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Abstract

A new method for assisting with the visualization of large multidimensional datasets is
proposed. We classify datasets with more than one million elements as large. Multidimen-
| sional data elements are elements with two or more dimensions, each of which is at least bi-
nary. Multidirﬁensional data visualization involves representation of multidimensional data
elements in a low dimensional environment, such as a computer screen or printed media.

Traditional visualization techniques are not well suited to solving this problem.

Our data visualization techniques are based in large part on a field of cognitive psychology
called preattentive processing. Preattentive processing is the study of visual features that .
are detected rapidly and with little effort by the human visual system. Examples include
hue, orientation, form, intensity, and motion. We studied ways of extending and applying A
research results from preattentive processing to address our visualization requirements. We
used our investigations to build visualization tools that allow a user to very rapidly and accu-‘
Ttately perform exploratory analysis tasks. These tasks include searching for target elements,
identifying boundaries between groups of common elements, and estimating the numberlof _
elements that have a specific visual feature. Our experimental results were positive, sug;
gesting that dynamic sequences of frames can be used to explore large amounts of data in é

relatively short period of time.

Recent work in both scientific visualization and database systéms has started to address
the problems inherent in managing iarge scientific datasets. One promising technique is
knowledge discévery, “the nontrivial extraction of implicit,.previously unknown, and poten-
tially useful information from data”. We hypothesise that knowledge discovery can be used
as a filter to reduce the amount of data sent to the visualization tool. Data elements that do
not belong to a user-chosen group of interest can be discarded, the dimensionality of indi-

_vidual data elements can be compressed, and previously unknown trends and relationships

il




.can be discovered and explored.

We illustrate how our techniques can be used by applying them to real-world data and
tasks. This includes the visualization of simulated salmon migration results, computerized

tomography medical slices, and environmental datasets that track ocean and atmospheric

conditions.
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Chapter 1
Introduction'

Scientific visualizafion in computer graphics is a relatively‘hew. field of research. The term
“visualization” was used during a 1987 National Science Foundation (NSF) panel report
on hovﬂr. to apply computer science techniques to data analysis problems [McCormick: et al.,
1987). ‘The panel defined the domain of visualiiation to. be the dev’elbprﬁent of general |
purpose tools and the study of research problems that arise in the process. Participants on

the panel emphasised a number of research goals, speciﬁéally:
~e visualization should combine research results from different disciplines (e.g., computer
science, computer graphics, psychology, and visual arts)

o visualization should address both the intelligent display of data and the intelligent

management of the underlying dataset
e visualization does not have to be complicated in order to be useful
e visualization should be performed interactively while the data is being generated

Panel members at a similar visualization roundtable noted that the desire for computer-

" based data visualization arose from the need to analyse larger and more complex datasets

[Wolfe and Franzel, 1988]. Scientific visualization has grown rapidly in recent years as a direct
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result of the overwhelming amount of data being generated. New visualization techniques”

need to be developed that address this “firehose of,informatiOn” if users hope to analyse

“-even a small portion of their data repositories.

Many traditional computer software tools are now being extended to provide user in-

teraction and real-time visualization of results. For example visual interactive simulation

.studles ways of adding useful visualization and user interaction components to simulation

programs [Hurrion, 1980; Bell and O’ Keefe 1987; Bell and O’ Keefe, 1994]. Other types of .
applications al_so need to display data in real-time. In air traffic control screens are often
shared by different operators who acquire visual datat from different parts of the display at
the same time. Visualization techniques for this environment must allow a variety of tasks to
be performed rapidly and accurately on dynamically changing subsets of the overall display.
Medical imaging systems such as CT, MRI, PET, and ultrasound are another type of ap- -
plication‘that could benefit from real-time visualization. Techniquee that allowed rapid and

accurate visual analysis of more than one aspect of the data might decrease the amount of

time needed to-complete the diagnostic task. This is important, since these types of systems

often cannot be time-shared by multiple users. Any improvement in visualization would in-
crease total throughput for the system. Moreover better displays mlght reduce errors made |

durlng analysis. Even a small increase in accuracy is 1mportant in this type of env1ronment

A variety of methods have been used to convert raw data into a more usable visual for—
mat. Both Tufte [1983, 1990] and Collins [1993] give an interesting review of pre-computer

visualization techniques. Two of the best known examples are maps and the conversion of nu-

meric data into different types of graphs. Diverse solutions for displaying high-dimensional

datasets in a low-dimensional environment such as the computer screen have been pro-

posed [Pickett and Grinstein, 1988; Ware and Beatty, 1988; Grinstein et -al., 1989"'Enns

1990a; Enns, 1990b]. Spec1ahzed software tools such as the Apphcatlon Visualization Sys-
tem (AVS), apE VIS-5D, and the Wavefront Data Visualizer [Upson 1989; Hibbard and -
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Santek, 1990; Vande Wetterlng, 1990] have been developed for performlng v1sualization on

computer graphics workstatlons

A recent update on ﬂie NSF visdalization report described research being performed at
a number of academic institutions [Rosenblum, 1994]. Although many visual presentation
techniques- have been studied (e.g., volume visualization, fluid ﬂow, and perceptiial visual-
ization), much less work has focused on formulating guidelinee for their design. Results in -

* this thesis are meant to address this more general issue.

1.1 Research Goals

Our goal is'the investigation and development of techniques for visualizing rapidly and accu-
- rately large multidimensional datasets. We formally define “large” and “multidimensional”

as follows:

e large: the size of a dataset is the combination of two separate characteristics: the
absolute number of data elements within a single data frame, and the number of data

frames that make up the dataset

o multidimensional: the dimensionality of a data element also depends on two separate
characteristics: the number of different attributes or dimensions embedded in the el-
- ement, and the number of unique values each attribute can represent (e.g., a binery,

multivalued, or continuous attribute)

A typical workstation monitor has a resolution of approximately one million pixels. This

represents a limit on the number of data elements (one per pixel) that can be displayed on

a single screen. We define large to be a dataset with more than one million elements (i.e.,

¥
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more than can be displayed on a single screen). We deﬁne multidimensioﬁal to be a data -

element with two or more dimensions, where each dimension is at least binary.

It is important to understand how existing visualization systems and techniques address
our problem environment. We describe three types of visualization environments: standard
v visualization systems, multidimensional visualization techniques, and hybrid visualization

packages that have access to an underlying database management system.

- Standard Visualization Systems

A numberdof specialized software tools (e.g., AVS, apE, Wavefront Data Visualizer, and
Iris Explorer) have been developed to perform scientific v'lsualization on computer graphics
workstations. These systems have the potential to vieualize large multidimensional datasets,
in particular because they are extensible and because they support a wide range of simplle
visual presentation methods. In spite of this, we feel these systems are missing a number of |
key components that are necessary for solving the multidimensional vieualization problem.
First, the built-in de‘pa management facilities are usually limited to reading and writing
files, plue simple filtering using comparison operators. Attempts to procese large datasets
often result in the visualization tool being overwhelmed by the amount of data that needs
to be managed. Beyond that, no rules or guidelines. are provided.to deal specifically with
displaying either large or multidimensionel datasets. Users are left to answer key questions
on their own, such as: HQW can I display a dataset that does not “fit” in one screen?.
How can I effectively display multidimensional data elements? How can I show structure in
the data (e.g., coherent regions, related elements, elements with unique attributes)? These
packages offer a ﬂexible foundation for bui’lding toels that deal with visualization of ‘large :

multidimensional datasets, but proper data management and visualization techniques must

first be identified and made available to the user. This thesis investigates exactly these kinds
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of data management and visualization guidelines.

‘Multidimensional Visualization Techniques‘

Our research focuses on multidimensional data, \iisilaliza'tien. We.are trying to address the
question: .How can I display multidimensiqnal data in a spatially low-dimensional enVi-
ronment, such as a computer screen or printed media? Researchers have approached this
“ problem in different ways. Enns and Rensink [1990a, 1990b] discuss using the human visual
system to efficiently process multidimensional datasets; they describe geometric icons that _i
~ combine the poiver of the computer and the human visilal system. Ware and Beatty [1988]
ha\(e designed a method that uses colour and spatial location to represent multidimensional
data elements; snbsets of the data with similar values appear as a spatial “cioud” of similarly
coloured squares. Pickett and G'rinsfein [1988, 1989] use results from cognitiive psychology
as a besis for the design of their visualization tools; they display structure in the data as a -
set of textures and boundaries, so that groups .of data elements with similar values appear
as a spatial group with a unique texture in the display. None of these techniqnes explicitly
addrees the 4problem of large datasets since they are festricted to, at best, the number of
pixels that can be displayed on a single screen. Some of the techniques are limited to a spe-
cific task, for example',\Ware and Beatty"s tool helps a user pefferm coherency testing, while
Pickei;t and Grinstein’s displays regions and boundaries in a dataset. An important question
to ask is whether additional visual features can be integrated into any of these techniques.
For example, could Pickett and Grinstein use colour to encode additional information in
their displays? Variations in colour might mask texture boundaries during visualization, or

vise-versa. Finally, it is difficult to see how either Ware and Beatty or Enns and Rensink |

could easily extend their techniques to handle higher dimensional data elements.
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Hybrid Visualization Packages

In order to address ma,hagement of large datasets, researchers are now studying the useful-
ness of visualization tools that are a combination of a commerciai database package (DBMS) -
and a Visualizétion s;ystem» like those described above [Kochevar ef al., 1993; _Stonébraker
et al., 1993]. Beééuse both the visualization system and the DBMS are extensible, it is
‘relatively easy to provide a layer of software to “glue” the two systems together. This

makes the functionality of the underlying database available from within the visualization
| system, dramatically enhancing both the scope and efficiency of data management opera-
| . tions. Unfortunately, this does not address all of the pfoblerhs related to the display of large
or multidimensional datasets. Most of .the currently available DBMSs are relational. Many
scientific datasets contain errors, missing values, or noise, ‘all of which are difficult to rep-
resent in a relational database. Relational'DBMSs have difficulty supporting datasets that
- do not map conceptually to a relational model (e g., spatial or temporal datasets). Finally, |
some of the most promising new data management techniques such as statistical databases,
c‘laés‘iﬁcation,’temp’oral databases, spatial data handling, and knowledge discovery are not
immediately available and are difficult to prbvide, even given the extensibility of the current

DBMSs.

1.2 Research Overview .

Our investigation of the problem of visualiziﬁg large multidimensional datasets is made
up, of two.parts. First, we studied new methods for visualizing multidimehsional data. Our
techniques address the problems of dataset size and data element dimensionality by exploiting

the' built-in processing of the human visual system. Second, we studied the effectiveness

of a new database technique, knowledge discovery, for compressing and summarizing the
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important details buried in large datasets. We used our resuits to design visualization tools
that allow users to perfortn rapid and 'accurateai exploratory analysis tasks such as terget
detection, boﬁndary detection, region tracking, and estimation. Users can filter their dataset '
using different knowledge discovery algorithms to reduce both its size and dimensionality
The resulting data is dlsplayed in a 2D spatlal environment (the computer screen) using
visual features such as hue and orientation. Large datasets are divided into sequences of data
frames;the frames are displayed rapidly (usually with an exposure duration of 250 msec or
less per frame) one after another in an animated, movie-like fashion. This allows a user to

explore large amounts of data in a relatively short period of time.

The next two sections provide a brief overview of our research and the results we obtained.
Each section is divided by chapter titles. More detailed descriptions of our. work can be found

in the corresponding chapters.

1.3 Multidimensional Visuél_lization

Within the multidimensional visualization context, we focused on techniques for performing
rapid and accurate exploratory data ahalysis. This type of analysis is used to inspect a
dataset and quickly identify areas that might benefit from further, more detailed investiga-

tion. The kinds of tasks performed during this stage of analysis include:

e target detection, where users attempt to rapldly and accurately detect the presence or |

absence of a “target” element in a dlsplay

e boundary detectz’on, where users attempt to rapidly and accurately identify boundaries

between groups of elements, ‘where all the elements in each group have some property

in common
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- e region tracking, where users attempt to track groups of elements with a common prop-

erty as they movefthrough time and space

e counting and estimation, where users attempt to count or estimate the number or -

percentage of elements in a display that have a specific attribute

We believe results from research in preattentive processing can be used to assist with the .

désign of visualization tools that perform these kinds of tasks.

Chapter 2: Preattentive Processing

_Re'séa,rchers‘ in psychology and vision have been working to explain how the human vispal
éystem analyses images. One interesting result has been the diséovery of visual properties
that are “preattentively” processed. T_hesé properties are detectéd immediately by the visual
system. Viewers do not have to focus their attention on én image to determine whetherv
- elements with a given property are preéent or absent. Examples of common preattentive
features include hue, intensity, orientation, length, and motion. Urifortun‘atély, choosing
visual features in an ad hoc manner and matching them to data attributes will not necessarily

result in preattentiire“displayq Indeed, too often the tool itself inhibits the user’s ability to
extract the desired information. Results from research in preattentive processing caﬁ be used

to identify and avoid this kind of visual interference.

Properties that are processed preattentively can be used tb, highlight important image
‘characteristics. Experiments in psych'ology by Triesman, Julész, Quinlan, and others have
used preattentive features to assist in performing exactly the visuél tasks listed abdvé. Re-
" search in visualization has shown that preatténtive features allow users to better perform

~visual tasks such as grouping of similar data elements, detection of elements with a unique

. characteristic, and estimation of the number of elements with a given value or range of values '

[Pickett and Grinstein, 1988; Grinstein et al., 1989; Healey et ai., 1993; Healey et al., 1996].

-
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The key advantage of preattentive visualization techniques is that they are rapid (a preat-
tentive task can usually be completed in less than 250'msec, moreover, the time required
to complete the task is independent of the number of data elements being displayed) and

accurate.

Chapter 3: Preattentive Estimation

\ Target detection, bouhdary detection, and grouping (for a single data frame) have been
studied in depth in the preattentive processing literature [Julééz, 1981; Julész and Bergen,
1983; Triesman, 1985; Triesman and Gorfnican, 1988; Duncan and Humpbhreys, 1989; Miiller
et al., 1990]. These results can be extended directly to scientific visualization. Researchers
. have also studied counting and enumeration in the low-ievel visual system [Varey et al., 1990;
Trick and Pylyshyn, 1994]. Our work investigated another common analysis task, relative
estimation, that had not been studied by the'preattentive'processing community. Our initial
results showed that eg’c\imation_using either hue or orientation was, in fact, preattentive
[Healey et al, 1993]. We extended these results by answering three additional quesfions

related to the use of hue and orientation during preattentive estimation [Healey et al., 1996]: _
e How are hue and orientation estimation affected by varying display duration?

- o How are hue and orientation estimation affected by varying feature diff_erence?

e What is the tradeoff beétween display duration and feature difference during estimation?

We chose hue and orientation because they are two features that are commonly used in
existing visualization software. Both hue and orientation have been shown to be preatten-
tive 'by Triesman, Julész, and others [Julész and Bergen, 1983; Triésma‘n, 1985; Quinlan and -

Humphreys, 1987]. Moreover, research has shown that hue exhibits a strong interference ef-

fect over form (or orientation) during certain preattentive tasks [Callaghan, 1984; Callaghan,
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1989; Healey et al., 1996]. vU_nd‘erstanding how hue and orientation interact in a préattentive
'visﬁali_zation environment is important. If a visualization tool ié being used to display multi-
ple independent data values, interference among features must be avoided. If a visualization
tool is beiﬁg used to investigate a specific relationship, the “strongest” feature should be
‘used to encode that relationship. Secondary features used to encode additional data values -

should not interfere with the primary feature and task.

Chapter 4: Colour

Colour is a cofnmon and oftén—used visual feature. Unfortunately, choosing colours for
data visualization is complicated, since a number of different factors can affect the interac-
tions that occur between colours. We completed a thorough review of colour in preparation
for measuring and cohtrolling’these effects. Coloﬁr is studied from three different pérspec-
tives. First, we descril_)é various three-dimensioﬁél models used in combuter graphics to
accurately represent colour. Next, we examine research on the use of colour in‘scientiﬁc‘.
visualization. Finally, we investigate how colour has been studied in the context of preat--
tentive processing. This background informafion identifies ‘thfee séparate factors that can
be used to measﬁre the effectiveness of a set of colours for representing data values during

scientific visualization: colour distance, linear separation, and colour category.

Chapter 5: Effective Hue Selection

Multidimensional visualization techniques must be able to encode data dimensions with
more than two individual values. Our preattentive estimation experiments were restricted
to data dimensions that were binary, since we waﬁted to pick hues (and orientations) that
were easy to distinguish from one another. ‘This ié sirhple to do when only two diffefent '

values are required (e.g., during estimation two distinct hues, blue and red, were chosen).

Continuous data attributes used during our experiménts had to be split into two discrete
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ranges, to “fit” our visualization design. In order to rhove beyond this resﬁriction, we wanted
-to identify methods for mapping multivalued data attributes onto visual features such as hue
and orientation, whilé still allowing rapid and accurate analysis .on the resulﬁng displays.
The selection of multiple orientations for use during preattentive tasks has been studied
in- the preattentive)processing literature [Nothdurft, 1985a; Nothdurft, 1991; Wolfe ef al.,.
1992]. We investigated methods for selectiﬁg multiple hues for use during visualization by

answering the following three questions:

‘e ‘How- can we éupport rabid and accurate identification of individual data elements

‘through the use of colour? - : \ A

e What factors determine whether a “target” element’s colour will make it easy to find,

“relative to differently coloured “non-target” elements?

e How many colours can we display at once, while still allowing for rapid arid accurate

" target identification?

‘ Resﬁlt_:s from bur experiments showed that we need. to consider three separate'facfors
when selecting multiple hues: colour distance, linear separation, and colour category. We
deVeloped ‘simple methods for measuring énd controlling each of these effects. This allowed
‘us to chose up to seven isoluminant ‘hues for use during visualization. Each,hue was equally

distinguishable, and each could be identified preattentively in.our data, displ"ays.
-Chapter 6: Real-Time Visualization

A key consideration for visualizing large datasets involves the difference between static:
and dynamic data frames. A static frame is shown to a user in isolation. The user then
decides how to proceed based on information in the frame. Research to date in preattentive

. visualization has been restricted to static frames. Unfortunatély, this limits the display

\




Chapter 1. Iniroductz'on o - 12 |

technique to the reselution of the screen. . An obvious question to ask is: If I can perform
tasks in 200 msec on a ste.tic frame, can I perform the same tasks on an seduence of frames
displayed at five frames pef second? A dynamic environment displays a sequence of frames
to the user one after another in a movie-like fashion. Each frame is shown for a fixed period
of time, after which it is replaced by the next freme in.the sequence. The advantage of
such a techniQue is the ability to scan through large amounts of data in a relatively short
period of time. Suppose a data frame displeys 400 elements. Since each element in the frame
has an available screen region of approximately 50 x 50 pixels, it can use visual features an
individual pixel cannot (e.g., shape, size, ofienta,tion, length). A dynamic sequence of five
frames_pe_r second could display one million elements in about nine minutes. Even if a user
spent 20% of their time browsing the.dataset and 80% performing more detailed analysis
on individual frames,"we can still exceed the display bounds of a single workstation screen
in less than an hour. The ability to perform exploratory analysis iﬁ real-time allows us to .

access a large dataset in its entirety.

We show through a set of experimenfs that important aspects of preattentive processing
extend to a real-time environment. A visualization tool that uses preattenti\?e features
allows users to perform rapid end accuréte ta‘rge’tland boundary detection, 51_1 in real;time
on temporally animated data frames. Moreover, interference properties previously reported _b
for static preattentive visualization were found to exist (With'similar cpnsequences) in the

dynamic environment.

1.4 Knowledge Discovery

Current database research is extending the original database model in a number of novel

and interesting ways. An NSF panel on advanced database systems described the focus




Chapter 1. Introduction , . S 13

of past research, and .presented a strong argument for continued quk [Silbershatz et al.,
1990]. Panel members felt rapid advances in a number of areas that use databases are B
overwhelming currently .a'wailable data management techniques. Scientific visualizatioln wa,s' '

specifically cited as an area that is moving beyond the bbundaries of traditional database

systems. The panel identified the following problems as essential to future database research: -

- e new data models that deal with complex objects such as spatial data, time, and un-

" certainty

e query and access methods to manage very large databases (i.e., over one terabyte in
size); this involves the scaling of current algorithms, the development of new storage

‘and access techniques, and support for heterogeneous, distributed databases

e the ability to “mine” implicit patterns, trends, or relationships from very large scien-

tific, biomedical, or business databases

e the ability to embed and process efﬁcieﬁtly declarative énd imperative rules within a

database

The NSF panel discussed at some length- scientific visualization and tﬁe problems inherent
in managingvscientiﬁc dataséts. _An area of research well suited to address this pfoblem is
knowledge discovery, “the nontrivial extraction of implicit, previously unknown, and poten-
tially useful information from data” [Frawley et al., 1991]. Statistical, database, and machine
learning algofithms can be combined to uncover trends, dependencies, and relationships im- -

plicit in large multidimensional datasets.

Chapter 7: Dataset Management

We believe that knowledge discovery techniques can be used to improve multidimensional

data visualization. These techniques would lie between the visualization tool and the under-
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lying dataset, acting as a filter to mark or compress regiohs of interest in the data. Although
there is always a measure of uncertalnty in the results returned by knowledge discovery al-
gorithms, they seem well suited to an exploratory data analysis env1ronment A user could
control, combine, and most importantly analyse the results of knowledge dlscovery against
what is known about the ofiginal dataset. Users could interactively choose to pursue or -
ignore trends, dependencies, or groupings the algorjthms' suggesf.' Differer}t techniques could
be combined in various ways to improve: reéults or increase confidence in the informgtion :
being provided. Knowledge discovery could be used to advance duf goal of visualizing large.

multidimensional datasets in the following ways:
e reducing the amount of data to be visualized, by- claésifying data elements into groups
and ignoring groups that do not contribute to the relationship being investigated

e reducing the number of attributes associated with each data element, by using a dis-

covered classification to replace multiple data dimensions

e reducxng the number of attrlbutes associated ‘with each data element, by 1gnor1ng

dlmensmns that are independent of the relationship be1ng investigated

e showing structure in the dataset; this goes beyond simply showing whether data ele-

ments are coherent or not

e compressing time-varying data aLlong the time axis, to reduce the amount of data to

visualize, and the length of any corresponding “animation” of the data frames

° ﬁnding' and visualizing previously unknown trends or relationships within or among

data elements in the dataset
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Chapter 8: Knowledge Discovery in Visualization

Four differ‘ent.knowledge discovery algorithms were implemented and integrated into our
visualization environment. Each al‘g'o'rithm was modified to identify attribute dependencies
that were found when classiﬁcation rules were built. The algorithms were also extended to
provide confidence weights fer each classification they performed. This allows a user to assess
the confidence an algorithm attaehes to a particular result. The effectiveness of knowledge
diSc_overy in scientific visualization was measured by examining the increased accuracy and
size reductions obtained when we visualized NASA’s Comprehensive Ocean-Atmospheric

Data Set.

1.5 Contributions

The research reported in this thesis directly addresses the requirements put forward by the '
NSF and. other visualization panels. - Figure 1.1 provides an overview of how our differeht
experiments fit within the overall goal of visualizing large, multidimensional datasets. Our
techniques _build on earlier research in computer“g.raphics, databases, and cognitive psy-
“chology. Preattentive visualizatibn is computationally simple, which makes it applicable to
' interactive environments such as real-time diéplays and visual interactive simulation. Our
research investigates both the display of dvata elements and management of the underlying -
dataset. We believe that our work contributes the fdllbwing advances to curreht'research in

visualization, preattentive processing, and database systems.

1. Hue and orientation feature spaces have been investigated‘more fully. We determined
through experimentation both the pefceived feature-difference and the display duration

needed to perform an estimation task using either hue or orientation. We also measured .

the tradeoff between these two properties.
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' Large, Multidimensional Datasets

Number of Di T Number of
imensionality )
Elements Attribute Values
- Knowledge Discovery: - Preattentive Estimation: - Colour Selection: ‘
Compress size of dataset by Hue and orientation do not Method for choosing multiple
classifying, then displaying . interfere with one another hues which can be rapidly
elements with a specific . during estimation, so they and accurately distinguished
classification value . can be used simultaneously : from one another during
in a single display visualization
- Real-Time Visualization: -- Knowledge Discovery:
Allows a user to rapidly and Compress multiple attributes
accurately visualize -la;'ge into a single classification
- datasets in their entirety ' value; identify significant

attributes during classification

Figure 1.1: An overview of how research reported in this thesis addresses the three types of large (total
number of elements, dimensionality of each element, and the number of unique values for each attribute)
inherent in large, multidimensional datasets

2. Methods for mapping hue and orientation onto multivalued data attributes were in-

vestigated. Our techniques describe how to choose multiple hues and orientations that |

allow rapid and accurate analysis on the resulting displays.

3. Experimevnts were conducted to show that traditional preattentive tasks such as target
detection and boundary detection (and associated interference effects) extend to an
- environment where dynamic sequences of frames are displayed rapidly one frame after -

another. |

4. Various knowiedge discovery algorithms were investigated in the context of exploratory
data analysis. Normalized confidence weights were provided for each task the algo-

rithms performed so that users could assess the confidence an algorithm assigned to .

the results it returned.
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* The results we provide in éa_mch of these areas should help to improve understanding of sci- |
entific visualization in general, and Visualizatidh of large multidirﬁensional datasets in paf-
- ticular. Qur results can be interpreted as a set of general guidelines for the use of common
‘visual feétures such as hue, form, and orientation. The results also help to describe the
effects of yisual phenoména such as feature interference and emergent features in scientific _
visualization. Finally, the integration of k(nowle_dge discb\(ery into a‘vi'sualization, environ-

ment demonstrates that intelligent management of the underlying dataset can reduce both

the amount and the dimensibnality_ of the data that is displayed to the user.




Chapter 2
Preattentive Processing

For many years vijsio'n researchers have been working to explain how the human visﬁél |
system analyses images. Oﬁe very interesting result has been the discovery of a limited set
of visual properties that are processed preattentively, without the need for focused attention.
' Typically, tasks that canl be performed on large multi-element displays in less than 200 to
250 msec are considered preéttentive_.. Eye movements take at least 200 msec to initiate, and
random locations of the elements in the display ensure that attention cannot be prefoéused
on any particular location', yet subje_cté report that theée tasks can be compleﬁed with very
little effort. This suggests' that certain infor_matioh in the display is processed in parallel by

the low-level visual system.

A simple example of preattentive processing is the detection of a filled circle in a group of
empty circles (Figure 2.1a). The target object has the visual feature “filled” but the empty
distractor objects do not (all nontarget objects are considered distractors). A viewer can tell

at a glance whether the target is present or absent.

Objects that are made up of a conjunction of unique features cannot be detected preat- -
tentively. A conjunction target item is one that is made up of two or more features, only one
of which is contained in each of the distractors. Figure 2.1b shows an example of conjunction

search. The target (again a filled circle) is made up of two fe,étures, filled and circular. One

18
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Figure 2.1: Examples of target detection: (a) filled circle target can be preattentively detected because
it contains the unique feature “filled”; (b) filled circle target cannot be preattentively detected because it
contains no preattentive feature unique from its distractors

of these features is present in each of the distractor objects (filled squares and empty circles). -

Nur_rierous studies show that the target cannot be preattentively detected, forcing subjects

to search serially through the display to find it.

Visual properties that are processed preattentively can be used to highlight important
image characteristics. Table 2.1 lists some of the visual features that have been identified as |
' preattentlve Experlments in psychology have used these features to perform the following

preattentlve v1sua1 tasks

e target detection, where users attempt to rapidly and accurately detect the presence or.
absence of a “target” element with a unique visual feature within a field of distractor

elements (Figure 2.1)

e boundary detection, where users attempt to rapidly‘ and accurately detect a texture
boundary between two groups of elements, where all of the elements in each group

have a common visual property (Figure 2.2)
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Feature Researchers
- line (blob) orientation Julész & Bergen [1983]; Wolfe et al. [1992]
length - Triesman & Gormican [1988]
width - Julész [1985]
size Triesman & Gelade [1980]
curvature . Triesman & Gormican [1988]
" number  Julész [1985]; Trick & Pylyshyn [1994]
terminators Julész & Bergen [1983]
intersection ' Julész & Bergen [1983)
closure Enns [1986]; Triesman & Souther [1985] )
colour (hue) - Nagy & Sanchez [1990, 1992]; D’Zmura [1991]; Kawai et
, 1. [1995]; Bauer et al. [1996]
intensity - Beck et al. [1983]; Triesman & Gormican [1988]
flicker - Julész [1971]
direction of motion = Nakayama & Silverman [1986]; Driver & McLeod [1992]
binocular lustre Wolfe & Franzel [1988]
stereoscopic depth Nakayama & Silverman [1986]
3-D depth cues © °~ Enns [1990]
lighting direction ~ Enns [1990]

" Table 2.1: A list of two-dimensional features that “pop out” during visual search, and a list of researchers
who describe preattentive tasks performed using the given feature. :

e counting, where users attempt to count or estimate the number of elements in a display

. with a unique visual feature

2.1 Feature Integration Theory

Triesman has provided some exciting insight into preattentive processing by researching
two important problems ['IYiesmari, 1985]. First, she has tried to‘determine'which_visual
properties are detected preattentively. ‘She calls these properties “preattentive features”.

Second, shé has formulated a hypothesis about how the human visual system performs -

preattentive processing.
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Figure 2.2: Examples of boundary detection: (a) the horizontal boundary between two groups (empty objects -
on the top, filled objects on the bottom) is preattentively detected because each group contains a unique
feature; (b) the vertical boundary is not apparent (filled circles and empty squares on the left, empty circles
and filled squares on the rlght) because both groups use the same features (ﬁlled versus empty and square
versus circle)’ '

' Triesrnan ran experiments using target and beundary detection to classify preattentive
feé.tures. For target detection, subjects had to determine whether a target element was -
present or ebsent in a field of background distractor elements. Boundary detection involved

* placing a group of target elements with a )uniqu‘e visual feature within a set of distractors to

see if the boundary could be preattentively detected.

Researchers test for preattentive target detection by varying the nnmber of distractors in
a scene. If search time is relatively constant and belovs} some chosen threshold, independent
of the number of distractors, the search is said to be preattentive. Similarly, for boundary
detection, if users can classify the boundary within some fixed expesure duration, the feature
used to define the boundary is said to be preattentive. A common threshold time is 200 to
250 msec, because this allows subjects “one look” at the scene. The hume,n visual system -

‘cannot decide to change where the eye is looking within this time frame.

Triesman and others have used their experiments to compile a list of features that can

y
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be preattentively detected (Table 2.1). It is important to note that some of these features
are asymmetric. For example, a sloped line in a sea of vertical lines can be detected preat-
tentively; However, a vertical line in a sea of sloped lines cannot be detected pfeattentively.
Another important. consideration is the effect of different types of background distractors on
the target feature. These kinds of facﬁors must be addressed when trying to design display

techniques that rely on preattentive processing.

Triesman breaks low-level human vision into a set of featufe maps afld- a master map of
locations in an effort to explain preattent.i{fe procéésing. Each feature map registers activity -
‘in response to a given feature. Triesman proposes a manageable nurﬁber of feature maps,
including on.e for each of the opponenﬁ colour primaries green, red, yellow, and blue, as well

as separate maps for orientation, shape, texture,vand other preattentive features.

_ When the human visual system first sees an image, .all the features are encoded in parallel
into their respectivé maps. One can check to see if there is activity in a given map, and
perhaps get some indication of the amount of activity. The individual feature maps give no

information about location, spatial arrangement, or relationships to activity in other maps.

The master map of locations holds information about intensity or hue discontinuities at
specific spatial locations. Focused attention acts through the master map. By examining ’
a given location, one automatically gets information about all the features present at that

location. This is provided through a set of links to individual feature maps (Figure 2.3).

This framework provides a general hypothesis that explains how preattentive processing
occurs. If the target has a unique feature, one can simply access the given feature map to -
see if any activity is occurring. Feature maps are encoded in parallel, so feature detection is

almost instantaneous. ‘A conjunction target cannot be detected by accessing an individual

feature map. Activity there may be caused by the target, or by distractors that share the

.given preattentive feature. In order to locate the'target,. one must search serially through
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Figure 2.3: Framework for early vision that explains preattentive processmg, individual maps can be accessed
to detect feature act1v1ty, focused attentlon acts through a serial scan of the master map of locations

red . Q

the master map of locatlons lookmg for an obJect with the correct combination of features.

This use of focused attention requires a, relatively large amount of time and effort.

In later work, Triesman has éxpanded her strict dichotomy of features being de_técted-~
either in parallel or in serial [Triesman and Gormican, 1988; Triesman, 1991]. She now _
believes that.paral'lel and seri'a,l'represent two ends of a spectrum. “Mbre?’ and “less” are also
encoded on this spectrum, not just “present” and “absent”. The amount of differentiation
between the target and the distractors for a given feature will affect search time. For exﬁrhple
a long vertical line can be detected immediately among a group of short vertical lines. As
the length of the target shrlnks the search time increases, because the target is harder to' :
distinguish from its distractors. At some point, the target line becomes shorter than the
~ distractors. If the length of the target continues to decrease, search time decreases, because

the degree of similarity between the target and the distractors is decreasing.

Triesman has also extended feature integration to explain certain cases where conjunc-
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tion search ié preattentive. In particular, conjunction search tasks invgjlving ‘motion, depth,
colour, and orientation have been shown to be preattentive by Nakayama and Silverman
[1986], Driver et al. [1992], and Wolfe et al. [1989b]. Triesman hypothesises that a sig-
nificant target—nontérget feature difference would allow individual feature maps to ignore
nontarget information contained in the master map.' For example, consider a search for a
green horizontal bar within a set of red horizontal bars and green vertical bars. This should
result in conjunction search, since horizontal and green occur within each of the distractors.
In spite. of this, Wolfe et al. [1989b] showed that search times are independent of display
size. If colour constituted a significant feature difference, the red coloﬁr map could inhibit
information about red horizontal bars. ThliS, the search reduces to finding a green horizontal

bar in a sea of green vertical bars, which can be done preattentively.

2.2 Texton Theory

Texture éegregation involves preattentively locating groups of similar obj_ects and the bound-
aries that separate them. Triesman used texture segregation during hef experiments with -
boundary detection. Figure 2.2a is an example of a horizontal texture boundary with empty
shapes on the top and filled Shapes on the boAttorn. Figure 2.2b is an example of a vertical
texture boundary with filled circles and empty squares on the l.eft, and empty circles and

filled squares on the right.

Julész has also investigated texture perception and its relationship to preattentive pro-
cessing [JNulész, 1981, Julész and Bergen, 1983; Julész, 1984]. .He has proposed his own
hypothesis on how preattentive processing occurs. Julész believes that the early visual sys-

tem detects a group of features called textons. Textons can be classified into three general

categories:
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- Figure 2.4: Example of similar textons: (a) two textons that appear different in isolation; (b) the same two
textons cannot be distinguished in a randomly oriented texture environment
1. Elongated blobs (e.g., line segments, rectangles, ellipses) with specific properties such

~ a§ hue, ofientation, and width
2. Terminators (ends of line segments)

3. Crossings of line segments

Julesz believes that only a difference in textons or in their dénsity can be detected preat-
: tentively.. No positional information about neighbouring textons is available without focused
| attention. Like Triesman, Julesz believe‘s preattentive processing occurs in parallel and fo-

- cused attention occurs in serial.

. Figure 2.4 shows an example of an image that suppérts the texton hypothesis. 'Although .
the two objects look very different in isolation, they are actually the same texton. Both are

blobs with the same height and width.A Both are made ui) of the same set of line segments and

each has two terminators. When oriented randomly.in an image, one cannot preattentively
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detect the texture boundary between the two groups of these objects.

-

2.3 Similarity Theory

Some researchers do ndt support the dichotomy of serial and paraliel search modes. Initial
work in this area was dohe by Quinlan and Humphreys [1987] . They investigated conjunction
searches by focusing on two factors. First, search time may depend on the number of items
of information required to identify the target. Second, search time may depend on how
easily a target can be distinguished fr}om its distfactors, fegardless of the presence of unique )
preattentive features. Triesman addressed this second factor in her later work [Triesman and
Gbrmican? 1988]. Quinlan and Humphreys found that Triesman’s feature integration theory

'

was unable to explain the results they obtained from their experiments.

