
Conceptual Modules: Expressing Desired Structure

Software Reengineering

by

Elisa L . A . Baniassad

B.CSc, Technical University of Nova Scotia, 1995

A THESIS S U B M I T T E D IN PARTIAL F U L F I L L M E N T O F

T H E R E Q U I R E M E N T S F O R T H E D E G R E E O F

M a s t e r of Science

in

T H E F A C U L T Y O F G R A D U A T E STUDIES

(Department of Computer Science)

we accept this thesis as conforming
to the required standard

The University of Bri t ish Columbia
December 1997

© Elisa L . A . Baniassad, 1997

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

Department of C O M P U T E R S Q (£ N C £ T

The University of British Columbia
Vancouver, Canada

Date TtecVSM ^ ft 1 <3 i h YWt

DE-6 (2/88)

Abst rac t

Many tools have been built to analyze the source code of software systems. Most
of these tools do not adequately support software reengineering activities because
they do not allow a software engineer to analyze both existing and desired software
structures.

This thesis describes the conceptual modules approach and supporting tool
that aids the engineer in the investigation and analysis of desired structure with
relation to the existing structure of source code. This approach allows a selected
subset of lines of source to be treated as a logical unit. This subset is referred to as
a conceptual module. The lines of code that comprise a conceptual module need not
be contiguous, nor must they be related in any way in the source. Using variable
dependence and control transfer information extracted from the source, the tool
analyzes the conceptual module's constituent lines of code to determine its interface.
Additionally, the data- or control-flow between two or more conceptual modules can
be examined as a means of eliciting the relationships between the modules and
between conceptual modules and the source. To allow the necessary flexibility in
analysis, the functionality of the tool can be tailored through a programmatic query
language component.

The usefulness of the tool has been investigated in two different ways. First,
the tool was applied to several different reengineering scenarios: restructuring from
procedural to object-oriented program design, re-modularizing code in an existing
program with little structure, and extracting a portion of source for reuse. For each
scenario, several existing program understanding tools were also applied to provide
a basis of comparison between existing approaches and the conceptual modules
approach. Second, the tool was successfully applied to actual reengineering tasks by
two different groups of users. One group eliminated unnecessary parts of a system's
source to improve efficiency and to enable parallelization of a 47,000 line, 56-file
software package. The other group performed analysis on a procedural program so
as to better understand how to transform the existing source into an object-oriented
version.

ii

Contents

Abstract ii

Contents iii

List of Tables vi

List of Figures vii

Acknowledgements viii

1 Introduction 1

1.1 A Sample Reengineering A c t i v i t y 4

1.2 Overview 9

2 Related Work 11

2.1 Slicing 12

2.1.1 Stat ic Slicing 12

2.1.2 Chopping 13

2.1.3 Interface Slicing 15

2.2 Program Databases 16

2.2.1 xrefdb - F ie ld cross-reference server 16

in

2.2.2 G r a p h L o g 17

2.3 Type Inferencer: Lackwi t 18

2.4 Reverse Engineering Tools 19

2.4.1 R ig i 19

2.4.2 M a n S A R T 20

2.5 Reflexion Models 20

2.6 Software Architecture 21

3 Conceptual Module Approach and Tool 23

3.1 Conceptual Modu le Construct ion and Refinement 25

3.2 Analys is 26

3.2.1 Intermediate Representation 28

3.2.2 Single Conceptual Modu le Analysiss 31

3.2.3 Determining Relationships Between Conceptual Modules . . 36

3.2.4 Determining Relationships Between Conceptual Modules and

the Source 40

3.3 Tool Implementation 40

3.3.1 Classes 41

3.4 User and Query Interface 43

3.4.1 Query L ib ra ry 44

4 Validation 51

4.1 User Testing: Case Study 51

4.1.1 Ex t rac t ing a Funct ional Subset 52

4.1.2 M o v i n g to Object-Oriented Design 55

4.2 Sample Scenarios 56

iv

4.2.1 G n u sort - Component Ex t rac t ion 57

4.2.2 Adventure - Clar i fy ing Commonal i t ies 59

4.2.3 G N U p l o t - Assessing New Structure 61

5 Summary 64

5.1 Discussion 66

5.1.1 Query Context 66

5.1.2 Query Form 67

5.1.3 Query Report Format 68

5.1.4 Line Number Granular i ty 68

5.1.5 Role of the Source M o d e l 69

5.1.6 Con t ro l Dependence Information 70

5.2 Extensions 71

5.2.1 Archi tec tura l Conformance 71

5.2.2 Result Repor t ing 72

5.2.3 Considering D a t a Structures 74

Bibliography 76

Appendix A Menu Items of the Tool 80

v

List of Tables

3.1 Definitions for variable dependence analysis 35

3.2 Set definitions for input, output and local variables of a conceptual module . . 36

vi

List of Figures

1.1 Process for using the conceptual module tool 6

1.2 Tool output for the conceptual module input-pipe 8

1.3 Query and result: all dependences of the merge conceptual module 10

3.1 Iterative process of using the conceptual module tool 23

3.2 Components of the conceptual module tool 24

3.3 First sweep of variable assignment 32

3.4 Second sweep of variable assignment 34

3.5 Types of relationships between conceptual module 36

3.6 Pseudo-code computation of an indirect relationship between two conceptual

modules 39

3.7 Relationships between classes and scripts 49

3.8 User Interface window of the tool 50

4.1 Selected non-contiguous lines of source 57

4.2 Common definition points between two conceptual modules 61

4.3 Query to compare inputs and outputs of two conceptual modules 63

A . l User interface window of the tool 84

vii

Acknowledgements

I'd like to thank Yvonne Coady for her participation in the user-studies of this tool.
I'd like to thank Rob O'Callahan for the use of Lackwit. Also, great thanks go to
Ryan and Christoph, for all their help and support.

ELISA L . A . BANIASSAD

The University of British Columbia .
December 1997

viii

Chapter 1

Introduction

Software systems change over time. They may change because the fundamental

functionality requirements for the system change, or they may change because mod­

ifications to the environment in which the software is running dictate a change in

the mechanisms that produce the desired behaviour. The changes systems undergo

have been referred to as software aging [17]. Typically, the changes that must be

made as part of the aging process do not integrate easily with the existing program

structure. As a result, software engineers must perform reengineering activities to

accomplish the desired changes.

Reengineering "is the examination and modification of a system to reconsti­

tute it in a new form and also the subsequent implementation of the new form" [4,

page 15]. Reengineering is often necessary regardless of the abilities or intentions of

the original software designers. Even if the original developers designed the sys­

tem with change in mind, the assumptions of what would change can not generally

isolate all types of change that occur over the lifetime of the system. Parnas has

described the inevitability of this situation in the following way:

1

Even if we take all reasonable preventive measures, and do so religiously,

aging is inevitable. Our ability to design for change depends on our

ability to predict "the future. We can do so only approximately and

imperfectly. Over a period of years, we will make changes that violate

our original assumptions. Documentation, even if formal and precise,

will never be perfect. Reviews, will bring out issues that the designers

miss, but there are bound to be issues that the reviewers miss as well.

Preventive measures are worthwhile but anyone who thinks that this will

eliminate aging is living in a dream world. [17, pages 283-284]

As part of reengineering activities to facilitate change, there is often a need to

analyze a portion of computation that does not necessarily comply with the existing

source code structure. Isolating such a piece of code for analysis and characterization

is difficult to do manually because the lines of code to be extracted are often scattered

around the source. Semantically analyzing all those portions of code manually would

indeed be an enormous task.

For instance, when trying to reuse software, it is common that a software

engineer needs to understand if a collection of lines of existing code can be extracted

for reuse. Determining the interface to the desired code fragment can be difficult.

It requires the engineer to undertake the arduous task of identifying the input ar­

guments and output arguments of the code fragment. In addition, there may be

data- or control-flow dependences from the isolated portion of code to many other

places in the source code, and some of these places should, perhaps, also be included

in the subset being extracted. Determining all this information requires complex

knowledge of how the individual lines of code relate, both to each other and to the

remaining code base.

2

To examine portions of code gathered from around the source, it is useful for

the engineer to collect all the portions into one subset, and to analyze that subset

as one logical unit regardless of the organization of the existing code. This grouping

allows the engineer to better assess the interface to a portion of computation, as

well as relationships between different computational elements. Currently, engineers

may choose from a range of source analysis tools to aid these reengineering tasks [19,

10, 2, 6, 14]. These tools fall into two basic categories: reverse engineering tools and

program databases.

Reverse engineering tools help the user abstract structural information from

the source [14, 11]. They allow the user to create new structures out of program­

matic building blocks, such as procedures, functions, and classes. Because these

tools are geared towards clustering existing source structure they do not help the

user ask questions about portions of computation isolated from various existing pro­

grammatic blocks. The user is confined to working within the existing structure of

the program.

Program databases [18] and type inferencers [16] provide the user with the

ability to ask about particular variables or procedures. These tools hold the user to

a fine level of granularity. They generally produce a large amount of non-abstracted

information in response to a query. This lack of abstraction can cause difficulties

when applying the tools to large programs or large portions of computation.

The thesis of this research is that many software reengineering tasks can

be performed in less time and with higher confidence if direct support for forming

and analyzing desired software structure is provided at the source level. The user

needs the ability to understand how a subset of their system relates to the rest

of the source code, to characterize the interface to that subset, and to understand

3

relationships between two or more subsets of the code. To investigate this approach,

the conceptual module software analysis technique and tool have been developed.

The conceptual module approach and tool allow the software developer (user)

to overlay a desired logical structure on the existing source code and to analyze that

structure. A subset of code used in analysis is referred to as a conceptual module.

Through construction of conceptual modules, an engineer may describe and analyze

the desired structure of source code. The lines of code contributing to a conceptual

module can be from anywhere in the original source, and do not have to be related in

any way. Using variable dependence and control transfer information extracted from

the source, the conceptual module tool analyzes the conceptual module's constituent

lines to determine its inputs, outputs and calls. To support the user in examining

the relationships between conceptual modules, a programmatic query interface is

supplied. This interface allows users to form their own queries using an object-

oriented library. Using this interface, users can access the necessary information to

help them perform their specific task.

The tool has been designed as an aid to software reengineering and.reuse

tasks. The focus of the tool is not to fully automate reengineering activities, but

rather to allow the engineer to assess a desired structure.

1.1 A Sample Reengineering Act iv i ty

To clarify some of the information needs of a software engineer performing a reengi­

neering activity, the task of isolating and forming a new input filter component from

G N U s o r t 1 is described. The sort system is in the Unix pipe-and-filter style [21]

'The GNU sort program used in this analysis was from the 1.21 version of the GNU textutils
distribution.

4

and comprises about 5100 lines of C code split across 29 files. The majority of the

code specific to the sort functionality resides in a 1700-line file called sor t . c .

A software engineer may wish to form and extract an input pipe component

from sort to help build a new program in the same architectural style. The target

input pipe component would consist of a set of procedures acting on variables rep­

resenting the state of the pipe.2 In some cases, the code that is to be extracted into

a procedure of the target component is a set of contiguous lines. In these cases, the

formation of the procedure is relatively straightforward, and specialized tools can

be applied to automate the task [9]. Other times, the lines of code to be included

in the new procedure are split across existing procedure boundaries.

In sort, for instance, the engineer determines, based on a perusal of the code,

that the fp variable declared and used in the 351-line main function contributes

to the initialization of the input pipe functionality. By tracing the use of the fp

variable, the engineer determines that code from the sort function also contributes

to the desired initialization procedure of the target input pipe component.

When the target procedure crosses existing structural boundaries, automated

support to form the component is not available. Instead, the engineer must analyze

the identified lines of code to determine the interface to the desired procedure,

and to determine any additional source lines that must be included to produce the

desired computation. Determining this information requires the engineer to analyze

the lines of code for two kinds of interactions: interactions within the lines of code

representing the new structure, and interactions between the new structure and the

remaining system.

2Although it may seem trivial to build an input filter, there are a number of subtleties that
can arise. The source for G N U sort, for instance, deals with cases in which the input and output
filenames providing data to the pipes are the same.

Extractor

Figure 1.1: Process for using the conceptual module tool

Analysis of these types of interactions are straightforward when using the

conceptual module tool. Figure 1.1 illustrates the approach. The engineer first uses

a tool to extract information—a source model—from the source code. The engineer

then describes the target structure as one or more conceptual modules, where each

conceptual module consists of a set of source lines.

The tool provides direct support for querying about the interface of a concep­

tual module. Using semantic information about the source, it returns a list of input

variables, output variables, and local variables of the conceptual module. It also

shows where the values of the input variables were last defined outside the concep­

tual module, and where the output variables are next used outside the conceptual

module. This information identifies the uses and definition points of the variables

that link the subset of code to the rest of the source. It also produces a list of the

calls made from code in the conceptual module. In the case of sort for example,

to help form the desired input pipe initialization procedure, the engineer specifies

a set of lines of code3 in the source that provide this functionality. These lines of

code can be added by specifying individual lines, ranges of lines, variables, or proce-

3 The following lines were included in the module: 228, 239, 245-249, 1741, 1796, 2071, 2081,
2098, 2104, 2107, 2111, 2124, 2131, 2137, 2146, 2148.

