
An Automatic Collision Response Algorithm
by

Sonja Struben

B.Sc , University of Calgary, 1995

A THESIS S U B M I T T E D IN P A R T I A L F U L F I L L M E N T O F

T H E R E Q U I R E M E N T S F O R T H E D E G R E E O F

M a s t e r o f Science

in

T H E F A C U L T Y O F G R A D U A T E STUDIES

(Department of Computer Science)

we accept this thesis as conforming
to the required standard

The University of British Columbia
August 1998

© Sonja Struben, 1998

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

Department of Cans^QJ^jT ^ c i r l n c ^

The University of British Columbia
Vancouver, Canada

Date A\X\. 3) . m t

DE-6 (2/88)

A b s t r a c t

Many animations depict two or more objects interacting and potentially col

liding. Collision response is a complex process if the objects are intended to respond

like soft bodies and to exhibit the properties of real objects. Physically-based models

calculate contact forces to incorporate into the calculation of velocities and positions

of the control mesh. Some physically-based models, for example those that model

cloth, strive for visually realistic results. Until recently the magnitude of the calcula

tions required for physically-based modeling have precluded real-time interaction. A

complaint with physically-based models is the correlation between the parameters,

such as forces and torques, and the resulting 'look' of the response are sometimes

difficult for the user to understand.

The work presented in this thesis does not strive for the simulation of real

object properties. Instead it tries to remove the interpenetration between two ob

jects while providing a set of controls for the animator to adjust the 'look' of the

collision response. A set of data points within the interpentration region of the two

colliding objects is determined by the algorithm and each object interpolates those

data points to remove the interpenetration. The position of the data points is a

function of the relative rigidity of the two objects. Locality or globality of the re

sponse is achieved by allowing the user to specify the amount of response absorbed

by different levels of a hierarchical B-spline modeling primitive. Combinations of

deformational, translational and rotational collision response mechanisms give more

ii

options for the look of the response. Empirical results suggest the algorithm's com

putation time is small enough to allow for a fast preview of the animation, even for

moderately complex geometry.

iii

C o n t e n t s

Abstract ii

Contents iv

Acknowledgements vi

1 Introduction 1

1.1 Motivation 1

1.2 Problem Statement 2

1.3 Thesis Overview 2

2 Previous Work 3

2.1 Physically-Based Modeling 3

2.2 Free Form Deformations 6

2.3 Displacement Schemes 8

2.4 Collision Response and Animators 10

2.5 A C R A ' s Goals 10

3 Parametric Curve and Surface Fundamentals 12

3.1 Parametric Curve Overview 13

3.2 B-Spline Curves 14

3.3 B-Spline Surfaces 18

iv

3.4 Hierarchical B-Spline Surfaces • 20

4 Collision Response Algorithm 25

4.1 Multi-Resolution Interpolation 25

4.1.1 Curve Interpolation 26

4.1.2 Surface Interpolation 28

4.1.3 Hierarchical Surface Interpolation 30

4.2 Using Multi-Resolution Interpolation for Collision Response 33

4.2.1 Rigidity 33

4.2.2 Deformation, Translation and Rotation 34

4.2.3 Deformational Response 37

4.3 Translational and Rotational Response 38

4.3.1 Translational Response 39

4.3.2 Rotational Response 39

4.3.3 Restriction 40

4.3.4 Prolongation 41

4.4 Summary 42

5 Results and Future Work 43

5.1 Implementation and Empirical Results 43

5.2 Goals Revisited 44

5.3 Effectiveness of the Algorithm 45

5.4 Future Work 56

6 Summary 58

Bibliography 60

Glossary 64

Index 66

v

A c k n o w l e d g e m e n t s

First and foremost I'd like to acknowledge my supervisor David Forsey. He was there

from the start with suggestions and in turn willing to listen to my half-thought out

ideas. More than once he was there to help me get over my self-doubt or to let me

explore a topic on my own. Jason Harrison deserves a hearty thanks for his thorough

review of my thesis and all the helpful articles he sent my way. I'm also indebted

to my second reader, Alain Fournier, for both his helpful thesis suggestions and

for guiding me through the topic of physically-based modeling. I had the pleasure

of interviewing some animators at Totally Hip Software and their suggestions both

confirmed some of my own opinions and helped clarify what is really important

for them. Specifically I'd like to thank Greg McConnell, Trevor Bentley, Ann-May

Rhodes, Anthony Law and especially Brian Leeners for organizing the interview.

Finally my love and thesis dedication go to my husband David Marwood. I

would never have had the courage to complete this work without his support. Thank

you David.

SONJA STRUBEN

The University of British Columbia

August 1998

vi

Chapter 1

Introduction

1.1 Motivation

The main goal of computer animation is to achieve a desired effect such as laughter,

enthralment or sorrow on the viewer. An animator approaches the task of creating

the animation with a set of ideas in his or her mind or on paper. The ease or

realizing those ideas is heavily influenced by the capabilities of the available tools.

Physically-based modeling systems generate responses to collisions by calcu

lating the contact forces during a collision and then incorporating these forces into

the position and velocity calculations of each object's control mesh. Although some

animations of physically-based models are very visually appealing, the complexities

of creating such a model and manipulating the model's parameters to achieve a spe

cific look are sometimes daunting. Most animators still rely on manually adjusting

the parameters that directly control an object's shape to resolve the interpenetra

tion of two objects. While the control over the resulting shape is excellent, the effort

and time required to resolve the interpenetration over many frames is considerable.

Resolving collisions in this manner is a tedious task and the motivation for this work

is the desire to relieve this tedium through the development of a better tool for basic

collision response.

1

1.2 Problem Statement

By basic collision response we mean the removal of the interpenetration between the

objects, or at least enough of the interpenetration so that only a small amount of

post-processing 'clean-up' removes the remainder. How real objects change shape

during a collision is based on many factors including rigidity and structure. The

difficulty of providing a'collision response algorithm that simulates real objects is

apparent when one considers the vast variety of deformations exhibited by real

objects.

This work describes a tool that provides a variety of controls for the animator

to adjust the look of a basic collision response. One of its goals is to generate the

responses fast enough so that the animator can quickly preview the animation. It

is believed that a quick preview of the collision response will give the animator a

sense of motion flow and allow for iterative adjustment of the collision response

parameters.

1.3 Thesis Overview

The next chapter presents a description of previous work in this field, an animator's

perspective on the collision response problem and a summary of the goals of the

collision response algorithm. The fundamentals of parametric curves, surfaces and

hierarchical B-spline surfaces in Chapter 3 provide a common basis for the collision

response algorithm described in Chapter 4. Much like the animator's process, the

collision response algorithm moves surface control vertices to resolve the interpene

tration of two objects. Chapter 4 describes how the control vertices will be moved,

the controls over the 'look' of the response. Some results, both empirical and visual

are presented in Chapter 5 and an overall summary is given in Chapter 6.

2

Chapter 2

Previous W o r k

Animating complex deformable objects is tedious work for the animator because

the traditional method of choice is to manipulate surface shape parameters at each

frame. A large variety of schemes have been proposed to aid in the animation of

deformable objects. Some schemes try to simulate specific objects such as cloth

or simulate material properties such as plasticity or wrinkling. The driving force

behind the research in this area today is for algorithms that are fast, flexible, easy

to control and/or produce visually realistic results.

This chapter will describe three different areas of research that try to tackle

the problem of animating deformable objects. A section summarizing an interview

with a group of animators and their specifications for a deformation algorithm fol

lows. Finishing the chapter is a description of the automatic collision response

algorithm's (ACRA) goals.

2.1 Physically-Based Modeling

By physically-based modeling we mean any system that uses some laws of physics

to iteratively calculate the positions, velocities, forces or other properties of the

objects. Using a physically-based model to simulate the motion or shape of objects

3

has many advantages and is the foundation for much of the work done in robotics and

simulation. Two of the main benefits of animations using physically-based models

is the visual realism and automatic object motion. The specification of key-framed

motion is not needed, provided the parameters of the system are set up correctly.

There is a double-edge to physically-based models in the sense that exaggerated or

unrealistic effects are difficult to create and the affect of changing system parameters

can be difficult to predict.

Much work has been invested for developing schemes to animate rigid bodies

[3] [4] [27]. The animation of non-rigid bodies opened a new realm of animation

problems, specifically the deformation of a non-rigid body such as cloth [37] [28] [21]

[30] [36] [5] during and after a collision. Most cloth models approximate cloth with a

deformable surface composed of a uniform grid of point masses. A typical point mass

is connected to its neighbors by springs. External forces act on the point masses

to deform the surface while the internal elastic forces from the springs maintain

cohesion. The change in velocity and position of a point mass due to internal

and external forces is calculated using numerical methods to solve the differential

equation specified by Newton's law. A numerical method calculates the change

in position or velocity during a discrete time step. The position or velocity is

incremented by the calculated changed and used as the initial value for the next

time step. The size of the time step and the numerical method chosen impacts the

behavior of the dynamics1 system since a large time step could cause the numerical

solution to be inaccurate or unstable whereas a small time step increases the number

of calculations. Baraff and Witkin [5] have shown that the use of implicit methods

and adaptive time steps can decrease the system's calculation time.