Duncan and Humphreys proceeded to develop their own explanation of preattentive pro-
cessing. Their model assﬁmes that search ability vafies continuously, depending on béth the
type of task and thg display conditions [Duncan, 1989; Miiller et al., 1990]. Search time is
based on two criteria: T-N similarity aﬁd N-N similarity. T-N similarity is the amount of
similarity between the targets and nbntargets. N-N similarity is the amount of similarity
within the nontargets themselves. These two factors affect search time as féllows:

e as T-N similarity increases, search efficiency decreases and search time increases
e as N-N-similarity decreases, search efficiency decreases and search time increases

e T-N similarity and N-N similarity are related (Figure 2.5); decreasing N-N similarity
has little effect if T-N similarity is low; increasihg T-N similarity has little effect if N-N

similarity is high
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(a) | | o (b).

Figure 2.5: Example of N-N similarity affectihg search efficiency: (a) high N-N similarity allows easy detection
_of target shaped like the letter L; (b) low N-N similarity increases difficulty of detecting target shaped like
the letter L 4 " , : : . ‘

Triesman’s feature integration theory has difficulty explaining the results of Figure 2.5.
In both cases, the distractors seem. to use exactly the same featm_‘és as' the target, namely |
oriented, connected lines of a fixed le‘ngth. Yet experimental results show displays similar
to. Figure 2.5a produce an averagé search time increase 6f 4.5 millisécoﬁds per additional
distractbr, while displays similar to Figure 2.5b produce an average search fime,increase of

54._54millise.conds per additional dis'ﬁractor.‘

In order to explain the above and other search phenomena, Duncan and Humphreys

proposed a three-step theory of visual selection.

1. The visual field is segmented into structural units. Individual structural units share
some common property (e.g., spatial proximity, hue, shape, motion). Each structural -
unit may again be segmented into smaller units. This produces a hierarchical represen;

tation of the visual field. Within the hierarchy, each structural unit is described by a |

set of properties (e.g., spatial location, hue, texture, size). This segmentation process
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occurs in parallel.

2. Because access to visual short-term niemory is limited, Duncan and Humphreys assume-
- that there exists a limited resburce that is allocated among structural units. Because
vision is being directed to search for particular information, a template of the informa- °

- tion being sought is available. Each structural unit is compared to this template. The
better the‘m‘atch, the more resources allocated to the given structural unit relative to _

other units with a poorer match. o ' . : -

Because units are grouped in a hierarchy, a poor match between the template and a
structural unit allows efficient rejection of other units that are strongly grouped to the -

rejected unit.

3. Strﬁctural units with a relaLtively large number of resoufces have the highes‘t probability
of access to the visual short-term memory. Thus, structural units that most closely -
match the template of information being sought are presented to the visual short-term } |
Ihemory first. Search speed is a function of the speed of resource allocation and the

amount of competition for access to the visual short-term memory.

Given these three steps, we can see how T-N and N-N similarity affect search efﬁciency.
Increased T-N similarity means more structural units match the template, so competition
for visual short-term memory access increases. Decreased N-N similarity means we cannot

efﬁciehtly reject large numbers of strongly grouped structural units, so resource allocation

time and search time increases.




Chapter 2. Preattentive Processing . - - RO 29

2.4 Guided Search Theory

Jeremy Wolfe has recently suggested a visual search theory that he calls “guiaed search”
[Wolfe and Cave, 1989; Wolfe et al., 1989; Wolfe, 1994]. He believes an activation map based
* on both bottom-up and top-down information is construcfed during visual sea,reh. Attention
is drawn to peaks in the activation map that repfesent areas iﬁ the image with the largest -

combination of bottom-up and top-down influence.

As with Triesman, Wolfe believes early -vision divides an image into individuai feature
maps (Figure 2.6). In his-theory, there ie'one map for each feature type (e.g., one map IY
for colour, one map for orieﬁtation, and so on). Within each rhép a feature is filtered into -
multiple categories. For exémple, in the colour map there might be independent represen- -
tations for red, yellow, green, and blue. Wolfe has alr,eédy found evidence that suggests
that orientation is categorized into eteep, shallow, right, and left [Welfe et al., 1992]. The
relationship between values within a feature map is different than the relationship between
values from- different maps (i.e., the relationship between “red” and “blue” is different than

‘the relationship between “blue” and - “shallow”).

Bottom-up activation follows feature categorization. It measures how different an element
is from its neighbours. 'Differences for each relevaﬁt_ feature map are computed and combined |
(.e. g., how different are the elements in terms of colour, how different are they in terms of
orientation?) The “metrics” used to measure differences in each feature map are still being

investigated.

Top-down activation is a user-dfiven attempt to find items with a specific property or
set of _propertiﬂes.I For example, visual search for a blue element would generate a top-
down request that activafe‘s “blue” locations. Previous work suggests subjects must specify '

requests in terms of the categories provided by each feature map [Wolfe et al., 1992]. Thus,
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Top-Down

" left fight
shallow steep ' :
Bottom-Up

‘Figure 2.6: Framework for guided search, user wants to find a green steep target: image is filtered into cate-

gories for each feature map, bottom-up and top-down activation “mark” regions of the image; an activation
map is built by combining bottom-up and top-down information, attention is draw to the highest “hills” in

subjects could sear‘eh for “steep” or “shallow” elements, but not for elements rotated by

_a specific angle. Obviously, subjects should pick the category that best differentiates the

- target from its distractors. Finding the “best” category is.often nonintuitive, however. Wolfe

suggesﬂs this might explain cases where subjects’ performance for a task impreves over time.

The activation map is a combination of bottom-up and top-down activation. The weights
assigned to these two values are task dependent. A conjunction search would place priority
on top-down informa_tion, since bottom-up results .are,,in essence, useless. Search for a
target with a unique feature would assign a high weight to bottom-up activation. Hills in -
the activation map mark regions that generated a relatively large amount of bottom-up or
top-down influence. There is no informetion in the activation map about the source of a

hill. High activation from a colour map looks exactly the same as high activation from

" an orientation map.- A subject’s attention is drawn from hill to hill 1n order -of decre‘asing.
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activation.

Wolfe’é theory easily explains traditional “parallel” visual search. Target élements pro- .
duce the highestlev_ei of activation, regardless of the number of distractor eléments. This
causes the target to “pop-out” of the scene in time independent of the nu‘mb'er of distractors.
This also explains Duncan and Humphreys’ similarity theory results. Low N-N similarity
causes distractors to report higher bdttom-up activation, since.they now differ from their
- neighbours. High T-N similarity causes a redu_cfion in the target elements’ bottom-up ac- -
tivation. Moreover, guided search also provides a possiblé explanation for situations where
conjunction search can be performed preattentively [Nakayama and Silverman, 1986; .Wolfe
et al., 1989]. User-driven top-down activation may permit efficient searching for conjunction

targets.

2.5 Interference Experiments

Results from preattentive processing can help to identify various types of “visual interfer-
ence”. These interference effects inhibit abuser’s low-level visual system, and should be
avoided during visualization. One example is conjunction search. Visualization techniques
designed to allow a user to ra.pidly search for data elements with a uniqué characteristic .
should ensure that the visual features chosen to fepresént the elements do not form a feature

conjunction.

~ Tara Callaghan has conducted research to see how similarity within feature groupS af-
fects texture segregation [Callaghan,vlgg()]. -She found that varying certain irrelevant features
within a group can interfere with boundary detection. Her initial experiments investigated

identifying a horizontal or vertical texture boundary [Callaghan, 1984]. Subjects were pre-

sented with a six by six array of elements. A texture boundary was formed by either a -
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Figure 2.7: Form and hue segregation: (a) vertical hue boundary is preattentively detected (blue on the
left, red on the right), even though form varies in both groups; (b) random hue interferes with detection of
horizontal form boundary (squares on the top, circles on the bottom)

(a)

o~
o
~—

Figure 2.8: Hue and brightness segregation: (a) random intensity interferes with detection of vertical hue
texture boundary (blue on the left, red on the right); (b) horizontal brightness texture boundary is detected
preattentively (dark elements on the top, bright elements on the bottom), even though hue varies in both

groups
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. difference in hue or a difference in brighfness. For hue segregation, the Brightness in both
groups varied randomly between two values. For brightness segregation, hue varied randomly
between two values (Figure 2.8). Subjects had to détermine whether the texture boundary :
was vertical of horizontal. Control experiments were run to see how quickly subjects could
detect simple hue and brightness boundaries. The control arrays had a uniform brightness

-during hue segregation, and a uniform hue during brightness segregation.

Callaghan found that hon-uniform brightness interferes with hue segregation. It took
subjects significantly longer to identify the texture boundary, relative to the cont_rol array.
However, a non-uniform hue did not interfere with brightness segregation. A brightness
text‘ure boun‘dary‘ was detected in a' constant amount of time, regardless of whether hue
varied or not. This asymmetry was verified through further experimentation [Callaghan,

1990].

Callaghan’s more recent work has shown a similar asymmetry between form and hue .
[Callaghan, 1989]. As before, subjects were asked to identify a boundary as either horizontal
or vertical in a six by six ai‘ray. During the experiment, the.arrays were segregated by either
hue or forrh. For hue segregation, form varied randomly within the array (circle or square). '
For form segregation, hue varied randorhly. Results showed that variation of hue interfered
with form segregationv, but that variation 6f form did not interfere with hue ‘segregation

(Figure 2.7).

These interference asymmetries'sug‘gest some preattentive features may be “morer im-
~portant” than others. The visual system reports information on one type of feature over
and above ofher features that may also be present in the display. Callaghan’s experiments
suggest that brightness overrides hue information and that hue overrides shape. information

during boundary detection. .



- Chapter 2. Preattentive Processing _ - | 34

2.6 Three—DimensiOnal Icons

To date, most of the features identified as preattentive have been relatively simple. Examples
include hue, orientation, line length, and size. Enns and Rensink have identified a class of
three—dimensional elements that can also be detected preattentively [Enns and .Rensink.,
1990b; Enns and Rensink, 1990a]. They have shown that the element’s three-difnensionality '
is what makes it “pop-qut” of & visual scene. This is important, because it suggests that
more complex high-level concepts may be processed preattentively by the .low-level vision

system.

| Figure 2.9 shows an exémple of these three-dimensional icons. The elements in Figure 2.9a
are made up of three planes. The 'planes are arranged to form an element that looks like-a‘
three-dimensionai cube. Subjects can preattentively detect the group of cubes with a three-
dimensional orientation that differs from the distractors. The elements in Figure 2.9b are
made up of the same three planes. However, the planes are arranged to produce an element
with no appérent three-dimensionality. Subjects cannot preattentively detect the group of -
elements that have been rotated 180 degrees. Apparently, three-dimensional orientation isa

preattentive feature.

- Enns and Rensink have also shown how lighting and shadows provide three—dimensienal
information that is processed preattentively [Enns, 1990a; Enns, 1990b]. Spheres are drawn
with shadows so they appear to be lit either from above or from below. Subjects can preat-

vtehtively detect the group of spheres that appear to be lit differently than the distractors.

Three-dimensional icons are related to an area of preattentive processing that studies
erhergent features. An emergent feature is created by grouping several simpler shapes to-

gether. The emergent feature cannot be predicted by ekamining' the simpler shapes in |

isolation (Figure 2.10). ‘A careful choice of simple shapes will form a target element that
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Figure 2.9: Three-dimensional icons: (a) when the cubes appear “three-dimensional”, the 2 x 2 group with
a different orientation is preattentively detected; (b) when three-dlmensmnal cues are removed, the umque
2% 2 group cannot be preattentlvely detected '
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Figure. 2.10: Combination of simple components to form emergent features: (a) closure, a simple closed
figure is seen; (b) 3-dimensionality, the figure appears to have depth; (c) volume, a solid figure is seen

can be detected as-an emergent feature. For example, in Figure 2.11a, the target element
cannot be identified preattentively. However, by simply rotating one of the component ele-

ments, we create a new target with an emergent feature, non-closure, that is easily detected

(Figure 2.11Db).

~Additional experiments by Brown confirmed that .three-dim.ensiona.l ;)rientation is preat-
tentive [Brown» ét al., 1992]. One explanation of visual processing is the recé)gnition-'by—
compohents' (RBC) theory propoéed by Biederman. RBC suggests that objects can be
decomposed into the combination of a limited number of basic volumetric shapes called ge-

ometric icons or geons. This is analogous to the idea of phonemes in speech recognition.

\;
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Figure 2.11: A proper choice of initial components will form a target with an-emergent feature that can be
detected preattentively: (a) the target contains no unique emergent feature, so detecting the target group is
- - difficult; (b) the target contains a unique emergent feature, non-closure, so the target group is easily detected
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Brown tested the hypothésis thaf g‘eons,are vpreattentive fea_tureé, like colour or shape. His
results showed that geoﬁs were not detected préattentively. It appeared that only two-
dimensional feature differences were being detected by the low-level visual system. Brown
- did conﬁrm,A however, that target geons with a unique three-dimensional orientation “pop

out” during the search.task.

2.7 Motion and Depth

Initial research on motion and depth in pfeattentive processing was completed by Nakayama
and Silverman [1986] . Their results showed that motion was pfeattentive. Moréover, stereo-
‘scopic depth could be used to overcome the effects of con>join.~ Like the work done by Enns -
and Rensink, this suggests. that conceptually high-level informatioh is being p‘rocessed by
the low-level visual system. Initial experiments using a ta,rget,Adetec;tion .task showed that
both motion énd depth are preattentive. For motion, subjects were asked to detect a tar-
get moving in a direction opposite to the distractors. Target and distractors were randomly
coloured either blue or red. For 'depth,ls'ubjects- were asked to detect a target with a different
binocular disparity, relative to the distractors. Again; colour for target and distractors was
randomly either red or blue. Both tasks displayed a flat response time under 250 msec as

the number of distractors was increased.

- A set of traditional conjoin tasks followed the initial experiments. Now, motion and .
“colour (MC), stereo and colour (SC), or stereo and motion (SM) were combined. In MC
triéls,distractors were either_red and ‘moving up, or blue and mov'ing down. The target was
blue and moving up. I_h SC trials distractors were blue on the front plane, or red on the

- back plane. The target was either red on the frdnt plane'or blue on the back plane. In SM

trials distractors were on the front plane moving up, or on the back plane moving down. -
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The target was either on the front plane mbving dowﬁ, or on the back plane moving up.

Results showed that the MC trials were not preattentive. The response time increesed
by about 100 msec per ten additionel distractors. _Hdwever, the response times for SC and
SM trials were constant and-below 250 msec regardless of the nﬁmber of .distractors. All
three sets of trials involved conjoin, because the target had eo feature unique from all the
distractors. However, it w_as'found that obsefvers could search each’ plan’e.in the stereo
conjoin trials preattentiveiy, in turn. Thus, reaction times for these searches &ere‘ c_onst-ent
over the numberl of distractors. The visual“ system can perform a parall.el search in one depth

plane without interference from distractors in another plane.

Other work has focused on oscillating motion and its effect on conjunction search. Driver -
described an experiment where subjects had to search for an X oscillating vertie_ally among
O’s oscillating vertically and X’s oscillating horizontally [Driver et al., 1992]. This task was
preattentive if elements in each group oscillated coherently (i.e.,'vertically oscillating stimuli
moved up and down together, horizohtally oscillating stimuli moved left and right, together).
When elements oscillated “out o'f'phase” with one anbther, subjects reverted to a serial

search.

Triesman, Wolfe and ethers have tried to explain the ability to perform these kinds of
conjunction search tasks within the framework of feat‘u.re maps.l Triesman suggests that an
important feature distinction Would allow individual feature maps to ignore nontarget infor- -
mation from the master map. For exafﬁple, if green objeets could be ignored, then a search
for a red X among red O’s and green X’s would. switch from conjunctien to preattentive.
Green X’s would be ignored, and the search would be based only on shape (a.red X e,mong
‘red O’s) ._fWolfe’svpfoposal‘ is similar, but he suggests targets are excited or emphasized over

nontargets.

Driver investigated these possibilities by running additional experiments in which either
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Figure 2.12: Examples of conjunctive motion, all cases are made up of the same four basic motlon patterns;
(a) compression; (b) expansmn, (c) ﬂat deformation; (d) compress deformation

the horizontal X’s or vertical O’s moved ouvt. of phase. If nontargets are inhiBited, a reaéonable
_horizontal coherence should be required. It would be difficult to inhibit a set of horizontally.
oscillating X’s that moved out of phase. Simila,ﬂy, if targets are excited, then Verticaliy
moving elements would need some kind of motion éoherence. In both these cases, Driver

assumed oscillating motion is the “salient feature” that marks targets and nontargets.

Results showed that moving one group out of phase made the task more difficult than
when .both groups moved in phase. However, it was still much easier than when both groups
fnoved out of phase. When only the tafget grou‘p moved coherently, search was slightly
slower thaﬁ when only the distractor group moved coherently. This implies that selecting a
group for search by excitation is harder than seiecting'a group for search by inhibition. Both

operations seem to be contributing some effect, and may be WOrking together.

Braddick and Holliday studied whether more complicated types of motion are still de-
tected preattentively [Braddick and Holliday, 1987]. Their experiments involved detection of
a target defined by differences in divergence or deformation (Figure 2.12). Divergence exper- -

iments involved squares that were either expanding or contracting. The squares increased (or

decreased) in size by 15 pixels in one pixel steps, then jumped back to their original state.
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This pattern cycled repeatedly. In trials with expanding squares, the target was zi single
“square that contracted. In trials with contracting squares, the target was a single square
that expanded. Deformation experiments involved rectangles that changed their shape from
‘long énd thin to tall and skinny, again over a 15 step cycle. Targets, when present, deférme'd_

in the opposite direction.

Results shoWed that targets defined by either divergence or deformation required serial
searching. Braddick and Holliday confirmed their experimental method by running a final set
of trials. These were exactly like the divergence experiments, excépt that only a single side of
each square was displayed. Th,ié meant the experiment involved the detection of differences iﬁ |
direction of motion, a tas‘k known to be preattentive, within the context of their experiment

, design.. Results»from_these trials showed preat‘tentive séaréh times similar to those 'reported‘
by Nakayama and othefs. Braddick and Holliday concluded that deformation and divergence .

" represent a conjunction task. Motion itself is a preattentive feature, but deformation and
‘divergence involve targets with a number of different motions, each of which is shared by
the distractors. Thus, serial Searching is required to detect the presence or absence of the

. target. -

2.8 Iconographic Displays
‘Pickett and Grinstein have been Working to dévelop a method of displé,ying,mﬁltidimensional
data in a two-dimensional environment [Pickett and Grinstein, 1988]. The two most common

- display mediums, computer screens and printed documents, are both two-dimensional.

Initially, work has focused on spatially or temporally coherent data sets. This type of

data generally contains clusters of data elements with similar values. Previdusly, data with

up to three dimensions was plotted in colour. Each data dimension controlled the intensity
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Figure 2.13: Examples of “stick-men” icons: all three icons have four limbs and one body segment (shown
in bold), so they can support five-dimensional data elements; (d) an iconographic display of 5-D weather

satellite data from the west end of Lake Ontario
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of one of the three prinié;ry colours red, green, and blue. Coherent areas within the data set
occurred where colour values were similar. Relationships between .data elements were shown -
- as spatial changes .in colour. Pickett decided to use texture as a medium that could show
_r}elationships among higher dimensional data. The texture segregations would preattentively
display areas with similar data elements. Researchers could then decide quickly whether

“further analysis was required.

Pickett developed icons that'cou‘ld be u'sevd'to represent"each data element. An icon
consists 1of a body segment plus a number of limbs (Figure 2.13). Each value in the data
element controls the angle of one of the limbs. The icons in Figure 2.13 can support_ five-
dimensional data elements. The four limbs support -the first four dimensiohs. The final

dimension con_trols the oriehtation of the icon’s body in the image.

Once the data-lcon mapping is defined, an icon can be produced for each data element
These icons are then dlsplayed on a two- dlmensmnal grid in some logical fashion. The result
s an 1mage that contains various textures that can be detected preattentlvely Groups of
data elements with similar values produce similar icons. These icons, when displayed as |
" a group, form a texture pattern in the image. The boundary of this pattern can be seen,
because icons outside the given group have a different form and produce a different texture

pattern.

" The key to this technique is designihg icons that, when displayed, produce a geod texture-
boundary between groups of similar data elements. To this end, Pickett and Grinstein have -
been working on an icon toolkit, which allows users to design and test a variety of icons
. with their datasets [Gtinstein et al., 1989].. They have also added an audio component to
the icons. Running the mouse across an image will prodﬁce a set of tones. Like the icons,

the tones are mapped to values in each data element. It is beheved these tones will allow

researchers t0 detect 1nterest1ng relatlonshlps in their data.




Chapter 2. Preattentive Processing ' _ ’ _ ‘ 44

@) | o

Figure 2.14: Examples of Chernoff faces: the various facial characteristics, such as nose length, eyes, mouth,
jowls, etc., are controlled by various data values in each face

Other researchers have suggested uéing various types of “icons” to plot individual data _
elements. One of the more unique suggestions has been to use faces (Figure 2.14) with

different expressions to represent multidimensional data [Chernoff, 1973; Bruckner, 1978].

Each data value in a multidimensional data element controls an individual facial char- -
acteristic. Examples of these chafa_cteristiés include the nose, eyes, eyebrows, mouth, and -
jdwls. Chernoff claims he can support data with up to eighteen dimensicns. He also claims
groupings in coherent data will be drawn as groups of icons with similar facial e}{pressions.
This technique seems to be more suited to sﬁmmarizing multidimensional dafa elements,
rather than segmenting them. Still, it shows that researchers are exploring a wide variéty of

different ideas.
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Preattentive Estimation

Researchers in psychology have identified a number of tasks that can be performed preat-

tentively. These'include target detection, bouhdary détectidn,_and region tr'a,cking. Some

research has also been done on counting and estimation in preattentive processing. Carol
Varey describes experiments where subjects are asked to estimate the relative frequency of

white or black dots [Varey et al., 199'0]. Sﬁ‘bjects were asked to judge “percentage” of white

dots, “percentage” of black dots, “ratio” of black dots to white dots, and “difference” be-

tween the number of black and white dots. Her survey of past research shows that all four
methods have been separately proposed as the (only) method used by subjects to perform

relative estimation. Varey hypothesised that subjects were in fact capable of using any of

the four methods; her results showed subjects used the operation they were-told to use. She |

also found subjects consistently overestimated small proportions, and underestimated large -

proportions.

We extended work on relative frequency to in\/estigate a sub ject’sA ability to pr’eattentively’

estimate percentages [Healey et al., 1993; Healey et al. 1996] This was done by addressing

two specific questions about preattentive estimation:

e Question 1: Is it poésible for subjects to rapidly and accurately estimate the relative

number of elements in a display within the constraints of preattentive vision? Under

45
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what conditions is this possible for the well-studied features of hue and orientation?

° Question 2: Does encoding an independent data dimension with a task-irrelevant fea-
ture interfere with a subject’s estimation ability? If so, which features interfere with

one another and which do not? - -

Results from the experiments confirmed that rapid and accurate numerical estimation
can be performed on large ‘multi-element displays using either hue or orientation. The
~ absence of any significant interference effects in both cases (i.e., during both estimation of
hue and estimation of orientation) suggests that it is indeed possible to develop effective

‘multidimensional visualization tools for numerical estimation based on these features.

One limitation of the original investigation was its use of a fixed exposure duration
and feature difference. We conducted two additional experiments designed to address the
following questions: | |

e How are hue and‘orientatio'n estimation a}tffected by varying display duration?

e How are hue and orientation estimation affected by varying feature difference?

e What is the tradeoff between display duration and feature difference for the estimation

- task?

Results from these experiments provide imporfant boundary conditions on display duration

and feature difference. They also show the effect of varying both display duration and feature

difference at the same time.
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3.1 Salmon Migration Simulations

The experimental displays we tested were e motivated by the need to examine data generated
from salmon mlgratlon 51mulat10ns be1ng run in the Department of Oceanography at the
Unlver51ty of British Columbia [Thomson et al., 1992; Thomson et al., 1994]. _Salmon are -
| a well-known fish that are fonnd; among other areas, on the western coast of Canada. The
life history of a salmon consists of four stages: birth, freshwater growth stage, ocean growth
stage, and migration and spawning. Salmon are born as fry in freshwater rivers and streams.
© After birth, the fry spend time feeding and maturing before swimming downstream to the.
open ocean. Upon reaching the ocean, the salmonmoves to its “open ocean habitat”, where
. it spends most of its ocean life feeding and grorving. For example, sockeye salmon are thought
to feed in the Subarctic Domain, an area of the Pacific Ocean north of 40° latitude stretching‘
from the coast of Alaska to the Bearing Sea. After a period of one to six years, salmon begin
their return_migration. This consists of an open ocean stage where they swim back to the

British Columbia coast and a coastal stage where they swim back to a freshwater stream |
to spawn. This is almost always the same stream in which they were born. Scie_ntists now

know salmon find their stream of birth using smell after they reach the coast.

The ocean phase of salmon migration is not as well understood. It is recognized that it
is rapid, Well’ directed, and well timed. 'vPrevious work has examined the ‘clirnate and ecean '
conditions during migration to see how they affect the position where Fraser River s.alr_non.
arrive at the British Columbia coast (hereafter point of landfall)." The entrance to the Fraser -

River is located on the southwest coast of B.C., near Vancouver (Figure 3.1). Generally, -
if the Gulf.of Alaska is warm, salmon will make their point of landfall at the north end
of Vancouver Island and approach the Fraser River primarily via a northern route through |

the Johnstone’_‘Strait. When the Gulf of Alaska is colder, salmon are distributed further

south, making landfall on the west coast of Vancouver Island and approaching the Fraser
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" Fraser River

Juan De Fuca
Strait

Figure 3.1: The British Columbia coast, showing Vancouver Island, the Juan de Fuca Strait, the Johnstone
‘Strait, and the Fraser River. Arrows represent the two possible migration paths for returning salmon.
- River primarily via a southern route through the Juan De Fuca Strait. Research is being

conducted to determine the factors that drive this interannual variability.

Recent work in plotting ocean currents has provided scientists with a possible explanation‘
for salmon migration patterns. It has been speculated that the variability of ocean currents
" has impact on where the salmon make their point of landfall. A multi-institutional investiga- '
tion hés been initiated to examine the influences of currents on open.ocean return migrations
of salmon using the Ocean Surface Circulation Simulation (OSCURS) model [Ingraham and
| Miyahara, 1988; Ingraham and Miyéhara, 1989]. OSCURS can simulate accurately ocean
currents in the North Pacific for any day during the years 1945 to 1990. . |

" Researchers in oceanography ‘simulate possible return migration paths of the fish by

- placing 174 simulated salmon at fixed locations in an OSCURS ocean model (Figure 3.2a):
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(b)

Figure 3.2: Examples of output from OSCURS program: (a) dots represent starting Ipositiohs of 174 simulated
salmon; (b) a trailer beginning at each salmon’s starting position tracks its path to the British Columbia
coast. .




Chapter 3. Preattentive Estimation C - o - 50

The simulated salmon use a “compass-oriented” rule to find their Way back to the British

~ Columbia coast. Salmon take a single “look” before their mlgratlon run to determine the di-

rection to the coast. They use a biological compass to swim in thls fixed direction, regardless

of external forces (i.e., ocean currents) that may shift their mlgratlon path. OSCURS is used |

 to apply daily ocean currents to the fish as they move towards the coast. Oceanographers

record the point of landfall for each salmon (Figure 3. 2b). These are compared with the
actual distribution of fish for the given year (provided by the Department of Fisheries and

Oceans) to test the accuracy of the simulation.

Task Selection

We consulted with researchers in Oceanography to iderltify a suitable task for our original
experiments. We wanted to choose a task that was‘comrno.n during visualization, but that
still addressed a question of potential interest to the ocearrographers. Part of thi‘s.involved
using results from the salmon migration simulations dﬁring our experiments. Oceanographers
hypothesize that a streng northerly current flow will drive most salmon to a point of landfall
north of Vencoﬁver Island. It follows_ that the majority of the ﬁshlwill pass through the
Johnstone Strait to arrive at the Fraser River. This suggests that salmon migration routes '
can be predicted in part by studying prevailing ocean current patterns. We decided to ask
subjects to estimate the percentage of simulated salmon whose point of landfall was north
of some fixed lbatitude, since this was one of the visualization tasks being performed by the
oceanographers. Subjects were not informed that the data represented salmon rnigration

results. They were .simply asked to estimate the rrumber of elements with a given visual

feature.

‘Relative point of landfall (either north or south of the fixed latitude) was encoded on a

two-dimensional map of the open ocean at the spatial position where the salmon started its
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migration run. A preattentive feature was used to represent relative landfall. For example,
during one experiment salmon that landed north of the fixed latitude were coloured blue,
while salmon that landed south were coloured red. Subjects were then asked to estimate the

percentage of blue elements.

A second question we wanted to investigate was how preattentive features interfered
with one another. Callaghan’s experiments showed an interference effect during a boundary
detection task. We wanted to see if a similar effect existed when subjects were performing
estifhation. We decided to use stream function as our “interference” attribute, in part
because the oceanographers are interested in visualizing these values during their analysis.
Given the stream function ¢(z, y), the z and y components of the ocean current vector can be
calculated as V, = ‘—g% and V, = %‘5—. The stream function is a scalar function whose gradient
is the current (i.e., the stream function is the potential function for the vector-valued current -
field). In our experiments, stream function values were divided into two groups (low and
high) and encoded at each sp.atial location where a salmon started its migration run. A

second preattentive feature was used to represent stream function.

3.2 Original Estimation Experiments

Our orig}nal experiments were designed to investigate numerical estimation using either
hue or orientation. Two unique orientations were used, 0° rotation and 60° rotatidn. Two
different hues that corresponded roughly to red and blue were chosen from the Munsell
colour space. This allowed us to display two-dimensional data elements as coloured, oriented

rectangles (Figure 3.3). We chose a pai'r of hues that satisfied the following two properties:

e Property 1: The perceived intensity of the two hues was equal (i.e., the hues were

isoluminant).
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e Property 2. The perceptual discriminability between the two hues was equal to the

perceptual discriminability of a rectangle rotated 0° and one rotated 60°. ‘

The method described by Healey et al. [1996] was used to- choose a red hue and a
blue hue that met these requirements. Our design allowed us to display data elements
with two dimensions encoded using hue and orientation. Both dimensions were two-valued
(encoded using red and blue or 0° and 60°). This is a very simple example of the general

multidimensional visualization problem.

Data displayed during the experiments were taken from oceanography’s salmon migration

simulations. We used the following data variable to visual variable mappings:

e the longitude on which a salmon started its migration run controlled the z—position

of the icon representing the salmon

e the latitude on which a salmon started its migration run controlled the y—position of

the icon representing the salmon

e the point of landfall controlled either the hue or the orientation of the icon representing -

the salmon (the mapping depended on the mapping condition being tested)

e the stream function value controlled either the orientation or the hue of the icon rep-

resenting the salmon (the mapping depended on the mapping condition being tested)

Our experiment was divided into four mapping conditions Tun in separate blocks of
trials. The task-relevant dimension (i.e., the dimension on which the percentage estimate
was based) varied from mapping condition to mapping condition, as did the task-relevant

feature (i.e., the feature used to encode the task-relevant dimension). This gave us the

following design:
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Figure 3.3: Examples of a single data frame from each of the four experimental conditions (in each frame 58%
of the rectangles are targets): (a) condition B; (landfall represented by hue), user estimates the percentage of
elements coloured blue; (b) condition B, (landfall represented by orientation), user estimates the percentage
of elements rotated 60°; (c) condition Bg (stream function represented by hue), user estimates the percentage
of elements coloured blue; (d) condition B4 (stream function represented by orientation), user estimates the
percentage of elements rotated 60°
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e Mapping condition Landfall-Hue: The task-relevant data dimension was point of land-
fall, represented by hue; the task-irrelevant data dimension was stream function, rep-

resented by orientation (Figure 3.3a).

e Mapping condition Landfall-Orientation: The task-relevant data dimension was point
of landfall, represented by orientation; the task-irrelevant data dimension was stream

flinction, represented by hue (Figure 3.3b).

e Mapping condition Stream Function-Hue: The task-relevant data dimension was stream

function, represented by hue; the task-irrelevant data dimension was point of landfall, -

represented by orientation (Figure 3.3c).

e Mapping condition Stream Function-Orientation: The task-relevant data dimension
was stream function, represented by orientation; the task-irrelevant data dimension

was point of landfall, represented by hue (Figure 3.3d).

For each trial in the experiment, subjects were shown a display similar to Figure 3.3 for
450 msec. The screen was then cleared, and subjects were asked to estimate the number

of elements in the display with a specific feature, to the nearest 10%. For eXample, in

mapping conditions Landfall-Hue and Stream Function-Hue subjects were asked to estimate -

the number of rectangles coloured blue, to the nearest 10%. In mapping conditions Landfall-

Orientation and Stream Function-Orientation they were asked to estimate the number of

rectangles rotated 60°.

Within a mapping condition, trials were divided equally between Constant trials, where

the task-irrelevant feature was fixed to a constant value, and Variable trials, where the task-
irrelevant feature varied from element to element. Better performance in Constant versus
Variable trials would suggest that usingv a task-irrelevant feature to encode an independent

data dimension interferes with estimation based on the task-relevant feature. We tested
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both for orientation interfering with hue estimation and for hue interfering with orientation

estimation.

The main dependent variable examined was estimation error, defined as the absolute
difference between the subject’s interval estimate and the correct interval containing the
percentage of target elements present in the display. Results showed that rapid and accu-
rate estimation can be performed using either hue or orientation. There was no subject,
preference for either feature, and no intérference occurred in any of the conditions. This
suggests hue and orientation can be used in a visualization tool to encode different data -

values independently, if an estimation task is being used.

3.3 Experiment 1: Display Duration

Our conclusions from the original experiments apply to data displayed for 450 msec. This
leaves two important questions unanswered. First, at what display duration are subjects
no longer able to perform accurate estimation? Second, do any feature interference effects

begin to appear at shorter display durations?

In Experiment 1 display duration was randomly varied among five possible values: 15,
45, 105, 195, and 450 msec. Fifteen subjects with normal or corrected acuity and normal

colour vision were tested in the following manner:

1. A blank screen was displayed for 195 msec.

2. A focus circle with diameter roughly twice the width of the rectangular elements was

displayed for 105 msec.

3. The trial was shown for its display duration (one of 15, 45, 105, 195, or 450 msec).
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Figure 3.4: Graph of average error (absolute difference between a subject’s interval estimate and the correct -
interval) as a function of display duration for combined results from the hue display duration experiment.

4. A “mask” of randomly oriented grey rectangles was displayed for 105 msec.

5. The screen was blanked, and subjects were allowed to enter their estimations.

- Five subjects estimated the percentage of elements defined by a blue hue (fnapping con-
dition Landfall-Hue), and 10 subjects estiméted the percentage of elemenﬁs defined by a 60°
rotation (mapping condition Landfall-Orientation). As in the original experiment, an equal
number of trials Was used for each interval (10 Constant and 10 Variable). Trials were split
evenly among the five possible display durations, and. were presented to the subjects in a -

random order.

We found that the minimum display duration for robust estimation using either hue or

orientation lay somewhere between 45 and 105 msec. Since the original experiment had shown

that estimation was relatively accurate at all percentage levels, we simplified the dependent
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Figure 3.5: Graph of average error (absolute difference between a subject’s interval estimate and the cor-
rect interval) as a function of display duration for combined results from the orientation display duration
experiment.

measure by averaging error over all nine intervals. The results are shown in Figure 3.4 for hue
estimation anci in Figure 3.5 for orientation estimation. Inspection of these figures shows that

estimation accuracy was reasonably stable at all durations of 105 msec and higher. Below that
duration, error values increased rapidly. ANOVAs confirmed that accuracy varied reliably
with display duration. For estimation- using hue, F-values comparing mean error across
display duration were significant (all p-values < 0.05) vﬁth F(4,445) = 19.77, M Se = 1.464
and F(4,446) = 13.13, M Se = 0.979 for Constant and Variable trials. A similar set of F-
values were obtained for estimation using orientation: F'(4,894) = 3.65, M Se = 1.895, and
F(4,894) = 7.54, M Se = 1.810 for Constant and Variable trials. Fisher’s Protected Least
Significant Difference (PLSD) tests were computed to identify display duration pairs with

significant differences in average error. As we expected, the statistical significance reflects

the higher average error from the 15 and 45 msec display duration trials for both hue and
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orienfation estimation. Durihg hue estimation the duration pairs (15,45), (15,105), (15,195),
(15,450), (45,105), (45,195) and (45,450) were significant in both the Constant and Variable
subsections. During orientation estimation the duration pairs (15,105), (15,195), (15,450)
| (45,195) and (45,450) were significant in the Constant subsection, and (15,105), (15,195),
(15,450), (45,105), (45,195) and (45,450) were significant in the Variable subsection.

