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Abstract 

With the recent advances in information technology, companies are now collecting 

more and more data related to their business. Companies are very interested in 

decision support systems that can discover knowledge from data and help them 

gain insight into their data. Data mining with the goal of discovering non-trivial 

information or patterns hidden in large databases has, therefore, recently become 

one of the most active research areas in database technology. 

Association rules relate items which tend to occur together in a given event 

or record. Mining association rules represents one of the most important problems in 

data mining. However, the current framework suffers seriously from the lack of user 

interaction and focus. In this thesis, we propose a new paradigm called Constrained 

Association Rules where (i) the mining of the rules is divided into two phases with 

various breakpoints for user feedback, and (ii) users can associate constraints with 

their queries. We analyze many SQL-style constraints and introduce the notions of 

succinctness and anti-monotonicity for their classification. 

We design a new algorithm called C A P for mining association rules that 

satisfy a set of given constraints. The idea is to check for satisfaction of the con­

straints as early as possible by exploiting the properties of anti-monotonicity and 

succinctness of the constraints. Several optimization techniques are developed. Our 

experimental evaluation indicates that C A P runs much faster and can sometimes 

outrun several basic algorithms by as much as 80 times. 
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Chapter 1 

Introduction 

1.1 D a t a M i n i n g 

What is data mining ? 

Over the past 15 to 20 years, computers have been used to capture detailed trans­

action information in a variety of corporate enterprises. Some of the examples of 

transaction-intensive industries are retail sales, banking, telecommunications, and 

credit card operations. Wi th the availability of powerful and affordable computer 

systems, many corporations have created huge repositories of data related to their 

business. These collected data represent an invaluable source of information be­

cause the data implicitly contain knowledge about the behavior of the customers. 

The knowledge in turn can play a crucial role in the corporation's survival in today's 

competitive market. Consequently, new techniques and tools which can intelligently 

and automatically transform the processed data into useful information and knowl­

edge has become highly relevant. 

Data mining, which is also referred to as knowledge discovery from databases, 

can be denned as an automatic process of discovering non-trivial, previously un-

1 



known, and potentially useful information from very large datasets. In the past few 

years, it has not only become one of the most active research areas in databases, 

but has also attracted increasing industrial attention. A leading industrial analyst 

[Meta Group] has projected the data mining market to grow from $3.3 billion in 

1996 to $8.4 billion by the year 2000. There are many applications of data mining. 

For example, discovered knowledge from data mining has been found to be relevant 

in direct marketing, decision making, fraud identification, and process control. 

Data mining models 

Discovered knowledge means high-level information such as regularities, rules, pat­

terns, trends, etc. Many interesting models for discovered knowledge have been 

identified by researchers. These include associations [AS94], sequential patterns 

[AS95], classification [MAR96], clustering [NH94], outliers [KN97], and temporal 

patterns [ALSS95]. 

Association models focus on items that occur together in a given event or 

record. A typical rule discovered in an association based data mining takes the 

form: If item X is part of an event, then c% of the time (the so-called confidence 

factor), item Y is also part of the event. A famous example is the rule "98% of the 

people who buy diapers also buy beer ". Another example is "85% of customers that 

purchase tires and auto accessories also get automotive services ". Association rule 

analysis has gained increasing interest with the widespread use of checkout scanners, 

which let retailers gather transaction details. This is why market-basket analysis 

has been the most well-known application of association rule analysis. This whole 

thesis is, in fact, on the problem of finding association relationships. A more precise 

definition of the model will be given in the following section. 

Sequential patterns are similar to association models, except that the re­

lationships among items are spread over time [AS95]. In fact, association mining 
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techniques can be applied to mining sequential patterns by treating sequences as as­

sociations in which the events are linked by time. The motivation behind sequential 

patterns is the elapsed time between transactions or the duration of an event in an 

association can be crucial. 

In classification [MAR96], it is assumed that the value of a categorical vari­

able can be assigned to any cases. The categorical variable is used as a classification 

label. A number of cases for which the classification label is known are employed 

as training examples. A classification algorithm then attempts to find a predictive 

pattern that can classify other cases. 

Clustering models segment a database into different groups whose members 

are very similar [NH94]. However, unlike classification, one does not know a priori 

what the clusters will be, or on what attributes the data will be clustered. Conse­

quently, the resulting clusters could reveal previously unknown facts about the data. 

Interesting applications of both classification and clustering are in direct marketing. 

For example, consider a company doing promotion with a mailing list. If the com­

pany can classify the customers on the list into categories such as "likely response" 

or "unlikely response" based on historical patterns, the company can then tailor its 

marketing plan and target only the customers that are more likely to respond. This 

can significantly reduce the cost and increase the rate of return of the promotion. 

Another pattern that is gaining increasing popularity is outlier detection 

[KN97]. While most of the models mentioned above deal with the trends of the ma­

jority, outlier detection attempts to identify the exceptional cases (i.e. the minority). 

For example, in the credit card business, an unusual spending pattern within a short 

period of time often indicates stolen card usage. Other applications include fraud 

detection in production processes. 

Finally, time is often an important attribute of a dataset. A significant 

example is in financial time series [ALSS95]. It is certainly a man's dream come 
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true if he can predict the movement of a stock price. Given a time series database, 

the problem of finding all the time series which have similar behavior is therefore of 

great interest. Similarity and clustering are some of the typical questions asked in 

data mining of temporal patterns. 

1.2 Association Rules 

Association relationships or association rules represent one of the most popular 

patterns pursued in data mining processes. The basic idea of an association rule is 

to capture the sets of items that tend to appear together. A n example is the rule 

"80% of the people who buy butter also buy milk". There can be many applications 

of the discovered rules. To use the rule in the above example, the manager in a 

supermarket will make sure that butter and milk will not be on sale at the same 

time. 

The idea of association rules is introduced by Agrawal, Imielinski and Swami 

in the early 90's [AIS93] as part of the IBM's data mining research program [QUEST]. 

The motivation is to understand customer behavior by examining transactional 

databases. Each transaction in the database contains items that are purchased 

together. By counting the frequency of the items appearing in the database, one 

can identify the sets of items that tend to be purchased together. 

To be more precise, an association rule is defined as an implication of the 

form X =>• Y, where X and Y are sets of items and the set X U Y appears frequently 

enough in the transactional database in the sense that at least s% of the transactions 

contain X UY, and at least c% of the transactions that contain X also contain Y. 

Here, 5 and c are called the support threshold and the confidence respectively. 

In an association query, a user simply supplies specific values for the support 

threshold and the confidence as input. A mining engine then finds all the itemsets 
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X, Y such that X =>• Y satisfies the above definition of an association rule. The 

output of the query is a list of all such association rules found. Without prior 

knowledge of the data, a user usually has no idea what the appropriate values for 

the support threshold or the confidence should be. Runs with supplied values might 

discover no rules or thousands of rules. This is one of the problems with the above 

framework of association rules. 

Since its introduction [AIS93], the problem of mining association rules has 

been the subject of numerous studies. Issues discussed include extending the associ­

ation rules framework [HF95, SA95, SA96, F M M T 9 6 , MY97, T U A C M N 9 7 , BMS97, 

SVA97], applying the association framework to solve other problems [AS95, AMS97], 

improving the efficiency of the mining algorithms [PCY95, B M U T 9 7 , CHNW96], 

and parallel implementation of the Apriori Algorithm [AS94, HKK97] . In particu­

lar, Agrawal and Srikant in 1994 [AS94] proposed a very efficient algorithm called 

Apriori for mining association rules. We will explain in detail the Apriori Algorithm 

and review some of the more important related works in the following chapter. 

While all of the above mentioned work has enriched the field of association 

mining, none of them address adequately the question of the interestingness of the 

discovered rules. There may be thousands of rules found, but only a small portion 

of them are interesting to the user. Only Srikant et al [SVA97] discuss the issue of 

putting constraints on the frequent sets, which is one of the suggestions of this thesis. 

However, Srikant et al [SVA97] only consider membership constraints in the context 

of an item taxonomy, which correspond to only a small subclass of the categories of 

constraints considered in this thesis. 
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1.3 Motivation of the Thesis 

While the notion of association rules with the corresponding Apriori Algorithm 

discussed in the previous section represents a significant development in data mining, 

it suffers seriously from the following problems. 

P r o b l e m 1 — Lack of User E x p l o r a t i o n and C o n t r o l : In a classical association 

query, a user supplies the support threshold and the confidence. Then, Apriori 

or a similar algorithm returns with all the association rules it finds. The whole 

mining process behaves like a black-box where the user has very limited control 

of the process except for supplying the two threshold values. But the supplied 

threshold values might not be appropriate. It is more desirable if the mining process 

can support user exploration on the data. However, even with the development of 

many efficient algorithms, state-of-the-art association mining nowaday still requires 

hours to complete. Therefore, without much control over the mining process and 

the relatively long turnaround time, the classical model of mining association rules 

cannot support efficient user exploration. Furthermore, the results returned by the 

black-box may not contain what the user is looking for. 

P r o b l e m 2 - Lack of Focus: The second problem is related to the fact that the 

ultimate goal of a data mining user is to support his or her business decision making. 

The user probably has some specific questions he or she would like to answer and may 

therefore be much more interested in only certain types of association patterns. For 

example, a user may want to find associations between sets of items whose origins 

are domestic, or associations from itemsets of male products to itemsets of female 

products. However, the classical model does not support any of these expressions 

of focus or preference. 

P r o b l e m 3 - R i g i d N o t i o n of Re la t ionsh ip : The third problem is that the 

classical notion of association relationship is too rigid. Two sets of items are "as-
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sociated" only if they appear together frequently enough and the rule confidence 

exceeds the confidence threshold. While such a notion of associations is useful, 

there can be other types of association that are relevant as well. For example, cor­

relation is often used in statistics. Brin, Motwani, and Silverstein [BMS97] argue 

that in many circumstances correlation can be more useful than confidence. For 

example, the rule "past active duty in military no service in Vietnam " has a 

very high confidence of 0.9 in census data. Yet it is quite misleading because having 

past military service only increases the chances of having served in Vietnam. Fur­

thermore, sometimes it may make more sense to have different support threshold 

for the antecedent sets and consequent sets, especially when they are from different 

domains. The rule pepsi => snacks is an example of associations from sets of items 

to sets of types. In such situation, the appropriate support threshold values for pepsi 

and snacks (i.e. any item of type snacks) can be very different. 

These shortcomings in the current framework of the classic Association Rules 

form the motivation of our work. To overcome these problems, we suggest several 

principles which will be given in the following section. 

1.4 Contributions of our work 

We summarize our contributions in this section. First of all, we suggest several 

principles of association mining which can be used to address the problems given in 

the last section. The principles suggested are: 

1. The mining process should not behave like a black-box with one-time user 

supplied input parameters and final results at the end. Instead, there should 

be breakpoints in the process for accepting user feedback. 

2. Wi th the user feedback mechanism, a user should not only be able to guide 

and control the mining process, but also have the chance to approve any task 
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that involves a substantial cost. 

3. The mining system should have a mechanism to allow a user to express his or 

her focus or preferences. 

4. Wi th the user preferences specified, the system should have the ability to ad­

just its mining algorithms so that it performs only the necessary computation 

and nothing more. 

5. The system should have a mechanism to allow a user to choose different signif­

icance metrics and criteria to be used in defining an association relationship. 

To realize these principles, we have designed a two phase architecture (Figure 

3.1 ) for exploratory association mining. We will discuss the architecture in more 

detail in section 3.2. Here, we emphasize that the architecture is new, but downward 

compatible in the sense that if a user wants only classical associations and the 

classical mode of interaction, he or she can do so by setting all the parameters at 

the beginning and turning off all the breakpoints. Moreover, it is consistent with 

the above five principles, and is powerful in providing human-centered exploration. 

The second major part of our contributions is the introduction of the notion 

of constrained association queries (CAQ) to be discussed in Chapter 3. Along with 

the proposed architecture, C A Q provides a rich interface for the user to express 

focus and to control the mining process to best suit the particular interests of the 

user. In addition, we design and develop an efficient algorithm which we call C A P 

(Constrained Apriori) to make use of the additional pruning power provided by 

the constraints. To answer a constrained association query, one can imagine a few 

algorithms, for example, running Apriori followed by constraints checking at the end. 

We have compared C A P with a few of these simpler algorithms. Our experimental 

results indicate that C A P can sometimes outperform other algorithms by as much 

as 80 times ! 
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In our investigation, we discover that one can classify all the constraints 

according to two properties, namely, succinctness and anti-monotonicity. These 

properties turn out to be extremely important in optimizing the mining algorithm. 

While the anti-monotonicity property may be known in literature (in fact Apriori 

is based on the anti-monotonicity of the frequency constraint), the classification of 

constraints based on succinctness and anti-monotonicity is fundamentally new and 

is one of our major contributions. 