6

dures. In this case the user would type the individual lines into the user-interface of

the tool. The user interface provided for performing these additions in the current

implementation of the tool is described in Section 3.4.

The tool responds with the analyzed information shown in Figure 1.2. The

output shown is organized as follows. The input variables are shown as a list of

variables, each with a list of line numbers following them. Each of the line numbers

represents a definition of the variable that is used in the conceptual module. The

output variables are shown in the same organization as the input variables. In

the case of these variables, the line numbers represent the next use of the variable

outside the conceptual module. The local variables are shown as a list of variable

names. Finally, the calls information shows the procedures called from inside the

conceptual module. These calls can potentially be to lines of code also contained in

the conceptual module.

Should a user require more details on the information returned by the tool,

they may make use of the query language component of the tool. For instance, the

user may further inspect relationships between lines of code within the conceptual

module and between the conceptual module and the source, perhaps to determine

if a particular line of code indirectly affects code in the conceptual module. This

can be illustrated through the following example. The user may wish to determine

if a variable in the merge functionality of the sort program is indirectly affected by

some lines of code in the sort procedure, in an endeavor to ensure that data being

merged has been sorted. Specifically, the user may wish to determine if the variable

nf ps in the mergefps function is affected by the core sort functionality appearing in

the sort procedure, or in the sortlines procedure.

The user makes a conceptual module merge and adds the nfps variable to

7

The input variables are:
sort.c main.nfiles: sort.c 2073, sort.c 2041.
sort.c main.ofp: sort.c 2143, sort.c 2140.
sort.c main.minus: sort.c 2074, sort.c 2041, sort.c 1742.
sort.c main.files: sort.c 2074, sort.c 2041.
sort.c main.i: sort.c 2043, sort.c 1798.
sort.c main.tmp: sort.c 2126, sort.c 2125.
sort.c sort.buf: sort.c 282, sort.c 250, sort.c 239.
sort.c main.outfile: sort.c 1989, sort.c 1982, sort.c 1742.
sort.c errno: sort.c 589, sort.c 479, sort.c 467, sort.c 458,

sort.c 435, sort.c 414, sort.c 2162, sort.c 2160,
sort.c 2157.

sort.c sort.nfiles: sort.c 279.
sort.c main.argc: sort.c 1753, sort.c 1737.

The output variables are:
sort.c main.mergeonly: sort.c 2145.
sort.c sort.ofp: sort.c 292, sort.c 275, sort.c 260.
sort.c main.nfiles: sort.c 2041, sort.c main.ofp, , sort.c 2156.
sort.c main.checkonly: sort.c 2077.
sort.c main.minus: sort.c 1742.
sort.c instat: sort.c 2115.
sort.c errno: sort.c 589, sort.c 479, sort.c 467, sort.c 458,

sort.c 435, sort.c 414, sort.c 2162, sort.c 2160,
sort.c 2157.

sort.c sort.nfiles: sort.c 279, sort.c 259.
sort.c fp: sort.c 2136, sort.c 2129, sort.c 2128, sort.c 2127.
sort.c sort.fp: sort.c 279, sort.c 259.

The local variables are:
sort.c sort.files

Control transfers out of input_pipe:
c a l l to xmalloc at sort .c 1796
cal l to check at sort.c 2081.
ca l l to exit at sort.c 2081.
ca l l to strcmp at sort. c 2104.
cal l to fstat at sort.c 2107.
ca l l to stat at sort.c 2107.
ca l l to strcmp at sort. c 2107.
cal l to error at sort.c 2111.
ca l l to xfopen at sort. c 2124.
cal l to error at sort.c 2131.
ca l l to merge at sort.c 2146.
c a l l to sort at sort.c 2148.
ca l l to xfopen at sort. c 247.
cal l to f i l l b u f at sort .c 248.

Figure 1.2: Tool output for the conceptual module input-pipe

8

the module. Adding a variable means that all the lines where the variable is used

or its value is set are added to the conceptual module. The user then writes the

query shown in Figure 1.3 to obtain a list of all lines and variables that affect the

conceptual module. The user examines the returned lists to see if any of the lines

or variables are in the core sort functionality. The user can see that many of the

variables listed are in the sort procedure. In particular, the l ines variable in the

sort function is a core variable of the sort functionality, and line 258—the call to

the sortlines procedure—is included in the list Of lines affecting the values in merge.

The conceptual module tool enables the user to examine the code at a fine­

grained level and to approach the extraction in a bottom-up manner: looking first

at lines of code, and then at conceptual modules as abstractions containing those

lines.

1.2 Overview

The remaining chapters of this thesis are organized as follows. Chapter 2 describes

related work, reviewing the different existing approaches to program analysis and

reengineering. Chapter 3 explains both the intent of the approach and its implemen­

tation. Chapter 4 presents sample scenarios and case studies to provide evidence

that desired structure analysis is helpful for different types of reengineering tasks.

Finally,, Chapter 5 summarizes the work and presents possible extensions. This

chapter also discusses choices made in the implementation of the tool.

9

Query

/* get the already formed abstraction*/
Abstraction A = Abstraction.Get(''merge'');

/* perform the i n i t i a l analysis
true means to show the results of the analysis*/

Analyzer.Initial(A, true);
/* find a l l the lines
contributing to the conceptual module's value*/

SET chain = DefUse.f indjfull_chain(A) ;
/* translate the lines into variables */

SET vars = DefUse.GetVarNames(chain);
/* print out the variables*/

vars.print(''These are the variables that affect merge'');
/* this prints out the line numbers */

chain.print(''These are the line numbers:'');

Tool Output

These are the variables that affect merge
... sort.c program_name, sort.c sort.buf, sort.c sort.i,
sort.c sort.lines, sort.c sort.n_temp_files, sort.c sort.node,
sort.c sort.ntmp, sort.c sort.ofp, sort.c sort.tempfiles,
sort.c sort.tfp, sort.c sort.tmp, sort.c sortalloc, ...
End.

These are the line numbers:
...sort.c 290, sort.c 260, sort.c 1872, sort.c 2009, sort.c 508, sort.c 283,
sort.c 1855, sort.c 276, sort.c 1477, sort.c 1298, sort.c 1457, sort.c
1454, sort.c 302, sort.c 269, sort.c 1370, sort.c 1532, sort.c 239, sort.c
1972, sort.c 1958, sort.c 492, sort.c 250, sort.c 1793, sort.c 1790, sort.c
273, sort.c 243, sort.c 1591, sort.c 1753, sort.c 1496, sort.c 1479, sort.c
266, sort.c 1358, sort.c 289, sort.c 1335, sort.c 1413, sort.c 1315, sort.c
1410, sort.c 272, sort.c 242, sort.c 1989, sort.c 235, sort.c 2036, sort.c
288, sort.c 1848, sort.c 258, sort.c 503, sort.c 2013, sort.c 228, sort.c
1369, sort.c 1349, sort.c 1525, sort.c 1346, sort.c 264, sort.c 1309,
sort.c 1306, sort.c 1997, sort.c 1798, sort.c 240, sort.c 1792, sort.c 306,
sort.c 1937, sort.c 2024, sort.c 1758, sort.c 291, sort.c 1368, sort.c
1446, sort.c 509, sort.c 1348...
End.

F i g u r e 1.3: Query and result: all dependences of the merge conceptual module

10

Chapter 2

Related Work

Many program understanding approaches have been developed to aid reengineering

tasks. Some approaches attempt to characterize the existing code structure. For

instance, reverse engineering techniques, program databases, and type-inferencers

attempt to analyze the current structure of software and to provide views of the

analyzed information that are more understandable for the user. Software architec­

ture, on the other hand, provides a formalism with which to express system design.

Other approaches such as slicing allow the user to reduce the amount of existing

code viewed while performing a particular task.

As discussed in Chapter 1, there is a need among software engineers per­

forming various reuse and reengineering tasks to both break apart programmatic

building blocks so as to express a desired structure made up of the blocks' con­

stituent lines of code, and also to analyze that desired structure with relation to the

existing structure. This chapter outlines the characteristics of current approaches

to help engineers understand code prior to reengineering and reuse tasks.

11

2.1 Slicing

Program slicing is a method for automatically decomposing programs by

analyzing their data flow and control flow. [25, page 352]

Starting from a subset of a program's behavior, slicing reduces the source of the

program to a minimal form that still produces that behavior[25]. Slicing allows the

user to pick a program point and compute a subset of the program that would result

in the same execution at that point.

The aim of slicing is to determine how information flows through a program

to obtain a specific value at a particular point. There are two basic types of slices:

static and dynamic. Static slices use only statically available dependence informa­

tion, relying on data-flow and control-flow dependence information. "In the case of

dynamic program slicing, only the dependences that occur in a specific execution of

the program are taken into account" [23, page 3].

Since reuse and restructuring are more often done in terms of static views of

the code, the form of slicing discussed is static slicing. This section both outlines the

usefulness of slicing, and compares static slicing to its prominent variants, chopping

and interface slicing.

2.1.1 Static Slicing

In static slicing, the slice criterion "identifies one or more variables at a given line,

and the slice is a subprogram whose statements might affect the value of those

variables just prior to execution of that line"[10, page 2]. Most static slices are

computed "by gathering statements and control predicates by way of a backward

traversal of the program, starting at the slicing criterion" [23, page 2]. Forward

12

static slices [3] may also be computed through a forward traversal of the program,

from a program point.

Slicing is useful for tasks such as "program understanding, program chopping,

debugging, maintenance, testing, and merging" [19, page 41]. As described by

Weiser, the "usefulness [of slices] shows up in testing, parallel processor distribution,

maintenance, and especially debugging" [25, page 352]. More specifically, when

debugging, it is useful to know how a variable at a particular point obtained its

value.

Slicing performs analysis that does not align itself with the existing source

structure. Although a slice cuts across existing structure, the user has no control of

the slice content. Slices consist of all lines of code that would be executed to produce

the same executed result; the user cannot select single lines within a slice. This limits

the flexibility of the user in expressing of desired structure since it prevents the user

from isolating individual lines of code.

Slicing does not provide direct support for examining desired program struc-

• ture. In most implementations of slicing tools, a user can perform set operations

on slices that have been computed. A user is able to intersect several slices to de­

termine the lines the slices have in common, however, there is no way to determine

data-flow and control-flow between slices to ascertain the resultant programmatic

structure expressed by the slices.

2.1.2 Chopping

In 1994, Jackson and Rollins introduced a variant of slicing: chopping [10]. Chopping

enables the user to determine the program elements that transmit data from one

program point to another, from a source to a sink. Chopping exposes and makes

13

use of the internal structure of a program dependence graph in an intent to gain

precision that was not present in the original slicing techniques.

In the original form of chopping, there was no method for inter-procedural

chopping. This functionality was intentionally omitted based on the opinion that

"for reverse engineering at least, analysis should be modular, respecting the struc­

ture of a program [and that] since programmers tend to approach a new program

one procedure at a time, it seems that a reverse engineering tool should do the

same" [10, page 5]. Using this technology, if a user wants to chop into a procedure

call, they have to use the procedure call information in a chop to formulate further

chops of the different procedures.

In 1995, Reps and Rosay introduced unrestricted inter-procedural chopping

to generate a chop of an entire program rather than chopping one procedure at

a time [19].. This approach overcomes Jackson and Rollins' original self-imposed

limitation. Interestingly, Reps and Rosay do not directly address their opposition

to the opinion held by Jackson and Rollins. Although Reps and Rosay clearly and

actively disagree with the statement that reverse engineering tools should model a

programmer's methodologies in examining only one procedure at a time, they do

not contest the idea that analysis should respect the structure of a program.

Chopping is more flexible than slicing. Theoretically, a user could isolate a

component by selecting a group of lines of code. The user could do this for more than

one component. The relationships between the components could then be analyzed

by chopping with all the lines in one component as the source and all the lines in the

other component as the sink. The user could then examine the lines in the chops to

understand the data- and control-flow relationships between the two components.

The user could also perform these chop operations between lines within an isolated

14

component to understand the relationships between lines within the component.

The user would, however, have to manually correlate all the information

returned from these chops. To interpret the output of chops that pertain to the

relationship between two components, the user would have to do extensive filtering

on this output to glean the interface of each of the components and the calls made

between the components. It would likely be difficult to determine the dependences

on the component from the rest of the source.