There was no evidence of feature interference for either estimation based on hue or esti-
mation based on orientation. Results suggested that random variation in orientation did not -
interfere with numerical esfimation based on hue. The ¢-values comparing mean estimation
€rror across Cbnstant and Variable trials had p-values greater than 0.05 at every display du-
- ration except 15 mséc-.(t(178)-= 2.18, p < 0.05, t(178) = 0.76, t(178) = 0.69, (178) = 0.40,
~and t(178) = 1.09 for the display durations 15, 45, 105, 195, and 450 msec). Similar results
Were‘ found when we checked to see if hue interfered with estimation based on orientation
(all t-valﬁes had p > 0.05 with ¢(358) = 1.64, (358) = 1.04, t(357) = 0.05, ¢(357) = 0.69,
and ¢(358) = 0.83 for the display durations 15, 45, 105, 195, and 450 msec). |

3.4 Experiment 2: Feature Difference

-

Experiment 2 was designed to address two additional questions related to numerical esti-
mation. First, how much of a feature difference is necessary to allow accurate estimation?
Second, how is this difference affected by display duration? Three mapping conditions were

tested using three different hue-orientation pairs during estimation:

1. Mapping condition Small: Rectangles were drawn using two Munsell hues 5R 7/8 and

5RP 7/8, and two orientations 0° and 5°
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Figure 3.6: Graph of average error (absolute difference between a subject’s interval estimate and the correct
interval) across target hue type for combined results from hue feature difference experiment. '

2. Mapping condition Medium: Rectangles were drawn using two Munsell hues 5R 7/8

and 10P 7/8, and two orientations 0° and 15°

3. Mapping condition Large: Rectangles were drawn using two Munsell hues 5R.7/8 and '

5PB7/8, and two orientations 0° and 60°

+ The perceptual discriminability between the hues and orientations is smallest in mapping
condition Small and largest in mapping condition Large. This latter condition was essentially
a replication of the hue and orientation values tested in the previous experiment. Within each |
mapping condition the discriminability of the two hues and two orientations were calibrated
to be roughly equal, following the procedures described by Healey et al. [1993]. Trials within

each mapping condition were randomly displayed at two display durations: 45msec and

195 msec. Otherwise, the details of this experiment were identical to the previous experiment.
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Figure 3.7: Graph of average error (absolute difference between a subject’s interval estimate and the correct
interval) across target orientation type for combined results from orientation feature difference experiment.

Six subjects estimated percentages based on hue. The target hue was one of 5RP7/8,
10P 7/8, or 5PB 7/8, depending on which mapping condition a given trial belonged to. An-

other six subjects estimated percentages based on orientation (where target orientation was .

‘one of 5°, 15°, or 60°). Trials from the three mapping conditions were intermixed and

presented to the subjects in a random order.

Subjects were able to perform accurate hue estimation at 195 msec using targets 10P 7/8
and 5PB7/8, and at 45 msec using 5PB 7/8. Similar results were found for orientation es-
timation (accurate for targets oriented at 15° and 60° at 195msec and 60° at 45msec). |
Figure 3.6 graphs mean estimation error for hue trials across the three mapping conditions

and both display durations. Figure 3.7 shows a similar graph for estimation based on orien-

tation. Outside of the above cases, estimation error increased rapidly.
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During hue estimation, ANOVAs comparing mean error across hue di‘fference were signif-
icant at both exposure durations (all p-values < 0.05). F-values for Constant and Variable
trials were F(2,645) = 54.16, M Se = 1.579 and F'(2, 639) - 61.26, M Se = 1.719 ‘for 45 msec
trials; they were F'(2,642) = 26.63, M Se = 1.166 and F(2,641) = 31.36, M.Se = 0.964 for
195 msec trials. During orientation estimation a similar set of F-values were found (all p-
values < 0.05). For Constant and Variable trials they were F(2,645) = 40.74, M Se = 2.232
and F(2,645) = 79.91, MSe = 2.198 for 45msec trials; they were F(2,321) = 77.07, |
MSe = 1.929 and F(2,645) =»5‘0.45, MSe = 1.955 for 195 msec trials. .

Finally, there was no evidence of feature interference during either hue or orientation
estimation. The ¢-values comparing mean estimation error across Constant and Variable
trials for all six display duration-target hue pairs were not significant (all p-values were.

greater than 0.05). Tests for hue interference during orientation estimation were also negative

(for all six display duration-target orientation pairs, p—vélues > 0.05).




Chapter 4
Colour and Orientation

This chapter begins with brief discussion of the physical properties of colour and light. This
_is followed by descriptions of the four colour models used in this thesis: CIE XYZ, monitor
- RGB, CIE LUV, and Munsell. Methods for describing different colours in each of the models
is explained. Formulas that map colours between the colour models are also provided. This
allows us to convert a colour described using any of the four models into a value that can be
“displayed on an RGB monitor. Finally, we describe research on the use of colour, both from a
scientific visualization and a preattentive processing perspective. We conclude with a review
 of research on two related visual features, orientation and texture. Much is already known
about how to select multiple orientations for rapid and accurate search and identification in
a visualization environment. We hope to build similar guidelines for the use of hue in data

visualization.

Although colour is a frequently used term, its fundamental meaning is more complicated
than sifnply stating that something is. “red” or “green” or “blue”. In order to properly
understand and use colour, we might start by asking: What is the physical phenomenon we
perceive as colour? and: How can we describe different colours in an unambiguous manner?
Answers to these question‘s will allow us to specify and control precisely the colours we

display on an RGB monitor.

162
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Figure 4.1: Diagram showing visiblé frequency domain: (a) variation in colour as wavelength A ranges from -
400nm to 700 nm; (b) energy distribution curve with dominant wavelength somewhere around yellow, Ed is
energy dens1ty at dominant wavelength, E,, is energy density of uniform white light

4.1 Properties of Colour»

What we commonly call “colour” is actually our perception of light waves from a thin band
of frequencies within the electromagnetic spectrum. This region of visible light ranges from

about 4.3 x 10 hertz to about 7.5 x 10 hertz.

An individual colour can be described by providing its dominant wavelength, ezcitation
purity, and luminance. The dominant wavelength is the wavelength we “see” when viewing
light of the given colour. Excitation purity is related to saturation, and describes how .strong
(or how far from grey) the colour is. Luminance describes the intensity or brightness of
the colour. We often refer to colours by their dominant wavelength A. Using this notation,
colours range from about 400 nanometres (1 nm = 1077 c¢m) for violet to about 700 nm for

red (Figure 4.1a). Consider Figure 4.1b, which shows an example energy distribution curve

with a dominant wavelength somewhere around yellow. Excitation purity depends on the
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relationship between the energy distribution of the dominant wavelength E4 and the energy
distribution of uniform white light E,. If E; = E,, (0% pure), we see a fully unsaturated

shade of grey. If E,, = 0 (100% pure), we see a fully saturated colour. Luminance is

~ proportional to the area under the energy distribution curve.

4.2 CIE XYZ Colour Model

Different-coloured lights can be combined to produce a wide range of colours: One of the
most commonly used methods is the combination of red, green, and blue (where R was
chosen to be the colour with a wavelength of 700 nm, G at 546.1 nm, and B at 435.8 nm)
Figure 4.2a shows the amount of R, G, and B needed to produce any colour in the visible
frequency domain. An important point to note is that the red curve 7(A) is negative from
438 nm to 546 nm. Colours with a dominant wavelength in this region cannot be produced

through a positive combination of R, G, and B.

In 1931, the Commission Internationale de L’Eclairage (CIE) addressed the problem of
negative weights in the RGB colour matching method. They defined three new primaries, |
called X, Y, and Z, to replace R, G, and B during colour matching. Figure 4.2b shows the
amount of X, Y, and Z needed to produce colours in the visible frequency domain. None of
the colour matching curves are negative, which means any colour can be produced by some

positive combination of X, Y, and Z.

Suppose the .amount of X, Y, and Z needed to match some colour C is defined to

be (X,Y, Z); that is, C = XX + Y'Y + ZZ. Chromaticity values (z,y,z) are defined by

normalizing over X +Y + Z:
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Figure 4.2: Diagram showing two sets of colour matching curves: (a) curves 7(X), g(A), and b()) show the
amount of R, G, and B required to match the wavelength of any visible colour; (b) curves Z()), 7()), and
Z(A) show the amount of X, Y, and Z required to match the wavelength of any visible colour
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The chromaticity values (z, y, z) depend only on the dominant wavelength and excitation
purity of C. Luminance information is lost during normalization. Since z +y + 2z = 1, we
can recover z from z and y by z = 1 —z —y. To obtain the original (X, Y, Z) values, we also

need the luminance Y. Given (z,y,Y), we can recover the corresponding (X,Y, Z) by:

x=2y, v=v, z=12%"Y - (4.2)
) : Y

A plot of (z, y) values for all visible colours produces the CIE chromaticity diagram shown

in Figuré 4.3. Points on the boundary of the horseshoe represent fully saturated colours (i.e.,

excitation purity of 100%). Points in the interior of the horseshoe represent a mixture of a

fully saturated colour with uniform white light (i.e., excitation purity of less than 100%).

Colours with the same chromaticity but difference luminances project onto the same point

in the horseshoe.

The chromaticity diagram can be used to define a colour gamut, which shows the range
of values possible from combining two or more individual colouré. Two colours R and G
can be combined in various ways to produce all the colours that lie on the line RG. Three
colours R, G, and B can be combined to produce all the colours th_at lie in the friangle RGB.
Figufe 4.3 shows an RGB colqur gamut formed from typical phosphor values R = (0.61,0.35),
G = (0.29,0.59), and B = (0.15,0.06) for aﬁ RGB monitor. A monitor that uses these

phosphors can only display colours inside the RGB triangle, an area that does not include

_a large number of visible colours.
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Red

Figure 4.3: CIE chromaticity diagram, the dot marks the position of standard white: (a) wavelengths (in -
nanometres) and positions. of saturated colours specified on the boundary of the horseshoe; (b) colour gamut
formed from typical phosphor values for an RGB monitor, colours inside the triangle can be displayed b
the monitor '

4.3 Monitor RGB Colour Model

A monitor RGB colour model is used by most colour CRT monitors. Different amounts of |
the monitor’s R, G, and B are added together to produce different colours. The gamut of an
RGB monitor is often drawn as a unit cube, as in Figure 4.4. The monitor’s full intensity
red, yellow, green, cyan, blue, and magenta, along with black and white, are situated at the

corners of the cube. The diagonal line from black to white represents shades of grey.

It is often useful to be able to convert colours specified in CIE XYZ to a particular
monitor’s RGB colour gamut. The conversion from XYZ to monitor RGB is a linear trans-
- formation. We begin by obtaining the chromaticity values (z,y,), (%g,Yq), and (xs, yp) of

the monitor’s red, green, and blue phosphors, and the luminance of the monitor’s maximum-

brightness red, green, and blue (Y;,Y,,Y;). From these we can compute the following:
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Blue = (0,0,1) Cyan = (0,1,1‘)

™ White = (1,1,1)

\ ------------------------------ Green = (0,1,0)

Magenta = (1,0,1) \

Black = (0,0,0) ~—

Red =(1,0,0) Yellow = (1,1,0)

Figure 4.4: RGB colour gamut represented as a unit cube, with fully saturated colours displayed at each
corner; the diagonal from the black corner to the white corner represents shades of grey of increasing intensity
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Given a colour specified as (z,y,Y), X and Z can be computed using Equation 4.2. The
(X,Y, Z) values are then inserted into Equation 4.5 to obtain the monitor (R, G, B) values

for the given colour.




Chapter 4. Colour and Orientation 69

-1
R IETCT CIIgCg ilIbe X
G| = | wC y,Cp, %Ch Y - (4.5)
B

%Cr 2,Cy  2Cy Z

Recall that a unit cube is used to represent the monitor’s gamut. Any colour with an
(R, G, B) value outside the range (0...1,0...1,0...1) cannot be displayed on the given
monitor. Colours with an R, G, or B value greater than 1 fall outside the luminance range of
the monitor. Colours with an R, G, or B value less than 0 fall outside the chromaticity range
of the monitor. Colours inside the monitor’s gamut can be scaled as necessary, as long as
the monitor performs proper gafnma correction. For example, Silicon Graphics workstations
specify RGB primaries as numbers between 0 and 255. (R, G, B) values obtained from '
Equation 4.5 can be multiplied by 255 and rounded to produce the primaries necessary to

display a given colour on the monitor.

4.4 CIE LUV Colour Model

One problem with both the CIE XYZ and RGB models is their lack of perceptual balance.
Suppose we start from some colour in CIE XYZ, say C, and move in any direction a distance
of AC to colour C; + AC. Starting from some other colour C5, we can move to a new colour
Cay + AC. The distance between the initial and final colours in both cases is AC. However, |
a human observer would not necessarily perceive the difference between the two pairs of
colours to be equal. In CIE XYZ space (and in RGB space), colours that are the samé

distance from one another are not necessarily perceptually equidistant.

In 1976, the CIE proposed the CIE LUV space to address this problem. CIE LUV is -

a perceptually uniform colour space. Colours that are the same distance from one another
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in CIE LUV have a perceived difference that is roughly equal. This means that distance
and difference can be interchanged as required. If colours A and B are twice as far apart as
colours C' and D, then the perceived difference in colour between A and B is about twice the

perceived difference between C and D.

The equations for computing LUV assume we have the (X, Y, Z) for the colour to convert,

and (X, Yy, Zy) of a standard white. Given these values, the corresponding LUV colour is:

116(Y/Y,)Y3 = 16, Y/Y, > 0.01

*

903.3(Y/Y,), Y/Y, < 0.008856

r_ 4X : ' 9y

UExXxTi5vy 132 Y T XF15Y +32
) 4X 9y,

_— I
Uw = X, F15Y, T 32, v = X, F15Y, + 37,

L* encodes the luminance or intensity of a given colour, while v’ and v’ control its
chromaticity. In CIELUV, Euclidean distance and perceived colour difference (specified in
AFE* units) can be interchanged, since the colour difference between two colour stimuli z

and y is rough‘ly:

)

AE}, = \J(AL,)? + (Auz,)? + (Avg,)? @)

Colours in CIE LUV are normally épeciﬁed as (L*,u',v"). Conversion from (L*,v',v') to

(X,Y, Z) and then to a monitor (R, G, B) value requires solving Equation 4.6 for X, Y, and -
Z. |
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x =%y R * (4.8)

By fixing L* and varying u' and v' (or u* and v*), it is possible to obtain a set of
colours that are both isoluminant and equidistant from one another. This technique was |
used during our research to control both the intensity and the perceived difference of various

colour elements.

4.5 'Mﬁn_sell Colour Model

The Munsell colour model was originally proposed by Albert H. Munsell in 1898. It was later
revised by the Optical Society of America in 1943 to more closely approximate Munsell’s
desire for a functional and perceptually balanced colour system. A colour from the Munsell

colour model is specified using the three “dimensions” hue, chroma, and value.

In Munsell space, hue refers to some uniquely identifiable colour, or as Munsell suggested,
“the quality by which we distinguish one colour from ahother, as a red from a yellow, a green,

”1

a blue, or a purple”*. Hue is represented by a circular band divided into ten sections. Munsell

named these sections red, yellow-red, yellow, green-yellow, green, blﬁe-green, blue, purple-
blue, purple, and red-purple (or R, YR, Y, GY, G, BG, B, PB, P, and RP for short). Each
section can be further divided into ten subsections if finer divisions of hue are needed. A

number preceding the hue name is used to define the subsection (e.g., 5R or 7BG).

Value refers to a colour’s lightness or darkness. Munsell defined value as “the quality by

! Munsell: A Grammar of Colour. New York, New York: Van Nostrand Rienhold Company, 1969, pg. 18
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10F White

5Y

5GT

Chroma

0% Black

Figure 4.5: Munsell colour space, showing it’s three dimensions hue, value, and chroma

which we distinguish a light colour from a dark one”?. Value is divided into eleven sections
numbered 0 through 10. Dark colours have a low value, while lighter colours have a higher -

value. Valuve 0 represents black, and value 10 represents white.

Chroma defines a colour’s strength or weakness. Chroma is measured in numbered steps
starting at 1. Weak colours have low chroma values. Strong colours have high chroma values.
Greys are colours with a chroma of zero. The maximum possible chroma depends on the

hue and value being used.

- A visual representation of the Munsell colour space is shown in Figure 4.5. The circular -
band feprésents hue. The pole running through the center of the colour space represents
value. Colours with increasing chroma radiate outward from the value pole. A Munsell colour
is specified by writing “hue value/chroma”. For example, 5R.6/6 would be a relatively strong

red. 5BG 9/2 would be a weak cyan.

2Ibid, pg. 20
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The Munsell épace provides a number of interesting and desirable properties. Munsell
originally designed his colour space to be used by artists. One feature he tried to incorporate
into his system was perceptual “balance”. Hues directly opposite one another will be bal-
anced, provided their value and chroma are equal. Thus, 5BG 5/5 is perceptually balanced
With 5R5/5, and 5Y 2/3 is balanced with 5PB 2/3. Opposite hues with different values and
chromas can also be balanced by varying the amount of each colour used within a given
area. Given two Munsell colours H; V;/C; and H, V,/Cs, we. need 'V,C, parts of hue H;
and V;C; parts of hue H,. For example, colours 5R5/10 and 5BG 5/5 can be balanced by
using 5BG 5/5 in two-thirds of the area, and 5R5/10 in one-third of the area. As we would
expect, the stronger chroma and higher value take up less of the total area than the weaker

chroma and lower value.

A second and perhaps more important property is that Munsell colours with the same
value are isoluminant. Thus, colours 5R5/5, 5G 5/6, 5B5/3, and any other colours with
value 5 are all perceived as having equal luminance. This property was provided when the

Munsell colour table was revised in 1943.

‘Wyszecki and Stiles provide (X,Y, Z) values for many Munsell colours [Wyszecki and |
Stiles, 1982]). They divide individual hues into four subsections: 2.5, 5, 7.5, and 10. This
provides a total of 40 different hues, plus nine values for each hue and chromas for every |
hue/value pair. Equation 4.5 can then be used to convert the (X,Y,Z ) triples into monitor

(R, G, B) values.

4.6 Colour in Scientific Visualization

Colour is one of the most commonly-used visual features in scientific and data visualization.

Because of this, a large body of past work has studied the use of colour for a variety of
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A%

Figure 4.6: An example of Ware and Beatty’s coherency visualization technique, the four “clouds” of simi-
larly-coloured squares represent four coherent groups of data elements

visualization tasks. In many instances, colour is divided into its component parts luminance

and hue, to gain greater control during its use for representing multidimensional data.

An early paper by Ware and Beatty describes using colour to detect coherence in five-
dimensional data elements [Ware and Beatty, 1988]. Each of the five data attributes is
mapped to one of the visual features z-position, y-position, red, green, and blue. The
result is a two-dimensional display of coloured squares (one for each data element in the
dataset). Groups of elements with all five attributes in common will appear as a spatial

cloud of similarly-coloured squares (Figure 4.6). Ware and Beatty’s tool shows coherence in

a dataset as spatially coherent colour regions.
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Much of the work-to-date has studied the problem of building effective “univariate
colourmaps” or “colour scales” .to apply to a monotonic dafa attribute. Such a colourmap
needs to convey visually an increase (or decrease) in the attribute’s value through a corre-
sponding increase (or decrease) in perceived colour. Ideally, the relative difference between
pairs of values should be displayed with an equal relative perceived difference in colour; in
other words, steps of a constant size through the attribute’s range of values should result in

perceptually equal colour steps through the colourmap used to visualize the attribute.

A separate paper by Wére discusses the use of luminance and hue for the display of
metric and form data on a continuous two-dimensional surface [Ware, 1988]. During a
metric visualization task, users attempt to accurately determine an attribute’s value at a
specific location on the surface. Colourmaps used for this type of task must address the
| problem of simultaneous contrast. The perceived colour of a target patch will be affected
by the colour of its neighbouring patches. Ware suggests that the amount and direction of
simultaneous contrast error can be predicted by examining variations in a colourmap with

respect to the visual opponent-colour channels: luminance, red-green, and blue-yellow.

In an initial experiment, Ware built a spectral colourmap that held simultaneous contrast
to a minimum across its entire range. The spectral colourmap ranged through a set of colours
starting at red + blue, to blue, blue + green, green, green + red, and finally to red. Ware
compared his colourmap against four other common systems: linear 'grey-scale (linear steps
in intensity), perceptual grey-scale (perceptually equal steps in intensity), saturation (a |
colourmap that ranges from grey to red), and red-green (a colourmap that ranges from red
to green). A parabolic surface was displayed using the entire range of the colourmap being
tested. A small target patch was placed at the center of the surface. A colour scale with '

sixteen values was provided, and subjects were asked to report the value of the target patch

(which was randomly chosen from one of the twelve interior positions on the colour scale). As

anticipated, Ware’s spectral colourmap gave significantly lower average error when compared




Chapter 4. Colour and Orientation ’ | 76 .

to the other four colourmaps.

Ware’s second visualization task, form, occurs when users try to detect different kinds of
spatial patterns in their data. Ware identified five common forms: gradient, ridges, convexity
and concavity, saddle, and cusp. Because of the effectiveness of the luminance channel for
processing shape, ﬁlotion, and depth, Ware expected the grey-scale colourmaps to perform ”
best dufing the identification of form. Subjects were shown one of the common forms using
all five colourmaps. Then were then asked to rate the effectiveness of each colour map
from 0 (poor) to 4 (good). Results showed that the grey-scale colourmaps were judged to
be significantly better at showing gradient and fidge forms. For the other three forms the
saturation colourmap was judged to be significantly worse than any of the other encoding .

techniques.

Using the results from both experiments, Ware attempted to build a single colourmap
that would provide good results fdr both metric and form visua.lization. Colours invthe
colourmap spiralled up through the colour space. This provided a monotonic increase in
the luminance channel, and ensured no monotonic variation (and hence no large or constant
simultaneous contrast) in either the red-green or blue-yellow channels. Ware tested his
“optimal” colourmap by rerunning the metric experiment. This was done to ensure that
variations in luminance did not interfere with a subject’s ability to accurately ref)ort metric
information. Ware’s optimal colourmap performed as well as the spectral colourmap. This
suggests that subjects were able to selectively ignore luminance informétion during the metric-

visualization task.

Levkowitz and Herman .have élso studied the problem of éreating colourmaps‘for data
visualization [Levkowitz and Herman, 1992). Their specific problem environment is the
visualization of medical images such as PET, CT, and MRI slices. They begin by .noting.'

that a grey-scale (i.e., luminance-based) colourmap can provide somewhere between 60 and
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90 just-noticeable difference (JND) steps. They attempted to build a linearized optimal
colour scale (LOCS) in order to provide a much larger perceptual dynamic range during

visualization.

Levkowitz and Herman assume the data attribute to be visualized has a range of possible
values v; < v3 < ... < v,. The LOCS ¢y,c¢o,...,c, used to represent such an attribute is

designed to satisfy the following three properties:

e order: c; precedes c; precedes ... precedes ¢, (as described below, “c; precedes ¢;41”

implies r; < 7341, gi < i1, and b; < biyy)

o uniformity: for any case where v;1; — v; = v;41 — v;, the perceived difference between

(¢s, ciy1) should be equal to the perceived difference between (c;, cj+1)

e boundaries: the choice of colours should not introduce perceptual artifacts within the

colour scale (i.e., the colour scale should appear continuous)

Construction of the LOCS under the above conditions began by placing a number of re-
strictions on the colours that were used. It was assumed that él would be black and c; would
be white. A natural scale was enforced by requiring the RGB values of (c;, ciy1) to satisfy
i < Tiv1, 9i < Gitl, ahd b; < biy1. Colours in the LOCS were either all achromatic (i.e.,

grey) or all chromatic (i.e., colour). Finally, colours were chosen to guarantee a monotonic

increase in saturation.

Given the requirements and restrictions placed on the LOCS, construction was reduced to
an optimization problem, specifically the maximization of Euclidean distance between colour
pairs specified in any colour model where Euclidean distance roughly equals perceived colour

difference. Levkowitz and Herman chose to use the CIELUV colqur model.

Levkowitz and Herman showed that an LOCS with 32 values has a perceived colour-pair
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difference six times lafger than a linear grey-scale colourmap with 32 values. They then o
tested the LOCS against a grey-scale colourmap and a heated-object colourmap (both are
commonly used to display medical irhage data). The LOCS ‘was judged to be better than
the heated-object colourmép, but was significantly worse than the grey-scale colourmap. .
Levkowitz and Herman explained this by suggesting that the task and effects of colour

surround (i.e., simultaneous contrast) might have favoured the grey-scale map.

Rather than choosing to use a particular colourmap, a user fnight want to be able to
choose a colour path through a particular colour model. The path defines the range of
colours to map onto the data attribute being visualized. Rheingans and Tebbs descﬁbe just
such a tool [Rheingans and Tebbs, 1990]. The data being visualized occupies the center of
the display window. A three-dimensional representation of a colour model (one of either
RGB, HSV, or HLS) made up of discrete patches is overlaid on top of the visualization.
Users can interactively sketch a path through the colour model. This deﬁnes the data to
colour mapping. Users. can also control the way changes in the data attribute map to the
colour path. For example, a linear mapping would provide a constant interval width along
the path for a constant increase in the data attribute’s value. An exponential mapping would
assign the majority of the attribute’s values to colours at the front of the path. The largest
values would be spread out along the middle and the back of the path. This might allow a

user to see more subtle changes occurring in large attribute values.

Recent work at the IBM Thomas J. Watson Research Center has focused on a rule-

-based visualization tool [Rogowitz and Treinish, 1993; Bergman et al., 1995]. Initial research

discussed the need for rules that take into account how a user perceives visual features such
as hue, luminance, height, and so on. The representation of isomorphic data (Rogowitz and
Treinish call continuous surfaces isomorphic data) is used to motivate this requirement. An

n-fold increase in the data attribute’s value should result in a corresponding n-fold increase in

perceived difference in the visual feature being used to represent the data. An understanding
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of how a user perceives difference is necessary to guarantee this result. For example, a simple
doubling of intensity does not mean the user will perceive the larger data values as being
“twice as bright”. This is because perceived intensity increases in an exponential, as opposed

to linear, manner.

Rogowitz and Treinish described three common visualization tasks: isomorphiSm, seg- -
menting, and highlighting. Interestingly, the last two tasks appear to correspond directly to
preattentive boundary and target detection. A framework system for rule-based visualiza-
tion was then described. Various “rules” are used to guide or restrict a user’s choice during
the data-feature mapping. The “rules” take into account various metadata, for example, the
visualization task being performed, the visual features being used, and the spatial frequency

of the data attribute being visualized.

A subsequent paper describes.the colourmap selection tool PRAVDAColor used by the
IBM Visualization Data Explorer [Bergman et all., 1995]. The colourmap tool uses a variety
of system-generated and user-provided metadata to limit the choice of colourmaps available
to the user. Selection criteria include information on the attribute being visualized (is it
ratio data or interval data?), the spatial frequency of data values (low frequency or high fre-
quency?), and the visualization task beiﬁg performed by the user (isomorphic, segmenting,
or highlighting?). As an example of the “rules” used to guide colourmap selection, isomor-
phic tasks require a perceptually monotonic representation. In these cases, PRAVDAColor -
provides users with a choice between monotonically increasing luminance or hue colourmaps.
Low frequency data is represented using hue. High frequency data is represented using either -
luminance or saturatioh. Once a colourmap is chosen, the user can control the data-colour

mapping in a fashion similar to Rheingans interactive colourmap tool (e.g., linear mapping,

exponential mapping, and so on).
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.4.7 Colour in Preattentive Proc_es_sing -

Colour has been studied extensively in the preattentive processihg literature. Initial work |
diéc‘usses the use of colour during visual search; results by various authors show'that small
colour differences between target and non-target elements produce serial search, while larger -
colour differences produce parallel search. Some work has been éonducted to try to iden-

tify the minimum colour difference (or critical colour difference, as it is sometimes called)

required for parallel search. Recent work has investigated other factors that make a target .

colour “stand out” from the background non-target colours. Results have shown that colour
distance alone is not the only important factor. The named category ‘occupied by the target

colour and the ability to separate the target from its non-targets in colour spacve'can also

have a large effect on search ‘efficiency.

One of the first papers discussing the use of colour during visual search was written by
Carter [1982] . Three experiments were described in the paper. In the first experiment
subjects were told to search for a specific three-digit number located in a circular array of

random three-digit non-targets. Subjects were. also told the colour of the target. During

" certain trials some of the non-targets used the same colour as the target. Results showed A

that the amount of time required to find the targét increased linearly with the number of

ndn—targets that shared the target’s colour.

. ) -
In the second experiment, the target’s colour was unique and fixed to be light purple.

Background non-targets were all coloured either dark purple or green. When the non-targets -

‘were coloured dark purple (i.e., when the non-targets had a colour similar to the target)

mean search time increased linearly with respect to the number of non-targets in the display

" (hereafter display size). When the hbn-targets were coloured green (i.e., when the non-

targets had a colour dissimilar from the target) mean search time was constant with respect

to display size. Carter concluded that visual search can be either serial or parallel, depending '
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on the perceived difference between the target and the non-target colours.

In the third experimeht, Carter tested the effects of placing potential farget eiements in
a group. In a manner similar to the first exp.efiment, both the target and the twenty-nine
non-targets used a common coldu_r. Twenty-ﬁve of the target-coloured elements were placed
in a spatial group. The remaining five elements were randomly locatea in the display. In
half the trials the target element was one of the elements in the ‘spatial, group. In the other -
half, it was one of the randOmly located elements. It todk sign.iﬁcantly longer to find the
target when it was part of the /'spatial group. Moreover, sea.rch.ing for an element outside
the spatial grbup was faster than the results from Experiment 1 (i.e., when all the potential
target elements were randomly located in the display). Apparently, subje'éts,scannéd the
outlying elements beforé examining elements within the group. Since there were only five -

outlying elements, search was faster than when all the elements were randomly placed.

An earlier paper 'by. Carter and Carter [1981] measured search times for different com-
binations of a single colour target and a fixed number of differently coloured non-targets.
As before, they found that search times were long for small colour differences and Short for
large colour differences. The colour difference required for parailel search was many times
fhe JND threshold. Distance in CIELUV and CIE Lab appeared to be related to search”
times by an exponential function. Nagy and Sanchez continued this work by defining what
théy called the “critical colour difference” for visual séarch [Nagyi and Sanchez, 1990]. In

“their first experiment, Nagy and Sanchez replicated the results of Carter and Carter for both -
‘a red and a blue target in a sét of off-white non-targets. A red or a blue target that was
a large distance from the non-targets in éoloﬁr space produced flat search times; a red or a
blue target that was close to the non—targéts produced search times that were linear in the

number of non-targets being displayed.

‘Nagy and Sanchez continued their investigation by trying to find the minimum distance
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reduired for parallel search. T}rey chose five target colours along eight lines radiating out from
the non—target in CIE XYZ colour space (Figure 4.7). The time required to find any one of the
five targets in a display containing a fixed number of norl-targets was measured and plotted
for each of the eight lines.. Two imi)ortant results were found. First the distance required for
parallel search varled for each of the eight lines. In other words, the crltlcal colour dlﬁerence
seems to depend on the colour of both the target and its non—targets Second, the smallest
critical colour dlfference (found during search for blue and green targets) was approximately
20 JNDs; this result was measured through the use of MacAdam JND ellipses [Wyszeckl and
Stlles 1982].

John Duncz;n has also discussed various aspects of the use of colour during visual search -
[Duncan, 1989]. This work was part of a set of results used to support his similarity theory
of preatterltive processing [D'undan and Humphreys',. 1989]. An‘initial experiment asked a
subject to determine presence or absence of a patch with a specific target colour. Each
display randomly contained oné, two, three, or four uniquely coloﬁred non-target patches.
All of the colours used were chosen to lie élong the boundary of the monitor’s gamut in
- CIE XYZ (Figure 4.8a). Results shdwéd thét average response time was independent of the .
number of dlfferently-coloured non-target patches However, when non—target colours were,-
chosen to be immediate nelghbours of the target colour (e.g., bg and/or p for a b target, or g
and/or rfor a y ta.rget), search was more difficult compared to displays where the non-target
 colours were more distant from the target colour. This matches vthe results of both Carter
and Nagy and Sanchez, specifically, searclr time is affected by the colour disténce betwraen

the target and its non-targets.

A second set of experiments by Duncan investigated specifically the use of colour and its
relationship to his similarity theory of preattentive processing. Duncan chose four colours

(named 1-2-3-4) along a path in CIE XYZ (Figure 4.8b). The target patch was coloured

using either colours 1-4 (end targets) or colours 2-3 (middle targets). In the end target ‘
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Figure 4.7: CIE diagram showing the monitor’s gamut as a triangular region; Nagy and Sanchez chose five
colours along eight colour lines radiating out from the distractor colour (the x near the centér of the triangle); -
the parallelogram approximates the critical colour boundary where search times moved from serial to parallel
for each of the eight colour lines ' '
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Figure 4.8: The sets of colours used during Duncan’s colour boundary experiments: (a) the six colours used
during Experiment 1, plotted along the boundary of the monitor gamut in CIEXYZ; (b) the colour sets
1-2-3-4 and .a-b-c-d used during Experiment 2
case, non-target (N-N) simiiarity was high. In the middle target case, N—N similarity was
low. 4Target—non-target (T-N) similarity was the same in both cases. Duncan replicated
his experiment wifh a more narrowly spaced set of colours (named a-b-c-d) chosen from a
different region of the monitorfs gamut. This was designed tb emphasise. poor performance
with end non-targets (i.e., when a-d are non-targets and b-c are térgets) due to the decrease |
- in colour similarity between the non-’targets. ’As pfedicted by Duncan’s similarity theory, the
middle target case gave much worse performance than the end tafget case. ‘Moreover, the
-middle target case was worse for the a-b-c-d colour set, when compared to the 1-2-3-4 colour |
set. Duncan conéluded this was due to the difference in N-N similarity: his theory predicts .
that a decrease in N-N similarity will result in an increase in search difficulty. Regardless of
the explanation, his results show that the .choice of non—target.colours can have an affect on

search performance.

~ Work by' other authdrs"has some relationship to the use of éolour'during'visual search.
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For example, Nagy and Sanchez discuss the differences between the use of chromaticity
‘vers1’1s luminance dufing visual search [Nagy and Sanchez, 1992]. Results showed that a
luminance difference of +33% (a ratio of 1 : §) or —23% (a ratio of approximately 3 : 1)
of the monitor’s available gamut was required betWeen the target and the non-targets 1n
order to obtain parallel search. Similar critical differences between fhe target and the non-
targets along the three chromaticity channels were +12% of the monitor’s available gamut
for red, +13% for blue, and +5% for yellow.. This suggests that é monitor’s chromaticity
range can more easily provide distinguishable elements, when corﬁpared to the monitor’s |
luminance range. Jerémy Wolfe describes an experiment where a target colour is found in
paréllel in' a field of ten hi-ghly homogeneous background non-targets .[Wolfe et al., 1990
The colour distance bétween the target colour and the group of background ndn-targets was
- large. quever, this suggests that it is possible to search-a display containing many different

~ colours for a highly-distiﬁguishable target colour.

4.8 Linear Separation Effect

More recent work has examined the effects of selecting two or more heterogeneous colours for
use in- a single display. The “linear separation” effect was originally described by D'Zmura
{1991] . He was investigating how the human visual system finds a target colour in a sea of
background non-target colours. One hypothesis was that the visual system uses oppoflent-
colour filters (i.e., red, green, blue, and yellow filters) to search for the target. If this -
wefe true, a 'target' colour could be rapidly and accurately detected only when it used an |

opponent-colour unique from its non-targets.

