
Efficient Data Mining of Constrained Association Rules
by

Chiu Yan (Alex) Pang

Ph.D. (Physics), North Carolina State University, 1995

A THESIS S U B M I T T E D IN P A R T I A L F U L F I L L M E N T O F

T H E R E Q U I R E M E N T S F O R T H E D E G R E E O F

Mas te r of Science

in

T H E F A C U L T Y O F G R A D U A T E STUDIES

(Department of Computer Science)

we accept this thesis as conforming
to the required standard

The University of British Columbia
August 1998

© Chiu Yan (Alex) Pang, 1998

In presenting this thesis in partial fulfillment of the requirements for an advanced degree at the

University of British Columbia, I agree that the Library shall make it freely available for refer

ence and study. I further agree that permission for extensive copying of this thesis for scholarly

purposes may be granted by the head of my department or by his or her representatives. It

is understood that copying or publication of this thesis for financial gain shall not be allowed

without my written permission.

Department of Computer Science
The University of British Columbia
Vancouver, Canada
V 6 T 1Z4

Date:

Abstract

With the recent advances in information technology, companies are now collecting

more and more data related to their business. Companies are very interested in

decision support systems that can discover knowledge from data and help them

gain insight into their data. Data mining with the goal of discovering non-trivial

information or patterns hidden in large databases has, therefore, recently become

one of the most active research areas in database technology.

Association rules relate items which tend to occur together in a given event

or record. Mining association rules represents one of the most important problems in

data mining. However, the current framework suffers seriously from the lack of user

interaction and focus. In this thesis, we propose a new paradigm called Constrained

Association Rules where (i) the mining of the rules is divided into two phases with

various breakpoints for user feedback, and (ii) users can associate constraints with

their queries. We analyze many SQL-style constraints and introduce the notions of

succinctness and anti-monotonicity for their classification.

We design a new algorithm called C A P for mining association rules that

satisfy a set of given constraints. The idea is to check for satisfaction of the con

straints as early as possible by exploiting the properties of anti-monotonicity and

succinctness of the constraints. Several optimization techniques are developed. Our

experimental evaluation indicates that C A P runs much faster and can sometimes

outrun several basic algorithms by as much as 80 times.

i i

Contents

A b s t r a c t i i

Contents i i i

L i s t of Tables v i

L i s t of Figures v i i i

Acknowledgements i x

Ded ica t i on x

1 In t roduc t ion 1

1.1 Data Mining 1

1.2 Association Rules 4

1.3 Motivation of the Thesis 6

1.4 Contributions of our work 7

1.5 Outline of the Thesis 9

2 Background : Assoc ia t ion Rules 10

2.1 Formulation 10

2.2 Apriori Algorithm 12

2.3 Related Works 14

i i i

3 Constrained Association Queries 21

3.1 Definitions 21

3.2 Architecture 22

3.3 Syntax and Examples 24

3.4 Classification of Constraints 27

3.4.1 Anti-monotonicity 27

3.4.2 Succinctness 31

4 Basic Algorithms 36

4.1 A p r i o r i + 36

4.2 Full Materization 37

4.3 Hybrid(m) 38

5 Algorithm CAP 41

5.1 Succinct and Anti-monotone Constraints 42

5.2 Succinct but Non-anti-monotone Constraints 42

5.3 Non-Succinct but Anti-monotone Constraints 44

5.4 Non-Succinct and Non-anti-monotone Constraints 45

5.5 Multiple Constraints 46

5.6 Summary 47

6 Experimental Evaluation 49

6.1 Implementation and Experimental Environment 49

6.2 Succinct and Anti-monotone Constraints 51

6.3 Succinct but Non-anti-monotone Constraints 56

6.4 Non-Succinct but Anti-monotone Constraints 61

6.5 Non-Succinct and Non-anti-monotone Constraints 65

6.6 Summary 69

iv

7 Conclus ions 70

7.1 Conclusions 70

7.2 Future Work 72

B i b l i o g r a p h y 76

v

List of Tables

2.1 Equi-depth vs. distance-based partitioning 16

3.1 Classification of 1-var Constraints 28

6.1 Number of frequent sets that satisfy max(S.'Price < v) /number of

frequent sets for different selectivities (v/10) with support = 0.5% . 54

6.2 Number of frequent sets that satisfy max(S.Price) < v) /number of

frequent sets for different support values at 30% selectivity 55

6.3 Number of frequent sets that satisfy {soda} C S'.Type /number of

frequent sets for different selectivities with support = 0.5% 57

6.4 Number of frequent sets that satisfy {soda} C S'.Type /number of

frequent sets for different support values at 13% selectivity 60

6.5 Number of frequent sets that satisfy sum(S.Price) < MaxSum)

/number of frequent sets for different MaxSum with support = 0.5% 64

6.6 Number of frequent sets that satisfy sum(S.Price) < MaxSum)

I number of frequent sets for different support values with MaxSum =

500 64

6.7 Number of frequent sets that satisfy Avg(S.Vvice) < AvgPrice /

number of sets that satisfy mm(S.Price) < AvgPrice j number of

frequent sets for different values of AvgPrice with support = 0.5% . 68

v i

6.8 Number of frequent sets that satisfy Avg(S.Price) < AvgPrice j

number of sets that satisfy mm(5.Price) < AvgPrice / number of

frequent sets for different support values with AvgPrice = 200 . . . 68

7.1 A n example to illustrate the idea of segment support 73

vii

List of Figures

2.1 The lattice space formed from five items {A,B,C,D,E} 12

2.2 A n example illustrating Apriori Algorithm with five items 14

2.3 A n example of a taxonomy (concept hierarchy) 15

3.1 A n Architecture for Exploratory Association Mining 22

6.1 Speedup vs Selectivity for a Succinct and Anti-monotone Constraint 52

6.2 Speedup vs Support for a Succinct and Anti-monotone Constraint . 53

6.3 Speedup vs Selectivity for a Succinct and Non-anti-monotone Con

straint 58

6.4 Speedup vs Support for a Succinct and Non-anti-monotone Constraint 59

6.5 Speedup vs Selectivity for a Non-succinct and Anti-monotone Con

straint 62

6.6 Speedup vs Selectivity for a Non-succinct and Anti-monotone Con

straint 63

6.7 Speedup vs Selectivity for a Non-succinct and Non-anti-monotone

Constraint 66

6.8 Speedup vs Support for a Non-succinct and Non-anti-monotone Con

straint 67

vin

Acknowledgements

I would like to thank my supervisor Dr. Raymond Ng for his invaluable guidance

and financial support. He is nice and brilliant. Without him, this work could not

have been completed. Special acknowledgments also go to Dr. Laks Lakshmanan

and Dr. Jiawei Han who are the coauthors of the paper [NLHP98] on which this

thesis is based.

I would also like to thank my second reader Dr. George Tsiknis for reading this

thesis and for his invaluable suggestions.

Finally, I would like to thank all of my friends and other people in the Computer Sci

ence department at U B C for having created a supportive and friendly environment

which has made my study here very memorable.

C H I U Y A N (A L E X) P A N G

The University of British Columbia

August 1998

ix

To my family

x

Chapter 1

Introduction

1.1 D a t a M i n i n g

What is data mining ?

Over the past 15 to 20 years, computers have been used to capture detailed trans

action information in a variety of corporate enterprises. Some of the examples of

transaction-intensive industries are retail sales, banking, telecommunications, and

credit card operations. Wi th the availability of powerful and affordable computer

systems, many corporations have created huge repositories of data related to their

business. These collected data represent an invaluable source of information be

cause the data implicitly contain knowledge about the behavior of the customers.

The knowledge in turn can play a crucial role in the corporation's survival in today's

competitive market. Consequently, new techniques and tools which can intelligently

and automatically transform the processed data into useful information and knowl

edge has become highly relevant.

Data mining, which is also referred to as knowledge discovery from databases,

can be denned as an automatic process of discovering non-trivial, previously un-

1

known, and potentially useful information from very large datasets. In the past few

years, it has not only become one of the most active research areas in databases,

but has also attracted increasing industrial attention. A leading industrial analyst

[Meta Group] has projected the data mining market to grow from $3.3 billion in

1996 to $8.4 billion by the year 2000. There are many applications of data mining.

For example, discovered knowledge from data mining has been found to be relevant

in direct marketing, decision making, fraud identification, and process control.

Data mining models

Discovered knowledge means high-level information such as regularities, rules, pat

terns, trends, etc. Many interesting models for discovered knowledge have been

identified by researchers. These include associations [AS94], sequential patterns

[AS95], classification [MAR96], clustering [NH94], outliers [KN97], and temporal

patterns [ALSS95].

Association models focus on items that occur together in a given event or

record. A typical rule discovered in an association based data mining takes the

form: If item X is part of an event, then c% of the time (the so-called confidence

factor), item Y is also part of the event. A famous example is the rule "98% of the

people who buy diapers also buy beer ". Another example is "85% of customers that

purchase tires and auto accessories also get automotive services ". Association rule

analysis has gained increasing interest with the widespread use of checkout scanners,

which let retailers gather transaction details. This is why market-basket analysis

has been the most well-known application of association rule analysis. This whole

thesis is, in fact, on the problem of finding association relationships. A more precise

definition of the model will be given in the following section.

Sequential patterns are similar to association models, except that the re

lationships among items are spread over time [AS95]. In fact, association mining

2

techniques can be applied to mining sequential patterns by treating sequences as as

sociations in which the events are linked by time. The motivation behind sequential

patterns is the elapsed time between transactions or the duration of an event in an

association can be crucial.

In classification [MAR96], it is assumed that the value of a categorical vari

able can be assigned to any cases. The categorical variable is used as a classification

label. A number of cases for which the classification label is known are employed

as training examples. A classification algorithm then attempts to find a predictive

pattern that can classify other cases.

Clustering models segment a database into different groups whose members

are very similar [NH94]. However, unlike classification, one does not know a priori

what the clusters will be, or on what attributes the data will be clustered. Conse

quently, the resulting clusters could reveal previously unknown facts about the data.

Interesting applications of both classification and clustering are in direct marketing.

For example, consider a company doing promotion with a mailing list. If the com

pany can classify the customers on the list into categories such as "likely response"

or "unlikely response" based on historical patterns, the company can then tailor its

marketing plan and target only the customers that are more likely to respond. This

can significantly reduce the cost and increase the rate of return of the promotion.

Another pattern that is gaining increasing popularity is outlier detection

[KN97]. While most of the models mentioned above deal with the trends of the ma

jority, outlier detection attempts to identify the exceptional cases (i.e. the minority).

For example, in the credit card business, an unusual spending pattern within a short

period of time often indicates stolen card usage. Other applications include fraud

detection in production processes.

Finally, time is often an important attribute of a dataset. A significant

example is in financial time series [ALSS95]. It is certainly a man's dream come

3

true if he can predict the movement of a stock price. Given a time series database,

the problem of finding all the time series which have similar behavior is therefore of

great interest. Similarity and clustering are some of the typical questions asked in

data mining of temporal patterns.

1.2 Association Rules

Association relationships or association rules represent one of the most popular

patterns pursued in data mining processes. The basic idea of an association rule is

to capture the sets of items that tend to appear together. A n example is the rule

"80% of the people who buy butter also buy milk". There can be many applications

of the discovered rules. To use the rule in the above example, the manager in a

supermarket will make sure that butter and milk will not be on sale at the same

time.

The idea of association rules is introduced by Agrawal, Imielinski and Swami

in the early 90's [AIS93] as part of the IBM's data mining research program [QUEST].

The motivation is to understand customer behavior by examining transactional

databases. Each transaction in the database contains items that are purchased

together. By counting the frequency of the items appearing in the database, one

can identify the sets of items that tend to be purchased together.

To be more precise, an association rule is defined as an implication of the

form X =>• Y, where X and Y are sets of items and the set X U Y appears frequently

enough in the transactional database in the sense that at least s% of the transactions

contain X UY, and at least c% of the transactions that contain X also contain Y.

Here, 5 and c are called the support threshold and the confidence respectively.

In an association query, a user simply supplies specific values for the support

threshold and the confidence as input. A mining engine then finds all the itemsets

4

X, Y such that X =>• Y satisfies the above definition of an association rule. The

output of the query is a list of all such association rules found. Without prior

knowledge of the data, a user usually has no idea what the appropriate values for

the support threshold or the confidence should be. Runs with supplied values might

discover no rules or thousands of rules. This is one of the problems with the above

framework of association rules.

Since its introduction [AIS93], the problem of mining association rules has

been the subject of numerous studies. Issues discussed include extending the associ

ation rules framework [HF95, SA95, SA96, F M M T 9 6 , MY97, T U A C M N 9 7 , BMS97,

SVA97], applying the association framework to solve other problems [AS95, AMS97],

improving the efficiency of the mining algorithms [PCY95, B M U T 9 7 , CHNW96],

and parallel implementation of the Apriori Algorithm [AS94, HKK97] . In particu

lar, Agrawal and Srikant in 1994 [AS94] proposed a very efficient algorithm called

Apriori for mining association rules. We will explain in detail the Apriori Algorithm

and review some of the more important related works in the following chapter.

While all of the above mentioned work has enriched the field of association

mining, none of them address adequately the question of the interestingness of the

discovered rules. There may be thousands of rules found, but only a small portion

of them are interesting to the user. Only Srikant et al [SVA97] discuss the issue of

putting constraints on the frequent sets, which is one of the suggestions of this thesis.

