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A b s t r a c t 

Many animations depict two or more objects interacting and potentially col

liding. Collision response is a complex process if the objects are intended to respond 

like soft bodies and to exhibit the properties of real objects. Physically-based models 

calculate contact forces to incorporate into the calculation of velocities and positions 

of the control mesh. Some physically-based models, for example those that model 

cloth, strive for visually realistic results. Until recently the magnitude of the calcula

tions required for physically-based modeling have precluded real-time interaction. A 

complaint with physically-based models is the correlation between the parameters, 

such as forces and torques, and the resulting 'look' of the response are sometimes 

difficult for the user to understand. 

The work presented in this thesis does not strive for the simulation of real 

object properties. Instead it tries to remove the interpenetration between two ob

jects while providing a set of controls for the animator to adjust the 'look' of the 

collision response. A set of data points within the interpentration region of the two 

colliding objects is determined by the algorithm and each object interpolates those 

data points to remove the interpenetration. The position of the data points is a 

function of the relative rigidity of the two objects. Locality or globality of the re

sponse is achieved by allowing the user to specify the amount of response absorbed 

by different levels of a hierarchical B-spline modeling primitive. Combinations of 

deformational, translational and rotational collision response mechanisms give more 
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options for the look of the response. Empirical results suggest the algorithm's com

putation time is small enough to allow for a fast preview of the animation, even for 

moderately complex geometry. 
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Chapter 1 

Introduction 

1.1 Motivation 

The main goal of computer animation is to achieve a desired effect such as laughter, 

enthralment or sorrow on the viewer. An animator approaches the task of creating 

the animation with a set of ideas in his or her mind or on paper. The ease or 

realizing those ideas is heavily influenced by the capabilities of the available tools. 

Physically-based modeling systems generate responses to collisions by calcu

lating the contact forces during a collision and then incorporating these forces into 

the position and velocity calculations of each object's control mesh. Although some 

animations of physically-based models are very visually appealing, the complexities 

of creating such a model and manipulating the model's parameters to achieve a spe

cific look are sometimes daunting. Most animators still rely on manually adjusting 

the parameters that directly control an object's shape to resolve the interpenetra

tion of two objects. While the control over the resulting shape is excellent, the effort 

and time required to resolve the interpenetration over many frames is considerable. 

Resolving collisions in this manner is a tedious task and the motivation for this work 

is the desire to relieve this tedium through the development of a better tool for basic 

collision response. 
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1.2 Problem Statement 

By basic collision response we mean the removal of the interpenetration between the 

objects, or at least enough of the interpenetration so that only a small amount of 

post-processing 'clean-up' removes the remainder. How real objects change shape 

during a collision is based on many factors including rigidity and structure. The 

difficulty of providing a'collision response algorithm that simulates real objects is 

apparent when one considers the vast variety of deformations exhibited by real 

objects. 

This work describes a tool that provides a variety of controls for the animator 

to adjust the look of a basic collision response. One of its goals is to generate the 

responses fast enough so that the animator can quickly preview the animation. It 

is believed that a quick preview of the collision response will give the animator a 

sense of motion flow and allow for iterative adjustment of the collision response 

parameters. 

1.3 Thesis Overview 

The next chapter presents a description of previous work in this field, an animator's 

perspective on the collision response problem and a summary of the goals of the 

collision response algorithm. The fundamentals of parametric curves, surfaces and 

hierarchical B-spline surfaces in Chapter 3 provide a common basis for the collision 

response algorithm described in Chapter 4. Much like the animator's process, the 

collision response algorithm moves surface control vertices to resolve the interpene

tration of two objects. Chapter 4 describes how the control vertices will be moved, 

the controls over the 'look' of the response. Some results, both empirical and visual 

are presented in Chapter 5 and an overall summary is given in Chapter 6. 
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Chapter 2 

Previous W o r k 

Animating complex deformable objects is tedious work for the animator because 

the traditional method of choice is to manipulate surface shape parameters at each 

frame. A large variety of schemes have been proposed to aid in the animation of 

deformable objects. Some schemes try to simulate specific objects such as cloth 

or simulate material properties such as plasticity or wrinkling. The driving force 

behind the research in this area today is for algorithms that are fast, flexible, easy 

to control and/or produce visually realistic results. 

This chapter will describe three different areas of research that try to tackle 

the problem of animating deformable objects. A section summarizing an interview 

with a group of animators and their specifications for a deformation algorithm fol

lows. Finishing the chapter is a description of the automatic collision response 

algorithm's (ACRA) goals. 

2.1 Physically-Based Modeling 

By physically-based modeling we mean any system that uses some laws of physics 

to iteratively calculate the positions, velocities, forces or other properties of the 

objects. Using a physically-based model to simulate the motion or shape of objects 
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has many advantages and is the foundation for much of the work done in robotics and 

simulation. Two of the main benefits of animations using physically-based models 

is the visual realism and automatic object motion. The specification of key-framed 

motion is not needed, provided the parameters of the system are set up correctly. 

There is a double-edge to physically-based models in the sense that exaggerated or 

unrealistic effects are difficult to create and the affect of changing system parameters 

can be difficult to predict. 

Much work has been invested for developing schemes to animate rigid bodies 

[3] [4] [27]. The animation of non-rigid bodies opened a new realm of animation 

problems, specifically the deformation of a non-rigid body such as cloth [37] [28] [21] 

[30] [36] [5] during and after a collision. Most cloth models approximate cloth with a 

deformable surface composed of a uniform grid of point masses. A typical point mass 

is connected to its neighbors by springs. External forces act on the point masses 

to deform the surface while the internal elastic forces from the springs maintain 

cohesion. The change in velocity and position of a point mass due to internal 

and external forces is calculated using numerical methods to solve the differential 

equation specified by Newton's law. A numerical method calculates the change 

in position or velocity during a discrete time step. The position or velocity is 

incremented by the calculated changed and used as the initial value for the next 

time step. The size of the time step and the numerical method chosen impacts the 

behavior of the dynamics1 system since a large time step could cause the numerical 

solution to be inaccurate or unstable whereas a small time step increases the number 

of calculations. Baraff and Witkin [5] have shown that the use of implicit methods 

and adaptive time steps can decrease the system's calculation time. 

Several physically-based models have been introduced specifically for the 

purposes of simulating properties or visual effects such as elasticity, inelasticity, 

garment wrinkle formation [22], garment crumpling[33] and dressing a virtual human 

1 Dynamics refers to the application of Newton's laws to a system to calculate positions and 
velocities. 
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[12] [39]. Terzopoulos and Fleischer [32] simulate three different inelastic behaviors, 

viscoelasticity, plasticity and fracture. An object that exhibits elastic properties will 

return fully to its original shape when all external forces are removed. If an object 

returns to its original shape slowly or only partially then the object is said to be 

inelastic. Inelastic deformations may depend on the history of the applied forces. A 

material whose behavior includes the characteristics of a viscous fluid together with 

elasticity exhibits viscoelastic properties (e.g. Silly Putty flows under sustained force 

but also bounces elastically when subjected to bursts of force). The amount that 

a material sustains permanent deformations is a rating of its plasticity. Fracture 

occurs when a material deforms beyond a certain limit. Cracks develop according 

to internal force or deformation distributions and their propagation is affected by 

local variations in material properties. Terzopoulos and Fleischer's physically-based 

model is similar to a cloth model in that the object is a grid (possibly 3D) of points 

connected by combinations of units. The three units described are an elastic unit 

that acts like a spring, a viscous unit whose rate of deformation is proportional to 

the force, and a plastic unit that does not respond to a force until a certain threshold 

is reached. For example, the simulation of viscoelasticity is achieved by modeling 

the connection in the grid by a combination of an elastic unit and a viscous unit, 

since this combination simulates internal forces that depend on the deformation 

magnitude and rate. 

Several researchers have developed models with the specific purpose of gener

ating a visual effect. Kunii and Gotoda [22] presented a cloth model that generates 

wrinkles as it deforms. Their cloth model is a mass/spring mesh including diagonal 

springs between point masses. They claim that certain characteristic points on the 

cloth will describe the shape of the wrinkles while moving and manipulating these 

points animates the wrinkles. By perturbing the position of a point mass the energy 

of the system will change and any perturbation that lowers the overall energy is 

retained. Perturbing multiple point masses will form wrinkles in the cloth as the 

5 



system reaches a lower energy state. 

