
MAXIMIZING BUFFER AND DISK UTILIZATIONS FOR NEWS

ON-DEMAND

By

Jinhai Yang

B. Sc. (Computer Science) University of Science and Technology of China

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

COMPUTER SCIENCE

We accept this thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

August 1994

© Jinhai Yang, 1994

In presenting this thesis in partial fulfillment of the requirements for an advanced degree

at the University of British Columbia, I agree that the Library shall make it freely

available for reference and study. I further agree that permission for extensive copying

of this thesis for scholarly purposes may be granted by the head of my department or by

his or her representatives. It is understood that copying or publication of this thesis for

financial gain shall not be allowed without my written permission.

Computer Science

The University of British Columbia

2366 Main Mall

Vancouver, Canada

V6T 1Z4

Date:

Abstract

In this thesis, we study the problem of how to maximize the throughput of a multimedia

system, given a fixed amount of buffer space and disk bandwidth, both pre-determined at

design-time. Our approach is to maximize the utilization of disk and buffers. We propose

two methods. First, we analyze a scheme that allows multiple streams to share buffers.

Our analysis and simulation results indicate that buffer sharing could lead to as much

as a 50% reduction in total buffer requirements. Second, we develop three prefetching

strategies: straight forward prefetching (SP), and two types of intelligent prefetchings

(IP1 and 1P2). All these strategies try to read a certain amount of data into memory

before a query is actually activated. We demonstrate that SP is not effective at all,

but both IP1 and 1P2 can maximize the effective use of buffers and disk, leading to as

much as a 40% improvement in system throughput. We also extend the two intelligent

prefetching schemes to a multiple disk environment.

11

Table of Contents

Abstract ii

List of Figures vi

Acknowledgments vii

1 Introduction 1

1.1 Distributed multiple-user multimedia systems 1

1.2 Motivation and contribution of this thesis 3

1.3 Outline of this thesis 4

2 Preliminary 6

2.1 General framework 6

2.2 Fixed order reading scheme 7

2.3 Determining the lower bound of t 10

2.4 Buffer allocation: determining an upper bound for t 12

2.5 Approximation of non-contiguously placed data 14

2.6 Summary 16

3 Related Work 18

3.1 Data placement 18

3.2 Intelligent disk scheduling 20

3.3 Scheduling and on-line admission control 21

111

3.4 Summary.23

4 Buffer Sharing

4.1 Benefits of buffer sharing

4.2 A simple case: all the streams have the identical playback

4.3 General case

4.4 Summary

5 Prefetching

5.1 Benefits of prefetching

5.2 Straightforward prefetching strategy (SP)

5.3 Intelligent prefetching strategy 1 (IP1)

5.4 Intelligent prefetching strategy 2 (1P2)

5.5 Summary

6 Multiple Disk Environment

6.1 System configuration of multiple disk environment .

6.2 Extension from a single disk environment

6.2.1 Handling buffer sharing and prefetching

6.2.2 Handling synchronization

6.3 Summary

53

5354

55

57

59

7 Performance Evaluation by Simulation

7.1 Simulation methodology and program design

7.2 Implementation concerns

7.2.1 When to activate the admission controller7

rates

24

24

25

28

32

33

33

36

41

47

51

60

60

61

61

iv

7.2.2 Buffer releasing 62

7.2.3 Transient period 62

7.3 Evaluation of buffer sharing with varying disk rates 63

7.4 Evaluation of buffer sharing with non-contiguous data placement 65

7.5 Evaluation of prefetching 66

7.6 Evaluation of multidisk environment algorithm 69

8 Conclusions 71

8.1 Summary 71

8.2 Future works 72

8.2.1 Improvement of current work 72

8.2.2 New directions of research 73

Bibliography 75

V

List of Figures

2.1 Fixed order cyclic reading 8

2.2 The curve of disk rate R and cycle length t relation 11

2.3 The buffer requirement curve 13

2.4 Using a continuous curve to approximate block reading . 15

4.1 Buffer sharing for three streams with identical consumption rates . . 26

5.1 Reducing the consumption rate by prefetching 35

5.2 How to decide the reading period length t for prefetching 38

5.3 The control flow of IP1 47

7.1 The benefit of buffer sharing 64

7.2 Handling non-contiguous data placement using approximation . . . 65

7.3 SP vs IP1 vs 1P2: relative finish time 67

7.4 SP vs IP1 vs 1P2: average disk utilization 68

7.5 The result of the multiple disk algorithm 70

vi

Acknowledgments

First of all, I would like to express my sincere thanks to Dr. Raymond T. Ng, my

supervisor, for his guidance, commitment and understanding throughout my research

work.

I would also like to thank my co-supervisor Prof. Sameul T. Chanson. He introduced

UBC to me, gave me many helps in my earlier year in UBC, and gave me many wonderful

advises on how to do research.

Special thanks are also to Prof. Kellogg Booth for being the second reader of this

thesis, and for all the valuable suggestions he gave me.

The financial support from the Department of Computer Science at the University of

British Columbia, in the form of a research assistantship under NSERC strategic grants

is gratefully acknowledged.

vii

Chapter 1

Introduction

1.1 Distributed multiple-user multimedia systems

Multimedia systems are computer systems that can support multiple media. Here, “me

dia” refers to text, static graphics, audio data, video data, etc. For the last several

decades, the computational power of modern computers has increased dramatically. How

ever, the user interfaces and software technology have not improved at the same pace.

Usually, conventional computer systems oniy support text and static graphics. Thus their

application domains are limited. On the other hand, a multimedia computer system can

support not only text and graphics, but also audio and video data. In addition, we

will expect that all the media work in a consistent and cooperative manner. This gives

users a better opportunity to perform many kinds of tasks that are otherwise not pos

sible. The application of multimedia computer systems has been spreading very quickly

in areas such as distance education, teleconference, news-on-demand, video-on-demand,

computer games, etc.

Multimedia systems on single-machine, single-user platforms have been studied and

used for several years. However, the research and development in a multiple-user, dis

tributed environment is just getting started. With the advancement of techniques in

storage systems, computer networks, compressing methods and the promised “Informa

tion Super-highway”, distributed multiple-user multimedia systems will become a reality

1

Chapter 1. Introduction 2

in the near future.

Multimedia systems present tremendous challenges to current technologies, especially

when a distributed, multiple-user environment is being considered. A multimedia file

server is the core of such an environment, and is focus of this thesis. In a distributed

environment, a multimedia file server should have the ability to support multiple users

simultaneously. The users can be local users who submit requests directly to the server,

or remote users who submit requests through the network. The response time for both

the local users and the remote users should be guaranteed. In addition to response time

(latency), multimedia requests have a further requirement called continuity requirement.

The continuity requirement requires once a stream (e.g. video) gets started, it should

not be interrupted until it finishes.

Closer study shows that disk bandwidth and memory are the two most important

system constraints in a multimedia file server. How to make efficient use of these two

resources is a key performance issue when designing and implementing such servers.

Consider a simple example. A digital video stream with acceptable quality requires 30

frames per second. For each frame, suppose there are 400 x 200 pixel. For each pixel,

we use 9 bits to represent color. So for each second of this video stream, the data

requirement is 30 x 400 x 200 x 9 = 21, 600, 000bits. This is about 2.7Mbytes. Even if

we use compression (and assume a compression ratio 10:1), it still requires 27oKbytes of

data. If we have a video stream of one hour long, the data requirement will be 972Mbytes!

As for the disk bandwidth requirement, if the server needs to support a maximum of 50

users, the disk bandwidth requirement would be at least 13.5Mbytes/s.

Chapter 1. Introduction 3

1.2 Motivation and contribution of this thesis

Many excellent studies regarding multimedia file servers have been conducted [y+89],

[RV93], [LS93], [Gem93}, [RW93], [CKY93], [RV91], [GC92], [RVR92], [A0G92], [TB93]

and [Po191]. With respect to the topic of this thesis, these works can be grouped into

three major categories. The first group [Y+89][RV93][LS93] is primarily concerned with

data placement, i.e. how to organize data on disk more efficiently so that the data

retrieval speed can be improved. The second group [Gem93] [RW93] [CKY93] studies the

issue of intelligent disk scheduling. The basic idea of these approaches is to optimize

disk arm movement so that the disk seek time can be reduced. The third group [RV91]

[GC92] [RVR92] [A0G92] [TB93] [P0191] discusses how to build a multimedia file server.

The key problems studied by these papers are admission control and on-line scheduling.

To a large extent, most of these proposals aim to minimize disk seek latency so as to

satisfy the continuity requirements of multimedia streams. Most of the proposed soultions

are designed from a static point of view.

Complementary to the problems addressed in the studies mentioned above, in this

thesis, we study the multimedia file server in a more dynamic environment with randomly

arriving queries. A typical example of this kind of system is a multimedia file server for

News-On-demand. More specifically, given a fixed amount of buffer space and disk band

width, both pre-determined at design time, we study how to maximize the throughput

of a multimedia system, and minimize the response time of queries.

There are basically two key ideas we propose to improve disk and buffer utilizations

and system throughput: prefetching and buffer sharing. The idea of buffer sharing is

allowing multiple streams to dynamically share buffer. Our analysis and simulation

results show that this can reduce the overall buffer requirement by up to 50%. The idea

Chapter 1. Introduction 4

of prefetching is to read some data into the memory even if the system has not enough

resources to serve it at this moment. Because of the prefetched data, the request will

have a better chance to get admitted at a later time. Simulation results show prefetching

can improve system performance up to 40%.

This thesis is mainly concentrated on the discussion of these two key ideas. More

specifically, the following contributions are made this thesis:

• analyzing buffer sharing in the simple case with all the streams having the same

consumption rates;

• analyzing buffer sharing in the more general case in which streams can have different

playback rates;

• using simulation to evaluate these two schemes;

• analyzing prefetching;

• proposing three prefetching strategy: SP, IP1 and 1P2;

• using simulation to evaluate the proposed prefetching schemes;

• studying extensions of buffer sharing and prefetching to a multiple disk environ

ment.

1.3 Outline of this thesis

The thesis is organized as follows. Chapter 2 defines the basic concepts of our framework

and introduces some basic formulas used in our later analysis. Chapter 3 is a brief

summary of related work. We list all the important work that other researchers have

done in this area. Chapter 4 and Chapter 5 discuss buffer sharing and prefetching,

respectively. The most important results of this thesis are given in these two chapters.

Chapter 1. Introduction 5

To achieve better performance, using multiple disks is the most obvious solution. Chapter

6 discusses how to extend the results in Chapters 4 and 5 to a multiple disk environment.

Chapter 7 describes our simulation package and gives some important simulation results.

The last chapter summarizes the results in the thesis.

Chapter 2

Preliminary

In this chapter, some preliminary knowledge (e.g. basic notations, formulas) of our work

will be given. After a brief description of the general framework, the fixed order reading

scheme, which is the basic framework that this thesis is built upon, is described. Followed,

the basic formulas for calculating reading period length t and buffer requirement B is

given. Finally, a scheme of how to approximate non-contiguous data placement using

contiguous curve is presented.

2.1 General framework

Due to the real-time nature of multimedia data and memory constraints, most multimedia

file servers work in a round robin manner. The server serves all the requests cyclically. In

each cycle, the server will read a certain amount of data for each request. This amount

of data must be large enough to last the period of the cycle. This requirement is called

the continuity requirement for a multimedia stream. If the condition can not be satisfied,

we say a starvation occurs.