However, Srikant et al [SVA97] only consider membership constraints in the context

of an item taxonomy, which correspond to only a small subclass of the categories of

constraints considered in this thesis.

5

1.3 Motivation of the Thesis

While the notion of association rules with the corresponding Apriori Algorithm

discussed in the previous section represents a significant development in data mining,

it suffers seriously from the following problems.

P r o b l e m 1 — Lack of User E x p l o r a t i o n and C o n t r o l : In a classical association

query, a user supplies the support threshold and the confidence. Then, Apriori

or a similar algorithm returns with all the association rules it finds. The whole

mining process behaves like a black-box where the user has very limited control

of the process except for supplying the two threshold values. But the supplied

threshold values might not be appropriate. It is more desirable if the mining process

can support user exploration on the data. However, even with the development of

many efficient algorithms, state-of-the-art association mining nowaday still requires

hours to complete. Therefore, without much control over the mining process and

the relatively long turnaround time, the classical model of mining association rules

cannot support efficient user exploration. Furthermore, the results returned by the

black-box may not contain what the user is looking for.

P r o b l e m 2 - Lack of Focus: The second problem is related to the fact that the

ultimate goal of a data mining user is to support his or her business decision making.

The user probably has some specific questions he or she would like to answer and may

therefore be much more interested in only certain types of association patterns. For

example, a user may want to find associations between sets of items whose origins

are domestic, or associations from itemsets of male products to itemsets of female

products. However, the classical model does not support any of these expressions

of focus or preference.

P r o b l e m 3 - R i g i d N o t i o n of Re la t ionsh ip : The third problem is that the

classical notion of association relationship is too rigid. Two sets of items are "as-

6

sociated" only if they appear together frequently enough and the rule confidence

exceeds the confidence threshold. While such a notion of associations is useful,

there can be other types of association that are relevant as well. For example, cor

relation is often used in statistics. Brin, Motwani, and Silverstein [BMS97] argue

that in many circumstances correlation can be more useful than confidence. For

example, the rule "past active duty in military no service in Vietnam " has a

very high confidence of 0.9 in census data. Yet it is quite misleading because having

past military service only increases the chances of having served in Vietnam. Fur

thermore, sometimes it may make more sense to have different support threshold

for the antecedent sets and consequent sets, especially when they are from different

domains. The rule pepsi => snacks is an example of associations from sets of items

to sets of types. In such situation, the appropriate support threshold values for pepsi

and snacks (i.e. any item of type snacks) can be very different.

These shortcomings in the current framework of the classic Association Rules

form the motivation of our work. To overcome these problems, we suggest several

principles which will be given in the following section.

1.4 Contributions of our work

We summarize our contributions in this section. First of all, we suggest several

principles of association mining which can be used to address the problems given in

the last section. The principles suggested are:

1. The mining process should not behave like a black-box with one-time user

supplied input parameters and final results at the end. Instead, there should

be breakpoints in the process for accepting user feedback.

2. Wi th the user feedback mechanism, a user should not only be able to guide

and control the mining process, but also have the chance to approve any task

7

that involves a substantial cost.

3. The mining system should have a mechanism to allow a user to express his or

her focus or preferences.

4. Wi th the user preferences specified, the system should have the ability to ad

just its mining algorithms so that it performs only the necessary computation

and nothing more.

5. The system should have a mechanism to allow a user to choose different signif

icance metrics and criteria to be used in defining an association relationship.

To realize these principles, we have designed a two phase architecture (Figure

3.1) for exploratory association mining. We will discuss the architecture in more

detail in section 3.2. Here, we emphasize that the architecture is new, but downward

compatible in the sense that if a user wants only classical associations and the

classical mode of interaction, he or she can do so by setting all the parameters at

the beginning and turning off all the breakpoints. Moreover, it is consistent with

the above five principles, and is powerful in providing human-centered exploration.

The second major part of our contributions is the introduction of the notion

of constrained association queries (CAQ) to be discussed in Chapter 3. Along with

the proposed architecture, C A Q provides a rich interface for the user to express

focus and to control the mining process to best suit the particular interests of the

user. In addition, we design and develop an efficient algorithm which we call C A P

(Constrained Apriori) to make use of the additional pruning power provided by

the constraints. To answer a constrained association query, one can imagine a few

algorithms, for example, running Apriori followed by constraints checking at the end.

We have compared C A P with a few of these simpler algorithms. Our experimental

results indicate that C A P can sometimes outperform other algorithms by as much

as 80 times !

8

In our investigation, we discover that one can classify all the constraints

according to two properties, namely, succinctness and anti-monotonicity. These

properties turn out to be extremely important in optimizing the mining algorithm.

While the anti-monotonicity property may be known in literature (in fact Apriori

is based on the anti-monotonicity of the frequency constraint), the classification of

constraints based on succinctness and anti-monotonicity is fundamentally new and

is one of our major contributions.

1.5 Outline of the Thesis

The thesis is organized as follows. In the next chapter, we describe the formulation

of the problem of mining association rules and present the Apriori Algorithm. We

also review in detail some of the important related works. In Chapter 3, we present

constrained association queries as a new paradigm in mining association rules. We

then discuss some of the basic algorithms that one can think of for these new type

of queries in Chapter 4. Chapter 5 describes an optimized algorithm which we refer

to as C A P . Chapters 4 and 5 are the main focus of this thesis. Performance of

various algorithms are then compared in Chapter 6. Chapter 7 presents yet another

optimization technique that can be used not only in C A P , but also in Apriori .

Finally, we draw our conclusions in Chapter 8 along with a discussion on some

possible directions for future work.

9

Chapter 2

Background: Association Rules

2.1 Formulation

In this section, we present a mathematical formulation of the association rule prob

lem. We also establish our notation used for the rest of the thesis.

The starting point is to assume that there is a finite (but very large) set

of items which we denote by Item . The strict power set of Item is denoted by

'P(Item) or 2 I t e m . A transaction T is simply any subset of 2 I t e m . A transaction

database, denoted by VB, is a set of transactions.

Definition 2.1 Given any set S C 'P(Item) and a transaction database, the support

or the frequency of S is the number of transactions containing S.

We often refer to S as an itemset.

Definition 2.2 A n itemset S is said to be large or frequent if the support of S is

larger than a given threshold value.

Whether an itemset is large or not depend on the threshold value. We refer to this

10

threshold value as the support threshold. Moreover, we often refer to itemsets of size

k as k-itemsets. We also denote the set of all large fc-itemsets by L)~. We are now

ready to define an association rule.

Definition 2.3 Given a support threshold s and another input parameter c referred

to as confidence, an association rule is a rule of the form X Y ii X UY is a. large

itemset, and among all the transactions that contain X, at least c % of them also

contain Y.

X and Y are usually referred to as the antecedent and the consequent set respec

tively. The problem of association rules is the problem of finding all the possible

association rules given a support threshold and a confidence.

The motivation of association mining and some of the examples are given in

Section 1.2. Here, we note that finding association rules can be divided into two

phases. The first one is to find all the large itemsets, i.e. potential candidates for

X UY. The second phase then constructs all possible association rules of the form

X =>• Y from each large item set X U Y by checking whether the support ratio of

XUY over X exceeds the confidence threshold. For example, if the set {A, B, C} is

found to be large, then, in the second phase, we check whether each one of the rules

{A,B} {C}, {A,C} => {B}, {B,C} => {A}, {A} {B,C}, {B} => {A, C),

and {C} =>• {A, B} satisfies the confidence requirement. Many previous studies

have shown [AIS93, AS94] that the first phase is the bottleneck of the computation.

Therefore, most of the literature on mining association rules focuses on the first

phase of finding all frequent itemsets. In the following discussion, our main concern

is also on the problem of finding large itemsets.

Association mining, in principle, requires consideration of all possible com

bination of the items. Figure 2.1 shows all the possible itemsets that can be formed

from five items arranged in a lattice. The lines in Figure 2.1 connect a set to all its

11

{A,B,C,D,E}

(A,B,C,D) {A,B,C,E} {A,B,D,E} {A,C,D,E} {B,C,D,E}

{A,B,C} {A,B,D} {A,B,E} {A,C,D} {A,C,E} {A,D,E} {B,C,D} {B,C,E} {B,D,E} {C,D,E}

{A,B} {A,C} {A,D} {A,E} {B,C} (B,D) (B,E} {CD} {C,E} {D,E}

(A) {B} {C} {D} {E}

Figure 2.1: The lattice space formed from five items {A,B,C,D,E}

supersets and subsets. The number of sets in this lattice space increases exponen

tially with the number of items. For practical applications, the number of items is at

least of the order of several hundreds. Therefore, association mining is a challenging

problem and any naive or brute-force approach will certainly fail. To facilitate our

discussion, we hereafter refer to the association rules discussed in this section as the

classical association rules to distinguish from other extensions.

2.2 Apr io r i Algori thm

Agrawal and Srikant [AS94] proposed an efficient algorithm called Apriori listed

below for finding all the large itemsets.

Algorithm 2.1 (Apriori)

1 C\ consists of all itemsets of size 1; k — 1; Ans = 0;

2 while (Ck not empty) {

2.1 conduct database scan to form from Ck',

12

2.2 form Ck+i from Lf~ based on Cfreq; k + +;}

3 for each set S in some L^:

add S to Ans.

Algorithm Apriori follows a level-wise generate-and-test framework. In Step

1, it first generates a list of size one candidate sets, denoted by C\. Then it counts

the support of each candidate in the list to find all the size one large itemsets, L\.

From L\, the algorithm constructs a list of size two candidate sets, C2. The process

is then repeated until there is no more candidates, i.e. until Ck is empty (see Step

2). Finally, each large itemset is added to the Ans, the output of the algorithm.

The performance of such generate-and-test algorithms is usually very poor because

the number of candidates increases exponentially with the number of items. The

contribution of Agrawal and Srikant [AS94] is that when they generate C^+i from

Lk in Step 2, they make use of an important property of the support of an itemset:

the support of an itemset cannot be larger than the support of any of its subset.

To prove such a property, one just needs to realize that if a transaction supports

(i.e. contains) an itemset S, it supports every subset of S. Thus, a size k + l itemset

cannot be a large itemset (i.e. cannot be in Ck+i) unless all its size k subsets are

large (i.e. in L^)- Therefore, Agrawal and Srikant can a apriori drop a size k + l

candidate set if one of its size k subsets are not in L^. This greatly reduces the

number of size k + l candidate sets, which in turn further reduces the number of

size k + 2 candidate sets, etc. Thus their Apriori Algorithm can be very efficient

even for large numbers of items and for large databases.

Example 2.1 We illustrate the Apriori Algorithm in Figure 2.2 with a simple ex

ample. We assume that there is only five items A,B,C,D,E and the support

threshold is 10. Each set in Ck+i(k = 1,2) is constructed by taking the union of

two sets in that differ by only one item. The algorithm then checks for all the

13

c l Support

(A)
(B}

(C)

(D)

(E)

count
support

Support c 2 Support

{A) 60 Step 2.1
—̂ (A) Step 2.2

—— (A,B)
(A,D)
(A , E |
(B,D)

(B)

| C)

58

8
{Bl

(A,B)
(A,D)
(A , E |
(B,D)

(D) 70 (D) (B,E)
(E) 50 (E) (D , E |

C 2 Support

(A,B) 30
(A,D) 28
(A,E) 34
(B,D) 9

(B,E) 29
(D,E) 7

Step 2.1

count support

{A,B(

(A,D)

(A,E)

|B ,E)

Step 2.2

C 3 Support

(A,B,E) 12

Figure 2.2: A n example illustrating Apriori Algorithm with five items

size k subsets. If any one of the subsets is not in Lk, the set is pruned away from

Ck+\- In our example, the set {A, B,D} is pruned away from C3 because the set

{B,D} is not in L2. On the other hand, {A, B,E} is not because all the size two

subsets, {A,B},{A,E}, and {B,E}, are in Li-

2.3 Related Works

As we mentioned in Chapter 1, there has been numerous studies on mining asso

ciation rules. In this section, we first review some of the works that are relatively

more important in the development of association mining. These works roughly fall

into three categories. The first one aims at generalization of the notion of classical

association rules. In other words, the focus is on improving the effectiveness of the

association rules. The goal of the second category is more on improving the effi-

14

Food Product

Milk

Dairy

l % M i l k 2% Milk Large Small Orange Apple Coke Pepsi Bud Miller
Juice Juice

Figure 2.3: A n example of a taxonomy (concept hierarchy)

ciency of the mining algorithms. The third category simply covers all the works that

do not fall into the first two categories. A n example of the third category would be

solving other problems with the association concept.

Generalization of Association Framework

Among the first attempt to generalize association rules is the work by Han and Fu

[HF95]. Their idea is that while an association rule such as "80% of customers that

purchase milk may also purchase beer " is interesting, it could be more informative

to also show that "75% of people buy Budweiser if they buy 2% milk ". The

association relationship in the latter statement is expressed at a lower concept level

where more specific and concrete information is provided. Conversely, sometimes it

may be more desirable to have associations at a higher concept level. A n example is

that the rule "90% of people who live on 123 East 2nd Street fly at least once a year"

is obviously less interesting to a travel agent than the rule "70% of people living in

Vancouver fly at least once a year". Han and Fu suggested that association mining

should be done at multiple concept levels. They call the different concept levels

a concept hierarchy. Srikant and Agrawal [SA95] referred to concept hierarchies

15

Salary Equi-depth Interval Distance-based Interval
18K 18K, 18K
30K 18K,30K
31K 30K,31K
80K 31K,80K
81K 80K.82K
82K 81K, 82K

Table 2.1: Equi-depth vs. distance-based partitioning

as taxonomies and had studied essentially the same problem as Han and Fu. A

taxonomy (or concept hierarchy) is a is-a hierarchy on a set of items with a more

general description of the items at the higher levels of the hierarchy. A n example of

a taxonomy {i.e. a concept hierarchy) is shown in Figure 2.3. This taxonomy says

that 1% milk is-a milk, 2% milk is-a milk, milk is-a Dairy, Dairy is-a Food Product,

etc. The problem of multiple-level association rules is to find association rules that

span different levels of the taxonomy. Both Han & Fu and Srikant & Agrawal have

designed efficient algorithms that can generate association rules at multiple levels.