1.5 Outline of the Thesis 

The thesis is organized as follows. In the next chapter, we describe the formulation 

of the problem of mining association rules and present the Apriori Algorithm. We 

also review in detail some of the important related works. In Chapter 3, we present 

constrained association queries as a new paradigm in mining association rules. We 

then discuss some of the basic algorithms that one can think of for these new type 

of queries in Chapter 4. Chapter 5 describes an optimized algorithm which we refer 

to as C A P . Chapters 4 and 5 are the main focus of this thesis. Performance of 

various algorithms are then compared in Chapter 6. Chapter 7 presents yet another 

optimization technique that can be used not only in C A P , but also in Apriori . 

Finally, we draw our conclusions in Chapter 8 along with a discussion on some 

possible directions for future work. 
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Chapter 2 

Background: Association Rules 

2.1 Formulation 

In this section, we present a mathematical formulation of the association rule prob­

lem. We also establish our notation used for the rest of the thesis. 

The starting point is to assume that there is a finite (but very large) set 

of items which we denote by Item . The strict power set of Item is denoted by 

'P(Item) or 2 I t e m . A transaction T is simply any subset of 2 I t e m . A transaction 

database, denoted by VB, is a set of transactions. 

Definition 2.1 Given any set S C 'P(Item) and a transaction database, the support 

or the frequency of S is the number of transactions containing S. 

We often refer to S as an itemset. 

Definition 2.2 A n itemset S is said to be large or frequent if the support of S is 

larger than a given threshold value. 

Whether an itemset is large or not depend on the threshold value. We refer to this 
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threshold value as the support threshold. Moreover, we often refer to itemsets of size 

k as k-itemsets. We also denote the set of all large fc-itemsets by L)~. We are now 

ready to define an association rule. 

Definition 2.3 Given a support threshold s and another input parameter c referred 

to as confidence, an association rule is a rule of the form X Y ii X UY is a. large 

itemset, and among all the transactions that contain X, at least c % of them also 

contain Y. 

X and Y are usually referred to as the antecedent and the consequent set respec­

tively. The problem of association rules is the problem of finding all the possible 

association rules given a support threshold and a confidence. 

The motivation of association mining and some of the examples are given in 

Section 1.2. Here, we note that finding association rules can be divided into two 

phases. The first one is to find all the large itemsets, i.e. potential candidates for 

X UY. The second phase then constructs all possible association rules of the form 

X =>• Y from each large item set X U Y by checking whether the support ratio of 

XUY over X exceeds the confidence threshold. For example, if the set {A, B, C} is 

found to be large, then, in the second phase, we check whether each one of the rules 

{A,B} {C}, {A,C} => {B}, {B,C} => {A}, {A} {B,C}, {B} => {A, C), 

and {C} =>• {A, B} satisfies the confidence requirement. Many previous studies 

have shown [AIS93, AS94] that the first phase is the bottleneck of the computation. 

Therefore, most of the literature on mining association rules focuses on the first 

phase of finding all frequent itemsets. In the following discussion, our main concern 

is also on the problem of finding large itemsets. 

Association mining, in principle, requires consideration of all possible com­

bination of the items. Figure 2.1 shows all the possible itemsets that can be formed 

from five items arranged in a lattice. The lines in Figure 2.1 connect a set to all its 
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{A,B,C,D,E} 

(A,B,C,D) {A,B,C,E} {A,B,D,E} {A,C,D,E} {B,C,D,E} 

{A,B,C} {A,B,D} {A,B,E} {A,C,D} {A,C,E} {A,D,E} {B,C,D} {B,C,E} {B,D,E} {C,D,E} 

{A,B} {A,C} {A,D} {A,E} {B,C} (B,D) (B,E} {CD} {C,E} {D,E} 

(A) {B} {C} {D} {E} 

Figure 2.1: The lattice space formed from five items {A,B,C,D,E} 

supersets and subsets. The number of sets in this lattice space increases exponen­

tially with the number of items. For practical applications, the number of items is at 

least of the order of several hundreds. Therefore, association mining is a challenging 

problem and any naive or brute-force approach will certainly fail. To facilitate our 

discussion, we hereafter refer to the association rules discussed in this section as the 

classical association rules to distinguish from other extensions. 

2.2 Apr io r i Algori thm 

Agrawal and Srikant [AS94] proposed an efficient algorithm called Apriori listed 

below for finding all the large itemsets. 

Algorithm 2.1 (Apriori) 

1 C\ consists of all itemsets of size 1; k — 1; Ans = 0; 

2 while (Ck not empty) { 

2.1 conduct database scan to form from Ck', 
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2.2 form Ck+i from Lf~ based on Cfreq; k + +;} 

3 for each set S in some L^: 

add S to Ans. 

Algorithm Apriori follows a level-wise generate-and-test framework. In Step 

1, it first generates a list of size one candidate sets, denoted by C\. Then it counts 

the support of each candidate in the list to find all the size one large itemsets, L\. 

From L\, the algorithm constructs a list of size two candidate sets, C2. The process 

is then repeated until there is no more candidates, i.e. until Ck is empty (see Step 

2). Finally, each large itemset is added to the Ans, the output of the algorithm. 

The performance of such generate-and-test algorithms is usually very poor because 

the number of candidates increases exponentially with the number of items. The 

contribution of Agrawal and Srikant [AS94] is that when they generate C^+i from 

Lk in Step 2, they make use of an important property of the support of an itemset: 

the support of an itemset cannot be larger than the support of any of its subset. 

To prove such a property, one just needs to realize that if a transaction supports 

(i.e. contains) an itemset S, it supports every subset of S. Thus, a size k + l itemset 

cannot be a large itemset (i.e. cannot be in Ck+i) unless all its size k subsets are 

large (i.e. in L^)- Therefore, Agrawal and Srikant can a apriori drop a size k + l 

candidate set if one of its size k subsets are not in L^. This greatly reduces the 

number of size k + l candidate sets, which in turn further reduces the number of 

size k + 2 candidate sets, etc. Thus their Apriori Algorithm can be very efficient 

even for large numbers of items and for large databases. 

Example 2.1 We illustrate the Apriori Algorithm in Figure 2.2 with a simple ex­

ample. We assume that there is only five items A,B,C,D,E and the support 

threshold is 10. Each set in Ck+i(k = 1,2) is constructed by taking the union of 

two sets in that differ by only one item. The algorithm then checks for all the 
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c l Support 

(A) 
(B} 

(C) 

(D) 

(E) 

count 
support 

Support c 2 Support 

{A) 60 Step 2.1 
—̂  (A) Step 2.2 

—— (A,B) 
(A,D) 
( A , E | 
(B,D) 

(B) 

| C ) 

58 

8 
{Bl 

(A,B) 
(A,D) 
( A , E | 
(B,D) 

(D) 70 (D) (B,E) 
(E) 50 (E) ( D , E | 

C 2 Support 

(A,B) 30 
(A,D) 28 
(A,E) 34 
(B,D) 9 

(B,E) 29 
(D,E) 7 

Step 2.1 

count support 

{A,B( 

(A,D) 

(A,E) 

|B ,E) 

Step 2.2 

C 3 Support 

(A,B,E) 12 

Figure 2.2: A n example illustrating Apriori Algorithm with five items 

size k subsets. If any one of the subsets is not in Lk, the set is pruned away from 

Ck+\- In our example, the set {A, B,D} is pruned away from C3 because the set 

{B,D} is not in L2. On the other hand, {A, B,E} is not because all the size two 

subsets, {A,B},{A,E}, and {B,E}, are in Li-

2.3 Related Works 

As we mentioned in Chapter 1, there has been numerous studies on mining asso­

ciation rules. In this section, we first review some of the works that are relatively 

more important in the development of association mining. These works roughly fall 

into three categories. The first one aims at generalization of the notion of classical 

association rules. In other words, the focus is on improving the effectiveness of the 

association rules. The goal of the second category is more on improving the effi-
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Food Product 

Milk 

Dairy 

l % M i l k 2% Milk Large Small Orange Apple Coke Pepsi Bud Miller 
Juice Juice 

Figure 2.3: A n example of a taxonomy (concept hierarchy) 

ciency of the mining algorithms. The third category simply covers all the works that 

do not fall into the first two categories. A n example of the third category would be 

solving other problems with the association concept. 

Generalization of Association Framework 

Among the first attempt to generalize association rules is the work by Han and Fu 

[HF95]. Their idea is that while an association rule such as "80% of customers that 

purchase milk may also purchase beer " is interesting, it could be more informative 

to also show that "75% of people buy Budweiser if they buy 2% milk ". The 

association relationship in the latter statement is expressed at a lower concept level 

where more specific and concrete information is provided. Conversely, sometimes it 

may be more desirable to have associations at a higher concept level. A n example is 

that the rule "90% of people who live on 123 East 2nd Street fly at least once a year" 

is obviously less interesting to a travel agent than the rule "70% of people living in 

Vancouver fly at least once a year". Han and Fu suggested that association mining 

should be done at multiple concept levels. They call the different concept levels 

a concept hierarchy. Srikant and Agrawal [SA95] referred to concept hierarchies 
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Salary Equi-depth Interval Distance-based Interval 
18K 18K, 18K 
30K 18K,30K 
31K 30K,31K 
80K 31K,80K 
81K 80K.82K 
82K 81K, 82K 

Table 2.1: Equi-depth vs. distance-based partitioning 

as taxonomies and had studied essentially the same problem as Han and Fu. A 

taxonomy (or concept hierarchy) is a is-a hierarchy on a set of items with a more 

general description of the items at the higher levels of the hierarchy. A n example of 

a taxonomy {i.e. a concept hierarchy) is shown in Figure 2.3. This taxonomy says 

that 1% milk is-a milk, 2% milk is-a milk, milk is-a Dairy, Dairy is-a Food Product, 

etc. The problem of multiple-level association rules is to find association rules that 

span different levels of the taxonomy. Both Han & Fu and Srikant & Agrawal have 

designed efficient algorithms that can generate association rules at multiple levels. 

Another group of studies is on extending association rules to more general 

type of attributes. So far, association mining had been focused on categorical at­

tributes. Srikant and Agrawal in 1996 [SA96] introduced the problem of mining 

association rules with quantitative attributes. A n example of an association rule 

containing both quantitative and categorical attributes might be "10% of married 

people between age 50 and 60 have at least 2 cars". They deal with quantitative 

attributes by partitioning the values of the attribute and then combining adjacent 

partitions as necessary. In other words, they converted quantitative attributes to 

categorical attributes by creating finite number of partitions for the values of the 

numeric attributes. A n important question is what should be the number of inter­

vals and what the criteria in constructing a "good" interval should be. Srikant and 

Agrawal [SA96] used an equi-depth method where the intervals are determined by 
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their relative ordering and their support. Here the depth of a partition means the 

support of the partition. For a depth d, the first d values (in order) are placed in 

one interval, the next d in a second interval, etc. However, Miller and Yang [MY97] 

pointed out that equi-depth partitioning may not work well for skewed data, and 

may not be semantically suitable under certain circumstances. Instead, they pro­

posed a distance-based partitioning where the distance between items are taken into 

account. As an example, Table 2.3 shows the different partitions obtained by the 

above two methods on a Salary attribute. Equi-depth partitioning results in three 

partitions, 18K,30K, 31K,80K, and 81K,82K, while distance-based method gives 

18K,18K, 30K,31K, and 80K,82K. Miller and Yang [MY97] argued that distance-

based partitions are more consistent with our intuitive understanding of the data 

and intervals that include close data values (such as 81K,82K) are more meaningful 

than intervals involving distant values (such as 31K, 80K). In our example, a rule in­

volving the interval 31K, 80K will be of less interest than rules involving the interval 

30K,31K. Finally, Fukuda et al [FMMT96] considered various performance issues in 

mining association rules with numeric attributes and designed fast algorithms that 

borrow techniques from computational geometry. 

Other studies that extend the classical association relationship include the 

work by Brin, Motwani, and Silverstein [BMS97] where the authors suggested cor­

relation as a significant metric of an association, instead of the confidence. Their 

motivation is to allow associations to generalize beyond market baskets data. This 

is because under more general settings (i.e. , non basket data such as census data), 

the classical association rules is only one of the many types of recurring patterns 

that could or should be identified as "associations". Correlation is among the most 

useful information regarding two variables. 

So far, all of the mentioned works assume that the database is fixed and the 

focus is on mining different types of association rules. However, in practical appli­

cation of database mining, another problem we need to address is how to update, 
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maintain and manage the rules discovered. Whenever the database is updated, new 

association rules may be introduced while some existing ones may be invalidated. 

Therefore, efficient maintenance of discovered association rules is a non-trivial prob­

lem. Cheung et al [CHNW96] study this problem and have developed an incremental 

updating technique. 

Improving Efficiency of Mining Algorithms 

Apart from extending the association rule framework, many researchers aim to im­

prove the efficiency of the mining algorithm. Park, Chen, and Y u [PCY95] proposed 

another approach totally different from the Apriori. Their algorithm is referred to as 

D H P (Direct Hashing and Pruning). Their observation is that the initial candidate 

set generation, especially for the large size two itemsets, dominates the total execu­

tion cost. This can be explained by the reason that unless the support threshold is 

very selective, L\ is usually very large, which in turn results in a huge number of 

candidate sets in C2 (as j C 2 j = 

V 2 ) 

). The step of determining L2 from C2 by 

scanning the whole database and testing each transaction against C2 is hence very 

expensive. The idea of the D H P Algorithm is to generate a much smaller C2 by 

using a hashing technique to filter out unnecessary itemsets. When the support of 

candidate fc-itemsets is counted by scanning the database, D H P accumulates infor­

mation about candidate (A; + l)-itemsets in advance in such a way that all possible 

(k + l)-itemsets of each transaction are hashed to a hash table. This also allows 

D H P to trim progressively the size of the transaction database which can reduce the 

processing time in later iterations. Their experimental evaluation shows that D H P 

is about four times faster than Apriori. 