2.1.3 Interface Slicing

Interface slicing allows the user to identify a subset of the program's interface to be

reused [2]. The creators of interface slicing, Beck and Eichmann describe interface

slicing, and distinguish it from traditional slicing in the following way:

Intuitively, an interface slice may be viewed as a subset of the behavior

of a module, just the original notion of a conventional slice. However,

while a conventional slice seeks to isolate the behavior of a specified set

of program variables, even across module boundaries, an interface slice

seeks to isolate specified behaviors which a given module exports to its

containing software system. [2, page 56]

Interface slicing was not intended as a debugging aid as was traditional slic­

ing. Instead, it was developed as a reengineering technique to both enhance the

reusability of portions of source code, and also to improve the quality of the code

that is created from reused components. It does this by allowing users to single

out and select the portions of a program's interface they wish to reuse. While this

does address the reuse needs of some reengineering efforts, interface slicing does not

15

allow partial reuse of computation since there is no provision for the user to take

only parts of procedures or to characterize their interface.

2.2 Program Databases

Program databases allow the user to retrieve information about variables, proce­

dures, functions and other elements of a program's structure. This information is

generally retrieved through a query interface. This section considers two represen­

tative examples, xrefdb [18], a cross-reference server, and GraphLog [6], a visual

query language.

2.2.1 xrefdb - Field cross-reference server

xrefdb is the Field programming environment's cross-reference utility [18]. Given

an executable for a system,1 a directory structure, or a single file, xrefdb parses

the code and builds a relational database of information extracted. The xrefdb tool

provides a relational algebra interface for accessing the information in the database.

Using xrefdb, a user can determine information about particular lines of

code, such as calls that are made on a line, and variables altered or used on a

line. Similarly, a user can ask about particular programmatic components to find

out information such as all call points to a particular procedure or all uses of a

variable.2

The xrefdb tool does not provide support for expressing a desired structure

of source. It provides no mechanism for grouping lines of code and gathering data

on them as a unit. More fundamentally, a user cannot talk about an arbitrary

'Executables must be compiled with debugging information.
2 This information is based on the syntactic analysis

16

computat ion.

2.2.2 GraphLog

G r a p h L o g [6] addresses both the need to understand the design of a system, and

also the need for software visualization tools. G r a p h L o g is a query language that

is intended to ease the investigation of complex relationships between elements of a

software system.

the designer needs to be able to store al l the relevant facts and relations

in a database based on these, query and visualize this information, and

interactively modify the packaging structure.

G r a p h L o g fits natural ly wi th in this framework for two main reasons.

F i r s t , it reduces the cognitive gap between how queries are formulated

and how results are displayed. Second, it improves the product ivi ty of

formulat ing complex queries [6, page 139]

In G r a p h L o g , a query is expressed as a graph specifying a pattern. G iven

a query the system determines all instances of the pattern expressed by the graph

that exist in the database. Using the G r a p h L o g graphical language, the user may

create new modules and rearrange variables between them. Pat tern matching queries

performed by the user operate on these modified packaging schemes as well as on

the original scheme.

A l though sub-routines and variables can be rearranged wi th in and between

modules, they cannot be broken up into single lines of code: fragments smaller

than procedures and variables cannot be manipulated. G r a p h L o g does not provide

fine-grained support for expressing a desired reengineered structure in that there

17

is no mechanism with which to isolate non-contiguous lines of code as one unit of

computation and analyze it as such.

2.3 Type Inferencer: Lackwit

Type inferencing involves ignoring the types assigned variables by the programmer,

and inferring the types of variables through source code analysis. Lackwit is a type

inferencing tool that can find "abstract data types, detect abstraction violations,

find unused variables, functions and fields of data structures, detect simple errors

in operations on abstract data-types, and locate sites of possible references to a

value" [16, page 338].

Lackwit achieves these goals by analyzing the inferred type of a given vari­

able or textual expression, locating other occurrences of that type, and forming

conclusions about its usage and behavior.

With these capabilities, the tool is a very useful reverse engineering technique.

It provides the user a scalable approach to obtain a great deal of information about

a program in terms of information that is relevant when attempting to understand

source, or even modify portions of source: interactions between sub-routines, uses

of variables, instances of types, etc.

As with the other reverse engineering and program understanding ap­

proaches, this tool does not enable the user to ask questions about a particular

portion of the code as one logical unit and hence cannot express a desired structure

for source. The fixed level of granularity means that there is no capability for break­

ing up variables and procedures, and no way to cluster them to form coarser-grained

abstractions.

18

2.4 Reverse Engineering Tools

Reverse engineering tools help the user abstract structural information gathered

from the source. Two examples of reverse engineering techniques are discussed.

2.4.1 Rigi

Rigi is a reverse engineering tool and technique [13]. Rigi was designed to

assist the designers, programmers, integrators, and maintainers in defin­

ing, exploring, understanding, and comprehending the structure of large,

integrated, evolving software systems [13, page ii].

Rigi is a semi-automated technique in which a user repeatedly determines

criteria to cluster elements from a displayed graph of structural information. The

criteria may be based on characteristics of the graph or from features of the source,

such as naming conventions.

In Rigi, parsing the subject software system results in a flat, resource flow

graph that can be manipulated using a graph editor. The next phase is

semi-automatic and involves pattern recognition skills, where the reverse

engineer identifies subsystems in the flat graph that form meaningful

abstractions. These subsystems are collapsed to build multiple, layered

hierarchies of abstractions. [22, page 606]

In the Rigi environment, a user may perform pre-defined queries on the in­

teractions between two clustered elements. There is no provision for programmatic

analysis of the clusters with relation to the existing source. Similar to GraphLog,

users can move nodes between clusters, but nodes represent existing structural en­

tities, not lines of code, and thus cannot be broken apart.

19

2.4.2 M a n S A R T

ManSART is a semi-automated approach for recovery of architectural descriptions

from a system's code base [27]. ManSART displays graphical views of recovered

structure to the user.

The architectural views are created by recognizers that extract and analyze

information from an abstract syntax tree (AST) of the system. The views include

links back to the source contributing to a component or connector in the view. To

facilitate the use of views created, a set of view manipulation operators have been

defined that can, among other things, merge views and build hierarchies of views.

These manipulation operators allow a user to access the source information through

a predefined set of tests called containment analysis. These tests determine when

an element of a view contains or overlaps another based on the underlying source

information.

It is only through these pre-defined set of tests, however, that an engineer can

query the relationship between the abstracted and existing structure. This means

that the user cannot tailor the functionality of the tool to suit their own specific

program analysis needs. There is also no means for analyzing or expressing the

desired source structure.

2.5 Reflexion Models

To aid the user in understanding the structure of a system's source code, the Reflex­

ion Model technique[15] summarizes information extracted from the source in terms

of a high-level box-and-arrow diagram of the system specified by the engineer. By

placing source entities in named "buckets", the user may define their own high-level

20

model of the source, and then may rely on the tool to show how the model maps to

the source structure. This technique is iterative in that the user may successively

apply the technique to achieve a more accurate model of its structure.

This approach acts both as an iterative program understanding technique,

and a target structure analysis technique. Using the approach, the user may move

existing structural elements around and between the buckets. The user may also

examine the interactions and dependences between buckets with relation to the new,

or target, structure of the code.

The user cannot define their own queries to analyze the structure of the

system, and no data-flow analysis is performed.

2.6 Software Architecture

The goal of software architecture is to provide the engineer with a means of formally

describing a high-level view of a system[21]. This provides the benefit of being able

to check for certain properties about a system at a high-level even before code is

written. The designer can use an architectural description language [5] to represent

the design of the existing program. The user may then use automated tools to

perform analysis, such as model-checking, on the representation.

In some respects, it seems as though this approach should give a user the

ability to abstract out certain portions of code, either to build new systems out

of existing components[8] or to make a component out of that portion and then

perform analysis to see how it fits into the existing system.

However, this top-down approach has the following two limitations. First,

the user needs to begin with a complete architectural description of a system to be

able to abstract out a component of it. A complete description is needed to enable

21

analysis of the relationship between the portion to be extracted and the rest of the

existing source. Because the full description is required, the user cannot just look

at the existing source code and decide which parts should be collected and treated

as a logical unit, instead they must work from a higher-level view of the system.

Second, since the architectural description does not have explicit ties to por­

tions of source code, once a component has been abstracted and analyzed, the user

must still map the analysis back to the low-level code. This mapping may be error

prone, because the architectural description of the source may not truly reflect the

existing system. Also, if the user is dealing with a complicated abstraction it is likely

that portions of computation may be missed both when performing this mapping

and when abstracting out the computation.

Software architecture, thus, does not help the user to navigate through source

code in a bottom-up manner. This limits the use of architectural information to help

a user better understand the interactions of a particular portion of source code to

the rest of the system, or to other subsets. When attempting to reuse, remove, or

re-organize source code, it is imperative that the user be provided with fine-grained

information about the impact of any changes. By definition, high-level analysis

techniques cannot provide this information since they are concerned with providing

a user a view of the overall design of a system.

22

Chapter 3

Conceptual Module Approach

The conceptual module approach allows a software engineer to identify lines of non­

contiguous code from around a system's source, to treat those lines as one logical unit

or conceptual module, and then to make tailored queries to examine the conceptual

modules—both individually, and with relation to each other. The approach provides

a fine-grained, bottom-up approach to source code analysis to aid reengineering.

Desired Structure Query

Conceptual Modules Tool

Figure 3.1: Iterative process of using the conceptual module tool

23

Figure 3.1 illustrates the process for using the approach as embodied by

the tool. Before using the tool, a source model of the code is formed using a

source code analysis tool, described further in Section 3.2.1. This source model

is used internally for analysis by the conceptual module tool. When this is done,

the software engineer examines the source code and identifies a collection of source

lines to be treated as a unit. Next, the engineer specifies a conceptual module to

represent that collection. As each conceptual module is defined, the tool performs

analysis to determine the module's interface. This interface may provide sufficient

information to help perform the reengineering task at hand. Sometimes, though, the

user may require information about the relationship between a defined conceptual

module and the existing source, and about the relationship between the conceptual

modules. The user may form queries to derive this information. The steps of defining

a conceptual module and performing subsequent queries are performed iteratively

by the user.

The conceptual module tool consists of several interconnected components:

a user interface, a query interface, an analyzer and an intermediate representation

of the source.

Query Interface

User Interface

Analyzer

Intermediate
Representation

source model extraction tool

Figure 3.2: Components of the conceptual module tool

24

The user interacts with the tool through the user interface and the query

interface as shown in Figure 3.2. The user interface is menu-driven, comprising

commands for conceptual module construction, refinement and analysis. The query

interface is programmatic and is provided so that the user can create their own

analysis methods for task-specific purposes. Both the user interface and the query

interface use the analyzer component. This component contains the general al­

gorithms for examining control-flow and data-flow within and between conceptual

modules. Performing this analysis requires the knowledge of interactions in the

source. The intermediate representation is a model of the source and is created by

a source model extractor which takes as input ANSI C code.

This chapter discusses the intent and implementation of the conceptual mod­

ule tool. First it discusses the mechanisms for constructing and refining conceptual

modules. Then it discusses the tool's analysis features. Finally, it describes the user

and query interfaces.

3.1 Conceptual Module Construction and Refinement

A user creates a conceptual module by providing a name for the module. A concep­

tual module, when first constructed, contains no lines of code. The user may add

lines of code to the conceptual module in several ways: by adding individual lines

of code, adding ranges of lines, or adding procedures or variables. If the user adds

an entire procedure, all the lines of code within the named procedure will be added

to the conceptual module. In the case of adding a variable, all the lines on which

the variable is either used or modified are added to the conceptual module.

The ability to add procedures is useful because there are many instances

when a user needs to investigate structure that extends beyond the structure that is

25

provided in the programming language. For example, when transforming a procedu­

ral program to an object-oriented one, the user may place existing procedures into

the proposed classes. In this way the user can quickly form target member methods

of classes embodied by conceptual modules. The ability to add a variable is useful

since reengineering activities often involve the encapsulation of some computation

involving a variable. In the sort example presented in Chapter 1, when isolating

the input pipe of a pipe-and-filter program, the user wanted to add all variables

related to input variables and files so as to quickly collect a portion of computation

contributing to file input and output.

A conceptual module is refined based on the analysis the tool performs. This

analysis is described in detail in Section 3.2. Based on the results of analysis, the

user may choose to change the set of lines that make up a conceptual module. They

may choose to add lines, variables, or procedures, or they may decide that certain

lines do not belong in a conceptual module. For example, upon examining the

interface of a conceptual module, the user may decide that a variable listed as an

input or output variable should be fully included in the conceptual module, and

so may add that variable to it. Conversely, the user may note that a particular

line in a conceptual module causes a dependence between it and another conceptual

module. To break the dependence, the user may choose to delete this line from one

conceptual module.

3.2 Analysis

In reengineering activities, it is useful to fully understand the interface of a subset

of the code, and how it relates to both the rest of the source and to other subsets.