Wu et. al [38] investigated a variant of the wrinkle formation problem for 

the purposes of generating facial wrinkles. Their physically-based skin model has 

a muscle layer, a fat tissue layer and a skin mesh. The skin mesh is connected to 

the muscle layer through springs which represent connective fat tissue. Revolution 

surfaces, such as cylinders or ellipsoids, represent muscles. Movement of the muscles 

causes the skin to deform which in turn causes wrinkles to form. As a person gets 

older the skin's elasticity decreases while the plasticity increases. Their model also 

takes into account a plastic-visco-elastic process that changes the skin's rest position 

to simulates wrinkling as a person ages. 

Proponents of physically-based modeling claim that models based on physical 

laws can generate motion and deformation from a set of initial conditions and a set of 

applied forces over time. While physically-based modeling systems have generated 

some exceptionally realistic animations, animators have indicated that specifying 

the forces, constraints and parameters for a particular motion is often nonintuitive. 

2.2 Free Form Deformations 

Free form deformations were first introduced by Sederberg and Parry [31] as a 

method for deforming a complex model within a parallelepiped region of space. In 

short, any object within the Bezier solid that defines the parallelepiped can calculate 

new positions for its vertices such that the object deforms as the parallelepiped 

deforms. The deformation process (adapted from [34]) is: 

• Impose a local coordinate system within the parallelepiped. Any point P 

within the parallelepiped can be specified by, 

P = O + uu + vv + ww (2-1) 
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where O is the origin. The (u,v,w) coordinates, given in Equation 2.2, are the 

parametric coordinates of P in the parallelepiped. 

u = 
(v x w) • (P - O ) 

(vxw)- u 
(u X w) • (P - O ) 

(u X w) • V 
(u X v) • (P --O) 

w= y",:> ^ ^ ' (2.2) 
(u X v) • w 

• Define a three dimensional lattice of control points within the parallelepiped. 

F i j , k : 0 < i < I, 0 < j < m, 0 < k < n (2.3) 

where 

Fitiik = 0+l-u+i-v+-w. (2.4) 
l m n 

• Deform the lattice of control points to new points F ; j k -

• Calculate the deformed points P' from the deformed lattice and the trivariate 

Bezier function using the same parametric coordinates from Equation 2.2. 

l m n 
P ' = E E E F U k ^ W ^ m W 5 f c

n W (2.5) 
1=0 j=o k=0 

A character animation system developed by Chadwick et. al [13] uses free 

form deformations to animate secondary features like muscle bulging. Their char

acter model has four layers, a motion specification layer, a skeleton, a muscle layer 

and a skin and clothing layer. The animator controls the motion of the character 

by kinematically specifying joint angles and constraints on the skeleton layer. In

teraction between the layers is specified by parameters and constraints set by the 

animator. Because each layer uses the specified constraints to drive the motion of 

the next layer the computer can relieve the animator of the burden of managing 

the interaction between the layers. Additional work required to create the char

acter model and specify the constraints between the layers is recovered by easier 
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specification of the animation. A muscle primitive is represented as a pair of ad

joining free form deformations. The skin layer, which is the actual geometric layer 

that is rendered, is contained within the muscle layer and it deforms as the muscle 

undergoes a free form deformation. Squash and stretch behavior in the form of 

bulging and bending muscles is automatically calculated from the kinematic state 

of the articulated skeleton. Soft body structures such as flesh or fatty tissue are 

simulated through free form deformations controlled by dynamics. The lattice of 

the free form deformation surrounding the soft body structure is mapped to point 

masses. A dynamic simulation is applied to the point masses and their resultant 

motion is mapped back to the free form deformation to drive the muscle deforma

tions. Unfortunately the real-time interactivity of the free form deformations and 

usability of the system are not commented on so the applicability of the algorithms 

for general object deformation is in unknown. 

The work by Zheng et. al [40] provides some tools for easily modifying the 

shape of free form curves. User defined sculpting tools are pushed into the free form 

curve to alter its shape. For finer control the region of the curve that is deformed can 

be limited to a user defined span. Sculpting tools to deform a curve is an intuitive 

and appealing interface but would not be applicable for A C R A since an extension of 

the method to surfaces is not presented and the burden of adjusting surface shape 

at each animation frame remains. 

Free form deformations provide a way to calculate the deformation of an 

object inside a deformed parallelepiped with the deformation of the parallelepiped 

depending either on a dynamics system or animator manipulation. 

2.3 Displacement Schemes 

Displacement schemes are a new approach to modeling deformations without the use 

of a physical model or dynamics. They strive for visually convincing deformations, 

not the simulation of physically realistic deformation. Several ideas from the three 
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projects presented in this section are incorporated into A C R A . 

Gascuel and Desbrun [10] [11] generate object deformation through an im

plicit surface layer that coats an internal model that is either a mass/spring network, 

an articulated structure composed of one or more rigid objects, or a particle system. 

Their scheme has three main benefits: the implicit surface provides efficient collision 

detection, an exact contact between colliding objects is found and the object volume 

is preserved. During a collision a negative field term, which models compression, 

is added to the portion of the surface within the interpenetration region. A prop

agation region is defined around the interpenetration region that gains a positive 

field term to simulate the transverse propagation of the deformations (i.e. bulging). 

The key difference between this technique and the ones mentioned in the previous 

sections is that the deformation itself is not generated through dynamics but the 

resultant deformation can be used to calculate a response force. One drawback of 

their method is the inherently rounded or blobby look of implicit surfaces. 

Palazzi [29] adapts the idea of displacement constraints from Gascuel [18] 

to animate deformable objects. Deformable objects are modeled with rigid line 

segments connected at their end points to form a grid. The system streamlines the 

dynamic computations by treating each rigid line segment independently without 

imposing cohesion constraints. External forces acting on each rigid line segment are 

found and used to calculate the new positions and orientations of the line segments. • 

A second step re-links the line segments by enforcing the constraints acting on 

the grid. Palazzi introduced a multilevel approach to distribute the external forces 

across the object. His deformable object is a hierarchy of grids where different levels 

of the hierarchy are assigned portions of the external force to generate a spectrum 

of local to global behavior. 

Harrison [20] used a piecewise linear multi-resolution surface to model de

formable objects. His deformations are kinematically driven in the sense that dis

placements, calculated from the interpenetration of two objects, move specific sur-
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face points towards specific goal points at a certain rate. Different amounts of the 

displacement are absorbed by different levels in the hierarchy to generate a spectrum 

of local to global deformations. His method is fast and easy to control but lacks the 

smoothness of a spline surface. 

2.4 Collision Response and Animators 

Four animators [1] were interviewed to survey their opinions about animating de

formable objects and the features they would find useful. Unanimously the most 

prevalent concern was maintaining control over the animation. Any system that 

imposed movements or deformations on the objects without a mechanism for over

riding the movements was considered unusable. When specifically questioned about 

physically-based models and dynamics systems they indicated such features would 

be useful provided the parameters were easy to specify and the results from the 

dynamics system could be overridden if desired. Furthermore, the animators al

ready have a plan for how the objects will be moved and react before they begin 

the animation process so a system that calculates motion is neither needed nor de

sired. Beneficial features are a fast preview of the response, controls that provide 

a spectrum of deformations and a database of default configurations that could be 

adjusted for customized behavior. 

2.5 ACRA's Goals 

Traditionally, animators manipulate the control vertices of the deforming objects 

at each frame or employ morphing techniques. These techniques provide a large 

amount of control over the progression of the deformation but require the animator 

to generate all motions of the animation by hand. 

The automatic collision response algorithm (ACRA) is a prototype that is 

designed to try and remove the interpenetration between two objects as opposed 
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to simulating real object responses. It falls in with the other displacement schemes 

of Section 2.3 to provide a middle ground between physically-based systems and 

control point manipulation done by hand. The following goals were chosen to make 

A C R A a fast and flexible tool that an animator could use for basic collision response 

which can later be enhanced by hand if desired. 

• Unintrusive . The key-framed motion or position of objects should not be 

altered by the algorithm. If the animator wants an object to change position or 

velocity after the collision then it is the animator's responsibility to key frame 

such motion. Consequently, any non-rigid object can deform indefinitely since 

the system does not generate fractures. If two non-rigid objects interact, the 

one with the highest rigidity will deform less. This provides the animator with 

a tool capable of generating unrealistic deformations. 

• Fast previews. The algorithm should try to minimize the computation time 

so that the animator only waits a small amount of time (ss 1 second/frame) 

to preview the animation. A C R A uses two strategies to minimize its compu

tation time. First, the algorithm does not need to maintain the state of the 

system so it is only executed at the time of the collision and possibly after

wards if the algorithm is extended to return the object back to tits rest shape. 