A major bottleneck in computing frequent sets is in counting the support of 

candidate sets. At each level k, a database scan is required to find the support of 

the sets in C f c . Because of the large database size, the I /O cost for each scan can 
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be huge. Therefore, it will be beneficial if one can reduce the number of database 

scan. Brin et al [BMUT97] proposed a dynamic itemsets counting algorithm (DIC) 

to reduce the number of database scan. The idea is to start counting (k + l)-itemsets 

before finishing counting fc-itemsets. In one of their examples, Br in et al show that 

the number of database scan required by DIC is 1.5 passes while that of Apriori is 3. 

However, the implementation of the DIC Algorithm requires keeping track of many 

itemsets (in memory). As the number of all possible itemsets increases exponentially 

with the number of items, this requirement may pose serious limitations on the 

algorithm. 

To speed up the mining process, another major approach is to use parallel al­

gorithms. Both Agrawal and Shafer [AS96] and Han, Karypis, and Kumar [HKK97] 

have designed parallel algorithms for mining association rules and have studied var­

ious performance issues. Their idea is that the Apriori Algorithm can be divided 

into several sub-problems such as counting support, candidate generation, and rule 

generation. While these sub-problems depend on each other, the algorithms that 

solve these sub-problems may be executed in parallel. For example, rule generation 

from Lfc can be executed independently from counting support of for k' > k. 

Interesting applications of the association mining framework include the work by 

Agrawal and Srikant [AS95], where association mining is applied for mining sequen­

tial patterns, and the investigation by A l i , Manganaris, and Srikant [AMS97] where 

it is used for partial classification. 

Summary 

While all of the above works represent important extensions, improvements and/or 

applications of the classical association rules [AS94], none of them has solved the 

problems presented in Section 1.3. In particular, no current framework addresses 

adequately the question of "interestingness" of the discovered rules. Different users 
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have different interests and different needs. Support threshold and confidence are 

two very rough and generic quality (or "interestingness") measures. They may not 

capture what a user wants. Moreover, they may lead to thousands of rules or no 

rules at all. As far as we are aware of, no one has talked about putting constraints on 

the frequent sets to capture the "interestingness" of rules. The only exception is the 

recent work by Srikant, Vu, and Agrawal [SVA97] which considers only membership 

constraints on an item taxonomy. Nevertheless, their constraints represent only a 

small subclass of the types of constraints we study in this thesis, which include 

domain and SQL-style aggregation constraints. Furthermore, our focus is on the 

analysis of the pruning properties of the constraints and our Algorithm C A P can 

handle a much broader class of constraints with significant pruning power than the 

algorithms given in [SVA97]. 

Meo, Psaila, and Ceri [MPC96] consider a language for mining association 

rules with conditions. However, they do not consider pruning optimizations provided 

by the conditions. 

Tsur et al [TUACMN97] attempt to generalize association queries to param­

eterized queries with filters (conditions applied to the result of a query), which they 

call "query flocks". However, the filter is confined to lower bound constraints on 

the number of tuples returned by a query. Moreover, they do not have the general 

notion of constraints nor have they classified the constraints or studied the role of 

the constraints in optimization. 
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Chapter 3 

Constrained Association Queries 

In this chapter, we introduce the notion of Constrained Association Queries (CAQ) 

to address the several problems of the classical association queries discussed in the 

Chapter 1. Our goal is to let a user specify constraints expressible in SQL-like 

languages and to enable the user to efficiently carry out exploratory and ad hoc as­

sociation data mining activities. Our design is based on the five principles presented 

in section 1.4 

3.1 Definitions 

Def in i t ion 3.1 A constrained association query (CAQ) is a query of the form 

{(•Sii S2)\C}, where S\,S2 are set variables and C is a conjunction of a set of con­

straints on S i , S^. 

The above definition is fairly general. In particular, we do not have the no­

tion of antecedent and consequent set in the definition, although typically S\(S2) 

represents the antecedent (consequent respectively) set in an association relation­

ship. The reason is that for this generalization such identification is not required in 
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Figure 3.1: A n Architecture for Exploratory Association Mining 

finding all large itemsets. 

The basic requirement of the support of Si being larger than some given 

threshold can be thought of as a constraint. We embed this frequency constraint, 

written as freq(Si), in the constraint C. Before we elaborate on the above definition, 

we first present an architecture for processing CAQs. 

3.2 Architecture 

Our proposed architecture, which is shown in Figure 3.1, is divided into two phases. 

In phase I, the system processes constrained association queries and outputs all the 

large itemsets satisfying the set of constraints C specified in the queries. As men­

tioned in the last section, each constraint in C may be applicable to the antecedent, 

or the consequent, or both and C also includes the frequency constraint. Upon seeing 

the output of the query, which is in the form of a list of pairs of candidates (Sa, Sc), 

for the antecedent and consequent satisfying C, the user can either modify his or 

her query by adding, deleting, or refining the constraints etc, or change the support 
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thresholds. Then, the system accepts and processes the refined query. The process 

is repeated as many times as the user desires. 

When the user is satisfied with the list of large itemsets found, the user can 

instruct the system to proceed to Phase II. The main function of the system in 

Phase II is to let the user specify the significance metric, the corresponding metric 

threshold, and any other further conditions that may be imposed on the antecedent 

and consequent. For example, as in classical association queries, a user could choose 

the confidence as the significance metric, specify the confidence threshold and require 

that (Sa, Sc) be frequent. Similar to Phase I, Phase II is also iterative. Upon seeing 

the final association relationship, the user can modify his or her specification of the 

metric, and/or thresholds values etc. The system will then process the refined query 

starting from the beginning of Phase II or even Phase I if necessary. 

One important consequence of allowing user feedback at various breakpoints 

in the architecture is that the user can have the control and final approval in autho­

rizing costly operations. For instance, one possible significance metric is correlation 

between the antecedent and consequent [BMS97]. Correlation is an expensive com­

putation. It will be a waste of C P U time if the user can find out only at the end 

that the final answers of the query involve sets of items that are not of interest to 

the user. 

Another important feature of the proposed architecture is that it is downward 

compatible. In other words, the system can answer classical association queries and 

support the classical mode of interaction. To do this, a user would simply set all the 

appropriate parameters at the beginning and turn off all the breakpoints so that the 

system will not prompt for feedback. Since a classical association query is a special 

case of a constrained association query, our formalism (i.e. the notion of C A Q and 

the proposed architecture) is a true generalization of the classical association query. 

But, of course, the real power of the generalized framework lies in the fact that 
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it addresses the problems of the classical association rules listed in section 1.3 by 

supporting efficient human-centered exploration for association mining. 

3.3 Syntax and Examples 

In Section 3.1, we briefly describe what is a C A Q . Here, we discuss it in more details 

and formally introduce the syntax used in C A Q . We also present some examples of 

C A Q . 

In definition 3.1, C represents a set of constraints, where the constraints 

can be divided into two classes. A single variable constraint (1-var) is a constraint 

containing only one set variable. It is used in conditioning the antecedent and/or 

consequent separately. On the other hand, a two variable constraint (2-var) is a 

constraint with two set variables and is useful in expressing joint conditions on both 

the antedecent and the consequent. 

To be more precise, C is a conjunction of constraints on S\,S2 drawn from 

the following classes of constraints. 

1. Single Variable Constraints: A single variable (1 — var) constraint is of one of 

the following forms. 

(a) Class Constraint: It is of the form S C A, where S is a set variable and A 
is an attribute. It says S is a set of values from the domain of attribute 

A. 

(b) Domain Constraint: It is of one of the following forms. 

i . S0v, where S is a set variable, v is a constant from the domain that S 

comes from, and 6 is one of the boolean operators =,7^, < , < , > , > • 

It says that every element of S stands in relationship 9 with the 

constant value v. 
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i i . v9S, where S, v are as above, and 8 is one of the boolean operators 

€, This simply says the element v belongs to (or not) the set S. 

i i i . V9S, or S9V, where S is a set variable, V is a set of constants from 

the domain S ranges over, and 9 is one o f C , g , c , c / , = , ^ . 

(c) Aggregate Constraint: It is of the form agg(S)8v, where agg is one of 

the aggregate functions min, max, sum, count, avg, and 9 is one of the 

boolean operators =, 7 ,̂ <, <, >, >. It says that the aggregate of the set 

of numeric values in S stands in relationship 9 to v. 

2. Two Variable Constraints: A two variable constraint (2 — var) is of one of the 

following forms. 

(a) S\9S2, where Si is a set variable and 9 is one of C, c , <£. 

(b) (Si o S2)9V, where Si, S2 are set variables, V is a set of constants or 0, 

o is one of U,f1, and 9 is one of =, 7 ,̂ C, C, c/. 

(c) aggi(Si)9agg2{S2), where aggi,agg2 are aggregate functions, and 9 is one 

of the boolean operators =, 7 ,̂ < , < , > , >. 

We next illustrate the constraint syntax with examples. First of all, we need 

to specify the view on which we do the mining. We will refer to this as the minable 

view. It can be simply thought of as a set of relations. For example, t rans (TID, 

Itemset) can be the relation to represent the transaction. Furthermore, as an 

example here, we assume that we are interested in the type, price and origin of the 

items. Therefore, a minable view could be the two relations, t rans (TID, I t e m s e t ) , 

i t emlnf o(Item, Type , P r i c e , O r i g i n ). Here Item represents the set of all 

possible items and S C Item would mean S is a set variable in the Item domain. We 

now consider some 1-var constraint examples. S .Pr ice > 50 says all items in S are 

of price greater than or equal to $50; S.Type 3 {sodas} insists S include some items 

whose type is sodas; S .Or ig in = Canada means all the items are made in Canada. 
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More complicated example can be like S.Typefl {dairy} = 0 A sum(S.Price) < 100, 

which says S is the set of items that do not include any dairy product and the total 

price is less than or equal to $100. 

2-var constraints can be constructed in a similar manner. For example, 

Si .Type f l S2-Type = 0 says Si and S 2 have no same type items in common; 

avg(S\ .Price) < avg(S2 .Price) insists that the average price of Si has to be less 

than the average price of S2. 

Below we give examples of complete CAQs. The C A Q 

{(Si,S2)|Si C I t e m & S2 C Item & count{Si) = 1 & count(S2) = 1 & freq(Si) & freq(S2)} 

asks for all pairs of single items satisfying frequency constraints. Since the body 

of any C A Q , C, invariably contains the frequency constraints and the domain con­

straints Si C Item & S2 C Item, we hereafter suppress them and simply note that 

they are implicitly contained in the body of any C A Q . The C A Q 

{(Si, S 2)|auc/(Si.Price) < 100 & avg{S2-Price) < 200} 

asks for pairs of itemsets, where the average price of Si has to be less than or equal 

to $100 while that of S2 has to be less than or equal to $200. This is an example of 

using 1-var constraints. On the other hand, the C A Q 

{(Si, S2)\max(Si.Price) < min(S2-Price)} 

represents an example with 2-var constraints, where the query asks for pairs of 

sets of cheaper items and sets of more expensive items. We can construct more 

complicated example by adding conjuncting constraints. The C A Q 

{(Si, S2)|Si.Type = magazines & S i . O r i g i n = Canada & S2.Type = toys 

& S 2 . O r i g i n ̂  Canada & max{S\.Price) < min(S2-Price)} 

finds pairs of sets of cheaper Canadian magazine items and sets of more expensive 

imported toys. Apart from the Item domain, we can also ask for items from 
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another domain. For example, the C A Q 

{(TUT2)\TX C Type & T 2 C Type} 

finds pairs of sets of types (corresponding to items bought together). Similarly, we 

can also ask for items from different domains: 

{(51,52)151 C Item & S i . O r i g i n = Canada & 5 2 C O r i g i n & Canada £ 5 2}, 

which asks for sets of domestic items and non-Canadian origins. 

3.4 Classification of Constraints 

3.4.1 Ant i -monoton ic i ty 

In this section, we identify two properties of constraints that will be shown to be 

important when we consider performance optimization. The first property is anti-

monotonicity. The motivation behind it is from the observation that the success of 

the Apriori Algorithm for classical association mining is based on the fact that if 

a set violates the frequency constraint, then some of its supersets will also violate 

the frequency constraint. We can generalize this property to other constraints and 

therefore have the following definition. 

Definition 3.2 (Anti-monotonicity) A 1-var constraint C is anti-monotone if 

and only if for any set S, 

S does not satisfy C VS ' 2 5, 5' does not satisfy C. 