Another group of studies is on extending association rules to more general

type of attributes. So far, association mining had been focused on categorical at

tributes. Srikant and Agrawal in 1996 [SA96] introduced the problem of mining

association rules with quantitative attributes. A n example of an association rule

containing both quantitative and categorical attributes might be "10% of married

people between age 50 and 60 have at least 2 cars". They deal with quantitative

attributes by partitioning the values of the attribute and then combining adjacent

partitions as necessary. In other words, they converted quantitative attributes to

categorical attributes by creating finite number of partitions for the values of the

numeric attributes. A n important question is what should be the number of inter

vals and what the criteria in constructing a "good" interval should be. Srikant and

Agrawal [SA96] used an equi-depth method where the intervals are determined by

16

their relative ordering and their support. Here the depth of a partition means the

support of the partition. For a depth d, the first d values (in order) are placed in

one interval, the next d in a second interval, etc. However, Miller and Yang [MY97]

pointed out that equi-depth partitioning may not work well for skewed data, and

may not be semantically suitable under certain circumstances. Instead, they pro

posed a distance-based partitioning where the distance between items are taken into

account. As an example, Table 2.3 shows the different partitions obtained by the

above two methods on a Salary attribute. Equi-depth partitioning results in three

partitions, 18K,30K, 31K,80K, and 81K,82K, while distance-based method gives

18K,18K, 30K,31K, and 80K,82K. Miller and Yang [MY97] argued that distance-

based partitions are more consistent with our intuitive understanding of the data

and intervals that include close data values (such as 81K,82K) are more meaningful

than intervals involving distant values (such as 31K, 80K). In our example, a rule in

volving the interval 31K, 80K will be of less interest than rules involving the interval

30K,31K. Finally, Fukuda et al [FMMT96] considered various performance issues in

mining association rules with numeric attributes and designed fast algorithms that

borrow techniques from computational geometry.

Other studies that extend the classical association relationship include the

work by Brin, Motwani, and Silverstein [BMS97] where the authors suggested cor

relation as a significant metric of an association, instead of the confidence. Their

motivation is to allow associations to generalize beyond market baskets data. This

is because under more general settings (i.e. , non basket data such as census data),

the classical association rules is only one of the many types of recurring patterns

that could or should be identified as "associations". Correlation is among the most

useful information regarding two variables.

So far, all of the mentioned works assume that the database is fixed and the

focus is on mining different types of association rules. However, in practical appli

cation of database mining, another problem we need to address is how to update,

17

maintain and manage the rules discovered. Whenever the database is updated, new

association rules may be introduced while some existing ones may be invalidated.

Therefore, efficient maintenance of discovered association rules is a non-trivial prob

lem. Cheung et al [CHNW96] study this problem and have developed an incremental

updating technique.

Improving Efficiency of Mining Algorithms

Apart from extending the association rule framework, many researchers aim to im

prove the efficiency of the mining algorithm. Park, Chen, and Y u [PCY95] proposed

another approach totally different from the Apriori. Their algorithm is referred to as

D H P (Direct Hashing and Pruning). Their observation is that the initial candidate

set generation, especially for the large size two itemsets, dominates the total execu

tion cost. This can be explained by the reason that unless the support threshold is

very selective, L\ is usually very large, which in turn results in a huge number of

candidate sets in C2 (as j C 2 j =

V 2)

). The step of determining L2 from C2 by

scanning the whole database and testing each transaction against C2 is hence very

expensive. The idea of the D H P Algorithm is to generate a much smaller C2 by

using a hashing technique to filter out unnecessary itemsets. When the support of

candidate fc-itemsets is counted by scanning the database, D H P accumulates infor

mation about candidate (A; + l)-itemsets in advance in such a way that all possible

(k + l)-itemsets of each transaction are hashed to a hash table. This also allows

D H P to trim progressively the size of the transaction database which can reduce the

processing time in later iterations. Their experimental evaluation shows that D H P

is about four times faster than Apriori.

A major bottleneck in computing frequent sets is in counting the support of

candidate sets. At each level k, a database scan is required to find the support of

the sets in C f c . Because of the large database size, the I /O cost for each scan can

18

be huge. Therefore, it will be beneficial if one can reduce the number of database

scan. Brin et al [BMUT97] proposed a dynamic itemsets counting algorithm (DIC)

to reduce the number of database scan. The idea is to start counting (k + l)-itemsets

before finishing counting fc-itemsets. In one of their examples, Br in et al show that

the number of database scan required by DIC is 1.5 passes while that of Apriori is 3.

However, the implementation of the DIC Algorithm requires keeping track of many

itemsets (in memory). As the number of all possible itemsets increases exponentially

with the number of items, this requirement may pose serious limitations on the

algorithm.

To speed up the mining process, another major approach is to use parallel al

gorithms. Both Agrawal and Shafer [AS96] and Han, Karypis, and Kumar [HKK97]

have designed parallel algorithms for mining association rules and have studied var

ious performance issues. Their idea is that the Apriori Algorithm can be divided

into several sub-problems such as counting support, candidate generation, and rule

generation. While these sub-problems depend on each other, the algorithms that

solve these sub-problems may be executed in parallel. For example, rule generation

from Lfc can be executed independently from counting support of for k' > k.

Interesting applications of the association mining framework include the work by

Agrawal and Srikant [AS95], where association mining is applied for mining sequen

tial patterns, and the investigation by A l i , Manganaris, and Srikant [AMS97] where

it is used for partial classification.

Summary

While all of the above works represent important extensions, improvements and/or

applications of the classical association rules [AS94], none of them has solved the

problems presented in Section 1.3. In particular, no current framework addresses

adequately the question of "interestingness" of the discovered rules. Different users

19

have different interests and different needs. Support threshold and confidence are

two very rough and generic quality (or "interestingness") measures. They may not

capture what a user wants. Moreover, they may lead to thousands of rules or no

rules at all. As far as we are aware of, no one has talked about putting constraints on

the frequent sets to capture the "interestingness" of rules. The only exception is the

recent work by Srikant, Vu, and Agrawal [SVA97] which considers only membership

constraints on an item taxonomy. Nevertheless, their constraints represent only a

small subclass of the types of constraints we study in this thesis, which include

domain and SQL-style aggregation constraints. Furthermore, our focus is on the

analysis of the pruning properties of the constraints and our Algorithm C A P can

handle a much broader class of constraints with significant pruning power than the

algorithms given in [SVA97].

Meo, Psaila, and Ceri [MPC96] consider a language for mining association

rules with conditions. However, they do not consider pruning optimizations provided

by the conditions.

Tsur et al [TUACMN97] attempt to generalize association queries to param

eterized queries with filters (conditions applied to the result of a query), which they

call "query flocks". However, the filter is confined to lower bound constraints on

the number of tuples returned by a query. Moreover, they do not have the general

notion of constraints nor have they classified the constraints or studied the role of

the constraints in optimization.

20

Chapter 3

Constrained Association Queries

In this chapter, we introduce the notion of Constrained Association Queries (CAQ)

to address the several problems of the classical association queries discussed in the

Chapter 1. Our goal is to let a user specify constraints expressible in SQL-like

languages and to enable the user to efficiently carry out exploratory and ad hoc as

sociation data mining activities. Our design is based on the five principles presented

in section 1.4

3.1 Definitions

Def in i t ion 3.1 A constrained association query (CAQ) is a query of the form

{(•Sii S2)\C}, where S\,S2 are set variables and C is a conjunction of a set of con

straints on S i , S^.

The above definition is fairly general. In particular, we do not have the no

tion of antecedent and consequent set in the definition, although typically S\(S2)

represents the antecedent (consequent respectively) set in an association relation

ship. The reason is that for this generalization such identification is not required in

21

refinement of metric, metric threshold,
type of relationships, candidate sets

Initial constrained
association
query

Phase 1: Finding

Constrained Frequent Sets

Phase 2: Computing
Relationships and their

Significance
selection of
metric, threshold, type of
relationships, candidate sets

refinement of constraints, support threshold

PHASE I PHASE II

Figure 3.1: A n Architecture for Exploratory Association Mining

finding all large itemsets.

The basic requirement of the support of Si being larger than some given

threshold can be thought of as a constraint. We embed this frequency constraint,

written as freq(Si), in the constraint C. Before we elaborate on the above definition,

we first present an architecture for processing CAQs.

3.2 Architecture

Our proposed architecture, which is shown in Figure 3.1, is divided into two phases.

In phase I, the system processes constrained association queries and outputs all the

large itemsets satisfying the set of constraints C specified in the queries. As men

tioned in the last section, each constraint in C may be applicable to the antecedent,

or the consequent, or both and C also includes the frequency constraint. Upon seeing

the output of the query, which is in the form of a list of pairs of candidates (Sa, Sc),

for the antecedent and consequent satisfying C, the user can either modify his or

her query by adding, deleting, or refining the constraints etc, or change the support

22

thresholds. Then, the system accepts and processes the refined query. The process

is repeated as many times as the user desires.

When the user is satisfied with the list of large itemsets found, the user can

instruct the system to proceed to Phase II. The main function of the system in

Phase II is to let the user specify the significance metric, the corresponding metric

threshold, and any other further conditions that may be imposed on the antecedent

and consequent. For example, as in classical association queries, a user could choose

the confidence as the significance metric, specify the confidence threshold and require

that (Sa, Sc) be frequent. Similar to Phase I, Phase II is also iterative. Upon seeing

the final association relationship, the user can modify his or her specification of the

metric, and/or thresholds values etc. The system will then process the refined query

starting from the beginning of Phase II or even Phase I if necessary.

One important consequence of allowing user feedback at various breakpoints

in the architecture is that the user can have the control and final approval in autho

rizing costly operations. For instance, one possible significance metric is correlation

between the antecedent and consequent [BMS97]. Correlation is an expensive com

putation. It will be a waste of C P U time if the user can find out only at the end

that the final answers of the query involve sets of items that are not of interest to

the user.

Another important feature of the proposed architecture is that it is downward

compatible. In other words, the system can answer classical association queries and

support the classical mode of interaction. To do this, a user would simply set all the

appropriate parameters at the beginning and turn off all the breakpoints so that the

system will not prompt for feedback. Since a classical association query is a special

case of a constrained association query, our formalism (i.e. the notion of C A Q and

the proposed architecture) is a true generalization of the classical association query.

But, of course, the real power of the generalized framework lies in the fact that

23

it addresses the problems of the classical association rules listed in section 1.3 by

supporting efficient human-centered exploration for association mining.

3.3 Syntax and Examples

In Section 3.1, we briefly describe what is a C A Q . Here, we discuss it in more details

and formally introduce the syntax used in C A Q . We also present some examples of

C A Q .

In definition 3.1, C represents a set of constraints, where the constraints

can be divided into two classes. A single variable constraint (1-var) is a constraint

containing only one set variable. It is used in conditioning the antecedent and/or

consequent separately. On the other hand, a two variable constraint (2-var) is a

constraint with two set variables and is useful in expressing joint conditions on both

the antedecent and the consequent.

To be more precise, C is a conjunction of constraints on S\,S2 drawn from

the following classes of constraints.

1. Single Variable Constraints: A single variable (1 — var) constraint is of one of

the following forms.

(a) Class Constraint: It is of the form S C A, where S is a set variable and A
is an attribute. It says S is a set of values from the domain of attribute

A.

(b) Domain Constraint: It is of one of the following forms.

i . S0v, where S is a set variable, v is a constant from the domain that S

comes from, and 6 is one of the boolean operators =,7^, < , < , > , > •

It says that every element of S stands in relationship 9 with the

constant value v.

24

i i . v9S, where S, v are as above, and 8 is one of the boolean operators

€, This simply says the element v belongs to (or not) the set S.

i i i . V9S, or S9V, where S is a set variable, V is a set of constants from

the domain S ranges over, and 9 is one o f C , g , c , c / , = , ^ .

(c) Aggregate Constraint: It is of the form agg(S)8v, where agg is one of

the aggregate functions min, max, sum, count, avg, and 9 is one of the

boolean operators =, 7 ,̂ <, <, >, >. It says that the aggregate of the set

of numeric values in S stands in relationship 9 to v.

2. Two Variable Constraints: A two variable constraint (2 — var) is of one of the

following forms.

(a) S\9S2, where Si is a set variable and 9 is one of C, c , <£.

(b) (Si o S2)9V, where Si, S2 are set variables, V is a set of constants or 0,

o is one of U,f1, and 9 is one of =, 7 ,̂ C, C, c/.

(c) aggi(Si)9agg2{S2), where aggi,agg2 are aggregate functions, and 9 is one

of the boolean operators =, 7 ,̂ < , < , > , >.

