is shown w i t h a dot ted pa th added for each cell
i n the mesh. T h e paths marked w i t h letters were chosen as a m i n i m a l seed set, and the
corresponding cells marked i n F igu re 8.3.

8.1.2 Example of a Minimal Seed Set

To i l lus t ra te m i n i m a l seed sets, we re turn to the mesh shown i n F igu re 8.3. F igu re 8.4 shows the fully

augmented contour tree, annota ted w i t h edges representing the potent ia l seed cells. Cons ider the cell marked

A i n F igu re 8.3: i t intersects a set of contours i n the range (27,100), and corresponds to the heavy grey

edge marked A i n F igure 8.4. T h i s edge covers a l l of superarc (100,50), a l l of superarc (50,30), and part of

superarc (30,0) . S imi la r ly , each and every cell i n F igure 8.3 corresponds to an edge i n F igu re 8.4.

In this example, one possible m i n i m a l seed set is shown i n F igu re 8.4: the edges marked A to F .
The corresponding cells are also marked A to F i n F igure 8.3. T h i s par t icu lar seed set also i l lustrates the
prob lem noted above of redundant seed cells. If we wish to extract the contour at isovaiue 49, no fewer than
4 of our seed cells intersect i t . A s noted above, this makes i t difficult to take advantage of the one-to-one
correspondence between contours and points i n the contour tree.

In the next section, we describe a replacement for m i n i m a l seed sets: path seeds, wh ich we generate
d i rec t ly from the contour tree.

63

8.2 Path Seeds

The distance is nothing: it is only the first step that is difficult: (the Marqu i se du Deffand
(1697-1780), r emark ing on the legend that St. Denis walked two leagues ca r ry ing his head after
i t was cut off)

In the previous section, we reviewed the const ruct ion of m i n i m a l seed sets from the contour tree,

and noted some undesireable properties. In this section, we int roduce path seeds to generate exact ly one

seed for each possible contour d i rec t ly from the contour tree.

W e start w i t h an in tu i t ive descr ipt ion of a pa th seed i n Section 8.2.1, followed by a formal defini t ion i n

Sect ion 8.2.2, some useful properties i n Sect ion 8.2.3, a lgor i thms for w o r k i n g w i t h pa th seeds i n Section 8.2.4,

and a detai led example i n Sect ion 8.2.5.

8.2.1 Description of Path Seeds

In Sect ion 8.1, we described the m i n i m a l seed set, wh ich consists of a set of seed cells tha t intersect every
possible contour at least once. We noted, however, that m i n i m a l seed sets are complex and expensive to
compute, and generate redundant seed cells wh ich make i t difficult to take advantage of the one-to-one
correspondence between contours and points i n the contour tree.

Instead of seed cells, we w i l l generate / -mono tone paths th rough the mesh, each of wh ich intersects
on ly the set of contours represented by a given superarc. W e ca l l these paths seed paths. E a c h seed pa th
starts at a c r i t i ca l point , and ascends (or descends) th rough the set of contours represented by the given
superarc un t i l the isovalue of the other end of the superarc is reached.

A l t h o u g h any / -mono tone pa th th rough these contours w i l l suffice, we prefer to choose a pa th consist­

ing of edges of the mesh. These seed paths are s imi lar to the / -mono tone paths used by Takesh ima et a l . [T IS + 95]

and C h i a n g et a l . [C L L R 0 2] to compute the contour tree. U n l i k e the paths used by these authors, however,

seed paths need not extend to a loca l ex t remum, need not take the steepest descent (al though that w i l l

often be the most efficient), and need not terminate at a c r i t i ca l point . F i n a l l y , note that these paths are

computed only as needed, and are not used to compute the contour tree itself.

For each superarc, we w i l l show that , provided that the first edge is chosen correctly, any / -mono tone

sequence of edges th rough the mesh w i l l generate a suitable seed pa th . A l l that then remains is to determine

the first edge for each superarc. W e ca l l such edges seed path seeds, or path seeds for short.

T o extract pa th seeds, we take advantage of the j o i n and spli t sweeps described i n Section 7.6.1. In the
j o i n sweep, a j o i n is detected when two components merge i n the union-find structure. T h i s happens when a
ver tex has higher-valued neighbours that belong to two dis t inct components. T h i s i n t u rn implies that there
are two dis t inct directions of ascent from the vertex identifiable w i t h the two higher-valued neighbours.
C o m p u t i n g pa th seeds merely requires remembering the dis t inct direct ions of ascent, and ca r ry ing them
th rough the merge phase of the a lgor i thm.

To extract a specific contour using pa th seeds, we identify the superarc to wh ich the contour belongs,

take the pa th seed for tha t superarc, and generate a seed pa th th rough the mesh un t i l we reach the desired

isovalue. W h e n an edge of the pa th intersects the desired isovalue, we use tha t edge as a seed edge for the

64

cont inua t ion method. Thus , instead of s tor ing a m i n i m a l seed set, w h i c h may be O (n) i n size, we store a

single piece of in format ion for each superarc, reducing the space required to 0(t).

8.2.2 Definition of Path Seeds

W e w i l l s tart by defining a seed pa th as follows:

Definition 8.1 A seed pa th for a superarc s is a f-monotone path P : (0,1) —> 1Z(s) such that for every

contour c that belongs to s, there is some x £ (0,1) so that P(x) belongs to c.

F r o m this, we can define a (seed) pa th seed:

Definition 8.2 A seed pa th seed or pa th seed for a superarc s is a pair (/x,u) consisting of a supernode fx

to which s is incident and a non-zero vector v such that the path Q = {/j, + kv : k £ (0,1]} is a f-monotone
path contained in 1Z(s).

T h i s defini t ion specifies the di rect ion of departure from the supernode as a vector, wh ich need not
i tself be a seed pa th . T h i s vector merely specifies the first step to take before ascending or descending
th rough IZ(s). No te that not a l l vectors v at fi w i l l form va l id pa th seeds w i t h /u, either because they lie
on contours, or because / is not monotone w i t h respect to v. Unde r our assumptions tha t / is given by
barycentr ic in te rpola t ion over a s impl ic i a l mesh w i t h unique vertex isovalues, however, this does not pose a
problem. E v e n for fields where no vector satisfies the definit ion, we can subst i tute a pa th that follows the
gradient of the field. For s impl ic i ty of treatment, we w i l l s imply assume that a vector suffices.

8.2.3 Properties of Path Seeds

There are two impor tan t properties of pa th seeds that we w i l l need: that we can generate seed paths from
pa th seeds, and that we can generate isosurface seeds from seed paths for use w i t h the cont inuat ion a lgor i thm
for isosurface ex t rac t ion . A l s o , under Assumpt ions 1, 2, and 3 on page 42, any edge (A , / i) incident to /z i n
the mesh generates a va l id pa th seed, either upwards or downwards.

Lemma 8.2 Given a path seed (fJ,,v) for the superarc s = (A,/[i), there exists a seed path P for s which

leaves n in direction v.

Proof: W e w i l l prove this by const ruct ing a suitable seed pa th P f rom the pa th seed (fx, v). W i t h o u t
loss of generality, assume that ^ is the lower supernode of the superarc s. F r o m Def in i t ion 8.2, we take the
monotone pa th Q f rom LI to LL + v, exc luding fi. Since fi is the lower supernode of s, we know that Q must
be an ascending pa th . W e let Q be the beginning of pa th P. F r o m /J, + V, we let P follow any ascending pa th
R un t i l the isovaiue / (A) is reached, exc luding the isovaiue / (A) itself. Since bo th Q and R are ascending
paths, P must also be an ascending pa th for the isovalues {f{ri),f{\)).

F r o m C o r o l l a r y 6.1, we know that P maps to a monotone pa th P' i n the contour tree. Since each

point on Q belongs to s, then P' must start by ascending s. Therefore P' must continue ascending s at least

65

u n t i l the isovalue / (A) . B u t we know that P stops short of / (A) . So every point 2; 6 P must map to some

contour cx wh i ch i n t u r n maps to s, and Def in i t ion 8.1 is satisfied. •

W e next need to show that , given a seed path , we can in i t ia l ize the cont inua t ion a lgo r i thm w i t h a

suitable seed cel l .

Corollary 8.3 Let c = (s, h) be a contour belonging to a superarc s = (A, / i) and let P be any seed path for

s. Then every cell K that contains the intersection of P and c is a valid seed cell for c.

Proof: B y Def in i t ion 8.1, there is some point x on P tha t belongs to c. Moreover , since P is
monotone, there is on ly one such point x, so x is the intersection of P and c. L e t K be any cell that contains
x. Since x is on c, the intersection of K and c is non-empty, and i t follows tha t i f is a va l i d seed cell for c. •

F i n a l l y , we show that edges i n the mesh make satisfactory pa th seeds.

Lemma 8.4 Given a supernode \i of a contour tree, and an edge e = (£, fj.) incident to / i in the mesh, there
exists some ko > 0 and a superarc s incident to fi such that (fi, fc(£ — / i)) is a valid path seed s.

Proof: F r o m A s s u m p t i o n 3, we know that / (£) ^ / (M) - W i t h o u t loss of generality, assume that
/(£) > f(n), and let v = £ — fi. W e need to show that Q = /x 4- k x v : k £ (0, fco) is contained i n 71(e).

L e t Qo be the pa th defined by edge e. F r o m A s s u m p t i o n 2, we know tha t any l ine segment i n any
cell of the mesh is l inear and therefore / -mono tone i n TZ. A n d since e is an edge i n the mesh, i t is w h o l l y
contained i n some s implex K. Since / is linear along edge e and / (£) > f(^), i t follows that Qo is an
ascending pa th . F r o m C o r o l l a r y 6.1, we know that a corresponding ascending pa th R exists i n the contour
tree between /j and £.

L e t s — (A, fi) be the first superarc i n this pa th R. If / (A) > / (£) , let fco = 1, and by Def in i t ion 8.2,

the result follows, since Q = Qo must be contained i n 7Z(s). If / (A) < / (£) , we use on ly part of the edge e.

Choose fco < ^JZ/[^J i a n d the result also follows. •

W i t h this l e m m a i n hand, we can now treat edges incident to supernodes as pa th seeds. For the
purposes of the a lgor i thms i n Sect ion 8.2.4, this formulat ion is more na tura l , and we w i l l s imply assume that
a l l of our pa th seeds are edges of the mesh.

These pa th seeds are efficient to store, requir ing Q(t) space:

Lemma 8.5 Path seeds for contour extraction require Q(t) storage for a t-supernode contour tree in a n-node
mesh.

Proof: For each superarc s i n the contour tree, one pa th seed is stored. T h i s pa th seed is sufficient
to extract a l l contours belonging to s, by C o r o l l a r y 8.3 and L e m m a 8.2. Since we have a t-supernode contour
tree, we have t — 1 superarcs, and the result follows. •

W e w i l l see some t ime bounds i n the next subsection, once we have formal ly defined algor i thms to
compute and use pa th seeds.

66

8.2.4 Path Seed Algorithms

N o w that we have denned pa th seeds, and demonstrated that they can be used to generate isosurfaces seeds
for the cont inuat ion method, we define a lgor i thms to extract pa th seeds for each superarc of the contour
tree, and to generate seed paths and isosurface seeds.

To extract the pa th seeds i n the first place, we note that , except at saddle points , any ascending (or
descending) d i rec t ion is satisfactory, because there is at most one dis t inct set of contours th rough which we
can ascend or descend. For saddle points , where more than one d i rec t ion of ascent (or descent) is possible,
consider a j o i n . A t a j o in , there are at least two dis t inct directions to ascend. However, we detected these
joins dur ing the j o i n sweep of the contour tree a lgor i thm precisely because i t had higher neighbours belonging
to two dis t inct connected components. A n d each of these directions corresponds to a dis t inct d i rec t ion of
ascent.

Thus , to extract pa th seeds, a l l we have to do is to keep t rack of the edges by wh ich we detected
the j o i n i n the first place. These w i l l suffice as pa th seeds. A s a result, we modify A l g o r i t h m 7.6 to the
a lgo r i thm stated i n A l g o r i t h m 8.1: note that a l l we have done is to add Step 9 and Step 17.

N o modif icat ions to the augmentat ion a lgor i thm (A l g o r i t h m 7.7) are required. In the merge algo­
r i t h m , we add an expl ic i t check for pa th seeds when we transfer an edge to the contour tree i n Step 12:
otherwise, the a lgo r i thm is unchanged.

Theorem 8.6 Algorithm 8.3, correctly computes the unaugmented contour tree with valid path seeds for
every superarc s.

Proof: We start by observing that A l g o r i t h m 8.3 is essentially the same as A l g o r i t h m 7.5, wh ich
computed the unaugmented contour tree direct ly. T h e only changes are to subst i tute A l g o r i t h m 8.1 for
A l g o r i t h m 7.6 and to subst i tute A l g o r i t h m 8.2 for A l g o r i t h m 7.3. In each of the subst i tuted algori thms,
we have merely added code to store and transfer the pa th seeds, w i thou t affecting the computa t ion of the
unaugmented contour tree itself.

F r o m Step 9 and Step 17 of A l g o r i t h m 8.1, we know tha t every edge of the j o i n tree incident to a j o i n

has a pa th seed at tached to i t at the lower end. D u r i n g the merge phase, these pa th seeds are transferred to

the contour tree.

W i t h o u t loss of generality, assume tha t we are transferring a superarc s = (A, y) to the contour tree

from the j o i n tree. W e are therefore transferring an edge e = (A, y) where y, is the supernode at the lower

end of the superarc s. F r o m L e m m a 8.4, we know that these edges are equivalent to va l i d pa th seeds.

To see that the pa th seeds transferred are va l id pa th seeds for the superarc to wh ich they are attached,
augment the j o i n tree by the vertex £. W i t h o u t loss of generality, we assume that / (A) > / (£) > f(fJ,), using
the same const ruct ion as i n L e m m a 8.4.

T h e transfer of s to the contour tree can then be decomposed into two transfers: the transfer of

(A, £) and the transfer of (£, fi). If we then reduce the contour tree at £, we w i l l end up w i t h £ belonging to

the superarc s, as required.

67

Input : T r i angu la t ion T w i t h function value f(v) at each vertex v

Output : J(U), the j o i n tree for the unaugmented contour tree U; JoinSuperarc, the j o i n
superarcs for each v

1 for each vertex v i n T, i n any order do

2 j Ini t ia l ize Comp(v) = NULL to the nu l l component

end
3 for each vertex v i n T, i n sorted order do
4
5
6
7

8
9
10
11

12
13
14
15
16
17
18
19

20

21
22

23
24
25

26

nNeighbouringComponents = 0
for each neighbour n of v, i n any order do

if Comp{n) = NULL then
| D o nothing: n is lower t han v

else if nNeighbouringComponents = 0 then
Store path seed v —> n on joinEdge(Comp(n))
A d d v to Comp(n)
Increment nNeighbouringComponents

lse if Comp(n) ^= Comp(v) then
Set lower end of joinEdge{Comp(n)) to v
Retr ieve ev = joinEdge(Comp(v))
Merge Comp(v) and Comp(n)
if nNeighbouringComponents = 1 then

Store path seed v —» n on joinEdge(Comp(n))
Set lower end of edge ev to v
Create joinEdge(Comp(v)) = (v, NULL)

end

Increment nNeighbouringComponents

else
| D o nothing: v and n are already i n the same component

end
end
if nNeighbouringComponents = 0 then

L e t Comp(v) — v be a new component
Create new edge joinEdge(Comp(v)) = (v, NULL)

end
L e t JoinSuperarc(v) = joinEdge(Comp(v))

end
27 Termina te the remain ing j o i n edge at the global m i n i m u m

Algorithm 8.1: C o m p u t i n g Reduced J o i n Tree W i t h P a t h Seeds

If no pa th seed is at tached to (A, / /) , Step 12 generates a pa th seed by choosing an a rb i t r a ry edge i n

the mesh ascending from fi. B u t , since no pa th seed is at tached to (A, /x), \i cannot be a j o in , so a l l direct ions

of ascent must lead th rough the same set of contours: those represented by s. It follows that the a rb i t ra ry

edge we chose is a satisfactory pa th seed. •

Once we have extracted the pa th seeds, A l g o r i t h m 8.4 shows the a lgor i thm for generating isosurface
seeds. T h i s a lgo r i thm s imp ly implements L e m m a 8.4, L e m m a 8.2, and C o r o l l a r y 8.3 by choosing a new
ascending vertex at each edge i n the mesh.

68

Input : J o i n Tree J(C) and Spl i t Tree S(C) for Con tou r Tree C

Output : C , the Con tou r Tree

1 Choose leaf v of C such tha t S+(v) = 0 i n J(C) and S~(v) = 1 i n S(C) or vice versa
2 W i t h o u t loss of generality, assume that v is an upper leaf of C (i.e. 5+(v) = 0 i n J(C) and

5~(v) = 1 i n S (C))
3 L e t e be the edge of J(C) incident to v
4 L e t J ' = J(C) — e be the j o i n tree w i t h edge e and vertex v removed
5 if v is the g lobal m a x i m u m i n S(C) then
6 | L e t S' = S(C) — v be the spli t tree w i t h vertex v removed

7 else
8 L e t u, w be the vertices adjacent to v i n S(C)
9 L e t S' = S(C) — v + (u, w) be obta ined by spl ic ing (u, v) and (v, w)

end
10 L e t C be the tree computed by recursive invoca t ion on J ' and S'
n L e t C = C + e be computed by adding e to C
12 if e does not have a pa th seed at tached to i t then
13 Choose any edge {u,v) incident to v i n the mesh such that f(u) > f(v)
14 A d d (u, v) to e as a pa th seed

end

Algorithm 8.2: C o m p u t i n g Con tou r Tree B y M e r g i n g J o i n and Spl i t Trees

Input : S i m p l i c i a l M e s h M w i t h isovaiue f(v) at each vertex v

Output : U, the unaugmented contour tree for M

l U s i n g A l g o r i t h m 8.1, compute the j o i n tree J(M) w i t h pa th seeds
2 U s i n g A l g o r i t h m 8.1, compute the spli t tree S(M) w i t h pa th seeds
3 U s i n g A l g o r i t h m 7.7, augment J(M) w i t h a l l supernodes of S(M)
4 U s i n g A l g o r i t h m 7.7, augment S(M) w i t h a l l supernodes of J (M)
5 U s i n g A l g o r i t h m 8.2, merge the j o i n tree J(M) and the spl i t tree S(M) to ob ta in the unaug­

mented contour tree U

Algorithm 8.3: C o m p u t i n g the unaugmented contour tree W i t h P a t h Seeds

Theorem 8.7 For any superarc s = (A , / i) and isovaiue h strictly between / (A) and f(n), Algorithm 8.4
generates a valid seed for the h-isovalued contour c that belongs to s.

Proof: F r o m L e m m a 8.4, we know that the input edge e is a va l i d pa th seed for s, ascending from
/z into 1Z(s).

W e c l a i m that each t ime th rough the loop at Step 7, we always locate an ascending edge i n Step 9.
Assume not. T h e n , for the current value of here, there are no ascending edges incident . T h i s implies that
here is a loca l m a x i m u m . A s such, here must be a supernode, so here = A, the upper end of the superarc s.
Before we star ted Step 7, we executed Step 3, at which point there referred to the vertex now referred to as
here. In other words, when we executed Step 7, there referred to A, at wh ich t ime f (there) = / (A) . B u t we
know tha t h < / (A) , so the compar ison i n Step 7 must have returned false, and Step 9 was never reached.

Since each edge i n the mesh is a / -mono tone pa th , i t follows tha t the sequence of edges generated by

A l g o r i t h m 8.4 is an ascending pa th . Since A l g o r i t h m 8.4 follows the const ruct ion i n C o r o l l a r y 8.3, i t follows

that the edge s is a va l id seed edge for the contour c. •

69

Input : A superarc s = (A, n) of a contour tree C
A n edge e = (£, fi) that is equivalent to a path seed by L e m m a 8.4
A n isovalue h between / (A) and / (/ J)

W i t h o u t loss of generality, / (A) > h > f(fi)

Output : A seed edge s for the contour c at h that belongs to s.
1 here = M
2 there — £
3 if /(there) < h then
4 here = there
5 foundAscendingEdge = false
6 L e t (here, there) be the first edge incident to here
7 while not foundAscendingEdge do
8 if f (there) > f(here) then
9 | foundAscendingEdge = true

end
10 else
11 | let (here, there) be the next edge incident to here

end
end

end
12 r e tu rn s = (here, there)

Algorithm 8.4: A l g o r i t h m to E x t r a c t Seed Edge F r o m P a t h Seed

N o w that we have a lgor i thms for work ing w i t h pa th seeds, we can look at the asymptot ic cost of
using these a lgor i thms.

Theorem 8.8 Algorithm 8.3 has the same asymptotic running time as Algorithm 7.5.

Proof: W e noted that A l g o r i t h m 8.1 differs from A l g o r i t h m 7.6 on ly i n the addi t ion of Step 9 and
Step 17. A t each vertex v, Step 9 is invoked at most once, when a neighbour is detected tha t already belongs
to a dis t inct component . T h i s step takes 0 (1) t ime, and is invoked at most 0(n) t imes.

A t each j o i n j w i t h degree degree(j), Step 17 is invoked once for each un ion operat ion. There are at
most degree(j) — 1 such un ion operations at j , and at most 0(N) such un ion operations i n the entire mesh.
Since each invoca t ion of Step 17 takes 0 (1) t ime, we can bound to ta l cost of add ing this step by 0(N).

A l g o r i t h m 8.2 differs from A l g o r i t h m 7.3 only i n Step 12. In the worst case, however, this step may
cost 0(degree(v)) at supernode v to find a suitable pa th seed. B u t since i t is cal led at most once for each
supernode, the overa l l cost is bounded by the sum of the degrees of a l l vertices i n the mesh - 0(N).

Since n = 0(N), and A l g o r i t h m 7.5 requires 0(sort + N + ta(t)) t ime, the result follows. •

W e now introduce a new output-sensit ive parameter, p for the cost of ex t rac t ing an isosurface seed
from a seed pa th . In practice, this p is usual ly fair ly smal l , as we w i l l see i n Chap te r 16. In the worst case,
however, p = fi(n).

Definition 8.3 The parameter p = ^2,^uv)^pdegree(u) measures the cost of extracting an isosurface seed
from a path seed using a seed path P generated by Algorithm 8-4-

70

For i r regular meshes, we define p i n this way because each vertex we pass may have fl(n) edges i n
the worst case, and we may need to consider a l l but one of them before proceeding. For regular meshes,
however, the regular i ty allows us to give a s l ight ly better descr ipt ion of p.

Lemma 8.9 For regular meshes, p — 0(5 x I), where 5 is the degree of each vertex in the mesh and I is the
length of the path seed generated.

Proof: Fol lows immedia te ly from the fact that each vertex i n a regular mesh has degree 5.0

A l t h o u g h this parameter p is convenient, i n the worst case i t can be propor t iona l to the size of the
mesh:

Lemma 8.10 There exist meshes for which path seeds require p = fi(TV) time to extract contour seeds.

Proof: W e use F igu re 8.1 as our counterexample, wh ich consists of four squares d iv ided into tr iangles.
Since the contour tree has one superarc, we have one pa th seed. W i t h o u t loss of generality, this pa th seed
starts at 10. To extract the contour at an isovalue of 99, we must ascend th rough at least one edge for each
square i n the mesh. Since there are 0 (n) such squares, our seed pa th P must conta in at least Q(n) vertices.
Since this mesh is regular, L e m m a 8.9 impl ies that p = Cl(S x n) = Q,(N). •

In pract ice, however, p is signif icantly smaller than TV. Absen t a theoret ical model of contour
complexi ty , i t is ha rd to prove a more useful bound . O n l y one estimate of contour complex i ty exists. I toh
& K o y a m a d a [IK95] estimate that contours i n a d-dimensional field involve 0(N^d~1^d) cells of the mesh,
based on the observat ion that each contour is a (d — l) -man i fo ld and the entire da ta set is a (i-manifold.
For t y p i c a l da ta sets i n scientific v i sua l iza t ion , no other estimate has been advanced. For lack of a better
estimate, we shal l accept i t .

B y analogy, we can estimate that a seed path , wh ich is a 1-dimensional manifold , should involve
0(Nxld) edges of the mesh, and w i l l be dominated by the 0(N^d~1^d) cost of the ac tua l contour ext rac t ion .

T h u s we get the fol lowing assertion:

Assertion 1 We estimate that k = 0(N^1^d), and thatp = 0(k), where k is the output-sensitive param­
eter that measures isosurface size.

In Chap te r 16, we w i l l see that the length of seed paths is t yp ica l ly quite short , lending some credence

to this estimate.

N o w that we have defined p, we can analyse the cost of using A l g o r i t h m 8.4

Lemma 8.11 Algorithm 8-4 takes 0(p) time to extract an isosurface using an ascending seed path P.

Proof: In A l g o r i t h m 8.4, we in i t ia l ize P = (fi, £) . E a c h t ime th rough the loop that starts at Step 3,
we choose another edge (here, there) and add i t to P. A t each vertex here, we execute Step 7 at most
degree(here) t imes at constant cost. T h e result then follows from Def in i t ion 8.3. •

71

Before UF merge at 50: Join Tree before UF merge

Figure 8.5: Detec t ing P a t h Seeds D u r i n g the J o i n Sweep.
D u r i n g the j o i n sweep, we know that 50 is a j o i n because 100, 79 and 73 belong to d is t inc t
components i n the union-find structure. W h e n we terminate the j o i n superarcs tha t corre­
spond to these three components, we add the corresponding edges to the j o i n tree as pa th
seeds. W h e n transferr ing an edge from the j o i n tree to the contour tree, we also transfer
the pa th seed.

8.2.5 Example of Path Seeds

N o w that we have defined pa th seeds and described an a lgor i thm for w o r k i n g w i t h them, we show an example
using the same sample mesh as before. F igu re 8.5 shows the step du r ing the j o i n sweep of F igu re 7.2 at
which vertex 50 is added to the union-find structure. Immediate ly before 50 is added, there are three dis t inct
components, w i t h j o i n superarcs in i t i a l i zed at 100, 90, and 80. In i t ia l ly , edge (100,50) is processed, and is

72

Contour at isovaiue 49

Figure 8.6: Seed Pa ths i n our Sample M e s h .
Here, we show a set of pa th seeds (A -1) generated for the sample da t a set, some seed paths
generated from these pa th seeds, and a sample contour. N o t e that seed paths can terminate
i n the midd le of a mesh edge: this prevents pa th F f rom intersect ing the contour at 49,
guaranteeing exac t ly one seed per contour.

added to the j o i n superarc (100, NULL) i n case 50 turns out to be a j o in . If the next edge processed is

(80,50), three things happen. F i r s t , (100, NULL) is terminated at 50 to ob ta in (100,50) , w i t h the pa th seed

left as (100,50). Second, (80, NULL) is te rminated at 50 to ob ta in (80,50) , w i t h pa th seed (79,50) set. A n d

th i rd , edge (50, NULL) is i n i t i a l i zed to continue downwards from 50.

After the contour tree has been computed, the path seeds shown inF igu re 8.7 are at tached to the

superarcs. F igu re 8.6 then shows example seed paths that can be ext rac ted using these pa th seeds. We also

show the contour at 49, as we d i d i n F igure 8.3. In comparison to m i n i m a l seed sets, however, exac t ly one of

our seed paths (30 —• 32 —* 67) intersects this contour. A l t h o u g h the pa th from 81 to 50 appears to, this is

due to c rowding i n the image. Since the pa th descends from 81 and stops at isovaiue 50, i t cannot ac tua l ly

do so.

No te that the seed paths may take any route: e.g. 30 —> 31 —> 33 —» 34 —• 35 —> 46 —» 78 wou ld
also be a va l i d seed pa th for the superarc (50,30). It is simple, however, to op t imize by always t ak ing the
steepest ascent, wh ich tends to result i n shorter seed paths.

73

Ascending Path Seed
H = (30 -> 32) Attached
To Superarc (50,30) At
Supernode 30

Figure 8.7: S tor ing P a t h Seeds F r o m F igure 8.6 i n the Con tour Tree.
Here, we show the pa th seeds used i n F igure 8.6 at tached to the corresponding superarcs of
the contour tree.

8.3 Summary and Comparison

In this chapter, we have in t roduced one of the p r inc ipa l contr ibut ions of this thesis: the path seed for
generating isosurface seeds. A s w i t h the previous m i n i m a l seed set of van K r e v e l d et a l . [v K v O B + 9 7] , i t is
guaranteed to provide seeds for a l l possible contours i n the set. However , i n compar i son w i t h the m i n i m a l
seed set, the pa th seed enjoys a number of advantages:

1. P a t h seeds are s impler to calculate than m i n i m a l seed sets. Instead of a complex post-processing step,

a l l tha t is required are some simple addit ions to the m a i n contour tree a lgor i thm.

2. P a t h seeds are cheaper to compute, requir ing 0(t) computa t ion t ime i n any dimension, instead of
0 (n l o g 2 n) t ime i n two dimensions and 0(n2) i n higher dimensions

3. P a t h seeds are cheaper to store, requir ing Q(t) storage even i n the worst case, ins tead of 0(n) storage.

4. P a t h seeds guarantee a one-to-one correspondence between seeds and contours, a l lowing us to t rack
i n d i v i d u a l contours by m a p p i n g them to the contour tree.

These are offset by s l igh t ly slower t ime for extract ing isosurfaces from pa th seeds compared w i t h
m i n i m a l seed sets, a disadvantage that is negligible i n practice, due to the 0(k) fa 0(n^~) cost of ex t rac t ing
the isosurface itself.

O f these advantages, the most powerful is the last: a t ight one-to-one correspondence between
path seeds and contours. In the next chapter, we show how this can be used to generalize the concept
of an isosurface, and to use the contour tree as a direct control for man ipu la t i ng or annota t ing i n d i v i d u a l
contours.

74

Chapter 9

Flexible Isosurfaces

W e saw i n Chap te r 2 tha t isosurfaces, unl ike isolines, occlude each other. T h i s makes i t c ruc ia l that we choose
carefully w h i c h isosurfaces we display. P r i o r to the in t roduc t ion of pa th seeds, users were typ ica l ly l im i t ed
to level sets: sets of isosurfaces at a single fixed isovalue. In m a n y cases, however, interest ing isosurfaces
are contained inside and occluded by uninterest ing isosurfaces. A n d , i n some da ta sets, different interest ing
objects have different isovalues. Thus , a res t r ic t ion to level sets hampers explora tory v i sua l iza t ion . Moreover ,
the isosurfaces are often generated as an interlaced set of polygons belonging to mul t ip le surfaces. W i t h
pa th seeds, however, we can lift this res t r ic t ion, and develop new ways of explor ing scalar data .

In this chapter, we int roduce the second p r inc ipa l con t r ibu t ion of this thesis: the flexible isosurface:
a metaphor and interface for interact ive explora t ion of sets of contours at different isovalues. T h i s interface
uses the contour tree as a topologica l index to the potent ia l contours, and as a source of seeds for ext rac t ing
and rendering the contours, t ak ing advantage of the t ight one-to-one correspondence between contour tree
and contours that was enabled by the in t roduc t ion of pa th seeds i n the previous chapter.

Sect ion 9.1 sketches previous work relevant to this chapter. Sect ion 9.2 then states some assump­

tions, and Sect ion 9.3 discusses the tasks we wish a user to be able to perform, and states a set of operations

for man ipu la t i ng contours. Sect ion 9.4 then gives a formal definit ion of a flexible isosurface, and Sect ion 9.5

presents an interface for man ipu la t ing contours i n a flexible isosurface. Sect ion 9.6 then examines the evo­

lu t i on of i n d i v i d u a l contours rather t han entire level sets. Sect ion 9.7 then introduces the da ta structures

tha t we use for implementa t ion , and Sect ion 9.8 discusses how i n d i v i d u a l operat ions are implemented. F i ­

nally, Sect ion 9.9 discusses some problems that lead into the discussion of s impl i f ica t ion i n Chap te r 11, and

Sect ion 9.10 summarizes the contr ibut ions of this chapter.

9.1 Previous Work

Research re la t ing to i n d i v i d u a l contour man ipu la t ion can be grouped under three headings: loca l surface

choice, isosurface choice, and transfer function design. T h e first group, loca l surface choice, is the smallest,

but closest i n spir i t to this work, and includes work on d isp laying several contour surfaces w i t h different

isovalues, based on a global unders tanding of what consti tute impor tan t objects. T h e second group, isosurface

choice, is the largest, and includes work on choosing a single isovalue to app ly globally. T h e t h i r d group,

75

transfer function design, uses isovalue as the p r inc ipa l parameter for mapp ing a function to colour and

opac i ty for use i n volume rendering.

Local Surface Choice: There has been re la t ively l i t t le work on isola t ing and man ipu la t i ng contour sur­

faces, except as entire level sets. Si lver [Sil95] in t roduced object-oriented visualization, i n w h i c h objects were

defined to be i n d i v i d u a l contours determined by expanding surfaces from the loca l m a x i m a un t i l a connec­

t i v i t y c r i te r ion was satisfied. Mander s et a l . [M H S + 9 6] took a s imi lar approach, cal led Largest Contour
Segmentation, i n w h i c h objects were denned as the largest surface conta in ing on ly one loca l m a x i m u m . In

neither case was i t possible to explore the contour surfaces interactively.

Shinagawa, K u n i i & Kergos ien [SKK91] described a v i sua l code for contour changes, based on the
Reeb graph, but do not seem to have used their v i sua l coding as an interface for isosurface explora t ion .
Moreover , this v i sua l code was not accompanied by an a lgor i thm for generat ing codings automat ical ly .

Isosurface Choice: M o r e work has been publ ished on choosing " impor tan t" isovalues, either manua l ly
or au tomat ica l ly . M a n u a l l y chosen isovalues are often used to explore otherwise i l l -unders tood data . T h e
simplest exp lora t ion me thod displays the isosurface interactively. T h e user interacts w i t h the software,
t r y i n g different isovalues un t i l a suitable isosurface is found. T h e user w i l l often make a rough guess at the
relevant isovalue, then adjust the isovalue i n smal l increments, and watch how the isosurfaces evolve. T h i s
explora tory process is s ignif icant ly faster i f cues are available to guide the user to interest ing isovalues. W e
w i l l r e tu rn to this idea i n Sect ion 9.6.

Some work aims to provide context , or cues, to the user, i n order to guide isosurface choice. B a j a j ,
Pascucc i & Schikore[BPS97] described such an interface, cal led the Contour Spectrum, shown i n F igure 9.1.
T h i s interface consists of two parts: a m a i n window showing the data , i n this case two-dimensional da ta
w i t h isovalue mapped to colour, and a separate window, the Contour Spectrum, wh i ch graphs summary
characterist ics of isosurfaces as a function of the isovalue. These summary characterist ics include the surface
area and enclosed volume of the isosurface. In addi t ion , the contour spec t rum displays the contour tree as
a cue to topologica l change i n the data . In par t icular , note that the ver t ica l line representing the isovalue
chosen intersects the contour tree i n the spec t rum exact ly once for each i n d i v i d u a l contour i n the image. T h i s
interface, however, does not conta in sufficient informat ion to identify wh ich contour is wh ich i n the contour
tree, except by deducing i t from the pat tern of peaks i n the image. A l t h o u g h the Con tou r Spec t rum uses
topologica l in format ion to guide isovalue selection, the user is s t i l l restr icted to choosing a single isovalue of
interest. Moreover , the geometric informat ion such as area, contour length, & c , is not integrated w i t h the
topologica l in format ion represented by the contour tree. Instead, the two sets of in format ion are displayed
i n para l le l . We w i l l see i n Chap te r 10 how to integrate geometric and topologica l informat ion: this could
then be added back i n to the Con tou r Spec t rum, i f desired.

In a closely related approach, Ke t tne r , Rossignac & Snoeyink [KRS01] modif ied the Con tour Spec­
t r u m i n an interface cal led S A F A R I . T h i s interface was designed to display t ime sequences of three-dimensional
scalar fields. In a panel s imi lar to the Con tou r Spec t rum window, a colour map is used to represent the
connect iv i ty of isosurfaces over two independent variables: t ime and isovalue. Moreover , the panel is also
used d i rec t ly to specify the t ime and isovalue to display i n the m a i n panel . T h e connect iv i ty of the isosurfaces
at different isovalues and times is computed from the contour trees for the i n d i v i d u a l t ime steps, wi thou t
exp l i c i t l y ex t rac t ing the isosurfaces.

76

Contour Spectrum Window Data Display Window

-11/1711 l««v«ta i a (B a f

Figure 9.1: T h e Con tou r Spec t rum - i l lus t ra t ion courtesy C . B a j a j . In th is i l lus t r a t ion , a 2 -D field
is d isplayed by assigning colours to different isovalues: boundaries between colours are
contours. In the Con tour Spec t rum window, the isovaiue is p lo t t ed hor izonta l ly , whi le
properties such as area above the isovaiue are p lo t ted as coloured lines, and the contour tree
is d r awn as a set of whi te l ine segments. The ver t ica l bar indicates a pa r t i cu la r isovaiue, i n
this m e d i u m green colour i n the data display.

B o t h of these interfaces use topology i n the form of the contour tree or in fo rmat ion derived from the

contour tree. B u t bo th of t hem treat isosurface choice as a g lobal p rob lem w i t h one parameter: the isovaiue.

A n d neither the Con tou r S p e c t r u m nor S A F A R I allows man ipu la t ion of i n d i v i d u a l contours.

T r a n s f e r F u n c t i o n D e s i g n : Choos ing an appropriate isovaiue is closely related to designing transfer

functions for vo lume rendering. Transfer functions specify the opac i ty and op t i ca l propert ies of different

types of mate r ia l , commonly based on isovalues i n the data . L i k e isosurfaces, transfer functions assign

meaning to par t icular isovalues, or more commonly, ranges of isovalues.

A s w i t h the C o n t o u r Spec t rum and S A F A R I , this assumes that one g loba l choice, or set of choices,

w i l l be appl ied everywhere. K n i s s , K i n d l m a n n k Hansen K K H 0 1 noted that this assumes tha t a g iven isovaiue

has un i form meaning throughout the da ta set. T h e y observed that th is assumpt ion causes problems, and

designed an interface to construct mul t i -d imens ional transfer functions interact ively. T h i s interface added

gradient in format ion as a parameter to the transfer function, but cont inued to app ly the same transfer

function everywhere i n the data . K i n d l m a n n et a l . [K W T M 0 4] added the curvature of the funct ion as a

parameter, but s t i l l w i thou t any spat ia l locali ty.

77

Some authors use s ta t i s t ica l methods instead of user in terac t ion to determine impor tan t isovalues.
Pekar , W i e m k e r & H e m p e l [P W H 0 1] use a gradient h is togram to find isovalues for wh ich the gradient is
steepest, assuming that steep gradients mark significant boundaries. A l t h o u g h these authors generated iso­
surfaces, their work also applies to transfer function design. S imi la r ly , Tenginakai , Lee & M a c h i r a j u [T L M 0 1]
use s ta t i s t ica l signatures of the loca l d i s t r ibu t ion of voxel values to define a transfer function. A n d i n a
technical report publ ished i n 2001, Takahashi , Fuj ishiro & Takesh ima[TFT01] described how to automate
transfer function design by using the contour tree to detect isovalues at wh ich major changes i n isosurface
topology occurred, then emphas iz ing those isovalues.

W i t h the except ion of the work by Silver [Sil95] and Mande r s et a l . [MHS+96] , the emphasis has
been on using g lobal properties to detect isovalues that are significant. Impl ic i t ly , this decides that the
isovalue is significant everywhere i n the data . If we wish to determine significance on a loca l basis, we must
extend these approaches and use different properties or isovalues i n different spat ia l locat ions.

9.2 Assumptions

Before discussing the details of the flexible isosurface, we must state some impor tan t assumptions:

A s s u m p t i o n 4 Interesting objects in the data are not connected to each other, and each can be represented
by a single contour.

T h i s assumpt ion is based on the general assumption that isosurfaces are useful representations of
impor tan t features, modif ied to recognize that d is t inct objects are usual ly topologica l ly disconnected, or
separable.

A s s u m p t i o n 5 Not all contours in a level set are interesting, or important.

Since 3-D surfaces generally occlude each other, i f we wish to look at an object inside or beh ind an
occ lud ing object, we must find a way of suppressing the less interest ing occluder. In large da ta sets, there
m a y also be so m a n y contours that the one of most interest is occluded, or fails to catch the user's eye due
to the v i sua l complex i ty of the display.

Several consequences flow from this assumption. F i r s t , we must provide an automat ic or manua l

me thod to identify wh ich contours are interesting, and wh ich are not. Secondly, we must provide the user

w i t h some mechanism for deciding wh ich contours to show, especially in i t ia l ly . A n d th i rd ly , we must give

the user cues as to wh ich contours are interesting. Since v i sua l complex i ty and occlusion are problems, we

wish to find an abstract representation of the da ta that can meaningful ly be used to guide the user. We w i l l

use the contour tree for this purpose. U n l i k e the Con tou r Spec t rum [BPS97] , however, we use the contour

tree as an active means of man ipu la t ing contours, rather than a passive display of the topology.

78

9.3 A User's View of Flexible Isosurfaces

We w i s h to relax the restr ict ions imposed by previous isosurfacing a lgor i thms, and a l low user m a n i p u l a t i o n

of i n d i v i d u a l dist inct contours. W e start by in t roduc ing some examples of user interact ions that we wi sh to

make feasible, s tar t ing w i t h v i sua l man ipu la t ion of visible contours i n Sect ion 9.3.1.

(a) In i t i a l Leve l Set (b) Af te r Suppressing S k u l l

(c) C o n t o u r Inside the B r a i n (d) Af ter E v o l v i n g C o n t o u r for B r a i n

F igure 9.2: E x a m p l e of F l ex ib l e Isosurface E d i t i n g to Isolate the B r a i n .
(a) In i t i a l selection of an isosurface by specifying the isovalue.
(b) After delet ing (suppressing) an occluding surface (the sku l l) .
(c) Af ter i so la t ing a single contour of interest.
(d) Af ter changing the isovalue (evolving) of the contour .

In Sect ion 9.3.2 we discuss man ipu la t ion of contours that are not cur ren t ly v is ib le , us ing the contour
tree as an index to a l l possible contours. F ina l ly , i n Section 9.3.3, we state a set of operat ions that w i l l
support the manipula t ions described.

79

9.3.1 Manipulating Contours Visually

W e w i l l s tart by considering man ipu la t ion of current ly vis ible contours by look ing at two possible scenarios
of a user's in terac t ion w i t h the system. In Chap te r 2, we described a possible sequence of user interact ions
and showed results of i n d i v i d u a l choices i n F igu re 2.2. We describe a s imi lar scenario i n F igu re 9.2, and
consider i t i n more deta i l .

Suppose tha t a radiologis t has performed an M R I scan of a patient 's head, and wishes to segment
the surface of the b ra in as a geometric object for further processing. If the radiologis t is using convent ional
isosurfacing, and chooses a suitable isovalue, he or she might get the image i n F igu re 9.2(a). Clear ly , this is
not satisfactory, as the isosurface for the sku l l occludes the b r a in isosurface.

To deal w i t h this occlusion, the radiologist might wi sh to suppress the d isplay of this sku l l isosurface,
so that objects inside the sku l l w o u l d become vis ible , as shown i n F igu re 9.2(b). A t this stage, the radiologist
w o u l d p robab ly realise that the or ig ina l choice of isovalue was unsatisfactory, as the outer boundary of the
desired object (the bra in) is not well-defined. However, one of the contours (shown i n grey) is i n the r ight
loca t ion , and can be guessed to be some central structure i n the b r a in of re la t ively h igh intensity. It is ha rd
to be certain, however, due to occlusion by other isosurfaces and due to the v i sua l complex i ty resul t ing from
a large number of contours.

T o deal w i t h these problems, the radiologist might then ask to suppress a l l of the isosurfaces except
the chosen one, resul t ing i n the image shown i n F igu re 9.2(c). E v e n now, though, the surface is unsatisfactory,
as i t does not show the surface of the bra in , but rather some interior structure, because of a poor i n i t i a l
choice of isovalue.

To deal w i t h this final p roblem, the radiologist might adjust the isovalue of this par t icu lar isosurface,
w i thou t having to remove the sku l l and other isosurfaces at each new isovalue. Ad jus t i ng the isovalue, the
radiologis t wou ld wa tch this contour evolve, growing larger as the isovalue decreased, un t i l a reasonable final
surface was ar r ived at, as shown i n F igu re 9.2(d).

In a second scenario, a molecular biologist is using isosurfaces to visual ize an X - r a y crysta l lographic

d a t a set. A n i n i t i a l isosurface might look l ike the one shown i n F i g u r e 9.3(a). I n th is case, even when the

scene is rotated, i t can be difficult to d is t inguish v i sua l ly between i n d i v i d u a l isosurfaces. In order to increase

the v i sua l contrast between components, the biologist might ask for the surfaces to be assigned colours, w i t h

the result shown i n F igu re 9.3(b). Here, a l though i t is easier to d is t inguish i n d i v i d u a l components, many

of the components are pa r t i a l ly or w h o l l y occluded. A s w i t h the previous example, the user may wish to

isolate a single component for i n d i v i d u a l study: i n F igu re 9.3(c), a single a lpha-hel ix i n the molecule has

been isolated. A n d , again as i n the previous example, the user m a y then choose to adjust the isovalue of this

contour. In F igure 9.3(d), the isovalue has been increased i n order to see the i n d i v i d u a l peaks contained i n

this par t i cu la r contour .

In bo th of these scenarios, the tasks can be broken down into smaller subtasks, generally invo lv ing
a single contour at a t ime: identif icat ion or selection of an i n d i v i d u a l contour, deletion of a single contour
or of a l l contours except one (isolation), evolution of a single contour w i t h respect to the isovalue, and
initialization of the set of contours current ly i n view to a level set.

80

(a) A l l One Co lou r (b) W i t h A r b i t r a r y Co lou r s Ass igned

(c) A l p h a H e l i x Isolated (d) H e l i x E v o l v e d

F igure 9.3: Heightening V i s u a l Cont ras t w i t h Co lou r & Isolation. No te how add ing colours to i n d i v i d u a l
contours makes it easier to te l l them apart. Moreover , i sola t ing a single he l ix to s tudy it
separately removes d is t rac t ing or occ lud ing surfaces.

9.3.2 Manipulating Contours That Are Not Visible

In the previous section, we looked at man ipu la t ing contours visual ly . Con tour s tha t are not already vis ible

can be brought in to v iew i n several ways: evolv ing a contour u n t i l the desired contour is found, by specifying

a set of contours, for example a level set, or by choosing a contour from an index of possible contours.

81

T o specify a set of contours, we choose some abstract cr i te r ion wh ich is easy to apply. L e v e l sets are
chosen by app ly ing the cr i ter ion tha t the contours must have a specified isovaiue. A n o t h e r abstract cr i te r ion
chooses m a x i m a l contours that conta in only one loca l m a x i m u m : this cr i ter ion was used by Silver [Sil95] for
Object-Oriented Visualization and by Mander s et a l . [MHS+96] for Largest Contour Segmentation. We w i l l
generalize this later, by a l lowing non -max ima l contours instead of m a x i m a l contours.

W h i l e man ipu la t ing i n d i v i d u a l contours, we need a way of ind ica t ing wha t contours could be added

to the current ly displayed set, and a way of specifying wh ich to add. In other words, we need an index to

a l l possible contours. E v e r y possible contour should be i n the index, and the index should be as compact as

possible. For tunate ly , such an index is available: the contour tree, using pa th seeds for contour ext rac t ion .

T o use the contour tree as an index, we w i l l draw the contour tree so tha t one d imension represents
the isovaiue. W e w i l l then al low the user to define a contour by choosing the point on a superarc at the
desired isovaiue. W e w i l l t reat this as equivalent to choosing a contour v i sua l ly from the da t a display. Once
we have chosen a contour i n this way, we can also al low contour evolu t ion to be appl ied d i rec t ly i n the
contour tree.

9.3.3 Contour Manipulation Operations

Based on the descriptions of desired user interact ions given above, we decompose the tasks into the fol lowing

operations:

1. Def ining a level set

2. Increasing v i sua l contrast w i t h colour

3. Choos ing a contour (selection)

4. Choos ing no contour (unselection)

5. E v o l v i n g a contour by adjust ing its isovaiue

6. Dele t ing a contour

7. Isolat ing a contour by delet ing a l l other contours

8. U n d o i n g a delet ion or i so la t ion

9. A d d i n g a contour

10. Def ining a Largest Con tou r Segmentat ion

W e w i l l see how to implement these operations i n Section 9.8. F i r s t , however, we w i l l define a flexible
isosurface formally, then describe an interface that supports these operat ions.

82

9.4 The Flexible Isosurface

In the previous section, we saw some examples of tasks that might require d i sp lay ing a set i nc lud ing one
or more contours w i t h dis t inct isovalues. Before considering an interface for v i sua l ly man ipu la t i ng sets of
contours, let us give some s l ight ly more r igorous definitions.

W e start w i t h the fol lowing convention:

Convention 9.1 A contour c is denoted by a pair c = (s,h) consisting of a superarc s in the contour tree
and an isovaiue h.

For convenience, we do not al low contours that pass exact ly th rough c r i t i ca l points. A l t h o u g h this
may seem like a l im i t a t i on , i t is i n keeping w i t h most isosurface ex t rac t ion techniques, wh ich classify vertices
as "above" or "below" the isosurface, never "at" the isosurface. T h i s has the effect of per turb ing any isovaiue
by an a rb i t r a r i ly sma l l epsi lon, whi le s impl i fy ing the analysis of possible cases. Since c r i t i ca l points i n a
s imp l i c i a l mesh are at vertices of the mesh, we lose noth ing by this choice.

We can now use this to generalize the concept of an isosurface from the single-parameter control
discussed i n Sect ion 9.1, to the flexible isosurface, i n wh ich we can specify and manipula te i n d i v i d u a l surfaces:

Definition 9.2 A flexible isosurface is a set { c i , . . . , cT}, where each Ci = (si, hi) is a contour of f.

It is easy to show that we can efficiently display any a rb i t ra ry flexible isosurface using pa th seeds,

according to L e m m a 8.11.

Lemma 9.1 A flexible isosurface containing r contours can be generated in 0(rp + k) « O(k) time, where
a path seed takes 0(p) time to extract, and the contours generated are of size k in total.

Proof: R e c a l l that we represent each contour ji as a pair (s,, hi) where s; is a superarc i n the

contour tree and hi is an isovaiue. F r o m L e m m a 8.11, we know tha t we can extract each isosurface seed i n

0(p) t ime. F r o m Sect ion 7.1, we know that k measures the cost of ex t rac t ing surfaces w i t h the cont inuat ion

method . Since we extract r contours, the to ta l cost is therefore 0(rp + k). •

A s i n Sect ion 8.2.4, we expect rp, the cost of pa th seed ext rac t ion , to be domina ted by k, the cost
of isosurface ex t rac t ion from seed edges.

9.5 The Flexible Isosurface Interface

For flexible isosurfaces to be useful, we must provide an interface th rough wh ich a user can define and
manipu la te them. In F igu re 9.4, we show the interface we use to manipula te the flexible isosurface. B r o a d l y
speaking, the interface is spl i t in to three parts: the da ta display area, the contour tree, w i t h at tached
isovaiue slider, and miscellaneous controls. A l t h o u g h superficial ly s imi lar to the contour spec t rum shown i n
F igu re 9.1, there are some impor tan t differences.

83

Data Display

\
Contour Tree Display Isovalue Slider

Selected Contours

f i m •

1 ? a

1

\ *\l
w

VI

Unselected Contours -
IF

—

Light and Rotation Controls

Toggle to Show Mesh Cells
Toggle for Coloured Contours
Toggle for Largest Contour Segmentation
Toggle for Contour Tree

Rotation LirtLt
n Snow cells
E ColoundCoritoui:
tj Local Contoujo
13 ShiwCocitoujTwt

(13 d«t£ Complement
[En-taut Dtlcttfl J

Deletion Controls

Figure 9.4: Componen t s of the F lex ib l e Isosurface Interface.
T h e interface as shown here has three regions. O n the left is the d a t a d isplay where contours
are rendered. O n the right is the contour tree display where the contour tree is displayed
w i t h colour-coded tags representing where each contour displayed is i n the contour tree.
N e x t to the contour tree display is a slider wh ich controls the isovalue either of a single
selected contour or of a level set i f no contour is selected. Unde rnea th the contour tree
display are a set of miscellaneous controls, ranging from arcbal ls to cont ro l ro ta t ion i n the
da t a display to but tons cont ro l l ing component delet ion. A more sophis t icated vers ion of
this interface can also be seen i n F igure 11.14, wh ich incorporates add i t i ona l controls for
contour tree s impl i f ica t ion .

T h e D a t a D i s p l a y T h e da t a display shows the current state of the flexible isosurfac, us ing pa th seeds to

extract each contour ind iv idua l ly . If coloured contours are not enabled, a l l contours are shown i n a uni form

colour. If coloured contours are enabled, each contour is assigned a colour . Since the surfaces are rendered

using shading, we are restr icted to only a few colours, and are forced to reuse them. E v e n a few colours,

however, enhance v isua l contrast , and identify which contour i n the da t a d isplay corresponds to w h i c h tag

i n the contour tree display.

T h e C o n t o u r T r e e D i s p l a y T h e contour tree display shows the contour tree, w i t h each contour i n the

flexible isosurface indica ted by a smal l rectangle or tag. E a c h tag is pos i t ioned a long the corresponding

superarc, w i t h the ver t ica l pos i t ion set to the isovalue of the contour. Moreover , these tags are colour-coded

84

to ma tch the colour assigned to the contour i n the da ta display. A n d finally, these tags do not jus t provide

passive informat ion: they can act ively be manipula ted , i n wh ich case the corresponding contours are also

manipu la ted i n the da ta display.