In this thesis, we consider such a scenario: A multimedia file server serves multiple

user requests concurrently. We call a user’s request for multimedia data a query. The

multimedia data that a query requests is called stream. The server maintains a working

set and a waiting queue. A query in the working set is being served by the server. The

queries that cannot be served at the current time will be put in the waiting queue, and

6

Chapter 2. Preliminary 7

will be served at a later time.

The biggest difference between our model and most of the models discussed in the

literature is that our model has more dynamic characteristics. Queries arrive dynamically,

and the data streams that queries request may have different lengths and consumption

rates. With the frequent arrival and termination of queries, the server state changes

rapidly. There are basically two system states, we call them stable state and transient

state. When there is no admission and/or termination of queries happening, the server

is in the stable state. When the server is in the processing of admitting incoming queries

and/or deleting terminated queries, it is in the transient state. The time period when

the server is in the transient state is called the transient period. Handling the transient

period in a multimedia file server is challenging work.

2.2 Fixed order reading scheme

In the cyclic reading scheme, the reading order within a period (cycle) can be fixed or

variable. Variable reading order provides a better chance to optimize disk arm movement,

so as to minimize total seek time and improve system throughput. On the other hand,

the behavior of fixed reading order scheme is more predictable, so that we might be able

to allocate buffer in a more efficient way. In addition, buffer sharing is also easier to

handle in the case of fixed reading order.

In this thesis, only the fixed reading order scheme is used. In our initial algorithm,

we assume that the data for each stream are continuously placed on the disk. In Section

3.4, we will discuss how to remove this constraint.

Figure 3.1 shows how fixed order cyclic reading works. In this example, there are three

streams being served. In each cycle, these streams are served in the order: S1,S2, 83. At

Chapter 2. Preliminary 8

the end of the cycle, there might be certain amount of disk idle time left.

Si S2 S3 Idle Si S2 S3 Idle Si S2 S3 Idle

Figure 2.1: Fixed order cyclic reading

More generally, let there be n multimedia streams denoted by S1,S2, ..., S. Let the

consumption rate of Stream S be P. Let t be the amount of time required to read S

in each period. Let t be the total length of a period, and let be the seek time from

stream S to stream S,. Obviously, in each period:

ttl+t2+...+tfl+sl,2+s2,3+...+sfl,1 (2.1)

To simplify notation, let s = si,2 + s2,3 + ... + s,i, and P = P1 + P2 + ... + Pn.

Disk utilization is defined as:

tl+t2+...+tn+S (2.2)

Our notation of the disk utilization only refers to the n multimedia streams being

served. If the system also serves other users, those disk usages are not counted. The

disk utilization p only represents how busy the disk is. Since the disk time includes both

reading time and seek time, it does not represent how much real work the disk does.

The following table summarizes the meanings of the symbols to be used in this thesis.

Chapter 2. Preliminary 9

Symbol Meaning of symbol

Bmax maximum number of available buffers

B total buffer consumption of n streams

Bshar total buffer consumption of n streams with buffer sharing

B buffer consumption of stream S2

L block size in non-contiguous placement

G seek time between non-adjacent blocks in non-contiguous placement

P total consumption rate of all the n streams

P2 consumption rate of stream S.j
pft adjusted consumption rate of stream S. after prefetching

R maximum disk reading rate

Sj the i-th stream

s total switching time within a period

switching time between stream S2 and stream S

t length of a cycle

reading time for S within a cycle

T, length of stream S

p disk utilization

In the fixed reading order scheme, in each period, the data consumed (played back)

by stream S is t x P.s, and the data produced (read) for stream S is t2 x R. The continuity

requirement can be expressed more precisely as follows:

t2xRtxP2, 1i<n (2.3)

In order to avoid overflow and reduce buffer requirement, the ideal case is:

Chapter 2. Preliminary 10

txR=txP, 1i<n (2.4)

From Equation 2.4, we derive:

ti Pi
1<i,j<n (2.5)

j j

To minimize buffer consumption, the reading time for each stream should be propor

tional to its consumption rate. By combining Equation 2.2 and 2.5, t can be determined

exactly as:

t = (p x t — s) x (2.6)

2.3 Determining the lower bound of t

Equation 2.6 can be used to calculate t in each cycle provided t is given. A lower bound

of t could be established from Equations 2.3 and 2.6:

sxR
(2.7)pxR-P

This equation leads to two interesting observations. First, the equation is valid only

if p x R — P > 0. Even if the disk utilization p is set to the maximum value 1, it is still

necessary that R > P. This is the most obvious admission control criterion. That is,

without violating their continuity requirements, a system cannot admit so many streams

that their total consumption rate P exceeds the disk bandwidth R. In Chapter 5, this

constraint can be relaxed by prefetching.

Second, t is inversely proportional to p. In other words, the longer the length of the

period, the less utilized the disk becomes (which means the disk has more free time).

Chapter 2. Preliminary 11

This is because as t increases, the proportion of time wasted in switching (i.e.) within

every period becomes smaller. In other words, a longer period corresponds to a higher

percentage of useful work (reading) done by the disk, and the disk becomes more effective.

Hence, the proportion of the idle disk time becomes higher. In Chapter 5, we will show

how to make use of this relationship between t and p to maximize prefetching.

Figure 2.2 helps us to understand the relationship between disk rate R and cycle

length t better. In this figure, the R and t relation curve is drawn under the condition

that both P and p are fixed. It is easy to see that the requirement for disk rate R will

decrease with the increase of period length t. As expected, the curve corresponding to

p 0.5 is above the curve for p = 1.

p=l.0;

t (period length)
2s

Figure 2.2: The curve of disk rate R and cycle length t relation

Chapter 2. Preliminary 12

2.4 Buffer allocation: determining an upper bound for t

Thus far, we have analyzed the handling of multiple streams primarily from the viewpoint

of disk bandwidth allocation, and we derived a formula to calculate a lower bound for t.

There is, however, another very important issue: the allocation of buffers.

In this section, we will show how buffers should be allocated under the condition that

no buffers will be shared among the streams. Sharing buffers among all the streams will

be discussed in Chapter 4.

As stated earlier, in this thesis, the reading order of all the streams within a cycle

is assumed to be fixed. Without losing generality, we assume that S1,S2, . . .S are being

served in that order. If stream S is the ith stream being served in period 1, it will still

be the ith stream being served in all of the following periods. Under this assumption, the

next read for a stream is exactly t time units after the start time of the current reading

of B, in the stream. So, in each period, each stream must get enough data to last the

time of t.’

As can be observed from Figure 2.3, for stream S, the maximum number of buffers

is needed right after S has just finished reading. Thus, the number of buffers required

by S is:

B=txR—txP, (2.8)

By substituting Equation 2.6 into the above, we get:

pxt—s
B, P. x (R - P) x

P
(2.9)

‘In a variable reading order scheme, this value might be as large as 2t, since a stream can be served
as the first one in the current cycle, but the last one in the next cycle.

Chapter 2. Preliminary 13

Figure 2.3: The buffer requirement curve

Thus, the total buffer requirement for the n streams is:

(2.10)

Two important observations can be drawn from Equation 2.10. First, the exact

number of buffers each stream needs can be calculated. If the buffer requirement cannot

be satisfied, the stream set should not be accepted. On the other hand, giving more

buffers than the minimum necessary to a specific stream does not help at all. All the

extra buffers will be wasted.

Second, it is obvious that the longer the period length t, the higher the value of B will

be. Since B must be bounded by the maximum available buffer Bmax(i.e. B <Bmax),

an upper bound for t can be derived by substituting Equation 2.10:

Playback

Chapter 2. Preliminary 14

BmaxXP
+ (2.11)px1Px(R—P) p

Combining Equations 2.7 and 2.11, a simple admission control policy can be given.

Admission Control 1

Let S, ..., S, be all the streams in the current cycle, and let S,-, be the stream to be

decided whether admission is possible.

1. Compute the lower bound for t using Equation 2.7 and the upper bound for t using

Equation 2.11.

2. If the lower bound is strictly greater than the upper bound, then it is not possible to

add S without violating the continuity requirements.

3. Otherwise, S,, can be admitted to form a new cycle, and any value between the lower

and upper bound can be chosen as the length of the new cycle.

When we discuss prefetching in Chapter 5, we will return to the issue of picking a

value for t in this range.

2.5 Approximation of non-contiguously placed data

So far, we have assumed that for each stream, the data is contiguously placed on the

disk, this means that there is no seek throughout t when Stream S is being read. This

data placement policy is possible when using a spiral disk. However, it might not be

practical in many other situations. In this section, we will show how to use the equations

established so far to handle the case when data are not placed so perfectly.

Chapter 2. Preliminary 15

Figure 2.4: Using a continuous curve to approximate block reading

Consider a simple case first. Assume that data are stored in blocks, the block size is

L, and the seek time between adjacent blocks is G. As shown in Figure 2.4, the solid

line represents the reading curve of a stream of this kind. To use the equations that we

have developed so far, we can approximate the given reading curve by one that assumes

contiguous placement. This approximate curve is a straight line that is always below the

original reading curve, but with a slope as large as possible. The dotted line in Figure

2.4 represents the approximate curve. By a simple coordinate-geometry analysis, we can

calculate that the dotted line has a slope Rapprox given by:

Rapprox
= G + L/R

(2.12)

This value can be used to replace R in all the equations that we have encountered so

assigned

far.

Chapter 2. Preliminary 16

Note that since the approximate reading curve is always below the actual reading

curve, at various points in time, the disk may read faster than approximated. This

leads to two observations. First, the continuity requirement will not be violated by the

approximation, because the disk is never slower than approximated. Thus, there is no

need to worry about starvation.

Second, extra buffers are needed to store the data that are retrieved faster than

expected. See Figure 2.4 for an illustration. By another simple coordinate-geometry

analysis, the number of extra buffers we need is given by:

L2
BextraL L+GxR

(2.13)

Bextra is less than the block size L. In many cases, this is not a big burden to the

system.

Similar approximations can be applied to other non-contiguous data placement situ

ations. We omit those analyses here.

The above method is not the only method for approximation. There are many other

ways to do it, too. For example, if short time overload (dropping one or two frames) is

allowed, the approximation curve need not to be always below the real reading curve. It

can pass right through the middle of the real reading curve. This method is, in some

sense, more accurate than the above one.

2.6 Summary

In this chapter, the fixed reading order scheme, which is the basic framework this thesis is

built upon, was described. First, after describing the general framework this thesis based

on, we introduced the basic notations and formulas. Then, we analyzed disk scheduling

Chapter 2. Preliminary 17

and buffer allocation, and gave the formulas for calculating cycle length t and buffer

requirement B. Based on these analyse, we gave a simple admission control policy based

on the upper bound and lower bound of t. Finally, in Section 2.5, we proposed a scheme

for approximating non-contiguously placed data by a contiguous curve.

Chapter 3

Related Work

Much excellent work has been done in the area of multimedia file servers. With respect

to the topics that will be discussed in this thesis, this work can be grouped into the

following categories:

• Data placement

• Intelligent disk scheduling

• On-line scheduling and admission control

This chapter will give a brief summary of the work in these areas.

3.1 Data placement

The speed of retrieving multimedia data from a disk depends to a large extent on how

the data are organized on the disk. Many researchers have studied how to wisely organize

data on disk so that the retrieval can be performed under the constraint of the continuity

requirement.

If there is only one stream on the disk, the solution is quite straightforward. Based on

the consumption rate requirement, the block size (length of contiguously stored media)

and scattering parameter (length between two adjacent blocks) can be calculated. Then

all the data can be stored accordingly.