We next illustrate the constraint syntax with examples. First of all, we need

to specify the view on which we do the mining. We will refer to this as the minable

view. It can be simply thought of as a set of relations. For example, t rans (TID,

Itemset) can be the relation to represent the transaction. Furthermore, as an

example here, we assume that we are interested in the type, price and origin of the

items. Therefore, a minable view could be the two relations, t rans (TID, I t e m s e t) ,

i t emlnf o(Item, Type , P r i c e , O r i g i n). Here Item represents the set of all

possible items and S C Item would mean S is a set variable in the Item domain. We

now consider some 1-var constraint examples. S .Pr ice > 50 says all items in S are

of price greater than or equal to $50; S.Type 3 {sodas} insists S include some items

whose type is sodas; S .Or ig in = Canada means all the items are made in Canada.

25

More complicated example can be like S.Typefl {dairy} = 0 A sum(S.Price) < 100,

which says S is the set of items that do not include any dairy product and the total

price is less than or equal to $100.

2-var constraints can be constructed in a similar manner. For example,

Si .Type f l S2-Type = 0 says Si and S 2 have no same type items in common;

avg(S\ .Price) < avg(S2 .Price) insists that the average price of Si has to be less

than the average price of S2.

Below we give examples of complete CAQs. The C A Q

{(Si,S2)|Si C I t e m & S2 C Item & count{Si) = 1 & count(S2) = 1 & freq(Si) & freq(S2)}

asks for all pairs of single items satisfying frequency constraints. Since the body

of any C A Q , C, invariably contains the frequency constraints and the domain con

straints Si C Item & S2 C Item, we hereafter suppress them and simply note that

they are implicitly contained in the body of any C A Q . The C A Q

{(Si, S 2)|auc/(Si.Price) < 100 & avg{S2-Price) < 200}

asks for pairs of itemsets, where the average price of Si has to be less than or equal

to $100 while that of S2 has to be less than or equal to $200. This is an example of

using 1-var constraints. On the other hand, the C A Q

{(Si, S2)\max(Si.Price) < min(S2-Price)}

represents an example with 2-var constraints, where the query asks for pairs of

sets of cheaper items and sets of more expensive items. We can construct more

complicated example by adding conjuncting constraints. The C A Q

{(Si, S2)|Si.Type = magazines & S i . O r i g i n = Canada & S2.Type = toys

& S 2 . O r i g i n ̂ Canada & max{S\.Price) < min(S2-Price)}

finds pairs of sets of cheaper Canadian magazine items and sets of more expensive

imported toys. Apart from the Item domain, we can also ask for items from

26

another domain. For example, the C A Q

{(TUT2)\TX C Type & T 2 C Type}

finds pairs of sets of types (corresponding to items bought together). Similarly, we

can also ask for items from different domains:

{(51,52)151 C Item & S i . O r i g i n = Canada & 5 2 C O r i g i n & Canada £ 5 2},

which asks for sets of domestic items and non-Canadian origins.

3.4 Classification of Constraints

3.4.1 Ant i -monoton ic i ty

In this section, we identify two properties of constraints that will be shown to be

important when we consider performance optimization. The first property is anti-

monotonicity. The motivation behind it is from the observation that the success of

the Apriori Algorithm for classical association mining is based on the fact that if

a set violates the frequency constraint, then some of its supersets will also violate

the frequency constraint. We can generalize this property to other constraints and

therefore have the following definition.

Definition 3.2 (Anti-monotonicity) A 1-var constraint C is anti-monotone if

and only if for any set S,

S does not satisfy C VS ' 2 5, 5' does not satisfy C.

The power of the property lies in the fact that if a set is found to violate the

constraints, all its supersets can be pruned away from further consideration. Thus,

the number of candidate sets can be largely reduced. As we said above, this is the

27

1-var Constraint Anti-Monotone Succinct

S0v,0e {=,<,>} yes yes
v G S no yes

no yes
scv yes yes
s = v partly yes
min(S) < v no yes
min(S) > v yes yes
min(S) = v partly yes
max(S) < v yes yes
max(S) > v no yes
max(S) = v partly yes
count(S) < v yes weakly
count(S) > v no weakly
count(S) = v partly weakly
sum(S) < v yes no
sum(S) > v no no
sum(S) = v partly no
avg{S)0v,9 e {=,<,>} no no
(frequency constraint) (yes) (no)

Table 3.1: Classification of 1-var Constraints

reason why Apriori is efficient. If we can identify which classes of constraints satisfy

the anti-monotone property, then we can incorporate the constraints along with the

frequency constraint to achieve the same pruning power of the Apriori Algorithm.

We have analyzed different classes of 1-var constraints and have classified

them according to whether they are anti-monotone. We summarize our findings in

Table 3.1. The second column identifies which constraints are anti-monotone. The

third column does the same for succinctness, which will be discussed in the next

section. The first group of constraints is the domain constraints. S6v, 6 € {=, <, >},

where v is a constant, is anti-monotone. In particular, it is anti-monotone for 0 being

<. The reason is that if S j£ v, then one of the elements in S is greater than v,

and therefore any supersets of S will violate the same constraint because that one

28

element in 5 that is greater than v is also contained in the superset. On the other

hand, v 6 S is not anti-monotone because if S does not contain v, it does not

necessarily imply all of its superset will not contain v. A counter example is simply

S U {v}. Thus, v £ S does not satisfy the condition for anti-monotonicity. For the

min-max type constraints, rnin(S) > v is anti-monotone because if the minimum

of S is less than v, then the minimum of all its supersets will also be less than v

as the minimum can only be made smaller by adding in extra elements. Similarly,

since the maximum of a set can only be increased by adding extra elements, the

constraint max(S) < v therefore also satisfies the anti-monotone property. The

same idea applies to the constraint count(S) < v. The count(S) (i.e. the number of

elements in S) can only be increased if the size of the sets is increased. Therefore,

if count(S) > v, count(S') will also be greater than v for all supersets 5". Thus,

count(S) < v is anti-monotone as well. We can summarize our discussion by the

following proposition.

Proposition 3.1 For each constraint C listed in Table 3.1, C is anti-monotone if

and only if the table indicates so.

Optimization Using Anti-Monotonicity

The motivation behind the notion of anti-monotonicity and succinctness is to provide

performance optimization based on these properties. One naive algorithm for mining-

constrained associations is to run Apriori first followed by constraint checking at

the end. However, unless the constraints C is very non-restrictive, only a fraction

of the answers found by Apriori would satisfy the constraints. A large portion of

the computation may turn out to be unnecessary. However, the time spent on

Apriori is typically a lot more than the time spent on constraint checking. The

algorithm with constraint filtering at the end is therefore very inefficient. The basic

idea of improving performance is then to "push" the constraint checking as early as

29

possible so that the constraints can help us prune away candidate sets before support

counting. However, one has to be careful in pushing the constraints into lower levels

(lower level here means smaller k—value where k is the size of the itemsets). This is

because dropping candidate sets at lower levels may lead to missing frequent itemsets

at higher levels. We say an algorithm is complete if all frequent sets satisfying the

given constraints can be found. In other words, all solutions are included in the

answers returned by the algorithm. On the other hand, we also want to make sure

that the algorithm is sound, i.e. all the answers found are valid solutions that are

frequent and satisfy the given constraints.

Anti-monotonicity allows us to prune away candidate sets at each level in a

way similar to the case of of frequency constraint. In fact, the standard optimization

used for the frequency constraint in the Apriori Algorithm is based on the following

property (PI):

S, where \S\ = k, is frequent =>• VS' C S where \S'\ = k — 1, S'is frequent,

so that whenever any one of the size k — 1 subsets of a size k candidate set is

not frequent, the candidate set can be pruned away. In the case of a constrained

association query {5 i , S2IC}, if Cam consists of all the anti-monotone constraints in

C, including the frequency constraint, then a similar optimization technique can be

used based on the following property (P2) generalized from the above property (Pi):

S, where \S\ = k, satisfies Cam ==> VS ' C S where |S ' | = k — 1, S' satisfies Cam-

In other words, if Lfc-i consists of all the sets of size k — 1 that satisfy Cam, then

the set Ck of candidate sets of size k can be generated in exactly the same way

as in the Apriori Algorithm. Then, Ck can be further pruned to become Cj? m by

checking whether each element in Ck satisfies every constraint in Cam other than

the frequency constraint. Any element that violates any constraint in Carn can be

dropped away from support counting. As will be seen in Chapter 5, this optimization

is incorporated in Algorithm C A P .

30

3.4.2 Succinctness

While anti-monotonicity provides strong pruning power, it involves an iterative

generate-and-test process: at each level, a list of candidates is generated and then

tested for the satisfaction of the constraints. It would be better if we can eliminate

the generate-and-test paradigm. This leads to the the following two questions: (i)

Under what circumstances can we succinctly characterize the set of all itemsets that

satisfy a given constraint ? (ii) Given a constraint that has a succinct description,

how can we generate all the itemsets that satisfy the constraint without admitting

spurious itemsets ? The answer for the first question leads to the notion of succinct

ness discussed below while the second question lead us to the notion of a member

generating function.

To help understand the definition, we consider the sample example in sec

tion 3.3, i.e. the minable view consists of the relations t r a n s (T I D , Itemset) and

i t e m l n f o (I t e m , T y p e , P r i c e , O r i g i n) . We denote the set of itemsets that satisfy

any 1-var constraint C by SvlTc(Item), which we refer to as the pruned space of

C. For example, if C\ is the constraint S . O r i g i n = Canada, then SATcx (Item)
contains all those itemsets whose origin is Canada. In the following, a selection

predicate refers to any predicate that is allowed to appear as a parameter of a selec

tion operation in relational algebra and ap(I) represents the subset of I containing

all the elements of / that satisfy the selection predicate p. In our example, o~v(I) with

I C Item is therefore {i G I\3t G t r a n s oo i t e m l n f o : L i t e m = iandt satisfies p}.

Moreover, we use the notation 2 7 to denote the strict powerset of I , i.e. the set of

all subsets of I except the empty set. We can now define succinctness as follows.

Definition 3.3 (Succinctness)

1. / C Item is a succinct set if it can be expressed as cr p(Item) for some selection

predicate p.

31

2. SP C 2 I t e m is a succinct powerset if there is a fixed number of succinct sets

I t e m i , I t e m * ; C Item such that SP can be expressed in terms of the strict

powersets of I t e m i , I t e m / ; using union and set difference.

3. Finally, a 1-var constraint C is succinct provided SATQ(Item) is a succinct

powerset.

Intuitively, the definition states that a constraint on a set of items is suc

cinct if its solution set can be expressed as sums of sets that can be obtained

by applying some selection predicate onto the set of all items. The constraint

Ci = S .Or ig in = Canada considered above is succinct because its pruned space

SATc1{ltem) is simply 2 I t e m c , where Item^ = ao rig i n = canada(I'tem). Now, let's

consider a more complicated example. If C2 = {snacks, sodas} C S'.Type, then

the pruned space consists of all the sets that contain at least one item of type

snacks and at least one item of type sodas. Let Item.2, Itera.3, Item4 be the sets

o " T y P e = s n a c A ; 5(Item),a T y p e = S 0 d a s(Item),a n d a T y p e ^ s „ a c f c S A T y p e ^ s o d a s(Item) respectively.

Then, C2 is succinct because the pruned space SATc2 (Item) can be expressed as:

oltem oItem2 altem3 nltem4 nItem2UItem4 oItem3UItem4

Similar to the anti-monotone property, we have classified the representative

class of constraints according to whether they are succinct or not in Table 3.1.

P r o p o s i t i o n 3.2 For each constraint C listed in Table 3.1, C is succinct if and only

if the table says so.

We have proved two positive cases above. Now, consider the constraint

max(S.A) > c. Let Itemi = f j J 4 < c (l t e m) . Then the pruned space is the powerset

of all the items excluding the powerset of Itemi. In other words, SATc(Item) =

2 i t em _ 2 i temi_ Qn the other hand, sum{S)6v,9 G {=,<,>} is not succinct. The

reason is that given any finite union and differences of succinct powersets, we cannot

32

rule out the possibility in general that there exists additional items not belonging

to those powersets, but whose addition to S can still satisfy the constraint. Similar

arguments apply to the remaining cases, and therefore, for brevity, we now skip the

proof of all the other cases except to make a note of those constraints involving

count (S).

Consider the constraint count(S) < v. This constraint is not succinct and

does not have an M G F of the kind introduced in Definition 3.4 below. However, we

can have an M G F based on cardinality constraint, i.e. {X\X C Item & | X | < v}.

Therefore, we say that the constraint count(S) < v is weakly succinct. Similarly,

the other constraints involving count(S) in Table 3.1 are also weakly succinct.

We now turn to the next question of how to generate SATc(ltem) given C

is succinct. The key concept here is the member generating function.

Def in i t ion 3.4 M e m b e r Genera t ing Funct ions

1. We say that SP C 2 I t e m has a member generating function (MGF) provided

there is a function that can enumerate all and only elements of SP, and that

can be expressed in the form { X i U • • • UXn\Xi C crpi (Item), 1 < i < n, &3k <

n : Xj ^ 0,1 < j < k}, for some n > 1 and some selection predicates

2. A 1-var constraint C is pre-counting prunable provided SATc(ltem) has an

M G F .

For the constraint C\ = S .Or ig in = Canada discussed above, an M G F is

simply {X\X C Itenic&X ^ 0} where Itenic = cr0 rigin =canada(Item). As for the

constraint C2 = {snacks,sodas} C S.Type, an M G F is {X\ U X2 U X3\Xi C

Item 2 & Xi /0& X2 C Item3&:X2 fb k. X3 C Iten^}, where Item 2 , I tem 3 , and

Item4 are as defined earlier.