Several physically-based models have been introduced specifically for the

purposes of simulating properties or visual effects such as elasticity, inelasticity,

garment wrinkle formation [22], garment crumpling[33] and dressing a virtual human

1 Dynamics refers to the application of Newton's laws to a system to calculate positions and
velocities.

4

[12] [39]. Terzopoulos and Fleischer [32] simulate three different inelastic behaviors,

viscoelasticity, plasticity and fracture. An object that exhibits elastic properties will

return fully to its original shape when all external forces are removed. If an object

returns to its original shape slowly or only partially then the object is said to be

inelastic. Inelastic deformations may depend on the history of the applied forces. A

material whose behavior includes the characteristics of a viscous fluid together with

elasticity exhibits viscoelastic properties (e.g. Silly Putty flows under sustained force

but also bounces elastically when subjected to bursts of force). The amount that

a material sustains permanent deformations is a rating of its plasticity. Fracture

occurs when a material deforms beyond a certain limit. Cracks develop according

to internal force or deformation distributions and their propagation is affected by

local variations in material properties. Terzopoulos and Fleischer's physically-based

model is similar to a cloth model in that the object is a grid (possibly 3D) of points

connected by combinations of units. The three units described are an elastic unit

that acts like a spring, a viscous unit whose rate of deformation is proportional to

the force, and a plastic unit that does not respond to a force until a certain threshold

is reached. For example, the simulation of viscoelasticity is achieved by modeling

the connection in the grid by a combination of an elastic unit and a viscous unit,

since this combination simulates internal forces that depend on the deformation

magnitude and rate.

Several researchers have developed models with the specific purpose of gener

ating a visual effect. Kunii and Gotoda [22] presented a cloth model that generates

wrinkles as it deforms. Their cloth model is a mass/spring mesh including diagonal

springs between point masses. They claim that certain characteristic points on the

cloth will describe the shape of the wrinkles while moving and manipulating these

points animates the wrinkles. By perturbing the position of a point mass the energy

of the system will change and any perturbation that lowers the overall energy is

retained. Perturbing multiple point masses will form wrinkles in the cloth as the

5

system reaches a lower energy state.

Wu et. al [38] investigated a variant of the wrinkle formation problem for

the purposes of generating facial wrinkles. Their physically-based skin model has

a muscle layer, a fat tissue layer and a skin mesh. The skin mesh is connected to

the muscle layer through springs which represent connective fat tissue. Revolution

surfaces, such as cylinders or ellipsoids, represent muscles. Movement of the muscles

causes the skin to deform which in turn causes wrinkles to form. As a person gets

older the skin's elasticity decreases while the plasticity increases. Their model also

takes into account a plastic-visco-elastic process that changes the skin's rest position

to simulates wrinkling as a person ages.

Proponents of physically-based modeling claim that models based on physical

laws can generate motion and deformation from a set of initial conditions and a set of

applied forces over time. While physically-based modeling systems have generated

some exceptionally realistic animations, animators have indicated that specifying

the forces, constraints and parameters for a particular motion is often nonintuitive.

2.2 Free Form Deformations

Free form deformations were first introduced by Sederberg and Parry [31] as a

method for deforming a complex model within a parallelepiped region of space. In

short, any object within the Bezier solid that defines the parallelepiped can calculate

new positions for its vertices such that the object deforms as the parallelepiped

deforms. The deformation process (adapted from [34]) is:

• Impose a local coordinate system within the parallelepiped. Any point P

within the parallelepiped can be specified by,

P = O + uu + vv + ww (2-1)

6

where O is the origin. The (u,v,w) coordinates, given in Equation 2.2, are the

parametric coordinates of P in the parallelepiped.

u =
(v x w) • (P - O)

(vxw)- u
(u X w) • (P - O)

(u X w) • V
(u X v) • (P --O)

w= y",:> ^ ^ ' (2.2)
(u X v) • w

• Define a three dimensional lattice of control points within the parallelepiped.

F i j , k : 0 < i < I, 0 < j < m, 0 < k < n (2.3)

where

Fitiik = 0+l-u+i-v+-w. (2.4)
l m n

• Deform the lattice of control points to new points F ; j k -

• Calculate the deformed points P' from the deformed lattice and the trivariate

Bezier function using the same parametric coordinates from Equation 2.2.

l m n
P ' = E E E F U k ^ W ^ m W 5 f c

n W (2.5)
1=0 j=o k=0

A character animation system developed by Chadwick et. al [13] uses free

form deformations to animate secondary features like muscle bulging. Their char

acter model has four layers, a motion specification layer, a skeleton, a muscle layer

and a skin and clothing layer. The animator controls the motion of the character

by kinematically specifying joint angles and constraints on the skeleton layer. In

teraction between the layers is specified by parameters and constraints set by the

animator. Because each layer uses the specified constraints to drive the motion of

the next layer the computer can relieve the animator of the burden of managing

the interaction between the layers. Additional work required to create the char

acter model and specify the constraints between the layers is recovered by easier

7

specification of the animation. A muscle primitive is represented as a pair of ad

joining free form deformations. The skin layer, which is the actual geometric layer

that is rendered, is contained within the muscle layer and it deforms as the muscle

undergoes a free form deformation. Squash and stretch behavior in the form of

bulging and bending muscles is automatically calculated from the kinematic state

of the articulated skeleton. Soft body structures such as flesh or fatty tissue are

simulated through free form deformations controlled by dynamics. The lattice of

the free form deformation surrounding the soft body structure is mapped to point

masses. A dynamic simulation is applied to the point masses and their resultant

motion is mapped back to the free form deformation to drive the muscle deforma

tions. Unfortunately the real-time interactivity of the free form deformations and

usability of the system are not commented on so the applicability of the algorithms

for general object deformation is in unknown.

The work by Zheng et. al [40] provides some tools for easily modifying the

shape of free form curves. User defined sculpting tools are pushed into the free form

curve to alter its shape. For finer control the region of the curve that is deformed can

be limited to a user defined span. Sculpting tools to deform a curve is an intuitive

and appealing interface but would not be applicable for A C R A since an extension of

the method to surfaces is not presented and the burden of adjusting surface shape

at each animation frame remains.

Free form deformations provide a way to calculate the deformation of an

object inside a deformed parallelepiped with the deformation of the parallelepiped

depending either on a dynamics system or animator manipulation.

2.3 Displacement Schemes

Displacement schemes are a new approach to modeling deformations without the use

of a physical model or dynamics. They strive for visually convincing deformations,

not the simulation of physically realistic deformation. Several ideas from the three

8

projects presented in this section are incorporated into A C R A .

Gascuel and Desbrun [10] [11] generate object deformation through an im

plicit surface layer that coats an internal model that is either a mass/spring network,

an articulated structure composed of one or more rigid objects, or a particle system.

Their scheme has three main benefits: the implicit surface provides efficient collision

detection, an exact contact between colliding objects is found and the object volume

is preserved. During a collision a negative field term, which models compression,

is added to the portion of the surface within the interpenetration region. A prop

agation region is defined around the interpenetration region that gains a positive

field term to simulate the transverse propagation of the deformations (i.e. bulging).

The key difference between this technique and the ones mentioned in the previous

sections is that the deformation itself is not generated through dynamics but the

resultant deformation can be used to calculate a response force. One drawback of

their method is the inherently rounded or blobby look of implicit surfaces.

Palazzi [29] adapts the idea of displacement constraints from Gascuel [18]

to animate deformable objects. Deformable objects are modeled with rigid line

segments connected at their end points to form a grid. The system streamlines the

dynamic computations by treating each rigid line segment independently without

imposing cohesion constraints. External forces acting on each rigid line segment are

found and used to calculate the new positions and orientations of the line segments. •

A second step re-links the line segments by enforcing the constraints acting on

the grid. Palazzi introduced a multilevel approach to distribute the external forces

across the object. His deformable object is a hierarchy of grids where different levels

of the hierarchy are assigned portions of the external force to generate a spectrum

of local to global behavior.

Harrison [20] used a piecewise linear multi-resolution surface to model de

formable objects. His deformations are kinematically driven in the sense that dis

placements, calculated from the interpenetration of two objects, move specific sur-

9

face points towards specific goal points at a certain rate. Different amounts of the

displacement are absorbed by different levels in the hierarchy to generate a spectrum

of local to global deformations. His method is fast and easy to control but lacks the

smoothness of a spline surface.

2.4 Collision Response and Animators

Four animators [1] were interviewed to survey their opinions about animating de

formable objects and the features they would find useful. Unanimously the most

prevalent concern was maintaining control over the animation. Any system that

imposed movements or deformations on the objects without a mechanism for over

riding the movements was considered unusable. When specifically questioned about

physically-based models and dynamics systems they indicated such features would

be useful provided the parameters were easy to specify and the results from the

dynamics system could be overridden if desired. Furthermore, the animators al

ready have a plan for how the objects will be moved and react before they begin

the animation process so a system that calculates motion is neither needed nor de

sired. Beneficial features are a fast preview of the response, controls that provide

a spectrum of deformations and a database of default configurations that could be

adjusted for customized behavior.

2.5 ACRA's Goals

Traditionally, animators manipulate the control vertices of the deforming objects

at each frame or employ morphing techniques. These techniques provide a large

amount of control over the progression of the deformation but require the animator

to generate all motions of the animation by hand.

The automatic collision response algorithm (ACRA) is a prototype that is

designed to try and remove the interpenetration between two objects as opposed

10

to simulating real object responses. It falls in with the other displacement schemes

of Section 2.3 to provide a middle ground between physically-based systems and

control point manipulation done by hand. The following goals were chosen to make

A C R A a fast and flexible tool that an animator could use for basic collision response

which can later be enhanced by hand if desired.