Second, A C R A narrows its collision response to the portion of the object that 

is interpenetrating with the other object. 

• B r o a d spectrum of responses. A multi-resolution, smooth surface is a 

good choice for the modeling primitive used by A C R A . The multi-resolution 

aspect of the surface can be exploited to generate a spectrum of local to global 

responses. 

• A n i m a t o r Overr ide . If the broad spectrum of responses still does not pro

duce the desired look then the surface shape should be adjustable by the 

animator. 
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Chapter 3 

Parametric Curve and Surface 

Fundamentals 

Several excellent textbooks have been written on the subject of parametric curves 

and surfaces [7, 8, 14, 15] thus this chapter will only overview the fundamentals 

of the topic and establish a common notation. First, properties of general cubic 

parametric curves are described and some common types of curves are mentioned. 

Since the modeling primitive used by A C R A is based on B-splines the properties of 

B-spline curves and the extension to surfaces are covered. To lead into the chapter 

on A C R A , the last section describes hierarchical splines and previews their utility 

for collision response. 

Although the algorithm in Chapter 4 describes how a collision response can 

be achieved if the modeling primitive is a hierarchical B-spline surface, the under

lying ideas could be applied to other primitives such as Bezier surfaces or piecewise 

linear surfaces. In fact, much of this work is an exploration of the specific benefits of 

using hierarchical B-spline surfaces for collision response since Harrison [20] has al

ready shown how to model deformable objects with piecewise linear multi-resolution 

surfaces. 
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3.1 Parametric Curve Overview 

The most basic of modeling primitives are points and lines. A piecewise linear 

approximation is a series of line segments that approximates the shape of other 

primitives such as curves. A curve can also be approximated by a piecewise poly

nomial representation where each segment Q(t) is given by three functions x(t), 

y(t) and z(t) and the parameter t varies over the interval [0,1]. This is known as a 

parametric representation because any point on the curve is represented by a single 

parameter. Cubic polynomials are often used for the three functions of Q(t) because 

they are the lowest order polynomial that can interpolate two endpoints and specify 

tangents at each endpoint. Higher order polynomials require more conditions to 

control both the shape and the additional inflection points that can cause undesir

able artifacts or "wiggles". A C R A uses a modeling primitive based on cubic splines 

so the remainder of the chapter will be restricted to splines of degree 3. 

A cubic curve segment Q(t) = [x(t) y(t) z(t)] is defined by the following 

cubic polynomials, 

x(t) = axt3 + bxt2 + cxt + dx, 

y(t) = ayt3 + byt2 + cyt + dy, 

z(t) = azt3 + bzt2 + czt + dz, 0<t<l. (3.1) 

A succinct matrix form for the curve segment is, 

Q(t) = [x(t)y(t)z(t)] = T-C (3.2) 

where 

T = 

C = 

t3 t2 t 1 

bx by 

dz 

(3-3) 
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x(t) 

Figure 3.1: A two-dimensional curve with two segments. The difference in segment 
shape is shown when the join point has C°, C1 and C2 continuity. [Source: [15], p. 
481] 

The parametric tangent vector of the curve is the derivative of Q(t) with 

respect to the parameter t. If the tangent vectors at the join point of two adjacent 

curve segments are equal in both direction and magnitude then the curve is C 1 

continuous. In general, if each derivative dn/dtn[Q(t)] through to the nth derivative 

is equal in magnitude and direction at the join point then the curve is Cn continuous. 

Figure 3.1 shows two curve segments where the join point exhibits C ° , C1 or C2 

continuity. 

There are several methods for specifying the four constraints on curve shape: 

Hermite curves define two endpoints and two endpoint tangent vectors, Bezier curves 

define two endpoints and two additional points to control the endpoint tangent 

vectors and B-splines define four control points which the curve does not necessarily 

pass through. 

3.2 B-Spline Curves 

Maintaining C ° , C1 and C2 continuity is easier with a B-spline than Hermite and 

Bezier curves since a B-spline segment shares control points with adjacent segments. 

A B-spline curve with m + 1 control vertices, VQ, VI, . . . , V M , m > 3, has m — 2 
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y(t) 

Figure 3.2: A B-spline curve with 7 segments. [Source: [15], p. 492] 

segments, Q 3 , Q 4 , . . . , Q m . The parameter range for a segment Q i is ti < t < 

for 3 < i < m. A knot is a join point between Q i _ i and Q , and has a parameter 

value, or knot value, of The endpoints of the curve segment have knot values 

of £3 and tm+i and are also called knots. A diagram of a two-dimensional B-spline 

curve illustrating the knots and control points is shown in Figure 3.2. 

The coefficient matrix of equation 3.3 is usually rewritten as C = M • G, 

where M is a 4 x 4 basis matrix and G is a 4 x 1 geometry vector. A segment 

is a weighted sum of the elements in the geometry vector where the weights are 

cubic polynomials of t. These cubic polynomials, known as blending functions or 

B-spline basis functions, have a matrix form B = T-M. It is important to recognize 

that the elements of the geometry vector are the four variables that control the 

curve's shape. During an affine transformation only the geometry vector needs to 

be transformed since the curve is generated from the vector. Equation 3.4 shows the 

B-spline geometry vector GBS. for a segment Q ; with four control vertices defining 
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the segment. 

v i + 1 

v i + 2 

V i + 3 

, 0 < i < m — 3. (3.4) 

With the B-spline basis matrix MBs given by Equation 3.5 a curve segment 

Qi(t) is calculated in Equation 3.6. 

- 1 3 - 3 1 

3 - 6 3 0 

- 3 0 3 0 

1 4 1 0 

(3.5) 

Qi(t) = T-MBs-GB 

( l - * ) 3 , 7 , 3 r 3 - 6 i 2 + 4 ^ - 3 i 3 + 3i 2 + St + 1__ 
- V i H V i + i H 2 V i + 2 6 

+ yVi+3, 0 < * < 1 

6 

(3.6) 

The B-spline blending functions P>BS are easily picked out from Equation 3.6. 

BBS = [Bo B\ B2 B3] 
(1-t)3 3 i 3 - 6 t 2 + 4 - 3 i 3 + 3 i 2 + St + 1 t 31 

, 0 < t < 1 (3.7) 
6 6 6 6 

As shown in Figure 3.3, the B-spline blending functions exhibit the important 

property of being everywhere nonnegative and summing to 1. These conditions 

indicate each segment is contained within the convex hull of its four control points. 

Detecting collisions between two curves is simplified because non-colliding curves 

are quickly eliminated by testing the intersection of their convex hulls. 

Subdivision is a key concept when dealing with hierarchical surfaces so the 

topic will be introduced here. Simply put, a segment is subdivided into two segments 
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1 r 
0.9-

0.8-

1 1 1 1 1 1 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 t 

Figure 3.3: The B-spline blending functions. Notice only B3 is zero at t = 0 and 
Bo is zero at t = 1. This indicates the segment before t = 0 will be influenced by 
V i , Vi+i, V i + 2 but not V i + 3 . Similarly the segment after t = 1 will be influenced 
by V i + i , V i + 2 , V i + 3 but not V i . 

for the purposes of adding control vertices and gaining a finer control over the curve's 

shape. For example, a Bezier segment can be subdivided into two segments, both 

of which are coincident on the original segment and share only one end point. As 

shown in Figure 3.4, the original segment has control vertices V ; , 0 < i < 3 and 

the two new segments have control vertices Li and R; respectively. A total of five 

new control vertices (since Vo = Lo, V3 = R3 and the endpoints L3 and Ro are 

shared) replace the two old vertices V i and V2. For B-splines a similar scheme is 

derived in [15] where the four control points of the original segment are replaced 

by five new control points. Unfortunately the segments adjacent to the one being 

subdivided are still defined by some of the original control points so changing the 

position of any of the five new control points or the four old control points will 

cause a crack in the spline, as shown in Figure 3.5. The Oslo algorithm [7] adds 

knots to the knot sequence and finds a new set of control vertices that represents 

the same curve. This takes us out of the realm of uniform B-splines since the 

difference between knot values is not necessarily constant. Section 3.4 will show 
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Figure 3.4: A single Bezier curve segment is subdivided into two segments. 
[Source [15], p.508] 

that hierarchical splines retain a uniform knot difference by creating a new level of 

the hierarchy when they are subdivided. 