33

Optimizations Using Succinct Constraints

The relationship between succinctness and M G F is that every succinct constraint

has an M G F .

P r o p o s i t i o n 3.3 If C is succinct, then C is pre-counting prunable (i.e. SATc(Item)

has an M G F) .

P r o o f Our argument is based on an induction on the number of minus operator

in the succinctness expression. When there is no minus operation, SATc(ltem) =

2 I t e m i with Itemi = ap(ltem) and p being the predicate in C. Then the M G F

is simply C Itemi & X ^ 0}. We assume that the proposition is true

whenever the expression of SATQ(Item) in terms of succinct powersets involves k

minus operations. Now, consider any constraint such that SATc(ltem) has k + 1

minus operations, i.e. SATc(Item) = 2 I t e m - 2 I t e m i 2 I t e m f c - 2 I t em'=+1, where

Itemj are succinct sets, Iteirij = a g j(Item) for some predicate qi, i = 1,... , k+1. By

the induction assumption, SATc(ltem) = {XiU-• -UXn\Xi C o- p . (l tem)}-2 I t e m f c + 1 ,

which this is equal to {Xi U • • • U Xn\Xi C aPiA-,gk+1(ltem)} of the form stated in

Definition 3.4. (One of the Xj has to be non-empty, otherwise SATc(Item) is too

trivial). Thus, the proposition is also true for k + 1.

The importance of this proposition is that, for succinct constraints, we can

now operate in a generate-only fashion, instead of in a generate-and-test manner.

Furthermore, the satisfaction of the constraint alone is not affected in any way by

the result of the iterative support counting.

So far, we have considered only a single constraint. To obtain M G F s for a

more general constraint consisting of multiple constraints, we can simply combine

the M G F s of two constraints at a time. In other words, suppose C\ and C2 are

constraints with M G F s {S\ U • • • U Sm\Si C <7Pi.(ltem)} and {Tx U • • • U Tn\Tj C

aqj (Item)} respectively, then the M G F for C\ & C2 is simply {Ru U• • •HRmn\Rij Q

34

o-piAQj(ltem)}.

We incorporate the optimization idea presented in this section into our pro

posed C A P Algorithm. Before we present a detailed description of the C A P Algo

rithm, we turn to some of the basic algorithms in the following chapter.

35

Chapter 4

Basic Algorithms

In this chapter, we develop a few algorithms for computing frequent sets that satisfy

a set of given constraints. In the next chapter, we will present the Algorithm

C A P which takes advantage of the optimization ideas given in Section 3.4. We

will compare the performance of C A P and the other algorithms in Chapter 6.

4.1 Apriori +

The first algorithm is a straightforward extension of the classical Apriori Algorithm

[AS94]. The idea is to run Apriori first, followed by constraints checking at the end.

It is called Apriori"1" and is listed below.

Algorithm 4.1 (Apriori"1")

1 C\ consists of all sets of size 1; k = 1; Ans = 0;

2 while (Ck not empty) {

2.1 conduct database scan to form Lk from Ck\

2.2 form Ck+i from based on Cfreq; k + +;}

36

3 for each set S in some L^:

add S to Ans if it satifies (C — Cfreq).

Here C is used to denote the set of given constraints, one of which is the

frequency constraint, Cfreq. A l l the other symbols (Ck,Lk, and Ans) have the usual

meaning discussed before in Chapter 2. A p r i o r i + is almost the same as the Apriori

(Algorithm 2.1) except in Step 3 where each of the frequent sets computed from

Step 1 and Step 2 is verified against the remaining constraints (i.e. C — Cfreq).

4.2 Full Materization

Algorithm Apriori"1" is not bad if the frequency constraint Cjreq is more selective than

the remaining ones (C — CjTeq). However, the converse may be true. In other words,

it is possible that most of the frequent sets found do not satisfy the remaining

constraints. In that case, checking (C — Cfreq) first, followed by verifying Cfreq,

might be more efficient. This lead to the following algorithm which we call Full

Materization (FM).

Algori thm 4.2 (FM)

1 C\ consists of all sets of size 1; Ans = 0;

2 C* = Ci;

3 For every possible S such that for all S' C S A \S'\ = 1 =>

S' G d:

add S' to C* if 5" satisfies (C - Cfreq);

4 conduct database scan for sets in C*; add sets that are fre

quent to Ans.

37

While Algorithm F M avoids counting support for sets that do not satisfy

the given constraints, it is not without its own problem. Its problem is in Step 3

where all the sets are generated and tested against the constraints in (C — Cfreq).

The number of sets involved grows exponentially with large problem size (i.e. the

number of items). In that case, Algorithm F M becomes very inefficient.

4.3 Hybrid(m)

If the frequency constraint Cfreq is much more selective than the remaining con

straints in (C — Cfreq), Algorithm A p r i o r i + is more efficient. Conversely, if the

constraint (C — Cfreg) are much more selective, then Algorithm F M performs better.

The two algorithms, in fact, represent two extreme cases where either the frequency

constraint Cfreq or the remaining constraints (C — Cfreq) is clearly more selective

than the other. However, the selectivity of the two sets of constraints (Cfreq and

C — Cfreq) are often comparable. It may be a good idea to combine the above two

algorithms in a divide-and-conquer approach where we run one algorithm up to a

certain level and switch to the other afterwards. We call the result Hybrid(m),

where m is the level when the switching occurs. Wi th m treated as a parameter,

Hybrid(m), in fact, represents not only a single algorithm but a class of algorithms.

Algorithm 4.3 (Hybrid(m))

1 C i consists of sets of size 1; k = 1; Ans = 0;

2 while (Ck not empty and k < m) {

2.1 conduct database scan to form Lk from Ck;

2.2 form Ck+\ from Lk based on Cfreq; k + +;}

3 if m > 0 then for each set S in some Lk;

add S to Ans if S satisfies (C — Cfreq);

4 if Ck not empty then {

38

4.2

4.1 C * — C m _ | _ i ;

for every possible S such that for all S' C S A \S'\ = m + 1

4.3

S" £ C m + i :

add S" to C * if 5" satisfies (C - Cfreq);

conduct database scan for sets in C*; add sets that are fre

quent to Ans.}

If m = 0, Steps 2 and 3 will not be executed and the algorithm (Hybrid(O))

becomes Algorithm F M . Otherwise, Algorithm Hybrid(m) runs A p r i o r i + up to level

m (m > 1) in Step 1 to Step 3. It checks Cfreq for m iterations to produce the

standard Cm+i set which consists of all candidate sets of size m + 1. This takes

advantage of the pruning affected by the frequency constraint. Then, instead of

continuing with A p r i o r i + , Hybrid(m) switches to F M in Step 4. The motivation for

the switch is to reduce the I /O costs involved with the database scanning in each

iteration of Apriori"*". A tradeoff is a higher C P U cost in Step 4.2 where all the

possible sets are generated and tested again the constraints (C — Cfreq). However,

compared with Algorithm F M , the C P U cost for the same step is much less and

may become acceptable. In fact, the C P U cost will be much less in Hybrid(n) than

in Hybrid(m) whenever n <m. The reason is that the generation in Step 4.2 needs

to consider a set S only when all the subsets of size m + 1 of S are in Cm+i. As m

increases, the number of sets in Cm+i decreases rapidly, thus reducing the number

of sets required to consider in Step 4.2.

To summarize, the decision of when the switching should occur (i.e. the value

of m) represents a tradeoff between C P U and I /O costs. Wi th small m value, the

amount of database scanning required is less and the I /O costs is reduced, at the

expense of increasing C P U cost in Step 4.2. On the other hand, if m is larger,

the number of candidate sets in Step 4 is smaller and the C P U time is reduced,

at the expense of increasing the I /O cost of Step 2. Moreover, the two extreme

39

cases of m = 0 and m = oo correspond to Algorithm F M and Algorithm Apriori

respectively.

40

Chapter 5

Algor i thm C A P

While all the algorithms considered in the previous chapter have their own merits,

they all fail to exploit the properties of the constraints. In particular, the anti-

monotone and succinct properties introduced in Section 3.4 are not being used.

Algorithm C A P discussed in this chapter attempts to make maximum use of these

properties by pushing the constraints as deep "inside" the computation as possible.

To this end, we classify all the constraints into four categories:

I. Constraints that are both anti-monotone and succinct (e.g., min(S) > v);

II. Constraints that are succinct but not anti-monotone (e.g., min(S) < v);

III. Constraints that are anti-monotone but not succinct (e.g., sum(S) < v); and

IV. Constraints that are neither (e.g.,avg(S) < v).

A different strategy is tailored for each of the above cases.

41

5.1 Succinct and Anti-monotone Constraints

When the constraint C is both succinct and anti-monotone, we propose that the

general form of the M G F for SATc{Item) in Definition 3.4 reduces to the form

{S|S C crp(Item) & S ^ 0}. Then the set C\ of candidate sets of size one in

the Apriori Algorithm can simply be replaced by Cf = {e|e G C\he £ cr p(Item)}.

Moreover, since C is anti-monotone, sets containing any element not in C f need

not be considered. Therefore, we have the following strategy proposed for succinct

anti-monotone constraints.

Strategy I:

• Replace C\ in the Apriori Algorithm by Cf defined above.

5.2 Succinct but Non-anti-monotone Constraints

In the case of succinct non-anti-monotone constraints, one cannot guarantee that

all sets satisfying the constraints must be subsets of Cf . For example, consider the

constraint S.Type D {sodas} which says S includes at least one soda item. It is

succinct because SATc{ltem) has a M G F {Si U S2IS1 C axj / p e-< i 0d a s(Item) & Si ^

0 & S 2 C Item}. If a set S does not contain a soda item, S's supersets may.

Therefore, the constraint is not anti-monotone. For this constraint, Cf would contain

all the size 1 itemsets where the items in the itemsets are all sodas. However, sets

such as {Coke, Milk} satisfy the constraint but are not subset of Cf. Thus, Strategy

1 is not complete. Fortunately, in this case, we can make use of the structure given

by the M G F of the constraint. As in our example, we consider M G F ' s that are of

the form {Si U S2IS1 C tT p i(Item) & S2 C cr p 2(ltem)}.

Strategy II:

42

• Define Cf = cr p i(ltem) and C f c = <7P2 (Item). Define corresponding sets of

frequent sets of size 1: L\ = {e|e G C{ Sz freq(e)}, and L^c = {e\e G

Cr c & /reg(e)}.

• Define C2 = {{e,/}|e 6 G (Lf U I ^ 0)} , and L2, as usual, the set of

frequent sets in C2, i.e. , L 2 = {SIS G C2&/reg(S)}.

• In general, Cfc+i can be obtained from Lk in exactly the same way as in the

Apriori Algorithm with only one modification. In the classical case, a set S is

in Cfc+i, if all its subsets of size k are in Lk, i-e. ,

VS' : S' C S and |S ' | = k =*• S' G X f c

In the case of succinct, non-anti-monotone constraints, we only need to check

subsets S' that intersect with L\. In other words, subsets S" that are disjoint

with L\ are excluded in the above verification. These are sets that only contain

elements from L^c, and that are not counted for support. Because we do not

know whether they are frequent or not, we give them the benefit of the doubt.

Hence, we have the following modification in candidate generation. A set S is

in Ck+i if for all subsets:

VS ' : S' C S and S' D L\£ 0 => S' G Lk.

As usual, Lk+\ = {S |S G Ck+\ & freq(S)}.

Example 5.1 Suppose that Item is the set { 1 , . . . , 100}, Cf is { 1 , . . . , 50}, and C^c

is { 5 1 , . . . , 100}. Furthermore, suppose that L\ and L ^ c turn out to be { 1 , . . . , 20}

and {71, . . . , 100}. Then, C2 is constructed by considering the Cartesian prod

uct { 1 , . . . , 20} x { 1 , . . . , 20 ,71 , . . . , 100} which gives all the size 2 sets that can be

frequent and that contain at least one element from C\. We further suppose that

{1, 71} and {1, 72} are frequent, and that {1, 73} is not. Now, in considering whether

{1, 71, 72} should be in C 3 , we only check whether {1, 71} and {1, 72} are frequent.

43

In the classical case, we would check {71,72} as well. However, we do not check it

here because its support is unknown. Given the benefit of the doubt, {1,71,72} is

included in C 3 . However, neither {1,71,73} nor {1,72,73} is in C 3 , because {1,73}

is not in L2.

We can generalize the above Strategy for more general M G F . For example,

the constraint C2 = {snacks, sodas} C S.Type is succinct, but not anti-monotone.

Its M G F is {Xi U I 2 U X3\Xi C Item 2 & Xx ^ $ & X2 C Item 3 & X2 7̂ 0 & X3 C

Itemi}, where Item2, Item3, and Itenu are as defined earlier. Our strategy is to first

form the sets L*{ = {e\e € Itemj+i & freq({e})} for each Xi,i — 1,2,3. Then we

generate the candidate set C2 = L*1 x From C2, we can find L2 (by counting

the support of the sets in C2). Next, we form C 3 = L2 x (i f 1 U i f 2 U L f 3) . After

that, Lk and Ck+i are computed as usual, with the only modification in candidate

generation that S is in Ck+l iff: for all subsets S' C S and \S'\ = k and S ' n i f 1 7̂ 0

and S ' n L f 2 7̂ 0 S' G L*.