Precise needs differ depending on the subtleties of the task at hand. Rather than

26

providing a fully automated approach, the conceptual module tool allows the user

to specify queries they would like to perform on conceptual modules.

Analysis of conceptual modules may be broken into three major categories:

single conceptual module analysis, conceptual modules relationship analysis, and

conceptual modules to source analysis.

Single conceptual module analysis This analysis consists of determining the

interface to a conceptual module: its input, output and local variables as well as its

calls. An example of this was given in Section 1.1. More detail is given in 3.2.2

Relationship analysis This analysis involves examining the dependences be­

tween multiple conceptual modules. Through this feature the user can learn if two

conceptual modules directly or indirectly relate, if their constituent lines overlap,

or if one contains the other. For example, a software engineer who is restructuring

procedural code to object-oriented code might want to understand the relationship

between two of the proposed classes to ensure that the correct class relationships,

such as particular uses relationships, are preserved. After creating a conceptual mod­

ule for each class, the engineer can analyze the relationship between the conceptual

modules, examining data-flow and control-flow between them. The mechanisms for

performing this analysis are described in Section 3.2.4.

Conceptual module to source analysis This analysis involves looking at how

one or more conceptual modules relate to the remainder of the existing source.

For instance, a user who is re-structuring from a procedural program to an object-

oriented program needs to know how the source uses the code in a conceptual module

to determine if members of a posited class should be assigned private or public status.

27

The mechanisms for performing this analysis are discussed in Section 3.2.3 and in

Section 3.4.1.

3.2.1 Intermediate Representation

The conceptual module tool uses an intermediate representation of the source to

perform conceptual module analysis. The intermediate representation is made up

of three relations:

• variable dependences are represented by the vardep relation,

• control transfers are represented by the ctrltxf relation, and

• procedure starts are represented by the procstart relation.

The tool can use this information to compute.the input, output and local variables

of a conceptual module, the calls to and from a conceptual module, and relation­

ships both between conceptual modules and between conceptual modules and the

remaining source.

The format of the three relations are each described.

Variable Dependence Variable dependence information is displayed in the

vardep relation. Tuples of this relation are of the format:

vardep file-name use-line# variable name file-name def-line#

A tuple in this relation shows the line at which a variable is used (the file

name at use-line#) and the line at which the variable was last set (the file name at

def-line#). This tuple can also be referred to as a use-defpair [7], since it contains a

pair of line numbers, one the use line and the other the definition line for a particular

variable.

28

This relation is used to perform most of the analysis done by the tool. It

is used for computing input, output and local variables to a conceptual module,

and for determining direct and indirect relationships between conceptual modules.

There can be multiple definitions for each use point, and multiple uses for each

definition point.

Control Transfers This relation conveys the information about transfer of con­

trol in the source code.

The format of a tuple in this relation is:

ctrltxf file-name line# procedure-name

The current implementation of the conceptual module tool handles only pro­

cedural programs without gotos. Hence, the tool assumes that all control transfers

are procedure calls. Under this assumption, the control transfer relation shows that •

a call to a procedure (procedure name) is made at a particular line number of a

particular file (file name at line

This relation is used for computation of the calls made in the conceptual

module, and is also used in conjunction with the procstart relation to find calls

made to lines in a conceptual module.

Procedure Starts This relation simply describes the line number of the first line

of a procedure definition. The format of a tuple in this relation is:

procstart procedure-name file-name line#

With this relation, the tool can determine the range of lines of code com­

prising a particular procedure, and thus can determine which procedure each line

29

of code is in. This information is used in conjunction with the c t r l t x f relation for

determining the calls into a conceptual module.

Production and Quality of the Intermediate Representation

To obtain flexibility in analyzing source, the source model extractor used to pro­

duce the intermediate representation is separate from the conceptual module tool.

Existing tools and existing frameworks can be used as the source model extractor.

Two different source code analysis tools have been used to date to form intermediate

representations: a tool built on top of the SUIF framework [26] and the program

database tool xrefdb[18].

Because the SUIF-based tool performs data-flow analysis, it provides com­

plete information about variable dependences, xrefdb computes calls, procedure-

starts, use points and definition points of variables but can not link a use to a

definition point since it performs only a syntactic analysis of the source. It is at

times beneficial to use xrefdb over the SUIF-based tool since SUIF must be able to

fully compile a program to analyze it. The xrefdb tool, on the other hand, is more

useful when a full compile is not possible. Also, xrefdb can typically handle a larger

program than the SUIF-based tool. Since the SUIF-based tool performs data-flow

analysis it has a practical program size limit of a few hundred thousand lines of

code, while xrefdb performs its computation through one parse of the program.

To build up use-def pairs from uses and definitions produced by xrefdb, a

script was built to produce the cross product of all the uses and definitions.

30

3.2.2 Single Conceptual Module Analysiss

The interface of a conceptual module is made up of input, and output variables of

the conceptual module. Calls made by lines of code in the conceptual module are

not technically part of the interface, but are reported as part of the interface for the

convenience of the user. The process for computing an interface for a conceptual

module is described below.

Relating Variables to Conceptual Module

The process of assigning local, input and output variables involves sweeping through

the intermediate representation, examining the lines of code that relate to a con­

ceptual module, and maintaining variable names, uses and definitions that pertain

to those lines of code.

The three types of variables are defined as follows. Input variables are those

that are used in the conceptual module but have definition points outside the con­

ceptual module. Output variables are those which are defined in the conceptual

module, but have use points outside the conceptual module. Local variables are

those for which all uses and definition points are contained inside the conceptual

module.

Input, output and local variables are computed one conceptual module at a

time. They are computed in two readings or sweeps of the intermediate represen­

tation. The first sweep involves examining each of the variable dependences in the

intermediate representation to form a preliminary list of input, output and local

variables. The second sweep reexamines the intermediate representation to refine,

if necessary, the lists of variables. This refinement is required in the case of an

incomplete source model. As mentioned in the previous section, the source model

31

may contain only uses and definitions, and not full use-def pairs. This will be ex­

plained in more detail in the description of the second sweep of the intermediate

representation.

First Sweep In the initial sweep of the intermediate representation, each variable

dependence tuple is examined. From this variable dependence information, three

lists are built: LocalVars, InputVars, and OutputVars. The variable dependences

in the intermediate representation are compared against the lines of the conceptual

module. Each variable dependence tuple is examined individually, and in turn. The

tests that are applied to each vardep tuple are shown in Figure 3.3.

If the use-line and the def-line are in the conceptual module,
then place the variable name on the LocalVars l i s t .

If the use-line is in the conceptual module, but the def-line is not,
then i f the variable is on. the LocalVars l i s t

remove i t from the LocalVars l i s t
place the variable on the InputVar l i s t .

If the def-line is in the conceptual module, but the use-line is not,
then i f the variable is on the LocalVars l i s t

remove i t from the LocalVars l i s t
place the variable on the OutputVar l i s t .

Figure 3.3: First sweep of variable assignment

Second Sweep The second sweep deals with incomplete use-def information in

the intermediate representation. As shown below, this incomplete information is

signaled by the keyword "unknown" in the vardep tuple in place of the file name

and -1 in place of the line number. The presence of 'unknown' means that only

uses and definitions, but potentially not full use-def pairs will be present in the

intermediate representation. A complete use-def pair tuple format is:

32

vardep filename l i n e varname deffilename d e f l i n e

while a use-only variable dependence tuple looks like:

vardep filename l i n e varname unknown -1

and a definition-only variable dependence tuple looks like:

vardep unknown -1 varname deffilename d e f l i n e

In a use-only tuple, the known line number is the use point, while in the

definition-only relation the known line number is the definition point.

In the first sweep of this analysis an open world assumption is made: if

the word 'unknown' is encountered in place of a definition point of a variable, then

there must be some existing definition-point that is not included in the intermediate

representation, and similarly for an unknown use-point. In this second sweep, the

closed world assumption is made: if all the known line numbers pertaining to a

variable are in the conceptual module, then that variable should be considered local

to the conceptual module. Basically, this step involves re-analyzing the intermediate

representation by taking another look at the results of the more conservative analysis

of the first sweep to pull in local variables.

In the second sweep the three variable lists compiled in the first sweep are

examined. Once again, every vardep line in the intermediate representation is pro­

cessed, but this time, information is compiled on each of the variables that appears

in any of the three variable vectors. It is then determined what information is known

about each variable, and decided if the variable should be classified as input, output

or local.

Since this inferred analysis doubles the time it takes for variable analysis, and

since it is only necessary if the source model is incomplete, it can be turned on or off

by the user. This promotes awareness of the user about the quality of information

33

that is being given to the analysis tool, and also ensures the user is aware of the

quality of information that is being returned to them. The second sweep consists of

the steps shown in Figure 3.4.

Place a l l variables in the LocalVar, OutputVar and InputVar l i s t s
on a promote_to_locals l i s t .

Repeat for each variable dependence tuple of the
intermediate representation

•C
i f the variable is on the promote_to_locals l i s t

i f the tuple is a use only and thus has only a use line defined
and the use-line is not in the conceptual module

remove the variable from the promote_to_locals l i s t ,
i f the tuple is a def only and thus has only a def line defined
and the def-line is not in the conceptual module

remove the variable from the promote_to_locals l i s t .
}
remove a l l variables on the promote_to_locals l i s t

from the InputVar l i s t or the OutputVar l i s t
place a l l the variables on the promote_to_locals l i s t

on the LocalVar l i s t .

Figure 3.4: Second sweep of variable assignment

At the end of these two sweeps, three lists of variables exist that conform to

the definitions in Table 3.2 using the sets in Table 3.1.

Computing Calls Information

Calls information refers to calls made to or by a conceptual module. A call is made

to a procedure by a conceptual module if a control transfer line for that procedure is

in the lines of that conceptual module. If there is a control transfer to a procedure

whose lines are included in a conceptual module, then there is a possible transfer of

control into that conceptual module.

Computing all the calls into a conceptual module involves determining the

mapping between lines in the conceptual module and existing procedures, and then

34

Set name Definition

A A set of line numbers that comprise a conceptual mod­
ule called A.

uses(v) A set of all line numbers of the uses of a variable v.
defs(v) A set of all line numbers of the definitions of a variable

v.
use-pts(v, I) A set of line numbers that are the use points of v for

the definition point, line /.
This returns all line numbers in the event of incom­
plete use-def information.

def-pts(v, I) A set of lines that are the definition points of v for the
use point, line /
This returns all line numbers in the event of incom­
plete use-def information.

variables A set of all variables in the intermediate representa­
tion.

used(a) A set of all variables used on line a.
lines A set of all lines.

Table 3.1: Definitions for variable dependence analysis

determining where calls are made to those procedures.

To determine the procedure containing a given line of code, the following

method is used: First, all the procstart relations are loaded into the tool, and are

sorted by line number in descending order. It is not necessary that they be sorted by

file name also, since when comparing the line numbers, the file name is also checked.

Then, the "file-name line-number" pairs are compared to each of the procstart tuples

in descending order until a procstart tuple is found where the file-name is the same

and the line-number is greater than the file name and line-number of the procstart

tuple.

35

Variable Type Definition
Local Variables LocalV ariables(A) =

{v G V | defs(v) CAA uses(v) C (A)}
Input Variables invars(A) = {v G V | 3/ G A*

I G uses(v) A def-pts(v, I) % A}
InputV ariables(A) = invars(A) — LocalVariables(A)

Output Variables outvars(A) = {v 6 V \ 31 € A»
/ G defs(v) A usejpts{v, I) % A}

OutputV ariables(A) = oti^ars(A) — LocalVariables(A)

Table 3.2: Set definitions for input, output and local variables of a conceptual module

3.2.3 Determining Relationships Between Conceptual Modules

As illustrated in Figure 3.5 there are four types of relationships between conceptual

modules:

Contains Overlaps Indirect

Figure 3.5: Types of relationships between conceptual module

• a direct relationship where one conceptual module directly affects another,

• a containment relationship where one conceptual module contains another,

• an overlaps relationship where one conceptual module contains some lines of

another, and

• an indirect relationship, where one conceptual module affects some line of code

that then affects another conceptual module.

36

Direct Relationship

%

Given two conceptual modules, A and B, this process involves looking

at the line numbers for one conceptual module to see if any of those

lines, /, are definition lines in the other conceptual module. Extracting

this information entails examining each use-def pair in the intermediate representa­

tion to determine if the following expression is true.

3 / 6 A A 3v E V | / € defs(v) A (use.pts(v, /) f~l 5) 7̂ 0

There is a direct relationship from A to B if there is a definition of v in A

and a use of that definition in B.

The process for determining this relationship in the tool is to examine the

vardep tuples whose use-lines are in B to see if any of the definition points for those

uses are in A.