The representation of a parametric surface is similar to a curve except the elements 

of the geometry vector are not constants but instead are themselves parametric 

cubic curves. Two parameters, u and v, represent a point on the surface. If one of 

the parameters is fixed then varying the other over the interval [0,1] maps out a 

parametric cubic curve (Figure 3.6). In matrix form a parametric bicubic surface is 

represented as, 

3.3 B-Spline Surfaces 

G x ( v ) 

G 2 ( v ) 

Q(u,v) = tf.M • 
(3.8) 

G 3 ( v ) 

G 4 ( v ) 

where G,(v) is a parametric cubic curve given by 

Gi(v) = V • M • [Vu V i 2 V i 3 V i 4 ] T 

= [Vu V i 2 V i 3 V i 4 ] • MT • VT. (3.9) 
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(a) (b) 

Figure 3.5: (a) Three B-spline curve segments with the middle segment subdivided 
into two segments. The middle segment is defined by five new control vertices 
(Lo, L\ = Ro, L2 — Ri, L3 — R2, -R3). (b) Control vertex V2 from the original curve 
is moved and cracks form. 

A variable V y , 0 < i,j < 3, is a control vertex and V denotes the 1 x 4 

vector [v3 v2 v 1]. The surface representation of Equation 3.8 is rewritten as, 

Q(u,v) = U-M-G-MT -VT, 0<u,v<l (3.10) 

Q(u,v) = U-M 

Via V i s V 

V 2 i v 2 2 V 2 3 V 

v 3 1 V 3 2 V33 v 

V41 V 4 2 V43 V 

14 

24 

34 

44 

MT • VT (3.11) 

For a B-spline patch the surface equation is given in Equation 3.12 where 

the 4 x 4 geometry matrix GBS is the 16 control vertices of the patch. 

Q(u,v) = U • MBs • GBs • M | s • VT, 0<u,v<l 

= BBs(u)-GBs-BBs(v)T 

(3.12) 

j=0 j=0 

To maintain C° continuity at an edge between two patches the edge curve of 

each patch must be identical, which means the control vertices must be identical. 
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u= 1.0 

Figure 3.6: A bicubic parametric surface patch showing some parametric curves 
with constant u. 

Just as with curves, C 1 continuity across two patches requires C° continuity and the 

edge tangents have equal direction and magnitude. Higher orders of continuity are 

found by enforcing the equality of higher order partial differential equations with 

respect to the non-constant parameter. A B-spline surface automatically maintains 

C°, C1 and C2 continuity across patches because adjacent patches share control 

points and basis functions. 

One final important note before turning attention to hierarchical spline sur

faces involves the B-spline blending functions. In the same manner that the B-spline 

blending function indicates a control vertex of a cubic B-spline curve influences four 

segments, a control vertex of a bicubic B-spline surface influences 16 patches. 

3.4 Hierarchical B-Spline Surfaces 

The Oslo algorithm [7] mentioned in Section 3.2 describes a method for refining a 

bicubic B-spline surface by inserting additional knots into the knot sequence and 

replacing the original control vertices by a new set of vertices. When applied to a 
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bicubic B-spline the entire row and column that the patch is a member of has its 

control vertices replaced. Both the editing complexity and the memory requirements 

increase with so many additional, potentially unneeded, control vertices. Forsey [17] 

[16] introduces hierarchical B-spline surfaces that have the advantageous property 

of local refinement by adding only those control vertices needed for local editing of 

the patch. As the name suggests, hierarchical B-splines are a hierarchy of B-spline 

surfaces where a finer level k in the hierarchy contains the refined control vertices 

of a coarser level k — 1. If a level k of the surface Q M ( u , v) with an a X b array of 

control vertices and basis functions Bl\k\u) and B^(v) is given by, 

Q M ( u , v) = J2JZ^[SBf\u)Bf{v) (3.13) 
i=0 j=0 

i 
then the surface at level k + 1 is written as, 

Q ^ ] ( u , v) = E E VPJ + 1 ]B!* + 1 1 (u)Bf+1] (v). (3.14) 

t=0 j=0 

The basis functions on level k + 1 are the refined basis functions from level 

k with some additional knots (Su and Sv) in the u and v direction. 

Bf+1](u) = aj^at(r)BlkHu) 
r=0 
b+Sv 

Bf+1](v)=J2«i(s)Blk](v) (3.15) 

s=0 

The a coefficients give a relationship between the control vertices on level k 

and level k + 1. 

i=0 j=0 

A set of four B-spline patches and the local refinement process is shown in 

Figure 3.7. Hollow circles denote original control vertices and filled circles show new 

control vertices on the finer level. 

21 



(a) (b) 

Figure 3.7: (a) Four B-spline patches and their control vertices, (b) Local refinement 
of the top left patch. The four corner vertices of the original patch still exist in the 
data structure but have been removed from the diagram for clarity. 

To maintain C2 continuity only those control vertices whose basis functions 

are zero at the boundary to the coarser level are allowed to move. For example, in 

Figure 3.8 the refinement of several patches and the additional control vertices at 

each step that are free to move are shown. In Chapter 4 an algorithm is described to 

interpolate a patch through a point in space. This algorithm calculates the displace

ment of each patch control vertex such that the patch interpolates the point. To 

execute the interpolation algorithm A C R A must first ensure all the control vertices 

of the patch are moveable which may mean patches neighboring the interpolating 

patch need refinement. 

The vector indicating the position of a level k + 1 control vertex before it 

has been displaced from its position after the refinement is called the derived vector. 

When a level k + 1 control vertex is displaced, an offset vector, relative to the local 

frame of reference on level k, is stored. The vector addition of the derived vector and 

the offset vector1 gives the position of the control vertex as shown in Figure 3.9. This 

technique is more flexible than displacement mapping since displacement mapping 

'The offset vector must be transformed into the derived vector's space before the vector addition 
is performed. 
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Figure 3.8: Local refinement of adjacent patches. The common corner control vertex 
of the four adjacent patches that are being refined is shown with the arrow. The 
black dots indicate which control vertices on the finer level are free to move without 
breaking C2 continuity at the boundary to the coarser level. [Source [16], p.67] 

only displaces a surface point along the surface normal as defined by a pattern or 

map. 

An important effect of storing a derived and an offset vector is the automatic 

finer level displacements when a coarser level control vertex moves (Figure 3.10). 

Typically control vertices at finer levels have a more localized control over the sur

face shape whereas coarser level vertices have influence over a larger portion of the 

surface2. The next chapter describes how A C R A makes use of this behavior to 

provide a spectrum of local to global collision responses. 

2 It is possible to model an object where a finer level control vertex can influence a larger portion 
of the object than a coarser level control vertex. In this case the animator must take care when 
specifying the amount of collision response each level of the hierarchy is responsible for. 
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object reference 
frame 

(b) 

Figure 3.9: (a) A 2D representation of a derived and offset vector for a pair of 
vertices on level k + 1. (b) Moving a vertex on level k causes the shape on level k +1 
to follow along. 

Figure 3.10: A 3D example of the displacement of a coarser level 
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Chapter 4 

Collision Response Algorithm 

This chapter details the collision response algorithm and the mechanisms for con

trolling the response. The evolution of an interpolation algorithm, from a basic 

curve interpolation to a hierarchical surface interpolation, is described. Hierarchical 

surface interpolation is used to change an object's shape in response to a collision. A 

description of the controls for specifying the locality of the collision response and two 

additional collision response mechanisms, namely a translational and a rotational 

response finish the chapter. 

4.1 Multi-Resolution Interpolation 

The interpolation method proposed by Bartels and Beatty [6] serves as a basis 

for the extension of the method to hierarchical surfaces. Interpolation of multiple 

data points by a multilevel B-spline is presented in [23]. Independently, Archer [2] 

used a multipoint surface interpolation algorithm for the purposes of craniofacial 

reconstruction. This chapter will show surface interpolation is also applicable for 

object deformation. 
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4.1.1 Curve Interpolation 

Bartels and Beatty's algorithm [6] solves the problem of interpolating any point on 

a parametric curve through an arbitrary data point. Control vertices of the curve 

segment containing the point are displaced such that the curve changes shape and 

interpolates the data point. A benefit of the technique is the ability to control the 

locality of the curve deformation simply by controlling the number of control vertices 

that are displaced. 

As seen in Chapter 3, the equation for any point on a cubic B-spline segment 

is given by 

Q(u) = B0{u)V0 + B i ( » ) V i + B2(u)V2 + B3(u)V3 (4.1) 

where u, the parametric value for the curve, is defined on the interval [0,1]. 