5.3 Non-Succinct but Anti-monotone Constraints

So far, we have assumed that the constraint is succinct. If the constraint C is not suc

cinct, then it does not admit an M G F which can be used to avoid the generate-and-

test paradigm completely. Fortunately, we can still make use of the anti-monotone

property. This is done by checking whether the candidate sets, generated at each

level, satisfy C, before counting is done. Because of anti-monotonicity, candidate

sets that do not satisfy C can be safely dropped right away without counting for

their support. Thus, we have the following strategy.

Strategy III:

• Define Ck as in the classical Apriori Algorithm. Drop a set S E Ck from count-

44

ing whenever S fails satisfying the constraints, i.e. , constraint satisfaction is

tested before counting is undertaken.

5.4 Non-Succinct and Non-anti-monotone Constraints

If the constraint C is neither succinct nor anti-monotone, then it seems that we can

not use the constraint to perform any optimization. Fortunately, from our experi

ence, many such constraints induce weaker constraints that might be anti-monotone

and/or succinct. If such constraints can be found, then they can be exploited using

one of the strategies outlined above. In other words, the weaker constraints are used

to find the frequent sets. The only modification is that at the end of the algorithm,

one final round of testing the frequent sets for satisfaction of the original constraint

C is necessary. It is because the frequent sets, while guaranteed to satisfy the weaker

constraints, may not necessarily satisfy C. If the weaker constraints do not admit

too many spurious solutions (i.e. frequent sets that satisfy the weaker constraints,

but not C) , then the above strategy should be fairly efficient because the last of

constraints checking is relatively trivial.

E x a m p l e 5.2 Consider the constraint C = avg(S.A) > v. It is neither succinct

nor anti-monotone. However, it induces the weaker constraint C = max(S.A) > v.

In other words, every set S that satisfies C is guaranteed to satisfy C. Since C is

a succinct, but non-anti-monotone constraint, Strategy II can be applied. After all

frequent sets are found, each one of them has to be tested for satisfaction of C to

generate the final answers.

Strategy IV:

• Induce any weaker constraint C from C. Depending on whether C is anti-

monotone and/or succinct, use one of the strategies I-III above for the gener-

45

ation of frequent sets.

• Once all frequent sets are generated, test them for satisfaction of C.

5.5 Multiple Constraints

So far, we has assumed that we are dealing with a single constraint. However,

the set of constraints C in a C A Q may more often contain multiple constraints. A n

important question is then how the strategies we proposed for individual constraints

can be combined to handle multiple constraints. To this end, the set of constraints

C is divided into four sets of constraints according to whether the constraints are

succinct and/or anti-monotone. We denote the set of constraints that are both

succinct and anti-monotone by Csam. Similarly, Csuc denotes constraints that are

succinct but not anti-monotone; Cam denotes constraints that are anti-monotone

but not succinct; Finally, Cnone denotes constraints that are neither anti-monotone

nor succinct.

Strategy for Handling Multiple Constraints:

• Combine the M G F s of all the constraints in Csam- Apply Strategy I with the

combined M G F .

• Combine the M G F s of all the constraints in CSUc- Apply the Strategy II with

the combined M G F .

• For all constraints in C a T O , follow Strategy III.

• For each constraint in Cnone, induce weaker constraints and apply Strategy

IV.

Example 5.3 Let C be the constraints min(S.Price) > 100 & S.Type 2 {sodas}.

Then, Csam = mm(S'.Price) > 100 and Csuc = S.Type 2 {sodas}. To find fre-

46

quent sets that satisfy C, we apply Strategy I with the M G F of the constraint

mm (S .Pr ice) > 100 and Strategy II with the M G F of the constraint S.Type D

{sodas}.

5.6 Summary

The basic algorithms discussed in the previous chapter do not take into account the

property of the constraint. In designing our optimization strategies, we make use of

the two identified properties, namely, anti-monotonicity and succinctness, and try to

apply constraints checking as early as possible. We design four different strategies

(Stra tegy I - I V)depending on whether the constraint is anti-monotone and/or

succinct.

We also discuss how to handle multiple constraints in Section 5.5. We in

corporate all the optimization strategies discussed in this chapter into the following

algorithm called C A P (Constrained Apriori) for finding frequent sets that satisfy a

set of given constraints C.

A l g o r i t h m 5.1 (C A P)

1 if Csam U Csuc U Cnone is non-empty, prepare C\ as indicated in

Strategies I, II and IV; k = 1;

2 if Csuc is non-empty {

2.1 conduct database scan to form L\ as indicated in Strategy II;

2.2 form C2 as indicated in Strategy II; k = 2; }

3 while (Cfc not empty) {

3.1 conduct database scan to form Lk from Ck\

3.2 form Ck+i from Lk based on Strategy II if Csuc is non-empty,

and Strategy III for constraints in Cam;}

47

4 if Cnone is empty, Ans = \JLk. Otherwise, for each set S in

some Lk, add 5* to Ans iff S satisfies Cnone.

Algorithm C A P is one of the most important contribution in this thesis. As

we will see in the following chapter, the performance of Algorithm C A P is much bet

ter than the other basic algorithms discussed in Chapter 5. To conclude this chapter,

we state the soundness and completeness of Algorithm C A P as a proposition.

Proposition 5.1 A constraint C can be in one of the categories:

I Succinct and Anti-monotone

II Succinct but Non-anti-monotone

III Non-succinct but Anti-monotone

IV Non-succinct and Non-anti-monotone

If C is in category X (X=I-IV), then Strategy X proposed in Sections 5.1-5.4 is

sound and complete with respect to computing the frequent sets that satisfy C.

48

Chapter 6

Experimental Evaluation

In this chapter, we evaluate the performance of the various mining algorithms given

in Chapter 4 and 5 based on our experimental results.

6.1 Implementation and Experimental Environment

We implemented the algorithms Apriori"1", Hybrid(m), and C A P in C. Instead of

writing three different programs, we wrapped all the algorithms under one single

program which we call caq. The rationale is to try to share as much data structures

and library modules as possible so that a fair comparison can be achieved. In running

caq, choosing which mining algorithm to use is simply a matter of supplying different

flags. The command caq - a p r i o r i (-hybrid(m) , -cap) finds all the frequent

itemsets with the Apriori"1" (Hybrid(m), C A P respectively) Algorithm. The different

constraints were hard-coded using compiler directives.

One major decision in the implementation was what data structures should

be used in representing itemsets. Our initial attempt was to use bit vectors. Set

operations such as determining subset relationship were achieved by bitwise oper-

49

ations which were very efficient. However, we later realized that using bit vectors

leads to a memory problem. Wi th 1000 items, each itemset would require 125 bytes

or 32 integers (assuming 4 bytes for an integer). The number of itemsets in Ci could

be of the order of 500K. This implies that at least 60MB is required just to hold

C2! Therefore, we gave up the bit vectors representation. Instead, we used lists. A

size k itemset is represented by a list of k integers where each integer corresponds

to the item's identification number. Since the maximum size of a large itemset is

typically less than 10, we save at least 2/3 of the memory when compared with bit

vector representation.

We used the program gen developed at I B M Almaden Research Center [AS94]

to generate transactional databases. Gen is a program that can generate data syn

thetically for both associations and sequential patterns. It was downloaded from

the I B M Q U E S T web site (http://www.almaden.ibm.com/cs/quest). It requires

several input parameters. The most important ones are the number of transactions

in the databases and the number of items. While we experimented with various

databases, the results cited below are based on a database of 100,000 transactions

and a domain of 1000 items. Moreover, the average number of items in a transaction

is 25 and the maximal size of a large itemset is set to 10. The items are represented

by integers from 1 to 1000. The page size used was 4 Kbytes.

Our experiments were conducted in a time-sharing SPRAC-10 environment.

The memory size was 128MB and the typical number of users was about five. We

scheduled our experiments mainly at night so that the workload for other processes

was relatively low and uniform. We also made sure that our program was the only

major running job.

50

http://www.almaden.ibm.com/cs/quest

6.2 Succinct and Anti-monotone Constraints

Our first set of experiments compares the various algorithms using the succinct and

anti-monotone constraint max(S.Price) < v. Different values of v correspond to

different selectivities of the constraint. If there are x-% of the items whose price is

less than or equal to v, then we say the selectivity is x-%. The translation between

selectivity and v is as follows. We number the items from 1 to 1,000. Without loss

of generality, the P r i c e value of each item is taken to be exactly its number. Then,

the selectivity for a particular v value is simply We then run our experiments

with different selectivities and different support values.

We show our results by plotting speedup against selectivity and support

threshold. The speedup of various algorithms is denned to be the execution time

of Apriori 4" divided by that of the algorithm being considered. In other words, we

measure the speedup relative to Algorithm Apriori"1". Figure 6.1 plots the speedup as

a function of constraint selectivity, with support threshold set at 0.5%, and Figure

6.2 shows the relationship between the speedup and support threshold, with the

selectivity fixed at 30%.

We first discuss our results for the Hybrid(m) algorithms. We find that

Hybrid(O), Hybrid(l) , and Hybrid(2) all take much too long when compared with

Apriori 4". This shows that the C P U cost of finding all the sets that satisfy the

constraints in a generate-and-test mode is prohibitive. Hybrid(3), Hybrid(4), etc.

take more or less the same time as Apriori"1", almost always within 5% of each other.

Algorithm Hybrid(m) is the same as Algorithm Apriori"1" at the first m iterations. It

then tries to reduce remaining database scanning time at the expense of increasing

C P U time. However, the I /O cost is dominated by the first few iterations. Therefore,

for m — 3,4,.., savings on the I /O cost corresponding to later iterations do not lead

to any observable reduction in execution time when compared with Apriori"1". It is

quite possible that with a larger database size, Hybrid(m) algorithms will become

51

Speedup vs Selectivity

0 10 20 30 40 50 60 70
item selectivity (%)

Figure 6.1: Speedup vs Selectivity for a Succinct and Anti-monotone Constraint

52

Speedup vs Support

0.2 0.4

support threshold (%)

0.6

Figure 6.2: Speedup vs Support for a Succinct and Anti-monotone Constraint

53

selectivity 5 10 30 50 70
Li 19/362 40/362 112/362 66/362 254/362
L2

0/66 0/66 14/66 26/66 41/66
L3 0/91 0/91 10/91 21/91 45/91
U 0/105 0/105 5/105 15/105 40/105
L5 0/77 0/77 1/77 6/77 22/77
L6 0/35 0/35 0/35 1/35 7/35
L7 0/9 0/9 0/9 0/9 1/9
L8 0/1 0/1 0/1 0/1 0/1

Table 6.1: Number of frequent sets that satisfy max(S.Price < v) /number of
frequent sets for different selectivities (v/10) with support = 0.5%

more efficient than Apriori"1". However, it is quite unlikely that their efficiency can be

comparable with Algorithm C A P . Therefore, in the following discussion, our focus

will be on Algorithm C A P .

We include Table 6.1 and 6.2 to help illustrate our results. In both tables,

each column corresponds to a different setting. The rows correspond to the sizes of

the frequent sets. Each entry is of the form a/b, where a is the number of frequent

sets satisfying the constraint, and b is simply the total number of frequent sets of

that size. Table 6.1 contains results for the various selectivities used in Figure 6.1,

whereas Table 6.2 shows the results for different support thresholds corresponding

to the settings used in Figure 6.2.

We now consider the relationship between speedup and item selectivity. As

one can see from Figure 6.1, Algorithm C A P clearly outruns A p r i o r i + . At 10%

selectivity, the speedup for C A P is about 80 times. Even at a selectivity of 30%,

C A P still runs 10 times faster than Apriori"1".

One can understand such a huge speedup (> 80) of C A P for selectivities

less than 10% by examining the first two column in Table 6.1. For a 5% selectivity

(i.e. the first column), A p r i o r i + has to find all the 362 frequent sets of size 1, 66

54

support 0.6% 0.5 % 0.4% 0.3% 0.2%
Li 98/313 112/362 131/421 159/503 174/582
L2

1/12 14/66 22/160 40/333 79/969
U 0/1 10/91 11/186 17/390 29/1140
U 0/0 5/105 5/210 6/427 8/1250
L5 0/0 1/77 1/70 1/309 1/934
Le 0/0 0/35 0/18 0/140 0/451
L7 0/0 0/9 0/8 0/36 0/132
L8

0/0 0/1 0/2 0/4 0/20

Table 6.2: Number of frequent sets that satisfy max(S.Price) < v) /number of
frequent sets for different support values at 30% selectivity

frequent sets of size 2, 91 frequent sets of size 3, • • • and so on , before it stops. On

the contrary, C A P stops after the first iteration. The number of frequent sets it

has to find is only 19. Furthermore, the number of database scan it has to perform

is only 1 compared with 8 for Apriori"1". Similarly, C A P can stop after the first

iteration for 10% selectivity. At 30% selectivity, C A P stops after 5 iterations and

the speedup is smaller than 80. But still, the speedup is as large as 10 times. This

is because the number of frequent sets (i.e. 112, 14, 10, 5, and 1 for frequent sets of

sizes 1, 2, 3, 4, and 5 respectively) C A P has to process is much smaller than that

of Apr ior i + ' s (i.e. 362, 66, 91, 105, and 77 for frequent sets of sizes 1, 2, 3, 4, and 5

respectively).