No relationships between computations can be computed in the event of in­

complete use-def information in the intermediate representation. This is because

there can exist no use-def pair in the intermediate representation to link two con­

ceptual modules if there are no use-def pairs.

Overlap

When one conceptual module is made up of some lines that are also

in another conceptual module then it is said that the two conceptual

modules overlap each other.

The tool's process for determining if the overlap relationship holds is to

examine all the lines in the first conceptual module to see if they appear in the

second conceptual module. If any of the lines appear in both conceptual modules,

then there is an overlap between them.

3 7

So, for two conceptual modules, the first made up of lines A and the second

made up of lines B, the two overlap if the following expression holds:

(infl)^O

Containment

When all the lines that make up one conceptual module are a subset

of the set of lines that make up another conceptual module, then it is

said that the first conceptual module is contained in the other.

The process for determining this is to look at all the lines in the first concep­

tual module and see if they are also in the lines that make up the second conceptual

module. If they are, then the first conceptual module is contained in the second

conceptual module.

So, for two conceptual modules, the first made up of lines A and the second

made up of lines B, the first is contained in the second if the following expression

holds:

AC B

Indirect

If a conceptual module modifies some variable which then affects an­

other conceptual module, it is said that there is an indirect relationship

between the two conceptual modules. To determine if one conceptual

module indirectly affects another, it is necessary to compute a backwards chain of

one conceptual module and to examine if any of the lines of code in that chain are

in the other conceptual module, used(a) is a set of all variables used on line a, and

lines is a set of all lines. A line of code line is in the backwards chain for a particular

38

line L if the following expression holds true:

depends (a, b) a G lines A b G lines A (3 v G V « u € used(a) A b £ def-pts(v,a))

line G chain(L) depends(L, line) V

(3 M G /mes A depends(M, line) A M G chain(L))

A line is in the backwards chain of a conceptual module comprised of lines

A if

(X G | (line G chain(L))

The definitions for the def-pts(a,b) relation in the above equation is shown

in Table 3.1.

As in the computation of direct relationships between conceptual modules,

chain information cannot be computed if there is no complete use-def information

in the intermediate representation.

The process for computing a use-def chain between two conceptual modules

is described in Figure 3.2.3:

Form a l i s t : definitions, of a l l lines in the conceptual module
(this can be any l i s t of variables -

input, output, or local).
Repeat until:

the l i s t stops growing
or a line in the definitions l i s t
is in the other conceptual module.

{
usepoints = use points of definitions
newjdef_pts = definition points of usepoints
definitions = definitions U newjdef_pts

Figure 3.6: Pseudo-code computation of an indirect relationship between two conceptual mod­
ules

39

3.2.4 Determining Relationships Between Conceptual Modules

and the Source

This type of analysis involves asking questions about how a conceptual module re­

lates to lines of code in the source. This analysis can involve just one conceptual

module, or it can involve a comparison of how multiple conceptual modules relate

to the source. Because the questions that can be asked about this type of relation­

ship are unbounded, the programmatic query language presented in Section 3.4.1 is

provided so that users of the tool can tailor queries to determine the information

they need.

Queries in this category of analysis may involve determining if two conceptual

modules have common definition points in the source, if two conceptual modules

affect a common line of code, or if a particular line of code in the source has an

affect on a conceptual module.

3.3 Tool Implementation

The functionality of the tool resides in 8 Java[l] classes and 7 Perl[24] scripts. The

classes comprise approximately 3000 lines of commented Java code. The scripts are

used for accessing the intermediate representation.

In the original implementation of the tool, all intermediate representation

access was done by loading the entire intermediate representation into a Java Vector1

of records, scanning the records, and applying the analysis algorithms. However,

this caused the program to both consume excessive amounts of memory and to run

very slowly, thus reducing the tool's ability to deal with very large (over 100,000

1 A Vector is a kind of Java array.

40

line) intermediate representations. A faster mechanism was needed for the retrieval.

With the current implementation of the tool, loading the intermediate rep­

resentation for sort . c 2 takes about 5 seconds. Loading the intermediate repre­

sentation of a larger program, GNUplot 3 takes 30 seconds. Perl was chosen as the

implementation language to manipulate the intermediate representation for its abil­

ity to sweep through files very efficiently.

Figure 3.7 shows the relationships between the classes and the scripts. Ar­

rows show calls made between classes or scripts. Grey areas illustrate the compo­

nents that make up the system. These were shown at a higher level in Figure 3.2

3.3.1 Classes

The following Java classes are used in the implementation of the tool.

• Abstraction holds the member attributes concerning a particular conceptual

module including the conceptual module's name and the lines of code that

comprise it. It also tracks, as a class variable, a table of all the defined con­

ceptual modules, and contains mechanisms for locating conceptual modules

and for saving conceptual modules to a file. It also maintains the variables,

and control transfers that pertain to a conceptual module, and provides mech­

anisms for retrieving and changing those pieces of information.

• InputMechanism is the main user interface class.

• Analyzer is the main analysis class for the tool. This class contains almost

all of the interface and relationship analysis functionality except the low-level

2sort comprises 29 files and 5100 lines of C code. The intermediate representation for sort.c
is approximately 5000 tuples

3GNUplot is made up of 12000 lines of C code, and its intermediate representation
is 500,000 tuples

41

methods for compilation of use-def chains.

• DefUse provides the methods that compute use-def chain information both for

one conceptual module and also between conceptual modules. The backwards

chain information is described in Section 3.2.3.

• USER class has one main method, QUERY, which is the method in which the

user places their own functionality (user-defined queries).

• variable is a class that contains information about variables in the system, in

particular, the input, output, and local variables contained in the conceptual

module's lists.

• Ctrltxf is a class that contains information about control transfers retrieved

from the intermediate representation.

• Procstart is a class that contains information about procedure starts retrieved

from the intermediate representation.

Scripts

The tool includes the following eight scripts. All but the first, SetUpFiles, script are

written in Perl. The SetUpFiles script is a C-shell script.

• SetUpFiles uses grep for extracting the control transfer and procedure start

relations from the intermediate representation.

• varlistaddition is used for getting the line numbers of the uses and definitions

of variables.

42

• defsforuses takes in a list of use line numbers, and returns the definition lines

for those uses. This script is used when determining chain and relationship

information between conceptual modules.

• rel intersects and analyzes two lists of lines to identify a direct relationship

between two conceptual modules.

• chaining takes one step back in the use-def chain.

• linestovars takes line numbers and returns the variables used or defined on

those lines.

• varanalysis performs analysis on a set of lines comprising a conceptual module,

determining local, input and output variables.

• inferred-analysis uses the variable information produced by varanalysis to

do a second sweep through the intermediate representation to promote any

variables to local variables if all lines of code which are known about a partic­

ular variable are housed in the conceptual module.

3.4 User and Query Interface

The user interface of the tool is for general purpose construction, refinement, and

analysis of conceptual modules. It consists of the menu items shown in Figure 3.8. It

is further described in Appendix 1. The queries available through the user interface

rely on the same classes and methods as those used by the query interface. The user

interface provides queries through a menu since they are used often and need to be

accessed on a regular basis. The conceptual module tool was implemented to test

43

the usefulness of the conceptual modules approach. Its user-interface is currently

sufficient for analyzing conceptual modules but was not the focus of this research.

Since the requirements of users differ greatly depending on the reengineer­

ing task being performed, users are often interested in very different details about

conceptual modules. In addition to basic and frequently accessed information about

conceptual module interfaces and relationships, the user may inspect the details of

all computed information. For instance the user may wish to ask:

• if the conceptual modules have any common definition points?

• if the conceptual modules have any common effects?

• if the conceptual modules have any variables in common?

To allow the user to tailor methods for manipulation and analysis of con­

ceptual modules, a programmatic query interface and analysis library is provided.

To use the library functions of the tool, the user must provide functionality in the

QUERY() method which resides in the Java file: USER. Java.

3.4.1 Q u e r y L i b r a r y

This section gives information about the member functions and attributes that the

tool makes visible to the user. It includes detailed lists of the primitives provided

by the tool, and information about how the primitives are implemented (including

interface information).

Abstract ion M e m b e r Access These member methods and attributes of the

class Abstract ion are available to the user for use in the programmatic query

mechanism.

44

• Name is a name of a conceptual module and is of type Str ing.

• AbstractionTable is a list of al l conceptual module, and is of type Vector of

conceptual modules.

• Lines is a list of line #'s in conceptual module and is of type Vector of Strings

each look like: "filename l inenum".

• LOCALVars is a list of a conceptual module's local variables, and is of type

Vector of Strings.

• INVars is a list of a conceptual module's input variables, and is of type Vector

of Strings.

• OUTVars is a list of a conceptual module's output variables, and is of type

Vector of Strings.

• CtrlsOUT is a list of control transfers out of the conceptual module, and is of

type Vector of Ct r l tx f s .

• Procstarts is a list of al l procedure starts in the intermediate representation,

and is of type Vector of Procstar ts .

D i r e c t R e l a t i o n s h i p M e t h o d s The following methods are available to the user

for retrieving direct relationship information:

• public static void Analyzer.getRelationship(Abstraction A,Abstraction B)

This method takes two conceptual modules as parameters, and writes (to

standard output) information about whether one provides variables to the

other, and whether there is any overlap of lines between the two. It also

45

writes out whether the two conceptual modules are equal, or whether one

contains the other.

There is currently no programmatic access to the result of this method.

• public static SET Analyzer.inVarsInCommon(Abstraction A,Abstraction B)

This method takes two conceptual modules as parameters and returns a S E T 4

of input variables that the two conceptual modules have in common. This is

done by first computing the input variables for each conceptual module, and

then by comparing all the definition points of those variables for commonali­

ties.

• public static SET Analyzer.outVarsInCommon(Abstraction A,Abstraction B)

This method takes two conceptual modules as parameters and returns a S E T

of output variables that the two conceptual modules have in common. This is

done by first computing the output variables for each conceptual module, and

then by comparing all the use points of those variables for commonalities.

Indirect Relationship Methods

• public SET Analyzer.get_full_chain(Abstraction A)

This method returns the S E T containing all the lines upon which conceptual

module A depends.

• public static void DefUse.FindChain(Abstraction A, Abstraction B)

This takes two conceptual modules as parameters and writes to stdout a

backwards dependence path from the second to the first.

4 A SET is a Vector of Strings with additional print methods.

46

To inspect a reciprocal relationship it is necessary to call this method twice,

the second time switching the order of the conceptual modules passed in.

Abstract ion Construct ion and Refinement Methods When a user is pro-

grammatically analyzing one or more conceptual modules, they may wish to con­

struct new modules, or refine those they are analyzing. The following methods

support this functionality.

• public Abstraction(String n)

This method creates a conceptual module with name, "Name"

• public void addLine(String L)

This method adds the string "Filename line#" of line number L to the con­

ceptual module Lines Vector which is of type Vector of Strings.

• public void AddLines(SET lines)

This method adds a set of lines to a variable

• public void AddRange(String Linel, String Line2)

This adds the lines ranging from Linel to Line2. Both lines specified must

appear in the same file.

• public void AddProcedure(String Mod, String Proc)

This method adds the lines in a procedure, including the declaration line, to

a conceptual module.

• public void AddVariable(SET vars)

This method adds a S E T of variables to a conceptual module

47

public void RemoveLines(SET lines)

This method removes the S E T of lines from a conceptual module

public void RemoveVariable(SET vars)

This method removes all the variables in the S E T vars from the conceptual

module.

public static int LocateAbstraction(String name)

This method returns the conceptual module table index, -1 if not found.

48

49

starting

F i les Loaded
The IR has been loaded

Construction 8> Refinement:
1. Create a new conceptual module
2. Add lines to a conceptual module
3. Add a Procedure to a conceptual module
4. Add a range of lines to a conceptual module
5. Add a variable to a conceptual module
6. Remove lines from a conceptual module
7. Remove a variable from a conceptual module

Viewing, Loading & Saving:
8. Print the conceptual module names
9. Load a conceptual module from a f i l e
10. Save a conceptual module to a f i l e
11. Print out the procedure starts in the IR
12. Print the line numbers of a conceptual module

Analysis:
13. Perform the i n i t i a l conceptual module analysis
14. Print the relationsip of two conceptual modules
15. Execute a user defined query
16. Turn inferred analysis on/off
17. Determine an indirect relationship between two conceptual modules
18. Determine ca l ls to a conceptual module
19. Determine ca l ls between two conceptual modules

to quit
> D

Figure 3.8: User Interface window of the tool

50

Chapter 4

Validation

To examine the usefulness of the conceptual module tool, the tool was used both in

actual restructuring and reengineering tasks by other users in conjunction with the

author, and in sample scenarios by the author. In the case studies, the participants

worked through reengineering and restructuring tasks they were performing with the

help of the conceptual module tool. The sample scenarios involved asking certain

specific types of questions using both existing program understanding tools and the

conceptual module tool. The results of using the different tools were then compared.