• Unintrusive . The key-framed motion or position of objects should not be

altered by the algorithm. If the animator wants an object to change position or

velocity after the collision then it is the animator's responsibility to key frame

such motion. Consequently, any non-rigid object can deform indefinitely since

the system does not generate fractures. If two non-rigid objects interact, the

one with the highest rigidity will deform less. This provides the animator with

a tool capable of generating unrealistic deformations.

• Fast previews. The algorithm should try to minimize the computation time

so that the animator only waits a small amount of time (ss 1 second/frame)

to preview the animation. A C R A uses two strategies to minimize its compu

tation time. First, the algorithm does not need to maintain the state of the

system so it is only executed at the time of the collision and possibly after

wards if the algorithm is extended to return the object back to tits rest shape.

Second, A C R A narrows its collision response to the portion of the object that

is interpenetrating with the other object.

• B r o a d spectrum of responses. A multi-resolution, smooth surface is a

good choice for the modeling primitive used by A C R A . The multi-resolution

aspect of the surface can be exploited to generate a spectrum of local to global

responses.

• A n i m a t o r Overr ide . If the broad spectrum of responses still does not pro

duce the desired look then the surface shape should be adjustable by the

animator.

11

Chapter 3

Parametric Curve and Surface

Fundamentals

Several excellent textbooks have been written on the subject of parametric curves

and surfaces [7, 8, 14, 15] thus this chapter will only overview the fundamentals

of the topic and establish a common notation. First, properties of general cubic

parametric curves are described and some common types of curves are mentioned.

Since the modeling primitive used by A C R A is based on B-splines the properties of

B-spline curves and the extension to surfaces are covered. To lead into the chapter

on A C R A , the last section describes hierarchical splines and previews their utility

for collision response.

Although the algorithm in Chapter 4 describes how a collision response can

be achieved if the modeling primitive is a hierarchical B-spline surface, the under

lying ideas could be applied to other primitives such as Bezier surfaces or piecewise

linear surfaces. In fact, much of this work is an exploration of the specific benefits of

using hierarchical B-spline surfaces for collision response since Harrison [20] has al

ready shown how to model deformable objects with piecewise linear multi-resolution

surfaces.

12

3.1 Parametric Curve Overview

The most basic of modeling primitives are points and lines. A piecewise linear

approximation is a series of line segments that approximates the shape of other

primitives such as curves. A curve can also be approximated by a piecewise poly

nomial representation where each segment Q(t) is given by three functions x(t),

y(t) and z(t) and the parameter t varies over the interval [0,1]. This is known as a

parametric representation because any point on the curve is represented by a single

parameter. Cubic polynomials are often used for the three functions of Q(t) because

they are the lowest order polynomial that can interpolate two endpoints and specify

tangents at each endpoint. Higher order polynomials require more conditions to

control both the shape and the additional inflection points that can cause undesir

able artifacts or "wiggles". A C R A uses a modeling primitive based on cubic splines

so the remainder of the chapter will be restricted to splines of degree 3.

A cubic curve segment Q(t) = [x(t) y(t) z(t)] is defined by the following

cubic polynomials,

x(t) = axt3 + bxt2 + cxt + dx,

y(t) = ayt3 + byt2 + cyt + dy,

z(t) = azt3 + bzt2 + czt + dz, 0<t<l. (3.1)

A succinct matrix form for the curve segment is,

Q(t) = [x(t)y(t)z(t)] = T-C (3.2)

where

T =

C =

t3 t2 t 1

bx by

dz

(3-3)

13

x(t)

Figure 3.1: A two-dimensional curve with two segments. The difference in segment
shape is shown when the join point has C°, C1 and C2 continuity. [Source: [15], p.
481]

The parametric tangent vector of the curve is the derivative of Q(t) with

respect to the parameter t. If the tangent vectors at the join point of two adjacent

curve segments are equal in both direction and magnitude then the curve is C 1

continuous. In general, if each derivative dn/dtn[Q(t)] through to the nth derivative

is equal in magnitude and direction at the join point then the curve is Cn continuous.

Figure 3.1 shows two curve segments where the join point exhibits C ° , C1 or C2

continuity.

There are several methods for specifying the four constraints on curve shape:

Hermite curves define two endpoints and two endpoint tangent vectors, Bezier curves

define two endpoints and two additional points to control the endpoint tangent

vectors and B-splines define four control points which the curve does not necessarily

pass through.

3.2 B-Spline Curves

Maintaining C ° , C1 and C2 continuity is easier with a B-spline than Hermite and

Bezier curves since a B-spline segment shares control points with adjacent segments.

A B-spline curve with m + 1 control vertices, VQ, VI, . . . , V M , m > 3, has m — 2

14

y(t)

Figure 3.2: A B-spline curve with 7 segments. [Source: [15], p. 492]

segments, Q 3 , Q 4 , . . . , Q m . The parameter range for a segment Q i is ti < t <

for 3 < i < m. A knot is a join point between Q i _ i and Q , and has a parameter

value, or knot value, of The endpoints of the curve segment have knot values

of £3 and tm+i and are also called knots. A diagram of a two-dimensional B-spline

curve illustrating the knots and control points is shown in Figure 3.2.

The coefficient matrix of equation 3.3 is usually rewritten as C = M • G,

where M is a 4 x 4 basis matrix and G is a 4 x 1 geometry vector. A segment

is a weighted sum of the elements in the geometry vector where the weights are

cubic polynomials of t. These cubic polynomials, known as blending functions or

B-spline basis functions, have a matrix form B = T-M. It is important to recognize

that the elements of the geometry vector are the four variables that control the

curve's shape. During an affine transformation only the geometry vector needs to

be transformed since the curve is generated from the vector. Equation 3.4 shows the

B-spline geometry vector GBS. for a segment Q ; with four control vertices defining

15

the segment.

v i + 1

v i + 2

V i + 3

, 0 < i < m — 3. (3.4)

With the B-spline basis matrix MBs given by Equation 3.5 a curve segment

Qi(t) is calculated in Equation 3.6.

- 1 3 - 3 1

3 - 6 3 0

- 3 0 3 0

1 4 1 0

(3.5)

Qi(t) = T-MBs-GB

(l - *) 3 , 7 , 3 r 3 - 6 i 2 + 4 ^ - 3 i 3 + 3i 2 + St + 1__
- V i H V i + i H 2 V i + 2 6

+ yVi+3, 0 < * < 1

6

(3.6)

The B-spline blending functions P>BS are easily picked out from Equation 3.6.

BBS = [Bo B\ B2 B3]
(1-t)3 3 i 3 - 6 t 2 + 4 - 3 i 3 + 3 i 2 + St + 1 t 31

, 0 < t < 1 (3.7)
6 6 6 6

As shown in Figure 3.3, the B-spline blending functions exhibit the important

property of being everywhere nonnegative and summing to 1. These conditions

indicate each segment is contained within the convex hull of its four control points.

Detecting collisions between two curves is simplified because non-colliding curves

are quickly eliminated by testing the intersection of their convex hulls.

Subdivision is a key concept when dealing with hierarchical surfaces so the

topic will be introduced here. Simply put, a segment is subdivided into two segments

16

1 r
0.9-

0.8-

1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 t

Figure 3.3: The B-spline blending functions. Notice only B3 is zero at t = 0 and
Bo is zero at t = 1. This indicates the segment before t = 0 will be influenced by
V i , Vi+i, V i + 2 but not V i + 3 . Similarly the segment after t = 1 will be influenced
by V i + i , V i + 2 , V i + 3 but not V i .

for the purposes of adding control vertices and gaining a finer control over the curve's

shape. For example, a Bezier segment can be subdivided into two segments, both

of which are coincident on the original segment and share only one end point. As

shown in Figure 3.4, the original segment has control vertices V ; , 0 < i < 3 and

the two new segments have control vertices Li and R; respectively. A total of five

new control vertices (since Vo = Lo, V3 = R3 and the endpoints L3 and Ro are

shared) replace the two old vertices V i and V2. For B-splines a similar scheme is

derived in [15] where the four control points of the original segment are replaced

by five new control points. Unfortunately the segments adjacent to the one being

subdivided are still defined by some of the original control points so changing the

position of any of the five new control points or the four old control points will

cause a crack in the spline, as shown in Figure 3.5. The Oslo algorithm [7] adds

knots to the knot sequence and finds a new set of control vertices that represents

the same curve. This takes us out of the realm of uniform B-splines since the

difference between knot values is not necessarily constant. Section 3.4 will show

17

Figure 3.4: A single Bezier curve segment is subdivided into two segments.
[Source [15], p.508]

that hierarchical splines retain a uniform knot difference by creating a new level of

the hierarchy when they are subdivided.

The representation of a parametric surface is similar to a curve except the elements

of the geometry vector are not constants but instead are themselves parametric

cubic curves. Two parameters, u and v, represent a point on the surface. If one of

the parameters is fixed then varying the other over the interval [0,1] maps out a

parametric cubic curve (Figure 3.6). In matrix form a parametric bicubic surface is

represented as,

3.3 B-Spline Surfaces

G x (v)

G 2 (v)

Q(u,v) = tf.M •
(3.8)

G 3 (v)

G 4 (v)

where G,(v) is a parametric cubic curve given by

Gi(v) = V • M • [Vu V i 2 V i 3 V i 4] T

= [Vu V i 2 V i 3 V i 4] • MT • VT. (3.9)

18

(a) (b)

Figure 3.5: (a) Three B-spline curve segments with the middle segment subdivided
into two segments. The middle segment is defined by five new control vertices
(Lo, L\ = Ro, L2 — Ri, L3 — R2, -R3). (b) Control vertex V2 from the original curve
is moved and cracks form.