The power of the property lies in the fact that if a set is found to violate the 

constraints, all its supersets can be pruned away from further consideration. Thus, 

the number of candidate sets can be largely reduced. As we said above, this is the 
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1-var Constraint Anti-Monotone Succinct 

S0v,0e {=,<,>} yes yes 
v G S no yes 

no yes 
scv yes yes 
s = v partly yes 
min(S) < v no yes 
min(S) > v yes yes 
min(S) = v partly yes 
max(S) < v yes yes 
max(S) > v no yes 
max(S) = v partly yes 
count(S) < v yes weakly 
count(S) > v no weakly 
count(S) = v partly weakly 
sum(S) < v yes no 
sum(S) > v no no 
sum(S) = v partly no 
avg{S)0v,9 e {=,<,>} no no 
(frequency constraint) (yes) (no) 

Table 3.1: Classification of 1-var Constraints 

reason why Apriori is efficient. If we can identify which classes of constraints satisfy 

the anti-monotone property, then we can incorporate the constraints along with the 

frequency constraint to achieve the same pruning power of the Apriori Algorithm. 

We have analyzed different classes of 1-var constraints and have classified 

them according to whether they are anti-monotone. We summarize our findings in 

Table 3.1. The second column identifies which constraints are anti-monotone. The 

third column does the same for succinctness, which will be discussed in the next 

section. The first group of constraints is the domain constraints. S6v, 6 € {=, <, >}, 

where v is a constant, is anti-monotone. In particular, it is anti-monotone for 0 being 

<. The reason is that if S j£ v, then one of the elements in S is greater than v, 

and therefore any supersets of S will violate the same constraint because that one 
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element in 5 that is greater than v is also contained in the superset. On the other 

hand, v 6 S is not anti-monotone because if S does not contain v, it does not 

necessarily imply all of its superset will not contain v. A counter example is simply 

S U {v}. Thus, v £ S does not satisfy the condition for anti-monotonicity. For the 

min-max type constraints, rnin(S) > v is anti-monotone because if the minimum 

of S is less than v, then the minimum of all its supersets will also be less than v 

as the minimum can only be made smaller by adding in extra elements. Similarly, 

since the maximum of a set can only be increased by adding extra elements, the 

constraint max(S) < v therefore also satisfies the anti-monotone property. The 

same idea applies to the constraint count(S) < v. The count(S) (i.e. the number of 

elements in S) can only be increased if the size of the sets is increased. Therefore, 

if count(S) > v, count(S') will also be greater than v for all supersets 5". Thus, 

count(S) < v is anti-monotone as well. We can summarize our discussion by the 

following proposition. 

Proposition 3.1 For each constraint C listed in Table 3.1, C is anti-monotone if 

and only if the table indicates so. 

Optimization Using Anti-Monotonicity 

The motivation behind the notion of anti-monotonicity and succinctness is to provide 

performance optimization based on these properties. One naive algorithm for mining-

constrained associations is to run Apriori first followed by constraint checking at 

the end. However, unless the constraints C is very non-restrictive, only a fraction 

of the answers found by Apriori would satisfy the constraints. A large portion of 

the computation may turn out to be unnecessary. However, the time spent on 

Apriori is typically a lot more than the time spent on constraint checking. The 

algorithm with constraint filtering at the end is therefore very inefficient. The basic 

idea of improving performance is then to "push" the constraint checking as early as 

29 



possible so that the constraints can help us prune away candidate sets before support 

counting. However, one has to be careful in pushing the constraints into lower levels 

(lower level here means smaller k—value where k is the size of the itemsets). This is 

because dropping candidate sets at lower levels may lead to missing frequent itemsets 

at higher levels. We say an algorithm is complete if all frequent sets satisfying the 

given constraints can be found. In other words, all solutions are included in the 

answers returned by the algorithm. On the other hand, we also want to make sure 

that the algorithm is sound, i.e. all the answers found are valid solutions that are 

frequent and satisfy the given constraints. 

Anti-monotonicity allows us to prune away candidate sets at each level in a 

way similar to the case of of frequency constraint. In fact, the standard optimization 

used for the frequency constraint in the Apriori Algorithm is based on the following 

property (PI): 

S, where \S\ = k, is frequent =>• VS' C S where \S'\ = k — 1, S'is frequent, 

so that whenever any one of the size k — 1 subsets of a size k candidate set is 

not frequent, the candidate set can be pruned away. In the case of a constrained 

association query {5 i , S2IC}, if Cam consists of all the anti-monotone constraints in 

C, including the frequency constraint, then a similar optimization technique can be 

used based on the following property (P2) generalized from the above property (Pi): 

S, where \S\ = k, satisfies Cam ==> VS ' C S where |S ' | = k — 1, S' satisfies Cam-

In other words, if Lfc-i consists of all the sets of size k — 1 that satisfy Cam, then 

the set Ck of candidate sets of size k can be generated in exactly the same way 

as in the Apriori Algorithm. Then, Ck can be further pruned to become Cj? m by 

checking whether each element in Ck satisfies every constraint in Cam other than 

the frequency constraint. Any element that violates any constraint in Carn can be 

dropped away from support counting. As will be seen in Chapter 5, this optimization 

is incorporated in Algorithm C A P . 
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3.4.2 Succinctness 

While anti-monotonicity provides strong pruning power, it involves an iterative 

generate-and-test process: at each level, a list of candidates is generated and then 

tested for the satisfaction of the constraints. It would be better if we can eliminate 

the generate-and-test paradigm. This leads to the the following two questions: (i) 

Under what circumstances can we succinctly characterize the set of all itemsets that 

satisfy a given constraint ? (ii) Given a constraint that has a succinct description, 

how can we generate all the itemsets that satisfy the constraint without admitting 

spurious itemsets ? The answer for the first question leads to the notion of succinct­

ness discussed below while the second question lead us to the notion of a member 

generating function. 

To help understand the definition, we consider the sample example in sec­

tion 3.3, i.e. the minable view consists of the relations t r a n s ( T I D , Itemset) and 

i t e m l n f o ( I t e m , T y p e , P r i c e , O r i g i n ) . We denote the set of itemsets that satisfy 

any 1-var constraint C by SvlTc(Item), which we refer to as the pruned space of 

C. For example, if C\ is the constraint S . O r i g i n = Canada, then SATcx (Item) 
contains all those itemsets whose origin is Canada. In the following, a selection 

predicate refers to any predicate that is allowed to appear as a parameter of a selec­

tion operation in relational algebra and ap(I) represents the subset of I containing 

all the elements of / that satisfy the selection predicate p. In our example, o~v(I) with 

I C Item is therefore {i G I\3t G t r a n s oo i t e m l n f o : L i t e m = iandt satisfies p}. 

Moreover, we use the notation 2 7 to denote the strict powerset of I , i.e. the set of 

all subsets of I except the empty set. We can now define succinctness as follows. 

Definition 3.3 (Succinctness) 

1. / C Item is a succinct set if it can be expressed as cr p(Item) for some selection 

predicate p. 
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2. SP C 2 I t e m is a succinct powerset if there is a fixed number of succinct sets 

I t e m i , I t e m * ; C Item such that SP can be expressed in terms of the strict 

powersets of I t e m i , I t e m / ; using union and set difference. 

3. Finally, a 1-var constraint C is succinct provided SATQ(Item) is a succinct 

powerset. 

Intuitively, the definition states that a constraint on a set of items is suc­

cinct if its solution set can be expressed as sums of sets that can be obtained 

by applying some selection predicate onto the set of all items. The constraint 

Ci = S .Or ig in = Canada considered above is succinct because its pruned space 

SATc1{ltem) is simply 2 I t e m c , where Item^ = ao rig i n = canada(I'tem). Now, let's 

consider a more complicated example. If C2 = {snacks, sodas} C S'.Type, then 

the pruned space consists of all the sets that contain at least one item of type 

snacks and at least one item of type sodas. Let Item.2, Itera.3, Item4 be the sets 

o " T y P e = s n a c A ; 5(Item),a T y p e = S 0 d a s(Item),a n d a T y p e ^ s „ a c f c S A T y p e ^ s o d a s(Item) respectively. 

Then, C2 is succinct because the pruned space SATc2 (Item) can be expressed as: 

oltem oItem2 altem3 nltem4 nItem2UItem4 oItem3UItem4 

Similar to the anti-monotone property, we have classified the representative 

class of constraints according to whether they are succinct or not in Table 3.1. 

P r o p o s i t i o n 3.2 For each constraint C listed in Table 3.1, C is succinct if and only 

if the table says so. 

We have proved two positive cases above. Now, consider the constraint 

max(S.A) > c. Let Itemi = f j J 4 < c ( l t e m ) . Then the pruned space is the powerset 

of all the items excluding the powerset of Itemi. In other words, SATc(Item) = 

2 i t em _ 2 i temi_ Qn the other hand, sum{S)6v,9 G {=,<,>} is not succinct. The 

reason is that given any finite union and differences of succinct powersets, we cannot 
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rule out the possibility in general that there exists additional items not belonging 

to those powersets, but whose addition to S can still satisfy the constraint. Similar 

arguments apply to the remaining cases, and therefore, for brevity, we now skip the 

proof of all the other cases except to make a note of those constraints involving 

count (S). 

Consider the constraint count(S) < v. This constraint is not succinct and 

does not have an M G F of the kind introduced in Definition 3.4 below. However, we 

can have an M G F based on cardinality constraint, i.e. {X\X C Item & | X | < v}. 

Therefore, we say that the constraint count(S) < v is weakly succinct. Similarly, 

the other constraints involving count(S) in Table 3.1 are also weakly succinct. 

We now turn to the next question of how to generate SATc(ltem) given C 

is succinct. The key concept here is the member generating function. 

Def in i t ion 3.4 M e m b e r Genera t ing Funct ions 

1. We say that SP C 2 I t e m has a member generating function (MGF) provided 

there is a function that can enumerate all and only elements of SP, and that 

can be expressed in the form { X i U • • • UXn\Xi C crpi (Item), 1 < i < n, &3k < 

n : Xj ^ 0,1 < j < k}, for some n > 1 and some selection predicates 

2. A 1-var constraint C is pre-counting prunable provided SATc(ltem) has an 

M G F . 

For the constraint C\ = S .Or ig in = Canada discussed above, an M G F is 

simply {X\X C Itenic&X ^ 0} where Itenic = cr0 rigin =canada(Item). As for the 

constraint C2 = {snacks,sodas} C S.Type, an M G F is {X\ U X2 U X3\Xi C 

Item 2 & Xi /0& X2 C Item3&:X2 fb k. X3 C Iten^}, where Item 2 , I tem 3 , and 

Item4 are as defined earlier. 
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Optimizations Using Succinct Constraints 

The relationship between succinctness and M G F is that every succinct constraint 

has an M G F . 

P r o p o s i t i o n 3.3 If C is succinct, then C is pre-counting prunable (i.e. SATc(Item) 

has an M G F ) . 

P r o o f Our argument is based on an induction on the number of minus operator 

in the succinctness expression. When there is no minus operation, SATc(ltem) = 

2 I t e m i with Itemi = ap(ltem) and p being the predicate in C. Then the M G F 

is simply C Itemi & X ^ 0}. We assume that the proposition is true 

whenever the expression of SATQ(Item) in terms of succinct powersets involves k 

minus operations. Now, consider any constraint such that SATc(ltem) has k + 1 

minus operations, i.e. SATc(Item) = 2 I t e m - 2 I t e m i 2 I t e m f c - 2 I t em'=+1, where 

Itemj are succinct sets, Iteirij = a g j(Item) for some predicate qi, i = 1,... , k+1. By 

the induction assumption, SATc(ltem) = {XiU-• -UXn\Xi C o- p . ( l tem)}-2 I t e m f c + 1 , 

which this is equal to {Xi U • • • U Xn\Xi C aPiA-,gk+1(ltem)} of the form stated in 

Definition 3.4. (One of the Xj has to be non-empty, otherwise SATc(Item) is too 

trivial). Thus, the proposition is also true for k + 1. 

The importance of this proposition is that, for succinct constraints, we can 

now operate in a generate-only fashion, instead of in a generate-and-test manner. 

Furthermore, the satisfaction of the constraint alone is not affected in any way by 

the result of the iterative support counting. 

So far, we have considered only a single constraint. To obtain M G F s for a 

more general constraint consisting of multiple constraints, we can simply combine 

the M G F s of two constraints at a time. In other words, suppose C\ and C2 are 

constraints with M G F s {S\ U • • • U Sm\Si C <7Pi.(ltem)} and {Tx U • • • U Tn\Tj C 

aqj (Item)} respectively, then the M G F for C\ & C2 is simply {Ru U• • •HRmn\Rij Q 
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o-piAQj(ltem)}. 

We incorporate the optimization idea presented in this section into our pro­

posed C A P Algorithm. Before we present a detailed description of the C A P Algo­

rithm, we turn to some of the basic algorithms in the following chapter. 
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Chapter 4 

Basic Algorithms 

In this chapter, we develop a few algorithms for computing frequent sets that satisfy 

a set of given constraints. In the next chapter, we will present the Algorithm 

C A P which takes advantage of the optimization ideas given in Section 3.4. We 

will compare the performance of C A P and the other algorithms in Chapter 6. 