This chapter provides an account of the case studies, and outlines the results

from each of the sample scenarios.

4.1 User Testing: Case Study

Two small case studies were conducted to better understand the usefulness of the

conceptual module approach in a real-task setting. The first group of users were

removing large portions of a program while attempting not to affect certain other

portions of that program. The second group was analyzing a procedural program

51

to better assess how to restructure it according to an object-oriented design. Each

group spent roughly four hours using the tool.

4.1.1 Extracting a Functional Subset

The first case study was conducted with a group of graduate students in Computer

Science. The students' project was to parallelize the system's computation, and to

remove unwanted computation so as to enhance parallelizability and efficiency. The

students were deleting large portions of a 56 file program.

The application being modified was the C U Decision Diagram Package

(CUDD) . 1 The C U D D package provides functions to manipulate Binary Decision Di­

agrams (BDDs), Algebraic Decision Diagrams (ADDs) and Zero-suppressed Binary

Decision Diagrams (ZDDs). The system is comprised of 47,796 lines of commented

C code. The group intended to eventually remove the A D D and Z D D functionality

from the program. The task in this case study was the first phase of this removal:

extraction of the Z D D functionality while leaving the B D D functionality unaffected.

Their initial plan with this restructuring task was a common one: to delete

or comment out the lines of code and then attempt to compile the program, execute

it, and perform regression testing.

To discover how much code the users wished to remove, the users relied on a

consistent variable, sub-routine and type naming convention, removing all lines that

contained any program element with a certain name. Before they began using the

conceptual module tool, the group used grep 2 to search for these naming patterns.

From this search they determined that approximately 2000 lines of code should

'CUDD: CU Decision Diagram Package, Release 2.1.2, written by Fabio Somenzi of the Depart­
ment of Electrical and Computer Engineering, University of Colorado at Boulder.

2grep is a Unix lexical search tool.

52

be targeted for removal. Initially, they had intended to examine each line of code

returned by grep to see if it might affect the portion of code to preserve. The grep

tool could not completely help them with their task since it did not provide them

the semantic detail they needed to perform the extraction.

...the time-line was too tight to wade through all that code, and not only

did I want to rip out what we did not need (just to reduce the size of the

monster) but I also had to make some structural changes to the most

fundamental data structure involved, and I needed to know W H E R E to

focus these changes... — Yvonne Coady, conceptual module tool user

To help them with this task, the conceptual module tool was used to con­

struct two conceptual modules: the first comprised the lines of code targeted for

deletion, and the second comprised the lines of functionality to be preserved. Three

types of analysis on these conceptual modules were then performed:

• simple relationship analysis to determine the direct relationships between the

two conceptual modules,

• transitive relationship analysis to determine if there was an indirect relation­

ship between the two conceptual modules,

• calls-in analysis to see if any of the lines of code to be preserved invoked those

targeted for deletion.

These three queries enabled the users to directly ask about whether there was

any relationship between the two conceptual modules. Running the three queries

took approximately ten minutes, including the time to load the 70,000 line interme­

diate representation.

53

These queries reported many relationships found between the two concep­

tual modules. However, when analyzed, it was found that the code causing the

links between the two conceptual modules actually represented code that should be

deleted. When those lines of code were moved to the conceptual module of lines to

be deleted, the relationships between the two conceptual modules were severed. The

users were then able to continue their restructuring task with increased confidence

that the deletion of the targeted lines of code would not affect the portion of code

they wished to preserve.

... not only did [the conceptual module] tool verify the independent

nature of the ZDD functionality and allow me to rip out all that code,

B U T , the process of using your tool forced me to analyze and understand

the code in a way that I had not been doing — and that ultimately it very

quickly gave me the perspective I needed. — Yvonne Coady, conceptual

module tool user

After the removal of the lines of code in the Z D D conceptual module, the

group performed regression testing on the B D D functionality in the package and

found it to be unaffected by the removal of those lines. The users estimated that

they spent over 30 hours on extraction; and four of those hours were spent using

the conceptual module tool. The first half of the extraction was done before using

the conceptual module tool, consuming approximately 20 of the 30 hours. After

using the conceptual module tool, they finished the remaining extraction in around

6 hours.

During the study, we placed the inputs to the tool into a file and made use

of the UNIX input redirection facility to direct the input from the file into the tool.

54

4.1.2 Moving to Object-Oriented Design

The second case study involved an undergraduate student in Electrical Engineering

who was faced with converting a large C program to C++- The student had a

minimal understanding of the existing code when asked to perform this task.

The student wished to determine if a postulated class diagram resembled the

existing module packaging scheme for the system. We made use of the ability to

add procedures to conceptual modules and also captured some of the main files in

the system into conceptual modules to form proposed classes, we then performed

initial analysis, relationship analysis, and calls analysis on the conceptual modules

to determine the dependences on and between those conceptual modules.

After determining that there was no overlap between conceptual modules,

the user was able to assume that the variables local to the conceptual modules

should be private variables to those conceptual modules, and that the procedures

that were called from outside a conceptual module should be maintained as public

or protected methods.

The student had a set of inter-class data-flow and control-flow relationship

constraints; for instance, control and data-flow should go only from one class to an­

other, but not vice-versa. To test if these constraints were maintained, relationship

analysis was performed to see what variables were being modified between concep­

tual modules, and also what cross-conceptual module control transfers existed. This

helped the student refine which procedures should belong to which proposed class,

and if any portions of computation should be moved around from one conceptual

module to another to maintain the privacy of certain variables.

In one case, it was found that leaving a portion of computation in the class

in which it was originally placed would violate the uses relationship constraints

55

between two classes. Enclosing that functionality in another conceptual module

and reapplying the analysis showed that moving the functionality to another class

would maintain the relationship without breaking other desired properties of the

system. The student was able to move code around between conceptual modules

to find the necessary relationships. The process also helped improve the student's

understanding of the existing code.

4.2 Sample Scenarios

To further study the effectiveness of the conceptual module approach, the tool and

several existing program understanding tools were applied to three reengineering

scenarios. The first scenario considers the component formation and extraction out­

lined in the introduction: the creation of an input pipe component that includes an

initialization procedure from the G N U sort program. The second scenario consid­

ers a restructuring task: the re-modularization of a legacy C program, adventure.

The last scenario considers the formation of a class from a module in the GNUplot

program.

The sample activities were all performed with several program understanding

tools: the conceptual module query tool, Unravel [12]—a slicing tool, Lackwit[16]—a

type inferencing tool, and xrefdb[18]—a program database tool.

Each program understanding tool provides the user different types of infor­

mation. To provide some basis for comparison, the measure applied was the amount

of information returned to the user which was of interest, and the amount of work

that was required to filter that information.

56

4.2.1 G n u sort - Component Extraction

As mentioned above, the initial test performed with the conceptual module tool was

to extract an input pipe component from the Unix sort program.

As described in Chapter 1, the GNU sort program is built as a pipe-and-filter

system. The program consists of one filter, the sort functionality, and two pipes:

the input pipe and the output pipe from the sort filter.

The task in this scenario

consisted of identifying the existing

source lines that should be included

as part of an initialization function

for a desired input pipe component.

The tools were applied to this task

after identifying, based on a perusal

of the source, a modest number—

less than 10 lines—of source that

should be included in the compo­

nent. Figure 4.1 shows a snippet of

the relevant code from the main and

sort functions. This code is spread

across multiple non-contiguous lines

Figure 4.1: Selected non-contiguous lines of of source code.

source The Unravel tool supports

the computation of backward slices given a variable name and a program point

(line of code). For this task, the aim was to compute backward slices on variables

from the pre-identified lines of code. The resulting slices would provide the lines of

main()
f o r (i = 0; i ^ n f i l e s ; i + +i
{ "char buf [8192] ;

FILE *fp;
i n t cc;

fp=xfopen (f i l e s [i] , "r") |;
tmp=tempname();
ofp=xtmpfopen(tmp);

sort()
fp = xf o p e n (* f i l e s , "r")
while (f i l l b u f (&buf, f p/) ;

f i n d l ines(&buf, ficlines)

i f (f e o f (f p) && I n f i l e s .
tfp=ofp;

else
++n_temp_files

57

source that contributed to the values of those variables at the program point. The

slices computed in this way were large. In all cases, because the slice computations

took several hours, the process had to be interrupted; partial slices were used in

substitution. Each of the partial slices was over 750 nodes in size. Qualitative in­

spection of these slices revealed some procedures of interest, however, most of the

source lines were not relevant to the input pipe component. For example, most lines

in the sortlines procedure were included in one of the slices; these lines contribute

to the functionality of the sort filter, not the input pipe functionality.

To assess the usefulness of Lackwit for this type of task, the graph capability

of Lackwit was employed. Lackwit has a feature that produces a graph summarizing

the information about a single component of a variable.

The nodes of the graph represent the global declarations, and the

edges represent the use of one declaration by another in the text of

the program. Arrows point from the using declaration to the used

declarations.[16, page 342]

For instance, a graph computed for the buf variable in the f i l l b u f procedure for

instance, a variable central to the sort functionality, included 23 procedures. These

graphs were useful in determining the procedures containing potentially relevant

code, but they did not provide specific information about relevant source lines. As

indicated by the graph, all but one of these procedures could potentially alter the

value of the variable. A qualitative evaluation of these procedures identified five of

the procedures as containing code relevant to the task at hand.

In the case of the xrefdb tool, the lines comprising all references and all

declarations of variables identified of interest were queried. With these queries, 126

lines of source code for qualitative assessment were identified. 30% of these lines

58

were assessed to be relevant to the task by comparing them with the final set of

lines of code targeted for extraction.

As described earlier, the conceptual module tool was applied to this task

by forming a module comprised of the pre-identified lines of source. The analy­

sis of those lines performed by the conceptual module tool was then used to drive

further investigation of the source. For example, through examination of the defi­

nition points reported in the analysis for the input variable, buf, it was found that

additional lines of source should be included in the module. To form the desired

procedure, this process was iterated approximately six times.

It was straightforward to apply the conceptual module tool to this task be­

cause, at any point, only limited information was being considered about the source,

such as the definition points of input variables or use points of output variables. This

information was determined and produced in the context of the desired structure.

The conceptual module tool performed the filtering that had to be done manually

when using other techniques. For example, after collecting the pre-identified lines

of code into a conceptual module, the tool provided a succinct list of the input,

output and local variables rather than providing subsets of the program's execution

for each variable as was returned by the Unravel tool.

4.2.2 Adventure - Clarifying Commonalities

The adventure program is an exploration game that has been distributed as part

of the Unix operating system for many years.3 The game was originally written in

Fortran and was later converted to C . The source consists of approximately 8,000

3Version 6 of adventure was used in this analysis.

59

lines of C code distributed across 13 files.4

A substantial amount of the functionality of the game resides in a 525-line

main procedure where gotos between labels are used to move a player through the

game. The restructuring task was to form procedures out of lines of code between

goto labels so as to encapsulate different states of the game. The goal was then to

understand how the desired procedures interact through state information and, in

particular, to determine variable definitions shared by these procedures.

It was difficult to apply a slicing tool to this problem because of the number

of variables of interest. Essentially, it was necessary to compute the intersection of

backward slices on each variable mentioned in each target procedure. For the target

procedures in adventure, this would have involved computing 38 slices. As the

Unravel tool was unable to intersect this large number of slices, only a few sample

slices were computed. As was the case for sort, the slices were large, consisting

of over 700 nodes, making it difficult to. wade through the reported information to

determine the program points of interest.

It was also difficult to apply the Lackwit tool to this task because of the

granularity of the information reported. The graphical view of the type information

used for sort that reports on the affect of procedures on the values of variables

was not useful in this case. It was not useful because the vast majority of the

functionality was included in one main procedure.

The Lackwit tool also provides the capability to report a list of variables

sharing values with the variable of interest. For adventure, the results from these

queries were difficult to interpret and to filter because they returned a significant

4 The distributed version of the source was modified slightly to permit analysis. For example, as
distributed, the source contains multiple declarations for global variables. These declarations were •
restructured. No substantive changes were made to the main function that is the target of this
scenario.

60

amount of information. For instance, querying on the wzdark variable of one of

the desired procedures returned 231 related variables. The xrefdb tool was also not

well-suited for the task. Since the tool reports cross-reference information extracted

from a syntactic parse of the source code, the tool is unable to report information

about data-flow between different variables.

The conceptual module tool was applied to the task of forming conceptual

modules for each of the desired procedures consisting of the identified source lines.

Then, a user-defined form of indirect query was written. To determine if there were

any common definition points for the target procedure.