The trend shown in Figure 6.1 is that as the constraint becomes less restric

tive (i.e. as selectivity increases), the speedup of C A P decreases. This can also be

understood by examining the entries in Table 6.1. As the constraint becomes less

restrictive, the pruning power provided by the constraint decreases. The number of

frequent sets which need to be found by C A P increases (as shown in Table 6.1). Sav

ings obtained by pushing the constraint in the C A P Algorithm become less obvious,

thus the speedup decreases.

55

We now turn to the relationship between speedup and support threshold.

The graph in Figure 6.2 shows that the speedup of C A P is about 7 to 11 times

for support threshold from 0.2% to 0.6%. We choose the support thresholds such

that A p r i o r i + requires between 5 and 8 iterations. The speedup shown in Figure

6.2 decreases slowly with increasing support threshold.

When the support threshold is low, the number of frequent sets is large.

Most of the frequent sets may turn out not to satisfy the constraint. For example,

for a support of 0.2% and sets of size 4, A p r i o r i + finds 1250 frequent sets, but only

8 of which need to be found by C A P ! Moreover, Apriori"1" has to find frequent sets

of size 6 and up, whereas C A P can stop after size 5. Thus, A p r i o r i + is relatively

much less efficient than C A P leading to a speedup of more than 11 times.

When the support threshold is high, the total number of frequent sets is

smaller, and Apriori"1" behaves relatively better. At 0.6% support, Apriori"1" only

iterates one more time than C A P . However, it still processes too many frequent sets

potentially violating the constraint, and the speedup for C A P is still as large as 8

times.

To conclude, if the support thresholds are chosen to be small, A p r i o r i + would

require more iterations and the overall speedup of C A P would be larger. If the

support thresholds are chosen to be higher so that number of iterations required by

A p r i o r i + decreases, the speedup achieved by C A P would be lower, but it would still

be substantial. The reason is that the major savings contribution achieved by C A P

come from the very first few iterations.

6.3 Succinct but Non-anti-monotone Constraints

In the next series of experiments, we use the succinct but non-anti-monotone con

straint {soda} C S'.Type. Similar to the previous case, we illustrate our results by

56

selectivity (%) 10 13 15 20 50 70 90
Li 40/362 54/362 60/362 82/362 184/362 254/362 324/362
L2

0/66 12/66 19/66 35/66 57/66 65/66 66/66
L3 0/91 15/91 36/91 67/91 87/91 91/91 91/91
Li 0/105 20/105 55/105 89/105 104/105 105/105 105/105
L5 0/77 15/77 50/77 71/77 77/77 77/77 77/77
Le 0/35 6/35 27/35 34/35 35/35 35/35 35/35
L7 0/9 1/9 8/9 9/9 9/9 9/9 9/9
L8

0/1 0/1 1/1 1/1 1/1 1/1 1/1

Table 6.3: Number of frequent sets that satisfy {soda} C S.Type /number of frequent
sets for different selectivities with support = 0.5%

plotting speedup against item selectivity (see Figure 6.3) and speedup versus sup

port threshold (see Figure 6.4). A n x-% selectivity in Figure 6.3 means that there

are x - % of the items whose type is soda.

Once again, C A P clearly outruns other algorithms. For example, for selec

tivities of 5%, 10%, and 20%, C A P runs 9, 4, and 2.5 times faster than Apriori 4 "

respectively (see Figure 6.3). At a selectivity of 13%, C A P can achieve a speedup

of about 3.5 times for support thresholds between 0.3% and 0.6% (Figure 6.4).

To capture the pruning achieved by C A P , we show the number of frequent

sets that satisfy the constraint (a) and the number of frequent sets (b) in the form

a/b in the Tables 6.3 and 6.4. Table 6.3 corresponds to the settings used in Figure

6.3, whereas Table 6.4 uses the same settings as that in Figure 6.4.

When compared with the previous case (i.e. the case of succinct and anti-

montone constraints), the gain here shown by C A P comes entirely from the succinct

ness of the constraint. For example, at 5% selectivity, the speedup is about 8 times.

This shows the relevance of the succinctness property in performance optimization.

When compared with the previous case, the speedup is smaller. At 5%

selectivity, it was 80 times in the previous case compared with 8 times here. This

57

Speedup vs Selectivity

20 30 40 50

item selectivity (%)

60 70

Figure 6.3: Speedup vs Selectivity for a Succinct and Non-anti-monotone Constraint

58

6
Speedup vs Support

5 -

4 - CAP

Q. ~ ~ ~ ~

1 3 -
CD
C L
CO

2 -

1
Apriori+ / Hybrid(3)

0 I 1 1

0.3 0.4 0.5 0.6
support threshold (%)

Figure 6.4: Speedup vs Support for a Succinct and Non-anti-monotone Constraint

support 0.6% 0.5 % 0.4% 0.3%

Li 49/313 54/362 60/421 72/503
L2

3/12 12/66 39/160 96/333
0/1 15/91 64/186 157/390

u 0/0 20/105 85/210 215/427
L5 0/0 15/77 70/154 180/309
L6 0/0 6/35 34/70 90/140
L7 0/0 1/9 9/18 25/36
L8 0/0 0/1 1/2 3/4

Table 6.4: Number of frequent sets that satisfy {soda} C S'.Type /number of frequent
sets for different support values at 13% selectivity

demonstrates that a constraint that is both succinct and anti-monotone effects much

more pruning than a constraint that is only succinct. Succinctness combined with

anti-monotonicity can be exploited to produce a powerful compound effect on per

formance optimization.

One way to understand why the speedup in this case is smaller than the

previous case is to compare the number of frequent sets that satisfy the constraints in

Table 6.1 with that in Table 6.3. At the same selectivity, the number of frequent sets

that satisfy the succinct but non-anti-monotone constraint {soda} C S.Type is larger

than that for the succinct and anti-monotone constraint maa;(S.Price) < v. For

example, at 50% selectivity, the number of frequent sets that satisfy the constraint

{soda} C S.Type is 184, 57, 87, and 104 for sizes 1, 2, 3, and 4, whereas those

numbers are 66, 26, 21, and 15 for the constraint maa;(S.Price) < v. This is

reasonable as the latter constraint is also anti-monotone and therefore intuitively it

should be more restrictive. The speedup for a more restrictive constraint should be

higher which is consistent with what we observe in our experiments.

One cannot compare directly Table 6.2 with Table 6.4 because the selectivity

for the two tables are set at different values. Nevertheless, we can still see that the

60

number of frequent sets that satisfy the constraint max(S.Price) < v decreases

much more rapidly with the size of the frequent sets than that of the constraint

{soda} C S.Type. This is again consistent with the observation that the speedup in

this case is less than the previous case.

6.4 Non-Succinct but Anti-monotone Constraints

Next, we consider the case of non-succinct but anti-monotone constraints. The

constraint used is sum(S.PTice) < MaxSum. Similar to the case of succinct and

anti-monotone constraints, we assume that the P r i c e value of each item is exactly

its number, i.e. from 1 to 1,000. MaxSum is set to be 500, 1000, 2000 and so on.

In contrast with the previous cases, there is no simple translation from MaxSum

to item selectivity. Thus, we plot speedup against MaxSum in Figure 6.5, instead

of speedup against item selectivity.

Contrary to the previous two cases, the dominance of C A P drops very

rapidly as the value of MaxSum increases. While the speedup is above 7 times

for MaxSum 500, C A P shows no gain over Apriori 4" for MaxSum > 2000. It

can be explained by Table 6.5.

When MaxSum is 500, the constraint helps reduce the number of frequent

sets at level 1 by a half (i.e. 184 out of 362). This reduction is compounded at

subsequent levels. Such pruning provided by the constraint leads to a speedup of

over 7 times. When MaxSum reaches 1000, all the size 1 frequent sets pass the

constraints. Pruning provided from the constraints only starts at level 2 (i.e. 39 out

of 66). This modest reduction is then compounded at higher levels, giving an overall

speedup of about 2 times. However, when MaxSum is increased to 2000, there is

no pruning at the first two levels. Pruning only comes at higher levels. Since the

major portion of the computation is spent on lower levels, the pruning coming from

61

Speedup vs MaxSum

1000 2000
MaxSum

3000

Figure 6.5: Speedup vs Selectivity for a Non-succinct and Anti-monotone Constraint

62

Speedup vs Support

0.4 0.5
support threshold

0.6

Figure 6.6: Speedup vs Selectivity for a Non-succinct and Anti-monotone Constraint

63

MaxSum 500 1000 2000 3000
Li 184/362 362/362 362/362 362/362
L2 16/66 39/766 66/66 66/66
L3 4/91 28/91 86/91 91/91
U 0/105 15/105 77/105 105/105
L5 0/77 1/77 40/77 72/77
U 0/35 0/35 13/35 30/35
L7 0/9 0/9 1/9 8/9
LB 0/1 0/1 0/1 0/1

Table 6.5: Number of frequent sets that satisfy sum(S.Pxice) < MaxSum) /num
ber of frequent sets for different MaxSum with support = 0.5%

support 0.6% 0.5% 0.4% 0.3%
Li 160/313 184/362 207/421 250/503
L2

1/12 16/66 32/160 58/333
Lz 0/1 4/91 5/186 13/390
L 4

0/0 0/105 0/210 1/427
L5

0/0 0/77 0/154 0/309
Le 0/0 0/35 0/70 0/140
L7 0/0 0/9 0/8 0/36
L8

0/0 0/1 0/2 0/4

Table 6.6: Number of frequent sets that satisfy sttm(S'.Price) < MaxSum) /num
ber of frequent sets for different support values with MaxSum = 500

64

later levels does not help. Therefore, we can conclude that in order for any pruning

optimization to be significant, it has to be effective as early as possible at the first

two levels. In fact, any reduction from lower levels is compounded to higher levels

giving rise to a significant speedup.

In Figure 6.6 and Table 6.6, we show our results for the relationship between

speedup and support threshold. Similar to the other cases, if the constraint produces

fairly large pruning, the speedup is as large as 5 to 8 times for various support

thresholds from 0.3% to 0.6%.

6.5 Non-Succinct and Non-anti-monotone Constraints

Finally, the last category to investigate is non-succinct and non-anti-monotone

constraints. In particular, we consider the constraint Avg(S.Price) < v. This

constraint is difficult to optimize. Fortunately, it induces the weaker constraint

m m (S.Price) < v. In order for S to satisfy the first constraint, S has to satisfy

the latter constraint. Since the constraint m m (S.Price) < v is succinct but non-

anti-monotone, we can use Strategy II in Section 5.2 to compute frequent sets that

satisfy it. Then, for each of the frequent sets found, we check whether it satisfies

the original constraint Avg(S.Price) < v. Figure 6.7 and 6.8 shows our results.

Similar to the other cases, we also supplement the figures with two tables

(Table 6.7 and 6.8) to illustrate what is going on. Instead of just a/b, the entries

in these tables are in the form a/b/c where a, b, and c are the number of frequent

sets that satisfy the original constraint, the induced constraint and no constraint

respectively.

Figures 6.7 and 6.8 show that the speedup of C A P over Apriori"1" is very sim

ilar to the case for a typical succinct but non-anti-monotone constraint, even though

only a small portion of the frequent sets that satisfy the induced constraint does

65

Speedup vs Selectivity

20 30
item selectivity

40 50

Figure 6.7: Speedup vs Selectivity for a Non-succinct and Non-anti-monotone Con
straint

66

S 2
CD CL W

Speedup vs Support

0
0.4 0.5

support threshold (%)
0.6

Figure 6.8: Speedup vs Support for a Non-succinct and Non-anti-monotone Con
straint

67

AvgPrice 50 130 145 200 500
Li 19/19/362 54/54/362 59/59/362 82/82/362 184/184/362
L2 0/3/66 1/12/66 2/19/66 9/35/66 39/57/66
L3 0/0/91 0/15/91 0/36/91 7/67/91 64/87/91
LA 0/0/105 0/20/105 0/55/105 5/89/105 77/104/105
L5 0/0/77 0/15/77 0/50/77 1/71/77 63/77/77
Le 0/0/35 0/6/35 0/27/35 0/34/35 30/35/35
L7 0/0/9 0/1/9 0/8/9 0/9/9 8/9/9
L8

0/0/1 0/0/1 0/1/1 0/1/1 1/1/1

Table 6.7: Number of frequent sets that satisfy Avg(S.Price) < AvgPrice / number
of sets that satisfy mm(S.Price) < AvgPrice / number of frequent sets for different
values of AvgPrice with support = 0.5%

support 0.6% 0.5% 0.4% 0.3%

Li 74/74/313 82/82/362 96/96/421 114/503/503
L2

0/5/12 9/35/66 18/79/160 38/158/333
L3 0/0/1 7/67/91 10/131/186 23/268/390
LA

0/0/0 5/89/105 5/174/210 12/350/427
L5 0/0/0 1/71/77 1/141/154 2/282/309
Le 0/0/0 0/34/35 0/68/70 0/136/140
L7 0/0/0 0/9/9 0/18/18 0/36/36
Ls

0/0/0 0/1/1 0/2/2 0/4/4

Table 6.8: Number of frequent sets that satisfy Avg(S.Price) < AvgPrice / number
of sets that satisfy mm(S.Price) < AvgPrice / number of frequent sets for different
support values with AvgPrice = 200

68

happen to satisfy the original constraint. This indicates that the final verification

step takes a relatively small amount of time and the idea of using induced weaker

constraints works quite well.