4.1 Apriori + 

The first algorithm is a straightforward extension of the classical Apriori Algorithm 

[AS94]. The idea is to run Apriori first, followed by constraints checking at the end. 

It is called Apriori"1" and is listed below. 

Algorithm 4.1 (Apriori"1") 

1 C\ consists of all sets of size 1; k = 1; Ans = 0; 

2 while (Ck not empty) { 

2.1 conduct database scan to form Lk from Ck\ 

2.2 form Ck+i from based on Cfreq; k + +;} 
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3 for each set S in some L^: 

add S to Ans if it satifies (C — Cfreq). 

Here C is used to denote the set of given constraints, one of which is the 

frequency constraint, Cfreq. A l l the other symbols (Ck,Lk, and Ans) have the usual 

meaning discussed before in Chapter 2. A p r i o r i + is almost the same as the Apriori 

(Algorithm 2.1) except in Step 3 where each of the frequent sets computed from 

Step 1 and Step 2 is verified against the remaining constraints (i.e. C — Cfreq). 

4.2 Full Materization 

Algorithm Apriori"1" is not bad if the frequency constraint Cjreq is more selective than 

the remaining ones (C — CjTeq). However, the converse may be true. In other words, 

it is possible that most of the frequent sets found do not satisfy the remaining 

constraints. In that case, checking (C — Cfreq) first, followed by verifying Cfreq, 

might be more efficient. This lead to the following algorithm which we call Full 

Materization (FM). 

Algori thm 4.2 (FM) 

1 C\ consists of all sets of size 1; Ans = 0; 

2 C* = Ci; 

3 For every possible S such that for all S' C S A \S'\ = 1 => 

S' G d: 

add S' to C* if 5" satisfies (C - Cfreq); 

4 conduct database scan for sets in C*; add sets that are fre­

quent to Ans. 
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While Algorithm F M avoids counting support for sets that do not satisfy 

the given constraints, it is not without its own problem. Its problem is in Step 3 

where all the sets are generated and tested against the constraints in (C — Cfreq). 

The number of sets involved grows exponentially with large problem size (i.e. the 

number of items). In that case, Algorithm F M becomes very inefficient. 

4.3 Hybrid(m) 

If the frequency constraint Cfreq is much more selective than the remaining con­

straints in (C — Cfreq), Algorithm A p r i o r i + is more efficient. Conversely, if the 

constraint (C — Cfreg) are much more selective, then Algorithm F M performs better. 

The two algorithms, in fact, represent two extreme cases where either the frequency 

constraint Cfreq or the remaining constraints (C — Cfreq) is clearly more selective 

than the other. However, the selectivity of the two sets of constraints (Cfreq and 

C — Cfreq) are often comparable. It may be a good idea to combine the above two 

algorithms in a divide-and-conquer approach where we run one algorithm up to a 

certain level and switch to the other afterwards. We call the result Hybrid(m), 

where m is the level when the switching occurs. Wi th m treated as a parameter, 

Hybrid(m), in fact, represents not only a single algorithm but a class of algorithms. 

Algorithm 4.3 (Hybrid(m)) 

1 C i consists of sets of size 1; k = 1; Ans = 0; 

2 while (Ck not empty and k < m) { 

2.1 conduct database scan to form Lk from Ck; 

2.2 form Ck+\ from Lk based on Cfreq; k + +;} 

3 if m > 0 then for each set S in some Lk; 

add S to Ans if S satisfies (C — Cfreq); 

4 if Ck not empty then { 
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4.2 

4.1 C * — C m _ | _ i ; 

for every possible S such that for all S' C S A \S'\ = m + 1 

4.3 

S" £ C m + i : 

add S" to C * if 5" satisfies (C - Cfreq); 

conduct database scan for sets in C*; add sets that are fre­

quent to Ans.} 

If m = 0, Steps 2 and 3 will not be executed and the algorithm (Hybrid(O)) 

becomes Algorithm F M . Otherwise, Algorithm Hybrid(m) runs A p r i o r i + up to level 

m (m > 1) in Step 1 to Step 3. It checks Cfreq for m iterations to produce the 

standard Cm+i set which consists of all candidate sets of size m + 1. This takes 

advantage of the pruning affected by the frequency constraint. Then, instead of 

continuing with A p r i o r i + , Hybrid(m) switches to F M in Step 4. The motivation for 

the switch is to reduce the I /O costs involved with the database scanning in each 

iteration of Apriori"*". A tradeoff is a higher C P U cost in Step 4.2 where all the 

possible sets are generated and tested again the constraints (C — Cfreq). However, 

compared with Algorithm F M , the C P U cost for the same step is much less and 

may become acceptable. In fact, the C P U cost will be much less in Hybrid(n) than 

in Hybrid(m) whenever n <m. The reason is that the generation in Step 4.2 needs 

to consider a set S only when all the subsets of size m + 1 of S are in Cm+i. As m 

increases, the number of sets in Cm+i decreases rapidly, thus reducing the number 

of sets required to consider in Step 4.2. 

To summarize, the decision of when the switching should occur (i.e. the value 

of m) represents a tradeoff between C P U and I /O costs. Wi th small m value, the 

amount of database scanning required is less and the I /O costs is reduced, at the 

expense of increasing C P U cost in Step 4.2. On the other hand, if m is larger, 

the number of candidate sets in Step 4 is smaller and the C P U time is reduced, 

at the expense of increasing the I /O cost of Step 2. Moreover, the two extreme 
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cases of m = 0 and m = oo correspond to Algorithm F M and Algorithm Apriori 

respectively. 
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Chapter 5 

Algor i thm C A P 

While all the algorithms considered in the previous chapter have their own merits, 

they all fail to exploit the properties of the constraints. In particular, the anti-

monotone and succinct properties introduced in Section 3.4 are not being used. 

Algorithm C A P discussed in this chapter attempts to make maximum use of these 

properties by pushing the constraints as deep "inside" the computation as possible. 

To this end, we classify all the constraints into four categories: 

I. Constraints that are both anti-monotone and succinct (e.g., min(S) > v); 

II. Constraints that are succinct but not anti-monotone (e.g., min(S) < v); 

III. Constraints that are anti-monotone but not succinct (e.g., sum(S) < v); and 

IV. Constraints that are neither (e.g.,avg(S) < v). 

A different strategy is tailored for each of the above cases. 
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5.1 Succinct and Anti-monotone Constraints 

When the constraint C is both succinct and anti-monotone, we propose that the 

general form of the M G F for SATc{Item) in Definition 3.4 reduces to the form 

{S|S C crp(Item) & S ^ 0}. Then the set C\ of candidate sets of size one in 

the Apriori Algorithm can simply be replaced by Cf = {e|e G C\he £ cr p(Item)}. 

Moreover, since C is anti-monotone, sets containing any element not in C f need 

not be considered. Therefore, we have the following strategy proposed for succinct 

anti-monotone constraints. 

Strategy I: 

• Replace C\ in the Apriori Algorithm by Cf defined above. 

5.2 Succinct but Non-anti-monotone Constraints 

In the case of succinct non-anti-monotone constraints, one cannot guarantee that 

all sets satisfying the constraints must be subsets of Cf . For example, consider the 

constraint S.Type D {sodas} which says S includes at least one soda item. It is 

succinct because SATc{ltem) has a M G F {Si U S2IS1 C axj / p e-< i 0d a s(Item) & Si ^ 

0 & S 2 C Item}. If a set S does not contain a soda item, S's supersets may. 

Therefore, the constraint is not anti-monotone. For this constraint, Cf would contain 

all the size 1 itemsets where the items in the itemsets are all sodas. However, sets 

such as {Coke, Milk} satisfy the constraint but are not subset of Cf. Thus, Strategy 

1 is not complete. Fortunately, in this case, we can make use of the structure given 

by the M G F of the constraint. As in our example, we consider M G F ' s that are of 

the form {Si U S2IS1 C tT p i(Item) & S2 C cr p 2(ltem)}. 

Strategy II: 
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• Define Cf = cr p i(ltem) and C f c = <7P2 (Item). Define corresponding sets of 

frequent sets of size 1: L\ = {e|e G C{ Sz freq(e)}, and L^c = {e\e G 

Cr c & /reg(e)}. 

• Define C2 = {{e,/}|e 6 G (Lf U I ^ 0 )} , and L2, as usual, the set of 

frequent sets in C2, i.e. , L 2 = {SIS G C2&/reg(S)}. 

• In general, Cfc+i can be obtained from Lk in exactly the same way as in the 

Apriori Algorithm with only one modification. In the classical case, a set S is 

in Cfc+i, if all its subsets of size k are in Lk, i-e. , 

VS' : S' C S and |S ' | = k =*• S' G X f c 

In the case of succinct, non-anti-monotone constraints, we only need to check 

subsets S' that intersect with L\. In other words, subsets S" that are disjoint 

with L\ are excluded in the above verification. These are sets that only contain 

elements from L^c, and that are not counted for support. Because we do not 

know whether they are frequent or not, we give them the benefit of the doubt. 

Hence, we have the following modification in candidate generation. A set S is 

in Ck+i if for all subsets: 

VS ' : S' C S and S' D L\£ 0 => S' G Lk. 

As usual, Lk+\ = {S |S G Ck+\ & freq(S)}. 

Example 5.1 Suppose that Item is the set { 1 , . . . , 100}, Cf is { 1 , . . . , 50}, and C^c 

is { 5 1 , . . . , 100}. Furthermore, suppose that L\ and L ^ c turn out to be { 1 , . . . , 20} 

and {71, . . . , 100}. Then, C2 is constructed by considering the Cartesian prod­

uct { 1 , . . . , 20} x { 1 , . . . , 20 ,71 , . . . , 100} which gives all the size 2 sets that can be 

frequent and that contain at least one element from C\. We further suppose that 

{1, 71} and {1, 72} are frequent, and that {1, 73} is not. Now, in considering whether 

{1, 71, 72} should be in C 3 , we only check whether {1, 71} and {1, 72} are frequent. 
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In the classical case, we would check {71,72} as well. However, we do not check it 

here because its support is unknown. Given the benefit of the doubt, {1,71,72} is 

included in C 3 . However, neither {1,71,73} nor {1,72,73} is in C 3 , because {1,73} 

is not in L2. 

We can generalize the above Strategy for more general M G F . For example, 

the constraint C2 = {snacks, sodas} C S.Type is succinct, but not anti-monotone. 

Its M G F is {Xi U I 2 U X3\Xi C Item 2 & Xx ^ $ & X2 C Item 3 & X2 7̂  0 & X3 C 

Itemi}, where Item2, Item3, and Itenu are as defined earlier. Our strategy is to first 

form the sets L*{ = {e\e € Itemj+i & freq({e})} for each Xi,i — 1,2,3. Then we 

generate the candidate set C2 = L*1 x From C2, we can find L2 (by counting 

the support of the sets in C2). Next, we form C 3 = L2 x ( i f 1 U i f 2 U L f 3 ) . After 

that, Lk and Ck+i are computed as usual, with the only modification in candidate 

generation that S is in Ck+l iff: for all subsets S' C S and \S'\ = k and S ' n i f 1 7̂  0 

and S ' n L f 2 7̂  0 S' G L*. 

5.3 Non-Succinct but Anti-monotone Constraints 

So far, we have assumed that the constraint is succinct. If the constraint C is not suc­

cinct, then it does not admit an M G F which can be used to avoid the generate-and-

test paradigm completely. Fortunately, we can still make use of the anti-monotone 

property. This is done by checking whether the candidate sets, generated at each 

level, satisfy C, before counting is done. Because of anti-monotonicity, candidate 

sets that do not satisfy C can be safely dropped right away without counting for 

their support. Thus, we have the following strategy. 

Strategy III: 

• Define Ck as in the classical Apriori Algorithm. Drop a set S E Ck from count-
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ing whenever S fails satisfying the constraints, i.e. , constraint satisfaction is 

tested before counting is undertaken. 

5.4 Non-Succinct and Non-anti-monotone Constraints 

If the constraint C is neither succinct nor anti-monotone, then it seems that we can­

not use the constraint to perform any optimization. Fortunately, from our experi­

ence, many such constraints induce weaker constraints that might be anti-monotone 

and/or succinct. If such constraints can be found, then they can be exploited using 

one of the strategies outlined above. In other words, the weaker constraints are used 

to find the frequent sets. The only modification is that at the end of the algorithm, 

one final round of testing the frequent sets for satisfaction of the original constraint 

C is necessary. It is because the frequent sets, while guaranteed to satisfy the weaker 

constraints, may not necessarily satisfy C. If the weaker constraints do not admit 

too many spurious solutions (i.e. frequent sets that satisfy the weaker constraints, 

but not C) , then the above strategy should be fairly efficient because the last of 

constraints checking is relatively trivial. 

E x a m p l e 5.2 Consider the constraint C = avg(S.A) > v. It is neither succinct 

nor anti-monotone. However, it induces the weaker constraint C = max(S.A) > v. 

In other words, every set S that satisfies C is guaranteed to satisfy C. Since C is 

a succinct, but non-anti-monotone constraint, Strategy II can be applied. After all 

frequent sets are found, each one of them has to be tested for satisfaction of C to 

generate the final answers. 