A variable V y , 0 < i,j < 3, is a control vertex and V denotes the 1 x 4

vector [v3 v2 v 1]. The surface representation of Equation 3.8 is rewritten as,

Q(u,v) = U-M-G-MT -VT, 0<u,v<l (3.10)

Q(u,v) = U-M

Via V i s V

V 2 i v 2 2 V 2 3 V

v 3 1 V 3 2 V33 v

V41 V 4 2 V43 V

14

24

34

44

MT • VT (3.11)

For a B-spline patch the surface equation is given in Equation 3.12 where

the 4 x 4 geometry matrix GBS is the 16 control vertices of the patch.

Q(u,v) = U • MBs • GBs • M | s • VT, 0<u,v<l

= BBs(u)-GBs-BBs(v)T

(3.12)

j=0 j=0

To maintain C° continuity at an edge between two patches the edge curve of

each patch must be identical, which means the control vertices must be identical.

19

u= 1.0

Figure 3.6: A bicubic parametric surface patch showing some parametric curves
with constant u.

Just as with curves, C 1 continuity across two patches requires C° continuity and the

edge tangents have equal direction and magnitude. Higher orders of continuity are

found by enforcing the equality of higher order partial differential equations with

respect to the non-constant parameter. A B-spline surface automatically maintains

C°, C1 and C2 continuity across patches because adjacent patches share control

points and basis functions.

One final important note before turning attention to hierarchical spline sur

faces involves the B-spline blending functions. In the same manner that the B-spline

blending function indicates a control vertex of a cubic B-spline curve influences four

segments, a control vertex of a bicubic B-spline surface influences 16 patches.

3.4 Hierarchical B-Spline Surfaces

The Oslo algorithm [7] mentioned in Section 3.2 describes a method for refining a

bicubic B-spline surface by inserting additional knots into the knot sequence and

replacing the original control vertices by a new set of vertices. When applied to a

20

bicubic B-spline the entire row and column that the patch is a member of has its

control vertices replaced. Both the editing complexity and the memory requirements

increase with so many additional, potentially unneeded, control vertices. Forsey [17]

[16] introduces hierarchical B-spline surfaces that have the advantageous property

of local refinement by adding only those control vertices needed for local editing of

the patch. As the name suggests, hierarchical B-splines are a hierarchy of B-spline

surfaces where a finer level k in the hierarchy contains the refined control vertices

of a coarser level k — 1. If a level k of the surface Q M (u , v) with an a X b array of

control vertices and basis functions Bl\k\u) and B^(v) is given by,

Q M (u , v) = J2JZ^[SBf\u)Bf{v) (3.13)
i=0 j=0

i
then the surface at level k + 1 is written as,

Q ^] (u , v) = E E VPJ + 1]B!* + 1 1 (u)Bf+1] (v). (3.14)

t=0 j=0

The basis functions on level k + 1 are the refined basis functions from level

k with some additional knots (Su and Sv) in the u and v direction.

Bf+1](u) = aj^at(r)BlkHu)
r=0
b+Sv

Bf+1](v)=J2«i(s)Blk](v) (3.15)

s=0

The a coefficients give a relationship between the control vertices on level k

and level k + 1.

i=0 j=0

A set of four B-spline patches and the local refinement process is shown in

Figure 3.7. Hollow circles denote original control vertices and filled circles show new

control vertices on the finer level.

21

(a) (b)

Figure 3.7: (a) Four B-spline patches and their control vertices, (b) Local refinement
of the top left patch. The four corner vertices of the original patch still exist in the
data structure but have been removed from the diagram for clarity.

To maintain C2 continuity only those control vertices whose basis functions

are zero at the boundary to the coarser level are allowed to move. For example, in

Figure 3.8 the refinement of several patches and the additional control vertices at

each step that are free to move are shown. In Chapter 4 an algorithm is described to

interpolate a patch through a point in space. This algorithm calculates the displace

ment of each patch control vertex such that the patch interpolates the point. To

execute the interpolation algorithm A C R A must first ensure all the control vertices

of the patch are moveable which may mean patches neighboring the interpolating

patch need refinement.

The vector indicating the position of a level k + 1 control vertex before it

has been displaced from its position after the refinement is called the derived vector.

When a level k + 1 control vertex is displaced, an offset vector, relative to the local

frame of reference on level k, is stored. The vector addition of the derived vector and

the offset vector1 gives the position of the control vertex as shown in Figure 3.9. This

technique is more flexible than displacement mapping since displacement mapping

'The offset vector must be transformed into the derived vector's space before the vector addition
is performed.

22

Figure 3.8: Local refinement of adjacent patches. The common corner control vertex
of the four adjacent patches that are being refined is shown with the arrow. The
black dots indicate which control vertices on the finer level are free to move without
breaking C2 continuity at the boundary to the coarser level. [Source [16], p.67]

only displaces a surface point along the surface normal as defined by a pattern or

map.

An important effect of storing a derived and an offset vector is the automatic

finer level displacements when a coarser level control vertex moves (Figure 3.10).

Typically control vertices at finer levels have a more localized control over the sur

face shape whereas coarser level vertices have influence over a larger portion of the

surface2. The next chapter describes how A C R A makes use of this behavior to

provide a spectrum of local to global collision responses.

2 It is possible to model an object where a finer level control vertex can influence a larger portion
of the object than a coarser level control vertex. In this case the animator must take care when
specifying the amount of collision response each level of the hierarchy is responsible for.

23

object reference
frame

(b)

Figure 3.9: (a) A 2D representation of a derived and offset vector for a pair of
vertices on level k + 1. (b) Moving a vertex on level k causes the shape on level k +1
to follow along.

Figure 3.10: A 3D example of the displacement of a coarser level

24

Chapter 4

Collision Response Algorithm

This chapter details the collision response algorithm and the mechanisms for con

trolling the response. The evolution of an interpolation algorithm, from a basic

curve interpolation to a hierarchical surface interpolation, is described. Hierarchical

surface interpolation is used to change an object's shape in response to a collision. A

description of the controls for specifying the locality of the collision response and two

additional collision response mechanisms, namely a translational and a rotational

response finish the chapter.

4.1 Multi-Resolution Interpolation

The interpolation method proposed by Bartels and Beatty [6] serves as a basis

for the extension of the method to hierarchical surfaces. Interpolation of multiple

data points by a multilevel B-spline is presented in [23]. Independently, Archer [2]

used a multipoint surface interpolation algorithm for the purposes of craniofacial

reconstruction. This chapter will show surface interpolation is also applicable for

object deformation.

25

4.1.1 Curve Interpolation

Bartels and Beatty's algorithm [6] solves the problem of interpolating any point on

a parametric curve through an arbitrary data point. Control vertices of the curve

segment containing the point are displaced such that the curve changes shape and

interpolates the data point. A benefit of the technique is the ability to control the

locality of the curve deformation simply by controlling the number of control vertices

that are displaced.

As seen in Chapter 3, the equation for any point on a cubic B-spline segment

is given by

Q(u) = B0{u)V0 + B i (») V i + B2(u)V2 + B3(u)V3 (4.1)

where u, the parametric value for the curve, is defined on the interval [0,1].

The points V 0 , V i , V2, and V 3 are the control vertices for the segment and the

functions Bo(u), Bi(u), B2(u), Bs(u) are the B-spline basis functions. If the point

Q(u) is to interpolate a new point Q'(u) while maintaining a constant parametric

value then the equation for Q'(u) is written as

Q'(u) = B0(u)Vf
0 + B ! («) V i + B2(u)V'2 + B3(u)V3 (4.2)

The displacement, A Q (u) , between Q(u) and Q'(u) is found by subtracting

Equation 4.1 from Equation 4.2.

A Q (u) = B0{u)AV0 + B i («) A V i + B2{u)AV2 + B3(u)AV3 (4.3)

Each of the A V i ' s represents the displacement of the control vertex neces

sary for Q(u) to interpolate Q'(u). The displacement A Q (u) can be thought of as a

vector describing the direction and magnitude of the interpolation. Setting each of

the A V , ' s to A Q (u) would satisfy Equation 4.3 because the B-spline basis functions

sum to one. The curve segment would be translated and the shape would remain

26

Figure 4.1: Interpolation of a single data point. The cross is the data point that
Q(u) (the box) should interpolate. Notice only the four control vertices defining
Q(u)'s segment are displaced from the original position shown in red.

constant. To affect a minimum distance shape change1 Bartels and Beatty [6] pro
pose that the displacement be a weighted displacement of AQ 2. The weights are
chosen such that Equation 4.3 is satisfied.

AV,(u) = AQ(u) • „,,(«) = AQ< u) g 2 (M) + B\{u) + ^Bl{u) + (4 ' 4)

Equation 4.4 suggests the amount each control vertex is displaced is propor
tional to its proximity to the moving point. Figure 4.1 shows the displacement of
each of the control vertices as the spline interpolates a data point.

Modifying the interpolation algorithm to allow the interpolation of multiple
data points allows for a greater range of resultant shapes. If different segments of
the spline are involved in the interpolation then more of the spline will be deformed.
To interpolate the k = 0,..., n data points, p = 0 , . . . , m control vertices need to be
moved. The displacement of each data point is written as

AQ(uk) = AVoft(ti*) + AV1fli(ttfc) + AVaBa(«fc) + AV,fl3(ttik). (4.5)

A control vertex, V p, will have multiple non-zero displacements if it influ
ences segments from two of more data points. Equation 4.4 is modified to calculate

'The minimum distance shape change is the change in curve shape such that the curve point
Q(u) interpolates Q'(u) but the control vertices undergo a minimal displacement.