Several papers have discussed how to store two or more streams on the same disk.

18

Chapter 3. Related Work 19

When the streams are played back, the continuity requirement should be satisfied for all

the streams.

Yu and his col1eagues[Y+89 discussed how to merge two or more media streams on

one disk in the strictest manner. The key idea in their method is trying to fit each stream

into the other one’s gaps, and the continuity requirement must be strictly satisfied at any

time point for any stream. In their scheme, a logical block is not allowed to be broken

into small pieces. This method does not need buffering and read-ahead. However, usually

multiple media streams do not fit so well as to satisfy this merging condition.

Rangan and Vin[RV93] studied the same problem, but their approach is quite differ

ent. In their model, buffering and read-ahead are used to streamline the video stream so

that the continuity requirement is relaxed. Their requirement is, in a certain time period

constrained by the buffers, that the actual data read from the disk should be greater

than the sum of the playback rates of all the streams. In addition, a logical block can

be broken into small pieces to increase disk utilization. This method can achieve better

disk utilization than Yu’s approach (theoretically, it can approach 100%). However, the

computing and buffering overhead should not be underestimated.

There is a serious drawback in both of the above methods: They both assume the

stream accessing patterns to be fixed. For example, if two streams A and B are merged

together, they are supposed to be played back at the same time. This is not practical in

an interactive environment. If stream A is played back now and a request for stream B

comes ten minutes later, the system may not be able to handle this situation properly

and the continuity requirement could be violated.

Louhger and Shepherd[LS931 studied how to use a disk array (also called striped

disks) to increase disk bandwidth. In their experimental implementation, they have one

Chapter 3. Related Work 20

dictionary disk and two data disks. The dictionary disk is used to store metadata. The

real multimedia data are stored in the data disks. Editing is performed at the metadata

level. The real multimedia data in data disks will never be changed after being placed.

3.2 Intelligent disk scheduling

Intelligent disk scheduling schemes like SCAN, C-SCAN, SSTF and EDF have been used

in conventional file servers for a long time. Recently, several researchers have studied

the possibility of using intelligent disk scheduling techniques in the multimedia file server

environment [Gem93] [RW93] [CKY93].

Schemes like SCAN and SSTF can optimize disk arm movement, reduce seek time

and improve system throughput. However, these schemes do not consider the special

real-time requirements of multimedia requests.

Reddy and Wyllie[RW93 proposed an algorithm called SCAN-EDF. This algorithm

combines the features of SCAN type of seek optimizing algorithms with Earliest Deadline

First (EDF) type of real-time scheduling algorithms. The SCAN-EDF scheme guaran

tees that the real-time requirement of a user request will not be violated. Under this

constraint, it tries to optimize disk arm movement.

The other two approaches [CKY93] [Gem93] are quite similar to the SCAN-EDF

scheme. Those two schemes are called sort-set algorithm (SSA) [CKY93] and group

sweeping scheduling (GSS) [Gem93]. The basic idea is: In a pure SCAN type scheme,

the serving order of all the requests in the task set is rearranged in order to optimize

the disk arm movement. If the task set is large, the serving time for a particular request

may vary greatly in the current and the next cycle. Due to the uncertainty of serving

time, sometimes the continuity requirement of the request may not be satisfied. In the

Chapter 3. Related Work 21

SSA and GSS schemes, the whole task set is divided into several groups. The groups are

served in a fixed order. However, within each group, SCAN or some other scheme is used

to optimize disk arm movement.

Although buffer requirements are analyzed in almost all these schemes, optimizing

disk arm movement is the major goal of these schemes, not buffer usage.

3.3 Scheduling and on-line admission control

There are many papers that study the problem of scheduling and admission control in a

multimedia file server environment. As first observed in [RV91] and [GC92], the best way

to do scheduling in a multimedia file server is doing it in a round-robin (cyclic) manner.

The key issue is how to decide the cycle-length and how to serve all the requests within

each cycle. [RV91] and [GC92] only deal with a simplified scenario which assumes that

all the users’ requests have the same playback rates. In addition, they assume that all

the data blocks have the same size. Under these conditions, a simple round-robin scheme

is sufficient.

Rangan’s group[RVR92] proposed a scheduling scheme called Quality Proportional

Multi-subscriber Servicing (QPMS). According to this scheme, during each reading cycle,

the data read for each user is proportional to its playback rate. However, QPMS statically

test if a task set is schedulable or not. The problem of transient period is also introduced

in this paper. The transient period is the length of time during which a new request

is added to the server or a finished request is deleted from the server. In this period,

the continuity requirements of all the already serving requests should not be violated.

A simple scheme is given in this paper to deal with this problem. However, this simple

scheme will usually result in a long transient period.

Chapter 3. Related Work 22

Andersion et al. [A0G92J described the design of a multimedia file system called

CMFS. First, an interface is designed for the user. When the user submits a request,

the system creates a “session”. A session has such information as: file name, required

data rate, buffer requirement, the amount of read-ahead allowed, etc. The CMFS uses

this information to do an “acceptance test”. If it passes the test, the system will accept

the request and re-schedule all the “sessions” in the system. The key part of CMFS

is the “acceptance test”, which is done statically, and based on the worst-case situa

tion. However, the actual scheduling algorithm uses some dynamic methods to improve

performance.

Polimensis[Po191] described a file system that supports multimedia data. Their ap

proach of admission control is similar to the “acceptance test” in [A0G92]. A schedulable

tasks set is constrained by two criteria: the total consumption rate should be less than

the disk bandwidth, and the total read-ahead should be bounded by the available buffer

space. These two factors are related to each other. A faster disk will require a smaller

buffer space. On the other hand, more buffer space will usually reduce the number of

seeks and increase the actual disk transfer rate. This paper gives a detailed analysis of

these problems. The problem of transient period is also analyzed more thoroughly, and

a good solution is given. However, as will be shown later, the approach of this paper is

different from ours in two different ways. First, the buffer management policy is static

and is performed per task, not dynamically and globally. Second, the author did not

consider looking ahead in the request queue (prefetching).

Chapter 3. Related Work 23

3.4 Summary

As we noticed in Section 3.1, a static placement scheme does not work well if the accessing

pattern is dynamic. For all the techniques described in Section 3.2, optimizing disk arm

movement (seeking time) is the big concern, minimizing buffer usage does not get much

attention. Section 3.3 describes several scheduling and admission control algorithms.

Those algorithms all work in more or less the same manner, however, none of them

studies sharing buffer among all the streams and looking ahead in the request queue

(prefetching). In the following chapters, we will address the above limitations.

Chapter 4

Buffer Sharing

4.1 Benefits of buffer sharing

In the previous chapter, a scheme to do admission control and buffer allocation was

established. Multimedia systems require a large amount of buffers. Given a fixed amount

of buffer space, predetermined at design time, maximizing buffer utilization is a very

important design goal. In this chapter, we will study how to share buffers among the

served streams so that buffer utilization can be improved.

As defined in Equation 2.9, the total buffer requirement of n streams is based on

the assumption that each stream S occupies B buffers in each cycle. However, S, may

not need all the B buffers at all that time during the cycle. B is just the peak buffer

requirement.

Further study shows, that when one of the streams (say S) requires its maximum

number of buffers, all the other streams do not need their maximum number of buffers at

that moment. Thus, a simple way to minimize total buffer consumption and maximize

buffer utilization is to allow the n streams to share buffers.

In the following sections, we will first show how buffer sharing works in a simplified

situation in which all the streams have the same consumption rates. Then we generalize

to the more general situation of buffer sharing among streams with different consumption

rates. Some implementation considerations will be discussed at the end of this chapter.

24

Chapter 4. Buffer Sharing 25

4.2 A simple case: all the streams have the identical playback rates

First, we study a simple case in which all the streams have the same consumption rates.

Figure 4.1 shows three streams S1,S2,S3 in the cycle, all of which have the same con

sumption rate. Thus, by Equation 2.9, each stream has an equal amount of reading time,

i.e. the same t. Since the cycle length t is normally much larger than the total switching

time s, here we consider the simplified situation that t = t/3. Let us consider the total

buffer requirement at time 4t/3, at which point 51 has just finished reading and requires

b buffers, the maximum number of buffers that it ever needs. S2, which is about to start

reading, has run out of data. Thus, the buffer requirement of S2 is 0. As for S3 there

were b buffers at time t, but at time 5t/3, all the data in those buffers will be consumed.

Thus, at the current time 4t/3, S3 needs b/2 buffers. Hence, the total number of buffers

required by all the three streams is b + 0 + b/2 = 3b/2. Note that if all the streams have

identical consumption rates (and we assume p equals 1), their total buffer requirement

does not change with time. Thus, 3b/2 buffers are all the three streams need. How

ever, without buffer sharing, 3b buffers are required. Thus, buffer sharing gives a 50%

reduction in total buffer consumption.

In the following, we will analyze the situation when there are n streams with identical

consumption rates and the disk utilization is 1, which means each stream will get t/n

time for reading and there is no disk idle time.

Since the consumption rates are the same for all the streams, the reading time t. for

each stream is also the same, say equal to t0. Similarly, the buffer requirement B is the

same, which is equal to b say. Now, consider the time when S has just finished reading.

The buffer requirement for each stream is listed in the following table:

Chapter 4. Buffer Sharing 26

buffers 3b

3b12

Figure 4.1: Buffer sharing for three streams with identical consumption rates

Stream Buffer needed

Si 0

52

53 -b

S. !!1b
n—i

First, Sn has just finished reading, thus it requires all b buffers. S. is about to start

reading, so it has 0 buffered data at this time. S2, at an earlier point of time, had b buffers

of data which are supposed to cover the consumption of S2 for a period of (n — 1) x t0.

At the point when S has just finished reading, (n — 2) x t0 has elapsed, or alternatively,

S2 will run out of data to seconds later. Thus, the current level of buffered data for S2

is (ni)to b = --1-b. Similarly, it is not difficult to see that the current level of buffered

data for S is -1b. Hence, the total buffer for all the n streams is:

Chapter 4. Buffer Sharing 27

Bshar=’b=b (4.1)21n—l 2

Since the buffer requirement will not change with the time , the above number will

be the maximum buffer requirement of the n streams. Remember in the no sharing case,

the buffer requirement is nb, thus buffer sharing achieves a 50% savings in buffer space

when p = 1.

Now, we relax the assumption that p = 1 , and study buffer sharing in a more general

situation. We still calculate the buffer required for each stream at the time Sn has just

finished reading. The above table can be generalized to:

Stream Buffer needed

S1 cb

82 (c+—--)b

S3 (c-i-)b

Sn (c+ b

In this table, c = As we will prove later, if p 1, the maximum buffer

requirement will not be a constant throughout the whole period. However, it will happen

at the moment S,-, has just finished reading. Sum the numbers in the table together, we

calculate the total buffer requirement as follows:

Bshar
=

(cb +
= 2n—np—

x nb (4.2)

1Under the condition p = 1. We will prove this later.

Chapter 4. Buffer Sharing 28

Notice, if p = 1, Bshar will be nb/2, which means 50% savings of buffer space happens

when the disk utilization is 1, agreeing with Equation 4.1. Moreover, we can see, as p

decreases, Bshar will increase, which means 50% is the maximum saving we can achieve

using buffer sharing.