Choosing (Selecting) a Contour T h e metaphor used for the user interface is the s tandard graphica l

metaphor of "select and operate". T h e user chooses a contour visual ly , either i n the m a i n image, or i n

the contour tree display, then performs an operat ion on the contour, such as deletion, i sola t ion, or contour

evolu t ion .

In the da ta display, we can select on ly contours that are current ly vis ible . W e do so using s tandard
graph ica l p ick ing techniques: when the user clicks the mouse i n the da ta display, we either trace a ray
th rough the scene from the viewplane, or s imply query the frame-buffer to determine the closest contour to
the v iewplane at that point . A s w i t h m a n y graphica l interfaces, i f no contour exists at the loca t ion chosen,
the user is considered to have unselected or released the current selection.

In the contour tree display, the user can select any possible contour by c l i ck ing the mouse over any of
the superarcs displayed. If there is a lready a tag on that superarc, i t is moved to the isovaiue corresponding
to the ver t ica l pos i t ion of the mouse, and the contour i n the da ta display updated accordingly. If there is
no tag on the superarc, a new tag is created, and the corresponding contour rendered i n the da ta display.
A t present, we do not a l low mul t ip le contours on a single superarc to be selected for two reasons. F i r s t , for
most da ta sets, one of the contours w i l l be inside the other and therefore occluded. A n d second, by a l lowing
on ly one contour per superarc, we keep the interface and processing re la t ively simple. It would , however, be
feasible to permi t the user to choose mul t ip le contours on the same superarc.

Fo l lowing s tandard user-interface conventions, the contour selected is h ighl ighted to dis t inguish i t
from contours that are not selected. H igh l igh t ing is done by changing the colour of the contour and the
contour tag, and by enlarging the tag slightly. W h e n coloured contours are disabled, a d is t inct ive colour
such as red is used to separate the highl ighted contour or contours from the others, wh ich are rendered i n
grey. W h e n coloured contours are enabled, however, we reverse this convent ion, and render the highl ighted
contour i n grey, to d is t inguish i t from the unselected contours i n colour.

W h e n we discuss contour evolu t ion i n Sect ion 9.6, we w i l l see that the selected contour can evolve

into mul t ip le contours as the isovaiue varies: we w i l l treat a l l such evolved contours as selected, so that they

are easily dis t inguished from other contours i n the da ta display. E x c e p t for this case, we do not current ly

suppor t selecting more than one contour at once: this avoids compl ica t ions when evolv ing contours.

Arcballs, Check Boxes and Buttons T w o arcballs are provided: one to control the v iewing direct ion,

and one to cont ro l the d i rec t ion of incoming l ight . If needed, controls for zooming i n and out and for mov ing

the image i n the da ta display la tera l ly can also be provided. F igure 11.14 shows an example of a version of

the flexible isosurface interface w i t h controls for zooming and scaling.

Check-boxes are provided to toggle the cells of the mesh, to enable coloured contours, to enable

" loca l contours", and to t u r n the contour tree d isplay off for faster rendering of the da ta display. Three of

these have obvious functions: the fourth, the check-box label led " loca l contours" , p r inc ipa l ly affects the

behaviour of the isovaiue slider, wh ich we w i l l discuss shortly.

85

Four but tons are shown i n the lower right hand corner. Three of these implement operations from

Sect ion 9.3.3. T h e first deletes the current ly selected contour(s), the second isolates the current ly selected

contour by delet ing a l l other contours i n the flexible isosurface, and the t h i r d one reverses the most recent

delet ion or i so la t ion operat ion. A fourth bu t ton , label led Quit, is provided to exit from the p rogram.

Isovalue Slider T h e on ly remain ing interface element is the isovalue slider, whose behaviour is somewhat
complex. If we compare the effects of the interface elements described so far w i t h the list of operations i n
Sect ion 9.3.3, we see that the on ly remain ing operations are: defining a level set, defining a largest contour
segmentation, and evolv ing a contour. E a c h of these operations uses the isovalue slider. Depend ing on
whether a contour is selected, and depending on whether the " local contours" check-box has been selected,
the slider does one of the following:

Con tou r Selected L o c a l Contours Opera t ion

N o N o Defines a level set
N o Yes Parameter ized Largest Con tou r Segmentat ion

Yes N o Evolves the selected contour
Yes Yes Cons t ra ined evolut ion of the selected contour

Thus , when no contour is selected, and loca l contours are disabled, the isovalue slider is used to
specify the isovalue of a level set, as w i t h previous interfaces. W h e n no contour is selected, and loca l
contours are enabled, we perform a parameter ized version of Largest Con tou r Segmentat ion: for details, see
Sect ion 9.8.3, below.

If a contour has been selected, and loca l contours are disabled, the isovalue slider controls the isovalue
of tha t contour only, a l lowing contour evolut ion as described i n Sect ion 9.3. W e w i l l discuss contour evolut ion
i n some deta i l i n Sect ion 9.6, below. For superarcs whose height is smal l , this does not give fine enough
cont ro l over the isovalue i n many cases, so we use the " local contour" check-box to const ra in the evolut ion
to a single superarc of the contour tree. A s w i t h Largest Con tour Segmentat ion, the isovalue slider is now
re-parameterized to the range of isovalues corresponding to the superarc.

For convenience, when a contour is being evolved, we al low the user to use the contour tag i n the

contour tree d isplay i n the same way as the isovalue slider. We note tha t the ver t ica l loca t ion of the box

on the isovalue slider corresponds to the isovalue, as does the ver t ica l loca t ion of each contour tag i n the

contour tree. Thus , instead of selecting the contour tag, then using the slider to specify the isovalue, we

permi t the user to drag the contour tag up and down i n the contour tree, evolving the contour i n the same

way as i f we had used the slider.

9.6 Evolving A Contour

In the previous section, we saw an interface that enables a l l of the operat ions discussed i n Section 9.3.3.
M o s t of these operations are s t raightforward, except for one: contour evolution. T h i s operat ion involves

adjust ing the isovalue of one specific contour, showing the results i n bo th the da t a display and the contour

tree display. W e w i l l s tart w i t h a formal definit ion of what i t means to evolve a contour:

Definition 9.3 A contour c at isovalue h evolves into the set of contours c\,..., cm at isovalue h! such that
for each Ci there exists an f-monotone path Pi in TZ from c to Ci.

86

t

0
(a) In i t i a l Con tou r (b) E v o l v i n g Con tou r

6

(c) E v o l v e d Contours

F igu re 9.5: S imple E x a m p l e of an E v o l v i n g Con tour .
(a) A s the contour is evolved upwards, we generate contours on the same superarc at pro­
gressively higher isovalues.
(b) A s the contour evolves upwards past a saddle, i t spli ts into one contour for each of the
upwards superarcs at the saddle.
(c) Once past the saddle, each contour continues to evolve upwards on its own superarc.

T h i s defini t ion emphasizes the expecta t ion of the user that they are seeing the results of increasing
(or decreasing) the isovaiue of a specified contour. Since we use the contour tree as our index, we must
convert this defini t ion into one i n terms of the contour tree, an easy task given the correspondence between
contours and the contour tree:

Lemma 9.2 Definition 9.3 is equivalent to the following formulation: A contour c at isovaiue h evolves into
the set of contours c\,..., cm at isovaiue h' such that for each Ci there exists a monotone path Qi from c to
Ci in the contour tree.

Proof:

(=>) L e t Pi be an / -mono tone pa th i n TZ from c to Q at isovaiue h'. B y C o r o l l a r y 6.1, we know that

there is a corresponding monotone pa th Qi i n the contour tree from c to c,.

(-4=) L e t Qi be a monotone pa th i n the contour tree from c to some contour C j at isovaiue h'. B y
L e m m a 6.5, we know tha t there is a corresponding / -mono tone pa th Pi i n TZ f rom c to C j . •

T h i s result allows us to discuss contour evolut ion solely i n terms of the contour tree, whi le s t i l l

r emain ing true to the user's expectat ions.

We show a simple example of contour evolut ion i n F igu re 9.5. In this case, a single contour is chosen

i n a sma l l contour tree. A s the isovaiue is increased using the isovaiue slider, the contour tag slides up the

superarc of the contour tree from F igure 9.5(a) to F igu re 9.5(b). A s the contour evolves past the isovaiue

of the j o i n , the contour separates into two dis t inct contours, one for each branch of the contour tree at the

j o i n .

87

(a) In i t i a l Con tou r (b) E v o l v i n g Upwards (c) B a c k Downwards

F igu re 9.6: Cont inuous Con tou r E v o l u t i o n : Upwards , then Downwards
(a) A s i n F igu re 9.5, a contour A evolves upwards into contours B and C.
(b) Contours B and C then develop into contours D, E and F.
(c) W h e n the parameter is re turned to the isovalue of B and C, should G be shown?

Semantical ly, the basic meaning of this evolut ion is clear: the user expects to see a smooth evolut ion
of contours as the parameter is changed. A s the parameter is changed repeatedly, however, several difficulties
arise, and we must decide how to handle them.

9.6.1 Contour Evolution Policies

A l t h o u g h i t is easy to define contour evolut ion, we s t i l l have some decisions to make about the interface.

These decisions result i n the fol lowing rules, wh ich we state briefly, then expla in i n the fol lowing sections:

(9.6.2) Con tou r evolu t ion can be viewed as a continuous process from an i n i t i a l to a final state.

(9.6.3) A n evolv ing contour is more impor tan t than a contour that is not evolv ing .

(9.6.4) T h e user is not permi t ted to select more t han one contour at one t ime.

9.6.2 Continuous and Reversible Contour Evolution

F r o m the s tandpoint of the user, evolv ing a contour should be a continuous and reversible process. It should

be continuous by p rov id ing v i sua l feedback as the isovalue is changed. It should be reversible, i n that

reversing the d i rec t ion of evolut ion should re turn to a previous stage i n the evolut ion . T h i s emphasizes the

assumpt ion that the contour represents an object wh ich we wish to s tudy at different isovalues.

T o achieve this, we generate a sequence of evolutions, s tar t ing at an i n i t i a l contour. We must decide
whether to treat this sequence of evolutions as independent evolutions, or to treat them a l l as evolutions
from the i n i t i a l contour. We choose to treat them a l l as evolutions from the i n i t i a l contour.

88

(a) In i t i a l E v o l u t i o n (b) E v o l v i n g th rough a Con tour

F igu re 9.7: Suppressing contours du r ing contour evolu t ion
A s A evolves past B, B w i l l no rma l ly occlude either Ai or As as A sweeps past B. W e
assume that the user is more interested i n the evolut ion of A t h rough A2 and B to A5 t han
i n B itself, and suppress B so that the evolut ion of A is clear.

Consider F igu re 9.6, i n wh ich the user starts w i t h contour A i n F igu re 9.6(a), then evolves i t upwards
to get first B and C i n F igu re 9.6(a), then D, E, and F i n F igu re 9.6(b). W h e n the user reduces the isovaiue
w i t h the isoslider once more, one of two things can happen.

If we treat the changes to the isovaiue slider as independent evolutions, then, as the user reduces

the isovaiue, the set of contours D, E and F should be evolved downwards. E v o l v i n g each independently,

we get contours B, C, and G, as shown i n F igure 9.6(c). In a more complex contour tree, each reversal of

d i rec t ion potent ia l ly adds more contours to the current selection.

In compar ison, i f we treat the changes to the isovaiue slider as in t e r im evolutions, and evolve each

new set d i rec t ly from the or ig ina l contour A, then, as the user reduces the isovaiue, G w i l l not be generated.

Instead, the effect w i l l be to reverse the evolut ion shown i n F igure 9.6(b), re tu rn ing to contours B and C
only. T h i s has the meri t that , i f the user returns mul t ip le t imes to the same isovaiue, they see the same set

of contours each t ime.

Thus , when evolv ing a contour, we ca l l the in i t i a l contour, i n this case A, as the selection root. A s
the isovaiue is changed, we extract the selection by searching monotone paths th rough the contour tree from
the selection root to the new isovaiue. Since the selected set of contours w i l l change over t ime, we w i l l keep
t rack of them separately from the contents of the flexible isosurface. W h e n a new contour, or no contour, is
selected, we w i l l commit the selection, transferring each of them from the selection to the flexible isosurface
proper .

89

9.6.3 Giving Precedence to Evolving Contours

A n o t h e r issue arises when we adjust a contour so that i t moves to or past a contour tha t is a lready present,

as shown i n F igu re 9.7. Assume tha t contour is a lready present, and that the user has just selected contour

A i n the contour tree for evolut ion . For many da ta sets, B w i l l be ent i re ly inside A or vice versa. A s the

isovalue is increased i n F igu re 9.7(a), A evolves into A\ and A2. W h e n the contour is evolved further, i n

F igu re 9.7(b), we must decide what to do w i t h B.

If B was inside A, then, as the isovalue increases, A evolves past B. If we leave B v is ible , then the
user sees Ai disappear into B, and does not see any further evolut ion to A5, even though A3 and A± are
v i s i b ly evolv ing . If A was inside B, we see only B un t i l A passes B, at wh ich point we see A evolving but
not B, due to occlus ion.

We assume that the user is less interested i n B t han i n the evolu t ion of A. Thus , any t ime the set
of contours evolves past a contour such as B, we treat B as belonging to the evolv ing contour thereafter.
If the user then reverses the evolut ion so that Ai, A2 are generated from A, we must make B v is ible once
more. A s w i t h repeated evolutions i n Sect ion 9.6.2, we do this so that the evolu t ion i n reversible: i.e. the
user can re turn to an earlier isovalue and ob ta in exact ly the same set of contours.

We implement this by m a r k i n g B as suppressed whi le A evolves past i t . Suppressed contours are
not rendered i n the da ta display for the dura t ion of the evolut ion. W h e n the evolu t ion reverses back past
B, we remove the suppression mark from B. W h e n the selection is commi t t ed , or transferred, to the flexible
isosurface proper, any current ly suppressed surfaces are deleted, so that unselection does not have the effect
of adding contours to the da ta display.

9.6.4 Multiple Selection

T h e f inal issue that we have to tackle is multiple selection: whether the user should be able to select several

contours simultaneously, as for example A and B i n F igu re 9.7. We have chosen to disal low this i n order to

keep the semantic meaning of the user interface elements as clear as possible.

W e have chosen to have the isovalue slider show the isovalue of the contour selected: i.e. the ver t ica l

pos i t ion of the slider corresponds to the ver t ica l pos i t ion of the tag i n the contour tree. If we al low mul t ip le

selection, we must assume that the contours selected a l l have different isovalues: wh ich isovalue should we

show i n the slider? A n d , as we move the slider, should we move a l l the contours to the same isovalue, or

should we make the isovalue change relative to the or ig ina l isovalue? If we evolve a l l of the contours to the

same isovalue, then we w i l l see large perceptual jumps , as contours farthest away i n isovalue expand very

rapidly , whi le contours close to the new isovalue change l i t t le . If we evolve the contours to different isovalues,

we are faced w i t h the prob lem of defining wh ich isovalue each contour w i l l j u m p to. Moreover , any such

defini t ion should be one wh ich is meaningful to the user.

It w o u l d be feasible, for instance, to have a l l of the contours i n the selection evolve at the same rate.

W e have elected not to implement this at present, but may do so i n the future. In practice, wh ich solut ion

is most useful for a par t icu lar purpose is l ike ly to be domain-dependent. Since this thesis is p r inc ipa l ly

concerned w i t h the pr inciples of man ipu la t ing contours v i a the contour tree, we have chosen a simple solut ion:

res t r ic t ing evolu t ion to a single contour at a t ime. T h i s also has the meri t tha t the da ta structures to keep

t rack of one evolv ing contour are s impler t han those needed to keep track of mul t ip le evolv ing contours.

90

9.7 Data Structures for Flexible Isosurface Manipulation

N o w that we have established the operations we wish to perform, we can define suitable da ta structures and

a lgor i thms for ca r ry ing them out. T h e relevant da ta structures are arrays, t ak ing 0(t) storage space.

active: T h i s array stores the contours i n the current flexible isosurface. E a c h contour is stored as a superarc

I D and an isovaiue. For each superarc, we also store the pos i t ion i n the active array, i f any, for efficient

deletions from the active array.

suppressed: T h i s ar ray stores a flag m a r k i n g whether the contour on each superarc is current ly suppressed

due to a contour evolut ion. For convenience, we store this i n the superarc da ta structure.

selected: A n array s tor ing the contours that are current ly selected. A s described i n Sect ion 9.6, this array
is used whi le a contour is being evolved. U p o n unselection the contours i n this array are transferred to the
active array, whi le suppressed contours are permanent ly removed from the active array. We refer to this
transfer as committing the selection.

restorable: T h i s array stores the set of contours most recently deleted as a result of a delet ion or isola t ion
opera t ion . A n c i l l a r y variables keep t rack of whether the opera t ion was delet ion or i so la t ion and, i f i t was
delet ion, wha t the corresponding values of select ionRoot and currentSelect ionValue were.

selectionRoot: W e saw i n Sect ion 9.6 that we need to store the selection root - the contour from wh ich

the evolu t ion commenced. We also need to store the current isovaiue of the evolv ing selection, i n a variable

cal led currentSelectionValue.

9.8 Algorithms for Flexible Isosurfaces

In Sect ion 9.3.3, we gave a list of the operations our interface supports: i n Sect ion 9.5 and Sect ion 9.6, we

described how these operations are invoked, and described how these operations relate to the contour tree.

In this section, we define a lgor i thms to implement these operations.

91

9.8.1 Denning A Level Set

To define a level set, we use the isovalue slider when no contour is selected, and the " loca l contour" toggle
is off. A naive implementa t ion of this is shown as A l g o r i t h m 9.1. It is w o r t h no t ing that this a lgor i thm as
stated is 0(t), since i t searches every superarc of the tree.

Input : A contour tree C = (V, E)
A n isovalue h

Output : A flexible isosurface F that consists of the level set at h.

1 F = 0
2 for each superarc s i n E do
3 if s spans h then
4 | A d d (s, h) to F

end
end

Algorithm 9.1: Na ive A l g o r i t h m to Define a Leve l Set

T h i s can be reduced to 0(logt - f T) by storing a l l the superarcs of the contour tree i n an interval
tree [Ede80]: we show the improved a lgor i thm using the interval tree as A l g o r i t h m 9.2. T h i s , however, adds
an add i t iona l 0(t log t) cost to the contour tree computa t ion .

Input : A contour tree C = (V,E)
A n interval tree I s tor ing each superarc s = (u,v) as the in terval (/ (w), f{v))
A n isovalue h

Output : A flexible isosurface F that consists of the level set at h.

1 F = 0
2 Star tSearchmgForSuperarcs (J , h)
3 while not DoneSearch ingForSuperarcs (i) do

i
end

4 L e t s = Ge tNex tSupe ra rc (J) ;
5 A d d s to F

Algorithm 9.2: A l g o r i t h m U s i n g an Interval Tree to Define a L e v e l Set. T h i s a lgor i thm assumes that the
interval tree supports the operations StartSearchingForSuperarcs(), DoneSearchingForSu-
perarcs() and GetNextSuperarc() to search the in terval tree for a l l superarcs spanning a
desired isovalue.

In pract ice, we have chosen to accept the linear cost, since we w i l l be reducing t to a few hundred
w i t h the techniques i n Chap te r 11. Moreover , w i t h online s impl i f ica t ion of the contour tree, we wou ld need
to modify the interval tree (or A;-d tree) to keep track of wh ich superarcs were current ly va l id . A l t h o u g h
feasible, this adds further complex i ty to the program.

92

9.8.2 Algorithm for Evolving A Contour

W e described how to evolve a contour to a desired isovaiue i n Sect ion 9.6, and defined some interface policies

i n Sect ion 9.6.1. A l g o r i t h m 9.3 shows how evolut ion is implemented w i t h a simple search th rough the contour

tree, suppressing active edges as needed. Since we have implemented this as a breadth-first search, i t is not

difficult to see tha t i t executes i n 0(t) t ime i n the worst case.

Input : A contour R = (r, ho) as the selection root .
T h e current flexible isosurface F
A n isovaiue h
W l o g , h < ho, the isovaiue of the selection root .

Output : T h e set S of contours at h into wh ich R evolves
Suppress active contours between f(R) and h.

i S —

2 searchQueue = {r}
3 for each active arc a i n F do
4 Clear suppressed flag on a

end
5 while searchQueue is not empty do
6 remove a f rom searchQueue
7 if o is active then
8 if isovaiue of contour on active arc a is less than h then

i
end

9 Suppress a.

end
10 if a spans h then
11 A d d a to 5

else
12 for each arc b whose upper end is the lower end of a do
13 | add b to searchQueue

end
end

end

Algorithm 9.3: E v o l v i n g the Con tour from the Selection R o o t and Isovaiue

93

cavity at local
minimum

Directions of growth: • Directions of growth: •

(a) Objec t -Or ien ted V i s u a l i z a t i o n [Sil95] (b) Largest Con tou r Segmentat ion [M H S + 9 6]

F igu re 9.8: Objec t -Or ien ted V i s u a l i z a t i o n and Largest Con tour Segmentat ion.
In (a), sweeping down from each peak to the nearest saddle defines the largest unique object
sur rounding that peak. Impl ic i t ly , the size of the object refers to the volume of the upstart
region, wh ich we discuss i n Chap te r 10.
In (b), growing regions from peaks achieves essentially the same result, a l though there is
some ambigui ty i n how to treat cavities.

9.8.3 Choosing Sets of Contours

W e have also used the flexible isosurface to reproduce the funct ional i ty of Si lver 's Objec t -Or ien ted V i s u a l i z a ­
t i on [Sil95] and the Largest Con tou r Segmentat ion of Mander s et a l . [M H S + 9 6] . Fortunately , each of these
is a special case of a flexible isosurface, and each is easily computed .

Si lver [Sil95] defined contours wh ich were the largest topologica l ly unique objects near loca l m a x i m a ,

as shown i n F igu re 9.8(a). A s noted i n the capt ion of the figure, this i m p l i c i t l y assumes that "large" refers

to the volume of the upstart region (see Chap te r 10 of these contours. In this case, ex t rac t ing the relevant

contours from the contour tree is t r i v i a l : a l l that is required is to descend from each loca l m a x i m u m un t i l a

supernode is detected, then take a contour at a short distance above the supernode.

Mande r s et a l . [M H S + 9 6] defined contours that contained on ly one loca l m a x i m u m , using a region-
growing a lgor i thm s imi lar i n nature to the j o i n sweep a lgor i thm i n Sect ion 7.6.1. F igu re 9.8(b) shows the
results i n terms of the contour tree. No te that the region that grew from the loca l m a x i m u m label led LM1
stops at the isovaiue of B: thus, A, wh i ch has yet to reach the loca l m i n i m u m , w i l l p robab ly enclose a hol low
i n the middle of the object defined w i t h this segmentation. T h e authors do not indicate whether this was a
p rob lem for their appl ica t ion .

Since Objec t -Or ien ted V i s u a l i z a t i o n and Largest Con tour Segmentat ion bo th propagate outwards

from loca l m a x i m a (i.e. a downwards isovaiue sweep), they can bo th be found by s tar t ing a contour at

each loca l m a x i m u m , and evolving i t un t i l a suitable cutoff is reached. For s impl ic i ty , we have implemented

Si lver ' s Objec t -Or ien ted V i s u a l i z a t i o n i n A l g o r i t h m 9.4. Moreover , we have parameter ized the isovaiue so

94

that the contours need not appear immediately above the supernode bounding the superarc, but can be
adjusted simultaneously to view their evolution.

Input : A contour tree C = (V, E)
A proportion r

Output : A flexible isosurface F that shows object-oriented visualization, parameterized
along the upper edges of the tree with a parameter r.

1 F = 0
2 for each e = (u, I) in E, where f(u) > f(l) do
3 if u is an upper leaf of C then
4 Lethe=f(l)+rx(f(u)-f(l))

5 A d d (e, h) to F

end
end

Algorithm 9.4: Object-Oriented Visualization from the Contour Tree

9.9 Layout Problems in the Contour Tree Display

In this chapter, we have seen how the contour tree can be used to manipulate individual contours, and as a
visual index to possible contours. However, as a visual index, it has some drawbacks. In all the examples so
far, we have carefully chosen contour trees that are easy to draw. Some contour trees, however, are difficult
to draw for one of two reasons. Some contour trees cannot be drawn without edge crossings, and some simply
have too many superarcs to be practical to draw or to use as a visual index.

Although any tree can be laid out in two dimensions without superarcs crossing, this is no longer
true if one coordinate is constrained. Since we wish to define the y coordinate according to the isovaiue at
the supernode, trees such as Figure 9 . 9 cannot be drawn without crossing superarcs.

In general, graph layout is a difficult problem, with entire texts being devoted to the question [d B E T T 9 9] .

Since the contour tree does not have a root and since we wish to define the y-coordinate, our layout problem
can be classified as drawing a layered free tree while minimizing edge crossings. Although algorithms for
drawing layered graphs and free trees exist, this particular problem does not seem to have been addressed,
perhaps due to a lack of a driving application.

Moreover, minimizing the number of crossings in a layered graph is known to be a hard prob­
lem [d B E T T 9 9] . Whether the fact that we have a tree instead of graph simplifies the task also does not seem
to have been addressed. For graphs in general, tools such as dot1, assign layers to the vertices in a graph,
then employ heuristics based on energy-minimization to lay out graphs with few crossings. These methods,
however, are relatively slow, often taking a minute or more to lay out a graph with a few hundred nodes.
For contour trees with upwards of a million nodes, this is clearly impractical.

1 Available at h t tp : / /www. resea rch . a t t . com/sw/ too l s /g raphv iz / .

9 5

http://www.research.att.com/sw/tools/graphviz/

Possible locations for vertex 102

Figure 9.9: A Con tour Tree w i t h Intersecting Superarcs

Because the topic of suitable layout is c lear ly a major under tak ing i n its own right , we do the
fol lowing:

1. We show i n L e m m a 9.3 tha t there exist layered free trees i n wh ich crossings are unavoidable.

2. We i n i t i a l l y assign a rb i t r a ry z-posi t ions to supernodes.

3. W e al low the user to adjust supernode posit ions by hand, and to save and load supernode posit ions
for a given contour tree.

4. W e have implemented a rout ine that invokes dot to lay out contour trees of less than 256 superarcs.

In pract ice, the difficulty of l ay ing out large contour trees i n a meaningful fashion is one of the major
mot ivat ions for under tak ing s impl i f ica t ion of the contour tree i n Chap te r 11.

Lemma 9.3 It is not always possible to draw a contour tree C such that the y-position of each supernode is
proportional to the isovaiue at that supernode, and such that no two superarcs intersect in the drawing.

Proof: A counter-example is shown i n F igu re 9.9. Supernode 300 must be placed either to the left

or to the r ight of supernode 200. W i t h o u t loss of generality, assume tha t i t is to the left of 200. Supernode

100 can be on either side of 200: for clari ty, i t is also shown to the left. If supernode 101 is placed to the

left of 100, then superarc 200 —> 101 must intersect superarc 300 —> 100. Therefore, supernode 101 must be

placed to the r ight of supernode 100. A n d i f superarc 301 -+ 101 is to avoid intersecting edge 200 —> 100,

supernode 301 must be to the r ight of supernode 200.

There are then three possible locat ions for supernode 102, shown i n F igu re 9.9 as A, B, and C. If
A is chosen, then superarc 200 —> 102 w i l l intersect superarc 300 —> 100. S imi la r ly , i f C is chosen, then
superarc 200 —> 102 w i l l intersect superarc 301 —> 101, as shown i n F igu re 9.9. A n d i f B is chosen, then
superarc 302 — 102 w i l l have to intersect either 200 — 100 or superarc 200 — 101. •

T h e other major difficulty i n d rawing contour trees is tha t they may consist of thousands or mi l l ions

of superarcs. Such trees are next to useless for an interface, as shown i n F igu re 9.10. Trees w i t h such a large

number of superarcs can be caused by inherent ly complex data, or by noisy data . In either case, however, i f

we wish to use the contour tree as a v i sua l index to contours, we need to reduce the tree to a manageable

size. T h i s , however, is a separate topic , wh ich we deal w i t h i n Chap te r 11.

96

• Show Mils

£ 3 Coloured Cocitouxs

Local Contouis

E3 ShowContouiTiee

Figure 9.10: A n Unusable Con tour Tree

9.10 Summary of Contributions

In this chapter, I have in t roduced the following contr ibutions:

1. I have shown how to use the t ight correspondence between the contour tree and i n d i v i d u a l contours to
treat i n d i v i d u a l contours as dis t inct objects.

2. I have shown how to use this to heighten v isua l contrast of complex surfaces by assigning independent
colours to different surfaces.

3. I have shown how to isolate i n d i v i d u a l contours by suppressing a l l other contours i n an image, or to
delete specific contours from view.

4. I have shown how to use the contour tree to t rack the evolut ion of i n d i v i d u a l contour surfaces as the
isovaiue of that surface is var ied.

5. I have in t roduced the flexible isosurface, wh i ch enables user-driven exp lora t ion of a rb i t r a ry scalar data ,
wi thou t any a priori in format ion about the da ta being s tudied.

6. I have shown that Si lver ' s Objec t -Or ien ted V i sua l i z a t i on [S095] and the Larges t C o n t o u r Segmentat ion
of Mande r s et a l . [M H S + 9 6 j are special cases of the flexible isosurface.

In the next chapter, we start addressing the pr inc ipa l difficulty when using the contour tree as a
v isual representat ion of data : complex i ty and vulnerabi l i ty to noise.

(Delete Selection)

[Delete Complement)

(Restoie Deleted)

(Quit)

9 7

Chapter 10

Local Spatial Measures

In the previous chapter, we showed how to use the contour tree as a systematic index to i n d i v i d u a l contours
of the da ta set. T h e p r inc ipa l con t r ibu t ion of this chapter is to show how to add geometric functions such as
area, perimeter, and volume to the contour tree, combin ing topologica l and geometric informat ion . In the
next chapter, we w i l l then use the geometric informat ion to guide s impl i f ica t ion of the contour tree.

We w i l l show how to use regions bounded by contours to local ize these measurements to par t icular
regions of the doma in of the inpu t function. Since these measurements are spat ia l i n nature, we w i l l refer to
t hem as local spatial measure.

In this chapter, Sect ion 10.1 discusses previous work, whi le Sect ion 10.2 describes the regions for
wh ich we w i l l compute geometric functions. In Sect ion 10.3, we define the regions we w i l l work w i t h . In
Sect ion 10.4, we define functions w i t h respect to any region bounded by a single contour, and consider
some properties of these functions. T h e n , i n Section 10.5, we give a formal a lgor i thm for comput ing these
functions, whi le i n Sect ion 10.6, we give an example of how this a lgor i thm works. In Sect ion 10.7, we discuss
some spa t ia l measures that we can compute i n this fashion, inc lud ing geometric error between the or ig ina l
and s implif ied function. In Sect ion 10.8, we show how to compute approximate loca l spat ia l measures using
node and cell counts. F i n a l l y , i n Section 10.9, we review the contr ibut ions i n this chapter.

10.1 Previous Work

One way to compute geometric properties of a contour is to extract the contour exp l i c i t ly and measure
it geometrical ly. T h i s , however, can cost as much as O(N) t ime i n the size of the mesh for each contour
considered, a prohib i t ive cost i f we wish to examine many contours dur ing s impl i f ica t ion .

In their work on the Con tou r Spec t rum [BPS97] , B a j a j , Pascucc i & Schikore show that for s impl ic i a l
meshes, cer ta in geometric functions of the region "above" a level set are described by a piecewise po lynomia l
funct ion w i t h breakpoints at the isovalues of the vertices.

T h i s result follows p r inc ipa l ly from the observation that functions such as contour length, area, & c .

are decomposable [Ben79] into the sum of the function over each i n d i v i d u a l cel l of the mesh. In a s impl ic i a l

98

4000m

3000m

2000m

1000m

(a) Top V i e w (b) Surface Render ing (c) C o n t o u r Tree

F igure 10.1: E x a m p l e of a volcanic crater lake.

A : peak on crater r i m . B : peak of is land in lake. C and D : saddle points . F : lake surface.

mesh, this reduces the p rob lem to comput ing the function i n each s implex independently. In each s implex,

contour size (length i n 2 -D, area i n 3-D) is given by a piecewise p o l y n o m i a l funct ion of the isovalue parameter

h, w i t h knots at the isovalues of the vertices of the cel l . Since piecewise p o l y n o m i a l functions are closed

under add i t ion , i t follows that the to ta l size of the contours i n the level set is also a piecewise p o l y n o m i a l

function. S imi la r ly , since the cross-sectional area (in 2-D) or vo lume (in 3-D) is jus t the integral of the

contour size w i t h respect to the isovalue, and is therefore also a piecewise p o l y n o m i a l function.

However, B a j a j , Pascucc i & Schikore [BPS97] computed piecewise p o l y n o m i a l propert ies on ly for
the region (and contours) defined by a level set. T h e y d id not compute propert ies for i n d i v i d u a l contours,
merely for the aggregate of a l l contours at a given isovalue. Moreover , a l though the contour tree was also
computed for the same data , the geometric properties were not t i ed to i n d i v i d u a l contours i n the contour
tree.

Pascucc i [PasOl] t ied a topological proper ty to the contour tree: the topo log ica l indices cal led the

B e t t i numbers, bu i ld ing first o n the contour sweep a lgor i thm of van K r e v e l d et a l . [v K v O B + 9 7] , then, w i t h

C o l e - M c L a u g h l i n [P C M 0 2] , on the sweep and merge a lgor i thm of C a r r , Snoey ink & A x e n [CSA03] . In doing

so, they i m p l i c i t l y took advantage of the way the merge step sweeps a single contour at a t ime th rough

isovalues, sometimes f rom h igh to low, sometimes from low to h igh . W e w i l l do l ikewise.

Pascucc i & C o l e - M c L a u g h l i n computed only this one topologica l property, not geometric functions
of regions bounded by a contour . In the balance of this chapter, we w i l l show how to do so.

10.2 Geometric Properties of Regions Bounded By A Contour

In the previous section, we saw that B a j a j , Pascucc i & Schikore [BPS97] computed geometric functions of the
region "above" a level set, and that Pascucc i [PasOl] and Pascucc i & C o l e - M c L a u g h l i n [P C M 0 2] computed
topological properties of i n d i v i d u a l contours, based on the sweep and merge contour tree a lgo r i thm of C a r r ,
Snoeyink & A x e n [CSA03] . W e w i l l combine these ideas to compute geometric propert ies for contour-bounded
regions, again using the sweep and merge contour tree a lgor i thm as a s ta r t ing point .

B a j a j , Pascucc i & Schikore [BPS97] defined geometric properties i n terms of a sweeping (hyper)-

99

plane, wh ich divides the manifo ld of / in to two dis t inct sets: the region "above" and the region "below".
Fo r i n d i v i d u a l contours, i t is harder to define geometric properties. Consider F igu re 10.1, wh ich shows the
contour tree and some contours of a volcanic crater lake. It is clear wha t is meant by the region above the
2000m level set: this consists of two regions, one consist ing of the r i m of the volcano, the second the i s land
i n the caldera. B u t wha t is meant by the region above the 2000m contour marked c\! E v e n the region above
2000m tha t has c\ as a boundary is arguable, as its boundary is defined by bo th c\ and c^.

Moreover , we do not require that contours be closed curves (or surfaces). Instead, we work w i t h
regions bounded by a single contour and (possibly) the boundary of the da t a set. Contours i n general d iv ide
the region TZ into subregions. A contour c = (s, h) on a superarc s of the contour tree divides TZ into exact ly
two subregions, one of wh ich includes the region f(s) restr icted to isovalues above h, the other of wh ich
includes the region f(s) restr icted to isovalues below h. A contour tha t belongs to a supernode v of the
contour tree divides the region TZ into one subregion for each superarc incident to v. For each such superarc
s, the corresponding subregion w i l l conta in the region f(s).

100

N o t e tha t the contour tree is well-defined even i f the contours intersect the boundary, and so are the

regions into wh ich any given contour divides TZ.

W e compute geometric properties for these subregions. Instead of using "above" and "below", we

identify these regions by the arcs of the contour tree to wh ich the subregions correspond. W e w i l l show i n

Sect ion 10.5 tha t the computa t ions of B a j a j , Pascucc i & Schikore can be derived from our computat ions .

W e assume tha t the properties we are comput ing are decomposable: tha t we can compute the

proper ty for a region bounded by a contour by comput ing the proper ty i n each cel l , and combin ing the

results [Ben79]. W e assume that the combina t ion w i l l occur using addi t ion . A l t h o u g h this assumption is not

necessary, i t simplifies discussion i n this chapter.

Assumption 6 Any geometric property that we compute will be decomposable by computing the property for
each cell in the region of interest, then combining the results by addition.

W e also assume that the properties we are comput ing are piecewise-defined for each cell , and that ,
for each isovalue at wh ich a proper ty changes i n a cel l , the corresponding contour i n that cel l is inserted
into the contour tree. For s imp l i c i a l meshes and the properties that we consider, i t suffices to work w i t h the
unaugmented contour tree. Fur ther discussion of this w i l l be deferred to Chap te r 12.

R e c a l l that , i n the unaugmented contour tree, the edges and vertices are referred to as arcs and nodes
instead of superarcs and supernodes: we w i l l use arcs and nodes throughout this chapter as a reminder of
this .

Assumption 7 Any geometric property that we compute is piecewise-defined for each cell, and the break­
points of the functional form of the property occur at isovalues of the vertices of the cell.

10.3 Upstart and Downstart Regions

T o define the regions over wh ich we compute geometric properties, we start by recal l ing that from any

contour c, i t is possible to ascend along zero, one, or more arcs i n the contour tree, and correspondingly into

zero, one, or more connected components of TZ — c. For each ascending arc a, we collect the set of points i n

TZ — c wh i ch can on ly be reached by passing th rough contours belonging to a that have isovalues > h. Since

these points can on ly be reached from c by s tar t ing upwards along a, we w i l l ca l l the set an upstart region

of a at c.

We also recal l that any contour c that belongs to an arc a of the contour tree can be expressed as

a pair (a, h), where h is the isovalue of c. For a contour c wh ich belongs to a node / i , we cannot i n general

assign c to a par t icu lar arc incident to /J,, and must treat them s l ight ly differently.

Because we treat contours passing th rough nodes i n a different fashion than contours not passing

th rough nodes, we define upstar t regions separately for each case. For convenience, we start by observing

that , for any arc a of the contour tree, we can restrict the image f(a) of the arc to values greater or lesser

t han a given isovalue h:

101

Definit ion 10.1 Let a be an arc of the contour tree off, and let h be any isovalue. Define the image of a

restricted to isovalues above h, f(a)U = U{c = (a,h') : h> > h}, where each c is a contour belonging to a.

(a, h') : h' < h), where each c is a contour belonging to a. Similarly define f{a)\<h = \J{c

E a c h arc a is an equivalence class of contours, and the image f(a) is the u n i o n of the contours
belonging to a, so this defini t ion s imply divides the image into the subregions w i t h isovalues greater and
lesser than a given h, respectively.

Definit ion 10.2 Let c = (a, h) be a contour of f at isovalue h that belongs to arc a of the contour tree for f.

Define the upstart region of a at h to be: R+(h) = {x G Tl-c : every path in Tl from ctox intersects / (a) ^ }

and the downstar t region of a ath to be: R~(h) = { i € 7l-c : every path in Tl from c to x intersects f(a)\<h}

Upstart
Region at q
Downstart
Region at q

Contour c,

Upstart Region
j For Arc C D at D

Upstart Region
For Arc BD at D

Downstart Region
For Arc DF at D

(a) For C o n t o u r T h r o u g h a Regular Po in t (b) Fo r C o n t o u r T h r o u g h a Saddle

F igure 10.2: Ups ta r t and Downs ta r t Regions i n Volcano E x a m p l e .

A : peak on crater r i m . B : peak of i s land i n lake. C and D : saddle points . F : lake surface.
(a) shows upstar t region and downstart region for contour c\ t h rough a regular po in t .
(b) shows two upstar t regions and one downstart region for contour th rough saddle D .

In F igu re 10.2(a) we show sample upstart and downstart regions i n the volcano example. In this
figure, the hatched area is the upstar t region R^E{h) for the arc CE at h, the isovalue of contour c\.
Similar ly , the unhatched area is R^E{h), the downstar t region for the arc CE at h. Between them, these
two regions pa r t i t i on Tl — c.

For contours that pass th rough nodes, we use l imi ts to define the upstar t and downstar t regions:

Definit ion 10.3 Let c be a contour of f at isovalue h that belongs to node fi of the the contour tree T for
f, and let a be an arc ofT incident to p.. Define the upstart region of a at h to be Y\m.w^h+ R^iw) and the
downstart region of a ath to be l i m ^ ^ - R~(w).

In F igu re 10.2(b), we show bo th upstart regions and the single downstar t region for the contour that
passes th rough saddle point D i n our volcano example. The d iagonal ly hatched area is the upstart region
for arc CD at h, the isovalue of saddle D, whi le the cross-hatched area is the ups tar t region for arc BD at
h. In this case, there is on ly one downstar t region, consisting of the lake surface, w h i c h is unhatched.

N o t e that , i n th is example , the downstar t regions of CD a n d BD also exist at h. A p p l y i n g the l i m i t
in Def in i t ion 10.3, we see tha t the downstar t region R^,D(h) is ac tua l ly the un ion of the downstar t region

102

R^F(h) and the upstart region RgD(h). A l t h o u g h R\\D[h) cannot be reached by s tar t ing downwards from

the contour th rough D, we s t i l l include i t i n the downstar t region of CD, to preserve the complementar i ty of

the upstar t and downstar t regions of CD at h. S imi la r ly , the downstar t region RgD(h) is the un ion of the

downstar t region RpF(h) and the upstart region F ina l l y , the upstart region RpF(h) is the un ion

of the upstar t regions R%D{h) and R^.D(h).

W e cal l these regions upstart and downstart instead of up and down, above and below, or inside and
outside, i n order to avoid confusion. Because points i n an upstart region can have an isovaiue below that
of c, we avoid using up or above to refer to the set. S imi la r ly , we avoid us ing inside and outside because
"inside" can refer to regions of higher or lower isovaiue. Moreover , we may have mul t ip le inside or outside
regions, depending on our bounda ry condit ions. Ups t a r t and downstart , however, i m p l y that paths into
the region start off i n the upwards or downwards d i rec t ion, but may go i n the opposite d i rec t ion later. In
general, any contour c divides the region TZ in to one upstart region for each up-arc at c and one downstar t
region for each down- arc at c.

L e m m a 10.1 Let c = (a, h) be a contour of f. Then the upstart and downstart regions at c partition TZ — c,
and each upstart or downstart region is simply connected.

Proof: W e start by showing that the upstart and downstar t regions at c pa r t i t i on TZ — c, i.e. that
every point x £ TZ — c belongs to an upstart or downstar t region of c. We assume i n i t i a l l y that c does not
pass th rough a node of the tree, and can be wr i t t en as c = (a, h) where a is the contour tree arc to wh ich c
belongs and h is the isovaiue of contour c.

Because / is continuous, for any point x i n TZ — c, there exists some pa th Px from c to x that
intersects c on ly at its s tar t ing point . B y Theo rem 6.6, there exists a corresponding pa th Qx i n the contour
tree. B u t , because we have a tree, there are no cycles, and there is a unique shortest pa th Rx i n the tree
from c to x. Moreover , since there are no cycles i n the tree, every point i n Rx must also be i n Qx, so Rx is
a subset of Qx.

Since Rx is a shortest pa th , and there are no hor izonta l edges i n the tree, Rx must either ascend or

descend from c. If Rx ascends from c, then Rx must include at least one contour d = (a, h') contained i n

f{o)\>h- Since we know tha t Rx is a subset of Qx, d belongs to Qx, and Px contains at least one point of d.
It follows tha t x belongs to the upstar t region of a at h. S imi la r ly , i f Rx descends from c, then x belongs to

the downstar t region of a at h.

To see that the upstart and downstar t regions are s imp ly connected, consider R£(h), the upstart

region of a at c. A n y point i n f(a)\>k immedia te ly satisfies Def in i t ion 10.2, and belongs to R^(h). A n y

other point x i n i?+ (h) w i l l be connected to c by some pa th Px i n TZ — c, and, by the same argument just

used, Px intersects some contour d contained i n f(a)\>h- B y Def in i t ion 10.2, every point on Px between d
and x must also be i n R+(h), so x is connected to /(a)|>/i i n R+(h). Since this is t rue for every point x i n

the upstart region R+(h), the upstart region is s imply connected.

T h i s takes care of upstart regions defined by Def in i t ion 10.2, but not those defined by Def in i t ion 10.3.

W e now assume that c passes th rough a node of the tree, and app ly essentially the same argument, using

Def in i t ion 10.3. A s w approaches h, we generate a shortest pa th Rx(w) th rough the contour tree for each

value of w. In the l i m i t , even i f x is very close to the contour c, a l l such Rx(w) must share a common first arc

a, and i t follows that x belongs to the upstart (or downstar t) region of a depending on whether the Rx(w)
ascend or descend along a. It follows that every point x £ TZ — c belongs to an upstar t or downstar t region

of some arc a at c, and that these regions pa r t i t ion TZ — c. P r o o f that the upstar t or downstar t region is

103

contour at isovalue h

contour at isovalue f(p2)

By similar triangles, area
of shaded region is:
A = (h,) 2 a -2 h + a h 2

a = Area(P] P 2 P 3)
(h,-h2) (h,-h3)

contour at isovalue h,= fCp̂) contour at isovalue h

A r e a of shaded region is:
AreaCPjPjPj) - B

B y similar triangles,
B = (h 3) 2 p -2 h 3p h + ph 2

P = Area(P!P 2P 3)
(h2-h3) (h,-h3)

F igure 10.3: Sweep F u n c t i o n For A r e a i n a Single Triangle .
C o m p u t i n g the area of upstart regions i n a single t r iangle .
In each d iagram, we compute the area of the upstar t region as an exp l ic i t p o l y n o m i a l of h.
In the first d i ag ram, the area of the shaded upstar t region is given by the downward sweep
function for arc p\P2'- i n the second, by the downward sweep funct ion for arc piP3-
hi, hi, h3 are the isovalues at vertices pi, pi, p$.

s imply connected follows s imi lar ly . •

10.4 Geometric Properties of Upstart and Downstart Regions

We can now compute geometric properties for upstart and downstar t regions. W e start by assuming that

p is a geometric proper ty that is computable for any subregion of TZ. Since upstar t and downstar t regions

are subregions of TZ, we can define functions that compute the proper ty for upstar t or downstar t regions for

contours on any arc of the contour tree.

W e ca l l these functions sweep functions, since we w i l l compute t hem by sweeping a contour up or

down the arcs i n the contour tree, and s imultaneously sweeping the contour t h rough the under ly ing scalar

field. Since the contour c changes as the isovalue h is varied, these sweep functions take h as a parameter:

Definition 10.4 For any arc a = (u, v) and any geometric property p, we define the upward sweep function

p\{h) = p(R~(h)) and the downward sweep function p^(h) — p(R+(h)).

Note that the upward sweep function is defined in terms of the downstar t region: this is because we

measure the proper ty p for the region behind the contour being swept. Thus , as the contour sweeps upward ,

the downstar t region gets progressively larger. S imi la r ly , the downward sweep funct ion is defined i n terms

of the upstar t region.

To compute these sweep functions efficiently, however, we need to be able to represent t hem ana­

ly t i ca l l y - for example as po lynomia l s or piecewise polynomials , w h i c h can be stored as a set of co-efficients

and evaluated for any desired isovalue h. To achieve this, we require tha t p be decomposable into piecewise

polynomia ls for each cell intersect ing the contour and a single p o l y n o m i a l for a l l the inter ior cells of the up­

start or downstar t region. T h i s constraint allows us to update a piecewise p o l y n o m i a l for the sweep function

at the vertices of the s imp l i c i a l mesh that are swept through by the contour.

W e start by briefly rev iewing one of the results of Ba j a j , Pascucc i & Schikore [BPS97] . In a s impl ic i a l

mesh, properties such as area, contour length, & c . are decomposable, and can be computed for each cell

104

Contour at isovaiue 75

^>C^ Peak

Regular
"oint

Saddle

Pit

Interior cells of
upstart region

Border cells of
upstart region

Figure 10.4: Decompos ing A D o w n w a r d Sweep Func t ion . W e decompose the downward sweep function
into one p o l y n o m i a l for a l l of the inter ior cells of the corresponding upstar t region, and one
p o l y n o m i a l for each border cell of the upstart region.

ind iv idua l ly . In F igu re 10.3, we show how the area of the upstart region can be computed as an expl ic i t

function of the isovaiue h. In par t icular , note that the ana ly t i ca l form of this function is different over the

intervals (h2,h\) and (/i3, h2), bu t that , over each of these intervals, the coefficients of the p o l y n o m i a l are

determined by the isovalues of the vertices p\, p2 and p^.

A s a plane is swept t h rough a t r iangular mesh, i t sweeps past the vertices of the mesh, a l lowing

properties such as area to be computed progressively for the region above the sweep plane. A s each vertex

is swept past, the p o l y n o m i a l coefficients for the entire region are upda ted for the changes i n the coefficient

for the cells incident to the vertex.

For upstar t and downstar t regions, however, the s i tua t ion is s l ight ly more complex . In F igu re 10.4,

we show a contour being swept th rough the t r iangular mesh that we have used previously. Here, the contour

is shown at an isovaiue of 75: note that the region around the pi t label led 71 is inc luded in the upstart

region of the contour, even i f i t is below the isovaiue of the sweep contour . For propert ies such as area and

contour length, we can update the p o l y n o m i a l coefficients of the boundary, secure i n the knowledge tha t the

cells complete ly w i t h i n the upstar t region have been dealt w i t h .

If, however, we are compu t ing the volume between the mani fo ld and the plane defined by the sweep

contour, the coefficients w i l l need upda t ing for vertex 71 as wel l as for the vertices swept past by the sweep

contour, even i f vertex 71 has already been processed. To avoid this , we can instead compute the volume of

the s implif ied surface obta ined by p run ing the edge 80 — 71, as discussed i n Sect ion 11.3. If the correct vo lume

is required for a given upstar t or downstar t region, we can compute i t from the volume of the simplif ied

surfaces by t ak ing an a l te rna t ing sum through the arcs of the contour tree tha t correspond to the upstart

or downstar t region of interest.

105

T o deal w i t h this properly, we need to impose a constraint on our decomposable property: that i t

be computable by decomposing the region into the boundary cells of the upstart region - cells that intersect

the contour and the interior cells of the upstar t region - cells that are ent irely contained w i t h i n the upstart

region. W e therefore assume the fol lowing:

Assumption 8 Let p be any decomposable geometric property p being computed by sweeping a contour down
an arc a of the contour tree. We assume that, for each interior cell K of the upstart region, the analytic
form of p\x does not have any breakpoints over the range of isovalues corresponding to the arc a.

C o m b i n e d w i t h our assumpt ion tha t no two vertices have the same isovalue, this allows us to restrict
the effects of the contour sweep to those vertices past wh ich the contour sweeps.

Lemma 10.2 Let c\ = (a, hi) and C2 = {a, hi) be two contours belonging to an arc a = (u,v) of the
contour tree, and let p be a decomposable geometric property that satisfies Assumption 7 and Assumption 8.
Then p(R+(hi)) and (R+(hi)) share the same explicit analytic function in terms of h, as dop(R~(h{)) and

Proof: Because p is decomposable, we decompose p(R+(h)) on a cel l -by-cel l basis. For any interior
cell K of the upstar t region, we know by A s s u m p t i o n 8 that p\n does not have any breakpoints between
f(u) and f(v). Since hi and hi must also be between f(u) and f(v), i t follows tha t p\n does not have any
breakpoints between hi and hi.

For any boundary cell K of the upstart region, p\x can on ly have a breakpoint between hi and hi
i f a ver tex w of K has an isovalue between hi and hi. B u t , i f this were the case, then w wou ld be between u
and v i n the contour tree, since a contour wou ld have to sweep th rough i t between sweeping th rough u and
v. B y cont rad ic t ion , therefore, P\K has no breakpoint i n the in terval (hi, hi).

Since none of the cells into wh ich the upstart region has been decomposed have breakpoints for p i n

the range (hi, hi), i t follows tha t the expl ic i t ana ly t ic form for p(R+(hi)) and (R+(hi)) must be ident ical ,

as required. •

W e now consider what happens as a contour sweeps past a vertex v of the mesh - wh ich is also a

node i n the contour tree. L e t the cells incident to the vertex be K\,...Kr, and consider some cell K wh i ch

is not incident to v. B y our assumpt ion that no two vertices have the same isovalue, we know that K does

not have a vertex w i t h the same isovalue as v. B y A s s u m p t i o n 7, p restr icted to K does not have a break

point at f(v). It follows that we can update the coefficients for the expl ic i t ana ly t i ca l form of p by inspect ing

on ly the cells Ki,... Kr.