2For a theoretical justification of the weights in Equation 4.4 the interested reader is referred to
[6].

27

the displacement of each control vertex for each data point.

A V p (u k) = A Q (u k) • Wi(uk)

A Q (U k) Bl{uk) + Bl{uk) + %(uk) + Bl{uk) (4 - 6)

The index i, 0 < i < 3, is the index of V p in the segment containing Q (u k) .

The overall displacement for V p is a weighted sum of all the A V p (u k) .

n
A V P = £ W p (« f c) A V p (u k) (4.7)

fc=o

Using a weighted displacement suggests the curve will not interpolate the

multiple data points perfectly. The actual displacement of each curve point is

AQ(uk) = A V o f l o K) + A V j B i K) + AV2B2(uk) + AV3B3(uk) (4.8)

The weights Wp(uk) should be chosen such that the difference between the

desired displacement A Q (u k) and the actual displacement A Q (u k) is a minimum.

The method of least squares [25] is used to find appropriate weights. :
n

s = ^ (A Q (u k) - A Q (u k)) 2

k=0
ds

9Wp(uk)
0

= T ^ (a L ,4.9)
E B ? (» i)
k=Q

To reduce the errors between the desired and the actual displacements the

curve interpolation can be iterated. Figure 4.2 shows a curve with 8 control vertices

interpolating 4 data points. In Figure 4.2(b) the curve has been re-interpolated 5

times to achieve an excellent fit of the data points.

4.1.2 Surface I n t e r p o l a t i o n

Thus far the presented method has applied to B-spline curves. Objects in animation

are usually represented as surfaces so the method must be adapted for a surface

interpolating a set of data points.

28

(a) (b)

Figure 4.2: Interpolation of multiple data points. The original curve is shown in
red, the data points are crosses and the control vertices are dots, (a) After one
interpolation, (b) After five interpolations.

A set of control vertices V p where p = 0, • • • , m will be displaced for the

surface to interpolate the k = 0, • • • , n data points. The displacement of a control

vertex due to data point k is given by

A V p (u k , v k) = A Q (u k , vk) • Wi^Uk^Vk)

= A Q (u k , v k) 3 . (4.10)

£ £ {Bi{uk)Bm{vk)Y

1=0 m=0

The overall displacement of each control vertex is a weighted sum of all the

individual displacements due to the k data points. As in section 4.1.1 the weights

are found with the method of least squares.
n

A V P = ^ V F p (M f c , ^) A V p (u k , v k)

W M = 7 ^ f a)) V (4.11)
E(Bt(uk)BJ(vk)y
fc=0

29

(a) (b)

(c) (d)

Figure 4.3: Interpolation of multiple data points, (a) Initial configuration, (b) After
one iteration, (c) After 5 iterations, (d) Shaded surface.

Again, due to the weighted displacement of the control vertices the interpola

tion of a surface will not be perfect and the method can be iterated. Figure 4.3 shows

a surface with 11 X 11 control vertices and 3 data points. Notice in Figures 4.3(b)

and (c) how the patch with one surface point converges to the data point with fewer

iterations than the patch with multiple surface points.

4.1.3 H i e r a r c h i c a l Surface I n t e r p o l a t i o n

As described in Chapter 3, a hierarchical surface has a hierarchy of levels where

each level is a subdivision of the previous level. The idea that a broader spectrum

of surface shapes is available if the interpolation algorithm is applied to various

levels in the hierarchy is adopted from Palazzi [29] and Harrison [20]. If a coarse

30

(a) (b)

/_! L . j
• • ' \ ' ~ " \

" : \ " " - \ \

• \ - \

(c)

Figure 4.4: Hierarchical interpolation of multiple data points, (a) Coarsest level
absorbs all the interpolation (5 iterations), (b) In between level absorbs all the
interpolation (5 iterations), (c) Finest level absorbs all the interpolation (5 itera
tions).

level of the hierarchy interpolates the data points then a larger region of the surface

will change shape. Conversely, a localized shaped change occurs if the finest level

interpolates the data points. This is the core mechanism used by the collision

response algorithm to provide control over the locality of the object deformations.

Figure 4.4 shows the same surface as Figure 4.3 but the interpolation is done by

the coarsest level (Figure 4.4(a)), an in between level (Figure 4.4(b)), and the finest

level (Figure 4.4(c)).

Blending the interpolation from various levels is known as multi-resolution

interpolation. If some of the interpolation is achieved or 'absorbed' by a coarse

31

Figure 4.5: Multi-resolution interpolation of multiple data points. The coarsest level
absorbs 30% of the interpolation and the finest level absorbs 70%.

level and another portion absorbed by a fine level then the overall shape would be

gradual. Each level, /, where / — 0 is the coarsest and / = m is the finest, can absorb

a percentage of the interpolation a^. The displacement of a data point k on / will

be

A Q W (u k , v k) = a ['] - A Q (u k , v k) (4.12)

where

m
^ V '] = 1, a® > o (4.13)
;=o

Before any interpolation is performed A Q (u k , v k) is calculated as the dis

placement between the data point and the surface point Q (u k , v k) . Each level,

starting with / = 0, first determines the points Q ^ (u k) V k) and then interpolates

the level through the data points,

Q' [1] (uk,v k) = Q [1] (u k , v k) W] • A Q (u k , v k) (4.14)

Figure 4.5 shows the surface from Figure 4.3 with 30% of the interpolation

absorbed by level 0 and 70% absorbed by level m.

Hierarchical B-spline surfaces allow for local refinement, thus a surface point

Q (u k) V k) may be in a region where the subdivision level is less than the finest

32

level that absorbs some of the interpolation. Thus, interpolating a data point on

level ty, where q is not the finest level TO, may not remove all the interpenetration

if Yl'iLq+i a^ > 0- ACRA incorporates two solutions for handling such data points.

The first alternative refines the patch containing the data point until that patch

is at the finest level that absorbs any of the interpolation. A second alternative

retains the refinement level of the surface and obeys the absorption amounts by

only interpolating up to the level the surface point is on. In the first case the

surface is refined and the response will be more local while the second case will still

maintain a global response but some of the interpenetration may remain.

4.2 Using Multi-Resolution Interpolation for Collision

Response

During a collision an interpenetration will occur between the two objects if no re

sponse is applied. Any non-rigid object involved in the collision will need to deform

to resolve the interpenetration. The collision response algorithm finds appropriate

surface points and data points for an object such that the object will be deformed

and no longer interpenetrate the other object after the data points are interpolated.

A method for finding appropriate surface points and data points is described in this

section.

4.2.1 Rigidity

ACRA is only concerned with the response of an object after a collision is detected,

another module needs to be used to detect the collisions. The collision response

algorithm requires two pieces of information; the point on each surface where the

two objects initially made contact and the boundary of the interpenetration region

on each surface. If we were to rewind the collision to the instant when surface S\ and

surface 52 touched, P i and P 2 are the contact points on each surface respectively.

33

On the line between P i and P 2 the point P ' is defined as a data point that

each surface will interpolate. The position of P ' is determined by the relative rigidity

of the two objects. As predicted by Equation 4.15, if S\ is more rigid than 5 2 then

P ' will be closer to P i than P 2 .

P ' = RPj. + (1 - i?)P 2 (4.15)

R = R l

R\ + i?2

The rigidity, Ri and R2, of Si and 5 2 respectively is in the range [1,100].

Interpolating P i through P' , for example, will only move the patch contain

ing P i , on a given level. The absorptions may be set such that some other

parts of Si will still remain within the interpenetration region after the interpola

tion (see Figure 4.6). The solution is to move all of the patches that are completely

or partially contained in the interpenetration region. To do so requires a surface

point and a corresponding data point for each patch. Following the example shown

in Figure 4.7, k = 0, ...,n additional surface points are found at the parametric

middle of the patch or the parametric middle of the portion of the patch inside the

interpenetration region. By extending a vector from each A i k in the direction of

P i P 2 a corresponding surface point is found on 5 2 . The data points, A j k , shown

in Figure 4.7(c) are found with Equation 4.16. Figure 4.7(d) and (e) shows a similar

process for surface 2.

(4.16) A' l i k =

R =

RA1M + (1 - i2)Bi , k

Ri
Ri + R2

4.2.2 Deformation, Translation and Rotation

A C R A provides three types of collision response, deformational as described in sec

tion 4.1, translational and rotational as described in section 4.3. The user is able to

34

(a) (b)

Figure 4.6: Movement of a single patch may not eliminate all the interpenetration.
A simplified 2D version of the surfaces is shown to clarify the error.

control both the amount of collision response that is absorbed on each level and

the combination of a deformational d^, translationa} and rotational response

on each level.

dl'] + t['] + r [' i = l (4 .17)

where

S > o

/W > 0

rW > 0

The user controls the amount of collision response absorbed on each level

with percentage sliders as shown in Figure 4.8. The sum of all the active sliders

is 100%. Slider controls for deformational, translational and rotational percentages

per level are also available.

35

Figure 4.7: Steps for finding additional data points for all patches or portions of
patches within the interpenetration region, (a) The ticks on the surfaces indicate
patch boundaries, (b) A vector is extended from each additional surface point to
the other surface, (c) Data points to be interpolated by surface 1 are indicated by
A j j . (d) and (e) show the same process for surface 2. (f) After the interpolation.