Strategy IV: 

• Induce any weaker constraint C from C. Depending on whether C is anti-

monotone and/or succinct, use one of the strategies I-III above for the gener-
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ation of frequent sets. 

• Once all frequent sets are generated, test them for satisfaction of C. 

5.5 Multiple Constraints 

So far, we has assumed that we are dealing with a single constraint. However, 

the set of constraints C in a C A Q may more often contain multiple constraints. A n 

important question is then how the strategies we proposed for individual constraints 

can be combined to handle multiple constraints. To this end, the set of constraints 

C is divided into four sets of constraints according to whether the constraints are 

succinct and/or anti-monotone. We denote the set of constraints that are both 

succinct and anti-monotone by Csam. Similarly, Csuc denotes constraints that are 

succinct but not anti-monotone; Cam denotes constraints that are anti-monotone 

but not succinct; Finally, Cnone denotes constraints that are neither anti-monotone 

nor succinct. 

Strategy for Handling Multiple Constraints: 

• Combine the M G F s of all the constraints in Csam- Apply Strategy I with the 

combined M G F . 

• Combine the M G F s of all the constraints in CSUc- Apply the Strategy II with 

the combined M G F . 

• For all constraints in C a T O , follow Strategy III. 

• For each constraint in Cnone, induce weaker constraints and apply Strategy 

IV. 

Example 5.3 Let C be the constraints min(S.Price) > 100 & S.Type 2 {sodas}. 

Then, Csam = mm(S'.Price) > 100 and Csuc = S.Type 2 {sodas}. To find fre-
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quent sets that satisfy C, we apply Strategy I with the M G F of the constraint 

mm (S .Pr ice) > 100 and Strategy II with the M G F of the constraint S.Type D 

{sodas}. 

5.6 Summary 

The basic algorithms discussed in the previous chapter do not take into account the 

property of the constraint. In designing our optimization strategies, we make use of 

the two identified properties, namely, anti-monotonicity and succinctness, and try to 

apply constraints checking as early as possible. We design four different strategies 

( Stra tegy I - I V )depending on whether the constraint is anti-monotone and/or 

succinct. 

We also discuss how to handle multiple constraints in Section 5.5. We in­

corporate all the optimization strategies discussed in this chapter into the following 

algorithm called C A P (Constrained Apriori) for finding frequent sets that satisfy a 

set of given constraints C. 

A l g o r i t h m 5.1 ( C A P ) 

1 if Csam U Csuc U Cnone is non-empty, prepare C\ as indicated in 

Strategies I, II and IV; k = 1; 

2 if Csuc is non-empty { 

2.1 conduct database scan to form L\ as indicated in Strategy II; 

2.2 form C2 as indicated in Strategy II; k = 2; } 

3 while (Cfc not empty) { 

3.1 conduct database scan to form Lk from Ck\ 

3.2 form Ck+i from Lk based on Strategy II if Csuc is non-empty, 

and Strategy III for constraints in Cam;} 
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4 if Cnone is empty, Ans = \JLk. Otherwise, for each set S in 

some Lk, add 5* to Ans iff S satisfies Cnone. 

Algorithm C A P is one of the most important contribution in this thesis. As 

we will see in the following chapter, the performance of Algorithm C A P is much bet­

ter than the other basic algorithms discussed in Chapter 5. To conclude this chapter, 

we state the soundness and completeness of Algorithm C A P as a proposition. 

Proposition 5.1 A constraint C can be in one of the categories: 

I Succinct and Anti-monotone 

II Succinct but Non-anti-monotone 

III Non-succinct but Anti-monotone 

IV Non-succinct and Non-anti-monotone 

If C is in category X (X=I-IV), then Strategy X proposed in Sections 5.1-5.4 is 

sound and complete with respect to computing the frequent sets that satisfy C. 
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Chapter 6 

Experimental Evaluation 

In this chapter, we evaluate the performance of the various mining algorithms given 

in Chapter 4 and 5 based on our experimental results. 

6.1 Implementation and Experimental Environment 

We implemented the algorithms Apriori"1", Hybrid(m), and C A P in C. Instead of 

writing three different programs, we wrapped all the algorithms under one single 

program which we call caq. The rationale is to try to share as much data structures 

and library modules as possible so that a fair comparison can be achieved. In running 

caq, choosing which mining algorithm to use is simply a matter of supplying different 

flags. The command caq - a p r i o r i (-hybrid(m) , -cap) finds all the frequent 

itemsets with the Apriori"1" (Hybrid(m), C A P respectively) Algorithm. The different 

constraints were hard-coded using compiler directives. 

One major decision in the implementation was what data structures should 

be used in representing itemsets. Our initial attempt was to use bit vectors. Set 

operations such as determining subset relationship were achieved by bitwise oper-
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ations which were very efficient. However, we later realized that using bit vectors 

leads to a memory problem. Wi th 1000 items, each itemset would require 125 bytes 

or 32 integers (assuming 4 bytes for an integer). The number of itemsets in Ci could 

be of the order of 500K. This implies that at least 60MB is required just to hold 

C2! Therefore, we gave up the bit vectors representation. Instead, we used lists. A 

size k itemset is represented by a list of k integers where each integer corresponds 

to the item's identification number. Since the maximum size of a large itemset is 

typically less than 10, we save at least 2/3 of the memory when compared with bit 

vector representation. 

We used the program gen developed at I B M Almaden Research Center [AS94] 

to generate transactional databases. Gen is a program that can generate data syn­

thetically for both associations and sequential patterns. It was downloaded from 

the I B M Q U E S T web site (http://www.almaden.ibm.com/cs/quest). It requires 

several input parameters. The most important ones are the number of transactions 

in the databases and the number of items. While we experimented with various 

databases, the results cited below are based on a database of 100,000 transactions 

and a domain of 1000 items. Moreover, the average number of items in a transaction 

is 25 and the maximal size of a large itemset is set to 10. The items are represented 

by integers from 1 to 1000. The page size used was 4 Kbytes. 

Our experiments were conducted in a time-sharing SPRAC-10 environment. 

The memory size was 128MB and the typical number of users was about five. We 

scheduled our experiments mainly at night so that the workload for other processes 

was relatively low and uniform. We also made sure that our program was the only 

major running job. 
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6.2 Succinct and Anti-monotone Constraints 

Our first set of experiments compares the various algorithms using the succinct and 

anti-monotone constraint max(S.Price) < v. Different values of v correspond to 

different selectivities of the constraint. If there are x-% of the items whose price is 

less than or equal to v, then we say the selectivity is x-%. The translation between 

selectivity and v is as follows. We number the items from 1 to 1,000. Without loss 

of generality, the P r i c e value of each item is taken to be exactly its number. Then, 

the selectivity for a particular v value is simply We then run our experiments 

with different selectivities and different support values. 

We show our results by plotting speedup against selectivity and support 

threshold. The speedup of various algorithms is denned to be the execution time 

of Apriori 4" divided by that of the algorithm being considered. In other words, we 

measure the speedup relative to Algorithm Apriori"1". Figure 6.1 plots the speedup as 

a function of constraint selectivity, with support threshold set at 0.5%, and Figure 

6.2 shows the relationship between the speedup and support threshold, with the 

selectivity fixed at 30%. 

We first discuss our results for the Hybrid(m) algorithms. We find that 

Hybrid(O), Hybrid(l) , and Hybrid(2) all take much too long when compared with 

Apriori 4". This shows that the C P U cost of finding all the sets that satisfy the 

constraints in a generate-and-test mode is prohibitive. Hybrid(3), Hybrid(4), etc. 

take more or less the same time as Apriori"1", almost always within 5% of each other. 

Algorithm Hybrid(m) is the same as Algorithm Apriori"1" at the first m iterations. It 

then tries to reduce remaining database scanning time at the expense of increasing 

C P U time. However, the I /O cost is dominated by the first few iterations. Therefore, 

for m — 3,4,.., savings on the I /O cost corresponding to later iterations do not lead 

to any observable reduction in execution time when compared with Apriori"1". It is 

quite possible that with a larger database size, Hybrid(m) algorithms will become 
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Speedup vs Selectivity 
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Figure 6.1: Speedup vs Selectivity for a Succinct and Anti-monotone Constraint 
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Speedup vs Support 
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Figure 6.2: Speedup vs Support for a Succinct and Anti-monotone Constraint 
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selectivity 5 10 30 50 70 
Li 19/362 40/362 112/362 66/362 254/362 
L2 

0/66 0/66 14/66 26/66 41/66 
L3 0/91 0/91 10/91 21/91 45/91 
U 0/105 0/105 5/105 15/105 40/105 
L5 0/77 0/77 1/77 6/77 22/77 
L6 0/35 0/35 0/35 1/35 7/35 
L7 0/9 0/9 0/9 0/9 1/9 
L8 0/1 0/1 0/1 0/1 0/1 

Table 6.1: Number of frequent sets that satisfy max(S.Price < v) /number of 
frequent sets for different selectivities (v/10) with support = 0.5% 

more efficient than Apriori"1". However, it is quite unlikely that their efficiency can be 

comparable with Algorithm C A P . Therefore, in the following discussion, our focus 

will be on Algorithm C A P . 

We include Table 6.1 and 6.2 to help illustrate our results. In both tables, 

each column corresponds to a different setting. The rows correspond to the sizes of 

the frequent sets. Each entry is of the form a/b, where a is the number of frequent 

sets satisfying the constraint, and b is simply the total number of frequent sets of 

that size. Table 6.1 contains results for the various selectivities used in Figure 6.1, 

whereas Table 6.2 shows the results for different support thresholds corresponding 

to the settings used in Figure 6.2. 

We now consider the relationship between speedup and item selectivity. As 

one can see from Figure 6.1, Algorithm C A P clearly outruns A p r i o r i + . At 10% 

selectivity, the speedup for C A P is about 80 times. Even at a selectivity of 30%, 

C A P still runs 10 times faster than Apriori"1". 

One can understand such a huge speedup (> 80) of C A P for selectivities 

less than 10% by examining the first two column in Table 6.1. For a 5% selectivity 

(i.e. the first column), A p r i o r i + has to find all the 362 frequent sets of size 1, 66 
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support 0.6% 0.5 % 0.4% 0.3% 0.2% 
Li 98/313 112/362 131/421 159/503 174/582 
L2 

1/12 14/66 22/160 40/333 79/969 
U 0/1 10/91 11/186 17/390 29/1140 
U 0/0 5/105 5/210 6/427 8/1250 
L5 0/0 1/77 1/70 1/309 1/934 
Le 0/0 0/35 0/18 0/140 0/451 
L7 0/0 0/9 0/8 0/36 0/132 
L8 

0/0 0/1 0/2 0/4 0/20 

Table 6.2: Number of frequent sets that satisfy max(S.Price) < v) /number of 
frequent sets for different support values at 30% selectivity 

frequent sets of size 2, 91 frequent sets of size 3, • • • and so on , before it stops. On 

the contrary, C A P stops after the first iteration. The number of frequent sets it 

has to find is only 19. Furthermore, the number of database scan it has to perform 

is only 1 compared with 8 for Apriori"1". Similarly, C A P can stop after the first 

iteration for 10% selectivity. At 30% selectivity, C A P stops after 5 iterations and 

the speedup is smaller than 80. But still, the speedup is as large as 10 times. This 

is because the number of frequent sets (i.e. 112, 14, 10, 5, and 1 for frequent sets of 

sizes 1, 2, 3, 4, and 5 respectively) C A P has to process is much smaller than that 

of Apr ior i + ' s (i.e. 362, 66, 91, 105, and 77 for frequent sets of sizes 1, 2, 3, 4, and 5 

respectively). 

The trend shown in Figure 6.1 is that as the constraint becomes less restric­

tive (i.e. as selectivity increases), the speedup of C A P decreases. This can also be 

understood by examining the entries in Table 6.1. As the constraint becomes less 

restrictive, the pruning power provided by the constraint decreases. The number of 

frequent sets which need to be found by C A P increases (as shown in Table 6.1). Sav­

ings obtained by pushing the constraint in the C A P Algorithm become less obvious, 

thus the speedup decreases. 
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We now turn to the relationship between speedup and support threshold. 

The graph in Figure 6.2 shows that the speedup of C A P is about 7 to 11 times 

for support threshold from 0.2% to 0.6%. We choose the support thresholds such 

that A p r i o r i + requires between 5 and 8 iterations. The speedup shown in Figure 

6.2 decreases slowly with increasing support threshold. 

When the support threshold is low, the number of frequent sets is large. 

Most of the frequent sets may turn out not to satisfy the constraint. For example, 

for a support of 0.2% and sets of size 4, A p r i o r i + finds 1250 frequent sets, but only 

8 of which need to be found by C A P ! Moreover, Apriori"1" has to find frequent sets 

of size 6 and up, whereas C A P can stop after size 5. Thus, A p r i o r i + is relatively 

much less efficient than C A P leading to a speedup of more than 11 times. 