L e t us first consider what happens at a leaf of the contour tree. A n upper leaf of the contour tree

has no up-arcs, and we can assume that p does not exist above the leaf. A downwards sweep past the leaf

therefore starts w i t h p = 0 and an empty contour. Immedia te ly below the leaf, the contour w i l l intersect

on ly the cells incident to the leaf, m a k i n g i t easy to compute:

Lemma 10.3 At an upper leaf ji of the contour tree with incident arc b,

(K(h2))-

r
(10.1)

106

Proof: Since a is an upper leaf, there is no contour above i t , and only one below it . Before sweeping
a contour past a, the set of boundary cells of the upstart region w i l l be empty, as w i l l the set of interior
cells. Af ter sweeping a contour past u, cells K\,..., Kr w i l l be the complete set of boundary cells, whi le the
set of inter ior cells w i l l r emain empty. T h e result then follows from the decomposabi l i ty of p. •

A t lower leaves, the result is s imi lar (proof omit ted) :

Lemma 10.4 At a lower leaf u of the contour tree with incident arc a,

pl = J2iP\Kj)l (10-2)

A t regular points , we get a s l ight ly more complex result:

Lemma 10.5 At a regular point u of the contour tree with incident up-arc a and down-arc b,

r r

P i - J 2 (pi^ -) i = pi - E (pi*i)J (1 0- 3)
3 = 1 3 = 1

and

j = l 3=1

Proof: L e t K be any inter ior cel l of the upstart region R£(f(u)). K w i l l also be an interior cel l of
the upstart region R^(f(u)). B y our assumpt ion that isovalues of the vertices of the mesh are unique, P\K
w i l l not have a breakpoint at f(u), so its cont r ibu t ion to p^ and to pj; w i l l be ident ica l . S imi la r ly , i f K is
a boundary cell of R^(f(u)) that is not incident to /J, i n the mesh, i ts con t r ibu t ion to p^ and to p^ w i l l be
ident ica l .

It then follows that p^ and p\ differ on ly i n the contr ibut ions of the cells K\,..., Kr, and since we
subtract these contr ibut ions from each side of the equation, the result follows. •

T h e result of sweeping past a saddle, however, is not so simple, because the contours i n cells
K\,..., KT do not necessarily belong to the same arcs, either above or below the saddle. We must therefore
look at a l l arcs incident to the c r i t i ca l point simultaneously. For a c r i t i ca l point of degree S, we w i l l need
to know 6 — 1 of the sweep functions to compute the remain ing one. In general, we assume that we already
know the downward sweep functions of the up-arcs, and the upward sweep functions of the down-arcs.

Unfor tunate ly , there is no general rule for the relationships of the sweep functions at a saddle, so
we w i l l have to prove the relat ionship for each function of interest.

W e w i l l s tart w i t h a s imple function: the contour size (length i n 2 -D, surface area i n 3-D):

Lemma 10.6 Let p be a function that measures contour size, and let a be an arc of the contour tree. Then

Pla = Pi-

Proof: We are measuring the size of the contour - that is, the boundary of a region. T h e complement
of the region has the same boundary, and therefore has the same contour size. •

107

T h e o r e m 10.7 Let p be a function that measures contour size. Let be a saddle with up-arcs a\,..., cis+^
and down-arcs b\,..., bg-^y Let ̂ belong to cells K\,..., KT, and let these cells intersect contours belonging
to arcs ct\,... ,ar above /J, and arcs (3\,... ,(3r below /J,. Choose any down-arc: without loss of generality,
renumber so we choose b\. Then:

<5+(M) R R

PL = E & - E < - E + E (pî)i, (10-5)
i = l i=1 j = l j=l

Proof: W e start by t ak ing the contour sizes for a l l up-arcs at /n, and upda t ing the cells K\,..., Kr

to sweep downwards past [i. Since the contour length is the sum of the lengths i n the i n d i v i d u a l cells, i f we
update for each Kj, we get the sum of the combined contour size for the contours sweeping down from the
top of a l l of the down-arcs. We then rearrange, and apply L e m m a 10.6:

Y , p l
i = l

5+(M)

= E pi
1=1 j = i 3=1

< = E pi
i=l

- E ^ - E (^) i , + E (p i ^
i=2 j=l j=l

«+(/x)

= E ^
i=i

8~(n) r r

- E p i - E c p i ^ t + E c p i ^
t=2 j = l j = l

(10.6)

•

A t loca l ex t rema and regular points , this collapses to the terms shown i n L e m m a 10.4, L e m m a 10.3,
and L e m m a 10.5, w h i c h gives us the following useful result:

L e m m a 10.8 Let p be a function that measures contour size. Let /J, be any node of the contour tree, with
up-arcs a i , . . . , o,5+(/X) and down-arcs b\,..., bs-^). Let belong to cells Ki,..., Kr, and let these cells
intersect contours belonging to arcs ct\,... ,ar above /i and arcs ... , / 3 r below /i. Choose any down-arc:
without loss of generality, renumber so we choose b\. Then Equation 10.5 holds.

Proof: For saddles, this is true by T h e o r e m 10.7. A t loca l m i n i m a , there is no down-arc 61, so this

is t r i v i a l l y true. A t loca l m a x i m a , the first, second, and t h i r d summat ions are a l l 0, leaving E q u a t i o n 10.1.

A n d at regular points , the second t e rm drops out, leaving E q u a t i o n 10.3. •

T h e dua l is also true for upward sweeps: bo th the statement of the dua l and its proof are ident ica l

to that shown, except for the sweep direct ion, and are omi t ted .

For region size (the region to the specified side of the contour, a different proper ty holds: that the
s u m of the region sizes is always equal to the size of the domain of / :

L e m m a 10.9 Let p be a function that measures region size, and let a be an arc of the contour tree. Then

Pa = P (K) -pl-

Proof: U n d e r our assumptions of a s impl ic i a l mesh w i t h barycentr ic in terpola t ion and unique iso­

values, we know that the contour itself is of 0 size (i.e. area for 2-D data , volume for 3-D data) . Since each

contour divides the space into disjoint regions, their sum must always be the size of the entire region. •

108

A l t h o u g h this is convenient, we s t i l l need to state what happens at saddles:

Theorem 10.10 Let p be a function that measures region size. Let a be a saddle with up-arcs a\,..., ds+(it)

and down-arcs b\,..., b$-^y Let a belong to cells K\,..., Kr, and let these cells intersect contours belonging
to arcs a i , . . . , a r above a and arcs (3\,...,(5r below u. Choose any down-arc: without loss of generality,
renumber so we choose b\. Then:

c5+(M) S-(H) r r

< = E * i + E * i - E (pi*j)i, + E (pi*>)i, (10-7)
i=l i=2 j = l j=l

Proof: A g a i n , we start by t ak ing the sum of the sizes for a l l up-arcs at a, and upda t ing the cells

Ki,..., Kr to sweep downwards past a. U n l i k e the contour length, however, wha t we have computed is

not the s u m of the down-sweeping functions along the down-arcs. For each bi, p^ includes the area of each

upstar t or downstar t region at u except the downstar t region for 6j. Thus , i f we s imp ly add the p£ terms

together, we w i l l add several areas mul t ip le t imes.

Instead, we sum the areas for the up-arcs and update for each Kj, to get:

<5+(A0 r r

E pi, - E (pi^-)i, + E (pi*4, (10-8)
i=i j=i j=i

T h i s expresses the combined area enclosed by the contours sweeping down a l l of the down arcs. T o

get the area enclosed by one of them, we must add the k n o w n areas enclosed by the rest:

(5+(M) S-(H) r r

pl = E < + E pi. - E (pi^)i, + E (PI*J)J, (1 0 - 9)

t=l *=2 j = l j=l
•

A s w i t h L e m m a 10.8, at loca l ex t rema and regular points , this collapses to the terms shown i n
L e m m a 10.4, L e m m a 10.3, and L e m m a 10.5, wh ich gives us the fol lowing useful result:

Lemma 10.11 Let p be a function that measures contour size. Let a be any node of the contour tree,

with up-arcs a\,..., ag+^ and down-arcs bi,..., bg-^. et u belong to cells K \ , . . . , Kr, and let these cells

intersect contours belonging to arcs a \ , . . . ,ar above a and arcs 0i,... ,(3r below a. Choose any down-arc:

without loss of generality, renumber so we choose b\. Then Equation 10.7 holds.

Proof: For saddles, this is true by Theo rem 10.10. A t loca l m i n i m a , there is no down-arc bi, so this

is t r i v i a l l y true. A t loca l m a x i m a , the first, second, and th i rd summat ions are a l l 0, leaving E q u a t i o n 10.1.

A n d at regular points , the second t e rm drops out, leaving E q u a t i o n 10.3. •

A g a i n , as w i t h contour size, the dua l is also true for upward sweeps: bo th the statement of the dua l

and its proof are also ident ica l to that shown, except for the sweep di rec t ion, and are omi t ted .

109

10.5 Algorithm For Computing Local Spatial Measures

W i t h these results i n hand, we can state an a lgor i thm for comput ing loca l spat ia l measures. A s m a y be

apparent from the properties we proved i n the previous section, we w i l l compute these properties using

essentially the same merge a lgor i thm that we use to construct the contour tree from the j o i n and spli t trees.

Because the details of combin ing sweep functions and inver t ing them to reverse d i rec t ion depend on

the geometric proper ty being studied, we assume that Combine () and Invert() functions are available that

perform these operations for us.

W e start by defining a function to update sweep functions at a vertex u i n A l g o r i t h m 10.1.

SweepUpdate(p, u, a)
Input : Decomposable function p

Ver tex u

A r c a incident to u. W i t h o u t loss of generality, a ascends from u

(Implici t) Funct ions pjj, for a l l up-arcs b at u except a

(Impl ic i t) Funct ions p\ for a l l down-arcs B at ii

Output : Funct ions p\ for arc a

1 L e t pi = 0
2 for each down-arc b at a do

| L e t pi = pi + p\

end
3 for each cell c incident to a do

L e t a be the up-arc at ii, and (3 the down-arc, whose contours intersect c
L e t p l = P l - (p\c)l + (p\c)l

end
6 for each up-arc b at a except a do
7 if p measures contour size then
8 | L e t pi = pi - pl

b

else if p measures region size then
| L e t p T = p T + p i

end

Algorithm 10.1: C o m p u t i n g Sweep Funct ions at a Ver tex a

Lemma 10.12 Algorithm 10.1 computes p\ correctly in 0(degree(u) + N(u)) time, where N(u) is the
number of cells incident to a in the mesh.

Proof: Step 2 computes

J2 pi
i=l

Step 3 then adds

3 = 1 J = l

110

as i n the dua l to L e m m a 10.8 and L e m m a 10.11. Step 6 then adds or subtracts

t=2

where b = b\ w i thou t loss of generality. Step 6 subtracts this t e rm i f sweeping th rough contour size, adds i t
i f sweeping th rough region size, as i n the duals of L e m m a 10.8 and L e m m a 10.11.

Thus , by the duals of L e m m a 10.8 and L e m m a 10.11, correctness follows.

Step 2 and Step 6 execute a to ta l of degree(u) — 1 t imes at a cost of 0 (1) each. Step 3 executes a to ta l
of N(u) t imes at a cost of 0(1) each. Therefore the t ime required for this a lgor i thm is 0(degree(u) + N(u)).

a

Input : Con tou r Tree C
Decomposable function p
F u n c t i o n Combine(u, a) to compute function at vertex a a long outgoing arc a
F u n c t i o n Invert(a) wh i ch converts p^ to p\ and vice versa

Output : Funct ions p^ and pi for each arc a i n C

l M a k e a copy C of C
2 for each vertex u do
3 if a is a leaf of C then
4 | Enqueue(/ i)

end
end

5 while NumberOf Arcs(C) > 0 do
6 Dequeue u and retrieve arc a = (a, u) from C
7 W i t h o u t loss of generality, assume a ascends from u
8 L e t p\ = Combine(u,a)
9 L e t pi = Invert(a)

10 Delete a f rom C
11 if degree(u) = 1 then
12 | Enqueue(/ i)

end
end

Algorithm 10.2: C o m p u t i n g L o c a l Spa t ia l Measures from Leaves Inwards

Once we have the rout ine for combin ing results at a vertex u, we can define the loca l spat ia l measure

a lgo r i thm i n A l g o r i t h m 10.2.

Theorem 10.13 Assume that Invert(a) takes 0(1) time. Then Algorithm 10.2 correctly computes each p^
and p\ in 0(N) time.

Proof: A s each vertex and its incident arc are processed, we reduce the size of the tree C by one.
Step 11 adds each vertex to the queue as i t becomes a leaf, guaranteeing that there is always at least one
ver tex on the queue to process, un t i l the a lgor i thm halts.

W h e n a is processed at a, we know that a l l other incident arcs to fi have been processed and deleted
from C, so we know from L e m m a 10.12 that Step 8 operates correctly.

I l l

Step 1 takes 0(t) t ime to compute, as does Step 2. Step 5 executes 0(t) t imes: for the unaugmented

contour tree, this is 0{n). E a c h of the sub-steps of Step 5 except Step 8 takes O (l) t ime, whi le Step 8 takes

0(degree(n) + N(fi) t ime by L e m m a 10.12. S u m m e d over a l l vertices /J i n a s imp l i c i a l mesh, this is O(N),
which gives the desired result. •

W e can add several sma l l observations to this . F i r s t , i t is not difficult to combine this a lgor i thm w i t h

the merge sweep a lgor i thm, and compute t hem simultaneously. Second, because we require every node i n the

mesh, the divide-and-conquer a lgor i thm of Pascucc i & C o l e - M c L a u g h l i n [P C M 0 2] w i l l not give any advantage

over the sweep-and-merge a lgor i thm of C a r r , Snoeyink & A x e n [CSA03] , as the former discards regular points

to achieve its speed gains. T h i r d , the a lgor i thms of C h i a n g & L u [CL03], and of C h i a n g et a l . [C L L R 0 2] do

not compute the unaugmented contour tree, and cannot be used to compute loca l spat ia l measures.

F o u r t h , we can use our loca l spat ia l measures to compute the isovalued sweep functions from B a j a j ,
Pascucc i & Schikore [BPS97] . R e c a l l that we compute the proper ty p for upstart and downstar t regions
along a par t icu lar contour. B a j a j , Pascucc i & Schikore computed the proper ty p for the region above a
sweep (hyper-) plane. To ob ta in the equivalent, we compute the proper ty for an upstar t region, then adjust
our result for other contours at the same isovalue.

Fo r example, i f we are comput ing area, we w i l l need to subtract out the area of any enclosed
downstar t region, then add the area of any upstart regions inside that , and so on. L e t v be any vertex i n
the tree, and perform a breadth-first search from v th rough the tree. E v e r y t ime the breadth-first search
passes the isovalue h of interest i n a downwards d i rec t ion on an arc a, we subtract p^. E v e r y t ime the search
passes the isovalue h i n an upwards d i rec t ion on an arc a, we add p\. B y generat ing an a l ternat ing sum i n
this fashion, we cancel out the regions below the sweep plane, g iv ing the desired result.

W e noted earlier that we could not compute volume d i rec t ly w i t h our a lgor i thm, but could instead
compute the s implif ied volume resul t ing from prun ing edges of the tree tha t were contained i n the upstar t or
downstar t region being processed. We can then compute the correct vo lume w i t h a l ternat ing sums, restr icted
to the subtree contained i n the upstar t or downstar t region of interest.

10.6 Example of Local Spatial Measure Computation

R e c a l l that i n Chap te r 7, we showed the progress of the merge phase i n F igu re 7.6: we reproduce a single

step from this figure as F igu re 10.5, showing the result of combin ing area functions at the saddle point 81.

In this figure, each coloured region corresponds to the set of contours belonging to a single superarc. We are

about to ca l l A l g o r i t h m 10.1 to deal w i t h the saddle at 81.

A t 81, the areas corresponding to superarcs 90 — 81 and 81 — 71 are combined: the effect of The ­
orem 10.10 is to cancel out a l l the terms for the boundary between the two regions, leaving a constant
representing the area of a l l tr iangles complete ly w i t h i n the outer contour incident to vertex 81, and terms
representing the outer contour 's sweep downwards along 81 — 50.

112

Superarc 100-50 Superarc 90-81

Superarc 81 - 71

Vertex 81

Superarc 30-0

Superarc 30 - 20

Superarc 80 - 50
Figure 10.5: C o m p u t i n g the Func t i on For Sweeping D o w n Superarc 81 - 50

10.7 Sample Local Spatial Measures

It would be futile to a t tempt to list a l l of the geometric properties that can be compu ted as loca l spat ia l
measures. Instead, we list some examples of properties that can be computed , s t a r t ing w i t h measures for
two-dimensional scalar fields:

I s o l i n e L e n g t h measures contour size and is computed using T h e o r e m 10.7.

C r o s s - S e c t i o n a l A r e a measures the area of the upstart region and is computed using T h e o r e m 10.10.

S u r f a c e A r e a is the integral of the isoline length w i t h respect to h a n d is computed using T h e o r e m 10.10.

V o l u m e is the integral of the cross-sectional area w i t h respect to h and is discussed below.

S y m m e t r i c D i f f e r e n c e is a measure of error based on volume

R M S E r r o r is the root -mean squared error between two sets of samples, and is also discussed below.

B o u n d i n g B o x e s can also be computed as loca l spa t ia l measures.

V o l u m e is the volume of the region under the function / inside the upstar t or downstar t region.
Fo rma l ly wr i t t en , this is:

y = / f(x,y)dxdy
JA

where A is the upstart or downstar t region i n question. T h i s is a decomposable proper ty w h i c h can be

expressed as the sum of the volumes for each cell of the mesh. Formal ly , the R i e m a n n s u m wh ich defines an

113

in tegra l is a l i m i t based on a decomposable property, so i t is l i t t le surprise that integrals can be computed

as loca l spa t ia l properties.

Symmetric Difference is s imp ly a measure of the geometric difference between two surfaces. In

the case of two dimensional scalar fields, this simplifies to the volume bounded by the two surfaces. A s we w i l l

see i n the next chapter, the s impl i f ica t ion me thod we use modifies the function by flattening out upstart or

downstar t regions. Thus , the symmetr ic difference between the or ig ina l function and the simplif ied function

w i l l be:

J A

for some isovalue h . Ra the r than comput ing this directly, i t is s impler to compute the volume and the area
separately, then compute the symmet r ic difference as needed.

Root Mean Squared Error measures geometric error between two sets of samples. P r o p e r l y
speaking, this is an approximate measure, and is discussed i n the next section. For now, i t suffices to note
that i t can be computed .

In three dimensions, each of these measures has its paral le l : isoline length becomes contour surface
area, cross-sectional area becomes cross-sectional volume, surface area becomes hypersurface volume,
and volume becomes hypervolume.

10.8 Approximate Local Spatial Measures

W e w i l l not always want correct loca l spat ia l measures to h igh accuracy. For some purposes, we may be

satisfied w i t h approximat ions . For regular meshes, i n par t icular , we can compute approximat ions as follows:

Lemma 10.14 In regular meshes, the count of nodes along the arcs of the contour tree approximates region
size.

Proof: R e c a l l that the area bounded by a curve can be computed using integral calculus using

R i e m a n n sums as the size of i n d i v i d u a l patches approaches 0. For a regular mesh, count ing the nodes is

equivalent to s topping the l i m i t process w i t h a patch size of 1 x 1 (in two dimensions) . •

Lemma 10.15 In regular meshes, the count of cells intersecting a contour approximates contour size.

Proof: A g a i n , recal l that the correct contour size is a R i e m a n n sum of segments (in two dimensions)

or patches (in three dimensions) as segment or patch size approaches 0, or as the size of the cells into which

we decompose the d o m a i n approaches 0. A g a i n , we stop the l i m i t process at a cell size of 1 x 1 (in two

dimensions) . •

Lemma 10.16 In regular meshes, volume (2D) or hypervolume (3D), and therefore symmetric difference,
can be approximated with the sum of the samples in an upstart or downstart region.

114

Proof: In this case, the integral that defines the volume under the surface is defined to be the

R i e m a n n sum of the value of the function / as patch size approaches 0. •

F ina l l y , we can compute R o o t M e a n Squared E r r o r (R M S) as follows:

L e m m a 1 0 . 1 7 Let f be a scalar field defined over a regular mesh, and let g be a simplified version of f
with isovaiue h inside an upstart or downstart region A, but which is equal to f elsewhere. Then the Root
Mean-Squared Error of g is given by:

where n is the number of samples in TZ, the domain of f and g.

Proof: Formal ly , R M S is defined i n terms of the difference between the samples tha t define / and

g. W e develop the desired result as follows:

as required. •

No te that the second of these summat ion terms is the volume (or hypervolume) computed using the

previous l emma, whi le the first summat ion t e rm is the sum of the squares of the sampled values, and the

last t e rm is the area mu l t i p l i ed by the square of the simplif ied isovaiue.

E a c h of the approximat ions discussed above is a piecewise function that changes only at vertices of
the mesh. It follows that , w i t h suitable minor changes, A l g o r i t h m 10.2 computes these properties correctly.

T h i s chapter has two p r inc ipa l contr ibut ions: loca l spat ia l measures, and approximate loca l spat ia l measures.

T h e first of these contr ibut ions extends work of B a j a j , Pascucc i and others to compute exact geometric

properties w i t h respect to a l l possible isosurfaces i n the contour tree, whi le the second approximates these

properties. T h e p r inc ipa l value of these contr ibut ions w i l l become apparent i n the next chapter, i n wh ich

we w i l l use geometric properties to guide s impl i f ica t ion of the contour tree.

RMS

10.9 Summary

115

Chapter 11

Contour Tree Simplification

T h e contour tree is vulnerable to noise i n the input data . A s a result, the contour tree for a large acquired
da ta set can have mi l l ions of edges. T h i s renders the contour tree imprac t i ca l as an abst ract ion of acquired
data , either for au tomat ic processing, or for direct human v isua l iza t ion .

T h e p r inc ipa l con t r ibu t ion of this chapter is to show how to s impl i fy the contour tree to a size
humans can deal w i t h , bo th to remove the effects of noise, and to enable large complex da ta sets to be
v isua l ized w i t h the contour tree. A s secondary contr ibut ions, I also show tha t s impl i fy ing the contour tree
applies a meaningful s impl i f ica t ion to the under ly ing data, and that this form of s impl i f ica t ion can used for
noise reduct ion.

Sect ion 11.1 demonstrates the vu lne rab i l i ty of the contour tree to noise by examin ing the size of
the contour tree for different types of data . Sect ion 11.2 reviews previous work, discusses the stages of
v i sua l i za t ion at wh ich s impl i f ica t ion can be appl ied, and argues that the most appropria te stage is the
stage at wh ich we abstract the da ta and compute the contour tree. Sect ion 11.3 then introduces the type of
s impl i f ica t ion tha t we apply to the contour tree, describes the corresponding simplif icat ions to the under ly ing
data , and states a set of rules to be respected when s impl i fy ing the contour tree. Sect ion 11.4 then states
an a lgor i thm to perform the s impl i f ica t ion, whi le Sect ion 11.5 i l lustrates the results of app ly ing different
operat ions, rules and measures.

T h e balance of this chapter then looks at some prac t ica l issues: Sect ion 11.6 describes modificat ions
to the flexible isosurface interface to accommodate changing levels of s impl i f ica t ion . Sect ion 11.7 then
discusses topological noise removal: using the simplif ied contour tree to remove noise i n the under ly ing data .

F i n a l l y , Sect ion 11.8 summarizes the contr ibut ions i n this chapter and this Pa r t .

11.1 Noise in the Contour Tree

T h e contour tree is imprac t i ca l as a v i sua l representation of the da ta i f i t has a large number of edges. S m a l l

details, i n par t icular noise, cause the contour tree size to increase. In Table 11.1, we show some results for

the size of the contour tree for a variety of da ta sets: full details on the da ta sets can be found i n Chapte r 16.

116

File Type Mesh Size Samples(N) Tree Size (t) Tree/Data Ratio
marlobb (MC) Analytical 41 x 41 x 41 68,921 912 1.32%
fuel (MC) Simulation 64 x 64 x 64 262,144 227 0.09%
fuel (5S) Simulation 64 x 64 x 64 262,144 299 0.11%
hipiph (MC) Simulation 64 x 64 x 64 262,144 1,360 0.52%
neghip (MC) Simulation 64 x 64 x 64 262,144 2,063 0.79%
neghip (5S) Simulation 64 x 64 x 64 262,144 2,544 0.97%
f368.0.6 (MC) Molecule 35 x 17 x 51 30,345 915 3.02%
3gap.0.8 (5S) Molecule 29 x 60 x 131 227,940 13,164 5.78%
3gap.0.8 (MC) Molecule 29 x 60 x 131 227,940 14,290 6.27%
ldog.0.8 (5S) Molecule 72 x 64 x 60 276,480 17,656 6.39%
ldog.0.8 (MC) Molecule 72 x 64 x 60 276,480 18,948 6.69%
lobster (MC) C T scan 34 x 120 x 120 489,600 17,867 3.65%
teddybear (MC) C T scan 61 x 128 x 128 999,424 245,588 24.57%
3dhead (MC) MRI scan 109 x 256 x 256 7,143,424 2,231,900 30.75%
3dhead (5S) MRI scan 109 x 256 x 256 7,143,424 2,196,594 31.24%
3dknee (MC) MRI scan 127 x 256 x 256 8,323,072 2,751,506 32.51%
3dknee (5S) MRI scan 127 x 256 x 256 8,323,072 2,706,019 33.06%

Table 11.1: Effects of Size and D a t a T y p e on the Con tour Tree.
F i l e : N a m e of the file. (5S) = contour tree computed using m i n i m a l (5-fold) s impl ic i a l
subdiv is ion of cubes. (M C) = contour tree computed using M a r c h i n g Cubes (Chapter 14).
T y p e : T y p e of data .
M e s h Size: Dimensions of the input cubic mesh.
Samples: T o t a l number of samples i n the input mesh
Tree Size: N u m b e r of vertices i n the contour tree, before s impl i f ica t ion or removal of effects
of per turba t ion .
R a t i o : R a t i o of tree size to number of samples.

In the table (M C) indicates that the contour tree was computed using M a r c h i n g Cubes , as described i n
Chap te r 14, whi le (5S) indicates tha t the contour tree was computed using a te t rahedral mesh obtained
by subd iv id ing each cubica l cel l into 5 simplices (tetrahedra). A s is apparent from the table, however, this
makes l i t t le difference to the size of the contour tree.

F r o m this table, we can draw several conclusions. F i r s t , the size of the contour tree is s t rongly

dependent on the type of data . T h e first group i n the table is of da ta sets tha t are either defined ana ly t ica l ly

or by numer ica l s imula t ion . In either case, there is unl ike ly to be much noise i n the data , a l though some

is possible due to numer ica l instabi l i t ies or round-off errors. T h e second group i n the table is of electron

d i s t r ibu t ion i n prote in molecules. A l t h o u g h this da ta is computed rather t han acquired, i t is a s imula t ion

of acquired data , and includes some s imulated noise. T h e t h i r d group consists ent irely of exper imenta l ly

acquired data , i n wh ich noise is known to be a problem.

T h e second conclusion that we can draw is that the size of the contour tree seems to be related to

the amount of noise i n the data . We w i l l see i n F igure 11.2 w h y this might be. Note , however, that there

can also be a lot of genuine small-scale detai l , so we cannot conclude that noise is the cause wi thou t further

study.

T h e t h i r d conclus ion is that , even for clean s imulated data , the contour tree m a y have several

thousand edges. For noisy scanned data, i t is imprac t i ca l to use the contour tree, either as a representation

of the data , or for man ipu la t ing surfaces i n the flexible isosurface interface. In order to take advantage of

the contour tree for either of these purposes, we need to simplify the data , the contour tree, or bo th .

117

Signal
Processing
(Frequency

Domain)
Acquisition

Scalar Samples
(Filtering)

Interpolation &
Reconstruction

Reconstructed
Function

Geometric
Processing"

(Spatial
Domainp'

3 7 Z .
Gradient, &c. f
Information \

Transfer
Function Design

^Topological
Histogram : . 3m

,.,,̂ •4 Processing

Mesh Constrin twu

lnfor

(Spatial J_ , u ^ . . , - ,

Interpolated
Mesh

""•"Domain

•uji'V *

i Information |

Transfer
t Function *

IE
7

r . 1 1 , '""I Contour Tree
CTree / Topology
Simplification)

/ ..

9

Seed:

Contour Tree Layout

si
Isosurfaces

(Surface Simplification)

Smtti\.c Rcndcimg
(Projection / Reflection) |>

|_ Volume Rendering
(Projection / Transmission)

Visual Display
(Object Suppression)

KEYA. Stage of Processing
(Type of Simplification)

Figure 11.1: F lowchar t for Scalar F i e l d V i s u a l i z a t i o n . Note how signal processing and geometric pro­
cessing are essentially independent approaches to v i sua l i z ing scalar fields. T h e contour tree,
wh ich encapsulates topologica l informat ion , is closely related to geometric processing, but
can also be used to a id i n s ignal processing.

11.2 Simplification and Visualization

Before s impl i fy ing the contour tree, we must acknowledge that our computa t ion is merely one stage of a

larger process, shown i n F igure 11.1. We can i n pr inciple app ly s impl i f ica t ion at almost any stage of the

v i sua l i za t ion process. However, most types of s impl i f ica t ion are not successful at s impl i fy ing the contour

tree. T o see this, we briefly review the various types of s impl i f ica t ion shown i n F igure 11.1, as wel l as a

118

Input Signal 0 0 0 0 0 100 100 100
0 0 0 0 0 100 100 100
0 0 7 1 1 100 100 100
0 0 0 0 0 100 100 100
0 0 0 0 0 100 100 100

Filter:
16

1
2
1

2
4
2

1
2
1

Output Signal 0 0 0 0 19 56 75 56
0 0 1 1 25 75 100 75
0 1 2 1 25 75 100 75
0 0 1 1 25 75 100 75
0 0 0 0 19 56 75 56

Figu re 11.2: F i l t e r i n g a Topo log ica l ly S m a l l D e t a i l . In this smal l two-dimensional example, we see that
a l though fi l tering smoothes out the peak at 7, i t does not e l iminate i t from the contour tree.

topologica l approach k n o w n as persistence.

Filtering is performed on the or ig ina l samples from the under ly ing function. F i l t e r i n g is a general izat ion
of the reconst ruct ion process described i n Sect ion 4.2. It operates by reconst ruct ing the function w i t h a
special ized kernel function, then re-sampling. It has the advantage that i t is wel l unders tood and wide ly
used for s impl i fy ing da ta and removing noise. A n overview of fi l tering can be found i n a text such as that
by Gonza lez & Woods [GW02] .

Unfor tunate ly , as we saw i n Sect ion 4.2, kernel functions tend to be too complex for us to perform
topologica l or geometric analysis on them. Thus , i f we use fi l tering to s impl i fy the data , we must do so
before comput ing the contour tree, and hope that the kernel chosen has the desired effect of s impl i fy ing the
contour tree.

S tandard smooth ing operations do not necessarily reduce the size of the contour tree, a l though they
do tend to flatten out deta i l . A smal l example is shown i n F igure 11.2. Before the fi l tering operat ion, the
sma l l peak at 7 causes the contour tree to have 3 edges instead of 1: wi thou t i t , there is a smooth h i l l on
the r ight hand side. Af ter the fi l tering operat ion, the peak s t i l l exists, a l though its height has been reduced
to 2, and a second smooth ing opera t ion get rids of i t entirely.

A l t h o u g h smooth ing may remove topologica l details, we have no guarantee that i t does so, nor that

i t does so wi thou t e l imina t ing features that we wish to preserve. For example, consider Table 11.2, i n wh ich

we show the results of app ly ing a s imple smoothing filter twice to the U N C head da ta set. A s we can see,

i t takes two smooth ing operations to reduce the contour tree by an order of magni tude. In doing so, we

119

Smooth ing I terat ion Con tour Tree Size
0 2,196,594
1 483,715
2 232,230

Table 11.2: Effects of Smooth ing on the Con tou r Tree of the 3dhead D a t a Set. Af ter two smooth ing
operat ions, the contour tree is reduced by approximate ly an order of magni tude, but is s t i l l much too large
for v i sua l display.

lose small-scale objects such as noise, but we also lose small-scale details of large features. A n d the more we
smooth the data , the more deta i l we lose from large-scale features. In compar ison, s impl i fy ing the contour
tree reduces the effects of noise, but wi thou t losing small-scale details of large-scale features.

M e s h S i m p l i f i c a t i o n reduces the input parameters N and n by replacing several smal l cells i n the mesh
by a single larger cel l , usual ly guided by some geometric measure of the error caused by the replacement.
Unless we base the s impl i f ica t ion on the topology, we have no guarantee that the complex i ty of the contour
tree w i l l ac tua l ly decrease.

A s a rough ind ica t ion , consider the da t a sets i n the last section of Table 11.1. For exper imenta l ly
acquired da ta sets, i t appears that the contour tree is often roughly 25% of the size of the inpu t data . If
this ra t io holds as the da ta is s implif ied, we wou ld have to reduce the mesh to roughly 1,000 cells i n order
to reduce the contour to tree to 250 or so edges. B u t this wou ld only al low us to work w i t h 10 x 10 x 10
da t a sets: too great a reduct ion for p rac t ica l purposes.

A l t h o u g h this argument should not be rel ied on too heavily, we wou ld argue that mesh s impl i f icat ion,
l ike filtering, s imp ly does not reduce the topologica l complex i ty of the da ta fast enough to be used to s impl i fy
the contour tree.

M e s h s impl i f ica t ion has been used i n conjunct ion w i t h the contour tree, but for the reverse of the

task at hand . C h i a n g & L u [CL03] performed mesh s impl i f ica t ion whi le preserving the contour tree. T h e y

d i d not, however, consider the question of s impl i fy ing the contour tree whi le preserving the mesh.

T r e e S i m p l i f i c a t i o n uses graph reductions to reduce the size of the contour tree. Takahashi , Fuj ishiro &

Takesh ima [TFT01] s impl i fy the contour tree by p run ing leaves to determine the "most impor tan t" isovalues

for a vo lume rendering transfer function. In choosing wh ich leaves to prune, these authors concentrated on

the "height" of an edge: the difference between the isovalues at the top and bo t tom. W e generalize this

approach to use, not jus t height, but also the loca l spat ia l measures defined i n Chap te r 10.

A l t h o u g h Takahashi , Fuj ishi ro & Takesh ima simplif ied the contour tree, their computat ions are
essentially stat ic and global . T h e y use the contour tree as a s ta t i s t ica l summary of the behaviour of the
data . A s such, this is s imi lar i n nature to the Con tour Spec t rum of B a j a j , Pascucc i & Schikore [BPS97]
or the automated detection of significant isovalues by Pekar , W i e m k e r & H e m p e l [P W H 0 1] , i n wh ich the
isovalue is t reated uni formly across the region of interest.

Moreover , these authors do not t rack which edges i n the contour tree correspond to which edges i n

the s implif ied contour tree. N o r do they concern themselves w i t h isosurface seeds. A s this chapter develops,

however, one of our p r inc ipa l concerns is to preserve seed informat ion so that i n d i v i d u a l contour surfaces

can be extracted. In fact, this is a recurrence of a c o m m o n theme i n this thesis: the focus on loca l , rather

120

(a) L e a f P r u n i n g (b) Ver tex Col lapse

F igu re 11.3: G r a p h Operat ions on the Con tou r Tree

t han g lobal , characterist ics of the data .

Surface Simplification applies techniques s imi lar to mesh s impl i f ica t ion to an extracted isosurface. T h i s

reduces the output size k of the isosurfaces rendered, but not the inpu t size n for the contour tree.

Object Suppression complete ly removes identifiable objects from the v i sua l d isplay of the data . A g a i n ,
this occurs after the contour tree is computed, and does not itself reduce the contour tree's complexi ty . It
is w o r t h not ing , however, that the flexible isosurface performs object suppression by a l lowing delet ion of
i n d i v i d u a l contours. Moreover , we w i l l see that contour tree s impl i f ica t ion i m p l i c i t l y suppresses objects.

Persistence is a general topologica l measure used by Edelsbrunner , Harer & Z o m o r o d i a n [EHZ01] . T h e y

perform a sweep th rough the data , bu i ld ing topologica l features i n the process. T h e persistence of a feature

is then defined to be the number of steps of this sweep for wh ich a feature retains its topologica l uniqueness.

Bremer et a l . [B E H P 0 3] have used this to simplify the Morse-Smale complex for two-dimensional t r iangula-

t ions. These results have not yet been extended to higher dimensions, or to non-s impl ic ia l meshes, and have

not yet been appl ied to the contour tree.

In general, persistence is based on the order i n wh ich topologica l features are processed, wh ich need

not be i n str ict order of height. For features processed i n order of height, the persistence measure can be

seen as a general izat ion of the height measure used by Takahashi , Fuj ishi ro & Takesh ima [TFT01] .

In this chapter, we generalize the idea of height i n a different d i rect ion. Instead of a single prede­
te rmined sweep, we use loca l spat ia l measures to determine a non-isovalued sequence of sweeps th rough the
da ta s imi lar to those used to merge the j o i n and spli t trees.

11.3 Applying Graph Simplifications to the Contour Tree

To s impl i fy the contour tree, we define two operations: vertex collapse, shown i n F igure 11.3(b), and leaf
pruning, shown i n F igure 11.3(a). We have chosen these two operations because each has a clear ly denned

121

effect on the contour tree and on the under ly ing data, because they are readi ly computed , because they are

sufficient to s impl i fy the contour tree to any desired number of edges, and because we have already been

using them, either exp l i c i t ly or impl i c i t ly .

In Sect ion 11.3.1, we define these operations formally, and prove some useful properties. T h e n ,
i n Sect ion 11.3.2, we shal l state rules for deciding wh ich of the two operations to use at any step i n the
s impl i f ica t ion process, just i fy our choice of operations and rules, and prove that we can always choose a
s impl i f ica t ion operat ion that satisfies the rules, thus enabl ing us to reduce the contour tree to any a rb i t r a ry
size.

11.3.1 Vertex Collapses and Leaf Pruning

We start by defining the vertex collapse operat ion. We have already seen these i n act ion i n Sect ion 7.6.3,
where we used them to reduce the fully augmented contour tree to the unaugmented contour tree.

D e f i n i t i o n 11.1 A ver tex collapse may only be performed at a vertex p of the contour tree that is a regular
point, and replaces the incident edges (X,p) and (p,p) with an edge (X,p).

Ver tex collapses have two very impor tan t properties: they have no effect on the contours of the
funct ion / , and they replace a monotone pa th (X,p,p) i n the contour tree w i t h a single edge {p,p).

L e m m a 11.1 A vertex collapse at a vertex p preserves every contour in the data while reducing the tree
size by 1. Moreover, the edge (X,p) corresponds to the path (X,p,p) in the unsimplified contour tree.

P r o o f : W e know from Def in i t ion 11.1 that p must be a regular point , as shown i n F igu re 11.3(b).

T h u s , before the collapse, a = (A, p) represents a set of contours over the in te rva l (/ (A) , f{p)), p. represents

a contour at f{p), and b = {p,p) represents a set of contours over the interval (p,p).

L e t P be a / -mono tone pa th depar t ing A along edge a to the isovalue f(p). B y C o r o l l a r y 6.1, this

maps to a monotone pa th Q i n the contour tree. B u t , since i t follows edge a, there is on ly one possible pa th

i t can follow: (X,p,p). Since a l l monotone paths depar t ing i n this d i rec t ion along a must follow this path ,

we could represent these paths instead by a single edge (A, p).

Since we delete p and replace two edges w i t h one wi thou t disconnect ing the contour tree, the result

of a vertex collapse must be a tree w i t h one edge and one vertex less than before the collapse. •

O u r second operat ion, leaf p run ing , is chosen because i t is always possible to perform, especially
when vertex collapses cannot be performed. Moreover , performing leaf p run ing tends to make vertex collapses
possible. A n d we have been using them i m p l i c i t l y since Chap te r 7. B o t h the merge a lgor i thm (A l g o r i t h m 7.1)
and the a lgor i thm to compute loca l spat ia l measures (A l g o r i t h m 10.2) operate on leaves of the tree, deleting
them as they go - i.e. by leaf pruning.

D e f i n i t i o n 11.2 A prunable leaf of a contour tree T is a leaf vertex A with incident edge e = (X,p) or
e = (A, p) such that e is not the only up-edge or down-edge at p.

122

A l t h o u g h we could al low any leaf to be pruned, we chose this defini t ion to preserve leaves for later

vertex collapses where possible. W e v iew this as desirable because leaf prunes alter / , whi le ver tex collapses

do not. W e w i l l see an example of the effects of this choice i n Sect ion 11.5.

Definition 11.3 A leaf prune removes a prunable leaf, deleting a leaf vertex X and an edge e = (X,p) or
e = (p,X).

A leaf prune reduces the degree of p by 1: p run ing a sufficient number of leaves w i l l reduce c r i t i ca l

points to regular points. W h e n this happens, we can perform a ver tex collapse, as for example i n F igu re 11.3.

Lemma 11.2 A leaf prune reduces the size of the contour tree by 1.

P r o o f : Fol lows t r i v i a l l y from Def in i t ion 11.3's delet ion of an edge of the tree. Since one end is a
leaf, this does not disconnect the tree, and i t remains a tree. •

T h e effect of a leaf prune on the function / is easily described. It flattens out the region of the tree
represented by the pruned edge.

Lemma 11.3 Let X be a leaf of the contour tree C with incident edge a = (A, p) . Without loss of generality,
assume that f(p) < / (A) and thatj is the contour passing through p at isovalue h = f(p). Then the pruned
contour tree C — a is the correct contour tree for each of the following functions:

1. f\(x) = f(x) restricted to the region domf — R+(h).

2- f2{x) = f(x), defined over domf with Ra(h) contracted to p.

3. fo(x) defined by:

\ f(x) otherwise

4- fi(x) defined by barycentric interpolation over the simplicial mesh with vertex values

\ f(v) otherwise

for each vertex v in the mesh,

where R+ (h) is as defined in Definition 10.2.

P r o o f : Fo r fi(x), we note that R^ih) is the same as f(a) + A: the un ion of a l l contours represented
by either a or A. R e m o v i n g the edge a from the contour tree is equivalent to removing a l l of these contours
from domf, and the result follows.

For 72(2;) we use essentially the same argument, except that the contours are removed by shr ink ing
them to p.

123

(a) Con tou r Tree and M e s h Before (b) Con tou r Tree and M e s h After Lea f
Lea f P rune Prune

Figure 11.4: F l a t Spot and M o d i f i e d Slopes Induced by L e a f P r u n i n g C o n t o u r Tree.
(a) shows our s tandard smal l example after several s impl i f icat ions .
(b) shows the result of p runing the leaf at 90, using defini t ion (4) f rom L e m m a 11.3. Unde r
any of the definit ions i n L e m m a 11.3, we modify the ups ta r t region of 90 — 50 at 50.
Def in i t ion (1) w o u l d cut a hole i n the domain instead of f lat tening out the surface.
Def in i t ion (2) w o u l d contract the upstart region to a point , d i s to r t ing the entire surface.
Def in i t ion (3) w o u l d flatten the upstart region, requi r ing exis t ing tr iangles to be subdiv ided .
Def in i t ion (4) al lows us to change on ly the values s tored for vert ices of the mesh.

For fa(x), we note tha t this definit ion replaces i?+ (h) by a flat spot. A s such, fa is not a Morse

function. Since we have not re l ied o n Morse theory i n defining the contour tree, we use Def in i t ion 6.2 and

observe that 7' = 7 U Rt{h) is the contour of / 3 conta ining u, whi le every contour of fa(x) except 7' is

ident ica l to a contour i n / . T h e result follows.

For / 4 (x) , we contract the boundary of 7 inwards un t i l i t reaches cells ent i re ly conta ined i n j+R+(h).
T h e result then follows from the proof for fa(x). •

Figure 11.4 shows the effects of a leaf-prune part way th rough s impl i f ica t ion of our s tandard example.

B y p run ing vertex 80, we remove the corresponding contours, t runca t ing the peak to the isovaiue of vertex

50. In this figure, we have used fa from L e m m a 11.3, as i t is the easiest to compute and display. Note ,

however, that this choice causes sma l l changes to the surface i n the immedia te ne ighbourhood of the contour

7: for example , the slope of the surface i n the region marked i n F i g u r e 11.4 changes f rom the or ig ina l . T h i s

var ia t ion is, however, l i m i t e d to cells w i t h at least one vertex inside i?+(/ i) . Topologica l ly , however, this has

no effect on the nesting relat ionships of the contour.

11.3.2 Collapse Rules

We have just defined two operat ions for s impl i fy ing the contour tree. In F igu re 11.3(b), we ac tua l ly have

a choice whether to app ly a ver tex collapse or a leaf prune, and have several choices of leaf wh ich can be

pruned. In deciding wh ich opera t ion to apply, we w i l l be guided by the fol lowing rules:

124

(a) Before P r u n i n g : (b) P r u n i n g the L e g (c) P r u n i n g a B r a n c h
an Inverted Y of the Y of the Y Instead

F igu re 11.5: W h y N o t A l l Leaves A r e P runab le .
A t ver tex 81, there is on ly one up-edge, to 90. If we prune this edge, we w i l l be unable to
collapse vertex 81: instead, we wou ld have to prune the edge 81 — 71 as wel l . B u t , since we
define 90 — 81 to be unprunable , we w i l l instead choose edge 71 — 81 to prune, then collapse
ver tex 81, preserving more of the or ig ina l function.

In col lapsing the contour tree, we wish to preserve the topologica l and geometric u t i l i t y of the
structure. In par t icular , we wish to preserve the ab i l i ty to generate isosurface seeds and the ab i l i ty to t rack
i n d i v i d u a l contours. To do so, we app ly the fol lowing rules:

I A l w a y s perform a vertex collapse i f one is possible. B y L e m m a 11.1, a ver tex collapse leaves the
under ly ing function unchanged.

II If rule [I] does not apply, always prune the least impor tan t leaf A and edge a = (A ,^ i) , i.e. the leaf
for wh ich pl(p~)(f(p)) is smallest for some loca l spat ia l measure p i f A is a lower leaf).

No te that , a l though impor tance is measured using a loca l spat ia l measure, we prune the g loba l ly least
impor t an t leaf.

Before descr ibing an a lgor i thm to implement these rules, we first show tha t these rules always al low

us to reduce a contour tree to no edges. W e know from L e m m a 11.1 and L e m m a 11.2 that bo th types of

opera t ion reduce the tree size by 1. Therefore, reducing the tree to no th ing takes exact ly t steps, and can

on ly fai l if, at some stage, we cannot find either a regular vertex to collapse or a prunable leaf to prune.

T h e o r e m 11 .4 Every contour tree T with t edges has either a prunable leaf or a regular point.

P r o o f : Assume that T has no prunable leaves or regular points . T h i s can on ly happen i f every
inter ior ver tex has either two or more down-edges or two or more up-edges. Choose any interior vertex v.
W i t h o u t loss of generality, assume that v has two up-edges. Choose either, and ca l l the vertex at the other
end of the edge w. If w is a leaf vertex, then by Def in i t ion 11.2 i t is a prunable leaf, since v has more than
one up-edge. B u t we know T has no prunable leaves, so w cannot be a leaf.

Therefore w must be an interior vertex, and we know that i t has either two or more down-edges

or two or more up-edges. If w has two or more up-edges, then neither of these up-edges is the same as

(w, v). Choose either of these edges, and by the same argument as before, i t leads to another inter ior vertex.

125

Simi la r ly , i f w has two or more down-edges, then there is at least one down-edge other t han (w,v). A n d ,

again, i t must lead to another inter ior vertex.

B y this argument, we can always continue choosing edges that lead to other inter ior vertices wi thou t

back t rack ing . Since T is finite, i t follows that T must conta in a cycle composed entirely of inter ior vertices.

B u t T is a contour tree, and has no cycles. B y contradic t ion , our assumpt ion is false, and there must be a

prunable leaf or regular point i n T . •

11.4 Simplification Algorithms

Once we have the operations and rules s tated i n the previous section, an a lgor i thm implement ing s implif ica­
t i o n is s t ra ightforward. W e w i l l show how to do so, then, i n Section 11.4.1, we w i l l show how to extend the
pa th seeds of Chap te r 8 to hierarchical path seeds to generate contour seeds from a simplif ied contour tree.

R e c a l l from Chap te r 10 that we defined the sweep function p\ to describe a proper ty p computed
for the downstar t region Ra(h) for a given arc a = (u,v) of the fully augmented contour tree as a function
of the isovalue h. Moreover , recal l that p\ was ana ly t i ca l ly uni form over a - i.e. p\ had no break points at
any isovalue i n the range (f(v), f(u)).

Once we start work ing w i t h superarcs of the unaugmented contour tree and w i t h collapsed superarcs,
the sweep functions w i l l be piecewise-defined over the entire superarc. For tunate ly , to s impl i fy the contour
tree, we on ly need to know the sweep functions at the top and b o t t o m ends of a superarc, as these describe
the entire region removed by a leaf prune. W e therefore define the impor tance of an edge i n a contour tree
as follows:

D e f i n i t i o n 11 .4 For a given geometric property p, the impor tance of an arc a = (u,v) in a fully augmented
contour tree is p\{f{u)) if v is a prunable leaf, pi(f{v)) if u is a prunable leaf, and infinite otherwise.

D e f i n i t i o n 11 .5 For a given geometric property p, let s = (u,v) be a superarc that corresponds to the
monotone path o i , . . . , o m in the fully augmented contour tree. The the impor tance of s is equal to the
importance of ai if u is a prunable leaf, of a m if v is a prunable leaf, and infinite otherwise.

T h i s defini t ion of impor tance measures the geometric cost of p run ing a leaf by comput ing the value

of the geometric proper ty p for the upstart or downstar t region tha t w i l l be flattened by p run ing the leaf.

D u r i n g s impl i f ica t ion, then, we always choose the leaf prune that flattens the region w i t h the smallest value

of the geometric proper ty p. Since we do not know a priori i n wh ich d i rec t ion a given edge e — (u, v) w i l l be

pruned, we define impor tance values up(e) and down(e) for each edge i n the contour tree. These represent

the cost of p run ing upwards from v and downwards from u, respectively. W h e n a vertex becomes a prunable

leaf, we determine wh ich one of these two values is applicable, and place the leaf on a p r io r i ty queue, w i t h

the p r io r i ty set to the impor tance of the leaf edge.

A s vertex collapses progressively bu i ld larger and larger paths th rough the contour tree, we main ta in

the invariant that the weights for the new edges represent the geometric proper ty p for the upstart region

by transferring the up and down values from the ends of the pa th to the newly created edge.

126

W e start by implement ing a ver tex collapse opera t ion i n A l g o r i t h m 11.1, to reduce the complex i ty

of the code.

Func t i on ver texCol lapse(v)
I n p u t : A contour tree T

Weights up(e) and down(e) for each edge e € T
A regular point v £ T

O u t p u t : T h e contour tree w i t h vertex v collapsed
A new edge d replacing the two edges b, c incident to v

1 L e t b, c be the two edges incident to v w i t h endpoints u, v and v, w respectively
2 W i t h o u t loss of generality, f(u) > f(v) > f{w)
3 Delete b, c f rom C
4 Insert new edge d f rom u t o w
5 Store b, con d as upperArc(d) and lowerArc(d)
6 Set a l readyCollapsed(b) , a l readyCollapsed(c)
7 Set up(d) — up(b), down(d) = down(c)
8 R e t u r n d

A l g o r i t h m 11.1: Co l l aps ing a Ver tex i n A Con tour Tree. T h e vertex collapse creates a new edge that repre­
sents the pa th composed of the two o ld edges. Weights for the new edge are taken from the
weights at then ends of the pa th .

A s we can see, A l g o r i t h m 11.1 is p r inc ipa l ly book-keeping: the o ld edges are deleted, a new edge is
subst i tuted, flags are set for the o ld edges, and the weights are set for the new edge.

For the m a i n a lgor i thm, shown i n A l g o r i t h m 11.2, we perform a l l legal ver tex collapses, then perform

leaf prunes i n ascending order of impor tance using a p r io r i ty queue. If, after any leaf prune, the interior

vertex becomes a regular point , we immedia te ly perform a vertex collapse at that vertex.

In order to make the s impl i f ica t ion reversible, we keep track of the s impl i f ica t ion i n the collapseRecord
array. L e a f prunes remove an edge from the tree, whi le vertex collapses subst i tute one new edge for two o ld

edges. O n a leaf prune we store the edge that was collapsed, but on a vertex collapse we store the new edge

that was subst i tu ted for two o ld edges. A l s o , we want to end up w i t h an array wh ich lists the collapses i n

reverse order, so we start at the t a i l end of collapseRecord, and work our way to the front.

T h e o r e m 11.5 Algorithm 11.2 correctly applies Rules I and II to simplify the contour tree in 0(t\ogt)
time.

P r o o f : Fo r correctness, note that Step 2 applies R u l e I to a l l regular points i n i t i a l l y i n the contour

tree. Since a vertex collapse at v decreases degree(v) by two, and leaves the degree of a l l other vertices

intact , performing a ver tex collapse never creates a new regular point , so, after Step 2, there are no regular

points i n the tree.

N e w regular points can only be created as the result of a leaf-prune. R u l e I is then enforced by
Step 22. A leaf prune of edge u, v at Step 18 decreases the degrees of u and v by one each, leaving a l l other
vertex degrees intact . Therefore, on ly v can become a regular vertex as a result of the leaf prune. A s we have
just noted, performing a vertex collapse at v never creates a regular point , so we have to execute Step 22 at
most once for each leaf prune.