D’Zmura tested the opponent-colour hypothesis using four target detection experiments.

In each experiment, observers were asked to determine the presence or absence of an orange
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target. Half of the displays were randomly chosen to contain the target; the other half did
not. A variable number of .non-target elemeﬁts (randomly one of 1, 8, 16, or 32 elements)
were also present in each display. During one experiment half of the non-targets in each
display were coloured green a'n.d half were coloured red. During the other three éxperiments

they were coloured yellow and blue, green-yellow and purple, and yellow and red.

Results showgad ‘that the time required to determine the target’s bresence or absence .
was constant (at approximately 450 miiliSecoﬁds) and independent of the total number of
. elements being displayed when the vnon-.targets were coloured green and red, yeliow and blue,

or green-yellow and purple. This suggests detection occurs in paraliel in the low-level visual
| éystem. When the non-targets were coloured yellow..a,nd red, however, the time required to
' identify the target was linearly proportional to the number of elements being displayed (it -
ranged from approximately 450 milliseconds for displays with one element to approximately
.1500 milliseconds for displays with 32 elements). Subjects had to search serially through
each display to determine whether the target was present or absent. An increase in the total
number of elemehts being displayed.réSulted in a corfeéponding increase in the time reqﬁifed

to complete the target detection task for this case.

D’Zmura’s results were not coﬂsistent with the opponent-colour hypothesis. In particular,
the time required to find an orange target in a sea of green-yellow. and purple non-targets
-should not have been independent of the total number of elements being displayed, since no
single opponent-colour filter can be used to completely separate t.he orange (i.e., red-yellow) -
target from its green-yellow and purple (i.e., réd-blue) non-targets. D’Zmura suggested thatv '
the criteria for parallel target detection was the ability to separate a target linearly from its
non-targets in the colour model being used. Figui‘es 4.9a-4.9d show that‘ the oraﬂge t_argét
can bellinearly separated by a minimum threshold from thefnon—targéts.in the first three

-4 experiments, but not in the fourth. D’Zmura tested his new hypothesis by increasing the

saturation of the orange target; this moved the target out from the non-targets, providing
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Figure 4.9: Opponent-colour discs (axes correspond to the four opponent-colours red, blue, green, and yellow)
with the target (an open circle) and the non-targets (filled circles) for D’Zmura’s five experiments; a straight
line in (a)—(c) and (e) shows that the target can be linearly separated from the non-targets: (a) Experiment
1, with green and red non-targets; (b) Experiment 2, with yellow and blue non-targets; (c) Experiment, 3,
with green-yellow and purple non-targets; (d) Experiment 4, with yellow and red non-targets; (e) Experiment
5, a saturated orange target with yellow and red non-targets. . ’
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the desired linear separation (Figure 4.9¢). Results from using this new target were similar
to those of the first three experiments; the more saturated orange target could be detected

in time independent of the number of yellow and red hon-targets bei‘ng displayed.

- D’Zmura extended his hypothesis by shbwing that linear separation continued to apply -
when either the saturation or the luminance of the target and non-targets were varied. He
also presented a similar set of results for two additional target colours. This suggests that

the linear separation effect is not restricted to a specific region in the colour model.

Figure 4.10: Example of the target and non-targets used in the experiments run by Bauer; the colours are
shown in a u*,v*-slice from the CIELUV colour model, notice that target T is equidistant from: all three
- non-targets A, B, and C; in Experiment 1, target-colour T was collinear with the non-target colours A and
- B; in Experiment 2, target T was linearly separable from its non-targets A and C

: Work tiy Bauer et al. [1996] provides a number of additional results that strengthen '
D’Zmura’s hypothesis. First, Bauer et al. showed that perceptual colour models cannot be |
used to overcome linear separation. Two target detection experiments similar to D’Zmura’s
were run using the CIELUV colour model. In both experiments, the target—non-target
diéfance was fixed to a constant valué, in an attempt to control the perceived target-non-
target colour difference (Figure 4.10). During the first experiment, the target T was collinear
with the two non-‘@rgeté (elements A and B in Figure 4.10). In the second experiment, the

target T was linearly separated from the two non-targets (elements A and C in Figure 4.10).

Because TA = TB = TC in CIELUV, the perceived colour difference between the target
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T and any of its three distractors was expected to be roughly equal. In spite this, the
~ time required to identify the target as present or absent was signiﬁcantly longer in the first

experiment, when compared to the second.

Bauer described three other importaht results. First, he réplicafed his initial findings in '
three additional colour regions: greeﬁ, blue, and green-yellow. This suggests linear separation
applies to colours from any part of the visible colour domain. Second, he showed through.
a number of experiments testing subject performance-linear éeparation tradeoffs‘ that the

linear separation “line” is _ilideed a line, and not a cur{/e. Third, he showed that the time
required to identify a targét decreased z;s.the target—non-target colour distance increased. |
Rapi:d and accurate target:detection was.stsible without linear‘ sepafatiqn when the target—

non-target colour distahce was relatively large..
. . } .

4.9 Colour Category Effect |

| Results reported by Kawai et al. {1995] provide additional insight into the interactions that
occur between groups of coloured data ele-ments. Kawai et al. bélieve that the time reqﬁired
to identify a colour target depends in part on the named colour regions occupied by the target
and its non—ta_rg_ets. Kawai et al. tested .thei_r hypothesis by running five target deteétion
experiments for ﬁvé different target colours, which they roughly i,deﬁtiﬁed as red, yellow,

greén, blue, and purple.

Colours were chosen using the Optical Society of America (0SA) uniform colour system;
the OSA model is pe‘rceptaually balanced, and specifies colours using the three dimensions ”
(L,j,9). L encodes luminance or intensity, j represents the blue-yellow opponent-colour

dimension (negative j values give blue colours, while positive j values give yellow colours),

and g represents the red-green opponent-colour dimension (negative g values give red colours,
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while 'pos_itive g values give green colours). Wyszecki and Stiles [1982] give a complete de-
scription of the OSA fnodel. Experiments for a given colour targét were split into subblocks;
eac_ﬁ subblock displayéd' a single type of non—farget element. Target—non-target distance was .
varied by moving the noh-target colour farther and farther from the target in both the g and
J directions. In these experiments, there were only two different colours in each display: the

uniquely coloured target, and a constant number of uniformly coloured non-targets.
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Figure 4.11: Graph of mean detection times for the blue target and ten different non-targets, colours are
shown in a j, g-slice from the OSA colour model: (a) the square represent the target’s colour; each circle
represents the colour of one of the ten non-targets; the size of each circle represents the mean detection time
required to identify the target when it was displayed with the given non-target; (b) the same figure as in (a),
but with the boundaries of the blue, green, and purple colour regions shown as thick lines.

If target identification was.dep-ehdent only on the colour distance between the target
and the non;targets, the time required to detect presence or absence of the target should
have decreased uniformly as térlget’—noln-target’distan(;e increased. This was not the case,
however. Figﬁre 4.11 shows résults for the blue target. Non-targets that were‘—v2g units

from the target-resulted in vefy low mean detectioh times. However, moving the non-target

+2g units from the target (i.e., using exactly the same target—non-target distance as for -—Qg _
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non-targets) resulted in very large méan detection times. A non-target that was +2j from
the target also showed a large mean detection time; however, moving it one more unit to

+3; resulted in a dramatic ‘decrease in the time required to identify the target.

Apparently, tdrget detection times are not based solely on the target-non-target colour
distance. Kawai et al. suggest that the named colour regions of the target and non-target
affect search time. If the target and non-target occupy the same named region, search time
will be relatively large. If the target and non-target: are ih different named region‘s,-search'
time will be smaller. ‘This hypothesis was tested by experiméhtally dividing the 7, g-siice
into named colour regions. Figure 4.11b shows the boundaries of the blue, greén, and purple
colour regions. Notice that search time decreases dramatically whenever the non-target is

moved outside the blue colour region.

Kawai et al. found that similar search time asymmetri'es for green, purple, and red targets
could also be explained by a difference in colour regions. They concluded that search time
depends not only on colour distance, but also on the named colour regions occupied by'a

target and. its non-targets.

4.10 Orientation and Texture

Although colbﬁr is é popular and important visual feature, it is certainly not the only method
used to represenf multidimensional informatipn. ‘Other features like orientation and size can
also be used tovvisualize data elements. In fact, it has been suggested that oi‘ientat_ion, size,
and contrast can be used together to specify visual textures, in a manner similar to the way

hue, value and saturation are used to specify different colours.

The systematic use of orientation and texture in visualization has not received much focus

to date. Notable except_ions are the EXVIS system [Pickett and Grinstein, 1988; Grinstein
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et al., 1989], Liu and Picard’s use of Wold features'[Liu and Picard, 1994], Li and Robertsonls :
" use of Markov random fields [Li and Robertson 1995], and Ware and Knight’s discussion
of the fundamental d1mens1ons of a texture element [Ware and Knight, 1992; Ware and
Knlght 1995]. EXVIS is used to show spatial coherence in a multidimensional dataset. An
n-dlmensmnal data element is represented usmg a “stick-man” with n — 1 arms. The n
values from each data element are used to control the orientation of the stick-man’s arms
and body. Spatially neighbouring elements‘.with a-similar set of n values will result in a
group of similar looking stick-men. This appears as a spatial region with a unique texture in

the display (Figure 2.13). Pickett and Grinstein make reference to preattentive processing

~when they describe the ability of v1ewers to rapidly and accurately identify both the texture

~ regions -and the boundarles they form

Colln Ware and William Knight have conducted‘a number of experiments that investigate -
the use of Gabor filters for building visual textures. Ware and Knight proyide evidence to
' suggest that orientation, 'size, and contrast can be used as fundamental dimensions during
visual tenture construction. They describe the range of each dimension, and .di’scuss how
to measure the perceived difference between values from each dimension. For example,
orientation values are normally scaled linearly over the range 0...m. Slze and contrast
- values, on the other hand, should be scaled exponentially. The result is a perceptually

balanced texture model, analogous to perceptually balanced colour models like CIELUYV,
CIE Lab, or Munsell. Ware and Knight then-show how Gabor ﬁlters can be used to build
: v1sual textures that have a specific orientation, size, and contrast In a similar manner, Liu
and Plcard believe the three perceptual dimensions of a texture pattern are per1od1c1ty (or
repetitiveness), directionality, and -granularity (or randomness). Liu and Picard use Wold
features to control their texture dimensions yvhen they build visual textures. Finally, Li and
Robertson show how properties of Markov random fields can be cont_rolled by individual

data attributes to produce visual patterns that represent an underlying dataset:

\
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Figure 4.12: Examples of the tilted and steep orientation categories: (a) a tilted target (20° rotation) is
easy to find in a sea of steep distractors; (b) a steep target (0° rotation) is easy to find in a sea of tilted
distractors; (c) a tilted target (20° rotation) is hard to find in a sea of steep, tilted, and shallow distractors;
(d) a steep target (0° rotation) is hard to find in a sea of steep, tilted, and shallow distractors

Jeremy Wolfe has recently studied how orientation is categorized during preattentive
visual seérch [Wolfe et al., 1992]. His results suggest that the low-level visual system detects
three different categories of orientation: steep, shallow, and tilted. A térget element must
fall within a ’categbry unique from its distractors to guarantee rapid and effortless visual

search.

Wolfe’s initial experiments tested detection of a vertical (0° rotation) target in a set of
‘oblique (20° rotation) distractors (Figure 4.12b), and detection of an oblique target in a set
of vertical distractors (Figure 4.12a). Subjects performéd both tasks in times independent of
-the number of distractors. During a second exper.iment, howéver, search for a vertical element-
in a set of distractors rotated 20°, 40°, 60°, 80°, —20°, —40°, —60°, and —80° (Figure 4.12d) '
was significantly more difficult. An increase in the number of non-targets brought about
a corresponding increase in subject response time. This occurred in Spite of the fact that
the orientation difference between the tafget and its nearest ,backgbfound non-target was 20° |

rotation, exactly as in the first experiment. Similar poor results were found when searching

for an oblique target in a display of non-targets rotated 0°, 40°, 60°, 80°, —20°, —40°, —60°,
and —80° (Figure 4.12¢).
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Wolfe suggested that the orientation categories occupied by the target and non-targets
are what control search efficiency. He tested his theory by performing a number of visual
search experiments. In all four cases, the minimum orientation difference between the target

and non-targets was at least 20°, exactly as in the ﬁrst‘experiment that allowed easy search.

Search for a 0° target (steep orientation) among 40° (tilted) and —40° (tilted) distrac-

tors was easy.

e Search for a 0° target (steep) among 20° (steep and tilted) and —20° (steep and tilted) -

distractors Was hard.

o Search for a 20° target (steep and tilted) among 0° (steep) and 40° (tilted) distractors

was hard.

e Search for a 20° target (steep and tilted) among 60° (tilted) and —20° (steep and tilted)

distractors was hard.

Wolfe conducted similar experiments that showed that shallow and tilted also acted as
orientation'categories during visual search. Wolfe’s results suggest that only three distin-
guishable orientations are available for rapid and accurate visualization. This limited range |
of values will be particﬁlarly important when a user décides which data attribute to represent

using orientation.

One other interesting orientation property was described by Wolfe et al. [1990] during
their study of conjunction search. Wolfe’s guided search theory -s'uggests that both bottom- -
up and top-down information are used during preattentive visual search. This means that,
in certain cases, top-down information from a subject can be used to search preattentively

(i.e., rapidly and independent of the number of non-targets) for a conjunction target. Wolfe

shows results from an experiment where subjects searched for a red-oblique target (colour X
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orientation) in a sea of blue-oblique and red-vertical distractors. An increase in the number
of distractors resulted in almost no increase in the amount of time required to detect presence
or absence of the target. This suggests that subjects are capable of finding a between-feature
conjunction target, in this case, a colour X orientation target. However, Wolfe showed th;at '

subjects are not capable of finding a within-feature conjunction target. Wolfe tested both

- colour x colour targets (a red-blue square in a sea of red-green and green-blue squares) and

orientation X orientation targets (a combination of a vertical and an oblique rectangle in a

sea of vertical-horizontal and horizontal-oblique distractors). In both cases subjects needed

to use a serial search to determine presence or absence of the target. This suggests that

although orientation can be categorized into three separate values, conjunctions of these

values cannot be used to form a salient target.

Nothdurft has provided much insight into the phenomena of texture segregation (i.e.,
boundary detection and region idenfiﬁcation). Some of his initial work examined the ef; '
fects of element spacing on shape identification [Nothdurft, 1985a; Nothdurft, 1985b]. Shape
identification increased in efficiency with an increase in orientation difference A, between
target and distractor elements. Shape identification decreased in efficiency when the spacing
between individual elements A, increased. Nothdurft concluded that identification perfor-
mance waé based on the spatial gradient of foreground to background orientation contrast |

Ay /A, across the texture boundary.

Later work by Nothdurft investigated the effect of a background shift in element orienta-
tion Apy during texture.segregation [Nothdurft, 1991]. Two preattentive tasks were tested.
In the first, subjects were asked to identify a “bar” of differently—oriented elements-as either
vertical or horizontal. In the second, subjects were asked to provide the rough location of a

single element with an orientation different from its neighbouring background distractors.

The orientation of background distractors in some trials varied from neighbour to neigh-
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bour by a constant amount Apg. For example, trials with a constant distractor orientation
had Ay = 0°. Other trials varied neighbour-to-neighbour distractor orientation anywhere
from 5° to 30°. The amount of orientation difference A;, required between background and _

target elements for a 75% correct response rate was plotted again Ay,.

An increase in A, required a corresponding increase in Ay in order to obtain a 75%
correct response threshold. For example, during bar identification, a A,, of 0° (i.e., constant
background element orientation) required a A,y of 20°. Increasing A,y to 20° brought about
a corresponding increase in Ay to 50° for a 75% correct response rate. A Ay, of gréater than
30° in either task (baf or target identification) rendered it impossible to complete with a 75%
accuracy rate. Nothdurft concluded that the required brieﬁtation contrast A, depends on

the average orientation contrast (e.g., “noise”) between neighbouring background elements.

Nothdurft compiled a final study of orientation, motion, and colour cues during region -
segmentation [Nothdurft, 1993]. He confirmed that for a continuously varying background
feature, targets popped-out only When the target difference was much larger than the con-
tinuous background difference. This was shown to be true for all three features. Nothdurft
also showed that the large difference requirement depends on local neighbours for region -
segmentation based on orientation and motion. Specifically, if the non-target neighbours
around the target region provided a large difference in orientation or motion with the tar-
get, the region can be easily identified. Target regions that were embedded in a group of
non-targets that had a small orientation or motion difference with the target were difficult
to find. For colour, this property was not present. Colour pop-out depended on the amount
of colour difference between the target and the most similar non-target. Changing the type |
of surrounding non-targets to provide a relatively larger or smaller local feature difference

had no effect on this property.

We can draw the following conclusions from the works of Wolfe and Nothdurft:
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e During target detection, the visual system divides orientation into three rough cate-
gories: steep, shallow, and tilted. A targef' element can be identified rapidly only when

it occupies a category unique from its non-targets. o '

e For rapid boundary and region identification, an orientation difference of 20° is required

to idéntify the region in a field of constant-orientation non-targets.

e For rapid boundary and region identification, any increase in orientation difference
between neighbouring non-targets requires a corresponding increase in orientation dif-

ference between targets and non-targets.

One question that has not been answered is how the results of Wolfe and Nofhdurft
are related. It appears that Nothdurft used only vertical and horizontal non-targets while
searching for his oblique target region. This explains why he needed only a 20° orientation -
difference for parallel search; if he had used an oblique target (say 40° rotation) in a sea of
oblique non’-targets (say 20° rotatioh), Wolfe’s results suggest his subjects would have moved
towards serial search. This argument might also explain, in part, results from displays
that varied- the non-target orientation. Changing the orientation of certain background
elements may have pushed them into the same orientation category as the target region.
Since target elements now share an orientation category with some of their non-targets,

detection (according to Wolfe) should be more difficult. Further experiments are needed to

build a general model that explains both Nothdurft’s and Wolfe’s results. =




Chapter 5
Effective Colour Selection

Put simply, visualization is the mapping of data attributes onto visual features such as
shape, size, spatial location, and orientation. A “good” visualization technique will provide
an effective mapping that allows a user to ra.pidly-and accurétely explore their dataset.
Obviously, the effectiveness of the mapping depends on a number of factors, including the
context 6f the original dataset (e.g., geographic data, medical images, time-varying flow field
slices), the number of data elements, the dimensionality of each data element, and the task

the user wishes to perform.

Colour is an important and frequently-used visual feature. Examples include colour
temperature gradients on maps and charts, colour-coded vector fields in flow visualization, .'
or colour icons displayed by real-time simul_atioh systems. If we use colour to represent our
data, one important question to ask is: How can we choose effective colours that provide
good differentiation between data elements during the visualization task? We address this

problem by trying to answer three related questions:

e How can we allow rapid and accurate identification of individual data elements through

the use of colour?

e What factors determine whether a “target” element’s colour will make it easy to find,
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relative to differently coloured “non-target” elements?

e How many colours can we display at once, while still allowing for rapid and accurate

target identification?

Target identification is a necessary first step towards performing other exploratory data
analysis tasks. If we can rapidly and accurately differentiate eléments based on their colour,
we can apply our results to other important visualization techniques. These include rapid
and accurate detection of data boundaries, the tracking of data regions in real-time, and '
enumeration tasks such as counting and estimation [Varey ef al., 1990; Triesman, 1991;

Healey et al., 1993]. -

We are most interested in vguidelinesbthat help us choose effective hues for use during
visualization. An intuitive first step to gaining more control over colour would be to use a .
perceptual colour model such as CIE LUV, ‘CIE Lab, Munsell, or the OSA Uniform Colour
System [Birren, 1969; Wyszecki and Stiles, 1982]. These models use Euclidean distance to
approximate the perceived colour difference between pairs of colours. Unfortunately, fixing
the colour distance to a constant value does not guarantee that each colour will be equally
easy to detect. Other factors such as linear separation [D’Zmura, 1991; Bauer et al., 1996]
and colour category [Kawai et al., 1995] can affect how groups. of coloured elements interact

with one another.

5.1 Colour Selection Technique

During the design of our colour selection technique, we assumed that the user might choose

to search for any one of the available data elements at any given time. This is typical during

‘exploratory data analysis; users will often change the focus of their investigation based on
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the data they see as the visualization unfolds. This requirement meant that we could not
predefine which elements were targets and which were non-targets. The colour selection
technique had to allow for rapid and accurate identification of any of the elements being

displayed.

Results discussed in the Colour chapter suggest that choosing effective colours for data

visualization depends on at least three separate criteria:

e colour distance: the amount of colour distance between different elements as measured

in a perceptually balanced colour model

e linear separation: the ability to linearly separate targets from non-targets in the colour

model being used

e colour category: the named colour 'regions occupied by both the target and non-target

elements

We needed a simple method for measuring and controlling all three of the above ef-
fects during colour selection. We measured colour distance by choosing our colours using
the CIELUV colour model. We had to ensure that the colours we chose 'had.the same
perceived intensity; previous research 'by Callaghan has shown that random variation in
intensity can interfere with an observer’s ability to perform visualization tasks based on
colour [Callaghén, 1984]. Because of this, colours were chosen from an isoluminant u*, v*-
slice through CIE LUV. We guaranteed linear separability by picking colours that lay on the _

circumference of a circle embedded in our isoluminant u*, v*-slice.

We wanted to maximize the number of available colours, while still maintaining control
over colour distance and linear separability. To do this, we computed the monitor’s gamut

within the u*, v*-slice being used. We then found the largest circle inscribed within the



¢

Chapter 5. Effective Colour Selection 101

gamut. We chose colours that were equally spaced around the circle’s circumference (Fig-
ure 5.1). This method ensured that neighbouring colours had a constant colour distance. It
also ensured that any colour acting as a target had a constant linear separation from every

other (non-target) colour.

Yellow

Green-Yellow

Purple-Blue

Figure 5.1: An example of five colours chosen around an inscribed circle’s circumference; each element has
a constant colour distance d with its two neighbours; moreover, when any element (for example, the Red
element) acts as a target, it has a constant linear separation ! from the remaining (non-target) elements

In order to control colour category effects, we designed a simple method for segmenting
‘a colour region into individual colour categories. Our algorithm consists of two parts: an
automatic step that divides the colour region into an initial starting state, and an experi- '

mental step that provides a user-chosen name, strength, and a measure of perceptual overlap

for each category.

5.2 Estimating Monitor Gamut

Estimating a monitor’s gamut in a two-dimensional slice through a colour space (in our

case, in a u*,v*-slice through CIELUV) begins with the chromaticity values of the moni-

tor’s phosphors, and the luminance of its maximum-brightness red, green, and blue. These
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values are needed to convert colours from CIE LUV into monitor RGB (for a more complete

description, see the sections on RGB, CIE XYZ, and CIELUYV in the Coloufchapter).

Next, we built a set of “high” and “low” boundaries for each of the three monitor primaries
red, green, and blue. One side of the boundary represents colours that fall outside the
monitor’s gamut; the other side represents colours that may or may not be within the gamut.
For example, the Blue-Lo boundary divides the colour space into two regions: colours with
a monitor blue of less than zero, and colours with a monitor blue of greater than zero. Any
colour with a blue value less tha'n’zero cannot be displayed‘on the given monitor. Colours
with a blue value greater than zero may or may not be displayable. Similarly, Blue-Hi divides
the colour space into colours With a blue value of greater than one (which are undisplayable),

" and colours with a blue of less than one (which may or may not be displayable).

Blue-Lo
il S
R e .. blue<0.0
" blue > 0.0
° '
(u*,v¥)=(0,0)
P " Blue-Hi
blue < 1.0 _‘",.— --mTT

blue > 1.0

Figure 5.2: The boundary lines Blue-Lo and Blue-Hi are computed using a circle centered at (u*,v*) = (0, 0)
in CIELUYV; the two points where the circle leaves and then reenters the monitor’s gamut are identified;
these are used to build a corresponding boundary line

All of our gamut boundaries were built in the CIELUV colour space. In CIELUYV uni-
form chromaticity is a projective transformation of chromaticity, which is itself a projective

transformation of the monitor’s primaries [Wyszecki and Stiles, 1982; Robertson, 1988]. This

means our boundary lines are, in fact, straight lines in our u*,v*-slice through CIELUV.
g . g
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The equation of each line was computed by drawing a large circle centered at (u*,v*) = (0, 0)
that intersected the given boundary at two points (Figure 5.2). These points were used to

construct our boundary line.

The monitor’s gamut is represented by the largest convex polytope formed by the six
boundary lines. We assume that the CIELUV white-point (u*,v*) = (0,0) is within the
monitor’s gamut at every L* luminance value. This means we can compute the largest

convex polytope as follows:

1. Convert each boundary line into a dual point; given a boundary line in the form

- ar + by =1, the correspondmg dual pomt is < a,b>.
2. Compute the convex hull of the dual points.

3. Dual points that are on the convex hull represent lines that bound the convex polytope.

We wanted to construct the largest circle inscribed within the resulting convex polytope

This problem is d1v1ded into four cases, based on the number of 51des in the given polytope

Case 1: Three-sided triangle |
The largest circle inscribed within a triangle will touch all three sides of the triangie (Fig-
ure 5.45). The center of the triangle C is defined by the intersection of any two angle
bisectors. Given the center C and vertex P;’s bisector anglé o (Figure 5.4b), the radius r of

the inscribed circle is r = P; C'sin a.

Case 2: Four-sided quadrilateral
The largest circle inscribed within a quadrilateral will touch three or four sides of the quadri-

lateral. We begin by computing the bisectors of opposite sides of the quadrilateral. We

identify the two sides that form the longest ’bisector, then select the longer of the sides X

(Figure 5.4c). The inscribed circle will touch X and the two sides W and Y adjacent to it.
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v*

R-Hi
x-12y=1;<-1,-1/2>

G-Hi
1/4y=1;<0,1/4 >

B-Hi
13y =1;<0,1/3>

u*

B-Lo
-12y=1;<0,-1/2>

R-Lo
x-1dy=1;<1,-1/4> /| .
"} GLo
1/3x - 16y = 1; < 1/3, -1/6 >

(a)
V*
121
0<B-Hi>
B I
<G-Hi>
] L. o ] u*
T I= S i
-1 12 ° 1/2' e
. <G-I_Jf).>.-""-”‘<R-L0>
P 1724
<R-Hi> <B-Lo>
(b)

Figure 5.3: Finding the largest convex polytope involves computing the convex hull of the duals of each
boundary line: (a) the convex polytope is formed by the intersection of boundary lines B-Lo, R-Lo, B-Hi,
and R-Hi; (b) points <B-Lo>, <R-Lo>, <B-Hi>, and <R-Hi> are vertices of the dual point convex hull,
and therefore identify R-Lo, R-Hi, B-Lo, and B-Hi as the boundaries that form the corresponding convex
polytope
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(e) ' _ (f)

Figure 5.4: An inscribed circle placéd within an arbitrary polytope: (a) within a triangle, the circle C'

is defined by the intersection of any two angle bisectors; (c) the radius of the circle r is calculated as
r = P, Csina; (c) within a quadrilateral, the longest edge X of the longest opposite sides bisector is
identified; (c) the center of the circle C is defined by the intersection of the two bisectors ZW X and ZXY;
‘(e) within a pentagon, the sides W, X that form the largest interior angle ZW X are combined as W' to
form a quadrilateral; (b) the sides of the hexagon W, X and P, @ that form the two largest interior angles
ZW X and ZPQ are combined as W' and P’ to form a quadrilateral : '
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The center of the circle C' is defined by the intersection of the two angle bisectors of ZW X
and ZXY (Figure 5.4d). The radius r of the circle is computed in a manner similar to the

- three-sided triangle case.

Case 3: Five-sided pentagon or siz-sided hezagon

Five and six-sided convex polytopes are initially reduced to a four-sided quadrilateral. We
can then use the solution to Case 2 above to find a reasonable approximation of the largest
inscribed circle. For example, in a five-sided pentagon we find the two edges W and X
that form the largest interior angle o = ZWX. These edges are replaced with a new edge
w' (Figure. 5.4¢). The largest circle inscribed within the resulting quadrilateral is used to
approximate a solution to the original five-sided pentagon. A similar technique is used for
six-sided hexagons; we replace the edges W, X and P,(Q that form the two largest interior
anglesa = /WX ‘and B = ZPQ with two new edges W' and P’ (Figure 5.4¢e). As in the five-

sided case, we estimate the maximum circle by inscribing within the resulting quadrilateral.

5.3 ‘Segmenting Colour Regions

Although colour models allow us to describe colours in an unambiguous manner, in practice
colours are often identified by name. This technique is not precise, because it relies on a
common colour vocabulary and an agreement on what to call different colours. In spite of
this, it is useful to be able to name individual colours. Identifying colours by name is a
method of communication that everyone understands. Names can also be used to divide a
colour gamut into categories of similar colours. That is, .given_a,' set of n names Ny, ..., Ny, ‘
we can divide a colour region into n categories C1, . . . , Cy, such that all the colours in category

C; are best described by the name N;.

The National Bureau of Standards developed the ISCC-NBS colour naming system [NBS,
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1976] to try to provide a standard method for choosing colour names. English terms along
“the three dimensions hue, lightness, and saturation are used to represent different colours.
Words from each dimension are combined in various ways to produce 267 different colour

names (e.g., dark red, strong blue, greenish blue, and so on).

One problem with the ISCC-NBS model is the lack of a systematic syntax; this was
addressed during the design of a new Colour-Naming System (CNS) [Berk et al., 1982;
Kaufman, 1986]. The CNS was based in part on the ISCC-NBS model. It uses the same
three dimensions of hue, lightness, and saturation. However, the rules used to combine words
from these dimensions are defined in a formal BNF syntax. Berk compared the RGB, HSV,
and CNS colour models‘by asking observers to use each system to name a set of colours.
Observers were most accurate when they used fhe CNS model. Both Berk and Kaufman
describe a method of representing CNS nameé (as discrete points) within the Munsell colour

model.

An extension of CNS called the Colour-Naming Method (CNM) was proposed by Tomi-
naga [Tominaga, 1985]. The CNM uses a systematic syntax similar to the one described in
the CNS model. In addition, colour names from the CNM can be mapped to colour ranges
in the Munsell colour model. Names in the CNM are speciﬁéd at one of four accuracy levels
called fundameﬁtal, gross, medium, or miﬁute classification. Nameé from a higher accuracy
level correspond to smaller colour regions in Munsell. A brief description of thé algorithm

used to convert from a name to a Munsell colour range is provided in the paper.

In psychology, colour naming experiments are used to divide a colour gamut into named
regions. First, the colour names to be used during the experiment are chosen. The colour
gamut to be named is divided into representative colours. Observers view these colours one

after another and choose from the group of colour names the most appropriate name for each.

Experiments of this type are complicated for a number of reasons. The colour gamut has to
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be divided into a reasonable number of different colours, to ensure that accurate category
boundaries are reported. Even a 2D slice through é, colour model may need to be divided
into hundreds or sometimes thousands of representative colours. A large number of observefs
are also required, to ensure that the choice of names is not biased in some unusual manner. -
Different observers will disagree on the name for an individual colour, so some method must
be devised to choose a single name in these cases. Finally, some skill is required in picking
the initial group of colour names. A set of names that does not cover completely the colour
gamut will force users to name certain colours in an ad-hoc fashion (e.g., asking\ observers

to name blues from the RGB colour cube using only the names red, green, and yellow).

The CNS, CNM, and ISCC-NBS models are all designed to.provid'é a set of names that
can be used to accurately identify colours from the visible colour domain. The CNS and
CNM position their names within the Munsell colour model. In particular, the CNM can be
described as a “renaming” of Munsell patches, since each name from the CNM is mapped -
to a colour range in Munsell. Unfortunately, it is not obvious how to use these results to
automatically segment colour regions into a small number of colour categories. Perceptually
balanced colour models like Munsell and CIE LUV were created using controlled psychologi-
cal experiments. Rather than building a new colour naming langhage or performing our own
colour naming tests, we decided to use the built-in properties of Munsell and CIELUV to

provide names for individual colours. We wanted an-algorithm that was:

e agutomatic: the algorithm shoiild automatically segment a colour region into a set of
colour categories; individual colours would then be assigned the name of the category

in which théy lie;

e accurate: the names for each category must be “descriptive”, that is, given the set of

colour names being used, observers should agree the name chosen by the algorithm

represents correctly the colours being named;
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e stable: the algorithm should build stable, well defined boundaries between neighbouring

categories;

o perceptually controlled: the algorithm should consider perceived colour differences dur-

ing naming

Method -

Our technique assumes the target colour to be named is specified using CIE XYZ. Algorithms
exist to convert colours from most colour models into an (z,y,Y") value. The target colour is
then mapped from CIE XYZ into the Munsell colour space. The Munsell hue dimension uses

colour names to identify different hues; this dimension is used to name the target colour.

There are no simple functions to convert a colour from CIE XYZ to Munsell. Some math- .
ematical algorithms have been proposed [Miyahara and Yoshida, 1988]. The CIE suggests
using CIE Lab values to obtain Munsell hue, value, and chroma [CIE, 1976] as:

H = tan='(b*/a*)
V=1L10 | (5.1)
C=(a+b): |

Unfortunately, these methods are complicated and sometimes inaccurate for certain re-
gions of CIE XYZ or Munsell. We decided to use a much simpler method of mapping, namely
table lookup. The Munsell values listed in Wyszecki and Stiles [1982] are specified as (z,y,Y)
values. The Munsell patch closest to the target colour is used to represent the target. Given
the target colour (zy, ¥, ;) and a Munsell patch (zr, yur, Yar), the distance between the two

is simply:

d= @) + -+ i —Yu)? (5.2)
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One problem with this technique is the lack of berceptual balanée in CIEXYZ. The
Munsell patch that gives the smallest d is closest in Euclidean distance, but it may not be
closest in perceptual difference. To overcome this, we computed the distance between target
and patch in CIELUV. The Munsell patch colours were converted and stored as (L*, u*,v*)
values. Target colours were mapped from CIE XYZ to CIELUV in a similar manner. Given
the target colour (L, ur,vf) and a Munsell patch (L}, u},,v}i), the perceived difference

between the two is now:

d=\J(L; — Lyy)? + (uf — u30)? + (vF — v},)? (5.3)
This allows us to match the target colour to the Munsell patch that is closest in perceptual

difference. The hue name of the given patch is then assigned to the target colour.

Results

When we designed our algorithm, one property we wanted to try to provide was stability,
namely that category boundaries were well’deﬁned, and that names attached to a smoothly
changing set of colours also changed smvoothly. Individual Munsell patches are represented

as points when they are moved into the CIELUV coordinate system. Because this is a |
continuous mapping, the topology of the Munsell colour model is preserved; patches that

were adjacent in Munsell are also adjacent (as points) in CIELUV.

Target colours are associated with Munsell patches using a Euclidean distance metric.
Consider the region around a Munsell patch M; such that all points in the region are closer to
M; than to any other patch M;. Any target colour that falls within this region is associated
with M;. A 3D Voronoi diagram in CIELUYV of the points representing Munsell patches
builds exactly these regions for every M; [Okabe et al., 1992]. Polyhedrons in a 3D Voronoi

diagram are guaranteed to be convex. This means a straight line in CIE LUV will never pass
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‘Figure 5.5: Silicon Graphics monitor gamut and corresponding RGB colour cube: (a) the the monitor’s -
gamut is defined by the chromaticities of its triads to be a triangle in the CIE chromaticity horseshoe; (b)
names for colours along nine of the 12 RGB colour cube edges

through a patch’s Voronoi region more than once. Because the Voronoi regions of connected

Munsell patches are themselves connected in CIELUV, the names for colours along a line

will change in a smooth, stable manner.

In ofder to assess the accuracy of our technique, we named known colour regions from
the RGB, HSV, and CIE LUV colour models. We began with the RGB colour cube. Monitor
RGB values from our Silicon Graphics workstations were converted to CIE XYZ, and then
into CIELUV to be named. The results are shown in Figure 5.5b. Coiour names change
smoothly along the cube’s edges from corner to corner. .The namés provided appear to be |
correct, given that the monitor’s RGB colour gamut covers only a subset of all visible colours

(Figure 5.53.).