Using Equation 2.9, we can substitute b into Equation 4.2. The total buffer require

ment can then be expressed as:

P 2n—np—p
Bshar = (R — —) x (t x p — s) X

2(n — p)
(4.3)

This equation can replace Equation 2.10 (and thus Equation 2.11) in the admission

control test shown in Section 2.4.

This completes the analysis of the case in which all the streams have identical con

sumption rates. Simulation result of this buffer sharing scheme will be discussed in

Chapter 7.

4.3 General case

In this section, we will discuss buffer sharing in the most general case. The constraint

that all the streams have the identical playback rates will no longer be required. First,

we introduce some additional notation that will be used in this section.

B is the buffer requirement of stream S in no sharing case BS is the buffer require

ment of stream S in the sharing case, and BA is the total buffer requirement for all the

streams at the time S has just finished reading.

Recall the formulas in Chapter 2, without buffer sharing, the maximum buffer re

quirement for stream S happens at the end of reading of S, and that amount of data

will last t — t time units.

Chapter 4. Buffer Sharing 29

Let F, be variable and let disk utilization p be less than 1, but still assume in each

period the reading order of all the streams is

At the beginning of the cycle (which is the time when S1 just starts reading), the

buffer requirement for all the streams are:

Stream Buffer needed

BS1 0

BS2 --B2

BS3 B3

pQ tj+t2+...+t,_1p
1.J

n

The above formulas are easy to derive. S1 is about to start reading, it has no data

left, thus it requires no buffer. The buffered data for S2 will last t — t2 time units, and its

reading is still t1 time units away. Right then the amount of buffered data is t1/(t — t2).

The buffer requirements for all the other streams can be calculated in a similar way.

Suming the buffer requirements for all the streams together, the total buffer requirement

at the time S is about to start reading will be:

n n

BA0 = LBS,
i=2

(4.4)

After deriving BA0, it is not difficult to derive BA1,BA2, ... To calculate these

values, first we can compare the buffer requirement at the time S finishes reading and

S4 finishes reading, and then we compute the difference.

First, at the time S finishes reading, the buffers required by S will be increased

Chapter 4. Buffer Sharing 30

from 0 to B1. However, for all the other streams, since t1 time was elapsed, their buffer

requirement will decrease by B, x t1/(t — t3). Thus,

BAl=BAo+Bl_t’Bj (4.5)

More generally,

= BA +B1 — tt.Bj 1 <i < n (4.6)
j=1,ji I

Using Equations 4.4 and 4.6, BA1,BA2, ..., BA can be calculated easily.

The maximum of these values will be the total buffer requirement (we do not need to

count BA0, it is always equal to or less than BAA). That is to say,

Bshar = Max(BA) (i e [1, nfl (4.7)

After deriving this more general formula, we can verify the result presented in Section

4.2. If all F, are the same, it is easy to see that BA+i is always greater than or equal to

BA. That is to say, the maximum buffer requirement always happens at the end of the

reading of S (when p is 1, the buffer requirement is a constant). A detailed derivation

of these is as follos.

Assuming B = b for all i, then Equation 4.4 becomes:

BA0
= n(n

— 1b (4.8)2(n—p)

and Equation 4.6 becomes:

BA1 = BA +
n

— (4.9)n—p

Chapter 4. Buffer Sharing 31

If p = 1, then BA+1 = BAD, which means the buffer requirement remains a constant

through the whole cycle.

If p # 1, then BA1 > BAD. So the maximum buffer requirement happens at the

end of S,. finishes reading, i.e.

Bmax = BA = BA0 + X —

= 2n —
— x nb (4.10)n—p 2(n—p)

This is exactly the same result that we derived in Section 4.2 (Equation 4.3).

This completes the analysis of buffer sharing in the general case. These formulas are

somewhat complicated. In order to calculate Bshar, all of the BA must be calculated

first, then the maximum is selected. In a real system, computing overhead may affect

performance slightly. It is interesting observe that if the streams are served in ascending

order according to their playback rates, the maximum value will happen at the end of

S finishing reading. If this is the case, BA will be Bshar, and no comparison is needed.

If the buffer requirement is the only concern, we may be lead to believe that reordering

the streams in a cycle is a good thing to do. However, as we will show later, that this will

be too expensive if we also need to consider prefetching and handling transient period at

the same time 2 In most cases, it is not worth doing.

The implementation of a buffer sharing scheme is not a trivial task. The difficulty

lies in the fact that the buffers used by all the streams are changing from time to time.

In other words, each stream does not have a dedicated buffer set. A study of the imple

mentation issues is under way, but is beyond the scope of this thesis.

2Prefetching and transient period will be discussed in more detail in Chapter 5 and 6, respectively.

Chapter 4. Buffer Sharing 32

4.4 Summary

In this chapter, buffer sharing among all the served streams in the fixed reading order

scheme was analyzed. Buffer sharing in the simplified scenario in which all the streams

have the same playback rates was first studied. After that, the analysis was extended

to buffer sharing in the more general case in which playback rates can be different. We

showed that by sharing buffers, the total buffer requirement can be reduced by up to

50%.

Chapter 5

Prefetching

In this chapter, prefetching as a scheme to improve disk and buffer utilizations is in

troduced. First, the benefits of prefetching are discussed in Section 5.1. Then, a sim

ple straightforward prefetching scheme SP is described in Section 5.2. As our analysis

and simulation results show, SP will not give satisfactory performance. An intelligent

prefetching scheme IP1 to overcome the shortcomings in SP is described in Section 5.3.

Finally, 1P2 is discussed in Section 5.4 as a further refinement of IP1. Our analysis

shows that intelligent prefetching strategies IP1 and 1P2 can improve the performance of

a multimedia file server dramatically.

5.1 Benefits of prefetching

The admission control and scheduling schemes we have discussed so far do not consider

prefetching of data. On receiving a new request for a stream (referred to as a new query

from now on), the admission controller that we have discussed so far simply checks if there

is enough disk bandwidth and buffer space to accept the new query, using Equations 2.7

and 2.11. If there are enough resources, the query is activated. Otherwise, the query will

be left idle in the waiting queue. Consequently, there are resources — buffers and disk

bandwidth — that are not utilized at all.

We first consider a simplified example. Suppose there is a server whose disk’s max

imum reading speed is 1000KB per second. Furthermore, suppose that all the requests

33

Chapter 5. Prefetching 34

have the same consumption rate equal to 260KB per second. If we do not consider

switching time and there are always enough buffers, the system can support 3 streams si

multaneously. That will use 260 x 3 = 780KB/s disk bandwidth. Consequently, 220KB/s

disk bandwidth will be wasted. If there are enough buffers, we can make use of this wasted

disk bandwidth to do some prefetching for the next waiting request. By doing this, the

prefetched request will have a better chance of being admitted (since its actual consump

tion rate will be reduced after prefetching). For the same reason, the server will have

more free disk bandwidth to accept more new requests.

Usually, the system performance of a multimedia file server is measured by through

put and query response time. For a system with pre-determined (at design time) disk

bandwidth and amount of buffer space, the response time and throughput are primarily

determined by the utilization of disks and buffers. Our goal here is to try to use these

resources as much as possible. More specifically, we will explore how data prefetching

can maximize resource utilization, and thus lead to an increase in system throughput.

Intuitively, there are several ways that prefetching can help a query:

• First, if a query has a consumption rate P that is larger than R, then the play

back of that query cannot be started immediately after its reading begins. In this

case, prefetching some data ahead of time is a must.

• Second, prefetching portions of a query before activation has the effect of reducing

the effective consumption rate of the query after activation. This is illustrated in

Figure 5.1. The solid line represent the original consumption rate P1. If an amount

pf is prefetched, then the new, prefetched consumption rate is given by the slope

of the dotted line. A simple analysis shows that if T1 is the length of the query, the

consumption rate after prefetching is given by:

Chapter 5. Prefetching 35

ppft=p._f (5.1)

Since the new rate is less than the original rate, there is a possibility that the new

rate may pass the admission control test, while the old one cannot. Whenever this

happens, the response time of the query is substantially reduced.

slope = new rat- - - - - -

Prefetchf lo=original rate

Figure 5.1: Reducing the consumption rate by prefetching

• Even if the above conditions cannot be applied, for a normal query, prefetching

can still help the query reduce its response time by one cycle. To see this, assume

that Si, 82, ..., S are the active queries. At some time point, S1 has finished and

5n+i is activated. For the reason of transient period (which will be discussed in

Chapter 7), the reading order for the new set should be S2, ..., S,1. If no data has

been prefetched for 5n+l, then its playback cannot be started until it gets a chance

to start reading, which is at the end of the cycle. However, if there is a sufficient

amount of prefetched data for its playback can be started immediately at the

Chapter 5. Prefetching 36

beginning of the cycle. Thus, there is a difference in response time which may be

as large as one cycle length.

The above claims will be shown more formally in the following sections. Our analysis

will mainly concentrate on the second situation. First, we will discuss how to decide

cycle length t in the prefetching situation, and we will give a straightforward prefetching

strategy SP. Then after observing that the effectiveness of SP may be hindered by several

shortcomings, we will develop another prefetching strategy IP1 which tries to maximize

overall system throughput. However, there are too many intuitive and heuristic factors

in the strategy IP1. We will further analyze thoroughly what is happening in the system

and give a more formal IP strategy called 1P2. Interestingly, as will be shown in Chapter

7, 1P2 does not significantly outperform IP1, which means the heuristic used in IP1 is

good enough in most cases.

5.2 Straightforward prefetching strategy (SP)

Just like normal data retrieval from disk, prefetching requires both disk bandwidth and

buffers. One obvious way to allow prefetching is to dedicate a certain level of disk

bandwidth and buffers to prefetching. But this is not a good solution as it will reduce

the disk bandwidth and buffers available to activated queries. We should make sure

that prefetching is not done at the expense of activated queries. To this end, recall

that the cycle length t for the activated queries (streams) 51, ..., S are bounded below

and above, respectively, by Equations 2.7 and 2.11. If the system does not support

prefetching at all, any value between this range can be picked as the value of t. However,

to support prefetching, an immediate question to answer is how to pick t so as to maximize

Chapter 5. Prefetching 37

prefetching, but not at the expense of the activated queries.

Setting t to any value between the upper and lower bounds does not have any influence

whatsoever on the completion times of the activated queries, as the completion time of

a query is determined by its consumption rate and length. However, the value of t will

affect prefetching.

First, consider setting t to its lower bound. As discussed in Chapter 2, this corre

sponds to set disk utilization p to 1. In other words, all the disk bandwidth is used up

for the activated queries, and there will be nothing left for prefetching. On the other

hand, consider setting t to its upper bound. From the point of view of disk bandwidth

allocation, this time there is ample room for prefetching. As discussed in Chapter 2, a

longer cycle length corresponds to a lower disk utilization p. However, the trouble is that

all the buffers will be used up for the activated queries. Thus, at the end there will be

no prefetching done either, not because of lack of disk bandwidth, but because of lack of

buffer space. Hence, the problem to address is which value of t in between the upper and

lower bounds maximizes prefetching. Since the disk utilization to cycle length(p vs t)

and buffer utilization to cycle length(B vs t) functions are unlikely to be linear, just

selecting the average of upper bound and lower bound may not be a good decision.