Fo r R u l e II, we c l a i m that the p r io r i ty queue always contains a l l prunable leaves, and m a y also

127

Input : A contour tree T , w i t h weights up(e) and down(e) for each edge e £ T
A desired size Tree-Size or a desired impor tance b o u n d Collapse-Bound

Output : A simplif ied contour tree w i t h the desired size or impor tance b o u n d

1 collapseRecord = 0
2 for each vertex v i n T do
3 if 5+(v) and 5 (v) are b o t h 1 then
4 L e t d = vertexCollapseiy)
5 A d d d to front end of collapseRecord

e nd
end

6 for each edge e i n T do
7 if e is incident to a leaf then
8 P u s h e on priorityQueue w i t h p r io r i ty down(e) i f an upper leaf, up(e) i f a lower leaf

end
end

9 while priorityQueue is not empty do
10 pop e = (u,v),priority(e), the least impor tan t edge, from priorityQueue. W l o g , u is a

leaf vertex, v is not.
n if (priority(e) > Col I apse-Bound) or (size(T) < Tree-Size) then
12 R e t u r n

end
13 if a l readyCollapsed(e) then
14 G o t o Step 10

end
15 L e t u be the leaf vertex of e and v be the interior vertex of e
16 if e is the last up- or down- edge at v then
17 G o t o Step 10

end
18 Remove e from T
19 A d d e to front end of collapseRecord
20 if u or v is now a leaf then
21 P u s h e on priorityQueue w i t h p r io r i ty down(e) i f an upper leaf, up(e) i f a lower leaf

end
22 if v is now a regular ver tex then
23 L e t d = vertexCollapse(v)
24 A d d d = (u, w) to front end of collapseRecord
25 W i t h o u t loss of generality, assume f(u) > f(w)
26 if u or v is a leaf vertex then
27 j A d d d to priorityQueue w i t h p r io r i ty down(d) i f u is leaf, up(d) i f w is a leaf

end
end

end

Algorithm 11.2: S impl i fy ing a Con tou r Tree U s i n g L o c a l Spa t i a l Measures . A t a l l t imes, the p r io r i ty queue
contains a l l leaves, prunable or otherwise. Unprunab l e leaves or previously collapsed leaves
are suppressed by Step 13 and Step 16.

conta in unprunable leaves or previously collapsed edges. Step 13 and Step 16 ensure that unprunable leaves

and previously collapsed edges are not pruned: otherwise, R u l e II is enforced by the p r io r i ty queue.

To see tha t this invariant holds, we start by observing tha t a l l leaves, prunable or otherwise, are

i n i t i a l l y placed on the queue. Edges may become leaf edges as the result of a vertex collapse, i n wh ich case

128

they are placed on the queue by Step 26 or as the result of a leaf prune, i n wh ich case they are placed on

the queue by Step 20.

A s the tree is s implif ied, a prunable leaf may become unprunable i f other leaves are pruned at

the inter ior vertex. Thus , when we perform a leaf prune, we must check to see i f any leaves have become

unprunable . Ra the r t han do so immediately, we employ a lazy strategy, p lac ing a l l leaves on the p r io r i ty

queue in i t ia l ly , and checking for p runab i l i ty only when they are removed from the queue - i.e. i n Step 16.

Once a leaf becomes unprunable , i t never becomes prunable again, and is never placed back on the queue.

A vertex collapse may place the new edge on the queue i f i t is a leaf edge: note tha t i n this case,
at least one of the edges involved i n the vertex collapse must have been an unprunable leaf edge. Thus ,
a l l leaves are i n i t i a l l y placed on the queue, but only pruned i f they are prunable. N e w leaves on ly arise as
the result of combin ing an unprunable leaf edge w i t h another edge du r ing a vertex collapse. A new edge is
tested immedia te ly upon creat ion, and placed on the pr io r i ty queue i f i t is a leaf edge.

We also note that a prunable leaf can be involved i n a vertex collapse before i t is pruned. In this case,

the new edge w i l l be placed on the p r io r i ty queue, and the o ld prunable leaf marked as already collapsed.

W h e n this leaf reaches the front of the queue, Step 13 checks to see i f this is the case. Since this leaf edge is

now subsumed i n some other edge as the result of one or more vertex collapses, i t m a y safely be discarded.

To see that this a lgor i thm takes 0(t) t ime, we note that A l g o r i t h m 11.1 takes 0 (1) t ime since i t
is essentially book-keeping. Step 2 and Step 6 are each executed at most 0(t) t imes. W i t h suitable da ta
structures for the contour tree, these can be done i n 0(t) to ta l .

W e c l a i m tha t Step 9 executes at most 0(t) t imes. Ini t ia l ly , at most 0(t) edges are placed on the
queue. Once an edge is removed from the queue, i t is never re turned to the queue, either because i t has
been pruned, because i t became unprunable , or because i t has already been collapsed. W e know that there
are at most t leaf prunes or vertex collapses performed, and that each leaf prune or vertex collapse adds at
most one edge to the queue, so there can never be more than 0(t) edges on the queue.

Moreover , we know tha t at most t leaf prunes or vertex collapses are performed i n to ta l , since each
leaf prune or vertex collapse reduces the tree size by 1. A n d each of the operations inside the loop can be
executed i n 0 (1) t ime w i t h suitable da ta structures, except for p r io r i ty queue removals and insertions, wh ich
can cost O (l o g i) .

Since the loop executes 0(t) t imes at a cost of 0(logf ;) , the overal l bound is therefore 0 (r . l o g £) . •

11.4.1 Hierarchical Path Seeds

Once we have s implif ied the contour tree, we w i l l s t i l l w i sh to extract i n d i v i d u a l contour seeds for the
cont inua t ion method . Unfor tunate ly , the pa th seeds stored i n the or ig ina l contour tree are not au tomat ica l ly
va l i d i n the simplif ied tree. Consider the smal l da ta set shown i n F igu re 11.6, i n wh ich a smal l two-dimensional
da ta set is shown i n overhead and side views. T h i s da ta set has three peaks at isovalues of 30, 20, and 15,
respectively. T h e contour tree for this da ta set is shown i n F igu re 11.6(c), w i t h the pa th seeds shown by
reference to the arrows i n (a) and (b): for example, edge A is the pa th seed for edge 30 — 10, as i t ascends
from 10 towards 30 i n the mesh.

Since the region corresponding to 10 — 20 is the smallest, i t is pruned, resul t ing i n the tree shown

129

(a) Overhead v iew

(c) C o n t o u r Tree (d) Simpl i f ied

(b) Side v iew

F igure 11.6: P a t h Seeds i n a Simpl i f ied C o n t o u r Tree. In this example , 20 - 1 0 is the leaf edge representing
the smallest cross-sectional area, so we prune i t , then s impl i fy ver tex 10 to get the s implif ied
contour tree shown i n (d). If we s imply transfer the pa th seed at ver tex 9 to the simplif ied
edge, i t w i l l not produce the correct contours for isovalues above 10. Instead, we use the
pa th seed at 10 for isovalues above 10. Note that no pa th seed is shown for edge 9 — 0
because none is needed: any descending edge from 9 w i l l suffice.

i n F igu re 11.6(d). To generate a contour at isovaiue 9.5 along the new superarc 9 — 30, we follow pa th seed

C. B u t , for isovalues above 10, th is pa th seed does not generate correct contour seeds, as the pa th ascends

up the side of peak 20 instead of peak 30.

T h i s occurs because the pa th seeds (and paths) in the under ly ing contour tree (Figure 11.6(c)) are

only guaranteed to be va l i d for the range of isovalues represented by the superarc. However , the new superarc

9 — 30 represents the un ion of superarcs 9 — 10 and 10 — 30: i n other words, the pa th 9 — 10 — 30. Thus ,

to generate a correct pa th seed on a simplif ied superarc, we must search the pa th tha t i t represents i n the

or ig ina l contour tree.

A s imple solut ion to this problem is to t rack which edges combine to form simplif ied edges. T h i s

sequence i m p l i c i t l y defines a b ina ry tree, wh ich we can then search for the desired isovaiue (and pa th seed).

We ca l l this approach hierarchical path seeds, and show it i n A l g o r i t h m 11.3. R e c a l l that , i n A l g o r i t h m 11.2,

when we performed a vertex collapse, we removed the two edges b and c from the tree, replaced them w i t h

a new edge d, and stored t h e m as upperArc(d) and lowerArc(d).

Thus , we can construct a hierarchy showing how each vertex collapse cont r ibu ted to bu i ld ing a pa th

th rough the tree, as shown i n F i g u r e 11.7. T o find a pa th seed, we s tar t w i t h a edge i n the col lapsed contour

tree. T h i s edge is either a col lapsed edge or an uncollapsed edge. If the la t ter , i t has a va l id pa th seed

attached to i t . If the former, then we know that the edge was generated by a ver tex collapse. W e compare

130

I n p u t : A contour c identified by an isovalue h and an edge s i n a col lapsed contour tree
T

O u t p u t : A va l i d pa th seed to generate c

1 w h i l e upperArc(s) is not NULL d o
2 L e t u be the vertex at the lower end of upperArc(s)
3 i f f(u) > h t h e n

| L e t s = lowerArc(s)

e l se
L e t s — upperArc(s)

e n d

e n d
6 R e t u r n PathSeed(s)

A l g o r i t h m 1 1 . 3 : A l g o r i t h m for Hierarch ica l E x t r a c t i o n of P a t h Seeds.

.80

(I100->50 1 [50->30 2 30->0 3 90->81 4 81->50 5|80->50| (S

Collapse Path

Simplified Superarc

Superarc

7 Path Indices

<s|»l->7l| 7J30->20|

(a) Pa ths In T h e C o n t o u r Tree (b) Hie ra rchy of Ver tex Col lapses

F igure 11.7: Pa ths Induced by Tree P r u n i n g , A n d the Col lapse Hierarchy. In this case, the contour
tree was s impl i f ied using height as the impor tance measure, leaving a single arc, 100 — 0,
representing the heavy black pa th i n the tree. Edges 90 — 81 and 81 — 50 collapsed to
become 90 — 50, w h i c h was then pruned. E v e r y single edge i n the contour tree belongs to a
pa th , either generated by vertex collapses or a single edge i n length. T h e edges can then be
reindexed so tha t each pa th i n the contour tree consists of consecut ively-numbered edges.

the isovalue of the desired contour w i t h the isovalue of the vertex tha t was collapsed. If the desired contour

has a higher isovalue, we use the upper of the two edges that were collapsed. If not, we use the lower of the

two. W e continue recursively un t i l we reach an uncollapsed edge, and take the corresponding pa th seed.

W e are not guaranteed that this hierarchy is balanced. However , i f we collapse the contour tree

completely, each collapsed edge belongs to a sub-path i n the tree, as shown i n F igu re 11.7. To min imise the

cost of pa th seed ex t rac t ion , we can store the edges of the or ig ina l contour tree i n an array so tha t each

collapse pa th is contiguous. T h e first and last indices of the subpa th can then be stored on each s implif ied

edge, as shown i n F igure 11.7(b). For any given superarc, at any given level, we then know the subrange of

the ar ray i n w h i c h to search, and we also know that the edges on the pa th are i n sorted order. T h i s allows us

to use a b ina ry search at a cost of O (l o g i) , no matter how far we have s implif ied the tree. T h i s array, of size

t, can be generated i n 0(t) t ime by s tar t ing at each leaf that was pruned and fol lowing the corresponding

131

(a) M e s h (b) C o n t o u r Tree

(c) T h e M e s h as a Surface

F igure 11.8: A Tr i angu la t ion i n T w o Dimensions , w i t h Con tou r Tree

collapse pa th , copying i t in to the array and sett ing the subpath indices.

11.5 Examples of Simplification

To a id i n unders tanding this s impl i f ica t ion a lgor i thm, we show i n Sect ion 11.5.1 w h y we chose the operations

and rules described above by l ook ing at the results of different opera t ion and rule choices. In Sect ion 11.5.2,

we then show the results of app ly ing A l g o r i t h m 11.2 w i t h different spa t ia l measures.

In b o t h cases, our runn ing example is the usual smal l 2 -D t r i angu la t ion shown i n F igu re 11.8. For

clari ty, the c r i t i c a l points i n the mesh are label led i n F igure 11.8(c): since vertices 71, 50 and 20 are not

visible from the perspective shown, the arrows point to the approximate loca t ion instead

132

11.5.1 Examples of Simplification with Different Rules

To see w h y we chose these par t icular rules and operations, we show the results of subt rac t ing some of the

rules and operat ions.

A s our first example, we show i n F igure 11.9 the results of s impl i f ica t ion i f any leaf is prunable and

vertex collapses are disal lowed. No te how, i n F igu re 11.9(e), instead of col lapsing superarc 50 — 0, we end

up leaf-pruning superarcs 30 — 0 and 50 — 30, flattening out a large spat ia l region i n the process. W e end

up w i t h F igu re 11.9(h), i n wh ich on ly one peak remains, surrounded by a un i form isovaiue over near ly the

entire d o m a i n of the function.

For our second example, we show i n F igure 11.10 the results of s impl i f ica t ion using leaf prunes and
vertex collapses, but s t i l l pe rmi t t ing any leaf to be prunable. Thus , we permi t Y - p r u n i n g (pruning the Y - l e g ,
as described i n T h e o r e m 11.4). However, i n compar ison w i t h F igu re 11.9, we re ta in more surface detai l for
the same level of collapse.

For our t h i r d example, we show i n F igure 11.11 the results of s impl i f ica t ion, res t r ic t ing prunes to
prunable leaves, and a l lowing vertex collapses. In compar ison w i t h F igu re 11.9, we re ta in more surface
deta i l for the same level of collapse. C o m p a r e d to F igure 11.10, we end up w i t h exact ly the same result. T h e
difference occurs i n subfigures (b) th rough (f) i n each image: F igu re 11.10 has flattened out the r ight -hand
peak i n the image, whi le F igu re 11.11 has not, instead flattening out only the dec l iv i ty i n the side of the
peak at 71.

11.5.2 Examples of Simplification with Different Local Spatial Measures

W e now look at the effects of app ly ing different loca l spat ia l measures to guide the s impl i f ica t ion a lgor i thm.
We saw i n F igure 11.11 the results of s impl i fy ing w i t h the full set of operations and rules, using the height
of the superarc as the measure of impor tance .

In F igu re 11.12, we show the results of using area to guide the s impl i f ica t ion process. M o r e precisely,

we are using approximate area, as computed by the vertex count inside the regions. Note that the peak at

100, wh ich ties for the smallest vertex count w i t h the pi t at 71, happened to be chosen first for pruning .

Thereafter, however, the p run ing order is the same as for F igu re 11.11. A t the end of this process, we are

left w i t h the largest peak, and a fair amount of surface detai l elsewhere. In compar ison w i t h F igu re 11.9, i t

can be argued that this approach does a worse job of s impl i f ica t ion in i t i a l ly , but a better job later on .

T h e difficulty i n F igu re 11.12 occurred because we e l iminated the t a l l , narrow peak at 100 before

the short , s l ight ly wider p i t at 20, and even before the short, equal ly narrow pi t at 71. In other words, we

are now favouring short , fat features at the expense of t a l l , narrow features. If we wish to account for such

factors, we can instead look at the volume of the region (i.e. the volume above or below the plane defining

the area). D o i n g so results i n a s l ight ly different collapse order, i n wh ich the pits at 71 and 20 are pruned

before the peak at 100: see F igure 11.13.

In this version, the three p r inc ipa l peaks remain i n the image un t i l a late stage, at wh ich point , the

t a l l , nar row peak at 100 is e l iminated because i t is not sufficiently t a l l to make up for its narrowness, where

the other two peaks are b o t h re la t ively t a l l and rela t ively wide. In this case, the final result is the same as

F igu re 11.12, but the collapse i n the ear ly stages is more satisfactory.

133

(a) In i t i a l ly (b) P r u n i n g 90

(c) P r u n i n g 71 (d) P r u n i n g 20

(e) P r u n i n g 0 (f) P r u n i n g 30

(g) P r u n i n g 80 (h) P r u n i n g 81

F igure 11.9: S impl i fy ing by Height w i t h a l l Leaves Prunab le and no Ver tex Col lapses Pe rmi t t ed . Since
every s impl i f ica t ion step flattens part of the doma in of the function, we end up w i t h nearly
a l l of the funct ion set to a uniform value.

W e do not c l a i m tha t any one of these measures is always the correct one to use. Sometimes height
w i l l be most appropriate , sometimes area, and sometimes volume. In other cases, some other measure,
such as average gradient across the contour, may be a better measure. B u t , for any of these measures, the
a lgor i thms for comput ing the measures and s impl i fy ing the contour tree w i l l r ema in the same.

134

(a) In i t i a l ly (b) P r u n i n g 90

(c) P r u n i n g 71 (d) P r u n i n g 20

(e) Reduc ing 30 (f) P r u n i n g 80

(g) P r u n i n g 81 (h) R e d u c i n g 50

F igure 11.10: S impl i fy ing by Height w i t h Lea f Prunes and Ver tex Collapses, a l lowing Y - P r u n e s . C o m p a r e d
w i t h F igu re 11.9, we now preserve much more of the o r ig ina l funct ion by choosing vertex
collapses whenever possible. However, the top of the r igh t -hand peak (at 90) is s t i l l being
t runcated i n (c): we can preserve i t for use i n a vertex collapse b y d i sa l lowing Y - P r u n e s .

11.6 Simplified Flexible Isosurfaces

A t this stage, we need to provide the user w i t h control of the level of s impl i f ica t ion appl ied . W e do so by
adding an ex t ra set of controls to the flexible isosurface interface, w h i c h con t ro l the level of s impl i f ica t ion
applied, as shown i n F igu re 11.14. T h i s figure also shows the advantage of this form of s impl i f ica t ion , as
the contour tree for this da t a set has over 200,000 superarcs. T h e s implif ied contour tree shown i n the

135

(a) In i t i a l ly (b) P r u n i n g 71

(c) Reduc ing 81 (d) P r u n i n g 20

(e) R e d u c i n g 30 (f) P r u n i n g 80

(g) P r u n i n g 90 (h) R e d u c i n g 50

F igure 11.11: S impl i fy ing by Height w i t h L e a f Prunes and Ver tex Collapses , w i thou t Y - P r u n e s . C o m p a r e d
to F igu re 11.10, we now preserve more of the o r ig ina l surface between (b) and (f) i n the
collapse sequence. However, we s t i l l preserve the tallest peak at the expense of the two
peaks that are larger by area or volume.

figure serves as an index to major features, as described i n Chap te r 9, w i thou t the complex i ty added by
representing a l l of the sma l l features and noise. O n l y a few minutes of exp lora t ion were needed to find the
objects marked i n this figure.

W e have added several controls to the flexible isosurface: sliders to cont ro l slice distance and magni­

fication, controls for set t ing the colour of i n d i v i d u a l contours and the corresponding superarcs, and but tons

for invok ing dot for layout of s implif ied contour trees, for saving the current flexible isosurface and graph

136

(a) In i t i a l ly (b) P r u n i n g 100

(c) P r u n i n g 71 (d) Reduc ing 81

(e) P r u n i n g 20 (f) Reduc ing 30

(g) P r u n i n g 80 (h) Reduc ing 50

F igure 11.12: P r u n i n g the C o n t o u r Tree B y A r e a . We now use cross-sectional area as our measure of
impor tance . C o m p a r e d to the previous figures, we now lose the t a l l peak ear ly on i n the
process, preserving a smal l pi t instead. However, the two larger peaks are preserved longer
t han i n the previous figures.

layout, and for loading a flexible isosurface and graph layout. We have also added controls specific to s im­

pl i f icat ion: collapse and uncollapse buttons, wh ich adjust the size of the tree by 1, and a panel wh ich plots

the contour tree size against the size of the objects removed, i n a log - log plot . T w o sliders are provided, so

that the user can adjust the s impl i f ica t ion level either by the contour tree size, or by the object size removed.

137

(a) In i t i a l ly (b) P r u n i n g 71

(c) Reduc ing 81 (d) P r u n i n g 20

(e) Reduc ing 30 (f) P r u n i n g 100

(g) P r u n i n g 80 (h) R e d u c i n g 50

Figure 11.13: P r u n i n g the C o n t o u r Tree B y Volume . In this figure, we prune the sma l l pi ts first, keeping
the three v i sua l ly most prominent features (the peaks) un t i l late i n the s impl i f ica t ion process.

Convenient ly , we on ly need two addi t iona l operations:

1. Col lapse (simplify) the tree by one vertex-collapse or leaf-prune

2. Uncol lapse the tree by one vertex-collapse or leaf-prune

T h e two collapse sliders repeatedly ca l l these operations as needed, to collapse or uncollapse the

contour tree displayed. If large changes i n the s impl i f icat ion level are performed frequently, i t may be useful

138

Data Di sp l ay

brain

ijDMi/nwFloaV 3dhud.txt

eye socket

eyeball
nasal
cavity

nasal
septum

blood
vessels

lower jaw?

Routiob Lifht

ShowContwui D LoulCutWun (D«l<t« S«Uctiw>) (Rcitoi*D«l«tid)

E ColoujtidContnun Q Displr/Lisu (M«tfComplt romt) (Quit)

Contour tree Simpli f icat ion

blood eye
vessels sockets

nasal
septum

skull

l*J ShowTiti £ j Col

Vci tk t l ilidticontmlinovtlut

T»p M coloui - cooVd io ttuuti surfaces in Kutapje*,

• • • • • • • •

current
level of
simpli­
fication

ree size

Lo j - log plot of xitt coll*px:

V n U u l kxts: loj (uu l l« tObj« l> :

Hoiiiociul ax is: lo j <slz< of titc);

Figure 11.14: Interface to the Simpl i f ied F lex ib le Isosurface. C o m p a r e d to the interface shown i n F i g ­
ure 9.4, we have added an ex t ra panel for cont ro l l ing the level of s impl i f ica t ion w i t h a
log-log plot of tree size vs. s impl i f ica t ion measure, and add i t iona l controls for set t ing the
colour of superarcs and for loading and saving the layout of the s impl i f ied contour tree.

to improve on this processing. However, since we expect that the user w i l l ra re ly w i s h to have more than
1,000 edges i n the contour tree displayed, this is unl ikely to be significant.

Internally, we m a i n t a i n the collapseRecord array described i n Sect ion 11.4, and lists of the valid
edges and vertices: those cur ren t ly i n the collapsed tree. Co l l aps ing and uncol laps ing consist p r inc ipa l ly of

transferring vertices and edges to and from these lists.

11.6.1 Effects of Collapse on Flexible Isosurface

Since the s impl i f ica t ion process affects the contours which can potent ia l ly be inc luded i n a flexible isosurface,

we must define suitable behaviour for the flexible isosurface as collapses and uncollapses occur.

W h e n we perform a vertex-collapse at a regular point , we collapse two edges into one. If either of

these edges has a contour i n the flexible isosurface, we transfer the contour to the col lapsed edge. If bo th

edges have a contour, we a rb i t r a r i l y choose one: for convenience, we always choose the higher-valued. T h i s

enforces the rule that we noted for flexible isosurfaces: that we only permi t one contour per edge.

W h e n we perform a leaf-prune, we remove a edge from the tree wi thou t merging i t w i t h any other.
If the flexible isosurface inc luded a contour on that edge, i t is lost. If that edge was the selection root for a
contour evolu t ion , then the evolved set of contours w i l l no longer be va l i d . W e have implemented a s imple
solut ion to this, by assuming tha t the evolut ion and collapse operat ions are m u t u a l l y exclusive. W 7 hen the
collapse opera t ion is requested, any exis t ing selection is committed, as descr ibed i n Sect ion 9.6 before the
collapse is performed.

139

Input : A contour tree C of size a
A flexible isosurface F

Output : C, reduced i n size by one vertex
F, updated to correspond w i t h C

1 if C has on ly one edge then
R e t u r n

end
2 E m p t y the restorable array
3 L e t a — collapseRecord[a]
4 if a is va l i d (i.e. we are performing a leaf-prune) then
5 if a is the selection root then
6 | C o m m i t the selection (i.e. convert to active status)

1
end 7 Clear the selection (for recomputa t ion after the collapse)

8 if a is i n F then
9 | Remove a from F

end
10 Remove a from valid

else
i i Clea r selection (for recomputa t ion after the collapse)
12 if upperArc(a) is i n F then
13 | Remove upperArc(a) f rom F

end
14 if lowerArc(a) is i n F then
15 | Remove lowerArc(a) from F

end
16 Remove upper Arc(a), lower Arc(a) f rom C
17 Insert a i n C
18 if upperArc(a) was i n F then
19 | A d d a to F w i t h the seed value that upperArc(a) had

20 else if lowerArc(a) was i n F then
21 | A d d a to F w i t h the seed value that lowerArc(a) had

22 if either upperArc(a) or lowerArc(a) was the selection root then
23 | Set a as selection root

end
end

24 U p d a t e selection w i t h the current selection value

Algorithm 11.4: Single Interactive Col lapse of Con tou r Tree

Co l l aps ing a single vertex can be done as shown i n A l g o r i t h m 11.4. W e store the valid l ists as arrays:

for each edge or vertex, we store the index i n this array, or —1 i f i t is not current ly va l id . T h i s allows us to

remove items from the array i n 0 (1) t ime by swapping the i t em to be deleted w i t h the last i t em i n the array.

No te that we start by empty ing the restorable array, i n case the edge to be deleted is current ly
restorable. H o w we treat the selection, however, depends on the details of the collapse. If we are performing
a leaf-prune on the root of the current selection, we w i l l be unable to compute the correct set of contours
for the selection, so we unselect, and convert the current selection to part of the active set of contours.
Otherwise , we s i m p l y clear the current selection, and recompute i t after the collapse. If we are performing
a ver tex collapse, then either of the two edges collapsed could be active: i f so, the combined edge w i l l be
active after the collapse. If bo th of the two edges collapsed are active, we a rb i t r a r i ly pick the isovalue of

140

either one, to avoid hav ing two active contours on the same edge. S imi la r ly , i f either of these two edges was

the root of the current selection, the new edge w i l l become the correct root , and we subst i tute i t .

W i t h the except ion of the recomputa t ion of the selection, a l l of the steps here take 0 (1) t ime.

Select ion can take as much a 0(t) t ime: i f we wi sh to perform mul t ip le collapses, we w i l l want to make a l l

the collapses first, then recompute the selection.

Input : A contour tree C of size a
A flexible isosurface F

Output : C, increased i n size by one vertex
F, updated to correspond w i t h C

1 if C is fully uncollapsed then
2 R e t u r n

end
3 E m p t y the restorable array
4 C lea r the selection ar ray for recomputa t ion after the collapse
5 L e t o = collapseRecord[cr + 1]
6 if a is va l id (i.e. we are reversing a vertex collapse) then
7 if a is i n F w i t h isovaiue h then
8 L e t v be the ver tex we are uncol lapsing
9 Remove a f rom F

10 if h > f(v) then
11 | A d d upper Arc(a) to F w i t h isovaiue h

end
12 A d d lowerArc(a) to F w i t h isovaiue h

end
13 Remove a f rom C, add upperArc(a) and lowerArc(a) to C
14 if a was the selection root then
15 if selection root value > f(v) then
16 | Set selection root to upperArc(a)

end
17 Set selection root to lowerArc(a)

end
end

i s A d d a to C
19 U p d a t e selection w i t h the current selection value

Algorithm 11.5: Single Interactive U n C o l l a p s e of Con tou r Tree

11.6.2 Effects of Uncollapse on Flexible Isosurface

T o reverse the effects of a collapse, we use A l g o r i t h m 11.5. For a vertex-collapse, we expand one edge to the

two edges that were merged. A n y contour on the combined edge can only belong to one of the two previous

edges. W e remove the contour from the flexible isosurface, and add i t back to the correct edge.

For leaf-pruning, since the pruned leaf was not part of the collapsed contour tree, we know that no

contour w i l l be placed on i t , wh ich simplifies processing.

141

11.6.3 Using Collapse to Define Layout and Colour

W e noted i n Chap te r 9 that layout of the contour tree was potent ia l ly a p roblem. W e pa r t i a l ly resolve this

p rob lem using the sequence of collapses to dictate colour and loca t ion . In L e m m a 11.1, we saw that vertex

collapses leave the contour tree essentially unchanged. If we are going to draw the collapsed edge as a straight

l ine, the collapsed vertex should logica l ly lie on that l ine. Thus , when we uncollapse by adding a vertex back

i n to the contour tree, we make the vertex coll inear w i t h the edge into wh ich i t was inserted. Lea f prunes

are a different matter: there is no na tu ra l pos i t ion at wh ich to place them, and we are s t i l l explor ing layout

mechanisms.

S imi la r ly , contours along the collapsed edge should re ta in their tag colour when uncollapsed. It
follows tha t every edge along a collapse pa th as described i n Sect ion 11.4.1 should have the same colour.
T h e colour of the pa th is set when the pa th is i n i t i a l l y created by uncol laps ing a leaf prune. We have
implemented a s imple cont ro l to set the colour of an edge of the contour tree and of any contour on tha t
edge. T h i s colour is then inher i ted by a l l edges on the pa th corresponding to the edge whose colour was
changed. B e y o n d this , any po l i cy for set t ing contour colours is l ike ly to be application-specific.

11.7 Using Topological Simplification to Remove Noise

In this chapter, we have seen how to s impl i fy the contour tree i n a meaningful fashion, based on geometric
measures of the impor tance of a contour. Since we know that exper imenta l noise is t yp ica l ly smal l scale and
generates spurious peaks and pits i n the data , we can use our s impl i f ica t ion me thod to suppress noise i n the
da t a i n a spa t ia l ly non-uniform fashion.

W e saw i n Sect ion 11.3 tha t leaf p run ing completely el iminates the corresponding region from con­

s iderat ion for d rawing contours. T h i s flattens out the region so that the entire region has the isovalue of

the interior vertex of the pruned edge. We c l a i m that this has the effect of removing noise from the da ta

wi thou t losing spat ia l de ta i l i n regions where less noise is present.

11.8 Summary of Contributions

In this chapter, we have in t roduced several contr ibut ions . In Sect ion 11.1, we showed that the contour tree

is heavi ly influenced by noisy data , and needs some form of s impl i f ica t ion for p rac t ica l appl ica t ion . S imi lary ,

Sect ion 11.2 showed that convent ional forms of s impl i f icat ion, whether by filtering, by mesh s impl i f ica t ion,

or by isosurface s impl i f ica t ion , fail to s impl i fy the contour tree sufficiently to be useful.

Sect ion 11.3 then developed the next cont r ibu t ion : the appl ica t ion of s imple graph-theoretic s impl i ­

fications to the contour tree, and observed that the effect of this was ident ica l to the s impl i f ica t ion appl ied

by Takahashi , Fuj ishi ro & Takesh ima [TFT01] . T h i s thesis, however, goes beyond these authors ' work. Sec­

t ion 11.3 also in t roduced the idea of using geometric measures to guide the s impl i f ica t ion, whi le Section 11.4

defined a s impl i f ica t ion a lgor i thm, and in t roduced hierarchical path seeds for isosurface ex t rac t ion after s im­

pl i f icat ion. T h i s , i n tu rn , was used i n Section 11.6 to extend the flexible isosurface interface of Chapte r 9

to s implif ied contour trees, a l lowing interactive browsing not on ly of the isosurfaces of the contour tree, but

also of the contour tree at various levels of collapse.

142

Fina l l y , Sect ion 11.7 in t roduced the no t ion of topological filtering: using the topologica l and geo­

metr ic in format ion stored i n the contour tree to s impl i fy noisy data .

T h i s chapter also concludes P a r t III of this thesis, wh ich has shown how to unify the following:

1. topology, i n the form of the contour tree (Chapter 7)

2. efficient isosurface extraction using pa th seeds (Chapter 8)

3. exploratory visualization using the flexible isosurface (Chapter 9), and

4. geometry, i n the form of loca l spat ia l measures (Chapter 10)

5. topological simplification using loca l spat ia l measures (Chapter 11)

to provide insight into scalar fields for scientists, doctors and engineers.

In doing so, we assumed that the input da ta came i n the form of a s imp l i c i a l mesh w i t h no degenera­
cies. In the next P a r t of this thesis, we show how to re lax this assumpt ion and work w i t h a rb i t ra ry meshes
w i t h potent ia l degeneracies.

143

Part IV

Imperfect Data

144

In the previous Pa r t , the contr ibut ions of this thesis used geometric and topologica l informat ion

stored i n the contour tree to create new tools for explora tory v i sua l i za t ion and da ta s impl i f ica t ion . To

s impl i fy the discussion, we assumed that the function being s tudied is defined by barycent r ic in te rpola t ion

on a s imp l i c i a l mesh, w i t h no degeneracies. In this Pa r t , we show how to relax these assumptions.

T h e first con t r ibu t ion of this P a r t is to re lax A s s u m p t i o n 1 and A s s u m p t i o n 2: that the function is

defined by barycentr ic in te rpola t ion over a s imp l i c i a l mesh. Chap te r 12 extends contour tree computat ions

to a rb i t r a ry meshes, i n a rb i t ra ry dimension, w i t h a rb i t ra ry interpolants . W e show that contour tree compu­

tat ions need not be restr icted to contours of functions that are well-defined by an interpolant , but can also

be performed for surfaces derived from tessellation cases such as M a r c h i n g Cubes , provided that a s imple

nest ing condi t ion is satisfied

In pract ice, most da ta comes on a cubic sampl ing gr id , and isosurfaces are c o m m o n l y extracted using
either t r i l inear in terpola t ion , or the ad hoc M a r c h i n g Cubes tessellation cases. Chapte rs 13 and 14 discuss
these i n more deta i l . Chap te r 14 also adds a simple shortcut for compu t ing contour trees for the M a r c h i n g
Cubes cases.

Chap te r 15 then relaxes A s s u m p t i o n 3: that no two vertices have the same isovalue. Chap te r 15
discusses how to relax this assumpt ion by per turb ing the input da ta .

145

Chapter 12

Contour Trees for Non-Simplicial
Meshes

12.1 Introduction

A s we saw i n Chap te r 6, the p r inc ipa l a lgor i thms for comput ing the contour tree have generally assumed that
the da ta to be v isua l ized is defined over a te trahedral , or s impl ic ia l , mesh, using barycentr ic in terpola t ion.
A l t h o u g h geometr ical ly convenient, this assumption is difficult to reconcile w i t h the fact that most da ta i n
three dimensions is sampled on a cubic gr id .

T h e contr ibut ions of this chapter extend contour tree a lgor i thms to any a rb i t ra ry mesh, interpolant ,

and dimension, define a finite state machine for comput ing the necessary connect ivi ty, and give an a lgor i thm

to extract the finite state machine au tomat ica l ly from a descr ipt ion of the possible cases. Fur thermore , we

show how to compute the contour tree even for cases such as M a r c h i n g (Hyper-) Cubes , wh ich tessellate

contours i n an ad hoc manner not equivalent to any known interpolant .

We also extend m i n i m a l seed sets and pa th seeds to these a rb i t r a ry meshes, and introduce piecewise
continuation to al low single surfaces to be t raced th rough the mesh, even when mul t ip le surfaces can intersect

a single cel l .

Sect ion 12.2 looks at relevant previous work, whi le Sect ion 12.3 introduces join and split graphs to

t rack the evolut ion of contours i n a rb i t r a ry meshes.

Sect ion 12.4 discusses a universal me thod for const ruct ing j o i n and spl i t graphs for any interpolant .

Sect ion 12.5 shows how this is appl ied to the bi l inear interpolant , whi le Sect ion 12.6 discusses how to extend

the contour tree to contours defined solely by tessellation methods. Sect ion 12.7 and Sect ion 12.8 discuss

the changes required to pa th seeds, and to the cont inuat ion method for isosurface ext rac t ion . F ina l l y ,

Sect ion 12.9 summarizes the contr ibut ions of this chapter.

146

12.2 Previous Work

T h e a lgor i thms described i n Chap te r 7 assume that / is defined over s impl ic i a l meshes, w i t h the exception of

I toh & K o y a m a d a ' s skeletonizat ion approach [IK94, I K 9 5 , I Y K 0 1] and Pascucc i & C o l e - M c L a u g h l i n ' s work

on t r i l inear interpolants [P C M 0 2] . In pract ice, most scientific da ta uses cubic meshes, not s imp l i c i a l meshes.

Fo r the contour tree to be useful, i t is necessary either to modify the da ta or to modify the a lgor i thm.

T h e easiest way to modify the da ta is to take the cubic mesh, and subdiv ide each cube into tetrahedra.
T h i s introduces artifacts into the interpolant function, wh ich range from the v i sua l ly unpleasant, th rough
the d i rec t iona l ly biased, to the topologica l ly inaccurate. These artifacts have been analyzed by C a r r , M o l l e r
& Snoeyink [CMS01] , who conclude that subd iv id ing cubes into 24 te t rahedra each is acceptable, albeit
expensive.

Instead of this , we could acquire the da ta i n such a way that simplices are the na tu ra l cells for the
mesh. C a r r , Theuf i l k, M o l l e r [C T M 0 3] have shown, however, that doing so w i t h body-centred cubic sampl ing
results i n more expensive, lower qua l i ty isosurfaces t han work ing w i t h the s tandard M a r c h i n g Cubes cases.

T h e alternate approach, modi fy ing the a lgor i thm, can also be used, at the expense of some addi t iona l
complexi ty . Pascucc i & C o l e - M c L a u g h l i n [P C M 0 2] have already extended the contour tree algori thms to the
t r i l inear interpolant function over cubic meshes. To do so, they identified that any given cell of the t r i l inear
interpolant has at most 8 saddle points: 6 on the faces, 2 i n the body of the cube, and that there were on ly
4 possible j o i n trees (or spl i t trees). T h e y then constructed an oracle that , for a given set of vertices i n the
cel l , re turned the correct j o i n (or spli t) tree for that cel l .

In Sect ion 12.3, we w i l l generalize and formalize this approach, by defining join and split graphs
which are sufficient graphs on wh ich the sweep and merge a lgor i thm can operate. These graphs can
also be used to extend the a lgor i thms of Takahashi , Fuj ishiro & Takesh ima [T F T 0 1] , of Pascucc i & Cole -
M c L a u g h l i n [P C M 0 2] , and of C h i a n g et a l . [C L L R 0 2] . In a l l cases, this extension comes from the recognit ion
that these a lgor i thms are essentially graph-theoretic.

12.3 Join and Split Graphs for Arbitrary Meshes

Chap te r 7 describes the sweep and merge a lgor i thm of C a r r , Snoeyink & A x e n [CSA03] for compu t ing the

contour tree. T h i s a lgor i thm performs two sweeps th rough the da ta to construct pa r t i a l trees cal led the j o i n

tree and spli t tree, then combines the j o i n tree and the spli t tree i n a t h i r d stage s imi lar to that used by

Takahashi et a l . [T IS + 95] and by Takahashi , Fuj ishi ro & Takesh ima [T F T 0 1] . Correctness of the a lgor i thm is

proven by showing that the edges of a s impl ic i a l mesh consti tute a graph G such tha t the fol lowing properties

hold :

I. G contains a l l jo ins and loca l m a x i m a of the function / defined over the mesh.

II . G contains a l l spl i ts and loca l m i n i m a of the function / defined over the mesh.

III. Fo r any isovalue h, two vertices u, v £ G are connected by a pa th above the isovalue h exact ly when

the points u, v i n the mesh are also connected by a pa th above the isovalue h.

I V . Fo r any isovalue h, two vertices u,v £ G are connected by a pa th below the isovalue h exact ly when

the points u, v i n the mesh are also connected by a pa th below the isovalue h.

147

Note that the paths i n Proper t ies III and I V need not be monotone, but that our defini t ion i n

Chap te r 6 used monotone paths. However, any pa th can always be decomposed into a sequence of monotone

paths and paths l y i n g on contours, so l i t t le turns on this . We now separate the properties required for

compu t ing the j o i n tree from those required for comput ing the spli t tree:

Defini t ion 12.1 For a given function f, a j o i n graph is a graph that satisfies Properties I & III, and a
spli t g raph is a graph that satisfies Properties II & IV.

If we know j o i n and spli t graphs for a given mesh, we can compute the contour tree, as the a lgor i thm
relies solely on these properties. T h i s was used by Pascucc i & C o l e - M c L a u g h l i n [PCM02] for their d ivide-
and-conquer a lgor i thm.

T h e o r e m 12.1 Given a join graph J and split graph S for a function f, Algorithm 7.1 will correctly compute
the contour tree for f in 0(sort + N + ta{t)) time, where N = max(J2vSj degree(v),'YJv€S degree(v)) and
the related parameter n = max(\\ J\\, 11511).

Proof: P r o o f is essentially ident ica l to that given for A l g o r i t h m 7.1 i n m y M . S c . thesis [CarOO] and

the corresponding j o u r n a l art icle [CSA03] , and is omi t ted . •

W e next analyse the loca t ion of c r i t i ca l points of / to f ind out where they occur i n the cells of
the mesh M. W e start by showing that a loca l m a x i m u m or m i n i m u m of / must be a loca l m a x i m u m or
m i n i m u m of some cell of / :

L e m m a 12.2 Let M be a polyhedral mesh, and let f be a function defined over M. Letp be a local maximum
of f. Then p must be a local maximum of some cell K of the mesh.

Proof: Assume tha t smal l values of S and e are chosen to satisfy Def in i t ion 6.8, and let p be a loca l

m a x i m u m of / . T h e n , by Def in i t ion 6.12, 6+(p) = 0. It follows that for any cell K to wh ich p belongs,

5+(p) = 0 i n K, and p is a loca l m a x i m u m of K. •

T h e dua l to this l e m m a also holds:

L e m m a 12.3 Let M be a polyhedral mesh, and let f be a function defined over M. Letp be a local minimum
of f. Then f must be a local minimum of some cell K of the mesh.

Proof: D u a l to proof of L e m m a 12.2. •

T h e equivalent result is not true for saddles, wh ich may occur at saddles i n cells of the mesh, but

m a y also occur at regular points on the boundary between two cells:

L e m m a 12.4 Let M be a polyhedral mesh, and let f be a function defined over M. Let p be a join of f.
Then f must be a join of some cell K of the mesh, or a join or local maximum of the intersection K\ n K%
of two cells K\, K2 of the mesh.

148

Proof: Assume that p belongs to a single cell K of / . W i t h o u t loss of generality, assume that

S+(p) — 2. T h e n there must be at least two dis t inct contours 71,72 of / at isovalue f{p) + 5 that intersect

Be(p). If we take the intersect ion of K and 71, we get at least one, and possibly more t han one, contour of

f\K. A t least one of these contours intersects Be(p). Since this is true for b o t h 71 and 72, we know that the

number of contours of f\K that intersect B€(p) is at least 2. It then follows that p is a j o i n of f\K.

N o w assume that p belongs to more t han one cell i n the mesh. T h e n p is a c r i t i ca l point of / such

tha t p G K\ n . . . Pi Km. W i t h o u t loss of generality, assume that S+(p) = 2. Suppose there exists a cell K
such that S+(p) — 2 i n K. T h e n p is a j o i n of K, and satisfies the first branch of the lemma. Therefore

assume, wi thou t loss of generality, that no such cell K exists.

It then follows that there must be two cells K\,Ki such that 5+(p) = 1 i n each of K\ and K2, and
the contours 71 i n K\ and 72 i n K2 that intersect Bc(p) do not belong to the same global contour.

N o w assume tha t p is not a j o i n or loca l m a x i m u m of K\ C\K~2- T h e n there exists exact ly one contour
7 of f\(Ki n K2) that intersects Be(p). T h i s contour 7 intersects b o t h K\ and Ki. We know that there
is on ly one contour 71 of f\K\ at isovalue f(p) + 6 that intersects Be(p). Therefore, 7 fl K\ = 71. B y a
s imi lar argument, 7 f l K2 = 72- B u t then 71 and 72 are connected by 7, and are part of the same global
contour. Since this creates a cont radic t ion , i t follows that p is either a j o i n or a loca l m a x i m u m of K1OK2,
as required. •

A g a i n , the dua l holds:

Lemma 12.5 Let M be a polyhedral mesh, and let f be a function defined over M. Let p be a split of f.
Then f must be a split of some, cell K of the mesh, or a split or local maximum of the intersection K\ n K2
of two cells K\, K~2 of the mesh.

Proof: P r o o f is dua l to that for L e m m a 12.4. •

W e can use these lemmas to ob ta in two useful corollaries:

Corollary 12.6 Let P be the set composed of all vertices of the mesh, all local maxima and joins of the
boundary of any cell, and all local maxima and joins of any cell. Then any graph including P satisfies
Property I.

Proof: L e t p be a loca l m a x i m u m of / . F r o m L e m m a 12.2, we know that i t is a loca l m a x i m u m of

some cell K. Since a l l such loca l m a x i m a are inc luded i n P, p G P.

N o w let p be a j o i n of / . F r o m L e m m a 12.4, we know that i t is a j o i n of some cell K, or a j o i n or

loca l m a x i m u m of the intersect ion K\ n K~2 of two cells K\,K~2- In each case, however, p G P. •

A g a i n , the dua l of this applies:

Corollary 12.7 Let P be the set composed of all vertices of the mesh, all local minima and splits of the
boundary of any cell, and all local minima and splits of any cell. Then any graph including P satisfies
Property II.

149

Proof: P r o o f is dua l to that for C o r o l l a r y 12.6 •

N o w we can look at some s t ra ightforward ways of defining j o i n and spl i t graphs.

Theorem 12.8 For a function f, the following are true:

1. The contour tree of f is both a join and a split graph.

2. The join tree of f is a join graph.

3. The split tree of f is a split graph.

4- The union of the contour trees for each polyhedral cell of the mesh is both a join and a split graph.

5. The union of the join trees for each cell of the mesh is a join graph.

6. The union of the split trees for each cell is a split graph.

7. If f is defined by barycentric interpolation over a simplicial mesh, then the edges of the mesh are both
a join and a split graph.

8. The Morse complex of f (see Section 4-5.2) of the function f is both a join and a split graph.

Proof: (1): T r iv i a l l y , the contour tree satisfies Proper t ies I & II. T h e contour tree satisfies Proper t ies
III & I V by decomposing the pa th into monotone paths and paths l y i n g along contours, then invoking
C o r o l l a r y 6.1 and L e m m a 6.5.

(2) : A g a i n , t r iv ia l ly , the j o i n tree satisfies P r o p e r t y I. P rope r ty III is shown to be satisfied i n [CarOO]
and [CSA03] .

(3) : P r o o f is dua l to the proof for the j o i n tree.

(4 - 6): Proper t ies I and II follow from C o r o l l a r y 12.6 and C o r o l l a r y 12.7 respectively. For Proper t ies
III and I V , we decompose each pa th P in to subpaths i n the i n d i v i d u a l cells of the tree, and map those
subpaths to the contour tree by T h e o r e m 6.6, and thence to the j o i n or spli t tree.

(7) : Banchoff [Ban67] showed that the c r i t i ca l points of a s imp l i c i a l mesh are located at the vertices
of the mesh, so Proper t ies I & II are also satisfied. P r o p e r t y III is shown i n [CarOO] and [CSA03] to be
satisfied by deforming each pa th i n / to the edges of the mesh w i t h s t r i c t ly higher values t han the path , and
mapp ing paths i n the contour tree to paths i n / by fol lowing edges of the mesh. P r o p e r t y I V follows by the
usual dua l re la t ionship.

(8) : W i t h o u t a formal defini t ion of the Morse complex, we can only sketch this proof. Proper t ies I &

II ho ld because the M o r s e complex contains a l l Morse c r i t i ca l points , and by Def in i t ion 6.8 and Def in i t ion 6.5,

each c r i t i ca l point is a Morse c r i t i ca l point . Proper t ies III & I V hold by a deformation s imi lar to that used

for s imp l i c i a l meshes, but deforming paths instead to the boundaries of the regions of the Morse complex. •

O f these graphs, the M o r s e complex is theoret ical ly a t t ract ive as a basis for comput ing the contour
tree, but i t is difficult to compute i n i ts own right. A n a lgor i thm has been found for two-dimensional s impl ic i a l
meshes [B E H P 0 3 , E H Z 0 1] , but not for three-dimensional data . E v e n for two dimensions, the computa t iona l
cost has not yet been clear ly established. T h e contour tree of / is sufficient to compute itself, but this is a

150

c i rcular computa t ion , and can be ignored. S imi la r ly , using the j o i n tree to compute itself, or the spli t tree

to compute itself, is pointless.

T h e un ion of the cell-wise j o in , spl i t or contour trees is the most p rac t ica l me thod of deal ing w i t h non-

s imp l i c i a l meshes and non-barycentr ic interpolants . Pascucc i & C o l e - M c L a u g h l i n [P C M 0 2] used the unions

of j o i n and spli t trees to compute the contour tree of a t r i l inear ly in terpola ted mesh, and as the foundat ion

for a divide-and-conquer var ia t ion on the sweep and merge a lgor i thm for contour tree computa t ion . These

authors apparent ly use a large case table to predict a l l possible j o i n and spli t trees for the t r i l inear interpolant .

W e adopt a s impler approach using finite state machines that can be implemented for any possible
mesh and interpolant . Since our method defines how to extract j o i n and spl i t graphs, i t can also be used as
an oracle for Pascucc i & C o l e - M c L a u g h l i n ' s divide-and-conquer approach.

12.4 Join and Split Graph Lookup Tables

In this section, we w i l l see how to construct lookup tables that compute j o i n and spli t graphs for any
interpolant , based solely on previous analyses of the topologica l ly dis t inct contours possible i n a given cel l .
W e observe that , no mat ter the interpolant used, the v i sua l iza t ion process w i l l end by tessellating the contour.
For each such interpolant , there is t yp ica l ly a stat ic analysis tha t defines a set of cases for the tessellation
process, each va l id over a specified range of isovalues. T h e bes t -known set of these cases are the M a r c h i n g
Cubes cases of Lorenson & C l i n e [LC87], as discussed i n Chap te r 5, but other examples include M a r c h i n g
Te t rahedra [BI088, NB93, W v G 9 0] , and the t r i l inear interpolant [Che95, L B 0 3] .

In these analyses, the cases used to tessellate the isosurfaces fully describe the connect iv i ty of the
extracted contours i n the cel l . W e w i l l refer to such a set of cases as tessellation cases. To determine the
connect iv i ty of g lobal contours, we start w i t h the tessellation cases, and extract the j o i n and spl i t trees for
each cel l . T h e n , by T h e o r e m 12.8 and Theo rem 12.1, we can compute the contour tree for / . We w i l l see
later that this approach can even be extended to tessellation cases tha t are inaccurate w i t h respect to a
par t icular interpolant . For now, however, we assume that there is a k n o w n interpolant appl ied to each cell ,
and that tessellation cases have been defined for i t .

R e c a l l that the contour tree a lgor i thms i n Chap te r 7 t yp i ca l l y sweep th rough the function from high

to low isovalues, or vice versa. A s the sweep progresses, each cell i n the mesh w i l l change from one case to

another a finite number of t imes. If we identify a l l of the possible isovalues at wh ich these cases change, we

can then define a lookup table that identifies the up- or down- arcs at each vertex i n the j o i n or spl i t graph.

W e start by developing a formal defini t ion of tessellation cases. For any given interpolant and mesh,
there are a finite number of potential critical points, defined as:

Definition 12.2 The potent ia l c r i t i ca l points for a cell K are the vertices of the cell and the Morse critical
points of the function f restricted to the cell K.

Definition 12.3 A tessellator is an algorithm that given an isovaiue h, a function f, and a cell K of the
mesh, approximates the contours in K at the isovaiue h. We call the approximated contours generated
tessellated contours.

151

Definition 12.4 Two contours or tessellated contours T I , T 2 are tessellation-equivalent if they are topologi­

cally equivalent and partition the potential critical points of K in the same way.

Definition 12.5 A tessellation case for a cell K is an equivalence class of tessellated contours for all func­

tions f sharing the same interpolant with respect to K.

Definition 12.6 A tessellator and its set of tessellation cases are accurate if, for any h, the tessellated

contours at h are tessellation-equivalent to the actual contours at h.

Definition 12.7 A tessellation d iscr imina tor is an isovalue h such that there exists some eo > 0 such that

for all e < eo the tessellated contours of a cell K at h + e and h — e are not tessellation equivalent.

We can now establish a firm topologica l foundat ion for l i n k i n g tessellation and topology:

Lemma 12.9 For each vertex Vi of a cell K in the mesh with isovalue f(vi) distinct from the isovalue of at

least one other vertex f(vj), /(i>i) is a tessellation discriminator for every accurate set of tessellation cases

for f.

Proof: W i t h o u t loss of generality, f(vi) < f(vj). Choose 0 < e < f(vj) — / (« ») , and let T I , T 2 be

the tessellated contours at f(vi) + e and /(i>i) — e. T h e n Vj must be above bo th T\ and T2, but Vi must be

below Ti and above T 2 . Therefore, T i and r 2 do not pa r t i t ion the vertex set of the cell i n the same way, and

are not tessellation equivalent. •

Lemma 12.10 If p is a Morse critical point of f\K, then f(p) is a tessellation discriminator for K for

every accurate set of tessellation cases for f.

Proof: Since p is a Morse c r i t i ca l point , we know that the loca l topology changes at p. It follows

tha t the tessellation contours at f(p) + e and f(p)—e are not topologica l ly equivalent, and are therefore not

tessellat ion equivalent. •

Theorem 12.11 Let h be a tessellation discriminator for an accurate tessellator of a function f over a cell

K. Then h is the isovalue of either a vertex of the cell K, or of a Morse critical point of f\K.

Proof: Choose a sma l l e such that no h — t < h' < h + e is also a tessellation d iscr iminator , and

let T\,T2 be the tessellated contours at h — e, h + e respectively. T h e n , by Def in i t ion 12.7, T\ and T 2 are not

tessellation-equivalent.

Suppose that T\ and r 2 are not topologica l ly equivalent. T h e n there must exist some Morse c r i t i ca l

poin t p at isovalue s t r i c t ly between h — e and h + e at wh ich the topology of the contours change. Since e

was chosen arbi t rar i ly , we know tha t f(p) = h.

152

W e now suppose that n and TI are topologica l ly equivalent. Since they are not tessellation equiv­

alent, they must pa r t i t i on the potent ia l c r i t i ca l points of K i n different ways. B u t this can only happen i f

there is some vertex v w i t h isovaiue between h — e and h + e. A g a i n , since e was chosen arbi t rar i ly , i t follows

that f(v) = h. •

F r o m these lemmas, several interest ing observations arise. T h e first observat ion is that i t is now

easy to unders tand w h y M a r c h i n g Tet rahedra [BI088, N B 9 3 , W v G 9 0] are accurate under Def in i t ion 12.6, as

are the t r i l inear tessellators of Chernyaev [Che95] and Lopes & B r o d l i e [LB03]. B o t h of these a lgor i thms

determine the complete set of tessellation discr iminators by classifying the vertices and M o r s e c r i t i ca l points

of each cel l , then using this informat ion to choose which tessellation case to render.