For each conceptual module, this query com­

putes the use-def chains of the input variables of the

module, and intersects all resultant chains to pro­

duce a list of variables and definition points com­

mon to all the conceptual modules. Local variables

are considered to handle cases of module overlap. By

allowing the engineer to focus on use-def chains of
Figure 4.2: Common definition

. ^ , x , , . collections of variables encapsulated in the module, points between two conceptual r

modules the tool provided a direct way to access information

of interest. (Figure 4.2)

4.2.3 G N U p l o t - Assessing New Structure

The third task involved assessing the difficulty of restructuring a module from the

GNUplot 5 program into a class. Specifically, the objective was to understand which

procedures from a module should become methods of a target class, and furthermore,

sThe GNUplot version analyzed was 3.50.1.17

61

whether the potential methods would become public or private members of the class.

The module considered was a contouring module specified in the file contour.c.

The GNUplot program comprises approximately 12,000 lines of C code. The contour

module contains just over 900 lines of non-blank, non-commented source.

Neither Unravel nor Lackwit were able to analyze the source for GNUplot. As

a result, only xrefdb and the conceptual module tool were used to perform analysis

on this file.

The results of using xrefdb for this task were similar to those reported for

the task on adventure. This tool was used to find lines of code that might be

relevant to the task based on the references and declarations of variables. To start

determining which target methods might be private, it was necessary to understand

which existing procedures operated on data local to the target class. Determining

this information, though, required access to use-def information to determine re­

lationships of variables. This information is outside the scope of the functionality

provided by xrefdb.

To answer these questions with the conceptual module tool, the source in

the contour.c file was examined and a conceptual module was created for each

contour-related procedure. (The file also contained several functions providing gen­

eral geometry functionality.) Then a conceptual module was created to represent

the target contour class. This class-level conceptual module was comprised of the

source contributing to each method-level conceptual module. To determine poten­

tial private methods, the query shown in Figure 4.3 was performed to determine

the methods in the class conceptual modules that used or defined data local to the

container conceptual module. This query was straightforward to write.

62

\\ A l l conceptual modules defined are pointed to by the
\\ AbstractionTable structure.
\\ Only the container and the class conceptual modules
\\ are defined.

\\ get the container module for a l l the conceptual modules
Abstraction Container = Abstraction.Get(e);
for(int i=0; i<Abstraction.AbstractionTable.size(); i++)
•C

if(i!=e) { \\ i f i t is not the container conceptual module
\\ get the conceptual module at ' i '

Abstraction Contained = Abstraction.Get(i);
\\ perform i n i t i a l analysis on that conceptual module

Analyzer.Initial(Contained, true);
\\ compute the common input variables of the contained and
\\ the container conceptual modules

SET inLines = Analyzer.inVarsInCommon(Contained, Container);
\\ compute the common output variables of the contained and
\\ the container conceptual modules

SET outLines = Analyzer.outVarsInCommon(Contained, Container);
\\ Print out the input variables l i s t preceded by the words
\\ "Public Variables: "

inLines.print(''Public Variables:'');
\\ print out the output variables l i s t

outLines.print();
}

>

Figure 4.3: Query to compare inputs and outputs of two conceptual modules

63

Chapter 5

Summary

This thesis has presented the conceptual module source code analysis approach.

The conceptual module tool, developed to support this approach, allows the user

to overlay a desired logical structure on the existing structure of source code and

then to build, analyze and refine that structure. In contrast to many other tools

that have been built to analyze source, the conceptual module approach supports

reengineering activities because it allows the engineer to simultaneously perform

queries about both the existing and the desired source structure.

The conceptual module tool provides the user the capability to build con­

ceptual modules out of lines of code drawn from anywhere in the original source.

The lines can be treated as one logical unit. To give the user the necessary querying

flexibility to perform analysis suited to their task, a programmatic query interface

is supplied. Through this interface, users can write their own queries using a library

of pre-defined methods, tailoring those queries to the needs of the specific task.

Two user studies were performed. In the first study, described in Sec­

tion 4.1.1, unwanted functionality in a software package was analyzed for removal so

as to streamline the package and enhance parallelizability. The users were able to

64

ask specific questions about the relationship between the code targeted for removal

and the functionality they wished to preserve. The tool was also able to give them

feedback about lines of code that could be removed which they had not originally

targeted. The identified code was removed from the software package and regression

testing was performed on the remaining functionality. The functionality was found

to be preserved.

In the second study, accounted in Section 4.1.2, a system's code was analyzed

prior to restructuring the code from a procedural design to an object-oriented one.

The user was attempting to evaluate how to place existing code in desired classes. By

performing relationship interface analysis on the target classes, the user was able to

determine whether a certain class structure would preserve the correct relationships

between classes such as uses and contains relationships. The tool was not only

able to give information about the class interfaces including public and private data

structure and methods, but was also helpful in refining the portions of code that

would be placed in each class.

The tool was also applied in three scenarios. These scenarios were pre-defined

to test the effectiveness and conciseness of the output of the tool when faced with

certain common types of reengineering and restructuring tasks. For sort, the task

was to extract the input pipe component and to test the extracted component's

functionality using a test driver. For GNUplot, the task was to determine the pri­

vate and public members of a class that was to be created from a module containing

several procedures. For adventure, the task was to understand the common def­

initions between different blocks in the code. In each of these cases, the use of

the conceptual module tool proved to be effective. When compared with program

databases, type inferencers and slicing tools, the conceptual module tool reduced

65

the amount of superfluous information reported to the user and radically cut down

the number of queries that had to be performed.

5.1 Discussion

This section discusses issues regarding the conceptual module approach. It first

examines the need for users to be given information with relation to the context of

their query. Then it discusses the form and report format of queries. Next, it details

the reasons for basing the tool on line number, as well as the role of the source model

in analysis. Finally, it considers the need for control dependence information to be

included in the intermediate representation.

5.1.1 Query Context

Many existing tools do not allow the software engineer to adequately express the

context of the query being performed. Context is expressed in two parts. First,

it can be beneficial for a software engineer to identify the region of the program

over which the query is being made. For instance, a slicing tool typically allows

a user to specify a particular program point of interest and then to determine the

direction—forward or backward—of the slice. In a similar way, the conceptual

module tool provides an engineer control in specifying this aspect of context since a

conceptual module is defined in terms of particular lines in the source. In contrast,

type inferencing tools like Lackwit are based on the analysis of the use of variables

over the entire program. A consequence of a lack of context specification in query

formation can be a return of a large number of false positives with respect to the

task being performed. This situation arose when applying Lackwit to the task on

sort described in Section 4 .2.1.

66

Second, it can be beneficial to a software engineer to restrict the region of

the program over which query results are reported. An engineer, for instance, may

not be able to efficiently interpret slices comprised of hundreds of nodes; the set

of statements contributing to the slice that are within a certain distance from the

program point may be sufficient. The conceptual module tool provides some control

to the user over this aspect of context by reporting localized results of the analysis

of the lines of code contributing to the module. The user can then tailor queries to

directly control the scope of their analysis.

5.1.2 Query Form

Often, when performing a query task, there is a need to perform queries over groups

of structural items. For the task on adventure described in Section 4.2.2, it was

desirable to perform queries about all of the variables within a block of code and

then to combine the results, perhaps using set operations. None of the existing

tools surveyed, and most of those commonly known, provide support for this kind

of grouped queries. Instead, the user must perform a series of queries and perform

the desired combination operations manually.

The conceptual module approach demonstrates how support for grouped

queries can be added as a front end to an existing tool. In the sort scenario

described in Section 4.2.1, the use of the conceptual module approach using infor­

mation extracted from the xrefdb database eliminated the need for the multiple

queries applied when directly using xrefdb.

67

5.1.3 Query Report Format

The Lackwit tool is characteristic of a number of program understanding tools that

report results in terms of the existing source structure, such as describing the pro­

cedures affecting the value of a variable. There is an underlying assumption with

these tools that the existing structure will be sufficient to help an engineer interpret

the results. However, when applied to systems like adventure (Section 4.2.2) that

have little structure, the results are either meaningless, as was the case in the com­

puted variable graphs, or they are overwhelming, as when perusing the textual lists

of variable dependences.

The conceptual module tool addresses this problem by reporting query results

in terms of the target, rather than the existing structure. The engineer may thus

choose the appropriate structure in which to view the results.

5.1.4 Line Number Granularity

The conceptual module tool is based on line numbers for three reasons. One reason

is that a user of the tool can easily identify source by line numbers to map to a

conceptual module. The specification of this correspondence would likely be more

difficult if a finer-grained representation, such as an abstract-syntax tree, were used.

The use of line numbers in the source model to identify pieces of the system also

enhances the flexibility of the tool by making it possible to connect the conceptual

module tool to different source model extractors. Line numbers are also a close

approximation of statements.

68

5.1.5 Role of the Source Mode l

The conceptual module approach supports a range of source models: a source model

may comprise either use-def chain information, or uncorrelated use and def infor­

mation. The analysis function of the tool is used to "smooth-out" these differing

forms of source model information. The combination of the use of a source model,

as opposed to directly analyzing the source, and an analysis capability to smooth

differences in the source models, provides a software engineer with significant flex­

ibility. An engineer can choose a source model extractor suitable for the system

being studied, and yet can interpret the results of applying a tool to the source

model in a consistent manner.

The conceptual module tool is dependent on the relations comprising the

source model. Currently, these relations are oriented at representing systems imple­

menting in a procedural language. Extensions to relations in the source model and

the analysis performed in the tool would be necessary to apply the tool to reengineer

systems written in other kinds of languages.

One class of language of interest are object-oriented languages. In the current

implementation of the tool, the structure of the conceptual modules created closely

resembles the procedural structure of the programs analyzed. Enabling a user to

analyze an object-oriented system with the conceptual module tool would require a

substantial number of additional analysis routines and the ability to model object-

oriented structural features in conceptual modules. The user would have to be able

to incorporate object-oriented concepts—such as class hierarchies and private, public

and protected members—into the conceptual modules they create. To perform

thorough analysis of the conceptual modules with relation to the existing source,

the source model would also have to include object-oriented information such as

69

class declarations, public, private and protected member declarations, and sub-class

relationships.

5.1.6 Control Dependence Information

The analysis of the conceptual module tool is currently limited by its inability to

consider control dependence information. Enhancing the conceptual module tool

to consider control dependence information in its analysis would enable a user who

is extracting code for reuse to better understand how the code relates to control

structures such as loops. If a user were examining lines based on some naming

convention, as the users were doing for the C U D D package.1 and then grabbing

lines based on names, it is possible that the user may grab a line that is contained

in a loop. The user may or may not be interested in this information, however, the

user should be alerted that the line of code was intended to be used inside a loop.

The user may then decide to include the loop statement in the conceptual module

to maintain the control binding of that line of code.

The addition of this functionality would require a fourth relation in the in­

termediate representation: ctrldep, the control dependence relation. Analysis

functionality exploiting this relation would need to be added to the tool. These

modifications would include adding chaining functionality to bring control depen­

dent lines into back-chains. Also, in the relationship analysis, modifications would

be needed to identify if one conceptual module was control dependent on another.

In the construction of conceptual modules there could also be functionality allowing

the user to opt to include lines upon which lines in the conceptual module depend.

'This example is described in Section 4.1.1.

70

5.2 Extensions

This section discusses possible extensions to the conceptual module approach and

tool. These extensions would take the form of additional or changed functionality

of the tool.

5.2.1 Architectural Conformance

Because of the complexity of present day software systems, the original design of a

program may not be adhered to throughout the process of its implementation[20].

Additionally, over the life of a software system, the software developers working on

the system will typically change. Together, these two conditions often mean that

the true design of a system is not known. True design refers not to the design that

was originally intended for the system, but to the design currently embodied by the

software.

Based on these unknowns, it is beneficial to be able to check how well a

system conforms to the design it seems to follow. Typically, there are a set of rules

the software would have to follow so as to conform to a particular design. In a pipe-

and-filter architecture, for instance, pipes may not be allowed to cause feedbacks

between filters. Architectural conformance involves examining source at the code

level to determine if it complies with the rules for a particular architectural model,

and if it does not, reporting the code causing the violation [20].

In addition to providing support for reengineering, the conceptual module

approach may provide a suitable framework on which to perform architectural design

conformance checks.

For example, the query language could be used to determine the architectural

conformance of a pipe component in a pipe-and-filter system, or could perhaps be

71

used to try to verify the relationships between layers in a layered architecture. To

perform architectural conformance checks using the conceptual module approach

and tool, a user would create conceptual modules for the components and connectors

in the architectural model, and then would formulate queries based on the rules for

that model to test if the code adhered to the architectural rules. The user would

then be able to ascertain from the output of the tool which lines of code, if any,

violated the principles of the architectural model. The user would make iterative use

of the tool, refining which lines of code fit into which conceptual module, and would

also be able to return to the source to change to it to better fit the architectural

model.