Figure 5.2 can help us to understand this better. In Figure 5.2, we define disk uti

lization Udk(actually p) and buffer utilization Ulruffer

sP
Ud3k =

Ubuffer
=

X (RF) (5.2)
X max

We plot how they change with cycle length t. For both Ud8k and Ubuffar, we draw

the curves when there are n requests and n + 1 requests being served. First we can see

Chapter 5. Prefetching 38

from the graph that if Udisk approaches 1, even though at this time Ubuffer is low, which

means there are many buffers left for prefetching. Since the disk is too busy, we cannot do

very much prefetching. A similar situation happens when Uôffer approaches 1. Second,

if the system load is increased (more requests are being served at the same time), the

choices for t will be narrowed, which also means that the room left for prefetching will

be reduced.

Figure 5.2: How to decide the reading period length t for prefetching

We can see from the above discussion that there is no obvious way to get a good value

of t for prefetching. The main reason for this is that the information we considered so far

is not sufficient. Actually, there is another factor that affects the amount of prefetching

that can be done. AU the above analysis is based on the assumption that the cycle for the

current set of activated queries keeps on going. Let Tf3h denote the time the earliest

T,

Chapter 5. Prefetching 39

next activated query will terminate. We should notice that the range bounding t is only

valid before Tf3h. After that time the system state will be changed, and a new cycle

will be recalculated. If we select prefetching as much as possible before Tf8h as the

goal, this leads to a straightforward prefetching strategy SP. In addition, it suggests a

way to calculate t. This is formalized as follows.

First, if we consider just the free disk bandwidth, it is obvious that the amount of

data that can be prefetched in time Tf5h is:

Dprefetch = Tf3h X R X (:1
— p) (5.3)

This means we can only use the free disk bandwidth (1
—
p) to do prefetching. By

substituting p to Equation 5.3, there is:

SF
Dprefetch = Tf8h X R X (1

—

(5.4)

On the other hand, if we consider just the available free buffers, the buffers available

for prefetching should be:

Bprefetch Bmax — B = .Bmax — Pi X (R — P) (5.5)

Dprefetch increases with t, and Bprefetch decreases with t. Furthermore, it is necessary

that Dprefetch Bprefetch. Thus, to maximize prefetching, we should let Dprefetch

Bprefetch, which is equivalent to:

>< R X (1
—) = Bmo

—

X (R P) (5.6)

This is a quadratic equation which is equivalent to

Chapter 5. Prefetching 40

axt2+bxt + c=0 (5.7)

where the coefficients are:

1Px(R-Pja =
— R

b = TRTPBmax,

c = -TRS.

Solving this quadratic equation will give a positive solution v0 (and a negative solution

that we ignore). If v0 falls within the lower and upper bounds of t, which occurs more

often than not, v0 is the value of t. Otherwise, if v0 is strictly less than the lower bound,

t will be set to the lower bound. And if v0 is strictly greater than the upper bound, the

upper bound becomes the value of t.

The equations presented above do not assume buffer sharing; the calculation of buffers

is based on Equation 2.10. Since prefetching is orthogonal to buffer sharing, a similar set

of equations can be derived for the buffer sharing case based on Equation 4.7.

We summarize the straightforward prefetching strategy SP as follows.

Strategy SP

Let S1 S be all the activated queries, as allowed by the admission controller. Let

be the query at the head of the waiting queue.

• Use Equation 5.7 to determine the length t of the cycle for S1 S.

• Use the remaining disk bandwidth and buffers to prefetch for Si at the end of

each cycle.

Chapter 5. Prefetching 41

• Prefetching stops when an activated query has finished, or the system has run out

of buffers, or the entire query has been read into the memory.

5.3 Intelligent prefetching strategy 1 (IP1)

The straightforward prefetching strategy SP can maximize prefetching for the query at

the head of the waiting queue. However, as a result, S,1 may use up too many system

resources (particularly free buffers), for its own good, but not necessarily for the overall

performance of the system. More specifically, SP just lets S,÷i prefetch as much as

possible, but does not consider whether really needs that much data or not. This

may have two bad effects. First, since accepting a new query always needs some working

buffers, this may affect the possibility of accepting a new query. Second, it also reduces

the possibility of prefetching for another query. Because of this, the data prefetched for

a query should be just enough for its activation.

The above discussion indicates that while maximizing prefetching, SP’s approach of

prefetching as much as possible for the query at the head of the waiting queue may not

be sufficient. Naturally, the next question that needs to be answered is: Considering all

the queries in the waiting queue, if there is a chance, which query should be selected on

which to perform prefetching? Using the margin gain analysis technique used in [NFS91],

we can show that if First-Come-First-Serve for admission control still applies, then given

the same amount of buffer space, prefetching for a shorter query can give greater benefit

than for a long query, which means prefetching for the head of the waiting queue may

not be a good decision. This is illustrated by the following example.

Consider a situation where there are four activated queries (S1,S2,S3,S4) being

served, each with a consumption rate 240KB/s. S1 will finish in 10 seconds, but the

Chapter 5. Prefetching 42

other three will last longer. The disk has a maximum reading rate of R = 1150KB/s.

There is 1MB free buffer space left at the current moment. S5 and S6 are two queries in

the waiting queue, both having a consumption rate 240KB/s. S5 is 30 seconds long, and

S6 is 15 seconds long. We will show what will happen if we prefetch either S5 or S6.

If we decide to prefetch data for S5, the maximum amount that can be prefetched is

1MBs. By Equation 5.1, the consumption rate of S5 can be reduced to 240 — 1000/30 =

207KB/s. At the time S finishes, the total consumption rate of all the other queries will

be 3 x 240+240+207 1167KB/s, which is greater than the maximum disk reading rate.

This means that by prefetching S5, we cannot admit both S5 and S6 when S1 finishes.

So consider prefetching S6 instead. By prefetching 1MB, the consumption rate of S6 can

be reduced to 240 — 1000/15 173KB/s. So the total consumption rate will only be

3 x 240 + 240 + 173 = 1133KB/s. This is less then 1150, which means that when S

finishes, we can admit both S5 and S6 at the same time. El

To address the problems in SP, we propose the following new strategy. With this

strategy, we will find the shortest query to prefetch, so as to maximize prefetching and

the number of queries that can be activated once an active query has completed.

Strategy IP1

Let S, ..., S be all the activated queries, as allowed by the admission controller.

Among them, let Si (1 j n) be the query that will finish the earliest. Also let

Sfl+,5n+2, ... be the queries in the waiting queue, and let Bfree be the total number of

buffers available for prefetching.

The algorithm works as the following:

1. Calculate t

Use Equation 5.7 to determine the length t of the cycle for S1, ..., S,.

Chapter 5. Prefetching 43

2. Initialization

Set target to S,j, candidiateSet to and finalAmt to 0.

3. First chance

If the combined consumption rate of all the streams in candidiateSet is not greater

than the consumption rate ofS3(i.e.P3 YSkecandidiateSet Pk), go to Step 6.

4. Second chance

Otherwise,

(a) Calculate the necessary prefetched consumption rate PfI6t of target so that

all the streams in candidiateSet can possibly be activated when S, has finished,

i.e. Piirget + Starget;SecandidiateSet Pk P + (1
— p) x R.

(b) Use Equation 5.1 to calculate the amount that needs to be prefetched in order

to reduce the consumption rate of target to Pi46, i.e. targetAmt (Ptarget —
DPft ‘

target) X1target

(c) If targetAmt > Bree, then go to Step 5 to try the next condition.

(d) Otherwise, use the admission control test given in Chapter 2 to determine if

all streams in candidiateSet, including the prefetched one, can fit into a cycle

with all the current activated queries except S. If the admission control test

fails, go to Step 5.

(e) Otherwise, set finalTarget to target and finalAmt to targetAmt. Go to Step

6.

5. Third and final chance

Chapter 5. Prefetching 44

(a) Set targetAmt to Bfree.

(b) Use Equation 5.1 to calculate the prefetched consumption rate after prefetch
pft — targetAmtzng. . target — target

— Ttarget

(c) Use the admission control test given in Chapter 2 to determine if all streams

in candidiateSet, including the prefetched one, can fit into a cycle with all the

current activated queries except Si. If the admission control test fails, go to

Step 7.

(d) Otherwise, set finalTarget to target and finalAmt to targetAmt. Go to Step

6.

6. See if more queries can be activated

Consider the next query5next in the waiting queue that is not in candidiateSet. Add

5next to candidiateSet. Compare the length of5next with the length of the target.

Set the target to be the stream with shorter length. Go back to Step 3.

7. No more queries can be activated

If finalAmt > 0, prefetch finalTarget for the amount of finalAmt.

D

The above algorithm is fairly lengthy. We will explain it in more detail.

Step 1 is to calculate t. This calculation is separated from the remaining part of

the algorithm, which means changing the admission control policy will not affect the

calculation of t.

Step 2 is the initialization part. Target will be the query we perform prefetching

on. CandidateSet is our working set. We consider all the queries in this set as a whole

Chapter 5. Prefetching 45

when doing admission control. And finalAmt is the amount of data we will prefetch for

target.

The purpose of introducing carididateSet is to enforce FIFO in the activation of

queries. If 5k is before 5k+1 in the waiting queue, we should not admit Sk later than

Sk+1• Even though it is highly possible we will prefetch 5k+1 instead of 5k, if that is the

case, Sk+1 and Sk must be accepted together. Breaking FIFO will give better chances to

improve performance, but it also introduces many other problems like fairness, deadlock

prevention, etc. These are not discussed in this thesis.

Steps 3—6 are the main part of the algorithm. In each iteration of IP1, a new query is

added to the candidateSet, and the shortest one in the candidateSet is selected as target

for possible prefetching. If all the queries in the candidateSet can pass the admission

test as a whole, a new iteration begins; otherwise, the algorithm stops. There are three

possibilities for all the queries in the candidateSet to be activated once Si has completed

(steps 3, 4 and 5):

• First (Step 3), if the combined consumption rate of all the queries in candidateSet

does not exceed the consumption rate of S, all the queries in candidateSet are

guaranteed to be activated once 53 has completed. In addition, nothing needs to

be prefetched in this case. Execution goes to Step 6 to see if there are more queries

in the waiting queue that can be activated.

• Second, if the first condition fails, execution goes to Step 4. In this case, IP1 tests if

a sufficient amount of target can be prefetched so that all the queries in candidateSet

can be activated, provided that this amount of data does not exceed the number of

buffers currently available for prefetching (Step 4c). If admission control in Step 4d

verifies that all queries can be activated with the help of prefetching, both target

Chapter 5. Prefetching 46

and the prefetching amount targetAmt are recorded in the variables finalTarget and

finalAmt. Execution then goes to Step 6 to try to add another query from the

waiting queue to candidateSet, and a new iteration begins.

• Third, if both of the above steps fail, IP tries the “last resort”. It simply tests if

using all free buffers to prefetch for target will be sufficient to activate all queries

in candidateSet. If admission control returns a positive answer, all the necessary

work will be done in Step 5d and Step 6, and a new iteration begins.

If all of the above steps fail, this means not all the queries in the candidateSet can be

activated. More precisely, all but the last added query in candidateSet can be activated

once S has completed. Step 7 prepares for this event by correctly setting finalTarget

and finalAmt.

The control flow of SP1 is illustrated in Figure 5.3.

At the beginning of this chapter, we listed three possibilities for how prefetching

can help a query. However, algorithm IP1 only handles Case 2: reduce the effective

consumption rate. When this is impossible, prefetching data for one cycle could at least

improve the response time to some degree. This can be considered as an improvement

to algorithm IP1. However, this improvement is not as significant as reducing effective

consumption rate.

In the above algorithm IP1, if everything fails, the scheduler will not do any prefetch

ing. Actually, it might be a good idea to apply SP if this happens. Although this

prefetching will not help the query to be admitted right away, there is a possibility it will

save the system some disk bandwidth in the future, thus improving performance.