T h e second observation is that , since the potent ia l c r i t i ca l points are a superset of the c r i t i ca l points
and vertices, they satisfy Proper t ies I & II of j o i n and spli t graphs. Thus , i f we can b u i l d a suitable graph
using these vertices, we can b u i l d a j o i n (or spli t) g raph for each cel l . H a v i n g done so, we can combine the
j o i n graphs for each cell to ob ta in a j o i n g raph for the entire function / .

T h e t h i r d observat ion is that the pa r t i t ion of the potent ia l c r i t i ca l points by a tessellation contour
holds the connected components of {x : f(x) > h} and {x : f(x) < h} for any isovaiue h. B u t this is
precisely the in format ion we need to compute the j o i n (or spli t) tree. Therefore, to determine whether a
given potent ia l c r i t i ca l point is i n fact a c r i t i ca l point , a l l we need to do is consider the changes to the
pa r t i t i on of the potent ia l c r i t i ca l points as the isovaiue sweep passes the potent ia l c r i t i ca l point . A n d we can
do this by compar ing the tessellation cases before and after the isovaiue sweep passes the potent ia l c r i t i ca l
point .

A s the isovaiue sweep passes a loca l m a x i m u m v, a new subset conta in ing on ly v w i l l appear i n the
pa r t i t ion . A s the isovaiue sweep passes a j o i n v, two subsets S i and 52 w i l l be combined to form a new
subset Si + S2 + v. For a potent ia l c r i t i ca l point v wh i ch is neither a j o i n nor a loca l m a x i m u m , v w i l l
be added to an exis t ing subset of the par t i t ion . Moreover , i f v is not a loca l m a x i m u m , we w i l l be able to
choose a monotone pa th P f rom v to some w belonging to the same subset of the pa r t i t ion . If we treat this
monotone pa th as an edge (v,w), we w i l l be able to construct a g raph satisfying properties I, II and I V : i.e.
a j o i n graph.

Since we are model l ing the development of a set of tessellated contours tha t are topologica l ly equiv­

alent to the real contours, i t should come as no surprise that we can prove some properties that are s imi lar

to the properties of the actual contours:

Lemma 12.12 Let v be a local maximum of the cell K, and let Hi, n2 be the partition of the potential critical
points induced by accurate tessellation contours at f(v) + S and f(v) — S respectively, for arbitrarily small
S. Let Si,..., Sq and T\,..., Tr be the subsets of I i i , n2 that consist of potential critical points with values
greater than f(v). Then r — q + 1, and there exist indices ki,..., kr such that Si = T^ for all 1 < i < q,
and T f c r = {v}.

Proof: W e know that v changes the connect iv i ty of sets of the form {a; : f(x) > h} on ly i n the
v i c i n i t y of v. Since the tessellation contours are accurate, i t follows that the isovaiue sweep preserves the
subsets Si,..., Sq of ITi : i.e. tha t each Si corresponds to some Tfc ;. Fur thermore , since v is a loca l m a x i m u m ,
it must now belong to a new subset i n n2. •

153

Lemma 12.13 Let p be a join of the cell K, and let ili,ri2 be the partition of the potential critical points
induced by accurate tessellation contours at f(v) + 5 and f(v) — 5 respectively, for arbitrarily small 5. Let
Si,..., Sq and T\,... ,Tr be the subsets of Hi, H2 that consist of potential critical points with values greater
than f(v). Then r < q, and there exist indices ki,... ,kr such that Si C T ^ for all 1 < i < q.

Proof: L e t Si,... ,Sq and T i , . . . , Tr be the subsets of LTi, II2 that consist of potent ia l c r i t i ca l points
w i t h values greater than h = f(v). We know that the potent ia l c r i t i ca l points i n Si belong to the same
connected component of {a; : f(x) > h + 6}. B u t that means that the potent ia l c r i t i ca l points i n Si must
also belong to the same connected component of {x : f(x) > h — S}. It then follows that each Si is contained
i n some Tfc ;.

Since p is a j o in , i t must be connected i n {x : f(x) > h — 5} to two vertices vi,V2 that belong to
different subsets S^, Si2 of LTi, the pa r t i t ion at h + S. Since each of vi, V2 is connected to p, they must belong
to the same subset Tfc of II2, the pa r t i t i on at h — S. Therefore S^ and Si2 are bo th contained i n Tfc, as is p,
so there must be fewer subsets i n HJ2 t han i n LTi . •

Lemma 12.14 Letp be a point in the cell K lying on a contour that does not pass through a local maximum
or join, and let n 2 be the partition of the potential critical points induced by accurate tessellation contours
at f(p) + <5 a n d f(p) + 8 respectively, for the usual small 5. Let Si,..., Sq and T i , . . . , Tr be the subsets of
r i i ,n 2 that consist of potential critical points with values greater than f(p). Then r = q, and there exist
indices ki,... ,kr such that Si = T^ for all 1 < i < q except that if p is a potential critical point, then there
exists some j for which Sj + {p} = Tfc. •

Proof: A s i n L e m m a 12.13, each Si must be a subset of some T ^ . p is not a j o i n or loca l m a x i m u m ,
so there is on ly one contour 7 at h + 6 that intersects Be(p). Because p is not on a contour that passes
th rough a j o in , no two of the Si belong to the same Tfc. A n d because p is not a loca l m a x i m u m , i t cannot
belong to a new subset of the par t i t ion . It follows that i f p is a potent ia l c r i t i ca l point , i t must be added to
some Sj, i.e. that Sj + {p} = Tkr •

These lemmas have shown that the subsets of the pa r t i t i on induced by a tessellation d iscr imina tor
reflect the connect iv i ty of the sets {2; : f(x) > h} that are t racked by the j o i n tree. In order to bu i ld a j o i n
graph, we now need to b u i l d a set of edges that satisfy P r o p e r t y III . W e start by generating these edges,
then prove that P rope r ty III holds.

Lemma 12.15 Let p be a point in a cell K, and let Si,..., Sq be the subsets of the partition of potential
critical points induced by an accurate tessellation contour at f(p) + 5, for the usual small delta. Then, for
each connected component ji of {x : f(x) > f(p) + 6} into which a f-monotone path in TZ from P leads,
there exists a path Pi from p to some potential critical point Vi of the corresponding subset Si.

Proof: For each such connected component ji, we generate an ascending pa th from p un t i l we reach
a loca l m a x i m u m . T h i s loca l m a x i m u m must belong to the corresponding subset Si. A n d since each loca l
m a x i m u m is at a potent ia l c r i t i ca l point , we know that this loca l m a x i m u m is Vj. •

154

W e w i l l b u i l d a j o i n graph using these paths, represented as i n d i v i d u a l edges (vi,p):

T h e o r e m 1 2 . 1 6 Let (V,E) be a graph with vertex set V, the set of potential critical points of some cell K
in the mesh. For each vertex v € V, let Iiv, Pv be the partitions of the potential critical points induced by
accurate tessellation contours at f(v) + 5 and f(v) — 5, respectively. Then, for each subset Si ofHv that is
contained in the same subset Tv of Pv to which v belongs, choose a monotone path from v to some potential
critical point Vi € Si, and let (vi,v) be an edge of E. If E contains only these edges, then (V,E) is a join
graph of f\K.

P r o o f : F i r s t note that , by L e m m a 12.15, we w i l l always be able to choose a suitable monotone pa th
Wi, so E is well-defined.

W e know that the set of potent ia l c r i t i ca l points of K contains the set of vertices, jo ins and loca l
m a x i m a of K. It follows that P r o p e r t y I is satisfied.

T o prove P r o p e r t y III, assume that we have vertices p and q i n the graph, w i t h f(p) < f(q), and let
E' denote the graph E restr icted to edges w i t h vertices at isovalues > f(p).

(<=): L e t Q be a pa th i n E' between p and q. T h e n Q consists of a sequence of edges e i , . . . , e T O ,
each of wh ich was defined by choosing a / -mono tone pa th i n TZ. No te tha t each e, is an edge between two
vertices at isovalues > f(p), and that the corresponding / -mono tone pa th therefore cannot drop below the
isovaiue f(p). L e t P be the concatenat ion of these / -mono tone paths. P is not a / -mono tone path , but our
defini t ion of P r o p e r t y III does not require / -mono tone paths, merely paths that do not drop below f(p).
Since this is true for each of the component paths, i t is also true for P , and the result follows.

(=>): W i t h o u t loss of generality, each Vi to which a pa th is t raced is a loca l m a x i m u m . To see that
this is true, assume not. T h e n Vi is not a loca l m a x i m u m , and there exists a further ascending pa th from Vi
to some Vj, and so on. Since we are always ascending, and there are a finite number of vertices, this ascent
w i l l eventual ly end at a loca l m a x i m u m .

L e t p, q be vertices of the graph that are connected i n f\K by some pa th P c {x : f(x) > f(p)}.
F r o m L e m m a 12.15, we can generate paths from p and q to loca l m a x i m a mp and mq. W e now show that we

can trace a pa th i n f\K between vp and vq, using a count ing argument. W i t h o u t loss of generality, vp ^ vq.

N o w assume that there are M loca l m a x i m a and TV joins contained i n E'. W e chose one edge to add
to E' for each dis t inct d i rec t ion of ascent from each j o in , so the to ta l number of edges i n E' is equal to the
sum of the updegrees of a l l jo ins i n E'.

If we were to compute the j o i n tree of E', a l l M loca l m a x i m a and N joins wou ld belong to i t .
A s s i g n each arc i n the j o i n tree to the upper of the two nodes i t connects. B u t the down-degree of every
node i n E' except the lowest j o i n must be 1, so we have M + N — 1 arcs i n the j o i n tree of E'. Since each
loca l m a x i m u m has an up-degree of 0, i t follows that the sum of the updegrees of a l l joins i n E' must also
be M + N - 1.

R e t u r n i n g to E' itself, we now see that i t has M + N — 1 edges i n i t . Moreover , we c l a i m that there

are no cycles i n E'. Suppose that there were such a cycle C, and let s be the lowest vertex i n the cycle. Since

each edge i n E' has a j o i n at its lower end, s must be a jo in . T h e n the ascending paths corresponding to the

edges rs, st i n the cycle are ascending paths into dis t inct connected components of {x : f(x) > f(s), because

of how we chose our edges. T h e rest of the cycle C - {s} is a sequence of paths i n {x : f(x) > f(s)}, because

155

each edge i n C — {s} is a monotone pa th between two vertices w i t h values higher t han f(q). Therefore r

and t belong to the same connected component of {x : f(x) > f{s)}. Since this is a cont radic t ion , no cycle

C exists i n E'.

W e now know that E' is a cycle-free graph over M + N nodes conta in ing M + N — 1 edges. B u t

any cycle-free graph w i t h one more node than edges is a tree. It follows that E' is a tree, and that a l l of the

vertices of E' are connected to each other by paths i n E', as required.

L e t P be the pa th between vp and vq i n E'. T h e n pPq connects p and q i n E as required.

Since we have now shown that we can create a pa th P i n / for every pa th Q i n E' and vice versa,
P r o p e r t y III holds, and i t now follows tha t E is a j o i n graph for f\K. •

W e have now shown that a j o i n graph can be constructed for any cell i n the mesh, based purely on
the tessellation cases used to extract the contours, and tha t we can take the union of these j o i n graphs to
generate a j o i n graph for the entire mesh. Ra the r t han exp l ic i t ly cons t ruc t ing the j o i n graph for each cel l ,
however, we w i l l compute the edges adjacent to a given vertex v as required.

Input : A potent ia l c r i t i ca l point v of a mesh M
A lookup table ascent of ascending edges given a potent ia l c r i t i ca l point and
tessellation case

Output : T h e set of higher-isovalued neighbours for v i n a va l id j o i n graph for M

1 for each cell conta in ing v do
2 C o m p u t e C, the tessellation case for the cell , at an isovalue of f(v) + e
3 for each edge e = vw s tored i n ascent[C,v] do

4 | A d d (v, w) to the j o i n graph for M (i.e. treat v, w as connected)

end
end

Algorithm 12.1: U s i n g a L o o k u p Table to F i n d J o i n G r a p h Neighbours

W e do so by defining an a lgor i thm to find the neighbours of a given potent ia l c r i t i ca l point i n the

j o i n graph of a cel l , by pre-comput ing a lookup array indexed by the tessellation case immedia te ly before

the j o i n sweep reaches the potent ia l c r i t i ca l point , and the ident i ty of the potent ia l c r i t i ca l point . For each

tessellation case, and each potent ia l c r i t i ca l point p, the array specifies the ascending edges at p i n the j o i n

graph, as shown i n A l g o r i t h m 12.1.

T h e a lgor i thm for comput ing the lookup table itself is shown as A l g o r i t h m 12.2.

Theorem 12.17 Algorithm 12.2 and Algorithm 12.1 correctly compute the edges in the join graph for the
mesh M.

Proof: B y T h e o r e m 12.8, we know that the union of the j o i n graphs of each cell is a j o i n graph for

the mesh, so a l l we must prove is that A l g o r i t h m 12.2 and A l g o r i t h m 12.1 correct ly compute the edges i n

the j o i n g raph for any cell K i n M.

R e c a l l that , i n Theo rem 12.16, we star ted by choosing uph i l l paths from each j o i n j i n f\K. Step 10
implements this step, whi le the sur rounding loop establishes the components of Ii\ into wh ich we need to
choose u p h i l l paths, where LTi is the par t i t ion of the potent ia l c r i t i ca l points of K induced by the contour
th rough the j o i n j.

156

7
8
9
10

Input : A set of tessellation cases for a given interpolant

Output : A lookup table ascent of ascending edges for each potent ia l c r i t i ca l point and
tessellation case

for each tessellation case C do
L e t vertices Above be the set of potent ia l c r i t i ca l points above the contour i n C
for each potent ia l c r i t i ca l point p that is not i n vertices Above do

L e t D be the case where vertices Above U {p} are above the contour
if no such case D exists then

| Repor t that the interpolant is inconsistent, and halt ,
end
else

L e t 5 be the region above the contour i n D to w h i c h p belongs
for each region 7 above the contour i n C do

if 7 C S then
Choose a vertex w i n 7 such that a / -mono tone pa th P i n f\K connects p
and w
A d d edge pw to ascent[C,p]

end
end

end
end

end

Algorithm 12.2: C o m p u t i n g the J o i n G r a p h L o o k u p Table

Since this computa t ion is combina tor ia l i n nature, A l g o r i t h m 12.1 computes i t i n advance and stores
i t i n ascent]], to be recovered later i n A l g o r i t h m 12.1. •

A n a l y z i n g the runt ime of A l g o r i t h m 12.2 depends on two parameters: N c a s e s , the number of tessel­
l a t ion cases, and Npcp, the m a x i m u m number of potent ia l c r i t i ca l points i n a cel l . T h e n :

Theorem 12.18 Algorithm 12.2 takes 0(NcasesNp) time to execute.

Proof: Step 1 w i l l execute N c a s e a t imes. In each i te ra t ion of this loop, Step 3 w i l l execute i V p c p

t imes. Step 8 w i l l execute at most Npcp t imes. If 7 and S are stored as arrays of bits representing which

potent ia l c r i t i ca l points belong to each set, then Step 9 executes i n at most Npcp t ime. Step 10 can take the

form of checking a l l other potent ia l points to f ind a suitable edge, i n w h i c h case i t , too, takes at most Npcp

t ime. T h e result then follows. •

T h e payoff to this procedure is that the cost of generating the j o i n g raph is amor t ized i n the

p recomputa t ion of the ascent{] l ookup table, wh ich is determined solely by the tessellation cases. It follows

that:

Theorem 12.19 For any potential critical point v, Algorithm 12.1 takes Q(5+(v)) time to compute the
up-arcs of v in the join graph.

Proof: Fol lows immedia te ly from the fact that we s imp ly lookup the edges i n an array w i t h access
cost of O (l) . •

157

Heavy arc corresponds to
sweep described in text

C a s e . . .
Key to edges and vertices:

v2 v3
Qr-^—Q . v 4

VO <*> V l

Transition at vertex v l
Add edge eO

Isovalues used for sweep
described in text:

0

10 2

Figure 12.1: F i n i t e State Mach ine To C o m p u t e J o i n G r a p h for B i l i nea r Interpolant . / / I n this figure,
each state corresponds to one of the tessellation cases. A s we sweep from high isovalues to
low i n any given cel l , we sweep past each potent ia l c r i t i ca l point i n tu rn . E a c h sweep past
a potent ia l c r i t i ca l point corresponds to a t r ans i t ion i n the finite state machine. A n y edges
l is ted along the t rans i t ion are added to the j o i n graph for the cell to represent the changes
i n connect iv i ty at the potent ia l c r i t i ca l point past wh ich we swept.

No te that the lookup table we describe here can be used as an oracle for Pascucc i & C o l e - M c L a u g h l i n ' s

divide-and-conquer contour tree computa t ion a lgor i thm. T h e on ly difficulty we m a y face is choosing suitable

edges p and w at Step 10 i n A l g o r i t h m 12.2. T h i s , however, on ly needs to be done once for each interpolant ,

and can be done by hand i f needed.

If, instead of ascending paths, we choose the edge from v to the lowest-valued vertex i n each
connected component , then we w i l l compute the j o i n tree d i rec t ly for the cel l .

158

12.5 An Example: the Bilinear Interpolant

Convenient ly , these lookup tables can be displayed as finite state machines, i n wh ich each state corresponds

to a single tessellation case, and each t rans i t ion corresponds to a sweep of the isosurface past a a single

potent ia l c r i t i ca l point . A s an example, F igu re 12.1 A s an example of this approach, F igu re 12.1 shows the

j o i n graph lookup table for the bi l inear interpolant as a finite state machine. In this example, assume that

the isovalues are those shown i n the lower left hand corner of the d iagram. T h e potent ia l c r i t i ca l points w i l l

be the set of vertices of the cell plus the b o d y saddle, i f present.

Ini t ia l ly , we start i n state 0. Since vO has the highest isovaiue of the potent ia l c r i t i ca l points , i t is
processed first, corresponding to a t rans i t ion from state 0 to state 1. Since vO is a loca l m a x i m u m i n this cel l ,
no edge is added to the j o i n graph du r ing the t rans i t ion . T h e next potent ia l c r i t i ca l point to be processed
is v3 at an isovaiue of 8, corresponding to a t rans i t ion to state 9A. A g a i n , no edges are added to the j o i n
graph.

Once we reach state 9^4, we note that the isovaiue 5 of the saddle v4 must always be higher t han
the remain ing two isovalues 2, 0 of the vertices vl, v2 i n order for the saddle to be i n the inter ior of the cell ,
so the on ly possible t r ans i t ion is to state 9B, corresponding to a sweep past the saddle. Since the saddle
connects to b o t h vO and v3, we add edges e4 and e6 to the j o i n graph.

N e x t , we sweep past vl w i t h an isovaiue of 2, adding edge eO as we make a t rans i t ion to state 11.
F i n a l l y , we sweep past v2, adding edge e3 as we make a t rans i t ion to state 15 and terminate .

In general, since the t ransi t ions represent sweeps i n a par t icular d i rec t ion th rough the cel l , we know
tha t the finite state machine must always halt , and that the set of t ransi t ions passes th rough a l l possible
tessellations to be extracted from that cel l . We also note that the finite state machine for the spli t graph
uses the same transi t ions po in t ing i n the opposite d i rect ion. E a c h t rans i t ion w i l l use the same vertex i n bo th
direct ions, but the edge to be added may change. For example, dur ing the spli t sweep, a t rans i t ion from
state 15 to state 7 w i l l not add any edges to the spli t graph.

In the next section, we see how to extend this approach to tessellation cases that do not correspond
s t r i c t ly to any par t icu lar interpolant .

12.6 Contour Trees for Tessellation Cases

R e c a l l from Chap te r 6 tha t we defined the contour tree using concepts derived from M o r s e Theory , wh ich

studies properties of cont inuously differentiable functions. B u t , i n practice, we re ly on the assumptions stated

i n P a r t III to ensure tha t there are on ly a finite number of c r i t i ca l points. W e then app ly a combina tor ia l

a lgor i thm to a finite superset of the c r i t i ca l points, re ly ing on the fact that the topology can change at most

a finite number of t imes.

Once we have recognized that we are not s tudying a l l possible properties of an a rb i t r a ry cont inuously
differentiable function, but rather the finite number of changes possible to contours extracted from a mesh
defined over a finite set of points , we can start extending the contour tree a lgor i thms to contours defined i n
other ways.

159

n n a n n n
0: 1: 2: 3: 4: 5:

Figu re 12.2: Sample Cases for Tessel lat ion i n T w o Dimensions . A s usual , black vertices are above the
contour, whi te vertices below.

(a) Case 1 (b) Cases 1 & 2 (c) Cases 1 & 3

F igu re 12.3: Nes t ing of Some Tessellat ion Cases.
(a) shows two contours of case 1, one inside the other.
(b) shows two contours of case 1 nested inside a contour of case 2.
(c) shows two contours of case 1 nested inside one of the contours of case 3.

R e c a l l also that B o y e l l & R u s t o n [BR63] defined the contour tree i n terms of the nesting relat ionship
of a finite number of expl ic i t po lygona l contours. T h i s can t r i v i a l l y be extended to a finite number of classes
of equivalent contours, such as the cases used for tessellation.

A s a concrete example, let us consider the contours extracted i n square cells by the cases shown i n

F igu re 12.2, after the usual symmetr ic reductions. No te that this is not the same as the bi l inear interpolant

discussed i n the previous section: i n par t icular , the presence of saddles is ignored.

Not ice that each case nests inside the previous case i n the fol lowing sense. In F igu re 12.3(a), as we

reduce the isovalue, the endpoints of the contour move l inear ly away from the black vertex. T h u s for any

hy > hi that falls in to case 1, the contour at hi w i l l nest inside the contour at hi. A s the endpoints slide

along the edges, the next vertex passed by the contour may be adjacent or d iagonal ly opposite. In the first

case, we t rans i t ion to case 2, as for the bi l inear interpolant . B u t , for any /13 < hi for wh ich hi uses case 1

and /13 uses case 2, the contour at hi w i l l nest inside the contour at /13, as shown i n F igu re 12.3(b). S imi la r ly ,

F igu re 12.3(c) shows a t rans i t ion to case 3. Here, case 1 at hi w i l l nest inside case 3 at h% < hi. F ina l l y ,

case 3 nests inside case 4 by a s imi lar argument.

A l s o notice that we can discuss sweeping a contour th rough the cell i n terms of t rans i t ion from one

case to another. T h i s allows us to describe the j o i n graph (or spl i t graph) concisely by using finite state

machines. F igu re 12.4 shows the finite state machine that computes the j o i n graph using the tessellation

cases of F igu re 12.2, complete w i t h a sample sweep th rough the cel l . For this sweep, we assume that the

vertices are ordered v2 , w l , u3, uO, i.e. that f(v2) > f(vl) > f(v3) > f(v0).

D u r i n g this sweep, we t rans i t ion from case 0 to case 4 when we sweep past v2, then to case 6, case

14, and f inal ly case 15. In the first step, we add no edges, as v2 is a loca l m a x i m u m for the cel l . S imi la r ly , i n

160

Heavy arc corresponds to C a s e . ,
sweep described i n text

K e y to edges and vertices:

Transition at vertex v l
A d d edge eO

F igure 12.4: F i n i t e State Mach ine To C o m p u t e J o i n G r a p h for Simple 2-D Tessel lat ion Cases. / / A s w i t h
F igu re 12.1, each state corresponds to one of the tessellation cases, and each t rans i t ion to
a sweep past a potent ia l c r i t i ca l point . In this case, the potent ia l c r i t i ca l points are the
vertices of the cel l .

the second step, we add no edges. In the t h i r d step, from 6 to 14, we add two edges because i>3 is connected

to bo th v2 and vl. F ina l l y , we add eO to connect vO to the other vertices.

No t i ce also that not a l l points i n the cell have contours passing th rough them. F igu re 12.5 shows
an example of a square i n wh ich case 1, 3 and 4 are swept through: the area marked 1 i n the figure is the
area th rough wh ich contours of case 1 sweep, and so on. Since the contours never sweep th rough the whi te
region i n the centre, i t is clear that we are not work ing w i t h contours defined by a funct ion / that is defined
for the entire cel l . Ye t we can s t i l l make statements about the connect iv i ty of the contours generated, and
the geometric properties of those contours.

161

Figure 12.5: Areas Swept T h r o u g h B y Contours . In this figure, the whi te region i n the centre does not
belong to any contour, whereas the shaded regions belong to contours i n par t icu lar cases.

In terms of theoret ical jus t i f ica t ion, we can, for example, achieve this by rejecting the Morse theoretic

definit ion of the contour tree, and redefining i t i n terms solely of nest ing propert ies. Al te rna te ly , we can

define / for the whi te region to be equal to the isovaiue of the top r ight corner w h i c h was swept past, then

use per tu rba t ion or other techniques to ensure that c r i t ica l points are unique, as required for the Morse

theory. E i t h e r approach w i l l lead to the same result: a contour tree tha t correct ly represents the nest ing of

the contours that we can extract .

W e w i l l use this later, i n Chap te r 13, to generate j o in and spli t graphs for the M a r c h i n g Cubes cases

of M o n t a n i , Scateni & Scopigno [MSS94a].

12.7 Generating Isosurface Seeds

One of the major uses of the contour tree is for extract ing isosurfaces. For th is , we need to define how to

extract seeds, and how to use the cont inuat ion method to extract i n d i v i d u a l contours.

To find seeds, we use the pa th seeds described i n Chap te r 8. R e c a l l tha t a pa th seed is an edge by

which we leave a c r i t i ca l point to generate an / -monotone pa th tha t intersects the desired contour. E a c h

path seed is detected du r ing the j o i n or spli t sweep. Since edges i n the j o i n g raph represent sets of ascending

paths from joins , we follow edges i n the j o i n graph when we need an ascending pa th . S imi la r ly , we follow

edges i n the spl i t g raph when we need descending paths.

162

v2

v6
elO

e3

ell

v4

v7

el v3

d
r?9

I v r t - k £ S | ^

vO v l
a) Vertex And Edge Labels

v5

b) Example Of Piecewise Continuation
v3 v2

2 v3 v7

(ny

'(16

^ 1 3
fl7 \

v6 2 v3 v7 fl5V v6

K 7
r f i i

flO \
(3y
'(30

(31 \
(2^

'(24

" ^ 8
(25 \

A (3 l \ S(35 (26\L X(29

D v l v5 (2<y

' (19

\ f 2 1
fl8V v4 D v l v5

f23\. ^ 2 2

v4 vO

v l vO
c) Entry / Exit Edge Labels

Figu re 12.6: Labels For Piecewise Con t inua t ion , W i t h E x a m p l e

12.8 Piecewise Continuation

Once we have found a seed edge for each contour, we extract the contour i tself us ing the cont inua t ion method
of W y v i l l , McPhee te r s & W y v i l l [W M W 8 6 a] . For s impl ic ia l meshes, this me thod is well-behaved, as at most
one contour surface intersects any given tetrahedron. For a rb i t ra ry meshes, it is possible for mul t ip le contour
surfaces to intersect a g iven cel l . For example, i n F igure 12.6(b), two surfaces, label led sO and s i , intersect
the cel l . W h e n the cont inua t ion method enters a cell of type 6, i t queues up adjacent cells, and extracts
bo th surfaces simultaneously.

163

T o deal w i t h i n d i v i d u a l surfaces one at a t ime, we must generate seeds for i n d i v i d u a l surfaces, and

modify cont inua t ion so that i t follows one surface at a t ime. Seeds for i n d i v i d u a l surfaces are easy to ob ta in

i f we are using seed edges rather than seed cells. We know that seed edges correspond to monotone paths i n

the function, so i t is on ly possible for a seed edge to intersect one surface at a given isovaiue.

To follow on ly one surface at a t ime, we assign a label to each surface i n the cel l , as shown i n

F igu re 5.1. W h e n we queue up adjacent cells, we queue up only those to wh ich our current surface connects.

W e ca l l this me thod piecewise continuation, and show it i n A l g o r i t h m 12.3.

In general, we do not know wh ich surface we connect to i n the adjacent cell , but we do know that a
t r iangle i n the current cel l shares an edge w i t h a t r iangle i n that cel l . W e ca l l this edge an entry edge or exit
edge, depending on whether we are entering or ex i t ing the cell across the edge. Thus , instead of entering the
cel l , as is i m p l i c i t i n the cont inuat ion method given above, we enter the cell across a given edge. These entry
and exit edges can connect any pair of edges on a given face, and are label led / 0 — / 3 5 i n F igu re 12.6(c).

For example, i n F igu re 12.6(b), suppose we enter the cell across edge / 4 . W e use a lookup table to
determine wh ich surface / 4 belongs to: i n this case, i t belongs to sO. Af te r ex t rac t ing sO, we exit the cell
across edges / 4 , / 1 3 , / 2 2 , & / 2 5 (possibly except ing / 4 , our entry edge). E a c h exit edge is also an entry edge
i n an adjacent cell : for example, / 1 3 leads to the adjacent cell above this cel l . F r o m F igure 12.6(c), the exit
edge / 1 3 becomes the entry edge / 2 2 i n that cel l . Thus , to continue along this surface only, we take each
exi t edge, convert i t to an entry edge i n an adjacent cel l , and queue up bo th adjacent cel l and entry edge.

A s usual for M a r c h i n g Cubes , we define the relevant lookup tables on ly for the base cases shown
i n F igu re 5.1, and use rotat ions to generate a l l the other cases. T h e code to generate these tables is
inc luded i n A p p e n d i x A , and is available at h t t p : / /www. c s . u b c . c a / \ ~ h c a r r / d o w n l o a d s / m c C a s e s . c. For
completeness, the code implement ing A l g o r i t h m 12.3 is also inc luded i n A p p e n d i x B .

Input : A seed edge e
A n isovaiue H

Output : T h e unique contour surface that intersects e

l F i n d a cel l that includes e.
2 C o m p u t e the M a r c h i n g Cubes case for that cel l .
3 L o o k up the surface the seed edge intersects i n this cel l .
4 Choose an exit edge for the surface as the entry edge.
5 Queue the seed cell and entry edge
6 while the queue is non-empty do
7 Remove a cell and edge from the queue
8 C o m p u t e the M a r c h i n g Cubes case
9 F i n d the surface to wh ich the edge belongs

10 if surface is marked then
G o t o 6

else
11 E x t r a c t surface
12 M a r k surface

end
13 for each exit edge belonging to the surface do
1 4 Conver t exit edge to entry edge i n neighbour
15 Queue neighbour and entry edge

end
end

Algorithm 12.3: T h e Piecewise Con t inua t ion M e t h o d of Isosurface E x t r a c t i o n

164

12.9 Summary

T h i s chapter s tar ted by ident i fying the fact tha t da ta is rarely presented on a s imp l i c i a l mesh, cubic grids

being far more c o m m o n for v i sua l i za t ion purposes. T h i s chapter has extended the work of Pascucc i & Cole -

M c L a u g h l i n [P C M 0 2] to provide a general framework for performing contour tree computat ions on a rb i t r a ry

meshes, using any interpolant , and i n any dimension.

Instead of analys ing the i n d i v i d u a l interpolant by hand, as i n Pascucc i & C o l e - M c L a u g h l i n [P C M 0 2] ,
we have seen how to compute suitable join and split graphs using a lookup table extracted au tomat ica l ly
from any set of tessellation cases.

Because we constructed the j o i n and spli t graphs from the tessellation cases instead of from stat ic
analysis of the interpolant , we were then able to extend contour tree computa t ions to sets of tessellation
cases wh ich do not correspond to well-defined interpolants , p rovided that the tessellation cases satisfy a
cr i ter ion based on the nesting relat ionship of i n d i v i d u a l tessellated contours.

We w i l l see i n Chap te r 14 that this lat ter result is useful where contours are being extracted on an
ad hoc basis, such as the M a r c h i n g Cubes cases of M o n t a n i , Scateni & Scopigno [MSS94a], or where analysis
of a given interpolant is difficult or incomplete .

E v e n i f the analysis of the interpolant is incorrect , we w i l l s t i l l be able to generate contour trees
that are consistent w i t h the surfaces that are ac tua l ly extracted, p rovided that the tessellation cases satisfy
a s imple nesting condi t ion . T h a t this is an advantage is apparent from the sequence of papers analysing the
t r i l inear interpolant [LC87, D i i r 8 8 , W v G 9 0 , N H 9 1 , M a t 9 4 , M S S 9 4 a , Na t94 , Che95, C G M S O O , C M S 0 1 , L B 0 3] .
These papers a l l a t tempt to generate isosurfaces from the t r i l inear interpolant , but , except for [Che95, L B 0 3] ,
have various errors i n them. M o s t of them, however, generate isosurfaces that satisfy the nesting condi t ion ,
a l lowing us to use the contour tree to extract and manipula te i n d i v i d u a l contours.

E v e n now tha t there is a correct analysis of the t r i l inear interpolant [Che95, L B 0 3] , i t may s t i l l
be desirable to use a s impler tessellator for speed, for consistency w i t h other tools, or s impl ic i ty of coding.
A g a i n , the ab i l i ty to compute the contour tree for the contours ac tua l ly extracted is a con t r ibu t ion made by
this chapter.

In add i t ion , i n order to facil i tate using non-s impl ic ia l meshes w i t h the flexible isosurface interface

of Chap te r 9, we have shown how to extend path seeds and minmal seed sets for isosurface ext rac t ion , and

defined piecewise continuation to extract the i n d i v i d u a l isosurfaces.

In the next two chapters, we w i l l see how to apply the techniques from this chapter to the most com­

m o n meshes: (hyper)-cubic meshes w i t h either mul t i l inear in terpola t ion , or the non- interpola t ing M a r c h i n g

(Hyper) -Cubes tessellation cases.

165

Chapter 13

Contour Trees for Multilinear
Interpolants

In the previous chapter, we showed how to extend the contour tree a lgo r i thm to any a rb i t ra ry mesh and
interpolant , us ing join and split graphs. T h i s chapter deals p r inc ipa l ly w i t h compu t ing j o i n and spli t graphs
for bi l inear , t r i l inear , and higher-dimensional mul t i l inear interpolants.

Sect ion 13.1 starts w i t h the example of the bi l inear interpolant , and shows several different methods
of compu t ing suitable j o i n and spli t graphs, then discusses loca l spat ia l measures. Sect ion 13.2 repeats the
exercise for three dimensions, and Sect ion 13.3 looks at higher dimensions.

13.1 Join and Split Graphs for the Bilinear Interpolant

There are several ways we might consider to construct j o i n and spl i t graphs for the bi l inear interpolant . W e

can, for example, construct a lookup table, as described i n A l g o r i t h m 12.2. Al te rna te ly , we can classify a l l

possible contour trees, j o i n trees or spl i t trees, for the bi l inear interpolant , and construct a lookup table for

the entire cel l . T h e meri t of doing so is tha t we get the entire contour tree for each cell at once, rather t han

one edge at a t ime of a j o i n graph. Sta t ic analysis of the interpolant , however, is required to compute the

set of possible contour trees, for example, by using A l g o r i t h m 12.2 to compute the classes of j o i n trees.

Othe r methods include subd iv id ing each cell in to smaller cells w i t h s impler topology, such as s im­
plices, or bu i ld ing a j o i n graph by adding edges to the edges of the mesh. In this section, we w i l l see examples
of how to app ly each of these methods to the bi l inear interpolant .

B i l i n e a r L o o k u p T a b l e s : T h e first way to construct j o i n and spli t graphs is to use the lookup arrays

computed i n Sect ion 12.4. T h i s captures exact ly the same surface as w i l l be generated when a contour is

extracted, because we use exact ly the same tests for determining wh ich case we are i n as we do for the

contour ext rac t ion .

166

(c) (cl) (c2)

Figure 13.1: Possible C o n t o u r Trees for B i l inea r Interpolant. For the bi l inear in terpolant , the saddle is
located at the intersect ion of the hor izonta l and ver t ica l asymptotes . Depend ing on whether
the saddle is inside the cell (a), off to one side (b), or d iagonal ly off the corner of the cel l
(c), the contour tree can on ly by of the form (a2), (b2) or (c2). (a3) shows how to subdiv ide
a cell conta in ing a saddle to ob ta in s impl ic ia l subcells w i t h equivalent topology.

In the previous chapter, we used the bi l inear interpolant as an example i n F igu re 12.1, showing the
lookup table i n the form of a finite state machine.

Cell Classification and Lookup: F igure 13.1 classifies a l l possible types of cel l for the bi l inear inter­
polant , and creates a l ookup table of a l l possible contour trees. A s s u m i n g tha t the vertices have dis t inct
isovalues, Nie l son & H a m a n n [NH91] showed that the contours are a fami ly of hyperbolae shar ing hor izonta l
and ver t i ca l asymptotes passing th rough a saddle. For the bi l inear interpolant , the contour tree w i l l then
depend on whether this saddle is inside the cel l , as shown i n case (a), to one side, as shown i n case (b), or
off i n a d iagonal d i rec t ion, as shown i n case (c).

For the bi l inear in terpolant , this is s traightforward. For the t r i l inear in terpolant , Pascucc i & Cole -
M c L a u g h l i n [P C M 0 2] have shown how to classify the possible j o i n a n d spl i t trees. T h e i r me thod relies on a
large lookup table to deal w i t h a l l the possible orderings of potent ia l c r i t i ca l points . For higher dimensions,
this approach is l ike ly to prove intractable , since the number of possible s i tuat ions increases rapidly , and
since i t becomes much more difficult to analyse the contours by inspect ion, as we have done here.

167

Figure 13.2: S u b d i v i d i n g a B i l i n e a r C e l l W i t h V e r t i c a l and H o r i z o n t a l Asympto t e s . W e can spl i t a ce l l
a long the hor izonta l and ver t ica l asymptotes th rough the saddle to ob ta in four subcells,
each of w h i c h is guaranteed to have simpler topology.

Cell Subdivision: T h e t h i r d way to construct a topology graph is to d iv ide the cell in to four by adding the
saddle point , the ver t ica l and hor izonta l asymptotes through the saddle, and vertices at the edges, as shown
i n F igure 13.2. T h i s divides the cel l into four axis-aligned subcells. Convenient ly , the bi l inear interpolant i n
each subcel l is the res t r ic t ion to the subcell of the bil inear interpolant i n the entire cel l . Thus , any c r i t i ca l
point i n the subcel l must be a c r i t i ca l point i n the or ig ina l cell . B u t we know tha t the saddle is the only
c r i t i ca l point of the o r ig ina l cel l . Since this saddle occurs at a vertex of each of the subcells, the subcells
cannot have c r i t i ca l points i n their interior , and fall into case (c) of F igu re 13.1. Thus , the subcells have
simple j o i n , spl i t , and contour trees, wh ich can be computed from the un ion of the j o i n , and spl i t trees for
the subcells.

In two dimensions, however, it is s impler to classify a l l cells and use a lookup , as described i n
Sect ion 13.1. However, i n higher dimensions, this method becomes impor tan t , as we w i l l see below.

Cell Augmentation: T h e four th way to construct a topology g raph is to insert the saddle point , i f present,
and connect i t to a l l four corners, as shown i n F igure 13.1(a3): this exp l i c i t l y represents the contour trees
for the four subcells. If the saddle point is not present, we have case (b) and (c) of F igu re 13.1. Such cells
are not inspected further: instead, the edges of the cells are used, as they sufficiently represent the cell 's
topology.

W e can also a d d a ver tex i n the middle of cells of the types shown i n F igu re 13.1 (b) and (c). Since
the topology of these cells is s imple , this causes no problems. B u t this allows us to have a consistent set
of edges i n every cell : the edges of the cel l , plus connections from the inserted ver tex to a l l four corners.
For the bi l inear interpolant , this gives us a d iv i s ion of the square into t r iangular cells, i n each of w h i c h the
topology is equivalen to tha t generated by the barycentr ic interpolant .

168

y- + yw

horizontal asymptote

Figure 13.3: C o m p u t i n g A r e a i n a B i l inea r C e l l . Since bil inear interpolants generate hyperbol ic contours,
comput ing loca l spa t ia l measures involves logar i thmic terms.

13.1.1 Bilinear Spatial Measures

Once we know how to compute the topology for the bi l inear interpolant , we s t i l l need to know how to
compute geometric properties such as area enclosed by the contour. R e c a l l that Nielsons & H a m a n n [NH91]
showed that the contours of a bi l inear cell are hyperbolae.

In F igu re 13.3, we show a hyperbol ic contour for which we wish to compute the area of region A.
C o m p u t i n g this area requires compu t ing area B under the hyperbol ic curve y = —zz- + Vh, where xv is the
x coordinate of the ver t ica l asymptote , y^ is the y coordinate of the hor izonta l asymptote , and A: is a scal ing
constant. T h e area of B is then given by the integral:

I b k
yhdx = kln\b- xv\ - kin \a - xv\ + (b - a)yh (13.1)

T h e appearance of a logar i thmic t e rm is problematic , because the m e t h o d described i n Chap te r 10
for comput ing loca l geometric properties t racks the sum of terms for each cel l intersect ing a sweep l ine,
col lapsing the s u m into a single p o l y n o m i a l of 0 (1) size.

W e can sum logar i thmic terms using the identi ty:

log(a) + log(6) = log(aft) (13.2)

For an extended sequence of log terms, however, we w i l l have to wor ry about the numer ica l precis ion
of performing a large number of mul t ip l ica t ions . Moreover , for t r i l inear and higher interpolants , i t is not
easy to define the integral , and we expect further difficulties i n exact compu ta t ion of properties.

169

13.2 Trilinear Topology Graphs

W e have just discussed four methods to compute bi l inear j o i n and spli t graphs. W e can use the same methods

to compute t r i l inear j o i n and spli t graphs.

Trilinear Lookup Tables: We know from Chapte r 12 that we can construct lookup tables for j o i n and
spli t graphs au tomat ica l ly once we have an accurate set of tessellation cases. Chernyaev [Che95] and Lopes
& B r o d l i e [LB03] have reported accurate tessellation cases for the t r i l inear interpolant . It follows tha t we
can use the a lgor i thms i n Chap te r 12 to compute suitable lookup tables. F igu re 13.4 shows the finite state
machine representing the lookup table for the j o i n graph of the t r i l inear interpolant .

Cell Classification and Lookup: Al te rna te ly , we can compute lookup tables that give the j o i n and spl i t
trees for every possible order ing of the potent ia l c r i t i ca l points of the t r i l inear interpolant , as Pascucc i &
C o l e - M c L a u g h l i n [PCM02] have done.

Cell Subdivision: We can also subdivide each cell by passing planes perpendicular to each axis through
each b o d y saddle point . T h e t r i l inear interpolant i n each subcel l is the res t r ic t ion to that subcell of the
t r i l inear interpolant i n the o r ig ina l cel l . We know that the b o d y saddles of the or ig ina l cel l are now at the
vertices of the subcel l , so no subcel l has a body saddle i n its interior . T h i s d ras t ica l ly simplifies the cases, and
we can use the A s y m p t o t i c Decider of Nie l son & H a m a n n [NH91] to adjudicate face saddles. T h i s approach,
of d i v i d i n g the cells in to topologica l ly s impler subcells, is essentially the same as the Dividing Cubes approach
pioneered by C l i n e et a l . [CLL+88] for isosurface rendering, and used by C i g n o n i et a l . [CGMSOO] and Lopes
& B r o d l i e [LB03].

Cell Augmentation W e can augment each cell w i t h add i t iona l edges to produce a j o i n or spli t graph.

E a c h face w i t h a face saddle must have the face saddle connected to a l l four vertices of the face. If there is

one b o d y saddle, we add edges to connect i t to each vertex and each face saddle of the cel l . If there are two

b o d y saddles A and B, they are roughly al igned along a major d iagonal of the cell , as shown i n F igure 13.5.

T h e contour th rough A precludes a monotone pa th between B and the ver tex opposite B on the major

d iagonal . Mono tone paths, however, exist between each body saddle and each vertex or face saddle, and

between the two b o d y saddles. W e therefore take:

1. the edges of the cube,

2. edges from each face saddle to the corners of the face,

3. edges from each b o d y saddle to each vertex of the cube except the vertex d iagonal ly opposite along
the m a i n diagonal ,

4. edges from each b o d y saddle to each face saddle, and

5. an edge between the two b o d y saddles

Thus , depending on how many saddle points a cell has, we may need as many as 51 addi t iona l edges,
as shown i n F igu re 13.6. T h i s is unsatisfactory, as i t adds great complex i ty for re la t ively l i t t le gain .

170

0 Vertices Above
Isosurface

1 Vertex Above
Isosurface

2 Vertices Above
Isosurface

M « c Ul) (u . icQiJ
7 Vertices Above f "• "? '

8 Vertices Above r • -t_.
Isosurface 1=4:';.)

Figure 13.4: F i n i t e State M a c h i n e for J o i n G r a p h of the Tr i l inear Interpolant . A s w i t h F igu re 12.1, each
state corresponds to one of the tessellation cases, and each t r ans i t ion to a sweep past a
potent ia l c r i t i ca l poin t corresponds to a t rans i t ion i n the finite state machine. T h e states
have been reduced by symmetry, and are numbered fol lowing Chernyaev [Che95].

171

Figure 13.5: A Tr i l inear C e l l w i t h T w o B o d y Saddles. A n example of a t r i l inear in terpolant w i t h two
b o d y saddles. N o t e how the contour through b o d y saddle A prevents the existence of any
monotone pa th from one vertex of the mesh to b o d y saddle B .

F igure 13.6: A u g m e n t i n g a Tr i l inea r C e l l w i t h T w o B o d y Saddles. T h e g raph shown here, w i t h edges
connect ing bo th b o d y saddles to each other, to the face saddles, and to a l l but one of the
vertices, is a sufficient j o i n and spli t graph for compu t ing the contour tree.

172

13.2.1 Trilinear Local Spatial Measures

C o m p u t i n g bi l inear spat ia l measures already involved logar i thmic terms. Tr i l inear spat ia l measures can
be expected to be even worse: for example, defining the integral to compute the area enclosed by the
surfaces i n F igu re 13.5 w i l l be extremely complex. We regard the exact computa t ion of these measures as
computa t iona l ly imprac t i ca l for large da ta sets.

We expect, however, that for large da ta sets, the approximate loca l spa t ia l measures described i n
Sect ion 10.8 w i l l suffice for most p rac t ica l purposes.

13.2.2 Summary

For the t r i l inear interpolant , then, there are several prac t ica l ways of compu t ing the contour tree. A t present,
we recommend using the cell classification and lookup oracle described by Pascucc i & C o l e - M c L a u g h l i n [P C M 0 2] ,
because i t is k n o w n to work , and is re la t ively s t raightforward. Al te rna te ly , the finite state machine approach
could be used, a l though we have yet to construct the relevant finite state machine.

N o mat ter w h i c h method is used, however, deal ing w i t h the t r i l inear interpolant is inherent ly com­
plex. Since we have mos t ly worked w i t h noisy acquired data , we have chosen to avoid the addi t iona l
complexi ty , since we cannot rely on any sub-voxel details, and have adopted the approach described i n
Chap te r 14, instead.

13.3 Higher Dimensions

A s we continue to higher dimensions, i t is clear that the mul t i l inear in te rpola t ion w i l l re ta in the properties

we have discussed for bi l inear and t r i l inear interpolants , but that cons t ruc t ing sui table cases, lookup tables,

and finite state machines w i l l become more and more complex.

A hypercube i n four dimensions has 8 faces, each of wh ich is a cube i n three dimensions. Over each
such cube, the quadri l inear interpolant reduces to the t r i l inear interpolant . We know tha t each cube can have
two b o d y saddles and six face saddles. T h i s implies that the hypercube can have as many as 8 x (2 + 6) = 64
cr i t i ca l points shared w i t h adjacent hypercubes.

Moreover , the b o d y of the hypercube may have add i t iona l saddles: since the two-dimensional case

has 1 and the three-dimensional case has 2, the four d imensional case is expected to have at least 3. A d d i n g

i n the 16 vertices of the hypercube, we find that we may need to inspect as many as 64 + 3 + 1 6 = 83 values.

O f the general approaches described above, the most p rac t ica l appear to be the lookup table defined

i n Sect ion 12.4 and cel l subdiv is ion . T h e lookup table relies on hav ing established suitable isocontouring

cases, wh ich have not yet been worked out. Moreover , given the large number of papers publ ished [LC87,

Dur88 , W v G 9 0 , N H 9 1 , M a t 9 4 , M S S 9 4 a , Na t94 , Che95, C G M S 0 0 , C M S 0 1 , L B 0 3] that i t took to analyse the

t r i l inear interpolant and its cases correctly, we expect that i t w i l l be some t ime before this is prac t ica l .

T h e cell subdiv is ion approach, however, is feasible, as i t relies on stat ic analysis of s impler cases. If

we can construct a set of cases for the quadri l inear interpolant , assuming that there are no saddle points

173

whatsoever, then we can compute the contour tree correctly. To do so, we compute any body saddles of
the hypercube, and pass axis-al igned hyperplanes th rough each one. T h i s then reduces the prob lem to one
invo lv ing simple cases i n the b o d y of the hypercube, and the t r i l inear interpolant i n each cubic "face" of
the hypercube, for wh ich we know we can f ind the contour tree. However, this approach is l ike ly to be
modera te ly complex to implement .

Because of this, and because of the difficulty of tessellating the quadri l inear interpolant , we believe

tha t an approach based on tessellation cases such as M a r c h i n g Hypercubes [BWCOO] is l ike ly to be the most

p rac t ica l approach to comput ing contour trees for higher dimensions.

13.4 Summary

In this chapter, we have described how to determine suitable topology graphs for compu t ing the contour
tree over mul t i l i nea r ly in terpola ted cells i n two and three dimensions. These solutions generally involve
exhaustive descr ipt ion of a l l possible surface configurations, breaking the cell down into less complex subcells,
or cons t ruc t ing a graph d i rec t ly that captures a l l classes of monotone paths.

T h e drawback to a l l of these solutions is that they are complex. In two dimensions, the complex i ty
is manageable, as i t involves at most one add i t iona l vertex to process, and a sma l l number of graph edges.
In three dimensions, however, the complex i ty r ap id ly increases. A n d , i n four or higher dimensions, the
complex i ty passes the bounds of the prac t ica l .

For this reason, the next chapter w i l l describe a s impler approach: work ing w i t h the cases of the

we l l -known Marching Cubes [LC87].

174

Chapter 14

Contour Trees for Marching Cubes

A s we saw i n the previous chapter, comput ing the topology for the t r i l inear and higher-dimensional mu l t i ­
l inear interpolants is a complex task. M u l t i l i n e a r in terpola t ion, however, is not always the method of choice,
for a var ie ty of reasons.

1. Complexity: generat ing the topologica l ly correct t r i l inear surface is difficult to do accurately, as can
be seen by the sequence of papers refining M a r c h i n g Cubes [CGMSOO, Che95, Dur88 , L B 0 3 , L C 8 7 ,
M a t 9 4 , M S S 9 4 a , Na t94 , N H 9 1] . In higher dimensions, this complex i ty w i l l on ly increase.

2. Cost: compu t ing correct saddles adds addi t iona l t ime and expense even when ext rac t ing a single

isosurface.

3. Quantization: where da ta is stored as an 8- or 16- b i t integer, w i t h i m p l i c i t error of ± 0 . 5 , i t is unwise
at best to infer topologica l details at computed isovalues such as 12.345.

4. Noise: exper imenta l vo lumet r ic da ta is subject to noise, wh ich has two effects:

(a) F i n e topologica l de ta i l cannot be assumed to be accurate.

(b) Noise dras t ica l ly increases the size of the contour tree, so tha t most of the fine detai l w i l l not be

of interest to the user i n any event.

5. Instability: since the pos i t ion of the saddle(s) i n a cube is a degree-3 po lynomia l , accuracy is a concern,

as contour tree a lgor i thms are vulnerable to numer ica l errors, since they re ly on a correct sor t ing order.

6. Local Spatial Measures: we saw i n the previous chapter that mul t i l inear interpolants make i t difficult
to compute loca l spat ia l measures accurately.

T h i s is not to say that t r i l inear in te rpola t ion is always inappropr ia te . In par t icular , i t is preferred for
s imula t ion data , where noise can be assumed to be non-existent, and fine topologica l de ta i l often indicates
impor t an t events and / or problems w i t h the s imula t ion .

However , for noisy, exper imenta l ly sampled data , we c l a i m that the complex i ty at tendant on correct

t r i l inear in te rpola t ion is unnecessary. Instead, i n this chapter, we show how to compute contour trees di rect ly

for the c o m m o n l y used M a r c h i n g Cubes cases of Lorenson & Cl ine [LC87], as corrected by M o n t a n i , Scateni

& Scopigno [MSS94a] and for the related M a r c h i n g Hypercubes of B h a n i r a m k a , Wenger, & Crawfis [B W C 0 0] .

175

(a) Case 3: Vert ices N o t Connec ted (b) Case 3 C : Vert ices Connec ted

F igure 14.1: M a r c h i n g Cubes Case 3 and its Converse Case 3 C

14.1 Join and Split Graphs for Marching Cubes

A s we noted i n Chapte r 12, we can compute the contour tree correct ly even i f we have a set of tessellating

surfaces that do not define a continuous interpolant . T h e best-known such set of surfaces are the M a r c h i n g

Cubes cases of Lorenson & C l i n e [LC87], wh ich we discussed i n Chap te r 5. In th is sect ion we describe s imple

jo in and spli t graphs tha t a l low easy and efficient computa t ion of the contour tree, not for these cases, but

for the corrected cases of M o n t a n i , Scateni & Scopigno [MSS94a].