One apparent problem involves the RGB cube’s white corner, which is labelled purple-
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Monitor RGB Name - Munsell Patch
( 0.0, 0.0, 0.0 ) Black . Black0/0
(0.1,0.1,0.1) B 5B4/2
(0.2,02,02) PB 5PB5/2
(03,03,03) B 5B6/2
(0.4,0.4,04) B 5B7/2
(0.5,0.5,0.5) B 5B7/2
(0.6,0.6,0.6) B , 5B8/2
(0.7,0.7,0.7) PB 5PB8/4
(0.8,08,0.8) B 5B9/2
(0.9,0.9,09) PB 5PB9/4
(1.0,1.0,1.0) PB 5PB9/4

" Table 5.1: Names attached by our algorithm to colours along the black-white line in monitor RGB colour
cube; colour constancy ensures that white, black, and grey values appear correct in the context of other
monitor colours '

blue rather than white. The Munsell patch matched to the white cbrn_er was 5PB9/ 4, which
is very close to white (Munsell patch 5PB9/4 is two chroma “steps” from 5PB9/0, since
Munsell values from Wyszecki and Stiles are specified at even chroma values). A similar-
problem occurs during the naming of the cube’s black corner (matched to Munsell patch
5GY 1/2). In the Munsell colour model, “white”, “black”, and “grey” are special cases, and -
are not used as hue names. We could solve this problem in certain situations by adding
the colour names white? black, and grey. These correspond to Munsell colours with chroma
zero and, value ten (white), chroma zero and value zero (black), and chroma zero and value
between one and nine (grey). Table 5.1 shows the Munsell patches and colour names we

obtain for greys along the RGB cube’s black-white diagonal.

The RGB cube’s white corner is still named PB (although the black corner is now named
“black”). This is because the monitor’s white corner is not in the same location as the white _

point in the Munsell colour model. Colour constancy makes the white value appear correct
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in the context of the other monitor colours. This last point also explains why corners of the
colour cube are not named exactly as expected (e.g., both the yellow and the green corners
are named GY). Our naming technique is in fact showing where the monitor’s gamut falls

within the region of visible colours.

1.0 T
Green ’ Yellow

0.5 -

Cyan Red o:o - ;,,,;'___,. L

-0.5 |

Blue Magenta

-1.0

(a) ' (b)

Figure 5.6: Example of segmenting an H S-slice through the HSV hexcone at V = 1; (a) an H S-slice through
the HSV hexcone, showing the primary colours at the corners of the hexcone, and the hue and saturation
dimensions; (b) a segmented HS-slice at V = 1, lines represent the boundaries between the ten named
categories '

We continued -invéstigating our naming technique by trying to categorize colours from .
a 2D slice through the HSV hexcone. The HSV colour model represents colours using the
three “dimensions” hue, saturation, and vé,lue. The HSV hexcone is a projection of the RGB |
colour cube along the white-black diagonal. This means the colour gamut of a monitor’s

HSV hexcone is the bsame as the gamut of the monitor’s RGB cube.

The V = 1 plane of the hexcone contains a monitor’s fully saturated red, green, blue,
yellow, cyan, and magenta (Figure 5.6a). Our naming algorithm was used to partition this

plane into the ten named categories shown in Figure 5.6b. These regions correspond closely

to the names that are normally attached to the hexcone’s corners. Each category bounddry is
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well defined, and none of the boundaries intersect with one another. As with the RGB colour
cube, the white point at the center of the hexcone falls within the purple-blue category. Our
algorithm identifies what it would call white iﬁ the upper-right quadrant (somewhere in the
region where the colour boundary lines converge). Again, this is due to the location of the |

monitor’s gamut within the visible colour region.

80.0 -
60.0 |

’/‘-4.,
0.0 f \

v

20.0 I |

~20.0

-40.0 -

-60.0 -40.0 -20.0 0.0 20.0 40.0 60.0 80.0

Figure 5.7: Example of segmenting a u*v*-slice through CIE LUV at L* = 71.6; lines represent the boundaries
between the ten named categories '

We concluded our tests by trying to divide a 2D slice through the CIE LUV colour space.
Unlike RGB and HSV, CIE LUV is not constrained by a set of monitor triad chromaticities. .
The CIE LUV colour model is capable of representing any colour from the visible frequency |
domain. We expected to see a much closer match between the white point in CIELUYV and
the region our algorithm identifies as containing white, since the CIE explicitly calibrated

CIELUYV to correspond closely to Munsell.

Figure 5.7 shows a circular u*v*-slice through the CIE LUV model at a fixed luminance of
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L* = 71.6. The circle was centered at (u*,v*) = (10.49, 22.54) and had a radius of 71.0AE*.
The white point in CIELUV is located at (u*,v*) = (0,0). As with the HSV example, each
category bdimdary is clearly defined. Boundaries do not cross one another. Moreover, the
colour boundary lines terminate as expected at the region that contains the CIELUV white -

point.

5.4 Evaluating Colour Categories

Results from our automatic segmentation algorithm suggest it is accurate and stable for a
wide range of colour models and visible colours. Observers agreed that the names attached
to individual colours were appropriate given the set of names available through the Munsell
hue dimension. This does not mean that observers would have chosen exactly the same
names used by the algorithm to describe each colour, however. For examplé, most people
do not use fhe name “purple-blue” to describe a colour. They are more likely to use names
like dark blue, grey blue, or indigo. In order to measure colour category effects, we needed a
method for segmenting a colour gamut into user-named categories. We used our algorithm
to automatically divide the colour gamut into an initial starting state. From there, we picked .
one or more representative colours from each category and ran a limited set of colour naming
tests. Results from these expe;imenfs allow us to specify the perceptual overlap, strength,

and user-chosen name of each category.

Method

We decided to try to-assess the categories along the circumference of the u*v*-circle shown

in Figure 5.7. Our segmentation algorithm was used to divide the circle’s boundary into

ten initial categories. We needed to pick a representative colour from each category to use
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during our naming experiment. The colour at tle center of the category was chosen for this

purpose (Figure 5.8).
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-60.0 -40.0 -20.0 0.0 20.0 40.0 60.0 80.0

Figure 5.8: A w*v*-slice through CIELUV at L* = 71.6; ticks along the the circle mark the boundaries
between the ten named categories, points are the representative colours for each category

Thirty-eight observers with normal or corrected acuity volunteered to participate in our
experiment. Each observer was testeq to ensure they were not colour blind. They were then
asked to name each of the ten representa,tive colours. Observers were told to give a simple
name that accurately described each colour. No restrictions were placed on the names they

were allowed to use.

Our experiment was conducted on a Macintosh computer with a sixteen inch colour .
monitor and video hardware with an eight bit colour lookup table. The software used was
designed and written specifically to run vision experiments [Enns and Rensink, 1991]. The
chromaticities of the monitor’s tri.ads and maximum-intensity red, green, and blue were

measured to build an accurate CIELUYV to monitor RGB conversion matrix.
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During the experiment the representative colours were shown to each observer in a ran-
dom order. Each colour was displayed as a rectangular patch that filled approximately 90%
of the screen. The border around the outside of the patch was coloured light grey, and had a.
luminance L* = 71.6 equal to the luminance of the colour patches. Observers were allowed '
to view the patch for as long as they wanted before providing a name. Observers were told
that they would not be shown the same colour n_iore than once. The names provided by each

observer were recorded for later analysis.

" Results

Observers provided us with a wide range of different colour names. We compressed these
_ results by combining names that described the same colour or combination of colours. For
example, the names “purple”, “violet”, and “mduve” from the P category were combined -
under the name “purple”. The names “aqua’, “turquoise”, “blue green”, “green blue”, and
“sea greén” from the BG category were combined under the name “aqua”. Figure 5.2 shows
the names chosen for each of the ten representative colours. T.he frequency of each name is
also provided. A name’s frequency is the percentage of observers who chose that name to

describe the given colour patch.’

Even a brief review of the results in Table 5.2 leads to a number of interesting conclusioﬁs.
For example, both the G and GY categories were almost exclusively named “green” (with
frequencies of 100% and 97.4%, respectively). This suggests that, in terms of user-chosen
names, G and GY should be collapsed into a single “green” category. The B and PB .
categories (both named “blue” with frequencies 89.4% and 92.1%, respectively) might also
be collapsed into a singlé “blue” category. The R category appears to lack saturation;
combining the frequencies for the names “red” and “pink” (unsaturated red) results in near-

total coverage of 97.3%. Similarly, the Y category lacks luminance; a combination of the
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purple magenta  pink red orange brown yellow . green aqua blue  other
P |89% 26% 52% - - - - - - - 52%
RP | 15.7%  28.9% 55.3% - - - - - - - -
R - - 26.3% 71.0% - - - - - - - 2.6%
YR - - - 53% 86.8% 7.9% - - - - -
Y - - - - 26% 44.7% 474% = - - - 5.2%
Gy | - - - - - - - 913% - - 26%
G - - - - - - - 1000% - ~ ~
BG - - - - - - - 26.3% 578% 158% - -
B - - - = - - - - 7.9% 89.4% 2.6%
PB | 5.2% - - - - - - - - 921% 2.6%

Table 5.2: Frequency of user-chosen names for each of the ten named category, represented by percentage of
observers who chose each name to describe the given colour

4

names “yellow” and "‘brown” (dull yellow) results in a total frequency of 92.2%.

Other categories appear to covef a range of user-chosen names. The RP category is
split between “pink” (or unsaturated red, 55.3%), “purple” (15.7%), and “magenta” (or red-
purple, 28.9%). Observers named this category using one or both of its primary components
(either red or purple). The BG category was named either “green” (26.3%), “aqua” (or
blue-green, 57.8%), or “blue” (15.8%). Observers were told after the experiment that the
Munsell name for this colour was “blue-green”. Most observers agreed that “blue-green”
was a descriptive and accurate name (in spite of the fact that almost no one chose it for
themselves). This suggests that Munsell names are not necessarily poor, rather they may be

uncommon in most people’s vocabulary.

5.5 Perceptual Overlap

Our results show clearly that certain neighbouring categories overlap in the names chosen

to represent the category. Kawai et al. [1995] sﬁggest that a user’s ability to detect a colour
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“target” will decrease dramatically when background elements use colours from the target’s
category. We could logically extend this to imply that a similar decrease in performance will

occur if background colours are chosen from neighbouring but overlapping categories. In

order to predict (and avoid) this type of visual interference, we need a method to measure

perceived category overlap. This type of overlap depends on:

e the range of user-chosen names assigned to a given category
e the frequency of a user-chosen name

e how the ranges of neighbouring categories overlap

As an example, consider the R and YR categories, which have user-chosen name ranges:

pink red .= orange brown
R |26.3% 71.0%
YR 53% 86.8% 7.9%

Colours from R and YR overlap only at the “red” name; their overlap is not that strong,

since the frequency of “red” for the YR category is low. We computed the amount of

overlap by multiplying the frequencies for the common name. This gives an R-YR overlap of

71.0%%5.3% = 0.0376. A closer correspondence of user-chosen names for a pair of categories

results in a much larger ovérlap. For example, given the user-chosen name ranges for GY

and G

| green  other
GY | 974% 2.6%
G |100.0%

the GY-G overlap is 97.3% * 100.0% = 0.973. Colours that overlap over multiple names are

- combined using addition, for example, BG and B have ranges:
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| green aqua  blue  other
BG | 26.3% 57.8% 15.8%
B o 7.9% 89.4% 2.6%

for a BG-B overlap of (57.8%7.9%) + (15.8% x89.4%) = 0.187. When we use this algorithm
to compute the overlap between each of the ten named categories, we obtain the overlap
table shown in Table 5.3. Values from this table can be used to predict when certain colours

might be difficult to distinguish from one another.

PB P RP

R YR Y GY G BG B
R | — .038 0 0 0 0 0 0 .014 .145
YR |.038 — .058 0 0 0 0 .0 0 0
Y 0 .058 — 0 0 0 0 0 0 0
GY| 0 0 0 — 973 256 0 0 0 0
G 0 0 0 .973 — .263 0 0 0 0
BG| 0 0 0 -.256 .263 — .187 .146 0 0
B o o0 o0 0 0 .187 — 823 0 -0
PB| 0 0 O O 0 .46 .823 — .045 .008
P |.014 0 0 0 0 0 0 .045 — 1731
RP | .145 0 0 0 0 0 0 .008 .173 —

Table 5.3: Table showing the degree of user-name overlap between representative colours from each of the
ten named categories

A final characteristic that we measured was the strength of each named category. We

defined a category to be strong when:

e it has one high frequency user-chosen name

e it has relatively low perceptual overlap with neighbouring categories

- Using this definition and results for categories along our CIE LUV colour wheel, we

classified YR (with a total perceptual overlap of 0.096) and P (with an overlap of 0.232)

-
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as being strongly named “orange” and “purple”. The G-GY categories might be collapsed
inté a single strong “green” category (overlapping somewhat with BG)..Similarly, B-PB

might be collapsed into a single strong “blue” category (again 6verlapping somewhat with
BG). Although categories like R and YR, have low perceptual overlap, there was no common
agreement on a singlé name to describe them. Users were evehly split between “red” and

“pink” for the R category, and “yellow” and “brown” for the Y category.

5.6 Experiment 1: Distance and Separation

We began our investigation of colour selection by cdntrolling colour distance and linear sepa-
ration, but not colour category. Although Kawai’s results on colour category are intriguing,
researchers in psychology are still dividedA on the question of whether the way in which
people name colours has an affect on the perceptual division of a colour space into colour
regions. We deliberately ignored colour category to see what effect this would ha,ve on our
colour target search task. Results from our experiment showed inconsistent performance.
When we considered colour categories during colour selection, we were able to predict and -
avoid this visual interference effect. We were also able to increase the number of colours we
could simultaneously display, which is an important factor to consider. This shows that, at
least during tdrget detection, how users name colours can iﬁﬂuence the perceived difference

between the colours.

As discussed in the introduction to this chapter, we proceeded under the assumption that
a user might choose to search for any one of the different types of data element at any given
time. Our requirement meant that we could not i)redeﬁne which elements were targets and
which were non-targets. The colour selection technique had to allow for rapid and accurate

identification of any of the elements being displayed.
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We ran four studies to investigate the tradeoff between the number of colours displayed
and the time required to determine the presence or absence of a target element. Table 5.5
lists the names and the monitor RGB values of all the colours used in the studies. Each

study displayed a different number of unique colours:

e three-colour study: each display contained three different colours (i.e., one colour for

the target and two for the non-targets, Figures 5.9a-5.9b)

e five-colour study: each display contained five different colours (i.e., one for the target

and four for the non-targets, Figures 5.9c-5.9d)

e seven-colour study: each display contained seven different colours (i.e., one for the

target and six for the non-targets, Figures 5.9e-5.9f)

e nine-colour study: each display contained nine different colours (¢.e., one for the target

and eight for the non-targets, Figures 5.9g—5.9h)

Every colour in a given study was tested as a target. For example, the three-colour study .
was run three times, first with an R element acting as a target (and GY and PB elements
acting as non-targets), next with a GY target (and R and PB non-targets), and finally with
a PB target (and R and GY non-targets). Faster search times for certain targets would have
to be explained in terms of colour distance, linear separatidn, or colour category. Each of

the four studies were themselves divided in the following manner:

e half of the displays were randomly chosen to contain an element that used the target

colour; the other half did not

e one-third of the displays contained a total of 17 elements (one target and 16 non-targets

if the target was present, or 17 non-targets if the target was absent); one-third of the
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Figure 5.9: Example displays from each of the four studies, in each figure the target is a red element: (a)—(b)
three-colour study, 17 elements, target present in (a), absent in (b); (c)—(d) five-colour study, 33 elements,
target present in (c), absent in (d); (e)—(f) seven-colour study, 49 elements, target present in (e), absent in
(f); (g)—(h) nine-colour study, 33 elements, target present in (g), absent in (h)
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displays contained a total of 33 elements (either one target and 32 non-targets, or 33
* non-targets); one-third of the displays contained a total of 49 elements (either one

target and 48 non-targets, or 49 non-targets)

o elements in each display were randomly located in an underlying 9 x 9 grid that covered

the entire viewing area of the monitor

Colours for each of the four studies were chosen such that the colour distance between
pairs of colours and the linear separation for each colour were fixed to constant values (as
described below). Our results showed that detection was rapid and accurate for all colours
from both the three-colour and five-colour studies. Results from the ‘seven-coloﬁr and nine-
colour stﬁdiés were mixed; some colours gave better performance than others. This difference

was explained by examining the colour regions occupied by each of the colours.

Method

We began the colour selection process by obtaining the chromaticities of our monitor’s triads.
We also measured the luminance of the monitor’s maximum intensity red, green, and blue

with a spot photometer.

- We chose colours with the same perceived intensity, because previous research has shown
that random variation in intensity can interfere with an observer’s ability to perform visu-
alization tasks based on colour [Callaghan, 1984]. All the colours were chosen from a single |
u*, v*-slice through the CIE LUV colour space at L* = 67.1. We wanted to maximize the
number of available colours, while still maintaining control over colour distance and linear

separability. To do this, we computed the monitor’s gamut in the L* = 67.1 slice. We then

found the largest circle inscribed within the ‘gamu.t (Figure 5.10).
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(L*u*,v¥) =
(67.1,21.1,11.2)

Blue-Hi

Figure 5.10: An diagram of the monitor’s gamut at L* = 67.1, along with the maximum inscribed circle
centered at (67.1,21.1,11.6), radius 75.0 AE*

Given this largest inscribed circle, we chose colours that were equally spaced around its
circumference. For example, during the five-colour study we chose colours at positions 14°,
86°, 158°, 230°, and 302° counterclockwise rotation from the z-axis (Figure 5.1). This method
ensured that neighboﬁring colours had a constant colour distance. It also ensured that any
colour acting as a target had a constant linear separation from every other (non-target)

colour. A similar technique was used to select colours for the three-colour, seven-colour, and

nine-colour studies. This gave us the colour distances d and linear separations [/ shown in

Table 5.4.

Study d [
3-colour | 129.9 AE* | 112.5 AE*
5-colour | 88.2AFE* | 51.9AF*
7-colour | 65.1AE*| 28.4AE*
9-colour | 51.3AE*| 17.6 AE*

Table 5.4: The constant colour distance d and linear separation [ for each of the four studies; distances are
measured in AE* units '
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. Our experiments were conducted on a Macintosh computer with a fourteen inch colour
monitof and video hardware with an eight-bit lookup table. The software used was designed
and written specifically to run vision experiments [Enns and Rensink, 1991]. Thirty-eight
users with normal or corrected acuityvparticipated as observers during our studies. Observers
were tested to ensure they were not colour blind, using the Insight-2 Colour Vision Test. The
Insight-2 software is designed to run on Macintosh computers; its colour vision test is based
on the Farnsworth-Munsell 100-hue and dichotomous colour vision experiments. After the .
colour vision test, each observer was asked to complete one or more experiment subblocks. A
subblock consisted of 360 displays testing a single colour target from one of the four studies.
A total of 66 subblocks were run, divided to roughly balance the number of observers who

completed each study (Table 5.5).-

The procedure and task of each experiment were introduced to the observers before they
began a testing session. For example, before starting a subblock from the seven-colour
experiment observers were shown a sample display frame. The colour of the target element
was identified within the display. Observers were told that during the experiment they would
have’ to determine whether an element with the given target colour was present or absent
in each display they were shown. Observers were asked to answer as quickly as possible,
but also to ensure that they answered correctly. They were then shown how to enter their
anéwer (either “present” or “absent”). This was done by typing a letter on the keyboard.
Observers were allowed to choose one letter that corresponded to “present”, and another

that corresponded to “absent”.

Observers were given an opportunity to practice each subblock before they began the
actual experiment. A practice session consisted of thirty-six trials presented in a random
order. The target colour used during the practice session was the same as the target colour

used during the experiment subblock. The number of colours present in each display was

also the same as in the experiment subblock (i.e., practice sessions during the seven-colour
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Study | Target Monitor Number | Number | Average
Colour (R,G,B) of Subjects | of Trials | Error
3-colour| R | (243, 51, 55) 4 1440 2.4% .
3-colour | GY | (49, 121, 20) 4 1440 1.6%
3-colour | PB | (88, 82, 175) 4 1440 - 3.4%
5-colour | R | (243, 51, 55) 3 1080 2.6%
5-colour | Y (134, 96, 1) 3 1080 3.1%
5-colour | GY | (18,127, 45) 3 1080 2.1%
5-colour | B |(36, 103, 151) 3 1080 1.8%
5-colour | P | (206, 45, 162) 3 1080 1.9%
7-colour | R | (243, 51, 55) 3 1080 5.3%
7-colour | Y (171, 83, 7) 3 1080 | 4.9%
7-colour | GY | (78, 114, 8) 3 1080 3.6%
7-colour | G (9, 128, 58) 3 1080 3.1%
T-colour | BG | (20, 111, 137) 3 1080 3.0%
7-colour | P | (132, 66, 180) '3 1080 3.3%
7-colour | RP | (239, 39, 134) 3 1080 3.0%
9-colour | R (243, 51, 55) 2 720 3.1%
9-colour | YR | (191, 75, 13) 2 720 5.2%
9-colour Y (119,101, 1) 2 720 3.3%
9-colour | GY | (49,121,20) | - 2 - 720 13.9%
9-colour | G (5, 128, 66) 2 720 14.8%
9-colour | BG | (13, 115, 128) 2 720 9.8%
9-colour | PB | (88, 82, 175) 2 720 | 2.8%
9-colour P (189, 49, 170) 2 720 4.1%
9-colour | RP | (249, 38, 116) 2 720 16.1%

Table 5.5: Table listing for each target tested within the four colour studies: the colour name and monitor
RGB value of the target, the number of subjects who ran the given subblock, the total number of trials
completed, and the average error rate
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study used displays with seven different colours: one for the target and six for the non-
targets). The thirty-six displays were divided equally across display size: one-third of the
displays contained‘ 17 elements, one-third contained 33 eléments, and one-third contained 49
elements. For each display size, half the trials contained an element that used the target
colour and half did not. The practice session was designed to gi\}e observers an idea of the

experiment proéedure and the speed of the trials.

After completing a practice session, observers began the actual experiment subblock. -
Each subblock consisted of 360 displays. Observers were given an opportunity to rest after
every 60 displays. Responses (either “present” or “absent”) and the time to respond for each

display an observer completed were recorded for later analysis.

Results

Observers had very little difficulty identifying targets during the three-colour and five-colour-
studies. Graphs of mean response time across display size were relatively flat for every
colour (Figure 5.11). During the three-colour study response times ranged from 453 msec |
to 532 msec for target present displays, and from 463 msec to 547 msec for target absent
displayé. Results for the five-colour study were similar, with mean response time ranges of
504 msec to 592 msec for target present dispiays, and 509 msec to 704 msec for target absent
displays. Mean response error for the three-colour and1 five-colour studies was 2.5% and

2.3%, respectively.

. There was a small increase in mean response times when we moved from the three-colour
to the five-colour study. This is thought to correspond to the increase in the number of
unique colours being displayed. Hick [1952] showed that when users expect an increased

number of choices their absolute response times increase logarithmically in the number of

choices available. We believe that the increase in the number of unique colour stimulae in
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Figure 5.11: Response time graphs for the three-colour and five-colour studies, in each figure the graph on
the left represents displays where the target was absent, while the graph on the right represents displays
where the target was present: (a) response time as a function of display size (i.e., total number of elements
shown in the display) for each target from the three-colour study; (b) response time as a function of display
size for each target from the five-colour study
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our displays produces a similar effect; this would eﬁcplain the small y-intercept increase in

respohse times observed during the five-colour study.

* Analysis of va.ri#nce (ANOVA) results showed a significant difference in response time
across target cqlour during the three-colour experiment, F(2,4209) = 224.6, p < 0.0001
(main effects with a p-value of less than 5% were considered significant). For the ﬁve-éolour
experiment, ANOVAs identified a significant difference in response time across both target

“colour and display size (F'(4,5256) = 194.0, p < 0.0001 and F(2,5258) = 49.2, p < 0.0001,
respectively). Significant reaction time differences across target colour are probably caused
by performance differences in individual subjects, since only a small number of subjects
completed trials for a given colour (four subjects per target colour during the three-colour

study, and three subjects per target colour during the five-colour study).

Scheffé values suggest that the significance across display size during the five-colour study '
is due to lower reaction times during the 17 element displays (p < 0.0001 for the (17, 33)
and (17, 49) dispiay size pairs, p = 0.03 for the (33, 49) display size pair). This can be seen
visually as a flattening of the response time graphs in Figure 5.11b (pérticularly, for target
absent displays) when display sizes increased. As we moved from 33 to 49 element -displays, |
we observed an average mean reaction time increase of +0.80 msec per element, a minimum of
—0.25 msec per per element (for GY targets during target absent displays), and a maximum
of +1.98 msec per element (for GY targets during target present displays). We expect similar
response time increases for displays larger than 49 elements, although additional experiments
* would be required to confirm this hypothesis. Bésed on the absolute Aresponse times and per .
element response time ihcreases, we concluded that users could accurately identify the target
in all cases, and that the time required to do so was sufficiently independent of display size
for our purposes. This suggests that, even when using five different colours, the visual system

can search for any one of the colours in parallel.
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Figure 5.12: Response time graphs for the seven-colour and nine-colour studies, in each figure the graph on
the left represents displays where the target was absent, while the graph on the right represents displays where
the target was present: (a) response time as a function of display size for each target from the seven-colour
study; (b) response time as a function of display size for each target from the nine-colour study
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Target identification became much more difficult for certain colours during the seven-
colour and nine-colour studies. Mean response error during the seven-colour study was still -
low, at approximately 3.3%. The P, Y, R, BG, and RP targets each exhibited relatively
flat response time graphs. Mean response time for these elements raﬁged from 562 msec
to 829 msec for target present displays, and from 621 msec to 1003 msec for target absent
displays. The G and GY targets, however, gave response times typical of serial search. An
increase in the number of elements being displayed brought on a corresponding increase in
response time. A linear regression fit tb results for the G target produced ¢t = 695.1 +
7.7n, r = 0.23 and ¢ = 745.6 + 17.5n, r = 0.54 for target present and target absent displays,
reépectively. A similar calculation for the GY -target produced t = 764.3 + 6.7n, r = 0.19
ana t = 684.0 + 18.8n, r = 0.46. The reéction time increase per additional element for
target-absent displays (approximately 17 msec per additional element for G, and 19 msec per |
element for GY) was roughly twice that for target-present displays (8 msec and 7msec per
element for G and GY, respectively). Observers had to search through, on averagé, half the -
elements before they found the target in target-present displays. In target-absent displays,
however, they had to search through all the elements to confirm that no target existed. ‘This

explains why per item search time increased roughly twice as fast for target-absent displays.

- A similar set of results was obtained during the nine-colour study. Overall mean respoﬁse
error increased to 8.1%; it was lowest for the R, Y, PB, and P targets (3.1%, 3.3%, 2.8%, and
| 4.1%, respectively) and highest for the GY, G,.and RP targets (13.9%, 14.8%, and 16.1%,
respectively). The Y, PB, and P targeté displayed relatively flat response time graphs during '
target-present displays (although response time did increase with display size during target-

absent displays). The remaining targets showed some form of serial search. The effect was

weakest for the R and YR targets, and strongest for the G and GY targets.
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5.7 Colour Category Integration

Results from our four studies showed that controlling colour distance and linear separation
aione is not enough to guarantee consistently good (or consistently bad) target identification
for every colour. Results from Kawai et al. suggest that colour category can also have a
strong effect on the amount of time requifed to identify a colour target. We decided to see
whether colour category results could explain the asymmetric response times we observed
during the seven-colour and nine-colour studies. We used our colour segmentation technique

to place individual colours within a named colour region.

In the seven-colour study the P, Y, R, BG, and RP targets gave good performance. The
G and GY targets gave poor performance. An examination of the perceptual overlap table

(Table 5.3) suggests the following explanation:

e targets R, Y, P, and RP have a weak overlap with the other colours used during the
study: Y has no 6verlap to the other colours, R and RP have an overlap Qf 0.145, and
P and RP have an overlap of 0.173

e target BG has a moderate overlap of 0.256 and 0.263 with GY and G, respectively

o targets G and GY have a moderate overlap with BG, and a very strong overlap of

0.973 with one another

For each target in the seven-colour study, its perceptual overlap with the other colours
corresponded closely to its mean response time. We can measure this correspondence by -
computing Spearman’s correlation coefficient on the rank order of our colours in terms of

total overlap and mean response time.

Table 5.6 sums the overlap measures for each of the seven colours we used. The rank

order of total overlap from lowest to highest is Y, R, P, RP, BG, GY, and G. Ranking our
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R Y GY G BG P RP
R — 0 0 0 0 .014 .145
Y 0 — 0 O 0 0 0
GY 0 0 — 973 256 0 0
G 0O 0 973 — 263 0
BG 0 0 .256 263 — 0 O
P 014 0 0 o 0 — .173
RP |.145 0 0 0o o0 173 —
Total | 159 0 1.229 1.236 .519 .187 .318

Table 5.6: Perceptual overlap table showing individual and total overlap values for each of the colours used
during the seven-colour study :

colours based on total mean response time (including both present and absent trials across
all three display sizes) from smallest to largest gave an order of P, R, Y, BG, RP, GY, G.
The Spearman: correlation between these rankings is rp.q,x = 0.821, confirming that higher

mean response times for a given target correspond to a higher colour category overlap.

A category overlap-response-time correlation can also be observed during the nine-colour

study:

° ﬁarge_ts P, Y, YR, and PB have a weak overlap wifh the other colours used during the |
study (PB and BG have a similarity of 0.146, and P and RP have an overlap of 0.173)

e targets R, RP, and BG have a moderate .overlap with the other colours (RP has an
overlap of 0.145 and 0.173 to R and P, respectively, while BG has an overlap of 0. 256
and 0.263 to G and GY, respectlvely)

e as in the seven-colour study, G and GY have a moderate overlap with BG, and a very

strong overlap with one another

The Spearman correlation between the colours’ total similarity and mean response time
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Figure 5.13: Response time graphs for the first colour-category study, the graph on the left represents displays A
where the target was absent, while the graph on the right represents displays where the target was present

rankings was 7,gr = 0.762. Results for YR and BG are somewhat anomalous; values
from the overlap table suggest we should have observed better performance for the YR

target compared to the BG target. Results for the other 'co‘lours correspond closely to their

perceptual overlap measures.

5.8 Experimeht 2: Colour Category

Results from investigating colour category integration might imply that effective colours can
be selected by controlling colour category alone. This was tested by selecting seven colours

from colour regions that had low overlap with one another. An examination of the similarity

- table in Figure 5.2 shows that colours chosen from the R, YR, Y, G, B, P, and RP regions

satisfy our restriction; the largest overlap occurs between RP-R (0.145) and RP-P (0.173).
The colours we chose were exactly those used as representative colours during the colour
naming experiments (Figure 5.8). Because these were the colours used to obtain the user-

chosen names for each region, their overlap with one another corresponds exactly to the

values in the similarity table. A single observer completed 360 displays for each target.
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CWd CCW d l

(in AE* units) (in AE* units) (in AE* units)

R 42.0 42.0 | 12.2

YR 42.0 49.8 14.6

Y 498 112.6 390

G | 1126 675 52.9

B 67.5 63.2 29.1

P 63.2 48.6 20.4 |

RP 48.6 42.0 14.2 .

Table 5.7: The exact distance in CIELUV between a colour, its clockwise neighbour (CW d), and its
counter-clockwise neighbour (CCW d), as well as the linear separation from the other colours when it acted
as a target

Mean response error was 3.8%, which shows responses were accurate. Although response
times are somewhat better than those from the original seven-colour study, several colours
(in particular R, YR, and RP) still exhibit poor search performance. Linear regression fits
suggest the R target had a per element response time increase of 5.1 msec and 17.2 msec
for target present and target absent displays, respectively. Results for the P térget were
5.7 msec and 15.2msec per element; for the RP target they were 5.1 msec and 7.8 msec per
element. This can be explained by examining the distance between neighbouring pairs of
colours, and the linear separation for each colour when it acted as a target (Figure 5.7).
Colours that gave the worst search performance had the smallest neighbour distances and
linear separation (R, YR, and RP); in fact, the R, YR, and RP targets had a linear separation

that was smaller than the one used during the nine-colour study. Colours that gave the best

search performance had the largest neighbour distances and linear separation (G, B, and Y). -
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5.9 Experiment 3: Colour Seléction

Results from our colour category experiment show that category alone cannot be used to
ensure consistently good identification based on colour. Colour distance and linear separation
need to be considered, because they do have an effect on search performance. We used a

more systematic colour selection technique to choose another set of seven colours:

a single gr'een was chosen from the combined G-GY colour region; observers see the

entire region as green, which means it can be used for only a single colour

e the clockwise neighbour of our green was a yellow, chosen to lie on the border between

the GY and Y colour regions

e the counterclockwise neighbour of our green was a blue-green, chosen to lie in the
center of the BG colour region (we did not use the colour from the border between G

and BG, because it was too difficult to differentiate from our green)

e the remaining four colours (chosen from the YR, R, RP, and PB colour regions) were

at equal steps between our yellow and our blue-green

This gave us a constant neighbour distance d and linear separation ! (59.4 AE* and
24.6 AE*, respectively) between the Y, YR, R, RP, PB, and BG colours (G had a larger.d
and [ than the other colours). Results from displays using these colours. as targets are shown
in‘Figure 5.14. Mean response error was 5.6%. Response time graphs for all seven colours
are much flatter than in the original seven—bolou,r study, although G and Y still give mixed .
results during target-absent ‘displays (response time ipcreases aé we moved from 33 to 49
element displays of 3.5 msec and 5.5 msec per element, respectively). We could have further
differentiated these elements by choosing a yellow from the center of the Y colour region

(rather than at the GY—Y border). This might have resulted in poorer performance for other
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Figure 5.14: Response time graphs for the second colour-category study, the graph on the left represents
displays where the target was absent, while the graph on the right represents displays where the target was
‘present

targets due to the reduction in colour distance d and linear separation ! between our Y,
YR, R, RP, PB, and BG colours, however. It appears that seven isoluminant colours is the

maximum we can display at one time, while still allowing rapid and accurate identification -

of any one of the colours.




Chapter 6
Real-Time Visualization

The techniques we have discussed thus far are all based on static display frames. A static
frame is shown to a user in isolation, usually for a fixed exposure duration. After that time
the display is cleared, and the user tries to answer questions based on visual features that

were present in the display (e.g., target detection, boundary detection, region identification,

~ or estimation). Work to date in preattentive processing has focused on finding features and |

tasks that occur in exactly these kinds of static displays.

An obvious drawback to static frames is their maximum resolution, which is limited by
the maximum screen size in pixels. We decided to try to extend our static techniques to a
dynamic visualiiation environment. A dynamic environment displays a sequence of frames -
to the user one after another. Each frame is shown for a fixed period of time, after which
it is replaced by the next frame in the sequence. An obvious question to ask is: If I can
perform tasks in 200 msec on a static frame, can I perform the séme tasks on a sequence of

frames displayed at five frames per second?

We believe dynamic.visualization techniques can be used to address the problem of large
datasets. Although we did not explicitly study methods for decomposing a dataset into a
sequence of two-dimensional display frames, many datasets can be easily modified to satisfy

this requirement. For example, time-varying datasets can be subdivided along the time axis.

139
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Three-dimensional volumetric models can be decomposed into a stack of two-dimensional
slices. If a dataset can be reduced in this manner, it can be analysed using our dynamic
visualization techniques. Recall that our definition of a large dataset is one containing on
the order of one million elements. Suppose a one million element dataset is reduced to
2,500 individual display frames, each of which contains 400 elerﬁents. If each frame could be
displayed and analysed in 200 msec, the entire dataset could be viewed in 500 seconds (or
just over eight minutes). Assuming users spend only 20% of the time browsing the dataset
(and 80% performing other visualization and analysis tasks), they could still view the entire |

dataset in about 45 minutes.