The points V 0 , V i , V2, and V 3 are the control vertices for the segment and the 

functions Bo(u), Bi(u), B2(u), Bs(u) are the B-spline basis functions. If the point 

Q(u) is to interpolate a new point Q'(u) while maintaining a constant parametric 

value then the equation for Q'(u) is written as 

Q'(u) = B0(u)Vf
0 + B ! ( « ) V i + B2(u)V'2 + B3(u)V3 (4.2) 

The displacement, A Q ( u ) , between Q(u) and Q'(u) is found by subtracting 

Equation 4.1 from Equation 4.2. 

A Q ( u ) = B0{u)AV0 + B i ( « ) A V i + B2{u)AV2 + B3(u)AV3 (4.3) 

Each of the A V i ' s represents the displacement of the control vertex neces

sary for Q(u) to interpolate Q'(u). The displacement A Q ( u ) can be thought of as a 

vector describing the direction and magnitude of the interpolation. Setting each of 

the A V , ' s to A Q ( u ) would satisfy Equation 4.3 because the B-spline basis functions 

sum to one. The curve segment would be translated and the shape would remain 
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Figure 4.1: Interpolation of a single data point. The cross is the data point that 
Q(u) (the box) should interpolate. Notice only the four control vertices defining 
Q(u)'s segment are displaced from the original position shown in red. 

constant. To affect a minimum distance shape change1 Bartels and Beatty [6] pro
pose that the displacement be a weighted displacement of AQ 2. The weights are 
chosen such that Equation 4.3 is satisfied. 

AV,(u) = AQ(u) • „,,(«) = AQ< u ) g 2 ( M ) + B\{u) + ^Bl{u) + ( 4 ' 4 ) 

Equation 4.4 suggests the amount each control vertex is displaced is propor
tional to its proximity to the moving point. Figure 4.1 shows the displacement of 
each of the control vertices as the spline interpolates a data point. 

Modifying the interpolation algorithm to allow the interpolation of multiple 
data points allows for a greater range of resultant shapes. If different segments of 
the spline are involved in the interpolation then more of the spline will be deformed. 
To interpolate the k = 0,..., n data points, p = 0 , . . . , m control vertices need to be 
moved. The displacement of each data point is written as 

AQ(uk) = AVoft(ti*) + AV1fli(ttfc) + AVaBa(«fc) + AV,fl3(ttik). (4.5) 

A control vertex, V p, will have multiple non-zero displacements if it influ
ences segments from two of more data points. Equation 4.4 is modified to calculate 

'The minimum distance shape change is the change in curve shape such that the curve point 
Q(u) interpolates Q'(u) but the control vertices undergo a minimal displacement. 

2For a theoretical justification of the weights in Equation 4.4 the interested reader is referred to 
[6]. 
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the displacement of each control vertex for each data point. 

A V p ( u k ) = A Q ( u k ) • Wi(uk) 

A Q ( U k ) Bl{uk) + Bl{uk) + %(uk) + Bl{uk) ( 4 - 6 ) 

The index i, 0 < i < 3, is the index of V p in the segment containing Q ( u k ) . 

The overall displacement for V p is a weighted sum of all the A V p ( u k ) . 

n 
A V P = £ W p ( « f c ) A V p ( u k ) (4.7) 

fc=o 

Using a weighted displacement suggests the curve will not interpolate the 

multiple data points perfectly. The actual displacement of each curve point is 

AQ(uk) = A V o f l o K ) + A V j B i K ) + AV2B2(uk) + AV3B3(uk) (4.8) 

The weights Wp(uk) should be chosen such that the difference between the 

desired displacement A Q ( u k ) and the actual displacement A Q ( u k ) is a minimum. 

The method of least squares [25] is used to find appropriate weights. : 
n 

s = ^ ( A Q ( u k ) - A Q ( u k ) ) 2 

k=0 
ds 

9Wp(uk) 
0 

= T ^ ( a L ,4.9) 
E B ? ( » i ) 
k=Q 

To reduce the errors between the desired and the actual displacements the 

curve interpolation can be iterated. Figure 4.2 shows a curve with 8 control vertices 

interpolating 4 data points. In Figure 4.2(b) the curve has been re-interpolated 5 

times to achieve an excellent fit of the data points. 

4.1.2 Surface I n t e r p o l a t i o n 

Thus far the presented method has applied to B-spline curves. Objects in animation 

are usually represented as surfaces so the method must be adapted for a surface 

interpolating a set of data points. 
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(a) (b) 

Figure 4.2: Interpolation of multiple data points. The original curve is shown in 
red, the data points are crosses and the control vertices are dots, (a) After one 
interpolation, (b) After five interpolations. 

A set of control vertices V p where p = 0, • • • , m will be displaced for the 

surface to interpolate the k = 0, • • • , n data points. The displacement of a control 

vertex due to data point k is given by 

A V p ( u k , v k ) = A Q ( u k , vk) • Wi^Uk^Vk) 

= A Q ( u k , v k ) 3 . (4.10) 

£ £ {Bi{uk)Bm{vk)Y 

1=0 m=0 

The overall displacement of each control vertex is a weighted sum of all the 

individual displacements due to the k data points. As in section 4.1.1 the weights 

are found with the method of least squares. 
n 

A V P = ^ V F p ( M f c , ^ ) A V p ( u k , v k ) 

W M = 7 ^ f a ) ) V (4.11) 
E(Bt(uk)BJ(vk)y 
fc=0 
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(a) (b) 

(c) (d) 

Figure 4.3: Interpolation of multiple data points, (a) Initial configuration, (b) After 
one iteration, (c) After 5 iterations, (d) Shaded surface. 

Again, due to the weighted displacement of the control vertices the interpola

tion of a surface will not be perfect and the method can be iterated. Figure 4.3 shows 

a surface with 11 X 11 control vertices and 3 data points. Notice in Figures 4.3(b) 

and (c) how the patch with one surface point converges to the data point with fewer 

iterations than the patch with multiple surface points. 

4.1.3 H i e r a r c h i c a l Surface I n t e r p o l a t i o n 

As described in Chapter 3, a hierarchical surface has a hierarchy of levels where 

each level is a subdivision of the previous level. The idea that a broader spectrum 

of surface shapes is available if the interpolation algorithm is applied to various 

levels in the hierarchy is adopted from Palazzi [29] and Harrison [20]. If a coarse 
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(a) (b) 
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(c) 

Figure 4.4: Hierarchical interpolation of multiple data points, (a) Coarsest level 
absorbs all the interpolation (5 iterations), (b) In between level absorbs all the 
interpolation (5 iterations), (c) Finest level absorbs all the interpolation (5 itera
tions). 

level of the hierarchy interpolates the data points then a larger region of the surface 

will change shape. Conversely, a localized shaped change occurs if the finest level 

interpolates the data points. This is the core mechanism used by the collision 

response algorithm to provide control over the locality of the object deformations. 

Figure 4.4 shows the same surface as Figure 4.3 but the interpolation is done by 

the coarsest level (Figure 4.4(a)), an in between level (Figure 4.4(b)), and the finest 

level (Figure 4.4(c)). 

Blending the interpolation from various levels is known as multi-resolution 

interpolation. If some of the interpolation is achieved or 'absorbed' by a coarse 
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Figure 4.5: Multi-resolution interpolation of multiple data points. The coarsest level 
absorbs 30% of the interpolation and the finest level absorbs 70%. 

level and another portion absorbed by a fine level then the overall shape would be 

gradual. Each level, /, where / — 0 is the coarsest and / = m is the finest, can absorb 

a percentage of the interpolation a^. The displacement of a data point k on / will 

be 

A Q W ( u k , v k ) = a [ ' ] - A Q ( u k , v k ) (4.12) 

where 

m 
^ V ' ] = 1, a® > o (4.13) 
;=o 

Before any interpolation is performed A Q ( u k , v k ) is calculated as the dis

placement between the data point and the surface point Q ( u k , v k ) . Each level, 

starting with / = 0, first determines the points Q ^ ( u k ) V k ) and then interpolates 

the level through the data points, 

Q' [ 1 ] (uk,v k ) = Q [ 1 ] ( u k , v k ) W ] • A Q ( u k , v k ) (4.14) 

Figure 4.5 shows the surface from Figure 4.3 with 30% of the interpolation 

absorbed by level 0 and 70% absorbed by level m. 