For these cases, there is a simple and convenient shortcut for compu t ing j o i n and spl i t graphs.

Consider the cases shown i n F igu re 14.1. In F igure 14.1(a), two vertices (in black) are "above" the contour,

and s ix (in white) are "below" the contour. In F igu re 14.1(b), the reverse is t rue. T h e rule adopted by

M o n t a n i , Scateni & Scopigno [MSS94a] is that two black vertices tha t are d iagonal ly opposed on a face,

they are assumed to be inside d is t inc t surfaces, unless connected by edges of the cube. Thus , two black

vertices are never connected on ly by a face diagonal . Moreover , two black vertices are assumed never to be

connected on ly by a b o d y d iagonal of the cube.

Thus , i n a s i tua t ion such as shown i n F igure 14.1(a), as we sweep past the second of the two black

vertices, we do not need to concern ourselves w i t h the poss ibi l i ty o f connect ing to a component by a face or

body diagonal . A n d i n F igu re 14.1(b), as we sweep past the second of the two black vertices on the upper

face of the cel l , we do not need the face diagonal , as the black vertices are already connected by edges of the

cube.

It then follows tha t the edges of the cube suffice to represent the nest ing of these surfaces dur ing
the j o i n sweep: i.e. that the edges of the cube form a j o in graph.

For the spl i t tree, we wish to track the whi te vertices. In F igu re 14.1(b), we can see that we need

the opposite rule: two whi te vertices are always connected by a face d iagonal . B o d y diagonals, however,

are not used. In F igure 14.1(a), when we sweep past the second of the two whi te vertices on the lower face,

adding the face diagonal is redundant , but not incorrect .

176

T h i s gives a s imple way to find a spli t graph: always add a l l edges and face diagonals. A g a i n , we

ignore major diagonals, as vertices are never connected on ly by a major d iagonal of the cube. W e end up

w i t h s imple j o i n and spli t graphs for M a r c h i n g Cubes:

1. T h e j o i n g raph uses the edges of the cubic mesh

2. T h e spl i t g raph uses the edges and face diagonals.

If we w i s h to compare this to using the lookup table i n Sect ion 12.4, we observe that the lookup
table a lgo r i thm w i l l add n — 1 edges as i t sweeps past the n vertices of a cel l . For a cube, this means that
we add 7 edges to ta l per cube. Since each vertex part icipates i n 8 cubes on average, and there are 8 vertices
per cube, i t follows that we add 7 edges per vertex i n each of the j o i n and spli t sweeps. In compar ison,
the j o i n graph we have just defined adds 6 edges per vertex, whi le the spl i t g raph adds 6 + 24 = 30 edges.
Not iona l ly , then, this approach adds twice as many edges as the lookup table wou ld , i n exchange for simpler
implementa t ion and cheaper edge construct ion.

W e saw i n Chap te r 13 that the lookup table could be expressed as a finite state machine. In
F igu re 14.2, we show the finite state machine for the j o i n graph for the M a r c h i n g Cubes cases of M o n t a n i ,
Scateni & Scopigno [MSS94a]. T h e finite state machine for the spli t g raph is ident ica l , except that t ransi t ions
r u n i n the opposite d i rec t ion, and the edges to be added to the j o i n g raph are different.

14.2 Local Spatial Measures for Marching Cubes

A s w i t h s imp l i c i a l meshes, comput ing loca l spat ia l measures for the M a r c h i n g Cubes cases of M o n t a n i ,
Scateni & Scopigno [MSS94a] is re la t ively s t raightforward, albeit a l i t t le messy. In each of these cases, the
upstar t and downstar t regions are bounded by the extracted isosurface, and include vertices of the cube.
Thus , each upstart or downstar t region is a po lyhedra l sol id , whose vertices are either vertices of the cube
or vertices interpolated along the edges of the cube. Since the in te rpo la t ion is l inear, these lat ter vertices
are l inear combinat ions of the or ig ina l vertices of the cube, parameter ized by h, the isovaiue.

To compute geometric measures such as volume, we decompose each such po lyhedra l sol id into
tetrahedra, using on ly the vertices of the polyhedron . For each tetrahedron, we compute the desired measure,
then combine the results.

177

Figure 14.2: F i n i t e State M a c h i n e for M a r c h i n g Cubes cases of M o n t a n i , Scateni , & Scopigno [MSS94a].
A s w i t h F igu re 13.4, we show only the basic cases after s y m m e t r y reduct ion . T h i s finite
state machine can be obta ined by merging states from F igu re 13.4: for example , case 3 here
can be obta ined by merging cases 3.1 and 3.2 i n the t r i l inear case.

178

Figure 14.3: C o m p u t i n g Geomet r i c Measures for Case 2 of M a r c h i n g Cubes . In this figure, vertices of the
form v04 are l inear combinat ions of two vertices, i n this case vO and v4 . T h e upstart region
for the contour shown is the polyhedron defined by vO, v l , v02, v04, v l 3 , and v l 5 . Geomet­
ric properties are computed by decomposing this region into the te t rahedra v 0 v 0 2 v 0 4 v l 5 ,
v 0 v l v 0 2 v l 5 and v l v 0 2 v l 5 v l 3 .

A s an example, consider F igure 14.3, wh ich shows the decomposi t ion of an upstar t region i n case

2. T h i s upstar t region has 6 vertices, four of wh ich are l inear combinat ions of vertices of the cube. W e

decompose this po lyhedra l region into the te t rahedra v 0 v 0 2 v 0 4 v l 5 , v 0 v l v 0 2 v l 5 and v l v 0 2 v l 5 v l 3 , compute

the geometric measure for each te t rahedron separately, then recombine them.

Al te rna te ly , as we d i d i n Chap te r 11, we can use approximate loca l spa t i a l measures.

14.3 Summary

In this chapter, we observed that the t r i l inear interpolant is often overk i l l , especial ly for noisy, exper imenta l ly

acquired data . For this reason, we have shown how to compute sui table j o i n and spl i t graphs for the more

commonly used tessellation cases of M a r c h i n g Cubes [LC87, MSS94a] . Moreover , we have cont r ibuted a

simple shortcut for compu t ing j o i n and spli t graphs for these cases.

179

Chapter 15

Perturbation

In this chapter, we show how to re lax our assumpt ion that no two vertices of the mesh share the same

isovaiue.

In practice, this assumpt ion is rarely satisfied. T h e input da ta is usual ly stored as either 8 or 16-bit
integers, and usual ly has at least 64 x 64 x 64 = 262,144 samples. Since 8- and 16- bi t integers on ly have
256 and 65,536 dis t inct values respectively, i t is not possible to have a da ta set of this size wi thout repeated
values. E v e n i f we restr ict the assumpt ion to c r i t i ca l points , for a contour tree of size 65,537 or greater, the
assumpt ion must be false.

W e had this assumpt ion i n the first place because the M o r s e theoretic underpinnings assume that
changes i n topology occur at c r i t i ca l points , not c r i t i ca l regions. O r , i n s impler words, that there are no flat
spots, no plains, no plateaus, and that there is always a single point as a saddle.

W e handle this p rob lem by app ly ing symbol ic per turbat ion . T h i s is equivalent to t i l t i ng the da ta so

that flat spots become ever so s l ight ly slanted. Edelsbrunner & M i i c k e [EM90] have formalized this idea as

Simulation of Simplicity. T o simulate s impl ic i ty , we add a different e value at each sample, choosing the e

values so that the largest of them is s t i l l smaller than the smallest difference between two exis t ing non-unique

isovalued samples. T h i s guarantees that no two samples have exact ly the same isovaiue.

Since this is difficult to arrange using fixed-precision inpu t data , i t is cus tomary to per turb sym­
bo l i ca l ly instead of l i teral ly . Thus , when two isovalues are compared, we use the usual compar ison unless
the two isovalues are ident ical , i n wh ich case we compute the e per turbat ions and compare them instead.
P r o v i d e d that we have a finite number of samples, this works out nicely, as we can always choose sufficiently
smal l e values.

In practice, we can take advantage of the fact that the samples are stored i n a regular array i n the

computer ' s memory. Choose a single sufficiently smal l <5 such that 5 mu l t i p l i ed by the largest legal memory

address is s t i l l smaller t han any difference between two unique isovalues. T h e n , for a sample stored at

memory address M , let the corresponding e value be: e (M) = 6 x M. U s i n g this , i t is easy to test wh ich

of two samples is greater after per turbing. A l g o r i t h m 15.1 shows the a lgor i thm for the test. We must be

careful using this, because a lgor i thms such as quicksort can enter an infinite loop i f the samples are moved

i n memory. W e therefore assume tha t the samples always remain fixed i n memory.

180

Input : Pointers dl and d2 to two isovalues stored at fixed memory addresses.

Output : Resu l t of compar ing the isovalues at dl and d2 using symbol ic per turba t ion .

1 if content of memory address dl is less t han content of memory address d2 then
2 | R e t u r n "less than" ;

3 else if content of memory address dl is greater t han content of memory address d2 then
4 | R e t u r n "greater than" ;

5 else if address dl is less than address d2 then
6 | R e t u r n "less than" ;

7 else if address dl is greater than address d2 then
8 | R e t u r n "greater than" ;

9 else
10 | R e t u r n "equal";

end

Algorithm 15.1: C o m p a r i n g Vert ices w i t h M e m o r y - A d d r e s s Pe r tu rba t ion

Thus , adding per tu rba t ion to the a lgor i thm to compute the contour tree is quite s t raightforward.
U s i n g the contour tree thereafter, however, becomes more complex due to the presence of the per turbat ion ,
as we w i l l see i n the following sections.

15.1 Removing Perturbation

T h e major difficulty w i t h per turba t ion is that i t adds topological de ta i l to the contour tree that should not be
present. Consider the mesh shown i n F igu re 15.1(a). S i x of the vertices have the same isovalue 50. If we app ly
per tu rba t ion as described i n the previous section, we add the symbol ic values a<f3<j<5<e<f<r]<9
to get F igu re 15.1(b). U s i n g this as input , we get the contour tree shown i n F igure 15.1(d), when what we
want to work w i t h is the tree shown i n F igure 15.1(c). M o s t of the superarcs i n F igure 15.1(d) are between
pairs of vertices whose isovalues differ on ly by the imposed per turba t ion . Fo r convenience, let us refer to
these superarcs as e-superarcs.

To give an idea of the consequences of the per turbat ion , assume tha t we wish to t rack the evolut ion

of the contour at isovalue 0 as the isovalue is increased. In the unper turbed mesh i n F igure 15.1(a), we w i l l

see a sequence of contours r i s ing eventual ly to 100. If we follow th rough the per turbed tree i n F igure 15.1(d),

however, we get a sequence of contours r i s ing only to 50 + C- T h i s can be avoided i f we modify our evolut ion-

t r ack ing so that , instead of s t r ic t ly ascending, we are permi t ted to take downwards arcs, provided that the

descent is on ly the result of per turba t ion . B u t this requires us to have two definitions of "less than" : one

for sor t ing and generating the tree, the other for ascending / descending i n the tree.

A preferable solut ion is to remove the per turba t ion by col lapsing any e-superarc, as discussed i n
Sect ion 11.3. In this instance, edge collapses are permissible, as the object ion stated i n Sect ion 11.3 does not
apply. R e c a l l that the object ion stated was that edge-collapses resulted i n misrepresenting the number of
contours at isovalues spanned by the superarc. For e-superarcs, we have the reverse problem. T h e e-superarc
represents contours that do not ac tua l ly exist. Thus , edge-collapsing the e-superarc ac tua l ly removes the
effects of the per turba t ion .

181

50 — 100 50+a 100+3

50 50 50+Y 50+5

i o i+n o+e

(a) U n p e r t u r b e d M e s h (b) Pe r tu rbed M e s h

(c) U n p e r t u r b e d Con tou r Tree (d) Pe r tu rbed Con tou r Tree

F igu re 15.1: Effects of Pe r tu rba t ion on A S m a l l M e s h

F igu re 15.2 shows the results of removing the per turba t ion i n this way. Not ice that , after removing

a l l of the e-superarcs, we were left w i t h F igu re 15.2(d), i n wh ich 50 + e had become a regular point , so we

performed a vertex-collapse at 50 + e to remove i t .

No te that the flat region is i n fact the sweep region of the e-superarc, as defined i n Chap te r 6, and
removing the e-superarcs is equivalent to s impl i fy ing those edges. Since we w i l l never extract an isosurface
exact ly at the isovaiue of these vertices, removing e-superarcs w i l l not affect extracted isosurfaces.

In A l g o r i t h m 15.2, we show a naive a lgor i thm to remove per turba t ion from the contour tree. Unfor­

tunately, Step 3 is bounded by 0(t), since either u or v may be of a rb i t ra ry degree, g iv ing a t o t a l runt ime

bound of 0(t2). Instead, we substi tute A l g o r i t h m 15.3.

182

Input : A contour tree C = (V, E) w i t h edges due to per turba t ion

Output : C w i t h the per tu rba t ion edges removed

1 for each edge e = (u, v) i n E do
2 if f(u) = f(v) then
3 | Identify u and v (transfer a l l edges from v to u)

end
end

4 for each vertex v i n V do
5 if v is now a regular point then
6 | Pe r fo rm vertex collapse at v

end
end

Algorithm 15.2: Na ive Remova l of Pe r tu rba t ion from C o n t o u r Tree

Input : A contour tree C — (V, E) w i t h edges due to per tu rba t ion

Output : C w i t h the per turba t ion edges removed

l for each vertex v i n V do
2 if wasChecked(v) then
3 Sk ip v.

end
4 Set wasChecked(v)
5 for each arc e = (u, v) incident to v do
6 if f(u) = f(v) then
7 Delete e
8 if not wasChecked(u) then
9 A d d u to queue

end
end

end
10 while queue not empty do
11 pop u from queue
12 set wasChecked(u)
13 for each edge e = (u, w) incident to u do
14 if f(u) = f(w) then
15 Delete e
16 if not wasChecked(u) then
17 j A d d u to queue

end
else

18 Transfer e from u to v
end

end
19 Delete u

end
20 if v is now a regular point then
21 Per fo rm vertex collapse at v

end
end

Algorithm 15.3: Improved Remova l of Pe r tu rba t ion from Con tou r Tree

183

(a) In i t i a l ly (b) R e m o v i n g (50 + a)-(50 + 8 (c) R e m o v i n g (50 + e)-(50 + C)

(d) R e m o v i n g (50 + <5)-(50 + e) (e) Co l l aps ing (50 + e)

F igure 15.2: R e m o v i n g Pe r tu rba t ion from a Con tou r Tree

In this improved a lgor i thm, we perform a loca l breadth-first search at each vertex v to determine
wh ich other nodes are l inked to i t pure ly by e-height edges. E a c h edge incident to v is checked for e height:
i f so, the other end is added to a queue of vertices k n o w n to be e-linked to v, and the edge is deleted from
the tree. A s each vertex u is removed from the queue, its incident arcs are s imi l a r ly checked. Edges of e
height are deleted, w i t h their other ends being added to the queue, whi le non-e edges are transferred to. v.
Since edges are always transferred to v, each edge is transferred at most once.

Af ter a l l vertices equivalent to v have been identified and had their incident arcs transferred to v,
i f v has become a regular point , i t is collapsed. T h i s can happen, for example, at a j o i n vertex w i t h two
upwards arcs and one downwards, i f one of the upwards arcs is a leaf arc of e height.

E a c h edge i n the tree is checked at most twice for e height (once from each end, i n the case of non-e
edges), and transferred between vertices at most once. Thus , this improved version is bounded by 0(t).

R e m o v i n g per tu rba t ion i n this way, however, makes i t more difficult to use the pa th seeds described
i n Sect ion 8.2, as we w i l l see i n the next section.

184

15.2 Perturbation and Path Seeds

In the previous section, we discussed removing per turba t ion w i t h the s impl i f ica t ion from Chap te r 11. If,

however, we wish to use pa th seeds to extract contours, as described i n Sect ion 8.2, we w i l l have to work

w i t h the per turbed contour tree.

T o see w h y this is true, consider the mesh i n F igu re 15.3(a), wh ich shows a l l ascending edges as
arrows. If we remove the per tu rba t ion i n the contour tree, we end up w i t h pa th seeds on ly at the ends of
the superarc 100 — 0. Suppose that we use the pa th seed at 0, and wish to extract the contour at 75. If we
a t tempt to ascend from 0 i n the mesh to find a suitable seed edge, we immedia te ly hi t the flat spot at 50.
To leave the flat spot and continue ascending, we first have to cross the flat spot, as shown by the heavy
edges i n F igu re 15.3(a).

B u t , w i thou t knowing w h i c h d i rec t ion to go, we w i l l potent ia l ly need to explore the entire flat spot
to find the correct "exi t" . Since this flat spot can be a rb i t r a r i ly large, this imposes significant penalties on
the pa th seed method . T h i s can be al leviated i n part i f we mark every vertex i n a flat spot w i t h the di rect ion
of ascent or descent. T h i s , however, requires add i t iona l processing.

Al te rna te ly , and more simply, we can leave the per turba t ion i n . In F igure 15.3(b), we show an
example of this, where the per turba t ion ac tua l ly helps to find a suitable pa th to ascend. However, this
is not always the case, as we can get stuck i n a loca l m a x i m u m caused by the per turba t ion , as shown i n
F igu re 15.3(c).

In practice, since we are using hierarchical pa th seeds to deal w i t h s impl i f ica t ion , the easiest so lut ion
is to leave the per tu rba t ion i n and use hierarchical pa th seeds. Thus , i n F igu re 15.3(d), we use a pa th seed
from 50 + S for the isovaiue range 50 — 100, and a pa th seed from 0 for the isovaiue range 0 — 50.

15.3 Perturbation and Non-Simplicial Contour Trees

Once we start w o r k i n g w i t h non-s impl ic ia l meshes and interpolants other t han the barycent r ic interpolant , we

need to be cautious w i t h per turba t ion . Consider for example the t r i l inear in terpolant discussed i n Chapte r 13.

W e compute the isovaiue of b o d y saddles based on the values of the corners of the cel l . W i t h o u t going into

deta i l , i t is possible that one of the b o d y saddles may have the same isovaiue as not one, but two vertices of

the cel l . Since the isovaiue of the saddle depends on the isovalues of those vertices, careful a t tent ion must

be pa id to ensure that the per turba t ion does not d is turb the correct sor t ing order.

W e do not examine this further i n this thesis, as we have chosen to implement the M a r c h i n g Cubes
approach discussed i n Chap te r 14, instead. Since there are no derived saddles, the per turba t ion scheme
discussed above works quite smoothly.

15.4 Summary

In this chapter, we have discussed using symbol ic per turba t ion to satisfy the assumpt ion i n P a r t III that no

two vertices have the same isovaiue. T h e p r inc ipa l con t r ibu t ion we have made w i t h respect to per turba t ion

185

(a) F l a t Spots (b) A n E a s y Case

50+a 50+a

(c) G e t t i n g Stuck (d) Hie ra rch ica l Seeds

F igu re 15.3: Effects of Pe r tu rba t ion on P a t h Seeds. No te how per turba t ion can make pa th seeds work,
as i n (b), or prevent them from work ing by creat ing ar t i f ic ia l flat spots, as i n (c). U s i n g
hierarchical pa th seeds, as i n (d), avoids this problem.

is to show that removing the per tu rba t ion is a form of s impl i f ica t ion. It follows from this that we can address

the side-effects of per tu rba t ion by using the hierarchical pa th seeds discussed i n Chap te r 8, provided that

we account for the per tu rba t ion when following pa th seeds th rough the mesh. Moreover , we have observed

that we have chosen to use approximate loca l spat ia l measures, wh ich are unaffected by the per turbat ion .

186

Part V

Results and Conclusions

187

In previous Par t s , we showed how the contour tree can be used to unify topologica l and geometric

in format ion for explora tory man ipu l a t i on of i n d i v i d u a l isosurfaces i n scalar fields, and how to extend exis t ing

contour tree a lgor i thms to non-s impl ic ia l meshes.

In this part , we give some numer ica l results i n Chap te r 16 on the performance of these algori thms,

and on the effectiveness of topologica l s impl i f ica t ion. We then review the contr ibut ions i n this thesis and

state some conclusions i n Chap te r 17, and speculate on future research directions i n Chap te r 18.

188

Chapter 16

Results

In this chapter, we provide some performance results for various a lgor i thms described i n this thesis. Unless
otherwise specified, t i m i n g results were obta ined using a M a c i n t o s h G 4 computer w i t h dua l 1 G H z processors,
1 G B of m a i n R A M , and a 64 M B GeForce 4 video card , runn ing M a c O S X 10.1.5 or 10.2.6. A l t h o u g h the
machine has dua l processors, none of the code wr i t t en was paral le l ized.

T h i s chapter starts w i t h a section discussing the types of da ta tested and their sources i n Sect ion 16.1,

followed by sections discussing i n d i v i d u a l results for different parts of this thesis.

Thus , Sect ion 16.2 gives some ind ica t ion of the performance of the contour tree computa t ion algo­
r i thms, i nc lud ing removing per turba t ion and performing s impl i f ica t ion. Sect ion 16.3 then compares the cost
of compu t ing the contour tree using M a r c h i n g Cubes and the m i n i m a l 5-fold s imp l i c i a l subdiv is ion described
i n [CMS01] . Sect ion 16.4 gives some results for isosurface ex t rac t ion w i t h pa th seeds. F i n a l l y , Section 16.5
shows some images produced using the flexible isosurface interface w i t h s impl i f ica t ion .

16.1 Sources of Data

For test ing the flexible isosurface, we used da ta from a number of sources, shown i n Table 16.1. These da ta

sets range from ana ly t i ca l da ta (M a r s c h n e r / L o b b) , th rough numer ica l s imulat ions and molecular s imulat ions,

to M R I , C T and X - r a y data . T h e first group consists of molecular datasets provided to us by A l a n Ab le son

and Janice Glasgow of Queen's Univers i ty , K i n g s t o n . T h e second group consists of da ta sets obta ined from

the Vo lv i s website (www.volvis .org) , made available by various researchers. F i n a l l y , the da ta sets i n the last

group are of miscellaneous origins, p r inc ipa l ly from U N C - C H .

B r o a d l y speaking, we expect the noise to increase i n the order stated: ana ly t i ca l da ta is expected

to be accurate to machine precision. N u m e r i c a l s imulat ions can be expected to be largely free of noise,

but there m a y be some numer ica l ins tab i l i ty or round-off error. T h e molecular da ta are s imulated X - r a y

crys ta l lographic data , based on resolved proteins from the P r o t e i n D a t a B a n k (www.pdb.org) . A l t h o u g h

s imula ted , the s imula t ion includes water molecules presumed to be near the proteins i n question, and the

da ta is somewhat noisy. F ina l l y , exper imenta l ly acquired da ta can be expected to have a significant amount

of noise.

189

http://www.volvis.org
http://www.pdb.org

N a m e T y p e Size Cour tesy of:
f368.0.6 Molecu l a r 35 x 17 x 51 A b l e s o n / Glasgow
3gap.0.8 Molecu l a r 29 x 60 x 131 A b l e s o n / Glasgow
ldog.0 .8 Molecu l a r 72 x 64 x 60 A b l e s o n / Glasgow
A n e u r y s m X - r a y 256 x 256 x 256 P h i l i p s Research
B o n s a i C T scan 256 x 256 x 256 S. Roet tger
B o s t o n Teapot C T scan 256 x 256 x 178 Terarecon Inc. et a l .
Eng ine C T scan 256 x 256 x 128 Genera l E l ec t r i c
Foo t X - r a y 256 x 256 x 256 P h i l i p s Research
Fue l S imula t ion 64 x 64 x 64 G e r m a n Research C o u n c i l
Hydrogen A t o m S imula t ion 128 x 128 x 128 G e r m a n Research C o u n c i l
Lobs te r C T scan 301 x 324 x 56 S U N Y Stony B r o o k
M a r s c h n e r / L o b b A n a l y t i c a l 41 x 41 x 41 Marschner / L o b b [ML94]
Neghip S imula t ion 64 x 64 x 64 S U N Y Stony B r o o k
Nuc leon S imula t ion 41 x 41 x 41 G e r m a n Research C o u n c i l
Shockwave A n a l y t i c a l 64 x 64 x 512 U n k n o w n
S i l i c i u m S imula t ion 98 x 34 x 34 S U N Y Stony B r o o k
S k u l l X - r a y 256 x 256 x 256 Siemens M e d i c a l Systems
Statue L e g C T scan 341 x 341 x 93 B A M , G e r m a n y
H i p i p h S imula t ion 64 x 64 x 64 Scripps C l i n i c , L a J o l l a
3dknee M R I 256 x 256 x 127 Siemens / U N C - C H
3dhead M R I 256 x 256 x 109 Siemens / U N C - C H
Teddybear M R I 128 x 128 x 61 U n i v . of E r l angen-Nuremberg
R a t M R I 240 x 256 x 256 W h o l e F r o g Pro jec t , L B L

Table 16.1: Character is t ics and Sources of Test D a t a

D a t a Set Size (n) Contour Tree Tree Size (t) R a t i o
Cons t ruc t ion (s) (Superarcs) (t/n)

Nuc leon 68,921 0.34 676 0.98%
M a r s c h n e r - L o b b 68,921 0.32 1,620 2.35%
S i l i c i u m 113,288 0.56 399 0.35%
Fue l 262,144 1.16 227 0.09%
Negh ip 262,144 1.26 2,063 0.79%
Shockwave 2,097,152 9.26 722 0.03%
Hydrogen 2,097,152 9.58 12,729 0.61%
Lobs te r 5,461,344 32.97 348,369 6.38%
Eng ine 8,388,608 54.84 509,397 6.08%
Statue 10,814,133 56.84 448,815 4.15%
Teapot 11,665,408 61.26 87,388 0.75%
A n e u r y s m 16,777,216 81.40 65,626 0.39%
B o n s a i 16,777,216 92.30 187,437 1.12%
Foot 16,777,216 114.77 866,482 5.16%
S k u l l 16,777,216 422.46 2,190,897 13.06%

Table 16.2: Cons t ruc t i on T i m e s for the Con tou r Tree. T imes do not include per tu rba t ion removal . No te
that the clean da ta sets tend to have smal l contour trees relat ive to the input da ta size,
whi le noisy acquired da ta sets tend to have quite large contour trees.

16.2 Contour Tree Computation

In Table 16.2, we show some results for comput ing the contour tree, using the M a r c h i n g Cubes method from
Chap te r 14 and s impl i f ica t ion using L o c a l Spa t i a l Measures.

190

D a t a Set Size (n) Tree Size (t) Per tu rba t ion U n p e r t u r b e d R a t i o R a t i o
(Superarcs) R e m o v a l (s) Size (f) (t ' / n) (t'/t)

N u c l e o n 68,921 676 < 0.01 49 0.07% 7.24%
M a r s c h n e r - L o b b 68,921 1,620 < 0.01 695 1.01% 42.90%
S i l i c i u m 113,288 399 < 0.01 225 0.35% 56.40%
Fue l 262,144 227 < 0.01 129 0.04% 56.83%
Neghip 262,144 2,063 < 0.01 248 0.09% 12.02%
Shockwave 2,097,152 722 < 0.01 31 < 0.01% 4.29%
Hydrogen 2,097,152 12,729 0.01 8 < 0.01% 0.06%
Lobs te r 5,461,344 348,369 0.47 77,349 1.42% 22.20%
Eng ine 8,388,608 509,397 0.68 134,642 1.61% 26.43%
Statue 10,814,133 448,815 ; 0.57 120,668 0.01% 26.89%
Teapot 11,665,408 87,388 0.10 20,777 0.18% 23.78%
A n e u r y s m 16,777,216 65,626 0.08 36,667 0.22% 55.87%
B o n s a i 16,777,216 187,437 0.24 82,876 0.50% 44.22%
Foot 16,777,216 866,482 1.31 508,854 3.03% 58.73%
S k u l l 16,777,216 2,190,897 11.15 931,348 5.55% 42.51%

Table 16.3: Sizes of Con tour Trees after Pe r tu rba t ion Remova l , w i t h T i m e s Requi red . A l t h o u g h the
ra t io varies, pe r tu rba t ion generally accounts for 1/4 to 1/2 of the edges i n the contour tree.
In extreme cases, such as the hydrogen dataset, the under ly ing s imula t ion is except ional ly
clean, w i t h topologica l ly complex flat regions wh ich require m a n y per turbed superarcs to
represent.

W e draw two conclusions from these results. F i r s t , the size of the contour tree is generally related
to the size of the input data , but tends to be smaller for ana ly t i ca l and s imula ted da ta sets t han for
exper imenta l ly acquired da ta sets. G i v e n our comments i n Chap te r 11, this is ha rd ly surpr is ing. Second,
we see that these computa t ions are wel l w i t h i n the range of a modern computer for da ta sets w i t h up to 16
m i l l i o n sample point . For larger da ta sets, batch processing and storage of the contour tree may be required,
but is s t i l l feasible.

Table 16.3 shows that the cost associated w i t h the symbol ic per tu rba t ion of Chap te r 15 is significant.

R e m o v i n g the per tu rba t ion from the tree t yp i ca l l y halves the number of superarcs i n the contour tree. One

reason for this m a y be that the da ta sets are 8-bit, so quant iza t ion is l ike ly to in t roduce many flat spots

that cause the contour tree to have ex t ra edges. However, we can also see that the cost of s t r ipp ing out the

per tu rba t ion is a sma l l fraction of the cost of comput ing the contour tree i n the first place.

F i n a l l y , we show the t ime required to s impl i fy the contour tree using approximate loca l spat ia l

measures i n Table 16.4. In this case, we use hypervolume as our spat ia l measure, by analogy to the volume

measure we used to collapse the 2-D sample da ta set i n F igu re 11.13. W e approximate this by t ak ing the

product of the height of the edge and the volume of the isosurface at the saddle point . T h e volume is t u r n

approximated by the number of mesh vertices as i n Section 10.8.

C o m p a r e d to the cost of const ruct ing the contour tree i n the first place, we see that s impl i f icat ion is

re la t ively cheap to perform. W e note, however, that computa t ion of the loca l spat ia l measure is included i n

the i n i t i a l contour tree const ruct ion. Since these measures involve count ing samples as they are processed,

the overhead is quite low.

In each case, the s impl i f ica t ion takes as inpu t the contour tree after per turba t ion removal , and

simplifies i t down to a single edge, to al low i t to be used i n the simplif ied flexible isosurface interface

described i n Chap te r 11.

191

D a t a Set Size (n) Tree Size S impl i f ica t ion
(Superarcs) T i m e (s)

Nuc leon 68,921 49 < 0.01
M a r s c h n e r - L o b b 68,921 695 < 0.01
S i l i c i u m 113,288 225 < 0.01-
Fue l 262,144 129 < 0.01
Negh ip 262,144 248 < 0.01
Shockwave 2,097,152 31 < 0.01
Hydrogen 2,097,152 8 < 0.01
Lobster 5,461,344 77,349 0.22
Eng ine 8,388,608 134,642 0.39
Statue 10,814,133 120,668 0.32
Teapot 11,665,408 20,777 0.05
A n e u r y s m 16,777,216 36,667 0.08
B o n s a i 16,777,216 82,876 0.23
Foot 16,777,216 508,854 1.75
S k u l l 16,777,216 931,348 3.43

Table 16.4: T i m e Requ i red to Simpl i fy Con tour Trees After R e m o v i n g Per tu rba t ion .

M i n i m a l S i m p l i c i a l Subd iv i s ion
F i l e D a t a Size L o a d Sort J o i n / S p l i t Merge Tree Size
3dknee 127 x 256 x 256 54.36s 22.99s 141.34s 32.28s 2,751,506
3dhead 109 x 256 x 256 45.71s 17.69s 89.05s 23.94s 2,231,900
ldog.0 .8 72 x 64 x 60 2.18s 0.34s 1.63s 0.19s 18,498
3gap.0.8 29 x 60 x 131 1.80s 0.27s 1.31s 0.15s 14,290
neghip 64 x 64 x 64 1.59s 1.63s 1.00s 0.08s 2,544
fuel 64 x 64 x 64 1.55s 0.63s 0.91s 0.06s 299

M a r c h i n g Cubes
F i l e D a t a Size L o a d Sort J o i n / S p l i t Merge Tree Size
3dknee 127 x 256 x 256 54.17s 23.03s 129.70s 31.12s 2,706,019
3dhead 109 x 256 x 256 45.67s 17.63s 81.62s 22.86s 2,196,594
ldog.0 .8 72 x 64 x 60 2.20s 0.34s 1.61s 0.18s 17,656
3gap.0.8 29 x 60 x 131 1.81s 0.27s 1.28s 0.15s 13,164
neghip 64 x 64 x 64 1.59s 1.63s 0.99s 0.08s 2,063
fuel 64 x 64 x 64 1.55s 0.63s 0.94s 0.06s 227

Table 16.5: C o m p a r i s o n of Cons t ruc t ion T imes U s i n g S i m p l i c i a l Subd iv i s ion and M a r c h i n g Cubes .
B r o a d l y speaking, there is no speed advantage to either basis for comput ing the contour
tree. No te that these t imes are not d i rec t ly comparable w i t h the results i n Table 16.2, as
they result from an older, less wel l -opt imized implementa t ion of the a lgor i thm. B u t , since
the implementa t ion of the s impl ic i a l subdiv is ion has not been op t imized , compar ing the
equivalent march ing cubes implementa t ion is more appropriate .

16.3 Results for Marching Cubes

In Table 16.5, we show some times for const ruct ing the contour tree using the m i n i m a l 5-fold subdiv is ion

scheme described i n [CMS01] , i n compar ison w i t h t imes for const ruct ing the contour tree using the M a r c h i n g

Cubes me thod described i n Chap te r 14. T h e contour tree sizes i n this table are before removing per turbat ion ,

and are different between the two sets of figures. T h i s was expected, as M a r c h i n g Cubes imposes a different

topology from that imposed by m i n i m a l s imp l i c i a l subdiv is ion .

192

F i l e
3dknee
3dhead
ldog.0 .8
3gap.0.8
neghip
fuel

Size
127 x 256 x 256
109 x 256 x 256

72 x 64 x 60
29 x 60 x 131

64 x 64 x 64
64 x 64 x 64

Isovaiue F i v e
1639.2
1639.2

0.30
0.65

101.9
101.9

Simplices M a r c h i n g Cubes
3,662,308 1,634,744
1,043,892 441,998

393,450 165,964
194,568 81,798

R a t i o
2.24
2.36
2.37
2.38
2.43
2.57

49,484 20,360
7,564 2,946

Table 16.6: Sample Isosurface Sizes for S i m p l i c i a l Subd iv i s ion and M a r c h i n g Cubes . M a r c h i n g Cubes
outperforms s impl i c i a l subdiv is ion by a factor of about 2.3, roughly i n accordance w i t h the
estimates i n [C T M 0 3] , whi le avoiding the d i rec t ional biases i n [CMS01] .

T h e size of tree and the speed of computa t ion are s t i l l s imi la r , as the large-scale topology of the

da ta is unaffected by loca l decisions. B o t h versions process the same set of vertices and approximate ly the

same number of edges, so we expected this to be true.

U s i n g M a r c h i n g Cubes , however, results i n a clear ga in i n rendering speed, as shown i n Table 16.6.
We took the m i n i m u m and m a x i m u m sampled isovalues, and a rb i t r a r i ly chose an isovaiue at 40% of this
range. W e then extracted the isosurface using the m i n i m a l (five simplices) subdiv is ion and the M a r c h i n g
Cubes implementat ions . In each case, the s impl ic i a l subdiv is ion resulted i n roughly two to two-and-a-half
t imes as m a n y tr iangles, wh ich we expected from the results of C a r r , Theuf i l and M o l l e r [C T M 0 3] .

Moreover , we know from [CMS01] that s impl ic i a l subd iv i s ion produces isosurfaces w i t h vis ible d i ­

rec t ional biases, where M a r c h i n g Cubes does not.

M a r c h i n g Cubes is bo th faster and better qua l i ty than s impl i c i a l subdiv i s ion , wh ich is the ma in
reason w h y we have used i t . In pract ice, the bott leneck for explora tory v i sua l i za t ion is the cost of rendering
to the screen. For isosurfaces, this cost is p r inc ipa l ly k: the number of pr imi t ives (usually triangles) generated.
In par t icular , when adjusting an isosurface, the major cost is that of transferring roughly 100 bytes to the
video card for each t r iangle generated. For datasets such as 3dknee, wh ich generate surfaces i n the mi l l ions
of tr iangles, this dominates almost any other cost. For the flexible isosurface interface, we generate new
isosurfaces interactively, and do not have sufficient t ime to s impl i fy the surface before sending i t to the video
card . Thus , us ing M a r c h i n g Cubes rather t han simplices is a major advantage.

A correct t r i l inear in terpola ted surface should also be faster t han s impl i c i a l subdiv i s ion , but involves

significant overhead b o t h i n compu t ing the contour tree and i n tessellating topologica l ly complex cells.

Moreover , the add i t iona l topologica l complex i ty is a l l at sma l l scales. Since we remove sma l l scale topological

de ta i l dur ing the s impl i f ica t ion process, i t is questionable how much is gained by t r i l inear in terpola t ion for

the noisy acquired datasets we have been s tudying .

N o w that we have looked at computa t ion t imes for the contour tree a lgor i thm, we consider the cost of using

pa th seeds for isosurface ext rac t ion . In Table 16.7, we show some results, again using M a r c h i n g Cubes for

speed. These results are summaries of t r y i n g various isosurfaces interactively, g iv ing ranges rather than

precise measurements. So, for example, i n f368, we t r ied a number of isosurfaces, w i t h tr iangle counts

ranging from 10,000 to 17,000, and found that the length of paths used to f ind isosurfaces was i n the range

16.4 Isosurface Extraction Using Path Seeds

4 - 6 .

193

D a t a Set Longest
P a t h

Tr iangle F rame
C o u n t Ra t e (fps)

f368
mar lobb
fuel

30,345 915
68,921 912

262,144 227
262,144 1,360
262,144 2,063
489,600 17,867

1,015,808 245,588
7,143,424 2,231,900
8,323,072 2,751,506

4-6
1-23

2-3
5-29
7-10

1 0 K - 1 7 K 15 - 60
1 0 K - 3 5 K 24 - 65

3 K - U K 25 -180
2 K - 2 2 K 15 -150

1 0 K - 3 0 K 20 - 60
1 9 K - 9 6 K 7 - 32
1 9 K - 2 5 0 K 3 - 21
8 5 K - 5 0 0 K 0.5 - 3.5

h i p i p h
neghip
lobster 4
teddybear 4-5

2-5
1-6

3dhead
3dknee 3 2 5 K -1634K 0.5 -1.64

Table 16.7: Some Resul ts for P a t h Seed Isosurface E x t r a c t i o n . In general, the larger the contour tree,
the shorter the paths, and vice versa. Moreover , the pa th lengths are much smaller than
the isosurface sizes, as predicted.

B r o a d l y speaking, these results indicate that the overhead for using pa th seeds to extract isosurfaces
is negligible compared to the cost of ex t rac t ing and rendering triangles. Moreover , the noisier the da ta set,
the shorter the paths. B u t this also i l lustrates once more w h y i t is inadvisable to use s impl ic i a l subdivis ions ,
as the larger datasets usual ly dropped below a frame rate wh ich can reasonably be cal led interactive: ha lv ing
this frame rate for s imp l i c i a l subd iv i s ion was a penal ty we were not prepared to accept.

16.5 Images Produced Using Simplified Contour Trees

In this section, we show some images produced using the flexible isosurface interface w i t h the simplif ied

contour tree. In each case, the ab i l i ty to focus on large-scale topology al lowed us to isolate what appeared

to be impor tan t contours re la t ively quickly.

F igu re 16.1 shows an image generated from the U N C Head da t a set. N o expert knowledge was used

to select the isosurfaces shown: instead, on ly a few minutes w i t h the interface were required to identify the

major features shown. T h e image shown took about half an hour i n to ta l to produce, much of wh ich t ime

was spent i n l ay ing out the contour tree by hand.

To produce this image, we reduced the contour tree to a single edge, then uncollapsed one edge at

a t ime. A s each new leaf was added to the tree, we placed a contour on tha t leaf and manipu la ted i t to

determine wha t i t was, then assigned a suitable colour: for example, a l l identifiable sku l l fragments were

assigned the l ight blue colour i n order that the corresponding edges i n the contour tree not be obtrusive.

A d j u s t i n g the vertex posi t ions to get the groupings of the leaves shown was done manual ly.

In terms of par t icular structures, we note that the ventr icular structures inside the b ra in are shown

i n the contour tree, but are not vis ible i n the da ta display. A l s o , several of the structures shown are defined

as cavities - i.e. contours sur rounding pits of low intensi ty rather than peaks of h igh intensity. T h e ventricles,

eyeballs and nasal / sinus cav i ty a l l fit into this category. So does the structure wh ich we have label led the

lower jaw. Since the lower j aw is made of bone, i t ought not to be a cavity, and this s tructure may represent

too th pu lp and nerves, or perhaps the gap between teeth and cheeks. T h i s s tructure is, however, c lear ly

associated w i t h the jaw. Othe r structures are given by contours a round peaks of h igh intensity, such as the

b lood vessels, eye sockets, nasal septum, and bra in .

194

Figure 16.1: Topolog ica l S impl i f i ca t ion of U N C Head D a t a Set. A number of s tructures are shown, some
defined i n terms of loca l m i n i m a , others i n terms of loca l m a x i m a .

|_J Data/rawF k>ai/3dhead.txt

rendered isosurface

Rotation Light

S Show Contours D Local Contours (Dtlete Selection) (Restore Deleted)

Colcuwd Contours Q Display-Lists (Pelete CompUmmt) (Quit}

current
isovaiue

Contour Tiee Display: [X] Show Contour Tiee

Tags ue colou* - coded to match, surfaces in main pine

• • • • M n • •
(D o t U y w t ^ f Save Layout) (LoadLayouQ

Figure 16.2: Conven t iona l Isosurface of U N C Head D a t a Set W i t h o u t C o n t o u r Tree S impl i f i ca t ion .

195

GDtta/rawFloaVrattxt _ n X
1̂ I 1 1 IT

Horizontal axis: log {size of titty

Figure 16.3: Structures V i s i b l e i n a Noisy M R I Scan of a Pregnan t R a t .

T h i s image can be compared w i t h F igure 16.2, wh ich shows a convent ional isosurface of the same
da ta set. No te how the isosurface for the sku l l completely conceals a l l other contours.

F igu re 16.3 shows the results of a s imi lar explora t ion of a 240 x 256 x 256, low-qua l i ty M R I d a t a
set of a pregnant rat, taken from the Whole Frog Project at h t t p : / / w w - i t g . l b l . g o v / I T G . h m . p g . d o c s /
W h o l e . F r o g / W h o l e . F r o g . h t m l . A g a i n , s impl i f ica t ion reduces the contour tree to a size that can be used to
explore the data .

I n this case, the contour tree shown was l a id out us ing the dot t oo l descr ibed i n C h a p t e r 9 rather
than manua l man ipu la t ion . A s a result, this image took less than five minutes to produce. Before explor ing
this da ta set I was unaware that the rat i n question was pregnant, but after f inding an obvious embryo, I
confirmed that the rat was indeed pregnant by checking the source of the data . T h i s i l lustrates one of the
great advantages of this type of explora t ion of the data: one need not know i n advance precisely what one
is look ing for.

In F igu re 16.4, we show several structures i n the C T head da ta set, first w i t h the s k u l l , then wi thout .
Since the vent r icular s tructures are among the largest structures i n this da ta set as wel l as the U N C head,
we hope to be able to perform automated ext rac t ion of these i n the future. A g a i n , tree layout was performed
using dot, and these images took on ly a few minutes to produce.

F ina l l y , F igu re 16.5 shows an example of how topological s impl i f ica t ion us ing the contour tree and
local spat ia l measures can help to suppress noise i n isosurface renderings.

196

http://ww-itg.lbl.gov/ITG.hm.pg.docs/

wnloadvOL256x256xl06.raw _nx

spinal cord

spinal column

skull

spinal column)

spinal cord /
\ 7

Contour Tree Display: [X] ShowContourTrcc

Vertical slider controls isovaiue.

Tigs a t colour - coded to match surfaces in main pane

Show Contours D Local Contours (Delete Selection) (Restore Deleted)

I Terminal

• Data/do wnloads/CT_2S6x2S6xl06.raw

ventricles

spinal cord

spinal column

spinal column)

spinal cord
\

ventricles

Rotation Light

I 5howContouis Q Local Contours (Delete Selection) (Restore Deleted)

I Coloured Contours Display Lists (Deleit Complement) [Quit)

Contour Tree Display: IX) Show Contour Tree

Vertical slider controls isovaiue

Tig s are colour - coded to ma ten surfaces in main pane.

• • • mm . mm •
(Dot Layout)f Save Layout) (Load Layout")

(Collapse) (Uncollapse^

Log - loj plot of tree collapse:

Verticil axis: log (smallest object}:

Horizontal axis- log (size of tree):

_• x

(Collapse) (Uncollapse)

Log- leg plotof tree collapse:

Vertical axis: log (smallest object):

Horizontal axis: log (size of tree)

Figu re 16.4: Structures i n the C T H e a d da t a set.
These images show the spine, spinal cord, sku l l and ventr icular s tructures.

197

Rotation Light

El ShowContours • Local Contours (Met. S.lcclioa") (gntor.Dtl.ttd)

H Coloui.d Contours • Display Lists (Dtlro Conjpl.nvnt) [Quit)

Contour Ti., Display: H Snoti-Trie • Colour Tree

Vmical si idea controls isovalue

TafS are colour - coded to maun surlacts in main pan.

• • • • • ! (• •
(DotLayout)(SaveLayout"̂)f LoadLayouO

• I I I I I I

(Collaps.) (Uacollaps.)

Log-loj plot of tie. collaps.

Vmical axis: lof (smallest object):

Horizontal axis: log (size of tree):

U Datt/rolvisyfootraw
-nx

Zoom (lof scale)

Z - seal.

Rotation Light

13 Sttosy Contours Q Local Contours

13 ColouredContours • DisplayLists (MettCoiiipi.rri.at) (Cjmx)
(DclcKScltction) (Hestor. Del.ttd 1

CotitouaTK. Display: 0 Stiov/Trcc • Colour Tree

Vmical slider controls isovalut.

Tafs 11* colour - coded to rnauh surf ac es in main pan.

mmm • • • • •
(Dot Layout)(Say. Layout") f Load Layout)

(Collaps.) (

Log -loj plot of tt« tolUpst:

V«tic»l litis: lof (J tn i l lMtobjcc t) :

Horizontal axis: log (si« o i u t t y

Figure 16.5: R e m o v i n g Noise Topologica l ly . In these two images, we show the effects of s impl i f ica t ion
on convent ional isosurfaces. Note that , by s impl i fy ing the contour tree, we au tomat ica l ly
remove a l l contours of smal l importance, dras t ica l ly i m p r o v i n g the d isp lay of the bones of
the foot w i thou t los ing any detai l . A l s o note the way that the five-fold s t ructure of the
contour tree reflects the five toes i n the foot.

198

http://gntor.Dtl.ttd
http://MettCoiiipi.rri.at

Chapter 17

Conclusions

In this thesis, we have shown how to use the topologica l in format ion encoded i n the contour tree to enable
interact ive man ipu la t ion of i n d i v i d u a l contour surfaces i n an isosurface scene, using an interface called the
flexible isosurface.

T h e major research contr ibut ions embodied i n this thesis are the flexible isosurfaces of Chap te r 8,
wh ich generalize level sets and permi t interactive explora t ion of i n d i v i d u a l contours, the local spatial measures
of Chap te r 10, wh ich define geometric properties w i t h respect to regions bounded by contours, and the
topological simplification of Chap te r 11, wh ich uses loca l spat ia l measures to s impl i fy b o t h the contour tree
and the under ly ing function.

In add i t ion , there are a range of secondary contr ibut ions , wi thou t wh ich the major contr ibut ions
wou ld not have been possible. These include:

1. the path seeds i n Chap te r 8: an efficient, op t ima l ly sized method for generating isosurfaces d i rec t ly
from the contour tree.

2. the contour evolution methods i n Chap te r 8 that use the contour tree to t rack the evolut ion of an

i n d i v i d u a l isosurface as the isovalue is var ied.

3. the demonst ra t ion i n Chap te r 8 tha t bo th the largest contour segmentation of Mander s et a l . [M H S + 9 6]

and the object-oriented visualization of Silver [Sil95] are special cases of the flexible isosurface.

4. the approximate local spatial measures i n Chapte r 10 that approximate loca l spat ia l measures by
enumerat ing samples

5. the general izat ion of contour tree a lgor i thms i n Chap te r 12 to non-simplicial meshes i n any dimension,

consist ing of any type of cel l , w i t h any type of interpolant .

6. the further general izat ion of contour tree a lgor i thms i n Chap te r 12 to non- interpola t ing tessellations

such as M a r c h i n g Cubes [LC87] .

7. the extension i n Chap te r 12 of the cont inuat ion method of W y v i l l , McPhee t e r s & W y v i l l [W M W 8 6 a]
to piecewise continuation, wh ich generates i n d i v i d u a l contours one at a t ime.

8. the discussion i n Chap te r 13 of techniques for comput ing the contour tree for quadri l inear in terpola t ion
i n four dimensions.

199

9. the s imple shortcut i n Chap te r 14 for comput ing contour trees for the M a r c h i n g Cubes cases of M o n t a n i ,

Scateni & Scopigno [MSS94a].

10. the appl ica t ion i n Chap te r 15 of s impl i f ica t ion to remove per tu rba t ion that was appl ied to the da ta to

avoid degeneracies.

F i n a l l y , Chap te r 16 gave some results that show that these techniques can feasibly be implemented

for t y p i c a l da ta sets using modern desktop hardware, even wi thou t heavy op t imiza t ion of code.

200

Chapter 18

Future Work

T h e possibil i t ies inherent i n the topologica l and geometric in format ion stored i n the contour tree have not
yet been exhausted. There are a var ie ty of directions that could be pursued:

1. Improvements to Con tou r Tree A l g o r i t h m s

2. Topo logy of Non-Isovalued Surfaces

3. Var ia t ions on the F lex ib l e Isosurface Interface

4. L o c a l Spa t i a l Measures

5. App l i ca t i ons of Topolog ica l S impl i f ica t ion and F i l t e r i n g

6. N o n - S i m p l i c i a l Meshes and C o m p u t a t i o n a l Geomet ry

7. T i m e - V a r y i n g Three Dimens iona l D a t a

18.1 Improvements to Contour Tree Algorithms

A l t h o u g h the a lgor i thms described i n Chap te r 7 are efficient, and work smooth ly for medium-sized da ta sets,

we expect t hem to bog down when sizes exceed in-core memory. Pascucc i & C o l e - M c L a u g h l i n [PCM02] have

shown a para l le l a lgor i thm for comput ing the un-augmented j o i n tree and spl i t tree, but the merge phase

is apparent ly not paral le l ized. Since the loca l spat ia l measures of Chap te r 10 require processing the entire

augmented contour tree, their para l le l iza t ion method may need adapta t ion.

T h e bott leneck at present for interactive v i sua l iza t ion is isosurface ex t rac t ion and rendering. A l ­

though the cont inua t ion method is guaranteed not to spend t ime i n empty cells, i t follows the surface i t

is ex t rac t ing , no mat ter how convoluted. A s a result, i ts memory access pat tern rarely coincides w i t h the

layout of the da ta i n memory. It wou ld be useful to see i f the memory access pat tern could be opt imized .

Moreover , except for paral le l ex t rac t ion of mul t ip le surfaces, the cont inua t ion a lgor i thm does not
na tu ra l ly paral lel ize, because of the need to check whether cells have been v is i ted previously. It wou ld also
be useful to find ways to use para l le l i sm for rendering.

201

Fina l l y , the s impl i f ica t ion performed i n Chap te r 11 is also serial at present, but may be paral lel izable:

this is not, however, a great concern, as the s impl i f ica t ion step is re la t ively fast. For large da ta sets, however,

i t w o u l d be useful to be able to parallel ize i t .

B o t h Pascucc i & C o l e - M c L a u g h l i n [P C M 0 2] and C h i a n g et a l . [C L L R 0 2] have shown 0(n - K l o g (i))

a lgor i thms to compute the reduced (un-augmented) contour tree for regular data , wh ich they achieve by

avoiding processing regular points. It wou ld be useful to determine lower bounds for contour tree computa­

tions, bo th for augmented and un-augmented contour trees.

F i n a l l y , we saw i n Chap te r 15 that pa th seeds computed w i t h per tu rba t ion need to re ta in that per­
tu rba t ion when used to extract isosurfaces. We wou ld like to find a way a round this , so tha t the per turba t ion
is on ly used to compute the contour tree. Since we saw i n Chap te r 16 tha t over ha l f of the edges i n the
contour tree can be due to per turba t ion , this wou ld reduce the memory footprint i n a na tu ra l way.

18.2 Topology of Non-Isovalued Surfaces

In Chapte rs 12 and 14, we showed how to compute contour trees for contours extracted by non- interpola t ing
tessellation algori thms, based on the observation that the contours at different isovalues nest w i t h i n each
other.

However , not a l l methods for ex t rac t ing significant boundaries rely on isovalue surfaces (i.e. con­
tours) . Instead, m a n y techniques extract boundaries based on loca t ing sharp boundaries, even i f they are not
isovalued. These techniques include the active contour methods of K a s s , W i t k i n & Terzopoulos [K W T 8 7]
and the level set methods of Osher & Sethian [OS88], bo th of wh ich require an in i t i a l s tar t ing point or
seed, wh ich is often provided manual ly . W e have seen i n Chap te r 8 tha t the contour tree contains sufficient
in format ion to provide seeds for isosurface ext ract ion. We wou ld l ike to use the contour tree along w i t h loca l
spa t ia l measures to find suitable propagat ion seeds for such methods.