We approached real-time multivariate visualization by defining a set of requirements that

~ we feel are inherent to this class of problem:

e multidimensional data: the technique should be able to display multidimensional data .

in a two-dimensional environment, the computer screen

e shared data: the technique should display independent data values simultaneously;
a single user could choose to examine various relationships, or multiple users could

simultaneously examine independent data values

e real-time data: the technique must function in a real-time environment, where frames

of data are continuously generated and displayed one after another

e speed: the technique should allow users to rapidly obtain useful and nontrivial infor-

mation; here, “rapidly” means in less than 250 msec per data frame

e accuracy: information obtained by the users should accurately represent the relation-

ship being investigated

Using an approach that extends our previous work on static visualization, we decided to
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use preattentive i)rocessing to assist with real-time (dynamic) multivariate data visualization.
We hypothesized that important aspects of preattentive processing will extend to a real-
time environment. In particular, we believe real-time visualization techniques based on
preattentive processing will satisfy the five requirements listed above. A visualization tool -
that uses preattentive features will allow‘viewers to perform rapid and accurate visual tasks
such as grouping of similar data elements (boundary detection), detection of elements with
a unique characteristic (target detection), and estimation of the number of elements with a
given value or range of values, all in real-time on temporally animated data frames. We tested
this hypothesis using behavioral experiments that simulated our preattentive visualization
tools. Analysis of the experimental results suppbrted our hypothesis for boundary and
target detection. Moreover, interference properties previously reported for static preattentive

visualization were found to apply to a dynamic environment.

6.1 Experiment 1: Boundary Detection

Through experimentation we sought to determine whether or not research in preattentive
processing can helb design more useful and intuitive scientific visualization t‘oolrs. Specifically,
we investigated whether preattentive tasks and interference effects exteqd to a real-time
visualization énvironment, where frames of data are displayed one after another. Our first
experiment addressed two general questions about preattentive features and their use in our

visualization tools.

e Question 1: Is it possible for subjects to detect a data frame with a horizontal boundary

within a sequence of random frames? If so, what features allow this and under what

conditions?
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e Question 2: Do Callaghan’s feature preference effects apply to our real-time visu-
alization environment? Specifically, does random hue interfere with form boundary
detection within a sequence of frames? Does random form interfere with hue boundary

detection within a sequence of frames?

These questions were designed to address the requirementé described in the introduction to
this chapter. Detection of boundaries and groups is one example of a common data analysis

task. If preattentive features can be used to help perform the task, we could employ this
| technique to rapidly explore large amounts of data. Real-time applications could also use -
this technique for effective real-time visualization. Evidence that boundary detection and
corresponding interference effects occur as expected in a real-time environment would imply
that other preattentive tasks (e.g., target detection, counting, and estimation) might also
extend naturally. The ability to encode multiple unrelated data values ih a single.display
would allow users to visualize multidimensional datasets, or to “share” the display, but only |

in cases where no interference occurs.

We decided to examine two preattentive features, hue and form. This was done by
running experiments that displayed 14 x 14 arrays of coloured circles and squares (Figures 6.1
and 6.2). These features are commonly used in existing visualization software. Both hue
and form have been shown to be preattentive by Triesman, Julész, and others [Julész and
Bergen, 1983; Triesman, 1985]. Moreover, Callaghan’s research has shown that hue exhibits
a strong interference effect over form during certain preattentive tasks [Callaghan, 1989]. All

of this suggests that studying how hue and form interact in a preattentive environment is

both an important and an interesting question.
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Method

We had to pick two hues and two forms (or shapes) to use during our experiments. We chose
a circle and a square for our two forms. These shapes have been shown to be preattentive

during numerous target and boundary identification experiments. Our hues were chosen
" from the Munsell colour space. Because Munsell is a perceptually balanced colour space, it
can be used to choose hues that are isoluminant. This is necessary, because intensity itself is
a preattentive feature, and therefore must be equal for both hues. The exact hues we used
were a red (Munsell 5R 7/8) and a blue (Munsell 5PB 7/8). Previous experiments ensured
that the perceived difference between these two hues Vwas large enough to be preattentively

detected. Healey et al. [1993] describes how this was done.

The experiment was split into two subsections B; and Bj of 200 trials each. The first
subsection tested a subject’s ability to detect a horizontal boundary defined by hue (i.e., red
and blue). The second subsection tested a subject’s ability to detect a horizontal boundary
defined by form (i.e., circle and square). Each trial was meant to simulate searching for a
horizontal boundary while visualizing real-time data. A trial consiéted of 18 separate data
frames displayed to the subject one after another. Each‘frame contained 196 elements, and
was shown for a fixed amount of time (between 50 and 150 msec) that was chosen before the '
trial started. After viewing a trial, users were asked to indicate whether a frame containing
a horizontal boundary had been present or absent. For “boundary present” trials, one of
the 18 data frames was randomly chosen to contain a horizontal boundary. The remaining
frames displayed a random pattern of features (with no horizontal boundary present). In

“boundary absent” trials, all 18 frames displayed a random pattern of features; no frame .

contained a horizontal boundary.

Trials in each subsection were divided equally between control trials, where a secondary

feature was fixed to a specific constant value, and experimental trials, where a secondary
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feature varied randomly from element to element. This allowed us to test for feature inter-
ference. Better performance in control t;ials versus experimental trials would suggesf that
using a secondary feature to encode an “irrelevant” data value interfered with a subject’s
boundary detection ability. We tested for both form interfering with hue boundary detec-
tion and hue interfering with form boundary detection. This experiment design gave us the

following six subsections:

1. hue-circle control, horizontal boundary defined by hue, all elements are circles (Fig-

ures 6.1a — 6.1b).

2. hue-square control, horizontal boundary defined by hﬁe', all elements are squares (Fig-

ures 6.1c — 6.1d).

3. hue-form erperimental, horizontal boundary defined by hue, half the elements are ran-

domly chosen to be circles, half to be squares (Figures 6.1e — 6:1f).

4. form-red control, horizontal boundary defined by form, all elements are red (Fig-

ures 6.2a — 6.2b).

5. form-blue control, horizontal boundary defined by form, all élements are blue (Fig- .

ures 6.2c — 6.2d).

6. fofm-hue ezperimental, horizontal boundary defined by form, half the elements are

randomly chosen to be red, half to be blue (Figures 6.2e — 6.2f).

Six subjects (five males and one female, aged 21 to 33) with normal or corrected acu-
ity and normal colour vision volunteered to be tested. The experiments were conducted in
the Computer Science Department’s computer graphics laboratory, using a Silicon Graphics

workstation equipped with a 21-inch colour display. The software used to conduct the exper-

iments was written specifically to investigate preattentive visualization techniques. It used
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Figure 6.1: Example data frames from subsection B; of the boundary detection experiment (hue boundary
detection): (a) control trial with all circles, horizontal boundary present; (b) control trial with all circles,
boundary absent; (c) control trial with all squares, horizontal boundary present; (d) control trial with
all squares, boundary absent; (e) experimental trial with random form, horizontal boundary present; (f)
experimental trial with random form, boundary absent
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Figure 6.2: Example data frames from subsection B, of the boundary detection experiment (form boundary
detection): (a) control trial with all red, horizontal boundary present; (b) control trial with all red, boundary
absent; (c) control trial with all blue, horizontal boundary present; (d) control trial with all blue, boundary
absent; (e) experimental trial with random hue, horizontal boundary present; (f) experimental trial with
random hue, boundary absent
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the display’s vertical refresh to ensure accurate millisecond timing. Each subject completed
both subsections of the experiment with three different frame exposure durations: 50 msec,

100 msec, and 150 msec.

At the beginning of the experiment, subjects were shown a sample display frame. The
~ experiment procedure and task were explained. Subjects were also shown how to enter their
answers (either ;‘present” or “absent”)‘ using the keyboard. Subjects began both subsections
of the experiment with a set of practice trials. This consisted of 40 trials, 20 control trials split
evenly between the two'types of controls (i.e., ten trials with all circles and ten trials with
all squares for subsection By, ten trials with all red and ten trials with all blue for subsection-
B,) and 20 experimental trials. Ten control trials and ten experimental trials contained a
horizontal boundary; the remaining trials did not. Ekposure duration for practice trials was
100 msec per frame. The practice trials were designed to give the subjects an idea of the
~speed of the trials and the experiment. Trials were displayed one after anothér, and subjects |
were asked whether a horizontal boundary had been present or absent after each trial. If
a subject responded correctly, a plus sign was shown follbwing the response. If a subject
responded incorrectly, a minus sign was shown. Feedback (plus or minus) was displayed in
the center of the screen for 400 msec, at a size of approximately twice that of a single data

element (1.2 cm or subtending a visual angle of 1.1° at 60 cm).

Next, subjects completed the two- experiment subsections B; and B,. Each subsection
consisted of 100 control trials and 100 experirﬁental trials. Fifty control trials and 50 ex-
perimental trials contained a horizontal boundary; the remaining trials did hot, The 200
trials from each éubsection were presented to the subjects in a random order. Subjec;cs were
provided with an opportunity to rest after every 50 trials. Feedback (plus or minus) was dis-
played after every subject response. Subjects completed both subsections three times using

three different exposure durations: 50 msec per frame, 100 msec per frame, and 150 msec

per frame. Frames with a given exposure duration were presented to subjects as a separate
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- group (e.g., a subject completed all the 100 msec ffameé,_ followed by the 50 msec frames,
then finished with the 150 msec frames). Thevordering of the three exposure duration groups

was random for each subject.

Results

~ The primary dependent variable examined was percentage error. Error was zero for trials
where subjects respoﬁded correctly, and one for trials where they resp_o‘nded incorrectly. We -
began our analysis by dividing trials across the following experimental conditions, averaging

l response errors for each subject, then computing a mixed—factors‘ANOVA on the results:
e feature type; hue if a difference in hue defined the horizontal boundary, form if a
difference in form defined the horizontal boundary

- e trial type; control if the secondary feature was fixed to a constant value, experimental

if it varied randomly from element to element

e block; BK; if a trial came from the first 100 trials the subject completed, BK, if it

‘came from the last 100 trials
e exposure; 50, 100, or 150 msec, depending on a trial’s display duration

e location of boundary frame (for experimental trials that contained a boundary frame);’
front if the boundary frame appeared during the first nine frames shown the the subject, .

back if it appeared during the last nine frames

Main effects with a p-value of less than 5% were considered significant. Results from the

- ANOVA suggested the following conclusions:
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e rapid and accurate boundary detection can be performed using either hue or form,;
errors increased when exposure duration fell below 100 msec for both hue and form

-boundary detection

e form did not interfere with a subject’s ability to detect a hue boundary at either 150

or 100 msec

e hue interfered with a subject’s ability to detect a form boundary at both 150 and 100

msec

e accuracy was greater for hue than form, with this difference growing as exposure du-

ration decreased

e there was no preference for the frame location of the target during either hue or form

boundary detection

Figure 6.3 shows combined subject data for subsections B, (hue boundary detection)
and B, (form boundary detection). The results indicate that hue boundary detection was
quite accurate at all three exposﬁre durations, with the most errors (about 13%) occurring,
in the experimental trials at 50 msec. Although errors for form boundary detection. were
uniformly higher than for hue boundary vdetection, subjects were still quite accurate at 100
msec (approximately 9%). Past that point, error rapidly approaches the chance limit of 50%,

with an error rate of 36% at 50 msec.

Errors were generally higher for the form task than for the hue task, with F'(1,10) =
46.51, p = 0.001. The feature type by exposure duration interaction of F'(2,20) = 45.54, p = |
0.001 was also significant. Additional F-values were computed to see how error varied
across feature type (i.e., hue and form) during the three exposure durations. In two of

the three individual comparisons, hue accuracy was significantly greater than form accuracy

(p-values ranged from 0.02 to 0.001). The one exception concerned 150 msec trials, where
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Figure 6.3: Graph of proportional error as a function of exposure duration for hue and form boundary trials;
numbers represent exact proportional error values for each data point

F(1,5) = 2.04, p = 0.19. Differences in accuracy increased as exposure duration decfeased,
suggesting that the perceived difference between our two hues was larger than the perceived

difference between a circle and a square.

ANOVA results of F(1,10) = 16.34, p = 0.02 showed a significant difference in errors be-
tween control and experimental trials. A feature type by trial type interaction of F'(1,10) =
3.56, p = 0.09 suggested interference was present during both hue and form boundary de-
tection. Moreover, a trial type by exposure duration interaction of F(1,10) = 1.10,p=035
indicated interference at all thvre'e exposure durations. Simple ¢-tests coinparing control and
* experimental trials across exposure duratiori showed weak interference (at a significance level

of 10%) during form boundary detection for 100 and 150 msec trials. Thus, the hue-on-form

interference effect must be considered small, albeit consistent. Corresponding results for hue
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boundary detection found weak interference (at a significance level of 10%) for 50 msec trials.
This is similar to Callaghan’s [1989, 1990] static boundary detection experiments, although'

weak hue interference during form boundary detection was not reported in her results.

There was a significant exposure duration effect, F'(1,10) = 197.66, p = 0.001. Individual
F-values for thé four conditions shown in Figure 6;3 (form boundary experimental, form
boundary control, hue boundary experimental, and hue boundary cpntrdl) were all p = 0.001.
Fisher’s protected least significant difference (PLSD) values identified significant differences
between exposure durations (50,100) and (50, 150) in all four conditibns, but not between
(100., 150). We concluded that the high F-values were due to rélatively higher errors during

the 50 msec trials.

Finally, the results showed no boundary frame location preference for either hue (F(1,5) =
2.37, p = 0.18) or form (F'(1,5) = 0.05, p = 0.83) boundary detection. Moreover, there was
no consistent effect of trial block. Whereas errors actually increased from BK; to BKj; in |
the hue condition, F'(1,5) = 17.44, p = 0.01, they decreased (non-signiﬁcqntly) over time in
the form condition, F(1,5) = 5.51, p = 0.07. There were no other significant interAact‘ions of
the block factor with other factors of interest. We can draw no conclusions about the effects

of practice or fatigue without performing additional experiments.

6.2 Expériment 2: Target Detection

We continued our investigation of real-time preattentive visualization by studying temporal

target detection. Our second experiment addressed two additional questions about ‘preat-

tentive features and their use in our visualization tools.
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e Question 1: Is it possible for subjects to detect a data frame containing a unique target
element in a sequence of random frames? If so, what features allow this and under

what conditions?

e Question 2: Does any interference occur when viewing a dynamic sequence of data
frames? Specifically, does random hue interfere with form target detection? Does

random form interfere with hue target detection?

As with temporal boundary detection, these questions are specifically designed to address
our visualization requirements. The ability to perform target detection using preattentive
features would provide further justification for their use in exploring large datasets or visual-
ization results from real-time applications. Our experiments also searched for any new types
of interference that might occur as a result of viewing a dynamic sequence of data frames

during visualization.
Method

We chose to test the same two visual features (hue and form) used during the boundary
detection experiments. Target detection experiments consisted of frames containing 125 '
elements (Figures 6.4 and 6.5). The position of the elements was held constant in every
frame. Hue and form were the same as in the boundary detection experiments, specifically

a red (Munsell 5R 7/8) and a blue (Munsell 5PB 7/8) hue, a circle and a square form.

As in the first experirﬁent, temporal target detection was split into two subsections T; -
-and Ty of 200 trials each. The first subsection tested a subject’s ability to detect a target
element defined by hue. The second subsection tested a subject’s ability to detect a target

element defined by form. Each trial was meant to simulate searching for a target element

while visualizing real-time data. A trial consisted of 18 separate data frames, which were
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displayed to the subject one after another. Each frame was shown for a fixed amount of
time (either 50 or 106 msec) that was chosen before the trial started. After viewing a trial;
users were asked to indicate whether a frame containing the target elerﬁent had been present
or absent. For “target present” trials, one of the 18 data frames was randomly chosen to
contain the target element. The remaining frames did not contain a target element. In

“target absent” trials, none of the 18 frames contained a target element.

As with boundary detection, we tested for feature interference by dividing each’éubsection
into control and experimental trials. In control trials, the secondary feature was fixed to a
speciﬁc constant value; in experimental trials, it varied randomly from element to element. |
We tested for both form interfering with hue target detection, and hue interfering with form

target detection. This gave us the following six subsections:

1. hue-circle conirol, target element is a red circle, all distractors are blue circles (Fig-

ures 6.4a — 6.4b).

2. hue-square control, target element is a red square, all distractors are blue squares

(Figures 6.4c - 6.4d).

3. hue-form experimental, target element is a red circle, half the distractors are randomly

chosen to be blue circles, half to be blue squares (Figures 6.4e — 6.4f).

4. form-red control, target element is a red circle, all distractors are red squares (Fig-

ures 6.5a — 6.5b).

5. form-blue control, target element is a blue circle, all distractors are blue squares (Fig- -

ures 6.5¢ — 6.5d).

6. form-hue ezperimental, targe_t element is a red circle, half the distractors are randomly

chosen to be red squares, half to be blue squares (Figures 6.5e — 6.5f).
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Figure 6.4: Example data frames from subsection T, of the target detection experiment (hue target detec-
tion): (a) control trial with all circles, red target present; (b) control trial with all circles, target absent;
(c) control trial with all squares, red target present; (d) control trial with all squares, target absent; (e)
experimental trial with random form, red target present; (f) experimental trial with random form, target
absent
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Figure 6.5: Example data frames from subsection T, of the target detection experiment (form target de-
tection): (a) control trial with all red, circle target present; (b) control trial with all red, target absent; (c)
control trial with all blue, circle target present; (d) control trial with all blue, target absent; (e) experimental
trial with random hue, circle target present; (f) experimental trial with random hue, target absent
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Six subjects (five males and one female, aged 21 to 33) With normal or corrected acuity
and normal colour visibn were tested. Five of the six subjects also pafticipated in Experiment
1. At the beginning of the experiment, subjects were shown a sample display frame. The
experiment procedure and task were explained. Subjects were shown how to enter their
answers (either present or absent) using the keyboard. Subjects began both subsections’.
of the experiment with a set of practice trials similar to those for the boundary detection
experiments. Exposuré duration for practice trials was 100 msec per frame. Trials were
displayed one after another. Subjects were asked whether a target element had been present
or absent for each trial. Correct or incorrect responses were signalled by a plus or a minus

sign.

Next, subjects completed the two experiment subsections T; and T2. Each subsection
consisted of 100 control trials and 100 experimental trials. Fifty control trials and 50 exper-
imental trials contained a target element; the remaining trials did not. The 200 trials from
each subsection were presented to the subjeéts in a random 6rder. Subjects were provided |
with an opportunity to resf after every 50 trials. Feedback (plus or minus) was displayed
after every response. Subjects completed both subsections two times using two different
exposure durations: 100 msec per frame and 50 msec per frame. The ordering of the two

exposure duration groups was random for each subject.

Results

The primary dependent variable was again percentage error. A mixed-factors ANOVA was
computed across the same conditions used for analysing boundary detection. The only

difference was the number of possible values for exposure duration: 50 or 100 msec, depending

on the trial’s displéy duration. Results from the ANOVA can be summarized as follows:
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e rapid and accurate tdrget detection could be performed using hue at both 50 and 100
 msec exposures

e similar rapid and accurate tafget detection based on form was possible only when hue -

was held constant
e form variations did not interfere with the ability to detect a hﬁe-de_fined target
e hue variations did interfere with the ability to detect a form-defined target

e there was no preference for the frame location of the target during either hue or form

target detection
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Figure 6.6: Graph of mean error as a function of exposure duration for hue and form target trials; numbers
represent exact proportional error values for each data point '

Figure 6.6 graphs combined subject data for subsections T; (hue target detection) and

T, (form target detection). The results show that hue target detection is very accurate
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at both exposure durations for control and experimental trials (a maximum of 1% error).
In contrast, form target detection was very accurate for control trials (3% error), but not
for experimental trials (24% error at 100 msec and 27% error at 50 msec). There were no

significant effects of exposure duration in any of the four conditions.

A feature type by trial type interaction of F'(1,10) = 62.52, p = 0.001 suggests interfer-
ence during one of the two target detection tasks. The difference in errors between control
and experimental trials was significant in the form task, F'(1,5) = 103.58, p = 0.001, but not
in the hue task, F(1,5) = 1.62, p = 0.26. There was no feature type by trial type by expo-
sure duration interaction, F'(1,10) = 0.39, p = 0.55. Thus, as with our boundary detection
task and Callaghan’s [1989, 1990] static displays, random hue interferes with form target
detection at both exposure durations, while random form does not interfere with hue target
detection at either exposure duration. This provides further evidence for concluding that -
the perceived difference that can be obtained by using two hues is larger than the difference

obtained from a circle and a square.

Figure 6.6 shows that errors were ‘generally higher for the form task than for the hue
task. ANOVA results sﬁpported this, with F(1,10) = 46.51, p-= 0.001. There was no
feature type by exposure duration interaction, F(1,10) = 0.10, p = 0.76. This means hue
© target detection was easier than form target detection at both exposure durations. Combined
with hue interference during form target detection, this sﬁggests that hue should be used as

a primary feature when searching multidimensional data elements for a specific target.

As with the boun’dary detection task, there were no frame location effects for either |
hue, F(1,5) = 1.26,p = 0.31, or form, F(1,5) = 1.04, p = 0.35. The effects of trial

block were again mixed. Errors were lower in BK; (Z = 0.06) than in BK, (T = 0.14),

F(1,5) = 56.81, p = 0.001 for form targets, but did not differ significantly for hue targets,

F(1,5) = 0.79,p = 0.41.. There were no significant interactions of trial block with other
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factors of interest.




Chapter 7

Dataset Management

. - This chapter reviews a number of techniques used to offer different levels of scientific dataset

management Early systems implemented simple selection, filtering, and type conversion
operations. Researchers are now combining commercial relational database and visualization
tools to build hybrid visualization systems. The advantage of such a system is direct access
to the functionality provided by the underlying database. Unfortunately, the relational
database model is not well-suited to handling errors, noise, and missing values that often
occur in scientific datasets. We review a promising new area of database research, knowledge
discovery, and discuss how this technique might be used to focus and compress a dataset
before it is visualized. The next chapter (Knowledge Discovery in Visualization) describes -
how we implemented and extended four known knowledge discdvery algorithms. These
algorithms were integrated into our visualization environment and then applied to a number

of practical applications to test their effectiveness on real-world data and tasks.

Underlying every visualization tool or technique is the dataset to be visualized. Recent
developments in computing have created several high volume data sources. Examples include
supercomputers, satellites, geophysical monitoring stations, and medical scanners. Much of

this data is stored without ever being fully used, due in part to the amount of time required

to apply traditional analysis techniques. Many scientists now believe efficient access to and
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management of these datasets is an important area of research in scientific visualization.
The ability to select, combiné, and filter data before it arrives at the visualization tool could
significantly reduce the amount of information that needs to be displayed. More advanced

techniques would allow users to classify, detect trends and relationships, and build rules that |
describe dependencies among attributes. Use of this “discovered” information can improve

accuracy and dramatically reduce the size of the dataset being visualized.

Various panels and workgroups: studying visualization have addressed the data man-
agement problem. Lloyd Treinish chaired a panel at ACM SIGGRAPH in 1989, devoted
specifically to data management in scientific visualization [Treinish. et al., 1989]. The need
for efficient data management tools was exemplified by the NASA digital data archive. At
that time, the database was apprdximately six terabytes in size, and was doubling roughly
every’two years. Treinish described a database where every underlying dataset used the same
data format (e.g., Common Data Format or Hierarchical Data Format). Filters that per- |
formed tasks such as scaling, projection, discretizétion, and data conversion sat between the -
database and various visualization tools. These techniques were implemented in a multidi-
mensional visualization tool used to display NASA satellite and earth science data [Treinish
and Goéttsche, 1991]. Foley and Campbell discussed the design of data models that effi-
ciently connect visualization tools to their underlying datasets. This was followed by the
Intelligent Data Management (IDM) project, ‘designedi for NASA’s National Space Science
Data Centre [Cambell et al., 1989]. IDM was an attempt to develop a generalized set of data
4management tools that could be used by scientists from any of the space or earth science
disciplines supported at NASA. The system uses techniques such as natural language query, .
expert systems, and inference reasoning to provide users with a simple interface into large

multidimensional datasets.

Discussions conducted by Wolff with a number of visualization experts yielded a similar

focus on the data management problem [Brown et al., 1988; Wolfe and Franzel, 1988]. Panel
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members noted that visualization arose from the need to analyse an ever-increasing amount
of data. Graphica,lldisplays are one method for improving our understanding of the data.
Unfortunately, even the most efficient visualization tool cannot necessarily display large or
high-dimensional datasets quickly or effectively. Some form of management through filtering

or data compression is needed if users hope to view even a small portion of their databases.

A recent update on the NSF visualization projéct described current and ongoing research
being performed at a number of academic institutions [Rosenb'lum, 1994]. Although many
visual presentation techniques have been studied (e.g., volume visualization, fluid ﬂ.ow, and
perceptual visualization), much less work has focused on improving data management. The
problems cited by the original panel still persist. Datasets continue to grow in size, and with

this our inability to analyse even a small fraction of their contents.

7.1 Database Management Systems

Some researchers have addressed the data Ihanagement issue in scientific visualization. An
obvious approach would be to use a combination of commercial database managemént'sys— _
tems (DBMS) and visualization packages. However, initial work focused on data manage-

ment techniques that were independent of the available visualization or database manage-

ment tools. This was due in large part to the limitations inherent in these systems. An

examination of popular visualization tools such as AVS, apE, VIS-5D, and Explorer reveals
that these. packages provide relatively few data management tools [Upson, 1989; Hibbard
and Santek, 1990; Vande Wettering, 1990]. Normally, these systems read data directly from
already-existing files. Manipulation of data within the system is limited to operaﬁons such

as applying regular grids, selection, clipping, and type conversion. Moreover, these opera-

tions support only a fixed set of built-in data types. Like visualization tools, DBMSs were
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restricted to a fixed set of data types and basic operations. Moreover, relational DBMSs
are not well suited to handling scientific datasets. Problems such as size, complexity, and
the inability to match the conceptual framework of the dataset to a relational model (e.g.,

spatial datasets) are difficult to overcome. -

Treinish has developed a flexible multidimensional visualization system [Treinish and
Goettsche, 1991] designed to help scientists analyse the data they produce. This goal led to
a number of system requirements. In particular, Treinish felt that a discipline-independent
System should handle arbitrary types. of data. In order to meet these requirements, Treinish

proposed a construct called the visualization pipeline designed as follows:

e Raw data is stored in a data repository in some abstract, data-independent format
(Treinish suggests ﬁsing the Common Data Format). Users can select the data they

want to visualize fromthe repository.

e The selected data can be passed through a number of filters, in order to convert it
into the desired format. These may include scaling and projecting the data, as well as

conversion to a specific format or coordinate system.

e If the data is continuous, it may need to be sampled or gridded to a user-selected:

resolution.

¢ Finally, the data is visualized or rendered using one of a number of visualization tools
provided with the system (e.g., two and three-dimensional plots, contour plots, sur-

faces, or flow fields).

Treinish stressed the importance of the data repository and the supporting data manage-
ment facilities (3. e., simple data selection queries, followed by filtering operations like scal-

ing, rotation, projection onto a 2D plane, and gridding). He felt this was key to allowing
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discipline-independent visualization. Data selection and manipulation is separated from data
visualization. This gives the user the flexibility to work with arbitrary datasets and a vari-
ety of visualization techniques. Treinish continued his discussion of data management issues
by listing a set of requirements and goals for a generalized data management system that
supports scientific visualization [Treinish, 1993]. Included in his discussion were examples
of data types, dimensionality, rank, and spatial arrangement, as. well as a review of which

requirements are addressed or solved by popular visualization packages.

Commercial visualization tools and DBMSs are much more prominent in recent work on
data management in visualization. In large part, this is because both are now designed to
be extensible. For example, users can write new visualization “functions” using traditional
programming languages and integrate them seamlessly into many of the current visuaiization
packages. The same is true for DBMSs like Postgres, Oracle, IRIS, and Orion. These
systems support enhanced data models that allow users to define new data types, as well
as operations and functions to support them. Recent work has concentrated on writing
functions to integrate visualization packages with popular database management programs.

This makes the functionality of the DBMS available from within the visualization system.

Kochevar and Ahmed describe a system that allows users to locate and visualize data -
using a graphical browser built on top of Postgres database files [Kochevar et al., 1993].
Postgres was chosen because it supports the following enhanced database features:

o user-defined data types and user-defined functions that perform operations on them

e “large objects”, which represent a collection of bytes whose structure is unknown to

Postgres; user-defined functions are required to perform operations on large objects

e an “inverted” file system within Postgres to manage large objects

- Datasets are stored as large objects inside Postgres. The key to this method is including
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a description of each dataset within the dataset i.tself. This allows a dat@éet to describe
its structure to other programs, in particular to external visualization tools. An applica-
tion program called the Visualization Executive is used to browse through the collection of
datasets, in a manner similar to using a file browser. When a user selects a specific dataset, ‘
a visualization package is spawned, the dataset’s description is sent to the package, and the
contents of the dataset are displaye'd. Scripts for each dataset specify. the particular visu-
alization tool to use, and the commands needed to start its execution. This information is

also stored within the dataset.

The Visualization Executive allows users to view their datasets using any one of a number
of popular visualization tools. Any package that supports scripting should be compatible
with this system. The loose cotipling that integrates Posfgres and the visualization tools is
possible because of the user-definable data types and functions availéuble in Postgres. Any
DBMS that provides similar functionality can be used to support this kind of visualization

methodology.

Tioga is an example of a tool that maintains a much tighter connection between the
visualization system and its underlying database [Stonebraker et al., 1993]. Tioga also uses
Postgres, although any DBMSs that supports user-defined data types, user-defined functions,
and multidimensional access methods (e.g., R-trees or grid files) would be sufficient. Tioga
provides an environment that allows users to build visualization programs. This is an;alogous
to other popular visualization systems such as AVS and Explorer. Because Tioga is built
directly on top of Postgres, hbwever, all of the functionality of a commercial DBMS is

available to Tioga users.

Tioga supports the traditional box and arrow method for building visualization systems.

Users create their programs in this type of environment using one or more boxes connected

together with arrows. Each box represents a data processing operation. Arrows describe how
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the data flows from box to box within the visualization system. A box must have at least one
input arrow to describe how and when it receives its data. Some boxes use output arrows to
send results forward to the next processing step (e.g., boxes that resample or transform data
elements). A box is not reQuired to output data, however (e.g., boxes that display results

on the screen).

Visualization systems built with Tioga are called recipes, and individual boxeé within
a recipe are .called ingredients. An important property of Tioga is that any user-defined
Postgres function is autorﬁatically an ingredient, available for use within a recipe. These -
Postgres-based ingredients can be conceptually divided into two groups: data management
functions and browsers. - Data management functions perform conventional operations such

as selection, projection, and join on the underlying datasets.

Browsers are designed to dfsplay screen images when the visualization program runs. In
order to support browsers, Tioga requires every visualization program to define an “applica-
tion coordinate space”. This is usually a simple N—dimensional codrdinate system, where
each dimension represents a data attribute that might be displayed on the screen. Database | |
objects can then provide an associated geometry that falls within the application coordi‘nate
space. The geometry of a single tuple is a point in N—space. A database object with multi-
ple tuples uses an N —dimensional polyhedron as its geometry. Users are required to provide
a display function for every user-deﬁnéd data type. A browser providés an object’s location
to the display function, which must then return a displayable version of the object’s value.
Browsers can move to any point in the application coordinate space. They also support the

~ ability to travel through application coordinate space, retrieving and displaying information -

repeatedly until some user-defined condition is met. This was used to “fly” through satel-

lite images of hurricane Hugo by travelling forwards and backwards along a time attribute

[Stonebraker et al., 1993).
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Both Kochevar and Ahmed [1993] and Stonebraker [1993] describe techniques that act
like “glue” to connect existing DBMSS and visualization packages. The systems’ data man-
agement abilities are still limited to the functionality provided by the DBMS. Since most
DBMSs are relational in nature, they have the same problems as their predecessors when
dealing with certain types of data. Spatial and temporal datasets do not fit well within the
traditional relational approach. Data with noise, nondet‘erministi'c- values, missing values,
or erroré are also difficult to store in a relational DBMS. Perhaps more importantly, even
enhanced DBMSs still have the same set of built-in operations (e.g., select, project, and
join). New techniques to support time, statistical summaries, classification, and knowledge |
discovery are not included and are difficult to provide, even with the ability to design new

data types and operations.

7.2 Knowledge Discovery

Knowledge discovery or data mining, as it is sometimes referred to, is a relatively new area
of database research [Silbershatz et al., 1‘990; Frawley et al., 1991]. Knowledge discovery is
defined as “the nontrivial extraction of implicit, previously uﬁknown, and potentially useful
information from data”. This is done by combining a variety of database, statistical, and
machine learning teéhniques.' Although knowledge discovery uses research from all of these
areas, it is not a simple subset of any one of them. For example, traditional statistical
techﬁiqués are not well suited to the structured, incomplete, .and dynamic datasets used in
knowledge discovery. Moreover, the size of the datasets is offen beyond the ability of statistics
to analyze in an efficient manner. Because of this, a large gap is developing between the

amount of data being generated and the amount being used or understood.

Knowledge discovery methods are expected to read and process raw data stored in a
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database or data repository. The raw data has a number of inherent properties that must
be addressed by any knowledge discovery algorithm. Data stored in a database is dynamic.
It often has attributes that are irrelevant to the relationship beiﬁg investigated. There is a
measure of uncertainty associated with an attribute (e.g., due to inaccuracies in measurement
or recording of values). Tuples may contain missing entries, noise, or errors. Entire attributes
may be missing from the database (i.e., the given attributes. do not differentiate the data
uniquely). These properties often preclude the use of already-existing machine learning or

statistical techniques.

Based on this description, knowledge discovery algorithms satisfying the following four

conditions are sought:

1. A high-level language is used to represent discoveréd knowledge.
2. The discovered knowledge is interesting, nontrivial, and novel.
3. The discovered knowledge is reasonably accurate.

4. The knowledge discovery algorithms are efficient.

Because knowledge discovery uses techniques similar to those in statistics, machine learning,
expert systems, and database management systems, it is useful to describe some of the

differences between these disciplines.

o statistics
is not well suited for structured, incomplete, or dynamic data; data driven, it cannot

incorporate domain knowledge; results are difficult for non-experts to analyse; there is

no guidance on which statistics to conipute, and which results to analyse
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e database management systems ’
can extract useful, interesting, nontrivial results but are limited to the attributes con-
tained in the database; they cannot determine which calculations to perform to obtain

new information “buried” in the original datasets

e expert systems
often require data of much higher quality and integrity; usually only important cases

are covered

e machine learning
- data from a database is usually dynamic (.e., constantly changing or growing), incom-

plete, noisy, and large compared to machine learning datasets

Discovered knowledge comes in a variety of forms. Inter-field patterns show field depen-
dencies within a single tuple. Inter-record patterns cluster tuples into groups with common -
characteristics. This can be used to summarize data, or to show trends over time. Tech-
niques can alsd be divided into quantitative methods that relate numeric field values, and -
qualitative methods that find logical relationships in the dataset. Examples of tasks per-
formed by different algofithms include cluétering and pattern recognition, determining rules

to identify group membership, summarizing, discrimination, and comparison.

Various forms of knowledge discovery are currently being used in a number of practical
application environment's.' American Airlines uses knowledge discovery techniques to search
for trends in their frequent .ﬁyer database. Banks search their loans database to try to
improve methods for screening potential borrowers. General Motors has a large research
group applying knowledge discovery methods to automobile trouble reports; the results are
used to develop diagnostic expert systems for various car models. Food manufacturers use

supermarket check-out scanner data to measure promotion effects and search for shopper

patterns.
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Current research in knowledge discovery is focusing on a number of different problems.
Some techniqués attempt to incorporate expert user or domain knowledge into discovery
algorithms. Efficient algorithms are essential if they are to be applied to very large datasets.
Incremenfal methods that update themselves as the dataset changes over time are also
important. Researchers are studying the ability to integrate results from various techniques,

and to allow user interaction during the discovery process.