36

propertlesTab HefornTabl

l e v e l 0 (lOU)

Level 1 < 0 »

Level 2 <5St>

Level 3 (0%)

Level 4 <23Z>

l e v e l 5 <0*>

Level B <M)t)

OK

Figure 4.8: Controls for setting the absorption per level. Greyed out sliders indicate
the surface has not been refined to that level.

4.2.3 Deformational Response

The points P;1^ and Apj on level / are the points that have the same (u, v) coordinates

as P i and A y . The displacement that the entire level should absorb is

APJ1] = a W . (p ' - P i)

aM • (AJ, - A y) A A

(4.18)

(4.19)

The portion of the displacement that the deformational response is respon

sible for is

AP. [1] = dW.AP.™
' d e f o r m 1

t l] - dM.AAF! . A A I J d e f o r m 1 J

The data points that the interpolation algorithm will interpolate are

deform

'[1]

i f + A P f l
1 ' d e f o r m

A. l'.J = ApI + AA? 1.
^ J d e f o r m » J ' J d e f o r m

37

(a) (b)

. (c) (d)

Figure 4.9: Collision response when a surface is specified to (b) deform, (c) translate
or (d) rotate.

4.3 Translational and Rotational Response

Two additional methods for collision response are provided to model objects that

do not undergo pure deformational collision response. The interpolation algorithm

generates a deformational response in the sense that it tends to give a dented ap

pearance to the object. Some objects may prefer to retain their shape and respond

to the collision by translating to another position while others may translate on a

finer level to retain surface details but dent inwards on a global scale. The option to

allow a retention of details on a level during collision response is called translational

response. Similarly, rotational response simulates an object being pushed or rolled

during a collision. Figure 4.9 shows how an object may respond when the main

response mechanism is a deformation, a translation and a rotation on a fine level.

38

V, . A > A 3 A

p.ra
rotate

\ angle of
nT" rotation

J I P ' ^ V

Figure 4.10: The three smaller figures show the system before the collision, during
the collision and the resulting rotational response. The bottom object undergoes
a rotational response where the axis of rotation is into the page and the angle of
rotation is taken from the triangle P- 1 pM, pj rotate'

4.3.1 Translational Response

A translational response on level / simply translates all the control vertices of the

patches containing P : ^ and A :
l , J . by AP,- 1 J and A A |

R ° . 1 1 J J ' t r a n s l a t e

p'Wpj^ a n c j A j ^ A - 1 ; . The equations for the displacements are,
i j

>P] [1]
I J t r a n s l a t e

in the direction

A P [i]
^ t r a n s l a t e

tW.AP.™

A A f j = i W - A A J ,]
; .

' ^ t r a n s l a t e 1 0

4.3.2 Rotational Response

As shown in Figure 4.9(d) a rotational response moves the features on a level by

what appears as a rotation. The initial contact point P?' is used to calculate the

39

TH
interpolation point P r o t a t e in the same manner as the deformational response case.

A P [l] = r [/] . A P P l
l r o t a t e 1

AA™ = r W .AA| 1] .
I J r o t a t e 1 J

p ' P l _ p P l . A p P]
± rotate — * i ' i " 1 J r i r c

^ r o t a t e

A ; w = A W + A A ? ! .
»>Jrotate i j j ' j j r o t a t e

A plane is defined by the three points P- 1 ^ P ^ j P r o t a t e (s e e Figure 4.10).

The normal of that plane will be the axis of rotation and the angle of rotation is the

angle between pj 1 1 'p|^ and P - 1 ^ P ^ L t e - A quaternion, composed of the axis of

rotation and the angle, is applied to the offset of each control vertex influencing the

patch containing pf\ An identical process is used to determine the angle of rotation

and axis of rotation for each A; 1-, A ; ^ pair. If a control vertex is influenced by
1 J ' I J r o t a t e r J

more than one quaternion then a spherical linear interpolation of the quaternions is

performed.

4.3.3 Restriction

The numerical multi-grid method [9] [26] originally inspired the idea for using multi

ple levels in a surface to simulate local or global behavior. For interpolating a surface

through a set of data points a coarse interpolation using the coarser levels of the

hierarchy will give the system a better starting point for a finer level interpolation.

Coordinating behavior within the hierarchical surface requires a restriction and pro

longation operator. A restriction operator passes information from a finer level to

a coarser level. After a collision is detected the initial contact point, the additional

points and the data points are determined for the finest level. The displacements,

A P ; and A A y , are calculated for object i. The restriction operator passes the dis

placements and the (u, v) coordinates of the initial point and the additional points

to each coarser level.

40

In a future version of A C R A the restriction operator could propagate a neg

ative displacement outside of the interpenetration region to the coarser levels. A

negative displacement could simulate volume conservation through a bulging effect.

4.3.4 Prolongation

Starting at the coarsest level the algorithm performs the following steps where the

prolongation operator is the last step to pass information from a coarser level to a

finer level.

• Calculate the initial contact point and additional points on this level, /, from

the (M, v) coordinates provided by the restriction operator.

• Using Equation 4.18 and Equation 4.19, find the amount of displacement the

initial point and additional points on this level will absorb.

• Carry out the deformational response.

• Recalculate the initial contact point and the additional points on this level.

This step is necessary because the previous step has altered the shape of the

surface.

• Carry out the translational response.

• Recalculate the initial contact point and the additional points on this level.

• Carry out the rotational response.

• Prolongate the new surface configuration to level / + 1.

In future versions of A C R A , the prolongation operator would also be re

sponsible for ensuring no additional collisions occur due to a negative displacement

restricted to level /. Surface fairing [24] on a global or local scale could occur if the

prolongation operator applied a fairness function.

41

Each of the three methods for collision response may introduce further col

lisions to the objects. An iterative loop of collision detection followed by collision

response may be necessary to reduce the interpenetration to the point where post

processing 'clean-up' removes the remainder.

4.4 Summary

The interpolation algorithm described in this chapter describes a method for altering

the shape of a surface. Locality or globality of the collision response is controlled

by altering the amount of interpolation each level absorbs. Three types of collision

response are available and the user can choose a combination of the types on each

level. Iterative calculations at each frame or time step are not needed because

control vertex displacements are only calculated when a collision is detected. Some

results and the boundaries of the problem set where A C R A is applicable is the topic

of the next chapter.

42

C h a p t e r 5

Resul ts a n d F u t u r e W o r k

This chapter will address the issue of A C R A ' s effectiveness in terms of real-time

execution speed, range of responses and the scope of models A C R A is suitable for.

First some empirical results from an animation of a large model colliding with a

small model are presented. Frames from various animations with changes in relative

rigidity, locality of collision response and different types of response are presented to

show the effect of the response controls. A C R A ' s goals from Section 2.5 are briefly

revisited and some some ideas for avenues of future work and extensions to this

foundational algorithm are discussed.

5.1 Implementation and Empirical Results

To collect data about A C R A ' s execution speed and to compare execution speeds for

models of varying size, an animation of a large model colliding with a smaller model

was generated. The animation has a total of 30 frames (one of which is shown

in Figure 5.1), and 4 frames required a collision response. Although this thesis

only deals with the issue of collision response, collision detection is an important

predecessor to the collision response process. A library called R A P I D [19] [35] is

used for collision detection but the output from RAPID and the inputs required for

43

Figure 5.1: Animation frame. The large model of a dog head has 7 hierarchy levels
and a total of 2085 control vertices while the small model of a spike has 3 levels and
90 control vertices.

A C R A were not entirely compatible. In fact a rather significant amount of code is

needed to convert the outputs from RAPID to the inputs needed for A C R A . To give

some idea of the relative importance of these three components, execution speeds

were gathered for each component and tabulated in Figure 5.2.

RAPID, like many collision detection schemes, has two phases: an initial

setup and the actual collision detection. It stores the geometry of the model in

its local space and the translation and rotation in global space, thus if the object

undergoes a translation or rotation only those matrices need updating. If local

geometry changes, RAPID needs to execute its initial setup phase again. Each frame

in the animation requires a query to RAPID's collision detection phase but only

those frames that have a collision require the conversion of the collision detection

outputs to A C R A ' s inputs, a collision response and a new initial setup for RAPID.

5.2 Goals Revisited

• Uniritrusive. Key-framed motion of the object is obeyed by A C R A since the

algorithm only changes the shape of an object, not the object's position.

• Fast previews. The performance results of Figure 5.2 indicate a collision

44

Number of frames
requiring process

Wall-clock time (ms)

R A P I D
(initial setup)

5 Large model - 3919
Small model - 12

RAPID
(collision detection)

30 16

Conversion to collision
response inputs

4 358

Collision response 4 Large model - 590
Small model - 14

Figure 5.2: Performance results for collision detection and response from a 30 frame
animation rendered on a Pentium 150MHz with 64MB R A M . The numbers given
are averages over the frames.

response requires less than a second of real time even for the large model,

suggesting A C R A can provide fast preview for moderately complex geometry.

• Broad spectrum of responses. Using a multi-resolution surface such as a

hierarchical B-spline surface allows a spectrum of local to global responses by

adjusting the absorption amount on various levels of the hierarchy. Adjusting

the three different response types on each level of the hierarchy gives the user

the capability to generate denting, translating and rotating effects.

• Animator Override. Since the algorithm does not need to track the system's

state, the animator is free to manipulate the surface by hand. If, in the future,

the algorithm is extended to relax the surface back to a rest shape then care

needs to be taken to specify how A C R A will behave when both the animator

and A C R A want to adjust the position of the same control vertex.