When the support threshold is high, the total number of frequent sets is 

smaller, and Apriori"1" behaves relatively better. At 0.6% support, Apriori"1" only 

iterates one more time than C A P . However, it still processes too many frequent sets 

potentially violating the constraint, and the speedup for C A P is still as large as 8 

times. 

To conclude, if the support thresholds are chosen to be small, A p r i o r i + would 

require more iterations and the overall speedup of C A P would be larger. If the 

support thresholds are chosen to be higher so that number of iterations required by 

A p r i o r i + decreases, the speedup achieved by C A P would be lower, but it would still 

be substantial. The reason is that the major savings contribution achieved by C A P 

come from the very first few iterations. 

6.3 Succinct but Non-anti-monotone Constraints 

In the next series of experiments, we use the succinct but non-anti-monotone con­

straint {soda} C S'.Type. Similar to the previous case, we illustrate our results by 
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selectivity (%) 10 13 15 20 50 70 90 
Li 40/362 54/362 60/362 82/362 184/362 254/362 324/362 
L2 

0/66 12/66 19/66 35/66 57/66 65/66 66/66 
L3 0/91 15/91 36/91 67/91 87/91 91/91 91/91 
Li 0/105 20/105 55/105 89/105 104/105 105/105 105/105 
L5 0/77 15/77 50/77 71/77 77/77 77/77 77/77 
Le 0/35 6/35 27/35 34/35 35/35 35/35 35/35 
L7 0/9 1/9 8/9 9/9 9/9 9/9 9/9 
L8 

0/1 0/1 1/1 1/1 1/1 1/1 1/1 

Table 6.3: Number of frequent sets that satisfy {soda} C S.Type /number of frequent 
sets for different selectivities with support = 0.5% 

plotting speedup against item selectivity (see Figure 6.3) and speedup versus sup­

port threshold (see Figure 6.4). A n x-% selectivity in Figure 6.3 means that there 

are x - % of the items whose type is soda. 

Once again, C A P clearly outruns other algorithms. For example, for selec­

tivities of 5%, 10%, and 20%, C A P runs 9, 4, and 2.5 times faster than Apriori 4 " 

respectively (see Figure 6.3). At a selectivity of 13%, C A P can achieve a speedup 

of about 3.5 times for support thresholds between 0.3% and 0.6% (Figure 6.4). 

To capture the pruning achieved by C A P , we show the number of frequent 

sets that satisfy the constraint (a) and the number of frequent sets (b) in the form 

a/b in the Tables 6.3 and 6.4. Table 6.3 corresponds to the settings used in Figure 

6.3, whereas Table 6.4 uses the same settings as that in Figure 6.4. 

When compared with the previous case (i.e. the case of succinct and anti-

montone constraints), the gain here shown by C A P comes entirely from the succinct­

ness of the constraint. For example, at 5% selectivity, the speedup is about 8 times. 

This shows the relevance of the succinctness property in performance optimization. 

When compared with the previous case, the speedup is smaller. At 5% 

selectivity, it was 80 times in the previous case compared with 8 times here. This 
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Speedup vs Selectivity 
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Figure 6.3: Speedup vs Selectivity for a Succinct and Non-anti-monotone Constraint 
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Figure 6.4: Speedup vs Support for a Succinct and Non-anti-monotone Constraint 



support 0.6% 0.5 % 0.4% 0.3% 

Li 49/313 54/362 60/421 72/503 
L2 

3/12 12/66 39/160 96/333 
0/1 15/91 64/186 157/390 

u 0/0 20/105 85/210 215/427 
L5 0/0 15/77 70/154 180/309 
L6 0/0 6/35 34/70 90/140 
L7 0/0 1/9 9/18 25/36 
L8 0/0 0/1 1/2 3/4 

Table 6.4: Number of frequent sets that satisfy {soda} C S'.Type /number of frequent 
sets for different support values at 13% selectivity 

demonstrates that a constraint that is both succinct and anti-monotone effects much 

more pruning than a constraint that is only succinct. Succinctness combined with 

anti-monotonicity can be exploited to produce a powerful compound effect on per­

formance optimization. 

One way to understand why the speedup in this case is smaller than the 

previous case is to compare the number of frequent sets that satisfy the constraints in 

Table 6.1 with that in Table 6.3. At the same selectivity, the number of frequent sets 

that satisfy the succinct but non-anti-monotone constraint {soda} C S.Type is larger 

than that for the succinct and anti-monotone constraint maa;(S.Price) < v. For 

example, at 50% selectivity, the number of frequent sets that satisfy the constraint 

{soda} C S.Type is 184, 57, 87, and 104 for sizes 1, 2, 3, and 4, whereas those 

numbers are 66, 26, 21, and 15 for the constraint maa;(S.Price) < v. This is 

reasonable as the latter constraint is also anti-monotone and therefore intuitively it 

should be more restrictive. The speedup for a more restrictive constraint should be 

higher which is consistent with what we observe in our experiments. 

One cannot compare directly Table 6.2 with Table 6.4 because the selectivity 

for the two tables are set at different values. Nevertheless, we can still see that the 
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number of frequent sets that satisfy the constraint max(S.Price) < v decreases 

much more rapidly with the size of the frequent sets than that of the constraint 

{soda} C S.Type. This is again consistent with the observation that the speedup in 

this case is less than the previous case. 

6.4 Non-Succinct but Anti-monotone Constraints 

Next, we consider the case of non-succinct but anti-monotone constraints. The 

constraint used is sum(S.PTice) < MaxSum. Similar to the case of succinct and 

anti-monotone constraints, we assume that the P r i c e value of each item is exactly 

its number, i.e. from 1 to 1,000. MaxSum is set to be 500, 1000, 2000 and so on. 

In contrast with the previous cases, there is no simple translation from MaxSum 

to item selectivity. Thus, we plot speedup against MaxSum in Figure 6.5, instead 

of speedup against item selectivity. 

Contrary to the previous two cases, the dominance of C A P drops very 

rapidly as the value of MaxSum increases. While the speedup is above 7 times 

for MaxSum 500, C A P shows no gain over Apriori 4" for MaxSum > 2000. It 

can be explained by Table 6.5. 

When MaxSum is 500, the constraint helps reduce the number of frequent 

sets at level 1 by a half (i.e. 184 out of 362). This reduction is compounded at 

subsequent levels. Such pruning provided by the constraint leads to a speedup of 

over 7 times. When MaxSum reaches 1000, all the size 1 frequent sets pass the 

constraints. Pruning provided from the constraints only starts at level 2 (i.e. 39 out 

of 66). This modest reduction is then compounded at higher levels, giving an overall 

speedup of about 2 times. However, when MaxSum is increased to 2000, there is 

no pruning at the first two levels. Pruning only comes at higher levels. Since the 

major portion of the computation is spent on lower levels, the pruning coming from 
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Figure 6.5: Speedup vs Selectivity for a Non-succinct and Anti-monotone Constraint 
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Speedup vs Support 
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Figure 6.6: Speedup vs Selectivity for a Non-succinct and Anti-monotone Constraint 
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MaxSum 500 1000 2000 3000 
Li 184/362 362/362 362/362 362/362 
L2 16/66 39/766 66/66 66/66 
L3 4/91 28/91 86/91 91/91 
U 0/105 15/105 77/105 105/105 
L5 0/77 1/77 40/77 72/77 
U 0/35 0/35 13/35 30/35 
L7 0/9 0/9 1/9 8/9 
LB 0/1 0/1 0/1 0/1 

Table 6.5: Number of frequent sets that satisfy sum(S.Pxice) < MaxSum) /num­
ber of frequent sets for different MaxSum with support = 0.5% 

support 0.6% 0.5% 0.4% 0.3% 
Li 160/313 184/362 207/421 250/503 
L2 

1/12 16/66 32/160 58/333 
Lz 0/1 4/91 5/186 13/390 
L 4 

0/0 0/105 0/210 1/427 
L5 

0/0 0/77 0/154 0/309 
Le 0/0 0/35 0/70 0/140 
L7 0/0 0/9 0/8 0/36 
L8 

0/0 0/1 0/2 0/4 

Table 6.6: Number of frequent sets that satisfy sttm(S'.Price) < MaxSum) /num­
ber of frequent sets for different support values with MaxSum = 500 
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later levels does not help. Therefore, we can conclude that in order for any pruning 

optimization to be significant, it has to be effective as early as possible at the first 

two levels. In fact, any reduction from lower levels is compounded to higher levels 

giving rise to a significant speedup. 

In Figure 6.6 and Table 6.6, we show our results for the relationship between 

speedup and support threshold. Similar to the other cases, if the constraint produces 

fairly large pruning, the speedup is as large as 5 to 8 times for various support 

thresholds from 0.3% to 0.6%. 

6.5 Non-Succinct and Non-anti-monotone Constraints 

Finally, the last category to investigate is non-succinct and non-anti-monotone 

constraints. In particular, we consider the constraint Avg(S.Price) < v. This 

constraint is difficult to optimize. Fortunately, it induces the weaker constraint 

m m ( S.Price) < v. In order for S to satisfy the first constraint, S has to satisfy 

the latter constraint. Since the constraint m m ( S.Price) < v is succinct but non-

anti-monotone, we can use Strategy II in Section 5.2 to compute frequent sets that 

satisfy it. Then, for each of the frequent sets found, we check whether it satisfies 

the original constraint Avg(S.Price) < v. Figure 6.7 and 6.8 shows our results. 

Similar to the other cases, we also supplement the figures with two tables 

(Table 6.7 and 6.8) to illustrate what is going on. Instead of just a/b, the entries 

in these tables are in the form a/b/c where a, b, and c are the number of frequent 

sets that satisfy the original constraint, the induced constraint and no constraint 

respectively. 

Figures 6.7 and 6.8 show that the speedup of C A P over Apriori"1" is very sim­

ilar to the case for a typical succinct but non-anti-monotone constraint, even though 

only a small portion of the frequent sets that satisfy the induced constraint does 
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Figure 6.7: Speedup vs Selectivity for a Non-succinct and Non-anti-monotone Con­
straint 
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Figure 6.8: Speedup vs Support for a Non-succinct and Non-anti-monotone Con­
straint 
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AvgPrice 50 130 145 200 500 
Li 19/19/362 54/54/362 59/59/362 82/82/362 184/184/362 
L2 0/3/66 1/12/66 2/19/66 9/35/66 39/57/66 
L3 0/0/91 0/15/91 0/36/91 7/67/91 64/87/91 
LA 0/0/105 0/20/105 0/55/105 5/89/105 77/104/105 
L5 0/0/77 0/15/77 0/50/77 1/71/77 63/77/77 
Le 0/0/35 0/6/35 0/27/35 0/34/35 30/35/35 
L7 0/0/9 0/1/9 0/8/9 0/9/9 8/9/9 
L8 

0/0/1 0/0/1 0/1/1 0/1/1 1/1/1 

Table 6.7: Number of frequent sets that satisfy Avg(S.Price) < AvgPrice / number 
of sets that satisfy mm(S.Price) < AvgPrice / number of frequent sets for different 
values of AvgPrice with support = 0.5% 

support 0.6% 0.5% 0.4% 0.3% 

Li 74/74/313 82/82/362 96/96/421 114/503/503 
L2 

0/5/12 9/35/66 18/79/160 38/158/333 
L3 0/0/1 7/67/91 10/131/186 23/268/390 
LA 

0/0/0 5/89/105 5/174/210 12/350/427 
L5 0/0/0 1/71/77 1/141/154 2/282/309 
Le 0/0/0 0/34/35 0/68/70 0/136/140 
L7 0/0/0 0/9/9 0/18/18 0/36/36 
Ls 

0/0/0 0/1/1 0/2/2 0/4/4 

Table 6.8: Number of frequent sets that satisfy Avg(S.Price) < AvgPrice / number 
of sets that satisfy mm(S.Price) < AvgPrice / number of frequent sets for different 
support values with AvgPrice = 200 

68 



happen to satisfy the original constraint. This indicates that the final verification 

step takes a relatively small amount of time and the idea of using induced weaker 

constraints works quite well. 

6.6 S u m m a r y 

To summarize, among all the various algorithms discussed in Chapters 4 and 5, 

C A P is the most efficient. Hybrid(m) m > 3 are comparable with Apriori"1". On 

the other hand, Hybrid(O), Hybrid(l) , and Hybrid(2) are the slowest. While the 

exact speedup of the C A P Algorithm over the Apriori"1" depends on many factors 

and varies under different situations, we find that C A P can easily outrun Apriori"1" 

by a factor of 5 to 10 in many cases. We also find that the speedup increases with 

decreasing item selectivity (i.e. with more restrictive constraints) and decreases 

with increasing support thresholds. The main factor in determining the speedup 

of C A P is on how much pruning the constraints provide. Both succinctness and 

anti-monotonicity produce significant pruning power and their combined effect is 

even stronger. Thus, the speedup of C A P can be as much as 80 times in the case of 

succinct and anti-monotone constraints. 
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Chapter 7 

Conclusions 

7.1 Conclusions 

There has been an increasing demand for discovering useful information from very 

large databases. Data mining, which can be defined as an automatic process of 

discovering hidden useful patterns from large databases, has recently generated a 

high degree of interest. Among the most popular data mining patterns discovered in 

large transactional databases are association rules. A classical association rule takes 

the form of X Y, where X U Y is a set of items that appears at least minsup% 

of the times in the database and among those transactions that contain X, at least 

c% of them also contains Y. Minsup and c are two input parameters referred to 

as the support threshold and the confidence respectively. The motivation of mining 

association rules is to find out what items tend to appear together. In a classical 

association query, the user only need to specify the values for the support threshold 

and the confidence. The answer to the query is a list of all the association rules 

found. 