A va r ia t ion on this idea wou ld be to generate seeds au tomat ica l ly from the contour tree and r u n

these boundary generat ion a lgor i thms for a large number of the seeds. If the under ly ing a lgor i thm is wel l -

behaved, these boundaries are l ike ly to nest inside each other, and we may be able to index them w i t h a

structure s imi lar to the contour tree.

18.3 Variations in the Flexible Isosurface Interface

T h e flexible isosurface interface is extremely powerful for explora tory v i sua l i za t ion th rough i n d i v i d u a l contour
evolut ion . There are a number of issues that we have left unresolved, and a number of new directions that
we feel could be usefully pursued.

W e have noted tha t d rawing the contour tree i n a v i sua l ly pleasing fashion is difficult. We wou ld l ike
to explore suitable ways of doing so, and also explore whether the imp l i c i t isovalue axis i n the contour tree
is useful to end users, or whether a more a rb i t ra ry layout of the contour tree might be useful. W e wou ld also
l ike to explore layout a lgor i thms op t imized for contour trees, and i n par t icu lar for the hierarchy of contour
trees generated by s impl i f ica t ion . A n d we wou ld like to explore methods for choosing colours to assign to
i n d i v i d u a l edges based on loca l spat ia l measures.

202

One of the most powerful aspects of the contour tree is the ab i l i ty to use i t to index and annotate

i n d i v i d u a l contours. W e wou ld l ike to add the ab i l i ty for users to define labels for edges, and have them

propagate th rough levels of s impl i f ica t ion i f necessary. One potent ia l use of this is i n cont inuing medica l

educat ion: an ins t ructor could use the contour tree to annotate impor tan t features i n the da ta set. T h e

student could then explore the da ta un t i l the annotat ions were found, thus gu id ing the explora tory and

learning processes. S imi la r ly , we could add loca l spat ia l measure informat ion to the interface, so that the

user w o u l d be given the volume, surface area, & c . of any surface as they selected i t i n the m a i n scene or the

contour tree.

We have chosen to implement a simple, single-measure s impl i f icat ion: we wou ld like to explore
alternate methods, such as user-guided collapses, mult i-measure collapses, or spatial ly-sensit ive collapses.
For user-guided collapses, i t w o u l d be necessary to define how the user might specify collapses, and the
da t a structures to support such actions. Mul t i -measure collapses, by compar ison, might use one measure to
remove noise, then a second measure to s impl i fy away features that , a l though genuine features, add too much
deta i l to a scene. F i n a l l y , spatial ly-sensit ive collapses wou ld involve m a k i n g greater use of the assignment of
i n d i v i d u a l samples to superarcs of the contour tree. In this way, each superarc represents a region of space.
Thus , i f a user is more interested i n one region of space, i t should be feasible to choose a region of space
(perhaps a ba l l of fixed radius) , and guide the collapse i n such a way that objects intersecting that region
were made immune to s impl i f ica t ion .

A related d i rec t ion also takes advantage of the contour tree's subd iv i s ion of the da ta into regions for
classification and segmentation. Since the contour tree encodes the topology of the isovalue and distinguishes
between different contours, we wou ld l ike to use this to affect how i n d i v i d u a l samples are classified. One
of the simplest examples of this can be seen i n F igure 16.1, where we chose not to display any isosurfaces
corresponding to the sku l l i n order to focus at tent ion on the in ternal organs. W e believe that classifying
samples according to the superarc to wh ich they belong could signif icantly improve transfer functions for
volume rendering. We wou ld l ike to modify the flexible isosurface interface so that loca l ly suppor ted transfer
functions are defined w i t h respect to contours i n a flexible isosurface.

W e also note that i n the U N C head da ta set the sku l l and the b ra in contours j o i n at an isovalue

below wh ich the i n d i v i d u a l surfaces continue to develop. A narrow bridge between the two surfaces connects

t hem before they have finished their development. A s a result, we may be miss ing some features of the b ra in

because we cannot see th rough the sku l l . If we could edit the da ta to keep these two major features separate

over a wider range of isovalues, we w o u l d have another valuable too l for isosurface v i sua l iza t ion .

18.4 Local Spatial Measures

In Chap te r 10, we observed that we could compute exact po lynomia ls for s imp l i c i a l meshes. In Chap te r 13,

we identified tha t doing so for mul t i l inear interpolants is l ike ly to be complex and costly. Nevertheless, we

wou ld l ike to explore doing so, i f on ly for completeness. S imi la r ly , i n Chap te r 14, we observed that loca l

spa t ia l measures for the M a r c h i n g Cubes cases could be obta ined by suitable tessellation of the regions

bounded by the contour. In this thesis, we chose to use approximate loca l spat ia l measures, but there may

be some meri t i n defining the equations for volume and surface area for these tessellation cases.

W e also note that the loca l spat ia l measures we have discussed have been general i n appl ica t ion . For
any given field of research, however, there may be more specific geometric measures of importance, and we
w o u l d l ike to col laborate w i t h researchers i n a variety of fields to determine whether this is i n fact the case.

203

Fina l l y , we note that the contour tree also provides a convenient da ta s tructure for specific queries

to be carr ied out i n a da ta set. W i t h loca l spat ia l measures one could efficiently answer queries such as " F i n d

a l l contours that have an enclosed volume of larger t han 10 units and an approximate surface-area-to-volume

ra t ion of 5." If in format ion such as bound ing boxes can be computed as a loca l spat ia l measure, then we

can also include spat ia l constraints. A n d inverse problems can also be stated. For example, given examples

of tumors , what should the query constraints be to f ind other such features.

18.5 Applications of Topological Simplification and Filtering

In this thesis, we have scratched the surface of the uses of topological s impl i f ica t ion . G i v e n tha t we progres­
sively remove larger and larger features, the s implif ied contour tree could be used as a canonical representation
of data , as i t is i n pr inciple t ransla t ion- , rota t ion- , and scale- invariant . Po ten t i a l appl icat ions of this include
graph ma tch ing for au tomated annota t ion and automated segmentation based on loca l spat ia l measures.

W e note that C h i a n g & L u [CL03] used the contour tree to guide mesh s impl i f ica t ion i n engineering
da ta sets. W e wou ld l ike to combine this topology-preserving form of s impl i f ica t ion w i t h our topology-
discard ing form of s impl i f ica t ion to find mesh simplif icat ions that correspond to given contour tree s impl i f i ­
cat ions.

F i n a l l y , i n F igu re 11.9 and the fol lowing figures, we constructed equivalent surfaces to the s impl i ­
fied surface by hand. T h i s is s t ra ightforward for s imp l i c i a l meshes, where we can change the isovalues at
vertices wi thou t a l ter ing the contour tree. It is less t r i v i a l to do this for non-s impl ic ia l meshes w i t h complex
interpolants , and we w o u l d l ike to examine this p rob lem i n more deta i l .

18.6 Non-Simplicial Meshes and Computational Geometry

We have shown how to extend contour tree a lgor i thms to a rb i t r a ry meshes i n a computa t iona l ly efficient

manner. O u r mot iva t ion i n so doing was p r inc ipa l ly to cope w i t h the d i l e m m a that computa t iona l geometry

a lgor i thms c o m m o n l y require s imp l i c i a l meshes, whi le acquired da ta is c o m m o n l y on cubic meshes. We

wou ld l ike to explore whether techniques s imi lar to the finite state machine approach i n Chap te r 12 would

be appl icable to other a lgori thms, and i n par t icular , to the Morse and Morse-Smale complex algori thms of

Edelsbrunner , Hare r & Z o m o r o d i a n [EHZ01] and Bremer et a l . [B E H P 0 3] .

Fur ther , a l though we have defined a general approach, there are a number of specific cases we are

interested i n pursu ing i n detai l , i nc lud ing the Spiderweb a lgor i thm of C o x , K a r r o n & M i s h r a [C K M 9 3] , and

cubic and po lycubic splines. For the t r i l inear case, we w o u l d also like to work out the details of the lookup

tables for j o i n graphs, of piecewise cont inuat ion, and of loca l spat ia l measures. For the quadri l inear case, we

w o u l d l ike to implement the spat ia l subdiv is ion approach to contour tree const ruct ion, and to analyse the

quadr i l inear tessellation cases. F ina l l y , we wou ld like to b u i l d the lookup tables for M a r c h i n g Cubes , and

confi rm tha t the M a r c h i n g Cubes shortcuts generalizes to higher dimensions.

204

18.7 Time-Varying Three Dimensional Data

A l t h o u g h a l l of the mate r ia l discussed i n this thesis is applicable to da ta of a rb i t r a ry dimensions, t ime-

va ry ing da t a is not always best dealt w i t h as a function defined over four equivalent dimensions. In practice,

most four-dimensional da ta consists of time-slices of three-dimensional da ta . It w o u l d be useful to be able

to construct contour trees qu ick ly for a rb i t ra ry or in terpolated time-slices, using some form of abs t ract ion

tha t t racks the evolu t ion of the contour tree over t ime.

205

Bibliography

[AAWOO] Anagnos tou , K . , A t h e r t o n , T . J . , and Waterfa l l , A . E . 4 D V o l u m e Render ing w i t h the Shear

W a r p Factor i sa t ion . In Proceedings of Volume Visualization 2000, pages 129-137, 2000.

[A D M 9 2] A r n a u d , Y . , Desbois , M . , and M a i z i , J . A u t o m a t i c T rack ing and Charac te r i za t ion of A f r i c a n

Convect ive Systems on Meteosat P ic tures . Journal of Applied Meteorology, 31:443-453, 1992.

[AFH81] A r t z y , E . , Frieder , G . , and H e r m a n , G . T . T h e Theory , Des ign , Implementa t ion and E v a l ­
ua t ion of a Three -Dimens iona l Surface Detec t ion A l g o r i t h m . Computer Graphics and Image
Processing, 15:1-24, 1981.

[Art79] A r t z y , E . D i s p l a y of Three -Dimens iona l Informat ion i n C o m p u t e d Tomography . Computer
Graphics and Image Processing, 9:196-198, 1979.

[Ban67] Banchoff, T . F . C r i t i c a l Po in ts and Curva tu re for E m b e d d e d Po lyhed ra . Journal of Differential
Geometry, 1:245-256, 1967.

[B E H P 0 3] Bremer , P . - T . , Edelsbrunner , H . , H a m a n n , B . , and Pascucc i , V . A Mul t i - r e so lu t ion D a t a
St ructure for Two-d imens iona l Morse-Smale Funct ions . In Proceedings of IEEE Visualization
2003, pages 139-146, 2003.

[Ben75] Bentley, J . L . M u l t i d i m e n s i o n a l B i n a r y Search Trees U s e d for Associa t ive Searching. Commu­
nications of the ACM, 18(9):509-517, 1975.

[Ben79] Bentley, J . L . Decomposable Searching Prob lems . Information Processing Letters, 8:244-251,

1979.

[BH82] B l i n n , J . F . A Genera l iza t ion of A lgebra i c Surface D r a w i n g . ACM Transactions on Graphics,
l (3) :235-256, 1982.

[BI088] B loomen tha l , J . Po lygon iza t ion of imp l i c i t surfaces. Computer Aided Geometric Design, pages

341-355, 1988.

[BP99] B a j a j , C . L . and Pascucc i , V . T i m e C r i t i c a l A d a p t i v e Refinement and Smooth ing . Technical

R e p o r t 99-36, Texas Inst i tute for C o m p u t a t i o n a l and A p p l i e d Mathemat i c s , A u s t i n , Texas,

1999.

[BPS97] B a j a j , C . L . , Pascucc i , V . , and Schikore, D . R . T h e Con tour Spec t rum. In Proceedings of
IEEE Visualization 1997, pages 167-173, 1997.

[BPS99] B a j a j , C . L . , Pascucc i , V . , and Schikore, D . R . Seed Sets and Search Structures for O p t i m a l
Isocontour E x t r a c t i o n . Technica l Repor t 99-35, Texas Inst i tute for C o m p u t a t i o n a l and A p p l i e d
Mathemat i c s , A u s t i n , Texas, 1999.

206

[BR63] B o y e l l , R . L . and R u s t o n , H . H y b r i d Techniques for Rea l - t ime R a d a r S imula t ion . In Proceedings
of the 1963 Fall Joint Computer Conference, pages 445-458. I E E E , 1963.

[BSRFOO] Bemis , K . G . , Si lver , D . , R o n a , P . A . , and Feng, C . Case S tudy: A M e t h o d o l o g y for P l u m e
V i s u a l i z a t i o n w i t h A p p l i c a t i o n to R e a l - T i m e A c q u i s i t i o n and N a v i g a t i o n . In Proceedings of
IEEE Visualization 2000, pages 481-484, 2000.

[BWC00] B h a n i r a m k a , P . , Wenger, R . , and Crawfis , R . A . Isosurfacing i n Higher Dimensions . In

Proceedings of IEEE Visualization 2000, pages 267-273, 2000.

[CarOO] C a r r , H . Efficient Genera t ion of 3 D Con tou r Trees. Mas te r ' s thesis, Un ive r s i t y of B r i t i s h

C o l u m b i a , Vancouver , B C , Ca na da , 2000.

[C G M S 0 0] C i g n o n i , P . , Ganove l l i , F . , M o n t a n i , C , and Scopigno, R . Recons t ruc t ion of topologica l ly

correct and adapt ive t r i l inear surfaces. Computers And Graphics, 24:399-418, 2000.

[Che95] Chernyaev, E . M a r c h i n g Cubes 33: Cons t ruc t ion of Topolog ica l ly Cor rec t Isosurfaces. Tech­
n ica l report , C E R N , 1995.

[C K F 0 3] C o x , J . , K a r r o n , D . , and Ferdous, N . Topolog ica l Zone Organ iza t ion of Scalar Vo lume D a t a .
Journal of Mathematical Imaging and Vision, 18:95-117, 2003.

[C K M 9 3] C o x , J . , K a r r o n , D . , and M i s h r a , B . T h e SpiderWeb Surface rendering a lgor i thm. Innovation
and Technology in Biology and Medicine, 14(6):634-655, 1993.

[CL03] C h i a n g , Y . - J . and L u , X . Progressive S impl i f ica t ion of Te t rahedra l Meshes Preserv ing A l l

Isosurface Topologies. Computer Graphics Forum, 22(3):to appear, 2003.

[CLL+88] C l i n e , H . E . , Lorenson , W . E . , L u d k e , S., Crawford , C , and Teeter, B . T w o algor i thms for the

three-dimensional reconstruct ion of tomograms. Medical Physics, 15(3):320-327, 1988.

[C L L R 0 2] C h i a n g , Y . - J . , Lenz , T . , L u , X . , and Rote , G . S imple and Output -Sens i t ive Cons t ruc t ion
of Con tour Trees U s i n g Mono tone Paths . Technica l Repor t E C G - T R - 2 4 4 3 0 0 - 0 1 , Inst i tut fiir
Informatik, Freie Univers ta t B e r l i n , 2002.

[CM97] C h i u e h , T . - c . and M a , K . - L . A Pa ra l l e l P ipe l i ned Renderer for T i m e - V a r y i n g Vo lume D a t a .

In Proceedings of Parallel Architectures, Algorithms, and Networks 1997, pages 9-15. I E E E ,

1997.

[C M M + 9 7] C i g n o n i , P . , M a r i n o , P . , M o n t a n i , C , P u p p o , E . , and Scopigno, R . Speeding U p Isosurface

E x t r a c t i o n U s i n g Interval Trees. IEEE Transactions on Visualization and Computer Graphics,
3(2):158-169, 1997.

C a r r , H . , M o l l e r , T . , and Snoeyink, J . S i m p l i c i a l Subdivis ions and Sampl ing Ar t i fac t s . In

Proceedings of IEEE Visualization 2001, pages 99-106, 2001.

C a r r , H . and Snoeyink, J . P a t h Seeds and F lex ib l e Isosurfaces: U s i n g Topology for E x p l o r a t o r y
V i s u a l i z a t i o n . In Proceedings of Eurographics Visualization Symposium 2003, pages 49-58, 285,
2003.

C a r r , H . , Snoeyink, J . , and A x e n , U . C o m p u t i n g Con tou r Trees i n A l l Dimensions . In Pro­
ceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 918-926,
January 2000.

C a r r , H . , Snoeyink, J . , and A x e n , U . C o m p u t i n g Con tour Trees i n A l l Dimensions . Computa­
tional Geometry: Theory and Applications, 24(2):75-94, 2003.

[CMS01]

[CS03]

[CSA00]

[CSA03]

207

[C T M 0 3] C a r r , H . , Theuf i l , T . , and M o l l e r , T . Isosurfaces on O p t i m a l Regular Samples. In Proceedings
of Eurographics Visualization Symposium 2003, pages 39-48, 284, 2003.

[d B E T T 9 9] d i B a t t i s t a , G . , Eades , P . , Tamassia , R . , and Tol l i s , I. G . Graph Drawing: Algorithms for the
Visualization of Graphs. P ren t i ce -Ha l l Inc., Englewood-Cl i f fs , N J , 1999.

[DCH88] D r e b i n , R . A . , Carpenter , L . , and Hanrahan , P . V o l u m e Render ing . Computer Graphics,
22(4):65-74, 1988.

[DCK+98] Dobash i , Y . , C i n g o s k i , V . , K a n e d a , K . , Y a m a s h i t a , H . , and N i s h i t a , T . A Fast Vo lume R e n ­

der ing M e t h o d for T i m e - V a r y i n g 3-D Scalar F i e l d V i s u a l i z a t i o n U s i n g O r t h o n o r m a l Wavelets .

IEEE Transactions on Magnetics, 34(5):3431-3434, 1998.

[Dee96] Deer ing , M . Geomet ry Compress ion . Computer Graphics, 30:13-20, 1996.

[DH94] D u r k i n , J . W . and Hughes, J . F . N o n p o l y g o n a l Isosurface Render ing for La rge V o l u m e

Datasets . In Proceedings of IEEE Visualization 1994, pages 293-300, 1994.

[d L v L V + 0 0] de Leeuw, W . C , van Liere , R . , Verschure, P . J . , Visser , A . E . , Mander s , E . M . M . , and van
D r i e l , R . V i s u a l i z a t i o n of T i m e Dependent Confoca l M i c r o s c o p y D a t a . In Proceedings of IEEE
Visualization 2000, pages 473-476, 2000.

[Diir88] Durs t , M . Let ters : A d d i t i o n a l Reference to " M a r c h i n g Cubes" . Computer Graphics, 22(4):65-

74, 1988.

[ECS00] E l l s w o r t h , D . , C h i a n g , L . - J . , and Shen, H . - W . Acce le ra t ing T i m e - V a r y i n g Hardware Vo lume
Render ing U s i n g T S P Trees and Co lo r -Based E r r o r Me t r i c s . In Proceedings of Volume Visu­
alization 2000, pages 119-129, 2000.

[Ede80] Edelsbrunner , H . D y n a m i c D a t a Structures for Or thogona l Intersection Queries. Technica l
report , Inst. Informationsverarb, Tech. U n i z . G r a z , G r a z , A u s t r i a , 1980.

[EHZ01] Edelsbrunner , H . , Harer , J . , and Zomorod ian , A . Hie ra rch ica l M o r s e Complexes for Piecewise
L inea r 2-Manifolds . In Proceedings of the 17th A CM Symposium on Computational Geometry,
pages 70-79. A C M , 2001.

[EM90] Edelsbrunner , H . and M i i c k e , E . P . S imula t ion of S impl ic i ty : A technique to cope w i t h degen­

erate cases i n geometric a lgor i thms. ACM Transactions on Graphics, 9(1):66-104, 1990.

[F K U 7 7] Fuchs, H . , K e d e m , Z . , and Use l ton , S. O p t i m a l Surface Recons t ruc t ion from P l a n a r Contours .

Communications of the ACM, 20:693-702, 1977.

[FM67] Freeman, H . and Morse , S. O n Searching A Con tour M a p for a G i v e n Te r ra in E leva t ion Profi le .

Journal of the Franklin Institute, 2 8 4 (l) : l - 2 5 , 1967.

[Gal91] Gal lagher , R . S. Span F i l t e r i ng : A n O p t i m i z a t i o n Scheme For V o l u m e V i s u a l i z a t i o n of Large

F i n i t e E lement Mode l s . In Proceedings of IEEE Visualization 1991, pages 68-75. I E E E , 1991.

[Gar90] Gar r i t y , M . P . R a y t r a c i n g Irregular V o l u m e D a t a . Computer Graphics, 24(5):35-40, 1990.

[GC86] G o l d , C . and Cormack , S. Spa t i a l ly Ordered Networks and Topographic Recons t ruc t ion . In

Proceedings of the 2nd International ACM Symposium on Spatial Data Handling, pages 74-85,

1986.

[GW02] Gonza lez , R . C . and Woods , R . E . Digital Image Processing (2d ed.). P ren t i ce -Ha l l Inc.,

Englewood-Cl i f fs , N J , 2002.

208

[HB94] Howie , C . and B l a k e , E . H . T h e M e s h P ropaga t ion A l g o r i t h m for Isosurface Cons t ruc t ion .

Computer Graphics Forum, 13:65-74, 1994.

[HH92] Hansen , C . D . and Hinke r , P . Mass ive ly P a r a l l e l Isosurface E x t r a c t i o n . In Proceedings of IEEE
Visualization 1992, pages 77-83, 1992.

[HL79] H e r m a n , G . T . and L u n , H . K . Three -Dimens iona l D i s p l a y of H u m a n Organs from C o m p u t e d

Tomograms . Computer Graphics and Image Processing, 9:1-21, 1979.

[IK94] I toh, T . and K o y a m a d a , K . Isosurface E x t r a c t i o n B y U s i n g E x t r e m a Graphs . IEEE Transac­
tions on Visualization and Computer Graphics, 1:77-83, 1994.

[IK95] I toh, T . and K o y a m a d a , K . A u t o m a t i c Isosurface P ropaga t i on U s i n g an E x t r e m a G r a p h and
Sorted B o u n d a r y C e l l L i s t s . IEEE Transactions on Visualization and Computer Graphics,
l (4) :319-327, 1995.

[IYK01] I toh, T . , Y a m a g u c h i , Y . , and K o y a m a d a , K . Fast Isosurface Genera t ion U s i n g the Vo lume
T h i n n i n g A l g o r i t h m . IEEE Transactions on Visualization and Computer Graphics, 7(1):32-
46, 2001.

[Kaj86] K a j i y a , J . T . T h e rendering equat ion. Computer Graphics, 20(4):143-150, 1986.

[KK94] K w e o n , I. S. and K a n a d e , T . E x t r a c t i n g Topographic Te r ra in Features from Eleva t ion M a p s .
CVGIP: Image Understanding, 59:171-182, 1994.

[KRS01] Ke t tne r , L . , Rossignac, J . , and Snoeyink, J . T h e Safari Interface for V i s u a l i z i n g T i m e -
Dependent Vo lume D a t a U s i n g Iso-surfaces and Con tou r Spectra . Computational Geometry:
Theory and Applications, 25(l -2) :97-116, 2001.

[K W T 8 7] Kass , M . , W i t k i n , A . , and Terzopoulos, D . Snakes: A c t i v e Con tou r Mode l s . In Proceedings of
the 1st International Conference on Computer Vision, pages 259-268. I E E E , 1987.

[K W T M 0 4] K i n d l m a n n , G . , W h i t a k e r , R . , Tasdizen, T . , and M o l l e r , T . Curva tu re -Based Transfer Func­
tions for D i rec t V o l u m e Render ing: M e t h o d s and App l i ca t i ons . In Proceedings of IEEE Visu­
alization 2003, pages 513-520, 2004.

[LB03] Lopes , A . and B r o d l i e , K . Improv ing the robustness and accuracy of the march ing cubes algo­

r i t h m for isosurfacing. IEEE Transactions on Visualization and Computer Graphics, 9(1) :16-

29, 2003.

[LC87] Lorenson , W . E . and C l i n e , H . E . M a r c h i n g Cubes : A H i g h Reso lu t ion 3 D Surface Cons t ruc t ion

A l g o r i t h m . Computer Graphics, 21(4): 163-169, 1987.

[Lev88] Levoy, M . V o l u m e Render ing: D i s p l a y of Surfaces from V o l u m e D a t a . IEEE Computer Graph­
ics and Applications, 8(3):29-37, 1988.

[L K S + 9 8] Lanzagor t a , M . , K r a i , M . , Swan, II, J . , Spanos, G . , Rosenberg, R . , and K u o , E . Three-

Dimens iona l V i s u a l i z a t i o n of Micros t ruc tures . In Proceedings of IEEE Visualization 1998,
pages 487-490, 1998.

[L M C 0 1] L u m , E . B . , M a , K . - L . , and C l y n e , J . Texture Hardware Ass is ted Render ing of T i m e - V a r y i n g

V o l u m e D a t a . In Proceedings of IEEE Visualization 2001, pages 263-270, 2001.

[LSJ96] L i v n a t , Y . , Shen, H . - W . , and Johnson, C . R . A Near O p t i m a l Isosurface E x t r a c t i o n A l g o r i t h m
U s i n g the Span Space. IEEE Transactions on Visualization and Computer Graphics, 2(1) :73-
84, 1996.

209

[Mat94] Ma tveyev , S. V . A p p r o x i m a t i o n of Isosurface i n the M a r c h i n g Cube : A m b i g u i t y P r o b l e m . In

Proceedings of IEEE Visualization 1994, pages 288-292, 1994.

[Max95] M a x , N . L . O p t i c a l M o d e l s for Di rec t Vo lume Render ing . IEEE Transactions on Visualization

and Computer Graphics, 1(2):99-108, 1995.

[MCOO] M a , K . - L . and C a m p , D . M . H i g h Performance V i s u a l i z a t i o n of T i m e - V a r y i n g V o l u m e D a t a

over a W i d e - A r e a Network . In Supercomputing 2000, 2000.

[M C W 9 3] M a x , N . L . , Crawfis , R . A . , and W i l l i a m s , D . V i s u a l i z a t i o n for C l i m a t e M o d e l l i n g . IEEE

Computer Graphics and Applications, 13(4):34-41, 1993.

[M D B 8 7] M c C o r m i c k , B . H . , D e F a n t i , T . A . , and B r o w n , M . D . V i s u a l i z a t i o n i n Scientific C o m p u t i n g .
Computer Graphics, 21(6), 1987.

[MHS+96] Mander s , E . M . M . , Hoebe, R . , Strackee, J . , Vossepoel , A . , and A t e n , J . Largest Con tour
Segmentat ion: A T o o l for the L o c a l i z a t i o n of Spots i n Confoca l Images. Cytometry, 23:15-21,
1996.

[Mil63] M i l n o r , J . Morse Theory. P r ince ton Unive r s i ty Press, P r ince ton , N J , 1963.

[ML94] Marschner , S. R . and L o b b , R . J . A n E v a l u a t i o n of Recons t ruc t ion F i l t e r s for Vo lume R e n ­
dering. In Proceedings of IEEE Visualization 1994, pages 100-107, 1994.

[MSS94a] M o n t a n i , C , Scateni , R . , and Scopigno, R . A modified look-up table for imp l i c i t d i sambiguat ion
of M a r c h i n g Cubes . Visual Computer, 10:353-355, 1994.

[MSS94b] M o n t a n i , C , Scateni , R . , and Scopigno, R . Discre t ized M a r c h i n g Cubes . In Proceedings of
IEEE Visualization 1994, pages 281-287, 1994.

[Nat94] Na ta ra jan , B . O n generating topologica l ly consistent isosurfaces from uni form samples. Visual
Computer, 11:52-62, 1994.

[NB93] N i n g , P . and B loomen tha l , J . A n E v a l u a t i o n of Impl ic i t Surface T i l e r s . IEEE Computer
Graphics and Applications, 13:33-41, 1993.

[NH91] Nie l son , G . M . and H a m a n n , B . T h e A s y m p t o t i c Decider: Reso lv ing the A m b i g u i t y i n M a r c h ­

ing Cubes . In Proceedings of IEEE Visualization 1991, pages 83-91 . I E E E , 1991.

[OS88] Osher, S. and Sethian, J . A . Fronts P ropaga t ing w i t h Curva tu re Dependent Speed: A l g o r i t h m s

Based on H a m i l t o n - J a c o b i Formula t ions . Journal of Computational Physics, 79:12-49, 1988.

[PasOl] Pascucc i , V . O n the Topology of the Leve l Sets of a Scalar F i e l d . In Abstracts of the 13th
Canadian Conference on Computational Geometry, pages 141-144, 2001.

[P C M 0 2] Pascucc i , V . and C o l e - M c L a u g h l i n , K . Efficient C o m p u t a t i o n of the Topology of Leve l Sets.

In Proceedings of IEEE Visualization 2002, pages 187-194, 2002.

[PWH01] Pekar , V . , W i e m k e r , R . , and H e m p e l , D . Fast Detec t ion of Mean ingfu l Isosurfaces for Vo lume
D a t a V i s u a l i z a t i o n . In Proceedings of IEEE Visualization 2001, pages 223-230, 2001.

[Ree46] Reeb, G . Sur les points singuliers d'une forme de Pfaff completement integrable ou d'une

fonction numerique. Comptes Rendus de I'Academie des Sciences de Paris, 222:847-849, 1946.

[RG94] R o t h , M . and G u r i t z , R . Case S tudy: V i s u a l i z a t i o n of Volcan ic A s h C louds . In Proceedings of

IEEE Visualization 1994, pages 386-390, 1994.

[RG00] Robb ins , K . A . and G o r m a n , M . Fast V i s u a l i z a t i o n M e t h o d s for C o m p a r i n g Dynamics : A

Case S tudy i n C o m b u s t i o n . In Proceedings of IEEE Visualization 2000, pages 433-436, 2000.

210

[RHC94] Rushmeier , H . E . , H a m i n s , A . , and C h o i , M . - Y . Case S tudy: V o l u m e Render ing of P o o l F i r e

D a t a . In Proceedings of IEEE Visualization 1994, pages 382-385, 1994.

[Sab88] Sabel la , P . A Render ing A l g o r i t h m for V i s u a l i z i n g 3 D Scalar F ie lds . Computer Graphics,

22(4):51-55, 1988.

[SC86] Sircar , J . K . and Ceb r i an , J . A . A p p l i c a t i o n of Image Process ing Techniques to the A u t o m a t e d

L a b e l l i n g of Ras ter D i g i t i z e d Con tour M a p s . In Proceedings of the 2nd International ACM
Symposium on Spatial Data Handling, pages 171-184, 1986.

[SCM99] Shen, H . - W . , C h i a n g , L . - J . , and M a , K . - L . A Fast Vo lume Render ing A l g o r i t h m for T i m e -
V a r y i n g F ie lds U s i n g a T ime-Space Pa r t i t i on ing (T S P) Tree. In Proceedings of IEEE Visual­
ization 1999, pages 371-376, 1999.

[SH99] Su t ton , P . M . and Hansen , C . D . Isosurface E x t r a c t i o n i n T i m e - V a r y i n g F ie lds U s i n g a Tempo­

ra l Branch-on-Need Tree (T - B O N) . In Proceedings of IEEE Visualization 1999, pages 147-152,

1999.

[SHOO] Sut ton , P . M . and Hansen , C . D . Accelera ted Isosurface E x t r a c t i o n i n T i m e - V a r y i n g F ie lds .

IEEE Transactions on Visualization and Computer Graphics, 6(2):98-107, 2000.

[She98] Shen, H . - W . Isosurface E x t r a c t i o n i n T i m e - v a r y i n g F ie lds U s i n g a T e m p o r a l Hie ra rch ica l Index
Tree. In Proceedings of IEEE Visualization 1998, pages 159-167, 1998.

[SHLJ96] Shen, H . - W . , Hansen, C . D . , L i v n a t , Y . , and Johnson, C . R . Isosurfacing i n Span Space w i t h

U t m o s t Efficiency (I S S U E) . In Proceedings of IEEE Visualization 1996, pages 287-294, 1996.

[Sil95] Si lver , D . Objec t -Or ien ted V i s u a l i z a t i o n . IEEE Computer Graphics and Applications,
15(3):55-62, 1995.

[SJ94] Shen, H . - W . and Johnson, C . R . Differential V o l u m e Render ing: A Fast V o l u m e V i s u a l i z a t i o n
Technique for F l o w A n i m a t i o n . In Proceedings of IEEE Visualization 1994, pages 180-187,
1994.

[SJ95] Shen, H . - W . and Johnson, C . R . Sweeping Simplices: A fast iso-surface ex t rac t ion a lgor i thm

for uns t ructured grids. In Proceedings of IEEE Visualization 1995, pages 143-150, 1995.

[SK91] Shinagawa, Y . and K u n i i , T . L . Cons t ruc t ing a Reeb G r a p h A u t o m a t i c a l l y from Cross Sections.

IEEE Computer Graphics and Applications, 11(6):45-51, 1991.

[SKK91] Shinagawa, Y . , K u n i i , T . L . , and Kergos ien , Y . L . Surface C o d i n g Based on Morse Theory .

IEEE Computer Graphics and Applications, 11:66-78, September 1991.

[SSZC94] Samtaney, R . , Si lver , D . , Zabusky, N . , and C a o , J . V i s u a l i z i n g Features and Track ing T h e i r

E v o l u t i o n . Computer, 27(7):20-27, 1994.

[SW96] Si lver , D . and W a n g , X . Vo lume Track ing . In Proceedings of IEEE Visualization 1996, pages
157-164, 1996.

[SW98] Si lver , D . and W a n g , X . T rack ing Scalar Features i n Uns t ruc tu red Datasets. In Proceedings of
IEEE Visualization 1998, pages 79-86, 1998.

[Tar75] Tar jan, R . E . Efficiency of a good but not l inear set un ion a lgor i thm. Journal of the ACM,
22:215-225, 1975.

[TFT01] Takahashi , S., Fuj ishiro, I., and Takeshima, Y . Topolog ica l Vo lume Skeletonizat ion and its

A p p l i c a t i o n to Transfer F u n c t i o n Design. Technica l Repor t O C H A - I S 2000-3, Depar tment of

Informat ion Sciences, Facu l ty of Science, O c h a n o m i z u Univers i ty , Ochanomizu , Japan , Febru­

ary 2001.

211

[Til24] T i l l ey , C . T h e Fades Class i f ica t ion of M e t a m o r p h i c Rocks . Geological Magazine, 61:167-171,

1924.

[T I S + 9 5] Takahashi , S., Ikeda, T . , Shinagawa, Y . , K u n i i , T . L . , and U e d a , M . A l g o r i t h m s for E x t r a c t ­

ing Cor rec t C r i t i c a l Po in ts and Cons t ruc t ing Topolog ica l Graphs from Discrete Geographica l

E leva t ion D a t a . Computer Graphics Forum, 1 4 (3) : C - 1 8 1 - C - 1 9 2 , 1995.

[T L M 0 1] Tenginakai , S., Lee, J . , and M a c h i r a j u , R . Salient Iso-Surface Detec t ion w i t h M o d e l -

Independent S ta t i s t ica l Signatures. In Proceedings of IEEE Visualization 2001, pages 231-238,

2001.

[T091] Thune , N . and O l s t ad , B . V i s u a l i z i n g 4-D M e d i c a l U l t r a s o u n d D a t a . In Proceedings of IEEE
Visualization 1991, pages 210-215. I E E E , 1991.

[TV98] Tarasov, S. P . and V y a l y i , M . N . Cons t ruc t ion of Con tour Trees i n 3 D i n 0(n log n) steps. In

Proceedings of the 14th ACM Symposium on Computational Geometry, pages 68-75, 1998.

[UK88] U p s o n , C . and Keeler , M . V - B U F F E R : V i s i b l e V o l u m e Render ing . Computer Graphics,
22(4):59-64, 1988.

[vK94] van K r e v e l d , M . Efficient M e t h o d s for Isoline E x t r a c t i o n from a D i g i t a l E l eva t ion M o d e l

Based on Tr iangu la ted Irregular Networks . In Proceedings of the 6th International Symposium
on Spatial Data Handling, pages 835-847, 1994.

[v K v O B + 9 7] van K r e v e l d , M . , van O o s t r u m , R . , B a j a j , C . L . , Pascucc i , V . , and Schikore, D . R . Con tou r
Trees and S m a l l Seed Sets for Isosurface Traversal . In Proceedings of the 13th ACM Symposium
on Computational Geometry, pages 212-220, 1997.

[Wes95] Wes te rmann, R . Compress ion D o m a i n Render ing of T ime-Reso lved Vo lume D a t a . In Proceed­
ings of IEEE Visualization 1995, pages 168-175, 1995.

[W M W 8 6 a] W y v i l l , B . , McPhee te r s , C , and W y v i l l , G . A n i m a t i n g Soft Objects . Visual Computer, 2 :235-
242, 1986.

[W M W 8 6 b] W y v i l l , G . , McPhee te r s , C , and W y v i l l , B . D a t a Structure for Soft Objects . Visual Computer,
2:227-234, 1986.

[WvG90] W i l h e l m s , J . and van Gelder , A . Topolog ica l Considerat ions i n Isosurface Genera t ion . Com­

puter Graphics, 24(5):79-86, 1990.

[WvG92] W i l h e l m s , J . and van Gelder , A . Octrees for Faster Isosurface Genera t ion . ACM Transactions
on Graphics, l l (3) : 2 0 1 - 2 2 7 , 1992.

[Wyv94] W y v i l l , B . E x p l i c a t i n g Impl ic i t Surfaces. In Proceedings of Graphics Interface 1994, pages

165-173, 1994.

[Zyd88] Z y d a , M . J . A Decomposable A l g o r i t h m for Con tou r Surface D i s p l a y Genera t ion . ACM
Transactions on Graphics, 7(2):129-148, 1988.

Appendix A

Code for Generating Piecewise
Continuation Tables

T h e code i n this appendix generates the piecewise cont inuat ion tables for the M a r c h i n g Cubes cases of
M o n t a n i , Scateni & Scopigno [MSS94a] by performing rotat ions on the symmetry-reduced cases specified.
We use surface fragment to specify a single dis t inct surface i n a cel l , because i t w i l l t yp ica l ly form a fragment
of a f inal surface. T h i s code generates the fol lowing tables:

A r r a y

mcFol lowVertexCoords[8] [3]

vertex2Edge[8][8]

edgeVertices[24][2]

caseName[23]

baseCase[256]

nSurfaces[256]

nTriangles[256][4]

mcFollowTriangles[256] [4] [15]

seedEdge2Surface[256] [24]

nExitEdges[256][4]

surface2ExitEdges[256] [4] [7]

exi t2EntryEdge[36]

exitDirection[36] [3]

entryEdge2Surface[256] [36]

Purpose

Table showing the loca t ion of each vertex i n the cel l .

Table mapp ing pairs of ver tex IDs to an edge I D .

Table showing wh ich vertices each edge connects.

T h e name of each base (symmetry-reduced) march ing cubes case.

T h e symmetry-reduced base case for a given march ing cubes case.

T h e number of surface fragments for each march ing cubes case

(m a x i m u m 4).

T h e number of tr iangles for each surface fragment (m a x i m u m 5).

T h e actual tr iangles as t r iplets of points identified by the edge to

wh ich they belong.

W h i c h surface fragment each possible seed edge intersects i n a given

case (at most 1).

T h e number of exit edges (i.e. edges on cube faces) for each surface

fragment (max 7).

T h e identit ies of the exit edges for each surface fragment.

W h i c h exit edge i n one cube corresponds to wh ich entry edge i n

another.

W h i c h di rect ion the exit leads (e.g. (-1, 0, 0) leads to a cube i n the

- x direct ion) .

W h i c h surface fragment each entry edge intersects i n a given case.

213

A . l The Code

(.include <stdio.h>

#define H.CASES 23 / / # of cases i n HC tab le (inc lud ing mirror- images)

in t vex-tex2edge [8] [8] 1

{ / / vertex2edge

/ / case 10H i s the mirror image of case 10 (i . e . 10K - 14)

table d e f i n i n g the p o s s i b l e edges
- 1 : no edge

{ - 1 , 0, 3, 12, 4, 20, 19. -1 >, II edges s t a r t i n g from 000

{ 0, - 1 , 13, 1, 21, 5, - 1 , 14 >, II edges s t a r t i n g from 001

{ 3. 13, - 1 , 2, 18, - 1 , 7, 16 }, it edges s t a r t i n g from 010

{ 12, 1, 2, - 1 , - 1 , 15, 17, 6 }, II edges s t a r t i n g from 011

{ 4, 21, 18, - 1 , - 1 , 8, 11, 22 }, II edges s t a r t i n g from 100
{ 20, 5, - 1 , 15, 8, - 1 , 23, 9 >, II edges s t a r t i n g from 101

{ 19, - 1 , 7, 17, 11, 23, - 1 , 10 }, It edges s t a r t i n g from 110

{ - 1 , 14, 16, 6, 22, 9, 10, -1 } II edges s t a r t i n g from 111
}; / / vertex2edge

in t edge2faceEdge[12][12] •
{ / / edge2faceEdge

>; / / edge2faceEdge

in t edgeVert ices[24][2] -
{ / / edgeVert ices
0, 1, 1, 3,

0, 5, 1,
}; / / edgeVert ices

i n t faceEdge2Edgoa[36][2]
{ / / faceEdge2Edges

/ / which face edge i iBCta each p a i r of edges

{ - 1 , 3, 4, o, 22, 23, - 1 , - 1 , 18, - 1 , - 1 , - o , // from edge 000-001

< 3, - 1 , 2, 5, -1, 6, 7, - 1 , - 1 , 11, - 1 , - o . // from edge 001-011

{ 4, 2, - 1 , 1, - 1 , - 1 , 12, 13, -1, - 1 , 17, -1>, // from edge 011-010

{ 0, 5, 1, -1, 29, - 1 , - 1 , 28, - 1 ,
_ 1 ' - 1 , 24}, // from edge 010-000

{ 22, - 1 , -1, 29, - 1 , 19, -1, 25, 21, - 1 , - 1 , 26}, // from edge 001-101

{ 23, 6, -1, - 1 , 19, -1, 10, - 1 , 20, 9, - 1 , -1>. // from edge 011-111

{ - 1 , 7. 12, - 1 , - 1 . 10, - 1 , 16, - 1 , 8, 15, - O . // from edge 010-110

{ - 1 , - 1 , 13, 28, 25, -1, 16, -1, - 1 , - 1 , 14, 27}, // from edge 000-100

< 18, - 1 , - 1 , - 1 , 21, 20, - 1 , -1, - 1 , 32, 31, 35}, // (r o . edge 100-101
{ - 1 , 11, - 1 , - 1 , - 1 , 9, 8, -1, 32, - 1 , 33, 30}, // from edge 101-111
{ - 1 , - 1 , 17, - 1 , - 1 , -1, 15, 14, 31, 33, - 1 , 34}, // from edge 111-110

{ - 1 , -1, - 1 , 24, 26, - 1 , - 1 , 27, 35, 30, 34, - O // from edge 110-100

table with the v e r t i c e s each edge

eO - e3
e4 - e7

/ / dO - d3 (el2 - e l5)
/ / d4 - d7 (el6 - e l9)
/ / d8 - d l l (e20 - e23)

map from faceEdge to edge

}; / / faceEdge2Edges

in t nSurfaces[N_CASES] -
{ / / nSurfaces

}; / / nSurfaces

in t nTr iang les lXCASES] [4] -
{ / / nTr iangles

of d i s t i n c t surfaces i n each case

0,
1,

II
II

0 v e r t i c e s above
1 vertex above

1. 2, 2, II 2 v e r t i c e s above
1, 2, 3, II 3 v e r t i c e s above

1, 1, 1, 1 2, 2, 4, II 4 v e r t i c e s above (remember
2, 1. 1, II 5 v e r t i c e s above
2, 1, 1, II 6 v e r t i c e s above
1, II 7 v e r t i c e s above
0 II a l l v e r t i c e s above

// no v e r t i c e s above

{ 0 } , II case 0 has no t r i a n g l e s

// one vertex above

{ 1 } , II case 1 has 1 t r i a n g l e

// two v e r t i c e s above

< 2 } , II case 2 has 2 t r i a n g l e s
{ 1, 1 }. II case 3 has

2 sur faces , each with 1 t r i a n g l e { 1, 1 } , II case 4 has
2 sur faces , each with 1 t r i a n g l e // three v e r t i c e s above

{ 3 } , II case 5 has 3 t r i a n g l e s

{ 2, 1 } , II case 6 has 2 sur faces , with 2 4 1 t r i a n g l e s

{ 1, 1, 1 >, II case 7 has 3 sur faces , each with 1 t r i a n g l e
// four v e r t i c e s above

{ 2 >, II case 8 has
1 surface with 1 t r i a n g l e i 4 }, II case 9 has 1 surface with 4 t r i a n g l e s

i 4 } , II case 10 has
1 surface with 4 t r i a n g l e s i 4 }, II case

10H (mirrored) has 1 surface with 4 t r i a n g l e s 3, 1 }. It case 1 has 2 surfaces with 3 ft 1 t r i a n g l e s
i 2, 2 } , II case 12 has

2 surfaces with 1 t r i a n g l e each { 1, 1,
1, 1 }. II cftBe 13 has 4 s u r f a c e s , each with 1 t r i a n g l e

it f i v e v e r t i c e s above

i 1, 4 } , II case 7C has 2 sur faces , with 1 & 4 t r i a n g l e s
5 }. II case 6C has 1 surface with 5 t r i a n g l e s

214

-c 3 >, // case 5C has 1 surface with 3 t r i a n g l e s

// s i x v e r t i c e s above
•£ 1, 1 >. // case 4C has 2 surfaces with 1 t r i a n g l e

{ 4 >, // case 3C has 1 surface with 4 t r i a n g l e s
{ 2 >, II case 2C has 1 surface with 2 t r i a n g l e s

// seven v e r t i c e s above
{ 1 >, II case 1C has 1 surface with 1 t r i a n g l e
// eight v e r t i c e s above
{
};

0 }
/ / nTr iangles

II case OC has no t r i a n g l e s

in t baseTriangles[N_CASES][4][15] - / / array l i s t i n g the ac tua l t r i a n g l e s
{ / / baseTr iangles
/ / no v e r t i c e s above: case 0

{ 0 > >. // 0: make sure that the array i s
1 vertex above: case 1

< < o, 3, 4 } }, // 1: 1 sur face: 1 t r i a n g l e
// 2 v e r t i c e s above: cases 2 - 4
{ { 3. 4, 5, 1, 3, 5 } }, // 2: 1 sur face: 2 t r i a n g l e s
{ < o. 3, 4 }. { 1, 6, 2 } }. // 3: 2 surfaces 1 t r i a n g l e each
{ { o, 3, 4 }, { 8. 9. 10 } }. // 4: 2 surfaces 1 t r i a n g l e each
// 3 v e r t i c e s above: cases 5 - 7
< < 1. 3. 4, 1, 4, 8, 1, 8, 9 } // 5: 1 sur face: 3 t r i a n g l e s
i { 3, 4, 5, 1, 3, 5 >. { 6, 9. 10 > }. // 6: 2 surfaces 2, 1 t r i a n g l e s
< { 0, 3, 4 }, { 1, 6, 2 }, { 7, 10, 11 } }.// 7: 3 surfaces 1 t r i a n g l e each
II 4 v e r t i c e s above: cases 8 - 13
•£ { 1, 3, 11 1, 11. 9 } }, // 8: 1 sur face: 2 t r i a n g l e s
•f { 1, 2, 7, 1, 7, 11. 1, 11, 5, // 9: 1 sur face: 4 t r i a n g l e s

5, 11. 8 > },
{ i 1. 3, 4, 1, 4, 8, 1, 8, 10, // 10: 1 sur face: 4 t r i a n g l e s

1, 10, 6 > >,
•E { 3. 4, 5, 3. 5, 9, 3, 9, 10, // 10H: 1 sur face: 4 t r i a n g l e s

3, 10, 2 > },
{ i I, 3, 4, 1, 4, 8, 1, 8, 9 >, // 11: 2 surfaces 3, 1 t r i a n g l e s

i 7, 10, 11 } },
{ < 0, 2, 7, 7, 4 }, // 12: 2 surfaces 2, 2 t r i a n g l e s

•C 5, 8, 6, 10, 6 > },
< •C 0, 3, 4 >, { 1, 6, 2 >, i 7, 10, 11 }. // 13: 4 surfaces 1 t r i a n g l e each

{ 5, 8, 9 } },
5 v e r t i c e s above: cases 7C - 5C

{ •C 7, 2, 3 }, // 7C: 2 surfaces 1, 4 t r i a n g l e s
i i . 0, 4, 1, 4, 11, 1, 11, 6, 6. 11. 10 }

< i 3, 1, 10 1, 6, 10, 10, 9. 5, // 6C: 1 sur face: 5 t r i a n g l e s
10, 5, 4, 10 4, 3 } },

< { 3, 1, 11 11 1, 5, 11. 5, 8 > >, // 5C: 1 sur face : 3 t r i a n g l e s
// 6 v e r t i c e s above: cases 4C - 2C
{ < 0, 4, 3 }. -c 6, 10, 9 > }. // 4C: 2 surfaces 1 t r i a n g l e each
{ { 3, 2, 4, 4, 2, 6, 4, 6, 1, // 3C: 1 sur face: 4 t r i a n g l e s

4, 1, 0 } },
{ i 3, 5, 4, 3, 1, 5 } }. // 2C: 1 sur face: 2 t r i a n g l e s
// 7 v e r t i c e s above: case 1C
{ { o, 4, 3 } }, // 1C: 1 sur face: 1 t r i a n g l e
// a l l v e r t i :es above: cas e OC
t { 0 } > // make sure array i s non-empty
>; / / baseTriangle s

*caseName [N..CASES] - { "0" , "1 , "2" "3" "4" "5" "6", "7" "8" "9" "10" "10H", ' 11", "12", 13",

{ / / baseCase
0, II case 0
1, II case 1
3, 9, 129, II cases 2 - 4
35, 131, 73, II cases 5 - 7
51, 23, 163, 139, 99, 165, 105, II cases 8 - 1 3
182, 124, 236, II cases 7C - 5C
126, 246, 252, II cases 4C - 2C
254, II case 1C
255 II case 0C

nAboveVert[N_ :ASES][4] - II # of v e r t i c e s
{ / / nAboveVert

{ o >, II case 0
{ 1 >, II case 1
{ 2 >. { 1, 1 }. 1, 1 }, II cases 2 - 4
{ 3 >, { 2, 1 }, i 1, 1, 1 >, II cases 5 - 7
{ 4 }, { 4 >, { 4 >. { 4 } , II cases 8 - 10M
{ 3, 1 }, { 2, 2 }, { 1, 1, 1, 1 >, II cases 11-13

{ 1, 4 }, { 5 >, { 5 }, It cases 7C - 5C
{ 6, 6 }, { 6 }. { 6 }, II cases 4C - 2C
{ 6 }. II case 1C
{ o > II case 0C

}; / / nAboveVert

nBelowVert[N.CASESJ[4] - II # of v e r t i c e s
i II nBelowVert

< 0 >, II case 0
{ 6 >, II case 1
{ 6 >, { 5, 5 }, { 6, 6 }, II cases 2 - 4
{ 5 }, { 5, 5 }, { 4, 4, 4 }, II cases 5 - 7
{ 4 }, < 4 }. { 4 }. { 4 }, It cases 8 - 10M
•C 4, 4 }, { 4, 4 }, { 3. 3, 3, 3 }, II cases 11-13

< 3. 3 }, { 3 }, { 3 }. II cases 7C - 5C

< 1, 1 >, { 2 }, { 2 >, II cases 4C - 2C
{ 1 >, II case 1C
{ o } II case 0C

}; / / nBelowVert

215

in t baaeAbovaVert[N.CASES][4] [6] -
\ if aboveVert

no v e r t i c e s above: case 0
0 } },

. vertex above: case 1
0 } },

I v e r t i c e s above: cases 2 - 4

0, 1 > y.
0 }, < 3

0 >, < 7
}

}

v e r t i c e s above: cases 5 -
0, 1, 5 > }.
0, 1 { 7

0 }, { 3 },

v e r t i c e s above: cases 8 -
0, 1, 4, 5 } },

0, 1, 2, 4 } },

0, 1, 5, 7 } y.
0, 1, 3. 7 } y,
0, 1, 5 }, < 6 } }.
0, 2 }, (5, 7 } }.
0 }. < 3 }, < 6 }.