7.3 Managing Large Multidimensional Datasets

We hypothesise that knpwledge discovery techniques can be used to improve the efficiency of
visualizing large multidimensional datasets. The use of knowledge discovery in scientific data
management has been addressed briefly by Cambell and others [Cambell et al.A, 1989]. There -
are no descriptions of visualization tools that use knowledge diécovery explicitly, although
NASA’s IDM project does -use expert systems and inference reasoning to answer user queries
about earth science datasets [Treinish and Goettsche, 1991]. We believe the advantages of
knowledge discovery algorithfns are twofold. Firét, they can be used to reduce the amount of
data that needs fo be displayed. Second, they can be used to “discover” previously unknown

and potentially useful information. Some examples of how this can be done include:

e datasets can be filtered by identifying the subset of elements that participate in a
particular relationship being investigated; irrelevant data elements can be ignored and

do not need to be displayed

e attributes that are significant to a given relationship can be identified; only displaying

significant attributes reduces the dimensionality of each data element
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e data elements can be grouped or classified, and elements from specific groups can then

be displayed, reducing the amount of data being sent to the visualization tool

e data elements can be grouped or classified, and only the classification value (and pos-
sibly a confidence measure) can be displayed, compressing the dataset into one or two

dimensions

e significant dependencies or relationships between data elements or attributes can be

identified and displayed

e temporal data can be compressed' or filtered along the time akis, if a temporal data

attribute exists in the dataset

Because our tools will .be used for exploratory data analysis, we do not require techniques
that are 100% accurate. User knowledge about the dafasets being visualized can help to -
"determine the accuracy or relevance of results being returned. Each technique is expected to
provide confidence weights for the classifications, dependencies, and relationships it discovers.
These can be used to de.cidelhow “sure” the algorithm is about the results it suggests. This

might allow results from different algorithms to be combined in various ways.

Our focus is not on the design of new knowledge discovery algorithms. Instead, we
implemented four existing techniques, then used them in a visualization environment to see
if they offered improved efficiency or usefulness compared to visualization without any form
of data management. We modified and extended the algorithms to provide a set of unified
results required by our visualization tool, in particular, classification confidence weights, the -
ability to compare different possible classifications, and the ability to identify attributes that

are significant to a specific classification (these extensions are explained in detail in the next

chapter).
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s the number of tuples in the dataset to be classified

N the number of attributes in each tuple to be classified
{A;,...,An} | the N individual attributes in each tuple to be classified
' n; the number of unique values for attribute A;
{ai1,- .. ,ai,n;} the n; unique values for attribute A;
P | the number of possible classification values
{c1,...,cp} | the P individual classification values

Table 7.1: An explanation of the common terms used to describe the four knowledge discovery algorithms

The four knowledge discovery algorithms we used are described below. Two of the tech-
niques, Quinlan’s ID3 approach and Agrawal’s interval classifier, use decision trees to rep-
- resent classification rules. The other two methods, Chan’s statistical tables and Ziarko’s
rough set algorithm, build classification rules using mathematical and statistical analysis
of an initial training dataset. These four techniques offer a good overview of the types of
methods being used for knowledge discovery. Table 7.1 identifies the common terms used to

describe each knowledge discovery algorithm.

7.4 Decision Trees

One of the first knowledge discovery techniques applicable in a database environment was
a method proposed by Quinlan called ID3 [Quinlan, 1986]. ID3 builds a decision tree from
an initial training set where each tuple in.the set has been previously classified into oné
of P possible values. Thé decision'treeiis then used to assign a classification value ¢ to -
unclassified tuples. 'ID3 was specifically designed to handle noisy and erroneous data. This

means it can be used for knowledge discovery in a database environment.

The algorithm begins by selecting significant attributes from the training set. Assume
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that the training set has p; tuples with classification value ¢, ps tuples with classification
value ¢y, and so on up to pp tuples with classification value cp. Moreover, any attribute A;
can be used to subdivide the training set into n; subsets {S,...,Sy}. Each subset S; has
pi1 tuples with classification value ¢, p;2 tuples with classification value c;, and so on. The
expected value p; ; of p” is proportional to the number of tuples with classification value c;

in the original training set, namely

— Dj ) . :
L= size; 7.1)
Pis Qﬁmrw~+m ' | (7-1)

where size; = Ele p; ; represents the number of tuples in subset S;. The expected values

can be used to perform a chi-squared independence test on attribute A4;, by computing

n; P ( .. ™ 2

P ; p., )

R | (7.2)
i=1j=1 Dy

The chi-squared value can be used to determine whether attribute A; can be rejected

as independent of the values chosen for classification. Usually, only attributes with a high

confidence level (e.g., 99.9%) are marked as significant. These attributes are then used to

build a decision tree.

The attribute that provides the largest information gain is used to partition the root of
the decision tree. The tree is simply a data structure that returns a classification value ¢
for an unknown tuple. This is done by traversing the tree from root to leaf and returning -
the classification value stored at the leaf. Attribute values in the unclassified tuple are used
to direct the path at each node in the tree (this is described in a more detailed example

below). The expected information needed to generate this result is:
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: Pi Di
I(P)=) — lo 7.3

(P) ; total " total _ (7.3)
where total = Zf—il p;. If A; is chosen to be used at the root of the decision tree, the training
set is subdivided into n; subsets {Si,...,Sp,}. The expected information required for each
subtree S; is I(S;). The expected information required for the decision tree with A; as root

is the weighted average

i

E(Ai) =)

i=1

size;
total

I1(S:) (7.4)

Because information gain is defined as gain(A;) = I(P) — E(A;) and I(P) is constant,
maximizing gain is the same as minimizing expected information. The attribute with the .

minimum expected information is used at the root of the decision tree.

Subtrees are processed in a recursive manner. The expected information for the remaining
attributes in each S; is computed. This is used to choose an attribute for the root of the

subtree. Subdivision continues until one of two stopping conditions is reached:
1. Every tuple in the given subset has the same classification value.
2. The tuples in the given subset are made up of only one attribute value.
Each node in the decision tree contains a subset of the tuples in the original training set, and -
each tuple has a classification value attached to it. Within any given node the classification

value with the maximum frequency is marked as the “winning” classification value. This is

used to handle noise and ﬁncertainty in the training set. Suppose that the training set was

reduced to a subset of tuples with only one attribute value (stopping condition 2 above),
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Tuple Classification

Value
{cat,3} low . ' | cat | dog | squirrel I
{ dog, 3} medium
{ cat, 4} medium’
{cat,5} high

{ dog, 4} medium

{ squirrel, 2 } high
{cat, 4} medium
{ cat, 4} high

Figure 7.1: An example of a training set with eight tuples and the corresponding decision tree; in this
example N = 2, {4;,4:} = { animal, age }, n1 = .3, ny = 4, {a1,1,01,2,a13} = { cat, dog, squirrel },
{a21,a2,2,023,a24} ={2,3,4,5}, P=3, {c1,c2,c3} = { low, medium, high }

but the t‘ﬁples had more than one classification value. There are only two possible situations
where this could happen: either the original dataset was underdefined by its attributes (i.e.,
two tuples with the same attﬁbute values were assigned two different classification values), or
the original datasef contained errors. Although other methods exist for choosing a winning
classification value (e.g., assigning a probability to each possible value, generating a random
number betweén 0 and 1, and using this t.o choose a classiﬁcafion), Quinlan found that

choosing the value with the maximum frequency minimized expected classification error.

As an example, consider the training set and corresponding decision'tree shown in Fig-
ure 7.1. The root of the tree was paftitioned using the attribute 4, = animal. This resulted
in three subsets of tuples: those with an animal value of a;; = cat, those with an énimal
value Qf a2 = dog, and fhose with an animal value of a; 3 = squirrel. Tuples in the dog
and squirrel subsets had a single classification value, so subdivision stopped at that point.
The subset containing tuples with an animal value of cat waé further divided about the A; =
age attribute. The resulting subsets are made up of a single attribute value, so subdivision
stops. Notice that tuples in the subset W‘ith age value a2,3.= 4 had three classification values:

medium, medium, and high (the tuple {cat, 4} appears three times in the training set, twice

classified as medium, and once classified as high). This is an example of noise or uncertainty..
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Following Quinlan, we note that medium has the highest frequency, so it is chosen as the

winning classification value for this node in the tree

Classification of an unknown tuple is performed by matching the tuple’s attribute values
against each node in the decision tree. When a leaf node is reached, that node’s winning
classification value is assigned to the tuple. For example, an unknown tuple (squirrel, 2)
would pass through the interval containing squirrel in the root node, then be assigned a
classification value of high. An unknown tuple (cat, 4) Wéuld pass through the interval
containing cat (in the root node), then through the interval containing 4 (in the child node),

and be assigned a classification value of medium.

7.5 Statistical Tables

Chan and Wong describe a data classification technique based on statisticai theory [Chan
and Wong, 1991]. The user provides an initial training set, with each tuple classified using
one of P pbssible values {c;, ... ,cp}. Each tuple consists of N attributes A;, ..., Ay, where
each domain(4;) = {a;; | j = 1,... ,n;} has n; possible values. The aigorithm associates an
attribute value a;; to a possible classification ¢, using a weight. A positive weight implies
that evidence exists in the training set to support classifying a tuple with attribute value
a;; as cx. A negative weight implies that evidence exists in the training set to support
classifying a tuple with attribute value a;; as something other than c¢;. Tables are built
to provide weights for all possible combinations of attribute and classification values. This
‘allows unclassified tuples to be “tested” against all possjble classifications. The classification -

that provides the highest positive weight is assigned to the tuple.

The explanation that follows assumes every attribute has a discrete domain. Contin-

uous attributes are first discretized using a simple maximum entropy approach. An at-
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group | original a; ; group range
1 {1,9,15} g=1l<=1<a;;<15
2 1{20,28,32,33} g=2<+=15<a;; <33
'3 |{35,37,38,40} g=3<=33<a;; <40
4 | {45,45,45,47} g=4<=>40<q;; <47

Table 7.2: An exémple of a continuous attribute A; being ranged into four separate groups

tribute A; in the training set with n; values is sorted and split into m groups (where m
is a user-chosen constant) by placing ™ values in each group. For example, attribute-
A; = {1,9,15,20,28,32,33,35,37,38, 40,45,45,»45,47} would. be split into four groups as |
shown in Table 7.2.

A; is now treated as a discrete attribute with four unique values. Chan believes this
: techniqué minimizes information loss by more closely matching the attribute’s original prob-
ability distribution function. His method has been extended to iteratively adjust range
boundaries in an atterhpt to provide an optimal discretization [Wong and Chiu, 1987; Chiu

et al., 1991].

If we compute weights for all n; values in domain(A4;) and all P possible cléssiﬁcations,
we obtain an n; x P table that completely describes A;. For any value a;; € domain(4;), .
we can provide positive or negative evidence for choosing classification c;. Based on value

a; ;, we would pick the classification c; with the highest positive weight.
Chan’s classification method builds tables for each of the N attributes A;,...,Ax. An

unknown tuple (vy, ... ,vy) is classified as follows.

o for a given classification ¢, for each value v; € domain(A4;) of the tuple, obtain the

weight to support ¢

e sum the N weights, giving a total weight to support. classification ¢, for the tuple
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e perform the above steps for all P classifications; choose the classification that gives the

highest positive weight, and assign it to the tuple

Weights for each value a;; are computed as follows. For a given attribute A; let ox; be
thé number of tuples in the training set with classiﬁcation Cr, and attribute value a; ;. If ¢ is
independent of a; ;, the expected number of values is ex; = 0g4+04; /N where ok+ = Y71 Okjy

0+ Zk —1 Okj, and N 5_‘,,” oxj. The measure

P n;

-yl | (75)

. k=1j=1 '
is sometimes used to determine whether the classification is dependent on the given attribute.
If X-2 is greater than 'the.chi-squar\ed value Xflhl,a, then with confidence level 1 — a a
dependency exists. This does not, however, tell us whether a specific value a; ; € dohain(Ai)
contributes information to a particular classification. This Would be true if Pr(class is
e | Ai = a,:,j) is significantly different from Pr(class is cx). We know that Pr( class is
" ¢x | Ai = aij) = oxj/o4; and Pr(class is cx) = op+/N'. Simple reduction shows that the

problem is to determine whether okj is significantly different from ey;.

Using a-modified chi-squared value z;; = (0 — ekj)/+/Ckj and the maximum likelihood

estimate of variance vg; = (1 — 0k /N')(1 — 04;/N'), the measure of difference is defined as

! . » Or: — €1 €14 . .-
dy; = (0k; /;7)./\/ ki _ zka‘ (7.6)
. kj l/k]

;

If dy; > 1.96, we conclude with confidence level 95% that a tuple with value a;; is more

likely to belong to c; than to other classes. If dy; < —1.96, we conclude that a tuple with
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value a; ; is more likely to belong to classes other than c;. For attributes with a significant

dy; value, a weight W is computed using the mutual information measure

P’I"(Ck l a,-,j)

I(class = ¢ : a; ;) = loge Pr(cs)

(7.7)

W is defined as I (class = ¢k : a;;) — I(class # cx : a;;), the difference in the gain in
information by assigning a tuple with attribute value a;; to class c¢; rather than to some
other class. As mentioned above, a positive weight supports classification c; a negative

weight supports a classification other than c.

Results from various experiments showed Chan’s algorithm to be a computationally sim-
ple yet effective method for classification. Statistical tables were shown to outperform the
ID3 method of classification. Classifying with weights is also useful from a data exploration
perspective. A large positiVe_ weight provides strong positive evidence for class cx. Simi-
larly, a large negative weight provides strong negative evidence for class c. Chan’s method
handles noise, errors, and missing values in the training set because these will be “avera,ged
into” the cumulative weight tables. Moreover, weights can offer the user a measure of con-
fidence for the classification chosen. They.could even be used to provide multiple candidate

classifications.

7.6 Interval Classification

Agrawal proposes a method of tree classification based on intervals [Agrawal et al., 1992]. |
The interval classifier tries to improve efficiency by reducing the number of intervals in each

node in the classification tree. This improves the time required both for generating the initial

tree and retrieving results from it.
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A; Ay | class
dog 6 | low

cat 6 | low
cat 6 | low
dog 10 | high
cat 10 | high
whale 3 | low

Table 7.3: An example training set for interval classification; tuples in the training set have two attributes
A; = animal and A; = age; each tuple is classified using one of three possible values

As with Chan’s statistical tables, the user provides a training set with each tuple classified
using one of P possible values. The algorithm begins by computing frequency histograms
for each attribute A;. For discrete attributes, this simply requires counting the number
bf times each attribute value a;; € A; occurs in the training set. Histograms are sets
{(aia, fin)s- - s (@ing, fin)} of values with their corresponding frequencies. A classification
list g; ; is also maintained for each a;;. Consider the training set shown inA Table 7.3. The

frequency histogram of A; = animal would be

(aig, f15) 91.j

(dog, 2) { (low, 1), (high, 1) }
(cat, 3)  { (low, 2), (high, 1) }
(whale, 1) { (low, 1) }

Continuous attributes need to be discretized in some way. A smoothed frequency histogram
is returned from this discretization. Given a continuous attribute A;, an initial frequency .
histogram H,,, is built from the available attribute values. This provides a set of values

{(@s1, fi1), - -+ » (@in,, fim;)} with their corresponding frequencies. The range [a;; ... a;n,] of

the attribute is divided into equidistant intervals of width h. The smoothed frequency f for
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any point v (where a; <v< @;in;) can be computed by 'cohsidering the contribution of each

a;; € Ho;g. W (u) is defined to be

' 1+2 if ab <1/2
W) =1 cos(mu) if abs(u) <1/ (78)
0 - otherwise
' The contribution from an individual point (a;, , fij) € Horg is defined as
Jig W —aig)/W)/h - . (7.9)

that is, any point a;; that is within 1h of v contributes to the s’fnoothed,frequency f of
v. The strength of the contribution falls off according to the cosine function as a;j moves

farther from v. This means f is simply the sum of contributions from each a;;, namely

f=a Sl We-mdmh @)

? =1

Consider a continuous attribute 4; = { 30, 31, 32, 32, 36, 44, 44, 44, 44, 46, 46, 46 }.
The initial frequenéy histogram would contain six éntries, sﬁeciﬁcally Hypy _ { (30,1),.(31,1),
(32,2), (36,1), (44,4), (46,3) }. If we split A; into five intervals, the range boundaries would
be (30, 33.2, 36.4, 39.6, 43.8, 46) and the width of each interval would be h = 3.2. Thev

frequency f for range boundary v = 30 can then be computéd as shown in Table 7.4.

Smoothed frequencies for the remaining range boundaries can be computed in a similar
manner. Group information also needs to be included at each range boundary. This is

- computed in a manner similar to attribute nfrequency, Recall that each a;; € H,y has a
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a;j abs(=5t) contribution
30 0 1-2c0s(0)/3.2
31 s 1-2cos(—7/3.2)/3.2
32 Z 0
36 £ 0
44 u 0
46 = 0
| f=1.16

Table 7.4: An example of computing the frequency for the range boundaries of a continuous attribute during
interval classification ' ‘

corresponding classification list g; ;, a set of classification values and frequencies. Assume,
for example, a; ; = (31, 3) with a corresponding classification list g; ; = {(1ow ,2), (high, 1)}.
If a;; contributes to some range boundary v with fréquency f = 0.25, the corresponding

classification value contribution would be (0.25 - 2) low and (0.25 - 1) high.

Once frequency histograms are available for every attribute, the remainder of the algo-

rithm works recursively as follows.

e A “winning” attribute A.,;, is chosen that minimizes resubstitution error rate. The
resubstitution error rate for an attribute 4; is 1 — 37, winner_freq(a; ;) /total_freq,
where winner_fregq(a; ;) is the frequency of the winning classification value for attribute .
value a; ; € A;, and total_freq is the total frequency of all classification values over all

attribute values of A;

e Each interval in Ay, is classified as strong or weak. An interval is strong if the ratio

of the winning classification frequency to the total frequency for the given interval is

greater than a precision threshold 1 — (curr_depth/maz_depth)?
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e Attributes that can be ordered (i.e., continuous attributes) merge adjacent intervals .
to reduce the width of the corresponding tree node. If two adjacent intervals have the

same winning classification value and strength, they are merged into one

e For each weak interval, all the tuples from the original dataset that correspond to the

interval are gathered and sent recursively to the classification algofithm

The result of the algorithm is an interval tree. Unclassified tuples can use thé tree to obtain
classification values. Each node in the tree corresponds to some attribute A;. If the tuple
has value a;; for attribute A;, the interval in the node that contains a;; is selected. If the
node is internal to the tree, the tuple is compared recursively to the interval’s child. If the
node is a leaf, the winning classification value for the selected interval is assigned to the

tuple.

7.7 Rough Sets

Ziarko presents a method of data classification based on mathematical rough sets [Ziarko, |
1991]. Rough sets were developed to allow modelling of general, imprecise, or imperfect data
[Paulak, 1991]. Ziarko uses them to reduce information loss due to the use of statistical
~ classification methods. He feels statistical models are often too specific, or require too rhany
underlying statistical aésur_nptions (e.g., a particular prbbability distribution function). Since
rough sets were designed for and have been used in a number of information representation

models, Ziarko believes they will be useful for building classification rules in databases.

In database termé, a rough set can be thought of as a representation of objects in a

universe U using.one or more attributes A = {4;,..., Ax}. The question of interest is how

well A can be used to characterize a subset X of a universe U. For example, suppose U
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I \ \
X IND(X) BND(X)

Figure 7.2: Example of a diagram of a rough set, each rectangle is an elementary set from I/ND. The dashed
boundary represents elements of set X; embedded white region represents IND(X); grey region represents
BND(X)

is a collection of cars, A is a single attribute representing a car’s manufacturer, and X is

the subset of cars that achieve high gas mileage. Is knowing the manufacturer enough to

determine the type of mileage the car gets?

X can be formally expressed using an equivalence relation IND over U. IND is the
set of attribute values or “elementary sets” that describe each z € X. For example, if
X = {Accord, Camry, Tercel, Civic, Escort}, then the corresponding attribute for each
z € X is the collection {Honda, Toyota, Toyota, Honda, Ford}. Let IND' be a collection of

all elementary sets from IND. The uncertainty of the representation is defined formally as

IND(X) = U{Y €IND':YNX #0} _
IND(X) = U{Y €IND': X DY} '
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IND(X) is the lower approximation of X, the union of elementary sets Y that are com-
pletely contained in X. TND(X) is the upper approximation of X, the union of elementary
sets with at least one element contained in X. If the lower approximation and upper ap-
proximation are different, X cannot be precisely specified using elementary sets, and we say
X is rough. Suppose in our example the elementary sets were Honda = {Accord, Civic},
Toyota = {Tercel, Corolla, Camry}, Ford = {Escort, Taurus}. Then IND(X) = {Honda}

and IND(X) = {Honda, Toyota, Ford}. This implies X is rough (Figure 7.2).

' The degree of imprecision can be measured in two ways. The boundary of X BND(X) =
IND(X) — IND(X) contains elements from U whose membership status in X cannot be
determined using the current set of attributes (e.g., Taurus is a Ford, and Ford € IND(X)

"but Ford ¢ IND(X), so is Taurus € X?). m(X) = card(IND(X))/card(IND(X)) is an .

accuracy measure that indicates how well the given attributes classify X. If m(X) < 1, then

X is rough.

For the purpose of data classification, the tuples in the original dataset form.the universe
U. Recall that each tuple is assigned some ¢; from a set of P known classes. Formally, an
information function f : U x A — V' is defined that, for every A; € A assigns some a;; € A;
to each v € U. That is, f determines attribute values for every tuple in U. For any subset

of attributes S C A, ‘'we can define the approximate coverage of S as IND(S), specifically

.(:c,y) € IND(S) <= f(z,a) = f(y,a)Vz,yc Uandac S (7.12)

IND(S) splits U into groups, where elements in a group have exactly the same attribute |

values for eVery A; € S. Let P' = IND(P), that is, each value in P’ is a set of elements

from U who all have the same classification ¢;. The positive coverage of an attribute subset

S is defined as
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POS(S,P)=|J{IND(S,Y) : Y € P'} (7.13)

where IND(S,Y) is the lower approximation of the set Y in terms of elementary groups
of IND(S). In other words, for each group in IN D(S), if all the elements of fhe group
are contained within a single group from P’, th.e group is part of POS(S, P). This means
any element in POS(S, P) can be uniquely classified into some ¢; € P based only on the

attributes in S. The degree of positive coverage is defined as

k(S, P) = card(POS(S, P))/card(U), 0<k <1 (7.14)

~ where k provides a measure of the dependency between P and S. If k = 1, then P is .
completely dependent on S. If k= 0, then P is completely independent of S. Otherwise P

is partially dependent on S, as 0 < k£ < 1.

k- can be used to find a minimal subset of attributes that provides the same positive.
- coverage as A. Suppose kory = k(A, P). Any subset of attribAutes R C A with k(R, P) = korg

can be used in place of A, since P is as dependent on R as it is on A. This generalizes |
classification of tuples by removing redundant attributes. It will also reduce the number of
classification rules produced. Usually, there are many different subsets R such that k., =
k(R, P). Ziarko uses the one with the minimum number of attributes, to maxirpize generality

7

and minimize the number of classification rules.

Once a minimal subset R is found, each attribute A; € R is assigned a weight. The

weight represents the relative contribution of the attribute to the dependency between R
J

and P. This significance factor is defined as
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SGF(A;, R, P) = [k(R, P) — k(R — {4;}, P)]/k(R, P) (7.15)

The original dataset U is generalized by computing POS(R, P). This eliminates any
u € U that have the same attribute values for every A; € R but different classification
values. Tuples from POS(R, P) are further reduced by using only the attributes in R.
Any duplicate tuples that may be formed are discarded. Some additional reduction can be
performed in certain cases. Suppose n; reduced tuples have the same classification and differ -
in only one attribute A;. If the size of domain(A4;) is n;, these tuples can be replaced by a
single tuple with a “do not care” value for attribute A;. Any value of A; matches the “do
not care” indicator. For example, if attribute Manufacturer = { Honda, Toyota, Nissan,

Ford }, the tuples

Ay A, - Ag P
Manufacturer FuelSys . Weight Mileage
Honda EFT ... medium medium
Ford EFI .-+ medium medium
Nissan EFT .-+ medium medium
Toyota - EFI --+ medium medium

would reduce to
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A, A2 ' Ak - P
- Manufacturer FuelSys --- Weight Mileage
— ~ EFI .- medium medium

Unclassified tuples can be matched against any rule in this reduced ruleset in the following

manner.

e For each A; € R, the value a;; from the unclassified tuple is matched against the

corresponding attribute value in the rule
e If the values match, then SGF(A;, R, P) is added to a weight for this rule

e The rule that produces the highest weight is declared the “winner”. The classification

for the Winning rule is applied to the unclassified tuple

Like Chan’s statistical tables, Ziarko’s rough set technique assigns weights to each tuple
in the reduced ruleset by returning the combined SGF value. It would be easy to extend
the method to return a weight for each possible classification c;. This could be used to . |
provide a measure of éonﬁdence for the chosen classiﬁcatioh. SGF values could also be used‘
to provide multiple candidate classifications. Finally, techniques based on weights could
be combined. One technique could “suggest” the proper choice to another. Results from
multiple techniques could be combined to return a more robust classification. Users éould |

interactively control how different techniques communicated and interacted with one another.




Chapter 8
Knowledge Discovery in Visualization

Our review of knowledge discovery in database algorithms (KDD algorithms) shows they can,
(in their current form, pfocess typical scientific dataset»s. This does not mean the algorithms
can be integrated directly into a visualization environment. KDD algorithms build rules
from a training set, then providé classification values for one or more unclassified tuples.
A classification value.alone may not be all that is required by the user, however. In this
chapter we extend the four KDD algorithms by providing attribute significance values when

the classification rules are built, and a confidence value for each classification performed.

Consider the following examples, which show the type of information the KDD algorithrﬁs
need to provide dﬁring visualization. A user performs knowledge discovery on a dataset, then
wants to display the attributes that were used to build the classification rules. The KDD
algorithms‘ (in their current form) do not provide this information, because the rules are
hidden from the user. The rules themselves are strongly influenced by the training set. Any
‘tuple that differs significantly from tuples in the training set (e.g., a tuple with attribute
values not contained in the tréining set) is difficult to classify, because the KDD algorithm |
has no previous evidence to use to predict a proper classification value. A KDD algorithm
should detect these kinds of tuples. The user could then be warned that the dlgorithm is

“not confident” about the corresponding classification value it suggests.

189
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To work well in a visualization environment, the KDD algorithms need to be extended

so that they can answer the following questions:

e How confident is the algorithm about the classification value it suggests (i.e., how |

closely does the unclassified tuple “fit” the rules built from the original training set)?

KDD algorithms cannot accurately classify tuples that do not fall into patterns ob-
served in the training set.- A classification weight would allow the user to determine
the algorithm’s “confidence” in the classification value it suggests. This weight might
be used to ignore certain classifications. It could also be mapped to a visual feature,
allowing the user to see both the classification value and the confidence weight during

visualization.

e How “good” is the classification value suggested by the KDD algorithm, compared to

other possible classification values?

The KDD algorithms return a single “winning” classification value. It would often
be useful to know how well other classification values fit an unknown tuple. The
class’iﬁcation‘weights described above could be used for this purpose. The winning
classification value will have the highest classification weight. If a KDD algdrithm can
return confidence weights for an unknown tuple and user-choseh classification values,
users would be able to see how the algorithm ranked different classifications. This
would also provide some indication of how much better the winning classification value

was, vis-a-vis other possible values.

e Which attributes are significant to the classification being performed and which are

not?

Knowing'this would allow the user to reduce the number of attributes to display, by

focusing only on the dependent (or the independent) attributes. If users have some
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advance knowledge about dependencies in the dataset, they can check to ensure that
a KDD algorithm does not misinterpret the training set and ignore attributes that

should be used tb build the classification rules.

8.1 Classification Weights

~ Each of the four KDD algorithms was extended to include a classification weight with each
classification value it suggests. Given an unknown tuple (vq,... ,vy), any of the algorithms
can provide a recommended classification value cx. The classification weight strength is a

measure of how “confident” the algorithm is about its suggested value.
We used the following guidelines when we extended the algorithms to provide confidence
: weights:
e strength was computed using the same mathematical and statistical algorithms and

values that are used to choose the classification value ¢

e The algorithms to compute strength were kept computationally and conceptually as

simple as possible

‘The result is a normalized confidence weight 0 < strength < 1 provided for each clas-

sification. The larger the value of strength, the more confident an algorithm is about the

classification value it returns.
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Decision Trees

Classifying an unknown tuple (vi,...,vn) generates a path through a decision tree from

root to leaf. Each node in the tree corresponds to some attribute A;. The interval in the |
node that contains v; is used to direct the patfl as it passes through A;. The strength of the
classification is defined to be the winning value’s frequency in the leaf node interval of the

classification path. In other words, given a leaf node representing attribute A;:
strength = winner_freq(v;) /interval _freq (8.1)
where winner_freq(v;) is the frequency of the Winning classification value and interval_freq

is the total frequency of all classification values in the interval containing v;. For example, -

consider a leaf node representing the discrete attribute animal:

attribute  classification
value value(s)
dog {A, B}
cat {A, A, B}
whale {A}

Table 8.1: An example of attribute values and their corresponding group value(s) for a leaf node in a decision
tree; the strength of a classification value is based on the frequency of the winning classification value in the
given leaf node interval

A tuple with v; = cat passes through the interval containing cat during classifica-
tion. This interval has a winning classification value A, with winner_freq(cat) = 2 and
interval_freq = 3, resulting in strength = % Classification strength measures how strongly

tuples from the training set agreed on a common classification value when the given interval

was built.
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Users can also ask for the strength associated with a specific classification value c,. In
this case, winner_freq(v;) is replaced with group_freq(c,), where group_freq(c,) is the
frequency of classification value c, in the given interval. For example, the same tuple shown

above with v; = cat would have a strength of % for classification value B.

“Statistical Tables

Chan and Wong’s statistical tables use a built-in weighting scheme to perform classification.
Consider an unknown tuple (vy,...,vy) and the statistical table used to weight attribute
values v; € domain(A;). The table contains n; x P entries for all possible combinations -
of attribute values 'ai,j and classifications c¢x. We can select from the table the minimum
value min;, the maximum value maz;, and fhe Weight range r; = maz; — min;. The winning
classification value c; is the one that provides the largest total positive weight V v; across all
N tables. Given an individual table value of W; for c.lassifying a tuple with attribute v; as

ck, the strength of the classification is defined as:

N N : . |
strength =Y _(W; —min;) / > _r; (8.2)
~ _

=1

Dividing by the sum of the weight ranges normalizes strength over the range (0...1). As
with decision trees, the strength for a particular classification value ¢, can be provided by

finding tgble weights w; for classifying v; as c,, then computing N ; (w; — min;) / TN, r;.

Interval Classification.

An interval classification tree is, in essence, a decision tree that has been modified for effi-

ciency in the following ways:
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e Continuous attributes are divided into ranges; the group frequencies for each range are
computed using a cosine filter; the number of ranges is meant to be much smaller than

the number of unique values in the original attribute-

e Nodes in an interval tree are marked as strong or weak based on the frequency of the
winning classification value in the node; the frequency required to mark a node as

strong decreases depending on the depth of the node in tree

e Adjacent intervals in a node are merged if they have the same winning classification

value and the same strength (i.e., if they are both strong or both weak)

These improvements do not affect the basic workings of the classification weighting algo-
rithm used for decision trees. Because of this, interval classification uses exactly the same

formula as decision trees:
strength = winner_freq(v;)/interval_freq

where winner_freq(v;) is the frequency of the winning classification value and interval_freq
is the total frequency of all classification values in the leaf node interval containing v;. The -
algorithm for computing the strength of a particular classification value c, is also the same,

strength(c,) = group_freq(c,) / interval_freq.

Rough Sets

The rough set algorithm assigns a degree of coverage SGF' to each attribute A; in the minimal-
attribute set R (Equation 7.15). An unknbwn tuple {v1,...,un} is matched against a rule

r; by comparing each v; against the corresponding attribute value in the rule. If they match,

then SGF(A;, R, P) is added to the weight of evidence W; for choosing ;. The winning rule
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is the rule that produces the highest total weight Wy;,. The maximum possible weight is
Winez = fil SGF(A;, R, P), V A; € R. The classification weight is therefore defined to be:

strength = Wyin / Winaz . - (8.3)

As in the previous three algorithms, dividing by W, guarantees 0 < strength < 1. The
strength for a particular classification value ¢, can be found by examining the rules that
correspond to ¢,. Assuming that rule r;, produces the highest total weight w,;, for an

unknown tuple, then strength(c,) = Wyin / Winaz-

8.2 Results

We built an experimental training set with the following structure to test classification

weights for each of the four extended KDD algorithms:

- e each tuple consists of three attributes: age (age), a continuous integer attribute on the
range [20, . .. ,80]; education level (elvl), a discrete attribute with five possible values

{0,1,2,3,4}; and zipcode (zip), a discrete attribute with nine possible values

e one of two possible classification values, A or B, is assigned to each tuple using the

following rules:

Group A: age < 40 & elvl € {0,1}"
40 < age < 60 & elvl € {0,1,2,3}
60 < age & elvl=0

Group B: otherwise
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The classification was designed specifically to be independent of zip. This set of rulgs is
exactly the same as the one used by Agrawal et al. [1992] to test their interval classification
technique. Our training sets contained 61 different age values by 5 different elvl values for

a total of 305 tuples. One of the nine zipcodes was randomly assigned to each tuple.

Classification errors were included in the training set in certain circumstances to test two
separate properties of each extended KDD algorithm. Fifst, rules built from a training set
are skewed by the errors it contains. This in turn causes mistakes when we try to classify
unknown tuples. Classification weights for these tuples should be lower than for tuples that
are assigned a corréct classification value. Training sets that contain errors also allow us to
téét an extended KDD algorithm’s sensitivity. That is, does a small increase in errors in the

training set result in a small or a large increase in the number of classification errors?

- Each extended KDD algorithm was run four times using four different training sets. In
the first training set none of the tuples had an incorrect classification value. In the second
training set 15 tuples were randomly selected and assigned-an incorrect classification value
(i.e., a 5% error rate). The third training set had a 10% error rate, and the fourth training
set had a 25% error rate. After training, an algorithm was asked to classify 305 unknown
" tuples. The classification values provided by the algorithm were compared against the correct -
classification values (determined using the classification rules shown above). Classification

weights and error rates could then be examined.

Decision Trees

The ID3 algorithm did an excellent job of classifying unknown tuples, even when the training
set had a 10% error rate (the classification error rate was 0%, 0%, and 3.3% for the 0%,

5%, and 10% error training sets, respectively). Tuples that were incorrectly classified had

correspondingly low classification weights (Figure 8.1).
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Decision Tree Classiﬁcation Error Results

Minimum Misclassified
Training Set | Class. Weight Tuples
0% error - 0.80 - 0.0%
5% error 0.60 -~ 0.0%
10% error 0.60 _ 3.0%
25% error 0.64 24.6%
20-0 1 Ll 1 T i L 1 1 1 L] T L]
0% group error ——
5% group error -----
10% group error -----
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Figure 8.1: The location (in terms of classification weight) and number of classification errors for each of
the four training sets; the table above the graph lists the minimum classification weight and the percentage
of misclassified tuples for each of the four training sets; the location of the bar in the graph represents the
classification weight for the incorrectly classified tuple, while the height of the bar represents the number of
incorrect tuples with the given weight




Chapter 8. Knowledge Discovery in Visualization | 198

Classification errors increased dramatically for the 25% error training set. The errors
in the training set caused ID3 to identify age as independent of the classiﬁcationy being
performed. The algorithm then tried to classify unknown tuples based only on elvl, re-
sulting in a large number of incorrect c_lassiﬁcétions. Despite the algorithm’s poor per-

formance, however, classification weights were appropriately low for the erroneous tuples

(0.64 < strength < 0.66).

Qur results suggest that the ID3 algorithm provides effective classification up to the .
point where errors in the training set begin to mask attributes that should be included in
the decision tree. The loss of attributes on which the classification depends results in a

§

significant increase in classification errors.

Statistical Tables |

Chan and Wong’s statistical table algorithm performed very well for. all four training sets
(classification error rates ranged from 0% to 5%). An increase in the number of errors in
the training set did not result in a large increase in the number of incorrectly classified

tuples. Moreover, classification weights for those few tuples that were assigned the wrong

classification value were appropriately low (Figure 8.2).