Hierarchical B-spline surfaces allow for local refinement, thus a surface point 

Q ( u k ) V k ) may be in a region where the subdivision level is less than the finest 
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level that absorbs some of the interpolation. Thus, interpolating a data point on 

level ty, where q is not the finest level TO, may not remove all the interpenetration 

if Yl'iLq+i a^ > 0- ACRA incorporates two solutions for handling such data points. 

The first alternative refines the patch containing the data point until that patch 

is at the finest level that absorbs any of the interpolation. A second alternative 

retains the refinement level of the surface and obeys the absorption amounts by 

only interpolating up to the level the surface point is on. In the first case the 

surface is refined and the response will be more local while the second case will still 

maintain a global response but some of the interpenetration may remain. 

4.2 Using Multi-Resolution Interpolation for Collision 

Response 

During a collision an interpenetration will occur between the two objects if no re

sponse is applied. Any non-rigid object involved in the collision will need to deform 

to resolve the interpenetration. The collision response algorithm finds appropriate 

surface points and data points for an object such that the object will be deformed 

and no longer interpenetrate the other object after the data points are interpolated. 

A method for finding appropriate surface points and data points is described in this 

section. 

4.2.1 Rigidity 

ACRA is only concerned with the response of an object after a collision is detected, 

another module needs to be used to detect the collisions. The collision response 

algorithm requires two pieces of information; the point on each surface where the 

two objects initially made contact and the boundary of the interpenetration region 

on each surface. If we were to rewind the collision to the instant when surface S\ and 

surface 52 touched, P i and P 2 are the contact points on each surface respectively. 
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On the line between P i and P 2 the point P ' is defined as a data point that 

each surface will interpolate. The position of P ' is determined by the relative rigidity 

of the two objects. As predicted by Equation 4.15, if S\ is more rigid than 5 2 then 

P ' will be closer to P i than P 2 . 

P ' = RPj. + (1 - i? )P 2 (4.15) 

R = R l 

R\ + i?2 

The rigidity, Ri and R2, of Si and 5 2 respectively is in the range [1,100]. 

Interpolating P i through P' , for example, will only move the patch contain

ing P i , on a given level. The absorptions may be set such that some other 

parts of Si will still remain within the interpenetration region after the interpola

tion (see Figure 4.6). The solution is to move all of the patches that are completely 

or partially contained in the interpenetration region. To do so requires a surface 

point and a corresponding data point for each patch. Following the example shown 

in Figure 4.7, k = 0, ...,n additional surface points are found at the parametric 

middle of the patch or the parametric middle of the portion of the patch inside the 

interpenetration region. By extending a vector from each A i k in the direction of 

P i P 2 a corresponding surface point is found on 5 2 . The data points, A j k , shown 

in Figure 4.7(c) are found with Equation 4.16. Figure 4.7(d) and (e) shows a similar 

process for surface 2. 

(4.16) A' l i k = 

R = 

RA1M + (1 - i2)Bi , k 

Ri 
Ri + R2 

4.2.2 Deformation, Translation and Rotation 

A C R A provides three types of collision response, deformational as described in sec

tion 4.1, translational and rotational as described in section 4.3. The user is able to 
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(a) (b) 

Figure 4.6: Movement of a single patch may not eliminate all the interpenetration. 
A simplified 2D version of the surfaces is shown to clarify the error. 

control both the amount of collision response that is absorbed on each level and 

the combination of a deformational d^, translationa} and rotational response 

on each level. 

dl'] + t['] + r [ ' i = l (4 .17) 

where 

S > o 

/W > 0 

rW > 0 

The user controls the amount of collision response absorbed on each level 

with percentage sliders as shown in Figure 4.8. The sum of all the active sliders 

is 100%. Slider controls for deformational, translational and rotational percentages 

per level are also available. 
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Figure 4.7: Steps for finding additional data points for all patches or portions of 
patches within the interpenetration region, (a) The ticks on the surfaces indicate 
patch boundaries, (b) A vector is extended from each additional surface point to 
the other surface, (c) Data points to be interpolated by surface 1 are indicated by 
A j j . (d) and (e) show the same process for surface 2. (f) After the interpolation. 
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Figure 4.8: Controls for setting the absorption per level. Greyed out sliders indicate 
the surface has not been refined to that level. 

4.2.3 Deformational Response 

The points P;1^ and Apj on level / are the points that have the same (u, v) coordinates 

as P i and A y . The displacement that the entire level should absorb is 

APJ1] = a W . ( p ' - P i ) 

aM • (AJ, - A y ) A A 

(4.18) 

(4.19) 

The portion of the displacement that the deformational response is respon

sible for is 

AP. [ 1 ] = dW.AP.™ 
' d e f o r m 1 

t l ] - dM.AAF! . A A I J d e f o r m 1 J 

The data points that the interpolation algorithm will interpolate are 

deform 

'[1] 

i f + A P f l 
1 ' d e f o r m 

A. l'.J = ApI + AA? 1. 
^ J d e f o r m » J ' J d e f o r m 
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(a) (b) 

. (c) (d) 

Figure 4.9: Collision response when a surface is specified to (b) deform, (c) translate 
or (d) rotate. 

4.3 Translational and Rotational Response 

Two additional methods for collision response are provided to model objects that 

do not undergo pure deformational collision response. The interpolation algorithm 

generates a deformational response in the sense that it tends to give a dented ap

pearance to the object. Some objects may prefer to retain their shape and respond 

to the collision by translating to another position while others may translate on a 

finer level to retain surface details but dent inwards on a global scale. The option to 

allow a retention of details on a level during collision response is called translational 

response. Similarly, rotational response simulates an object being pushed or rolled 

during a collision. Figure 4.9 shows how an object may respond when the main 

response mechanism is a deformation, a translation and a rotation on a fine level. 
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Figure 4.10: The three smaller figures show the system before the collision, during 
the collision and the resulting rotational response. The bottom object undergoes 
a rotational response where the axis of rotation is into the page and the angle of 
rotation is taken from the triangle P- 1 pM, pj rotate' 

4.3.1 Translational Response 

A translational response on level / simply translates all the control vertices of the 

patches containing P : ^ and A :
l , J . by AP,- 1 J and A A | 

R ° . 1 1 J J ' t r a n s l a t e 

p'Wpj^ a n c j A j ^ A - 1 ; . The equations for the displacements are, 
i j 

>P] [1] 
I J t r a n s l a t e 

in the direction 

A P [i] 
^ t r a n s l a t e 

tW.AP.™ 

A A f j = i W - A A J , ]
; . 

' ^ t r a n s l a t e 1 0 

4.3.2 Rotational Response 

As shown in Figure 4.9(d) a rotational response moves the features on a level by 

what appears as a rotation. The initial contact point P?' is used to calculate the 
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TH 
interpolation point P r o t a t e in the same manner as the deformational response case. 

A P [ l ] = r [ / ] . A P P l 
l r o t a t e 1 

AA™ = r W .AA| 1 ] . 
I J r o t a t e 1 J 

p ' P l _ p P l . A p P ] 
± rotate — * i ' i " 1 J r i r c 

^ r o t a t e 

A ; w = A W + A A ? ! . 
»>Jrotate i j j ' j j r o t a t e 

A plane is defined by the three points P- 1 ^ P ^ j P r o t a t e ( s e e Figure 4.10). 

The normal of that plane will be the axis of rotation and the angle of rotation is the 

angle between pj 1 1 'p|^ and P - 1 ^ P ^ L t e - A quaternion, composed of the axis of 

rotation and the angle, is applied to the offset of each control vertex influencing the 

patch containing pf\ An identical process is used to determine the angle of rotation 

and axis of rotation for each A; 1-, A ; ^ pair. If a control vertex is influenced by 
1 J ' I J r o t a t e r J 

more than one quaternion then a spherical linear interpolation of the quaternions is 

performed. 

4.3.3 Restriction 

The numerical multi-grid method [9] [26] originally inspired the idea for using multi

ple levels in a surface to simulate local or global behavior. For interpolating a surface 

through a set of data points a coarse interpolation using the coarser levels of the 

hierarchy will give the system a better starting point for a finer level interpolation. 

Coordinating behavior within the hierarchical surface requires a restriction and pro

longation operator. A restriction operator passes information from a finer level to 

a coarser level. After a collision is detected the initial contact point, the additional 

points and the data points are determined for the finest level. The displacements, 

A P ; and A A y , are calculated for object i. The restriction operator passes the dis

placements and the (u, v) coordinates of the initial point and the additional points 

to each coarser level. 
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In a future version of A C R A the restriction operator could propagate a neg

ative displacement outside of the interpenetration region to the coarser levels. A 

negative displacement could simulate volume conservation through a bulging effect. 