/ / which v e r t i c e s are "above" a given surface

/ / 0: make Bure that the array i s non-empty

/ / 1: 1 sur face: 1 vertex above i t

2 v e r t i c e s above i t
1 vertex above each
1 vertex above each

3 v e r t i c e s above
1 v e r t i c e s above

4 v e r t i c e s above i t
4 v e r t i c e s above i t
4 v e r t i c e s above i t
4 v e r t i c e s above i t

3, 1 v e r t i c e s above
2, 2 v e r t i c e s above
1 vertex above each

// 2: 1 BUT ace:

// 3: 2 BUT aces:

// 4: 2 sur aces:

// 5: 1 sur ace:

// 6: 2 BUT aces:

// 7: 3 sur aces:

// 8: 1 sur ace:

// 9: 1 sur ace:

// 10: 1 sur ace:

// 10H- 1 sur ace:

// 11: 2 sur aces:

// 12: 2 sur aces:

// 13: 4 sur aces:
v e r t i c e s above: cases 7C •

2 >. < 1. 4, 5, 7 > >, // 7C: 2 sur aces 1, 4 v e r t i c e s above each
2, 3. 4, 5, 6 } II 6C: 1 sur ace: 5 v e r t i c e s above i t
2, 3. 5, 6, 7 } } , it 5C: 1 sur ace: 5 v e r t i c e s above i t

v e r t i c e s above: cases 4C -
1, 2 3, 4, 5, 6 } , 11 4C: 2 surfaces 6 v e r t i c e s above each
1, 2 3, 4, 5, 6 } >,
1, 2 4, 5, 6. 7 > } , II 3C: 1 sur face: 6 v e r t i c e s above i t
2, 3 4, 5, 6, 7 > >, II 2C: 1 sur face: 6 v e r t i c e s above i t

r t i c as above: case 1C
1, 2 3, 4, 5, 6 } } , ii 1C: 1 sur face: 6 v e r t i c e s above (plus

a l l v e r t i c e s above:
{ 0 } >

/ / aboveVert

int aboveVert[256] [4] [6];

in t baseBelowVert[N.CASES] [4] [6] -
; / / belowVert

I v e r t i c e s below: case 0
0 } },

/ 7 vertex below: case 1
1, 2, 3, 4,

/ 6 v e r t i c e s below cases 2 - 4
2, 3, 4, 5, 6, 7 }
1, 2, 4, 5, 6 >, {

1, 2, 3, 4, 5, 6 >,
1. 2, 3, 4, 5, 6 }

t i c es be l cases 5 - 7
2, 3, 4, 6, 7 } } ,
2, 3. 4, 5, 6 } , {

1, 2, 4, 5 >, i 1,
2, 4, 5, 7 >

v e r t i c e s below: cases
2, 3, 6, 7
3, 5, 6, 7
2, 3, 4, 6
2, 4, 5, 6
2, 3. 4, 7
1, 3, 4, 6
1, 2, 4 >,
1, 4, 7 >

rer t ices below
0, 3, 6

cases 7C - 5C

>
>

2, 3, 4, 7 } },
1, 3, 4, 6 } },
2, 7 }, { 2, 4,

3, 6 >

/ / make sure array i s non-empty

/ / running copy

/ / which v e r t i c e s are "below" a given surface

/ / 0: make sure that the array i s non-empty

v e r t i c e s below i t

v e r t i c e s below i t

5 v e r t i c e s below
5 v e r t i c e s below i

4 v e r t i c e s below i t
4 v e r t i c e s below i t
4 v e r t i c e s below i t
4 v e r t i c e s below i t

4 v e r t i c e s below each
4 v e r t i c e s below each
3 v e r t i c e s below each

// 1: 1 sur face:

// 2: 1 sur face:

// 3: 2 sur faces :

// 4: 2 sur faces :

// 5: 1 sur face:
// 6: 2 sur faces :

// 7: 3 sur faces :

// 8: 1 sur face:

// 9: 1 sur face:

// 10: 1 sur face:

// 10H: 1 sur face:

// 11: 2 sur faces :

// 12: 2 sur faces :

// 13: 4 sur faces :

// 7C: 2 surfaces 3 v e r t i c e s below each
6C: 1 sur face: 3 v e r t i c e s below i t

// 5C: 1 sur face: 3 v e r t i c e s below i t
v e r t i c e s below: cases 4C - 2C

o >, { 7 } }. II 4C: 2 surfaces 1 vertex below each
0, 3 } it 3C: 1 sur face: 2 v e r t i c e s below i t
0, 1 } >. II 2C: 1 sur face: 2 v e r t i c e s below i t

/ 1 v e r t i c e s below: case 1C
0 > >,

7 no ver t iceB below: case 0C
{ 0 > }

/ / belowVert
in t belowVert[256][4][6];

in t nExitEdges[256][4];
in t exitEdgea[256][4][8];

in t rotX[8] - { 2,
in t rotY[8] - { 4,

/ / 1C: 1 sur face: 1 vertex below

/ / make sure array i s non-empty

/ / how many ex i t edges each surface has
/ / what those ex i t edges are

in t invRotX[8]
in t invRotY[8]
in t invRotZ[8]

1, 2, 4, 8, 16, 32, 64, 128 }; b i t f l ags fo r ex t rac t ing

0, 3, 1, 6, 4, 7, 5 };

o. 6, 2, 5, 1, 7, 3 };

3, 6, 7, 0, 1, 4, 5 };

1, 3, 0, 2, 5, 7, 4, 6}
1, 5, 3, 7, 0, 4, 2, 6}
4, 5, 0, 1, 6, 7, 2, 3}

< 3, 0, 1, 2, 7, 4, 5 6, 11, 8, ?. 10, // cube edges
13 12, 20, 21, 15, 14, 17, 16, 18, 19, 23, 22 }; // face diagonals

{ 4, 3, 7, 11, 8, 0, 2 10, 5, 1, 6 9, // cube edges
18 19, 12, 13, 17, 16, 23, 22, 21, 20, 15, 14 }; // face diagonals

{ 2, 6, 10, 7, 3, 1, 9 11, 0, 5, 8 4, // cube edges
16 17, 15, 14, 23, 22, 19, 18, 13, 12, 20, 21 }; // face diagonals

- •E 1, 2, 3, 0, 5, 6, 7 4, 9, 10, 1. 8, // cube edges

216

13, 12, 17, 16
in t invEdgeRotY[24] - { 5, 9, 6, 1,

14, 15, 23, 22
in t invEdgeRotZ[24] - { 8, 5, 0, 4,

21, 20, 15, 14

in t cases[256];
in t t r iangles[256] [4] [15] ;
in t s e e d £ d g e 2 S u r f a c e [2 5 6] [2 4] ;
in t entryEdge2Surface[256][36];

i n t queue[256]; in t qSize - 0;

in t Permute(int o ldCase, in t *perm)
{ / / Permute()
in t r e s u l t - 0;
in t i ;

fo r (i - 0; i < 8;
{ / / i loop
r e s u l t | - ((oldCase k b i tF lag[perm[i]]) ? 1 : 0) « i ;
> / / i loop

return r e s u l t ;
> / / Permute()

v o i d ProcessCase(int o ldCase, in t *perm, int *edgePerm, in t *invPerm)
{ / / ProcessCaseO

in t newCase - Ponnute(oldCase, perm);
in t whichCase;
in t i , j , k;

in t whichAbove, whichBelow;
in t whichEdge;

i f (cases[newCase] — -1)
{ / / f i r s t time case reached
whichCase - cases[o ldCase] ;
cases[newCase] - whichCase;
queue[qSize++] - newCase;
fo r (i - 0; i < nSurfaces[whichCase]; i++)

{ / / per surface
fo r (j - 0; j < 3*nTr iangles[whichCase] [i] ; j++)

{ / / loop through each t r i a n g l e
t r iangles[newCase] [i] [J] • edgePerm[t r iang les [o ldCase] [i] [J]] ;
> / / loop through each t r i a n g l e

f o r (j - 0; j < nAboveVert[whichCase][i] ; j++)
{ / / above loop
whichAbove - invPerm[aboveVert [o ldCase] [i] [j]] ;
aboveVert[newCase][i][J] - whichAbove;
fo r (k - 0; k < nBelowVert[whichCase][i] ; k++)

{ / / above / below p a i r
whichBelow - invPerm[belowVert [oldCase][i] [k]] ;
belowVert[newCase][i][k] - whichBelow;
whichEdge - vertex2edge[whichAbove][whichBelow];
i f (whichEdge -1) cont inue;
seedEdge2Surface[newCase][whichEdge] - i ;
> / / above / below p a i r

} / / above loop
> / / per surface

} / / f i r s t time case reached
e lse i f (cases[newCase] ! - cases [oldCase])

p r in t f ("Ma jor e r r o r . Case '/,d permutes to V,d, but has d i f f e r e n t type ('/,d
> / / ProcessCaseO

Int main()

{ / / mainO
in t theBaseCase, theCase, theCase2, theSurface , abovelD, belowID;
int qNext;
in t whichCase;
i n t whichAbove, whichBelow;
i n t whichEdge;
int wh ichTr i ;
in t t r i V e r t O , t r i V e r t l , t r i V e r t 2 ;
FILE • o u t F i l e ;

fo r (theCage - 0; theCase < 256; theCase++)
{ / / array i n i t i a l i z a t i o n
cases[theCase] - - 1 ;

f o r (theSurface • 0; theSurface < 4; theSurface++)
{ / / fo r each surface
nExitEdges[theCase][theSurface] - 0;
f o r (whichEdge - 0; whichEdge < 6; whichEdge++)

exitEdges[theCase][theSurface][whichEdge] - - 1 ;
} / / fo r each surface

f o r (whichEdge - 0; whichEdge < 24; whichEdge++)
seedEdge2Surface[theCase][whichEdge] - - 1 ;

f o r (whichEdge - 0; whichEdge < 36; whichEdge++)
entryEdge2Surface[theCase][whichEdge] - - 1 ;

} / / array i n i t i a l i z a t i o n

fo r (theBaseCase - 0; theBaseCase < N.CASES; theBaseCase++)
{ / / set base cases
whichCase - baseCase[theBaseCase];
cases[whichCase] - theBaseCase;
fo r (theSurface - 0; theSurface < nSurfaces[theBaseCase]; theSurface++)

{ / / loop through surfaces
f o r (whichTri - 0; whichTri < 3*nTriangles[theBaseCase][theSurface];

19, 18, 20, 21,
0, 8, 10, 2,
17, 16, 12, 13,
U , 9, 1, 3,
12, 13, 19, 18,

14, 15, 23, 22 >;
4, 11, 7, 3,

21, 20, 19, 18 };
10, 6, 2, 7,
22, 23, 17, 16 >;

/ / face diagonals
/ / cube edges
/ / face diagonals
/ / cube edges
/ / face diagonals

/ / array holding type fo r each case
/ / array s to r ing the t r i a n g l e s
/ / table fo r look ing up surfaces from seed edges
/ / table to go from entry edge to surface ZD

/ / queue fo r processing cases

/ / permutes the 8 v e r t i c e s by the perm vector

/ / the r e s u l t we end with
/ / loop index
/ / fo r each b i t

/ / extract the appropriate b i t k s t u f f back i n

/ / and return what we s ta r ted with

/ / computes perm, and sets i t to same type

/ / compute the permutation
/ / which of the major cases i t l a

/ / which vertex we look at above / below surface
/ / which edge the above / below p a i r s p e c i f i e s

/ / i f t h i s i s the f i r s t time the case i s reached

/ / f igure out which case i t i s
/ / set the cases to match
/ / add the case to the queue
/ / loop through the surfaces

/ / and through the V of t r i a n g l e s

/ / copy the t r i a n g l e vertex

/ / compute above vert from o l d one
/ / which vertex i s above

/ / compute above vert from o l d one
/ / which vertex i s above
/ / r e t r i e v e the edge from the tab le
/ / Skip -1 edges
/ / f l a g the case to t i e to t h i s surface

/ / i f they don' t match
v s . ' / ,d)\n", o ldCase, newCase, cases [oldCaBe] , cases [newCase]);

/ / main rout ine

/ / ind ices used throughout
/ / next item on queue
/ / case being processed
/ / which vertex we look at above / below surface
/ / which edge the above / below p a i r s p e c i f i e s
/ / index fo r t r i a n g l e s
/ / three v e r t i c e s of a t r i a n g l e
/ / f i l e handle fo r output

/ / i n i t i a l i z e arrays to -1 or 0

/ / sets the base case fo r each to -1

/ / fo r each p o s s i b l e surface

/ / set the number of e x i t edges
/ / fo r each p o s s i b l e ex i t edge
/ / make i t p red ic tab le

/ / sets the seed edge -> surface tab le

/ / sets the entry edge -> surface tab le

/ / loop to set the base cases

/ / s tore the base case i n the array
/ / loop through the surfaces

whichTri++)

/ / and through the # of t r i a n g l e s

217

{ / / loop through each t r i a n g l e
t r iangleB[whichCase][theSurface][whichTri] - basaTr iangles[theBaseCase][theSurface] [whichTr i] ;
> / / loop through each t r i a n g l e

fo r (abovelD - 0; abovoID < nAboveVert[theBaseCase][theSurface]; abovaID++)
{ / / above loop
whichAbove - baseAboveVert[theBaseCase][theSurface][abovelD];
aboveVert[whichCase][theSurface][abovelD] - whichAbove;
fo r (belowID - 0; belowIO < nBelowVert[theBaseCase][theSurface]

{ / / above / below p a i r
whichBelow - baseBelowVert[theBaseCase][theSurface][belowID]; / /

/ / which vertex i s above
/ / store i t in the new array
belowID++)

belowVert[whichCase][theSurface][belowID] » whichBelow;
whichEdge - vertex2edge[whichAbove][whichBelow];
i f (whichEdge • « -1) cont inue;
seedEdge2Surface[whichCase][whichEdge] - theSurface;
} / / above / below p a i r

y II above loop
} / / loop through surfaces

queue[qSize++] - whichCase;
} / / set base cases

which vertex i s below
/ / s tore i t i n the new array
/ / r e t r i e v e the edge from the table
/ / sk ip -1 edges

/ / f l a g the case to t i e to t h i s surface

/ / and add i t to the queue

fo r (qNext - 0; qNext < qSize; qNext++)
{ It loop through a l l cases on queue
ProcessCase(queue[qNext], ro tX , invEdgeRotX, invRotX);
ProcessCase(queue[qNext], ro tY , InvEdgeRotY, invRotY);
ProcessCase(queue[qNext], r o t Z , invEdgeRotZ, invRotZ);
} / / loop through a l l cases on queue

/ / walk through queue

/ / do an x - r o t a t i o n
/ / do a y - r o t a t i o n
/ / do a z - r o t a t i o n

fo r each case

fo r each surface

/ / now we need to f igure out the ex i t / entry edges
f o r (theCase - 0; theCase < 256; theCase++) / /

{ / / loop through a l l cases
f o r (theSurface • 0; theSurface < nSurfaces[cases[theCase]] ; theSurface++) / /

{ / / fo r each surface
f o r (whichTri - 0; whichTri < 3 -nTr iangles[cases[theCase]] [theSurface] ; whichTri

{ / / fo r each t r i a n g l e
t r i V e r t O - t r iang les [theCase] [theSur face] [whichTr i] ; / /
t r i V e r t l - t r iangles[theCase] [theSurface] [whichTr i+1] ;
t r i V e r t 2 - t r iangles[theCase] [theSurface] [whichTr i+2] ;
whichEdge - edge2 faceEdge[t r iVer tO] [t r iVer t l] ; / /
i f (whichEdge ! - -1) / /

i II good edge
exi tEdges[theCase][theSurface][nExitEdges[theCase][theSurface] ++] - whichEdge
entryEdge2Surface[theCase][whichEdge] - theSurface;
} / / good edge

whichEdge - edge2faceEdge[t r iVer tO] [t r iVer t2] ; / /
i f (whichEdge ! - -1) / /

{ / / good edge
exi tEdges[theCase][theSurface][nExitEdges[theCase][theSurface] ++] - whichEdge;
entryEdge2Surface[theCase][whichEdge] - theSurface;
} / / good edge

whichEdge - edge2 faceEdge [t r iVe r t l] [t r iVe r t2] ; / /
i f (whichEdge ! - -1) / /

{ / / good edge
exitEdges[theCase][theSurface][nExitEdges[theCase][theSurface]++] - whichEdge
entryEdge2Surface[theCase][whichEdge] - theSurface;
} / / good edge

} / / f o r each t r i a n g l e
} / / f o r each surface

> / / loop through a l l cases

o u t F i l e • fopen(" . /Fo l lowCubeTables .h" , "w");
i f (ou tF i le NULL)

{ / / f i l e open f a i l e d

pr in t f ("Unable to open FollowCubeTables.h fo r w r i t i n g . Dumping to standard o u t . \ n ") ;
o u t F i l e - stdout;
} / / f i l e open f a i l e d

• 3)

f i n d t r i a n g l e vertex (i . e . cube edge) IDs

look up face edge ID
i f i t ' s a l e g a l edge

look up face edge ID
i f i t ' s a l e g a l edge

look up face edge ID
i f i t ' s a l e g a l edge

f p r i n t f (o u t F i l e
f p r i n t f (o u t F i l e
f p r i n t f (o u t F i l e
f p r i n t f (o u t F i l e

f p r i n t f (o u t F i l e
f p r i n t f (o u t F i l e
f p r i n t f (o u t F i l e
f p r i n t f (o u t F i l e
f p r i n t f (o u t F i l e
f p r i n t f (o u t F i l e
f p r i n t f (o u t F i l e
f p r i n t f (o u t F i l e
f p r i n t f (o u t F i l e
f p r i n t f (o u t F i l e
f p r i n t f (o u t F i l e
f p r i n t f (o u t F i l e
f p r i n t f (o u t F i l e
f p r i n t f (o u t F i l e

" / / Fo l lowCubeTables .h \n") ;
" / / Copyright H. Carr 2003\n");

" / / Marching Cube cases s u r f a c e - s p e c i f i c contour - fo l lowing (cont inuat ion) \n") ;
" / / Generated Y.s, y .s \n" , __TIME__, __DATE__);

"extern i n t nSur faces[256] ; \n") ;
"extern in t nTriangles[256] [4] ; \n") ;
"extern int mcFol lowTriangles[256] [4] [15] ; \n") ;
"extern in t seedEdge2Surface[256][24]; \n");
"extern in t nExi tEdges[256] [4] ; \n") ;
"extern i n t sur face2exi tEdges[256] [4] [7] ; \n") ;
"extern in t ex i t2entryEdge[36] ; \n") ;
"extern in t e x i t D i r e c t i o n [3 6] [3] ; \ n ") ;
"extern in t entryEdge2Surface[256][36]; \n");
"extern in t ver tex2edge[8] [8] ; \n") ;
"extern in t mcFollowVertexCoords[8][3]; \n") j
"extern in t edgeVer t ices[24] [2] ; \n") ;
"extern char *caseName[23]; \n");
"extern in t baseCase[256]; \n") ;

f c l o s e (o u t F i l e) ;

o u t F i l e - f o p e n C . /Fol lowCubeTables .cpp" , "w");
i f (o u t F i l e — NULL)

{ / / f i l e open f a i l e d
p r i n t f ("Unable to open FollowCubeTables .cpp fo r w r i t i n g . Dumping to standard o u t . W) ;
o u t F i l e - stdout;
> / / f i l e open f a i l e d

f p r i n t f (o u t F i l e , " / / Fol lowCubeTables.cpp\n") ;
f p r i n t f (o u t F i l e , " / / Copyright H. Carr 2003\n");
f p r i n t f (o u t F i l e , " / / Marching Cube cases s u r f a c e - s p e c i f i c contour - fo l lowing (cont inuat ion) \n") ;
f p r i n t f (o u t F i l e , " / / Generated %s, ' / , s \n" , TIME , DATE);

218

f p r i n t f (o u t F i l e , "ffinclude \ " F o l l o w C u b a T a b l e 8 . h \ " \ n \ n H) ;

f p r i n t f (o u t F i l e , " in t nSurfaces[256] - \ n \ t { / / n S u r f a c e s \ n ") ;
fo r (theCase - 0; theCase < 256; theCase+- 16)

{ / / theCase loop
fo r (theCase2 - theCase; theCase2 < theCase+16; theCase2++)

f p r i n t f (o u t F i l e , H\ty.d"/.a", nSurfaces[cases[theCase2]] , theCase2 — 255 ? "" : " , ") ;
f p r i n t f (o u t F i l e , " \ n ") ;
} / / theCase loop

f p r i n t f (o u t F i l e , "\t>; / / n S u r f a c e s \ n \ n ") ;

f p r i n t f (o u t F i l e , " in t nTriangles[256][4] - \ n \ t { / / n T r i a n g l e a W) ;
f o r (theCase - 0; theCase < 256; theCase++)

{ / / theCase loop
f p r i n t f (o u t F i l e , " \ t \ t / / \ t C a s e */,d (base case V,s) \n", theCase, caseName [cases [theCase]]) ;
f p r i n t f (o u t F i l e , " \ t \ t {") ;
fo r (theSurface • 0; theSurface < nSurfaces[cases[theCase]] ; theSurface++)

f p r i n t f (o u t F i l e , "XtXd'/s", nTr iangleB[cases[theCase]] [theSurface] , theSurface nSurfaces[cases[theCase]] - 1 ? " \ t" : " , ") ;
f p r i n t f (o u t F i l e , "}'/,s\n", theCase — 255 7 "" : " , ") ;
} / / theCase loop

f p r i n t f (o u t F i l e , " \ t>; / / n T r i a n g l e s \ n \ n ") ;

f p r i n t f (o u t F i l e , " in t mcFollowTriangles[256][4][15] - \ n \ t < / / m c F o l l o w T r i a n g l e s W) ;
f o r (theCase - 0; theCase < 256; theCase++)

{ / / theCase loop
f p r i n t f (o u t F i l e , " \ t / / \ t C a s e '/,d (base case */ ,s)\n", theCase, caseName [cases [theCase]]) ;
f p r i n t f (o u t F i l e , " \ t \ t {") ;
f o r (theSurface - 0; theSurface < nSurfaces[cases[theCase]] ; theSurface++)

{ II loop through surfaces
f p r i n t f (o u t F i l e , "\t{");
fo r (whichTri » 0; whichTri < 3 * nTr iangles[cases[theCase]] [theSur face] ; whichTri++)

f p r i n t f (o u t F i l e , "Nt'/.d'/.a", t r i a n g l e s [theCase] [theSurface] [whichTr i] , (whichTri '/. 3) 2 ? (whichTri 3 * nTr iangles [cases [theCase]] [theSurface] - 1 ? H " ; ", \ t") :
f p r i n t f (o u t F i l e , "\t}'/.s", theSurface nSurfaces [cases [theCase]] - 1 ? " \ t" : " , ") ;
} / / loop through surfaces

f p r i n t f (o u t F i l e , H}' / .s\n", theCase 255 ? " \ t" : " , ") ;
> / / theCase loop

f p r i n t f (o u t F i l e , " \ t>; / / mcFol lowTr iang les \n \n") ;

f p r i n t f (o u t F i l e , " in t seadEdge2Surface[256][24] - \ n \ t { / / seedEdge2Surface\n");
fo r (theCase - 0; theCase < 256; theCase++)

{ / / case loop
f p r i n t f (o u t F i l e , " \ t / / \ t C a s e 7,d (base case ' / . s) \n M , theCase, caseName [cases [theCase]]) ;
f p r i n t f (o u t F i l e , " \ t \ t<") ;
f o r (uhichEdge - 0; whichEdge < 24; whichEdga++)

{ / / whichEdge loop
f p r i n t f (o u t F i l e , "\t'Ad'Aa", seedEdge2Surf ace [theCase] [whichEdge] , whichEdge 23 ? "\t" : ",");

> / / whichEdge loop
f p r i n t f (o u t F i l e , "}7,s\n\n", theCase — 255 ? " \ t" : " , ") ;
} / / case loop

f p r i n t f (o u t F i l e , "\t}; / / seedEdge2Surface\n\n") ;

f p r i n t f (o u t F i l e , " in t nExitEdges[256][4] - \ n \ t { / / nEx i tEdges \n") ;
fo r (theCase - 0; theCase < 256; th«Case++)

{ / / theCase loop
f p r i n t f (o u t F i l e , " \ t \ t / / \ t C a s e */,d (base case ' / ,s) \n", theCase, caseName [cases [theCase]]) ;
f p r i n t f (o u t F i l e , " \ t \ t {") ;
fo r (theSurface - 0; theSurface < nSurfaces[cases[theCase]] ; theSurface++)

f p r i n t f (o u t F i l e , "\t7,d7,s", nExitEdges [theCase] [theSurface] , theSurface — nSurfaces [cases [theCase]] - 1 ? " \ t" : " , ") ;
f p r i n t f (o u t F i l e , "}Xs\n", theCase - - 255 ? "" : " , ") ;
} / / theCase loop

f p r i n t f (o u t F i l e , " \ t>; / / nEx i tEdgea \n \n") ;

f p r i n t f (o u t F i l e , " in t surface2exitEdges[256][4][7] - \ n \ t { / / sur face2ex i tEdges \n") ;
f o r (theCase - 0; theCase < 256; theCaae++)

{ / / theCase loop
f p r i n t f (o u t F i l e , " \ t \ t / / \ t C a s e '/,d (base case * / s) \ n " , theCase, caseName [cases [theCase]]) ;
f p r i n t f (o u t F i l e , " \ t \ t<") ;
f o r (theSurface - 0; theSurface < nSurfaces[cases[theCase]] ; theSurface++)

{ It loop through surfaces
f p r i n t f (o u t F i l e , "\t{");
fo r (whichEdge - 0; whichEdge < nExi tEdges[theCase][theSurface] ; whichEdge++)

f p r i n t f (o u t F i l e , "\t'/,d'/,s", ex i t Edges [theCase] [theSurface] [whichEdge] , whichEdge « nExitEdges [theCase] [theSurface] - 1 ? "\t" : " , ") ;
f p r i n t f (o u t F i l e , "\t>'/,s", theSurface — nSurfaces [cases [theCase]] - 1 ? " \ t" : " , ") ;
} / / loop through surfaces

f p r i n t f (o u t F i l e , ">'/.s\n", theCase — 255 ? " \ t" : " , ") ;
} II theCase loop

f p r i n t f (o u t F i l e , " \ t>; / / Bur face2exi tEdge5\n \n") ;

f p r i n t f (o u t F i l e , " in t exit2entryEdge[36] - \ n ") ;
f p r i n t f (o u t F i l e , "\t{ / / \ t e x i t 2 e n t r y E d g e \ n ") ;
f p r i n t f (o u t F i l e , " \ t 3 5 , \ t 3 4 , \ t 3 3 , \ t 3 2 , \ t 3 1 , \ t 3 0 , \ n ")
f p r i n t f (o u t F i l e , " \ t 2 9 , \ t 2 8 , \ t 2 7 , \ t 2 6 , \ t 2 5 , \ t 2 4 , \ n ")
f p r i n t f (o u t F i l e , " \ t 2 3 , \ t 2 2 , \ t 2 1 , \ t 2 0 , \ t l 9 , \ t l 8 , \ n ")
f p r i n t f (o u t F i l e , " \ t l 7 , \ t l 6 , \ t l 5 , \ t l 4 , \ t l 3 , \ t l 2 , \ n ")
f p r i n t f (o u t F i l e , " \ t l 1 , \ t l 0 , \ t 9 , \ t 8 , \ t 7 , \ t 6 , \ n ") ;
f p r i n t f (o u t F i l e , " \ t 5 , \ t 4 , \ t 3 , \ t 2 , \ t l , \ t 0 \ n ") ;
f p r i n t f (o u t F i l e , *'\t}; / / \ t e x i t 2 e n t r y E d g e \ n \ n ") ;

f p r i n t f (o u t F i l e ,
f p r i n t f (o u t F i l e ,
f p r i n t f (o u t F i l e ,
f p r i n t f (o u t F i l e ,
f p r i n t f (o u t F i l e ,
f p r i n t f (o u t F i l e ,
f p r i n t f (o u t F i l e ,
f p r i n t f (o u t F i l e ,
f p r i n t f (o u t F i l e ,

" int ex i tD i rect ion[36] [3] - \ n ") ;
"\t{ / A t e x i t D i r e c t i o n W ') ;
" \ t -1
"\ t 0
"\t 0
"\t 0
"\t 0
"\t 1
"\t>

0,

1,

0. 5t •
1, \t
o,\t

I, - 1 , 0 , \ t
I, 0, - l , \ t
, 0, 0 , \ t
/ / U e x i t D i r e .

•1, 0,
0, 0,
0. 1.
0, - 1 ,
0,
1,

0, \ t -
1. U
0,\t
0, \ t
1, \t
0 , \ t

i o n \ n \ n ") ;

0,

0, \ t •
1, \ t
0 , \ t
0 , \ t

- l , \ t
0 , \ t

0, \ t -
1, \ t
0 , \ t
0 , \ t

- l , \ t
0 , \ t

0, \ t -
1. \ t
o , \ t
0 , \ t

- l , \ t
0 , \ t

0, \ n ") ;
1. \n") j
0 , \ n ") ;
0 , \ n ") ;

- l , \ n ") ;
0 , \ n ") ;

f p r i n t f (o u t F i l e , " int e n t r y E d g « 2 S u r f a c e [2 5 6] [3 6] - \ n \ t { / / entryEdge2Surface\n") ;
fo r (theCase - 0; theCase < 256; theCase++)

219

{ / / theCase loop
f p r i n t f (o u t F i l e , " \ t \ t / / \ t C a s e '/.d (base case 7,s)\n", theCase, case Name [cases [theCase]]) ;
f p r i n t f (o u t F i l e , " \ t \ t { \ n \ t \ t ") ;
f o r (whichEdge - 0; whichEdge < 36; whichEdge++)

f p r i n t f (o u t F i l e , "\tX2d"/.s", entryEdge2Surf ace [theCase] [whichEdge] , (whichEdge '/, 12) ! - 11 ? " , " : whichEdge — 35 ? " \ n " : " , \ n \ t \ t ") ;
f p r i n t f (o u t F i l e , " \ t \ t } ' / .s \n" , theCase — 255 ? " \ t" : " , ") ;
y If theCase loop

f p r i n t f (o u t F i l e , "\t>; / / entryEdge2Surface\n \n") ;

f p r i n t f (o u t F i l e , " in t vertex2edge[8][8] - \ t \ t \ t \ t \ t \ t \ t \ t \ t \ t \ t \ t \ t / / \ t t a b l e d e f i n i n g the p o s s i b l e edges \n") ;
f p r i n t f (o u t F i l e , "\t{ / / v e r t e x 2 e d g e \ t \ t \ t \ t \ t \ t \ t \ t \ t \ t \ t \ t \ t / A t - l : no edge\n") ;
f p r i n t f (o u t F i l e , " \ t { \ t - l , \ t 0 , \ t 3 , \ t l 2 , \ t \ t 4 , \ t 2 0 , \ t l 9 , \ t - l \ t } , \ t \ t \ t \ t \ t \ t / / \ t e d g e s s t a r t i n g from 000\n");
f p r i n t f (o u t F i l e , " \ t { \ t 0 , \ t - l , \ t l 3 , \ t l , \ t \ t 2 1 , \ t 5 , \ t - l , \ t l 4 \ t } , \ t \ t \ t \ t \ t \ t / / \ t e d g e s s t a r t i n g from 001\n");
f p r i n t f (o u t F i l e , " \ t { \ t 3 , \ t l 3 , \ t - l , \ t 2 , \ t \ t l 8 , \ t - l , \ t 7 , \ t l 6 \ t > , \ t \ t \ t \ t \ t \ t / / \ t e d g e s s t a r t i n g from 010\n");
f p r i n t f (o u t F i l e , " \ t { \ t l 2 , \ t l , \ t 2 , \ t - l , \ t \ t - l , \ t l 5 , \ t l 7 , \ t 6 \ t } , \ t \ t \ t \ t \ t \ t / / \ t e d g e s s t a r t i n g from 011\n");
f p r i n t f (o u t F i l e , " \ n ") ;
f p r i n t f (o u t F i l e , " \ t { \ t 4 , \ t 2 1 , \ U 8 , \ t - i , \ t \ t - l , \ t 8 , \ t l l , \ t 2 2 \ t } , \ t \ t \ t \ t \ t \ t / / \ t e d g e s s t a r t i n g from 100\n");
f p r i n t f (o u t F i l e , " \ t { \ t 2 0 , \ t 5 , \ t - l , \ t l 5 , \ t \ t 8 , \ t - l , \ t 2 3 , \ t 9 \ t } , \ t \ t \ t \ t \ t \ t / A t e d g e s s t a r t i n g from 101Sn");
f p r i n t f (o u t F i l e , " \ t { \ t l 9 , \ t - l , \ t 7 , \ t l 7 , \ t \ t l l , \ t 2 3 , \ t - l , \ t l O \ t } , \ t \ t \ t \ t \ t \ t / / \ t e d g e s s t a r t i n g from 110\n");
f p r i n t f (o u t F i l e , n \ t { \ t - l , \ t l 4 , \ t l 6 , \ t 6 , \ t \ t 2 2 , \ t 9 , \ t l 0 , \ t - l \ t } \ t \ t \ t \ t \ t \ t / A t e d g e s s t a r t i n g from l l l \ n ") ;
f p r i n t f (o u t F i l e , "\t}; / / vertex2edge\n") ;

f p r i n t f (o u t F i l e ,
f p r i n t f (o u t F i l e ,
f p r i n t f (o u t F i l e ,
f p r i n t f (o u t F i l e ,
f p r i n t f (o u t F i l e ,
f p r i n t f (o u t F i l e ,
f p r i n t f (o u t F i l e ,
f p r i n t f (o u t F i l e ,
f p r i n t f (o u t F i l e ,
f p r i n t f (o u t F i l e ,
f p r i n t f (o u t F i l e ,

" int mcFollowVertexCoords[8][3] - \ n ") ;
" \ t { / / \ tmcFo l lowVer texCoords \n") ;
" \ t \ t {0 , i
" \ t \ t<0 , i
" \ t \ t {0 ,
" \ t \ t {0 ,
" \ t \ t { l , i
" \ t \ t { l . i
" \ t \ t { i ,
" \ t \ t < l ,

0 } , \n") ;
l> , \n") ;
0 } , \n") ;
O A n ") ;
0>, \n");
O A n ") ;
0>,\n">;
l } \n") ;

"\t>; / / \ tmcFo l lowVer texCoords \n \n") ;

f p r i n t f (o u t F i l e , " in t edgeVert ices[24][2] - \ t \ t \ t \ t \ t \ t \ t \ t \ t \ t \ t \ t / / \ t t a b l e

f p r i n t f (o u t F i l e , "\t{ / / edgeVer t ices \n") j
f p r i n t f (o u t F i l e , " \ t 0 , \ t l , \ t \ t l , \ t 3 , \ t \ t 3 , \ t 2 , \ t \ t 2 , \ t O , \ t \ t \ t \ t \ t \ t / / \ t e O
f p r i n t f (o u t F i l e , " \ t 0 , \ t 4 , \ t \ t l , \ t 5 , \ t \ t 3 , \ t 7 , \ t \ t 2 , \ t 6 , \ t \ t \ t \ t \ t \ t / / \ t e 4
f p r i n t f (o u t F i l e , " \ t 4 , \ t 5 , \ t \ t 5 , \ t 7 , \ t \ t 7 , \ t 6 , \ t \ t 6 , \ t 4 , \ t \ t \ t \ t \ t \ t / / \ t e 8
f p r i n t f (o u t F i l e , " \ t \ n ") ;
f p r i n t f (o u t F i l e , " \ t 0 , \ t 3 , \ t \ t l , \ t 2 , \ t \ t l , \ t 7 , \ t \ t 3 , \ t 5 , \ t \ t \ t \ t \ t \ t / / \ t d O
f p r i n t f (o u t F i l e , H \ t 2 , S t 7 , \ t \ t 3 , \ t 6 , \ t \ t 4 , \ t 2 , \ t \ t 0 , \ t 6 , \ t \ t \ t \ t \ t \ t / / \ t d 4
f p r i n t f (o u t F i l e , " \ t 0 , \ t 5 , \ t \ t l , \ t 4 , \ t \ t 4 , \ t 7 , \ t \ t 5 , \ t 6 \ t \ t \ t \ t \ t \ t / / \ t d 8 -
f p r i n t f (o u t F i l e , "\t}; / / e d g e V e r t i c e s \ n \ n ") ;

' i th the v e r t i c e s each edge connects \n") ;

• e3 \n") ;
• e7 \n") ;
• e l l \ n ") ;

• d3 (el2 - e l 5) \ n ") ;
• d7 (el6 - e l 9) \ n ") ;
d l l (e20 - e23) \n") ;

f p r i n t f (o u t F i l e , "char *caseName[23] - { \ t \ "0 \" , \ " 1 \ " , \ " 2 \ " , \ " 3 \ " , \ " 4 \ " , \ " 5 \ " , S " 6 \ " , \ " 7 \ " , \ n ") ;
f p r i n t f (o u t F i l e , " \ t \ t \ t \ t \ t \ t \ " 8 \ " , \ " 9 \ " , \ " 1 0 \ " , \ "10M\" , \ " 1 1 \ " , \ " 1 2 \ " , \ " 1 3 \ " , \ n ") ;
f p r i n t f (o u t F i l e , " \ t \ t \ t \ t \ t \ t \ " 7 C \ " , \ " 6 C \ " , \ " 5 C \ " , \ " 4 C \ " , \ " 3 C \ " , \ " 2 C \ " , \ " 1 C \ " , \ " 0 C \ " } ; \n \n") ;

f p r i n t f (o u t F i l e , " in t baseCase[256] - \ n \ t { / / baseCase\n") ;
f o r (theCase - 0; theCase < 256; theCaae-t— 16)

{ / / theCase loop
fo r (theCase2 - theCase; theCase2 < thaCase+16; theCase2++)

f p r i n t f (o u t F i l e , " \ t ' /dXB", cases[theCase2] , theCase2 255 ? "" : " , ") ;
f p r i n t f (o u t F i l e , " \ n ") ; ^
} / / theCase loop

f p r i n t f (o u t F i l e , "\t>; / / baseCase \n \n") ;

f c l o s e (o u t F l l e) ;

re turn 0;
} / / mainO

220

file:///t/tll
file:///tlO/t}
file:///t/tl
file:///t/tl
file:///t/t4

Appendix B

Code for Piecewise Continuation

T h e code i n this appendix implements piecewise cont inuat ion as described i n Sect ion 12.8, using the tables
generated by the code i n A p p e n d i x A .

There are three p r inc ipa l routines:

PiecewiseContinuationQ takes a surface fragment as an argument, then uses a queue-based
implementa t ion of A l g o r i t h m 12.3 to extract the contour surface passing th rough tha t surface fragment.

SeedPiecewiseContinuation() takes a seed edge, converts i t into a surface fragment, invokes
PiecewiseContinuationQ to perform the ac tua l ext rac t ion, then invokes RemoveFlags() to remove the
flags set dur ing the contour ext rac t ion .

RemoveFlags(), l ike PiecewiseContinuationQ, follows the surface. U n l i k e PiecewiseCon­
tinuationQ, RemoveFlagsQ does not render the surface. Instead, i t resets the flags that mark which

fragments have been vis i ted .

Several other routines are assumed, but not shown: RenderTriangleQ, w h i c h renders a single

t r iangle, height(x, y, z), wh i ch retrieves an isovalue of a sample, Visited(x, y, z, s), wh i ch tests whether

surface fragment s has been v is i ted i n cell (x,y,z), and Visit(x, y, z, s) and UnVisit(x, y, z, s) wh ich

set and clear flags for surface fragments.

B.l The Code

ttinclude <queue>

/ / inc lude the tab les generated by the code i n Appendix A
ttinclude "Fol louCubeTables.h"

/ / a l i t t l e c l a s s d e f i n i n g a s i n g l e surface i n a c e l l
c l a s s SurfaceFragment

{ / / c l a s s SurfaceFragment
p u b l i c :
long x, y , z , entryFaceEdge;
SurfaceFragment(long X, long Y, long Z, long EntryFaceEdge)

{ x - X; y - Y; z - Z; entryFaceEdge - EntryFaceEdge; >
>; / / c l a s s SurfaceFragment

//

221

//
//
//
//
//
//
//
//
//
//
//
//

PiecewiseCont inuat ionO implements piecewise cont inua t ion , seeded by a given surface i n a given c e l l

It does so by convert ing the seed edge to a seed c e l l + a surface ID, then invoking a rout ine c a l l e d P iecewisoCont inuat ionQ / /
to generate the surface i t s e l f . F i n a l l y , i t c a l l s a rout ine c a l l e d RemoveFlagaO to remove the f l a g s marking which c e l l s / /
and surfaces have been v i s i t e d . / /

The fo l lowing subroutines are assumed:
he ight (x , y , z)
V i s i t e d (x , y , z , s
V i s i t (x , y , z , s)
RenderTriangle()

z) r e t r i e v e s the isovaiue at sample (x
t e s t s whether surface s i n c e l l (x, y, z) has already been v:
marks surface s i n c e l l (x, y, z) as already v i s i t e d
renders a s ing le t r i a n g l e belonging to the surface fragment

//

//

void PiecewiseContlnuation(double h t , long x, long y, long z , int theEntryFaceEdge)
{ / / P iecewiseCont inuat ionO
long theCase - 0;
long theSurface;
long whichExitFaceEdge;
long theExitFaceEdge;
double cubeVert [8] ;
long whichVertex;
long whichTr i ;
queue<SurfaceFragment> theQueue;

/ / s t a r t s drawing cube at s p e c i f i e d edge

/ / the marching cubes case
/ / the surface the edge belongs to
/ / index fo r ex i t edges
/ / the ex i t edge t entry i n next cube
/ / l o c a l array ho ld ing v e r t i c e s of cube
/ / index fo r loop through v e r t i c e s
/ / index fo r loop through t r i a n g l e s
/ / queue of surfaces to be processed.

/ / i n i t i a l i z e the queue
SurfaceFragment theSurfaceFragment • SurfaceFragment(x, y, z , theEntryFaceEdge);
theQueue.push(theSurfaceFragment);

/ / loop through the queue, processing surface fragments
while (not theQueue.empty())

{ / / loop to empty queue
theSurfaceFragment - theQueue. f ront () ;
theQueue.pop();
x - theSurfaceFragment.x; y - theSurfaceFragment.y; z - theSurfaceFragment.:
i f ((x < 0) | | (y < 0) | | (z < 0)) cont inue;
i f ((x > xDim-2) I I (y > yDim-2) I I (z > zDim-2)) cont inue;

/ / c e l l surface being processed
/ / push the i n i t i a l c e l l surface on queue

/ / while the queue i s non-empty

/ / grab the f ront item
/ / and pop to remove i t
/ / store these i n l o c a l va r iab les
/ / check fo r out -of bounds

/ / compute the marching cubes case
cubeVert[0] - he ight (x , y , z) ;
cubeVert[2] - he ight (x , y+l , z) ;
cubeVert[4] - he ight (x+l , y , z) ;
cubeVert[6] - h e i g h t (x + l , y+l , z) ;

cubeVert [l] - he ight (x , y , z+1);
cubeVert[3] - he ight (x , y+l , z+1);
cubeVert[5] - he ight (x+l , y, z+1);
cubeVert[7] - height(x+1, y+l , z+1);

/ / copy the vertex heights

theCase - 0;
fo r (whichVertex - 0; whichVertex < 8; whichVertex++)

i f (ht < cubeVert[whichVertex))
theCase I- (1 « whichVertex);

/ / loop through corners , computing facet lookup
/ / i f the c o m e r i s above des i red height
/ / set b i t f l a g

/ / f i n d which surface the entry edge belongs t o , and check whether i t has already been processed
theSurface - entryEdge2Surface[theCase][theSurfaceFragment.entryFacaEdge]; / /
i f (V i s i t e d (x , y , z , theSurface)) cont inue; / /
V i s i t (x , y, z , theSurface) ; / /

f i n d the surface we are on
i f i t ' s been f l agged , sk ip i t
mark the surface as " v i s i t e d "

/ / render the surface fragment
fo r (whichTri - 0; whichTri < 3*nTr iangles[theCase] [theSurface] ; w h i c h T r i * - 3)

RenderTr iangle(ht , x , y, z , cubeVert,
mcFol lowTriangles[theCase][theSurface][whichTri + 0] ,
mcFol lowTriangles[theCase][theSurface][whichTri + 1] ,
mcFol lowTriangles[theCase][theSurface][whichTri + 2]) ;

/ / walk through the t r i a n g l e s of the surface

/ / now fo l low the contour out each face

fo r (whichExitFaceEdge - 0; whichExitFaceEdge < nExi tEdges[theCase][theSurface] ; whichExitFaceEdge++)
{ / / f o r each ex i t edge
theExitFaceEdge - surface2exitEdges[theCase][theSurface][whichExitFaceEdge]; ' / / f i n d the ex i t edge's ID

theQueue.push(SurfaceFragment(
x + ex i tD i rec t ion [theEx i tFaceEdge] [0] ,
y + ex i tD i rec t ion [theEx i tFaceEdge] [1] ,
z + ex i tD i rec t ion [theEx i tFaceEdge] [2] ,
exi t2entryEdge[theExi tFaceEdge])) ;

} / / fo r each ex i t edge
} / / loop to empty queue

} / / P iecewiseCont inuat ionO

/ / f i r s t entry i n row g ives d e l t a :
/ / second entry gives d e l t a y
/ / t h i r d entry g ives d e l t a z
/ / convert from ex i t to entry

uuuHiiiuuiiuHiiuiuiiuuiiiiiiiiiiiiiiuuiiiiiinuuiiuiiiiiiiiiiiiiiiiiiiuiiiiiiiiuiiiiiiiiiiiiiuiiinituiniiiin

11 11
II SeedPiecewlseCont inuat ionO generates a s i n g l e contour at isovaiue "ht", s t a r t i n g from the seed edge / /
/ / (x l , y l , z l) -> (x2, y2, z2) / /

// //
/ / I t does so by convert ing the seed edge to a seed c e l l + a surface ID, then invoking a rout ine c a l l e d P iecewiseCont inuat ionO / /
/ / to generate the surface i t s e l f . F i n a l l y , i t c a l l s a rout ine c a l l e d RemoveFlags() to remove the f l ags marking which c e l l s / /
/ / and surfaces have been v i s i t e d . / /

// //
//

long y l , long z l , long x2, long y2, long z2) o i d SeedPiecewlseContinuatlon(double h t , long 3
i II SeedPiecewlseCont inuat ionO
long xm, ym, zm;
long xc, y c , z c ;
in t i l , 12;
long whichCubeEdge, theSurface, whichFaceEdge;
long theCase - 0;
long whichVertex;
double cubeVert [8] ;

/ / f i n d the common c e l l to which the endpointa belong and make sure i t ' s in bounds
xm - x l < x2 ? x l : x2; ym - y l < y2 ? y l : y2; zm - z l < z2 ? z l : z2;
xc • xm; yc - ym; zc • zm;

/ / rout ine to fol low surface from seed edge

/ / minimum x, y, z of the two endpoints
/ / the ID of a c e l l shared by the endpoints
/ / the vertex IDs of the endpoints in the c e l l
/ / used to f igure out where to s t a r t
/ / the marching cubes case
/ / loop index fo r v e r t i c e s
/ / l o c a l array ho ld ing v e r t i c e s of cube

/ / take the minimum i n each dimension
/ / and work out which c e l l we are i n

222

i f (xc - - xDim - 1) x c - - ; i f (yc — yDim - 1) y c — ; i f (zc - - zDim - 1) / / make sure we stay ins ide a l e g a l c e l l

/ / compute i n d i c e s of v e r t i c e s with respect to t h i s c e l l
i l - ((x l - xc) « 2) + ((y l - yc) « 1) + Czl - z c) ; 12 - C(x2 - xc) « 2) + ((y2 - yc)

/ / look up the edge ID i n the c e l l
whichCubeEdge - vertex2edge[11][i2] ;
i f (whichCubeEdge - - -1)

{ p r in t f ("Ma jor problem: Xld to '/.Id i s not a v a l i d seed edge\n" , i l , 12); return;}

« 1) + (z2 - z c) ;
/ / compute ind ices

/ / f i n d which edge we are on i n the c e l l
/ / e r ror -check fo r bad edge

/ / now f igure out which marching cube case we have
i f ((xc < 0) | | (yc < 0) II (zc < 0)) r e tu rn ;
i f ((xc > xDim-2) II (yc > yDim-2) II (zc > zDim-2)) re tu rn ;

/ / do nothing i f any index negative
/ / d i t t o fo r l a s t face worth of v e r t i c e s

CubeVerttO] - he ight (xc , y c , z c) ; cubeVert [l] • he ight (xc , y c , zc+1);
cubeVert[2] • he ight (xc , yc+1, z c) ; cubeVert[3] - he ight (xc , yc+1, zc+1);
cubeVert[4] • he ight (xc+l , y c , z c) ; cubeVert[5] - he ight (xc+l , y c , zc+1);
cubeVert[6] - height(xc+1, yc+1, z c) ; cubeVert[7] - height(xc+1, yc+1, zc+1);

theCase • 0;
f o r (whichVertex - 0; whichVertex < 8; whichVertex++)

i f (ht < cubeVert[whichVertex])
theCase I- (1 << whichVertex);

/ / loop through corners , computing facet
/ / i f the corner i s above des i red height
/ / set b i t f l a g

/ / use a lookup tab le to f i n d which surface the seed edge i n t e r s e c t s
theSurface - seedEdge2Surface[theCase][whichCubeEdge]; / /
i f (theSurface -1) / /

{ p r i n t f ("Major problem: Edge '/.Id i n case '/.Id i s not a v a l i d seed edge\n" , whichCubeEdge, theCase); return;}

f i n d the surface to which be belong
e r ro r check f o r bad surface

/ / and set the edge we "entered" the c e l l through to any v a l i d edge
whichFaceEdge • surface2exi tEdges[theCase][theSurface] [0] ; / / take the f i r s t e x i t edge (a r b i t r a r i l y)

P iecewissCont inuat ion(ht , xc , y c , z c , whichFaceEdge);
R,emoveFlags(ht, xc , y c , z c , whichFaceEdge);
} / / SeedPiecewiseContinuat ionO

s ta r t the surface off with the givi
c lean out the f l a g s

//
// //
/ / RemoveFlags() resets the f l ags set by piecewise cont inuat ion / /
// //
/ / I t does so fo l lowing the surface i n the same way as P iecewiseCont inua t ionO, r e s e t t i n g v i s i t a t i o n f l a g s instead of render ing / /
/ / t r i a n g l e s . / /
// //
/ / The fo l lowing subroutines are assumed: / /
/ / he ight (x , y, z) r e t r i e v e s the isova lue at sample (x, y, z) / /
/ / V i s i t e d (x , y, z , s) t es ts whether surface a i n c e l l (x, y, z) has already been v i s i t e d / /
/ / UnV ia i t (x , y, z , s) marks surface s i n c e l l (x, y , z) as already v i s i t e d / /
// //

iiiiiiitiiiiiiiiiiiiititiiiiiiiiiiiiiiiiitiitiiiiiiiiiiitiiiittiiiiiutiiiiiiiiiiiiiiiiiiuiiititiitiitiiiiiiiiiiiiittiiiiiiiiitiiii
void RemoveFlags(double h t , long x, long y, long z , in t theEntryFaceEdge)

{ / / RemoveFlagsO
long theCase - 0;
long theSurface;
long whichExitFaceEdge;
long theExitFaceEdge;
double cubeVert [8] ;
long whichVertex;
queue<SurfaceFragment> theQueue;

/ / s t a r t s drawing cube at s p e c i f i e d edge

/ / the marching cubes case
/ / the surface the edge belongs to
/ / index fo r ex i t edges
/ / the e x i t edge k entry i n next cube
/ / l o c a l array holding v e r t i c e s of cube
/ / index f o r loop through v e r t i c e s
/ / queue of surfaces to be processed.

/ / i n i t i a l i z e the queue
SurfaceFragment theSurfaceFragment - SurfaceFragment(x, y , z , theEntryFaceEdge);
theQueue.push(theSurfaceFragment);

/ / c e l l surface being processed
/ / push the i n i t i a l c e l l surface <

/ / loop through the queue, processing surface fragments
while (not theQueue.empty())

{ / / loop to empty queue
theSurfaceFragment - theQueue. f ront () ;

theQueue.popO;
x • theSurfaceFragment.x; y - theSurfacaFragment.y; z • theSurfaceFragment.z;
i f ((x < 0) | | (y < 0) | | (z < 0)) cont inue;
i f U x > xDim-2) I I (y > yDim-2) 11 (z > zDim-2)) cont inue;

/ / while the queue i s non-empty

/ / grab the f ront item
/ / and pop to remove i t
/ / s tore these in l o c a l v a r i a b l e s
/ / check fo r out -of bounds

/ / compute the marching cubes case
cubeVert[0] - he ight (x , y, z) ;
cubeVert[2] - he ight (x , y+1, z) ;
cubeVert[4] - height(x+1, y , z) ;
cubeVert[6] - height(x+1, y+1, z) ;

cubeVert[l] - he ight (x , y, z+1);
cubeVert[3] - he ight (x , y+1, z+1);
cubeVert[5] - height(x+1, y, z+1);
cubeVert[7] - he ight (x+l , y+1, z+1);

/ / copy the vertex heights

theCase - 0;
fo r (whichVertex - 0; whichVertex < 8; whichVertex++)

i f (ht < cubeVert[whichVertex])
theCase I- (1 << whichVertex);

/ / loop through corners , computing facet
/ / i f the corner i s above des i red height
/ / set b i t f l a g

/ / f i n d which surface the entry edge belongs t o , and check whether i t has already been processed
theSurface - entryEdge2Surface[theCase][theSurfaceFragment.entryFaceEdge]; / / f i n d the surface we are on
i f (not V i s i t e d (x , y , z , theSurface)) cont inue; / / i f i t ' s been unf lagged, sk ip i t
U n V i s i t (x , y , z , theSur face) ; / / mark the surface as " v i s i t e d "

/ / now fol low the contour out each face
f o r (whichExitFaceEdge - 0; whichExitFaceEdge < nExitEdges[theCase][theSurface]

{ / / f o r each ex i t edge
theExitFaceEdge - surface2exitEdges[theCase][theSurface][whichExitFaceEdge];

whichExitFaceEdge++)

f i n d the ex i t edge's ID

theQueue.push(SurfaceFragment(
x + ex i tD i rec t ion t thoEx i tFaceEdge] [0] ,
y + ex i tD i rec t ion[theEx i tFaceEdge] [1] ,
z + ex i tD i rec t ion[theEx i tFaceEdge] [2] ,
exi t2entryEdge[theExi tFaceEdge])) ;

/ / f i r s t entry i n row gives d e l t a x
/ / second entry gives d e l t a y
/ / t h i r d entry gives d e l t a z
/ / convert from e x i t to entry

223

} / / fo r each ex i t edge
} / / loop to empty queue

} / / RemoveFlagaO

224