The relationship information presently provided by the tool may be sufficient

for embarking on this type of analysis. For instance, the user can test a group

of conceptual modules forming a pipe-and-filter architecture for a feedback loop

(transitive closure) by using the indirect-relationship query mechanisms presently

in place. As another example, the user can query the calls made from one layer of

an architectural model to a higher layer to see if that lower level uses the higher

one.

To provide the user the correct functionality for architectural conformance

checking, more user testing is needed to determine the types of information required

for verifying the architectural conformance of a component or a connector.

5.2.2 Result Reporting

Multiple variable definitions and multiple calls can appear on the same line of code.

Sometimes, a user is interested in isolating just one of the variables or just one of

the calls on a line. Including the entire line in a conceptual module, causes control-

72

flow and data-flow dependences to the conceptual module because of the unwanted

portions of the line. When analyzing that conceptual module, the tool will translate

those control-flow and data-flow dependences into calls and input, output or local

variables, all of which are due not to the variable or call of interest, but to the other

calls or variables appearing on that same line.

In most of these cases, the user can remember the lines of code that cause

the superfluous information, and can ignore all the information that is produced by

> the inclusion of that line.2 This inclusion of unwanted variables or calls, however,

can lead to annoying and repetitive information, and at times can snow-ball, and

pull in so many pieces of information that the analysis mostly returns information

the user is not interested in.

One possible solution to this problem is to allow users to expel lines of code

from the intermediate representation, so that they will not be taken into account

at all. This approach, though, can cause implementation problems, because many

: of the functions of the tool may be required to be radically altered to account

for omission of lines of code. For example, this omission would preclude chaining

through those lines of code. The result would be that the user would have to

make complex interpretations of information returned from all the relationship type

queries.

Another possibility is some way to allow users to break apart lines of code.

This would cause a fundamental change in the current implementation of the tool

since it is currently completely based on lines of code. Thorough user testing and

investigation of this is necessary to attempt to strike a balance between the conve­

nient and familiar line-number granularity, and the provision of the ability to break

2It is quite clear in the user interface, which line of code caused the inclusion of a particular call
or variable.

73

apart lines to access their constituent variables and calls.

In both schemes, great care would have to be taken to ensure the awareness of

users about what portions of which lines are omitted from view. Further user testing

is necessary to fully understand the most convenient way for users to request this

omission, and the safest way to keep them informed of their outstanding omission

requests.

5.2.3 Considering Data Structures

During the case study described in Section 4.1.1 involving the C U D D users, a situ­

ation arose in which the users wished to include all of the lines of code relating to a

field in a data structure. Currently, the conceptual module tool provides no support

for data structure analysis. However, in this case, the users were able to continue as

they had been doing and select lines of code based on a consistent variable naming

convention. It would have been more convenient if the tool had provided direct

support for the inclusion of whole or portions of data-structures in the conceptual

modules.

The need for this analysis also arose when performing the object-oriented

analysis case study described in Section 4.1.2. The ability to create conceptual

modules out of lines of code using particular types in the system would have signif­

icantly simplified the task of assigning lines of code to proposed classes.

Currently, the intermediate representation does not contain information

about types or data-structures so the tool itself is presently unable to perform this

type of analysis. For this analysis to be possible, the intermediate representation

would have to include data structure, including field information and type informa­

tion, in its variable dependence relation. Rather than just including this information

74

as a portion of the variable name in the vardep relation, it would speed up analysis

if it were included as a separate field in the relation—the type field.

75

Bibliography

[1] K. Arnold and J . Gosling. The Java Programming Language. Addison-Wesley,
1996.

[2] J . Beck and D. Eichmann. Program and interface slicing for reverse engineering.
In Proceedings of the 15th International Conference on Software Engineering,
pages 509-519. I E E E Computer Society Press, April 1993.

[3] Jean-Francois Bergeretti and Bernard A . Carre. Information-flow and data-flow
analysis of while-programs. ACM Transactions on Programming Languages and
Systems, 7(1):37-61, January 1985.

[4] Elliot J . Chikofsky and James H. Cross. Reverse engineering and design recov­
ery: a taxonomy. IEEE Software, 7(1):13-17, January 1990.

[5] Paul Clements. What is Software Architecture? And Why Do I Care? In
NO A A Symposium on Software Engineering, September 1994.

[6] M . Consens, A . Mendelzon, and A . Ryman. Visualizing and querying software
structures. In Proceedings of the lJ^th International Conference on Software
Engineering, pages 138-156. I E E E Computer Society Press, May 1992.

[7] Charles N . Fischer and Jr. Richard J . LeBlanc. Crafting A Compiler. The
Benjamin/Cummings Publishing Company, Inc., 1998.

[8] D. Garlan, R. Allen, and J . Ockerbloom. Architectural mismatch or why it's

hard to build systems out of existing parts. In Proceedings of the 17th Interna­

tional Conference on Software Engineering, pages 179-185, April 1995.

[9] William G Griswold and David Notkin. Automated assistance for program

restructuring. ACM Transactions of Software Engineering and Methodology,

2(3):228-269, July 1993.

[10] Daniel Jackson and Eugene J . Rollins. A new model of program dependences

for reverse engineering. In Proceedings of the ACM SIGSOFT '94 Symposium

76

on the Foundations, of Software Engineering, pages 2-10. A C M Press, December

1994.

[11] C . Lindig and G . Snelting. Assessing modular structure of legacy code based
on mathematical concept analysis. In Proceedings of the 19th International
Conference on Software Engineering. I E E E Computer Society Press, 1997.

[12] J.R. Lyle and D. Binkley. Program slicing in the presence of pointers. In
Proceedings of the 1993 Software Engineering Research Forum, pages 255-260.
A C M Press, November 1993.

[13] H . A . Muller. Rigi-A Model for Software System Construction, Integration and
Evolution based on Module Interface Specifications. PhD thesis, Rice University,
Houston, T X , 1986.

[14] Hausi A . Muller, S. R. Tilley, M . A. Orgun, B. D. Corrie, and N. H . Madhavji.
A reverse engineering environment based on spatial and visual software inter­
connection models. In SIGSOFT'92: Proceedings of the Fifth ACM SIGSOFT:
Symposium on Software Development Environment, pages 88-98, December
1992.

[15] Gail C . Murphy, David Notkin, and Kevin Sullivan. Software reflexion models:
Bridging the gap between source and high-level models. In Proceedings of SIG-
SOFT'95 Third ACM SIGSOFT Symposium on the Foundations of Software
Engineering, pages 18-28. A C M Press, October 1995.

[16] Robert O'Callahan and Daniel Jackson. Lackwit: A program understanding
tool based on type inference. In Proceedings of the 19th International Con­
ference on Software Engineering, pages 338-348. A C M Press, May 1997.

[17] David Lorge Parnas. Software aging. In Proceedings of the 16th International
Conference on Software Engineering, pages 279-290, Sorrento, Italy, May 1994.
I E E E Compuser Society Press.

[18] S.P. Reiss. The Field Programming Environment: A Friendly Integrated En­
vironment for Learning and Development. Kluwer Academic Publishers, Ams­
terdam, Netherlands, 1995.

[19] Thomas Reps and Genevieve Rosay. Precise interprocedural chopping. In Pro­

ceedings of SIGSOFT95 Third ACM SIGSOFT Symposium on the Foundations

of Software Engineering, pages 41-52. A C M Press, October 1995.

77

[20] R. W . Schwanke, V . A . Strack, and T . Werthmann-Auzinger. Industrial soft­
ware architecture with gestalt, 1996.

[21] Mary Shaw and David Garlan. Software Architecture. Prentice Hall, Upper
Saddle River, NJ 07458, 1996.

[22] Margaret-Anne D. Storey, Kenny Wong, and Hausi A . Miiller. Rigi: A visu­
alization environment for reverse engineering. In Proceedings of the 19th In­
ternational Conference on Software Engineering, pages 606-607. A C M Press,
May 1997.

[23] F . Tip. A survey of program slicing techniques. Journal of programming lan­

guages, 3:121-189, 1995.

[24] L . Wall, T . Christiansen, and R .L . Schwartz. Programming Perl. O'Reilly &
Associates, 1991.

[25] Mark Weiser. Program slicing. In Proceedings of the 5th International Confer­
ence on Software Engineering. I E E E Computer Society Press, March 1981.

[26] Robert Wilson, Robert French, Christopher Wilson, Saman Amarasinghe, Jen­
nifer Anderson, Steve Tjiang, Shih-Wei Liao, Chau-Wen Tseng, Mary Hall,
Monica Lam, and John Hennessy. The SUIF compiler system: a parallelizing
and optimizing research compiler. Technical Report CSL-TR-94-620, Stanford
University, Computer Systems Laboratory, May 1994.

[27] Alexander S. Yeh, David R. Harris, and Melissa P. Chase. Manipulating re­
covered software architecture views. In Proceedings of the 19th International
Conference on Software Engineering, pages 184-194. A C M Press, May 1997.

78

Appendix

79

Appendix A

Menu Items of the Tool

The user interface of the tool consists of both a query interface and a menu-driven

interface. The menu-driven interface is shown in Figure A . l . Each of the menu

items is described in more detail below.

It should be noted that when "line-number" is referred to, the string "file­

name line number" is actually required. For example, when adding line 1241 of file

foo, the user is required to enter: foo 1241. This is not true when adding and

removing ranges of lines.

When "variable name" is mentioned, the string "filename variable name " is

actually required. For instance, when adding variable bar of procedure raz in file

foo the user is required to enter: foo raz .bar .

A When "procedure-name" is mentioned, "filename procedure name" is ac­

tually required. Thus, when adding procedure raz of file foo the user is actually

required to enter foo raz.

1. Create a new conceptual module.

Allows the user to enter a name for a new conceptual module.

80

2. Add lines to a conceptual module.

The user is prompted to type a conceptual module name and a list of line-

numbers terminated by " E N D J J N E S " . Those lines are then added to the

conceptual module.

3. Add a procedure to a conceptual module.

The user is asked to type in a procedure-name and a conceptual module name,

and the lines in that procedure are added to the conceptual module.

4- Add a range of lines to a conceptual module.

The user enters the filename, then the first line, then the last line of the range.

These lines are then added to the conceptual module.

5. Add a variable to a conceptual module

The user adds a list of variable-names terminated by "END_VARIABLES",

and then those variables are added to the conceptual module.

6. Remove lines from a conceptual module.

The user gives a line-number and it is removed from the conceptual module.

7. Remove a variable from a conceptual module.

The user enters a variable-name and it is removed from a conceptual module.

8. Print the conceptual module names.

Prints out the names of all the currently defined conceptual modules.

9. Load a conceptual module from a file.

The user is prompted for a conceptual module name and a filename, and it

puts the contents of the file into the conceptual module.

81

10. Save a conceptual module to a file.

The user is prompted for a conceptual module name and a filename, and the

contents of the conceptual module are written out to that file.

11. Print out the procedure starts in the IR.

Writes to standard output all the procedures in the intermediate representa­

tion.

12. Print the line numbers of a conceptual module.

The user is prompted for the name of a conceptual module, and then all the

lines comprising that module are written to standard output.

13. Perform initial analysis on a conceptual module.

The user is prompted for the name of a conceptual module, and then single

conceptual module analysis is performed for that conceptual module.

14- Print the relationship of two conceptual modules.

The user is prompted for a conceptual module name, and direct relationship

analysis is performed as well as overlap analysis, and contains analysis.

15. Execute a user defined query.

Causes the method USER.QUERY() to be called.

16. Turn inferred analysis on/off.

Toggles the inferred analysis outlined in Section 3.2.2 between on and off.

17. Determine an indirect relationship between two conceptual modules.

Prompts the user for two conceptual module names, and determines if there

is an indirect relationship from the first to the second.

82

18. Determine calls into a conceptual module.

The user is prompted for a conceptual module name, and performs calls-in

analysis (as described in Section 3.2.2) on the conceptual module.

19. Determine calls between two conceptual modules.

The user is prompted for two conceptual module names, and determines if

lines in one conceptual module calls the other.

83

starting

F i les Loaded
The IR has been loaded

Construction & Refinement;
1. Create a new conceptual module
2. Add lines to a conceptual module
3. Add a Procedure to a conceptual module
4. Add a range of l ines to a conceptual module
5. Add a variable to a conceptual module
6. Remove lines from a conceptual module
7. Remove a variable from a conceptual module

Viewing, Loading & Saving:
8. Print the conceptual module names
9. Load a conceptual module from a f i l e
10. Save a conceptual module to a f i l e
11. Print out the procedure starts in the IR
12. Print the line numbers of a conceptual module

Analysis;
13. Perform the i n i t i a l conceptual module analysis
14. Print the relationsip of two conceptual modules
15. Execute a user defined query
IG. Turn inferred analysis on/off
17, Determine an indirect relationship between two conceptual modules
18, Determine ca l ls to a conceptual module
19, Determine ca l ls between two conceptual modules

0 to quit
- > D

Figure A . l : User interface window of the tool

84