5.3 Effectiveness of the Algorithm

Several frames from four animations of two key-framed objects colliding are shown

in Figures 5.3-5.6. In the first animation the bottom object is much more rigid than

45

(a) (b)

(c) (d)

Figure 5.3: Frames 10, 15, 20 and 25 from an animation where the bottom object is
highly rigid and the top object undergoes a deformational collision response at the
finest two levels of its hierarchy. Both objects have 5 levels in their hierarchy.

Hi

(c) (d)

Figure 5.4: Similar to Figure 5.3 except the top object is more rigid than the bottom
object. For clarity, the top object wasn't rendered in b and c.

47

(c) .(d)

Figure 5.5: S imilar to Figure 5.4 except the bot tom object distributes the deforma
tion absorption equally levels 1-3. For clarity, the top object wasn't rendered in b
and c.

IS

49

the top object, the collision response is purely deformational and the finer levels

were set to absorb the deformation. The top object was made much more rigid than

the bottom object in the second animation (Figure 5.4). Figures 5.5 and 5.6 show

how adjusting the absorption of the deformation to different levels of the hierarchy

give various responses. Levels 1-3 of the bottom object are set to absorb the same

amount of deformation in Figure 5.5 whereas levels 1 and 2 of the hierarchy absorb

the deformation in Figure 5.6.

The impact of changing the response type from a deformational to transla

tional is shown in Figures 5.7- 5.9. In both cases all of the response is absorbed by

the finest level of the hierarchy and the plane pushing down on the spike is totally

rigid. To show more clearly how the bottom object responds the top object is not

rendered in the last three frames but the side view gives information about the

relative positions of the two objects.

A rotational response is shown in the bottom object of Figure 5.10 where the

bottom object absorbs all of the response on level 2 (since that is the level where the

control vertices were offset to create the bump). Notice how the bump eventually

rotates far enough to allow the top surface to slide past. To show a combination of

a rotational and deformational response the bottom object of Figure 5.11 was set

to absorb half of the response on level 1, as a deformational response, and the other

half of the response on level 2, as a rotational response.

A C R A is not suitable for every animation that involves collisions since there

will be some complex deformations that are difficult or even impossible to generate

within the boundaries of A C R A ' s controls. For example, objects that are prone to

self-intersection will not exhibit appropriate collision response. Some techniques for

rendering an animation preview use only a sample of the complete set of frames.

A C R A does not behave well in this scenario since the algorithm only uses the current

state of the system. Thus if there are large changes in state, which is likely when

there is a sampling of frames, then A C R A will generate an equally large response.

50

(a)

(c) •(d)

Figure 5.7: Deformational response side view.

51

52

(c) (d)

Figure 5.9: Translational response.

5:5

(a) (b)

(c) (d)

Figure 5.10: Rotational response.

51

(a) (b)

(c) (d)

Figure 5.11: Rotational and deformational response.

55

Other preview techniques use a coarse representation of the object but this may not

be a desirable strategy for previewing collision responses since it is difficult to collide

objects whose geometry is ill defined. The user should also be aware that A C R A

does not guarantee all the interpenetration between two objects will be resolved

since no proof has been given that iterating the interpolation algorithm will cause the •

interpolation error to converge to zero. A C R A was designed, and has proven suitable

for quickly removing interpenetrations between objects and providing controls to

specify a variety of responses.

5.4 Future Work

One step to convincing animators and members of the graphics community of

A C R A ' s utility is to devise a more robust mechanism for removing the interpen

etration between two objects. A contact surface in the interpenetration region that

both objects are constrained to would guarantee a resolution of the interpenetra

tion. Gascuel and Desbrun [10] have found contact surfaces when the modeling

primitive is implicit surfaces but some investigation needs to be done to determine

the applicability of their method to other surface types.

Real objects continue to deform after the collision has finished by relaxing

back to a rest shape. Using the methodology outlined by Harrison [20], A C R A

could be extended to allow the animator to set the rest shape for an object. Any

deformation of the object due to a collision requires a displacement of the control

vertices. This displacement could be stored as an offset and, after the collision,

reversed to bring the object back to its rest shape. If multiple collisions occur then

the offsets for each collision could be stored in a LIFO stack and processing each

element of the stack will return the object's rest shape.

Some objects, like plastercine, retain all the deformation applied to them

while other objects, like an inflated balloon, will return to the shape they had

before the collision. Plasticity is a rating of the amount of deformation an object

56

permanently retains. The animator could set the plasticity for an object via a

percentage slider to indicate that A C R A should only restore a fraction of the stored

offset. When the object attempts to return to its rest shape by reversing the stored

offset it will only return part way. If a control vertex is offset by A V and the

plasticity for object i is pi on the interval [0,1] then the stored offset for that control

vertex is (1 — p ,) A V .

A real object with high viscosity will take longer to return to its rest shape

than an object with low viscosity. Furthermore, an object may return to its rest

shape quickly in a global sense but more slowly in a local sense. To simulate a

multi-resolution relaxation rate a set of animation curves can be used where each

curve describes the relaxation rate of a level.

All objects, provided they don't loose or gain any mass, conserve volume

during a deformation and some objects, such as cloth and paper, conserve area

(within an epsilon). Providing an option to preserve volume or area during the

collision response would be beneficial, especially if the (u,v) parameterization could

be adjusted to deform texture maps naturally. Currently, efficient techniques for

area and volume conservation are not available so the running time of the algorithm

would suffer.

57

C h a p t e r 6

S u m m a r y

Simulating the collision response of real objects is a complex process and research

spanning several decades has been devoted to finding algorithms to aid in the ani

mation of collision response for both rigid and non-rigid bodies. Some research work

has been targeted to specific collision response effects, such as wrinkling, while oth

ers attempt to simulate material properties, such as plasticity or inelasticity. Yet,

animators still rely on the manual manipulation of data points to model soft body

deformations suggesting more work needs to be done to create usable.tools.

ACRA provides a tool for generating collision response that is not focused on

simulating real object responses but instead attempts to remove the interpenetration

between two objects. It strives to be as unintrusive as possible to the animator's

workflow by both providing the animator with a variety of controls to alter the 'look'

of the collision response and not altering the key-framed motion of the system. The

hierarchical B-spline modeling primitive provides a local or global collision response

by allowing the animator to specify the amount of response each level of the hierarchy

absorbs. Three response types, deformational, translational and rotational, give the

animator a greater range of responses.

ACRA can be expanded to allow for other useful effects like volume conser

vation, plasticity controls and the relaxation of the surface to a rest shape. In all,

58

ACRA is a working prototype for a first step towards a tool for generating quick,

basic collision responses.

59

B i b l i o g r a p h y

Private communication with four animators, Greg McConnell, Trevor Bentley,
Ann-May Rhodes and Anthony Law, from Totally Hip Software.

Katrina M . Archer. Craniofacial Reconstruction Using Hierarchical B-Spline
Interpolation. University of British Columbia, 1997. M.Sc. thesis. Available at
http://www.cs.ubc.ca/nest/imager/th/archer. masc.1997.html.

David Baraff. Analytical methods for dynamic simulation of non-penetrating
rigid bodies. In SIGGRAPH '89, pages 223-232, 1989.

David Baraff. Curved Surfaces and Coherence for Non-penetrating Rigid Body
Simulation. In SIGGRAPH '90, pages 19-28, 1990.

David Baraff and Andrew Witkin. Large Steps in Cloth Simulation. In SIG
GRAPH '98, pages'43-54, 1998.

Richard H . Bartels and John C . Beatty. A Technique for the Direct Manipula
tion of Spline Curves. In Graphics Interface, pages 33-39, 1989.

Richard H . Bartels, John C . Beatty, and Brian A . Barsky. An Introduction
to Splines for use in Computer Graphics and Geometric Modeling. Morgan
Kaufmann Publishers, Inc., Los Altos, C A , 1987.

Robert C . Beach. An Introduction to the Curves and Surfaces of Computer-
Aided Design. Van Nostrand Reinhold, New York, NY, 1991.

W. L. Briggs. A Multigrid Tutorial. Society for Industrial and Applied Math
ematics, Philadelphia, PA, 1987.

[10] Marie-Paule Cani-Gascuel and Mathieu Desbrun. Animation of Deformable
Models Using Implicit Surfaces. IEEE Transactions on Visualization and Com
puter Graphics, 3(l):39-50, 1997.

60

http://www.cs.ubc.ca/nest/imager/th/archer
http://masc.1997.html

[11] Marie-Paule Cani-Gascuel and Mathieu Desbrun. Active Implicit Surface for
Animation. In Graphics Interface, pages 143-150, 1998.

[12] Michael Carignan, Ying Yang, Nadia Magnenat Thalmann, and Daniel Thal-
mann. Dressing animated synthetic actors with complex deformable clothes.
In SIGGRAPH '92, pages 99-104, 1992.

[13] John E . Chadwick, David R. Haumann, and Richard E . Parent. Layered Con
struction for Deformable Animated Characters. In SIGGRAPH '89, pages 243-
252,1989.

[14] Gerald E . Farin. Curves and Surfaces for Computer Aided Geometric Design:
A Practical Guide. Academic Press, Inc., San Diego, 1988.

[15] James D . Foley, Andries van Dam, Steven K. Feiner, and John F . Hughes. Com
puter Graphics Principles and Practice. Addison Wesley Publishing Company,
Inc., Reading, Massachusetts, 1996.

[16] David R. Forsey. Motion Control and Surface Modeling of Articulated Figures
in Computer Animation. University of Waterloo, 1990. Ph.D thesis.