4.3.4 Prolongation 

Starting at the coarsest level the algorithm performs the following steps where the 

prolongation operator is the last step to pass information from a coarser level to a 

finer level. 

• Calculate the initial contact point and additional points on this level, /, from 

the (M, v) coordinates provided by the restriction operator. 

• Using Equation 4.18 and Equation 4.19, find the amount of displacement the 

initial point and additional points on this level will absorb. 

• Carry out the deformational response. 

• Recalculate the initial contact point and the additional points on this level. 

This step is necessary because the previous step has altered the shape of the 

surface. 

• Carry out the translational response. 

• Recalculate the initial contact point and the additional points on this level. 

• Carry out the rotational response. 

• Prolongate the new surface configuration to level / + 1. 

In future versions of A C R A , the prolongation operator would also be re

sponsible for ensuring no additional collisions occur due to a negative displacement 

restricted to level /. Surface fairing [24] on a global or local scale could occur if the 

prolongation operator applied a fairness function. 
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Each of the three methods for collision response may introduce further col

lisions to the objects. An iterative loop of collision detection followed by collision 

response may be necessary to reduce the interpenetration to the point where post

processing 'clean-up' removes the remainder. 

4.4 Summary 

The interpolation algorithm described in this chapter describes a method for altering 

the shape of a surface. Locality or globality of the collision response is controlled 

by altering the amount of interpolation each level absorbs. Three types of collision 

response are available and the user can choose a combination of the types on each 

level. Iterative calculations at each frame or time step are not needed because 

control vertex displacements are only calculated when a collision is detected. Some 

results and the boundaries of the problem set where A C R A is applicable is the topic 

of the next chapter. 
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C h a p t e r 5 

Resul ts a n d F u t u r e W o r k 

This chapter will address the issue of A C R A ' s effectiveness in terms of real-time 

execution speed, range of responses and the scope of models A C R A is suitable for. 

First some empirical results from an animation of a large model colliding with a 

small model are presented. Frames from various animations with changes in relative 

rigidity, locality of collision response and different types of response are presented to 

show the effect of the response controls. A C R A ' s goals from Section 2.5 are briefly 

revisited and some some ideas for avenues of future work and extensions to this 

foundational algorithm are discussed. 

5.1 Implementation and Empirical Results 

To collect data about A C R A ' s execution speed and to compare execution speeds for 

models of varying size, an animation of a large model colliding with a smaller model 

was generated. The animation has a total of 30 frames (one of which is shown 

in Figure 5.1), and 4 frames required a collision response. Although this thesis 

only deals with the issue of collision response, collision detection is an important 

predecessor to the collision response process. A library called R A P I D [19] [35] is 

used for collision detection but the output from RAPID and the inputs required for 

43 



Figure 5.1: Animation frame. The large model of a dog head has 7 hierarchy levels 
and a total of 2085 control vertices while the small model of a spike has 3 levels and 
90 control vertices. 

A C R A were not entirely compatible. In fact a rather significant amount of code is 

needed to convert the outputs from RAPID to the inputs needed for A C R A . To give 

some idea of the relative importance of these three components, execution speeds 

were gathered for each component and tabulated in Figure 5.2. 

RAPID, like many collision detection schemes, has two phases: an initial 

setup and the actual collision detection. It stores the geometry of the model in 

its local space and the translation and rotation in global space, thus if the object 

undergoes a translation or rotation only those matrices need updating. If local 

geometry changes, RAPID needs to execute its initial setup phase again. Each frame 

in the animation requires a query to RAPID's collision detection phase but only 

those frames that have a collision require the conversion of the collision detection 

outputs to A C R A ' s inputs, a collision response and a new initial setup for RAPID. 

5.2 Goals Revisited 

• Uniritrusive. Key-framed motion of the object is obeyed by A C R A since the 

algorithm only changes the shape of an object, not the object's position. 

• Fast previews. The performance results of Figure 5.2 indicate a collision 
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Number of frames 
requiring process 

Wall-clock time (ms) 

R A P I D 
(initial setup) 

5 Large model - 3919 
Small model - 12 

RAPID 
(collision detection) 

30 16 

Conversion to collision 
response inputs 

4 358 

Collision response 4 Large model - 590 
Small model - 14 

Figure 5.2: Performance results for collision detection and response from a 30 frame 
animation rendered on a Pentium 150MHz with 64MB R A M . The numbers given 
are averages over the frames. 

response requires less than a second of real time even for the large model, 

suggesting A C R A can provide fast preview for moderately complex geometry. 

• Broad spectrum of responses. Using a multi-resolution surface such as a 

hierarchical B-spline surface allows a spectrum of local to global responses by 

adjusting the absorption amount on various levels of the hierarchy. Adjusting 

the three different response types on each level of the hierarchy gives the user 

the capability to generate denting, translating and rotating effects. 

• Animator Override. Since the algorithm does not need to track the system's 

state, the animator is free to manipulate the surface by hand. If, in the future, 

the algorithm is extended to relax the surface back to a rest shape then care 

needs to be taken to specify how A C R A will behave when both the animator 

and A C R A want to adjust the position of the same control vertex. 

5.3 Effectiveness of the Algorithm 

Several frames from four animations of two key-framed objects colliding are shown 

in Figures 5.3-5.6. In the first animation the bottom object is much more rigid than 
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(a) (b) 

(c) (d) 

Figure 5.3: Frames 10, 15, 20 and 25 from an animation where the bottom object is 
highly rigid and the top object undergoes a deformational collision response at the 
finest two levels of its hierarchy. Both objects have 5 levels in their hierarchy. 
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(c) (d) 

Figure 5.4: Similar to Figure 5.3 except the top object is more rigid than the bottom 
object. For clarity, the top object wasn't rendered in b and c. 
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(c) .(d) 

Figure 5.5: S imilar to Figure 5.4 except the bot tom object distributes the deforma
tion absorption equally levels 1-3. For clarity, the top object wasn't rendered in b 
and c. 

IS 



49 



the top object, the collision response is purely deformational and the finer levels 

were set to absorb the deformation. The top object was made much more rigid than 

the bottom object in the second animation (Figure 5.4). Figures 5.5 and 5.6 show 

how adjusting the absorption of the deformation to different levels of the hierarchy 

give various responses. Levels 1-3 of the bottom object are set to absorb the same 

amount of deformation in Figure 5.5 whereas levels 1 and 2 of the hierarchy absorb 

the deformation in Figure 5.6. 

The impact of changing the response type from a deformational to transla

tional is shown in Figures 5.7- 5.9. In both cases all of the response is absorbed by 

the finest level of the hierarchy and the plane pushing down on the spike is totally 

rigid. To show more clearly how the bottom object responds the top object is not 

rendered in the last three frames but the side view gives information about the 

relative positions of the two objects. 

A rotational response is shown in the bottom object of Figure 5.10 where the 

bottom object absorbs all of the response on level 2 (since that is the level where the 

control vertices were offset to create the bump). Notice how the bump eventually 

rotates far enough to allow the top surface to slide past. To show a combination of 

a rotational and deformational response the bottom object of Figure 5.11 was set 

to absorb half of the response on level 1, as a deformational response, and the other 

half of the response on level 2, as a rotational response. 

A C R A is not suitable for every animation that involves collisions since there 

will be some complex deformations that are difficult or even impossible to generate 

within the boundaries of A C R A ' s controls. For example, objects that are prone to 

self-intersection will not exhibit appropriate collision response. Some techniques for 

rendering an animation preview use only a sample of the complete set of frames. 

A C R A does not behave well in this scenario since the algorithm only uses the current 

state of the system. Thus if there are large changes in state, which is likely when 

there is a sampling of frames, then A C R A will generate an equally large response. 
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(a) 

(c) •(d) 

Figure 5.7: Deformational response side view. 
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(c) (d) 

Figure 5.9: Translational response. 

5:5 



( a ) (b) 

(c) (d) 

Figure 5.10: Rotational response. 
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( a ) (b) 

(c) (d) 

Figure 5.11: Rotational and deformational response. 
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Other preview techniques use a coarse representation of the object but this may not 

be a desirable strategy for previewing collision responses since it is difficult to collide 

objects whose geometry is ill defined. The user should also be aware that A C R A 

does not guarantee all the interpenetration between two objects will be resolved 

since no proof has been given that iterating the interpolation algorithm will cause the • 

interpolation error to converge to zero. A C R A was designed, and has proven suitable 

for quickly removing interpenetrations between objects and providing controls to 

specify a variety of responses. 