However, this classical association mining model suffers from (i) lack of user 
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exploration and control, (ii) lack of focus, and (iii) rigid notion of relationship. In 

particular, there may be no association rules found or thousand of rules found with 

most of them not being what the user is looking for. In this thesis, we have defined 

a model where a user can specify additional constraints in the query. The type of 

constraints can include class, domain, and aggregation constraints. Then, the sys­

tem can focus the mining task on associations that satisfy the specified constraints. 

This allows the system to find associations that have a better chance of satisfying 

the user's need. We have suggested a two-phase architecture for the mining process 

providing numerous opportunities for user feedback, control, and approval. More 

importantly, we develop techniques for pushing the constraints deep inside the min­

ing process to optimize performance so that the work performed by the system is 

commensurate with the focus expressed by the user via constraints. Towards this 

end, we have identified the anti-monotonicity and succinctness properties according 

to which we characterize constraints into various categories. For each category, we 

have developed specific strategies for finding frequent itemsets that satisfy the given 

constraints. The resulting algorithm, called C A P (Constrained Apriori), is based on 

the basic idea of exploiting the given constraints as early as possible in the mining 

process. We have implemented both C A P and several other basic algorithms that 

do not use the anti-monotonicity and succinctness properties offered by the con­

straints. A series of experiments were performed to compare the performance of the 

various algorithms. We found that C A P clearly outruns all the other algorithms. 

The speedup of C A P over other algorithms is about 5-10 times on average and more 

than 80 times in the best case. 

To enable the technology of data mining to reach its full potential, many re­

searchers believe that it is important to have a framework where a user can interact 

with a mining system in much the same way that the user does with a Relational 

Database Management System today (e.g, [IM96]). We believe that the work pre­

sented in this thesis represents an important step in this direction. 
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7.2 Future Work 

While we believe that the work presented in this thesis is significant, due to time 

and scope limitation, several important issues have been left out for future work. 

They are discussed below. 

(1) Phase II: The entire thesis has been focused on Phase I of finding frequent 

itemsets. The implementation of Phase II, the pros and cons of different significance 

metrics in the association relationship, and the corresponding algorithms are not 

discussed. In fact, all of these issues will be investigated in another thesis work 

[Phase II]. 

(2) 2-var Constraints: Our investigation has been focused on 1-var constraints 

in this thesis. A similar idea of pushing constraints deep into the computation can 

also be applied to 2-var constraints. We have already carried out a detailed analysis 

of 2-var constraints. Details will be found in a forthcoming paper. 

(3) Segment Support: Next, we discuss an optimization technique which is 

not specific to C A Q mining, but general enough that it can be applied to classical 

association queries and its variants. 

The technique involves dividing transaction databases into segments. Given 

a transaction database V, we partition it into M segments, denoted by T>i(i = 

1,..., M ) , in' some arbitrary way. Then, instead of using just one integer for the 

support of a candidate set, we use M integers where each integer corresponds to 

the support of the set over one transaction database segment. We refer to the M 

integers as the segment supports: 

Definition 7.1 (Segment Support) Given a transaction database V and a parti­

tion {V^i = 1..M} of the database (i.e. V = lifLi^h TJ^Vj = 0 for i ^ j), the ith 

segment support of any set S is defined to be the support S over T>i and is denoted 
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S P i P2 P 
{A,B} 100 200 300 
{A,C} 200 200 400 
{B,C} 200 100 300 
{A,B,C} 100 100 200 

Table 7.1: A n example to illustrate the idea of segment support 

by Supporti(S). 

The sum of the segment supports gives the total support which is the support 

in usual sense. We note that segment support satisfies the same anti-monotone 

property of the total support. In other words, VS, L, S C L =>• Supporti(S) > 

Supporti(L). 

The motivation of introducing segment support is best illustrated with an 

example. 

Consider the following simple example where the number of segments is two 

(i.e. M = 2) and the support threshold is 250. The first three rows in Table 7.1 

show the segment support for the three set {A,B},{A,C}, and {B,C}. The last 

column shows the total support of the three sets. Since all (total) supports are 

larger than 100, the support threshold, all the sets, {A, B}, {A, C}, and {B, C } , are 

size two frequent sets. Now, consider the generation of size three candidate sets. 

Without the information provided by segment support, the set {A, B, C} would be a 

valid candidate set in C3. However, the maximum possible segment support for the 

set {A, B, C} in each segment has to be equal to the minimum among the segment 

supports over the same segment of its subsets. The reason for that is because of 

the anti-monotone property of the segment support discussed above. In segment 

one, the minimum of the segment supports among {A, B}, {A, C}, and {B,C} is 

100. Therefore, the segment support of {A, B, C} can be at most 100. Similarly, 
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the maximum segment support of {A, B, C} in segment two is 100. Thus, the total 

support of {A, B, C} must be equal or less than 200. This implies the set {̂ 4, B, C} 

cannot be frequent and can be pruned away from C 3 before counting for support. 

The above example illustrates that we can prune away many potential can­

didate sets in the generation of Ck+\ from Lk- The power of this pruning power is 

based on the following inequality. 

For any set S G 'P(ltem), 
M 

Support(S) < ^2 min {Supportj (Si)}, (7.1) 
j = i 5 ' c 5 

where Support(S) means the total support of S and the minimum operator 

runs over all the S"s subsets. The right hand side of the above equation can be 

taken as the estimated support for the set S. 

To prove the above inequality, we note that the total support of S is equal 

to the sum of the support of S over each database segment Di, i.e. Support(S) = 

^2jL\ Supportj(S). However, as a support function, we have Supportj(S) < Supportj(Si), 

VSj C S, and thus, Supportj(S) < mins i C s{Supportj (Si)} which leads to the above 

inequality. 

The pruning power of the segment supports increases with the number of 

segments. In fact, if one goes to the extreme case where the number of segment 

is the number of transactions, the estimated support will be the actual support. 

The actual choice of the number of segments represents a tradeoff among computer 

resources. If there is enough memory resources, one would like to use a larger number 

of segments because the pruning power provided by the segment supports is higher. 

Wi th fewer candidate sets, C P U costs (and related I /O costs) are reduced. On the 

other hand, if there is not enough memory, a large number of segment supports will 

consume up memory that could have been used for other purposes such as holding 

transaction data. This will increase the I /O costs. 

74 



Experimental investigation of the implication of the segment support is un­

derway. Applications of the above idea to real life data should be an interesting 

future work. 

(4) Jumping Levels: Finally, another direction for future work is based on 

the observation that for each frequent set found at the end of the Apriori"1" Algo­

rithm, every one of its subsets has been counted. For example, in order to find 

the frequent itemset {A, B,C, D}, Apriori"1" needs to count support for every one 

of the sets {A},{B}, {C},{D}, {A, B}, { A , C } , {A, D}, {B, C}, {B,D},{C,D}, 

{A,B,C},{A,B,D}, {A,C,D}, and {B,C,D). However, if somehow we count 

{A, B, C, D} before counting its subsets and realize that it is frequent, then we can 

a posteriori prune away all its subsets from counting because we know all its sub­

sets would be frequent. This leads to the idea of jumping level. In other words, 

Apriori"1" is a level-by-level algorithm and the pruning of candidate sets is based on 

our knowledge on lower levels. We can prune away a candidate set if any of one of 

its proper subsets is not included in the list of frequent sets found in lower levels. 

However, if we have already counted some higher level to get all the frequent sets of 

size larger than the current size of the candidate sets, then we can also prune away 

those candidate sets that are subsets of some frequent sets at higher levels. This 

is because those candidate sets are guaranteed to be frequent and therefore can be 

dropped from counting. 

Using a scheme of jumping ahead to count higher levels can provide addi­

tional pruning power. However, there are still many issues one has to resolve. For 

example, counting higher levels can pay off only when there are a significant number 

of frequent sets to be found. If all the candidate sets turn out to be non-frequent, 

then no information is gained. Moreover, it is not clear which level to "jump". 

Intuitively, if there are still a significant number of frequent sets, one would like to 

jump to higher levels as the chance of payoff is higher. However, more analysis is 

required to make use of the above idea and to come up with an efficient algorithm. 

75 



Bibliography 

[AIS93] R. Agrawal, T. Imielinski and A. Swami, Mining association rules between 

sets of items in large databases, SIGMOD 93, p. 207-216. 

[ALSS95] R. Agrawal, K . Lin , H . S. Sawhney, K . Shim, Fast Similarity Search in the 

Presence of Noise, Scaling, and Translation in Time-Series Databases, VLDB 

95. 

[AMS97] K . A l i , S. Manganaris, and R. Srikant, Partial Classification using Asso­

ciation Rules, American Association for Artifical Intelligence 1997. 

[AS94] R. Agrawal and R. Srikant, Fast algorithms for mining association rules, 

VLDB 94, p. 487-499. 

[AS95] R. Agrawal and R. Srikant, Mining Sequential patterns, Proc. 1995 Inter­

national Conference on Data Engineering, March 1995. 

[AS96] R. Agrawal and J. C. Shafer, Parallel mining of association rules: Design, 

implementation, and experience, IEEE TKDE, 8, p. 962-969, 1996. 

[BMS97] S. Brin, R. Motwani, and C. Silverstein, Beyond market basket: General­

izing association rules to correlation, SIGMOD 97, p. 265-276. 

[BMUT97] S. Brin, R. Motwani, J . Ullman, and S. Tsur, Dynamic itemset counting 

and implication rules for market basket data, SIGMOD 97, p. 255-264. 

76 



[CHNW96] D. W. Cheung, Jiawei Han, V . T. Ng, and C. Y . Wong, Maintenance 

of Discovered Association Rules in Large Databases: A n Incremental Updating 

Technique, Proceedings of the International Conference on Data Engineering, 

Feb. 1996. 

[FMMT96] T. Fukuda, Y . Morimoto, S. Morishita, and T. Tokuyama, Mining Op­

timized Association Rules for Numeric Attributes, PODS 96, p. 182-191. 

[HKK97] E . - H . Han, G. Karypis, and V . Kumar, Scalable Parallel Data Mining for 

Association Rules, SIGMOD 97, p. 277-288. 

[HF95] J . Han and Y . Fu, Discovery of multiple-level association rules from large 

databases, VLDB 95, p. 420-431. 

[IM96] T. Imielinski and H . Mannila, A database perspective on knowledge discov­

ery, Communications of ACM, 1996, p. 58-64. 

[KN97] E . Knorr and Raymond T. Ng, A Unified Notion of Outliers: Properties and 

Computation, Proceedings of the 3rd International Conference on Knowledge 

Discovery and Data Mining, 1997, p. 219-222. 

[MAR96] M . Mehta, R. Agrawal and J . Rissanen, SLIQ: A Fast Scalable Classifier 

for Data Mining, Proc. of the Fifth International Conference on Extending 

Database Technology, March 1996. 

[Meta Group] Mining Your Own Business, Information Week cover story, March 16, 

1998. 

[MPC96] R. Meo, G. Psaila, and S. Ceri, A new SQL-like operator for mining 

association rules, VLDB 96, p. 122-133. 

[MY97] R. J . Miller and Y . Yang, Association rules over interval data, SIGMOD 

97, p. 452-461. 

77 



[NH94] R. T. Ng and Jiawei Han, Efficient and Effective Clustering Methods for 

Spatial Data Mining, VLDB 94, p. 144-155. 

[NLHP98] R. T. Ng, L . V . Lakshmanan, J . Han, and A . Pang, Exploratory Mining 

and Pruning Optimizations of Constrained Associations Rules, SIGMOD 98, 

p. 13-29. 

[PCY95] J . Park, M . Chen, and P. Yu, A n Effective Hash-Based Algorithm for 

Mining Association Rules, SIGMOD 95, p. 175-186. 

[Phase II] Teresa Mah, Master of Science Thesis, Computer Science, University of 

British Columbia, 1999. 

[QUEST] R. Agrawal, A . Arning, T. Bollinger, M . Mehta, J . Shafer, R. Srikant, 

The Quest Data Mining System, KDD 96. 

[SA95] R. Srikant and R. Agrawal, Mining generalized association rules, VLDB 95, 

p. 407-419. 

[SA96] R. Srikant and R. Agrawal, Mining quantitative association rules in large 

relational tables, SIGMOD 96, p. 1-12. 

[SVA97] R. Srikant, Q. Vu, and R. Agrawal, Mining association rules with item 

constraints, KDD 97, p. 67-73. 

[TUACMN97] D. Tsur, J . Ullman, S. Abitboul, C. Clifton, R. Motwani, and S. 

Nestorov, Query flocks: A generalization of association rule mining, SIGMOD 

98, P. 1-12. 

78 