As we noticed earlier, buffer sharing is orthogonal to prefetching. It is not difficult to

combine buffer sharing and prefetching together. We omit the result for simplicity.

Chapter 5. Prefetching 47

C

C
Yes

Calculate t

First Chance
No

I

1

I
Yes[

Second Chance 1
No

L Third Chance
Yes

Add New Query

No
STOP

I
Figure 5.3: The control flow of IP1

5.4 Intelligent prefetching strategy 2 (1P2)

An intelligent prefetching strategy (IP1) was introduced in last section. In contrast to

SP, which always prefetch the first query in the waiting queue, IP1 tries to prefetch

the shortest possible query in the waiting queue, so that system performance can be

improved. However, closer study of strategy IP1 reveals some problems. First, in Step 3,

if we take switching time into consideration, the condition P3 SkEcandidiateSet Pk is not

Initial zation

Chapter 5. Prefetching 48

sufficient to guarantee an admission. The reason is: if we let more than one query in, the

switching time of these queries may be much greater than what S, used. Similarly, in

Step 4, condition PtIet + Sktarget;SecandidiateSet F,. P3 + (1
—
p) x R cannot guarantee

an admission either. This means the value calculated in Step 4(a)(b) might not pass the

test in Step 4(d). A similar situation may occur in Step 5.

Thus, the next question is: How to decide exactly if a query can be acceptted or not

at the time the prefetching amount is calculated? And what is the optimal amount to

prefetch?

These are hard questions to answer, for reasons presented next.

First, we have to keep track of all the system buffers. In order to accept a new request,

we need some working buffers for cyclic reading, and we may also need some buffers for

prefetching. The buffers available now can be used for either prefetching or cyclic reading.

The buffers released at Tf3h by S, can only be used for cyclic reading. The reason is

that those buffers will not be released until but prefetching is performed before

that time. There might also be some buffers released between now and (it depends

on if the prefetching buffers are released gradually or at the termination of the query).

Keeping track of all these buffers is complicated.

Second, even if the above problem is solved, the story is still not finished. The

remaining question is: What is the optimal amount of data to prefetch? On one hand,

prefetching can reduce the consumption rate for a query, so the query will have a better

chance to be admitted. On the other hand, if we use too many buffers for prefetching, we

may not have enough buffers left for cyclic reading. Because the total number of buffers

is fixed, the problem is how to balance between these two extremes.

To simplify the analysis, we assume that the prefetching buffers are released at the

Chapter 5. Prefetching 49

termination of the query. Let the total system buffer space be B, the buffers used for

cyclic reading be B, and the buffers occupied by prefetched data be B. The number of

free buffers will be:

BfreeBBcBp (5.8)

Assume that the number of prefetching buffers that will be released at Tf3h by Si

is B.

Suppose the new request to be admitted is its playback rate is and its

length (duration time) is 1. Let D be the amount of data that will be prefetched for Snew.

Now the question is how to decide on a value of D so that Pnew is maximized.

First, the modified consumption rate of the query after prefetching is:

P,ew Pnew — D/1 (5.9)

The amount of buffers left for cyclic reading at Tf8h is:

B=B-B-i-B3-D (5.10)

In order to admit Snew, the first condition is that D Bfree. This is equivalent to

D<B—B—B. (5.11)

In addition, the admission control criteria defined in Equations 2.7 and 2.11 must be

satisfied, i.e.

sxR
R-P

Chapter 5. Prefetching 50

RxB
- ‘P1(R-P)+P’ (R-P’

• (5.12)
new\ new)

In order to obtain a valid t, the upper bound should be greater than the lower bound,

i.e.

sxR< RxB
(5.13)RP ZJi’Pi(RPi)+Pew(RP’ Ynew)

The total consumption rates of all the queries is:

n
P= > Pi+P,ew (5.14)

i=’,ij

Substitue this value for P into Equation 5.13, we obtain:

n—iS
B’ newCRfl_ipp, (P(R—P)+P’ ‘RPew)>0 (5.15)

new i=1

which is equivalent to the following quadratic equation:

aD2 + bD + c> 0 (5.16)

where the coefficients are:

8 1
a =

12 1’
n—i BBp+Bj+SR2SPnewb = R+Pi+Pnew+ Ii=i

n—i n—i
c = (BBp+Bj)(RPjPnew)s(Pnew(RPnew)+Pj(R-Pj)).

i=i i=1

Solving this equation, and Equation 5.11, we can obtain a range for D that maximizes

Pnew.

Chapter 5. Prefetching 51

Thus, we have finished the presentation of how to calculate D. This calculation can

replace Steps 4 and 5 in IP1. More important, by using this equation, an admission

control strategy can be guaranteed to be successful if a valid (positive) solution of D is

obtained.

Strategy 1P2

Replace Step 4 and 5 in IP1 by:

Calculate D using Equation 5.16. D

The above formula seems quite complicated. However, the computing overhead is

actually much smaller than IP1. The reason is that we eliminate all the failed attempts

when doing admission control. One interesting thing to notice is: although 1P2 is more

accurate in calculating D, and the computing overhead is greatly reduced, the actual

system throughput is almost the same as IP1. This will be shown in Chapter 7 when we

discuss simulation results.

5.5 Summary

Prefetching is a method to improve system performance of multimedia file servers. The

basic idea of prefetching is to read some data for a new query before the query is admitted

by using wasted disk bandwidth and buffer space. A simple straightforward prefetching

strategy SP was described. SP prefetches as much as possible for the first query in the

waiting queue, and usually has bad performance. An intelligent prefetching strategy IP1

is introduced as an improvement to SP. IP1 performs prefetching in a more intelligent

way and usually gives much better performance result than SP. A further improvement to

IP1, aimed at reducing the overhead of admission controll, is the intelligent prefetching

strategy 1P2. Preliminary analysis shows intelligent prefetchings greatly improve system

Chapter 5. Prefetching 52

performance.

Chapter 6

Multiple Disk Environment

6.1 System configuration of multiple disk environment

To improve system throughput, using multiple disks is an obvious extension to the single

disk solution. While there are many possible system configurations for a multiple disk

environment, in this thesis, we assume that a system consists of n disks and all the disks

can transfer data concurrently. In addition, we assume that the I/O bus can transfer

data as fast as a disk can read/write.

In such an environment, there are two factors that affect system performance. The

first factor is how the system buffers are distributed and used. The second factor is how

the data is organized on the disks.

There are two possible ways to manage system buffers. All the disks can share one

system buffer pooi, or each disk can have its own buffer set that cannot be shared with

other disks. The latter case is trivial. But system performance is not as good as in the

first case. So in our discussion, we will concentrate on the case where there is a single

shared buffer pool.

There are several methods for data placement in a multiple disk environment:

1. The simplest one is that all the data are replicated on all the disks. Because all

the disks keep the same copy of data, real concurrency can be supported. However,

this scenario only has limited application, it is not practical.

53

Chapter 6. Multiple Disk Environment 54

2. All the data are striped perfectly on all the disks. In this case, the data unit for

striping is a fixed size, and the data are placed on the disks in strict order. If

implementation details are not considered, then we can treat this as a single disk

with a higher bandwidth.

3. The third case is that any single stream is placed on only one disk, so the whole

system can be viewed as a collection of disks.

This list is more or less just a theoretical discussion. Practically, we can use RAID

disk array [PGK88] as a study example. Basically, data in a RAID disk array can be

read/written concurrently. Depending on the different stripping data units (from bits to

blocks, to whole files), the reading behavior of a RAID disk array is similar to the Cases

2 or 3 above.

6.2 Extension from a single disk environment

In this section, we discuss how to extend our original algorithms so that they can work

well in a multiple disk environment.

If the data is replicated or perfectly striped(cases 1 and 2), there will be no problems

at all. We can logically treat this as a single disk, and use whatever policies we used in

the single disk case. If Rat1 = Rj is the sum of the disk rates of all the disks in the

system, the only modification to our original algorithm is to replace R with Raji in all

the formulas.

However, if the data is placed according to Case 3 (a stream is placed on only one

disk), we have to perform some modifications on our algorithm to make it work.

Our goals here are to achieve high throughput and high concurrency, but at the same

time we want the disks to work as independently as possible so that the overhead in

Chapter 6. Multiple Disk Environment 55

coordinating the actions of different disks can be minimized.

In the single disk case, there is only one request queue. In the multiple disk case, there

is one system request queue, and each disk has its own request queue. When a request is

submitted to the system queue, it will be re-submitted to its corresponding disk queue

depending on where the data are stored. For each disk queue, the admission control

policy should still be First-Come-First-Serve. We treat each disk as a subsystem, and we

can use whatever policy we like within the subsystem. As a first step, no synchronization

will be considered among user requests, so the admission control and buffer management

are simplified. There are only some minor modifications that need to be performed on

the original single disk algorithms.

Specifically, if each disk has its own buffer space and no sharing is allowed, it will

work independently of all the other disks. However, if a shared system buffer pooi is

used, then all the per-disk subsystems will compete for buffers. Keeping track of all the

system buffers is a nontrivial task. We also need to enforce some fairness rules to prohibit

any subsystem from occupying all the buffers at some time point. These issues will be

discussed in the reminder of this section.

6.2.1 Handling buffer sharing and prefetching

There are two important issues that we need to deal with in a multiple disk environment,

namely, buffer sharing and prefetching.

Buffer allocation and buffer sharing

In each per-disk subsystem, we will perform buffer sharing using the same scheme as

in the single disk case. Since each subsystem is independent of all the other subsystems

and their admission controls are not synchronized, performing buffer sharing among all

Chapter 6. Multiple Disk Environment 56

the serving requests in the whole system level will be too complicated.

However, since all the subsystems are competing for a fixed number of system buffers,

in order to improve the utilization of buffers, the number of buffers assigned to each

subsystem should not be fixed. This can be thought as higher level buffer sharing.

There are different ways to assign buffers to all the subsystems and enforce fairness

among them. Studying the efficiency of these methods is a complicated issue and beyond

the scope of this thesis. In the algorithm that we will give later in this section, a simple

scheme is used.

As for the implementation concern, we have to keep track of all the buffers used by

all the disks and the requests in the system at any one time. A simple way to do this

is: whenever a subsystem wants some buffers (this subsystem may not need all these

buffers at this moment, but will need them later), it sends a request to the system buffer

manager. If the buffer manager’s response is favorable, the subsystem will reserve the

buffers so that no other subsystem can use them. When the subsystem finishes with the

buffers, it will return them to the system buffer manager.

Prefetching

Since we are not considering the problem of synchronization at this moment, each

disk works independently of all the other disks. So prefetching is also performed at the

per-disk subsystem level.

As we already noticed in the single disk case, the most difficult problem in handling

prefetching is to figure out exactly how many free buffers the system has now and will have

when the new request is actually admitted. However, using the request/reserve/release

scheme as we discussed earlier, this will not be a problem, although it may not be optimal

in the global sense.

Chapter 6. Multiple Disk Environment 57

Just like the algorithms without prefetching, the problem of fairness also exists with

prefetching. Since prefetching usually consumes much more buffers than regular reading,

the situation gets even worse here. Buffers occupied by prefetched data in one subsystem

will affect the performance of all the other subsystems. How to coordinate the prefetch

ings in all the subsystems is a tough and interesting topic, but again this problem is

beyond the scope of this thesis. In our algorithm, we will just use a simple policy: At

any time, only one subsystem is allowed to do prefetching.