6.6 S u m m a r y

To summarize, among all the various algorithms discussed in Chapters 4 and 5,

C A P is the most efficient. Hybrid(m) m > 3 are comparable with Apriori"1". On

the other hand, Hybrid(O), Hybrid(l) , and Hybrid(2) are the slowest. While the

exact speedup of the C A P Algorithm over the Apriori"1" depends on many factors

and varies under different situations, we find that C A P can easily outrun Apriori"1"

by a factor of 5 to 10 in many cases. We also find that the speedup increases with

decreasing item selectivity (i.e. with more restrictive constraints) and decreases

with increasing support thresholds. The main factor in determining the speedup

of C A P is on how much pruning the constraints provide. Both succinctness and

anti-monotonicity produce significant pruning power and their combined effect is

even stronger. Thus, the speedup of C A P can be as much as 80 times in the case of

succinct and anti-monotone constraints.

69

Chapter 7

Conclusions

7.1 Conclusions

There has been an increasing demand for discovering useful information from very

large databases. Data mining, which can be defined as an automatic process of

discovering hidden useful patterns from large databases, has recently generated a

high degree of interest. Among the most popular data mining patterns discovered in

large transactional databases are association rules. A classical association rule takes

the form of X Y, where X U Y is a set of items that appears at least minsup%

of the times in the database and among those transactions that contain X, at least

c% of them also contains Y. Minsup and c are two input parameters referred to

as the support threshold and the confidence respectively. The motivation of mining

association rules is to find out what items tend to appear together. In a classical

association query, the user only need to specify the values for the support threshold

and the confidence. The answer to the query is a list of all the association rules

found.

However, this classical association mining model suffers from (i) lack of user

70

exploration and control, (ii) lack of focus, and (iii) rigid notion of relationship. In

particular, there may be no association rules found or thousand of rules found with

most of them not being what the user is looking for. In this thesis, we have defined

a model where a user can specify additional constraints in the query. The type of

constraints can include class, domain, and aggregation constraints. Then, the sys

tem can focus the mining task on associations that satisfy the specified constraints.

This allows the system to find associations that have a better chance of satisfying

the user's need. We have suggested a two-phase architecture for the mining process

providing numerous opportunities for user feedback, control, and approval. More

importantly, we develop techniques for pushing the constraints deep inside the min

ing process to optimize performance so that the work performed by the system is

commensurate with the focus expressed by the user via constraints. Towards this

end, we have identified the anti-monotonicity and succinctness properties according

to which we characterize constraints into various categories. For each category, we

have developed specific strategies for finding frequent itemsets that satisfy the given

constraints. The resulting algorithm, called C A P (Constrained Apriori), is based on

the basic idea of exploiting the given constraints as early as possible in the mining

process. We have implemented both C A P and several other basic algorithms that

do not use the anti-monotonicity and succinctness properties offered by the con

straints. A series of experiments were performed to compare the performance of the

various algorithms. We found that C A P clearly outruns all the other algorithms.

The speedup of C A P over other algorithms is about 5-10 times on average and more

than 80 times in the best case.

To enable the technology of data mining to reach its full potential, many re

searchers believe that it is important to have a framework where a user can interact

with a mining system in much the same way that the user does with a Relational

Database Management System today (e.g, [IM96]). We believe that the work pre

sented in this thesis represents an important step in this direction.

71

7.2 Future Work

While we believe that the work presented in this thesis is significant, due to time

and scope limitation, several important issues have been left out for future work.

They are discussed below.

(1) Phase II: The entire thesis has been focused on Phase I of finding frequent

itemsets. The implementation of Phase II, the pros and cons of different significance

metrics in the association relationship, and the corresponding algorithms are not

discussed. In fact, all of these issues will be investigated in another thesis work

[Phase II].

(2) 2-var Constraints: Our investigation has been focused on 1-var constraints

in this thesis. A similar idea of pushing constraints deep into the computation can

also be applied to 2-var constraints. We have already carried out a detailed analysis

of 2-var constraints. Details will be found in a forthcoming paper.

(3) Segment Support: Next, we discuss an optimization technique which is

not specific to C A Q mining, but general enough that it can be applied to classical

association queries and its variants.

The technique involves dividing transaction databases into segments. Given

a transaction database V, we partition it into M segments, denoted by T>i(i =

1,..., M) , in' some arbitrary way. Then, instead of using just one integer for the

support of a candidate set, we use M integers where each integer corresponds to

the support of the set over one transaction database segment. We refer to the M

integers as the segment supports:

Definition 7.1 (Segment Support) Given a transaction database V and a parti

tion {V^i = 1..M} of the database (i.e. V = lifLi^h TJ^Vj = 0 for i ^ j), the ith

segment support of any set S is defined to be the support S over T>i and is denoted

72

S P i P2 P
{A,B} 100 200 300
{A,C} 200 200 400
{B,C} 200 100 300
{A,B,C} 100 100 200

Table 7.1: A n example to illustrate the idea of segment support

by Supporti(S).

The sum of the segment supports gives the total support which is the support

in usual sense. We note that segment support satisfies the same anti-monotone

property of the total support. In other words, VS, L, S C L =>• Supporti(S) >

Supporti(L).

The motivation of introducing segment support is best illustrated with an

example.

Consider the following simple example where the number of segments is two

(i.e. M = 2) and the support threshold is 250. The first three rows in Table 7.1

show the segment support for the three set {A,B},{A,C}, and {B,C}. The last

column shows the total support of the three sets. Since all (total) supports are

larger than 100, the support threshold, all the sets, {A, B}, {A, C}, and {B, C } , are

size two frequent sets. Now, consider the generation of size three candidate sets.

Without the information provided by segment support, the set {A, B, C} would be a

valid candidate set in C3. However, the maximum possible segment support for the

set {A, B, C} in each segment has to be equal to the minimum among the segment

supports over the same segment of its subsets. The reason for that is because of

the anti-monotone property of the segment support discussed above. In segment

one, the minimum of the segment supports among {A, B}, {A, C}, and {B,C} is

100. Therefore, the segment support of {A, B, C} can be at most 100. Similarly,

73

the maximum segment support of {A, B, C} in segment two is 100. Thus, the total

support of {A, B, C} must be equal or less than 200. This implies the set {̂ 4, B, C}

cannot be frequent and can be pruned away from C 3 before counting for support.

The above example illustrates that we can prune away many potential can

didate sets in the generation of Ck+\ from Lk- The power of this pruning power is

based on the following inequality.

For any set S G 'P(ltem),
M

Support(S) < ^2 min {Supportj (Si)}, (7.1)
j = i 5 ' c 5

where Support(S) means the total support of S and the minimum operator

runs over all the S"s subsets. The right hand side of the above equation can be

taken as the estimated support for the set S.

To prove the above inequality, we note that the total support of S is equal

to the sum of the support of S over each database segment Di, i.e. Support(S) =

^2jL\ Supportj(S). However, as a support function, we have Supportj(S) < Supportj(Si),

VSj C S, and thus, Supportj(S) < mins i C s{Supportj (Si)} which leads to the above

inequality.

The pruning power of the segment supports increases with the number of

segments. In fact, if one goes to the extreme case where the number of segment

is the number of transactions, the estimated support will be the actual support.

The actual choice of the number of segments represents a tradeoff among computer

resources. If there is enough memory resources, one would like to use a larger number

of segments because the pruning power provided by the segment supports is higher.

Wi th fewer candidate sets, C P U costs (and related I /O costs) are reduced. On the

other hand, if there is not enough memory, a large number of segment supports will

consume up memory that could have been used for other purposes such as holding

transaction data. This will increase the I /O costs.

74

Experimental investigation of the implication of the segment support is un

derway. Applications of the above idea to real life data should be an interesting

future work.

(4) Jumping Levels: Finally, another direction for future work is based on

the observation that for each frequent set found at the end of the Apriori"1" Algo

rithm, every one of its subsets has been counted. For example, in order to find

the frequent itemset {A, B,C, D}, Apriori"1" needs to count support for every one

of the sets {A},{B}, {C},{D}, {A, B}, { A , C } , {A, D}, {B, C}, {B,D},{C,D},

{A,B,C},{A,B,D}, {A,C,D}, and {B,C,D). However, if somehow we count

{A, B, C, D} before counting its subsets and realize that it is frequent, then we can

a posteriori prune away all its subsets from counting because we know all its sub

sets would be frequent. This leads to the idea of jumping level. In other words,

Apriori"1" is a level-by-level algorithm and the pruning of candidate sets is based on

our knowledge on lower levels. We can prune away a candidate set if any of one of

its proper subsets is not included in the list of frequent sets found in lower levels.

However, if we have already counted some higher level to get all the frequent sets of

size larger than the current size of the candidate sets, then we can also prune away

those candidate sets that are subsets of some frequent sets at higher levels. This

is because those candidate sets are guaranteed to be frequent and therefore can be

dropped from counting.

Using a scheme of jumping ahead to count higher levels can provide addi

tional pruning power. However, there are still many issues one has to resolve. For

example, counting higher levels can pay off only when there are a significant number

of frequent sets to be found. If all the candidate sets turn out to be non-frequent,

then no information is gained. Moreover, it is not clear which level to "jump".

Intuitively, if there are still a significant number of frequent sets, one would like to

jump to higher levels as the chance of payoff is higher. However, more analysis is

required to make use of the above idea and to come up with an efficient algorithm.

75

Bibliography

[AIS93] R. Agrawal, T. Imielinski and A. Swami, Mining association rules between

sets of items in large databases, SIGMOD 93, p. 207-216.

[ALSS95] R. Agrawal, K . Lin , H . S. Sawhney, K . Shim, Fast Similarity Search in the

Presence of Noise, Scaling, and Translation in Time-Series Databases, VLDB

95.

[AMS97] K . A l i , S. Manganaris, and R. Srikant, Partial Classification using Asso

ciation Rules, American Association for Artifical Intelligence 1997.

[AS94] R. Agrawal and R. Srikant, Fast algorithms for mining association rules,

VLDB 94, p. 487-499.

[AS95] R. Agrawal and R. Srikant, Mining Sequential patterns, Proc. 1995 Inter

national Conference on Data Engineering, March 1995.

[AS96] R. Agrawal and J. C. Shafer, Parallel mining of association rules: Design,

implementation, and experience, IEEE TKDE, 8, p. 962-969, 1996.

[BMS97] S. Brin, R. Motwani, and C. Silverstein, Beyond market basket: General

izing association rules to correlation, SIGMOD 97, p. 265-276.

[BMUT97] S. Brin, R. Motwani, J . Ullman, and S. Tsur, Dynamic itemset counting

and implication rules for market basket data, SIGMOD 97, p. 255-264.

76

[CHNW96] D. W. Cheung, Jiawei Han, V . T. Ng, and C. Y . Wong, Maintenance

of Discovered Association Rules in Large Databases: A n Incremental Updating

Technique, Proceedings of the International Conference on Data Engineering,

Feb. 1996.

[FMMT96] T. Fukuda, Y . Morimoto, S. Morishita, and T. Tokuyama, Mining Op

timized Association Rules for Numeric Attributes, PODS 96, p. 182-191.

[HKK97] E . - H . Han, G. Karypis, and V . Kumar, Scalable Parallel Data Mining for

Association Rules, SIGMOD 97, p. 277-288.

[HF95] J . Han and Y . Fu, Discovery of multiple-level association rules from large

databases, VLDB 95, p. 420-431.

[IM96] T. Imielinski and H . Mannila, A database perspective on knowledge discov

ery, Communications of ACM, 1996, p. 58-64.

[KN97] E . Knorr and Raymond T. Ng, A Unified Notion of Outliers: Properties and

Computation, Proceedings of the 3rd International Conference on Knowledge

Discovery and Data Mining, 1997, p. 219-222.

[MAR96] M . Mehta, R. Agrawal and J . Rissanen, SLIQ: A Fast Scalable Classifier

for Data Mining, Proc. of the Fifth International Conference on Extending

Database Technology, March 1996.

[Meta Group] Mining Your Own Business, Information Week cover story, March 16,

1998.

[MPC96] R. Meo, G. Psaila, and S. Ceri, A new SQL-like operator for mining

association rules, VLDB 96, p. 122-133.

[MY97] R. J . Miller and Y . Yang, Association rules over interval data, SIGMOD

97, p. 452-461.

77

[NH94] R. T. Ng and Jiawei Han, Efficient and Effective Clustering Methods for

Spatial Data Mining, VLDB 94, p. 144-155.

[NLHP98] R. T. Ng, L . V . Lakshmanan, J . Han, and A . Pang, Exploratory Mining

and Pruning Optimizations of Constrained Associations Rules, SIGMOD 98,

p. 13-29.

[PCY95] J . Park, M . Chen, and P. Yu, A n Effective Hash-Based Algorithm for

Mining Association Rules, SIGMOD 95, p. 175-186.

[Phase II] Teresa Mah, Master of Science Thesis, Computer Science, University of

British Columbia, 1999.

[QUEST] R. Agrawal, A . Arning, T. Bollinger, M . Mehta, J . Shafer, R. Srikant,

The Quest Data Mining System, KDD 96.

[SA95] R. Srikant and R. Agrawal, Mining generalized association rules, VLDB 95,

p. 407-419.

[SA96] R. Srikant and R. Agrawal, Mining quantitative association rules in large

relational tables, SIGMOD 96, p. 1-12.

[SVA97] R. Srikant, Q. Vu, and R. Agrawal, Mining association rules with item

constraints, KDD 97, p. 67-73.

[TUACMN97] D. Tsur, J . Ullman, S. Abitboul, C. Clifton, R. Motwani, and S.

Nestorov, Query flocks: A generalization of association rule mining, SIGMOD

98, P. 1-12.

78