The main problem with the statistical table algorithm was the nﬁmber of tuples that could
not be classified at all. The algorithm uses each attribute value v; € V as an index into a
n; X P table, to find positive or negative evidence for choosing a particular classification.
If attribute value v; was déemed insignificant for every possible classification value ¢, when
the tables Weré built, ho evidence; either positive or negative, can be derived from v;. When
this is true for every v; € V, the algorithm cannot suggest any particﬁlar ¢, for V. This is

exactly what happened when the error rate in the training sets rose. Significant trends in

the dataset were broken, and an increasingly large number of table entries were marked as
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insignificant. The number of unclassified tuples ranged from 0% for the 0% error training

set to 22.6% for the 25% error training set.

Our results show that the statistical table algorithm can be extremely sensitive to errors
in the training set. This does not result in classification errors; rather, the algorithm is

unable to classify certain tuples due to lack of significant trends in the training set.

Interval Classification

The interval classification algorithm did a good job of classifying unknown tuples using any of
the four training sets (the classification error rate ranged from 0.7% to 3.3%). Classification
weights for the tuples with an incorrect classification value were low relative to the weights

for correct classifications.

Unlike the ID3 algorithm, interval classification did not “lose” important attributes as
training set errors rose (see Error Results in Table 8.3). Apparently, this was because interval
classification chbse significant attributes at each node in the tree by minimizing resubstitution
error. This is less sensitive to errors in the training set, compared to the modiﬁéd chi-squared

technique used by ID3.

Rough Sets

Like interval classification, the rough set algorithm did very well classifying unknown tuples,

regardless of the training set that was used. Classification error rates ranged from 1% to

7.9% (Figure 8.4).

Unfortunately, the weights assigned to incorrectly classified tuples were all 1.0. Classifi-

cation weights provided no indication of when classification values might be wrong. This is a
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Statistical Table Classification Error Resultsv

Minimum Misclassified Unclassified
Training Set | Class. Weight Tuples Tuples
0% error 0.51 3.3% 0.0%
5% error 0.50 0.0% 8.2%
10% error 0.51 5.2% 8.5%
25% error 0.51 3.3% 22.6%
20-0 T L) T 1 1 T 1 1 ] 1 t 1
0% group error ——
5% group error -----
. 10% group error -----
17.5 I 25% group error - 7
150 . n
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Figure 8.2: The location (in terms of classification weight) and number of classification errors for each of
the four training sets; the table above the graph lists the minimum classification weight, the percentage of
misclassified tuples, and the percentage of unclassified tuples for each of the four training sets; the location of
the bar in the graph represents the classification weight for the incorrectly classified tuple, while the height
of the bar represents the number of incorrect tuples with the given weight
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Interval Classification Error Results

Minimum  Misclassified
Training Set | Class. Weight Tuples
0% error 0.57 0.7%
5% error - 0.57 0.7%
10% error 0.50 2.0%
25% error 0.64 3.3%
20~0 i 1 T Ll Ll Ll Ll L T T . T [.
0% group error ——
5% group error -----
10% group error -----:
17.5 I 25% group error - ]
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0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 09 095 1

. Classification Weight

Figure 8.3: The location (in terms of classification weight) and number of classification errors for each of
the four training sets; the table above the graph lists the minimum classification weight and the percentage
of misclassified tuples for each of the four training sets; the location of the bar in the graph represents the
classification weight for the incorrectly classified tuple, whlle the height of the bar represents the number of
incorrect tuples with the given weight
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direct consequence of errors in the training set. The rough set algorithm has difficulty han-
dling these kinds of errors. For example, consider a training set that included the following

tuples:

(35,1, V6R3C4) A
(35,1, V6R5X4) B
(35,1, V2L 3X9) A
(35,1, N2L3X1) A
(35,1, MAW 322) A

Tuple (35, 1, V6R 5X9) has been incorrectly classified as B. This forces the rough set
algorithm to use all three attributes to build its rules (since no two attributes provide a pos-

itive coverage k(R, P) equal to the original coverage kory). The resulting rules are something

like:

Group = A Group = B
(35, 1, V6R 3C4) (35, 1, V6R 5X4)
(35, 1, V2L 3X9) ‘

(35, 1, N2L 3X1)
(35, 1, MAW 372)

Whenever an unknown tuple V' = (35, 1, V6R5X9) is classified, it .will be assigned
classification value B, since a rule for that classification matches exactly the attribute values
v; € V. Moreover, since every v; matched the winning rule, Wy, = ¥3_, SGF(A;, R, P) =
Winaz, and strength = Wyin [/ Winee = 1.0. |

The rough set algorithm tries to detect these kinds of errors in the trainirig set by ignoring
any tuples that have a common set of attributes but different classification values. This works
as planned if two or more instances of the tuple appear in the training set (and if not all |

of them are incorrectly classified in the same way). Tuples that appear only once in the
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Rough Set Classification Error Results

Minimum Misclassified
Training Set | Class. Weight Tuples
0% error 0.95 1.0%
5% error 0.88 1.6%
10% error 0.86 3.3%
25% error 0.77 7.9%
20.0 T T T T T 1 T T T T T T
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Figure 8.4: The location (in terms of classification weight) and number of classification errors for each of
the four training sets; the table above the graph lists the minimum classification weight and the percentage
of misclassified tuples for each of the four training sets; the location of the bar in the graph represents the
classification weight for the incorrectly classified tuple, while the height of the bar represents the number of
incorrect tuples with the given weight
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trdining'set will pass through this test, and cause the problem described above. It is not
possible to “fix” the classification weights, because the rough set algorithm itself provides

no information that can be used to identify the potential classification error.

In spite of this, the classification weights are not completely useless. The algorithm is
often asked to classify an unknown tuple with attribute values v; that did not appear in the
original training set. Classification weights for these tuples will be less than 1.0, because
attribute values v; will not match any rule and hence SGF(A;, R, P) will not be added to |
Wain. This means Wy, < Wies, and therefore Wy /Winee < 1.0. A weight of less than
1.0 signals to the user that V' did not completely match any rule, and hence there is some
measure of uncertainty about which classification value to assign to V. An attribute that is
important for classification will have a relatively large SGF' value, so. not matching on that

attribute will result in a rélatively low strength value.

8.3 Attribute Significance Weights

Each of the four extended KDD algorithms makes use of “significant attribute” values during
classification. Attributes that are seen as independent of the classification being performed
are usually ignored. The algorithm can then determine the importance of each significant
attribute. For example, the decision tree algorithm picks the significant attribute with the
largest information gain to partition the root of the tree. The rough set algorithm uses the -

coverage value SGF to measure attribute significance.

We used the information built-in to each of the four algorithms to provide an attribute
significance weight significance. Independent attributes have very low significance weights.

Significant attributes have significance weights that increase based on their importance to

the classification being performed. As before, we used the formulas and values provided by
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the individual KDD algorithms to compute attribute significance weights.

Decision Trees

The significance weighting algorithm for attributes in a decision tree was based on the fol-

lowing observations:

o Attributes that are not part of the decision tree are considered independent of the

classification being performed, and therefore have a significance weight of zero

e Information gain is maximized at each level of the tree to determine which attribute
to use to partition a given node; therefore, an aftribute’s significance should be based |

in part on the level of the node (or nodes) it partitions

e Multiple nodes can appear at every level in the tree except the root; therefore, an
attribute’s significance should be based on the number of nodes at a given level it

partitions

These observations were used to build an algorithm for computing an attribute’s signifi-
cance. For each level in the decision tree, an attribute A; that is used to partition nodes has

significance

* coverage(A;)

level-sig(Ai) = (8.4)

level

where level is the height of the given level in the decision tree, and coverage(4;) is the

number of nodes partitionedvby A; divided by the total number of nodes in the level. The

total significance weight for A; is the sum of level_sig(A4;) at every level in the tree. As an
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I habitat | | gender—l

lgender | lgender | |gender |

Figure 8.5: An example of a decision tree with three levels and three different attributes: animal, gender,
and habitat.

example, consider the decision tree shown in Figure 8.5. The significance weights for each

of the three attributes shown in the tree would be:

signi ficance(animal) = L0 =1.0
significance(gender) = &P 4 10 =0.708
significance(habitat) = %2 =0.125

Statistical Tables

Statistical tables differ somewhat from the other algorithms, because independent attributes
are not removed before building the classification rules. In spite of this, the individual table
for an attribute A; can be used to determine how relevant A; is to the classification being

performed.

The statistical table for attribute A; contains n; x P entries for all possible combina-
tions of attribute values a; ; and classifications c;. An indiv-idualv value a; ; € A; is considered
relevant with respect to a specific classification value cx when abs(dpr) > 1.96. If the classi-.
fication is strongly dependent on A;, most of the (attribute value, classification value) pairs _

(a;j, ck) will have a corresponding abs(d,x) > 1.96. Attributes that are independent of

the classification will have a lérge number of table entries with —1.96 < d,x < 1.96. The
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significance of the attribute is therefore defined to be:

significance(A;) = sig-entry(A;, P) /tot.entry(4;, P) (8.5) -

where sig_entry(A;, P) is the number of dp; values in A;’s statistical table with a value

greater than or equal to 1.96, and tot_entry(A;, P) is the total size of the table, n; x P.

Interval Classification

As described in the previous section on classification weights, an interval classification tree
is a modified decision tree. The modifications improve efficiency, but they do not change
the correctness of the significance algorithm. Therefore, attribute signiﬁcance is computed
in exactly the same way as for decision trees, namely:

_ coverage(A;)

level_sig(A;) = Tovel

where level is the height of the given level in the interval tree, and coverage(A4;) is the
number of nodes partitioned by A; divided by the total number of nodes in the level. The

total significance weight for A; is the sum of level_sig(A;) at every level in the tree.

Rough Sets

The rough set algorithm provides built-in weights SGF representing the importance of each
attribute A; in the minimal attribute set R. A simplé examination of Equation 7.15 shows -

that SGF(A;, R, P) is guaranteed to lie on the range (0...1). Therefore, the significance of

attribute A; € R is simply
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significance(4;) = SGF(A,-, R, P) | (8.6)

Any attribute A; € R is considered indepe‘ndent of the classification being performed, and

is assigned a significance weight of zero.

8.4 Results

We used the same training sets describved' in the Classification Weights section to test our

attribute significance weights. The results are shown in Table 8.2.

KDD Algorithm | 0% error 5% error | 10% error 25% error
' ID3 |elvl: 1.0 |elvl: 1.0 |elvl: 1.0 |elvl: 1.0
' |age: 0.5 |age: 0.5 |age: 0.5 |age: 0.0
zip: 0.0 |zip: 00 |zip: 0.0 |zip: 0.0
Stat Tables elvl: 1.0 |elvl: 0.8 |elvl 0.8 |elvl: 03
age: 0.67 | age: .0.67|age: 0.5 _.age: 0.5

: zip: 0.0 ‘| zip: 0.0 |=zip: 0.0 |zip: 0.11
IC elvl: 1.0 |elvl: 1.0 |elvl: 1.0 |elvl: 1.0
age: 067 |age: 067 |zip: 043 | age: 0.5
zip: . 033 | zip: 033 |age: 0.4 '|zip: 034
Rough Sets elvl: 0.65|age: -0.65|age: 0.65|age: 0.75
age: 0.55 | elvl: 0.64 | elvl: 0.64 | elvl: .- 0.64
zip:  0.05 | zip: 0.2 |zip: 0.25|zip: 0.48

Table 8.2: Significance weights for each of the four-extended KDD algorithms and each of the four training
sets; in each case attributes are listed in decreasing order of significance weight

As expected, significance weights are highest for the “most significant” attributes. For

the 0% classification error training set, all four algorithms agréed that elvl and age (in that
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order) were significant. zip was ignored by the ID3 and statistical table algorithms, and it

was given a low significance weight by the interval classification and rough set algorithms.

Errors in the training set caused a corresponding shift in significance weights in each
algorithin. For example, the ID3 algorithm assigned age a significance of zero for the 25%
error training set. As was previously explained, errors in the training set drove the modified
chi-squared value for age below the required minimum. ID3 therefore assumed age was nét
related to the classification being performed. This resulted in a significance weight of zero,
and in a large number of classification errors. Significance weights for elvl and age dropped
sharply in the statistical table algorithm for the 10% and 25% error training sets. Errors in
the training set caused an increasing number of table entries to be marked as ilnsigniﬁcant.. .
The result was a drop in the attributes’ significance weights, and a rise in the number of
unclassified tuples. The rough set algorithm identified age as more important than elvl for
the 5%, 10%, and 25% error training sets. However, elvl was given a significance nearly

equal to age, and the weights for zip continued to remain relatively low. This resulted in

only a small number of classification errors.




Chapter 9
Future Work and Applications

Results from our research have uncovered a number of additional areas that warrant further
study. Two of these are described below. First, we plan to complete a study on the use -
of texture in an exploratory visualization environment. Second, we hope to investigate the
use of emergent features for identifying specific combinations of attribute values in a high-

dimensional dataset.

After describing these two areas for future Work, we then conclude this thesis with a de-
scription of our visualization techniques being applied to three practical applications: track-
’ing salmon migration patterns, displaying computerized tomography (CT) medical image
slices, and calculaﬁng and visualizing changes in sea-surface temperatures. These examples
demonstrate how each of our techniques (estimation, colour selection, and attribute com-
pression through knoWledge discovery) can be used to produce an effective visualization of -

the underlying dataset.

9.1 Texture

A large part of this thesis describes an investigation of colour and its use in scientific visual-

ization. Another commonly-used visual feature is texture. Research on the use of texture in
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corﬁputer vision and computer graphics has tried to identify the fundamental components
of texture patterns. Ware and Knight‘believe orientation, size, and contrast (or density)

are the orderable dimensions of a visible texture [Ware and'Knight, 1992; Ware and Knight,
| 1995]. Liu and Picard believe the three most important perceptual dimensions of a texture
pattern are periodicity (or repetitiveness), directionality, and granularity (or randomness)
[Liu and Picard, 1994]. Liu and Picard’s directionality and granularity correspond closely

to Ware and Knight’s use of orientation and contrast.

Ware and Knight used Gabor filters to create their textures, while Liu and Picard used
Wold features. It is also poésible to create a “texture icon” that varies across one or more of
the basic texture dimensions. Figure 9.1 shows an example of texture icons that are made up
of nine bars. A scale factor and an orientation are applied to each texture icon. We chose to
vary size and orientation across three separate‘Values‘, in part because Wolfe’s experiments
showed that orientation is categorized into three .sepafate ranges (steep, tilted, and shallow)
in the low-level visual system [Wolfe et al., 1992]. The texture icons in Figure 9.1 can be
used to represent data elements with two attributes, where each attribute is no more than A
three-valued. If density can be uncoupled from size, we could visualize elements with up to

three separate three-valued attributes.

There are a number of important issues that need to be investigated regarding the use
of texture in visualization. First, we want to know how the perceptual dimensions of a -
texture pattern interact with one another. Ware and Knight describe size-location and
size—orientation tradeoffs that were discovefed during their visualization experiments. Ori-
entation, size, and contrast may also form a visual feature hie}archy, similar to the hue—form
and intensity-hue hierarchies described by Callaghan [1984, 1989]. Understanding and con-

trolling these effects is key to building guidelines for the effective use of texture in a real-time

visualization environment.
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Figure 9.1: Examples of texture icons created by varying the orientation and size of the bars that make up
each icon; notice that size and density (or contrast) are not independent of one another; decreasing the size
of the bars also decreases the density of the texture icon they produce, and vise-versa
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Another area of research is the use of both colour and texture in a single display. The
ability to do this effectively would dra;ma_tically increase the expressive power of our visu-
alization techniques. A,Study of the fundamental dimensions of texture patterns could be
combined with results.on effective c'oloﬁr selection. Again, we would have to investigate
potential interactions between hue a:nd intensity and orientation, size, and contrast. If these
features are combined properly, thé end result would be a visualization technique capable of |

representing up to five inde'pendent' attributes through the use of texture and colour.

9.2 Emergent Features

One of our original goals was ﬁo investigate methods for visualizing high-dimensional data
elements. Two of our results address this problem. First, we showed that hue and orientat‘ion
"do not interfere with one another during préattentive estimation. This means both hue and
orientation can be used to encode independent attributes; a user is able to perform rapid
and accurate estimation using either feature. Moreover, results from Wolfe et al. [1992]
and from our own colour selection expefiments [Healey, 1996] suggest we can display up to
three orientations or seven hues in a single display, while still allowing for rapid and accurate .
target identification (it would be useful to déter}nine if these results extend to the estimation

task).

We also showed how knowledge discovery algorithms can be used to reduce the num-
ber of attributes in a multidimensional dataset. Classification combines multiple attributes
into a single classification vélue. The knowledge discovery algorithms identify significant
attributes during classification. Users can choose to pursue or ignore these attributes when

they visualize the resulting dataset.

Tools that support the visualization of multiple data dimensions must deal with a poten-
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tial interaction between some or all of the features being used to represent the dimensions. -
Rather than trying to avoid this, we can sometimes control the interaction and use it to our
advantage. For example, Pickett and Grinstein use texture to represent high-dimensional
data; each dimension controls one aspect of the texture element displayed to the user. An-
other promising avenue of investigation involves emergent‘féatures. An emergent feature can

be created by grouping several simpler shapes together [Pomerantz and Pristach, 1989]. The |

-emergent feature cannot be predicted by examining the simpler shapes in isolation. For ex-

aihple, in Figure 2.11a, the target element cannot be detected preattentively. In Figure 2.11b
wé rotated one of the component elements to create a new target with an emergent feature,

non-closure, that is e'asily detected.

As an example of the use of emergent features, consider the salmon migration éimulations
described in Section 3.1 (Salmon Migration Simulations). A careful choice of simple features
will allow a target element or a region of similar data elements to be detected preattentively,
therel;y signalling a correlation of variables in the data. Figure 9.2 shows one possible
example of this technique‘. In the salmon tracking simulations scientists search for sélmon |
entering hot ocean regions. This correlation of hot and present combines to form an emergent
feature, closure. Because background elements (hlot-absent, cold-present, and cold-absent)

do not have closure, the target salmon can be easily detected.

9.3 Practical Applications

We tested our visualization techniques in a practical application environment. This allowed

us to observe their effectiveness at visualizing real-world data and performing common anal-

ysis tasks. We chose three representative visualization examples: estimating salmon migra-

tion results, colouring medical slices from computerized tomography scans, and deriving and
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Figure 9.2: Example of output from salmon tracking simulations: salmon in hot ocean regioﬁs are displayed -
with an emergent feature closure; these can be detected because the three background objects do not use
closure ‘

tracking temporal ocean surface temperatures.

We designed and implemented a simple software tool called PV to perform our visu- |
alizations. PV does not to try to match the overall power and flexibility of commercial
visualization systems like Iris Explorer or the Wavefront Data Visualizer. Rather, PV was
built to implement results from our research that are unavailable in these visualization tools.
For example, PV can impose constraints to guide the user during the data-feature mapping.

Rules based on known limitations of visual features like hue, intensity, and orientation are

built-in to PV. PV also provides direct access to the four knowledge discovery algorithms;
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this allows users to investigate dependencies, filter their datasets, and add additional at-
tributes through the use of training and classification. All of these features were used when

we visualized our representative datasets.

‘Oceanography

/ \
The experimental displays we tested during our preattentive estimation experiments were
based on data generated from salmon migration simulations being run in the Department of
Oceanography at the University of British Columbia. The simulations were designed to test
various hybdtheses about how salmon migrate from the open ocean back to the B.C. Coast

“to spawn. A complete description of the simulations is provided in Section 3.3 (Salmon |
Migration Simulations) of this thesis. Results from the simulations were stored in a salmon

migration dataset for later analysis.

The salmon migration dataset consisted of 8,004 elements distributed across 46 individual
frames, representing simulation results for the years 1945 to 1990. Each element contained
data for one simulated salmon. This included two independent attributes (the latitude
and longitude where the simulated salmon started its migration run) and two dependent
attributes (the stream function, a scalar value representi_ng ocean current at the salmon’s
starting position, and the point of landfall, representing the location where the salmon arrived
on the B.C. coast). Stream function had two possible values {1low, high}. Point of landfall |
also had two possible values {north, south}. The dataset format and the data-feature

mapping used to visualize the dataset are shown in Tables 9.1 and 9.2. Figure 3.3 shows an

example of four different display frames.

Oceanographers scanned rapidly through the individual frames, looking for frames (each -

frame corresponds to migration data for a single year) where more than a fixed percentage of

the of salmon had a landfall value of north. This corresponds to a preattentive estimation
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Figure 9.3: An example of the PV program being used to display sea surface temperatures for ocean positions
on a map of the world; the figure shows the main display window, the dialog used to choose and animate
frames, and the dialog used to compute significance weights for individual attributes
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Size 8,004 elements, each element represents one simulated .
salmon
" Frames 46 frames, each frame represents simulation results for

one year from the range 1945 to 1990

Independent Attributes | latitude (continuous), [ 136° E ... 1568°F | € Z
| longitude (continuous), [ 45° N ... 60° N | € Z

Dependent Attributes | stream function (discrete), {1ow, high} .
latitude of landfall (discrete), {north, south}

Table 9.1: Format of Oceanography’s salmon migration dataset, showing the size of the dataset in elements,
the number of logical frames in the dataset, the independent attributes, and the dependent attributes

longitude z-position of icon
latitude y-position of icon
latitude of landfall | hue of icon, {north = red, south = blue}
stream function | orientation, {low = 0°, high = 60°}

Table 9.2: Data attribute to visual feature mapping for Oceanography’s salmon migration dataset; longitude
and latitude controlled the (z,y) position of a rectangular icon representing the simulated salmon latitude .
of landfall controlled its colour, stream function controlled its orientation

task based on hue. Although this part of the analysis could be automated, the oceanog-v
raphers often vary their' cutoff percentage while viewing the displays. Years of interest are
compared for the percentage and spatial location of low and high stream function values.
This often involves estimation on various user-chosen subregions of the display. These sub-
regions could not be pre-chosen for comparison without first identifying and examining the
years of interest. Next, the oceanographers go back to the original data and search for dis-
blays with a stream function pattern similar to those found in the years of interest. Displays
With a similar makeup of stream function values but a different percentage of point of land-
fall values must be eXplained in the context of the migration hypotheses. Finally, point of |

landfall values are éompared statistically to historical salmon distributions provided by the

Department of Fisheries and Oceans. This provides a computational measure of how well
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the simulation (an'd the hypothesis on which it is based) “fits” actual salmon migration pat- -
terns. It would not be possible to perform this type of exploratory data analysis by simply
pre-programming the computer to search for displays with a user-chosen range of point. of

!

landfall and stream function values.

Computerized Tomography Slices

An important part of our research focused on how to select effective colours for data visu-.
alization. Our goal was a set of colours that could be rapidly and accurately differentiated
from one another. Results showed how we can measure and control colour distance, linear )
separation, and colour categories to pick up to seven isoluminant colours that satisfy our
requirements. In order to test our technique, we used colours from our experiments to visu-
alize slice data from a'computerized tomography scan. The scan was used to search for the
location of an aneurysm in a patient’s brain. T'his resulted in 129 individual slices, each of

which had a 512 x 512 pixel resolution.

- Size 26,501,889 pixels, each pixel represents one CT sample

point
Frames 129 frames, each frame represents one 512 x 512 CT slice

(in each frame 205,441 of the 262,144 pixels represent
actual data)

Independent Attributes | z-position (continuous), [0...511] € Z
' y-position (continuous), [0... 511 ] € Z

- Dependent Attribute | material density (discrete), {Level 1, Level 2, Level
: 3, Level 4, Level 5, Level 6, Level 7}

Table 9.3: Format of CT dataset, showing the size of the dataset in pixels, the number of logical frames in .
the dataset, the independent attributes, and the dependent attribute

Each pixel in a CT slice contained two independent attributes (the z and y-position
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Level 1 0 < density < 75
Level 2 | 75 < density < 121
Level 3 | 121 < density < 134
Level 4 | 134 < density < 139
Level 5 | 139 < density < 145
Level 6 | 145 < density < 161
Level 7 | 161 < density < 256

Table 9.4: Intensity ranges used to segment the greyscale images into seven distinct regions; each region was
coloured w1th a unique isoluminant colour

of the CT sample point),. and one dependent attribute (material denéity). Material density
initially ranged from 0 (lowest) to 255 (highest). This scale was chosen specifically to display V.
the slices as 8-bit greyscale images (Figure 9.4a). Greyscale images are a standard method
for viewing medical slice data [Ware, 1988; Bergman et al., 1995], because they allow a
user to easily identify the location and shape of individual regions of similar int‘ensity (i.e.,
similarly density material). Through consultation we identified seven intensity ranges. that A
corresponded to seven individual regions of interest (Table 9.4). Slices were then shown
using seven different colours (i.e., one for each intensity range). Figure 9.4b shows the slice
in Figure 9.4a displayed using colours from our or-iginal seven-colour experiment. Figure 9.4c

shows the slice displayed using colours from our final colour category experiment.

There are three important points to note. First, as with the greyscale representation, it
is easy to locate individual regions in both colour slices. The densities (and therefore the
intensity values) of different regions of interest are consistent across slices. Therefore, our

colour displays work well for any individual slice chosen by the user.

Second, as predicted by our experiment results, the colours used in Figu're. 9.4b do not -

always provide good differentiation between regions compared to the colours used in Fig-

ure 9.4c. For example, considér the region referenced by the arrow. In Figure 9.4b, it appears
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(b) ()

Figure 9.4: Examples of a single CT slice: (a) the slice displayed using a greyscale intensity ramp; (b)
colours from the original seven-colour experiment, although the location and borders of each region are
clearly visible, the makeup of certain regions is difficult to determine, compared to; (c) colours from the
final seven-colour experiment, that show clearly that the region referenced by the arrow is made up of two
different groups of elements
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x-position | z-position of pixel
y-position | y-position of pixel

density | hue of pixel, {Level 1 = Red, Level 2 = Yellow, Level
3 = Green-Yellow, Level 4 = Green, Level 5 = Blue-
Green, Level 6 = Purple, Level 7 = Red-Purple}

(a)

z-position | z-position of pixel =
y-position-| y-position of pixel

density | hue of pixel, {Level 1 = Red, Level 2 = Yellow-Red,
Level 3 = Yellow, Level 4 = Green, Level 5 = Blue-
Green, Level 6 = Purple-Blue, Level 7 = Red-Purple}

(b)

Table 9.5: Data attribute to visual feature mapping for the Computerized Tomography dataset; (z,y)
location controlled the (x,y) position of the pixel representing the CT sample point; (a) density controlled
the pixel’s colour, colours were chosen from the original seven-colour study; (b) colours were chosen from
the final colour category study (see Table 5.5 for a list of the RGB triples used to display each colour)

to made up of a single type of element. In fact, it is made up of two types of elements; this
is clear when examining the same region in Figure 9.4c. Notice there is no corresponding
tradeoff between Figure 9.4c and Figure 9.4b, that is, there are no pairs of elements that are
difficult to differentiate in Figure 9.4c but easy to differentiate iﬁ Figure 9.4b. A large G-GY
overlap suggested there would be a low perceived difference between the two colours used
to represent the regio‘n of interest in Figure 9.4b. This overlap was explicitly removed by
choosing a single colour from the G-GY region during the final colour category eﬁcperiment.
The result is a set of seven colours that clearly mark the locations and boundaries of all

seven regions of interest.

Finally, colour images can provide visual cues that might not be immediately apparent .

in a greyscale display. For example, the region referenced by the arrow in .Figure 9.4c is
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obviously made up of two different types of elements. This is not as clear in the greyscale
image, because the intensity ranges for the two regions are narrow (values [134...138] and
[139...145], respectively) and adjacent to one another. Moreover, colour images often high-
light spatial locations where large differences in value occur. For example, consider the small
spots of purple ét the top of the region in the center of the image. These spots represent
areas of high relative density, and are quickly identified as different from the‘ surrounding
material. The same information is present in the greyscéle image, but the visual system is
ndt immediately drawn to it, because the contrast between the region and its neighbours is
not as pronounced. One method of visualizing slice data is to “fly” through the slice stack,
~ rapidly displaying individual slices one after another in a movie-like fashion. In this context,
we expect usérs could mofe accurately detect areas of large difference using colour rather

than greyscale.

Sea Surface Temperatures

NASA has recently made available a dataset that contains environmental conditions for sea
and ocean 106ations throughout the world (see ﬁttp ://podaac-www. jpl.nasa.gov/mcsst/
for more details). The dataset has been named the Comprehensive Ocean-Atmosphere Data
Set (COADS). Each element in the dataset represents a 2° x 2° sea or ocean region. An
element contains (up to) eight observed and eleven derived attributes. Attribute means and
standard deviations have been collectéd for eaéh element for each month from January 1980

to December 1993.

We concentrated on five of the available attributes when we examined COADS: air tem-
perature, sea level pressure, scalar wind, relative humidity, and sea surface temperature

(Table 9.6). This meant each element contained two indépendent attributes (fhe latitude

and longitude of the center of the ocean position represented by the element) and five inde-
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pendent attributes.

Size 964,064 elements, each element represents a 2° x 2° sea
surface region :

Frames 168 frames, each frame represents mean data for one
month from the range January 1980 through December
1993 '

Independent Attributes | longitude (continuous), [ 1°E ... 359°E | € Z
latitude (continuous), [ 89°S ... 89° N | € Z

- Dependent Attributes | air temperature (discrete) , {Air 1, Air 2, Air 3, Air
4, Air 5} '
sea level pressure (discrete) , {SLP 1, SLP 2, SLP 3, SLP
4, SLP 5}

scalar wind (discrete) , {WSp 1, WSp 2, WSp 3, WSp 4,
WSp 5} ,

relative humidity (discrete) , {Hum 1, Hum 2, Hum 3, Hum
4, Hum 5} '

Table 9.6: Format of COADS dataset, showing the size of the dataset in elements, the number of logical .
frames in the dataset, the independent attributes, and the dependent attributes

Sea surface temperatures (SSTs) were available in a separate file, but on a much coarser
grid of 10° x 10° (in fact, an SST dataset sampled on a 2° x 2° grid was also available; we
used the coarser resolution to test our knowledge discovery algorithms). Normally, SSTs are
interpolated to provide values at 2° stepé. One problem with this technique is that fine details
that occur between sample points may be “smoothed out” and lost during interpolation. We
decided to use our knowledge discovery algorithms to add fine-grained SST values to our
original dataset. Continuous SST values were discretized into one of five possible values
(Table 9.9). Air temperature, sea level pressure, wind speed, and relative humidity values
from each frame in the original dataset were obtained at 10° intervals. The corresponding |

SST value was read and attached directly to the sample points. The result was used as a

training set to build rules for mapping (air, slp, wind, hum) tuples to an SST value.
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SST 1 -6°C < sst < 0°C

.SST 2 0°C < sst < 10°C

SST 3 10°C < sst < 20°C

SST 4 20°C < sst < 30°C

SST 5 | 30°C < sst < 36°C |
WSp 1| Om/s < wsp < Sm/s| SLP 1 | 954mb < slp < 973mb
WSp 2 8m/s < wsp < 16m/s SLP 2 | 973mb < slp < 993mb
WSp 3 | 16m/s < wsp < 23m/s | SLP 3 | 993mb < slp < 1013mb
-WSp 4 23m/s < wsp < 3lm/s SLP 4 [ 1013mb < slp < 1033mb
WSp 5 | 3lm/s < wsp < 33m/s SLP 5 | 1033mb < slp < 1049mb

Table 9.9: Sea surface temperature, sea level pressure, and scalar wind value ranges used to discretize the
attributes into five individual values

All of the KDD algorithms reported air temperature and humidity, in that order, as the
most significant attributes. Because we had available the exact 2° x 2° SST values, we were
“able to compute classification error rates from interval classification, ID3, statistical tables,

and a standard bilinear interpolation.

Table 9.10 shows that interval classification and ID3 gave better results than bilinear
interpolation (both in terms of mean SST error Z, and in terms of the percéntage of misclas-
sified tuples). We wanted to see whether ‘classiﬁcation.weights could be used to identify and
ignore potentially erroneous tuples. To do this, we sorted tuples according to classification
weight and ignored the lowest 5%, assuming they had been given an incorrect classification

value.

Table 9.11 shows that mean SST error Z, standard deviation of SST error o?(z), and
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Method | =  o%(z) % error
Interp. | 0.122 0.107 12.3%
ID3 0.107 0.310 10.7%

- IC 0.095 0.293 9.5%
Stat. | 0.236 0.607 17.1%

Table 9.10: Mean SST error Z, standard deviation of SST error o?(z), and the percentage of incorrect
classification values for bilinear interpolation, ID3, interval classification, and statistical tables

the percéntage of misclassified tuples were all reduced when we filtered our results based on
classification weights. The final two coiumns in the table show a breakdown of the number
of correctly classified tuples (Good Tuples) and the number of incorrectly classified tuples
(Bad Tuples) which were ignored. A low classification weight does not necessarily mean the
classification value is incorrect. It simply means strong evidence did not exist in the training
set to choose one particular classification value for the given tuple. Obviously, we want to

minimize the number of correctly classified tuples which are mistakenly ignored during the
filtering operation. T hisj percentage was highest for Interval Classiﬁcétion' (at 68% of the
total number of tuples ignored) and lowest for ID3 (at 14% of the total number of tuples

ignored).
Good Tuples Bad Tuples
Method | T  o¢%*(z) %error  Ignored Ignored
ID3 - | 0.082 0.274 8.2% - 32 190
IC 0.082 0.274 8.2% 222 105
Stat. |0.226 0.598  16.3% 197 98

Table 9.11: Results when tuples with classification weights from the bottom 5% were ignored: mean SST -
error T, standard deviation of SST error o2(z), and the percentage of incorrect classification values were
all lower than when no filtering was performed; the final two columns denote the number of correctly and
incorrectly classified tuples which were ignored

We chose the ID3 algorithm to generate SST values, in part because it gave consistently
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good performance when we tested our KDD algorithms, and in part because it ignored the
fewest cofrectly classified tuples (tuples which are ignored correspond to elements with no
SST value; these elerrients are incomplete, and are removed from the dataset to be visual-
ized). Because the KDD algorithms reported that air temperature and humidity were closely

matched to sea temperature, we did not consider these attributes when we visualized the
( COADS data. Sea level pressure and scalar wind were stored as continuous variables in the |
original dataset; we discretized each range to produce a five-valued attribute for use during

visualization (Table 9.9). Figure 9.5 shows one frame from the classified dataset, with SSTs

mapped to hue and wind speed mapped to orientation. Figure 9.6 shows a close-up of the = -

Pacific and Atlantic Ocean around the coast of North America. SSTs were represented using
five colours that we named red, yellow, green-yellow, blue, and purple (exact RGB values
are listed in the 5-colour section of Table 5.5). Wind speeds were split into orientations of

0° (low wind speed), 30°, 45°, and 60° (medium wind speeds), and 90° (high wind speed).

The five colours used to represent SST's were chosen using our colour selection technique.
This guaranteed that each colour could be rdpidly and accurately detected, even in the
pfesence of all the others. Orientations were divided into shallow (low wind speed), tilted
(medium wind speeds), and steep (high wind speed) based on Wolfe’s o:ientatidn category
results. User could search rapidly for outlier elements, yet at the same time determine

individual values using focused attention.

Our visualization tool PV was used to scan forwards and backwards through stacks of
individual frames, where each frame represented data from COADS for a particular month.
Choosing colours that were easy to differentiate allowed a user to track the boundaries
of different éea surface temperature regions. Target elements (i.e., hot or cold sea surface |
locations) could also be rapidly identified. Moving through the data month-by-month allowed
users to follow seasonal environmental changes. The data could also be organized to show a

specific month for each of the 14 available years. This allowed users to observe year-by-year
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differences across a much longer time period.

To summarize, ouf three visualization environments show practical examples of all of
the visualization techniques described in this thesis. The salmon migration simulations used
preattentive estimation (Chapter 3). Visualizing the CT medical image slices used both .
colour selection and real-time visualization (Chapters 5 and 6). Finally, the COADS visual-
ization used colour selection, real-time visualization, and knowledge discovery (Chapters 5,

6, and 8). This demonstrates that, even in their current form, our techniques can be applied

to r_eal-world data and tasks.
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