6.2.2 Handling synchronization

Synchronization is the most difficult issue when considering multiple stream retrieval.

We will show how this is handled in our multiple disk environment. We use a very

simple scheme which may not be optimal. However, it shows synchronized requests can

be handled correctly within our framework.

We use the simplest synchronization scenario as an example: multiple streams are to

be started at the same time.

In the single disk case, because there is only one admission controller, the problem is

relatively easy. We can bundle all the requests into one, and always admit them or reject

them together.

In a multiple disk environment, we have multiple admission controllers, and the re

quests may belong to different subsystems. We need to design a scheme to communicate

among all the subsystems (on different disks). When one subsystem is ready and the

other is busy, the ready one should wait until the busy one is ready too. During the time

it is waiting, the ready subsystem should not admit other requests. When all requests

can be admitted, all the subsystems should admit them at the same time.

Chapter 6. Multiple Disk Environment 58

As we said earlier, this is not an optimal solution. When one disk is ready and the

other is busy, the ready disk will be idle for some time, so the disk utilization is not

quite good. However, this simple solution guarantees no deadlock will happen and it is

relatively fair. For a counter-example, suppose we have two disks to serve a synchronized

request which requires two streams, one from each disk. At time t, disk Dl is ready and

D2 is busy. If we do not want to waste any disk time of Dl, and let other requests waiting

on Dl get in now, when D2 is ready, Dl may be busy serving the new request. Thus D2

will have to wait for Dl. If this situation is not handled carefully, we may easily get into

circular waiting, and the synchronization requests will never be served.

It is possible to design a scheme to achieve both high disk utilization and fairness,

but that needs more research, so we leave it as a future improvement. Instead, we outline

an simple algorithm for the multiple disk environment as follows.

Algorithm MD:

1. All the requests submitted to the system waiting queue will be re-submitted to the

corresponding subsystem waiting queues.

2. A system buffer manager will handle all the buffer requests from the subsystems.

(a) In order to use buffers, a subsystem should first send request to the system

buffer manager.

(b) The system buffer manager will assign buffers to subsystems according to a

predefined policy.

(c) Subsystems will reserve the buffers after they get them from the system buffer

manager, and will return them back to the system buffer manager when fin

ished.

Chapter 6. Multiple Disk Environment 59

3. Each subsystem has its own admission controller and scheduler. Each subsystem

works independently of the others.

4. Synchronization will be handled using the simple stop-wait scheme described above.

ci

In the above algorithm, the buffer manager can use different buffer assignment poli

cies. These policies should guarantee that no subsystem will grab all the system buffers

at any time. We use a simple heuristic that no subsystem is allowed to get more than

50% of the total buffers, and simulation results are shown in Chapter 7.

6.3 Summary

This chapter describes a preliminary study on how to extend the work described in

Chapters 4 and 5 to a multiple disk environment. This preliminary study showed the

framework we established in the last two chapters will work in the new multiple disk

environment. Specifically, we discussed how to handle buffer sharing, prefetching, and

synchronized requests.

Some simulation results will be given in Chapter 7, and directions for further study

will be discussed in the last chapter of this thesis.

Chapter 7

Performance Evaluation by Simulation

7.1 Simulation methodology and program design

We have implemented a simulation package to evaluate the algorithms discussed in this

thesis. The package runs under Unix on Sun Sparc workstations. It consists of about

5,000 lines of C source code.

The methodology we used in the simulation package is discrete event-driven simula

tion. Everything that can cause a change in the system state, such as request arrivals,

request completion, cyclic read completion, etc. are defined as events. The main purpose

of our program is the generation and processing of these events.

The simulation package can have two different kinds of output. The first requires all

the requests being submitted to the request queue at the beginning of the simulation.

In this case, we can report the total finishing time, peak disk utilization, peak buffer

utilization, average disk utilization, average buffer utilization, etc. The second kind of

output is to simulate an interactive system. In this case, in addition to the above results,

we can also report query response time. For simplicity, most of the simulation results

described in this chapter are reported using the first kind of output.

Our simulations are based on realistic figures. This makes the simulation results more

meaningful. The following table lists the ranges of key values we selected.

60

Chapter 7. Performance Evaluation by Simulation 61

mill seek time(per track) 5 msec

max seek time 25 msec

query playback rate 240 kbytes/s

max disk rate 2000 kbytes/s

block size 20 kbytes

buffer space 100k — 8 M

More details of the simulation package are given in the following sections.

7.2 Implementation concerns

To implement/simulate our ideas, there are lots of issues that need to be considered very

carefully. In this section, we discuss several issues we encountered in the design of the

simulation package.

7.2.1 When to activate the admission controller?

In our algorithms, reading of streams is performed in an cyclic manner. When a request

finishes, the admission controller can be activated either right after the reading for this

request is finished; or, after the whole cycle finishes. When the cycle-length is large and

disk utilization is low (which means a big chunk of free time will be left at the end of

each cycle), the above two schemes have large differences in system performance. We

select the first scheme in our simulation. Although it is more complicated and harder to

implement, we verified that it does improve system performance.

Chapter 7 Performance Evaluation by Simulation 62

7.2.2 Buffer releasing

If prefetching is used in our algorithm, the prefetched data will occupy a certain number

of buffers. We can release these buffers in two ways: after the query finishes, release all

the buffers; or, at each reading cycle, whenever the buffered data is consumed, the buffers

will be released (gradually). Releasing buffer gradually will improve the performance to

some degree, but it will significantly increase the complexity of our analysis (and thus the

complexities of the admission controller and scheduler). In our simulation package, we

use the simpler (first) scheme. By doing this, the computing overhead of the scheduler

is greatly reduced.

7.2.3 Transient period

As discussed in literal, [RVR92] and [Po191}, in a cyclic-reading scheme, when the cycle-

length is changed (e.g. increased), starvation may happen. For example, suppose there

are n streams being served, and the current reading period length is t. When a new

request comes in, the new reading period length becomes In our algorithm, t1 is

always bigger than t. However, the data we read in in the current period can only last

the length of t, so starvation will happen.

To solve this problem, we divide the transient period into two steps: First, we change

the reading period for the n requests from t to t1. Then, we do some prefetching for

the new request so that it will be ready for startup. After these two steps, we can start

the normal cyclic reading with the new query added.

Chapter 5 has already shown how to prefetch data for a request. We will discuss how

to change the reading period length from t,- to tn+l in this chapter.

The idea is to do it gradually. Basically, what the system need to do is to try to read

Chapter 7. Performance Evaluation by Simulation 63

some extra data in each cycle so that the next cycle will be a little bit longer. These

steps will be repeated until we reach tn+l.

Suppose disk utilization is p. The actual time used to read data in each cycle will

be t x p — s. If we use all the disk idle time to read data, the actual read time will be

t,., — s. This amount of data will support the consumption of the next reading cycle, so

the reading period length for the next cycle can be changed to

t(1) = t
tfl — S

(7.1)
tTh X p — S

We can repeat this procedure to obtain t(2), t(3), t(4)..., until t(i) t1, then

the transient period is completed.

From Equation 7.1, we can see that the rate t(i) increases depends on p. If p = 1,

nothing can be done. So when performing scheduling and calculating t, we cannot push p

to as high as 1. That will make accepting a new request without losing data impossible.

In our simulation package, we set the maximum of p to 0.95.

In the process of changing t, we do not need to worry about buffer limitations. This

is because we always increase buffer usage in this procedure, but we already know there

are enough buffers for the last state t,1, as guaranteed by the admission control test.

7.3 Evaluation of buffer sharing with varying disk rates

In Chapter 4, we analyzed buffer sharing, and the result showed that it can lead to

a tremendous reduction in total buffer requirements. In the ideal case (disk utilization

p equals to 1), the savings can be 50%. Here we simulated a situation when p keeps

changing and has an average value less than 1. In this series of simulation, we used

50 queries, each with a consumption rate of 240 KB/s. The lengths of the queries

Chapter 7. Performance Evaluation by Simulation 64

Buffer requirement vs No. of queries
0
0.

o
with buffer sJaring

..A 0
0.

0 /
G.) /

— without buffer sharing

number of activated of queries

Figure 7.1: The benefit of buffer sharing

were from 20 to 120 seconds, with the average being 60 seconds. In order to support a

significantly high number of concurrent queries, the maximum disk reading rate was set

to R=2000KB/s. The graph in Figure 7.1 shows the minimum buffer space needed when

the number of concurrent queries varies from 3 to 7—with and without buffer sharing.

As expected, in all cases, buffer sharing requires less buffer space than without buffer

sharing. The savings in buffer space were between 20% to 40%, depending on the average

disk utilization.

Chapter 7. Performance Evaluation by Simulation 65

7.4 Evaluation of buffer sharing with non-contiguous data placement

In Chapter 2, we studied how to use approximation to deal with the non-contiguous data

placement case. By using approximation, a buffer sharing scheme can also be applied to

non-contiguously placed data, so performance can be improved.

In this series of simulations, we attempted to show that non-contiguously placed

streams can benefit from the approximation, which makes them amenable to buffer shar

ing (and the kind of prefetching we propose in this thesis). In particular, we repeated the

simulation described in the previous section with two different queries. The first kind of

queries request streams which were non-contiguously placed in blocks of size Bi = 20KB

(i.e. roughly one disk track), with each block separated by a gap G = 5ms. The second

kind use the streams which are the approximation of the above streams using Equation

2.12 and 2.13. Queries of the second type were allowed to share buffers (we cannot share

buffer for the first type of queries by using our algorithm, because all our analysis is

based on the contiguously-placed case.). Analogous to Figure 7.1, Figure 7.2 shows the

minimum buffer space (in KB) needed for both kinds of queries, when the number of

concurrent queries varies between three and five.

number of concurrent queries 3 4 5

non-contiguous streams 130 360 2520

approx. streams with buffer sharing 110 250 1420

Figure 7.2: Handling non-contiguous data placement using approximation

Chapter 7. Performance Evaluation by Simulation 66

As can be seen clearly in the table, in all cases, it is beneficial to approximate non

contiguous streams with contiguous ones, and if allowed to share buffers, the approxi

mating streams can lead to a reduction in total buffer requirements.

7.5 Evaluation of prefetching

In this series of simulations, we evaluated the effectiveness of our prefetching strategies.

We again used 50 queries, each with a consumption rate 240 kB/s, and length 90 seconds.

The maximum disk reading rate was set to 1000KB/s. The graphs in Figure 7.3 and 7.4

show the time taken to complete the 50 queries and the average disk utilization with

varying amounts of buffer space. In both graphs, the x-axis is the amount of buffer

space, varying form 5MB to 8.5MB. In figure 7.3, the y-axis is the total time taken

to complete 50 queries using SP, IP1 and 1P2, normalized by the time taken without

prefetching. Thus, the horizontal line at 1.0 in Figure 7.3 represents the situation without

prefetching. With small amount of space available to prefetching, intelligent prefetchings

(both IP1 and 1P2) do not lead to any gain in performance. However, as more and

more space becomes available to prefetching, IP1 and 1P2 are able to activate more and

more queries faster than if no prefetching is allowed. Consequently, the total time taken

becomes smaller. As shown in Figure 7.3, intelligent prefetching (both IP1 and 1P2)

could lead to a 30% saving in total time.

Figure 7.4 provides more insight on the comparisons. If no prefetching takes place,

the average disk utilization is around 0.8. But as more buffer space becomes available

to prefetching, IP1 and 1P2 are able to better utilize the disk by prefetching, and the

average disk utilization gradually climbs up to 1.0. Moreover, the utilization of buffers

follows a similar trend.