5.4 Future Work 

One step to convincing animators and members of the graphics community of 

A C R A ' s utility is to devise a more robust mechanism for removing the interpen

etration between two objects. A contact surface in the interpenetration region that 

both objects are constrained to would guarantee a resolution of the interpenetra

tion. Gascuel and Desbrun [10] have found contact surfaces when the modeling 

primitive is implicit surfaces but some investigation needs to be done to determine 

the applicability of their method to other surface types. 

Real objects continue to deform after the collision has finished by relaxing 

back to a rest shape. Using the methodology outlined by Harrison [20], A C R A 

could be extended to allow the animator to set the rest shape for an object. Any 

deformation of the object due to a collision requires a displacement of the control 

vertices. This displacement could be stored as an offset and, after the collision, 

reversed to bring the object back to its rest shape. If multiple collisions occur then 

the offsets for each collision could be stored in a LIFO stack and processing each 

element of the stack will return the object's rest shape. 

Some objects, like plastercine, retain all the deformation applied to them 

while other objects, like an inflated balloon, will return to the shape they had 

before the collision. Plasticity is a rating of the amount of deformation an object 
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permanently retains. The animator could set the plasticity for an object via a 

percentage slider to indicate that A C R A should only restore a fraction of the stored 

offset. When the object attempts to return to its rest shape by reversing the stored 

offset it will only return part way. If a control vertex is offset by A V and the 

plasticity for object i is pi on the interval [0,1] then the stored offset for that control 

vertex is (1 — p , ) A V . 

A real object with high viscosity will take longer to return to its rest shape 

than an object with low viscosity. Furthermore, an object may return to its rest 

shape quickly in a global sense but more slowly in a local sense. To simulate a 

multi-resolution relaxation rate a set of animation curves can be used where each 

curve describes the relaxation rate of a level. 

All objects, provided they don't loose or gain any mass, conserve volume 

during a deformation and some objects, such as cloth and paper, conserve area 

(within an epsilon). Providing an option to preserve volume or area during the 

collision response would be beneficial, especially if the (u,v) parameterization could 

be adjusted to deform texture maps naturally. Currently, efficient techniques for 

area and volume conservation are not available so the running time of the algorithm 

would suffer. 
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C h a p t e r 6 

S u m m a r y 

Simulating the collision response of real objects is a complex process and research 

spanning several decades has been devoted to finding algorithms to aid in the ani

mation of collision response for both rigid and non-rigid bodies. Some research work 

has been targeted to specific collision response effects, such as wrinkling, while oth

ers attempt to simulate material properties, such as plasticity or inelasticity. Yet, 

animators still rely on the manual manipulation of data points to model soft body 

deformations suggesting more work needs to be done to create usable.tools. 

ACRA provides a tool for generating collision response that is not focused on 

simulating real object responses but instead attempts to remove the interpenetration 

between two objects. It strives to be as unintrusive as possible to the animator's 

workflow by both providing the animator with a variety of controls to alter the 'look' 

of the collision response and not altering the key-framed motion of the system. The 

hierarchical B-spline modeling primitive provides a local or global collision response 

by allowing the animator to specify the amount of response each level of the hierarchy 

absorbs. Three response types, deformational, translational and rotational, give the 

animator a greater range of responses. 

ACRA can be expanded to allow for other useful effects like volume conser

vation, plasticity controls and the relaxation of the surface to a rest shape. In all, 
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ACRA is a working prototype for a first step towards a tool for generating quick, 

basic collision responses. 
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G l o s s a r y 

Basic collision response: The removal of the interpenetration between two or 
more objects, or at least enough of the interpenetration so that only a small 
amount of post-processing 'clean-up' removes the remainder. 

Blending functions (also basis functions): The weights applied to the elements 
of the geometry vector when calculating the parametric curve. 

Collision response: Any reaction, whether as a rigid body or a non-rigid body, 
to a collision such that the interpenetration due to the collision is removed. 

Derived vector: Used by a hierarchical B-spline surface to specify the position of 
a control vertex, before it has been displaced, in the object's local reference 
frame. 

Elastic: A property of an object. An object that returns fully to its original shape 
when all external forces are removed is said to be elastic. 

Fracture: The cracking or tearing of a material when it deforms beyond a certain 
limit. Cracks develop according to internal force or deformation distributions 
and their propagation is affected by local variations in material properties. 

Free form deformations: A method for deforming a model within a parallelepiped 
region of space. An object within the Bezier solid that defines the paral
lelepiped can calculate new positions for its vertices such that the object de
forms as the parallelepiped deforms. 

G e o m e t r y vector: A column vector of geometric constraints. The geometric con
straints are the conditions, such as endpoints or tangent vectors, that define 
the parametric curve. 

Inelastic: A property of an object. Inelastic objects return to their original shape 
slowly or only partially when all external forces are removed. 
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K n o t : A join point between two adjacent B-spline segments that has a knot value 
associated with it. 

Local refinement: A technique used by hierarchical B-spline surfaces of adding 
only those control vertices needed for editing purposes while retaining the 
unedited portion of the surface in its original definition. 

M i n i m u m distance shape change: The minimum distance shape change of a 
curve is the change in curve shape such that the curve point Q(u) interpolates a 
specified point in space but the control vertices of the curve segment containing 
Q(u) undergo a minimal displacement. 

Offset vector: The displacement of a control vertex from its position indicated by 
the derived vector. The offset vector is specified in the local frame of reference 
at the position indicated by the derived vector. 

Physically-based modeling: Any system that uses some laws of physics to it-
eratively calculate the positions, velocities, forces or other properties of an 
object. 

Piecewise linear: Refers to a series of line segments that approximates the shape 
of other primitives such as curves or surfaces. 

Piecewise polynomial : Refers to the approximation of a curve or surface by a 
series of polynomial segments. Cubic polynomials are used most often because 
they are the lowest order polynomial that can interpolate two endpoints and 
specify tangents at each endpoint. 

Plasticity: A rating of the amount of deformation an object permanently retains. 

Prolongation operator: An operator that passes information from a coarser level 
to a finer level of a multi-resolution surface. 

Restriction operator: An operator that filters information from a finer level to a 
coarser level of a multi-resolution surface. 

Viscoelastic: A property of an object. A viscoelastic object's behavior includes 
the. characteristics of a viscous fluid together with elasticity. 

Viscosity : The property of a fluid that resists the forces tending to cause flow. 

65 



Index 

additional points, 34 
animation preview, 2, 50 

B-spline 
basis matrix, 15 
blending functions, 14-16, 20, 26 
geometry vector, 14-16, 18 
knot, 15, 20 
knot value, 15 

B-spline basis functions, see B-spline 
blending functions 

clean-up, see post-processing 
cloth, 4 
collision detection, see RAPID 
conservation 

area, 57 
volume, 57 

contact points, 33 
continuity, 14, 19, 22 
control mesh, 1, 4 
curve 

B-spline, 14-18, 26 
Bezier, 14, 17 
Hermite, 14 
parametric, 13-14 

dynamics, 4 

elasticity, 4-6 

fracture, 4-5, 11 
free form deformation, 6-8 

grid, see control mesh 

H-spline 
derived vector, 22-23 
offset vector, 22-23, 56 

inelasticity, 4-5 

local refinement, 21, 22, 32 

multi-resolution interpolation, 31 

numerical methods, 4 

physically-based modeling, 1, 3-6 
springs, 4, 5 
using F F D , 8 

plasticity, 4-6, 56 
point masses, see control mesh 
post-processing, 2, 42 
preview, see animation preview 
properties 

elasticity, 4-6 
fracture, 4-5, 11 
inelasticity, 4-5 
plasticity, 4-6, 56 
viscoelasticity, 4-5 

RAPID, 43-44 
relaxation rate, 57 
response 

deformational, 34-37, 50 
rotational, 34-35, 39-40, 50 
translational, 34-35, 38-39, 50 
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rest shape, 56 
rigidity, 2, 11, 33-34 

spring mesh, see control mesh 
subdivision 

B-spline, 16-18, 20 
Bezier, 16-18 
H-spline, 32 

surface 
B-spline, 18-20 
Bezier, 12 
implicit, 9, 56 
piecewise linear, 9, 12 

time step, 4 

viscoelasticity, 4-5 

weights 

curve interpolation, 27-28 
surface interpolation, 29-30 

wrinkle 
cloth, 5-6 
facial, 6 