[17] David R. Forsey and Richard H . Bartels. Hierarchical B-Spline Refinement. In
SIGGRAPH '88, pages 205-212, 1988.

[18] Jean-Dominique Gascuel and Marie-Paule Gascuel. Displacement Constraints:
A New Method for Interactive Dynamic Animation of Articulated Bodies. In
Third Eurographics Workshop on Animation and Simulation, 1992.

[19] S. Gottschalk, M . C . Lin, and D . Manocha. OBB-Tree: A Hierarchical Structure
for Rapid Interference Detection. In SIGGRAPH '96, pages 171-180, 1996.

[20] Jason Harrison. A Kinematic Model for Collision Response. Uni
versity of British Columbia, 1994. M.Sc. thesis. Available at
http://www.cs.ubc.ca/nest/imager/th/harrison.msc.1994.html.

[21] P. Howlett and W . T . Hewitt. Mass-Spring Simulation using Adaptive Non-
Active Points. In Eurographics, 1998.

[22] Tosiyasu L. Kunii and Hironobu Gotoda. Modeling and animation of garment
wrinkle formation processes. In Computer Animation, pages 131-147, 1990.

[23] Seungyong Lee, George Wolberg, and Sung Yong Shin. Scattered Data Inter
polation with Multilevel B-Splines. IEEE Transactions on Visualization and
Computer Graphics, 3(3):228-244, 1997.

61

http://www.cs.ubc.ca/nest/imager/th/harrison.msc.1994.html

[24] N. J. Lott and D. I. Pullin. Method for fairing B-spline surfaces. Computer-
Aided Design, 20(10):597-604, 1988.

[25] Jerrold E. Marsden and Anthony J. Tromba. Vector Calculus. W. H. Freeman
and Company, New York, 1988.

[26] Stephen F. McCormick. Multilevel Adaptive Methods for Partial Differential
Equations. Society for Industrial and Applied Mathematics, Philadelphia, PA,
1989.

[27] Matthew Moore and Jane Wilhelms. Collision Detection and Response for
Computer Animation. Tn SIGGRAPH '88, pages 289-298, 1988.

[28] Hing N. Ng and Richard L. Grimsdale. Computer Graphics Techniques for
Modeling Cloth. IEEE Computer Graphics and Applications, 16(5):28-41,1996.

[29] Larry Palazzi. Deformable Models Using Displacement Constraints.
University of British Columbia, 1993. M.Sc. thesis. Available at
http://www.cs.ubc.ca/nest/imager/th/palazzi.msc.1993.html.

[30] Xavier Provot. Deformation Constraints in a Mass-Spring Model to Describe
Rigid Cloth Behavior. In Graphics Interface, pages 147-154, 1995.

[31] Thomas W. Sederberg and Scott R. Parry. Free-Form Deformations of Solid
Geometric Models., In SIGGRAPH '86, pages 151-160, 1986.

[32] Demetri Terzopoulos and Kurt Fleischer. Modeling Inelastic Deformation: Vis-
coelasticity, Plasticity, Fracture. In SIGGRAPH '88, pages 269-278, 1988.

[33] Nikitas Tsopelas. Animating the crumpling behaviour of garments. In Euro
graphics Workshop on Animation and Simulation '91, pages 11-23, 1991.

[34] University of California Davis, Computer Science Department. On-line com
puter graphics notes. http://graphics.cs.ucdavis.edu/GraphicsNotes/Graphics-
Notes.html current as of April 28, 1998.

[35] University of North Carolina, Department of Computer Science.
RAPID - Robust and Accurate Polygon Interference Detection.
http://www.cs.unc.edu/geom/OBB/OBBT.html current as of July 2, 1998.

[36] Pascal Vollino, Martin Courchesne, and Nadia Magnenat Thalmann. Versatile
and Efficient Techniques for Simulating Cloth and Other Deformable Objects.
In SIGGRAPH '95, pages 137-144, 1995.

62

http://www.cs.ubc.ca/nest/imager/th/palazzi.msc.1993.html
http://graphics.cs.ucdavis.edu/GraphicsNotes/Graphics-
http://www.cs.unc.edu/geom/OBB/OBBT.html

[37] Jerry Weil. The Synthesis of Cloth Objects. In SIGGRAPH '86, pages 49-54,
1986.

[38] Yin Wu, Nadia Magnenat Thalmann, and Daniel Thalmann. A Dynamic Wrin
kle Model in Facial Animation and Skin Ageing. Journal of Visualization and
Computer Animation, 6(4):195-206, 1995.

[39] Ying Yang and Nadia Magnenat Thalmann. An Improved Algorithm for Col
lision Detection in Cloth Animation. In First Pacific Conference on Computer
Graphics and Applications '93, 1993.

[40] J. M . Zheng, K. W. Chan, I. Gibson, and Q. Y . Xiong. A New Approach.for
Direct Manipulation of Free-Form Curve. In Eurographics, 1998.

63

G l o s s a r y

Basic collision response: The removal of the interpenetration between two or
more objects, or at least enough of the interpenetration so that only a small
amount of post-processing 'clean-up' removes the remainder.

Blending functions (also basis functions): The weights applied to the elements
of the geometry vector when calculating the parametric curve.

Collision response: Any reaction, whether as a rigid body or a non-rigid body,
to a collision such that the interpenetration due to the collision is removed.

Derived vector: Used by a hierarchical B-spline surface to specify the position of
a control vertex, before it has been displaced, in the object's local reference
frame.

Elastic: A property of an object. An object that returns fully to its original shape
when all external forces are removed is said to be elastic.

Fracture: The cracking or tearing of a material when it deforms beyond a certain
limit. Cracks develop according to internal force or deformation distributions
and their propagation is affected by local variations in material properties.

Free form deformations: A method for deforming a model within a parallelepiped
region of space. An object within the Bezier solid that defines the paral
lelepiped can calculate new positions for its vertices such that the object de
forms as the parallelepiped deforms.

G e o m e t r y vector: A column vector of geometric constraints. The geometric con
straints are the conditions, such as endpoints or tangent vectors, that define
the parametric curve.

Inelastic: A property of an object. Inelastic objects return to their original shape
slowly or only partially when all external forces are removed.

64

K n o t : A join point between two adjacent B-spline segments that has a knot value
associated with it.

Local refinement: A technique used by hierarchical B-spline surfaces of adding
only those control vertices needed for editing purposes while retaining the
unedited portion of the surface in its original definition.

M i n i m u m distance shape change: The minimum distance shape change of a
curve is the change in curve shape such that the curve point Q(u) interpolates a
specified point in space but the control vertices of the curve segment containing
Q(u) undergo a minimal displacement.

Offset vector: The displacement of a control vertex from its position indicated by
the derived vector. The offset vector is specified in the local frame of reference
at the position indicated by the derived vector.

Physically-based modeling: Any system that uses some laws of physics to it-
eratively calculate the positions, velocities, forces or other properties of an
object.

Piecewise linear: Refers to a series of line segments that approximates the shape
of other primitives such as curves or surfaces.

Piecewise polynomial : Refers to the approximation of a curve or surface by a
series of polynomial segments. Cubic polynomials are used most often because
they are the lowest order polynomial that can interpolate two endpoints and
specify tangents at each endpoint.

Plasticity: A rating of the amount of deformation an object permanently retains.

Prolongation operator: An operator that passes information from a coarser level
to a finer level of a multi-resolution surface.

Restriction operator: An operator that filters information from a finer level to a
coarser level of a multi-resolution surface.

Viscoelastic: A property of an object. A viscoelastic object's behavior includes
the. characteristics of a viscous fluid together with elasticity.

Viscosity : The property of a fluid that resists the forces tending to cause flow.

65

Index

additional points, 34
animation preview, 2, 50

B-spline
basis matrix, 15
blending functions, 14-16, 20, 26
geometry vector, 14-16, 18
knot, 15, 20
knot value, 15

B-spline basis functions, see B-spline
blending functions

clean-up, see post-processing
cloth, 4
collision detection, see RAPID
conservation

area, 57
volume, 57

contact points, 33
continuity, 14, 19, 22
control mesh, 1, 4
curve

B-spline, 14-18, 26
Bezier, 14, 17
Hermite, 14
parametric, 13-14

dynamics, 4

elasticity, 4-6

fracture, 4-5, 11
free form deformation, 6-8

grid, see control mesh

H-spline
derived vector, 22-23
offset vector, 22-23, 56

inelasticity, 4-5

local refinement, 21, 22, 32

multi-resolution interpolation, 31

numerical methods, 4

physically-based modeling, 1, 3-6
springs, 4, 5
using F F D , 8

plasticity, 4-6, 56
point masses, see control mesh
post-processing, 2, 42
preview, see animation preview
properties

elasticity, 4-6
fracture, 4-5, 11
inelasticity, 4-5
plasticity, 4-6, 56
viscoelasticity, 4-5

RAPID, 43-44
relaxation rate, 57
response

deformational, 34-37, 50
rotational, 34-35, 39-40, 50
translational, 34-35, 38-39, 50

66

rest shape, 56
rigidity, 2, 11, 33-34

spring mesh, see control mesh
subdivision

B-spline, 16-18, 20
Bezier, 16-18
H-spline, 32

surface
B-spline, 18-20
Bezier, 12
implicit, 9, 56
piecewise linear, 9, 12

time step, 4

viscoelasticity, 4-5

weights

curve interpolation, 27-28
surface interpolation, 29-30

wrinkle
cloth, 5-6
facial, 6