Chapter 7. Performance Evaluation by Simulation 67

Finish time vs Buffer Size

:
0

aiD

0

0

5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0

Buffer Size (Mbytes)

Figure 7.3: SP vs IP1 vs 1P2: relative finish time

Another interesting thing shown in Figure 7.4 is that the average disk utilization for

SP is still higher than if no prefetching is allowed. This indicates that while the disk

is kept busy by prefetching, the way that SP conducts prefetching is problematic and

totally ineffective.

Also we can observe from the graph, that IP1 and 1P2 do not have significant dif

ferences in performance. As we pointed out in Chapter 5, this shows that the heuristics

we used in IPI. are good enough in most of the cases. However, we should point out

that the computing time used for admission control and scheduling is not showed in the

Chapter 7. Performance Evaluation by Simulation 68

Disk Utility vs Buffer Size
- -

-

4.)
.— 0

4)

(/2
• 0

0

5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0

Buffer Size (Mbytes)

Figure 7.4: SP vs IP1 vs 1P2: average disk utilization

simulation. 1P2 has much less computing overhead than IP1. The reason is that every

time 1P2 calculates a prefetch value, it will guarantee a successful admission. On the

other hand, due to the reason we discussed at the beginning of Section 5.4, IP1 may have

many failed attempts. This increases the computing overhead. In a real system, it will

have some impact on performance.

The series of simulations discussed above did not allow buffers to be shared. In

another series of simulations, we allowed buffers to be shared, and used the version of

admission control that is based on Equation 4.5, not on Equation 2.10. The results of

this series of simulations were very similar to those presented above. The only difference

Chapter 7. Performance Evaluation by Simulation 69

was that buffer sharing saved a few hundred KBs of buffer space, and made it available

to perform prefetching. Thus, the point when IP1 and 1P2 started to show improvement

now began a few hundred KBs earlier than is shown in Figure 7.3. For simplicity, we

omit the results here.

7.6 Evaluation of multidisk environment algorithm

In this section, we will give the preliminary simulation results for our multidisk envi

ronment algorithm. The algorithm is described as MD in Section 6.2. In this series of

simulations, we used a three disk array. We assumed that a stream is placed on only one

disk, and there is no duplicated data. There was a system buffer pool shared by all three

disks. We set the buffer size to 10MB.

Again, we used 150 queries (roughly 50 queries per disk), each with consumption rate

240 KB/s, and length 90 seconds. Each of the queries was assigned randomly to one of

the three disks.

We assumed all the three disks have the same speeds, and in this simulation, we

changed the disk speeds from 1000KB/s to 2000 KB/s, reporting the total query finish

time.

For comparison, we also reported the query finishing time on a single disk server,

which has the same disk speed as the disks in the disk array. In our multiple disk

algorithm, the maximum disk space any subsystem can get is 50% of the total buffer

space, i.e. 5MB in this situation. To be fair, we set the buffer space of this single disk

server to be 5MB too.

In Figure 7.5, the solid line is the total query finish time using this disk array. The

dotted line is the result we got using a single disk server.

Chapter 7. Performance Evaluation by Simulation 70

Three Disks vs. Single Disk
0
0

I

ing1esk

three

disks

0- I I I I
1000 1200 1400 1600 1800 2000

disk rate (KB/s)

Figure 7.5: The result of the multiple disk algorithm

Figure 7.5 shows that by using this disk array, we can achieve a speedup factor closes

to three with various disk speeds.

Chapter 8

Conclusions

8.1 Summary

Designing a high performance multimedia file server is a research topic of great interest

and value. In this thesis, we studied one of the key problems encountered in such systems.

Given a fixed amount of buffer space and disk bandwidth both pre-determined at design

time, we investigated how to maximize the throughput of the system. Our approach was

to maximize the utilizations of buffers and disk. To achieve this goal, we proposed and

studied two schemes, buffer sharing and prefetching.

Buffer sharing in the fixed reading order scheme was discussed in Chapter 4. We first

analyzed a simple case in which all the streams have the identical playback rates. Analysis

showed buffer sharing could lead to 50% saving when the disk utilization approaches 1.

Removing the restriction that all the streams should have the same playback rates, we

further analyzed buffer sharing in the general case. Simulation results showed buffer

sharing could lead to 30 to 40% savings in general cases.

Prefetching is the other scheme we used to improve disk and buffer utilization. In

Chapter 5, we first discussed the benefits of prefetching. A query can be helped by

prefetching in many ways. A simple prefetching scheme SP was given, and the perfor

mance was analyzed and simulated. Not satisfied with the performance result of SP,

we further proposed a more intelligent prefetching scheme IP1. This scheme has much

71

Chapter 8. Conclusions 72

better performance than SP and can fully utilize the disk and buffers. 1P2 is a further

revision of IP1 and the admission control overhead of the algorithm itself is reduced.

Simulation results show intelligent prefetching schemes IP1 and 1P2 could lead to up to

40% improvement in system performance.

Some preliminary investigation on how to apply our buffer sharing and prefetching

schemes to a multiple disk environment was described in Chapter 6. Our analysis showed

there is no major difficulty in this extension. Our simulation results also indicated this.

8.2 Future works

There are at least two main categories for future research.

• Improvement of current work

• New directions

8.2.1 Improvement of current work

For the study of buffer sharing, one thing we should do is to design an implementation

scheme. In the buffer sharing case, there is no dedicated buffer set for each stream.

Buffers are assigned dynamically and globally. Designing a good implementation scheme

is a challenging goal.

In this thesis, we only considered the case in which the reading order of all the streams

is fixed. How to apply buffer sharing in a variable reading order scheme is an interesting

and challenging topic. If we can do buffer sharing in a variable reading order case, we

will get both the advantages of buffer sharing (reducing buffer usage) and of variable

order reading (optimizing disk reading).

For the study of prefetching, as in the buffer sharing case, we also need to design

Chapter 8. Conclusions 73

an efficient implementation scheme which can fully achieve the result we obtained by

theoretical analysis. In addition, we need to find out under what condition prefetching

will give the optimal result. Further study of the behaviors of IP1 and 1P2 is also needed.

We believe further studies on these problems will lead to some interesting results, and

will give us a better understanding of the buffer-disk relation in multimedia file server

systems.

For the study of how to extend our work to a multiple disk environment, our research

is just a preliminary study. There are lots of issues we have not considered very carefully.

Some examples are: What are the advantages and disadvantages of sharing a global buffer

pool? How will the system bus affect the performance? What are good ways to organize

metadata? What are good ways to coordinate prefetching on all the disks? Further work

is necessary for all these topics.

8.2.2 New directions of research

There are several important issues we have not considered in this thesis. The first problem

is synchronization. A query may require data that are stored on different media. A

typical example is a query that requires video, audio and text at the same time, but

these are stored separately. The synchronization requirements may vary from application

to application. How to handle synchronization is one of the most important issues in

a multimedia system. Many studies have been conducted in this area. However, we

need to find out how our buffer sharing and prefetching schemes work when handling

synchronization.

Another important issue is the impact of networking. A multimedia file server is

usually operated in a network environment. The server is at one location, and the user

Chapter 8. Conclusions 74

can be at any location which can be reached through the network. First, the network

bandwidth may be a big problem to the server throughput. Second, some problems

caused specially by network, like network buffering, data loss, network jitter, etc., will

also affect the operation of the server in some way. When designing a network multimedia

file server, all these factors must be taken into consideration.

How to apply real-time scheduling theory in multimedia file server design is also an

interesting research direction. Multimedia systems have some inherent real-time require

ments. Scheduling a query for a video stream is quite similar to scheduling a real-time

task. But multimedia systems have some special requirements which an ordinary real

time system does not have. It will be very interesting to study how to apply real-time

scheduling theory in multimedia systems, and what kind of modifications and adjust

ments we have to make for this special environment.

Bibliography

[Adi93] Chris Adie. A survey of distributed multimedia research, standards and prod
ucts. Technical report, Edinburgh University Computing Service, January
1993.

[A0G92j David P. Anderson, Yoshitomo Osawa, and Ramesh Govindan. A file system
for continuous media. ACM Transaction on Computer Systems, Vol. 10, No.
4:311—337, November 1992.

[CKY93] Mon-Song Chen, Dilip D. Kandlur, and Phipli S. Yu. Optimization of the
Grouped Sweeping Scheduling(GSS) with Heterogeneous Multimedia Streams.
In Proc. of ACM Multimedia ‘93, pages 235—242, July 1993.

[Ga191] Didier Le Gall. MPEG: a video compression standard for multimedia appli
cations. communications of the ACM, Vol.34, No.4:46—58, April 1991.

[GC92] Jim Gemmell and Stavros Christodaulakis. Principles of delay-sensitive multi
media data storage and retrieval. ACM Transactions on Information Systems,
Vol.10, No.1:51—90, January 1992.

[Gem93] D. James Gemmell. Multimedia network file servers: Multi-channel delay sen
sitive data retrieval. In Proc. of ACM Multimedia ‘93, pages 243—250, July
1993.

[JSM91I Kevin Jeffay, Donald F. Stanat, and Charles U. Martel. On non-preemptive
schduling of periodic and sporadic tasks. In Proc. of the 1991 IEEE Symposium
on Real-time Systems, pages 129—139, 1991.

[LS93] P. Lougher and D. Shepherd. The design of a storage server for continuous
media. The Computer Journal, Vol.36, No.1:32—42, January 1993.

[NFS91j R. Ng, C. Faloutsos, and T. Sellis. Flexible buffer allocation based on marginal
gains. In Proc. of ACM-SIGMOD, pages 387—396, May 1991.

[PGK88] David A. Patterson, Garth Gibson, and Randy H. Katz. A case for redundant
arrays of inexpensive disks (RAID). In Proc. of A CM-SIGMOD, pages 109—
116, 1988.

[Po191] Vassilios G. Polimenis. The design of a file system that supports multimedia.
Technical Report TR-91-020, Computer Science Division, EECS Department,
University of California at Berkeley, 1991.

75

Bibliography 76

[RS92] Lawrence A. Rowe and Brian C. Smith. A continuous media player. In Proc.
3rd mt. Workshop on Network and OS Support for digital Audio and video,
November 1992.

[RV91] P. Venkat Rangan and Harrick M. Vin. Designing file systems for digital video
and audio. In Proc. of the 13th ACM Symposium on Operating Systems Prin
ciples (SOSP’91), pages 13—16, October 1991.

[RV93} P. Venkat Rangan and Harrick M. Vin. Efficient storage techniques for digital
continuous multimedia. IEEE transactions on Knowledge and Data engineer
ing, August 1993.

[RVR92] P. Venkat Rangan, Harrick M. Vin, and Srinivas Ramannathan. Designing
an on-demand multimedia service. IEEE communications Magazine, Vol.30,
No.7:56—65, July 1992.

[RW93] A. L. Narasimha Reddy and Jim Wyllie. Disk scheduling in a multimedia I/O
system. In Proc. of ACM Multimedia’93, pages 225—233, July 1993.

[TB93] K. Tindell and A. Burns. Scheduling hard real-time multi-media disk traf
fic. Technical Report 204, Department of Computer Science, York University,
United Kingdom, 1993.

[Y89] Clement Yu et al. Efficient placement of audio data on optical disks for real
time applications. Communications of the ACM, Vol.32, No.7:862—871, July
1989.

